

IBM Copy Services Manager White Paper

IBM Copy Services Manager
session automation

This document can be found on the web: www.ibm.com/support/techdocs

Author: Thomas Luther

IBM Consulting IT Specialist

Version 1.1, 17. Jan 2020

IBM® Systems

Storage Platform

http://www.ibm.com/support/techdocs

IBM Systems Page 2 © IBM Copyright, 2018

Disclaimer and Trademarks
No part of this document may be reproduced or transmitted in any form without written permission from
IBM Corporation. Product data has been reviewed for accuracy as of the date of initial publication. Product
data is subject to change without notice. This information may include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or programs(s)
at any time without notice. References in this document to IBM products, programs, or services does not
imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATIONS "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

IBM shall have no responsibility to update this information. IBM products are warranted according to the
terms and conditions of the agreements (e.g., IBM Customer Agreement, Statement of Limited Warranty,
International Program License Agreement, etc.) under which they are provided. IBM is not responsible for
the performance or interoperability of any non-IBM products discussed herein. The performance data
contained herein was obtained in a controlled, isolated environment. Actual results that may be obtained in
other operating environments may vary significantly. While IBM has reviewed each item for accuracy in a
specific situation, there is no guarantee that the same or similar results will be obtained elsewhere.
Statements regarding IBM’s future direction and intent are subject to change or withdraw without notice,
and represent goals and objectives only.

The provision of the information contained herein is not intended to, and does not, grant any right or license
under any IBM patents or copyrights. Inquiries regarding patent or copyright licenses should be made, in
writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

IBM®, the IBM logo are trademarks of the International Business Machines Corporation in the United
States, other countries, or both. A full list of U.S. trademarks owned by IBM may be found at
http://www.ibm.com/legal/copytrade.shtml

Microsoft®, Windows® are registered trademarks of Microsoft Corporation.

Other company, product, or service names may be trademarks or service marks of others.

Copyright © 2020 by International Business Machines Corporation.

http://www.ibm.com/legal/copytrade.shtml

IBM Systems Page 3 © IBM Copyright, 2018

A Note to the Reader
This White Paper assumes familiarity with the general concepts of IBM DS8000 Copy

Services, in particular Metro Mirror, Global Mirror, Global Copy and Multi Target PPRC.

Additionally, the reader will find it helpful to be familiar with general usage and concepts
of IBM Copy Services Manager (or the former product TPC for Replication) as well as its

CLI component (CSMCLI).

The given script examples as well as the scripting best practices focus on REXX scripting

as used on IBM z/OS. However, the discussed scripting concepts can also be
implemented on another platform (e.g. via a REXX interpreter on Windows) or in another
scripting language as commonly used on platforms like Linux (e.g. Perl, Bash,…).

Readers with general scripting knowledge will find it easier to follow the discussed

scripting concepts and should be able to adopt those to other scripting languages as well.

CSMCLI scripting on z/OS was selected as example, because it has some specifics that
need to be mentioned and the various, not commonly known options on z/OS for scripted

CSMCLI execution were the original driver to create this paper.

The CSMCLI scripting part of this paper is applicable to any CSM release. The CSMCLI
framework specifics discussed in this paper are valid up to CSM release 6.2.2, but might

change and improve in future releases.

The new CSM Scheduled Task feature which is discussed in the second part of this paper
is applicable for CSM release 6.2.2 and later. Future CSM releases might further enhance

the CSM Scheduled Tasks capabilities, and as such further simplify some automation

topics described in this context.

For readers unfamiliar with these topics and for additional information, please refer to

references listed in the chapter ‘5 References on page 52.

Acknowledgements
The author would like to say “thank you” to Randy Blea for his support in clarifying various
topics described in this paper. I also want to thank Pascal Fusellier for helping me to

implement and validate the scripted scenario used as example in this paper.

IBM Systems Page 4 © IBM Copyright, 2018

Document History
Version/Date Remarks

V1.0 28/03/2018 Initial release using Copy Services Manager 6.2.2

V1.1 17/01/2020 Updated using Copy Services Manager 6.2.7

IBM Systems Page 5 © IBM
Copyright, 2018

Table of contents

1 Purpose of Document .. 7

2 Session automation via CSMCLI scripting .. 8

2.1 CSMCLI scripting options on z/OS .. 8

2.1.1 Option 1: Using IKJEFT01 with OSHELL .. 8

2.1.2 Option 2: BPXBATCH .. 9

2.1.3 Option 3: Rexx script, utilizing BPXWUNIX function or Syscalls .. 10

2.2 CSMCLI scripting option on Windows: Rexx interpreter 13

2.2.1 Adoptions of csmcli.bat for scripting .. 13

2.3 CSMCLI framework characteristics ... 14

2.3.1 CSMCLI Return Code handling ... 14

2.3.2 Error message routing.. 15

2.3.3 Message Prefixes ... 15

2.4 CSMCLI scripting best practices ... 16

2.4.1 Adopt common CSMCLI Java options as necessary 16

2.4.2 Password-less CSMCLI execution .. 16

2.4.3 Password-less CSMCLI execution via z/OS Security Authentication

Facility ... 17

2.4.4 Parameterized scripting ... 19

2.4.5 CSMCLI call wrapper ... 19

2.4.6 Common set of reusable procedures .. 19

2.5 Script example.. 21

2.5.1 Program Flow overview.. 22

2.5.2 Script execution .. 22

2.5.3 Script Return codes .. 23

2.5.4 Script Runtime environment... 23

2.5.5 Script Parameters... 23

2.5.6 Script execution via JCL .. 24

2.5.7 Script customization ... 24

2.5.8 Script output control ... 25

2.5.9 Procedure overview ... 26

3 Session automation via CSM Scheduled Tasks 33

3.1 Scheduled Task introduction ... 33

3.2 Create Scheduled Task with multiple actions 34

3.3 Modify Scheduled Task with multiple actions 40

3.4 Manage Scheduled Tasks ... 42

3.4.1 Scheduled execution .. 43

3.4.2 On demand execution .. 44

3.4.3 Task monitoring .. 44

3.5 Remove Scheduled Tasks ... 47

IBM Systems Page 6 © IBM
Copyright, 2018

3.6 Advanced Scheduled Task example ... 48

3.6.1 Task and Actions definition .. 48

3.6.2 Task execution ... 49

4 CSM session automation conclusion .. 51

5 References ... 52

5.1 CSM and DS8000 Copy Services ... 52

5.2 Rexx Scripting .. 52

6 Appendix: REXX Script example ... 53

7 Appendix: Output of REXX Script example 76

IBM Systems Page 7 © IBM Copyright, 2018

1 Purpose of Document
IBM Copy Services Manager offers a Command Line Interface (CSMCLI) which can be

used for automated session management. This becomes quite useful, if you need to
integrate CSM actions into higher level automation routines or batch environments, e.g.

for creation of a Practice Copy at a certain time.

Beside running individual (or a series of) scripted CSMCLI commands, starting with CSM
6.2.1 there is a new Scheduled Task capability which can also be utilized to accomplish

a certain degree of session automation.

In this paper we will discuss usage and best practices for both session automation options.

In the scripting part, we will focus on CSMCLI scripting options on z/OS, since automated
execution of Unix System Shell commands might not be commonly known for mainframe
system programmers or storage administrators. Therefore the used script language in

this paper is Rexx, which is available on z/OS platforms and can be utilized for integration

into batch environments.

Rexx however is not only available on z/OS, but can also be used on other platforms via

commonly available, portable Rexx interpreters, e.g.

• Regina Rexx (https://regina-rexx.sourceforge.io/)

• Brexx (https://sourceforge.net/projects/brexx/)

• Open Object Rexx (http://www.oorexx.org/about.html)

Throughout this document we will be using a concrete example scenario for CSM
session automation. This scenario leverages a DS8000 4 site replication topology, that

is managed by a CSM 4 site replication session with Multi Target MM-GM with a
cascaded Global Copy replication from the GM target site. In the example scenario we
will create a consistent copy of data on the 4th site for testing purposes while restarting

the Global Mirror leg afterwards. This explicit example scenario is described in more
detail in chapter ‘2.5 Script example’.

https://regina-rexx.sourceforge.io/
https://sourceforge.net/projects/brexx/
http://www.oorexx.org/about.html

IBM Systems Page 8 © IBM Copyright, 2018

2 Session automation via CSMCLI scripting

2.1 CSMCLI scripting options on z/OS

The CSMCLI can be installed on a z/OS LPAR, independently where the actual CSM

server is running. You can download any CSMCLI installation image from IBM Fix Central.
Follow the ‘Latest Downloads for IBM Copy Services Manager’ page for a link to the

appropriate version:

• http://www-01.ibm.com/support/docview.wss?uid=ssg1S1005482

Follow the instructions in the CSM Knowledge Center to install CSMCLI separately on a

z/OS LPAR (CSMCLI is already installed along with the CSM server on an LPAR)

• https://www.ibm.com/support/knowledgecenter/en/SSESK4_6.2.7/com.ibm.storage.cs
m.help.doc/csm_installing_cli_on_remote_system.html

The CSMCLI is a Java application which is installed in the z/OS Unix System Space
(USS). z/OS provides various options to execute z/OS Unix shell commands from a job,

which is required to include CSMCLI commands into the z/OS batch environment.

For a scripted automation it is recommended, that a CSMCLI authentication properties
file is prepared in the appropriate user HOME folder under the ./csm-cli/ subdirectory. The

authentication properties file contains a CSM username and the corresponding encrypted
password, which prevents that authentication details must be included in the script itself.

Please refer to chapter ‘2.4.2 Password-less CSMCLI execution’ for more details.

Following sections discuss 3 different options how CSMCLI commands can be executed

from a z/OS job.

2.1.1 Option 1: Using IKJEFT01 with OSHELL

The IKJEFT01 program is used to launch TSO commands. OSHELL is a TSO command
that launches a temporary z/OS Unix Shell and can pass multiple commands to this

temporary shell.

Advantages:

• Allows to specify USS environment parameters for multiple commands, e.g. for the
CSMCLI executable path and HOME folder. Specifying the HOME folder prevents that
each TSO user who is submitting the job must have its own CSMCLI authentication
properties file.

• Multiple commands can be passed to same shell

Disadvantages:

• Output can only be directed to Joblog or a specified dataset.

• Limited conditional based execution possible for multiple OSHELL commands

OSHELL as well as the Unix shell commands must be passed via the input DD statement

of the IKJEFT01 program. Each OSHELL command must be separated with a semicolon

http://www-01.ibm.com/support/docview.wss?uid=ssg1S1005482
http://www-01.ibm.com/support/docview.wss?uid=ssg1S1005482
https://www.ibm.com/support/knowledgecenter/en/SSESK4_6.2.1/com.ibm.storage.csm.help.doc/csm_installing_cli_on_remote_system.html
https://www.ibm.com/support/knowledgecenter/en/SSESK4_6.2.7/com.ibm.storage.csm.help.doc/csm_installing_cli_on_remote_system.html
https://www.ibm.com/support/knowledgecenter/en/SSESK4_6.2.7/com.ibm.storage.csm.help.doc/csm_installing_cli_on_remote_system.html

IBM Systems Page 9 © IBM Copyright, 2018

‘;’ and all except the last line in the SYSTSIN DD statement must be concatenated with a

dash ‘-‘ to indicate that the input statement is a single line.

Note: The JCL ISPF editor might need to be enabled to allow lower case characters for

OSHELL commands since the Unix System Shell is case sensitive.

Examples how to utilize IKJEFT01 for CSMCLI commands:

In the first example, the path of the csmcli.sh executable must be included in the USS
shell PATH variable of the TSO user that is executing the job. Additionally the CSMCLI

authentication properties file must either exist in the TSO Users home folder or the
CSMCLI home folder in USS. Otherwise the job would fail because either csmcli.sh is not
understood as valid USS command/executable or because authentication to the CSM

server fails. This example job will list the role pairs for a specific session in the job log:

//CSMCLI01 JOB MSGCLASS=T,CLASS=T,NOTIFY=&SYSUID,REGION=0M
//*
//PAX1 EXEC PGM=IKJEFT01
//SYSPROC DD DISP=SHR,DSN=SYS1.SBPXEXEC
//SYSTSPRT DD SYSOUT=*
//STDOUT DD SYSOUT=*
//SYSTSIN DD *
 OSHELL -
 csmcli.sh -noinfo -server 1.2.3.4 lsrolepairs -l mySession ;

The second example shows how to use independent HOME and PATH settings for the
temporary shell, which will ensure the csmcli.sh executable is found through the path and

the CSMCLI is looking for the authentication properties file in the specified HOME folder.
Additionally it demonstrates how CSMCLI commands can be customized with shell

parameters, like defining variables for the active server address and the session Name:

//CSMCLI01 JOB MSGCLASS=T,CLASS=T,NOTIFY=&SYSUID,REGION=0M
//*
//PAX1 EXEC PGM=IKJEFT01
//SYSPROC DD DISP=SHR,DSN=SYS1.SBPXEXEC
//SYSTSPRT DD SYSOUT=*
//STDOUT DD SYSOUT=*
//SYSTSIN DD *
 OSHELL -
 export HOME=/u/myuser ; -
 export PATH=”$PATH;/opt/IBM/CSM/CLI/” ; -
 export csmserverA=1.2.3.4 ; -
 export sessname=”mySession” ; -
 csmcli.sh -noinfo -server $csmserverA lsrolepairs -l $sessname ;

2.1.2 Option 2: BPXBATCH

The program BPXBATCH can be used to run shell scripts and executables in USS directly.
It does not require to open a USS shell first. For more details refer to the z/OS knowledge

center:

• https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.b
pxa500/bpxbatr.htm

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxa500/bpxbatr.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxa500/bpxbatr.htm

IBM Systems Page 10 © IBM Copyright, 2018

Advantages:

• Simple formatting for multiple shell commands

Disadvantages:

• BPXBATCH ‘sh’ can run only executable scripts, which each run in its own shell.

• Output can be redirected to job log or specified datasets/files only

• Very limited conditional based execution of multiple commands

The syntax of the BPXBATCH program requires that each parameter line must be started

with ‘sh’ followed by the executable. Use ‘;’ as separators between multiple shell lines in
the Parameter DD statement. ‘sh’ causes BPXBATCH to execute a login shell which runs
the /etc/profile script (and runs the user's .profile file). These can be modified to include

common path changes to find the CSMCLI executable.

Common environment settings for the shell can be defined with the STDENV statement,

either as data stream in the JCL or a given dataset or Unix System file that include the
environment parameters. However, The ENV parameter changes are not affective when

the ‘sh’ executes the called program, only for sub scripts called by the executable.

Note: The JCL ISPF editor might need to be enabled to allow lower case characters for

SHELL commands since the Unix System Shell is case sensitive.

Example how to utilize BPXBATCH for CSMCLI commands:

Following example shows how to use BPXBATCH to issue shell commands. In this case,
the STDENV definition is not used, therefore the path of the csmcli.sh executable must

be included in the USS shell PATH variable of the TSO user that is executing the job.
Additionally the CSMCLI authentication properties file must either exist in the TSO Users
home folder or the CSMCLI home folder in USS. Otherwise the job would fail because

either csmcli.sh is not understood as valid USS command/executable or because

authentication to the CSM server fails.

This example job will list the defined CSM HA servers and the configured sessions in the

job log:

//CSMCLI02 JOB MSGCLASS=T,CLASS=T,NOTIFY=&SYSUID,REGION=0M
//*
//BPXBAT EXEC PGM=BPXBATCH,REGION=0M
//STDIN DD DUMMY
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//STDENV DD DUMMY
//SYSOUT DD SYSOUT=*
//STDPARM DD *
sh csmcli.sh -noinfo lshaservers ;
sh csmcli.sh -noinfo lssess ;

2.1.3 Option 3: Rexx script, utilizing BPXWUNIX function or Syscalls

Using a scripting language such as Rexx provides most flexibility in executing USS
commands and analyzing output for conditional based execution. Rexx provides a very
useful function to execute USS commands and capture standard and error output streams

IBM Systems Page 11 © IBM Copyright, 2018

in stem variables for subsequent parsing of the output. It also allows to specify stem
variables for the environment variables to be used for the USS call. That means the

environment stem variable can be used to specify the path to the CSMCLI executable as
well as the HOME folder, where CSMCLI is looking for the authentication properties file

that contains the user and encrypted password.

For more details on BPXWUNIX, please refer to these links:

• https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.b
pxb600/wunix.htm

• https://www.ibm.com/developerworks/community/blogs/MartinPacker/entry/bpxwunix_
z_os_best_kept_secret10?lang=en_us

If Rexx is running on z/OS, you can also switch the Rexx execution address space
dynamically to make USS system calls, which lets you directly invoke shell commands.
This is a very convenient way to issue shell commands when no specific environment

variables or output parsing is required.

The Rexx script itself can then be executed from TSO or as job in a batch environment.

Advantages:

• Executes a shell command from a Rexx script with customizable environment
parameters

• Captures output in stem variables for subsequent parsing

• Complex conditional execution can be coded easily in Rexx

• Full CSMCLI output can be hidden from User to prevent filling Job logs

Disadvantages:

• Users must be familiar with Rexx scripting to a certain degree

Examples for Rexx BPXWUNIX function and syscalls:

The following example script demonstrates how shell commands can be executed via

syscalls. For instance, it shows how the USS 'sleep' command can be utilized to wait a
specific number of seconds, e.g. when delays must be added between subsequent

CSMCLI commands (see lines 70-81).

The example also demonstrates a very basic approach for a CSMCLI wrapper procedure
(see USSCMD procedure), which utilizes bpxwunix and stores the output for subsequent

parsing and conditional execution of CSMCLI commands (see lines 50-67).

This specific Rexx script can be used to kick off the resynchronization of the Global Mirror

leg of a Multi Target MM-GM session. It will verify whether the actual session state is
either Suspended or Target Available, and then restart GM from the active Host site to
H3. It can be used for an automated Global Mirror resynchronization after a planned or

unplanned HyperSwap. For instance, system automation could catch the HyperSwap

completion message IOSHM0414I and execute this Rexx via a Job.

0001 /* REXX */
0002 address tso
0003 debug = 0 /* Set to 1 for more debug output */
0004
0005 /* Verify if USS syscalls are possible from Rexx */

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxb600/wunix.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxb600/wunix.htm
https://www.ibm.com/developerworks/community/blogs/MartinPacker/entry/bpxwunix_z_os_best_kept_secret10?lang=en_us
https://www.ibm.com/developerworks/community/blogs/MartinPacker/entry/bpxwunix_z_os_best_kept_secret10?lang=en_us

IBM Systems Page 12 © IBM Copyright, 2018

0006 if syscalls('ON') > 3 then do
0007 say 'Unable to establish the SYSCALL environment'
0008 return 12
0009 end
0010
0011 /*IOSHM0414I 11:50:20.07 PLANNED HYPERSWAP COMPLETED*/
0012 /*IOSHM0414I 11:50:20.07 UNPLANNED HYPERSWAP COMPLETED*/
0013
0014 /* Setup environment for CSMCLI calls */
0015 env.0 = 2 /* Qty of env variables */
0016 env.1 = "HOME=/u/username" /* Home for auth file */
0017 env.2 = "PATH=/opt/IBM/CSM/CLI/" /* Path to csmcli.sh */
0018 cli = "csmcli.sh -noinfo" /* default executable */
0019
0020 session = "MT-MM-GMP" /* Name of Session */
0021
0022 say 'Listing session:' session
0023 cmd = cli "showsess" session
0024 call USSCMD(cmd)
0025 do i=1 to out.0
0026 /* Parse State and Active Host of session */
0027 if pos("State",out.i) > 0 then do
0028 sess_state = word(out.i,2) word(out.i,3) /* up to 2 words */
0029 end
0030 else if pos("Active Host",out.i) > 0 then do
0031 sess_host = word(out.i,3)
0032 end
0033 end
0034 say "State: " sess_state "; Host: " sess_host
0035 if left(sess_host,1) = "H" & ,
0036 (sess_state = "Target Available" | sess_state = "Suspended") then do
0037
0038 cmd = cli "cmdsess -action startgm_" || sess_host || ":h3" ,
0039 "-quiet" session
0040 totrc = USSCMD(cmd)
0041 if totrc = "0" then do
0042 say session "started successfully from" sess_host || ":H3"
0043 end
0044 else do
0045 say "Session" session "failed to start" sess_host || ":H3"
0046 end
0047 end
0048 return totrc
0049
0050 /*--*/
0051 /*- SUBROUTINE -*/
0052 /*- -*/
0053 /*- Call USS with specified cmd -*/
0054 /*- Eg: call USSCMD command */
0055 /*--*/
0056 USSCMD:
0057 parse arg command
0058 if debug > 0 then say "CMD:" command
0059 myrc = bpxwunix(command,,out.,err.,env.)
0060 do i=1 to out.0
0061 if debug > 0 then say strip(out.i)
0062 end
0063 do i=1 to err.0
0064 if debug > 0 then say strip(err.i)
0065 end
0066 if debug > 0 then say "RC:" myrc
0067 return myrc
0068
0069
0070 /*--*/

IBM Systems Page 13 © IBM Copyright, 2018

0071 /*- SUBROUTINE -*/
0072 /*- -*/
0073 /*- Wait x seconds, utilizing USS system call -*/
0074 /*- Eg: call WAIT(2) */
0075 /*--*/
0076 WAIT:
0077 parse arg seconds
0078 address syscall
0079 'sleep (seconds)'
0080 address tso
0081 return 0

2.2 CSMCLI scripting option on Windows: Rexx interpreter

Windows by itself provides limited scripting language support for more advanced CSMCLI

scripting. However, Rexx is a script language that can be ported to various platforms,
similar to Perl, Bash and others. You just need to install a platform specific Rexx
interpreter in order to run Rexx scripts on windows. You can find some interpreters listed

in chapter ‘5.2 Rexx Scripting’ which can be installed on windows to execute Rexx scripts.

Note: If platform specific system calls are used, you will need to adopt your script

accordingly. It depends on the Rexx interpreter how system calls are implemented.

The example script listed in chapter ‘6 Appendix: REXX Script example’ was tested with
Regina Rexx on Windows. It determines the used platform (TSO or Windows) and

performs conditional execution of platform specific system calls. That allows you to run
the script on a Windows platform as well as on a z/OS LPAR, wherever the CSMCLI is
installed. In order to run it either on z/OS or Windows, you just need to adopt a few

environment variables without changes to the script itself.

2.2.1 Adoptions of csmcli.bat for scripting

As of CSM 6.2.7, the csmcli.bat executable is more optimized to launch an interactive
CSMCLI command window within Windows, but less for customized scripting. Following

*.bat lines may cause problems with external scripting:

• TITLE IBM Replication Manager CLI

▪ This will modify the Window title of the command window from where you execute
your script. You can add REM at the beginning of the line to comment it and prevent

its execution.

• if not %ERRORLEVEL% == 0 pause

▪ This will wait for key input when the CSMCLI framework returns an error. Your script

may appear to hang in that case. You can add REM at the beginning of the line to

comment it and prevent its execution.

• The return code from the CSMCLI framework is not passed back to the caller.

▪ You may add following line at the end of the script:

EXIT /B %ERRORLEVEL%

These topics are addressed and may be changed in future versions of the csmcli.bat file.

Note: Any customization you do in the CSMCLI executables are overwritten during a

CSMCLI upgrade.

IBM Systems Page 14 © IBM Copyright, 2018

2.3 CSMCLI framework characteristics

A scripted CSMCLI automation relies on consistent CLI framework handling in regards to

error codes, messages and printing to output/error streams in order to validate warnings
or errors from issued CSMCLI commands. When you start to script conditional CSMCLI

execution, you need to be aware of some general CSMCLI framework characteristics.

Note: The following characteristics apply up to CSM 6.2.7 release. Future releases might

change/improve some of the characteristics to simplify conditional based scripting.

2.3.1 CSMCLI Return Code handling

The CSMCLI return code in general does not reflect whether a command was executed
successfully by the server. A CSMCLI return code of 0 reflects only that the CLI framework

could be started and authenticated against the CSM server, that the command is valid
and properly formatted, and that it has been issued successfully against the server. It
does not tell whether the command was executed successfully or returned with a warning

or error message. That means a reliable script solution needs to evaluate the CLI return
code, as well as the standard and error output streams for any CSM Error message

returned from the server.

Following return codes are documented for the CSMCLI:

• https://www.ibm.com/support/knowledgecenter/SSESK4_6.2.7/com.ibm.storage.csm.help.d
oc/fre_c_output2.html

Code Category Description

0 Success The command was successful.

2 Syntax error The syntax of the command was not correct.

3 Connection error A connectivity error or protocol error occurred.

4 Server error An error occurred during a function call to the application server.

5 Authentication error An error was detected during authentication checking.

6 Application error An error occurred during processing that is performed by the
MetaProvider client application.

Following are examples of different and undocumented return codes as of CSM 6.2.7.
Additional information for the error might be printed to either the standard output or the
error output stream. In these examples, the error output stream is shown after the ‘ERR:’

indicator.

The CSMCLI framework currently does not distinguish between authentication errors (RC

= 5) and connection errors (RC = 3), it always returns undocumented RC = 8 (Login

Failed).

For wrong authentication on an existing CSM server, it should return 5, but returns 8:

E:\CSM\Cli>csmcli -noinfo -server 1.2.3.4 cmdsess -action suspend test
Login failed for: username=dummyuser, server=1.2.3.4, and port=9560.
ERR:
RC=8

For connection errors, it should return 3, but returns 8:

https://www.ibm.com/support/knowledgecenter/SSESK4_6.2.7/com.ibm.storage.csm.help.doc/fre_c_output2.html
https://www.ibm.com/support/knowledgecenter/SSESK4_6.2.7/com.ibm.storage.csm.help.doc/fre_c_output2.html

IBM Systems Page 15 © IBM Copyright, 2018

E:\CSM\Cli>csmcli -noinfo -server 10.10.10.10 cmdsess -action suspend test
Login failed for: username=myuser, server=10.10.10.10, and port=9560.
ERR:
RC=8
E:\CSM\Cli>ping 10.10.10.10

Pinging 10.10.10.10 with 32 bytes of data:
Request timed out.

Ping statistics for 10.10.10.10:
 Packets: Sent = 1, Received = 0, Lost = 1 (100% loss)

A solid CSMCLI wrapping procedure needs to evaluate the CSMCLI return code and
possibly add more error details from either the error or standard output stream to indicate
the problem. For instance, if the return code is not 0, the wrapping procedure should

return the first line from the error output stream, or if empty, return the first line from the

standard output stream.

2.3.2 Error message routing

As documented in the CSM Knowledge Center, all error messages should go to the error

output stream.

• https://www.ibm.com/support/knowledgecenter/SSESK4_6.2.7/com.ibm.storage.csm.h
elp.doc/fre_c_output2.html

However, some IWNxxxxxE messages seem to be printed to the standard output stream

instead of the error output stream. Following example shows an IWNxxxxxE error
message that is printed to standard output (Note: ERR: shows the error Output stream,

which is empty):

E:\Projects\CSM\Cli>csmcli -noinfo cmdsess -action suspend test
 IWNR1527E [Jan 30, 2018 10:46:28 AM] The available commands for session test
could not be obtained because the session does not exist.
ERR:
RC=0

A solid CSMCLI wrapping procedure needs to parse the standard output as well as the
error output stream for IWNxxxxxE messages to evaluate whether the CSMCLI command

execution resulted in an error.

2.3.3 Message Prefixes

As documented in the CSM Knowledge Center, all CSMCLI messages are supposed to

start with IWNxxxx.

• https://www.ibm.com/support/knowledgecenter/SSESK4_6.2.7/com.ibm.storage.csm.h
elp.doc/frg_r_message_codes.html

However, as of CSM 6.2.7 some error messages from the CLI framework might return
with the prefix CMMxxxxxE. These are printed to the error output stream and mainly
occur on command syntax errors or incorrect/missing parameters. In those cases, the

CSMCLI return code is also <> 0.

Following is an example for a command with a missing parameter:

https://www.ibm.com/support/knowledgecenter/SSESK4_6.2.7/com.ibm.storage.csm.help.doc/fre_c_output2.html
https://www.ibm.com/support/knowledgecenter/SSESK4_6.2.7/com.ibm.storage.csm.help.doc/fre_c_output2.html
https://www.ibm.com/support/knowledgecenter/SSESK4_6.2.7/com.ibm.storage.csm.help.doc/frg_r_message_codes.html
https://www.ibm.com/support/knowledgecenter/SSESK4_6.2.7/com.ibm.storage.csm.help.doc/frg_r_message_codes.html

IBM Systems Page 16 © IBM Copyright, 2018

E:\CSM\Cli>csmcli -noinfo cmdsess -action suspend
ERR:
CMMCI9022E Missing required parameter: session_name.
Usage: cmdsess [{ -help|-h|-? }] [-quiet] -action command [-restorefrom
snapshot_group_name] session_name | - [-priority 1|2|3|4] [-newname
snapshot_group_name]
Tip: Enter "help cmdsess" for more information.
RC=2

Following is an example for a wrong command:

E:\CSM\Cli>csmcli -noinfo lspairs -l -rolepair h1:j3 SG_MMGM
ERR:
CMMCI9013E Command: lspairs was not found.
Tip: Enter "help" for a list of available commands.
RC=1

A solid CSMCLI wrapping procedure needs to consider this additional message prefix

when parsing the error output stream for error message codes.

2.4 CSMCLI scripting best practices

This section describes some common best practices which are recommended when
scripting more complex CSMCLI sequences, which need to include conditional based

execution.

2.4.1 Adopt common CSMCLI Java options as necessary

Starting with CSM 6.2.7, there is a new javaoptions.properties file that can be used to

modify parameters for the Java framework used by CSMCLI. For details on the properties

file, please refer to the CSM Knowledge Center:

• https://www.ibm.com/support/knowledgecenter/SSESK4_6.2.7/com.ibm.storage.csm.h
elp.doc/frg_r_javaoptions_properties_file.html

When you use an IBM Java Runtime Environment, you can utilize the Xquickstart option.

This enables a faster start of the JRE, which is especially useful for short term Java
applications like scripted CSMCLI single shot commands. Especially on z/OS you may

benefit from 10-15% faster starts of the JRE for CSMCLI execution.

You may also want to change the language used by the CSMCLI for your scripted
execution, since the CSMCLI will otherwise use the default locale as determined by the

JRE.

Note: For previous CSMCLI releases, such JRE property changes can also be done in

the CSMCLI executable directly. However, any customization you do in the CSMCLI
executable are overwritten during a CSMCLI upgrade. Therefore, modifications of

CSMCLI executables are not fully supported.

2.4.2 Password-less CSMCLI execution

A common good practice for CSMCLI scripting is to avoid that you put user names and/or
passwords somewhere in a script. They would be unencrypted and human readable and

https://www.ibm.com/support/knowledgecenter/SSESK4_6.2.7/com.ibm.storage.csm.help.doc/frg_r_javaoptions_properties_file.html
https://www.ibm.com/support/knowledgecenter/SSESK4_6.2.7/com.ibm.storage.csm.help.doc/frg_r_javaoptions_properties_file.html

IBM Systems Page 17 © IBM Copyright, 2018

as such usually violate common security policies. The CSMCLI supports following options

for password less scripting.

2.4.2.1 Password-less CSMCLI execution via authentication properties file

Independent of the CSMCLI server platform, the CSMCLI supports an authentication
properties file, which can contain a CSM user name and the corresponding password.
The password will be encrypted in the properties file by the first use of the CSMCLI

executable. For more details, please refer to the CSM Knowledge center:

• https://www.ibm.com/support/knowledgecenter/SSESK4_6.2.7/com.ibm.storage.csm.h
elp.doc/frg_t_settingup_automatic_authentication.html

There are 2 locations where the CSMCLI looks for an authentication properties file during

launch. The location is case sensitive for non Windows platforms:

▪ The operating system user defined HOME folder, e.g.

<HOME>/csm-cli/csmcli-auth.properties

▪ The CSMCLI installation folder, e.g.

<CSMINSTALLPATH>/CLI/csmcli-auth.properties

In order to use a specific csmcli-auth.properties file location, you simply can set the
<HOME> environment variable accordingly within the script when it opens a system shell
to execute the CSMCLI command. You just need to ensure that the operating system

user who is executing the script (or Job) will have read permissions to the csm-cli/csmcli-

auth.properties file in the specified <HOME> folder.

For auditing purposes, it is also recommended to setup a functional user on the CSM
servers that is used only for scripting purposes, e.g. ‘scriptuser’. The ‘scriptuser’
authentication would then be defined in the authentication properties file used by your

CSMCLI scripts. As such, you can audit in the CSM console log whether certain
commands have been issued by dedicated GUI/CLI users, or via any scripts using the

functional ‘scriptuser’.

2.4.3 Password-less CSMCLI execution via z/OS Security Authentication Facility

Starting with CSM 6.2.5, another password less option exists when the CSMCLI client
and the CSM server are both running on LPARs that belong to the same z/OS Security
Authentication Facility (SAF) Sysplex. This can be utilized for example, if the CSM CLI

and server are both running on LPARs that share a common RACF database for security
management. It provides the additional benefit, that a TSO user password update does

not require an update of the password in the CSMCLI authentication properties file.

A Security Facility Class can be setup in z/OS (e.g. in RACF) to indicate which users have
authorization to run certain programs. The CSMCLI allows now to use the specified
Facility Class to authenticate the currently logged in OMVS shell user (or the user

specified in the BPXBATCH job that runs the CSMCLI command). If that user is in the

Facility Class, a password will not need to be specified.

Following are the high-level steps to create z/OS Security Facility authentication for the

CSMCLI:

• Create z/OS security facility for CSMCLI

▪ Utilize the IWNRACFC sample job to simplify setup:

• https://www.ibm.com/support/knowledgecenter/SSESK4_6.2.7/com.ibm.storage.csm.h
elp.doc/frc_t_config_iwnracf.html

▪ Define the security facility (default IWNSRV.CLIAUTH):

https://www.ibm.com/support/knowledgecenter/SSESK4_6.2.7/com.ibm.storage.csm.help.doc/frg_t_settingup_automatic_authentication.html
https://www.ibm.com/support/knowledgecenter/SSESK4_6.2.7/com.ibm.storage.csm.help.doc/frg_t_settingup_automatic_authentication.html
https://www.ibm.com/support/knowledgecenter/SSESK4_6.2.7/com.ibm.storage.csm.help.doc/frc_t_config_iwnracf.html
https://www.ibm.com/support/knowledgecenter/SSESK4_6.2.7/com.ibm.storage.csm.help.doc/frc_t_config_iwnracf.html

IBM Systems Page 18 © IBM Copyright, 2018

RDEFINE FACILITY IWNSRV.CLIAUTH UACC(NONE)

▪ Provide read access for required users or groups to the security facility, e.g.:

PERMIT IWNSRV.CLIAUTH CLASS(FACILITY) +
ID(#userid) ACCESS(READ)

▪ The SAF native calls require that the SAF users and the CSM server task

(IWNSRV) owner be granted access to BPX.SERVER and BPX.DAEMON

RDEFINE FACILITY BPX.SERVER UACC(NONE) OWNER(SYS1)
 PERMIT BPX.DAEMON CLASS(FACILITY) ID(#userid) ACCESS(NONE)
 PERMIT BPX.SERVER CLASS(FACILITY) ID(#userid) ACCESS(READ)
 PERMIT BPX.SERVER CLASS(FACILITY) ID(#serverid) ACCESS(READ)

▪ Refresh the security facility

SETROPTS RACLIST(FACILITY) REFRESH

• CSMCLI SAF setup under Unix System Services (OMVS):

▪ Give program control to the Java executable of the CSM server:

extattr +p <CSM_ProductionRoot>/Java/bin/java

• Note: To be able to use the extattr +p command, the OMVS user must have at least
read access to the BPX.FILEATTR.PROGCTL resource in the FACILITY class.

▪ Ensure following authority for the CLI folders (should be default setting from

installation):

chmod 775 <CSMCLI_ProductionRoot>
chmod 775 <CSMCLI_ProductionRoot>/CLI
chmod 775 <CSMCLI_ProductionRoot>/CLI/cliTrace.log

▪ Give the following authority for the history file in users home directory:

chmod 760 <#userid>/.sh_history

▪ Update the CSM configuration file to enable the SAF login module:

<CSM_ProductionRoot>/wlp/usr/servers/csmServer/properties/csm.conf

• The default of the first line in the file is CSMDisabled, which you need to replace with
CSMServer

• The SAF Login Module line needs to be added

CSMServer {
com.ibm.csm.server.security.CertificateLoginModule SUFFICIENT;
com.ibm.csm.server.security.SAFLoginModule SUFFICIENT;
com.ibm.csm.server.security.WebSphereLoginModule SUFFICIENT;
};

• Restart CSM server to activate the changes (IWNSRV job)

Once this setup has been done, a one time SAF authentication can be used with the -saf

parameter of the CSMCLI executable:

csmcli.sh –saf

Following are some limitations on usage of the SAF authentication as of CSM 6.2.7:

• SAF authentication for CSM authorized group users might fail unless the GUI has
been logged in to already after CSM server start up. This is because only the first GUI

IBM Systems Page 19 © IBM Copyright, 2018

login does an extra initialization that sets up the group-to-role mapping in Copy
Services Manager.

• If the CSM server address space owner (IWNSRV) does not have UID(0) access or
permission granted to authorized services, the WebSphere Liberty Angel Process

must be used. Otherwise the procedure fails and marks the process as program
controlled.

• LDAP authentication must be disabled for SAF usage (default on z/OS CSM servers)

2.4.4 Parameterized scripting

In order to create re-usable scripts that are easy to customize, you should consider the
definition of variables at the beginning of the script for each parameter that should be
customizable. Optionally you can allow to specify more dynamic parameters as

arguments to the script upon execution. Some common customizable parameters could
be the CSM server name/IP, session names, timeouts, CSMCLI environment variables,

a default CSMCLI execution prefix, the delimiter char for CLI output separation, etc.

Once you have developed and tested such a parametrized CSMCLI script, you can easily
adopt it to different environments or different session names, without the need to make

any changes in the tested script itself. Examples of such variable definitions can be found
in chapter ‘6 Appendix: REXX Script example’, see lines 55-90. Examples of script

argument parsing for more dynamic parameters can be found in lines 106-155.

2.4.5 CSMCLI call wrapper

As discussed in chapter ‘2.3 CSMCLI framework characteristics’, it is not that easy to

programmatically validate a successful execution of a CSMCLI command. Therefore you
should consider a central, re-usable CSMCLI call wrapper procedure, which does the
required system shell call with the provided CSMCLI command, but also parses the output

and evaluates whether the command execution might have caused an error. A meaningful
error message can then be passed back to the caller of the CSMCLI wrapper, while the
output of the CSMCLI command is held in variables to be further evaluated by your script

if the command was successful.

By using such a common CSMCLI wrapper procedure you can handle all CSMCLI

framework specifics in a central place. This enables modifications in a single place if

framework characteristics should change in future releases.

An example of such a CSMCLI wrapper procedure can be found in chapter ‘6 Appendix:
REXX Script example’, see lines 1204-1282. It returns 0 if the CSMCLI command has
been completed successfully. Otherwise it might return the CSM Error message grepped

from the output, or the CSMCLI framework return code with some additional error

information.

2.4.6 Common set of reusable procedures

When developing more complex CSMCLI scripting, you might find some steps in the
script to become repetitive. You also might want to use consistent output formatting for

your script, or easily enable a debug mode with more detailed output during development
and test without modifying a lot of places in your script for changing the debug mode or
the output formatting. Another common set of procedures could be to check a CSM

IBM Systems Page 20 © IBM Copyright, 2018

session, role pair or pairs for a specific state, or optionally wait up to a given timeout until

they reach a specific or expected state.

It really simplifies your script development if you identify such re-usable functions of the
script and create parameterized procedures for them to be re-used in various places of

your script.

The example script in chapter ‘6 Appendix: REXX Script example’ contains many of such

common, reusable procedures, such as:

• Procedure to check a given session state, or optionally wait until it is reached

• Procedure to check a given role pair state, progress or recoverability, or optionally

wait until any of those parameters is reached

• Procedure to check that all pairs in a given role pair reached a given state, or

optionally wait until all reached it

• Procedure to check that a given task name exists and collect its ID, its current

status, an optionally wait until the task has completed running

• Wrapper for consistent and centralized formatting of normal, debug or subroutine

messages

• Wait procedure, to pause script execution when waiting for a given condition

• Procedure to calculate the run time based on given start time and format it as

required

• Wrapper for CSMCLI command execution and output validation

The example script also contains CSMCLI command sequence procedures, which run a
fixed CSMCLI command sequence as defined in the procedure, but the whole
procedure is executed only if certain conditions are met in the overall automation

routine. Chapter ‘2.5.1 Program Flow overview’ gives you an impression, how such
command procedures can be structured.

IBM Systems Page 21 © IBM Copyright, 2018

2.5 Script example

In this chapter we describe a concrete script example which utilizes the previous best
practices. It is a REXX script which creates a consistent data copy on the fourth site of a

4 site DS8000 replication solution. Starting with CSM 6.2.3 there is a Metro Mirror – Global

Mirror with site 4 replication session type which supports this topology.

Following Picture describes the used topology as well as the required procedure to be

used to create a consistent practice copy on D volumes.

The script example will perform all these steps, but also restart the normal replication

mode (4 site replication) in case something goes wrong during the creation of the practice

copy.

Optionally, the steps can be defined as a task in the CSM GUI. The script can then be
used to perform the optional pre-checks, execute the pre-defined CSM task and monitor
its completion. In case of a task error, the script can also restart normal 4 site replication

mode.

The full Rexx script can be found in ‘6 Appendix: REXX Script example’. Following

sections describe the workflow and the structure of the script.

IBM Systems Page 22 © IBM Copyright, 2018

2.5.1 Program Flow overview

Following picture illustrates how the described sequence is structured and processed in

the REXX script.

2.5.2 Script execution

The script will try to create the practice copy when certain pre-check criteria are fulfilled:

• GM Role Pair must be Prepared

• GC Role Pair must be Preparing with a progress of at least xx % (xx is customizable)

If the creation of the practice copy is successful, it will try to restart only GM and enable
the Practice Copy on the D volumes (H4). If the GM start fails, it will exit with a Warning

RC = 4.

IBM Systems Page 23 © IBM Copyright, 2018

If the creation of the practice copy fails, it will try to restart GM and the cascaded GC of
the session to minimize replication impact by the failed practice copy. Prior restart, it will

verify the state of the session and might issue a Stop command to either the GM or GC
role pair to ensure the session and all pairs are in a state to allow a proper restart. The
script will exit with an error RC = 8 if the restart was successful, otherwise with RC = 12

if restart was not successful and replication is still impacted.

2.5.3 Script Return codes

As a summary, the script has following overall return codes:

0 : Practice Copy was created and GM is back in Prepared state

4 : Practice Copy was created, but GM could not be restarted within customized

timeout

8 : Practice Copy creation failed, but previous replication was restarted

12 : Pre-check error or a practice creation error where overall replication restart failed

afterwards

16 : USS syscall environment cannot be established or missing/wrong parameters

2.5.4 Script Runtime environment

The Rexx script can be executed either on a Windows Platform or on z/OS (TSO & Batch).

The platform where it is executed needs to have a Rexx interpreter in place and the
CSMCLI needs to be installed with an existing authentication properties file for the CSM
user. The location of the authentication properties file can be declared in the script with

the environment parameter for HOME.

The script was tested on z/OS with embedded Rexx interpreter as well as on Windows

with Regina Rexx (https://regina-rexx.sourceforge.io/) installed. A different Rexx
interpreter on Windows might require adoptions in the script for system specific functions

(e.g. reading and setting environment variables for the CSMCLI).

Other platforms are not supported at this time. However, with some slight modifications
to the platform determination routine and the conditional execution routines, it can be

easily enhanced to run on Linux platforms as well (search for usage of the ‘os’ variable to

get an idea where operating system specific actions are necessary).

2.5.5 Script Parameters

Following parameters can be used as arguments with the script execution:

acsm=addr : Hostname or IP address of CSM server having the Active role. This will

overwrite the defined 'actcsm' value of the script.

sess=name: Name of the 4-site session to be used. This will overwrite the defined
'defsess' value of the script. Name is case sensitive and single/double

quotes must be used if it contains spaces. Either session name is required.

task=name : Name of the 4-site session scheduled task to be used instead of script steps
1-5 (Optional). Script will then run the task, monitor its completion, and

https://regina-rexx.sourceforge.io/

IBM Systems Page 24 © IBM Copyright, 2018

restore replication in case of task error. Name is case sensitive and

single/double quotes must be used if it contains spaces.

pchk=off : This will disable the Pre-Checks of the script (step 0). It can be used if proper

pre-checks are included in a given task.

dbug=lvl : This will set the debug level of the script. It can be used to increase output
details in case of unexpected errors Supported levels are 0 (default), 2 and

9.

The parameter names are not case sensitive, but a given session or task name value is

case sensitive. Multiple arguments can be separated with space or tabs.

2.5.6 Script execution via JCL

On z/OS, the Rexx script can be executed via Job Control Language, for example to be

scheduled in batch processing. Following JCL example shows how to execute the script:

//REXXJCLA JOB (A185,SYS),'TLUTHER',CLASS=A,MSGCLASS=X,
// MSGLEVEL=(1,1),REGION=0M,NOTIFY=&SYSUID
//***/
//* Run the REXX script as specified below
//***/
//STEPCNCT EXEC PGM=IKJEFT01
//SYSEXEC DD DISP=SHR,DSN=TLUTHER.CSM.CNTL
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 PROFILE NOPREFIX
 %CL3PRACD -
 acsm=mycsm.domain.com -
 sess='My MmGmGc' -
 task=''
/*
//

You need to update the Job card, dataset and member name accordingly (red). The blue

Rexx script parameters can be defined in the SYSTSIN DD statement as shown in this
example. Make sure to concatenate multiple parameter lines with the script member

name line by using the dash ‘-‘, otherwise it will not be passed as a single argument string.

2.5.7 Script customization

Following sections in the script should be customized to adopt the script to the local
environment. The red parameters need to be reviewed and updated, or specified as

arguments when the script is called. The blue parameters can be adjusted if necessary:

/* Modify environment for script */
pricsm = "" /* Primary CSM server IP/Name */
seccsm = "" /* Secondary CSM server IP/Name */
actcsm = pricsm /* CSM server with Active role */
stdcsm = seccsm /* CSM server with Standby role */

/* Define def. parameters, extra single quotes are mandatory if space in name*/
defsess = "''" /* Name of active MM-GM-GC session */
deftask = "''" /* Name of task to run alternatively */

/* Modify scenario parameters as required */

IBM Systems Page 25 © IBM Copyright, 2018

gcprog = 97 /* Min. prog % of GC Session at start */
gmsuspto = 300 /* max sec. for GM Suspend completion */
gcsuspto = 120 /* max sec. for GC Suspend completion */
frrto = 120 /* max sec. for FRR completion */
mmrecto = 60 /* max sec. for MM Recovery completion */
gmstartto = 300 /* max sec. for GM Restart completion */
gcstartto = 60 /* max sec. for GC Restart completion */
gcstopto = 120 /* max sec. for GC Stop (err. recovery)*/
taskto = 600 /* max sec. for task duration */

/* Mofify environment for CSMCLI calls */
env.0 = 2 /* # of entries in env. */
env.1 = "HOME=/u/username" /* Home for auth file */
env.2 = "PATH=/opt/IBM/CSM/CLI/" /* Path to csmcli.sh */
cliex = "csmcli.sh -noinfo" /* default executable */
dlmch = ";" /* Delimiter char for output */
/* Note: This script does not include CSMCLI username or password. It relies */
/* that the CSMCLI authentication properties file is setup in the CSM-CLI */
/* subfolder of the specified HOME folder: */
/* <HOME>/csm-cli/csmcli-auth.properties */

/* Set Debug level for additional output */
debug = 0 /* Set >0 for more debug output */
 /* 2: print more output of procedures */
 /* 9: print also CSMCLI call details */

2.5.8 Script output control

Output details can be increased for script debugging purposes. Debug output will be
marked and may contain more details on what is being processed in the sub procedures

or what is sent and returned for the CSMCLI execution. For a standard output example

of the script, please refer to ‘7 Appendix: Output of REXX Script example’.

The example script debug level can be easily adjusted with the debug value:

/* Set Debug level for additional output */
debug = 0 /* Set >0 for more debug output */
 /* 2: print more output of procedures */
 /* 9: print also CSMCLI call details */

In the script itself, the output level is controlled by verifying the value of the debug variable,

e.g.:

 parse arg sess1, rp1, state1, to1
 if debug >= 2 then say LOGD(2,"Parameters:" sess1","rp1","state1","to1)

IBM Systems Page 26 © IBM Copyright, 2018

2.5.9 Procedure overview

Whenever reusable parts are possible, they are provided as procedures in the example

script. Following picture illustrates the available script procedures:

These procedures can also be used in a general CSMCLI script framework for automation
that goes beyond this practice script. For the detailed script code, please refer to chapter

‘6 Appendix: REXX Script example’.

IBM Systems Page 27 © IBM Copyright, 2018

2.5.9.1 Command procedures

The script divides the overall sequence into 4 command procedures, which are called by
the main routine as documented in ‘2.5.1 Program Flow overview’. Following is an

overview of the 6 command procedures.

/*---*/
/*- SUBROUTINE -*/
/*- -*/
/*- Precheck routine to validate everything is OK for CSMCLI sequence. -*/
/*- It performs Step 0 of the overall sequence. -*/
/*- Return codes: -*/
/*- 0 : All checks are OK -*/
/*- ErrMsg: Message describing the problem -*/
/*---*/
PRECHECK:

/*---*/
/*- SUBROUTINE -*/
/*- -*/
/*- Sequence to create a practice copy on D volumes -*/
/*- It performs Step 1-3 of the overall sequence. -*/
/*- Return codes: -*/
/*- 0 : All steps executed successfully -*/
/*- ErrMsg: Message describing the problem -*/
/*---*/
CREATEPRACTICED:

/*---*/
/*- SUBROUTINE -*/
/*- -*/
/*- Restart Global Mirror of 4-site session -*/
/*- It performs Step 4 of the overall sequence. -*/
/*- Return codes: -*/
/*- 0 : All steps executed successfully -*/
/*- ErrMsg: Message describing the problem -*/
/*---*/
RESTARTGM:

/*---*/
/*- SUBROUTINE -*/
/*- -*/
/*- Sequence to enable a practice copy on D volumes (Failover) -*/
/*- It performs Step 5 of the overall sequence. -*/
/*- Return codes: -*/
/*- 0 : All steps executed successfully -*/
/*- ErrMsg: Message describing the problem -*/
/*---*/
ENABLEPRACTICED:

IBM Systems Page 28 © IBM Copyright, 2018

/*---*/
/*- SUBROUTINE -*/
/*- -*/
/*- Check status of given taskname and run the task ID -*/
/*- Monitor task status and wait for task completion. -*/
/*- The task should contain step 1-5 of this script -*/
/*- Return codes: -*/
/*- 0 : Task found and completed successfully -*/
/*- ErrMsg: Message describing the problem -*/
/*---*/
RUNTASK:

/*---*/
/*- SUBROUTINE -*/
/*- -*/
/*- Restart 4-site session in case there was an error in the sequence -*/
/*- It performs a check whether GC or GM rolepair is in a state that might -*/
/*- require a Stop first (step R0). Then it performs a restart of -*/
/*- cascaded GC (step R1) and a restart of GM (step R2) in 4-site session -*/
/*- Return codes: -*/
/*- 0 : All steps executed successfully -*/
/*- ErrMsg: Message describing the problem -*/
/*---*/
RESTARTSESSIONS:

IBM Systems Page 29 © IBM Copyright, 2018

2.5.9.2 Check procedures

The script provides common check procedures which allow to be used with optional

timeout parameters in order to validate or wait for a given state or condition.

/*---*/
/*- SUBROUTINE -*/
/*- -*/
/*- Check all pairs in given session & role pair are in the given -*/
/*- state. Optionally specify timeout in sec how long to wait for state. -*/
/*- (It uses CSMCLI lspair -l -rolepair command) -*/
/*- Eg: call CHKPAIRSTATE(session,rolepair,state(,timeout)) -*/
/*- session : String with Session name, use '' if it includes spaces -*/
/*- rolepair: String with rolepair to use for pair state check -*/
/*- state : String with state to be validated -*/
/*- timeout : 0-3600 sec (optional, use to wait for given state) -*/
/*- Return codes: -*/
/*- 0 : All checks are OK -*/
/*- ErrMsg: Message describing the problem -*/
/*---*/
CHKPAIRSTATE:

/*---*/
/*- SUBROUTINE -*/
/*- -*/
/*- Check that session reached any of the provided states -*/
/*- Optionally specify timeout in sec how long to wait for valid state. -*/
/*- (It uses CSMCLI lssess -l command) -*/
/*- Eg: call CHKSESSSTATE(session,states(,timeout)) -*/
/*- session: String with Session name, use '' if it includes spaces -*/
/*- states : String with comma separated valid states (Use empty string -*/
/*- without timeout to update global variable with state info) -*/
/*- timeout: 0-3600 sec (optional, use to wait for given state) -*/
/*- Return codes: -*/
/*- 0 : All checks are OK -*/
/*- ErrMsg: Message describing the problem -*/
/*---*/
CHKSESSSTATE:

/*---*/
/*- SUBROUTINE -*/
/*- -*/
/*- Check given role pair in session. Optionally check whether recoverable -*/
/*- or whether progress exceeds a given percentage. -*/
/*- Optionally specify timeout in sec how long to wait for required condit. -*/
/*- (It uses CSMCLI lsrolepair -l command) -*/
/*- Eg: call CHKRP(session,rolepair,(recoverable,minprogress)(,timeout) -*/
/*- session: String with Session name, use '' if it includes spaces -*/
/*- rolepair: String with rolepair to use for pair state check -*/
/*- recoverable: (optional) Specify "YES" to validate recoverability -*/
/*- minprogress: 0-100 % (optional, min. Progress in % to be validated) -*/
/*- timeout: 0-3600 sec (optional, use to wait for given state) -*/
/*- Return codes: -*/
/*- 0 : All checks are OK -*/
/*- ErrMsg: Message describing the problem -*/
/*---*/
CHKRP:

IBM Systems Page 30 © IBM Copyright, 2018

/*---*/
/*- SUBROUTINE -*/
/*- -*/
/*- Check if task name exists and what the status is. It will update global -*/
/*- task variables with state and last error message. -*/
/*- Optionally specify if check fails if task is active. -*/
/*- Optionally specify timeout in sec how long to wait for task completion. -*/
/*- (It uses CSMCLI lstask command) -*/
/*- Eg: call CHKTASK(taskname(,vfyinactive)(,timeout)) -*/
/*- taskname: String with task name, use '' if it includes spaces -*/
/*- vfyinactive: (optional) Specify "YES" to fail check if active -*/
/*- timeout : 0-3600 sec (optional, use to wait for task completion) -*/
/*- Return codes: -*/
/*- 0 : Task found and completed successfully -*/
/*- ErrMsg: Message describing the problem -*/
/*---*/
CHKTASK:

2.5.9.3 Helper procedures

The script provides common helper procedures for reuse during the execution. The CLI
wrapper procedure as well as centralized procedures for output formatting belong to the

helper procedures.

/*---*/
/*- SUBROUTINE -*/
/*- -*/
/*- Call CSMCLI with specified cmd and verify RC & output streams. -*/
/*- Any CSMCLI framework RC <> 0 will be passed back with more error details-*/
/*- It means the command could not be sent to the server. -*/
/*- If the output streams contain a CSMCLI Error message, the full message -*/
/*- line will be returned. -*/
/*- 0 will be returned if the command was executed without Error message. -*/
/*- Eg: call CLI(command) -*/
/*- command: full single shot csmcli string including executable -*/
/*- Return codes: -*/
/*- 0 : Command was executed without error -*/
/*- ErrMsg: Message describing the problem -*/
/*---*/
CLI:

/*---*/
/*- SUBROUTINE -*/
/*- -*/
/*- Reset Global Session variables (e.g. prior new CSMCLI queries) -*/
/*---*/
RESETGLOBALS:

/*---*/
/*- SUBROUTINE -*/
/*- -*/
/*- Prepare system environment for script execution. -*/
/*- It verifies whether the platform is supported by the script and if so -*/

IBM Systems Page 31 © IBM Copyright, 2018

/*- it prepares the environment for execution. -*/
/*- Return codes: -*/
/*- 0 : Preparation completed successfully -*/
/*- ErrMsg: Message describing the problem -*/
/*---*/
PREPAREENV:

/*---*/
/*- SUBROUTINE -*/
/*- -*/
/*- Create common prefix for messages -*/
/*- Eg: LOGI(message) -*/
/*- message: String to be formatted with prefix -*/
/*---*/
LOGI:

/*---*/
/*- SUBROUTINE -*/
/*- -*/
/*- Create common prefix for Step messages -*/
/*- Eg: LOGS(stepnum,message) -*/
/*- stepnum: Step number to be used in prefix -*/
/*- message: String to be formatted with prefix -*/
/*---*/
LOGS:

/*---*/
/*- SUBROUTINE -*/
/*- -*/
/*- Create common prefix for debug messages -*/
/*- Eg: LOGD(dbglvl,message) -*/
/*- dbgnum : Debug level to be used in prefix -*/
/*- message: String to be formatted with prefix -*/
/*---*/
LOGD:

/*---*/
/*- SUBROUTINE -*/
/*- -*/
/*- Calculate runtime and format to mm:ss.s based on provided start time -*/
/*- Eg: call GETRUNTIME(starttime) -*/
/*- starttime: Start time saved with time('E') to use for calculation -*/
/*---*/
GETRUNTIME:

/*---*/
/*- SUBROUTINE -*/
/*- -*/
/*- Get delay depending on given timeout. Returns -1 for invalid timeouts. -*/
/*- Eg: call GETDELAY(timeout) -*/
/*- timeout: Overall timeout to calculate appropriate delay (0-3600 sec)-*/
/*---*/
GETDELAY:

IBM Systems Page 32 © IBM Copyright, 2018

/*---*/
/*- SUBROUTINE -*/
/*- -*/
/*- Wait x seconds, utilizing USS system call -*/
/*- Eg: call WAIT(time) -*/
/*- time: Number of seconds to wait -*/
/*---*/
WAIT:

IBM Systems Page 33 © IBM Copyright, 2018

3 Session automation via CSM Scheduled Tasks
CSM 6.2.1 introduced a new feature to create ‘Scheduled Tasks’ which can be run on

demand or at regular schedules. In the original release, only Flash commands could be
defined for sessions which support the Flash command. In CSM 6.2.2, the Scheduled
Task feature was significantly enhanced to define multiple steps per task and the possible

actions have been enhanced to all sessions and any management command that is
supported by the session. Additionally, a new action type to wait for a specific state was
introduced. With those enhancements, much more complex session scenarios can be

defined as a scheduled task. Since CSM 6.2.7, two additional actions types have been

introduced.

Following action types can be defined within a task as of CSM 6.2.7:

• Command action (CSM 6.2.1 or higher)

This action type will run the selected session command against the selected session.

If the command fails, the task execution will stop with an error message.

• Wait for state action (CSM 6.2.3 or higher)

This action type will wait with further processing until the selected session reaches the
selected state. You can specify a time-out in minutes for the maximum time to wait. If
the state is not reached within the time-out, the action will fail and the task execution

will stop with an error message.

• Wait for percent complete action (CSM 6.2.7 or higher)

This action type will wait with further processing until the selected role pair of the

selected session reaches the selected progress percentage. You can specify a time-
out in minutes for the maximum time to wait. If the progress is not reached within the

time-out, the action will fail and the task execution will stop with an error message.

• Validate role pair consistency action (CSM 6.2.7 or higher)

This action type will verify if all pairs in the selected role pair of the selected session
are in a recoverable state. If not, the action will fail and the task execution will stop

with an error message.

Note: The CSM scheduled task capabilities might be further enhanced in future CSM
releases. This chapter describes the advanced task capabilities as available with CSM

6.2.7.

3.1 Scheduled Task introduction

Scheduled tasks in CSM can be run against single or multiple sessions. The tasks can
either be scheduled to run on defined intervals, or if the scheduled task is deactivated or

has no schedule defined, it can also be run on demand only.

The detailed procedure to create scheduled tasks can be found in the CSM Knowledge

Center:

• https://www.ibm.com/support/knowledgecenter/SSESK4_6.2.7/com.ibm.storage.csm.h
elp.doc/csm_t_creating_scheduled_tasks.html

As of CSM 6.2.7, scheduled tasks can only be configured through the Graphical User
Interface. However, the CSMCLI allows to list, execute and monitor pre-defined tasks to

allow external automation or scheduling software to utilize the CSM tasks as well.

https://www.ibm.com/support/knowledgecenter/SSESK4_6.2.7/com.ibm.storage.csm.help.doc/csm_t_creating_scheduled_tasks.html
https://www.ibm.com/support/knowledgecenter/SSESK4_6.2.7/com.ibm.storage.csm.help.doc/csm_t_creating_scheduled_tasks.html

IBM Systems Page 34 © IBM Copyright, 2018

A single task can act on multiple CSM sessions and wait for specific states after each
command before executing the next step. The only limitation of scheduled tasks is that

we cannot define conditional based execution. As such we cannot define automated
actions to be taken if certain steps of the task fail. In case of an error or timeout in a single

step, the whole task execution will be aborted.

However, a major advantage of the provided scheduled task capability is the overall
execution performance, since it directly integrates into the server with event driven state

changes. Unlike external automation scripts, a scheduled task does not consume
overhead time for launching the CSMCLI framework for each command execution or
querying repetitively in intervals when waiting for specific states. Wait for State or Wait

for percent complete actions are completed immediately once the condition is met on the
server. Therefore the overall execution time of an advanced action sequence is shorter

than the execution time via a CSMCLI automation script.

With the task monitor and control capabilities available in the CSMCLI, you can combine
the benefits of either automation capability. For instance, you can pre-define a CSM

task containing pre-checks and a fixed command sequence (including validation steps
as necessary). This ensures fastest possible execution and validation of the command
sequence. In the CSMCLI script which will just execute the pre-defined task, you can

monitor completion status and eventually react on errors that might happen in the task.
In the script example that is discussed in chapter ‘2.5.1 Program Flow overview’, you
get an idea how such an optional task execution can be structured in a customized

CSMCLI script.
You can also find additional information about CSM scheduled tasks in Appendix A of
the Redpaper: DS8000 4-Site Replication with IBM Copy Services Manager, REDP-

5517-00
• http://www.redbooks.ibm.com/redpieces/pdfs/redp5517.pdf

3.2 Create Scheduled Task with multiple actions

To create a scheduled task, click Settings > Scheduled Tasks. On the Scheduled Tasks

panel, click Create Task... This will open the Scheduled Task wizard.

http://www.redbooks.ibm.com/redpieces/pdfs/redp5517.pdf

IBM Systems Page 35 © IBM Copyright, 2018

In the first task panel, you can define the task name, a more detailed description and

optionally enable the creation of a PePackage if the task should fail at any step.

Click Next to proceed to the schedule panel.

Specify the required schedule for your task. This can be a regular interval per day, or a

defined time at specific weekdays. If your task should not run automatically, select No

schedule on this panel. Click Next to proceed to the Actions panel.

IBM Systems Page 36 © IBM Copyright, 2018

On the Action panel you can add any number of actions for the task. To add a new action,
click Add Action, which will open the Add Action wizard. Depending on the CSM release,

you can select various actions types.

To create a new session Command action, select type Command, then select the
session, and last select the command that you want to run against the selected session.

Only commands which are supported by the selected session type will be listed in the

command list.

IBM Systems Page 37 © IBM Copyright, 2018

If you need to define multiple Actions to specific sessions only, you can use the Filter
option for your session name to shorten the session list This filter will persist during the

whole task creation.

In the following example we want to run a Start H1->H2->H3 against a multi target session

with Metro Mirror and Global Mirror.

Click OK to create the action and return to the Actions panel.

IBM Systems Page 38 © IBM Copyright, 2018

Next we add another action to wait for the session being prepared. Click on Add Action

to add a new Wait for State action for the same session.

In each Wait for State action, you have to specify a timeout in minutes. Since we have a
small session which is replicated in a couple of minutes, we select a timeout that is larger

than the average replication time, e.g. 30 minutes. Click OK to add this second action to

the task.

IBM Systems Page 39 © IBM Copyright, 2018

Once all actions for the task are defined, click Next to see a summary of the task you are

going to create.

You can always go back to previous panels and modify your input before you complete

the task creation.

Click Finish to create the task and return to the Scheduled Tasks panel.

Per default, any newly created task shows a status of Disabled. A disabled task means it

does not run at the specified schedule if a schedule was defined for the task.

IBM Systems Page 40 © IBM Copyright, 2018

If you want to run a task automatically at the specified schedule, select the task, click on
Actions…and Enable the task. From the Action menu you can also run the task on

demand by clicking Run Task.

If the task has no schedule defined, you cannot enable the task. You can only run the

task immediately.

3.3 Modify Scheduled Task with multiple actions

You can easily modify scheduled tasks if you need to change name, description, schedule,
change the order of actions or insert/remove any of the actions or modify any of the

actions itself. To modify a scheduled task, select the task and click Actions…Modify.

It will open the Modify Task wizard, which looks similar to the Create task wizard but is

already prefilled with the information from the selected task.

IBM Systems Page 41 © IBM Copyright, 2018

Simply click through the panels any modify the desired values. Once you reached the
Modify Actions panel, perform necessary action changes as required. For instance, in
order to change the timeout of our Wait for Prepared State action, select the action and

click on Modify Action.

In the Modify Action panel, you can change any of the action properties. You can even

switch it to a Command Action if desired. In this example, we just decrease the timeout

from 30 to 20 minutes and click OK.

IBM Systems Page 42 © IBM Copyright, 2018

Once you are finished with your modifications, click on Next to review the task summary
and Finish to save your changes. You will get a final confirmation that your changes have

been saved.

3.4 Manage Scheduled Tasks

You can find all defined tasks in the Scheduled Tasks GUI panel. This can be found under
Settings -> Scheduled Tasks. To manage a task, select the task and click on

Actions…

IBM Systems Page 43 © IBM Copyright, 2018

Following Actions are possible for a task:

• Modify Task : Make changes to the task, schedule, actions within the task

• Remove Task : Delete the task permanently

• Run Task : Execute the task on demand

• Enable Task : Enable the defined schedule for the task for automatic execution

• Disable Task : Disable the defined schedule for the task (No automatic execution)

Starting with CSM 6.2.7, when you enable a task with an hourly schedule, you can also
select if the task is enabled Now, or define a day and time when the regular task should

be enabled in the future.

3.4.1 Scheduled execution

In order to determine whether there are tasks that will be executed automatically, you can
look for an Enabled status in the table. Enabled tasks will also show a timestamp in the

Next Run Time column.

The table also shows when the scheduled tasks have been run the last time and what the

last message was. Click on the message link to get more details of the message.

IBM Systems Page 44 © IBM Copyright, 2018

3.4.2 On demand execution

In order to run any task on demand, select the task, click Actions…Run Task.

You need to confirm that you really want to run the selected task, click Yes.

Next you will see a confirmation that the task was started.

Click OK to close the information popup and return to the Scheduled Tasks panel.

3.4.3 Task monitoring

Running tasks can be identified in the Scheduled Tasks GUI panel. The status column

shows a Running status while a task is being executed.

IBM Systems Page 45 © IBM Copyright, 2018

While the task is running, you can follow the detailed progress in the CSM Console log.

Click on Console to open the console log panel. In the upper right corner, click on the
small icon with the arrow in the window to open the console log in a new window and

keep it open while continuing navigation in the CSM GUI.

There are separate messages that mark the start and the completion of a task:

normal Mar 26, 2018 4:54:59 PM : Server : IWNR2211I : The scheduled task My Task has started running.
…..
normal Mar 26, 2018 4:55:23 PM : Server : IWNR2212I : The scheduled task My Task has finished running.

When you look for task messages, you should be aware that CSM currently does not log
specific step messages for Command Actions. You will see just the standard command

output the same way as running the command in the session itself. However, you will see

that the command was issued by the Server instead of a CSM user:

normal Mar 26, 2018 4:54:59 PM : Server : IWNR1028I : The Start H1->H2 H1->H3 command in the 4S-MMGM session was issued.

The Wait for State actions however log individual step messages once completed:

normal Mar 26, 2018 4:55:23 PM : Server : IWNR2220I : The scheduled task My Task in step 2 found session 4S-MMGM moved to state
Prepared in 0 minutes.

IBM Systems Page 46 © IBM Copyright, 2018

Following is the complete console log for the execution of the example task we created
previously. The task was executed while the session 4S-MMGM was in state Suspended

with no changes to the primary volumes. Therefore it moved to Prepared state very

quickly. Each task step entry is marked in blue:

normal Mar 26, 2018 4:54:59 PM : csmadmin : IWNR2208I : Forcing the scheduled task My Task to run now.
normal Mar 26, 2018 4:54:59 PM : Server : IWNR2211I : The scheduled task My Task has started running.
normal Mar 26, 2018 4:54:59 PM : Server : IWNR1028I : The Start H1->H2 H1->H3 command in the 4S-MMGM session was issued.
normal Mar 26, 2018 4:54:59 PM : Server : IWNR6016I : Configuring paths for role pair H2-H3...
normal Mar 26, 2018 4:55:10 PM : Server : IWNR6016I : Configuring paths for role pair H2-H3...
normal Mar 26, 2018 4:55:10 PM : Server : IWNR6004I : Recovering all pairs in role pair H2-H3 ...
normal Mar 26, 2018 4:55:10 PM : Server : IWNR6000I : Starting all pairs in role pair H1-H2 ...
normal Mar 26, 2018 4:55:10 PM : Server : IWNR6006I : Waiting for all pairs in role pair H1-H2 to reach a state of Prepared. See help for

list of actions if transition is taking too long...
normal Mar 26, 2018 4:55:10 PM : Server : IWNR6000I : Starting all pairs in role pair H1-H3 ...
normal Mar 26, 2018 4:55:10 PM : Server : IWNR6008I : Waiting for all pairs in role pair H1-H3 to complete their first phase in the Global

Copy synchronization or resynchronization ...
normal Mar 26, 2018 4:55:10 PM : Server : IWNR1950I : Session 4S-MMGM changed from the Suspended state to the Preparing state.
normal Mar 26, 2018 4:55:10 PM : Server : IWNR1960I : Session 4S-MMGM has changed from Severe status to Warning status.
normal Mar 26, 2018 4:55:10 PM : Server : IWNR1026I : The Start H1->H2 H1->H3 command in the 4S-MMGM session completed.
normal Mar 26, 2018 4:55:11 PM : Server : IWNR6000I : Starting all pairs in role pair H1-J3 ...
normal Mar 26, 2018 4:55:19 PM : Server : IWNR1041I : The command start was successfully issued to all pairs under role pair H1-J3

for session 4S-MMGM.
normal Mar 26, 2018 4:55:22 PM : Server : IWNR1950I : Session 4S-MMGM changed from the Preparing state to the Prepared state.
normal Mar 26, 2018 4:55:22 PM : Server : IWNR1960I : Session 4S-MMGM has changed from Warning status to Normal status.
normal Mar 26, 2018 4:55:23 PM : Server : IWNR2220I : The scheduled task My Task in step 2 found session 4S-MMGM moved to state

Prepared in 0 minutes.
normal Mar 26, 2018 4:55:23 PM : Server : IWNR2212I : The scheduled task My Task has finished running.

IBM Systems Page 47 © IBM Copyright, 2018

3.5 Remove Scheduled Tasks

A task can also be permanently deleted in the Scheduled Tasks GUI panel. To delete a

task, select the task, click on Actions…Remove Task.

You need to confirm that you want to remove the selected Task. Click Yes to proceed.

Next you will see a confirmation that the task was removed.

Click OK to close the information popup and return to the Scheduled Tasks panel. The

deleted task disappeared from the Scheduled Tasks table.

IBM Systems Page 48 © IBM Copyright, 2018

3.6 Advanced Scheduled Task example

Similar to the automation script example that is described in this paper, we can
automate advanced command sequences via a scheduled task. The described task in

this example will demonstrate how a consistent practice copy on 4th site can be created
in a 4 site replication topology. It is the same sequence of a CSM MM-GM with site 4
replication session as described in ‘2.5 Script example’.

3.6.1 Task and Actions definition

Following table shows the required actions which need to be defined for such a task. The
4 action steps marked in blue (2,3,8 and 15) are new action types and require CSM 6.2.7

or higher. The blue timeout and progress values are parameters that should be adjusted

to your requirements.

Note: The timeout of 0 minutes for the first 3 actions should remain unchanged for initial
validation steps in the sequence to ensure that the session commands will be triggered

only when the session is in a specific condition.

Step Action Command/State/Parms Timeout Comment

1 Wait for State Prepared 0 min
2 Wait for percent

complete
97% of H1-H3 0 min Ensure GM has sufficient progress

to limit GM RPO impact
Requires CSM 6.2.7

3 Wait for percent
complete

97% of H3-H4 0 min Ensure GC has sufficient progress
to limit GM RPO impact
Requires CSM 6.2.7

4 Command SuspendH1H3 will transition to Suspending

5 Wait for State Suspended (Partial) 3 min
6 Command FailoverH3 will transition to Failing Over

7 Wait for State Suspended (Partial) 3 min
8 Validate role pair

consistency
H1-H3 Ensure H3 is consistent

Requires CSM 6.2.7

9 Command SuspendH3-H4 3 min will transition to Draining
10 Wait for State Suspended (Partial) 3 min

11 Command StartGMH1-H3 Start GM first to limit RPO impact,
will transition to Preparing

12 Wait for State Prepared 5 min
13 Command FailoverH4 will transition to Failing Over

14 Wait for State Prepared 1 min
15 Validate role pair

consistency
H3-H4 Ensure H4 is consistent

Requires CSM 6.2.7

Following is the task overview in the GUI:

IBM Systems Page 49 © IBM Copyright, 2018

3.6.2 Task execution

When the task is run, you can follow the progress in the CSM Console log. Following is

the output produced by this task. Note that the command actions do not log step specific
messages to the console, but just the standard output as running the command in the
session itself. The Wait for State actions log individual step messages. Each step entry

is marked in blue:

normal Jan 16, 2020 1:53:04 PM : csmadmin : IWNR2208I : Forcing the scheduled task MMGMGC-PracticeD to run now.
normal Jan 16, 2020 1:53:04 PM : Server : IWNR2211I : The scheduled task MMGMGC-PracticeD has started running.
normal Jan 16, 2020 1:53:04 PM : Server : IWNR2220I : The scheduled task MMGMGC-PracticeD in step 1 found session DS-

MMGMGC moved to state Prepared in 0 minutes.
normal Jan 16, 2020 1:53:04 PM : Server : IWNR2224I : The scheduled task MMGMGC-PracticeD in step 2 found session DS-

MMGMGC and role pair H1-H3 moved to 97 percent complete in 0 minutes.
normal Jan 16, 2020 1:53:04 PM : Server : IWNR2224I : The scheduled task MMGMGC-PracticeD in step 3 found session DS-

MMGMGC and role pair H3-H4 moved to 97 percent complete in 0 minutes.
normal Jan 16, 2020 1:53:04 PM : Server : IWNR1028I : The SuspendH1H3 command in the DS-MMGMGC session was issued.
normal Jan 16, 2020 1:53:04 PM : Server : IWNR6005I : Pausing all pairs in role pair H1-J3 ...
normal Jan 16, 2020 1:53:04 PM : Server : IWNR6006I : Waiting for all pairs in role pair H1-J3 to reach a state of Suspended. See help

for list of actions if transition is taking too long...
normal Jan 16, 2020 1:53:04 PM : Server : IWNR1950I : Session DS-MMGMGC changed from the Prepared state to the Suspending

state.
warning Jan 16, 2020 1:53:04 PM : Server : IWNR1959W : Session DS-MMGMGC has changed from Normal status to Warning status.
normal Jan 16, 2020 1:53:04 PM : Server : IWNR1026I : The SuspendH1H3 command in the DS-MMGMGC session completed.
normal Jan 16, 2020 1:53:05 PM : Server : IWNR1950I : Session DS-MMGMGC changed from the Suspending state to the Suspended

(Partial) state.
warning Jan 16, 2020 1:53:05 PM : Server : IWNR1959W : Session DS-MMGMGC has changed from Warning status to Severe status.
normal Jan 16, 2020 1:53:05 PM : Server : IWNR2220I : The scheduled task MMGMGC-PracticeD in step 5 found session DS-

MMGMGC moved to state Suspended (Partial) in 0 minutes.
normal Jan 16, 2020 1:53:05 PM : Server : IWNR1028I : The FailoverH3 command in the DS-MMGMGC session was issued.
normal Jan 16, 2020 1:53:05 PM : Server : IWNR6004I : Recovering all pairs in role pair H1-J3 ...
normal Jan 16, 2020 1:53:07 PM : Server : IWNR1950I : Session DS-MMGMGC changed from the Suspended (Partial) state to the

Failing Over state.
normal Jan 16, 2020 1:53:07 PM : Server : IWNR1960I : Session DS-MMGMGC has changed from Severe status to Normal status.
normal Jan 16, 2020 1:53:07 PM : Server : IWNR6012I : Flashing all pairs in role pair H3-J3 ...
normal Jan 16, 2020 1:53:07 PM : Server : IWNR1041I : The command flash was successfully issued to all pairs under role pair H3-J3

for session DS-MMGMGC.

IBM Systems Page 50 © IBM Copyright, 2018

normal Jan 16, 2020 1:53:07 PM : Server : IWNR1950I : Session DS-MMGMGC changed from the Failing Over state to the Suspended
(Partial) state.

warning Jan 16, 2020 1:53:07 PM : Server : IWNR1959W : Session DS-MMGMGC has changed from Normal status to Severe status.
normal Jan 16, 2020 1:53:07 PM : Server : IWNR1026I : The FailoverH3 command in the DS-MMGMGC session completed.
normal Jan 16, 2020 1:53:07 PM : Server : IWNR2220I : The scheduled task MMGMGC-PracticeD in step 7 found session DS-

MMGMGC moved to state Suspended (Partial) in 0 minutes.
normal Jan 16, 2020 1:53:07 PM : Server : IWNR2227I : The scheduled task MMGMGC-PracticeD in step 8 found role pair H1-H3 in

session DS-MMGMGC was recoverable.
normal Jan 16, 2020 1:53:07 PM : Server : IWNR1028I : The SuspendH3H4 command in the DS-MMGMGC session was issued.
normal Jan 16, 2020 1:53:07 PM : Server : IWNR6015I : Waiting until all pairs in role pair H3-H4 have copied 100% of their data.
normal Jan 16, 2020 1:53:07 PM : csmadmin : IWNR1950I : Session DS-MMGMGC changed from the Suspended (Partial) state to the

Draining state.
normal Jan 16, 2020 1:53:07 PM : csmadmin : IWNR1960I : Session DS-MMGMGC has changed from Severe status to Warning status.
normal Jan 16, 2020 1:53:07 PM : Server : IWNR1026I : The SuspendH3H4 command in the DS-MMGMGC session completed.
normal Jan 16, 2020 1:53:07 PM : Server : IWNR6002I : Suspending all pairs in role pair H3-H4 ...
normal Jan 16, 2020 1:53:08 PM : Server : IWNR1041I : The command freeze was successfully issued to all pairs under role pair H3-H4

for session DS-MMGMGC.
normal Jan 16, 2020 1:53:08 PM : Server : IWNR6020I : Releasing I/O for all pairs in role pair H3-H4...
normal Jan 16, 2020 1:53:08 PM : Server : IWNR1041I : The command thaw was successfully issued to all pairs under role pair H3-H4

for session DS-MMGMGC.
normal Jan 16, 2020 1:53:08 PM : Server : IWNR6019I : Verifying the consistency of role pair H3-H4...
normal Jan 16, 2020 1:53:08 PM : Server : IWNR1041I : The command checkConsistency was successfully issued to all pairs under role

pair H3-H4 for session DS-MMGMGC.
normal Jan 16, 2020 1:53:08 PM : csmadmin : IWNR1950I : Session DS-MMGMGC changed from the Draining state to the Suspended

(Partial) state.
warning Jan 16, 2020 1:53:08 PM : csmadmin : IWNR1959W : Session DS-MMGMGC has changed from Warning status to Severe

status.
normal Jan 16, 2020 1:53:09 PM : Server : IWNR2220I : The scheduled task MMGMGC-PracticeD in step 10 found session DS-

MMGMGC moved to state Suspended (Partial) in 0 minutes.
normal Jan 16, 2020 1:53:09 PM : Server : IWNR1028I : The StartGM H1->H3 command in the DS-MMGMGC session was issued.
normal Jan 16, 2020 1:53:09 PM : Server : IWNR6003I : Terminating all pairs in role pair H1-J1 ...
normal Jan 16, 2020 1:53:09 PM : Server : IWNR6004I : Recovering all pairs in role pair H2-H3 ...
normal Jan 16, 2020 1:53:09 PM : Server : IWNR6004I : Recovering all pairs in role pair H2-J3 ...
normal Jan 16, 2020 1:53:10 PM : Server : IWNR6000I : Starting all pairs in role pair H1-H3 ...
normal Jan 16, 2020 1:53:12 PM : csmadmin : IWNR1950I : Session DS-MMGMGC changed from the Suspended (Partial) state to the

Preparing state.
warning Jan 16, 2020 1:54:08 PM : Server : IWNR6030W : The pairs in role pair H3-H4 are not replicating the latest data from role pair

H1-H3.
normal Jan 16, 2020 1:54:08 PM : Server : IWNR1960I : Session DS-MMGMGC has changed from Severe status to Warning status.
normal Jan 16, 2020 1:54:08 PM : Server : IWNR6008I : Waiting for all pairs in role pair H1-H3 to complete their first phase in the Global

Copy synchronization or resynchronization ...
normal Jan 16, 2020 1:54:08 PM : Server : IWNR1026I : The StartGM H1->H3 command in the DS-MMGMGC session completed.
normal Jan 16, 2020 1:54:08 PM : Server : IWNR6000I : Starting all pairs in role pair H1-J3 ...
normal Jan 16, 2020 1:55:16 PM : Server : IWNR1041I : The command start was successfully issued to all pairs under role pair H1-J3 for

session DS-MMGMGC.
normal Jan 16, 2020 1:55:20 PM : csmadmin : IWNR1950I : Session DS-MMGMGC changed from the Preparing state to the Prepared

state.
normal Jan 16, 2020 1:55:21 PM : Server : IWNR2220I : The scheduled task MMGMGC-PracticeD in step 12 found session DS-

MMGMGC moved to state Prepared in 1 minutes.
normal Jan 16, 2020 1:55:21 PM : Server : IWNR1028I : The FailoverH4 command in the DS-MMGMGC session was issued.
normal Jan 16, 2020 1:55:21 PM : Server : IWNR6004I : Recovering all pairs in role pair H3-H4 ...
warning Jan 16, 2020 1:55:21 PM : Server : IWNR6030W : The pairs in role pair H3-H4 are not replicating the latest data from role pair

H1-H3.
normal Jan 16, 2020 1:55:21 PM : Server : IWNR1026I : The FailoverH4 command in the DS-MMGMGC session completed.
normal Jan 16, 2020 1:55:21 PM : Server : IWNR2220I : The scheduled task MMGMGC-PracticeD in step 14 found session DS-

MMGMGC moved to state Prepared in 0 minutes.
normal Jan 16, 2020 1:55:21 PM : Server : IWNR2227I : The scheduled task MMGMGC-PracticeD in step 15 found role pair H3-H4 in

session DS-MMGMGC was recoverable.
normal Jan 16, 2020 1:55:21 PM : Server : IWNR2212I : The scheduled task MMGMGC-PracticeD has finished running.

IBM Systems Page 51 © IBM Copyright, 2018

4 CSM session automation conclusion
We discussed various options how CSM session automation can be implemented. Some

are easy to implement and good enough to perform simple automation tasks. Other
options like CSMCLI scripting are more complex to implement but provide most flexibility

to accomplish any complex session or even CSM server task.

If runtime performance plays a significant role for your automation, you should evaluate
whether the necessary actions can be implemented as a CSM Scheduled Task (requires

CSM 6.2.1 or later). The CSM task actions are controlled by the CSM server itself and
wait states are event driven which avoids unnecessary wait times. If we compare the
overall runtimes from the CSM task described in ‘3.6.2 Task execution’ and the Rexx

script runtime show in ‘7 Appendix: Output of REXX Script example’ for the same session

configuration, we can see following:

• CSM task run time : ~ 137 seconds

• Rexx script commands run time : ~ 186 seconds

The additional script run time is the overhead we have for launching the CSMCLI
framework to execute the commands and the additional delays we accumulate in the

intervals while waiting for specific states.

On the other hand, the Rexx script can handle conditional based execution and as such
automatically limit the impact that might be caused if the creation of the practice copy

should fail at any step.

An optimized approach might be to automate CSM task execution via Rexx script in order

to use best runtime performance for a CSM session command sequence, but still being
able to handle recovery steps via CSMCLI commands or other CSM tasks in case the

core task execution will fail.

At the end, your automation requirements will determine the most suitable implementation
option for your unique environment and hopefully this paper will give you the necessary

guidelines and examples to implement your CSM session automation easily.

IBM Systems Page 52 © IBM Copyright, 2018

5 References

5.1 CSM and DS8000 Copy Services

1. IBM Copy Services Manager Knowledge Center

https://www.ibm.com/support/knowledgecenter/SSESK4/csm_kcwelcome.html

2. Redbook: IBM Copy Services Manager Implementation Guide, SG24-8375-00

http://www.redbooks.ibm.com/abstracts/sg248375.html?Open

3. Redpaper: DS8000 4-Site Replication with IBM Copy Services Manager, REDP-

5517-00

http://www.redbooks.ibm.com/redpieces/abstracts/redp5517.html?Open

4. Redbook: IBM DS8000 Copy Services, SG24-8367-00

http://www.redbooks.ibm.com/abstracts/sg248367.html?Open

5. Redpaper: IBM DS8880 Integrated Copy Services Manager and LDAP Client on
the HMC, REDP-5356-00

http://www.redbooks.ibm.com/abstracts/redp5356.html?Open

5.2 Rexx Scripting

1. z/OS 2.3 TSO/E REXX User's Guide
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v

2r3.ikjc300/abstract.htm

2. Regina Rexx, portable Rexx Interpreter

https://regina-rexx.sourceforge.io/

3. Brexx, lightweight open source implementation of Rexx

https://sourceforge.net/projects/brexx/

4. Open Object Rexx
http://www.oorexx.org/about.html

5. Free Resources for Rexx Programmers

http://www.rexxinfo.org/

https://www.ibm.com/support/knowledgecenter/SSESK4/csm_kcwelcome.html
http://www.redbooks.ibm.com/abstracts/sg248375.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/redp5517.html?Open
http://www.redbooks.ibm.com/abstracts/sg248367.html?Open
http://www.redbooks.ibm.com/abstracts/redp5356.html?Open
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ikjc300/abstract.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ikjc300/abstract.htm
https://regina-rexx.sourceforge.io/
https://sourceforge.net/projects/brexx/
http://www.oorexx.org/about.html
http://www.rexxinfo.org/

IBM Systems Page 53 © IBM Copyright, 2018

6 Appendix: REXX Script example
This example script contains the various CSMCLI scripting concepts as discussed in this

paper. It can be reused as framework for your own scripting. The included procedures

have been coded in a way to be commonly reusable for other scenarios as well.

0001 /* REXX */
0002
0003 /***/
0004 /* IBM Copy Services Manager script to create practice copy on 4th site: */
0005 /* --- */
0006 /* It uses the CSMCLI to create a consistent practice copy on 4th site of a */
0007 /* four site replication topology with a MM-GM-GC 4-site session. */
0008 /* */
0009 /* These process steps are used: */
0010 /* ---------------------------- */
0011 /* 0) Check for Prepared state of H1-J3 pairs in session and Preparing */
0012 /* State of H3-H4 pairs in cascaded GC role pair with progress >= xx %) */
0013 /* 1) Suspend H1-H3 (GM leg) of session and wait until suspended */
0014 /* 2) FailoverH3 of session and wait until completed */
0015 /* Wait for previous Suspended (Partially) state and check H1-H3 */
0016 /* is recoverable and all H1-H3 pairs are Target Available */
0017 /* 3) Suspend cascaded GC of H3-H4 and wait until Suspended */
0018 /* 4) StartGM H1-H3 (GM leg) of session to minimize GM RPO impact */
0019 /* Wait for Prepared state of all H1-H3 pairs */
0020 /* 5) Failover cascaded GC of H3-H4 and wait until Target Available */
0021 /* Check that H3-H4 is recoverable */
0022 /* If there are errors in step 1-5 or in an optional task that is executed, */
0023 /* the script will try to restore original GM and cascaded GC replication. */
0024 /* */
0025 /* Optional Input Parameters: */
0026 /* -------------------------- */
0027 /* acsm=addr: Hostname or IP address of CSM server having the Active role. */
0028 /* This will overwrite the defined 'actcsm' value of the script. */
0029 /* sess=name: Name of the 4-site session to be used. */
0030 /* This will overwrite the defined 'deffsess' value of the script.*/
0031 /* Name is case sensitive and single/double quotes must be used */
0032 /* if it contains spaces. Either session name is required. */
0033 /* task=name: Name of the 4-site session scheduled task to be used instead */
0034 /* of script steps 1-5 (Optional). Script will then run the task, */
0035 /* monitor its completion, and restore replication in case of task*/
0036 /* error. Name is case sensitive and single/double quotes must be */
0037 /* used if it contains spaces. */
0038 /* pchk=off : This will disable the Pre-Checks of the script (step 0). It */
0039 /* can be used if proper pre-checks are included in a given task. */
0040 /* dbug=lvl : This will set the debug level of the script. It can be used to */
0041 /* increase output details in case of unexpected errors. */
0042 /* Supported levels are 0 (default), 2 and 9 */
0043 /* */
0044 /* The script has following overall return codes: */
0045 /* -- */
0046 /* 0 :Practice Copy was created and GM is back in Prepared state */
0047 /* 4 :Practice Copy was created, but GM could not be restarted within timeout*/
0048 /* 8 :Practice Copy creation failed, but previous replication was restarted */
0049 /* 12:Precheck error or practice copy as well as replication restart failed */
0050 /* 16:System environment for script cannot be established or missing parms */
0051 /* */
0052 /* Copyright IBM 2019, Author: Thomas Luther */
0053 /***/
0054
0055 /* Modify environment for script */
0056 pricsm = "" /* Primary CSM server IP/Name */
0057 seccsm = "" /* Secondary CSM server IP/Name */

IBM Systems Page 54 © IBM Copyright, 2018

0058 actcsm = pricsm /* CSM server with Active role */
0059 stdcsm = seccsm /* CSM server with Standby role */
0060
0061 /* Define def. parameters, extra single quotes are mandatory if space in name*/
0062 defsess = "''" /* Name of active MM-GM-GC session */
0063 deftask = "''" /* Name of task to run alternatively */
0064
0065 /* Modify scenario parameters as required */
0066 gcprog = 97 /* Min. prog % of GC rolepair at start */
0067 gmsuspto = 300 /* max sec. for GM Suspend completion */
0068 gcsuspto = 120 /* max sec. for GC Suspend completion */
0069 frrto = 120 /* max sec. for FRR completion */
0070 mmrecto = 60 /* max sec. for MM Recovery completion */
0071 gmstartto = 300 /* max sec. for GM Restart completion */
0072 gcstartto = 60 /* max sec. for GC Restart completion */
0073 gcstopto = 120 /* max sec. for GC Stop (err. recovery)*/
0074 taskto = 600 /* max sec. for task duration */
0075
0076 /* Mofify environment for CSMCLI calls */
0077 env.0 = 2 /* # of entries in env. */
0078 env.1 = "HOME=/u/username" /* Home for auth file */
0079 env.2 = "PATH=/opt/IBM/CSM/CLI/" /* Path to csmcli.sh */
0080 cliex = "csmcli.sh -noinfo" /* default executable */
0081 dlmch = ";" /* Delimiter char for output */
0082 /* Note: This script does not include CSMCLI username or password. It relies */
0083 /* that the CSMCLI authentication properties file is setup in the CSM-CLI */
0084 /* subfolder of the specified HOME folder: */
0085 /* <HOME>/csm-cli/csmcli-auth.properties */
0086
0087 /* Set Debug level for additional output */
0088 debug = 0 /* Set >0 for more debug output */
0089 /* 2: print more output of procedures */
0090 /* 9: print also CSMCLI call details */
0091
0092
0093 /* Define output formatting */
0094 tab = " " /* Tab to structure sub output */
0095 line = left("-",79,"-")
0096
0097 /* Define global Session variables to keep latest info from last query */
0098 GSname = "" /* Session Name */
0099 GSstate= "" /* Session State */
0100 GSrp = "" /* Specific Role Pair if applicable */
0101 GShost = "" /* Session active Host */
0102 GSrecov= "" /* Recoverability of Session/Rolepair */
0103 GSprog = "" /* Progress of Rolepair */
0104 GScpset= "" /* Qty of Copy Sets in Session */
0105
0106 /* Get Session parameters */
0107 parse arg parms
0108
0109 /* extract parms and assign values*/
0110 s4sess = ""
0111 s4task = ""
0112 s4pchk = ""
0113 prest = parms
0114 do while prest <> ""
0115 parse var prest parm '=' prest
0116 if prest <> "" then do
0117 /* extract word before = */
0118 parm = translate(word(parm,words(parm)))
0119 qchar = left(word(prest,1),1)
0120 if qchar = '"' | qchar = "'" then do
0121 /* lookup matching quote char for full value*/
0122 parse var prest (qchar) pval (qchar) prest

IBM Systems Page 55 © IBM Copyright, 2018

0123 end
0124 else do
0125 pval = word(prest,1)
0126 end
0127 if parm = "SESS" & pval <> "" then do
0128 s4sess = pval
0129 end
0130 else if parm = "TASK" & pval <> "" then do
0131 s4task = pval
0132 end
0133 else if parm = "PCHK" & translate(pval) = "OFF" then do
0134 s4pchk = "DISABLED"
0135 end
0136 else if parm = "ACSM" & pval <> "" then do
0137 actcsm = pval
0138 end
0139 else if parm = "DBUG" & pval <> "" then do
0140 if datatype(pval,'W') then do
0141 if pval > 0 then debug = pval
0142 end
0143 end
0144 end
0145 end
0146
0147 /* Set defaults if no parameter defined */
0148 if s4pchk = "" then s4pchk = "ENABLED" /* Precheck enabled per default */
0149 if s4sess = "" then s4sess = strip(defsess,"B","'")
0150 if s4task = "" then s4task = strip(deftask,"B","'")
0151 s4sess = "'"s4sess"'"
0152 s4task = "'"s4task"'"
0153 cliex = cliex "-server" actcsm /* append active server to exec */
0154 totrc = 0
0155
0156 /* Get Operating System and print used parameters */
0157 parse upper source osfull .
0158
0159 runtime = time('E')
0160 say line
0161 say LOGI("Creating Practice Copy on Site 4 (D volumes):")
0162 say LOGI("4-site Session:" s4sess)
0163 say LOGI("Session task :" s4task)
0164 say LOGI("Pre-Checks :" s4pchk)
0165 say LOGI("CSM Server :" actcsm)
0166 say LOGI("Local O/S :" osfull)
0167 say LOGI("Debug Level :" debug)
0168 say line
0169 say
0170
0171 /* Verify required parameters for execution are given */
0172 if s4sess = "''" then do
0173 say LOGI("ERROR: Missing 4-site Session name.")
0174 totrc = 16
0175 end
0176 if actcsm = "" then do
0177 say LOGI("ERROR: Missing CSM server IP/hostname.")
0178 totrc = 16
0179 end
0180 if totrc <> 0 then do
0181 say LOGI("Total RC =" totrc)
0182 say line
0183 return totrc
0184 end
0185
0186 /* Verify and Prepare System environment */
0187 totrc = PREPAREENV()

IBM Systems Page 56 © IBM Copyright, 2018

0188 if totrc <> 0 then do
0189 say LOGI("ERROR: Failed to prepare system environment for:" osfull)
0190 say LOGI(totrc)
0191 totrc = 16
0192 say LOGI("Total RC =" totrc)
0193 say line
0194 return totrc
0195 end
0196
0197
0198 /***/
0199 /* Start the sequence */
0200 /***/
0201
0202 /* Run precheck first if enabled */
0203 if s4pchk = "DISABLED" then do
0204 totrc = 0
0205 end
0206 else do
0207 totrc = PRECHECK()
0208 end
0209
0210 /* If precheck failed, exit */
0211 if totrc <> 0 then do
0212 say LOGI("Precheck ERROR:" totrc)
0213 totrc = 12
0214 say LOGI("Total RC =" totrc)
0215 say line
0216 return totrc
0217 end
0218
0219
0220 /* Create Practice copy on D */
0221 say line
0222 say
0223 /* Run given task if specified, otherwise use script */
0224 if s4task <> "''" then do
0225 totrc = RUNTASK()
0226 if totrc <> 0 & GTid = "" then do
0227 /* Error but Task was not started yet, exit without repl restart */
0228 say LOGI("Task start ERROR:" totrc)
0229 totrc = 12
0230 say LOGI("Total RC =" totrc)
0231 say line
0232 return totrc
0233 end
0234 end
0235 else do
0236 totrc = CREATEPRACTICED()
0237 end
0238 if totrc <> 0 then say LOGI("ERROR:" totrc)
0239 say line
0240 say
0241
0242 /* Restart replication */
0243 enabrc = totrc
0244 if totrc = 0 & s4task = "''" then do
0245 say line
0246 /* Practice data OK, restart only GM */
0247 say LOGI("Successfully created practice Copy on Site 4 (D volumes)")
0248 say LOGI("Restarting Global Mirror to restore site protection...")
0249 say line
0250 say
0251 totrc = RESTARTGM()
0252 if totrc <> 0 then say LOGI("ERROR:" totrc)

IBM Systems Page 57 © IBM Copyright, 2018

0253 say line
0254 say
0255 say line
0256 if totrc <> 0 then do
0257 say LOGI("WARNING: Failed to restart Global Mirror.")
0258 totrc = 4
0259 end
0260 else do
0261 say LOGI("Global Mirror returned to Prepared State.")
0262 end
0263 /* Enable practice copy on H4 */
0264 say LOGI("Enabling practice Copy on Site 4 (D volumes)...")
0265 say line
0266 say
0267 enabrc = ENABLEPRACTICED()
0268 if enabrc <> 0 then do
0269 say LOGI("ERROR:" enabrc)
0270 say LOGI("Failed to enable practice Copy on Site 4.")
0271 end
0272 say line
0273 say
0274 end
0275
0276 /* Recover replication states if error occured */
0277 say line
0278 if enabrc = 0 then do
0279 if s4task <> "''" then do
0280 say LOGI("Successfully completd task to create practice Copy on Site 4" ,
0281 "(D volumes)")
0282 end
0283 else do
0284 say LOGI("Successfully enabled practice Copy on Site 4.")
0285 end
0286 say LOGI("Systems can be IPLed on Site 4 for testing.")
0287 end
0288 else do
0289 /* Script or task failed, try to restart GM and GC */
0290 if s4task <> "''" then do
0291 say LOGI("Failed to complete task for practice Copy on Site 4 (D volumes)")
0292 end
0293 else do
0294 say LOGI("Failed to enable a practice Copy on Site 4 (D volumes)")
0295 end
0296 say LOGI("Restarting Global Mirror and cascaded Global Copy to restore")
0297 say LOGI("original states of session...")
0298 say line
0299 say
0300 totrc = RESTARTSESSIONS()
0301 say line
0302 if totrc <> 0 then do
0303 say LOGI("Practice Copy on D volumes failed, and failed to restart")
0304 say LOGI("original replication. Please verify state of Session" s4sess)
0305 say LOGI("and restart replication manually.")
0306 totrc = 12
0307 end
0308 else do
0309 say LOGI("Practice Copy on D volumes failed, but original replication")
0310 say LOGI("in 4-site session" s4sess "was restarted successfully.")
0311 totrc = 8
0312 end
0313 end
0314
0315 say line
0316 say
0317 say line

IBM Systems Page 58 © IBM Copyright, 2018

0318 say LOGI("Total Runtime:" GETRUNTIME(runtime))
0319 say LOGI("Total RC =" totrc)
0320 say line
0321 return totrc
0322
0323
0324 /*---*/
0325 /*- SUBROUTINE -*/
0326 /*- -*/
0327 /*- Precheck routine to validate everything is OK for CSMCLI sequence. -*/
0328 /*- It performs Step 0 of the overall sequence. -*/
0329 /*- Return codes: -*/
0330 /*- 0 : All checks are OK -*/
0331 /*- ErrMsg: Message describing the problem -*/
0332 /*---*/
0333 PRECHECK:
0334 /* Step 0: Check MT session H1-J3 prepared, GC session H1-H2 is preparing */
0335 /* Step 0: Check GC session progress least min defined progress for start */
0336 step = 0
0337 steptime = time('E')
0338 sess = s4sess
0339 state = "Prepared"
0340 rolep = "H1-J3"
0341 say LOGS(step,"Check for" state "state of" rolep "pairs in session" sess"...")
0342 cmdrc = CHKPAIRSTATE(sess,rolep,state)
0343 if cmdrc <> 0 then do
0344 say LOGS(step,"Error while checking" state "state of" rolep "pairs in" sess)
0345 return cmdrc
0346 end
0347 say LOGS(step,"All pairs of" rolep "in" sess "are" state)
0348 state = "Preparing"
0349 rolep = "H3-H4"
0350 minprog = gcprog
0351 say LOGS(step,"Check for" state "state of" rolep "pairs in session" sess"...")
0352 cmdrc = CHKPAIRSTATE(sess,rolep,state)
0353 if cmdrc <> 0 then do
0354 say LOGS(step,"Error while checking" state "state of" rolep "pairs in" sess)
0355 return cmdrc
0356 end
0357 say LOGS(step,"Check" rolep "Progress >=" minprog "% in session" sess"...")
0358 cmdrc = CHKRP(sess,rolep,,minprog)
0359 if cmdrc <> 0 then do
0360 say LOGS(step,"Error while checking" rolep "progress in" sess)
0361 return cmdrc
0362 end
0363 say LOGS(step,"Progress of" rolep "in" sess "is >=" minprog "%")
0364 say LOGS(step,"Pre-Check completed successfully")
0365 say LOGS(step,"Runtime" GETRUNTIME(steptime))
0366 return 0
0367
0368 /*---*/
0369 /*- SUBROUTINE -*/
0370 /*- -*/
0371 /*- Sequence to create a practice copy on D volumes -*/
0372 /*- It performs Step 1-3 of the overall sequence. -*/
0373 /*- Return codes: -*/
0374 /*- 0 : All steps executed successfully -*/
0375 /*- ErrMsg: Message describing the problem -*/
0376 /*---*/
0377 CREATEPRACTICED:
0378 /* Step 1: Suspend GM leg of MT session and wait for completion */
0379 step = 1
0380 steptime = time('E')
0381 sess = s4sess
0382 command = "SuspendH1H3"

IBM Systems Page 59 © IBM Copyright, 2018

0383 say LOGS(step,command "of 4-site session" sess"...")
0384 cmd = cliex "cmdsess -quiet -action" command sess
0385 cmdrc = CLI(cmd)
0386 if cmdrc <> 0 then do
0387 say LOGS(step,"Error during" command "of 4-site session" sess)
0388 return cmdrc
0389 end
0390 say LOGS(step,"Successfully issued" command "to 4-site session" sess)
0391 validstates = "Suspended, Suspended (Partial)"
0392 timeout = gmsuspto /* max wait time for GM suspend completion */
0393 say LOGS(step,"Waiting for suspend completion of 4-site session" sess ,
0394 "(max." timeout "s)...")
0395 cmdrc = CHKSESSSTATE(sess,validstates,timeout)
0396 if cmdrc <> 0 then do
0397 say LOGS(step,"Error while waiting for session" sess "to reach valid state")
0398 return cmdrc
0399 end
0400 say LOGS(step,"Successfully suspended H1-H3 of 4-site session" sess)
0401 say LOGS(step,"Runtime" GETRUNTIME(steptime))
0402 say line
0403 say
0404
0405 /* Step 2: Failover GM leg of MT session and wait until H3 is consistent */
0406 step = 2
0407 steptime = time('E')
0408 sess = s4sess
0409 /* Get last session state from Globals from previos suspend check */
0410 oldstate = "???"
0411 say LOGS(step,"Determine state of 4-site session" sess "from previous query")
0412 if debug >= 2 then say LOGD(2,"GSname="GSname", GSrp="GSrp", GSstate="GSstate)
0413 if GSname = sess & GSrp = "" & GSstate <> "" then oldstate = GSstate
0414 say LOGS(step,sess "session state is:" oldstate)
0415 if oldstate ="???" then do
0416 say LOGS(step,"Could not determine last state from previous query of " sess)
0417 return 8
0418 end
0419
0420 command = "FailoverH3"
0421 say LOGS(step,command "of 4-site session" sess"...")
0422 cmd = cliex "cmdsess -quiet -action" command sess
0423 cmdrc = CLI(cmd)
0424 if cmdrc <> 0 then do
0425 say LOGS(step,"Error during" command "of 4-site session" sess)
0426 return cmdrc
0427 end
0428 say LOGS(step,"Successfully issued" command "to 4-site session" sess)
0429 validstates = oldstate /* wait until previous state reached */
0430 timeout = frrto /* max wait time for FRR completion */
0431 say LOGS(step,"Waiting for failover completion of 4-site session" sess ,
0432 "(max." timeout "s)...")
0433 cmdrc = CHKSESSSTATE(sess,validstates,timeout)
0434 if cmdrc <> 0 then do
0435 say LOGS(step,"Error while waiting for session" sess ,
0436 "to become:" validstates)
0437 return cmdrc
0438 end
0439
0440 state = "Target Available"
0441 rolep = "H1-H3"
0442 say LOGS(step,"Check" state "state of" rolep "pairs in" sess"...")
0443 cmdrc = CHKPAIRSTATE(sess,rolep,state)
0444 if cmdrc <> 0 then do
0445 say LOGS(step,"Error while checking" state "state of" rolep "in" sess)
0446 return cmdrc
0447 end

IBM Systems Page 60 © IBM Copyright, 2018

0448 say LOGS(step,"All pairs of" rolep "in" sess "are" state)
0449
0450 rolep = "H1-H3"
0451 say LOGS(step,"Check" rolep "is recoverable in session" sess"...")
0452 cmdrc = CHKRP(sess,rolep,"YES")
0453 if cmdrc <> 0 then do
0454 say LOGS(step,"Error while checking" rolep ,
0455 "is recoverable in session" sess)
0456 return cmdrc
0457 end
0458 say LOGS(step,rolep "in" sess "is recoverable")
0459 say LOGS(step,"H3 volumes are consistent in 4-site session" sess)
0460 say LOGS(step,"Runtime" GETRUNTIME(steptime))
0461 say line
0462 say
0463
0464 /* Step 3: Suspend cascaded GC rolepair and wait for completion */
0465 step = 3
0466 steptime = time('E')
0467 sess = s4sess
0468 command = "SuspendH3H4"
0469 say LOGS(step,command "of 4-site session" sess"...")
0470 cmd = cliex "cmdsess -quiet -action" command sess
0471 cmdrc = CLI(cmd)
0472 if cmdrc <> 0 then do
0473 say LOGS(step,"Error during" command "of 4-site session" sess)
0474 return cmdrc
0475 end
0476 say LOGS(step,"Successfully issued" command "to 4-site session" sess)
0477 validstates = "Suspended, Suspended (Partial)"
0478 timeout = gcsuspto /* max wait time for GC suspend completion */
0479 say LOGS(step,"Waiting for suspend completion of 4-site session" sess ,
0480 "(max." timeout "s)...")
0481 cmdrc = CHKSESSSTATE(sess,validstates,timeout)
0482 if cmdrc <> 0 then do
0483 say LOGS(step,"Error while waiting for session" sess ,
0484 "to become:" validstates)
0485 return cmdrc
0486 end
0487 say LOGS(step,"Successfully suspended GC of 4-site session" sess)
0488 say LOGS(step,"Runtime" GETRUNTIME(steptime))
0489 return 0
0490
0491 /*---*/
0492 /*- SUBROUTINE -*/
0493 /*- -*/
0494 /*- Restart Global Mirror of 4-site session -*/
0495 /*- It performs Step 4 of the overall sequence. -*/
0496 /*- Return codes: -*/
0497 /*- 0 : All steps executed successfully -*/
0498 /*- ErrMsg: Message describing the problem -*/
0499 /*---*/
0500 RESTARTGM:
0501 /* Step 4: StartGMH1-H3 of 4-site session and wait until H1-J3 prepared */
0502 step = 4
0503 steptime = time('E')
0504 sess = s4sess
0505 command = "StartGM_H1:H3"
0506 say LOGS(step,command "of 4-site session" sess"...")
0507 cmd = cliex "cmdsess -quiet -action" command sess
0508 cmdrc = CLI(cmd)
0509 if cmdrc <> 0 then do
0510 say LOGS(step,"Error during start of H1-H3 of 4-site session" sess)
0511 return cmdrc
0512 end

IBM Systems Page 61 © IBM Copyright, 2018

0513 say LOGS(step,"Successfully issued" command "to 4-site session" sess)
0514
0515 state = "Prepared"
0516 rolep = "H1-J3"
0517 timeout = gmstartto /* max wait time for GM Restart completion */
0518 say LOGS(step,"Waiting for" state "state of" rolep "pairs in session" sess ,
0519 "(max." timeout "s)...")
0520 cmdrc = CHKPAIRSTATE(sess,rolep,state,timeout)
0521 if cmdrc <> 0 then do
0522 say LOGS(step,"Error while checking" state "state of" rolep ,
0523 "pairs in" sess)
0524 return cmdrc
0525 end
0526 say LOGS(step,"All pairs of" rolep "in" sess "are" state)
0527 say LOGS(step,"Successfully restarted H1-H3 of 4-site session" sess)
0528 say LOGS(step,"Runtime" GETRUNTIME(steptime))
0529 return 0
0530
0531 /*---*/
0532 /*- SUBROUTINE -*/
0533 /*- -*/
0534 /*- Sequence to enable a practice copy on D volumes (Failover) -*/
0535 /*- It performs Step 5 of the overall sequence. -*/
0536 /*- Return codes: -*/
0537 /*- 0 : All steps executed successfully -*/
0538 /*- ErrMsg: Message describing the problem -*/
0539 /*---*/
0540 ENABLEPRACTICED:
0541 /* Step 5: Failover cascaded GC rolepair and wait until completed */
0542 step = 5
0543 steptime = time('E')
0544 sess = s4sess
0545 command = "FailoverH4"
0546 say LOGS(step,command "of 4-site session" sess)
0547 cmd = cliex "cmdsess -quiet -action" command sess
0548 cmdrc = CLI(cmd)
0549 if cmdrc <> 0 then do
0550 say LOGS(step,"Error during" command "of 4-site session" sess)
0551 return cmdrc
0552 end
0553 say LOGS(step,"Successfully issued" command "to 4-site session" sess)
0554
0555 state = "Target Available"
0556 rolep = "H3-H4"
0557 timeout = mmrecto /* max wait time for MM Recovery completion */
0558 say LOGS(step,"Check" state "state of" rolep "pairs in" sess"...")
0559 cmdrc = CHKPAIRSTATE(sess,rolep,state,timeout)
0560 if cmdrc <> 0 then do
0561 say LOGS(step,"Error while checking" state "state of" rolep "in" sess)
0562 return cmdrc
0563 end
0564 say LOGS(step,"All pairs of" rolep "in" sess "are" state)
0565
0566 rolep = "H3-H4"
0567 say LOGS(step,"Check" rolep "is recoverable in session" sess"...")
0568 cmdrc = CHKRP(sess,rolep,"YES")
0569 if cmdrc <> 0 then do
0570 say LOGS(step,"Error while checking" rolep ,
0571 "is recoverable in session" sess)
0572 return cmdrc
0573 end
0574 say LOGS(step,rolep "in" sess "is recoverable")
0575 say LOGS(step,"Successfully recovered H4 volumes in 4-site session" sess)
0576 say LOGS(step,"Runtime" GETRUNTIME(steptime))
0577 return 0

IBM Systems Page 62 © IBM Copyright, 2018

0578
0579 /*---*/
0580 /*- SUBROUTINE -*/
0581 /*- -*/
0582 /*- Restart 4-site session in case there was an error in the sequence -*/
0583 /*- It performs a check whether GC or GM rolepair is in a state that might -*/
0584 /*- require a Stop first (step R0). Then it performs a restart of -*/
0585 /*- cascaded GC (step R1) and a restart of GM (step R2) in 4-site session -*/
0586 /*- Return codes: -*/
0587 /*- 0 : All steps executed successfully -*/
0588 /*- ErrMsg: Message describing the problem -*/
0589 /*---*/
0590 RESTARTSESSIONS:
0591 /* Step R0: Check whether Session might require a stop command */
0592 step = "R0"
0593 steptime = time('E')
0594 sess = s4sess
0595 myerror = 0
0596 say LOGS(step,"Check if state of 4-site session" sess "requires a Stop" ,
0597 "command for the GC or GM rolepair...")
0598 validstates = "Draining,Suspending"
0599 cmdrc = CHKSESSSTATE(sess,validstates)
0600 if cmdrc <> 0 then do
0601 /* Good state which does not require a Stop */
0602 say LOGS(step,"Session state" GSstate "does not require a Stop command")
0603 end
0604 else do
0605 /* Bad state which requires a Stop first */
0606 /* Ignore errors in attempt to recover unexpected state of the pairs */
0607 if GSstate = "DRAINING" then do
0608 rolep = "H3-H4"
0609 command = "Stoph3h4"
0610 state = "Suspended"
0611 end
0612 else if GSstate = "SUSPENDING" then do
0613 rolep = "H1-H3"
0614 command = "Stoph1h3"
0615 state = "Suspended"
0616 end
0617 say LOGS(step,"Session state" GSstate "requires a Stop" ,
0618 "command for rolepair" rolep)
0619 say LOGS(step,command "of 4-site session" sess"...")
0620 cmd = cliex "cmdsess -quiet -action" command sess
0621 cmdrc = CLI(cmd)
0622 if cmdrc <> 0 then do
0623 say LOGS(step,"Error during" command "of 4-site session" sess)
0624 say LOGI("ERROR:" cmdrc)
0625 end
0626 else do
0627 say LOGS(step,"Successfully issued" command "of 4-site session" sess)
0628 timeout = gcstopto /* max wait time for GC stop completion */
0629 say LOGS(step,"Waiting for stop completion of 4-site session" sess ,
0630 "(max." timeout "s)...")
0631 cmdrc = CHKPAIRSTATE(sess,rolep,state,timeout)
0632 if cmdrc <> 0 then do
0633 say LOGS(step,"Error while waiting for rolepair" rolep ,
0634 "of 4-site session" sess "to become:" state)
0635 end
0636 else do
0637 say LOGS(step,"Successfully stopped" rolep "of 4-site session" sess)
0638 end
0639 end
0640 end
0641 say LOGS(step,"Runtime" GETRUNTIME(steptime))
0642 say line

IBM Systems Page 63 © IBM Copyright, 2018

0643 say
0644
0645 /* Step R1: StartGC of cascaded rolepair and wait for prepairing state */
0646 step = "R1"
0647 steptime = time('E')
0648 sess = s4sess
0649 command = "StartGC_H3:H4"
0650 myerror = 0
0651 say LOGS(step,command "of 4-site session" sess"...")
0652 cmd = cliex "cmdsess -quiet -action" command sess
0653 cmdrc = CLI(cmd)
0654 if cmdrc <> 0 then do
0655 say LOGS(step,"Error during" command "of 4-site session" sess)
0656 say LOGI("ERROR:" cmdrc)
0657 myerror = cmdrc
0658 /* return cmdrc Ignore error at this point, try to restart also GM */
0659 end
0660 else do
0661 say LOGS(step,"Successfully issued" command "of 4-site session" sess)
0662 /* Wait for preparing state if there are no errors on start */
0663 state = "Preparing"
0664 rolep = "H3-H4"
0665 timeout = gcstartto /* max wait time for GC start (Prepairing) */
0666 say LOGS(step,"Waiting for" state "state of" rolep "pairs in" ,
0667 "4-site session" sess "(max." timeout "s)...")
0668 cmdrc = CHKPAIRSTATE(sess,rolep,state,timeout)
0669 if cmdrc <> 0 then do
0670 say LOGS(step,"Error while checking" state "state of" rolep ,
0671 "pairs in" sess)
0672 say LOGI("ERROR:" cmdrc)
0673 myerror = cmdrc
0674 /* return cmdrc Ignore error at this point, try to restart also GM */
0675 end
0676 else do
0677 say LOGS(step,"All pairs of" rolep "in" sess "are" state)
0678 end
0679 end
0680 say LOGS(step,"Runtime" GETRUNTIME(steptime))
0681 say line
0682 say
0683
0684 /* Step R2: StartGM_H1-H3 of 4-site session and wait until H1-J3 prepared */
0685 step = "R2"
0686 steptime = time('E')
0687 sess = s4sess
0688 command = "StartGM_H1:H3"
0689 say LOGS(step,command "of 4-site session" sess"...")
0690 cmd = cliex "cmdsess -quiet -action" command sess
0691 cmdrc = CLI(cmd)
0692 if cmdrc <> 0 then do
0693 say LOGS(step,"Error during" command "of 4-site session" sess)
0694 say LOGI("ERROR:" cmdrc)
0695 myerror = cmdrc
0696 end
0697 else do
0698 say LOGS(step,"Successfully issued" command "to 4-site session" sess)
0699
0700 state = "Prepared"
0701 rolep = "H1-J3"
0702 timeout = gmstartto /* max wait time for GM Restart completion */
0703 say LOGS(step,"Waiting for" state "state of" rolep "pairs in session" sess ,
0704 "(max." timeout "s)...")
0705 cmdrc = CHKPAIRSTATE(sess,rolep,state,timeout)
0706 if cmdrc <> 0 then do
0707 say LOGS(step,"Error while checking" state "state of" rolep ,

IBM Systems Page 64 © IBM Copyright, 2018

0708 "pairs in" sess)
0709 say LOGI("ERROR:" cmdrc)
0710 myerror = cmdrc
0711 end
0712 else do
0713 say LOGS(step,"All pairs of" rolep "in" sess "are" state)
0714 end
0715 end
0716 say LOGS(step,"Runtime" GETRUNTIME(steptime))
0717 say line
0718 say
0719
0720 return myerror
0721
0722
0723 /*---*/
0724 /*- SUBROUTINE -*/
0725 /*- -*/
0726 /*- Check status of given taskname and run the task ID -*/
0727 /*- Monitor task status and wait for task completion. -*/
0728 /*- The task should contain step 1-5 of this script -*/
0729 /*- Return codes: -*/
0730 /*- 0 : Task found and completed successfully -*/
0731 /*- ErrMsg: Message describing the problem -*/
0732 /*---*/
0733 RUNTASK:
0734 /* Step T0: Prechecking for an inactive scheduled task */
0735 step = "T0"
0736 steptime = time('E')
0737 task = s4task
0738 taskid = ""
0739 tasksts = ""
0740 taskmsg = ""
0741 say LOGS(step,"Checking task" task"...")
0742 cmdrc = CHKTASK(task,"YES")
0743 if cmdrc <> 0 then do
0744 say LOGS(step,"Error while checking task" task)
0745 call RESETGLOBALS /* reset Globals to indicate nothing started */
0746 return cmdrc
0747 end
0748 taskid = GTid
0749 tasksts = GTstate
0750 say LOGS(step,"Found inactive task" taskid":"task)
0751 say LOGS(step,"Runtime" GETRUNTIME(steptime))
0752 say line
0753 say
0754
0755 /* Step T1: Run task ID */
0756 step = "T1"
0757 steptime = time('E')
0758 say LOGS(step,"Starting task" taskid":"task"...")
0759 cmd = cliex "runtask -quiet" taskid
0760 cmdrc = CLI(cmd)
0761 if cmdrc <> 0 then do
0762 say LOGS(step,"Error while starting task" taskid":"task)
0763 call RESETGLOBALS /* reset Globals to indicate nothing started */
0764 return cmdrc
0765 end
0766 say LOGS(step,"Successfully started task" taskid":"task)
0767 say LOGS(step,"Runtime" GETRUNTIME(steptime))
0768 say line
0769 say
0770
0771 /* Step T2: Wait for task ID completion */
0772 step = "T2"

IBM Systems Page 65 © IBM Copyright, 2018

0773 steptime = time('E')
0774 timeout = taskto /* max wait time for task completion */
0775 say LOGS(step,"Checking completion of task" taskid":"task"...")
0776 cmdrc = CHKTASK(task,,timeout)
0777 if cmdrc <> 0 then do
0778 say LOGS(step,"Error while checking completion of task" taskid":"task)
0779 return cmdrc
0780 end
0781 taskmsg = word(GTmsg,1)
0782 /* IWNR2212I [timestamp] The scheduled task VALUE_1 has finished running. */
0783 if taskmsg <> "IWNR2212I" then do
0784 cmdrc = "Task finished with unexpected message:" taskmsg
0785 return cmdrc
0786 end
0787 say LOGS(step,"Successfully finished task" taskid":"task)
0788 say LOGS(step,"Runtime" GETRUNTIME(steptime))
0789 return 0
0790
0791
0792 /*---*/
0793 /*- SUBROUTINE -*/
0794 /*- -*/
0795 /*- Check all pairs in given session & role pair are in the given -*/
0796 /*- state. Optionally specify timeout in sec how long to wait for state. -*/
0797 /*- (It uses CSMCLI lspair -l -rolepair command) -*/
0798 /*- Eg: call CHKPAIRSTATE(session,rolepair,state(,timeout)) -*/
0799 /*- session : String with Session name, use '' if it includes spaces -*/
0800 /*- rolepair: String with rolepair to use for pair state check -*/
0801 /*- state : String with state to be validated -*/
0802 /*- timeout : 0-3600 sec (optional, use to wait for given state) -*/
0803 /*- Return codes: -*/
0804 /*- 0 : All checks are OK -*/
0805 /*- ErrMsg: Message describing the problem -*/
0806 /*---*/
0807 CHKPAIRSTATE:
0808 parse arg sess1, rp1, state1, to1
0809 rp1 = translate(rp1)
0810 state1 = translate(state1)
0811 mytime = time('E')
0812 if debug >= 2 then do
0813 say LOGD(2,"CHKPAIRSTATE parameters:" sess1","rp1","state1","to1)
0814 end
0815 call RESETGLOBALS /* reset Global variables */
0816 mysess = strip(sess1,,"'") /* remove optional ' */
0817 if to1 = "" then to1 = 0 /* Default to 0 */
0818 /* calculate delay based on timout value */
0819 mydelay = GETDELAY(to1)
0820 if mydelay < 0 then do
0821 myrc = "Invalid timeout specified:" to1 "(Valid 0-3600)"
0822 return myrc
0823 end
0824 if debug >= 2 then say LOGD(2,"Specified timeout:" to1 "=> Delay" ,
0825 mydelay "sec")
0826 cmd = cliex "lspair -l -fmt delim -delim '"||dlmch||"' -rolepair" rp1 sess1
0827 do while 1
0828 myrc = CLI(cmd)
0829 if myrc = 0 then do
0830 /* Count pairs with required state and also all other found states */
0831 totalpairs = 0
0832 /* Predefine found states with given state */
0833 foundstates= translate(state1,'_',' ') /* Replace blank with _ */
0834 statescount.0 = 1 /* qty of found states, preset given state */
0835 statescount.1 = 0 /* pre-define found qty of given state = 0 */
0836 do i=1 to out.0
0837 /* Parse output fields */

IBM Systems Page 66 © IBM Copyright, 2018

0838 /* Source Volume;Target Volume;Role Pair;State;Recoverable;Copying; */
0839 /* Progress;New;Copy Set;Timestamp;Last Result */
0840 parse upper var out.i p1 (dlmch) ,
0841 p2 (dlmch) ,
0842 p3 (dlmch) ,
0843 p4 (dlmch) , .
0844 if debug >= 2 then say LOGD(2,p1","p2","p3","p4)
0845 if p3 = rp1 then do
0846 totalpairs = totalpairs + 1
0847 paddedp4 = translate(p4,'_',' ') /* Replace blank with _ */
0848 idx = wordpos(paddedp4,foundstates) /* Check if state known */
0849 if idx > 0 then do
0850 /* increase count for found state */
0851 statescount.idx = statescount.idx + 1
0852 end
0853 else do
0854 /* add new found state */
0855 foundstates = foundstates paddedp4
0856 idx = statescount.0 + 1
0857 statescount.idx = 1
0858 statescount.0 = idx
0859 end
0860 end
0861 end
0862 say LOGI(tab sess1 rp1 "Pair state result:")
0863 say LOGI(tab format(totalpairs,4) "pairs total:")
0864 if totalpairs > 0 then do
0865 do j = statescount.0 to 1 by -1
0866 statej = translate(word(foundstates,j),' ','_')
0867 say LOGI(tab format(statescount.j,6) "pairs" statej)
0868 end
0869 if totalpairs = statescount.1 then do
0870 /* Update Global Session variables only if all pairs equal state */
0871 GSname = sess1 /* keep single quotes included in name */
0872 GSrp = p3
0873 GSstate= state1
0874 GScpset= totalpairs
0875 return 0 /* all conditions met */
0876 end
0877 end
0878 else do
0879 myrc = "No pairs found."
0880 return myrc
0881 end
0882 end
0883 else do
0884 if debug >= 2 then say LOGD(2,"ERROR: '"myrc"' while listing pairs")
0885 return myrc /* CSMCLI error */
0886 end
0887 /* apply delay prior next call if necessary */
0888 if debug >= 2 then do
0889 say LOGD(2,"Elapsed:" time('E') - mytime "sec")
0890 say LOGD(2,"mydelay:" mydelay "sec")
0891 say LOGD(2,"Timeout:" to1 "sec")
0892 end
0893 if time('E') - mytime + mydelay >= to1 then do
0894 myrc = "Invalid States found."
0895 if to1 > 0 then myrc = "Wait timeout of" to1 "sec exceeded."
0896 return myrc /* Invalid states */
0897 end
0898 else do
0899 say LOGI(tab "Need to wait for valid state:" state1)
0900 say LOGI(tab "Requerying in" mydelay "sec...")
0901 call WAIT(mydelay)
0902 end

IBM Systems Page 67 © IBM Copyright, 2018

0903 end
0904 return 0
0905
0906 /*---*/
0907 /*- SUBROUTINE -*/
0908 /*- -*/
0909 /*- Check that session reached any of the provided states -*/
0910 /*- Optionally specify timeout in sec how long to wait for valid state. -*/
0911 /*- (It uses CSMCLI lssess -l command) -*/
0912 /*- Eg: call CHKSESSSTATE(session,states(,timeout)) -*/
0913 /*- session: String with Session name, use '' if it includes spaces -*/
0914 /*- states : String with comma separated valid states (Use empty string -*/
0915 /*- without timeout to update global variable with state info) -*/
0916 /*- timeout: 0-3600 sec (optional, use to wait for given state) -*/
0917 /*- Return codes: -*/
0918 /*- 0 : All checks are OK -*/
0919 /*- ErrMsg: Message describing the problem -*/
0920 /*---*/
0921 CHKSESSSTATE:
0922 states2 = "" /* preset to empty string */
0923 parse arg sess2, states2, to2
0924 mytime = time('E')
0925 if debug >= 2 then do
0926 say LOGD(2,"CHKSESSSTATE parameters:" sess2","states2","to2)
0927 end
0928 call RESETGLOBALS /* reset Global variables */
0929 mysess = strip(sess2,,"'") /* remove optional ' */
0930 if to2 = "" then to2 = 0 /* Default to 0 */
0931 /* calculate delay based on timout value */
0932 mydelay = GETDELAY(to2)
0933 if mydelay < 0 then do
0934 myrc = "Invalid timeout specified:" to2 "(Valid 0-3600)"
0935 return myrc
0936 end
0937 if debug >= 2 then say LOGD(2,"Specified timeout:" to2 "=> Delay" ,
0938 mydelay "sec")
0939 cmd = cliex "lssess -l -fmt delim -delim '"||dlmch||"'" sess2
0940 do while 1
0941 myrc = CLI(cmd)
0942 if myrc = 0 then do
0943 mystate = "???"
0944 do i=1 to out.0
0945 /* Parse output fields */
0946 /* Name;Status;State;Copy Type;Recoverable;Copying;Copy Sets; */
0947 /* Error;Group */
0948 parse var out.i p1 (dlmch) ,
0949 p2 (dlmch) ,
0950 p3 (dlmch) ,
0951 p4 (dlmch) ,
0952 p5 (dlmch) ,
0953 p6 (dlmch) ,
0954 p7 (dlmch) , .
0955 if debug >= 2 then say LOGD(2,p1","p2","p3","p4","p5","p6","p7)
0956 if p1 = mysess then do
0957 mystate = p3
0958 /* Update Global Session variables */
0959 GSname = sess2 /* keep single quotes included in name */
0960 GSstate= translate(mystate)
0961 GSrecov= translate(p5)
0962 GScpset= p7
0963 end
0964 end
0965 say LOGI(tab sess2 "session state is:" mystate)
0966 /* check if valid state reached */
0967 mystates = translate(states2)

IBM Systems Page 68 © IBM Copyright, 2018

0968 mystate = translate(mystate)
0969 if mystates = "" then return 0 /* quit immediately, no check required */
0970 do while mystates <> ""
0971 parse var mystates nextstate ',' mystates
0972 if strip(nextstate) = mystate then do
0973 return 0 /* all conditions met */
0974 end
0975 end
0976 end
0977 else do
0978 if debug >= 2 then say LOGD(2,"ERROR: '"myrc"' while listing session")
0979 return myrc /* CSMCLI error */
0980 end
0981 /* apply delay prior next call if necessary */
0982 if debug >= 2 then do
0983 say LOGD(2,"Valid states:" states2)
0984 say LOGD(2,"mydelay:" mydelay "sec")
0985 say LOGD(2,"Timeout:" to2 "sec")
0986 end
0987 if time('E') - mytime + mydelay >= to2 then do
0988 myrc = "Invalid state found."
0989 if to2 > 0 then myrc = "Wait timeout of" to2 "sec exceeded."
0990 return myrc /* Invalid states */
0991 end
0992 else do
0993 say LOGI(tab "Need to wait for valid state:" states2)
0994 say LOGI(tab "Requerying in" mydelay "sec...")
0995 call WAIT(mydelay)
0996 end
0997 end
0998 return 0
0999
1000 /*---*/
1001 /*- SUBROUTINE -*/
1002 /*- -*/
1003 /*- Check given role pair in session. Optionally check whether recoverable -*/
1004 /*- or whether progress exceeds a given percentage. -*/
1005 /*- Optionally specify timeout in sec how long to wait for required condit. -*/
1006 /*- (It uses CSMCLI lsrolepair -l command) -*/
1007 /*- Eg: call CHKRP(session,rolepair,(recoverable,minprogress)(,timeout) -*/
1008 /*- session: String with Session name, use '' if it includes spaces -*/
1009 /*- rolepair: String with rolepair to use for pair state check -*/
1010 /*- recoverable: (optional) Specify "YES" to validate recoverability -*/
1011 /*- minprogress: 0-100 % (optional, min. Progress in % to be validated) -*/
1012 /*- timeout: 0-3600 sec (optional, use to wait for given state) -*/
1013 /*- Return codes: -*/
1014 /*- 0 : All checks are OK -*/
1015 /*- ErrMsg: Message describing the problem -*/
1016 /*---*/
1017 CHKRP:
1018 parse arg sess3, rp3, recov3, minprog3, to3
1019 rp3 = translate(rp3)
1020 recov3 = translate(recov3)
1021 mytime = time('E')
1022 if debug >= 2 then do
1023 say LOGD(2,"CHKRP parameters:" sess3","rp3","recov3","minprog3","to3)
1024 end
1025 call RESETGLOBALS /* reset Global variables */
1026 mysess = strip(sess3,,"'") /* remove optional ' */
1027 if to3 = "" then to3 = 0 /* Default to 0 */
1028 /* calculate delay based on timout value */
1029 mydelay = GETDELAY(to3)
1030 if mydelay < 0 then do
1031 myrc = "Invalid timeout specified:" to3 "(Valid 0-3600)"
1032 return myrc

IBM Systems Page 69 © IBM Copyright, 2018

1033 end
1034 if debug >= 2 then say LOGD(2,"Specified timeout:" to3 "=> Delay" ,
1035 mydelay "sec")
1036 cmd = cliex "lsrolepairs -l -fmt delim -delim '"||dlmch||"'" sess3
1037 do while 1
1038 myrc = CLI(cmd)
1039 if myrc = 0 then do
1040 /* Check specified conditions */
1041 bad = 0
1042 do i=1 to out.0
1043 /* Parse output fields */
1044 /* Name;Recoverable;Error;Copying;Copy Type;Progress;Error Volumes; */
1045 /* Recoverable Pairs;Copying Pairs;Total Pairs;Recovery Time;CG Name*/
1046 parse upper var out.i p1 (dlmch) ,
1047 p2 (dlmch) ,
1048 p3 (dlmch) ,
1049 p4 (dlmch) ,
1050 p5 (dlmch) ,
1051 p6 (dlmch) ,
1052 p7 (dlmch) ,
1053 p8 (dlmch) ,
1054 p9 (dlmch) ,
1055 p10 (dlmch) , .
1056 if debug >= 2 then say LOGD(2,p1","p2","p3","p4","p5","p6)
1057 if p1 = rp3 then do
1058 say LOGI(tab sess3 rp3 "Rolepair status:")
1059 say LOGI(tab "Recoverable:" p2)
1060 say LOGI(tab "Progress % :" p6)
1061 /* Update Global Session variables */
1062 GSname = sess3 /* keep single quotes included in name */
1063 GSrp = p1
1064 GSrecov= p2
1065 GSprog = p6
1066 GScpset= p10
1067 if recov3 <> "" & recov3 <> p2 then do
1068 bad = bad + 1
1069 if debug >= 2 then say LOGD(2,"Recoverability not met.")
1070 end
1071 if datatype(p6) <> "NUM" then p6 = -1 /* Ensure Progress is NUM */
1072 if datatype(minprog3) = "NUM" then do
1073 if p6 < minprog3 then do
1074 bad = bad + 1
1075 if debug >= 2 then say LOGD(2,"Minimum Progress not met.")
1076 end
1077 end
1078 end
1079 end
1080 if bad = 0 then return 0 /* All conditions met */
1081 end
1082 else do
1083 if debug >= 2 then say LOGD(2,"ERROR: '"myrc"' while listing rolepair")
1084 return myrc /* CSMCLI error */
1085 end
1086 /* apply delay prior next call if necessary */
1087 if debug >= 2 then do
1088 say LOGD(2,"Elapsed:" time('E') - mytime "sec")
1089 say LOGD(2,"mydelay:" mydelay "sec")
1090 say LOGD(2,"Timeout:" to3 "sec")
1091 end
1092 if time('E') - mytime + mydelay >= to3 then do
1093 myrc = "Invalid rolepair conditions."
1094 if to3 > 0 then myrc = "Wait timeout of" to3 "sec exceeded."
1095 return myrc
1096 end
1097 else do

IBM Systems Page 70 © IBM Copyright, 2018

1098 say LOGI(tab "Need to wait for valid rolepair conditions.")
1099 say LOGI(tab "Requerying in" mydelay "sec...")
1100 call WAIT(mydelay)
1101 end
1102 end
1103 return 0
1104
1105 /*---*/
1106 /*- SUBROUTINE -*/
1107 /*- -*/
1108 /*- Check if task name exists and what the status is. It will update global -*/
1109 /*- task variables with state and last error message. -*/
1110 /*- Optionally specify if check fails if task is active. -*/
1111 /*- Optionally specify timeout in sec how long to wait for task completion. -*/
1112 /*- (It uses CSMCLI lstask command) -*/
1113 /*- Eg: call CHKTASK(taskname(,vfyinactive)(,timeout)) -*/
1114 /*- taskname: String with task name, use '' if it includes spaces -*/
1115 /*- vfyinactive: (optional) Specify "YES" to fail check if active -*/
1116 /*- timeout : 0-3600 sec (optional, use to wait for task completion) -*/
1117 /*- Return codes: -*/
1118 /*- 0 : Task found and completed successfully -*/
1119 /*- ErrMsg: Message describing the problem -*/
1120 /*---*/
1121 CHKTASK:
1122 parse arg task1, vfyinact, to1
1123 mytime = time('E')
1124 mytaskid = ""
1125 if debug >= 2 then do
1126 say LOGD(2,"RUNTASK parameters:" task1","vfyinact","to1)
1127 end
1128 call RESETGLOBALS /* reset Global variables */
1129 mytask = strip(task1,,"'") /* remove optional ' */
1130 if to1 = "" then to1 = 0 /* Default to 0 */
1131 /* calculate delay based on timout value */
1132 mydelay = GETDELAY(to1)
1133 if mydelay < 0 then do
1134 myrc = "Invalid timeout specified:" to1 "(Valid 0-3600)"
1135 return myrc
1136 end
1137 if debug >= 2 then say LOGD(2,"Specified timeout:" to1 "=> Delay" ,
1138 mydelay "sec")
1139
1140 /* Check task status for specified taskname */
1141 cmd = cliex "lstasks -l -fmt delim -delim '"||dlmch||"'"
1142 do while 1
1143 myrc = CLI(cmd)
1144 if myrc = 0 then do
1145 do i=1 to out.0
1146 /* Parse output fields */
1147 /* ID;Name;Status;Schedule;Next Run Time;Last Run Time;Last Result */
1148 parse var out.i p1 (dlmch) ,
1149 p2 (dlmch) ,
1150 p3 (dlmch) ,
1151 p4 (dlmch) ,
1152 p5 (dlmch) ,
1153 p6 (dlmch) ,
1154 p7 (dlmch) , .
1155 if debug >= 2 then say LOGD(2,p1","p2","p3","p4","p5","p6","p7)
1156 if p2 = mytask then do
1157 GTname = task1 /* keep single quotes included in name */
1158 GTid = p1
1159 GTstate = p3
1160 GTmsg = p7
1161 parse var p6 GTlrt "." .
1162 GTlrt = strip(GTlrt)

IBM Systems Page 71 © IBM Copyright, 2018

1163 leave
1164 end
1165 end
1166 if GTid <> "" then do
1167 say LOGI(tab "Task:"GTid " Status:"GTstate " Message:"GTmsg ,
1168 " LastRun:"GTlrt)
1169 /* check if task still running */
1170 if translate(p3) <> "RUNNING" then do
1171 return 0 /* all conditions met */
1172 end
1173 end
1174 else do
1175 myrc = "Task not found:" task1
1176 return myrc
1177 end
1178 end
1179 else do
1180 if debug >= 2 then say LOGD(2,"ERROR: '"myrc"' while listing tasks")
1181 return myrc /* CSMCLI error */
1182 end
1183 /* apply delay prior next call if necessary */
1184 if debug >= 2 then do
1185 say LOGD(2,"Elapsed:" time('E') - mytime "sec")
1186 say LOGD(2,"mydelay:" mydelay "sec")
1187 say LOGD(2,"Timeout:" to1 "sec")
1188 end
1189 if time('E') - mytime + mydelay >= to1 then do
1190 if vfyinact = "YES" then do
1191 myrc = "Task is running."
1192 end
1193 if to1 > 0 then myrc = "Wait timeout of" to1 "sec exceeded."
1194 return myrc /* Invalid states */
1195 end
1196 else do
1197 say LOGI(tab "Need to wait for task completion:" p3)
1198 say LOGI(tab "Requerying in" mydelay "sec...")
1199 call WAIT(mydelay)
1200 end
1201 end
1202 return 0
1203
1204 /*---*/
1205 /*- SUBROUTINE -*/
1206 /*- -*/
1207 /*- Call CSMCLI with specified cmd and verify RC & output streams. -*/
1208 /*- Any CSMCLI framework RC <> 0 will be passed back with more error details-*/
1209 /*- It means the command could not be sent to the server. -*/
1210 /*- If the output streams contain a CSMCLI Error message, the full message -*/
1211 /*- line will be returned. -*/
1212 /*- 0 will be returned if the command was executed without Error message. -*/
1213 /*- Eg: call CLI(command) -*/
1214 /*- command: full single shot csmcli string including executable -*/
1215 /*- Return codes: -*/
1216 /*- 0 : Command was executed without error -*/
1217 /*- ErrMsg: Message describing the problem -*/
1218 /*---*/
1219 CLI:
1220 parse arg mycommand
1221 if debug >= 9 then say LOGD(9,"CLICMD:" mycommand)
1222 if os = "TSO" then do
1223 clirc = bpxwunix(mycommand,,out.,err.,env.)
1224 end
1225 else if os = "WIN" then do
1226 address SYSTEM mycommand WITH OUTPUT STEM out. ERROR STEM err.
1227 clirc = RC

IBM Systems Page 72 © IBM Copyright, 2018

1228 end
1229 else return "ERROR: Unknown O/S to run CSMCLI executable"
1230
1231 if clirc <> 0 then do
1232 clirc = "CSMCLI RC" clirc ||":"
1233 /* Add error info line from error or output stream */
1234 if err.0 > 0 then clirc = clirc strip(err.1)
1235 else if out.0 > 0 then clirc = clirc strip(out.1)
1236 end
1237 numlines = out.0
1238 if numlines > 0 then do
1239 /* parse only last 5 lines for error codes */
1240 if numlines > 4 then tail = numlines - 4
1241 else tail = 1
1242 do i=1 to tail
1243 if debug >= 9 then say LOGD(9,"CLIOUT:" strip(out.i))
1244 /* Catch Error message code in last 5 lines and return last code */
1245 if i >= tail then do
1246 if pos("IWN",out.i) > 0 then do
1247 outline = out.i
1248 do while outline <> ""
1249 parse var outline nextword outline
1250 if left(nextword,3) = "IWN" then do
1251 if right(nextword,1) = "E" then do
1252 if debug >=9 then say LOGD(9,"Found Error Msg:" nextword)
1253 clirc = strip(out.i) /* Return full line with msg */
1254 end
1255 end
1256 end
1257 end
1258 end
1259 end
1260 end
1261 numlines = err.0
1262 if numlines > 0 then do
1263 do i=1 to numlines
1264 if debug >= 9 then say LOGD(9,"CLIERR:" strip(err.i))
1265 /* Catch Error message code in any line and return last code */
1266 if pos("IWN",err.i) > 0 | pos("CMM",err.i) > 0 then do
1267 errline = err.i
1268 do while errline <> ""
1269 parse var errline nextword errline
1270 prefix = left(nextword,3)
1271 if prefix = "IWN" | prefix = "CMM" then do
1272 if right(nextword,1) = "E" then do
1273 if debug >=9 then say LOGD(9,"Found Error Msg:" nextword)
1274 clirc = strip(err.i) /* Return full line with msg */
1275 end
1276 end
1277 end
1278 end
1279 end
1280 end
1281 if debug >=9 then say LOGD(9,"RC:" clirc)
1282 return clirc
1283
1284 /*---*/
1285 /*- SUBROUTINE -*/
1286 /*- -*/
1287 /*- Reset Global Session variables (e.g. prior new CSMCLI queries) -*/
1288 /*---*/
1289 RESETGLOBALS:
1290 /* Reset global Session variables to keep latest info from last query */
1291 GSname = "" /* Session Name */
1292 GSstate= "" /* Session State */

IBM Systems Page 73 © IBM Copyright, 2018

1293 GSrp = "" /* Specific Role Pair if applicable */
1294 GShost = "" /* Session active Host */
1295 GSrecov= "" /* Recoverability of Session/Rolepair */
1296 GSprog = "" /* Progress of Rolepair */
1297 GScpset= "" /* Qty of Copy Sets in Session */
1298 GTid = "" /* Task ID */
1299 GTname = "" /* Task name */
1300 GTstate= "" /* Task Stauts */
1301 GTlrt = "" /* Task last run time */
1302 GTmsg = "" /* Task Message */
1303 return 0
1304
1305 /*---*/
1306 /*- SUBROUTINE -*/
1307 /*- -*/
1308 /*- Prepare system environment for script execution. -*/
1309 /*- It verifies whether the platform is supported by the script and if so -*/
1310 /*- it prepares the environment for execution. -*/
1311 /*- Return codes: -*/
1312 /*- 0 : Preparation completed successfully -*/
1313 /*- ErrMsg: Message describing the problem -*/
1314 /*---*/
1315 PREPAREENV:
1316 /* Get Operating System */
1317 parse upper source osfull .
1318 os = left(osfull,3)
1319 if os = "TSO" then do
1320 /* Verify if USS syscalls are possible */
1321 address tso
1322 if syscalls('ON') > 3 then do
1323 myrc = "ERROR: Unable to establish the USS SYSCALL environment"
1324 return myrc
1325 end
1326 end
1327 else if os = "WIN" then do
1328 /* initialize environment variables for CSMCLI */
1329 if debug >= 9 then do
1330 say line
1331 say LOGD(9,"Following environment variables have been defined for" ,
1332 "System Calls on" osfull)
1333 end
1334 do i=1 to env.0
1335 parse var env.i envname "=" envvalue
1336 if envname = "PATH" then do
1337 /* extend default system path for CSMCLI */
1338 envvalue = value(envname,,'ENVIRONMENT') || ";" || envvalue
1339 end
1340 /* set environment variable for rexx execution*/
1341 call value envname, envvalue, 'ENVIRONMENT'
1342 if debug >= 9 then do
1343 say LOGD(9,envname"="||value(envname,,'ENVIRONMENT'))
1344 if i = env.0 then do
1345 say line
1346 say
1347 end
1348 end
1349 end
1350 end
1351 else do
1352 /* OS not supported */
1353 myrc = "ERROR: Unsupported Operating System found:" osfull
1354 return myrc
1355 end
1356 return 0
1357

IBM Systems Page 74 © IBM Copyright, 2018

1358 /*---*/
1359 /*- SUBROUTINE -*/
1360 /*- -*/
1361 /*- Create common prefix for messages -*/
1362 /*- Eg: LOGI(message) -*/
1363 /*- message: String to be formatted with prefix -*/
1364 /*---*/
1365 LOGI:
1366 parse arg mymsg
1367 /* Add timestamp as prefix to message */
1368 return time() || ":" mymsg
1369
1370 /*---*/
1371 /*- SUBROUTINE -*/
1372 /*- -*/
1373 /*- Create common prefix for Step messages -*/
1374 /*- Eg: LOGS(stepnum,message) -*/
1375 /*- stepnum: Step number to be used in prefix -*/
1376 /*- message: String to be formatted with prefix -*/
1377 /*---*/
1378 LOGS:
1379 parse arg mystep, mymsg
1380 /* Add timestamp and Step number as prefix to message */
1381 return time() || ": Step" mystep ||":" mymsg
1382
1383 /*---*/
1384 /*- SUBROUTINE -*/
1385 /*- -*/
1386 /*- Create common prefix for debug messages -*/
1387 /*- Eg: LOGD(dbglvl,message) -*/
1388 /*- dbgnum : Debug level to be used in prefix -*/
1389 /*- message: String to be formatted with prefix -*/
1390 /*---*/
1391 LOGD:
1392 parse arg lvl, mymsg
1393 /* Add timestamp and debug prefix to message */
1394 return time() || ": --debug("||lvl||"):" mymsg
1395
1396 /*---*/
1397 /*- SUBROUTINE -*/
1398 /*- -*/
1399 /*- Calculate runtime and format to mm:ss.s based on provided start time -*/
1400 /*- Eg: call GETRUNTIME(starttime) -*/
1401 /*- starttime: Start time saved with time('E') to use for calculation -*/
1402 /*---*/
1403 GETRUNTIME:
1404 parse arg mystarttime
1405 if datatype(mystarttime) = "NUM" then do
1406 myruntime = time('E') - mystarttime
1407 mymin = myruntime % 60
1408 mysec = right(format(myruntime // 60,,1),4,'0')
1409 return mymin || ":" || mysec "(min:sec)"
1410 end
1411 return "??:?? (min:sec)"
1412
1413 /*---*/
1414 /*- SUBROUTINE -*/
1415 /*- -*/
1416 /*- Wait x seconds, utilizing USS system call -*/
1417 /*- Eg: call WAIT(time) -*/
1418 /*- time: Number of seconds to wait -*/
1419 /*---*/
1420 WAIT:
1421 parse arg seconds
1422 if os = "TSO" then do

IBM Systems Page 75 © IBM Copyright, 2018

1423 address syscall
1424 'sleep (seconds)'
1425 address tso
1426 end
1427 else if os = "WIN" then do
1428 address SYSTEM "timeout" seconds
1429 end
1430
1431 return 0
1432
1433 /*---*/
1434 /*- SUBROUTINE -*/
1435 /*- -*/
1436 /*- Get delay depending on given timeout. Returns -1 for invalid timeouts. -*/
1437 /*- Eg: call GETDELAY(timeout) -*/
1438 /*- timeout: Overall timeout to calculate appropriate delay (0-3600 sec)-*/
1439 /*---*/
1440 GETDELAY:
1441 parse arg myto
1442 if datatype(myto) <> "NUM" then return -1
1443 if myto > 0 then do
1444 if myto <= 30 then return 5 /* 5 s delay within 30 sec */
1445 else if myto <= 120 then return 10 /* 10 s delay within 2 min */
1446 else if myto <= 300 then return 20 /* 20 s delay within 5 min */
1447 else if myto <= 600 then return 30 /* 30 s delay within 10 min */
1448 else if myto <= 3600 then return 60 /* 60 s delay within 60 min */
1449 else return -1
1450 end
1451 return 0

IBM Systems Page 76 © IBM Copyright, 2018

7 Appendix: Output of REXX Script example
Following is an example output of the script with a debug level of 0 (No Debug details):

14:33:33: Creating Practice Copy on Site 4 (D volumes):
14:33:33: 4-site Session: 'DS-MMGMGC'
14:33:33: Session task : ''
14:33:33: Pre-Checks : ENABLED
14:33:33: CSM Server : 9.155.114.38
14:33:33: Local O/S : WIN64
14:33:33: Debug Level : 0

14:33:33: Step 0: Check for Prepared state of H1-J3 pairs in session 'DS-
MMGMGC'...
14:33:40: 'DS-MMGMGC' H1-J3 Pair state result:
14:33:40: 16 pairs total:
14:33:40: 16 pairs PREPARED
14:33:40: Step 0: All pairs of H1-J3 in 'DS-MMGMGC' are Prepared
14:33:40: Step 0: Check for Preparing state of H3-H4 pairs in session 'DS-
MMGMGC'...
14:33:47: 'DS-MMGMGC' H3-H4 Pair state result:
14:33:47: 16 pairs total:
14:33:47: 16 pairs PREPARING
14:33:47: Step 0: Check H3-H4 Progress >= 97 % in session 'DS-MMGMGC'...
14:33:57: 'DS-MMGMGC' H3-H4 Rolepair status:
14:33:57: Recoverable: NO
14:33:57: Progress % : 100
14:33:57: Step 0: Progress of H3-H4 in 'DS-MMGMGC' is >= 97 %
14:33:57: Step 0: Pre-Check completed successfully
14:33:57: Step 0: Runtime 0:23.3 (min:sec)

14:33:57: Step 1: SuspendH1H3 of 4-site session 'DS-MMGMGC'...
14:34:08: Step 1: Successfully issued SuspendH1H3 to 4-site session 'DS-MMGMGC'
14:34:08: Step 1: Waiting for suspend completion of 4-site session 'DS-MMGMGC'
(max. 300 s)...
14:34:18: 'DS-MMGMGC' session state is: Suspended (Partial)
14:34:18: Step 1: Successfully suspended H1-H3 of 4-site session 'DS-MMGMGC'
14:34:18: Step 1: Runtime 0:21.5 (min:sec)

14:34:18: Step 2: Determine state of 4-site session 'DS-MMGMGC' from previous
query
14:34:18: Step 2: 'DS-MMGMGC' session state is: SUSPENDED (PARTIAL)
14:34:18: Step 2: FailoverH3 of 4-site session 'DS-MMGMGC'...
14:34:29: Step 2: Successfully issued FailoverH3 to 4-site session 'DS-MMGMGC'
14:34:29: Step 2: Waiting for failover completion of 4-site session 'DS-MMGMGC'
(max. 120 s)...
14:34:39: 'DS-MMGMGC' session state is: Suspended (Partial)
14:34:39: Step 2: Check Target Available state of H1-H3 pairs in 'DS-MMGMGC'...
14:34:49: 'DS-MMGMGC' H1-H3 Pair state result:
14:34:49: 16 pairs total:
14:34:49: 16 pairs TARGET AVAILABLE
14:34:49: Step 2: All pairs of H1-H3 in 'DS-MMGMGC' are Target Available
14:34:49: Step 2: Check H1-H3 is recoverable in session 'DS-MMGMGC'...
14:34:59: 'DS-MMGMGC' H1-H3 Rolepair status:
14:34:59: Recoverable: YES

IBM Systems Page 77 © IBM Copyright, 2018

14:34:59: Progress % : -
14:34:59: Step 2: H1-H3 in 'DS-MMGMGC' is recoverable
14:34:59: Step 2: H3 volumes are consistent in 4-site session 'DS-MMGMGC'
14:34:59: Step 2: Runtime 0:41.0 (min:sec)

14:34:59: Step 3: SuspendH3H4 of 4-site session 'DS-MMGMGC'...
14:35:09: Step 3: Successfully issued SuspendH3H4 to 4-site session 'DS-MMGMGC'
14:35:09: Step 3: Waiting for suspend completion of 4-site session 'DS-MMGMGC'
(max. 120 s)...
14:35:19: 'DS-MMGMGC' session state is: Suspended (Partial)
14:35:19: Step 3: Successfully suspended GC of 4-site session 'DS-MMGMGC'
14:35:19: Step 3: Runtime 0:20.1 (min:sec)

14:35:19: Successfully created practice Copy on Site 4 (D volumes)
14:35:19: Restarting Global Mirror to restore site protection...

14:35:19: Step 4: StartGM_H1:H3 of 4-site session 'DS-MMGMGC'...
14:35:30: Step 4: Successfully issued StartGM_H1:H3 to 4-site session 'DS-MMGMGC'
14:35:30: Step 4: Waiting for Prepared state of H1-J3 pairs in session 'DS-
MMGMGC' (max. 300 s)...
14:35:40: 'DS-MMGMGC' H1-J3 Pair state result:
14:35:40: 16 pairs total:
14:35:40: 16 pairs PREPARING
14:35:40: 0 pairs PREPARED
14:35:40: Need to wait for valid state: PREPARED
14:35:40: Requerying in 20 sec...

Waiting for 0 seconds, press a key to continue ...
14:36:09: 'DS-MMGMGC' H1-J3 Pair state result:
14:36:09: 16 pairs total:
14:36:09: 16 pairs PREPARED
14:36:09: Step 4: All pairs of H1-J3 in 'DS-MMGMGC' are Prepared
14:36:09: Step 4: Successfully restarted H1-H3 of 4-site session 'DS-MMGMGC'
14:36:09: Step 4: Runtime 0:49.7 (min:sec)

14:36:09: Global Mirror returned to Prepared State.
14:36:09: Enabling practice Copy on Site 4 (D volumes)...

14:36:09: Step 5: FailoverH4 of 4-site session 'DS-MMGMGC'
14:36:19: Step 5: Successfully issued FailoverH4 to 4-site session 'DS-MMGMGC'
14:36:19: Step 5: Check Target Available state of H3-H4 pairs in 'DS-MMGMGC'...
14:36:29: 'DS-MMGMGC' H3-H4 Pair state result:
14:36:29: 16 pairs total:
14:36:29: 16 pairs TARGET AVAILABLE
14:36:29: Step 5: All pairs of H3-H4 in 'DS-MMGMGC' are Target Available
14:36:29: Step 5: Check H3-H4 is recoverable in session 'DS-MMGMGC'...
14:36:39: 'DS-MMGMGC' H3-H4 Rolepair status:
14:36:39: Recoverable: YES
14:36:39: Progress % : -
14:36:39: Step 5: H3-H4 in 'DS-MMGMGC' is recoverable
14:36:39: Step 5: Successfully recovered H4 volumes in 4-site session 'DS-MMGMGC'
14:36:39: Step 5: Runtime 0:30.6 (min:sec)

IBM Systems Page 78 © IBM Copyright, 2018

14:36:39: Successfully enabled practice Copy on Site 4.
14:36:39: Systems can be IPLed on Site 4 for testing.

14:36:39: Total Runtime: 3:06.1 (min:sec)
14:36:39: Total RC = 0
