Liberty z/OS - Applications and Deployment

WebSphere Liberty z/0S
Applications and Application Deployment

© 2017, IBM Corporation

Liberty z/0OS - Applications and Deployment

© 2017, IBM Corporation Liberty z/OS Good Practices '

Objective of this Presentation

Provide an understanding of the application types supported by Liberty

Provide a general understanding of the APl model of Liberty, particularly
as it relates to the APl model of WAS traditional

Provide an understanding of the deployment model of Liberty

For this unit we will explore the topic of applications and application deployment within Liberty. Even though our focus
is z/0S, this material relates to Liberty on all platforms, as the programming APIs are the same across all platforms. The
deployment model is also the same across all platforms, with the possible exception of the ability to share a file system
between LPARs in a Sysplex environment. (You could achieve something similar with distributed systems as well. The
point here is that in a Sysplex environment the sharing facility may be present, as it commonly is, where on a
distributed system it may not be.)

This unit does not go into programming specifics or examples, as that is outside the scope of what we're trying to
accomplish with this collateral.

© 2017, IBM Corporation
Page-2

Liberty z/0OS - Applications and Deployment

Liberty z/OS Good Practices '

WAR — Web Application

\ J * JSPs and Servlets
* Accessed over the network using a client (browser, or a REST client)
* Packaged in a Web ARchive (WAR) files

EAR — Enterprise Application

\ J * EJBs
* Accessed using network protocols (RMI/IIOP) or message queueing (JMS)

* Packaged in Enterprise ARchive (EAR) files

A) 0sGi Application

ESA

\ J * Java-based architecture that impiements a dynamic component modei
* Can be installed, started, stopped, updated, and uninstalled without requiring a restart
* Packaged in either Enteprise Bundle Archive (EBA) or Enterprise Subsystem Archive (ESA)

Archives n n . .
Files D0 "Loose Application
Directories * Not a different kind of application (it's a different way to provide application components to server)
* This allows your application components to be located in different places and run in Liberty

» Particuisrly good for devsloproznd: vom sppiicetions eoifhsot sxpart and deplisy

This chart is intended to provide a brief survey of the types of applications supported by Liberty, and the packaging
models for each.

* Web application -- this includes JSPs and servlets, and is accessed over a network, typically with HTTP protocol. The
packaging as a "WAR" file (Web ARchive). This type of application was supported by WAS traditional as well.

* Enterprise Application -- this includes EJBs, and is accessed with protocols such as RMI/IIOP, or message queuing.
The packaging is an "EAR" file (Enterprise ARchive). This type of application was supported by WAS traditional as
well.

* OSGi Application -- the acronym stands for "Open Service Gateway Initiative," and is based on the idea of a dynamic
component model. Liberty itself is based on an OSGi design. OSGi applications are packaged in either EBA
(Enterprise Bundle Archive) or ESA (Enterprise Service Archive) file formats.

Note: as of the time of writing this, WAS traditional supported a few more OSGi APIs than does Liberty, but that gap
is closing with each quarterly fixpack.

* "Loose" Application -- this is not really a different type of application, rather it is a different mechanism by which to
deploy applications to Liberty. This is based on the idea of deploying the artifacts of an application without
packaging into an archive file. They can be located at any location, and the location is specified in the server.xml.
This is a good format for development environments were a quick change to some file can be done without doing a
full repackage / export / deploy. This is probably not the mechanism to be used for production environments,
where change control will be focused on the archive file tested and validated prior to deployment to production.

Your Liberty environment may run some or all of these application types.

© 2017, IBM Corporation
Page-3

Liberty z/0OS - Applications and Deployment

© 2017, IBM Corporation Liberty z/OS Good Practices '

Liberty APIs Across the Platforms

Liberty is supported across many different OS platforms:

Common WAS * Windows, AIX, HP-UX, Solaris, IBMi, Linux, Linux for System z, z/0OS
Full Java EE Same programming APIs across the platforms:
* When comparing the "Network Deployment" level of Liberty
Java EE * Distribute platforms have other "editions" which have different subsets of
the full Liberty features (Base, Core, Express, Developers)
Web Application

All else equal, applications can move across platforms
* "All else equal" -- same version of Liberty, Liberty features configured the
same, data connectivity definitions are in place, security requirementsare
the same, etc.

What about WAS traditional vs. Liberty?

Distributed Systemz
i Pl

A central design feature of Liberty is that the programming APls are common across all platforms when comparing like-
to-like releases ("editions") of Liberty. The only edition of Liberty supported on z/0S is what's called "network
deployment." If you compare that edition on z/OS to that same edition on Windows, AlX, HP-UX, Solaris, IBMi, or
Linux, you'll have the same API set (assuming the version and fixpack level is the same).

The value of that is it allows you to develop on one platform and deploy on another without having to worry about
programming APl incompatibilities. Now, you have to make sure the application has what it needs on the target
platform for this to hold true. For example, you can't take an application that runs in Liberty on Windows and move it
to a Liberty z/0OS server that does not have the same configuration definitions for things like JIDBC. Or if the application
relied on some security artifact defined to Linux but not present on the target z/0S system. But it holds true that if we
go from like-to-like, then the identical programming model provides portability.

That's Liberty-to-Liberty application portability; what about WAS traditional to Liberty?

© 2017, IBM Corporation
Page-4

Liberty z/0OS - Applications and Deployment

Liberty z/OS Good Practices

= o 2017, 1BM Corporation

WAS traditional APIs Compared to Liberty APIs

JAX-RPC
EJB Entity Beans
JAXR/UDDI || Deprecated J2EE Wiasmoving
applications from WAS
“ i Traditional to Liberty,
WAS Batch((\:lfl)ggllifl\eNGSr-llglVI) |:> Full WAS APIs be aware of this
JAXM 1.3
ApplicationProfile Common WAS Common WAS
AsyncBeans,
118N
Startup Beans Full Java EE Full Java EE
WorkArea
SCA, SDO, XMl - — - -
J2EE Extensions ENSIEE HDRTER
Plus.... i Web Application Web Application
JAX-WS stacks are different

Runtime class visibility is different

Less EJB/IIOP QOS in Liberty WAS L,berty
Client code may be different ..
Traditional

The API set is very similar, but they
are not exactly the same

Application mobility:

* WAS traditional to Liberty -- be aware of
deprecated APIs and any use of "Full WAS"
APIs in applications

* Liberty to WAS traditional -- fewer concerns
about API differences

An toolkit to evaluate
applications exists ...

When comparing WAS traditional with Liberty (any platform), we see there is an "API gap" with Liberty. That "gap" is

comprised of two categories of APIs:

* Deprecated J2EE -- these are APIs that are part of the open standard but are marked deprecated. They have been
superseded by more current standard specified APIs. Applications use of deprecated APIs is not a good practice,

and applications that do make use of those APIs should be investigated to bring up to current APl standards. These

applications may still work in WAS traditional (because the APIs are deprecated-but-not-yet-removed). But on
Liberty the applications will throw an error since the APl they are seeking to use is no longer present.

* "Full WAS" APIs -- these are APIs IBM supplied over and above the common open standard APIs. There is a set of
those "above and beyond" APIs that are not in Liberty. The chart shows some examples of this. An application
written to make use of any of those APIs would not work if carried to Liberty.

Note: there is an excellent write-up on this topic:

https://developer.ibm.com/wasdev/docs/was-classic-or-was-liberty-how-to-choose/

This begs the question: is there a way to evaluate applications to see what issues may exist? The answer to that is yes.

We point you to that on the next chart.

© 2017, IBM Corporation
Page -5

Liberty z/OS - Applications and Deployment

Liberty z/OS Good Practices

= ©2017,1BM Corporation

Reference: Application Migration Toolkit

Your application Migration
binaries Toolkit
*

H

Servee VS5

Summary report of technology
used in application and target
environments where application

v

can be deployed

Detailed report by file
name, method name
and iine number

Main wasDev page:

https://developer.ibm.com/wasdev/downloads/#asset/tools-Migration Toolkit for Application Binaries

Technical Overview:

https://developer.ibm.com/wasdev/docs/migration-toolkit-application-binaries-tech/

Updates page:

https://developer.ibm.com/wasdev/blog/2015/03/13/announcing-websphere-liberty-migration-tools-updates/

IBM has produced an application migration toolkit to assist you with analyzing applications and assessing the portability

to the target platform you specify. This toolkit works on program source as well as program binaries The chart
provides the URLs, which are reproduced here in case you can't use the hyperlink from a chart format of this deck:

https://developer.ibm.com/wasdev/downloads/#asset/tools-Migration Toolkit for Application Binaries

https://developer.ibm.com/wasdev/docs/migration-toolkit-application-binaries-tech/

https://developer.ibm.com/wasdev/blog/2015/03/13/announcing-websphere-liberty-migration-tools-updates/

© 2017, IBM Corporation

Page-6

Liberty z/0OS - Applications and Deployment

© 2017, IBM Corporation Liberty z/OS Good Practices

Additional function has been added to Liberty since it was first introduced. It
is now Java EE 7 compliant and supports the Java 8 SOK. So the question
arises: “What should I consider when deciding between using WAS traditional
and Liberty 2/0S?"

At that Techdoc page there's a section devoted to going
through the considerations in a systematic manner

i
i
1
|
i
1
|
1
|
|
The following guide provides some considerations to take into account when |
comparing the two. 1
i
i
i
i
1
1
1
|
|
i
|

: No "formula" ... the key considerations are
P ‘ around:
Framework of the presentation: * The application design and the APIs it uses
Loy)) N _ N _ a = * The degree of reliance on the CR/SR structure of WAS

Executive Overview

A one-chart summary of the usage inthe

traditional on z/0OS

Setting Lf’ﬁ‘é’_‘fumm om the evolution over thee of eech rustime models * The degree of reliance on automated scripting (WSADMIN)

*
;
 Application Considerations i * Memory and GP (Liberty tends to use less of both)
- i
> s

Exploring the application interface considerations of each runtime model

Operational Considerations

Exploring the runtime operational considerations of each runtime model

Performance Considerations

Exploring the performance profile of each runtime model

Other Information for Consideration

For rest of presentation
_ A(fll«\lonol«:tto:ln:o:n:n:ll_onmmay.l‘lnduululw_h:nmakh\(lh-hmm'l o] we assume Liberty

* http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102110

7

To further assist with the broader question of which runtime to use -- WAS traditional z/OS or Liberty z/0S -- we have
produced a Techdoc that takes you through a structured discussion of the considerations. The Techdoc comes in both
chart format and speaker-note format. It can be found here:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102110

For the rest of this unit, we will assume the decision has been made to consider Liberty z/0S, and we will focus on that.

© 2017, IBM Corporation
Page -7

Liberty z/0OS - Applications and Deployment

© 2017, 1BM Corporation Liberty z/OS Good Practices .

Liberty Application Development Good Practices

Liberty is a Java EE application server, so there's nothing
unique about it compared to other Java EE runtimes

i v
\ "~ & General good practices Java development ...
g * Usegood design practices

* Maintain good source control

» For best parformance, make heavily used code as efficient as possible
Prafile the application prior to degloyment inte production
Use prowen change control procasses

-

&

This deck is not intended to focus on Java programming good practices. That topic is fairly well documented elsewhere,
and with a platform agnostic language like Java part of the discussion, the good practices are even more broadly-based.

It seems almost cliché to say it, but it's true: if you want a good Java program, then design the Java program to be good.
There is a well know set of good coding practices in general, and Java specifically, and it starts with the program
objectives and program design. Then: practice good source control, test for performance and where heavily used code
is involved, make that efficient as can be accomplished. Profile the application and find out where the hot spots are,
and correct areas that are hampering performance and throughput. Finally, exercise good and proven change control
processes. A million dollar infrastructure can be made useless by a bad change introduced at the last minute without
proper testing and control.

© 2017, IBM Corporation
Page -8

Liberty z/OS - Applications and Deployment

?§=_—= © 2017, 1BM Corporation L’berty Z/OS Good Practices .

Application Deployment :

Deploying applications into a Liberty z/OS runtime envil

© 2017, IBM Corporation
Page-9

Liberty z/0OS - Applications and Deployment

- © 2017, IBM Corporation Liberty z/OS Good Practices '

The Liberty Deployment Model

Two choices:
ﬂ.il@&ri%g 1. e file v fdropins divectory and let Liberty detect and dynamically load
Server 2. PFlace fils in snsther lscation and configure application inte sereersoml
Use whatever mechanism you wish to get application package file from
File System your development / source control environment to a file system
O accessible by the server

Then the question is: Dynamic update? Or rely on server restart?

Bt =

* N ganeral, we see productien envireromenis. g dymanmiic updsies.

s [dynammic updstes are disabled, then zpplicstion are losded it server restart

Application Package « If dynamic updates, the trigger mechanism (polled, mBean) can be configured
(WAR, EAR, etc.)

10

The deployment model for Liberty is quite a bit different than the deployment mode for WAS traditional. WAS
traditional required the application be deployed using the administrative interface: either the GUI Admin Console, or

the WSADMIN scripting interface. That's because application deployment in WAS traditional involved unzipping the
application archive file and updating a number of XML files to let the runtime know about the application.

Liberty is a simpler model -- either (a) have dynamic updates enabled and place the application file in the /dropins
directory, or (b) place the application file in a some directory and point to it with an XML element in server.xml. You

can use pretty much any deployment tool to accomplish this.

The next question is whether you wish to rely on the dynamic update capability of Liberty, or whether you wish to
control things by mandating a server stop and restart to pick up changes. Let's explore those options over the next few

charts.

© 2017, IBM Corporation
Page - 10

Liberty z/0OS - Applications and Deployment

= ©2017, IBM Corporation Liberty z/OS Good Practices

Static Definition of Application

Application Location Pointer from server.xml

The server will search both the /apps directory and
e <application location="<app pkg name>" /> the /shared/apps directory for the application.

e <application location="§{server.config.directory}/apps/<app pkg name>" />

The variable resolves to the server's configuration directory.
This definition points to the /apps directory under that.

e <application location="§{shared.app.directory}/<app pkg name>" />

=

| RPRp—)
ne i

Vi Vi i
directory under WLP,

c

You may provide an explicit
pointer to a path and file and
o <application location="/<full path>/<app pkg name>" /> load application from any
accessible location.

<config updateTrigger="polled" monitorInterval="500ms"/>
"mbean"
"disabled"

Controls whether the server.xml change is
dynamically detected and acted upon.

11

Let's first focus on the static definition of a file. This is done in the server.xml file, or a file that is merged into the
server.xml file with an <include> statement.

Note: "static" in this case does not rule out the definition being dynamically loaded. It simply means the location and
name of the application file is specified in the server configuration. The configuration change can still be dynamically
loaded, and thus the application dynamically loaded based on the new definition in the configuration. The XML shown
at the bottom of the chart indicates what controls whether configuration dynamic updates take place, and if so, how
often.

You have several options with respect to how you define where the application resides:

1. The server will look in either the /apps directory under the server directory, or it will look in the /shared/apps
directory under the WLP_USER_DIR location. If the named application is found in either place, it will be loaded.

2. This uses the S${server.config.directory} variable to resolve the location to the server's directory. The /apps string
after that tells Liberty to look in that directory and load the application. This is useful when you are bringing in
the application definition using <include> processing. Two servers (in a cluster, for example) could merge in this
element, and each would resolve the path to its server configuration directory.

3. This uses the ${shared.app.directory} variable to resolve the location to /shared/apps under the WLP_USER_DIR.
Here again, this would be useful when pulling in common XML where the application to be loaded by different
servers was found at that location. A cluster where the two servers are under the same WLP_USER_DIR could use
this pull in the application from a single location.

4. This is a full path pointer to the application location. This can be anywhere; the only requirement is the server ID
have read to the location.

The gray box at the bottom provides an illustration of the XML that will control whether the configuration changes will
be picked up dynamically. For example, <config updateTrigger="disabled" /> means there is no dynamic update, and
the application definition will be picked up at next server start. That may be what you want for production. Or you can
specify <config updateTrigger="polled" monitorinterval="60s" /> to indicate every 60 seconds the server will poll for
changes and load the changes.

© 2017, IBM Corporation
Page - 11

Liberty z/0OS - Applications and Deployment

= ©2017, IBM Corporation Liberty z/OS Good Practices

Application Load from a "Dropins" Directory
Dynamic update from "dropins" directory

The default location is the /dropins directory under the server directory

<applicationMonitor dropins="§{server.config.dir}/myApps" />

Sets "dropins" directory location to a directory
you specify under the configuration directory

<applicationMonitor dropins="§{shared.app.directory}/myApps" />

Sets "dropins" directory location to adirectory
you specify under the shared apps directory

<applicationMonitor dropins="/<path>/myApps" /> O ——

a location using an absolute path

<applicationMonitor dropinsEnabled="false"/>

Disables "dropins" monitoring and
dynamic loading of applications

12

You can avoid statically defining applications in your server and take advantage of the ability of Liberty to monitor a
directory for application files and load them when seen. By default that will be the /dropins directory under the
server's directory, and you can use that if you'd like. But if you'd like to have the "dropins" directory somewhere else
you can do that. The <applicationMonitor dropins="" /> value is what defines the location.

The first two examples are showing the use of some built-in variables. The ${server.config.dir} will resolve to that
server's configuration directory (which is where server.xml resides). The S{shared.app.directory} will resolve to the
/shared/apps location under the WLP_USER_DIR location.

Note: those are not the only two built-in variables. There are many more.

The third example shows an explicit path to a location. This can be anywhere. The only requirement is the server ID
must have read access.

Finally, the last example on the chart illustrates how to turn off dynamic loading from whatever "dropins" directory you
specify. With dropinsEnabled="false" set, the server will not look for or load applications from either the default
dropins directory a defined one. It won't load from there even on a server restart. So dropinsEnabled="false" is how
you can force the use of statically-defined applications.

© 2017, IBM Corporation
Page-12

Liberty z/0OS - Applications and Deployment

= ©2017, IBM Corporation Liberty z/OS Good Practices

If Dynamic Update, then Controlling When Dynamic Update Takes Place

Note: dynamic update and "dropins" are related, but are not the same thing. You can have a statically-defined
application and replace the package with a new file. Liberty can detect change and reload dynamically if you choose.

polled -- based onmonitorInterval value B NN o)

2 2 s (seconds
0 mbean -- based on mbean invocation o ()

. . . . m (minutes)
disabled -- dynamic configuration updates turned off o)

v v

<applicationMonitor updateTrigger="<value>" pollingRate="<value>"

A_s---__-__zn B e e e e g PP B
&P dropins="<vaiue>" droplnsEnabled="<vaiue>"/>
‘ Location as discussed on the previous chart true
false
- Timer-based
Server restart mBean Triggered UpdateTrigger="polled"
updateTrigger="disabled” updateTrigger="mbean" b 99 P

pollingRate="<value>"
13

Here is the <applicationMonitor> element one more time. Let's walk through this and review the different values and
what they do:

1. updateTrigger = this determines how updates will be accomplished. The default is "polled."
Note: this applies to applications deployed with a static definition or deployed via a "dropins" directory.
* If "polled," and "dropinsEnabled" is either unspecified or set to true, then the "pollingRate" value is used to
determine how often the deployed are checked for updates.
* If "mbean," then it will check for changes to the deployed applications only when the management bean is
invoked. This provides a way to perform application updates without polling and without a server restart.
» |f "disabled," then the applications are not checked; a server restart is required to pick up changes.

2. pollingRate= if "updateTrigger=polled," then this determines how often the polling takes place. Your options are
expressed in milliseconds, seconds, minutes, or hours. The default is 500ms, or one-half second.

3. dropins=this defines the directory path location where the server will look for applications to deploy. This defaults
to the /dropins directory. This is ignored if "dropinsEnabled" is set to "false." This is how you would control the
ability of others to deploy an application simply by copying in a file.

4. dropinsEnabled= this determines if processing of a "dropins" directory is done at all. If "true" (which is the
default), then either the default location is checked (/dropins) or the value seen on "dropins=". If set to "false," the
server does no processing of applications out of any dropin directory; that means application deployment must be
accomplished with a static definition of the application path and file name.

We anticipate for tightly controlled production environments applications will be statically defined and loaded with a
server restart. In that case code "updateTrigger=disabled" and "dropinsEnabled=false".

© 2017, IBM Corporation
Page-13

Liberty z/0OS - Applications and Deployment

= ©2017, IBM Corporation Liberty z/OS Good Practices

Rolling an Application Update Across LPARs

Framework of the approach:

== LPARA -==—=———- * Assume applicationis in a shared location accessible to all servers
If each server has its own unique copy of the application, then it's a matter of updating each unique copy.
Libarty /05 » Dynaniis update is either disabled or mBean irseked [that is, not polled)
Server 5 e
» Update shared copy of spplication
R L * Update in each server -- either server restart or mBean-invoked update
8 Potential complicating factors:
Liberty z/OS 2 = o : S -
.
Application Server Y_Vhen ses_suqn affln!ty is (eqU||jed due to‘?;?pllca_\tlon de5|gn
Then you need to insure session persistence is enabled so affinity can be re-established
In ashared
location * Stopping the flow of work to a server in which the applicationis to be updated
== LPARC -===-- T This is a function of the front-end routing mechanism you're using to route across LPARs
* Cases where the application update implies simultaneous mixed-levels can't be
Libertyz/0S tolerated; for example: a significant change to the backend data model
Server In this case you may need to schedule a Sysplex-wide update during a maintenance window

14

The question often comes up how one would achieve the "rolling" of an application through a set of like-configured
servers (which could be a Liberty collective "cluster" but it does not have to be). The purpose of "rolling" an application
is to maintain at least one instance of the application up and servicing clients while other instances of the application
are refreshed (which implies a brief time when it's not available).

Doing this implies the servers are not operating with a polled dynamic update.

Note: polled dynamic update would work if the polling interval was sufficiently long to prevent all the applications
being out of service simultaneously, and also that the polling intervals don't "pop" at the same time; that is, they are
staggered. That's a fair amount of conditions. It's easier to assume either an mBean update or a server restart update.

It's assumed a shared application is used between the servers -- after all, if each server had its own copy the application
you'd simply deploy the application into each server in turn and roll through the servers manually. So with those
assumptions in place (no dynamic update, and a shared application), then it's just a matter of updating the shared
application and then triggering the update, either with an mBean or a server restart.

Some things that complicate this scenario:

* If the applications are maintain session state, then that implies affinity, which implies the need to make sure any
state information is available in the other servers if an established client lands elsewhere during the rolling of the
applications. This is possible using session persistence (copying state information out to a database, then retrieving
it back to another server). So while this makes rolling updates a bit more complicated, it's not impossible to
engineer for this.

* When an application is being refreshed, there will be a brief period of time when it is not available. Clients routed
to that server will get an error in that brief period of time. This can be avoided if the front-end work distribution
function is capable of "turning off" work to a given endpoint. Work can then "drain" from that endpoint, the
application restarted, and the router out front "turned back on" to allow work to flow to the updated server.

* "Rolling" an application implies a period of time when you have mixed levels of the application available to clients.
That may be okay, or it may not be okay if the nature of the change being introduced is so significant you can't have
mixed levels. If that's the case, then you will have to schedule an outage and refresh all instances of the application
at the same time.

© 2017, IBM Corporation
Page - 14

Liberty z/0OS - Applications and Deployment

15

Operations, Performance
and Problem Determination

Monitoring

Application
Monitoring

Liberty z/OS Good Practices .

Monitoring your applications is an important subject
It's part of the broader "monitoring" topic

Which is part of the even broader topic on
operations, performance and PD

We have an entire unit dedicated to those topics.

What about application monitoring? It's an important topic ... not just application monitoring, but the broader topic of
monitor in general. We have a unit dedicated to monitoring, as well as operations and problem determination.

© 2017, IBM Corporation

Page - 15

Liberty z/0OS - Applications and Deployment

Liberty z/OS Good Practices .
Summary

Application deployment is fairly simple -- upload application package and make it
available to the Liberty z/OS server. No "deploy through Admin Console" needed.

The key questions are:

» Will the /dropins mechanism be used? Or <application> tag referance to file?
* Hoves will updstes be handled — manuwally, mBean inw

; o tirmer-based polling?

is

And we're to the summary page. Liberty application deployment is relatively simple because it is really just a matter of
uploading the file and letting the server know about it. There are two things we discussed: (1) using "static" application
definitions (an XML pointer to the application path and file name) vs. using the "dropins directory" location; and (2)
whether application changes are dynamic, or are more manually controlled by you. We anticipate the dropins/dynamic
model will be used for development and test, while static/manual will likely be the model for production settings. But

you may choose differently based on your own set of criteria. In either case, Liberty z/OS can be configured to support
what you want it to do.

© 2017, IBM Corporation
Page - 16

Liberty z/0OS - Applications and Deployment

© 2017, IBM Corporation Liberty z/OS Good Practices

Reference
WebSphere Liberty 16.0.0.x Knowledge Center

http://www.ibm.com/support/knowledgecenter/en/SS7K4U liberty/as ditamaps/was900 welcome liberty zos.html

WebSphere Knowledge Center collection on the topic of migration

http://www-01.ibm.com/support/docview.w

Migration Toolkit for Application Binaries

https://developer.ibm.com/wasdev/downloads/#asset/tools-Migration Toolkit for Application Binaries
https://developer.ibm.com/wasdev/docs/migration-toolkit-application-binaries-tech/

https://developer.ibm.com/wasdev/blog/2015/03/13/announcing-websphere-liberty-migration-tools-updates/

17

Here is a reference page that lists a few resources on the topic of Liberty z/OS and migration.

End of Unit

© 2017, IBM Corporation
Page - 17

