
© 2017, IBM Corporation Liberty z/OS Good Practices

1

WebSphere Liberty z/OS
An Overview of Security

© 2017, IBM Corporation Liberty z/OS Good Practices

2

Objective of this Presentation

Provide a framework of understanding around the much larger
topic of "security"

Provide a set of essential "good practices" for security

© 2017, IBM Corporation Liberty z/OS Good Practices

Start

3

A High-Level Framework for the Security Discussion

Liberty z/OS
Server

Product Install
Files

Configuration
Files

Application Layer
Security

1

2

3 3. Application-related security
When you have an application* in a Liberty server, then quite a few
more security topics surface:
• Encryption, and with that a discussion of digital certificates
• Authentication, and with that User Registries
• Role authorization enforcement

2. Server-related security
Assigning the server an identity; and allowing or restricting what that
identity is capable of doing within a z/OS context

1. File-related security
Involves protecting the files from unauthorized modification, viewing,
and program invocation. This gets into file ownership and permission
bits.

Two focus areas: the install file system, and the server configuration files

* Either a user-written application, or a vendor application, or an IBM function such as the Admin Center. A server with no such
application requires none of these things; but once an "application" is made available, many or all these things bubble to the surface.

© 2017, IBM Corporation Liberty z/OS Good Practices

4

General Principle: Alignment of Names of Server and Security Artifacts

Liberty z/OS
Servers

Name: T4xxxxxx

JCL: T4xxxxxx

STARTED: T4xxxxxx

IDs: T4xxxxxx

Group: T4xxxxxx

APPL: T4xxxxxx

EJBROLE: T4xxxxxx.<role>

With an organized naming convention and careful
deployment of security definitions, it's possible to organize
Liberty servers into domains.

rwlp_WZSSAD_zos

At a minimum this would relate to servers under a given
WLP_USER_DIR; it may extend past the WLP_USER_DIR
depending on your topology design

This serves two key functions:

1. Reduces confusion (names align, easy to see relationships)

2. Facilitates security separation between groups of servers

KnowledgeCenter

Use a consistent prefix value for all the security artifacts

This allows for the possibility of security delegation

© 2017, IBM Corporation Liberty z/OS Good Practices

5

File-Related Security
Securing the install file structure; securing the configuration file structure

© 2017, IBM Corporation Liberty z/OS Good Practices

6

Review: UNIX File Permissions

IDs that are part of the group
for the file or directory

1 0 1
Read Write Execute

[4] [2] [1]

4 0 1+ + =

5
The group has READ and
EXECUTE, but not WRITE

IDs that are not the owner and not

part of the group; that is, other

0 0 0
Read Write Execute

[4] [2] [1]

0 0 0+ + =

0
Others have nothing

1 1 1
Read Write Execute

[4] [2] [1]

4 2 1+ + =

7

The owner of the
file or directory

The owner has READ,
WRITE and EXECUTE

Bit

Base-2
Value

© 2017, IBM Corporation Liberty z/OS Good Practices

Techdocs

7

Installation Manager (IM)

IBM Installation
Manager z/OS

Source
"Repository"

• Cloud-based
• Local copy

File System
Mounted at location

you specify

Use "Group Mode" on z/OS
• "Admin Mode" requires ID that runs IM be superuser (uid=0)
• "User Mode" implies only that ID can run IM
• "Group" mode allows any ID connected to the IM group to run IM
• Use something other than default IMGROUP and IMADMIN

Use a "Service Zone" Concept
• It's a general good practice (provides greater flexibility)
• It allows IM install target to be R/W while users access R/O copy

"Copy out" and mount Read-Only
• Use standard copy tools (DFDSS COPY with RENAME)
• Consider chmod –Rh 750 on copy to set "other" to "none"
• Mount copy as R/O

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102554 IM Guide
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD106391 Sample Installation Jobs
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD106392 WAS V9.0 Sample Install Jobs

See next chart

© 2017, IBM Corporation Liberty z/OS Good Practices

8

Illustration of IM Process Described on Previous Chart

/Service/usr/lpp/zWebSphere/Liberty/V16004IM

Group Mode

R/W

Many of the files are 775: write to the
group and read/execute to other.

The group needs write so IM in group mode
can perform updates if needed.

Other has read/execute in case you wish to
make IM copy generally available to users

R/W /usr/lpp/zWebSphere/Liberty/V16004

COPY

chmod -Rh 750

Owner (IM Admin) still has write.

Group (IM Group) reduced to read/execute

Other has no access at all

R/O /usr/lpp/zWebSphere/Liberty/V16004
Use of the 'server' shell script accessible only to users connected to the
Group. Anyone in 'other' denied access to read or execute. This prevents
unauthorized creation of servers by people not connected to the group.

Since this copy will never be acted upon by IM, you could also issue a chown against
this to change the owner and group away from the IM Admin ID and IM Admin Group.

The key is limiting group to just read/execute and restricting other to none.

Recommendation, but
not a requirement.

© 2017, IBM Corporation Liberty z/OS Good Practices

9

Setting the Stage: Those Seeking Access to the Configuration File Structure

Liberty z/OS
Server

/T1Servers

/servers

/T1SRV1A

server.xml

Other
Users

Admin
People

1

2 3

1. The Liberty z/OS Server
• Has a need to both READ and WRITE
• Two options: server ID owns files, or is a separate ID from file owner

2. People Responsible for Administering the Server(s)
• They have a need to both READ and WRITE
• Bad practice: sharing login ID/password
• Good practice: using SAF SURROGAT to switch to file owning ID

3. Other People Related to the Server's Activities
• Some have READ only ... logs, etc.
• Some may need limited WRITE ... then use "include" processing

4. Unauthorized People
• No access at all; key is insuring these fall into 'other' permission bit, and

that is marked as '0'.

Unauthorized 4 At the heart of this is a discussion of the UNIX
file owner, group, and other permissions

© 2017, IBM Corporation Liberty z/OS Good Practices

10

Range of Options

Liberty z/OS
Server

Liberty z/OS
Server

Liberty z/OS
Server

/<WLP_USER_DIR>

ID

ID

ID

• Multiple servers

• All have same STC ID

• STC ID = File Owner ID

ID

=

Liberty z/OS
Server

Liberty z/OS
Server

Liberty z/OS
Server

/<WLP_USER_DIR>

ID

ID

ID

• Multiple servers

• All have same STC ID

• STC ID ǂ File Owner ID

ID

=

Liberty z/OS
Server

Liberty z/OS
Server

Liberty z/OS
Server

/<WLP_USER_DIR>

ID

ID

ID

• Multiple servers

• Different STC IDs

• STC IDs ǂ File Owner ID

ID

=

=

=

It is a matter of thee degree of identity isolation that is required

© 2017, IBM Corporation Liberty z/OS Good Practices

11

By Default ... Server Configuration Files

ID=T1OWNER
Group=T1OWNG

/T1Servers 750 T1OWNER T1OWNG

/servers 750 T1OWNER T1OWNG

/.classcache 750 T1OWNER T1OWNG

/.logs 750 T1OWNER T1OWNG

/.pid 750 T1OWNER T1OWNG

/T1SRV01 750 T1OWNER T1OWNG

/apps 750 T1OWNER T1OWNG

/dropins 750 T1OWNER T1OWNG

/logs 750 T1OWNER T1OWNG

messages.log 640 T1OWNER T1OWNG

server.xml 640 T1OWNER T1OWNG

server.env 640 T1OWNER T1OWNG

/workarea 750 T1OWNER T1OWNG

export JAVA_HOME=<path_to_64_bit_Java>

export WLP_USER_DIR=T1Servers

./server create T1SRV01

It will create the directories and files under the
<WLP_USER_DIR> and assign ownership based on the
ID and Group that created the server

This will work, but there are a few potential issues
with this in a production setting:

• If you have multiple people with a need to change
configuration files, do you share the password of T1OWNER?
(answer: no)
Sharing passwords is a very bad practice. Better to take advantage of SAF SURROGAT
so permitted users can switch to the owning ID so they can make changes

• If you have multiple people with a need to read output files,
do you simply connect them to T1OWNG? (answer: no)
The owner group may be granted access to other SAF profiles (notably: SERVER) and
you do not want others inheriting that. Better to make the configuration group be
something different from the owner group and grant READ through that group.

© 2017, IBM Corporation Liberty z/OS Good Practices

12

Option: Group Ownership Different From File Owner Group

/T1Servers 750 T1OWNER T1READG

/servers 750 T1OWNER T1READG

/.classcache 750 T1OWNER T1READG

/.logs 750 T1OWNER T1READG

/.pid 750 T1OWNER T1READG

/T1SRV01 750 T1OWNER T1READG

/apps 750 T1OWNER T1READG

/dropins 750 T1OWNER T1READG

/logs 750 T1OWNER T1READG

messages.log 640 T1OWNER T1READG

server.xml 640 T1OWNER T1READG

server.env 640 T1OWNER T1READG

/workarea 750 T1OWNER T1READG

ID=T1OWNER
Group=T1OWNG

This gives you the flexibility to connect people to a group
for reading files, but not have those people inherit any
privileges granted to the owner group

Process:

• Create the WLP_USER_DIR location

• Before creating the first server, issue (example):
chgrp -Rh T1READG /T1Servers

• Create server(s). Directories and files will inherit the group
from the WLP_USER_DIR information

• Connect IDs with a need to read files to the new read group;
they will have ability to read but not to write.

Start server under T1OWNER ID*. The server will be able
to write its output, and people with READ-ONLY needs can
read through the file group.
* We'll explain how to operate the server under a separate ID in a few charts

chgrp –Rh T1READG /T1Servers

People with a need to READ files are
connected to this new file group

© 2017, IBM Corporation Liberty z/OS Good Practices

13

Multiple Administrators and WRITE to Configuration Files

/T1Servers 750 T1OWNER T1READG

/servers 750 T1OWNER T1READG

/.classcache 750 T1OWNER T1READG

/.logs 750 T1OWNER T1READG

/.pid 750 T1OWNER T1READG

/T1SRV01 750 T1OWNER T1READG

/apps 750 T1OWNER T1READG

/dropins 750 T1OWNER T1READG

/logs 750 T1OWNER T1READG

messages.log 640 T1OWNER T1READG

server.xml 640 T1OWNER T1READG

server.env 640 T1OWNER T1READG

/workarea 750 T1OWNER T1READG

su -s T1OWNER

Objectives:
• Avoid sharing of owning ID password between administrators

• Make owning ID have no password so it can't be used to log
onto the system

Approach:
• Create owner ID with NOPASSWORD, or modify after servers

are created:
ADDUSER T1OWNER ... NOPASSWORD (create)
ALTUSER T1OWNER NOPASSWORD (modify)

• Use SAF SURROGAT to allow users connected to the owner ID
group ability to 'su' to the ID:

RDEFINE SURROGAT T1OWNER.SUBMIT UACC(NONE) OWNER(T1OWNG)

RDEFINE SURROGAT BPX.SRV.T1OWNER UACC(NONE) OWNER(T1OWNG)

PERMIT T1OWNER.SUBMIT CLASS(SURROGAT) ID(T1OWNG) ACCESS(READ)

PERMIT BPX.SRV.T1OWNER CLASS(SURROGAT) ID(T1OWNG) ACCESS(READ)

SETR RACLIST(SURROGAT) REFRESH

T1OWNG

Connect

© 2017, IBM Corporation Liberty z/OS Good Practices

14

Separating the Task ID from the Configuration File Owning ID

You may have a policy that requires a started task ID not have ability to update its own configuration files.
This prevents applications operating under STC ID from making malicious changes.

/T1Servers 750 T1OWNER T1READG

/output 750 T1STCU T1READG

/.classcache 750 T1STCU T1READG

/.pid 750 T1STCU T1READG

/T1SRV01 750 T1STCU T1READG

/logs 750 T1STCU T1READG

messages.log 640 T1STCU T1READG

/resources 750 T1STCU T1READG

/workarea 750 T1STCU T1READG

/servers 750 T1OWNER T1READG

/.logs 750 T1OWNER T1READG

/T1SRV01 750 T1OWNER T1READG

/apps 750 T1OWNER T1READG

/dropins 750 T1OWNER T1READG

server.xml 640 T1OWNER T1READG

server.env 640 T1OWNER T1READG

This involves using the WLP_OUTPUT_DIR environment
variable to direct server output to a different location

Process:
• Add WLP_OUTPUT_DIR to server.env and point to a

location where server output is to go
Example: WLP_OUTPUT_DIR=/T1Servers/output

• Create that directory, and give it owner=STC ID and set the
group equal to the "read group" we spoke of earlier.

• Connect the STC ID to the "read group" so it can read its
configuration files. It will not have write authority.

• Start the server. It will create sub-directories and files under
the STC ID, and the group will be inherited from the higher
directory.

• Users connected to the "read group" will be able to read the
output files.

Liberty
Started Task

Configuration File
Administrators

People with need to READ files

Writes output
under its STC ID

© 2017, IBM Corporation Liberty z/OS Good Practices

15

If STC ID is Separate, How Do We Manage Output Files under STC ID?

Do not give STC ID a password
You do not want anyone to be able to log into system using the STC ID. Plus, you do not want to share ID
passwords, so that ID having a password would not help when several administrators involved.

Do not define SURROGAT for the Started Task ID
That would allow anyone with access to the SURROGAT to run a JVM with same authority as the server
and possibly run valid business transactions.

Consider granting file owning ID UNIXPRIV authority
The file owning ID will have SURROGAT defined if you followed guidance offered on previous charts. If you
extend authority of the owning ID to include UNIXPRIV SUPERUSER.FILESYS.CHOWN and
SUPERUSER.FILESYS.CHANGEPERMS, that ID would be able to manage files to delete, etc.

© 2017, IBM Corporation Liberty z/OS Good Practices

16

Summary: ID and Group Model for Servers

ADDGROUP T1OWNG SUPGROUP(GROUPS) OWNER(RACFADM) OMVS(AUTOGID)

ADDGROUP T1READG SUPGROUP(T1OWNG) OWNER(T1OWNG) OMVS(AUTOGID)

ADDUSER T1OWNER DFLTGRP(T1OWNG) OWNER(T1OWNG) OMVS(AUTOUID)

HOME('/home/T1OWNER') PROGRAM('/bin/sh')) NOPASSWORD

ADDGROUP T1STCG SUPGROUP(GROUPS) OWNER(T1OWNG) OMVS(AUTOGID)

ADDUSER T1STCU DFLTGRP(T1STCG) OWNER(T1OWNG) OMVS(AUTOUID)

HOME('/home/T1STCU') PROGRAM('/bin/sh')) NOPASSWORD

RDEFINE SURROGAT T1OWNER.SUBMIT UACC(NONE) OWNER(T1OWNG)

RDEFINE SURROGAT BPX.SRV.T1OWNER UACC(NONE) OWNER(T01OWNG)

PERMIT T11OWNER.SUBMIT CLASS(SURROGAT) ID(T1OWNG) ACCESS(READ)

PERMIT BPX.SRV.T01OWNER CLASS(SURROGAT) ID(T1OWNG) ACCESS(READ)

SETR RACLIST(SURROGAT) REFRESH

CONNECT T1STCU GROUP(T1OWNG)

CONNECT T1STCU GROUP(T1READG)

PERMIT SUPERUSER.FILESYS.CHOWN CLASS(UNIXPRIV) ID(T1OWNER) ACCESS(READ)

PERMIT SUPERUSER.FILESYS.CHANGEPERMS CLASS(UNIXPRIV) ID(T1OWNER) ACCESS(READ)

SETR RACLIST(UNIXPRIV) REFRESH

Owner
Group

Owner
ID

Read
Group

STC
Group

STC
ID

Config File
Administrators

People with need
to READ files

SURROGAT CONNECT

Example commands:

Review all security command examples with your security administrator prior to implementation.

Related to allowing security delegation

© 2017, IBM Corporation Liberty z/OS Good Practices

17

"Include File" Processing

server.xml

<include>

<include>

XML

XML

File

Owner: T1OWNER

Group: T1READG

File

Owner: T1OWNER

Group: T1OWNG

File

Owner: MARY

Group: T1READG

Liberty
Server

Started Task

ID: T1STCU

Read access to all
files through group

This allows portions of the configuration to be held in files
outside the main server.xml file

Two primary uses:

1. Hold sensitive configuration information in file that is READ to
select people, but not the read group

2. Allow a user to update their portion of the server
configuration, but not other parts of it

Read only by those
with SURROGAT to
the owning ID

Server can read,
and user can
update this file

For the second use-case it is important to insure the
user can not override configuration in the main XML.
Use the "onConflict" tag in the <include> element:
<include location="myIncludeFile.xml" onConflict="IGNORE"/>

This tells Liberty to ignore XML elements in include
file that are also found in the main server.xml
It does not prevent them from injecting configuration elements not found in
the main server.xml. If there is a concern about that, don't use include
processing.

Yes, nesting of includes is possible

© 2017, IBM Corporation Liberty z/OS Good Practices

18

Server-Related Security
STARTED, SERVER, and CBIND

© 2017, IBM Corporation Liberty z/OS Good Practices

19

Starting the Liberty z/OS Server

Liberty z/OS
Server Instance

UNIX Process
Start with shell script

Liberty z/OS
Server Instance

Started Task
Start with shell script

Liberty z/OS
Server Instance

Started Task
Use z/OS START

1

2

3

All three result in a Liberty z/OS server, and functionally there's very little difference
When started as a UNIX process, the MODIFY command interface is not present

1. UNIX Process
• Use the 'server' shell script in the installation /bin directory
• Syntax: server start T1SRV01
• ID of server will be based on ID that issued the command

2. Started Task using server shell script
• Set WLP_ZOS_PROCEDURE environment variable in server.env file
• Example: WLP_ZOS_PROCEDURE=T1PROC,JOBNAME=T1SRV01,PARMS='T1SRV01'
• This is how z/OS servers are started by Collective Controller
• ID of the server will be based on the SAF STARTED profile that takes effect

3. Started Task using START command
• Common proc: START T1PROC,JOBNAME=T1SRV01,PARMS='T1SRV01'
• Dedicated proc: START T1SRV01
• ID of the server will be based on the SAF STARTED profile that takes effect

Expectation is for production servers either #2
(via Collective Controller) or #3 will be used

© 2017, IBM Corporation Liberty z/OS Good Practices

20

Assigning ID to z/OS Started Task: SAF STARTED

The first question here is whether you wish to have a common started task ID
that is shared among servers, or if you wish each server to have a unique ID

Then the second question is whether servers under a WLP_USER_DIR will
share a common JCL start proc, or use unique start procs for each server

Common ID Unique IDs

Common
Proc

Unique
Procs

START T1PROC,JOBNAME=<server>,PARMS='<server>'

STARTED T1PROC.*

START T1PROC,JOBNAME=<server>,PARMS='<server>'

STARTED T1PROC.<jobname>

START T1SRV01

STARTED T1*.*

START T1SRV01

STARTED T1SRV01.*

It's possible to use a combination of the above, even under the same WLP_USER_DIR.
So there's no "one best answer" here. What's best is what's best for you.

© 2017, IBM Corporation Liberty z/OS Good Practices

21

Review: The Angel Process and its Role Protecting z/OS Authorized Services

Liberty z/OS
Server

Server ID

Angel
Process

z/OS
Authorized

Services
READ?Fail

YesNo

Angel
Process

Angel
Process

(unnamed) ABC XYZ

bootstrap.properties

SAF SERVER

com.ibm.ws.zos.core.angelRequired=true

com.ibm.ws.zos.core.angelName=<name>

The Angel Process is a started task that is used to protect access to z/OS
authorized services. This is done with SAF SERVER profiles.

The authorized services include: WOLA, SAF, WLM, RRS, DUMP

The ability to start multiple Angel processes on an LPAR was introduced in
16.0.0.4. This is called "Named Angels". It provides a way to separate
Angel usage between Liberty servers:
• Angels process can be started with a NAME='<name>' parameter (or it can be started as a

"default" without a name). The name may be up to 54 characters.
• Liberty servers can be pointed at a specific Angel with bootstrap property
• The same SAF SERVER profile mechanism is used to protect access to authorized services (one

additional SERVER profile is introduced that includes the Angel process name)

Good practices:

• When an "embedder" user of Liberty calls for its own named Angel, follow those
instructions and set up an Angel for that product.

• You may create separate named Angels for isolation of Test and Production, but do
not take this practice too far. A few Angels, yes; dozens, no.

• Establish automation routines to start the Angels at IPL

• Grant SAF GROUP access to the SERVER profiles, then connect server IDs as
needed

© 2017, IBM Corporation Liberty z/OS Good Practices

22

SAF SERVER Profiles Related to the Angel Process

BBG.ANGEL.<angel_name> enables access to a specific named Angel

BBG.ANGEL enables access to the unnamed Angel process

BBG.AUTHMOD.BBGZSAFM enables access to authorized services

BBG.AUTHMOD.BBGZSCFM enables loading of authorized client services

BBG.AUTHMOD.BBGZSAFM.SAFCRED enables use of SAF authorized services

BBG.AUTHMOD.BBGZSAFM.ZOSWLM enables use of WLM authorized services

BBG.AUTHMOD.BBGZSAFM.TXRRS enables use of RRS services (transaction)

BBG.AUTHMOD.BBGZSAFM.ZOSDUMP enables use of SVCDUMP services

BBG.AUTHMOD.BBGZSAFM.LOCALCOM enables use of WOLA

BBG.AUTHMOD.BBGZSAFM.WOLA

BBG.AUTHMOD.BBGZSCFM.WOLA

BBG.AUTHMOD.BBGZSAFM.PRODMGR enables use of IFAUSAGE services

BBG.AUTHMOD.BBGZSAFM.ZOSAIO enables use TCP asynchronous I/O services

Good practices:
• Establish all the SERVER profiles ahead of time. Existence of profile does not grant access; READ to it does.

• Determine what access a server needs and grant only that; check "is available" messages in messages.log to verify

WOLA
Access
Group

Server ID

Server ID

You can grant server
IDs direct READ to each
profile, but that may
get labor intensive

Or you could establish functional
group IDs that have specific access,
then connect server ID to the group
or groups to get the access.

© 2017, IBM Corporation Liberty z/OS Good Practices

23

WOLA Registration, the Three-Part Name, and the SAF CBIND Profile

server.xml WOLA is a highly-efficient cross-memory mechanism

It is bidirectional: outbound from Liberty; inbound to Liberty

When an outside address space (CICS, a batch program) wants to use WOLA
with an instance of Liberty, it must first build a "registration" to the Liberty
address space. That is protected with a SAF CBIND profile*.

The CBIND is based on the WOLA "three-part name" the Liberty server is
using, for example:

RDEFINE CBIND BBG.WOLA.TEST.T1.T1SRV01 UACC(NONE)

The ID seeking to register needs READ to that SAF CBIND. You may grant the
READ directly to the ID, or grant READ to a group and connect ID to the group.

The SAF CBIND value can be wild-carded.

The three-part name is arbitrary, but needs to be unique on the LPAR. A good
practice is to include the unique server name as the last part of the three part
name, as illustrated here

READ?Fail

Yes; Permit
Registration

No

SAF CBIND

<zosLocalAdapters

wolaGroup="TEST"

wolaName2="T1"

wolaName3="T1SRV01" />

ID for the external
address space

* The ability of a Liberty z/OS server to use WOLA at all is controlled by that server's STC ID having READ to the appropriate SAF SERVER
profiles. The SAF CBIND then controls which outside address spaces can "register into" the Liberty z/OS server.

© 2017, IBM Corporation Liberty z/OS Good Practices

24

Application-Related Security
Encryption, Authentication, Authorization

© 2017, IBM Corporation Liberty z/OS Good Practices

25

The Presence of an Application* Triggers Several More Security Topics

Liberty z/OS Server

Application

Backend Data System

Clients

1

2

3

4

* An "application" could be one you wrote, or a vendor application, or an IBM function such as
the Liberty AdminCenter. The point is, it is software function a client communicates with.

1. Transport Layer Encryption
Depending on the client access method, encrypting the data link may be required. This is where a
discussion of "Transport Layer Security" (TLS, commonly referred to as "SSL") comes up. This involves
certificates and key/trust stores. On z/OS that can be managed in SAF.

2. Authentication
A client presents itself to the server and claims to be "Person X." Are they who they claim to be?
That is authentication. There are many forms, from basic ID/password to more sophisticated third-
party authentication and the passing of identity tokens.

A closely related topic is "User Registries," which is where information about users is kept. Again, on
z/OS that can be SAF.

3. Application Role Authorization
Once authenticated, an application may enforce different levels of authority the client is permitted to
have. That is done using "roles," and role authorization involves validating which role the
authenticated user belongs to. On z/OS, this can be done in SAF.

4. Backend System Access
If the application reached back to a data system, what ID does it use? The backend data system may
allow or disallow access based on the ID that is presented. This is a somewhat complex topic as the
ID that's presented has several "it depends" qualifiers. We defer this to another presentation.

© 2017, IBM Corporation Liberty z/OS Good Practices

26

TLS (aka "SSL") and Digital Certificates

Liberty z/OS
Server

server.xml

Basic

USS Files

SAF Keyrings

- or -

- or -

*

* Combinations within a given
Liberty z/OS server is possible.

1

2

3

1. Basic Key and Trust Store
• Simple one-line addition to the server.xml

<keyStore id="defaultKeyStore" password="Liberty"/>

• Satisfies basic requirements for TLS, but good only for initial validation. Not good for testing (self-
signed certificate), and certainly not for production.

2. File-based Key and Trust Store
• Same mechanism as used on distributed platforms (keytool or ikeyman)

• Can be used for testing and production

• File password in server.xml can be encoded. SAF keyrings eliminate need for passwords

3. SAF-based Keyrings
• The server.xml file points to SAF as its key and trust store

• Use SAF keyrings to hold digital certificates and signer (CA) certificates

• No passwords in server.xml

• Access to SAF keyrings protected by SAF IRR.DIGTCERT.* profiles

• General good practice to use z/OS facilities when on z/OS

© 2017, IBM Corporation Liberty z/OS Good Practices

27

SAF Keyring Support in server.xml

<feature>ssl-1.0</feature>

<sslDefault sslRef="DefaultSSLSettings" />

<ssl id="DefaultSSLSettings"

keyStoreRef="DefaultKeyStore" trustStoreRef="DefaultTrustStore" />

<keyStore id="DefaultKeyStore" location="safkeyring:///Keyring.LIBERTY"

password="password" type="JCERACFKS" fileBased="false" readOnly="true" />

<keyStore id="DefaultTrustStore" location="safkeyring:///Keyring.LIBERTY"

password="password" type="JCERACFKS" fileBased="false" readOnly="true" />

<ssl id="T1SSLConfig"

keyStoreRef="T1KeyStore" trustStoreRef="T1TrustStore" />

<keyStore id="T1KeyStore" location="safkeyring:///Keyring.T1"

password="password" type="JCERACFKS" fileBased="false" readOnly="true" />

<keyStore id="T1TrustStore" location="safkeyring:///Keyring.T1"

password="password" type="JCERACFKS" fileBased="false" readOnly="true" />

<!– HTTP using non-default SSL config -->

<httpEndpoint id="defaultHttpEndpoint"

host="*"

httpPort="9080"

httpsPort="9443" >

<sslOptions sslRef=“T1SSLConfig" />

</httpEndpoint>

1

2

3

4

7

5

6

1. Update <featureManager> list
The ssl-1.0 feature enables the support to use SAF for the
key/trust stores. It may be auto-loaded by other features, but
specifying it explicitly is a good practice.

2. Specify default SSL settings
The <sslDefault> tag specifies the default SSL settings for the
server. If you have multiple SSL settings, you definitely need
this. A good practice to specify in all cases.

3. Default SSL settings
You may customize and have the "default" be tailored to your
server. Or you may retain a true "default" and provide a
separate customized SSL settings (block #5).

4. The "password" for SAF keyrings
SAF does not use a password, but the Liberty keystore code
requires it. This is just a dummy placeholder.

5. Specific SSL settings
If you wish, you can provide SSL settings specific to your server
and reference it from the HTTP endpoint (block #7)

6. Naming convention prefix in keyring name
Whether default or specific SSL settings, it's a good practice to
have the keyrings used by the server reference the naming
convention prefix for the server.

7. Specifying SSL options for HTTP endpoints
If you wish a set of HTTP endpoints to use something other
than the default SSL settings, point to the SSL options using
the tag shown here.

© 2017, IBM Corporation Liberty z/OS Good Practices

28

Enabling Crypto Hardware Support for Liberty z/OS

Copy java.security file to Liberty z/OS server configuration directory and update
• Copy java.security file from the /lib/security directory of your 64-bit Java SDK installation
• Update as shown here:
security.provider.1=com.ibm.crypto.ibmjcehybrid.provider.IBMJCEHYBRID

security.provider.2=com.ibm.crypto.hdwrCCA.provider.IBMJCECCA

security.provider.3=com.ibm.jsse2.IBMJSSEProvider2

security.provider.4=com.ibm.crypto.provider.IBMJCE

security.provider.5=com.ibm.security.jgss.IBMJGSSProvider

security.provider.6=com.ibm.security.cert.IBMCertPath

security.provider.7=com.ibm.security.sasl.IBMSASL

security.provider.8=com.ibm.xml.crypto.IBMXMLCryptoProvider

security.provider.9=com.ibm.xml.enc.IBMXMLEncProvider

security.provider.10=com.ibm.security.jgss.mech.spnego.IBMSPNEGO

security.provider.11=sun.security.provider.Sun

Update server.xml SSL settings and update type= value:
<keyStore id="CellDefaultKeyStore" location="safkeyring:///Keyring.T1"

password="password" type="JCEHYBRIDRACFKS" fileBased="false" readOnly="true" />

<keyStore id="CellDefaultTrustStore" location="safkeyring:///Keyring.T1""

password="password" type="JCEHYBRIDRACFKS" fileBased="false" readOnly="true" />

Create jvm.options file and point to java.security file to use
-Djava.security.properties==/T1Servers/servers/T1SRV01/java.security

Techdocs

/T1Servers

/servers

/T1SRV01

java.security

server.xml

jvm.options

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101213

If you have crypto hardware on the System z machine, take advantage of it:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101213

© 2017, IBM Corporation Liberty z/OS Good Practices

29

Authentication

Liberty z/OS
Server

User Registry

Firewall Firewall

Internal Users

External Users

Are you really who
you claim to be?

1

2

4

3 This is a big topic, and
the implementation

details go far beyond the
scope of this document

1. UserID / Password
What most think of when "authentication" is discussed.
This is an option with Liberty, and may be suitable,
depending on the application architecture requirements.

2. Single Sign-On / Third-Party Auth
This includes technologies such as LTPA tokens, SPNEGO,
OpenID, SAML, JSON Web Tokens (JWT). This is very
common when the user-base is very large.

3. Client Certificate Authentication
This is sometimes referred to as "two-way SSL," it involves
authenticating using TLS encryption certificates. This is often used
to authenticate a programmatic layer, such as a proxy server.

4. User Registry
Any discussion of authentication eventually leads to the topic of
where user information is held, and that's a "user registry." Typical
options are LDAP and SAF.

© 2017, IBM Corporation Liberty z/OS Good Practices

30

Liberty z/OS User Registries

User Registry Options with Liberty z/OS:
Basic
• The user ID and password values are maintained in the server.xml (or an include file)
• Adequate for initial validation and some testing, but not for readiness testing, QA, or production use.

SAF
• The user ID and password values are maintained in SAF
• Very secure and very well-suited for production
• Can be an issue if the user-population is very large, or may self-register

LDAP
• Liberty z/OS access an LDAP server (on z/OS or remote)
• Commonly used when the user-population is large and dynamic
• Good practice: maintain bind password in a separate "include" file, not in server.xml

Federated Registries
• Multiple registries are employed: LDAP and SAF typically
• Often involves "distributed identity mapping" -- mapping an LDAP user to a SAF user

Custom
• Use the UserRegistry class to implement a custom registry
• Should be thoroughly reviewed before used in anything other than development and test

More
This topic brings a few more SAF-
related requirements to the table,
so we'll explore this a bit more ...

© 2017, IBM Corporation Liberty z/OS Good Practices

31

To Use SAF as a Registry Requires a Few Things ...

1. Angel Process available to the server
• Either an unnamed Angel or a named Angel

2. SERVER profiles with the server ID having READ
• BBG.AUTHMOD.BBGZSAFM.SAFCRED with server ID = READ
• BBG.SECPFX.<profile_prefix> where the prefix value is related to your

server prefix, for example T1
• Server ID granted READ to this SECPFX profile

3. The server.xml specifies SAF and names prefix value
• This involves a few lines of XML will show you in a chart or two

4. A defined "unauthenticated" (i.e. "default") user
• This is the ID that is used prior to successful authentication
• This ID should have no TSO segment, and be RESTRICTED

5. User authenticating must have valid SAF definition
• The user attempting to authenticate must have a valid SAF definition

(OMVS segment, valid home directory, not revoked)

6. APPL profile with READ to required IDs
• The APPL profile is equal to the <profile_prefix> value you defined on the

SERVER profile (#2)
• The server ID has READ to this APPL
• The unauthenticated user has READ to this APPL
• The ID attempting to authenticate has READ to this APPL

Angel
Process

READ?

READ?

SERVER
BBG.AUTHMOD.BBGZSAFM.SAFCRED

BBG.SECPFX.<profile_prefix>

APPL
<profile_prefix>

Liberty
z/OS Server

User attempting to
authenticate

Unauthenticated User
(the "Default" User)

Yes

No

No

Yes

Fail

1

2

4

6

5

server.xml

3

© 2017, IBM Corporation Liberty z/OS Good Practices

32

Or, to Illustrate Another Way ...

SERVER?

APPL?

Registry?

APPL?

No

No

No

No

Yes

Yes

Yes

Yes

Start

SAF Registry requires access to z/OS authorized services, which means the server
needs access to the SERVER profiles protected by an Angel

At server startup the server will check to see if (a) an unauthenticated user is
defined, and (b) it has access to an APPL profile equal to the profile prefix specified

The first user asking to be authenticated shows up. The server checks with SAF to
see that the ID presented is valid

The server then checks to see if the authenticated ID has access to the APPL profile,
which is what gives it permission to access the applications in the server

The user is authenticated ... the next step may be to check application role authority

© 2017, IBM Corporation Liberty z/OS Good Practices

33

Updates to server.xml in Support of SAF Authentication

<feature>zosSecurity-1.0</feature>

<feature>appSecurity-2.0</feature>

<safRegistry id="saf" realm="MYPLEX" />

<safCredentials

unauthenticatedUser="T1DFLTU"

profilePrefix="T1" />

<safAuthorization id="saf"

racRouteLog="ASIS"

enableDelegation="true" />

<safRoleMapper

profilePattern="%profilePrefix%.%resource%.%role%"

toUpperCase="false" />

1

2

3

server.xml 1. Liberty Features
zosSecurity-1.0 enables SAF authentication and authorization.

appSecurity-2.0 enables application security, including role
checking and RunAS delegation.

2. <safRegistry>
This enables SAF-access function.

3. <safCredentials>
Here the "unauthenticated user" is named, and the "profile
prefix" is specified. The unauthenticated user should be a
RESTRICTED ID (meaning: it gains no access via group or via
RACF global entry checking.

The profile prefix should be equal to whatever "starting
prefix" you choose for your naming convention. An APPL
profile is created to match this value.

4. Authorization XML
These final two sections of XML relate to application role
authorization. We'll discuss this in an upcoming chart.

4

© 2017, IBM Corporation Liberty z/OS Good Practices

34

Example RACF Setup Definitions for Unauthenticated User and APPL

RDEFINE SERVER BBG.SECPFX.T1 UACC(NONE)

PERMIT BBG.SECPFX.T1 CLASS(SERVER) ACCESS(READ) ID(T1STCU)

ADDGROUP T1DEFG SUPGROUP(T1OWNG) OWNER(T1OWNG) OMVS(AUTOGID)

DATA('T1 unauthenticated user group')

ADDUSER T1DEFU DFLTGRP(T11DEFG) OWNER(T1OWNG)

NAME('T1 default user') OMVS(AUTOUID) HOME(/home/T1DEFU)

PROGRAM(/bin/sh))

DATA("RACF ADMIN: DO NOT PERMIT THIS USER TO RESOURCE PROFILES")

NOPASSWORD NOOIDCARD RESTRICTED

ADDGROUP T1USRG SUPGROUP(T1OWNG) OWNER(T1OWNG) OMVS(AUTOGID)

DATA('T1 authenticated user group')

RDEFINE APPL T1 UACC(NONE) DATA(‘Controls access to T1 servers’)

PERMIT T1 CLASS(APPL) ID(T1STCU) ACCESS(READ)

PERMIT T1 CLASS(APPL) ID(T1DEFU) ACCESS(READ)

PERMIT T1 CLASS(APPL) ID(T1USERG) ACCESS(READ)

2

3

4

1

5

Review all security command examples with your security administrator prior to implementation.

1. SERVER Class Prefix
This defines the security prefix, which is
later matched with an APPL profile, and is
used to pre-pend EJBROLE definitions.
The server ID is granted READ.

2. Unauthenticated Group/User
The "default" user and its group. Note
the RESTRICTED specified on the user.
This ID is deliberately very low authority.

3. User Group for APPL Access
IDs attempting to authenticate will need
READ to the APPL. You could UACC(READ)
the APPL profile, or you can create an
access group and grant IDs to this group
to gain access to the APPL profile.

4. APPL Profile
This matches the profile prefix SERVER
profile, and aligns with your naming
convention.

5. Permit Users to APPL
The server ID and the default ID are
granted access, as well as the user group
which allows other IDs access.

© 2017, IBM Corporation Liberty z/OS Good Practices

35

Application "Roles"

<servlet>

<servlet-name>myHello</servlet-name>

<servlet-class>HelloServlet</servlet-class>

<security-role>

<role-name>MyRole</role-name>

</security-role>

</servlet>

Application WAR File web.xml Application "roles" are used to define what a user is
allowed to do (that is "authorization").

An application is not required to define roles, but if it
does then a mechanism is needed to check whether the
authenticated ID is permitted access to the role:
• Basic (in server.xml)
• SAF (in EJBROLE)

Who Are You?
This is authentication. We looked

at that earlier. Once a user
successfully authenticates, the
server knows who the user is.

What Are You Allowed To Do?
This is authorization. It is a function of the application. An

application may or may not define different "roles," but if roles
are defined, then the server gets involved to help the

application determine if a user is a member of the defined role.

© 2017, IBM Corporation Liberty z/OS Good Practices

36

Role Validation ... Basic vs. SAF

<feature>zosSecurity-1.0</feature>

<feature>appSecurity-2.0</feature>

<safRegistry id="saf" realm="MYPLEX" />

<safCredentials

unauthenticatedUser="T1DFLTU"

profilePrefix="T1" />

<application

id="myServlet“ name="myServletWAR" type="war"

location="/<path>/myServletWAR.war" >

<application-bnd>

<security-role name="MyRole">

<group name="T1USRG" />

</security-role>

</application-bnd>

</application>

<feature>zosSecurity-1.0</feature>

<feature>appSecurity-2.0</feature>

<safRegistry id="saf" realm="MYPLEX" />

<safCredentials

unauthenticatedUser="T1DFLTU"

profilePrefix="T1" />

<application

id="myServlet“ name="myServletWAR" type="war"

location="/<path>/myServletWAR.war" >

</application>

<safAuthorization id="saf"

racRouteLog="ASIS" />

<safRoleMapper

profilePattern="%profilePrefix%.%resource%.%role%"

toUpperCase="false" />

RDEFINE EJBROLE T1.myServletWAR.MyRole UACC(NONE)

PERMIT T1.myServletWAR.MyRole CLASS(EJBROLE)

ID(T1USRG) ACCESS(READ)

SAF

server.xmlserver.xml

Go to SAF for EJBROLE

ASIS = Log as specified in RACF profile

The %resource% element is often
not used, leaving just prefix + role

If the authenticated user is a member of this
group, then they have access to that role.

© 2017, IBM Corporation Liberty z/OS Good Practices

37

Security Topics for Other Presentations ...

• LDAP as user registry ... related: federated registries
o Common practice with distributed platform Liberty
o Can be done with Liberty z/OS, with LDAP on a distributed platform or on z/OS
o LDAP ID can be mapped to a SAF ID

• Single sign-on / third party authentication
o Common practice when the application has thousands (or millions) or external users
o Authentication is done elsewhere a token representing the user is flowed back to Liberty z/OS
o Examples: LTPA tokens, SPNEGO, OpenID, SAML, JSON Web Tokens (JWT)

• Backend Data access security
o Essential question is: what identity is presented to the backend data resource manager?
o The answer is "it depends" ... on the resource adapter used and how the connectivity is designed.
o Can be an "alias" (hard-coded ID/PW); it can be a designated functional ID (runAs); it can be the authenticated user

• Liberty collective security
o Involves a discussion of SSL certificates for mutual authentication ... and where those certificates are held
o Involves a discussion of SSH, SSH keys, or other remote invocation mechanisms, and how Liberty collectives operate

© 2017, IBM Corporation Liberty z/OS Good Practices

38

Summary

Liberty z/OS
Server

Product Install
Files

Configuration
Files

Application Layer
Security

1

2

3

File-Related Security

Server-Related Security

Application-Related Security

• Product installation files
• Server configuration files

• SAF STARTED profiles
• SAF SERVER profiles
• SAF CBIND profiles

• Encryption
• Authentication
• Authorization

http://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/as_ditamaps/was900_welcome_liberty_zos.html

WebSphere Liberty 16.0.0.x Knowledge Center

http://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/as_ditamaps/was900_welcome_liberty_zos.html

