
Liberty z/OS - Key Concepts

© 2017, IBM Corporation

Liberty z/OS - Key Concepts

© 2017, IBM Corporation

Liberty, and Liberty on z/OS, may be a topic you're not familiar with. When a room full of people gather to discuss

Liberty, there's a good chance the level of understanding in the room will be mixed. This presentation was designed to

help "level set" attendees to some of the key concepts of Liberty z/OS.

As a "key concepts" presentation, many details will necessarily be left out. The focus will be on establishing a handful

of core understandings about Liberty z/OS. Later, when we get into the specific-topic units, we can bring out more and

more details.

The intent of his presentation is to present these key concepts of Liberty in as "matter of fact" manner as possible.

Page - 2

Liberty z/OS - Key Concepts

© 2017, IBM Corporation

We start with a discussion of Liberty z/OS and what that provides. This is the logical high-level starting point, and it also

serves as a way to differential Liberty z/OS from WebSphere z/OS traditional, the previous "WebSphere Application

Server" product. By the way, Liberty is available on many different platforms, not just z/OS, and its programming

interfaces are identically across the different platforms.

• Java Application Server -- Liberty is a full Java EE application server, and provides a container-managed

environment just like previous WAS servers. Application development is based on Java and Java EE concepts.

• Composable -- what's meant by this is that the features loaded by a given Liberty server are based on what you

define to it. The design principle here is a given server can be tailored to load just those functions the applications

require, and not more. This results in a smaller memory footprint. When operating hundreds (or thousands) of

Liberty servers, the memory footprint savings can add up.

• Dynamic -- Liberty has at its heart the idea of detection of application and configuration changes, and dynamically

loading those changes into the runtime. This avoids server stops and starts to pick up changes. In some

environments dynamic updates may not be desired, and in those cases the rate of detection can be reduced, or the

dynamic update capability can be turned off altogether.

• Simple -- this is really a statement of how Liberty compares to WAS traditional, which had dozens of configuration

files in different locations. Liberty is based on the principle of a single configuration file. Later we will explore how

side files can be "included" automatically, which allows you to modularize Liberty configuration if you wish.

• Started Task -- on z/OS the common operational model is to run Liberty as a started task. It is possible to run

Liberty as a UNIX process, started from the shell, and you may wish to do that for development environments. But

for production the expectation is Liberty will run as a started task, and Liberty z/OS supports this.

• z/OS exploitation -- work is run on z/OS in part because or the service attributes of the platform, so it follows that if

something runs on z/OS it would be good to take advantage of those platform service attributes. Liberty z/OS does

take advantage of several key z/OS service attributes. Later, when we get into discussing security and access to

z/OS authorized services, you will see how a given server can be allowed to exploit the platform.

That is the high-level story in bullet format. As mentioned, many details are left out of this at this point. But if you

take what's stated here on this chart and visualize a z/OS started task hosting a Java Virtual Machine and a Java EE

framework, with a relatively simple configuration structure and dynamic updates, you have a picture of Liberty z/OS.

Page - 3

Liberty z/OS - Key Concepts

© 2017, IBM Corporation

The installation of Liberty z/OS is performed using IBM Installation Manager (IM) and not SMP/E. IM on z/OS is

available without a license charge, and once IM itself is installed you can use it to install other IM-installable software.

IM operates on z/OS with a command line interface, and the commands you enter can be wrappered with JCL so the

installation can be made easily repeatable.

Like any installation utility, IM requires a source of files for performing the installation. This is called the "repository,"

and in reality it is little more than a large ZIP file created by IBM. The two basic choices are to download the repository

and use it "locally," or you can have IM access "the cloud" (meaning: an IBM-hosted server where the repository

resides) and install from a remote repository. More and more are using the remote "cloud based" install because it

avoids the extra step of downloading and using your own DASD to hold the source repository ZIP.

The result of a Liberty z/OS installation using IM is a file system, most likely a ZFS file system nowadays (as opposed to

the older HFS file system design). The key point is that's the install -- UNIX file system. All the components are held

there: the native module files, the JCL start procs, the sample XML files. There is no affinity to the system you install

on, so the idea of a "service zone" is quite applicable to IM installations: you install on LPAR X, which is isolated from

others, and then you copy the ZFS file system to the environments where Liberty z/OS will be used.

Generally speaking the installation is easy. As stated, once you have IM itself installed and the installation command

syntax working, it becomes a fairly rote exercise for future installations. There are good practices around maintaining

copies of installations by version and fixpack level, and we'll discuss those in the other units.

Page - 4

Liberty z/OS - Key Concepts

© 2017, IBM Corporation

The process of creating a server configuration in Liberty is fairly simple: it involves using a supplied shell script (located

under the install location /bin directory, and called 'server'). The server shell script has several action verbs associated

with it, one of which is "create".

The server shell script is invoked in a z/OS UNIX shell. You can access the shell in several ways: by using a telnet or SSH

client and connecting to the z/OS server, or by using OMVS (a 3270 shell environment), or by using BPXBATCH inside of

JCL to create a shell and issue a command. Two UNIX environment variables are needed to make this work -- (1) you

need to tell the shell environment where a valid 64-bit Java resides, which you do with the JAVA_HOME variable; and

(2) you need to tell the shell environment where you want the server to be created, which you do with the

WLP_USER_DIR variable. The WLP_USER_DIR variable can be any location you want. The only requirement is the ID

under which you run the server shell script has to have write permissions.

Note: later we will have a great deal of discussion about the "WLP_USER_DIR" because quite a few other good

practices flow out of that, such as isolation between environments, sharing applications and configuration elements

between servers, and UNIX file permission security practices. For now the key point is that output goes to wherever

you specify with the UNIX environment variable WLP_USER_DIR.

The server name you supply to the shell script becomes the UNIX directory under the /servers directory. The server

name can be any name that's valid for a UNIX directory name. As we get into more of the details you'll see that there

are some good practices with respect to naming conventions, and aligning the server name with other z/OS elements

such as user ID values and other SAF security profiles. The message here is while the server name can be pretty much

anything you want, you'll likely want to plan out and control the server names. The units that follow will help you do

that.

A default configuration file -- server.xml -- will be copied in from the installation location. You can, if you want, create

other "template" server.xml files and have them copied in when the server create is issued. When first starting out you

will likely allow the default template to come in, and you'll modify that.

Page - 5

Liberty z/OS - Key Concepts

© 2017, IBM Corporation

The picture in this chart illustrates a 'typical' directory and file structure under a WLP_USER DIR. It's important to note

that you may have multiple WLP_USER_DIR locations, not just one. The reason you may want multiple has to do with

separating operational environments, and UNIX file permission security. We'll get to that later.

As mentioned on the earlier chart, the server name you provided with the 'server create' command is used for the

UNIX directory under which directories and files for that server reside. The server.xml file is the primary configuration

file, but you may add others -- server.env (UNIX environment), jvm.options (to control JVM settings like heap, or

verbose GC recording), and bootstrap.properties (to supply properties that take effect before the JVM is instantiated.

The server.xml file is the key configuration file.

You may have multiple servers defined under a given WLP_USER_DIR location. In fact, there's no Liberty architectural

limit to how many servers you can define under a given WLP_USER_DIR location. Servers that reside under a given

WLP_USER_DIR location have the ability to share applications and configuration elements rather easily by accessing

those shared components housed down under the /shared directory. Servers under the same WLP_USER_DIR may also

be started with a common JCL start procedure, with the server name being passed in with a PARMS= value.

So this becomes one of the early considerations in planning for Liberty z/OS -- how will you use different

WLP_USER_DIR locations to effect server grouping so the isolation between groups is what you desire? There is quite a

bit of discussion that can go around this topic, and we'll see that come out as we work through the other units.

Page - 6

Liberty z/OS - Key Concepts

© 2017, IBM Corporation

Security is a big topic, and providing all the details in one chart is impossible. But what we can do is present a

framework of security topics. That framework is helpful in organizing the conversation around security.

There are three essential areas of security discussions around Liberty z/OS, and they are illustrated in the picture above

starting at the bottom and working to the top:

1. UNIX file system permissions -- this is standard UNIX file permissions, but it plays a big role in how you control

who can gain access to server configuration files for write, or even to look at configuration files. There are also

considerations to keep in mind if you want the started task ID to be different from the file owning ID. This is all

part of the security unit.

2. SAF profiles -- there are a handful of SAF profiles that come into play with Liberty z/OS: STARTED (for assigning

the ID to the started task); SERVER (for granting access to z/OS authorized services through the Liberty Angel

process); and CBIND (for controlling who can use a key WebSphere Optimized Local Adapters function); and

potentially others, depending on how you design things (SURROGAT for granting ability to 'su' to an ID, EJBROLE

for application roles, KEYRING for holding digital certificates). It is possible to avoid all these SAF definitions by

running your server as a UNIX process, and limiting what the server does. But the more we talk about Liberty

z/OS in a production setting, the more SAF will become part of the discussion.

3. Application security -- at this layer we move into the realm of things like encryption, authentication and

authorization. These application-layer security constructs are common across platforms on which Liberty runs,

though it is possible to use SAF for some of this under the application API layer. (For instance, you can have an

application that defines a role, and the role checking can be done using SAF EJBROLE definitions. But the

application does not know SAF is involved; that is a function of Liberty z/OS checking the role and going to SAF

because a configuration element in the server.xml tells that server instance of use SAF.)

Our reason for crafting this three-level framework is it allows us to keep the security discussion focused within an area,

and not make the topic -- already somewhat confusing -- more so by mixing different areas.

Page - 7

Liberty z/OS - Key Concepts

© 2017, IBM Corporation

As noted earlier, you can start a Liberty z/OS server as a z/OS started task (STC). The Liberty z/OS installation includes a

sample JCL member which you can copy out of the file system to your procedure library and modify.

The Liberty z/OS started task requires knowledge of two key things -- where Liberty z/OS is installed, and what

WLP_USER_DIR to look under. Those are supplied with two 'SET' variables in the JCL start procedure. The JCL proc is

also designed to take as an input parameter the server name you wish to start. So the START command looks

something like this:

START BBGZSRV,PARMS='myServer'

You may, if you wish, supply a JOBNAME=:

START BBGZSRV,JOBNAME=MYSERVER,PARMS='myServer'

This JCL can be tailored based on your needs. For example, you may rename the JCL start procedure to match your

own naming standards. You can hard-code the server name on the PROC statement where there's a default PARMS=

value supplied. You can go further still and customize other parameters you pass in on the START command that are

used to resolve the install path or WLP_USER_DIR location. There is considerable flexibility. When it comes to the

parameters you pass in you do need to be careful not to exceed the maximum parameter length (100 characters).

For someone familiar with z/OS started tasks, this should look familiar. There is nothing special or fancy going on here:

this is relatively simple JCL that launches the Liberty server you specify.

Page - 8

Liberty z/OS - Key Concepts

© 2017, IBM Corporation

As mentioned, the server.xml file is the key configuration file for a Liberty server. That's true for Liberty on distributed

and Liberty z/OS. The structure of this server.xml can be very simple, or somewhat complex. It all depends on what

you are seeking to do with the server.

The picture above illustrates the server.xml file and provides some guidance to understanding some of the key

elements of the file. For example, the "features" are what you provide to tell the server what functions to load. The

HTTP port values are coded in the <httpEndpoint> section. And between can be all manner of other XML -- well

documented in the online Knowledge Center -- to do things such as configure JDBC drivers, or MQ definitions, or WOAL

definitions, or whatever.

Page - 9

Liberty z/OS - Key Concepts

© 2017, IBM Corporation

You could maintain all the XML elements for a server within one file, or you may "include" portions from other files.

There are several reasons why you may wish to use this "include" function:

• You have configuration elements that are common to many servers, and rather than duplicating the same XML over

and over again, you may create one copy and point to it using <include> from the other servers.

• You have configuration elements you wish to more tightly control, such as JDBC definitions, that you maintain in

side files. The UNIX 'write' permissions on those files are restricted so only a select few can change them. But the

'read' permissions allow other servers to include the XML elements.

• You have configuration elements that are somewhat sensitive in nature, such as encoded password strings you'd

prefer others to not be able to see. Here again, you lock down the 'read' permissions so only the server IDs can read

them, but others can not.

You may have other reasons to do this beyond the three examples cited here.

You may wonder what happens when a configuration element is in the main server.xml and it's in the XML brought in

with an <include> statement. There are "on conflict" rules you can configure on the <include> statement which control

what happens when such an event occurs. So you can override using the included content, or you can discard the

included content.

We introduced this concept of <include> in this "key concepts" deck because we anticipate this feature will be widely

used when Liberty z/OS is use in a production environment where multiple servers are involved. The benefits to

separating out common or sensitive configuration elements is compelling.

Page - 10

Liberty z/OS - Key Concepts

© 2017, IBM Corporation

Liberty has a graphical management interface called the "AdminCenter" which can provide some assistance with

configuring the server.xml file. The AdminCenter is a "feature" you configure into the server.xml, and with the

AdminCenter function is loaded and available. One aspect of the AdminCenter is a server configuration wizard which

will read in the server.xml for the server and provide you the ability to add other elements using the wizard.

It's a handy tool. We anticipate as you get more familiar with Liberty configuration, you will do more manual updates

based on other working samples you have. But this tool can be helpful in guiding you to the XML elements you require

the first time you are configuring up a new function.

Page - 11

Liberty z/OS - Key Concepts

© 2017, IBM Corporation

Application development for Liberty is the same as application development for any Java EE 7 server runtime. So

there's nothing different or special about it. Any properly packaged WAR or EAR is deployable into a Liberty server,

whether on distributed or z/OS.

Note: because Liberty is "composable," it implies the features the application seeks to use are also configured into the

Liberty server. An application that looks to use JMS for message queuing will require the JMS feature to be loaded.

Where the conversation gets a bit more involved is when we discuss applications that were originally written for WAS

traditional and are now to be moved to Liberty. Here we have to be a little careful to make sure the applications do not

make use of APIs that are present in WAS traditional but not present in Liberty. At a high level, there are two things to

concern ourselves with:

• Java EE APIs -- the Java EE specification changes over time, and certain APIs are deprecated (present, but marked for

eventual removal) or removed (no longer in the more recent Java EE implementation). If the application to be

moved from WAS traditional to Liberty makes use of these older Java EE APIs, then it may present an issue when

they are moved to Liberty with its more recent Java EE 7 implementation.

• "Full WAS," or WAS traditional APIs -- WAS traditional had a set of APIs that went above and beyond those offered

in the open standard Java EE specification. Many of those "above and beyond" APIs are not present in Liberty. The

chart provides a list of some that are not present in Liberty. Here again, the question is what APIs the application

being moved uses. If the application seeks APIs that are not present in Liberty, then the application will have issues.

IBM does have a set of tools to analyze applications and report on what interface considerations to investigate to

insure a move from WAS traditional to Liberty. Later we'll provide the URL for those utilities. For now, the "key

concept" here is that applications can be moved from WAS traditional to Liberty, provided the application is using APIs

that are present in Liberty. If the application is using APIs that are in WAS traditional but not Liberty, then the

application will need to be inspected and modified to run in Liberty.

Page - 12

Liberty z/OS - Key Concepts

© 2017, IBM Corporation

Deploying an application into Liberty is fairly simple. It is an easier process than with WAS traditional, which required

the application deployment to be made through the management interface, either the Admin Console or the

WSADMIN scripting interface. Not so with Liberty: with Liberty you only need to put the application file in an accessible

location and let the server know about it. There are two general approaches:

• Dynamic -- here you take advantage of the dynamic model of Liberty and you simply "drop" the application file into

the directory Liberty is monitoring. By default this is the /dropins directory, but you may define another location if

you wish. When Liberty detects the new file is present -- either when the next polling interval is reached, or the

management bean is invoked to tell Liberty to go look -- it will load up the application. There is no explicit definition

of the application in the server.xml.

• Static -- here you make an explicit reference to the application from the server.xml and Liberty goes to that location

and loads the application. This may actually be a "dynamic" load if you have dynamic configuration change

detection enabled. In that case, Liberty will detect the change to server.xml and go load the application. If you

have dynamic configuration change turned off, then the application will be loaded at the next server restart. We

anticipate for production scenarios the dynamic nature of Liberty will be turned off, and all application updates will

be managed through manual updates during maintenance change windows.

As the chart indicates, within a single application server you may take advantage of both the /dropins directory

application deployment and an explicit pointer to the application with an <application> tag element.

As for deployment tools, you may use whatever deployment tool suits your needs. At a minimum that tool would

simply upload a file to the /dropins directory. Or it could upload the file to file system location and modify the

server.xml to include an <application> tag reference to the application. A more sophisticated approach would be to

upload the file, change server.xml, then invoke the management bean to tell Liberty to go refresh its configuration

knowledge and take the actions implied by the configuration changes.

Page - 13

Liberty z/OS - Key Concepts

© 2017, IBM Corporation

Here we introduce a z/OS-specific element of the Liberty story -- the "Angel process." Its role is to provide a means of

controlling access to z/OS authorized services by Liberty z/OS servers. The best way to approach this topic is in bullet

format:

• The z/OS operating system has certain functions that are deemed "authorized," meaning a server ID must have

explicit and deliberately-assigned access to those services. This is to protect other users on the z/OS system that

might be affected by improper use of those services.

• The Liberty z/OS Angel Process is a started task that participates in this act of checking for authority to access z/OS

authorized services. The Angel Process is a very lightweight function: it has no configuration, no Java, no TCP ports,

and uses virtually no CPU once started. It's role is to provide the framework for to check whether Liberty z/OS

server started task IDs are allowed to access a specified z/OS authorized service.

• The Liberty z/OS Angel Process is required only if you have Liberty z/OS servers on an LPAR that are seeking to use

z/OS authorized services. If you have no such Liberty z/OS servers, then you would not need an Angel Process. The

z/OS authorized services we are referring to are listed on the chart.

Note: if you have z/OS 2.1 and you're using the z/OSMF management function, you may already have an Angel

process in place. z/OSMF at the 2.1 level and above uses Liberty z/OS as its Java runtime server, and the tasks

z/OSMF performs are frequently z/OS authorized services requiring permission to access. So z/OSMF 2.1 involves

an Angel Process and SAF profiles so z/OSMF may access those authorized services.

• If an Angel Process is needed, then a minimum of one Angel per LPAR is required. However, starting with Liberty

z/OS 16.0.0.4 and above, the ability to configure more than one Angel Process was introduced. This was done as a

way of creating separation between groups of Liberty servers on an LPAR. Liberty z/OS servers that make use of an

Angel for access to authorized services are dependent on that Angel being present. If that Angel is canceled, the

dependent Liberty z/OS servers come down. (If the Angel is merely stopped, the stop action will be held up until

the individual dependent Liberty z/OS servers are stopped. There is a MODIFY command to list out the Liberty z/OS

servers dependent on an Angel process.) The "Named Angel" support in 16.0.0.4 provides the ability to separate

this dependency into groups, so one group can take down their Angel without affecting other groups. We mention

this here not to make things more complicated, but to alert you to this new function. This modifies the "one Angel

per LPAR" rule that's been spoken of since Liberty first came out.

• The name "Angel" is a play on the name for a WAS z/OS traditional task called the "Daemon" server, which sounds

phonetically similar to "demon." So the Angel server is the opposite of the "demon" from WAS traditional.

Page - 14

Liberty z/OS - Key Concepts

© 2017, IBM Corporation

Liberty on all platforms, including z/OS, has a management construct called "collectives." The concept is that a number

of Liberty servers can be arranged and managed through a Liberty server designated as a "controller," with the

managed Liberty servers being "members." So we have a "controller" and some number of "members," and together

they form a "collective."

You don't have to use the collective design. You may, if you wish, manage your Liberty z/OS servers individually. The

benefit collectives provides is the ability to view those multiple servers through the "controller" for doing things such as

starting and stopping servers, changing the configuration, copying application files, and monitoring resource utilization.

A Liberty z/OS server that is joined to a controller to be a member of the collective can be -- quite easily -- removed

from the collective. The collective design is quite different from the WAS traditional "node" and "cell" design where

membership was somewhat permanent, and remove somewhat difficult.

The collective design is full distributed, which means a collective can span LPARs, Sysplexes, and even platforms.

Communications between the controller and its members is over a TCP network.

You may construct between 0 and n collectives, based on your needs. And you may have some Liberty servers that are

part of a collective and others that are not.

The topic of collectives is fairly broad, so we won't try to get into any details here. We have an entire unit dedicated

this topic where the details are explored more fully.

Page - 15

Liberty z/OS - Key Concepts

© 2017, IBM Corporation

We've reached the summary chart, which means we're done with this unit.

This unit was designed to convey some of the "key" concepts of Liberty and Liberty z/OS. The intent was to provide

enough of a foundational understanding that the details supplied in the other units have some context.

The nature of Liberty provides a fair degree of flexibility to design your use of it in many different ways. There is no

"one" way to use Liberty.

Finally, on z/OS Liberty takes on some z/OS things -- the started task, SAF profiles, and the Angel Process. Liberty z/OS

is still very much like Liberty on other platforms, it's just there's an ability to take advantage of the z/OS platform and

with that comes some z/OS elements to the design of the Liberty runtime environment.

Page - 16

End of Unit

