
An automated build environment
under Linux on System z

Proof of Concept Report

IBM contact person: Marc Beyerle
System z Specialist
TMCC Europe
marc.beyerle@de.ibm.com

TMCC project number: 8055

Document version: 1.0

Document date: 11/17/2009

mTechnical Marketing Competence Center Europe
IBM Deutschland Research & Development GmbH

mailto:marc.beyerle@de.ibm.com

An automated build environment under Linux on System z 11/17/2009

Table of Contents

Table of Contents..2

1 Executive Summary...3

2 Introduction...4
2.1 Objectives..4
2.2 Approach..4
2.3 People involved..4
2.4 Location and timeline..5

3 Environment...6
3.1 Hardware environment..6
3.2 Virtualized environment in LPAR 1...7

4 Implementation..8
4.1 Hardware setup..8
4.2 Software setup overview..8
4.3 31-bit versus 64-bit..8
4.4 Operating system setup..9
4.5 Middleware setup...9

4.5.1 Apache Tomcat...9
4.6 Application setup...10

4.6.1 Rational ClearCase...10
4.6.2 Apache Ant...14
4.6.3 Apache Maven..15
4.6.4 CruiseControl...15
4.6.5 JSPWiki..17

5 Test case..18
5.1 Definition...18
5.2 Approach..18

5.2.1 Creating the Maven sample project...18
5.2.2 Configuring CruiseControl..19
5.2.3 Perform the initial build...20
5.2.4 Perform a build after a source file change...21

5.3 Results..22

6 Conclusion and outlook...23

A Additional material...24
A.1 Profile extension for ClearCase..25
A.2 Profile extension for Ant...25
A.3 Profile extension for Maven...26
A.4 Maven proxy configuration..26
A.5 Profile extension for CruiseControl..27
A.6 Tomcat environment configuration for JSPWiki..27
A.7 Delegating Build Script for CruiseControl...28
A.8 Build Loop configuration for CruiseControl..29

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 2 of 30

An automated build environment under Linux on System z 11/17/2009

1 Executive Summary

The customer, for whom this Proof of Concept was performed, is one of Europe's largest banking
institutes. With over 25,000 employees worldwide, the bank offers all regular personal banking
services, general insurance products, and the full range of corporate banking services. In its home
country, the bank runs one of the largest branch office networks, and it also conducts business in
various other European countries and the United States.

The customer is currently very active in the area of consolidating workload to Linux® on System z®.
One application in this space is a build solution, based on both Open Source and IBM® software. It
is currently running under a Microsoft® Windows® operating system. Before going into production
with Linux on System z, the bank wanted to see a working prototype. Therefore, a Proof of Concept
project was performed at TMCC.

After a live demonstration of the environment, the bank said they were "... impressed how
supportive and professional" TMCC was able to implement exactly what they asked for. Key to the
success of this Proof of Concept was not only to fully understand and meet the customer's
expectations, but also to collaborate efficiently among the various IBMers involved. In addition,
this project includes an interesting message: Our customers are actively looking for ways to move
applications from Microsoft Windows to the IBM Mainframe.

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 3 of 30

An automated build environment under Linux on System z 11/17/2009

2 Introduction

2.1 Objectives

The objectives of this Proof of Concept project were specifically to:

● Install the software stack required for the automated build environment (see section 4.2 on
page 8 for a detailed list) under Linux on System z

● Prove that the software components work under Linux on System z

The latter had to be demonstrated by successfully executing a build process test case for the sample
project that comes with Apache Maven. This sample project had to be under version control of IBM
Rational® ClearCase® and the build results had to be displayed in the CruiseControl web interface.

2.2 Approach

The approach for this engagement was as follows (in chronological order):

● Installation of the base Linux on System z operating system

● Installation and configuration of the Open Source and IBM software packages

● Creation of the Apache Maven sample project and associated ClearCase artifacts

● Execution of the build process test case for the sample project

2.3 People involved

IBM United Kingdom

Garry Geokdjian System z Technical Consultant UK & Ireland
STG Sales
garry_geokdjian@uk.ibm.com

IBM Ireland

Alan Murphy Senior IT Architect
Global Technology Services
alan_murphy@ie.ibm.com

IBM Boeblingen

Marc Beyerle System z Specialist
TMCC Europe
marc.beyerle@de.ibm.com

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 4 of 30

mailto:marc.beyerle@de.ibm.com
mailto:alan_murphy@ie.ibm.com
mailto:garry_geokdjian@uk.ibm.com

An automated build environment under Linux on System z 11/17/2009

IBM Boeblingen

Volker Masen eServer Software Management
SCM Team
MASEN@de.ibm.com

Elisabeth Puritscher System Programmer
TMCC Europe
elisabeth.puritscher@de.ibm.com

2.4 Location and timeline

The Proof of Concept was performed in the IBM Laboratory in Boeblingen in June 2008. The
results were presented remotely over the Internet using an IBM Lotus® Sametime® web conference.
In July 2008, the installation was reproduced in the customer's System z environment.

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 5 of 30

mailto:elisabeth.puritscher@de.ibm.com
mailto:MASEN@de.ibm.com

An automated build environment under Linux on System z 11/17/2009

3 Environment

The following sections describe the detailed hardware and software setup used during this project.

3.1 Hardware environment

The Proof of Concept was performed on an IBM eServerTM zSeries® 990, machine type 2084, model
B16. See the illustration below for an overall hardware configuration overview.

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 6 of 30

z990 (2084-B16) DS6000

3 CPs (dedicated)
0 IFLs
0 zAAPs

2 GB central storage
0 GB exp. storage

1 FCP channel
0 FICON channels
0 ESCON channels

20 GB LUN (SAN)

GbE FCP

Network

9.152.123.221/27

An automated build environment under Linux on System z 11/17/2009

3.2 Virtualized environment in LPAR 1

For this Proof of Concept, a stand-alone Linux guest operating system using a single z/VM® virtual
machine had to be set up. The following diagram illustrates the hardware and software environment
for this z/VM Guest.

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 7 of 30

LPAR 1 (z/VM V5.3)

z/VM Guest 1

2 CPs (shared)
0 IFLs
0 zAAPs

2 GB central storage

0 GB ECKD space
20 GB SCSI space

H
ar

d
w

ar
e

S
o

ft
w

a
re Operating System

➢ SLES 9 SP3, 31-bit

Middleware
➢ Apache Tomcat 6.0.16

Application
➢ IBM Rational

ClearCase 2003.06.00
➢ Apache Ant 1.7.0
➢ Apache Maven 2.0.9
➢ CruiseControl 2.7.2
➢ JSPWiki 2.6.3

GbE

IBM Lab Network

An automated build environment under Linux on System z 11/17/2009

4 Implementation

This chapter contains one section for each phase of the hardware and software setup process. The
approach taken in this chapter is to list only those items, which are unique to this project and not to
mention common Proof of Concept tasks.

4.1 Hardware setup

The system resources required are illustrated in section 3.1 on page 6 and section 3.2 on page 7.
Note that Logical Partition 1 (LPAR 1) was exclusively connected to the IBM Boeblingen
laboratory network. Although technically possible, there was no additional connection to the
Internet set up due to IBM internal security restrictions.

4.2 Software setup overview

The following list summarizes the software, which was installed for this Proof of Concept:

● Novell® SUSE® Linux Enterprise Server 9 (s390) SP3, 31-bit

● IBM Rational ClearCase 2003.06.00, with User Space Patch 55 and MVFS Patch 56

● IBM 31-bit SDK for Linux on zSeries, JavaTM 2 Technology Edition, V5, SR7

● Apache Tomcat 6.0.16

● Apache Ant 1.7.0

● Apache Maven 2.0.9

● CruiseControl 2.7.2

● JSPWiki 2.6.3

4.3 31-bit versus 64-bit

As indicated in the above list, this Proof of Concept project was carried out using the 31-bit version
of SUSE Linux Enterprise Server 9 (SLES9). However, setting up the environment under the 64-bit
version of SLES9 works equally well. In fact, the customer is running it in 64-bit. The only
differences are:

● When running under the 64-bit version of SLES9, you may either install the 31-bit or the
64-bit version of the IBM SDK for Linux on zSeries. At the customer's site, the 64-bit
version was installed.

● The installation of Rational ClearCase under 31-bit SLES9 requires two changes in
installation-related scripts. These changes are not required when installing ClearCase under
64-bit SLES9.

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 8 of 30

An automated build environment under Linux on System z 11/17/2009

Note that it was not an objective to conduct a performance comparison between the 31-bit and
64-bit setup during this Proof of Concept project, and therefore, no such tests were performed.

4.4 Operating system setup

Since there were no specific software package requirements with respect to the Linux operating
system, SLES9 was installed using the "Minimum system" software configuration option.

However, Rational ClearCase includes the Multiversion File System (MVFS) kernel module. In
order to be able to compile it, the Linux kernel sources and the C Compiler of the GNU Compiler
Collection (GCC) had to be installed on top of the minimal installation. Furthermore, a name server
was configured, in order to facilitate host name resolution required by both Apache Maven and
Rational ClearCase.

4.5 Middleware setup

Apache Tomcat is the only software package used in this project, which can be considered
middleware. Therefore, this section contains only one sub-section.

4.5.1 Apache Tomcat

The first action in installing Tomcat is to set up a Java SDK. Note that all steps in this section have
to be executed under the root User ID:

● Remove any existing Java SDK packages using YaST

● Download the IBM Java SDK for Linux on zSeries from the IBM developerWorks web site:

http://www-128.ibm.com/developerworks/java/jdk/linux/download.html

● Install the IBM Java SDK:

rpm -ivh ibm-java2-s390-sdk-5.0-7.0.s390.rpm

● Create a symbolic link from /opt/ibm/java2-s390-50 to /usr/lib/java:

ln -s /opt/ibm/java2-s390-50 /usr/lib/java

The last step above makes the java executable available on the command line. Note that you have
to log out and in again in order for the changes to take effect. Next, Apache Tomcat can be installed:

● Download Tomcat from:

http://tomcat.apache.org/download-60.cgi

● Extract the tar archive to /opt:

cd /opt

tar xvzf [/directory/to/]apache-tomcat-6.0.16.tar.gz

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 9 of 30

http://tomcat.apache.org/download-60.cgi
http://www-128.ibm.com/developerworks/java/jdk/linux/download.html

An automated build environment under Linux on System z 11/17/2009

● Please note that in the above notation, [/directory/to/] denotes the file system path
to the Tomcat installation archive.

● Create a symbolic link from /opt/apache-tomcat-6.0.16 to /opt/tomcat:

ln -s /opt/apache-tomcat-6.0.16 /opt/tomcat

● Create a tomcat group:

/usr/sbin/groupadd -r tomcat

● Create a user tomcat with home directory /opt/tomcat:

/usr/sbin/useradd -c "Tomcat" -g tomcat -s /bin/sh -r
-d /opt/tomcat tomcat

● Recursively change ownership of /opt/apache-tomcat-6.0.16 to user tomcat:

chown -R tomcat. /opt/apache-tomcat-6.0.16

This completes the base Tomcat installation. However, there are still a few configuration steps
required for both CruiseControl and JSPWiki (see the corresponding sections for details).

4.6 Application setup

This section contains a sub-section for each of the application-level software packages included in
this Proof of Concept.

4.6.1 Rational ClearCase

There are many different ways to set up Rational ClearCase, especially for environments with high
amounts of users performing work in parallel. Please refer to the following IBM Redbooks®

publication for more information on this topic:

● U. Wahli et al.: Software Configuration Management: A Clear Case for IBM Rational
ClearCase and ClearQuest UCM. IBM Document No. SG24-6399-00, 2004.

For this particular project, ClearCase was installed as straightforward and lightweight as possible.
Before the actual installation process can be started, the so-called ClearCase Release Area has to be
created and upgraded to the required patch level. Again, all steps in this section have to be executed
under the root User ID:

● Create the Release Area:

mkdir /CC_release_area

● Extract the ClearCase installation archive into the Release Area:

cd /CC_release_area

tar xvzf <name_of_the_install_archive>

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 10 of 30

An automated build environment under Linux on System z 11/17/2009

● Download the ClearCase patches listed in 4.2 on page 8 from the following web site:

http://www-1.ibm.com/support/docview.wss?rs=984&uid=swg21136950

● Follow the instructions in the README files of the patches step by step. First, install patch
clearcase_p2003.06.00-55, then install patch clearcase_p2003.06.00-56.

During the patch process for the Release Area, the site_prep command has to be invoked. For
this Proof of Concept project, site_prep was executed without any additional arguments. The
command issues a number of questions, for which the answers depend on whether you want to
integrate the to-be-installed ClearCase into another (existing) ClearCase environment. One of the
main purposes of integrating the new ClearCase installation into an existing environment is to make
reuse of existing ClearCase servers, such as registry and license servers.

For this particular project, ClearCase had not to be integrated into another ClearCase environment.
Therefore, the questions were answered in the following way:

● ClearCase License Server Host: host name of the server, onto which ClearCase is installed
(at TMCC, zlx8055 was used)

● ClearCase Registry Server Host: same as above

● ClearCase Registry Region: tmcc

All other questions were answered with the default values provided by the site_prep command.

As already mentioned in 4.3 on page 8, the following additional steps are necessary for 31-bit
SLES9 (not required for 64-bit):

● Open the file /CC_release_area/2003.06.00/linux_390/clearcase/
install/Kernel.pl with an editor (for example vi)

● Locate line 371 and change it from:

if ($os_dist_ver !~ m@[78]\.*@) {

to:

if ($os_dist_ver !~ m@[789]\.*@) {

● Save the file and exit the editor

If you are using vi, do the following in order to go to line 371: hit the ESC key, type a colon, enter
371 and hit the return key.

Now, the actual install process can be started:

● cd /CC_release_area/2003.06.00/linux_390/clearcase/install

● ./install_release

A sequence of questions will be asked before the copying of the files commences. Here are the
answers used for this Proof of Concept project:

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 11 of 30

http://www-1.ibm.com/support/docview.wss?rs=984&uid=swg21136950

An automated build environment under Linux on System z 11/17/2009

● Method of installation: 1 (Local Install)

● Model of installation: 2 (Full-copy)

● Specify directory in which Rational products are to be installed:

/opt/rational

● Pathname to the network-wide release directory:

/CC_release_area/2003.06.00/linux_390

● Select 9 (ClearCase Full Function Installation)

● Select f (Finish selection)

After this, the questions of the site_prep command are repeated. They should be answered using
the default values provided by the install_release script.

The installation process will now copy the required files. It finishes with some warning messages,
which indicate that the MVFS kernel module could not be compiled. ClearCase ships with only a
few pre-compiled modules for older kernel versions, so these warning messages can be safely
ignored. However, since ClearCase is not fully functional without this module, you have to compile
it manually:

● Change to the directory containing the source files:

cd /var/adm/rational/clearcase/mvfs/vnode_src

● Follow the instructions in the README.txt file

Before you execute the "Build and install" step listed in the above file, make sure that you execute
the following steps for 31-bit SLES9 (not required for 64-bit):

● Open the vnode_param.mk.config file with an editor

● Change the first line in this file from:

RATL_EXTRAFLAGS := -DSLES8

to:

RATL_EXTRAFLAGS := -DSLES9

● Save the file and exit the editor

Now the path to the ClearCase executables has to be added to the system-wide PATH environment
variable. In SLES, this is typically done by creating an additional configuration file in the
/etc/profile.d directory. See section A.1 on page 25 for the name and contents of this file.
After creating the file, log out and in again in order for the changes to take effect.

Since the ClearCase installation for this Proof of Concept is not integrated into an existing
ClearCase environment, a few additional steps have to be completed in order to enable the required
server functionality. Note that the following steps are not required if you integrate ClearCase into

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 12 of 30

An automated build environment under Linux on System z 11/17/2009

another ClearCase environment:

● Add your IBM Rational ClearCase license key to the license database:

● Open the file /var/adm/atria/license.db with an editor

● Paste your license key at the end of this file

● Save the file and exit the editor

● Create an encrypted ClearCase Versioned Object Base (VOB) tag registry password:

cd /opt/rational/clearcase/linux_390/etc/

./rgy_passwd

● Create a Linux user, who will host a VOB in his home directory:

useradd -m marc

● Switch to this User ID:

su - marc

● Create a VOB:

mkdir /home/marc/VOBs

cleartool mkvob -tag /vobs/mypoc -public -comment "My PoC"
/home/marc/VOBs/mypoc.vbs

Next, create a so-called View for the above VOB. The following steps have to be completed,
regardless of whether you integrate ClearCase into another ClearCase environment or not:

● Create a View:

mkdir /home/marc/VIEWs

cleartool mkview -tag marc_mypoc_main -snapshot
/home/marc/VIEWs/marc_mypoc_main.vws

● Create a so-called Config Spec:

cd /home/marc/VIEWs/marc_mypoc_main.vws

cleartool edcs

● In the editor that opens, enter the following:

element * CHECKEDOUT

element * /main/LATEST

load /vobs/mypoc

● Save the file and exit the editor. This activates the new Config Spec.

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 13 of 30

An automated build environment under Linux on System z 11/17/2009

● Load the actual contents of the View into the View's physical directory:

cleartool update

The View is now in a state, where new elements such as directories and files may be added. Since
the sample project that comes with Apache Maven will be put under version control, you will have
to make yourself familiar with the process of registering directories and files with ClearCase. The
basic flow for adding new elements is the same for both directories and files:

● Change to the directory, in which the new element will be created:

cd /home/marc/VIEWs/marc_mypoc_main.vws/vobs/mypoc

● Check out the current directory:

cleartool checkout .

● Create the element:

● For directories: mkdir <directory_name>

● For files: vi <file_name>

● Invoke the ClearCase mkelem command on the new element:

cleartool mkelem <name_of_the_element>

● Check in the new element:

cleartool checkin <name_of_the_element>

When you are done with the above steps, do not forget to check in the current directory, in which
you created the new element.

4.6.2 Apache Ant

Perform the following steps in order to install Apache Ant (under the root User ID):

● Download Ant from:

http://ant.apache.org/bindownload.cgi

● Extract the tar archive to /opt:

cd /opt

tar xvzf [/directory/to/]apache-ant-1.7.0-bin.tar.gz

● Please note that in the above notation, [/directory/to/] denotes the file system path
to the Ant installation archive.

● Create a symbolic link from /opt/apache-ant-1.7.0 to /opt/ant:

ln -s /opt/apache-ant-1.7.0 /opt/ant

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 14 of 30

http://maven.apache.org/download.html

An automated build environment under Linux on System z 11/17/2009

Identical to Rational ClearCase, the path to the Ant executables has to be added to the system-wide
PATH environment variable. See section A.2 on page 25 for the name and contents of the
corresponding configuration file. After creating the file, log out and in again in order for the
changes to take effect.

4.6.3 Apache Maven

Perform the following steps in order to install Apache Maven (under the root User ID):

● Download Maven from:

http://maven.apache.org/download.html

● Extract the tar archive to /opt:

cd /opt

tar xvzf [/directory/to/]apache-maven-2.0.9-bin.tar.gz

● Please note that in the above notation, [/directory/to/] denotes the file system path
to the Maven installation archive.

● Create a symbolic link from /opt/apache-maven-2.0.9 to /opt/maven:

ln -s /opt/apache-maven-2.0.9 /opt/maven

Identical to the last software packages, the path to the Maven executables has to be added to the
system-wide PATH environment variable. See section A.3 on page 26 for the name and contents of
the corresponding configuration file. After creating the file, log out and in again in order for the
changes to take effect.

Maven requires Internet access, since it downloads numerous plugins when executed for the first
time. At the customer site, it was necessary to configure an HTTP proxy for Maven. This is
achieved by creating a Maven User Configuration:

● Switch to the User ID, who will execute the build process:

su - marc

● Create a Maven directory in the user's home directory:

mkdir .m2

● Create a Maven user configuration with the file name and contents listed in A.4 on page 26

4.6.4 CruiseControl

Perform the following steps in order to install CruiseControl (under the root User ID):

● Download CruiseControl from:

http://cruisecontrol.sourceforge.net/download.html

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 15 of 30

http://cruisecontrol.sourceforge.net/download.html
http://maven.apache.org/download.html

An automated build environment under Linux on System z 11/17/2009

● Extract the ZIP archive to /opt:

cd /opt

unzip -d . [/directory/to/]cruisecontrol-src-2.7.2.zip

● Please note that in the above notation, [/directory/to/] denotes the file system path
to the CruiseControl installation archive.

● Create a symbolic link to /opt/cruisecontrol:

ln -s /opt/cruisecontrol-2.7.2 /opt/cruisecontrol

● Compile the main CruiseControl components:

cd /opt/cruisecontrol/main

sh build.sh

● Compile the reporting component:

cd /opt/cruisecontrol/reporting/jsp

sh build.sh

During the compilation process of the reporting component, you have to enter a few values for
reporting-related Java properties. Here are the values used for this Proof of Concept project:

● user.log.dir = /work/cruise/logs

● user.build.status.file = status.txt

● cruise.build.artifacts.dir = /work/cruise/artifacts

After compiling the reporting component, install it under Tomcat:

● Switch to the tomcat User ID:

su - tomcat

● Copy the Web Archive to the corresponding Tomcat directory:

cp /opt/cruisecontrol/reporting/jsp/dist/cruisecontrol.war
/opt/tomcat/webapps

Identical to the last software packages, the path to the CruiseControl executables has to be added to
the system-wide PATH environment variable. See section A.5 on page 27 for the name and contents
of the corresponding configuration file. After creating the file, log out and in again in order for the
changes to take effect.

Different to the other software packages, the executable bit for the main CruiseControl executable
has to be set. As the root user, do the following:

● chmod 755 /opt/cruisecontrol/main/bin/cruisecontrol.sh

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 16 of 30

An automated build environment under Linux on System z 11/17/2009

4.6.5 JSPWiki

Although not directly related to the build environment, JSPWiki was installed in order to
demonstrate proper operation under Linux on System z. No specific adjustments were made,
therefore you can simply follow the installation guide at:

● http://doc.jspwiki.org/2.4/wiki/InstallingJSPWikiStepByStep

In section "Configuring the main policy file", the author mentions the setting of the
CATALINA_OPTS environment variable. This is best done by creating an extra configuration file
in the /opt/tomcat/bin directory. For the name and contents of this file, see section A.6 on
page 27. Note that this is a general best practice, and not specific to Linux on System z.

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 17 of 30

http://doc.jspwiki.org/2.4/wiki/InstallingJSPWikiStepByStep

An automated build environment under Linux on System z 11/17/2009

5 Test case

In order to prove that the software components work under Linux on System z, a test case had to be
agreed upon for this project. It was decided that the test case should consist of a two-step build
process for the sample project that comes with Apache Maven. This chapter describes the setup and
execution of this test case.

5.1 Definition

The test case consists of two steps:

● Perform an initial build of the Maven sample project. This is done by invoking the
CruiseControl executable with an empty build output directory.

● Perform a build after one arbitrary file in the source directory has been changed. This is
done by performing a checkout on the file, a modification of the file, and finally a checkin
of the file. Note that CruiseControl picks up the changes automatically.

The test case is considered successful, if the two operations described above complete without
errors and the build results are displayed in the CruiseControl web interface.

5.2 Approach

The approach for setting up the test case is as follows:

● Create a ClearCase VOB and an associated View for the source files. This has already been
done (see page 13 for details).

● Create the Maven sample project in the View's directory

● Configure CruiseControl

● Perform the initial build

● Perform a build after a source file change

The following sub-sections describe the above steps in more detail.

5.2.1 Creating the Maven sample project

Perform the following steps in order to create the Maven sample project:

● Switch to the User ID, who will execute the build process:

su - marc

● Change the current directory to the View:

cd /home/marc/VIEWs/marc_mypoc_main.vws/vobs/mypoc

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 18 of 30

An automated build environment under Linux on System z 11/17/2009

● Create the Maven sample project:

mvn archetype:create -DgroupId=com.ibm.tmcc.poc
-DartifactId=MavenPoC

The last command will create a directory called MavenPoC in the current directory. It contains the
so-called Project Object Model (POM) file called pom.xml and the directory for the source files
src. Now you have to follow the process described on page 14, in order to register all directories
and files under (and including) MavenPoc to ClearCase.

5.2.2 Configuring CruiseControl

You can read more about this task in the "Getting Started with the Source Distribution" guide,
which can be found here:

● http://cruisecontrol.sourceforge.net/gettingstartedsourcedist.html

Perform the following steps (under the root User ID) in order to set up the so-called Working
Area, a set of directories used by CruiseControl:

● Create the tree structure:

mkdir -p /work/cruise

mkdir /work/cruise/artifacts

mkdir /work/cruise/checkout

mkdir /work/cruise/logs

● Recursively change ownership of /work/cruise to the User ID, who will execute the
build process:

chown -R marc. /work/cruise

Now you have to configure the Build Loop, which is (citing the above guide) "... a Java application
that provides the core build scheduling functionality of CruiseControl". Part of the Build Loop
execution process is to get the latest version of the source files from the repository. There are two
ways to accomplish this when using CruiseControl together with the combination of Maven and
ClearCase:

● Maven fetches the source file updates from ClearCase as part of the POM file

● An Ant script fetches the source file updates

For this particular Proof of Concept, the second solution was implemented. There are two reasons
for this: First, the Ant approach provides a more fine granular control over the source file fetch
process. Second, the Ant approach is well documented, as opposed to using ClearCase from within
Maven. See section A.7 on page 28 for the name and contents of the Ant script file, which is used as
a so-called Delegating Build Script.

Now the actual Build Loop can be configured. The guide mentioned above provides a detailed
description of the individual sections of this file, so this information is omitted in this report. Refer

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 19 of 30

http://cruisecontrol.sourceforge.net/gettingstartedsourcedist.html

An automated build environment under Linux on System z 11/17/2009

to section A.8 on page 29 for the name and contents of the Build Loop configuration file. You will
notice that the <schedule> element contains a <composite> element, which is different to the
sample configuration provided in the guide. This is due to the source file update method described
in the last paragraph. The first XML child element of the <composite> element calls the Ant
script, and the second child element starts the Maven build process. Another difference is the
<merge> element underneath the <log> element. This is required to include the output of the
JUnit tests into the CruiseControl web interface.

Before the Build Loop can be started, a few file system adjustments have to be made:

● Switch to the User ID, who will execute the build process:

su - marc

● Create a symbolic link to the ClearCase View:

cd /work/cruise/checkout

ln -s /home/marc/VIEWs/marc_mypoc_main.vws/vobs/mypoc/MavenPoC .

● Create a directory for the build log files:

cd /work/cruise/logs

mkdir MavenPoC

● Create a caching directory for the CruiseControl web application:

cd /work/cruise/logs/MavenPoC

mkdir _cache

chmod 777 _cache

The last command will write-enable the caching directory for all users. This is necessary, since the
Tomcat User ID has to be able to write to it.

5.2.3 Perform the initial build

In order to perform the initial build, complete the following steps:

● If not already done, switch to the User ID, who will execute the build process:

su - marc

● Change to the directory containing the Working Area:

cd /work/cruise

● Start the Build Loop:

cruisecontrol.sh

Here are some tips, for the case when the Build Loop cannot be started or returns with a "build
failed" error message:

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 20 of 30

An automated build environment under Linux on System z 11/17/2009

● If the cruisecontrol.sh script cannot be found on the command line, you probably
forgot to configure the profile extension for CruiseControl (see section 4.6.4 on page 15). In
addition, make sure that the executable bit for the cruisecontrol.sh script is set.

● If you get an error similar to

cleartool: Error: Not a vob object: ".".

you probably forgot to register the sample project's directories and files to ClearCase (see
page 14 for details on how to do this).

● If you get an error similar to

cleartool: Error: Unable to access "...": No such file or directory.

check the quotes around the View path name in the Delegating Build Script.

5.2.4 Perform a build after a source file change

In order to trigger an automatic build, you have to change a source file, which is under the control
of ClearCase. For the next steps, open another shell on your server:

● If not already done, switch to the User ID, who will execute the build process:

su - marc

● Change to the directory of the Maven sample project:

cd /home/marc/VIEWs/marc_mypoc_main.vws/vobs/mypoc/MavenPoC

cd src/main/java/com/ibm/tmcc/poc/

● Check out the Java source file contained in this directory:

cleartool checkout App.java

● Open the file with an editor

● Locate line 11 and change it from:

System.out.println("Hello World!");

to something similar to:

System.out.println("Hello Linux on System z World!");

● Save the file and exit the editor

● Check in the Java source file:

cleartool checkin App.java

If everything is configured correctly, CruiseControl will pick up the changes automatically and
trigger a new build process.

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 21 of 30

An automated build environment under Linux on System z 11/17/2009

5.3 Results

In order to check whether the builds were executed successfully, you can check both the output
messages of CruiseControl on the command line and the web interface, which can be found here:

● http://<your_host_name>:8080/cruisecontrol

If you click on the MavenPoc link, you will see all kinds of statistics regarding the build
operations. For this Proof of Concept project, both builds were executed successfully.

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 22 of 30

An automated build environment under Linux on System z 11/17/2009

6 Conclusion and outlook

Having successfully completed this Proof of Concept project together with IBM, the customer has
made its next step towards a new data center built upon the strengths of Linux on System z.

Utilizing the capabilities of the underlying virtualization technology, the bank can now start to
benefit from the centralized server management that comes with z/VM. Other benefits are the
simplified networking structures based on System z HiperSocketsTM and the ability to provision new
servers in a matter of minutes. Finally, the possibility of taking the former Microsoft Windows
system out of service adds to the "green" aspect of this project. Consolidating workload on the IBM
Mainframe means less overall power consumption and less floor space required. The more physical
servers are consolidated, the greener the solution will be in the end.

With its unique combination of System z hardware, software, and technical consulting skills,
TMCC was able to contribute its share to the success of this project. In addition, the knowledge
transfer to both customer specialists and the local IBM team will help to ensure that the client is
well positioned for future projects in the Linux on System z space.

If you want more information regarding this project or if you need technical assistance in an IBM
System z related Proof of Concept, do not hesitate to contact the author Marc Beyerle
(marc.beyerle@de.ibm.com). Alternatively, you may also contact the Technical Marketing
Competence Center Europe at tmcc@de.ibm.com

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 23 of 30

mailto:tmcc@de.ibm.com
mailto:tmcc@de.ibm.com
mailto:tmcc@de.ibm.com
mailto:marc.beyerle@de.ibm.com
mailto:marc.beyerle@de.ibm.com
mailto:marc.beyerle@de.ibm.com

An automated build environment under Linux on System z 11/17/2009

A Additional material

All shell scripts and configuration files in this chapter were written for and tested under SUSE
Linux Enterprise Server 9 (SLES9) SP3, s390 (31-bit) and s390x (64-bit). Nevertheless, please read
the following disclaimer for the scripts and configuration files provided in this appendix:

Disclaimer of warranties

The shell scripts and configuration files in this document are created by IBM. The shell scripts and
configuration files are provided to you solely for internal usage only. The shell scripts and
configuration files are provided "AS IS", without warranty of any kind. IBM shall not be liable for
any damages arising out of your use of the shell scripts and configuration files, even if they have
been advised of the possibility of such damages.

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 24 of 30

An automated build environment under Linux on System z 11/17/2009

A.1 Profile extension for ClearCase

File name:

/etc/profile.d/clearcase.sh

File contents:

#
--
| CLEARCASE ENVIRONMENT SETTINGS |
| |
| Author: Marc Beyerle (marc.beyerle@de.ibm.com), 06/17/2008 |
| Copyright IBM Corp. 2008 |
--
#
export PATH=${PATH}:/opt/rational/clearcase/linux_390/bin

A.2 Profile extension for Ant

File name:

/etc/profile.d/ant.sh

File contents:

#
--
| ANT ENVIRONMENT SETTINGS |
| |
| Author: Marc Beyerle (marc.beyerle@de.ibm.com), 06/18/2008 |
| Copyright IBM Corp. 2008 |
--
#
export ANT_HOME=/opt/ant
export PATH=${PATH}:${ANT_HOME}/bin

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 25 of 30

An automated build environment under Linux on System z 11/17/2009

A.3 Profile extension for Maven

File name:

/etc/profile.d/maven.sh

File contents:

#
--
| MAVEN ENVIRONMENT SETTINGS |
| |
| Author: Marc Beyerle (marc.beyerle@de.ibm.com), 06/18/2008 |
| Copyright IBM Corp. 2008 |
--
#
export M2_HOME=/opt/maven
export PATH=${PATH}:${M2_HOME}/bin

A.4 Maven proxy configuration

File name:

${HOME}/.m2/settings.xml

File contents:

<settings>
 <proxies>
 <proxy>
 <active>true</active>
 <protocol>http</protocol>
 <host>proxy.somewhere.com</host>
 <port>8080</port>
 <username>proxyuser</username>
 <password>somepassword</password>
 </proxy>
 </proxies>
</settings>

Note: This configuration file was taken from the Maven documentation on the Internet, which can
be found here:

● http://maven.apache.org/guides/mini/guide-proxies.html

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 26 of 30

http://maven.apache.org/guides/mini/guide-proxies.html

An automated build environment under Linux on System z 11/17/2009

A.5 Profile extension for CruiseControl

File name:

/etc/profile.d/cruisecontrol.sh

File contents:

#
--
| CRUISECONTROL ENVIRONMENT SETTINGS |
| |
| Author: Marc Beyerle (marc.beyerle@de.ibm.com), 06/17/2008 |
| Copyright IBM Corp. 2008 |
--
#
export PATH=${PATH}:/opt/cruisecontrol/main/bin

A.6 Tomcat environment configuration for JSPWiki

File name:

/opt/tomcat/bin/setenv.sh

File contents:

#
--
| JSPWIKI ENVIRONMENT SETTINGS |
| |
| Author: Marc Beyerle (marc.beyerle@de.ibm.com), 06/19/2008 |
| Copyright IBM Corp. 2008 |
--
#
export CATALINA_OPTS="-Djava.security.policy=/etc/wikis/jspwiki.policy"

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 27 of 30

An automated build environment under Linux on System z 11/17/2009

A.7 Delegating Build Script for CruiseControl

File name:

/work/cruise/build-MavenPoC.xml

File contents:

<!-- Delegating build script, used by cruisecontrol to build MavenPoC.
 Note that the basedir is set to the checked out project -->
<project name="build-MavenPoC"
 default="build"
 basedir="checkout/MavenPoC">
 <target name="build">
 <!-- Get the latest from ClearCase -->
 <ccupdate viewpath="/home/marc/VIEWs/marc_mypoc_main.vws/
 vobs/mypoc/MavenPoC/" graphical="false"
 log="/work/cruise/logs/MavenPoC/clearcase.log"
 overwrite="true" rename="false"/>
 </target>
</project>

Important note: In the above listing, the full path name behind the viewpath attribute has been
split, in order to make it readable. However, when creating your own copy of this file, do not split
it. Otherwise, the build process will fail during the source file update operation.

Additional note: This configuration file was adapted from the CruiseControl documentation on the
Internet, which can be found here:

● http://cruisecontrol.sourceforge.net/gettingstartedsourcedist.html

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 28 of 30

http://cruisecontrol.sourceforge.net/gettingstartedsourcedist.html

An automated build environment under Linux on System z 11/17/2009

A.8 Build Loop configuration for CruiseControl

File name:

/work/cruise/build-MavenPoC.xml

File contents:

<cruisecontrol>
 <project name="MavenPoC" buildafterfailed="true">
 <listeners>
 <currentbuildstatuslistener
 file="logs/MavenPoC/status.txt"/>
 </listeners>

 <!-- Bootstrappers are run every time the build runs,
 before the modification checks -->
 <bootstrappers>
 </bootstrappers>

 <!-- Defines where cruise looks for changes, to decide
 whether to run the build -->
 <modificationset quietperiod="10">
 <clearcase branch="main" viewpath="checkout/MavenPoC"/>
 </modificationset>

 <!-- Configures the actual build loop, how often and which
 build file/target -->
 <schedule interval="60">
 <composite>
 <ant anthome="/opt/ant"
 buildfile="build-MavenPoC.xml"
 target="build"
 uselogger="true"
 usedebug="false"/>
 <maven2 mvnhome="/opt/maven"
 pomfile="checkout/MavenPoC/pom.xml"
 goal="clean compile test"/>
 </composite>
 </schedule>

 <!-- directory to write build logs to -->
 <log logdir="logs/MavenPoC">
 <merge dir="checkout/MavenPoC/target/surefire-reports"/>
 </log>

 <!-- Publishers are run *after* a build completes -->
 <publishers>
 </publishers>
 </project>
</cruisecontrol>

Note: This configuration file was adapted from the CruiseControl documentation on the Internet,
which can be found here:

● http://cruisecontrol.sourceforge.net/gettingstartedsourcedist.html

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 29 of 30

http://cruisecontrol.sourceforge.net/gettingstartedsourcedist.html

An automated build environment under Linux on System z 11/17/2009

© Copyright IBM Corp. 2009 Proof of Concept Report
TMCC Europe Page 30 of 30

m
© Copyright IBM Corp. 2009

IBM Deutschland Research & Development GmbH
Technical Marketing Competence Center Europe
Department 3300
Schoenaicher Str. 220
71032 Boeblingen
Germany

The IBM home page can be found on the Internet at ibm.com

IBM, the IBM logo, and ibm.com are trademarks or
registered trademarks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other
product and service names might be trademarks of IBM or
other companies. A current list of IBM trademarks is
available on the Web at "Copyright and trademark
information" at www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Novell is a registered trademark of Novell, Inc. in the United
States and other countries.

SUSE is a registered trademark of SUSE Linux GmbH, a
Novell company.

Microsoft and Windows are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks
of Sun Microsystems, Inc. in the United States, other
countries, or both.

Other company, product, or service names may be
trademarks or service marks of others.

IBM has not formally reviewed this paper. While effort has
been made to verify the information, this paper may contain
errors. IBM makes no warranties or representations with
respect to the content hereof and specifically disclaim any
implied warranties of merchantability or fitness for any
particular purpose. IBM assumes no responsibility for any
errors that may appear in this document. The information
contained in this document is subject to change without any
notice. IBM reserves the right to make any such changes
without obligation to notify any person of such revision or
changes. IBM makes no commitment to keep the information
contained herein up to date.

References in this publication to IBM products, programs or
services do not imply that IBM intends to make these
available in all countries in which IBM operates. Any
reference to an IBM product, program or service is not
intended to imply that only IBM’s product, program or
service may be used. Any functionally equivalent product,
program or service may be used instead.

All customer examples cited represent how some customers
have used IBM products and the results they may have
achieved. Actual environmental costs and performance
characteristics will vary depending on individual customer
configurations and conditions.

	1 Executive Summary
	2 Introduction
	2.1 Objectives
	2.2 Approach
	2.3 People involved
	2.4 Location and timeline

	3 Environment
	3.1 Hardware environment
	3.2 Virtualized environment in LPAR 1

	4 Implementation
	4.1 Hardware setup
	4.2 Software setup overview
	4.3 31-bit versus 64-bit
	4.4 Operating system setup
	4.5 Middleware setup
	4.5.1 Apache Tomcat

	4.6 Application setup
	4.6.1 Rational ClearCase
	4.6.2 Apache Ant
	4.6.3 Apache Maven
	4.6.4 CruiseControl
	4.6.5 JSPWiki

	5 Test case
	5.1 Definition
	5.2 Approach
	5.2.1 Creating the Maven sample project
	5.2.2 Configuring CruiseControl
	5.2.3 Perform the initial build
	5.2.4 Perform a build after a source file change

	5.3 Results

	6 Conclusion and outlook
	A Additional material
	A.1 Profile extension for ClearCase
	A.2 Profile extension for Ant
	A.3 Profile extension for Maven
	A.4 Maven proxy configuration
	A.5 Profile extension for CruiseControl
	A.6 Tomcat environment configuration for JSPWiki
	A.7 Delegating Build Script for CruiseControl
	A.8 Build Loop configuration for CruiseControl

