~ A\
A

WebSphere Liberty z/0S

An Overview of Security

1|||

© 2017, IBM Corporation Liberty z/0S Good Practices ‘

Objective of this Presentation

Provide a framework of understanding around the much larger
topic of "security"

Provide a set of essential "good practices" for security

=== = 02017, IBM Corporation Liberty z/OS Good Practices

A High-Level Framework for the Security Discussion

Application Layer

Security 3. Application-related security

When you have an application* in a Liberty server, then quite a few
more security topics surface:

* Encryption, and with that a discussion of digital certificates

* Authentication, and with that User Registries

* Role authorization enforcement

Liberty z/0OS

2. Server-related security
Server

Assigning the server an identity; and allowing or restricting what that
identity is capable of doing within a z/OS context

1. File-related security
Involves protecting the files from unauthorized modification, viewing,
and program invocation. This gets into file ownership and permission
bits.

i r @ e @

Product Install Configuration Two focus areas: the install file system, and the server configuration files
Files Files

* Either a user-written application, or a vendor application, or an IBM function such as the Admin Center. A server with no such
3 application requires none of these things; but once an "application" is made available, many or all these things bubble to the surface.

© 2017, IBM Corporation Liberty z/OS Good Practices

1|||

General Principle: Alignment of Names of Server and Security Artifacts

With an organized naming convention and careful
Liberty z/0S deployment of security definitions, it's possible to organize

Servers . . .
Liberty servers into domains.
rwlp WZSSAD zos
Name: T4 xxxxxx This allows for the possibility of security delegation
JCL: TAxxxXXX At a minimum this would relate to servers under a given
STARTED I o x5 WLP_USER_DIR; it may extend past the WLP_USER_DIR

depending on your topology design
IDs: T4 xxxxxx

This serves two key functions:
Group: T4dxxxxxx

1. Reduces confusion (names align, easy to see relationships)
APPL: T4 xxxxxx

2. Facilitates security separation between groups of servers
EJBROLE: Tdxxxxxx.<role>

Use a consistent prefix value for all the security artifacts

4

1|||

© 2017, IBM Corporation Liberty z/0S Good Practices

File-Related Security

Securing the install file structure; securing the confi ion file structure <

= o 2017, IBM Corporation

Liberty z/0S Good Practices

1|||

Review: UNIX File Permissions
Read Write

Bit 1 1 1
Base-2] [2] [1]
1

v [4
Voo
a4

-+

Execute

-+

2 =
1

/1
»

The owner of the
file or directory

The owner has READ,
WRITE and EXECUTE

Read Write Execute Read Write Execute

1 0 1 O 0 O

[[1] [41 [2]1 [1]
+ 1 = 0 + + 0 =

The group has READ and
EXECUTE, but not WRITE

Others have nothing

IDs that are not the owner and not
part of the group; that is, other

IDs that are part of the group
for the file or directory

© 2017, IBM Corporation Liberty z/OS Good Practices

T

Installation Manager (IM)

Source
"Repository"

Use "Group Mode" on z/0S

* "Admin Mode" requires ID that runs IM be superuser (uid=0)

* "User Mode" implies only that ID can run IM O

* "Group" mode allows any ID connected to the IM group to run IM () O
* Use something other than default IMGROUP and IMADMIN

* Cloud-based
* Local copy

IBM Installation
Manager z/0S

Use a "Service Zone" Concept

* It's a general good practice (provides greater flexibility)
* It allows IM install target to be R/W while users access R/O copy

File System
Mounted at location
you specify

"Copy out"” and mount Read-Only

» Use standard copy tools (DFDSS COPY with RENAME)
* Consider chmod —-Rh 750 on copy to set "other" to "none"

* Mount copy as R/O

See next chart

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102554 IM Guide
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD106391 Sample Installation Jobs
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD106392 WAS V9.0 Sample Install Jobs

© 2017, IBM Corporation

Liberty z/0OS Good Practices

1|||

c

stration of IM Process Described on Previous Chart

Many of the files are 775: write to the

Group Mode group and read/execute to other.

IM

C The group needs write so IM in group mode
— > /Service/usr/lpp/zWebSphere/Liberty/V16004 can perform updates if needed.

Other has read/execute in case you wish to

1
i make IM copy generally available to users

. copPYy —-----
1
¢ Recommendation, but
not a requirement. Owner (IM Admin) still has write.
m /usr/lpp/zWebSphere/Liberty/V16004 <«—— chmod -Rh 750 Group (IM Group) reduced to read/execute

Other has no access at all
Since this copy will never be acted upon by IM, you could also issue a chown against

this to change the owner and group away from the IM Admin ID and IM Admin Group.

The key is limiting group to just read/execute and restricting other to none.

4----------

Use of the 'server’ shell script accessible only to users connected to the

<
/usr/lpp/zWebSphere/Liberty/V16004 Group. Anyone in 'other' denied access to read or execute. This prevents

unauthorized creation of servers by people not connected to the group.

© 2017, IBM Corporation Liberty z/OS Good Practices

1|||

Setting the Stage: Those Seeking Access to the Configuration File Structure

1. The Liberty z/OS Server

Liberty z/OS 0 * Has a need to both READ and WRITE
* Two options: server ID owns files, or is a separate ID from file owner

2. People Responsible for Administering the Server(s)

* They have a need to both READ and WRITE
\/ » Bad practice: sharing login ID/password
* Good practice: using SAF SURROGAT to switch to file owning ID

Server

/|_1-15ervers 3. Other People Related to the Server's Activities
/servers « Some have READ only ... logs, etc.
I—/TlsRV1A * Some may need limited WRITE ... then use "include" processing
[]server.xml 4. Unauthorized People

* No access at all; key is insuring these fall into 'other' permission bit, and

‘ that is marked as '0'.
™ (unauthorized @ At the heart of this is a discussion of the UNIX
file owner, group, and other permissions

© 2017, IBM Corporation Liberty z/0S Good Practices

1|||

Range of Options

i ®— ®— ®—
() /<WLP_USER_DIR> () /<WLP_USER_DIR> () /<WLP_USER_DIR>

Liberty z/OS h]
<
Server i

Liberty z/OS 4__45
Server

Liberty z/OS h
<--
Server

Liberty z/OS h
<

Server i
Liberty z/OS 4__45
Server

Liberty z/OS h
<--
Server

Liberty z/0OS
Server <«

€

Liberty z/0OS !
+--
Server |

: €

Liberty z/OS
Server e

e Multiple servers
e All have same STCID
e STCID = File Owner ID

* Multiple servers
* All have same STC ID
e STCID # File Owner ID

e Multiple servers
 Different STC IDs
* STC IDs # File Owner ID

It is a matter of thee degree of identity isolation that is required
10

B

<

©

2017, IBM Corporation

Liberty z/0OS Good Practices

T

ID=T10WNER

Group=T1O0OWNG

export JAVA HOME=<path to 64 bit Java>

export WLP_USER DIR=TlServers

./server create T1SRVO1l

/TlServers
L /servers

11

750

750

/ .classcache 750
/ .logs 750
/ .pid 750
/T1SRVO01l 750
— /apps 750
— /dropins 750
— /logs 750
L® messages.log 640

- []server.xml 640
-[]server.env 640
— /workarea 750

T1O0WNER
T1O0WNER
T10WNER
T10WNER
T1O0WNER
T1O0WNER
T1O0WNER
T10WNER
T10WNER
T1O0WNER
T1OWNER
T1OWNER
T1OWNER

T1O0WNG
T1O0WNG
T1O0WNG
T1O0WNG
T1O0WNG
T1O0WNG
T1O0WNG
T1O0WNG
T1O0WNG
T1O0WNG
T1O0WNG
T1O0WNG
T1O0WNG

Default ... Server Configuration Files

It will create the directories and files under the
<WLP_USER_DIR> and assign ownership based on the
ID and Group that created the server

This will work, but there are a few potential issues
with this in a production setting:

 |If you have multiple people with a need to change
configuration files, do you share the password of TLOWNER?

(answer: no)
Sharing passwords is a very bad practice. Better to take advantage of SAF SURROGAT
so permitted users can switch to the owning ID so they can make changes

* If you have multiple people with a need to read output files,

do you simply connect them to TLOWNG? (answer: no)

The owner group may be granted access to other SAF profiles (notably: SERVER) and
you do not want others inheriting that. Better to make the configuration group be
something different from the owner group and grant READ through that group.

© 2017, IBM Corporation Liberty z/OS Good Practices

1|||

Option: Group Ownership Different From File Owner Group

"\ﬂi ID=T1OWNER

This gives you the flexibility to connect people to a group
Group=T1O0OWNG

for reading files, but not have those people inherit any
privileges granted to the owner group

y

chgrp -Rh T1READG /T1Servers -------------
| Process:

* Create the WLP_USER_DIR location

/TlServers 750 T1OWNER] . .
L /servers 750 T1OWNER * Before creating the first server, issue (example):
/ .classcache 750 T1OWNER chgrp -Rh T1READG /TlServers
/.1logs 750 TIOWNER * Create server(s). Directories and files will inherit the group
/ .pid 750 T1OWNER . .
/T1SRVOL 750 T1OWNER from the WLP_USER_DIR information
— /apps 750 T1OWNER * Connect IDs with a need to read files to the new read group;
— /dropins 750 T1OWNER they will have ability to read but not to write.
— /logs 750 T1OWNER B
L .
O messages.log €40 TI1OWNER Start server under TLOWNER ID*. The server will be able
L[] server.xml 640 TI1OWNER L .
| []server.env 640 T1OWNER to write its output, and people with READ-ONLY needs can
— /workarea 750 T1OWNER

read through the file group.

)) * We'll explain how to operate the server under a separate ID in a few charts
People with a need to READ files are P P P

connected to this new file group

12

M

© 2017, IBM Corporation

Liberty z/0OS Good Practices

1|||

c

/TlServers
L /servers
/ .classcache

v(kr}\AK}~ s

13

/ .logs
/ .pid

/T1SRV01

X 4

— /apps

— /dropins

— /logs
L® messages. log

L []server.xml

-[]server.env

— /workarea

750
750
750
750
750
750
750
750
750
640
640
640
750

T10WNER
T1O0WNER
T10WNER
T1O0WNER
T1O0WNER
T10WNER
T1O0WNER
T1O0WNER
T1OWNER
T1OWNER
T1OWNER
T1OWNER
T1OWNER

T1READG
T1READG
T1READG
T1READG
T1READG
T1READG
T1READG
T1READG
T1READG
T1READG
T1READG
T1READG
T1READG

Itiple Administrators and WRITE to Configuration Files

Objectives:
* Avoid sharing of owning ID password between administrators

* Make owning ID have no password so it can't be used to log

onto the system

Approach:
* Create owner ID with NOPASSWORD, or modify after servers

are created:
ADDUSER T1OWNER ... NOPASSWORD
ALTUSER T1OWNER NOPASSWORD

(create)
(modify)

Use SAF SURROGAT to allow users connected to the owner ID
group ability to 'su’ to the ID:

RDEFINE SURROGAT T1OWNER.SUBMIT UACC (NONE) OWNER (T1O0WNG)
RDEFINE SURROGAT BPX.SRV.T1OWNER UACC (NONE) OWNER (T1OWNG)
PERMIT T1OWNER.SUBMIT CLASS (SURROGAT) ID (T1OWNG) ACCESS (READ)
PERMIT BPX.SRV.T1OWNER CLASS (SURROGAT) ID (T10WNG) ACCESS (READ)
SETR RACLIST (SURROGAT) REFRESH

= o 2017, IBM Corporation

Liberty z/0OS Good Practices

1|||

Separating the Task ID from the Configuration File Owning ID

2

Liberty
Started Task
1

/T1lServers i 750
— /output ~--9 750
/ .classcache 750
/.pid 750
/T1SRVO1l 750
/logs 750

) messages.log 640
/resources 750
/workarea 750

— /servers 750
/ .logs 750
/T1SRVO1l 750
/apps 750
/dropins 750
[]server.xml 640
[]server.env 640

Configuration File
Administrators

14

Writes output
under its STC ID

T1OWNER
T1STCU
T1STCU
T1STCU
T1STCU
T1STCU
T1STCU
T1STCU
T1STCU
T1OWNER
T1OWNER
T1OWNER
T1OWNER
T10OWNER
T10OWNER
T10WNER

/V\ .
/'8

T1READG
T1READG
T1READG
T1READG
T1READG
T1READG
T1READG
T1READG
T1READG
T1READG
T1READG
T1READG
T1READG
T1READG
T1READG
T1READG

You may have a policy that requires a started task ID not have ability to update its own configuration files.
This prevents applications operating under STC ID from making malicious changes.

This involves using the WLP_OUTPUT DIR environment
variable to direct server output to a different location

Process:
 Add WLP_OUTPUT_DIR to server.env and pointto a
location where server output is to go
Example: WLP_OUTPUT DIR=/TlServers/output
* Create that directory, and give it owner=STC ID and set the
group equal to the "read group" we spoke of earlier.

e Connect the STC ID to the "read group" so it can read its
configuration files. It will not have write authority.

» Start the server. It will create sub-directories and files under
the STC ID, and the group will be inherited from the higher
directory.

» Users connected to the "read group" will be able to read the
output files

%i ! People with need to READ files

1|||

© 2017, IBM Corporation Liberty z/OS Good Practices ‘

If STC ID is Separate, How Do We Manage Output Files under STC ID?

15

O 8 %

Do not give STC ID a password

You do not want anyone to be able to log into system using the STC ID. Plus, you do not want to share ID
passwords, so that ID having a password would not help when several administrators involved.

Do not define SURROGAT for the Started Task ID

That would allow anyone with access to the SURROGAT to run a JVM with same authority as the server
and possibly run valid business transactions.

Consider granting file owning ID UNIXPRIV authority

The file owning ID will have SURROGAT defined if you followed guidance offered on previous charts. If you
extend authority of the owning ID to include UNIXPRIV SUPERUSER.FILESYS.CHOWN and
SUPERUSER.FILESYS.CHANGEPERMS, that ID would be able to manage files to delete, etc.

16

Liberty z/0OS Good Practices

| | Example commands:
1
1
P y—----\ AlRRRERRRRS ~ ‘,------’ ----- ~ ADDGROUP T1OWNG SUPGROUP (GROUPS) OWNER (RACFADM) OMVS (AUTOGID)
1 1 1
I Owner ! Read | ! STC : ADDGROUP T1READG SUPGROUP (T10WNG) OWNER (T1OWNG) OMVS (AUTOGID)
| | Lo I ADDUSER T1OWNER DFLTGRP (T1OWNG) OWNER (T1OWNG) OMVS (AUTOUID)
i Group i Group i | Group HOME (' /home/T10WNER') PROGRAM('/bin/sh')) NOPASSWORD
N e o =7 N e o o / N e o R4
A
ﬁ \ ﬁ ADDGROUP T1STCG SUPGROUP (GROUPS) OWNER (T10WNG) OMVS (AUTOGID)
P ~ SR -~ ADDUSER T1STCU DFLTGRP(T1STCG) OWNER (T1O0WNG) OMVS (AUTOUID)
[! ! HOME (' /home/T1STCU') PROGRAM('/bin/sh')) NOPASSWORD
! Owner | I STC | () ()
1 1 1 [T
E ID] | ID i RDEFINE SURROGAT T1OWNER.SUBMIT UACC (NONE) OWNER (T10WNG)
| R — - | - RDEFINE SURROGAT BPX.SRV.T1OWNER UACC (NONE) OWNER (TO1OWNG)
-T PERMIT T11OWNER.SUBMIT CLASS (SURROGAT) ID(T1O0WNG) ACCESS (READ)
SURROGAT PERMIT BPX.SRV.TOlOWNER CLASS (SURROGAT) ID(T1OWNG) ACCESS (READ)
| SETR RACLIST (SURROGAT) REFRESH
& ‘\fﬁ\/ CONNECT T1STCU GROUP (T1OWNG)
Q{k CONNECT T1STCU GROUP (T1READG)
‘a
Config File People With_"e‘?d PERMIT SUPERUSER.FILESYS.CHOWN CLASS (UNIXPRIV) ID(T1OWNER) ACCESS (READ)
Administrators to READ files

PERMIT SUPERUSER.FILESYS.CHANGEPERMS CLASS (UNIXPRIV) ID(TI1OWNER)
SETR RACLIST (UNIXPRIV) REFRESH

ACCESS (READ)

= o 2017, IBM Corporation

Liberty z/0OS Good Practices

1|||

"Include File" Processing

17

Server

server.xml
|

Liberty Started Task

r----t% <include>

---F9 <include>

------ XML

---------- XML

This allows portions of the configuration to be held in files

Group: TIREADG

File
Owner: TLOWNER R‘?:': SOJI’;; lg;_ T;:e
wi o)
Group: T1IOWNG the owning ID
File
Owner: MARY Sel;/er can read,
and user can
Group: TIREADG update this file

Yes, nesting of includes is possible

outside the main server.xml file

ID: TLSTCU
Read access to all Two primary uses:
files through groupo .
1. Hold sensitive configuration information in file that is READ to
select people, but not the read group
File 2. Allow a user to update their portion of the server
Owner: TLIOWNER configuration, but not other parts of it

For the second use-case it is important to insure the
user can not override configuration in the main XML.
Use the "onConflict" tag in the <include> element:

<include location="myIncludeFile.xml" onConflict="IGNORE"/>

This tells Liberty to ignore XML elements in include

file that are also found in the main server.xml

It does not prevent them from injecting configuration elements not found in
the main server.xml. If there is a concern about that, don't use include
processing.

1|||l

© 2017, IBM Corporation Liberty z/0S Good Practices .

Server-Related Security

~ STARTED, SERVER, and CBIND

18

© 2017, IBM Corporation

Liberty z/0OS Good Practices

T

Starting the Liberty z/OS Server

UNIX Process
Start with shell script

©

Liberty z/OS
Server Instance

Started Task
Start with shell script

.

Liberty z/OS
Server Instance

Started Task
Use z/0S START

L

Liberty z/OS
Server Instance

19

All three result in a Liberty z/0S server, and functionally there's very little difference

When started as a UNIX process, the MODIFY command interface is not present

1.

UNIX Process

* Use the 'server' shell script in the installation /bin directory
* Syntax: server start T1SRVOl
* ID of server will be based on ID that issued the command

Started Task using server shell script

e Set WLP_ZOS_PROCEDURE environment variable in server.env file

e Example: WLP_ZOS PROCEDURE=T1PROC, JOBNAME=T1SRV01l , PARMS='T1SRVO1'
* This is how z/0S servers are started by Collective Controller

* ID of the server will be based on the SAF STARTED profile that takes effect

Started Task using START command

e Common proc: START T1PROC,JOBNAME=T1SRV01l, PARMS='T1SRV01'

* Dedicated proc: START T1SRVO01l

* ID of the server will be based on the SAF STARTED profile that takes effect

Expectation is for production servers either #2
(via Collective Controller) or #3 will be used

© 2017, IBM Corporation Liberty z/OS Good Practices

T

Assigning ID to z/0OS Started Task: SAF STARTED

.. The first question here is whether you wish to have a common started task ID
b that is shared among servers, or if you wish each server to have a unique ID
-

Then the second question is whether servers under a WLP_USER_DIR will
share a common JCL start proc, or use unique start procs for each server

Common ID Unique IDs
Common START T1PROC, JOBNAME=<server>,PARMS='<server>' START T1PROC, JOBNAME=<server>, PARMS='<server>'
Proc STARTED T1PROC. * STARTED T1PROC.<jobname>
Unique START T1SRVO01 START T1SRV01
Procs STARTED T1%*.* STARTED T1SRVO1l.*

It's possible to use a combination of the above, even under the same WLP_USER_DIR.
So there's no "one best answer" here. What's best is what's best for you.

20

21

Liberty z/0OS Good Practices

z/0S
Authorized
Services

- -

Liberty z/0OS
Server

‘ | bootstrap.properties

com.ibm.ws.zos.core.angelRequired=true
com.ibm.ws.zos.core.angelName=<name>

The Angel Process is a started task that is used to protect access to z/0S
authorized services. This is done with SAF SERVER profiles.

The authorized services include: WOLA, SAF, WLM, RRS, DUMP

The ability to start multiple Angel processes on an LPAR was introduced in
16.0.0.4. This is called "Named Angels". It provides a way to separate

Angel usage between Liberty servers:
* Angels process can be started with a NAME='<name>' parameter (or it can be started as a
"default" without a name). The name may be up to 54 characters.
* Liberty servers can be pointed at a specific Angel with bootstrap property
* The same SAF SERVER profile mechanism is used to protect access to authorized services (one
additional SERVER profile is introduced that includes the Angel process name)

Good practices:

* When an "embedder" user of Liberty calls for its own named Angel, follow those
instructions and set up an Angel for that product.

* You may create separate named Angels for isolation of Test and Production, but do
not take this practice too far. A few Angels, yes; dozens, no.

* Establish automation routines to start the Angels at IPL

* Grant SAF GROUP access to the SERVER profiles, then connect server IDs as
needed

Liberty z/0OS Good Practices

You can grant server
IDs direct READ to each —»

profile, but that may BBG
(T ‘: get labor intensive
1
! ServerID ——
L ’ —> BBG
—— BBG
'I’ ___________ \\l BBG
_____________ 1
(Vo WOLA i BRG
! [
i Server ID E—b:f Access | BBG
M e / 1 Q@rou i
\ P BBG
- » BBG
Or you could establish functional
group IDs that have specific access, —— BBG
then connect server ID to the group » BBG

or groups to get the access.

BBG
BBG

Good practices:

.AUTHMOD.
.AUTHMOD.
.AUTHMOD.
.AUTHMOD.
.AUTHMOD.
.AUTHMOD.
.AUTHMOD.
.AUTHMOD.
.AUTHMOD.
.AUTHMOD.
.AUTHMOD

e Establish all the SERVER profiles ahead of time.

* Determine what access a server needs and grant only that; check "is available" messages in messages.log to verify

22

BBG.ANGEL. <angel name>
.ANGEL

BBGZSAFM
BBGZSCFM

BBGZSAFM.
BBGZSAFM.
BBGZSAFM.
BBGZSAFM.
BBGZSAFM.
BBGZSAFM.
BBGZSCFM.
BBGZSAFM.
.BBGZSAFM.

SAFCRED -------- >
ZOSWLM ----------
TXRRS ------------
ZOSDUMP -------- >
LOCALCOM --+-*
WOLA ----------- b

PRODMGR-------- s

ZOSAIO

enables access to a specific named Angel

enables access to the unnamed Angel process

enables access to authorized services
enables loading of authorized client services
enables use of SAF authorized services
enables use of WLM authorized services
enables use of RRS services (transaction)
enables use of SVCDUMP services

enables use of WOLA

enables use of IFAUSAGE services

enables use TCP asynchronous I/O services

Existence of profile does not grant access; READ to it does.

=== 0 2017, IBM Corporation Liberty Z/OS Good Practices

WOLA Registration, the Three-Part Name, and the SAF CBIND Profile

F server.xm| WOLA is a highly-efficient cross-memory mechanism
<zosLocalAdapters It is bidirectional: outbound from Liberty; inbound to Liberty
Woiaﬁrougz"ﬁsw When an outside address space (CICS, a batch program) wants to use WOLA
wolaNamez2="T1"
wolaName3="T1SRVO1" /> with an instance of Liberty, it must first build a "registration" to the Liberty

address space. That is protected with a SAF CBIND profile*.

The CBIND is based on the WOLA "three-part name" the Liberty server is
using, for example:

RDEFINE CBIND BBG.WOLA.TEST.T1.T1SRVO1l UACC (NONE)

The ID seeking to register needs READ to that SAF CBIND. You may grant the
READ directly to the ID, or grant READ to a group and connect ID to the group.

The SAF CBIND value can be wild-carded.

The three-part name is arbitrary, but needs to be unique on the LPAR. A good
ID for the external practice is to include the unique server name as the last part of the three part
address space name, as illustrated here

Yes; Permit
Registration

SAF CBIND

Fail “No

* The ability of a Liberty z/OS server to use WOLA at all is controlled by that server's STC ID having READ to the appropriate SAF SERVER
23 profiles. The SAF CBIND then controls which outside address spaces can "register into" the Liberty z/OS server.

1|||l

© 2017, IBM Corporation Liberty z/0S Good Practices -_

“Application-Related Security

- Encryption, Authentication, Authorization

24

= [l

25

© 2017, IBM Corporation

Liberty z/0OS Good Practices

1|||

he Presence of an Application* Triggers Several More Security Topics

| i Backend Data System
j/\

Liberty z/OS Server

8 Application e

>

©

I\

1.

Transport Layer Encryption

Depending on the client access method, encrypting the data link may be required. This is where a
discussion of "Transport Layer Security" (TLS, commonly referred to as "SSL") comes up. This involves
certificates and key/trust stores. On z/0S that can be managed in SAF.

Authentication

A client presents itself to the server and claims to be "Person X." Are they who they claim to be?
That is authentication. There are many forms, from basic ID/password to more sophisticated third-
party authentication and the passing of identity tokens.

A closely related topic is "User Registries," which is where information about users is kept. Again, on
z/0S that can be SAF.

Application Role Authorization

Once authenticated, an application may enforce different levels of authority the client is permitted to
have. That is done using "roles," and role authorization involves validating which role the
authenticated user belongs to. On z/0S, this can be done in SAF.

Backend System Access

If the application reached back to a data system, what ID does it use? The backend data system may
allow or disallow access based on the ID that is presented. This is a somewhat complex topic as the
ID that's presented has several "it depends" qualifiers. We defer this to another presentation.

Clients * An "application" could be one you wrote, or a vendor application, or an IBM function such as
the Liberty AdminCenter. The point is, it is software function a client communicates with.

© 2017, IBM Corporation Liberty z/OS Good Practices

i [l
I
lin
1|||
I

LS (aka "SSL") and Digital Certificates

, 1. Basic Key and Trust Store
leerty Z/OS e Simple one-line addition to the server.xml
Server <keyStore id="defaultKeyStore" password="Liberty"/>
* Satisfies basic requirements for TLS, but good only for initial validation. Not good for testing (self-
[jserver.xml signed certificate), and certainly not for production.

2. File-based Key and Trust Store

—8 . * Same mechanism as used on distributed platforms (keytool or ikeyman)
Basic 0 * Can be used for testing and production

*
r -

* File password in server.xml can be encoded. SAF keyrings eliminate need for passwords

_8 s Files @) 3. SAF-based Keyrings

* The server.xml file points to SAF as its key and trust store
-or- » Use SAF keyrings to hold digital certificates and signer (CA) certificates
* No passwords in server.xml

—8 SAF Keyrings e * Access to SAF keyrings protected by SAF IRR.DIGTCERT.* profiles

* General good practice to use z/0S facilities when on z/0S

* Combinations within a given
Liberty z/OS server is possible.

26

27

w Iiml"
I

© 2017, IBM Corporation

Liberty z/0OS Good Practices

1|||

AF Keyring Support in server.xml

<feature>ssl-1.0</feature> 0

<sslDefault sslRef="DefaultSSLSettings" /> Q

<ssl id="DefaultSSLSettings" e
keyStoreRef="DefaultKeyStore" trustStoreRef="DefaultTrustStore" />
<keyStore id="DefaultKeyStore" location="safkeyring:///Keyring.LIBERTY"
password="password" type="JCERACFKS" fileBased="false" readOnly="true" />
<keyStore id="DefaultTrustStore" location="safkeyring:///Keyring.LIBERTY"
password="password" type="JCERACFKS" fileBased="false" readOnly="true" />

<ssl id="T1SSLConfig" e

keyStoreRef="T1lKeyStore" trustStoreRef="Tl1lTrustStore" /> e

<keyStore id="T1lKeyStore" location="safkeyring:///Keyring.T1"
password="password" type="JCERACFKS" fileBased="false" readOnly="true" />

<keyStore id="T1TrustStore" location="safkeyring:///Keyring.T1l"
password="password" type="JCERACFKS" fileBased="false" readOnly="true" />

<!— HTTP using non-default SSL config -->
<httpEndpoint id="defaultHttpEndpoint"
host="*"
httpPort="9080"

httpsPort="9443" >
<sslOptions sslRef=“"T1SSLConfig" /> o

</httpEndpoint>

Update <featureManager> list

The ss1l-1.0 feature enables the support to use SAF for the
key/trust stores. It may be auto-loaded by other features, but
specifying it explicitly is a good practice.

Specify default SSL settings

The <ssIDefault> tag specifies the default SSL settings for the
server. If you have multiple SSL settings, you definitely need
this. A good practice to specify in all cases.

Default SSL settings

You may customize and have the "default" be tailored to your
server. Or you may retain a true "default" and provide a
separate customized SSL settings (block #5).

The "password" for SAF keyrings
SAF does not use a password, but the Liberty keystore code
requires it. This is just a dummy placeholder.

Specific SSL settings
If you wish, you can provide SSL settings specific to your server
and reference it from the HTTP endpoint (block #7)

Naming convention prefix in keyring name
Whether default or specific SSL settings, it's a good practice to
have the keyrings used by the server reference the naming
convention prefix for the server.

Specifying SSL options for HTTP endpoints

If you wish a set of HTTP endpoints to use something other
than the default SSL settings, point to the SSL options using
the tag shown here.

© 2017, IBM Corporation Liberty z/OS Good Practices

1|||

Enabling Crypto Hardware Support for Liberty z/OS

If you have crypto hardware on the System z machine, take advantage of it:

Copy java.security file to Liberty z/OS server configuration directory and update
* Copy java.security file from the /lib/security directory of your 64-bit Java SDK installation
* Update as shown here:

/TlServers
L /servers
L /r1sRrvO1

- java.security

| server.xml

- jvm.options

security
security
security
security
security
security
security
security
security
security
security

.provider.
.provider.
.provider.
.provider.
.provider.
.provider.
.provider.
.provider.
.provider.
.provider.
.provider.

l=com.
2=com.
3=com.
4=com.
5=com.
6=com.
7=com.
8=com.
9=com.

ibm.
ibm.
ibm.
ibm.
ibm.
ibm.
ibm.
ibm.
ibm.

crypto.ibmjcehybrid.provider . IBMJCEHYBRID
crypto.hdwrCCA.provider . IBMJCECCA
jsse2.IBMJSSEProvider2
crypto.provider.IBMJCE

security. jgss.IBMJGSSProvider
security.cert.IBMCertPath
security.sasl.IBMSASL

xml .crypto.IBMXMLCryptoProvider

xml . enc.IBMXMLEncProvider

10=com.ibm. security. jgss.mech. spnego.IBMSPNEGO
ll=sun.security.provider. Sun

Update server.xml SSL settings and update type= value:
<keyStore id="CellDefaultKeyStore" location="safkeyring:///Keyring.T1"
password="password" type="JCEHYBRIDRACFKS" fileBased="false" readOnly="true" />
<keyStore id="CellDefaultTrustStore" location="safkeyring:///Keyring.T1""
password="password" type="JCEHYBRIDRACFKS" fileBased="false" readOnly="true" />

Create jvm.options file and point to java.security file to use
-Djava.security.properties==/T1Servers/servers/T1SRV0l/java.security

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101213

28

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101213

© 2017, IBM Corporation

Liberty z/0S Good Practices

1|||

Authentication

Firewall Firewall

Are you really who
you claim to be?

© This is a big topic, and
Liberty z/OS the implementation
Server details go far beyond the
scope of this document

External Users /ﬁ\,@\ /
7) Vs
| %}i
B . M e[l

Internal Users

1. UserID / Password 3.

What most think of when "authentication" is discussed.
This is an option with Liberty, and may be suitable,
depending on the application architecture requirements.

2. Single Sign-On / Third-Party Auth 4.

This includes technologies such as LTPA tokens, SPNEGO,
OpeniD, SAML, JSON Web Tokens (JWT). This is very
common when the user-base is very large.

29

User Registry o

Client Certificate Authentication

This is sometimes referred to as "two-way SSL," it involves
authenticating using TLS encryption certificates. This is often used
to authenticate a programmatic layer, such as a proxy server.

User Registry

Any discussion of authentication eventually leads to the topic of
where user information is held, and that's a "user registry." Typical
options are LDAP and SAF.

= © 2017, 1BM Corporation Liberty z/OS Good Practices

1|||

Liberty z/OS User Registries
User Registry Options with Liberty z/OS:

Q Basic

* The user ID and password values are maintained in the server.xml (or an include file)
* Adequate for initial validation and some testing, but not for readiness testing, QA, or production use.

QD sar
This topic brings a few more SAF-

* The user ID and password values are maintained in SAF
* Very secure and very well-suited for production
* Can be an issue if the user-population is very large, or may self-register

Q LDAP

* Liberty z/OS access an LDAP server (on z/OS or remote)
* Commonly used when the user-population is large and dynamic
* Good practice: maintain bind password in a separate "include" file, not in server.xml

O Federated Registries

* Multiple registries are employed: LDAP and SAF typically
* Often involves "distributed identity mapping" -- mapping an LDAP user to a SAF user

Custom

* Use the UserRegistry class to implement a custom registry
* Should be thoroughly reviewed before used in anything other than development and test

related requirements to the table, More
so we'll explore this a bit more ...

30

=—=-—="© 2017, IBM Corporation

Liberty z/0OS Good Practices

To Use SAF as a Registry Requires a Few Things ...

Angel
Process

X
Yes!

No SERVER Q
Fail - BBG.AUTHMOD . BBGZSAFM. SAFCRED
0 BBG.SECPFX.<profile prefix>
a i APPL G

A

. No <profile prefix>
leerty READ? >-------—---- >
z2/0S Server ~ Yes O

server.xml
g

User attempting to
authenticate

io

Unauthenticated User
(the "Default" User)

31

1. Angel Process available to the server

* Either an unnamed Angel or a named Angel

2. SERVER profiles with the server ID having READ

* BBG.AUTHMOD.BBGZSAFM.SAFCRED with server ID = READ

* BBG.SECPFX.<profile_prefix> where the prefix value is related to your
server prefix, for example T1

* Server ID granted READ to this SECPFX profile

3. The server.xml specifies SAF and names prefix value

* This involves a few lines of XML will show you in a chart or two

4. A defined "unauthenticated" (i.e. "default") user

* This is the ID that is used prior to successful authentication
* This ID should have no TSO segment, and be RESTRICTED

5. User authenticating must have valid SAF definition

* The user attempting to authenticate must have a valid SAF definition
(OMVS segment, valid home directory, not revoked)

6. APPL profile with READ to required IDs

* The APPL profile is equal to the <profile_prefix> value you defined on the
SERVER profile (#2)

* The server ID has READ to this APPL

* The unauthenticated user has READ to this APPL

* The ID attempting to authenticate has READ to this APPL

= ©2017, 1BM Corporation Liberty Z/OS Good Practices ‘

Or, to lllustrate Another Way ...

Start

SAF Registry requires access to z/0OS authorized services, which means the server
needs access to the SERVER profiles protected by an Angel

At server startup the server will check to see if (a) an unauthenticated user is
defined, and (b) it has access to an APPL profile equal to the profile prefix specified

The first user asking to be authenticated shows up. The server checks with SAF to
see that the ID presented is valid

Yes
Registry?
Yes

Yes

The server then checks to see if the authenticated ID has access to the APPL profile,
which is what gives it permission to access the applications in the server

- The user is authenticated ... the next step may be to check application role authority

© 2017, IBM Corporation

Liberty z/0OS Good Practices

1|||

Updates to server.xml in Support of SAF Authentication

33

D server.xml 1

<feature>zosSecurity-1.0</feature> o
<feature>appSecurity-2.0</feature>

<safRegistry id="saf" realm="MYPLEX" />Q 2
<safCredentials
unauthenticatedUser="T1DFLTU" e 3
profilePrefix="T1" /> .

<safAuthorization id="saf"
racRouteLog="ASIS"
enableDelegation="true" />

<safRoleMapper
profilePattern="%profilePrefix%.%resource%.%role%"
toUpperCase="false" />

Liberty Features
zosSecurity-1.0 enables SAF authentication and authorization.

appSecurity-2.0 enables application security, including role
checking and RunAS delegation.

<safRegistry>

This enables SAF-access function.

<safCredentials>

Here the "unauthenticated user" is named, and the "profile
prefix" is specified. The unauthenticated user should be a
RESTRICTED ID (meaning: it gains no access via group or via
RACF global entry checking.

The profile prefix should be equal to whatever "starting
prefix" you choose for your naming convention. An APPL
profile is created to match this value.

Authorization XML

These final two sections of XML relate to application role
authorization. We'll discuss this in an upcoming chart.

© 2017, IBM Corporation

Liberty z/0OS Good Practices

T

Example RACF Setup Definitions for Unauthenticated User and APPL

RDEFINE SERVER BBG.SECPFX.T1l UACC (NONE) 0
PERMIT BBG.SECPFX.T1l CLASS (SERVER) ACCESS (READ) ID (T1STCU)

: ADDGROUP TI1DEFG

ADDUSER TI1DEFU

ADDGROUP T1USRG

RDEFINE APPL T1

PERMIT T1l
PERMIT T1l
PERMIT T1l

SUPGROUP (T10WNG) OWNER (T10WNG) OMVS (AUTOGID)
DATA ('T1l unauthenticated user group')

DFLTGRP (T11DEFG) OWNER (T10WNG)

NAME ('Tl default user') OMVS (AUTOUID) HOME (/home/T1DEFU)

PROGRAM (/bin/sh))

DATA ("RACF ADMIN: DO NOT PERMIT THIS USER TO RESOURCE PROFILES")
NOPASSWORD NOOIDCARD RESTRICTED

SUPGROUP (T10WNG) OWNER (T1O0WNG) OMVS (AUTOGID) e
DATA('T1 authenticated user group')

UACC (NONE) DATA(‘Controls access to Tl servers’) o
CLASS (APPL) ID(T1STCU) ACCESS (READ)

CLASS (APPL) ID(T1DEFU) ACCESS (READ)
CLASS (APPL) ID(T1USERG) ACCESS (READ)

1.

SERVER Class Prefix

This defines the security prefix, which is
later matched with an APPL profile, and is
used to pre-pend EJBROLE definitions.
The server ID is granted READ.

Unauthenticated Group/User
The "default"” user and its group. Note
the RESTRICTED specified on the user.
This ID is deliberately very low authority.

User Group for APPL Access
IDs attempting to authenticate will need
READ to the APPL. You could UACC(READ)
the APPL profile, or you can create an
access group and grant IDs to this group
to gain access to the APPL profile.

APPL Profile

This matches the profile prefix SERVER
profile, and aligns with your naming
convention.

Permit Users to APPL

The server ID and the default ID are
granted access, as well as the user group
which allows other IDs access.

© 2017, IBM Corporation Liberty z/OS Good Practices

1|||

Application "Roles"

Who Are You?

What Are You Allowed To Do?

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

B))-: i)-:
/’i i at that earlier. Once a user ! ! application may or may not define different "roles," but if roles
L | i successfully authenticates, the i i are defined, then the server gets involved to help the
| | :
1 1 1
1 [

1
1
1
1
1
i
This is authentication. We looked This is authorization. 1t is a function of the application. An !
i
1
i
server knows who the user is. application determine if a user is a member of the defined role. :

1

1

Application "roles" are used to define what a user is

8 Application WAR File web.xml
allowed to do (that is "authorization").

<servlet>
<servlet-name>myHello</servlet-name>
<servlet-class>HelloServlet</servlet-class>
<security-role> 1

An application is not required to define roles, but if it

<role-name>MyRole</role-name> i— ----------- does then a mechanism is needed to check whether the
ity-rol . o N
B e authenticated ID is permitted access to the role:

* Basic (in server.xml)
e SAF (in EJBROLE)

- —————— -

35

© 2017, IBM Corporation

Liberty z/0OS Good Practices

Role Validation ... Basic vs. SAF

36

server.xml

<feature>zosSecurity-1.0</feature>
<feature>appSecurity-2.0</feature>

<safRegistry id="saf" realm="MYPLEX" />

<safCredentials
unauthenticatedUser="T1DFLTU"
profilePrefix="T1" />

<application
id="myServlet" name="myServletWAR" type="war"
location="/<path>/myServletWAR.war" >
<application-bnd>
<security-role name="MyRole">
<group name="T1USRG" />
</security-role>
</application-bnd>
</application>

server.xml

<

<

<
=

2 3

If the authenticated user is a member of this
group, then they have access to that role.

<feature>zosSecurity-1.0</feature>
<feature>appSecurity-2.0</feature>

<safRegistry id="saf" realm="MYPLEX" />

<safCredentials
unauthenticatedUser="T1DFLTU"
profilePrefix="T1" />

<application
id="myServlet"“ name="myServletWAR" type="war"
location="/<path>/myServletWAR.war" >

</application>

Go to SAF for EJBROLE
ASIS = Log as specified in RACF profile

<safAuthorization id="saf"
racRouteLog="ASIS" />

<safRoleMapper
profilePattern="%profilePrefix%.%resource%.%role%"

toUpperCase="false" /> The %resource% element is often

not used, leaving just prefix + role

RDEFINE EJBROLE T1.myServletWAR.MyRole UACC (NONE)
PERMIT T1.myServletWAR.MyRole CLASS (EJBROLE)
ID (T1USRG) ACCESS (READ)

© 2017, IBM Corporation Liberty z/OS Good Practices

1|||

Security Topics for Other Presentations ...

* LDAP as user registry ... related: federated registries

Common practice with distributed platform Liberty
Can be done with Liberty z/0S, with LDAP on a distributed platform or on z/0S
LDAP ID can be mapped to a SAF ID

* Single sign-on / third party authentication

o Common practice when the application has thousands (or millions) or external users
o Authentication is done elsewhere a token representing the user is flowed back to Liberty z/OS
o Examples: LTPA tokens, SPNEGO, OpenID, SAML, JSON Web Tokens (JWT)

* Backend Data access security

o Essential question is: what identity is presented to the backend data resource manager?
o The answer is "it depends" ... on the resource adapter used and how the connectivity is designed.
o Can be an "alias" (hard-coded ID/PW); it can be a designated functional ID (runAs); it can be the authenticated user

* Liberty collective security

o Involves a discussion of SSL certificates for mutual authentication ... and where those certificates are held
o Involves a discussion of SSH, SSH keys, or other remote invocation mechanisms, and how Liberty collectives operate

e O O O

37

= o 2017, IBM Corporation

Liberty z/0OS Good Practices

1|||

Summary

Application Layer
Security

Liberty z/0S
Server

0 C

Configuration

Product Install
Files Files

A
A

© File-Related Security

Product installation files
Server configuration files

Application-Related Security

Server-Related Security

Encryption
Authentication
Authorization

SAF STARTED profiles
SAF SERVER profiles
SAF CBIND profiles

WebSphere Liberty 16.0.0.x Knowledge Center

http://www.ibm.com/support/knowledgecenter/en/SS7K4U liberty/as ditamaps/was900 welcome liberty zos.html

38

http://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/as_ditamaps/was900_welcome_liberty_zos.html

