~ A\
A

WebSphere Liberty z/0S

An Overview of Good Practices

© 2017, IBM Corporation Liberty z/0S Good Practices '_

Liberty is Production Ready

T

Today

Liberty was first introduced four years ago

Production Readiness

Initially it was lacking many features; okay for
development and some testing, but not production

Initial

Release Liberty operates under a "continuous delivery" model

Over time it has received many functional updates

Functional Enhancement A .
Today it is a full Java EE runtime server

We are seeing increasing interest in -- and in some cases adoption of --
Liberty for production workloads. Its time has arrived.

© 2017, IBM Corporation Liberty z/OS Good Practices

1|||

Liberty Offload and Performance

- E== 1P Offload

* WAS Traditional saw an approximate (and average) 80% zIIP offload rate

* Liberty sees more zIIP offload

e Liberty's single JVM model implies less native code, and therefore less GP

» WAS Traditional server (CR+SR) ~ 1GB memory; Liberty is composable = less

WAS WAS
Traditional Liberty

Liberty z/OS Performance*

35% 30%5-40% 4X

DayTrader 3 benchmark EJB Improvement using Liberty z/0S Batch program using inbound WOLA
application saw a 35% Asynchronous 1/0 vs. Network 1/0 against simple ping application.
performance improvement. This for 2000, 4000, 8000 concurrent Reflects streamlined code path in
reflect general performance users. Reflects leveraging Liberty vs. CR/SR message handling
improvements in Liberty. platform for scalability. in WAS Traditional.

* Performance results are based on controlled tests in a specific environment. Your

3 results may vary. These results do not represent a promise of similar results.

© 2017, IBM Corporation Liberty z/OS Good Practices

T

Liberty z/OS and WAS Traditional z/OS

WAS Traditional has been an effective production work

Node . .
DMGR Agent appllcatlon server for many years
T - Liberty can coexist with WAS Traditional
pplication Server '
[! * Just be aware of things such as port conflicts, and naming that may imply
Control Servant | conflicts with things like JCL procs, or SAF profiles
Region Regions E . . . o
X ,' Work presently running in WAS Traditional may remain if
there is a compelling business reason to stay
» Applications make use of APIs in WAS Traditional not found in Liberty
More on this later when we discuss application development
Liberty Liberty * Other reasons to remain on WAS Traditional, such as automation built
2/0S 2/0S around WSADMIN scripting
Server Server . .
Consider Liberty for new workloads, or for workloads that

do not require the functionality of WAS Traditional

This is not an either/or consideration ... it can be both

Liberty z/0OS Good Practices

= o 2017, IBM Corporation

1|||

Different Ways Liberty z/OS Can Be Operated

z/0S Started Task
Liberty z/OS "Application Server"
* Liberty z/0S is entitled through WAS z/0S license
E%ﬁ Applications * Your applications are deployed and run inside this server runtime environment
* This is the focus of this material
CICS Regions
: "Inside CICS"
Liberty z/OS]
Applications * Liberty z/OS operates inside a CICS region; entitled with CICS license
éﬁ * The programming interfaces are the same
* The operational model is aligned with CICS operational practices
z/0S Started Task " "
Liberty z/OS EmbEdded
» Liberty z/OS is used as a Java runtime for some IBM or vendor function
Embedder . . Y . -
8 T * IBM or the vendor supplies Liberty; license entitlement under their license
unction * Liberty z/0S server is typically dedicated to that function

* Examples: z/OSMF 2.1, z/OS Connect EE V2.0

= © 2017, 1BM Corporation Liberty z/OS Good Practices ‘
Objective #1: Avoid Confusion from Unplanned Server Proliferation
cerver Without some care, it is possible to have a number
server ﬂ of Liberty servers come into existence

Server * It's very easy to create a new server if you know how

ABC

Server Those servers may have locations, names, and ports
% Server ZZZ that are all different

Server * There is considerable flexibility in these things

123 That may be okay for ad hoc development and test,

Server
| 3

Server T5 but would surely be a problem for production
* Production environments is what we're focusing on here

X1 If you wait until after-the-fact, you'll be left trying
[i fr] to take inventory of everything that was built

SNy Better to approach Liberty z/OS with some
| «M planning up front, rather than after-the-fact

T

© 2017, IBM Corporation Liberty z/OS Good Practices '

Objective #2: Protect Against Unauthorized Activity

0 1. Prevent unauthorized server creation
* This is based on UNIX permissions in install /bin directory
Liberty z/OS * Then authorized people create servers according to the plan
Server 2. Prevent unauthorized modification of configuration
e * This is accomplished by carefully planning out file system ownership
* Then UNIX permissions for 'group' and 'other’

server.xm| 3. Prevent application access to configuration
* This is accomplished by separating the task ID from the configuration
file system owner ID, and managing UNIX permissions

That's the essential file protection security; after that comes the standard
application layer security: encryption, authentication, authorization

= © 2017, 1BM Corporation Liberty z/OS Good Practices

1|||

Liberty z/0S Installation
Use "Group Mode" for IM on z/0S

Source File "Repository” » Makes best sense on a multi-user system such as z/0S
* IBM hosted cloud server " . " . .
+ Local file-based repository Employ a "service zone" concept for installations

* Allows IM R/W access to the file systems it writes to
* iFixes can be installed without concern about running servers

A

IBM Installation

Manager z/0S Maintain installs by versions of Liberty
"Group Mode" * Installs are faster
* Provides for easier fall back if new level proves unsatisfactory
_ _ Copy out and mount R/O for server access
/seerce/}—'} berty * Prevents any tampering with the files
— /16001 | | .. i
116002 = R/W Make sure 'other' permission bits are 0
- * Only group members may read files and operate servers
_/16';004 <! Copy zFs Server STC IDs are then connected to the group
— v * This allows the server ID read, which is all it needs to load the files

when a server is started

© 2017, IBM Corporation

Liberty z/0OS Good Practices

— I

The

/<WLP_USER DIR>
— /servers
—/<server 1>
[]server.xml
—/<server 2>

D server .xml

— /<server n>

[] server.xml
—/shared
—/apps
—/config

iberty WLP_USER_DIR

Server are created under the WLP_USER_DIR you name
* UNIX environment variable; 'server create' command creates servers there

Mount a file system at the WLP_USER_DIR

* Do this before creating servers; provides an easy backup/restore point
Size needed depends on many factors (application sizes, log sizes, etc.)

You may create any number of servers under a WLP_USER_DIR

 Servers under a WLP_USER_DIR have access to the common /shared directory
* It's possible to use the same JCL start proc for multiple servers

Servers under a WLP_USER_DIR should be related in some way
* Not a technical requirement; rather a good practice

Servers under a WLP_USER_DIR should have consistent names
* This gets to the naming convention, which we discuss on the next page

Servers under a WLP_USER_DIR should operate on same LPAR

* Not a strict requirement; this simply avoids cross-LPAR write operations

You may create multiple different WLP_USER_DIR locations
* This provides a way to segregate different groups of servers: DEV, TEST, QA, etc.

= © 2017, 1BM Corporation Liberty z/OS Good Practices ‘

Naming Convention Overview

There is no "one" naming standard that is "best" ... there are guidelines,
but ultimately it's what best serves your needs.

When you are coming up with your naming convention, it is a good thing
to "paper test" it to see if it holds up to different anticipated scenarios.

A good naming standard achieves a few things:

* It allows you to quickly understand what a server's purpose is, based on the name
* It allows you to quickly determine what servers are related to one another, based on the name

* It relates different naming artifacts based on the convention used
For example: the Server Name relates to the JCL start procedure name, which relates to the STC JOBNAME,
which is tied to SAF artifacts such as the task ID

10

© 2017, IBM Corporation

Liberty z/0OS Good Practices

1|||

Naming Convention -- an Illlustration

/TlServers OMVS .LIBERTY.T1SRV.ZFS

|—/servers 6
/T1SRVO1A e

D server.xml
/T1SRV02A

with identifier string

JCL Start Procedure
T1SRV 0

SAF STARTED: T1SRV. * > T1SRVU group T1GRP

S T1SRV,JOBNAME=T1SRVO01lA, PARMS='T1SRVO1lA'

11

1

1

i The key point in this is that
D server.xml i all the elements tie together

i

1

[

WLP_USER_DIR

* Start directory name with two (or three) character
identifier string that is related to purpose of servers

User Directory File System

* Mount a ZFS at this location and include identifier

Server Names

* Server names starts with the same identifier string

* Limit to 8 characters to they can align with z/0S limits

* Uppercase to better match START command

JCL Start Procedure

* JCL start proc starts with same identifier string

* May use generic JCL for all servers under user directory

* |If each server has its own JCL, then make equal to
server name

ID/Group Assigned to STC

* The ID and group assigned starts with identifier string

START command, JOBNAME value

* If generic JCL used, then add JOBNAME equal to the
server name

* |If server-specific JCL used, then add PARMS= to the JCL
and drop from the START command

= © 2017, 1BM Corporation Liberty z/OS Good Practices

1|||

Those Seeking Access to the Configuration File Structure

1. The Liberty z/OS Server

Liberty z/OS 0 * Has a need to both READ and WRITE
* Two options: server ID owns files, or is a separate ID from file owner

2. People Responsible for Administering the Server(s)
* They have a need to both READ and WRITE

\/ » Bad practice: sharing login ID/password

* Good practice: using SAF SURROGAT to switch to file owning ID

Server

/|_1-15ervers 3. Other People Related to the Server's Activities
/servers « Some have READ only ... logs, etc.
I—/TlsRV1A * Some may need limited WRITE ... then use "include" processing
[]server.xml 4. Unauthorized People

* No access at all; key is insuring these fall into 'other' permission bit, and

‘ that is marked as '0'.
™ (unauthorized @ At the heart of this is a discussion of the UNIX
file owner, group, and other permissions

12

© 2017, IBM Corporation

Liberty z/0OS Good Practices

T

Guiding Principle: WRITE through Owner; READ through a Separate Group

13

GROUP

PLLL T T TN

L /T1lServers

o - ——— —

1
1
1
i I—/servers
]
1
1

. g I—/TlsRVIA

i ID

———————————————

su based on SURROGAT

Admin
People @A

D server.xml

GROUP

———————————————

1. The Configuration Owning ID

e This ID is what's used to create the server

2. Administrator WRITE Access

* They should not share the owning ID password
* They can gain write access via switching to the ID
* The SAF SURROGAT profile can be used to control this

3. Separate Configuration Group

* Separate group is created and made the configuration

group via a chgrp command

You could simply connect READ users to the owning group, but if that
group is ever granted other SAF access, then those READ users would
inherit that access. Safer to have a separate group.

* Users with a need to READ are connected to this group

= © 2017, 1BM Corporation Liberty z/OS Good Practices

1|||

Creating Servers: Is Task ID the Same as the Configuration Owning ID?

They can be the same; but an argument can be made they should not be the same -- different ID prevents application from changing configuration

Task ID Same as Config Owner ID Task ID Different from Config Owner ID
Liberty z/0OS Liberty z/0S Note: the details* of
Server Server this are spelled out
N P SE— . B S in the 'Security' unit.
! Config Owner H Started Task i ! Config Owner '— Started Task |
i i P i
: ID ID i ; ID o ID ;
e ™ qm——— 4 N e I N =
/T1lServers | Server has WRITE access /TlServers WLP—O}JTPUT—DIR
| i naturally because Task ID is | I Re-directs server to write its output to the
/Servers i equal to the configuration /Servers i |Ocati0n SpECified by the Variable.
I—/TISRVIA | owning ID |—/T13RV1A i That location can be owned by the task ID.
L, : | | The rest of the configuration i db
logs <«--- output ____1 Therest of the configuration is owned by
9 / P 8 \ the Config Owner ID, and the Task ID has
D server .xml |_ /logs READ through group access.

Good practice: mount ZFS at output
directory to contain large log output or
verboseGC output

D server.xml

* Notably, you need to specify the WLP_OUTPUT_DIR for the server before the server is started for the first time. That
way the /logs, /resources, and other output directories are created under the task ID at the output directory location

= o 2017, IBM Corporation

Liberty z/0OS Good Practices

1|||

Include Processing

server.xml

<server>

<include location="/<path>/<file>"
: A

</server>

<server>

(xml) <
</server>

<server>
(xml) <

<include location="/<path>/<file>" 4

</server>

15

Provides a way to externalize configuration elements
from the main server.xml

Minimum requirement: STC ID needs READ access

Potential "good practice" uses for "include" files:

* Maintain any common XML in a central location and include
in any servers that need it

* Maintain any configuration XML related to security (i.e. LDAP
information, or XML with encoded passwords) in separate
files that are tightly controlled

* In restricted test environments, provide testers write access
to include files but not main server.xml; this allows them to

make their updates without granting access to the whole
There exists "onConflict" rules that can prohibit the overwrite of configuration
elements by elements coming in on an include statement

It's a useful facility ... but excessive use, including too much
nesting, can create an environment where understanding
the configuration is challenging. Use, but use wisely.

© 2017, IBM Corporation Liberty z/0S Good Practices

1|||

- |l

=[]

CP Port Management
Because Liberty is so flexible in how it can be configured*, it will be
challenging to determine with precision how many ports will be needed
Liberty z/0OS
Server At a minimum you should set aside a range of TCP ports for the servers
under a given WLP_USER_DIR, then allocate from that range for the
servers.
A Liberty server can have For production servers in particular, consider using SAF SERVAUTH to
between 0 and n TCP ports protect use of the defined TCP ports for that server.
defined. It depends on what
the server is configured to do. Keep track of TCP ports set aside and used using whatever tool best suits

16 * WAS Traditional servers used a lot of TCP ports, but the number was known ahead of time. So planning for the TCP port usage there was actually easier.

Liberty z/0OS Good Practices

=—=-—="© 2017, IBM Corporation

Controlling Dynamic Updates

By default, Liberty maintains polling threads that watch for changes to configuration
and application, and dynamically updates when changes are detected.

The default polling interval is 0.5 seconds

In a production environment you will likely not want dynamic updates on. Better to
rely on scheduled server restarts. This is particularly true when "rolling" updates
across a clustered environment.

<!- Disable dynamic updates and reduce CPU -->
<applicationMonitor dropinsEnabled="false" updateTrigger="disabled"/>
<config updateTrigger="disabled"/>
<automaticLibraries monitorEnabled="false"/>
<cdil2 enableImplicitBeanArchives="false"/>

17

© 2017, IBM Corporation

Liberty z/0OS Good Practices

T

Application Development and Migrating Application from WAS Traditional

JAX-RPC
EJB Entity Beans
JAXR/UDDI

WAS Batch(“Compute Grid”)
WS-BA, WS-RM

JAXM 1.3

ApplicationProfile
AsyncBeans,

118N

Startup Beans

WorkArea

SCA, SDO, XML

J2EE Extensions

Plus....
JAX-WS stacks are different

=
=

Deprecated J2EE When moving
applications from WAS
Traditional to Liberty,
Full WAS APIs be aware of this
Common WAS Common WAS
Full Java EE Full Java EE
Java EE Java EE

Web Application

Web Application

Runtime class visibility is different

Less EJB/IIOP QOS in Liberty
Client code may be different

18

WAS
Traditional

Liberty

The application programming APIs for
Liberty are the same across all platforms

When considering moving application from
WAS Traditional to Liberty, be aware of
deprecated APIs and other APIs not
present in Liberty

Normal Java coding best practices apply:

* z/0S is typically a higher-volume processing
platform, so design/write code accordingly

* Heavily used methods should be inspected
carefully to make sure they are as efficient as
possible

* Profile applications before deploying into high-
volume z/0S environments

© 2017, IBM Corporation Liberty z/OS Good Practices

T

Application Deployment

Deploy Application File Using Any Deploy Mechanism You Wish

 Ultimately this is simply uploading an application package file (EAR or WAR) to a file
Liberty z/OS system location and letting the server know about the location

Server Deploy with No Explicit Definition

* You could simply drop application file into /dropins directory, or another directory you
designate as the dropins location (<applicationMonitor dropins=""/>) element

/<WLP USER DIR> * In a production environment, you should disable dynamic updates (see previous chart)
L - B . . e
/l_ser"ers Deploy with Static Definition
/<server name> * You can deploy the application into any directory and point to it from server.xmil:
—/ apps <application location="<app name>" />
Either the /apps directory or the /shared/apps directory
—/dropins <application location="${server.config.directory}/apps/<app name>" />

The /apps directory

—/logs
/ g <application location="${shared.app.directory}/<app name>" />
_/ resources The /shared/apps directory
<application location="/<full path>/<app name>" />
D server.xml Any path location the server ID has READ access to

Static definition with deliberate server restart is better in a production setting
19

= o 2017, IBM Corporation

Liberty z/0OS Good Practices

1|||

Collectives

Highly available controllers = "replica set"

Liberty Server
Collective Controller

JMX
Client

Liberty Server
Collective Member

8 Applications

Liberty Server
Collective Member

8 Applications

20

Liberty Collectives ...

* Provide a way to organize Liberty servers into a logical grouping
for administrative purposes.

* Collectives are somewhat flexible in that servers can be added
or removed rather easily.

* Primary benefits of collectives:

* You can manage servers from a centralized interface. "Manage"
implies starting/stopping, making configuration changes, pushing files
out to servers, etc.

* You can take advantage of intelligent routing and auto-scaling
technologies

* Collectives are built on:

* Optional use of SSH for cross-server command invocation. (It is
possible to use collectives if SSH is not present.)

e Mutual authentication using SSL certificates, which may be held in
file-based key/trust stores or in SAF keyrings

© 2017, IBM Corporation Liberty z/OS Good Practices

1|||

Liberty Collectives Good Practices

Understand that collectives are not required; use them where they provide benefit

* Provides a centralized point of control for multiple servers (start/stop, monitor, etc.)
* Provides a mechanism for generation of HTTP server plugin-cfg.xml

* Provides a mechanism for intelligent routing to clustered Liberty servers, and dynamic scaling of Liberty servers

When first starting out with collectives, start small and get a feel for how they work

 Start with a single controller and single member design

* On initial test collective, start with file-based key/trust stores for SSL; later move to SAF keyrings

In general ...

* Collectives serve to organize servers that are associated with one another in some way -- test, QA, production, etc.

* If you wish to remove a server from a collective, use the "remove" function so collective understands the change

21

22

Liberty z/0OS Good Practices

z/0S
Authorized
Services

- -

Liberty z/0OS
Server

‘ | bootstrap.properties

com.ibm.ws.zos.core.angelRequired=true
com.ibm.ws.zos.core.angelName=<name>

The Angel Process is a started task that is used to protect access to z/0S
authorized services. This is done with SAF SERVER profiles.

The authorized services include: WOLA, SAF, WLM, RRS, DUMP

The ability to start multiple Angel processes on an LPAR was introduced in
16.0.0.4. This is called "Named Angels". It provides a way to separate
Angel usage between Liberty servers:

Angels process can be started with a NAME='<name>' parameter (or it can be started as a
"default" without a name). The name may be up to 54 characters.

Liberty servers can be pointed at a specific Angel with bootstrap property

The same SAF SERVER profile mechanism is used to protect access to authorized services (one
additional SERVER profile is introduced that includes the Angel process name)

Good practices:

When an "embedder" user of Liberty calls for its own named Angel, follow those
instructions and set up an Angel for that product.

You may create separate named Angels for isolation of Test and Production, but do
not take this practice too far. A few Angels, yes; dozens, no.

Establish automation routines to start the Angels at IPL

Grant SAF GROUP access to the SERVER profiles, then connect server IDs as
needed

© 2017, IBM Corporation Liberty z/OS Good Practices

1|||

z/0S Monitoring of Liberty

Use SMF Type 30 at the STC Level
Liberty z/0S * Not very granular, but it is relatively simple
Server

Turn on Liberty z/OS WLM Support and Use RMF Reporting

* Enable zosWwLM-1. 0 feature

* Least granular = wildcard the request filter to capture all requests in one TC
* More granular = identify specific application URIs and assign to different TCs

"3 Analyze Liberty z/OS SMF 120.11 v2 HTTP Request Records
é SMF 72 + RMF * SMF 120.11 v2 became available with the 16.0.0.2 level of Liberty z/OS
* Details: ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102655
Eﬁ SMF 120.11 v2 * Enable with zosRequestLogging-1.0 feature and grant READ to BPX.SMF

* Provides detailed information about each HTTP request received in the server

Key point: you can take advantage of existing tools on z/OS to monitor Liberty z/OS

23

© 2017, IBM Corporation Liberty z/OS Good Practices

T

Liberty z/0S JVM Monitoring and Tuning

24

AdminCenter Monitoring

Liberty z/0OS
Server

* If server is not part of a collective, then AdminCenter can monitor itself
* If server is part of a collective, then AdminCenter in controller can monitor other servers in the collective

Verbose GC Monitoring

* Well known practice for analyzing the activity inside a Java Virtual Machine (JVM)
e Can route to a UNIX file or to STDERR DD, which can go to JES spool
* Enable verboseGC in jvm.options file (-verbose:gc)

Other Monitoring Tools

* For example, IBM Health Center -- a client / agent model
* IBM OMEGAMON for JVMs on z/0S -- a licensed client / agent model

The good practice here is to use available tools to monitor and tune the
JVM to operate optimally for the application set that runs in the JVM

© 2017, IBM Corporation Liberty z/0S Good Practices ‘

Think about how you would organize Liberty z/OS servers around functional
purpose -- development, test, QA, production

Think about your strategy for application hosting in Liberty compared to
WAS Traditional. Many approaches; key is consistency.

Work out on paper a naming convention that ties the artifacts together

Understand the file system permission security issues and map out your strategy for file
ownership. This would also imply considering "include" configuration processing.

If servers are reliant on z/0S authorized services, establish the Angel and SERVER
profiles. Create automation routine to have Angel started at IPL.

Use available tools to monitor the z/OS processing (RMF, SMF) and the JVM

WebSphere Liberty 16.0.0.x Knowledge Center

http://www.ibm.com/support/knowledgecenter/en/SS7TKAU liberty/as ditamaps/was900 welcome liberty zos.html

25

http://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/as_ditamaps/was900_welcome_liberty_zos.html

