
IBM Content Navigator

Deploying IBM Content Navigator
in a container

IBM

Contents

Introduction..5
Preparing the environment for container deployments..7

Understanding custom resources..7
Using an operator... 7
Custom resource template structure...7

Preparing your cluster..9
Preparing your cluster on IBM Cloud (ROKS)..10
Preparing the IBM Content Navigator database... 10
Creating secrets to protect sensitive configuration data..11
Configuring storage for the content services environment.. 12

Creating volumes and folders for deployment.. 14
Deploying the operator.. 19

Set up your local repository... 21
Preparing storage for the operator.. 21

Deploying a IBM Content Navigator container...25
Installing with an operator.. 25

Getting access to container images...25
Deploying the operator...29
Deploying a custom resource...30

Completing post-deployment startup tasks... 35
Completing extra post-deployment tasks on ROKS..35
Improving security for session cookies... 36
Configuring IBM Content Navigator in a container environment.. 37

Troubleshooting the operator..37
Updating deployments.. 39
Uninstalling components...40

Administering components in a container environment...41
Starting and stopping components... 41
Monitoring the components in your container environment.. 42
Managing certificates...42

Providing the root CA certificate.. 42
Connecting securely with external services.. 42

Tuning the components in your container environment...43
Tuning IBM WebSphere Liberty for IBM Content Navigator components.. 43

Backup and recovery of a container environment.. 45
Registering and configuring IBM® Content Navigator plug-ins in a container environment....................45

Configuration reference... 47
Configuration reference for operators...47

Shared parameters...47
LDAP parameters..49
Datasource parameters..53
IBM Content Navigator parameters...54

 iii

iv

Introduction

This document provides steps for configuring and deploying an IBM Content Navigator (ICN) container.

Some of the steps that are involved contain terminology, parameters or values that are not related to IBM
Content Manager (CM8) and Content Manager OnDemand (CMOD). However, the steps are essential for
the deployment and need to be included. The steps that can be ignored are identified.

An LDAP server is required for the container deployment. LDAP is not required for CM8 and CMOD servers.
This requirement is planned to be made optional or removed for these servers in a future version of the
ICN container product.

In this document, content services container is used to indicate the ICN container. The references are
made to any containerized software that provides content services.

The reader is assumed to be familiar with terms and concepts related to container software such as
Docker, Kubernetes and Red Hat OpenShift. For more information, see:

• Kubernetes Concepts
• Getting started with Red Hat OpenShift on IBM Cloud

© Copyright IBM Corp. 2020, 2020 5

https://kubernetes.io/docs/concepts/
https://cloud.ibm.com/docs/openshift

6 IBM Content Navigator: Deploying IBM Content Navigator in a container

Preparing the environment for container deployments

When you prepare your environment, record the settings for the databases, LDAP, storage, logging and
monitoring choices, and so on. You need these values available to enter into the custom resource YAML
file for deployment and configuration.

About this task
For lists of the parameters that you need to collect, see the following section: “Configuration reference”
on page 47.

For a new IBM Content Navigator environment, a database installation and storage are required. Prepare
these prerequisites before you begin the configuration and deployment of your containers.

Understanding custom resources
The IBM Content Navigator container environment is deployed using an operator.

The following topics provide important information on the Kubernetes concepts that are employed by the
operator to install and manage the IBM Content Navigator container.

Using an operator
The operator captures the expert knowledge of administrators on how the system ought to behave, how
to deploy it, and how to react if problems occur.

The operator is built from the Red Hat and Kubernetes Operator Framework, which is an open source
toolkit that is designed to automate features such as updates, backups, and scaling. The operator handles
upgrades and reacts to failures automatically.

Operators help you to take care of repeatable tasks by using the Kubernetes APIs and kubectl tools.
Operators "watch" over a Kubernetes environment and use its actual state versus the defined state to
decide what actions to take.

The operator uses a custom resource definition (CRD), which describes what the operator is meant to
watch. The crd.yaml file contains the description of the custom resources for the container images, and
the role.yaml and role_binding.yaml files define the access to the resources. The
service_account.yaml file creates a service account with a role that has the permissions to manage
the resources. The CRD specifies a configuration, but the cluster also needs controllers to monitor its
state and reconcile the resource to match with the configuration. When the CRD is deployed it can then be
used to control the automation containers by using Kubernetes primitives such as Services,
ReplicaSets, DaemonSets, and Secrets.

To control access, registry secrets and security context constraints (SCC) are needed to set the range of
allowed IDs. A shared persistence volume (PV) is needed to store files such as JDBC drivers and other
files that are used by the roles.

To install the content services components, you use capability-specific custom resource (CR) templates
that are on GitHub. You then create and customize your CR file, which you then apply to the operator to
watch.

Custom resource template structure
The custom resource template files are divided into sections, which define the attributes of each
component. The custom resource metadata along with the shared, LDAP, and data source configuration
sections in the specification (spec) are always present.

Two types of template are provided for enterprise deployment:

© Copyright IBM Corp. 2020, 2020 7

Simplified custom resource templates
A streamlined and condensed custom resource YAML file is provided with fewer parameters to
specify. When you use the simplified YAML, ibm_fncm_cr_enterprise.yaml, the operator automatically
supplies many default values for a deployment.

Fully customizable custom resource templates
If you want more control over the details of their deployment can continue to use the full custom
resource YAML file, ibm_fncm_cr_enterprise_FC_content.yaml. This template includes the
component-level configuration sections with default values for all of the parameters. These values are
the default values that the operator uses with the simplified templates.

Note: All simplified CR templates are well-formed CR YAML files for the capabilities they define.
Parameters that need custom values have a value of <Required>, which you must update with a real
value before you apply the CR.

Your custom resource file that you apply to the operator must include the necessary sections. The
sections define specific parts of your intended deployment.

The following snippets show how the sections are used to compile a custom resource file, with sample
content.

1. The metadata section applies to all of the included capabilities.

apiVersion: fncm.ibm.com/v1
kind: FNCMCluster
metadata:
 name: fncmdeploy
 labels:
 app.kubernetes.io/instance: ibm-fncm
 app.kubernetes.io/managed-by: ibm-fncm
 app.kubernetes.io/name: ibm-fncm
 release: 5.5.5

2. The spec section defines the target platform, the deployment type, the license, security, monitoring,
logging, and storage information.

spec:
 ##
 ## This section contains the shared configuration for all FNCM components #
 ##
 appVersion: 20.0.2
 shared_configuration:

 ## This is the deployment context is FNCM. No update it required.
 sc_deployment_context: FNCM

3. If you plan to use an identity provider for user management, the open_id_connect_providers
section defines connection information.

 # open_id_connect_providers:
 ## Set a provider name that will be used in your redirect URL.
 #- provider_name: ""
 ## Set a display name for the sign in button in Navigator.
 # display_name: "Single Sign on"
 # # Enter your OIDC secret names for Content Platform Engine, Navigator, External Share
and GraphQL.
 # # Not all secrets are required depending on your deployment. Specify secret only for
components that you are deploying.

4. The ldap_configuration and datasource_configuration sections define parameters for all of
the included capabilities.

The beginning section of LDAP configuration for FNCM
 ldap_configuration:
 ## The possible values are: "IBM Security Directory Server" or "Microsoft Active
Directory"
 lc_selected_ldap_type: "<Required>"

 ## The name of the LDAP server to connect
 lc_ldap_server: "<Required>"

8 IBM Content Navigator: Deploying IBM Content Navigator in a container

https://github.com/ibm-ecm/container-samples/tree/5.5.5/operator/descriptors/ibm_fncm_cr_enterprise.yaml
https://github.com/ibm-ecm/container-samples/tree/5.5.5/operator/descriptors/ibm_fncm_cr_enterprise_FC_content.yaml

 ## The database configuration for ICN (Navigator) - aka BAN (Business Automation
Navigator)
 dc_icn_datasource:
 ## Provide the database type from your infrastructure. The possible values are "db2"
or "db2HADR" or "oracle" or "sqlserver" or "postgresql".

A simplified custom resource template does not include component configuration sections. All settings
are provided as defaults by the operator.

The full custom resource template includes configuration sections for each component with default
values provided. You can specify your own values as needed in this template.

If you want to customize individual components, then you can add the component configuration
parameter (xxx_configuration) along with the list of parameters that you want to customize.
Templates are provided with the full list of configuration parameters for each component. Each
component has a clear section header that highlights where the set of parameters starts.

Tip: If you plan to add a component section to your simplified template, copy the entire header from the
full configuration templates into the compiled custom resource so that you can identify where the
component configuration starts and finishes.

 ##
 ####### Business Automation Navigator configuration #######
 ##
 navigator_configuration:
 ...

Preparing your cluster
Set up your cluster and install the necessary software before you prepare your application environment
for installing the containers with the operator.

Before you begin
Install the following list of software before you install the content servics container (ICN Container).
containers.

• Kubernetes 1.11+.
• Kubernetes CLI. For more information, see https://kubernetes.io/docs/tasks/tools/install-kubectl/.
• The OpenShift Container Platform CLI has commands for managing your applications, and lower-level

tools to interact with each component of your system.

Refer to the OpenShift 3.11 documentation.

Refer to the OpenShift 4.2 or higher documentation.
• All the container images require persistent volumes (PV) and persistent volume claims (PVCs), so review

the topics on preparing these PVs, PVCs, an LDAP, and creating a database for storing ICN configuration
data, for your intended or target installation.

Procedure
1. Install the necessary software and make sure that your environment is compatible with Cloud Native

Computing Foundation (CNCF) Certified Kubernetes.
If you are not sure which Certified Kubernetes platform is right for you, see Picking the right solution.

The Detailed system requirements page provides a cluster requirements guideline for content services
containers.

2. Use the download doc to see the list of eAssembly images for Kubernetes.

Preparing the environment for container deployments 9

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.openshift.com/container-platform/3.11/cli_reference/get_started_cli.html
https://docs.openshift.com/container-platform/4.2/cli_reference/openshift_cli/getting-started-cli.html
https://www.cncf.io/certification/software-conformance/
http://www.ibm.com/software/reports/compatibility/clarity/softwareReqsForProduct.html
http://www.ibm.com/support/pages/node/6195737

3. Create a namespace in your OpenShift environment through using oc commands.
a) Log in to your cluster.

$ oc login https://<CLUSTERIP>:8443 -u <ADMINISTRATOR>

b) Create an OpenShift project (namespace) in which you want to install the operator.

$ oc new-project my-project

Preparing your cluster on IBM Cloud (ROKS)
Set up your cluster on IBM Cloud or Red Hat OpenShift Kubernetes Service (ROKS) and install the
necessary software before you prepare your application environment for installing the containers with the
operator.

About this task
The scripts and Kubernetes descriptors in the GitHub repository are needed to install the containers.

Before you deploy an automation container on IBM Cloud, you must configure your client environment,
create an OpenShift cluster, prepare your container environment, and set up where to get the container
images.

Make sure that you have the following list of software on your computer so you can use the command-line
interfaces (CLIs) you need to interact with the cluster.

• IBM Cloud CLI
• OpenShift Container Platform CL
• Kubernetes CLI
• Docker CLI (Mac) or Docker CLI (Linux)

As an administrator of the cluster you must be able to interact with your environment.

1. Create an account on IBM Cloud.
2. Log in to IBM Cloud if you already have an account.

If you do not already have a cluster, then create one. From the IBM Cloud Overview page, in the OpenShift
Cluster tile, click Create Cluster. Refer to the IBM Cloud documentation to create a Kubernetes cluster.
The cluster that you create includes attached storage.

Preparing the IBM Content Navigator database
Before you configure and deploy your IBM® Content Navigator container, prepare the required database
that the application uses. This task applies only when you are preparing to deploy containers as part of a
new installation. Otherwise, use your existing database.

About this task
When you prepare your environment, record the settings so that these values are available to enter into
the custom resource YAML file for deployment and configuration. For lists of the parameters that you need
to collect, see “Configuration reference” on page 47.

Procedure
• Prepare the IBM Content Navigator database:

Db2
For details about configuring a Db2 database for your IBM Content Navigator deployment, see
Creating a Db2 database for Navigator

10 IBM Content Navigator: Deploying IBM Content Navigator in a container

https://cloud.ibm.com/docs/openshift
https://cloud.ibm.com/docs/containers?topic=containers-cs_cli_install
https://docs.openshift.com/container-platform/4.2/cli_reference/openshift_cli/getting-started-cli.html
https://kubernetes.io/docs/tasks/tools/install-kubectl
https://docs.docker.com/docker-for-mac/install
https://docs.docker.com/install/linux/docker-ce/ubuntu/#install-docker-engine
https://cloud.ibm.com/kubernetes/registry/main/start
https://cloud.ibm.com/kubernetes/overview
https://cloud.ibm.com/docs/openshift?topic=openshift-openshift-create-cluster#openshift_create_cluster_console
https://www.ibm.com/support/knowledgecenter/SSEUEX_3.0.8/com.ibm.installingeuc.doc/eucin010.htm

Oracle
For details about configuring an Oracle database for your IBM Content Navigator deployment, see
Creating an Oracle database for Navigator.

Microsoft SQL Server

You create both a database and a schema for the container deployment, for example:

create database <dbName>
** connect to database **
create schema <schemaName>

For details about configuring a Microsoft SQL Server database for your IBM Content Navigator
deployment, see https://www.ibm.com/support/knowledgecenter/SSEUEX_3.0.8/
com.ibm.installingeuc.doc/eucin012.htm.

PostgreSQL
Set up your PostgreSQL database and record the database settings. For more information, see
Setting up a PostgreSQL database and Creating secrets to protect sensitive PostgreSQL SSL
configuration data.

Creating secrets to protect sensitive configuration data
Before you deploy, create secrets manually to protect the configuration data you are going to enter.

Procedure
1. Prepare your security environment:

You must also create a secret for the security details of the LDAP directory and data sources that you
configured in preparation for use with IBM Business Automation Navigator. Collect the users and
passwords to add to the secret. Using your values, run the following command:

kubectl create secret generic ibm-ban-secret \
 --from-literal=navigatorDBUsername="user_name" \
 --from-literal=navigatorDBPassword="xxxxxxx" \
 --from-literal=keystorePassword="xxxxxxx" \
 --from-literal=ltpaPassword="xxxxxxx" \
 --from-literal=appLoginUsername=“user_name” \
 --from-literal=appLoginPassword=“xxxxxxx”
 --from-literal=jMailUsername="mailadmin"
 --from-literal=jMailPassword="{xor}GDoxNiosbg=="
 -n "{{ namespace }}"

The secret you create, ibm-ban-secret, is the value for the parameter ban_secret_name.

Note: The jMailUsername and jMailPassword values are for enabling the Sendmail capability in
Navigator.

2. Configure the root ca secret and trusted certificate list.

The custom YAML file also requires values for the root_ca_secret

and trusted_certificate_list parameters. The TLS secret contains the root CA's key value pair.
You have the following choices for the root CA:

• You can generate a self-signed root CA
• You can allow the operator (or ROOTCA ansible role) to generate the secret with a self-signed root

CA (by not specifying one)
• You can use a signed root CA. In this case, you create a secret that contains the root CA's key value

pair in advance.

The list of the trusted certificate secrets can be a TLS secret or an opaque secret. An opaque secret
must contain a tls.crt file for the trusted certificate. The TLS secret has a tls.key file as the
private key.

3. Create an lc_bind_secret for your LDAP configuration information:

Preparing the environment for container deployments 11

https://www.ibm.com/support/knowledgecenter/SSEUEX_3.0.8/com.ibm.installingeuc.doc/eucin013.htm
https://www.ibm.com/support/knowledgecenter/SSEUEX_3.0.8/com.ibm.installingeuc.doc/eucin012.htm
https://www.ibm.com/support/knowledgecenter/SSEUEX_3.0.8/com.ibm.installingeuc.doc/eucin012.htm
https://www.ibm.com/support/knowledgecenter/SSNW2F_5.5.0/com.ibm.p8.containers.doc/containers_postgresqldb.htm
https://www.ibm.com/support/knowledgecenter/SSNW2F_5.5.0/com.ibm.p8.containers.doc/containers_banpostgresqlssl_secret.htm
https://www.ibm.com/support/knowledgecenter/SSNW2F_5.5.0/com.ibm.p8.containers.doc/containers_banpostgresqlssl_secret.htm

Use the lc_bind_secret for your LDAP configuration details, including your external LDAP details for
external share, if applicable.

The following command shows how to create the (ldap-bind-secret) secret with the needed user
names and passwords. (This example includes credentials for the optional external LDAP method for
external share, which might not apply in your environment.)

For Open Shift Cloud Platform:

oc create secret generic ldap-bind-secret \
 --from-literal=ldapUsername="cn=admin,dc=ibm,dc=edu" --from-
literal=ldapPassword="<yourLDAPPassword>" \
 --from-literal=externalLdapUsername="cn=admin,dc=ibm,dc=edu" --from-
literal=externalLdapPassword="<yourLDAPPassword>"

For certified Kubernetes:

kubectl create secret generic ldap-bind-secret \
 --from-literal=ldapUsername="cn=admin,dc=ibm,dc=edu" --from-
literal=ldapPassword="<yourLDAPPassword>" \
 --from-literal=externalLdapUsername="cn=admin,dc=ibm,dc=edu" --from-
literal=externalLdapPassword="<yourLDAPPassword>"

The secret that you create, ldap_bind_secret, is the value for
ldap_configuration.lc_bind_secret.

Configuring storage for the content services environment
Storage is required that is external to the containers in the content services environment. You set up and
configure storage to prepare for the container configuration and deployment.

About this task
Each component container requires shared persistent storage to manage configuration information,
application working space, and logs. Additionally, you can decide to set up file store areas to store
document content and index areas to build full text indexes.

Data storage in a Kubernetes cluster is handled by using volumes. For Kubernetes, a PersistentVolume
(PV) is a piece of networked storage in a cluster that is provisioned by an administrator. A
PersistentVolumeClaim (PVC) is a request for storage that is made by a user. For more information about
persistent volumes, refer to the Kubernetes documentation for persistent volumes.

The storage classes and persistent volumes carry the details of the real storage, which is then made
available for use by cluster users without having any knowledge of the underlying infrastructure. A cluster
administrator defines and creates a persistent volume by providing the cloud infrastructure with the
details of the implementation of the storage. That storage can be a number of different types including
NFS or a cloud-provider-specific storage system.

You can configure storage for your container environment in the following ways:
Manually create storage volumes and volume claims

This method is required in versions 20.0.1 and earlier. Before deploying the content services
containers, you must create a set of persistent volumes (PV) and persistent volume claims (PVC) to
use with the deployment of each container. Persistent volumes are provisioned in a static way. A
cluster administrator creates a number of persistent volumes. The persistent volumes carry the
details of the real storage, which is then made available for use by cluster users.

Dynamically provision storage through the operator functions

The StorageClass resource object describes and classifies storage that can be requested, as well as
provides a means for passing parameters for dynamically provisioned storage on demand.
StorageClass objects can also serve as a management mechanism for controlling different levels of
storage and access to the storage. Cluster administrators define and create the StorageClass objects
that users can request without needing any intimate knowledge about the underlying storage volume
sources.

12 IBM Content Navigator: Deploying IBM Content Navigator in a container

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

The persistent volume framework provided by the cloud platform enables both these functionalities
and allows administrators to provision a cluster with persistent storage.

For specifics related to the cloud platform you are deploying into, refer to the documentation given by
the your cloud provider or cloud platform.

If dynamic provisioning is used, the deployment can optionally utilize three storage classes to meet
the "slow", "medium", and "fast" storage for the Cloud Pak components. You provide the names of
these storage classes using these parameters in the custom resource YAML file:

sc_slow_file_storage_classname:
sc_medium_file_storage_classname:
sc_fast_file_storage_classname:

To avoid complexity, you can use the same storage class for "slow", "medium", and "fast". However to
avoid potential performance issues, that single storage class should target fast storage.

Combine manually created storage and dynamically provisioned storage
Storage can be provisioned using a mixture of static and dynamic. The operator uses the persistent
volume claim names, of the default values, to determine if a claim already exists.

• If the claim does not exist, dynamic provisioning is used. The persistent volume claim names
provided in the custom resource YAML are used when the claim is created.

• If the claim does exist, that claim is used when deploying.
• If static provisioning is used, the persistent volumes and persistent volume claims must be pre-

created and the persistent volume claim name provided in the CR.

For the content services containers, the persistent volume claims fall into four general categories:

• Configuration information shared by all container instances, or replicas, for a particular component. This
storage experiences minimal accesses or changes. For that reason, a low quality of service (QoS) type of
disk is acceptable. The operator will provision a PVC from the sc_slow_file_storage_classname.

• Logs with a potentially high number of writes and dynamic disk space requirements, where system
performance benefits from disk with a higher quality of service. The operator will provision a PVC from
the sc_medium_file_storage_classname.

• Application working space for a particular component. This storage, under certain workloads,
experiences high rates of access. System performance benefits from disk with a higher quality of
service. The operator will provision a PVC from the sc_fast_file_storage_classname.

• Data where the disk subsystem must meet a set of requirements for I/Os per second, space, backup
power supplies, and so on, and have a long life expectancy. These disk subsystems might also be
configured to meet high availability and recoverability requirements as needed by the organization. The
operator will provision a PVC from the sc_fast_file_storage_classname.

The storage volumes and storage classes that you create must specify the appropriate reclaim policy and
access modes:

• accessModes: - ReadWriteMany
• persistentVolumeReclaimPolicy: Retain

When you prepare your environment, record the settings so that these values are available to enter into
the custom resource YAML file for deployment and configuration. For lists of the parameters that you need
to collect, see “Configuration reference” on page 47.

Preparing the environment for container deployments 13

Creating volumes and folders for deployment
The IBM Content Navigator container requires some persistent volumes, persistent volume claims, and
folders to be created before you can deploy. The deployment process uses these volumes and folders
during the deployment.

About this task
You can choose to have the operator dynamically provision storage for you at deployment time. In that
case, you do not need to create volumes and folders manually for your container environment. You can
leave all storage values with the default value in the custom resource YAML.

Remember: Storage can be provisioned using a mixture of static and dynamic. The operator uses the
persistent volume claim names, of the default values, to determine if a claim already exists.

• If the claim does not exist, dynamic provisioning is used. The persistent volume claim names provided
in the custom resource YAML are used when the claim is created.

• If the claim does exist, that claim is used when deploying.
• If static provisioning is used, the persistent volumes and persistent volume claims must be pre-created

and the persistent volume claim name provided in the CR.

Although the following information describes the volumes that are generally required, you can decide to
designate more or fewer persistent volumes and volume claims.

You can use a YAML file to capture details like the name and the specifications of the persistent volume
that you want to create, and use the Kubectl command line tool with the file to create the persistent
volume object. You use a similar approach to create the persistent volume claims. See the following
example for more details: Configure a persistent volume for storage.

Directory permissions and ownership

The permissions that are described in the following steps are examples that provide a secure
environment. Your environment might have different permission requirements. Consider the following
possibilities when you apply permissions to your folders:

• The NFS export root_squash option is strongly recommended for security. If you use the root_squash
option, then the file directories to be used for the PVs group ownership must be set to the one specified
by the anongid option given in the NFS export definition. The default anongid value is 65534.

• If the no_root_squash option is used, the PV group ownership must be set to the root group 0.
• Assign read, write, execute permissions to both the user and group owners, for example, chmod 770

The following settings are required when creating your NFS exports:

• The rw,sync,no_wdelay settings are required.
• The no_subtree_check setting is recommended for performance.

Tip: When you replace the value for the <NFS Server> in the samples, you might need to provide the
private IP of the server, depending on your environment.

Remember: The storage volumes that you create must specify the appropriate reclaim policy and access
modes:

• accessModes: - ReadWriteMany
• persistentVolumeReclaimPolicy: Retain

The persistent volume and persistent volume claim names that are provided in the following tables are
examples.

Procedure
• Create the persistent volumes and persistent volume claims for the IBM Content Navigator container

deployment:

14 IBM Content Navigator: Deploying IBM Content Navigator in a container

https://kubernetes.io/docs/tasks/configure-pod-container/configure-persistent-volume-storage/

Table 1. Volumes, volume claims, and folders for IBM Content Navigator

Volume purpose Example Folder to
Create

Example Volume and
Volume Claim to
Create

mountPath as seen by
container

IBM Content Navigator
Liberty configuration

/configDropins/
overrides

icn-cfgstore-pv

icn-cfgstore-pvc

/opt/ibm/wlp/usr/
servers/
defaultServer/
configDropins/
overrides

IBM Content Navigator
and Liberty logs

/logs icn-logstore-pv

icn-logstore-pvc

/opt/ibm/wlp/usr/
servers/
defaultServer/
logs

Custom plug-ins for
IBM Content Navigator

/plugins icn-pluginstore-pv

icn-pluginstore-pvc

/opt/ibm/plugins

IBM Content Navigator
viewer logs for Daeja®

ViewONE

/icnvwlogstore icn-vw-logstore-pv

icn-vw-logstore-pvc

/opt/ibm/
viewerconfig/logs

IBM Content Navigator
storage for the Daeja
ViewONE cache

/icnvwcachestore icn-vw-cachestore-pv

icn-vw-cachestore-pvc

/opt/ibm/
viewerconfig/
cache

IBM Content Navigator
storage for Aspera®

Note: This volume is
required even though
Aspera might not be
used in your
environment.

/icnasperastore icn-asperastore-pv

icn-asperastore-pvc

/opt/ibm/aspera

For each of the folders, set the ownership as shown in the following example using the default NFS
anongid value:

chgrp -R 0 /icncfgstore

For each of the folders, change the permissions settings as follows:

chmod -Rf g=u /icncfgstore

The following examples illustrate the YAML file contents to create a persistent volume and persistent
volume claim for the IBM Content Navigator configuration store volume.

Persistent volume:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: icn-cfgstore-pv
spec:
 accessModes:
 - ReadWriteMany
 capacity:
 storage: 1Gi
 nfs:
 path: /home/cfgstore/icn/configDropin/overrides
 server: <NFS_SERVER>

Preparing the environment for container deployments 15

 persistentVolumeReclaimPolicy: Retain
 storageClassName: icn-cfgstore-pv

Persistent volume claim:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: icn-cfgstore-pvc
 namespace: <NAMESPACE>
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi
 storageClassName: icn-cfgstore-pv
 volumeName: icn-cfgstore-pv
status:
 accessModes:
 - ReadWriteMany
 capacity:
 storage: 1Gi

The following examples illustrate the YAML file contents to create a persistent volume and persistent
volume claim for the IBM Content Navigator and Liberty logs.

Persistent volume:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: icn-logstore-pv
spec:
 accessModes:
 - ReadWriteMany
 capacity:
 storage: 1Gi
 nfs:
 path: /home/cfgstore/icn/logs
 server: <NFS_SERVER>
 persistentVolumeReclaimPolicy: Retain
 storageClassName: icn-logstore-pv

Persistent volume claim:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: icn-logstore-pvc
 namespace: <NAMESPACE>
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi
 storageClassName: icn-logstore-pv
 volumeName: icn-logstore-pv
status:
 accessModes:
 - ReadWriteMany
 capacity:
 storage: 1Gi

The following examples illustrate the YAML file contents to create a persistent volume and persistent
volume claim for the IBM Content Navigator plugins.

Persistent volume:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: icn-pluginstore-pv
spec:
 accessModes:

16 IBM Content Navigator: Deploying IBM Content Navigator in a container

 - ReadWriteMany
 capacity:
 storage: 1Gi
 nfs:
 path: /home/cfgstore/icn/plugins
 server: <NFS_SERVER>
 persistentVolumeReclaimPolicy: Retain
 storageClassName: cn-pluginstore-pv

Persistent volume claim:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: icn-pluginstore-pvc
 namespace: <NAMESPACE>
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi
 storageClassName: icn-pluginstore-pv
 volumeName: icn-pluginstore-pv
status:
 accessModes:
 - ReadWriteMany
 capacity:
 storage: 1Gi

The following examples illustrate the YAML file contents to create a persistent volume and persistent
volume claim for the IBM Content Navigator viewer logs.

Persistent volume:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: icn-vw-logstore-pv
spec:
 accessModes:
 - ReadWriteMany
 capacity:
 storage: 1Gi
 nfs:
 path: /home/cfgstore/icn/viewerlog
 server: <NFS_SERVER>
 persistentVolumeReclaimPolicy: Retain
 storageClassName: icn-vw-logstore-pv

Persistent volume claim:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: icn-vw-logstore-pvc
 namespace: <NAMESPACE>
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi
 storageClassName: icn-vw-logstore-pv
 volumeName: icn-vw-logstore-pv
status:
 accessModes:
 - ReadWriteMany
 capacity:
 storage: 1Gi

The following examples illustrate the YAML file contents to create a persistent volume and persistent
volume claim for the IBM Content Navigator viewer cache store.

Persistent volume:

Preparing the environment for container deployments 17

apiVersion: v1
kind: PersistentVolume
metadata:
 name: icn-vw-cachestore-pv
spec:
 accessModes:
 - ReadWriteMany
 capacity:
 storage: 1Gi
 nfs:
 path: /home/cfgstore/icn/viewercache
 server: <NFS_SERVER>
 persistentVolumeReclaimPolicy: Retain
 storageClassName: icn-vw-cachestore-pv

Persistent volume claim:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: icn-vw-cachestore-pvc
 namespace: <NAMESPACE>
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi
 storageClassName: icn-vw-cachestore-pv
 volumeName: icn-vw-cachestore-pv
status:
 accessModes:
 - ReadWriteMany
 capacity:
 storage: 1Gi

The following examples illustrate the YAML file contents to create a persistent volume and persistent
volume claim for Aspera.

Persistent volume:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: icn-asperastore-pv
spec:
 accessModes:
 - ReadWriteMany
 capacity:
 storage: 1Gi
 nfs:
 path: /home/cfgstore/icn/aspera
 server: <NFS_SERVER>
 persistentVolumeReclaimPolicy: Retain
 storageClassName: icn-asperastore-pv

Persistent volume claim:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: icn-asperastore-pvc
 namespace: <NAMESPACE>
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi
 storageClassName: icn-asperastore-pv
 volumeName: icn-asperastore-pv
status:
 accessModes:
 - ReadWriteMany
 capacity:
 storage: 1Gi

18 IBM Content Navigator: Deploying IBM Content Navigator in a container

Deploying the operator
Operators make it simpler to install and update without having to worry about the underlying cloud
provider. The operator captures the expert knowledge of administrators on how the system ought to
behave, how to deploy it, and how to react if problems occur.

About this task
The operator is built from the Red Hat and Kubernetes Operator Framework, which is an open source
toolkit that is designed to automate features such as updates, backups, and scaling. The operator handles
upgrades and reacts to failures automatically.

Operators help you to take care of repeatable tasks by using the Kubernetes APIs and kubectl tools.
Operators "watch" over a Kubernetes environment and use its actual state versus the defined state to
decide what actions to take. The following diagram shows the control loop that occurs as a result of
constantly watching the state of the Kubernetes resources.

The following concepts are key to managing operators:

Namespace deployment

At the beginning of a project, an administrator might encourage developers to use a short-lived
namespace that is in their own name. These namespaces do not need to be metered. In the long term
and for tracking purposes, it makes sense to divide up workloads into dedicated namespaces for your
application lifecycle stages, such as development, preproduction, and production.

You can meter your deployments by the namespace and the platform label or swidtag. Metering
uses a system of metadata annotation and aggregation of VPCs, and is critical to help you understand
your deployments against entitlements.

Roles, role binding, and service accounts

The default for role-based access control (RBAC) is to deny all access unless you grant access.

A role scopes a set of operations that can be carried out on a group of resources. A service
account provides an identity for processes that run in a pod, so it is necessary to grant a role to a
service account for intra-cluster processes. A role binding associates a service account to a role,
which in effect determines the operations that the account can run inside a namespace. An
administrator can configure the role and role binding resources for each application before any
operator is deployed. Each application must specify a serviceAccountName in its pod spec, and the
service account must be created.

The following diagram shows the relationship between the objects that are used to grant users access
to Kubernetes API resources.

Preparing the environment for container deployments 19

The first step to use the operator is to create the new custom resource definition (CRD) that the operator
is meant to watch. The crd.yaml file contains the description of the custom resources for the container
images, and the role.yaml and role_binding.yaml files define the access to the resources. The
service_account.yaml file creates a service account with a role that has the permissions to manage
the resources. The CRD specifies a configuration, but the cluster also needs controllers to monitor its
state and reconcile the resource to match with the configuration. When the CRD is deployed it can then be
used to control the automation containers by using Kubernetes primitives such as Services,
ReplicaSets, DaemonSets, and Secrets.

To control access, you must create registry secrets and security context constraints (SCC) to set the range
of allowed IDs. A shared persistence volume (PV) is needed to store files such as JDBC drivers and other
files that are used by the roles.

The following diagram shows the steps that are involved and highlights the key components in controlling
a deployed operator.

20 IBM Content Navigator: Deploying IBM Content Navigator in a container

Set up your local repository
Create a local copy of the Git Hub repository.

About this task
The Git Hub repository branch that you use changes depending on the version that you want to deploy.
Specify the right repository version that contains the target level of ICN container that you wish to deploy.
For example, repository version 5.5.5 maps to ICN Container v3.0.8

Procedure
1. Download or clone the repository on your local machine:

git clone -b 5.5.5 git@github.com:ibm-ecm/container-samples.git

2. Change to the operator folder in your local repository:

cd container-samples

Preparing storage for the operator
All instances of an operator need a place to store its log files whether it is on a private cloud or a public
cloud.

Preparing the operator storage
All instances of an operator need a place to store its log files and find database drivers.

About this task
You must prepare the storage of the operator before you create an instance of the operator.

Procedure
1. Create a PV for the operator.

Preparing the environment for container deployments 21

a. Optional: The following example YAML defines a PV, but PVs depend on your cluster configuration.

apiVersion: v1
kind: PersistentVolume
metadata:
 labels:
 type: local
 name: operator-shared-pv
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteMany
 hostPath:
 path: "/root/operator"
 persistentVolumeReclaimPolicy: Delete

b. Optional: Deploy the PV.

On OpenShift Cloud Platform:

oc create -f operator-shared-pv.yaml

On certified Kubernetes:

kubectl create -f operator-shared-pv.yaml

c. Mandatory: Provide group write permission to the persistent volume of the operator. According to
the PV hostPath.path definition, run the following commands:

chmod -R g=u /root/operator
chmod g+rw /root/operator

Remove the .OPERATOR_TYPE file in case it exists from a previous deployment.

rm -f /<hostPath>/.OPERATOR_TYPE

Where <hostPath> is the value in your PV (root/operator).
2. Create a claim for the PV.

a) Create the claim:

(Dynamically) If you prefer to use dynamic provisioning for this claim, edit the provided file
descriptors/operator-shared-pvc.yaml and replace the <StorageClassName>
placeholder by a storage class of your choice.

(Manually) To create a claim bound to the previously created PV, create the file <path>/
operator-shared-pvc.yaml anywhere on your disk, with the following content:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: operator-shared-pvc
 namespace: <MyProject>
spec:
 accessModes:
 - ReadWriteMany
 storageClassName: ""
 resources:
 requests:
 storage: 1Gi
 volumeName: operator-shared-pv

Replace the <MyProject> placeholder with the name of your OpenShift project or namespace that
you intend to use for your script-based or manual installation.

b) Deploy the PVC.
If you created your own operator-shared-pvc.yaml:

22 IBM Content Navigator: Deploying IBM Content Navigator in a container

On OpenShift Cloud Platform:

oc create -f <path>/operator-shared-pvc.yaml

On certified Kubernetes:

kubectl create -f <path>/operator-shared-pvc.yaml

Otherwise, if you edited descriptors/operator-shared-pvc.yaml:

On OpenShift Cloud Platform:

oc create -f descriptors/operator-shared-pvc.yaml

On certified Kubernetes:

kubectl create -f descriptors/operator-shared-pvc.yaml

3. Add the JDBC drivers.

Copy all of the JDBC drivers that are needed by the components you intend to install to the persistent
volume. Depending on your storage configuration, you might not need these drivers.

Note: File names for JDBC drivers cannot include more version information.

• Db2

– db2jcc4.jar
– db2jcc_license_cu.jar

• Oracle

– ojdbc8.jar
• Microsoft SQL

– mssql-jdbc<supported_version>.jar
• PostgreSQL

– postgresql-<supported_version>.jar

The following structure shows an example remote file system.

pv-root-dir
 └── jdbc
 ├── db2
 │ ├── db2jcc4.jar
 │ └── db2jcc_license_cu.jar
 ├── oracle
 │ └── ojdbc8.jar
 ├── mssql
 │ └── mssql-jdbc <supported_version>.jar
 ├── postgresql
 │ └── postgresql-<supported_version>.jar

Preparing the operator storage on IBM Cloud (ROKS)
All instances of an operator on IBM Cloud need a place to store its log files.

About this task
You can attach endurance storage with gid storage classes.

• cp4a-file-retain-bronze-gid
• cp4a-file-retain-silver-gid
• cp4a-file-retain-gold-gid

The YAML files to create these storage classes are provided in the descriptors folder.

Preparing the environment for container deployments 23

https://github.com/ibm-ecm/container-samples/tree/5.5.5/operator/descriptors

To copy the JDBC drivers to the operator pod, you need to create a new storage class with one of these
storage requirements.

Procedure
1. Create a storage class YAML file, and name it operator-sc.yaml.
2. Apply the new storage class.

oc apply -f operator-sc.yaml

3. Create a claim for a PV dynamically by using descriptors/operator-shared-pvc.yaml.

Replace the storage class with the name of the storage class from Step 1.
4. Deploy the PVC.

oc create -f descriptors/operator-shared-pvc.yaml

5. Get the bound PV name and the PV location.

oc get pvc | grep operator-shared-pvc
oc describe PV PV_name

6. If your storage configuration needs JDBC drivers, create a jdbc parent folder on your remote file
system and put your drivers into the following structure.

pv-root-dir
 └── jdbc
 ├── db2
 │ ├── db2jcc4.jar
 │ └── db2jcc_license_cu.jar
 ├── oracle
 │ └── ojdbc8.jar
 ├── mssql
 │ └── mssql-jdbc <supported_version>.jar
 ├── postgresql
 │ └── postgresql-<supported_version>.jar

Note: File names for JDBC drivers cannot include more version information.

• Db2

– db2jcc4.jar
– db2jcc_license_cu.jar

• Oracle

– ojdbc8.jar
• Microsoft SQL

– mssql-jdbc<supported_version>.jar
• PostgreSQL

– postgresql-<supported_version>.jar
7. Copy these files to the operator pod.

podname=$(oc get pod | grep ibm-cp4a-operator | awk '{print $1}')
kubectl cp $PATH_TO_JDBC/jdbc $NAMESPACE/$podname:/opt/ansible/share -c ansible

24 IBM Content Navigator: Deploying IBM Content Navigator in a container

https://github.com/ibm-ecm/container-samples/tree/5.5.5/operator/descriptors/operator-shared-pvc.yaml

Deploying a IBM Content Navigator container

The steps for deploying containers depend on the platform and configuration approach that you choose.

Before you begin
Before you start your container deployment process, review and complete the preparation tasks in
“Preparing the environment for container deployments” on page 7.

About this task
After you prepare the environment, you use the configuration and deployment tools to deploy your
content services containers in the environment of your choice. After the deployment, you perform
additional setup steps to get your environment up and running.

Installing with an operator
You use the operator YAML manifest files in the GitHub repository to deploy an operator and use a custom
resource YAML file to apply deployments of the content services containers.

Before you begin
You must prepare your environment and set up your cluster before you complete and deploy your custom
resource YAML. For more information, see “Preparing the environment for container deployments” on
page 7.

Getting access to container images
You must get access to the container images before you edit the custom resource file. The steps that you
need to take depend on the platform that you plan to use.

Getting access to the container images
To get access to the container images, you must have an IBM entitlement registry key to pull the images
from the IBM Docker registry or download the .tgz package file from Passport Advantage (PPA). If you
download the images, you must push the images to a local docker registry.

About this task
The scripts and Kubernetes descriptors in the GitHub repository are needed to install the containers.

Procedure
1. In your local clone of the GitHub repository, go to the container-samples directory.
2. Get your entitlement key or download the images from PPA.

• Option 1: Get your entitlement key for the IBM Cloud Entitled Registry.

a. Log in to MyIBM Container Software Library with the IBMid and password that is associated with
the entitled software.

b. In the Container software library tile, verify your entitlement on the View library page, and
then go to Get entitlement key to retrieve the key.

c. Create a pull secret for the entitlement key, for example:

$ kubectl create secret docker-registry admin.registrykey --docker-server=cp.icr.io --
docker-username=cp --docker-password="<ENTITLEMENT_KEY_GENERATED>" --docker-
email=user@foo.com

© Copyright IBM Corp. 2020, 2020 25

https://myibm.ibm.com/products-services/containerlibrary

Note: The cp.icr.io value for the docker-server parameter is the only registry domain
name that contains the images. Use “cp” for the docker-username. The docker-email has to be a
valid email address (associated to your IBM ID). Make sure you are copying the Entitlement Key
in the docker-password field within double-quotes.

d. Take a note of the secret and the server values so that you can set them to the pullSecrets
and repository parameters when you run the operator for your containers.

• Option 2: Download the packages from PPA and load the images.

IBM Passport Advantage (PPA) provides archives (.tgz) for the software. To view the list of Passport
Advantage eAssembly installation images, refer to the download document.

a. Download one or more PPA packages to a server that is connected to your Docker registry.
b. Log in to your cluster.
c. Check that you can run a docker or podman command.

docker ps

podman ps

d. Log in to the Docker registry with a token:

docker login <registry url> -u <ADMINISTRATOR> -p <password>

Note: You can connect to a node in the cluster to resolve the docker-
registry.default.svc parameter.

e. Run a kubectl command to make sure that you can use Kubernetes.

kubectl cluster-info

f. Run the scripts/loadimages.sh script to load the images into your Docker registry. Specify
the two mandatory parameters in the command line.
-p PPA archive files location or archive file name
-r Target Docker registry and namespace
-l Optional: Target a local registry

The following example shows the input values in the command line.

cd scripts
./loadimages.sh -p <PPA-ARCHIVE>.tgz -r docker-registry.default.svc:5000/<project-name>

Note: The project-name variable is the name of the project that you created when you set up
your cluster. If you want to use an external Docker registry, take a note of the docker registry
service name or the URL so that you can enter it during deployment. If you connect remotely to
the cluster from a Linux host/VM, then you must have Docker and the OpenShift command line
interface (CLI) installed on OCP. If you have access to the master node on the cluster, the OCP
CLI and Docker are already installed.

g. Check that the images are pushed correctly to the registry. Using the OpenShift CLI:

oc get is

h. In your target namespace, create a Docker registry secret if you want to use an external Docker
registry or reuse a secret in the target project if you want to use an internal Docker registry.

If you want to pull directly from the IBM entitled registry, reuse the secret that you created in
Step 1 Option 1:

imagePullSecrets:
 name: "admin.registrykey"

Note: The secret_name must match the imagePullSecrets.name parameter in the operator
deployment (.yaml) file, for example, admin.registrykey.

26 IBM Content Navigator: Deploying IBM Content Navigator in a container

https://www-01.ibm.com/software/passportadvantage/pao_customer.html
http://www.ibm.com/support/pages/node/6195737
https://github.com/ibm-ecm/container-samples/tree/5.5.5/scripts/loadimages.sh

Create a secret to access an external Docker registry:

$ oc create secret docker-registry admin.registrykey --docker-server=<registry_url> --
docker-username=<your_account> --docker-password=<your_password> --docker-
email=fncmtest@ibm.com

For an internal Docker registry:

$ oc project <my-project>
$ oc get secret

3. In your target namespace, at deployment time, verify that the secret that you created for your image
pull secret is still valid and has not expired. If needed, delete and recreate the secret as applicable in
the previous steps.

Getting access to the container images on IBM Cloud (ROKS)
To get access to the container images on Managed Red Hat OpenShift Kubernetes Service (ROKS), you
must have an IBM entitlement registry key to pull the images from the IBM docker registry or download
the Cloud Pak package (.tgz file) from Passport Advantage (PPA). If you download the images, you must
push the images to a local docker registry. The deployment script asks for the entitlement key or user
credentials for the local registry.

Procedure
1. In your local clone of the GitHub repository, go to the container-samples directory.
2. Create a project for each release that you want to install by running the following command.

oc new-project <project_name> --description="<description>" --display-name="<display_name>"

3. Run a kubectl command to make sure that you have access to Kubernetes.

kubectl cluster-info

4. Make sure that your entitled container images are available and accessible in one of the IBM docker
registries.

• Option 1: Create a pull secret for the IBM Cloud Entitled Registry.

a. Log in to MyIBM Container Software Library with the IBMid and password that is associated with
the entitled software.

b. In the Container software library tile, click View library and then click Copy key to copy the
entitlement_key to the clipboard.

c. Create a pull secret by running a kubectl create secret command.

kubectl create secret docker-registry <my_pull_secret> -n "<namespace>"
 --docker-server=cp.icr.io
 --docker-username=cp
 --docker-password="<entitlement_key>"
 --docker-email=user@foo.com

Note: The cp.icr.io and cp values for the docker-server and docker-username
parameters must be used. Take a note of the pull secret and the server values so that you can
set them to the pullSecrets and repository parameters when you run the installation for
your containers.

d. Install the Container Registry plug-in.

ibmcloud plugin install container-registry -r 'IBM Cloud'

e. Log in to your IBM Cloud account.

ibmcloud login -a https://cloud.ibm.com

Deploying a IBM Content Navigator container 27

https://myibm.ibm.com/products-services/containerlibrary

f. Set the region as global.

ibmcloud cr region-set global

g. List the available images by using the following command.

ibmcloud cr image-list --include-ibm | grep -i cp4a

• Option 2: Download the packages from PPA and load the images

a. If you do not already have the images that you want to install, go to Passport Advantage and find
the part numbers in the download document. Download the operator container and the IBM
Content Navigator container.

b. Log in to your IBM Cloud account in the IBM Cloud CLI.

ibmcloud login --sso

Then, enter the one time code that is sent to your computer.
c. Log your local Docker daemon into the IBM Cloud Container Registry, create the project

namespaces, list the new namespaces, and check that you can run docker.

ibmcloud cr login
ibmcloud cr namespace-add <project_name>
ibmcloud cr namespace-list
docker ps

Run a kubectl command to make sure that you can use the Kubernetes CLI.

kubectl cluster-info

d. Download the loadimages.sh script. Change the permissions so that you can run the script.

chmod +x loadimages.sh

e. Use the loadimages.sh script to push the images into the IBM Cloud Container Registry.

./loadimages.sh -p <PPA-ARCHIVE>.tgz -r <registry_domain_name>/<project_name>

Note: A registry domain name is associated with your cluster location. The name us.icr.io for
example, is for the region us-south. The region and registry domain names are listed on the
https://cloud.ibm.com/docs/services/Registry.

f. After you push the images to the registry, check whether they are pushed correctly by running
the following command.

ibmcloud cr images --restrict <project_name>

g. Create a pull secret to be able to pull images from the IBM Cloud Container Registry.

kubectl --namespace <project_name> create secret docker-registry <my_pull_secret> \
 --docker-server=<registry_domain_name> --docker-username=iamapikey \
 --docker-password="<APIKEY>" --docker-email=<IBMID>

To generate an API KEY, go to Security > Manage > Identity and Access > IBM Cloud API Keys
in the IBM Cloud menu and select Generate an IBM Cloud API key.

h. Take a note of the secret names so that you can set them to the pullSecrets parameter when
you run the installation for your containers.

28 IBM Content Navigator: Deploying IBM Content Navigator in a container

http://www.ibm.com/support/pages/node/6195737
https://github.com/ibm-ecm/container-samples/tree/5.5.5/scripts/loadimages.sh
https://cloud.ibm.com/docs/services/Registry?topic=registry-registry_overview#registry_regions

Deploying the operator
The YAML files and scripts that you need to deploy the operator are provided in the Git Hub repository.

About this task
The operator has a number of descriptors that must be applied.

• descriptors/fncm_v1_fncm_crd.yaml contains the description of the Custom Resource Definition.
• descriptors/operator.yaml defines the deployment of the operator code.
• descriptors/role.yaml defines the access of the operator.
• descriptors/role_binding.yaml defines the access of the operator.
• descriptors/service_account.yaml defines the identity for processes that run inside the pods of the

operator.

Procedure
To deploy the operator:
1. In the descriptors/operator.yaml file, add license acceptance, modify the image parameter for

containers (ansible and operator) to a valid image registry URL, and modify the imagePullSecrets
name to the secret that you created when you prepared your cluster.

containers:
 - name: ansible
 # Replace this with the built image name
 image: "cp.icr.io/cp/cp4a/icp4a-operator:20.0.2"
 -
 -
 - name: operator
 # Replace this with the built image name
 image: "cp.icr.io/cp/cp4a/icp4a-operator:20.0.2"

 # MUST exist, used to accept fncm license, valid value only can be "accept"
 - name: fncm_license
 value:

 imagePullSecrets:
 - name: "admin.registrykey"

2. Deploy the operator on your cluster.
The script deployOperator.sh can be used to deploy all of the descriptors and the operator pod.

$./scripts/deployOperator.sh -i <registry_url>/icp4a-operator:20.0.2 -p '<secret_name>' -n
<namespace>

Note: For Open Shift Cloud Platform, if you do not specify the -i and -n options, the operator is
deployed in the default namespace at this URL: master_node:8500/default/icp4a-
operator:20.0.2. If you plan to use a non-admin user to install the operator, you must add the user
to the ibm-fncm-operator role. For example:

$ oc adm policy add-cluster-role-to-user ibm-fncm-operator <user_name>

If you want to deploy the operator YAML files without using the deployOperator.sh script, you can
use the deploy command to deploy each file. You must manually update the parameter for license
acceptance in the operator.yaml file before you deploy the files:

 - name: fncm_license
 value:

Set the value to accept.

To deploy each file on Open Shift Cloud Platform:

Deploying a IBM Content Navigator container 29

https://github.com/ibm-ecm/container-samples/blob/5.5.5/operator/descriptors/fncm_v1_fncm_crd.yaml?raw=true
https://github.com/ibm-ecm/container-samples/blob/5.5.5/operator/descriptors/operator.yaml?raw=true
https://github.com/ibm-ecm/container-samples/blob/5.5.5/operator/descriptors/role.yaml?raw=true
https://github.com/ibm-ecm/container-samples/blob/5.5.5/operator/descriptors/role_binding.yaml?raw=true
https://github.com/ibm-ecm/container-samples/blob/5.5.5/operator/descriptors/service_account.yaml?raw=true
https://github.com/ibm-ecm/container-samples/blob/5.5.5/operator/scripts/deployOperator.sh

oc apply -f ./descriptors/fncm_v1_fncm_crd.yaml
oc apply -f ./descriptors/service_account.yaml
oc apply -f ./descriptors/role.yaml
oc apply -f ./descriptors/role_binding.yaml
oc apply -f ./descriptors/operator.yaml

To deploy each file on certified Kubernetes:

kubectl apply -f ./descriptors/fncm_v1_fncm_crd.yaml
kubectl apply -f ./descriptors/service_account.yaml
kubectl apply -f ./descriptors/role.yaml
kubectl apply -f ./descriptors/role_binding.yaml
kubectl apply -f ./descriptors/operator.yaml

3. Monitor the pod until it shows a STATUS of Running or Completed:

For Open Shift Cloud Platform:

$ oc get pods -w | grep -v -E "(Running|Completed|STATUS)";do sleep 5;done
$ oc logs -f <operator-pod> -c operator

For certified Kubernetes:

$ kubectl get pods -w | grep -v -E "(Running|Completed|STATUS)";do sleep 5;done
$ kubectl logs -f <operator-pod> -c operator

Deploying a custom resource
You create a custom resource file by editing one of the provided templates. You can then configure and
customize the parameters of your selected capabilities in the custom resource, validate the file, and then
apply it.

Creating the custom resource
All of the Kubernetes descriptors that are necessary to install manually can be found in GitHub.
Components can be installed by creating a custom resource by hand and then running commands on the
platform.

Before you begin
You must prepare your environment and cluster before you follow the manual installation instructions. For
more information, see “Preparing the environment for container deployments” on page 7.

About this task
You can install IBM Content Navigator with default settings by using the simplified CR template with
minimal customization. Comment out the sections for FileNet Content Manager and GraphQL.

Procedure
1. Make a copy of the custom resource YAML file that best reflects what you intend to deploy, either

simplified or full custom, and name it for your deployment (ibm_icn_my_cr_final.yaml).
2. Copy and paste component sections into the YAML as needed, so that your YAML reflects all of the

components that you want to deploy.

Important: The metadata.name setting is used as a prefix for multiple objects. Because the
maximum length of labels in Kubernetes is 63 characters, specify a short CR name. The total length of
the CR name and an instance name must not exceed 24 characters, otherwise some component
deployments fail. For example:

metadata:
 name: icndeploy

30 IBM Content Navigator: Deploying IBM Content Navigator in a container

What to do next
1. Configure the software that you want to install by using the instructions in “Checking and completing

your custom resource” on page 31.
2. When your custom resource is complete, you can go to “Applying the custom resource” on page 34.

Each time that you need to make an update or modification you must use this same file to apply the
changes to your deployments. When you apply a new custom resource to an operator, you must make
sure that all previously deployed resources are included. If you do not, the operator deletes them.

Checking and completing your custom resource
A custom resource YAML file is a configuration file that describes a container environment and includes
the parameters to install IBM Content Navigator capabilities.

About this task
A single custom resource file is used to include all of the components that you want to deploy with an
operator instance. Each time that you need to make an update or modification, you must use this same
file to apply the changes to your deployments. When you apply a new custom resource to an operator, you
must make sure that all previously deployed resources are included, otherwise the operator deletes them.

Checking the cluster configuration
You must check and edit the shared sections of the compiled custom resource file before you apply it to
the operator.

About this task
Check the <Required> value for the image_pull_secrets, which are secrets in your target
namespace to pull images from the specified repository. and images parameters in the
shared_configuration section.

Check for sc_image_repository, which is a reference to your image registry.

Procedure
1. Locate the shared_configuration section in the custom resource (CR) file

(ibm_icn_my_cr_final.yaml) you created in “Creating the custom resource” on page 30, then
check and correct the deployment parameters.

The custom resource templates can include the following parameters:
License parameter

• ecm_configuration.cpe.license: Change to "accept".

Platform parameters

• sc_deployment_platform, which can be OCP, ROKS, or blank.
• sc_deployment_hostname_suffix, check the console route canonicalName for OCP.

Note: If your target platform is ROKS, you need to get the IP address of the cluster sub-domain. On
ROKS 3.11 clusters, multiple levels of sub-domains are not supported, so the IBM-provided
domain does not work and the Custom domain option must be used. Run the following command
to get the hostname :

oc get route console -n openshift-console -o yaml|grep routerCanonicalHostname

You must then ping the host to get the IP address. Enter the address in the
sc_deployment_hostname_suffix parameter:

sc_deployment_hostname_suffix:"{meta.namespace}.yourdomain.com"

Deploying a IBM Content Navigator container 31

Storage parameters

• sc_slow_file_storage_classname, is mandatory.
• sc_medium_file_storage_classname, is mandatory.
• sc_fast_file_storage_classname, is mandatory.

If you do not have three storage classes or you do not want to create them, you can use the same
one for "slow", "medium", and "fast".

Content parameters

• sc_content_initialization, which can be: true or false.
• sc_content_verification, which can be: true or false.

2. Configure the root secret and trusted certificate list.

The custom YAML file also requires values for the root_ca_secret and
trusted_certificate_list parameters. The TLS secret contains the root CA's key value pair. You
have the following choices for the root CA:

• You can generate a self-signed root CA.
• You can allow the operator to generate the secret with a self-signed root CA (by not specifying one).
• You can use a signed root CA. In this case, you create a secret that contains the root CA's key value

pair in advance.

The list of the trusted certificate secrets can be a TLS secret or an opaque secret. An opaque secret
must contain a tls.crt file for the trusted certificate. The TLS secret has a tls.key file as the
private key.

3. Enter the parameter values for your LDAP instance in the ldap_configuration section.

If you need to create a secret for the lc_bind_secret parameter to store the bind dn and bind
password, then go ahead and create it.

kubectl create secret generic my-ldap-tds-secret --from-literal=lc_ldap_bind_dn="cn=root" --
from-literal=lc_ldap_bind_password="XXXXXXXX"

Set the value in the custom resource file.

Note: LDAP Anonymous authentication does not need a secret.

If you want to use SSL-enabled LDAP in your container environment, you must create the SSL secret
with the certificate of the LDAP server.

a. Get the root CA that is used to sign your LDAP server and save it to a certificate, for example ldap-
server-cert.crt. See OpenSSL for instructions to export the root CA of your external service.

b. To create the secret, run the following command.

kubectl create secret generic secretName --from-file=tls.crt=your_cert_path/ldap-server-
cert.crt

Substitute your values for secretName and your_cert_path/ldap-server-cert.crt. The
certificate and key files must be in Privacy Enhanced Mail (PEM) format.

c. After you obtain the certificate and create the secret, you enable SSL and provide the secret name
in the custom resource YAML file in the ldap_configuration section.

ldap_configuration:
 …
 lc_ldap_ssl_enabled: true
 lc_ldap_ssl_secret_name: "<secretName>"

Set the enabled parameter to true and provide your own secret name.
4. Enter the parameter values for your data source instance in the datasource_configuration

section.

32 IBM Content Navigator: Deploying IBM Content Navigator in a container

https://www.openssl.org/docs/manmaster/man1/openssl.html

Setting the values for your IBM Content Navigator deployment
The configuration settings for IBM Content Navigator are recorded and stored in the shared YAML file for
operator deployment. After you prepare your environment, you add the values for your configuration
settings to the YAML so that the operator can deploy your containers to match your environment.

About this task
This topic assumes a fully manual CR YAML creation and edit process. In some cases, your template
might be partially or mostly complete before you edit.

The CR YAML file that you use contains elements for a full deployment of the FileNet Content Manager
components. Comment out all of the component sections that are not related to your IBM Content
Navigator deployment, including the ecm_configuration section.

Procedure
1. Open the CR file that you created manually by using the “Checking and completing your custom

resource” on page 31.
2. Check the values to make sure they are the values that you want to deploy. If you need more

configuration parameters, then use the fully customizable template to copy lines from and paste them
into your CR file.
Consider the following information as you record the values for your deployment environment in the
CR file:
Shared configuration settings

Un-comment and update the values for the shared configuration, LDAP, datasource, monitoring,
and logging parameters, as applicable.

Remember: Set shared_configuration.sc_deployment_platform to a blank value if you
are deploying on a non-OpenShift certified Kubernetes platform.

Use the secrets that you created for the root_ca_secret and trusted_certificate_list
values.

For more information about the shared parameters, see the following topics:

• Shared parameters
• LDAP parameters
• Datasource parameters

IBM Content Navigator settings

Use the navigator_configuration section of the custom YAML to provide values for the
configuration of IBM Content Navigator. You provide details for configuration settings that you have
already created, like the names of your persistent volume claims. You also provide names for
pieces of your IBM Content environment, and tuning decisions for your runtime environment.

You can configure a Navigator desktop to make the Send Email context menu option available to
end users. Use the java_mail settings to configure Send Email for your Navigator deployment.
For example:

navigator_configuration:
 java_mail:
 host: "my_exchange1.com"
 port: "123"
 sender: "MailAdmin@myexchange.com"
 ssl_enabled: false

If you do not want to include Send Mail in your deployment, ensure that the java_mail parameter
section is commented out.

For more information about the settings, see IBM Content Navigator parameters.

Deploying a IBM Content Navigator container 33

Validating the YAML in your custom resource file
You must validate your custom resource (CR) file before you apply it. It is likely that you edited the file
multiple times, and possibly introduced errors or missed values during your customizations.

About this task
A good check before you apply the custom resource (CR) is to validate the YAML is executable. The web
has many tools that you can use, but http://www.yamllint.com is simple and reliable.

Procedure
1. Go to http://www.yamllint.com/.
2. Copy and paste the contents of your CR file into the gray text box, and click Go.

Results
The tool reports whether the YAML is valid. If the YAML is valid, it strips out the comments and displays
the configuration in a UTF-8 format. Skim the configuration again and check for any values that still show
"<Required>". If you kept the comments in your CR, checking it without these lines can make it easier
to read.

If the YAML is not valid, the tool generates a message and indicates the line where the error is found.

Applying the custom resource
To install the deployment, you must apply the custom resource to the operator.

Procedure
1. Check that all the capabilities that you want to install are configured.

cat ibm_icn_cr_final.yaml

2. Deploy the configured capabilities by applying the custom resource.

Using the OpenShift CLI:

oc apply -f ibm_icn_cr_final.yaml

Using the Kubernetes CLI:

kubectl apply -f ibm_icn_cr_final.yaml

Results
The operator reconciliation loop can take some time. You must verify that the automation containers are
running.

1. You can open the operator log to view the progress. Using the OpenShift CLI:

oc logs <operator pod name> -c operator -n <project-name>

Using the Kubernetes CLI:

kubectl logs <operator pod name> -c operator -n <project-name>

2. Monitor the status of your pods from the command line. Using the OpenShift CLI:

oc get pods -w

Using the Kubernetes CLI:

34 IBM Content Navigator: Deploying IBM Content Navigator in a container

http://www.yamllint.com/
http://www.yamllint.com/

kubectl get pods -w

3. When all of the pods are "Running", you can access the status of your services with the following OCP
CLI command.

oc status

Using the Kubernetes CLI:

kubectl status

Refer to the “Troubleshooting the operator” on page 37 to access the operator logs.

What to do next
Some capabilities need you to follow post-deployment steps. For more information, see “Completing
post-deployment startup tasks” on page 35.

Completing post-deployment startup tasks
After you run the container deployment, you perform additional tasks to configure and start your IBM
Content Navigator instance.

Completing extra post-deployment tasks on ROKS
(For Version 20.0.2 only) For most deployments on Red Hat OpenShift Kubernetes Service (ROKS), extra
steps are needed to ensure that the environment works correctly.

About this task
To create routes with Transport Layer Security (TLS) termination reencryption on ROKS, you must provide
the CA certificate, and the certificate and key for that component. Some components are configured to
use routes with "reencrypt", and others are configured with "pass-through". For more information, see
https://www.openshift.com/blog/self-serviced-end-to-end-encryption-approaches-for-applications-
deployed-in-openshift.

Procedure
1. Get the CA certificate ($DESTINATIONCACERTIFICATE).

kubectl get secret -o jsonpath="{ .data.tls\.crt }" "{{ meta.name }}-root-ca" | base64 -d

2. Get a certificate ($CERTIFICATE) and key ($CERT_KEY) for a specific component.

kubectl get secret -o jsonpath="{ .data.tls\.crt }" "{{ meta.name }}-XXX-ext-tls-secret" |
base64 -d
kubectl get secret -o jsonpath="{ .data.tls\.key }" "{{ meta.name }}-XXX-ext-tls-secret" |
base64 -d

Where XXX is the acronym of the component name and {{ meta.name }} can be found by running
kubectl get svc -n <namespace> to get the current services. For Content Manager for example:

kubectl get secret -o jsonpath="{ .data.tls\.crt }" "{{ meta.name }}-fncm-ext-tls-secret" |
base64 -d
kubectl get secret -o jsonpath="{ .data.tls\.key }" "{{ meta.name }}-fncm-ext-tls-secret" |
base64 -d

3. Create the routes by using YAML files or the ROKS console with the retrieved certificates and keys.

Deploying a IBM Content Navigator container 35

https://www.openshift.com/blog/self-serviced-end-to-end-encryption-approaches-for-applications-deployed-in-openshift
https://www.openshift.com/blog/self-serviced-end-to-end-encryption-approaches-for-applications-deployed-in-openshift

The following YAML shows an example of a route object where the retrieved certificates and key are
replaced with the values from steps 1 and 2.

##
#
Licensed Materials - Property of IBM
#
(C) Copyright IBM Corp. 2019 - 2020. All Rights Reserved.
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
###
apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: '{{ meta.name }}-<XXX>-route'
 namespace: '{{ meta.namespace }}'
 annotations:
 haproxy.router.openshift.io/balance: roundrobin
 haproxy.router.openshift.io/timeout: 300s
 router.openshift.io/sticky_cookie: -sticky_cookie_annotation
 labels:
 servicename: '{{ meta.name }}-<XXX>-svc'
 app: '{{ meta.name }}'
 app.kubernetes.io/instance: '{{ meta.name }}'
 app.kubernetes.io/managed-by: '{{ meta.name }}'
 app.kubernetes.io/name: '{{ meta.name }}'
 release: "20.0.2"
spec:
 port:
 targetPort: https
 to:
 kind: Service
 name: '{{ meta.name }}-<XXX>-svc'
 weight: 100
 wildcardPolicy: None
 tls:
 insecureEdgeTerminationPolicy: Redirect
 termination: reencrypt
 key: |-
 $CERT_KEY
 certificate: |-
 $CERTIFICATE
 destinationCACertificate: |-
 $DESTINATIONCACERTIFICATE

Improving security for session cookies
You can improve security for session cookies by adding httpSession configuration to your overrides
directory.

About this task
Make this change for both your content repository and IBM Content Navigator deployment.

Procedure
• Add httpSession configuration to your overrides directory.

Create an XML file (for example, zHTTPsession.xml) with the following content:

<server>
 <httpSession
 cookieName="JSESSIONID"
 cookieSecure="true"
 cookieHttpOnly="true"
 cookiePath="/"
 >
 </httpSession>
</server>

Note: Some features are affected by this setting:

36 IBM Content Navigator: Deploying IBM Content Navigator in a container

Applets
The cookieHttpOnly=“true” setting can cause applets to fail. If you plan to use applets, remove this
entry from the XML file. Or you can use the HTML-based solution, such as the HTML step processor.

Additional Navigator features
For information on what features are affected by this setting and possible mitigation, see the
following information in the IBM Content Navigator Knowledge Center.

Configuring IBM Content Navigator in a container environment
If you included IBM Content Navigator in your container deployment, you must perform some additional
configuration to ensure that the application works with your content services environment.

About this task
After you deploy your IBM Content Navigator container, use the IBM Content Navigator administration
console to update settings for the container environment.

Procedure
1. Add the Daeja Viewer license files to the configuration overrides directory for IBM Content Navigator.

For example, /opt/ibm/wlp/usr/servers/defaultServer/configDropins/overrides.
2. Update the Daeja Viewer log file path, if necessary.

The default log file is install_dir/ibm/viewerconfig/logs/daeja.log, where install_dir is the
directory where IBM Content Navigator is installed. Confirm that the path is updated to reflect your
container deployment location, for example, /opt/ibm/viewerconfig/logs/daeja.log.

3. Update the Sync Services URL:
a) In the IBM Content Navigator administration tool, click Sync Services.
b) Update the default value for the public service URL.

The URL must include the server IP address and port of the IBM Content Navigator route in the
OpenShift Cloud Platform environment, for example: http://ICP_IP_Address:30557/sync/
notify.

Troubleshooting the operator
You can use the operator and Ansible containers to retrieve log files of the installed operator.

About this task
The ibm-fncm-operator locates the base images and has Ansible roles to handle the reconciliation
logic and declare a set of playbook tasks for each component. The roles declare all the variables and
defaults for how the role is executed.

The operator deployment creates two containers on your cluster, one for the operator and one for Ansible.
By default Ansible uses /etc/ansible/hosts as its inventory file; the inventory represents the host
machines that Ansible manages. You can create a different inventory file for each project that you have.

The following diagram shows how the operator watches for events, triggers an Ansible role when a
custom resource changes, and then reconciles the resources for the deployed applications.

Deploying a IBM Content Navigator container 37

https://www.ibm.com/support/knowledgecenter/en/SSEUEX_3.0.8/com.ibm.installingeuc.doc/eucin019.htm

The Ansible container shows the standard Ansible stdout logs. To see the logs of a container, run the
following command.

kubectl logs deployment/ibm-fncm-operator -c ansible > ansible.log

For version 20.0.3, run the following command:

kubectl logs deployment/ibm-fncm-operator > ansible.log

The operator logs contain much more information about the operator than Kubernetes does. To see the
logs of the operator container, run the following command.

kubectl logs deployment/ibm-fncm-operator -c operator > operator.log

For runtime logs, go inside the pod that runs the Ansible container. The runner keeps information about
the Ansible run in the container, which is located under /tmp/ansible-operator/runner/<group>/
<version>/<kind>/<namespace>/<name>.

If some pods are pending, choose one of the pods and run the following command to get more
information.

kubectl describe pod <podname>

Kubernetes secrets are used extensively, so output about them might also be useful.

kubectl get secrets

Kubernetes events are objects that provide more insight into what is happening inside a cluster, such as
what decisions the scheduler makes or why some pods are evicted from a node. To get information about
these events, run the following command.

kubectl get events > events.log

You can also add the verbose parameter to any kubectl command.

kubectl -v=9 get pods

38 IBM Content Navigator: Deploying IBM Content Navigator in a container

Updating deployments
An update to the custom resource (CR) overwrites the deployed resources. The operator applies the
changes during the control loop (observe, analyze, act) that occurs as a result of constantly watching the
state of the Kubernetes resources.

Before you begin
If you plan to update the existing deployment of ICN container, such as update the ICN configuration
database name for example, ensure that you back up the databases, the files that are stored on the
persistent volumes, and any other data that you want to keep.

About this task
You can reconfigure and update the software that is already installed. You can modify the installed
software, remove it, and add new components. You must use the same CR YAML file that you deployed
with the operator to make the updates. For example, scripts/generated-cr/
ibm_fncm_cr_final.yaml.

You can also edit the file manually. The following steps go through the manual procedure.

Procedure
1. Review your CR YAML file to make sure it contains all of your intended modifications.

cat /scripts/generated-cr/ibm_fncm_cr_final.yaml

2. Refer to the information in “Checking and completing your custom resource” on page 31 to pick and
choose the configuration parameters to update.

To remove a capability from the deployment, locate the specific XXX_configuration section and
delete this line along with all of its parameters.

Note: Some capabilities have parameters under shared_configuration or
datasource_configuration. If you are sure that no other capability uses them, you can remove
these parameters too.

3. When you are done with all of the updates you want to make, run the apply command to update to the
operator.

Using the OpenShift CLI:

oc apply -f <ibm_fncm_my_cr_final.yaml> --overwrite=true

The operator reconciliation loop might take several minutes.

Monitor the status of your pods by using the OpenShift CLI:

oc get pods -w

Note: You can also use oc edit FNCMCluster <MY-INSTANCE> to open the default UNIX visual
editor (vi) in the pod.

4. When all of the pods are "Running", you can access the status of your services with the status
command.

Using the OpenShift CLI:

oc status

Deploying a IBM Content Navigator container 39

Uninstalling components
Delete the namespace that you used to install to remove all of the deployed components.

Before you begin
If you need to back up your data, make sure that you take the necessary steps to reinstall the
deployment. For example, make a copy of the custom resource (CR) that you used in the environment.
Make copies of the security definitions that are used to protect the configuration data in the environment.
Make copies of the PVs and persistent volume claims (PVC) in the environment.

About this task
Note: To add or remove components to an existing deployment, see “Updating deployments” on page 39.

To uninstall the operator, cluster role, cluster role binding, service account, and the CRD run the following
kubectl commands:

kubectl delete -f <CR.yaml>
kubectl delete -f descriptors/operator.yaml
kubectl delete -f descriptors/role_binding.yaml
kubectl delete -f descriptors/role.yaml
kubectl delete -f descriptors/service_account.yaml
kubectl delete crd fncmclusters.fncm.ibm.com

You can also run the scripts/deleteOperator.sh script, which includes the same commands.

cd container-samples/scripts
./deleteOperator.sh

To uninstall the complete deployment, you can delete the namespace by running the following OpenShift
CLI command:

oc delete project <project-name>

What to do next
After you uninstall, you might want to clean up certain files and secrets that you applied to the cluster for
specific capabilities.

40 IBM Content Navigator: Deploying IBM Content Navigator in a container

https://github.com/icp4a/cert-kubernetes/blob/20.0.2/scripts/deleteOperator.sh

Administering components in a container environment

In most cases, administering your container environment for content services is the same as
administering your on-premises environment. However, some variations exist for container environments.

About this task
Use the information in this section to understand the administration tasks that are different in a container
environment. For all other administration tasks, see Administering IBM Content Navigator components.

Starting and stopping components
For container deployments, you can use the deployment scaling capabilities to start and stop your
components.

About this task
When you scale your deployments to zero (0), this operation effectively stops the component or
application. You scale the deployment back to your original number to restart the component or
application. The deployment scaling capability is available from the Kubectl command line.

Procedure
• Scale your deployment from the Kubectl command line:

a) List your deployments:

kubectl describe deployments

b) Stop the deployed container instances:

kubectl scale deployment deployment_name --replicas=0

c) Create new instances of the deployed container, for a restart:

kubectl scale deployment deployment_name --replicas=number of container instances

© Copyright IBM Corp. 2020, 2020 41

https://www.ibm.com/support/knowledgecenter/SSEUEX_3.0.8/com.ibm.installingeuc.doc/eucco037.htm

Monitoring the components in your container environment
You can use your Red Hat OpenShift console to monitor the components in your container environment.
You can also use the external logging and monitoring systems that you optionally configured for the
container during deployment.

Managing certificates
You must monitor and manage the certificates that are deployed in your network. Administrators need
visibility and control over their SSL environments to help them preempt security breaches, outages, and
compliance issues.

Providing the root CA certificate
Connections between the components in a container environment are secured by a common root CA
certificate. You can decide whether to use the default root CA that is provided by the operator, or provide
your own. All the internal server’s certificates are signed by the root CA.

About this task
Certificates that are created by the operator are self-signed. If your policy requires certificates that are
signed by a recognized certificate manager, you can provide the certificates for the operator to
incorporate.

If you want to use your own root CA certificate, obtain or prepare the CA certificate and create a secret for
it before you deploy your operator.

When you enter your parameter values in the custom resource YAML file, you provide the name of this
secret as the value for the root_ca_secret parameter in the shared configuration parameters.

Important: If you choose to use self-signed certificates, certain features of the product might not work as
expected because of modern browser restrictions that are related to self-signed certificates. A browser
blocks any redirect to a site that uses a certificate that is not signed by a root CA that is trusted by the
browser. This can result in access issues for business applications.

Connecting securely with external services
If you want to integrate external services with your container environment, you must exchange Transport
Layer Security (TLS) certificates between your component and the external service.

Importing the certificate of an external service
To integrate with an external service, you must first import its Transport Layer Security (TLS) certificate
into the operator trust list.

Procedure
If the root certificate authority (CA) key of the external service is not signed by the operator root CA key,
provide the TLS certificate of the external service to the component's truststore.
The certificate includes the root CA key and the key of each component. If the external service is not
installed by the same custom resource, the root CA key of the service is not signed by the operator root
CA key. If the service is installed by the same custom resource, check the documentation of the external
service to see whether it uses the same root CA key.
a) Get the root CA that is used to sign your external service and save it to a certificate, for example
external-service-cert.crt.
See OpenSSL for instructions to export the root CA of your external service.

b) To create the secret, run the following command in the OpenShift project:

42 IBM Content Navigator: Deploying IBM Content Navigator in a container

https://www.openssl.org/docs/manmaster/man1/openssl.html

kubectl create secret generic secretName --from-file=tls.crt=your_cert_path/external-service-
cert.crt

Substitute your values for secretName and your_cert_path/external-service-cert.crt.
The certificate and key files must be in Privacy Enhanced Mail (PEM) format.

c) Add the secret to the component's truststore.
Add the secret to the custom resource in the
shared_configuration.trusted_certificate_list parameter if you want this service to be
trusted by all components installed by the operator.
For example:

shared_configuration:
 …
 trusted_certificate_list: [adw-tls-secret, baw-tls-secret]

This variable is an array and multiple values can be provided by separating them with a comma as
shown in the example.

Exporting the operator root CA key and importing it into an external service
After you import the certificate of the external service into the trust list, if the external service needs to
access your component, you must extract the operator root CA key and import it to the truststore of the
external service.

Procedure
Extract the operator root CA key and import it to the truststore of the external service.

If you are using the default value of fncm-root-ca for the operator root CA, use the following command
to find the root CA key:

oc get secret fncm-root-ca -o template --template='{{ index .data "tls.crt" }}' | base64 --
decode > rootCA.crt

If you don't know the root CA key for your component, look in the
shared_configuration.root_ca_secret in the custom resource file.

Tuning the components in your container environment
Use the Kubernetes guidelines for tuning the performance of your container components.

Procedure
• Use the information at the following location to tune your container environment:

Managing Resources for Containers

Tuning IBM WebSphere Liberty for IBM Content Navigator components
You can tune WebSphere® Liberty to improve container performance. You create XML override files to
create these tuning updates.

About this task
The XML files are placed onto the Liberty configuration volume that corresponds to the configDropins/
overrides folder for WebSphere Liberty. For more information about the volumes and folders, see
Creating volumes and folders for deployment .

Tip: Liberty processes the files in the configDropins/overrides in alphabetical order. A later
configuration overrides an earlier one. As an example, if configDropins/defaults contains a.xml,
b.xml, and c.xml, the configuration from c.xml takes precedence over b.xml, and b.xml takes

Administering components in a container environment 43

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

precedence over a.xml. Naming the XML file starting with the letter ‘z’ helps ensure the new parameter
values are applied by Liberty.

Procedure
• Tune WebSphere Liberty.

For general tuning tips, consult the WebSphere Application Server Liberty Knowledge Center topic
Tuning Liberty.

• Reduce lightweight third-party authentication (LTPA) timeout errors.
The LTPA timeout value for forwarded credentials between servers parameter setting specifies how
long an LTPA token is valid (in minutes). The token contains this expiration time so that any server that
receives the token can verify that the token is valid before proceeding further. When the defined
amount of time has passed, all user tokens expire regardless of session activity. Consider increasing
this value if one or both of the following conditions occur:

– Batch processes or other operations run uninterrupted for longer than the currently configured LTPA
timeout value.

– A message appears in the Liberty messages.log file or is returned to the client session indicating
the LTPA token expired.

To adjust the LTPA expiration parameter value, add the following clause within <server> </server> tags
in a pre-existing overrides XML or a new overrides XML. The example shows a 10 minute timeout
expressed as seconds:

<server>
 <ltpa expiration="600s"/>
</server>

• Tune maxPoolSize for your data sources.

The number of database client connections required for your workload will fluctuate over time (for
example: peak logged in users) both in the short term (more users and batch document processing at
end of month processing) and long term (more users from rollouts or increased use of system). Best
practice is to monitor connection use and track the trends.

For each pod there will be a number of processes running that will utilize database connections from
the available pool of the Liberty connection manager. The size of the connection pool is controlled by
the properties in the data source definition XML:

– minPoolSize - minimum number of available connections in the pool. default 0.
– maxPoolSize - maximum number of available connections in the pool. default 50 for most operator

created data sources.

To adjust the maxPoolSize parameter value, add the following clause within <server> </server> tags in
a pre-existing overrides XML or a new overrides XML. The example shows an adjustment to the
maxPoolSize for one of the data sources created by the operator to connect to an object store
database. You must include the id and jndiName for the data source where the maxPoolSize will be
overridden.

<server>
 <dataSource id="DESIGNDS" jndiName="DESIGNDS">
 <connectionManager maxPoolSize="100" />
 </dataSource>
</server>

For more information see Configuring connection pooling for database connections.

In the example, other required parameters are not shown since only the particular parameter being
overridden is included. Samples of complete data source files for each of the FileNet® Content Manager
containers can be found in GitHub repository:

https://github.com/ibm-ecm/container-samples/tree/5.5.5/CPE/configDropins/overrides

44 IBM Content Navigator: Deploying IBM Content Navigator in a container

https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_tun.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_conn_pool.html
https://github.com/ibm-ecm/container-samples/tree/5.5.5/CPE/configDropins/overrides

Backup and recovery of a container environment
In a container environment, your data is external to the component container. A backup for your data is
similar to an on-premises installation. You also back up your configuration information for the
environment.

Procedure
• Back up your environment.

Containers are stateless, so the data that must be backed up in a container environment is external to
the container. In a container environment all external mounts to the container are the areas of storage
that should be part of a backup set. See the following information for details about the additional areas
of storage that must be backed up: “Creating volumes and folders for deployment” on page 14.

For the rest of your environment, the backup requirements are the same as for an on-premises
installation.

All offline and hot backup guidelines are the same for container deployments.
• As needed, recover your environment from the backups you created.

Recovery of a container environment is a much easier task because of the separation of the containers
from the application data. Recovery is the same as the processes that are documented for on-
premises environments.

You must also recover the external container mounts for deployed containers as documented in the
following topic: “Creating volumes and folders for deployment” on page 14.

Because this data includes container configuration information, make sure to repopulate the data in
the appropriate mounts before you bring any containers online again.

Registering and configuring IBM® Content Navigator plug-ins in a
container environment

You can use plug-ins to integrate IBM® Content Navigator with other products or to modify the behavior of
the web client. In a container environment, the paths to the plug-ins are different than for an on-premises
deployment.

Procedure
To register and configure IBM Content Navigator plug-ins:
1. Move the IBM Content Navigator plug-in files to the designated path in the IBM Content Navigator icn-

icp-pluginstore volume, for example: /icnpluginstore/plugins
2. Open the administration tool in the web client.
3. Click Plug-ins and then click New Plug-in.
4. Specify the plug-in file that you want to register.

The plug-in file must be in the /opt/ibm/plugins path in the IBM Content Navigator container
volume.

5. Load the plug-in.
6. Provide any additional configuration settings that the plug-in requires.
7. Save your changes.

Administering components in a container environment 45

46 IBM Content Navigator: Deploying IBM Content Navigator in a container

Configuration reference

When you prepare your environment for container deployment and plan for the setup of your container
applications, you collect relevant configuration values for the environment. Use the following reference
topics to collect and understand the configuration values that you supply for the container deployment
process.

Configuration reference for operators
When you edit the configuration YAML file for deployment, you supply values about your supporting
environment and your component configuration. Collect the configuration parameters as you set up your
environment for the content services container deployment.

Shared parameters
Update the custom YAML file to provide the details of an IBM Security Directory server or Microsoft Active
Directory LDAP server.

Table 2. Spec configuration parameters

Parameter Description

appVersion The version of the current release.

Table 3. Shared configuration parameters

Parameters Description Default Values

sc_deployment_context Do not change this default
setting.

FNCM

image_pull_secrets Shared image pull secrets. []

sc_image_repository All components must use the
same Docker image repository,
co.icr.io for entitled register, or a
local Docker image repository.

cp.icr.io

root_ca_secret If you provide your own root
certificate, enter the value.

fncm-root-ca

sc_deployment_type Set the value to "demo" for an
evaluation deployment, "non-
production" or "production".

Set the value to demo for an
evaluation deployment, and
enterprise for CM8, CMOD,
and P8.

Note: If you set the value to
"demo", Db2® Universal Container
and OpenLDAP instances are
created as part of the installation.
If the value is set to "demo", you
must also set the
sc_dynamic_storage_classn
ame parameter.

demo

© Copyright IBM Corp. 2020, 2020 47

Table 3. Shared configuration parameters (continued)

Parameters Description Default Values

sc_run_as_user Optionally specify a RunAs user
for the security of the pod. This is
usually a numerical ID.

sc_deployment_platform Enter your certified Kubernetes
platform type

OCP

sc_deployment_hostname_suffix Specify the hostname used to
create routes. Routes are created
automatically if
sc_deployment_platform is
set to OCP or ROKS.

example.com

trusted_certificate_list If you want to use your own
certificate, use the certificate file
to create a secret and then add
the secret for this parameter.

[]

encryption_key_secret (This parameter does not apply
to CM8 and CMOD. Leave the
default value.) Shared encryption
key secret name that is used for
Workstream Services and
Process Federation Server
integration.

icp4a-shared-encryption-key

shared_configuration.sc_deploy
ment_patterns

For CM8 and CMOD, remove the
default value and set to blank.

content

sc_optional_components (For CM8 and CMOD, remove the
default value and set to blank.) A
component is identified by an
acronym of the component or
subcomponent name. If you want
to install more than one
component, separate the
acronyms of the components
with a comma, for example,
css,es,tm.

cmis

sc_content_initialization (This parameter does not apply
to CM8 and CMOD. Leave the
default value.) Enable/disable
content initialization (creation
of P8 domain, creation of object
stores, creation of CSS servers,
and initialization of Navigator
(ICN)). If the
"initialize_configuration
" section is defined in the CR,
then that configuration takes
precedence over this parameter.

false

48 IBM Content Navigator: Deploying IBM Content Navigator in a container

Table 3. Shared configuration parameters (continued)

Parameters Description Default Values

sc_content_verification (This parameter does not apply
to CM8 and CMOD. Leave the
default value.) Enable/disable the
content verification (creation of
test folder, creation of test
document, execution of CBR
search, and creation of Navigator
demo repository and desktop). If
the "verify_configuration"
section is defined in the CR, then
that configuration takes
precedence over this parameter.

false

sc_fast_file_storage_classname

sc_medium_file_storage_classna
me

sc_slow_file_storage_classname

Storage for an enterprise
deployment needs 3 storage
classes. If you do not have 3
storage classes, you can use the
same one for "slow", "medium",
and "fast".

On OpenShift Container Platform
(OCP) 3.x and 4.x, the
deployment script sets these
parameters based on the user
input.

cp4a-file-retain-gold-gid

cp4a-file-retain-silver-gid

cp4a-file-retain-bronze-gid

LDAP parameters
Update the custom YAML file to provide the details that are relevant for your FileNet Content Manager and
IBM Content Navigator LDAP environment. Parameters marked with (External users) apply only for
environments that are using the 2-LDAP method for supporting External Share.

Table 4. LDAP configuration parameters

Parameters Description Default Values

LDAP server type

lc_selected_ldap_type:

The type of the directory service
provider you are using for your
container environment. Choices
are IBM Security Directory Server
or Microsoft Active Directory

IBM Security Directory Server

LDAP server host name

lc_ldap_server

The host name for the LDAP
server that you are using for the
environment.

<hostname>

LDAP port

lc_ldap_port

The port number for the LDAP
server that you are using.

389

Secret

lc_bind_secret

User name and password for the
bind user. The LDAP bind secret
must have ldapUsername and
ldapPassword keys.

ldap_bind_secret

Configuration reference 49

Table 4. LDAP configuration parameters (continued)

Parameters Description Default Values

Base entry distinguished name

c_ldap_base_dn

The base distinguished name
(DN) of an LDAP user who is
allowed to search the LDAP
directory if the LDAP server does
not allow anonymous access.

dc=hqpsidcdom,dc=com

SSL enablement

lc_ldap_ssl_enabled

Specify whether SSL is enabled. false

SSL secret

lc_ldap_ssl_secret_name

Provide the name of the SSL
secret that you created.

User name attribute

lc_ldap_user_name_attribute

Provide the format of the user
name.

*:cn

User display name attribute

lc_ldap_user_display_name_attr

Provide the format of the display
name.

cn

Base entry group distinguished
name

lc_ldap_group_base_dn

The base DN subtree that is used
when searching for group entries
on the LDAP server.

dc=hqpsidcdom,dc=com

Group name

lc_ldap_group_name_attribute

Provide the format of the group
name.

*:cn

Group display name

lc_ldap_group_display_name_att
r

Provide the format of the group
display name.

cn

Group membership search filter

lc_ldap_group_membership_sear
ch_filter

Filter for finding entries in the
LDAP base DN (groups) subtree
that match the group name.

(|(&(objectclass=groupofnames)
(member={0}))
(&(objectclass=groupofuniquena
mes)
(uniquemember={0})))

Directory service server group id
map

lc_ldap_group_member_id_map

The group id is a filter that is used
to determine the group name.

groupofnames:member

Max search results

lc_ldap_max_search_results

Maximum number of search
results to return.

4500

(Active Directory)

lc_ad_gc_host

Active Directory host.

(Active Directory)

lc_ad_gc_port

Active Directory port.

50 IBM Content Navigator: Deploying IBM Content Navigator in a container

Table 4. LDAP configuration parameters (continued)

Parameters Description Default Values

(Active Directory) User filter

lc_user_filter

Active Directory user filter. (&(cn=%v)(objectclass=person))

(Active Directory) Group filter

lc_group_filter

Active Directory group filter. (&(cn=%v)
(|(objectclass=groupofnames)
(objectclass=groupofuniquename
s)
(objectclass=groupofurls)))

(IBM Security) User filter

lc_user_filter

IBM Security user filter (&(cn=%v)(objectclass=person))

(IBM Security) Group filter

lc_group_filter

IBM Security group filter. (&(cn=%v)
(|(objectclass=groupofnames)
(objectclass=groupofuniquename
s)
(objectclass=groupofurls)))

(External users) LDAP server type

lc_selected_ldap_type:

(This parameter does not apply
to CM8 and CMOD. Leave the
default value.) The type of the
directory service provider you are
using for your container
environment. Choices are IBM
Security Directory Server or
Microsoft Active Directory

IBM Security Directory Server

(External users) LDAP server host
name

lc_ldap_server

(This parameter does not apply
to CM8 and CMOD. Leave the
default value.) The host name for
the LDAP server that you are
using for the environment.

<hostname>

(External users) LDAP port

lc_ldap_port

(This parameter does not apply
to CM8 and CMOD. Leave the
default value.) The port number
for the LDAP server that you are
using.

389

(External users) Base entry
distinguished name

c_ldap_base_dn

(This parameter does not apply
to CM8 and CMOD. Leave the
default value.) The base
distinguished name (DN) of an
LDAP user who is allowed to
search the LDAP directory if the
LDAP server does not allow
anonymous access.

dc=hqpsidcdom,dc=com

(External users) SSL enablement

lc_ldap_ssl_enabled

(This parameter does not apply
to CM8 and CMOD. Leave the
default value.) Specify whether
SSL is enabled.

false

Configuration reference 51

Table 4. LDAP configuration parameters (continued)

Parameters Description Default Values

(External users) SSL secret

lc_ldap_ssl_secret_name

(This parameter does not apply
to CM8 and CMOD. Leave the
default value.) Provide the name
of the SSL secret that you
created.

(External users) User name
attribute

lc_ldap_user_name_attribute

(This parameter does not apply
to CM8 and CMOD. Leave the
default value.) Provide the format
of the user name.

*:cn

(External users) User display
name attribute

lc_ldap_user_display_name_attr

(This parameter does not apply
to CM8 and CMOD. Leave the
default value.) Provide the format
of the display name.

cn

(External users) Base entry group
distinguished name

lc_ldap_group_base_dn

(This parameter does not apply
to CM8 and CMOD. Leave the
default value.) The base DN
subtree that is used when
searching for group entries on the
LDAP server.

dc=hqpsidcdom,dc=com

(External users) Group name

lc_ldap_group_name_attribute

(This parameter does not apply
to CM8 and CMOD. Leave the
default value.) Provide the format
of the group name.

*:cn

(External users) Group display
name

lc_ldap_group_display_name_att
r

(This parameter does not apply
to CM8 and CMOD. Leave the
default value.) Provide the format
of the group display name.

cn

(External users) Group
membership search filter

lc_ldap_group_membership_sear
ch_filter

(This parameter does not apply
to CM8 and CMOD. Leave the
default value.) Filter for finding
entries in the LDAP base DN
(groups) subtree that match the
group name.

(|(&(objectclass=groupofnames)
(member={0}))
(&(objectclass=groupofuniquena
mes)
(uniquemember={0})))

(External users) Directory service
server group id map

lc_ldap_group_member_id_map

(This parameter does not apply
to CM8 and CMOD. Leave the
default value.) The group id is a
filter that is used to determine
the group name.

groupofnames:member

(External users) Max search
results

lc_ldap_max_search_results

(This parameter does not apply
to CM8 and CMOD. Leave the
default value.) Maximum number
of search results to return.

4500

(External users) (Active
Directory)

lc_ad_gc_host

(This parameter does not apply
to CM8 and CMOD. Leave the
default value.) Active Directory
host.

52 IBM Content Navigator: Deploying IBM Content Navigator in a container

Table 4. LDAP configuration parameters (continued)

Parameters Description Default Values

(External users) (Active
Directory)

lc_ad_gc_port

(This parameter does not apply
to CM8 and CMOD. Leave the
default value.) Active Directory
port.

(External users) (Active
Directory) User filter

lc_user_filter

(This parameter does not apply
to CM8 and CMOD. Leave the
default value.) Active Directory
user filter.

(&(cn=%v)(objectclass=person))

(External users) (Active
Directory) Group filter

lc_group_filter

(This parameter does not apply
to CM8 and CMOD. Leave the
default value.) Active Directory
group filter.

(&(cn=%v)
(|(objectclass=groupofnames)
(objectclass=groupofuniquename
s)
(objectclass=groupofurls)))

(External users) (IBM Security)
User filter

lc_user_filter

(This parameter does not apply
to CM8 and CMOD. Leave the
default value.) IBM Security user
filter

(&(cn=%v)(objectclass=person))

(External users) (IBM Security)
Group filter

lc_group_filter

(This parameter does not apply
to CM8 and CMOD. Leave the
default value.) IBM Security
group filter.

(&(cn=%v)
(|(objectclass=groupofnames)
(objectclass=groupofuniquename
s)
(objectclass=groupofurls)))

Datasource parameters
Update the custom YAML file with details of your ICN configuration database. Some parameters are
specific to database vendors.

Table 5. Datasource configuration parameters

Parameters Description Default Values

(ICN) Database type

dc_database_type

Specify the type for your IBM
Content Navigator database.

Possible values are db2,
db2HADR, oracle, sqlserver, or
postgresql.

db2

(ICN) Database URL

dc_oracle_icn_jdbc_url

Oracle: Provide the URL for the
IBM Content Navigator database.

jdbc:oracle:thin:@//
<hostname>:1521/orcl

(ICN) Datasource name

dc_common_icn_datasource_na
me

The JNDI name of the non-XA
JDBC data source associated
with the IBM Content Navigator
table space or database. The
name must be unique.

ICMClientDS

(ICN) Database server host

database_servername

The host name of the server
where the database software is
installed.

<hostname>

Configuration reference 53

Table 5. Datasource configuration parameters (continued)

Parameters Description Default Values

(ICN) Database port

database_port

Provide the database port. 50000

(ICN) Database name

database_name

Provide the database name. ICNDB

(ICN) Standby server name

dc_hadr_standby_servername

Enter the standby server name. <hostname>

(ICN) Standby server port

dc_hadr_standby_port

Enter the standby server port. 50000

(ICN) Validation timeout

dc_hadr_validation_timeout

Specify the validation timeout
entry.

3

(ICN) Retry interval for client
reroute

dc_hadr_retry_interval_for_client
_reroute

Specify the time in seconds
between connection attempts
made by the automatic client
reroute if the primary connection
to the server fails.

3

(ICN) Max retries for client
reroute

dc_hadr_max_retries_for_client_
reroute

The maximum number of
connection retries attempted by
automatic client reroute if the
primary connection to the server
fails. This property is used only if
the Retry interval for client
reroute property is set.

3

IBM Content Navigator parameters
Update the custom YAML file to provide the details that are relevant to your IBM Content Navigator and
your decisions for the deployment of the container.

Table 6. Configuration parameters

Parameters Description Default Values

ban_secret_name Contains the information about
the LDAP user and password for
components.

"{{ meta.name }}-ban-ext-tls-
secret"

ban_ext_tls_secret_name If you create a tls secret, use this
parameter to specify it for IBM
Content Navigator. Otherwise the
operator creates one for you.

"{{ meta.name }}-ban-ext-tls-
secret"

ban_auth_ca_secret_name If you create a ca secret, use this
parameter to specify it for IBM
Content Navigator. Otherwise the
operator creates one for you.

"{{ meta.name }}-ban-auth-ca-
secret"

Replica count

replica_count

How many Content Platform
Engine replicas to deploy.

2

54 IBM Content Navigator: Deploying IBM Content Navigator in a container

Table 6. Configuration parameters (continued)

Parameters Description Default Values

Run as user

run_as_user

User to run the deployment. If
run_as_user is commented out,
the deployment uses a UID auto-
assigned by Open Shift.

Image details

repository

tag

pull_policy

Specifies the image to be used. co.cir.io/cp/cp4a/fncm/navigator-
sso

ga-308-icn

Always

Logging for workloads

(log) format:

The format for workload logging. json

Resources -> requests

cpu

Specifies a CPU request for the
container.

500m

Resource -> requests

memory

Specify a memory request for the
container.

512Mi

Resource -> limits

cpu

Specify a CPU limit for the
container.

1

Resource -> limits

memory

Specify a memory limit for the
container.

1536Mi

Auto Scale

enabled

Specify whether to enable auto
scaling.

false

Auto Scale

max_replicas

The upper limit for the number of
pods that can be set by the
autoscaler. Required.

3

Auto Scale

min_replicas

The lower limit for the number of
pods that can be set by the
autoscaler. If it is not specified or
negative, the server will apply a
default value.

1

Auto Scale

target_cpu_utilization_percentag
e

The target average CPU
utilization (represented as a
percent of requested CPU) over
all the pods. If it is not specified
or negative, a default autoscaling
policy is used.

80

java_mail.host Specify the host of the mail
session.

fncm-exchange1.ibm.com

java_mail.port Specify the port to use with the
mail session host.

25

Configuration reference 55

Table 6. Configuration parameters (continued)

Parameters Description Default Values

java_mail.sender For sender, enter a user that has
access to the email server to log
on.

MailAdmin@fncmexchange.com

java_mail.ssl_enabled Specify whether SSL is enabled. false

Route public hostname

hostname
Provide a hostname that the
operator uses to create an
OpenShift® route definition to
access the application, most
often the host name of the
infrastructure node in Open Shift.

This parameter does not apply
for non-OpenShift platforms.

<hostname>

Time Zone for container

(TZ)

The time zone for the container
deployment.

Etc/UTC

Initial percentage

jvm_initial_heap_percentage

The initial use of available
memory.

18%

Maximum percentage

jvm_max_heap_percentage

The maximum percentage of
available memory to use.

33%

Custom JVM arguments

jvm_customize_options

Optionally specify JVM
arguments using comma
separation. For example:

jvm_customize_options="-
Dmy.test.jvm.arg1=123,-
Dmy.test.jvm.arg2=abc,-
XX:+SomeJVMSettings,XshowSet
tings:vm"

If needed, you can use DELIM to
change the character that is used
to separate multiple JVM
arguments. In this example, a
semi-colon is used to separate
the JVM arguments:

jvm_customize_options="DELIM=
;-
Dcom.filenet.authentication.wsi.
AutoDetectAuthToken=true;-
Dcom.filenet.authentication.provi
ders=ExShareUmsInternal,ExSha
reIbmId,ExShareGID"

None

Navigator JNDI datasource name

icn_jndids_name

Name for the Navigator JNDI
datasource.

ECMClientDS

Schema

icn_schema

Schema for IBM Content
Navigator.

ICNDB

56 IBM Content Navigator: Deploying IBM Content Navigator in a container

Table 6. Configuration parameters (continued)

Parameters Description Default Values

Table space

icn_table_space:

Table space for IBM Content
Navigator.

ICNDB

Administrator

icn_admin

IBM Content Navigator
administrator user.

CEADMIN

Accept license

license

The value must be set to accept
to deploy.

accept

enable_appcues Internal use only. Do not change
the value.

false

allow_remote_plugins_via_http It is recommended not to change
this setting.

true

Enable monitoring

monitor_enabled

Specify whether to use the built-
in monitoring capability.

false

Enable logging

logging_enabled

Specify whether to use the built-
in logging capability.

false

Enable Graphite

collectd_enable_plugin_write_gr
aphite

If you use Graphite database for
metrics or use IBM Cloud®

monitoring, set to true.

false

Configuration overrides PVC
name

(existing _pvc_for_icn_cfgstore)

The persistent volume claim for
IBM Content Navigator
configuration.

icn-cfgstore

Logs PVC name

(existing _pvc_for_icn_logstore)

The persistent volume claim for
IBM Content Navigator logs.

icn-logstore

Plug-in PVC name

(existing
_pvc_for_icn_pluginstore)

The persistent volume claim for
the plug-ins.

icn-pluginstore

Viewer cache PVC name

(existing
_pvc_for_icnvw_cachestore)

The persistent volume claim for
the viewer cache.

icn-vw-cachestore

Viewer log PVC name

(existing
_pvc_for_icnvw_logstore)

The persistent volume claim for
the viewer log.

icn-vw-logstore

Aspera

(existing _pvc_for_icn_aspera)

The persistent volume claim for
Aspera.

icn-asperastore

Configuration reference 57

Table 6. Configuration parameters (continued)

Parameters Description Default Values

probe > readiness

initial_delay_seconds

period_seconds

timeout_seconds

failure_threshold

The behavior of readiness probes
to know when the containers are
ready to start accepting traffic.

120

5

10

6

probe > liveness

initial_delay_seconds

period_seconds

timeout_seconds

failure_threshold

The behavior of liveness probes
to know when to restart a
container.

600

5

5

6

Image pull secrets

name

The secrets to be able to pull
images.

admin.registrykey

58 IBM Content Navigator: Deploying IBM Content Navigator in a container

IBM®

	Contents
	Introduction
	Preparing the environment for container deployments
	Understanding custom resources
	Using an operator
	Custom resource template structure

	Preparing your cluster
	Preparing your cluster on IBM Cloud (ROKS)
	Preparing the IBM Content Navigator database
	Creating secrets to protect sensitive configuration data
	Configuring storage for the content services environment
	Creating volumes and folders for deployment

	Deploying the operator
	Set up your local repository
	Preparing storage for the operator
	Preparing the operator storage
	Preparing the operator storage on IBM Cloud (ROKS)

	Deploying a IBM Content Navigator container
	Installing with an operator
	Getting access to container images
	Getting access to the container images
	Getting access to the container images on IBM Cloud (ROKS)

	Deploying the operator
	Deploying a custom resource
	Creating the custom resource
	Checking and completing your custom resource
	Checking the cluster configuration
	Setting the values for your IBM Content Navigator deployment
	Validating the YAML in your custom resource file

	Applying the custom resource

	Completing post-deployment startup tasks
	Completing extra post-deployment tasks on ROKS
	Improving security for session cookies
	Configuring IBM Content Navigator in a container environment

	Troubleshooting the operator
	Updating deployments
	Uninstalling components

	Administering components in a container environment
	Starting and stopping components
	Monitoring the components in your container environment
	Managing certificates
	Providing the root CA certificate
	Connecting securely with external services
	Importing the certificate of an external service
	Exporting the operator root CA key and importing it into an external service

	Tuning the components in your container environment
	Tuning IBM WebSphere Liberty for IBM Content Navigator components

	Backup and recovery of a container environment
	Registering and configuring IBM® Content Navigator plug-ins in a container environment

	Configuration reference
	Configuration reference for operators
	Shared parameters
	LDAP parameters
	Datasource parameters
	IBM Content Navigator parameters

