
Vormetric Application Encryption (VAE)

Installation and API Reference Guide

Version 6.2.0

M A R C H 1 2 , 2 0 1 9

D O C U M E N T V E R S I O N 1

Vormetric Data Security Platform

50-1000040-02

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .ii

Vormetric Data Security Platform

 Installation and API Reference Guide

Version 6.2.0

March 12, 2019, Document Version 1

Copyright 2009 – 2019. Thales eSecurity, Inc. All rights reserved.

NOTICES, LICENSES, AND USE RESTRICTIONS

Vormetric, Thales, and other Thales trademarks and logos are trademarks or registered trademark of Thales
eSecurity, Inc. in the United States and a trademark or registered trademark in other countries.

All other products described in this document are trademarks or registered trademarks of their respective
holders in the United States and/or in other countries.

The software (“Software”) and documentation contains confidential and proprietary information that is the
property of Thales eSecurity, Inc. The Software and documentation are furnished under license from Thales and
may be used only in accordance with the terms of the license. No part of the Software and documentation may
be reproduced, transmitted, translated, or reversed engineered, in any form or by any means, electronic,
mechanical, manual, optical, or otherwise.

The license holder (“Licensee”) shall comply with all applicable laws and regulations (including local laws of the
country where the Software is being used) pertaining to the Software including, without limitation, restrictions
on use of products containing encryption, import or export laws and regulations, and domestic and international
laws and regulations pertaining to privacy and the protection of financial, medical, or personally identifiable
information. Without limiting the generality of the foregoing, Licensee shall not export or re-export the Software,
or allow access to the Software to any third party including, without limitation, any customer of Licensee, in
violation of U.S. laws and regulations, including, without limitation, the Export Administration Act of 1979, as
amended, and successor legislation, and the Export Administration Regulations issued by the Department of
Commerce, or in violation of the export laws of any other country.

Any provision of any Software to the U.S. Government is with "Restricted Rights" as follows: Use, duplication, or
disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.277.7013, and in subparagraphs (a) through (d) of
the Commercial Computer-Restricted Rights clause at FAR 52.227-19, and in similar clauses in the NASA FAR
Supplement, when applicable. The Software is a "commercial item" as that term is defined at 48 CFR 2.101,
consisting of "commercial computer software" and "commercial computer software documentation", as such
terms are used in 48 CFR 12.212 and is provided to the U.S. Government and all of its agencies only as a
commercial end item. Consistent with 48 CFR

12.212 and DFARS 227.7202-1 through 227.7202-4, all U.S. Government end users acquire the Software with
only those rights set forth herein. Any provision of Software to the U.S. Government is with Limited Rights. Thales
is Thales eSecurity, Inc. at Suite 710, 900 South Pine Island Road, Plantation, FL 33324.

THALES PROVIDES THIS SOFTWARE AND DOCUMENTATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT OF THIRD PARTY RIGHTS, AND ANY
WARRANTIES ARISING OUT OF CONDUCT OR INDUSTRY PRACTICE. ACCORDINGLY, THALES DISCLAIMS ANY
LIABILITY, AND SHALL HAVE NO RESPONSIBILITY, ARISING OUT OF ANY FAILURE OF THE SOFTWARE TO OPERATE
IN ANY ENVIRONMENT OR IN CONNECTION WITH ANY HARDWARE OR TECHNOLOGY, INCLUDING, WITHOUT
LIMITATION, ANY FAILURE OF DATA TO BE PROPERLY PROCESSED OR TRANSFERRED TO, IN OR THROUGH
LICENSEE'S COMPUTER ENVIRONMENT OR ANY FAILURE OF ANY TRANSMISSION HARDWARE, TECHNOLOGY, OR
SYSTEM USED BY LICENSEE OR ANY LICENSEE CUSTOMER. THALES SHALL HAVE NO LIABILITY FOR, AND LICENSEE
SHALL DEFEND, INDEMNIFY, AND HOLD THALES HARMLESS FROM AND AGAINST, ANY SHORTFALL IN
PERFORMANCE OF THE SOFTWARE, OTHER HARDWARE OR TECHNOLOGY, OR FOR ANY INFRINGEMENT OF
THIRD PARTY INTELLECTUAL PROPERTY RIGHTS, AS A RESULT OF THE USE OF THE SOFTWARE IN ANY
ENVIRONMENT. LICENSEE SHALL DEFEND, INDEMNIFY, AND HOLD THALES HARMLESS FROM AND AGAINST ANY

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .iii

COSTS, CLAIMS, OR LIABILITIES ARISING OUT OF ANY AGREEMENT BETWEEN LICENSEE AND ANY THIRD PARTY.
NO PROVISION OF ANY AGREEMENT BETWEEN LICENSEE AND ANY THIRD PARTY SHALL BE BINDING ON THALES.

Protected by U.S. patents:

6,678,828

6,931,530

7,143,288

7,283,538

7,334,124

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .iv

Contents

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .i

. Contents

Contents . i

Preface . v
Documentation Version History . v
Assumptions . vi
Related Documents . vi
Guide to VAE Documentation . vi
Vormetric Data Security Platform—Overview . viii
Service Updates and Support Information . ix

1 Vormetric Application Encryption . 1

Product Overview . 1
Application Encryption Workflow . 1
Components . 2
Functionality . 3

2 Vormetric Encryption Concepts . 5

VAE and DSM . 5
Fingerprint . 5
Shared Secret . 5
Run-time DSM Functionality . 6

Key Management . 6
Key Headers . 6
Versioning . 10
NIST Key States . 10
Opaque Objects . 11
Cached Keys . 11
GCM Support for Symmetric Keys . 11
Export Asymmetric Keys . 12
Identity-Based Key Access . 14

PKCS#11 . 15
PINs . 15
Header Files . 15

3 Vormetric Application Encryption Installation . 17

Contents

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .ii

Overview . 17
Assumptions . 17

Installation Plan . 18
Agent Install Checklist . 18
Before You Begin . 19

Determine Your Agent Registration Method . 19
Host Name Resolution . 20

Initial Setup . 21
To Install the VAE Agent on Windows . 21
To Install the VAE Agent on Linux/UNIX . 24

Modify the Key Cache . 27
To Modify the Key Cache on the DSM . 28

Certificate Renewal . 28
Uninstalling . 29

4 Using the VAE API . 31

Sample Code . 31
Compiling and Running Sample Code in c_samples . 32

Location of Libraries, Samples, and Logs . 32
Using Java 9 and Higher with VAE . 33
Verifying Successful API Initialization . 34
Providing Identity-Based Key Access Credentials . 35

Creating a Key in a Key Group . 36
Restricting Encryption Key Access . 36

Metadata Logging and Sample Code . 36

Troubleshooting . 38

5 Encryption Use Cases . 39

Signing . 39
Hashing . 40
FPE . 41
Storing Keys on the Server by Default . 42
Automated Key Versioning . 43

What is a versioned key . 43
How do versioned keys work . 43

Contents

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .iii

Implementing Automated Key Versioning . 45
Complete Walk-Through . 47

Create and Import a Key . 47
Encrypt and Decrypt . 50
Example With Thales Java Wrapper . 53

A API Reference . 57

General Purpose Functions . 58
C_Initialize . 58
C_Finalize . 59
C_GetInfo . 59
C_GetFunctionList . 61

Slot and Token Management Functions . 62
C_GetSlotList . 62
C_GetSlotInfo . 63
C_GetTokenInfo . 64
C_GetMechanismList . 66
GetMechanismInfo . 67

Session Management Functions . 69
C_OpenSession . 69
C_CloseSession . 70
C_CloseAllSessions . 71
C_GetSessionInfo . 72
C_Login . 73
C_Logout . 74

Object Management Functions . 76
C_WrapKey . 76
C_UnwrapKey . 78
C_CreateObject . 81
CK_BBOOL . 81
C_DestroyObject . 83
C_FindObjectsInit . 85
C_FindObjects . 87
C_FindObjectsFinal . 89
C_GetAttributeValue . 90
C_SetAttributeValue . 92
C_GenerateKey . 95

Contents

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .iv

C_GenerateKeyPair . 99
Digest and MAC Functions . 103

C_DigestInit . 103
C_Digest . 104
C_DigestKey . 106
C_DigestUpdate . 107
C_DigestFinal . 109

Signing and Calculating MAC Functions . 111
C_SignInit . 111
C_Sign . 112
C_VerifyInit . 115
C_Verify . 116

Encryption Functions . 118
C_EncryptInit . 118
C_Encrypt . 120
C_EncryptUpdate . 123
C_EncryptFinal . 124

Decryption Functions . 127
C_DecryptInit . 127
C_Decrypt . 130
C_DecryptUpdate . 132
C_DecryptFinal . 134

Random Data Generation . 137
C_GenerateRandom . 137
C_SeedRandom . 138

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .v

. PREFACE

The Installation and API Reference Guide describes the functions and features of VAE. It provides

descriptions, syntax, and usage examples for each of the actions and data types for the VAE solution. This

document describes the Vormetric implementation of the PKCS #11 standard.

DOCUMENTATION VERSION HISTORY
The following table describes the changes made for each document version.

Table 1: Documentation Changes

Product/Document
Version Date Changes

6.2.0 3/12/19 Added new section “ Running Samples with the Java
Wrapper”; added GCM support info; added information on
Identities for creating a key directly in a key group; added
Content for new Java Wrapper; added information on
asymmetric keys

6.1.0 6/24/18 6.1.0 release includes many doc fixes and content for
Identities feature, Docker containers, Random API, and SQL
Server.

6.0.2 v1 1/26/18 Minor edits, removed “Typographical Conventions,” added
C_UnwrapKey; edited C_GenerateKey and C_CreateObject;
added “Storing keys on the server by default” and
“Automated Key Versioning.”

6.0v2 12/14/17 Compatibility matrix and supported operating systems
removed to Release Notes only.

6.0 v1 10/15/17 6.0 features

5.2.5 Patch v2 6/30/17 Included information for FF1.

5.2.5 Patch v1 12/16/16 Update System Requirements. Fix Return Values in Digest
functions.

5.2.5 v3 9/27/16 Added Digest functions and FIPS. Partial copy edit to fix
wording.

5.2.5 v2 8/5/16 Fixed some typos and added note in Installation section
about key cache only in memory and not written to disk.

5.2.5 v1 6/6/16 Fixed some typos and grammatical errors.

5.2.4 v2 3/23/16 Fixed some typos and information errors with the naming of
the binaries for installation.

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .vi

ASSUMPTIONS

This documentation assumes knowledge of C and PKCS #11.

The system administrator must have root permissions for the systems on which Vormetric Application

Encryption (VAE) software is installed.

RELATED DOCUMENTS

The following documents are available to registered users on the Vormetric Web site at:

https://help.vormetric.com

• Vormetric Transparent Encryption Agent Installation and Configuration Guide

• Vormetric Data Security Platform Administrators Guide

GUIDE TO VAE DOCUMENTATION

The following related documents are available to registered users on the Vormetric Web site at

https://support.vormetric.com

1. Data Security Manager (DSM) Installation and Configuration Guide. In most cases, you will

probably use an existing DSM, but use this document if you need to install a new Data Security

Manager (DSM) Appliance.

2. Vormetric Application Encryption (VAE) Installation and API Reference Guide. (This book.) For

developers who want to use application encryption with Vormetric’s implementation of

PKCS #11.

3. Vormetric Security Intelligence Configuration Guide. Use this to integrate your Vormetric VAE

events logs with the ArcSight ESM, Splunk, or IBM QRadar

5.2.4 v1 2/16/16 Included information for the new feature of Format
Preserving Encryption (FPE), Shared Secret Registration, and
fixed technical and editorial issues.

Table 1: Documentation Changes

Product/Document
Version Date Changes

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .vii

4. Vormetric Data Security (VDS) Platform Event and Log Messages Reference. A listing of all the

VDS Platform event and log messages with severity, long and short form, and description.

Searching through all the documents
Technical information for Vormetric products can be spread across many documents. Instead
of searching through each individual document to find the information you need, you can use
the following procedure to search all of the VTE documents with a single search in Windows
(the same process should work for UNIX/Linux):

1. Copy all the .pdf files of a specific product into a single directory. For example, using the

Vormetric Transparent Encryption:

2. Bring up Adobe Reader or Adobe Acrobat.

3. Open any PDF file from that directory: File > Open > Select File.

4. Click Edit > Advanced Search.

5. Under “Where would you like to search?” click “All PDF Documents in”, then select the directory

containing all the VTE PDF files. In this case, C:\Documents\PDFs\5.2.3

6. In the “What word or phrase would you like to search for?” enter the search phrase and click

search.

You can do this with any set of PDF files.

C:\Documents\PDFs\5.2.3>dir
Admin_Guide_V1.pdf
Agent_Install_&_Config_Guide_v2.pdf
Data_Transformation_Guide_v1.pdf
DSM_Automation_Reference_v1.pdf
DSM_Install_Guide_v1.pdf
Event_&_Log_Messages_Ref_v1.pdf
GettingStarted_v1.pdf
VSI_Reference_v1.pdf
RN_DSM.pdf
RN_Linux.pdf
RN_RHEL7.pdf
RN_UNIX.pdf
RN_Windows.pdf
VDSCompatibilityMatrix.pdf

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .viii

Vormetric Data Security Platform—Overview

The Vormetric Data Security (VDS) Platform protects data wherever it resides. The platform solves security

and compliance issues with encryption, key management, privileged user access control, and security

intelligence logging. It protects data in databases, files, and Big Data nodes across public, private, hybrid

clouds and traditional infrastructures.

Figure 1: The Vormetric “Solar System”

The platform consists of products that share a common, extensible infrastructure. At the heart of the

platform is the DSM, which coordinates policies, keys, and the collection of security intelligence, all of

which is managed and observed through your browser. In addition to the DSM, the Vormetric Data Security

Platform consists of the following products:

• Vormetric Application Encryption (VAE) provides a framework to deliver application-layer

encryption such as column- or field-level encryption in databases, Big Data, or PaaS

applications. VAE is an application encryption library providing a standards-based API to do

cryptographic and encryption key management operations into existing corporate

applications.

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .ix

• Vormetric Cloud Encryption Gateway (VCEG) safeguards files in cloud-storage environments,

including Amazon S3 and Box. VCEG encrypts sensitive data before it is saved to the cloud,

enabling security teams to establish visibility and control around cloud assets.

• Vormetric Key Management (VKM) centralizes 3rd-party encryption keys and stores

certificates securely. It provides standards-based enterprise encryption key management for

Transparent Database Encryption (TDE), KMIP-compliant devices, and offers vaulting and

inventory of certificates.

• Vormetric Protection for Teradata Database provides granular controls to secure assets in

Teradata environments. It simplifies the process of using column-level encryption in your

Teradata database. It provides documented, standards-based APIs and user-defined functions

(UDFs) for cryptographic and key management operations.

• Vormetric Security Intelligence provides comprehensive logging combined with Security

Information Event Management (SIEM) systems to detect advanced persistent threats and

insider threats. In addition, the logs satisfy compliance and regulatory audits.

• Vormetric Tokenization with Dynamic Data Masking (VTS) replaces sensitive data in your

database with unique identification symbols called tokens. This reduces the number of places

that clear-text sensitive data reside, and thus reduces the scope of complying with PCI DSS

and corporate security policies.

• Vormetric Transparent Encryption (VTE) secures any database, file, or volume across your

enterprise without changing the applications, infrastructure, or user experience.

SERVICE UPDATES AND SUPPORT INFORMATION

The license agreement that you have entered into to acquire the Thales products (“License Agreement")

defines software updates and upgrades, support and services, and governs the terms under which they are

provided. Any statements made in this guide or collateral documents that conflict with the definitions or

terms in the License Agreement, shall be superseded by the definitions and terms of the License

Agreement. Any references made to “upgrades” in this guide or collateral documentation can apply either

to a software update or upgrade.

For support and troubleshooting issues:

• http://help.thalesesecurity.com

• http://support.vormetric.com

• support@thalesesecurity.com

• (877) 267-3247

mailto: support@vormetric.com

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .x

For Thales Sales:

• http://enterprise-encryption.vormetric.com/contact-sales.html

• sales@thalesesec.net

• (408) 433-6000

http:/www.help.vormetric.com

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

.

. .
Vormetric Application Encryption 1

Vormetric Application Encryption (VAE) enables data encryption at the application level. Applications can

use VAE to encrypt a column in a database or a field, such as credit card numbers or Social Security

numbers. VAE can also be used to encrypt an entire data file or directory.

VAE provides some of the same functionality as Vormetric Transparent Encryption (VTE), but they differ

significantly. VTE does not support application-level data encryption, but it supports encryption of an entire

data file or directory through an application’s interface. VAE and VTE both offer this file-level encryption,

but they use different mechanisms for it.

NOTE: The Vormetric Application Encryption software contains the same
components as the Vormetric Key Agent, which is used for non-Oracle or non-MS-
SQL applications. The installer and configuration for VAE refer to the Key Agent
because the installation and configuration process is the same.

NOTE: VAE does not have a daemon that pings the DSM periodically, so it will not
know about changes on the DSM. However, it does pick up new configurations from
the DSM every 15 minutes.

. Product Overview

Application Encryption Workflow

The Application Encryption workflow is shown in Figure 1.

1. A user submits personal information to purchase items from a website.

2. The web server sends personal information to an application server.

3. The application calls Vormetric Application Encryption (VAE) to encrypt the sensitive personal

data.

Vo r m e t r i c A p p l i c a t i o n E n c r y p t i o n

Product Overview

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .2

4. VAE returns the encrypted value to the application.

5. The application stores the encrypted value.

Figure 1: Application Encryption Workflow

www.example.com
Web Server

Encryption key
Request / Response*

Application
Server

Database, Big Data,
or File Storage

*Key exchange at initial request or policy changes

Components

Vormetric Application Encryption (VAE) makes use of several other components of the Vormetric Data

Security (VDS) Platform, including:

Data Security Manager (DSM)

The DSM is the central component of the VDS Platform. It consists of a policy engine and a
central key and policy manager. The DSM stores and manages host encryption keys, data
access policies, administrative domains, and administrator profiles.

Key Agent

The Vormetric Key Agent provides a library that implements the PKCS #11 interface. This
library is a dynamically loadable library (dll) on Windows and a shared object (so) on Linux
and UNIX. The Key Agent's PKCS #11 library communicates over a secure channel to the DSM
for all significant functionality. The Key Agent can also be referred to as the Vormetric
Application Encryption Agent.

Vo r m e t r i c A p p l i c a t i o n E n c r y p t i o n

Product Overview

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .3

Functionality

VAE APIs support real-time I/O encryption and decryption of “at rest” data and log files. Data is encrypted

by adding VAE API calls to existing applications.

The APIs in the Vormetric library are a subset of the PKCS #11 specification version 2.20. They are platform-

independent to cryptographic tokens, and are traditionally used for HSMs (hardware security modules) and

smartcards.

VAE supports single and multi-part encryption and decryption using RSA 1024, RSA 2048, AES 128, and AES

256.

VAE provides API support for the following:

• Create a key

• Find a key

• Destroy a key

• Export a key

• Import a key

• Versioned key support

• Encrypt data

• Decrypt data

• Sign data

• Verify data signature

• Compute the digest for data with a key (HMAC)

• Thales-specific opaque objects

• Random number generation

NOTE: See “API Reference” on page 57 for a complete list of the supported APIs.

Key Cache Options

You can choose to store keys on the DSM only or allow them to also be cached in memory on
the host. By default, newly created keys are cached on the host. For greater security, you can

Vo r m e t r i c A p p l i c a t i o n E n c r y p t i o n

Product Overview

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .4

keep the keys on the DSM; however, doing this will affect performance. Table compares the
advantages of each option.

Key stored on the DSM Key cached on host

Performance - Network round-trip slows
performance

- Very fast for bulk encryption/high-volume
transactions of data.

Security - Most secure. The key never
leaves the DSM.

- In compliance with PCI security
standards

- Key is cached on the client in memory.

- In compliance with PCI security standards

NOTE: For supported agent operating systems and compatibility matrices, see
“Supported OS and Compatibility” on page 113.

Table 1: Key Storage Options

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

.

. .
Vormetric Encryption Concepts 2

This chapter is intended for readers who are not familiar with the Thales/Vormetric security solutions. It

includes detailed descriptions of how the VAE communicates with the DSM, along with the various ways

that Thales/Vormetric handles keys for encryption and decryption. It also describes how the solution

authenticates for a key with the PKCS system of PINs.

. VAE and DSM

The VAE encryption library must have a host to authenticate it, and the DSM is responsible for this activity.

Authentication is complete after the VAE is registered with DSM. Should the user need to do registration

again, they run register_host by itself, from the bin directory.

This section discusses the two methods available for registration, along with communication with the DSM

during operation. For details on the procedures, refer to the installation chapter in this manual and to the

DSM documentation.

Fingerprint

The fingerprint method requires the DSM Security Administrator to add the FQDN or IP address of each

host to the DSM before registering VAE.

During the registration, the DSM generates the certificate and passes it down to the VAE with the

fingerprint. The security administrator must verify the fingerprint to make sure the certificate is valid.

Shared Secret

The shared secret method requires the DSM Security Administrator to create a shared secret registration

password—a case-sensitive string of characters—for auto-registering a host in a domain or host group.

VAE installers use this shared secret to add and register hosts to the DSM for a domain or host group. This

method can automatically add host names or IP addresses to the DSM. This approach eliminates the need

to verify that the host and DSM share valid certificates. You can add multiple hosts dynamically, during VAE

installation and registration, with a single shared secret password.

Vo r m e t r i c E n c r y p t i o n C o n c e p t s

Key Management

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .6

If you choose the Shared Secret method, you need the DSM Administrator to supply a shared secret for the

domain, or host group, in which the new host will reside. Then, obtain the shared secret and the validity

period (one hour, day, week, or month). You can then register within that period.

Run-time DSM Functionality

The VAE APIs give the developer ways to share existing keys with the DSM. The two methods that comprise

this functionality include C_CreateObject, which imports key bytes onto the DSM and creates a new key

in the DSM, and C_WrapKey, which exports a wrapped pair of keys (one from the DSM and another key

imported to the DSM).

NOTE: See “C_CreateObject” on page 81 and “C_WrapKey” on page 76 for complete
details.

NOTE: The DSM administrator must set all of the VAE key templates being to retrieve
these keys. Consult the Vormetric Key Management (VKM) Manual for complete
details.

. Key Management

Every encryption system depends on its keys to make it both unique and reversible. Poor key management

is one of the most common causes of an unauthorized hack.

Manual key management was the original solution, but many of today’s systems have too much traffic and

complexity to make this approach possible any longer. When secured data needs to be available at any

time, and when it also needs to be protected as it moves across the network, automated key management

is essential.

The Thales e-Security’s solution, which includes VAE and DSM, ensures that an overarching security policy

is enforced throughout the network, resulting in lower cost and reduced risk of security loopholes.

Key Headers

Thales e-Security provides optional header content for its generated ciphertext output. Generating

ciphertext with headers allows each key to be formally versioned, and it also prevents the need for by trial

and error data decryption due to a lack of a unique identifier for any given key.

Vo r m e t r i c E n c r y p t i o n C o n c e p t s

Key Management

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .7

Thales e-Security offers three header formats, all of which are based on the DPM format from RSA. The

three variants available are:

• Version 1.5

• Version 2.1

• Version 2.7

NOTE: Keys created with the DSM GUI have no DPM attributes.

DPM Version 1.5

Version 1.5 of the DPM header contains three elements, beginning with the header ID,
followed by a null byte and an Initialization Vector (IV), respectively. Figure 2 shows the bit
layout of this header.

Figure 2: Header Version 1.5 Bit Diagram

1 NUL10

Header (KeyID). Length can be from 1-10
bytes. Typical lengths are 9-10 bytes

1 16

Initialization Vector (IV).
Always 16 random bytes.

DPM Version 2.1

Version 2.1 of the DPM header contains a minimum of 12 elements, beginning with a fixed
ASCII string, followed by a NUL byte, a length field, the string “UUID,” another NUL, a second
length field, the UUID itself, other optional fields, a length field, the string “CSUM,” another
NUL, a second length field, and finally the checksum. Figure 3 shows the bit layout of this
header.

Vo r m e t r i c E n c r y p t i o n C o n c e p t s

Key Management

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .8

Figure 3: Header Version 2.1 Bit Diagram

NUL 0,0,0,5 1 16

UUID (always 16
bytes; mandatory.) Other optional fields

ChecksumUUID NUL 0,0,0,16RKMC210 NUL0,0,
0,5

0,0,
0,32

CSUM

{32 bytes

DPM Version 2.7

Version 2.7 of the DPM header is identical to version 2.1, except that (a) the UUID is replaced
by a 32-byte MUID, and the string “UUID” is replaced by the string “MUID.Figure 4 shows the
bit layout of this header.

Figure 4: Header Version 2.7 Bit Diagram

NUL 0,0,0,5 1 32

MUID (always 32
bytes; mandatory.) Other optional fields

ChecksumMUID NUL 0,0,0,32RKMC270 NUL0,0,
0,5

0,0,
0,32

CSUM

{32 bytes

Headers in the API

The C_EncryptInit method in the VAE API has bits that can force the key to use one of
the above header types, or no header at all. Similarly the C_DecryptInit method must
include the correct header used (if any) in its input parameters.

For C_EncryptInit, the bits that can be ORed to the encryption method value are one of:

CKM_THALES_V27HDR 0x04000000
CKM_THALES_V21HDR 0x02000000
CKM_THALES_V15HDR 0x01000000

Vo r m e t r i c E n c r y p t i o n C o n c e p t s

Key Management

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .9

If a version 1.5 header is used, the value

can also be ORed with the method to indicate that the whole output (header and ciphertext)
should be BASE64-encoded.

If one of these modifiers is used, the following bit must also be ORed with the method:

For C_DecryptInit, the value which can be ORed to the method value is:

and optionally:

If CKM_THALES_BASE64 is set, the header and the ciphertext after the header will be
BASE64-decoded first.

The following table shows which header types are compatible with which encryption
methods.

Format
Methods

ECB CBC CBC-PAD CTR FPE FF1 GCM

C_Encrypt and
C_Decrypt

V 1.5 No Yes Yes No No No No

V1.5 Base-64 No Yes Yes No No No No

 V 2.1 Yes Yes Yes Yes No No No

V 2.7 Yes Yes Yes Yes No No No

C_EncryptUpdate

V 1.5 No Yes Yes Yes No No No

V1.5 Base-64 No Yes Yes Yes No No No

 V 2.1 No Yes Yes Yes No No No

V 2.7 No Yes Yes Yes No No No

C_DecryptUpdate

V 1.5 No No No Yes No No No

V1.5 Base-64 No No No Yes No No No

 V 2.1 No No No Yes No No No

V 2.7 No No No Yes No No No

CKM_THALES_BASE64 0x08000000

CKM_VENDOR_DEFINED (0x80000000)

CKM_THALES_ALLHDR 0x07000000

CKM_THALES_BASE64 0x08000000

Table 2: Header Compatibility with Encryption Methods

Vo r m e t r i c E n c r y p t i o n C o n c e p t s

Key Management

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .10

Versioning

In the VAE, a key’s version refers to one of the three RSA headers, each of which is a different version of a

similar format. Once a key has been created to support versioning, the API can append any or none of these

headings to a given cipher text.

Of course, functions that decrypt the data must know which key version to expect.

NIST Key States

Thales e-Security uses stateful keys that are fully compatible with the NIST standard. For convenience, the

descriptions of each key state are:

• Preactivation

A key enters this state immediately after it becomes active, and normally stays there until
ready for use. Preactivated keys that have been compromised or are not needed are
destroyed instead.

• Active

Keys in the active state can both encrypt and decrypt information. They are destroyed when
their use period ends, or enter the compromised state when they are suspected of being
compromised.

The active state has two valid sub-states: protect-only and process-only.

• Suspended

Keys can be suspended and reactivated later for several possible reasons. For example, the
entity associated with a key could take a leave of absence, or there needs to be an
investigation into whether the key was compromised. Suspended keys are not allowed to
encrypt data, but they could still decrypt data that was locked before the suspension took
place.

The suspended state has only one valid sub-state, which is process-only.

• Deactivated

Keys are most often deactivated at the end of their use periods. Deactivated keys are not
allowed to encrypt data, but they could still decrypt data that was locked before the
deactivation. Deactivated keys should be destroyed as soon as they are no longer needed.

The deactivated state has only one valid sub-state, which is process-only.

• Compromised

A compromised key must never be used to encrypt information, and it should be destroyed
when no longer needed.

The compromised state has only one valid sub-state, which is process-only.

Vo r m e t r i c E n c r y p t i o n C o n c e p t s

Key Management

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .11

• Destroyed

The key itself has been deleted, although metadata relating to the key might still be
preserved for record keeping. Such practice is important if it’s later discovered that the key
was compromised before it was deleted.

NOTE: Key states are not supported for asymmetric keys.

Opaque Objects

In the Thales/Vormetric environment, opaque objects are used for importing previously unsupported size

keys, creating keys with unsupported algorithms, and importing certificates associated with a key. The

object itself is not necessarily a key.

Exporting Opaque Objects from the DSM

Opaque objects can be exported back to the VAE from the DSM. The maximum object size is
4KB.

Cached Keys

One valuable feature of the VAE is its ability to cache keys in local memory, instead of relying exclusively on

a key cache within the DSM. This local cache speeds up performance on database transactions and small

amounts of data. The VAE uses openSSL to perform the encryption locally.

NOTE: For information on how to enable a local key cache, see See “Encryption Use
Cases” on page 39.

GCM Support for Symmetric Keys

AES-GCM includes additional input and output parameters to the known CBC and CTR used to verify the

plain text result of a decryption use GCM. Create AES-GCM keys on the DSM. The VAE receives and register

keys to and the DSM. When implementing GCM consider the following usage restrictions:

• GCM support is only available in the custom Thales Java wrapper. It is not available in the

traditional sun.security.pkcs11 wrapper.

• GCM mode is in C.

• GCM mode is not supported for C#.

Vo r m e t r i c E n c r y p t i o n C o n c e p t s

Key Management

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .12

• GCM mode is supported in JDK 9 and higher versions.

• GCM works only with CacheOnHost keys.

• GCM is not supported for headers.

• GCM only support IV of 12 bytes.

Following is an example of GCM usage:

Export Asymmetric Keys

Export an asymmetric key in a wrapping key passed to C_WrapKey. The format must be set to PEM in

CK_MECHANISM Mechanism::

NOTE: The mechanism is same for C_UnwrapKey.

If the wrapping key is symmetric key use the CKA_THALES_DEFINED and one of the following wrapping

mechanisms:

• CKM_AES_CBC_PAD

• CKM_RSA_PKCS

In addition to exporting an symmetric key by itself, the following options are supported:

• Wrap a symmetric key with an asymmetric key

• Wrap a symmetric key with a symmetric key

• Wrapping an asymmetric key a symmetric key

typedef struct CK_GCM_PARAMS {

 CK_BYTE_PTR pIv;

 CK_ULONG ulIvLen;

 CK_ULONG ulIvBits;

 CK_BYTE_PTR pAAD;

 CK_ULONG ulAADLen;

 CK_ULONG ulTagBits;

} CK_GCM_PARAMS;

public static final long CKM_THALES_PEM_FORMAT = 0x00100000L;

Vo r m e t r i c E n c r y p t i o n C o n c e p t s

Key Management

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .13

When exporting an asymmetric key, or exporting symmetric key with asymmetric key as the wrapper

include the following additional CKA_THALES_DEFINED mechanism configuration:

NOTE: In this case the wrapping mechanism is handled in the VAE library and not the
DSM.

All the constants should be ORed together to form the mechanism passed in. Refer to the sample code for

examples.

C_WrapKey example:

C_UnwrapKey example:

public static final long CKA_THALES_DEFINED = 0x40000000L

CK_DEFINE_FUNCTION(CK_RV, C_WrapKey)

 (

 CK_SESSION_HANDLE hSession, /* the session's handle */

 CK_MECHANISM_PTR pMechanism, /* the wrapping mechanism */

 CK_OBJECT_HANDLE hWrappingKey, /* wrapping key */

 CK_OBJECT_HANDLE hKey, /* key to be wrapped */

 CK_BYTE_PTR pWrappedKey, /* gets wrapped key */

 CK_ULONG_PTR pulWrappedKeyLen /* gets wrapped key size */

)

CK_DEFINE_FUNCTION(CK_RV, C_UnwrapKey)

 (

 CK_SESSION_HANDLE hSession, /* session's handle */

 CK_MECHANISM_PTR pMechanism, /* unwrapping mech. */

 CK_OBJECT_HANDLE hUnwrappingKey, /* unwrapping key */

 CK_BYTE_PTR pWrappedKey, /* the wrapped key */

 CK_ULONG ulWrappedKeyLen, /* wrapped key len */

 CK_ATTRIBUTE_PTR pTemplate, /* new key template */

 CK_ULONG ulAttributeCount, /* template length */

 CK_OBJECT_HANDLE_PTR phKey /* Gets new handle */

)

Vo r m e t r i c E n c r y p t i o n C o n c e p t s

Key Management

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .14

Identity-Based Key Access

Before using the Identities feature on the VAE, the DSM admin must setup keys and key groups on the

domain.

NOTE: For more information about the Identities feature see: “Providing Identity-
Based Key Access Credentials” on page 35 and the Data Security Manager (DSM)
Installation and Configuration Guide.

The VAE provides credentials (username and password) to support Identity-Based Key Access. Permission

based domain access is regulated by Key Groups. Keys are assigned to key groups and can be included in

multiple key groups to establish exclusive access to the keys. The association between identities and key

groups is many to many.

Figure 5: Identity Domain Mapping Example

NOTE: For backward compatibility legacy C_Login calls still work. In this case the
Identity User and Identity Password are not passed to the DSM.

Vo r m e t r i c E n c r y p t i o n C o n c e p t s

PKCS#11

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .15

To create a key automatically in a key group, use the following command::

The pPin takes the <registered pin>:<identity name>:identity password>:<default key group>, with <default

key group> being optional.

. PKCS#11

Encryption and Decryption in the VAE follow the PKCS (Public Key Cryptography Standards) interface,

developed by RSA Laboratories. PKCS is actually a group of 15 separate standards, in which #11 is an API

called Cryptoki that defines a generic interface to cryptographic tokens.

PINs

An important part of the PKCS standard is that a PIN be used to log in, enabling the user to access the API

functions for encryption and key management. When a VAE and DSM are used together, this PIN is created

during machine registration.

The PIN is used for encrypting the private certificate file that establishes a secure channel between the VAE

and the DSM. The PIN is hashed for verification of login. It is specific to only the server on which it was

created, which makes it necessary to re-register if the VAE or the DSM is migrated.

Header Files

The header files used by the Cryptoki API contain a comprehensive set of object and function definitions.

Object types include:

• Data objects, including custom data types

• Storage objects

• Hardware Objects

CK_DEFINE_FUNCTION(CK_RV, C_Login)

 (

 CK_SESSION_HANDLE hSession, /* session's handle */

CK_USER_TYPE userType, /* the user’s type*/

CK_CHAR_PTR pPin, /* the user’s PIN*/

 CK_ULONG ulPinLen, /* the length of the PIN*/

)

Vo r m e t r i c E n c r y p t i o n C o n c e p t s

PKCS#11

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .16

• Key Objects

• Certificate Objects

• Domain Parameter Objects

• Mechanism Objects

Types of defined functions include:

• Slot and Token management functions

• Session management functions

• Message Digesting functions

• Encryption and Decryption functions

• Key Management functions

• Signing functions

• Callback functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

Vormetric Application Encryption

.
. .
Installation 3

This chapter describes how to install and configure Vormetric Application Encryption (VAE) on Windows

and Linux systems. It contains the following sections:

• “Overview” on page 17

• “Installation Plan” on page 18

• “Agent Install Checklist” on page 18

• “Before You Begin” on page 19

• “Initial Setup” on page 21

• “Modify the Key Cache” on page 27

• “Certificate Renewal” on page 28

• “Uninstalling” on page 29

. Overview

Installing the key agent installs the shared library that enables application encryption. The library

(libvorpkcs11.so on Linux or vorpkcs11.dll on Windows) provides functions that the customer can

call to do application encryption and key management.

Assumptions

The IP address, routing configuration, and DNS addresses for the hosts where Vormetric Encryption
Agents are installed allow connectivity to all DSMs.

NOTE: Since the key cache on the VAE agent is only in memory and not written to
disk, the VAE (key) agent must connect to the DSM upon a reboot to retrieve
necessary keys. The challenge-response/generate password option (in which the
user can type in a password to unlock the agent when the DSM is off-line) is available
only for VTE agents and is NOT supported with the VAE (key) agent.


Vo r m e t r i c A p p l i c a t i o n E n c r y p t i o n I n s t a l l a t i o n

Installation Plan

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .18

Because we don’t support the host password for challenge response/generate
password or a manual pass phrase with the VAE (key) agent, there is no work-around
for an offline DSM situation. For continuous access, make sure you have at least 1
healthy DSM online in your HA DSM configuration to serve up the MEK to decrypt
table/tablespace keys.

. Installation Plan

Following are the high-level steps for installing and configuring VAE.

1. If fingerprint verification is used, confirm with the DSM Security Administrator that the host

where you will install the agent has been added to the DSM.

2. Collect configuration information.

3. Set up the host name resolution method.

4. Open firewall ports, if applicable.

5. Choose the installation method (Silent or Interactive).

6. Decide if you want to enable the anti-cloning functionality.

7. Install the agent software.

8. Verify the installation.

. Agent Install Checklist

Use this table to verify prerequisites and collect the information needed for the installation.

Table 3: VAE Agent Installation Checklist

Checklist item Status

Obtain the Installation file from Vormetric support.

The format for the VAE Agent file name is:

vee-key-<product-version-build-system>.exe
Examples:

Windows: vee-key-6.0.2-win64.exe
Linux: vee-key-6.0.2-rh7-x86_64.bin

Fully Qualified Domain Name (FQDN) of the DSM

Vo r m e t r i c A p p l i c a t i o n E n c r y p t i o n I n s t a l l a t i o n

Before You Begin

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .19

. Before You Begin

• The Vormetric Data Security Manager (DSM) must be installed and configured before the VAE

Agent is installed.

• Check the Release Notes to confirm hardware and operating system requirements and

software compatibility requirements for the DSM before you begin.

• Do not install the VAE Agent on network-mounted volumes like NFS.

Determine Your Agent Registration Method

Protected hosts can be registered with the DSM using either the Fingerprint method or the default Shared

Secret method.

• The Fingerprint method—requires the DSM Security Administrator to add the FQDN or IP

address of each protected host to the DSM database before registering the agent.

After registration, the installer of the agent passes the CA certificate fingerprint to the DSM
Security Administrator to verify that the protected host and DSM share valid certificates.

If you choose the Fingerprint method, ask the DSM Security Manager to add the FQDN or IP
address of the protected host to the DSM database before registering that host.

IP address or Fully Qualified Domain Name (FQDN) of the host

Subnet mask of the host

Root password for the host

If using Shared Secret Registration, get from the DSM Security
Administrator:

1) The shared secret password
2) Domain
3) Host group if applicable
4) A description for the host.

If using the Fingerprint Registration ask the DSM Administrator to
add the host to the DSM database and check the Registration
Allowed check box.

After checking the fingerprint, select the Communication Enabled
check box.

Host system clock set to the correct time zone

Table 3: VAE Agent Installation Checklist (Continued)

Checklist item Status

Vo r m e t r i c A p p l i c a t i o n E n c r y p t i o n I n s t a l l a t i o n

Before You Begin

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .20

• The Shared Secret method—requires the DSM Security Administrator to create a shared

secret—a case-sensitive string of characters—for auto-registering a domain or host group.

Agent Installers use the shared secret to add and register protected hosts to the DSM for a
domain or host group. The DSM Security Administrators can skip adding host names or IP
addresses to the DSM database, because this is done automatically using the Shared Secret
Registration method, and there is no need to verify that the protected host and DSM share
valid certificates. Multiple protected hosts can be added dynamically with a single shared
secret password during the agent installation and registration process.

If you choose the Shared Secret method, ask the DSM Security Manager to create a shared secret for the

domain or host group in which the new protected host will reside. Then, get the shared secret and the

validity period (one hour, day, week, or month) and register within that period.

There is a “Require that hosts are first added” checkbox in DSM Shared Secret creation page. If this box is

checked, the hosts must be manually added to the DSM database.

Host Name Resolution

You can map a host name to an IP address using the Domain Name System (DNS). DNS is the most

preferred method of host name resolution.

You can also modify the hosts file on the DSM or identify a host using only the IP address.

• If you use DNS to resolve host names, use the FQDN for the host names.

• If you do NOT use a DNS server to resolve host names, do the following on all of the DSMs and

the protected hosts:

• Modify the hosts file on the DSM: To use names like serverx.domain.com, enter the host

names and matching IP addresses in the /etc/hosts file on the DSM using the host

command under the network menu.

For example:

Request:

Response:

network$ host add jblaster-dev1 10.3.42.12
SUCCESS: add host

network$ host sh
name=localhost6.localdomain6 ip=::1
name=linux32-48215.sacdbackup.com ip=10.3.48.215
name=jblaster-dev1 ip=10.3.42.12
SUCCESS: show host

Vo r m e t r i c A p p l i c a t i o n E n c r y p t i o n I n s t a l l a t i o n

Initial Setup

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .21

IMPORTANT: You must do this on each DSM, since entries in the hosts file are not replicated
across DSMs.

• Modify the hosts file on the protected hosts: Enter the DSMhost names and matching IP

addresses in the /etc/hosts file on the protected host. You must do this on EACH

protected host making sure to add an entry for all DSM nodes (if using HA).

Using the CLI

NOTE: The Vormetric Data Security Manager (DSM) is sometimes referred to in the
code as a “Security Server” or a "Data Security Server” or sometimes as just
the “Server”.

Access the CLI menu as follows:

1. Start the serial console application (for example, HyperTerminal).

2. If the login prompt is not displayed, press the Enter key to wake up the connection.

3. Log on to the appliance. The default System Administrator name and password are

cliadmin and cliadmin123.

. Initial Setup

The following steps describe how to install the VAE Agent for the first time. For Supported OSs and DSM

compatibility information, refer to the Release Notes.

To Install the VAE Agent on Windows

NOTE: The minimum length for the PIN is 8 characters and maximum length is 63
characters. The PIN cannot contain the $ symbol.

1. Log on to the host as a Windows user with administrative privileges.

2. Copy the installation file onto the Windows system.

3. Double-click the installation file. The Welcome window opens. Verify the version of VAE

you are installing.

4. Click Next. The License Agreement appears.

Vo r m e t r i c A p p l i c a t i o n E n c r y p t i o n I n s t a l l a t i o n

Initial Setup

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .22

5. Accept the License Agreement and then click Next. The Destination Folder window opens.

6. Click Next to accept the default folder. The Ready to Install the Program screen opens.

NOTE: If you have a Vormetric Transparent Encryption (VTE) (file system) agent
already installed on the system, you cannot change the Destination Folder.

7. Click Install. The agent software installs. This may take a few minutes.

8. When the install is finished, the Install Shield Wizard Completed screen opens. Register

Vormetric Key Agent (64 bit) now is selected.

NOTE: If you have a specific plan to register the agent later, clear the check box for
Register Vormetric Key Agent (64 bit) now, click Finish, and then skip the rest of the
steps in this section.

9. Click Finish to start the registration process. The Register Host window opens. Click Next.

Verify the correct agent type is selected.

10. Click Next. Type the name of the DSM. This name must match the Server name on the

Dashboard of the DSM.

11. Click Next. Enter the name of the machine hosting the agent. You can type the name or

select it from the drop-down menu. This name must match the host name added to the

DSM database by the Security Administrator.

12. Click Next. Enter a password. This is the PIN that will authenticate this device in the

PKCS #11 applications you write.

IMPORTANT: Do not use the colon (:) character in the password sequence.

NOTE: If you are in a cluster environment, we recommend that you enter the same
password for all cluster nodes.

13. Click the Enable hardware association box to enable the cloning prevention function.

14. Click Register. The Register Host window displays the VAE Agent version and a pop-up

window displays the signer CA certificate fingerprint.

At this stage of the installation, the host administrator and DSM Security Administrator must
exchange information to confirm that the agent host and DSM share valid certificates.

15. Host Admin: Send the fingerprint to the DSM Security Administrator and wait for

confirmation.

Vo r m e t r i c A p p l i c a t i o n E n c r y p t i o n I n s t a l l a t i o n

Initial Setup

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .23

16. DSM Security Admin:

17. a: Log onto the DSM Management Console and navigate to the domain where the host

was added.

18. b: Click the Dashboard tab.

19. c: Match the fingerprint from the Host Admin with the appropriate fingerprint on the

Dashboard.

20. d: Advise the Host Admin of the results.

21. Host Admin: If the fingerprints match, type ‘Y’ and then press Enter.

22. Host Admin: The fingerprint for the certificate is displayed. Pass this fingerprint to the

DSM Security Admin.

23. DSM Security Admin:

a. Click the Host tab.

b. Click the name of the host where you just installed the agent. The Edit host screen
opens.

a. Match the fingerprint from the Host Admin with the fingerprint in the Certificate
Fingerprint column.

b. Advise the Host Admin of the results.

24. Host Admin: If the fingerprints match, click OK. A message that the installation was a

success is displayed.

25. DSM Security Admin: On the DSM, select the Communication Enabled check box for the

host.

NOTE: After installation, the PIN or password must be provided by the application
developer when prompted during C_Login. Do not forget this password. To change
the password, you must re-register the agent.

To Verify the Installation on Windows

Verify the installation by checking agent processes.

1. In the system tray, right-click the Vormetric icon.

2. Select Status. Review the information in the Vormetric Status window to confirm the

correct agent or agents are installed and registered.

Vo r m e t r i c A p p l i c a t i o n E n c r y p t i o n I n s t a l l a t i o n

Initial Setup

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .24

To Install the VAE Agent on Linux/UNIX

NOTE: Password minimum length for PIN is 8 characters and maximum length is 63
characters.

1. Log on to the host where you will install the VAE Agent. You must have root access.

2. Copy or mount the installation file to the host system.

3. Start the installation. At the prompt, type:

Example:

4. Type ‘y’ and press Enter to accept the Vormetric License Agreement.

The installation proceeds.

NOTE: The Vormetric Data Security Manager (DSM) is sometimes referred to in the
code as a "Security Server" or a "Data Security Server" or sometimes as
just the "Server".

./vee-key-<product-version-build-system>.bin

./vee-key-6.1.0-rh7-x86_64.bin

Welcome to the Vormetric Key Agent
Registration Program.
Agent Type: Vormetric Key Agent
Agent Version: [latest version]
In order to register the Vormetric Key Agent
with a Vormetric Data Security Server:
 1) you must know the host name of the machine running the
 Security Server (the host name is displayed on the
 Dashboard window of the Management Console), and
 2) unless you intend to use the 'shared secret' registration
method,
 the agent's host machine must be pre-configured on the
 Security Server as a host with the 'Reg. Allowed'
 checkbox enabled for this agent type on the Hosts window
 of the Management Console

Vo r m e t r i c A p p l i c a t i o n E n c r y p t i o n I n s t a l l a t i o n

Initial Setup

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .25

5. At the following prompt, type ‘y’ or press Enter to proceed with registration, or type ‘n’ if

you specifically plan to register later.

The following dialog displays:

6. Follow the prompts:

a. Enter the fully qualified host name of the primary DSM, and then press Enter.

b. Verify the host name, and then press Enter. A list of host names appears.

c. From the list, type the number of the host name of the local machine, or manually enter
the host name, and then press Enter. This name must match the name of the host that
was added to the DSM by the Security Administrator.

Would you like to register to the Security Server using a
registration shared secret (S) or using fingerprints (F)? (S/F)
[S]:
What is the registration shared secret?
Please enter the domain name for this host: key_encrypt_domain
Please enter the host group name for this host, if any:
Please enter a description for this host: example
Shared secret : ********
Domain name : key_encrypt_domain
Host Group : (none)
Host description : example
Are the above values correct? (Y/N) [Y]:

Do you want to continue with agent registration? (Y/N) [Y]: Y

Please enter the primary Security Server host name: DSM Appliance-dg-
15208.com
You entered the host name dsm-dg-15208.com
Is this host name correct? (Y/N) [Y]: Y
Please enter the host name of this machine, or select from the
following list. If using the “fingerprint” registration method, the
name you provide must precisely match the name used on the "Add Host"
page of the Management Console.
[1] h55119.dg.com
[2] 10.3.55.119
Enter a number, or type a different host name or IP address in
manually:
What is the name of this machine? [1]:
You selected "h55119.dg.com".

Vo r m e t r i c A p p l i c a t i o n E n c r y p t i o n I n s t a l l a t i o n

Initial Setup

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .26

Example:

7. At the following prompt, press Enter to enable cloning prevention functionality.

Example:

8. The CA certificate fingerprint is displayed.

At this stage of the installation, the host administrator and DSM Security Administrator
must exchange information to confirm that the agent host and DSM share valid certificates.
This is done to verify that nobody is intercepting and modifying traffic between the DSM
and agent. This is a security feature.

9. Enter the password for the VAE (Key Agent) library and confirm your entry.

10. Host Admin: Send the fingerprint to the DSM Security Administrator and wait for

confirmation.

11. DSM Security Admin:

Please enter the host name of this machine, or select from the
following list. The name you provide must precisely match the name
used on the “Add Host” page of the Management Console.
[1] host1.example.com
[2] sys41017-priv.example.com
[3] sys41017-vip.example.com
[4] 10.3.41.127
Enter a number, or type a different host name or IP address in
manually:
What is the name of this machine? [1]: 1
Generating certificate...done.
Signing certificate...done.

It is possible to associate this installation with the hardware of
this machine. If selected, the agent will not contact the DSM or
use any cryptographic keys if any of this machine's hardware is
changed. This can be rectified by running this registration program
again.
Do you want to enable this functionality? (Y/N) [Y]:

Please enter a password for the Key Agent library.
Accesses to this library will be protected by this password.
NOTE: If using Oracle RAC, passwords must be the same on all nodes.
Please enter password :
Enter again to confirm :
Successfully registered the Vormetric Key Agent with the primary
Vormetric Data Security Server on dsm-dg-15208.com.

Vo r m e t r i c A p p l i c a t i o n E n c r y p t i o n I n s t a l l a t i o n

Modify the Key Cache

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .27

a. Log on to the DSM Management Console and navigate to the domain where the host
was added.

b. Click the Dashboard tab.

c. Match the fingerprint from the Host Admin with the EC CA fingerprint on the
Dashboard.

d. Advise the Host Admin of the results.

12. Host Admin: If the fingerprints match, type ‘y’ and then press Enter. “Installation

success.” is displayed.

NOTE: After installation, the PIN or password must be provided by the application
developer when prompted during C_Login. Do not forget this password. To change
the password, you must re-register the agent.

Verify the Linux Installation

The best way to check if everything is correctly installed:

1. Register the agent against a DSM.

2. Run sample code such as create_key.

3. Check that the key is on the DSM by using the DSM GUI after running the create_key

sample.

. Modify the Key Cache

You can modify two settings in the key cache on the DSM.

By default, keys are cached on the host, with a time-to-live value of 44640 minutes (31 days).

• You can choose to store the key on the DSM or cache the key on the host.

• You can also modify how long the key stays in the local key cache before it is re-fetched from

the DSM.

NOTE: There is also the option of “Storing Keys on the Server by Default” by editing
the agent.conf file, which takes precedence over a DSM setting.

Vo r m e t r i c A p p l i c a t i o n E n c r y p t i o n I n s t a l l a t i o n

Certificate Renewal

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .28

To Modify the Key Cache on the DSM

1. Log on to the DSM as an administrator of type Security Administrator.

2. Click the Domains tab, and switch to the domain where the key is installed.

3. Click Keys > Agent Keys, and then click on the name of the key you want to modify. If you have

many keys, search for a key on the Management Console using the Keyname contains: field. The

Edit Agent Key window opens.

Figure 6: Edit Agent Key window

4. In the Key Type drop down, select Cached on Host or Stored on Server (DSM).

5. In the Key Refreshing Period (minutes) field, enter the number of minutes you want the key to

exist in the local key cache before it is re-fetched from the DSM. Then click OK.

. Certificate Renewal

The certificate that is registered between the VAE and the DSM expires in one year. However, renewal of

the certificate happens automatically when the library in either makes a C_Initialize() call or a re-

initialization takes place. The library checks for the validity of the agent certificate, and if it is found to

expire within eight (8) days, a certificate signing request (CSR) is sent to the DSM to obtain a new

certificate.

The directory in which the agent certificate is stored is owned by root, so there could be an issue when an

application linking against the pkcs11 VAE library is running under another user. In this case, it is necessary

to run a cron job (on windows) to renew the certificate. The application can be as simple as calling

C_Initialize() and C_Finalize() only. There is a sample program named

Vo r m e t r i c A p p l i c a t i o n E n c r y p t i o n I n s t a l l a t i o n

Uninstalling

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .29

vpkcs11_sample_renew_cert within the bundle of sample programs. The crontab entry on Linux should

look like the following:

And on Windows running the at command:

. Uninstalling

To uninstall VAE on Linux, run the uninstall command:

To uninstall VAE on Windows:

1. Navigate to Control Panel > Programs > Programs and Features

2. Select the Vormetric Key Agent

3. Right-click to choose uninstall

0 12 * * 1 <path>/vpkcs11_sample_renew_cert

At 10:00:00AM /every:Monday c:\<path>\vpkcs11_sample_renew_cert

/opt/vormetric/DataSecurityExpert/agent/pkcs11/bin/uninstall

Vo r m e t r i c A p p l i c a t i o n E n c r y p t i o n I n s t a l l a t i o n

Uninstalling

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .30

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

.

. .
Using the VAE API 4

This chapter is for application developers. It describes how to use the Vormetric Application Encryption

(VAE) APIs to integrate VAE functionality with your applications. It contains the following sections:

• “Sample Code” on page 31

• “Location of Libraries, Samples, and Logs” on page 32

• “Verifying Successful API Initialization” on page 34

• “Providing Identity-Based Key Access Credentials” on page 35

• “Troubleshooting” on page 38

. Sample Code

VAE provides code examples for C and Java. The sample code demonstrates the following functionality:

• Create a symmetric key

• Search for and delete a key

• Encrypt and decrypt a single message

• Encrypt and decrypt a file

• Import a wrapped key into the DSM

• Export a wrapped key from the DSM

• Create an asymmetric key pair and sign

• Export and import asymmetric keys

Download and extract the most recent samples and documentation from:

https://support.vormetric.com

Place the files in the following directory:

<install directory>/vormetric/DataSecurityExpert/agent/pkcs11/

U s i n g t h e VA E A P I

Location of Libraries, Samples, and Logs

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .32

C sample files are located at:

Java sample files are located at:

NOTE: Refer to the README file in the samples directory for more information.

Compiling and Running Sample Code in c_samples

To compile and run the sample code provided in c_samples, use gmake. (Previously, the make command

was used on Linux). Use the following commands.

To clean all the files:

To compile:

To run all samples:

. Location of Libraries, Samples, and Logs

The default location of the library files on Linux systems is:

.../samples/c_samples

.../samples/java_samples

gmake clean

gmake

gmake PASSWORD=<your password here> run

/opt/vormetric/DataSecurityExpert/agent/pkcs11/lib

U s i n g t h e VA E A P I

Using Java 9 and Higher with VAE

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .33

Linux code samples:

On a Windows 32-bit machine, find the sample and library files as follows:

• Samples:

C:\Program Files\Vormetric\DataSecurityExpert\agent\pkcs11\samples

• Library installation directory:

C:\Program Files\Vormetric\DataSecurityExpert\agent\pkcs11\bin

On a Windows 64-bit machine, find the sample and library files as follows:

The Windows logging file uses the following path:

. Using Java 9 and Higher with VAE

For environments using Java version 9 and later a custom Thales Java wrapper is available.

IMPORTANT: Make sure you are using VAE version 6.2.0 or newer.

<install directory>/vormetric/DataSecurityExpert/agent/pkcs11/samples

Table 4: Samples

Sample Directory Path

32-bit samples C:\Program
Files(x86)\Vormetric\DataSecurityExpert\agent\pkcs11\sam
ples

32-bit library installation
directory

C:\Program
Files(x86)\Vormetric\DataSecurityExpert\agent\pkcs11\bin

64-bit samples C:\Program
Files\Vormetric\DataSecurityExpert\agent\pkcs11\samples

64-bit library installation
directory

C:\Program
Files\Vormetric\DataSecurityExpert\agent\pkcs11\bin

%\ProgramData\Vormetric\DataSecurityExpert\agent\log

U s i n g t h e VA E A P I

Verifying Successful API Initialization

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .34

1. Update the work environment CLASSPATH configuration to replace

sun.security.pkcs11.wrapper with the new Java wrapper named pkcs11-wrapper-6.2.0-

<build-no>.jar.

2. Replace each Sun wrapper import statement with the new Java wrapper import name, as shown

in Table 5 - “Import Replacements”.

3. Compile and run the implementation code.

Table 5: Import Replacements

NOTE: See “Example With Thales Java Wrapper” on page 53 for a complete code
sample.

. Verifying Successful API Initialization

Each time the application linked to the VAE library starts up, the VAE library checks itself to be sure that the

cryptographic functions are working correctly and the library integrity has not been compromised. This

self-test runs when the cryptographic library is loaded, before any pkcs11 library function calls.

To check whether the API passed this test, view the log files:

• Linux: /var/log/vorpkcs11/selftest.log

• Windows:

C:\ProgramData\Vormetric\DataSecurityExpert\agent\log\vorpkcs11_startu

p.log

If the self-test is successful, the following messages appear in the log file for each startup of the application

running the library:

Legacy Replacement

sun.security.pkcs11.wrapper.CK_ATTRIBUTE com.vormetric.pkcs11.wrapper.CK_ATTRIBUTE

sun.security.pkcs11.wrapper.CK_MECHANISM com.vormetric.pkcs11.wrapper.CK_MECHANISM

sun.security.pkcs11.wrapper.CK_SLOT_INFO com.vormetric.pkcs11.wrapper.CK_SLOT_INFO

sun.security.pkcs11.wrapper.CK_VERSION com.vormetric.pkcs11.wrapper.CK_VERSION

sun.security.pkcs11.wrapper.PKCS1 com.vormetric.pkcs11.wrapper.PKCS11

sun.security.pkcs11.wrapper.PKCS11Exception com.vormetric.pkcs11.wrapper.PKCS11Exception

sun.security.pkcs11.wrapper.PKCS11Constants* com.vormetric.pkcs11.wrapper.PKCS11Constants*

U s i n g t h e VA E A P I

Providing Identity-Based Key Access Credentials

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .35

Linux:

Windows:After this verification step, the application can access the cryptographic functions.

If the verification fails, the VAE library logs a message and exits with status 255. The messages logged my

either be related to an integrity failure or a Know Answer Test (KAT) failure.

Linux failure messages:

Windows error messages:

. Providing Identity-Based Key Access Credentials

The VAE API is used to provide credentials (username and password) to facilitate identity based access. The

DSM validates the identity by verifying username and password hash.

Use the VAE “C_Login” API to pass in the username and password pair. The user is expected to pass the

following parameters using a colon delimiter:

• vaepin

VAE Library (45771): Tue Sep 20 14:40:21 2016 [SUCCESS] selftest passed!
VAE Library (45771): Tue Sep 20 14:40:21 2016 [SUCCESS] integrity check
passed!

VAE Library: Tue Sep 20 14:40:21 2016 [SUCCESS] selftest passed!
VAE Library: Tue Sep 20 14:40:21 2016 [SUCCESS] integrity check passed!

VAE Library (45771): Tue Sep 20 14:40:21 2016 [FAILURE] selftest failed!
VAE Library (45771): Tue Sep 20 14:40:21 2016 [TERMINATE] exiting due to
failure!
VAE Library (45771): Tue Sep 20 14:40:21 2016 [FAILURE] integrity check
failed!
VAE Library (45771): Tue Sep 20 14:40:21 2016 [TERMINATE] exiting due to
failure!

VAE Library: Tue Sep 20 14:40:21 2016 [FAILURE] selftest failed!
VAE Library: Tue Sep 20 14:40:21 2016 [TERMINATE] exiting due to failure!
VAE Library: Tue Sep 20 14:40:21 2016 [FAILURE] integrity check failed!
VAE Library: Tue Sep 20 14:40:21 2016 [TERMINATE] exiting due to failure!

U s i n g t h e VA E A P I

Metadata Logging and Sample Code

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .36

• Identity User

• Identity Password

If the Identity User and Identity Password are not provided. the VAE accepts the vaepin and

domain access is not restricted by identity/key group.

IMPORTANT: the user parameter cannot include the following characters: “:”, “!”, “@”,
“#”, “$”, “%”, “^”, “&”, “*”, “(“ “)”.

NOTE: For more details see See also “C_Login” on page 73.

NOTE: See also “Identity-Based Key Access” on page 14.

Creating a Key in a Key Group

Use the VAE “C_Login” API create the Key Group with the following syntax:

Restricting Encryption Key Access

To restrict older VAE or VKM clients from accessing key on the DSM, the DSM admin must move all keys

into a key group that requires identity enforcement. This solution is effective for all versions of the VAE or

VKM before 6.1.0.

. Metadata Logging and Sample Code

This section shows you how to use metadata logging with the Vormetric Application Encryption (VAE)

library.

Metadata logging is used to pass extra information (such as user name, user login ID or any other user-

specified information), associated with the user who makes a particular function call.

Pin:Identity:password:group

U s i n g t h e VA E A P I

Metadata Logging and Sample Code

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .37

Two calls are required for a corresponding function to create metadata logging. In the first call, the input

buffer contains the user metadata to be logged. The corresponding buffer length passed must be zero. The

second call follows the regular PKCS #11 calling conventions by passing in the allocated buffer and its

corresponding length.

C Sample

The following example is for vpkcs11_sample_metadata_logging.c:

encryptAndDecrypt ()
. . .
CK_BYTE* cipherText = NULL_PTR;
CK_ULONG cipherTextLen = 0;
CK_ULONG metaDataLen = 256;
CK_CHAR metadata[] = "META: This is a test metadata/Encryption: user:
tester: hostname" ;
CK_CHAR metadata2[] = "META: This is a test metadata/Decryption: user:
tester: hostname" ;

/* For C_Decrypt */
CK_BYTE* decryptedText = NULL_PTR;
CK_ULONG decryptedTextLen = 0;
/* General */
CK_RV rc = CKR_OK;
. . .
cipherText = (CK_BYTE *)calloc(1, sizeof(CK_BYTE) * metaDataLen);
if(cipherText != NULL)
{
sprintf((char*)cipherText, "%s", (char *)metadata);
}
printf ("Plain Text length: %d\n", (int)sizeof(plainText));
/* first call C_Encrypt by pass in metadata and obtain cipherText buffer
size upon CKR_OK return */
rc = FunctionListFuncPtr->C_Encrypt(
hSession,
plainText, sizeof (plainText),
cipherText,&cipherTextLen
);
if (rc != CKR_OK){
printf ("C_Encrypt failed\n");
return rc;

U s i n g t h e VA E A P I

Troubleshooting

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .38

Java Sample

Metadata samples for Java can be found in the following files:

• EncryptDecryptMetaData.java

• EncryptDecryptFileMeta.java

. Troubleshooting

By default, keys are cached on the host. If you don’t want them cached on the host, log on to the DSM

Console, switch to the domain with the desired host, click the Keys tab and select the key name from the

Name list. In the Key Type drop down menu in the Edit Agent Key window, select Stored on Server.

Figure 7: Edit Agent Key window

}
else
{
printf ("C_Encrypt succeed, cipherTextLen is : %ld \n",
(long)cipherTextLen);
cipherText = (CK_BYTE *)calloc(1, sizeof(CK_BYTE) * cipherTextLen);
}
. . .

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

.

. .
Encryption Use Cases 5

This chapter describes the general work flows of several different encryption applications, followed by a

walk-through of how the encryption and decryption cycle works with the VAE and DSM.

. Signing

One important use for encryption, in addition to securing users’ data, is in the creation of digital signatures.

Just like handwritten signatures, digital signatures are used to indicate the authenticity of the source of a

message, but digital signing is much more difficult to forge.

Creating a signature is an asymmetric encryption process that begins with two generated keys, one public

and one that is private to the sender. The two keys are mathematically linked to allow verification by the

receiver. The next step is to create a hash of at least part of the data to be sent. (For a more in-depth

discussion of hashing, refer to the next section.) In practice, the data to be hashed is usually not the actual

message; it’s simply a large random number. The content of the message may or may not be encrypted

separately.

In either case, the sender encrypts this hashed data with the private key, resulting in the digital signature.

Because the value of the hash is always unique to the data, any change in the data results in a different

hash value. This feature makes it nearly impossible to compromise either the sender’s identity or the

message itself.

The receiver can validate the message by decrypting the hashed data with the sender’s public key. If the

original hash algorithm is known, the receiver can simply compare the computed hash value with the

encrypted hash value in the message. If they match, it proves that the message has not changed since it

was signed. If not, it shows that the message was either tampered with or encrypted with a key that is not

linked to the sender’s public key.

Figure 8 illustrates a typical signature workflow.

E n c r y p t i o n U s e C a s e s

Hashing

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .40

Figure 8: Digital signature workflow

. Hashing

Even though hashing is very different from encryption, it still plays an important role in many different

encryption use cases, including many VAE applications. The fundamental difference between hashing and

encryption is that encryption is designed to be reversible. Hashing is designed not to be.

As detailed in the previous section on Signing, hashing is very useful for generating a signature. However,

there are several other common use cases. For example, one of the most common applications for hashing

is to compare two values that, for security reasons, the user does not want to store internally. Passwords

are the most obvious case, of course. If you have already stored a hashed copy of the user’s password in

your system’s database, all that is required is to run any future password inputs through the same hash

algorithm. You are not interested in what the password was: you are interested only in whether the input

matches the one that was stored.

Most other uses for hashing also involve data integrity. The CRC32 algorithm, for example, is a hash that is

often used for checking for whether compressed data has been corrupted. It’s also possible to use hashing

to check a file system for pirated data.

E n c r y p t i o n U s e C a s e s

FPE

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .41

NOTE: It is very important for a hashing algorithm to avoid a situation where two
different inputs return the same hash value: this phenomenon is called a collision.
Well-designed hash algorithms minimize the probability of collisions, usually based
on input size.

. FPE

Format Preserving Encryption (FPE) is designed to create an encrypted output (ciphertext) that has the

same length and character set as the input (called plaintext). The most common use of FPE is for financial

data, such as credit card numbers, where there is legacy software that is unable to deal with encrypted

data with different lengths or character sets.

Although a variety of FPE algorithms have been used, VAE relies on the FF1 and FF3 algorithms. For

complete details of these, refer to NIST Special Publication 800-38G, Recommendation for Block Cipher

Modes of Operation: Methods for Format-Preserving Encryption.

NOTE: A character set for FPE is entirely user defined. You could define a character
set with as few as 2 characters (‘Y’ and ‘N’ or ‘0’ and ‘1’), as large as 65535, or just 62
(‘0’-‘9’ and ‘A’-‘Z’ and ‘a’-‘z’). It is up to the user to decide how large the character set
should be. However, for VAE, input characters not present in the character set result
in an error. 

A character set should be chosen carefully. If it is too small, the user gets an error if a
character that is not part of the character set appears in the input. If the character
set is too large, the input is basically a random sample of the supplied character set!

!
Caution: When using variable-length character sets, make sure to allocate enough
memory for the worst-case ciphertext, which can be larger than the plaintext.

E n c r y p t i o n U s e C a s e s

Storing Keys on the Server by Default

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .42

. Storing Keys on the Server by Default

VAE-created keys are cached on the host or stored on the server. If nothing is explicitly defined, Vormetric

caches the key on the host by default, for performance reasons.

In previous releases, you could decide to store individual keys on the server two ways:

• By API attribute: Use the CKA_THALES_CACHED_ON_HOST API attribute in a template and

set it to 0, or

• From the DSM console: Click the Keys tab and select the key name from the Name list. From

the Edit Agent Keys window, in the Key Type drop-down menu, select Stored on Server.

You also have the option to set key storage on the server as a global default. 
To do so:

1. Access the agent.conf file. 
Linux: 
/opt/vormetric/DataSecurityExpert/agent/pkcs11/etc/agent.conf
Windows:

C:\ProgramData\Vormetric\DataSecurityExpert\agent\pkcs11\etc\agent.con

2. Set the flag "Key_StoredOnServer" = 1

3. Set the flag "Key_Cache_Time" = a value in minutes for the default cache time.

NOTE: Template values override the agent.conf values. Therefore, if you add the
Key_StoredOnServer flag to the agent.conf file, it can be overridden for
individual keys by setting CKA_THALES_CACHED_ON_HOST API attribute to 1, or
through the DSM GUI.

E n c r y p t i o n U s e C a s e s

Automated Key Versioning

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .43

. Automated Key Versioning

VAE supports “Automated Key Versioning”. Encryption key versioning allows developers to simplify their

applications by requesting automated key version advances, changing the key material automatically and

placing the current version of the key in the header of the encrypted data. When the application requests

decryption, VAE reads the header, retrieves the correct version of the key from the DSM, and then decrypts

the data. This is transparent to the application, enabling the developer to refer to the key by its

name/handle, not its version or corresponding material.

You can enable Automated Key Versioning when you create a key with C_GenerateKey. See Option 2,

below.

NOTE: Automated Key Versioning does not pertain to VAE’s support for RSA DPM
Encryption Header versions.)

The DSM administrator can also implement Automated Key Versioning in the DSM UI.

NOTE: The DSM user interface refers to “Automatic Key Rotation,” which VAE calls
 “Automated Key Versioning.”)

What is a versioned key

A versioned key is a standard cryptographic key that is versioned, with a version number and other

metadata placed as a header in front of encrypted data. Versioned keys enable key material to changed

(sometimes referred to as ‘rotation’) without changing the associated key metadata (such as key name, key

size or algorithm). However, new key material and a new version identifier are created.

How do versioned keys work

A developer can use the APIs of the VAE library to accomplish the following functions:

Encryption: A header containing the key identifier is placed in front of the encrypted data:

C_Encrypt.init, C_EncryptUpdate, C_EncryptFinal

Decryption: The header in front of the encrypted data is parsed and is used to detect the correct key to

decrypt data: C_Decrypt.init, C_DecryptUpdate, C_DecryptFinal

E n c r y p t i o n U s e C a s e s

Automated Key Versioning

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .44

Key creation: A standard cryptographic key is created with its own metadata, including version, name, size,

algorithm, etc.
C_GenerateKey

Key deletion: Key must be in a pre-activated, deactivated, or compromised state before the key can be

deleted using the key ID. Deleting the base key deletes all versions.
C_DestroyObject

Key Import/Export: Key can be imported into DSM with the VAE APIs and each version can be imported

sequentially. Key can be retrieved by wrapping it with another symmetric key. 
C_CreateObject/C_WrapKey/C_UnwrapKey

NOTE: To import an existing keypair, you must import the private key. The DSM
regenerates the public key. If only the public key is imported, only the public key is
on the DSM.

Automated key versioning: At requested time intervals, new cryptographic key materials and version ID

are created. The original key name, algorithm, and key size remain unchanged.
C_GenerateKey

• Automated key versioning can be requested in the DM graphical user interface.

• Automated key versioning can be requested through Vormetric Application Encryption API

calls.

Data rekeying: A variety of API calls can be used to enable data rekeying
C_FindObjects.init, C_FindObjects, C_FindObjectsFinal, as well as encryption/decryption

APIs

• Detect the version (ID) of the key used for encryption

• Decrypt the data using that key

• Re-encrypt data with the latest version of the key
Use Case: rekeying a column in the database:

• Decrypting all data with the old key (previous versions) when read from the database, and

• Encrypting it with the new key (latest version) when data is written/saved in the database.

• These operations can be executed LIVE and without stopping the database or any system
With Automated Key Versioning, when a new key version is created, data that has never

been read and written will not be rekeyed or re-encrypted with the new key. However, it is

possible to implement an active/live-data-rekeying mechanism by writing a “refresh

utitlity” that reads (decrypts) data from the database in batches, and writes (encrypts)

E n c r y p t i o n U s e C a s e s

Automated Key Versioning

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .45

them back to the databases. Batch Data Transformation, another product from Thales

eSecurity, is another option for implementing this behavior.

Sample Scenario

• Key is generated; version 1 is created

• When data is encrypted, the data is tagged with a header containing version 1

• When data is decrypted, the application detects that version 1 was used for encryption, and

the correct key is used to decrypt

• At the specified interval, automatic key versioning creates version 2 of the key material

• Now new data is encrypted with the new version 2 key

• When data is decrypted, the application will parse the correct version and decrypt the data.

Note that the version may be 1 or 2.

Implementing Automated Key Versioning

There are two simple ways to enable automated key versioning in VAE 6.0. The minimum version lifespan is

1 day and there is no effective limit on the number of key versions supported in a versioning rotation

schedule.

Option 1: In the DSM GUI

A DSM administrator can add new key(s), check the “Automatic key rotation” checkbox, and
set the version lifespan in the DSM UI.

NOTE: The VAE term “automated key versioning” and the DSM term “automatic key
rotation” refer to the same thing.

1. In the DSM UI, select Keys > Agent Keys > Keys and click Add. 
The Add Agent Key window is displayed.

2. Enter the following values: 
Name: create a name
Template: Default_SQL_Symmetric_Key_Template (required) 
Algorithm: AES 128 or AES 256 
Key Type: Cached on Host (recommended) 
Key Creation Method: Generate
Key Refresh Period: (refers to Cached on Host setting—not important for key rotation) 
Automatic Key Rotation: checked
Key Version Lifespan (days): any positive number between 1 – 10,000 (inclusive)

E n c r y p t i o n U s e C a s e s

Automated Key Versioning

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .46

3. Click OK.

NOTE: Once the key is created with automatic key rotation checked and the lifespan
set, the key cannot be reverted to non-auto-rotation status.

Option 2: In the application code

Alternatively, a developer can copy sample code into their application and set the attribute
values there. To do so:

1. Access the following two files: vpkcs11_sample_create_key.c and

vpkcs11_sample_helper.c

2. Within vpkcs11_ sample_helper.c, find the function CK_RV

createKey(char *keyLabel, char *keyAlias, int gen_action, CK_ULONG

ulifespan, int key_size)

3. Within the aesKeyTemplate section of that helper file, find the attribute types:

NOTE: 
CKA_THALES_KEY_VERSION_ACTION and
CKA_THALES_KEY_VERSION_LIFE_SPAN are defined in
vpkcs11_sample_helper.h.

Actual Values:

4. Use editor to copy/paste/edit the two attribute types into your application, as part of

generating the key (function C_GenerateKey).

5. Set the attribute types as follows:

• keyVersionAction = 0 [meaning base key creation]

• ulifespan = [any positive number between 1-10,000 (measured in days) for

rotation schedule.]

{CKA_THALES_KEY_VERSION_ACTION, &keyVersionAction,
sizeof(keyVersionAction) } and 
{CKA_THALES_KEY_VERSION_LIFE_SPAN, &ulifespan,
sizeof(ulifespan) }

CKA_THALES_KEY_VERSION_ACTION 0x40000082
CKA_THALES_KEY_VERSION_LIFE_SPAN 0x40000083

E n c r y p t i o n U s e C a s e s

Complete Walk-Through

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .47

NOTE: To manually rotate versioned keys, set the keyVersionAction= 1 and
remove the CKA_THALES_KEY_VERSION_LIFE_SPAN attribute from the
template.)

NOTE: Once the key is created with the ulifespan attribute type set, the key
cannot be reverted to non-auto-rotation status.

NOTE: For more information see the DSM Installation and Configuration Guide.

. Complete Walk-Through

This section examines sample code driving the process used in the VAE to create a key and use it to encrypt

data. These samples are in Java, but the VAE library also supports code in C.

The most important parts of this code are the calls to the PKCS library, beginning with ‘C_’.

Create and Import a Key

Key creation starts with creating the PKCS11 instance, after which the following steps are programically

executed:

1. A PCKS11 session is created.

2. The new session is activated

3. A key object is created with the required attributes, and a file containing this object is created

on the DSM.

E n c r y p t i o n U s e C a s e s

Complete Walk-Through

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .48

Key Creation Java Sample

Step 1 - Create the Instance and Session

In the Java sample, creating the instance and session in these files is done with the

startUp method, as follows:

public static Vpkcs11Session startUp(String libPath, String pin)
 {
 try
 {
 Vpkcs11Session session = new Vpkcs11Session();
 /* Initialization of the PKCS11 instance, open session
and login */
 session.p11 = PKCS11.getInstance(libPath,
"C_GetFunctionList", null, false);
 long[] slots = session.p11.C_GetSlotList (false);
 session.sessionHandle = session.p11.C_OpenSession
(slots[0], 0, null, null);
 System.out.println ("Session successfully opened.
Handle: " + session.sessionHandle);
 session.p11.C_Login (session.sessionHandle, CKU_USER,
pin.toCharArray());
 System.out.println ("Successfully Logged in");
 return session;
 }
 catch (PKCS11Exception e)
 {
 System.out.println (e.getMessage());
 e.printStackTrace();
 }
 catch (Exception e)
 {
 System.out.println ("Exception thrown.");
 System.out.println (e.getMessage());
 }
 return null;
 }

E n c r y p t i o n U s e C a s e s

Complete Walk-Through

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .49

Step 2 - Create the Key

Creating the key is done with the createKey method:

public static long createKey(Vpkcs11Session session, String keyName)

 {

 long keyID = 0;

 /* Create an AES 256 key on the DSM without pass in key value */

 try {

 CK_MECHANISM mechanism = new CK_MECHANISM (CKM_AES_KEY_GEN);

 CK_ATTRIBUTE[] attrs = new CK_ATTRIBUTE[]

 {

 new CK_ATTRIBUTE (CKA_LABEL, keyName),

 new CK_ATTRIBUTE (CKA_CLASS, CKO_SECRET_KEY),

 new CK_ATTRIBUTE (CKA_KEY_TYPE, CKK_AES),

 new CK_ATTRIBUTE (CKA_VALUE_LEN, 32),

 new CK_ATTRIBUTE (CKA_TOKEN, true),

 new CK_ATTRIBUTE (CKA_ENCRYPT, true),

 new CK_ATTRIBUTE (CKA_DECRYPT, true),

 new CK_ATTRIBUTE (CKA_SIGN, false),

 new CK_ATTRIBUTE (CKA_VERIFY, false),

 new CK_ATTRIBUTE (CKA_WRAP, true),

 new CK_ATTRIBUTE (CKA_UNWRAP, true),

 new CK_ATTRIBUTE (CKA_EXTRACTABLE, false),

 new CK_ATTRIBUTE (CKA_ALWAYS_SENSITIVE, false),

 new CK_ATTRIBUTE (CKA_NEVER_EXTRACTABLE, true),

 new CK_ATTRIBUTE (CKA_SENSITIVE, true),

 };

 System.out.println ("Before generating Key. Key Handle: " +
keyID);

 keyID = session.p11.C_GenerateKey (session.sessionHandle,
mechanism, attrs);

 System.out.println ("Key successfully Generated. Key Handle: "
+ keyID);

 }

 catch (PKCS11Exception e)

 {

 e.printStackTrace();

 }

 return keyID;

 }

E n c r y p t i o n U s e C a s e s

Complete Walk-Through

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .50

This code bundle also has a createKeyObject method, which is similar to createKey

but it also passes CKA_VALUE as one of the key attributes, and uses

C_GenerateObject instead of C_GenerateKey to obtain the key handle.

Finally, the code logs out of the session, closes it, and destroys the PKCS11 instance.

Troubleshooting

If a CKR_DATA_LEN_RANGE error is thrown, do the following:

1.Append these two lines in the agent.conf file:

2. Rre-run the test program.

3. Navigate to /var/log/vormetric/pkcs11_USERNAME.log (where USERNAME is

the login name, for instance "root" or "joe"), to view the log file.

Encrypt and Decrypt

Once the PKCS11 session is active and the key is created, the actual encryption is straightforward to code.

The following method takes a predefined text string, encrypts the string, prints the byte length of the

result, and then decrypts the string to create a result that matches the original text.

NOTE: C_EncryptInit and C_DecryptInit must be run before the actual
encryption and decryption calls.

logger_threshold_P11 = TRACE
appender_threshold_File_Appender = TRACE

E n c r y p t i o n U s e C a s e s

Complete Walk-Through

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .51

public static void main (String[] args)

 {

 String pin = null;

 String libPath = null;

 switch (args.length)

 {

 case 2:

 {

 if (!args[0].equals("-p")) usage();

 pin = args[1];

 break;

 }

 case 4:

 {

 if (!args[0].equals("-p")) usage();

 pin = args[1];

 if (!args[2].equals("-m")) usage();

 libPath = args[3];

 break;

 }

 default:

 usage();

 break;

 }

try

{

 Vpkcs11Session session =
Vpkcs11_sample_helper.startUp(Vpkcs11_sample_helper.getPKCS11LibPath(libPath),
pin);

 long keyID = Vpkcs11_sample_helper.findKey(session, keyName) ;

 if (keyID == 0)

 {

 System.out.println ("the key is not found, creating it...");

 keyID = Vpkcs11_sample_helper.createKey(session, keyName);

 System.out.println ("Key successfully Created. Key Handle: " +
keyID);

 }

E n c r y p t i o n U s e C a s e s

Complete Walk-Through

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .52

/* encrypt, decrypt with key */

byte[] outText = new byte[120];

byte[] decryptedText = new byte [120];

int encryptedDataLen = 0;

session.p11.C_EncryptInit (session.sessionHandle, encMech, keyID);

System.out.println ("C_EncryptInit succeed");

System.out.println ("plaintext = " + plainText);

encryptedDataLen = session.p11.C_Encrypt (session.sessionHandle,
plainText.getBytes(), 0, plainText.length(), outText, 0, outText.length);

System.out.println ("C_Encrypt success. encrypted data len = " + encryptedDataLen);

session.p11.C_DecryptInit (session.sessionHandle, encMech, keyID);

System.out.println ("C_DecryptInit success");

session.p11.C_Decrypt (session.sessionHandle, outText, 0, encryptedDataLen,
decryptedText, 0, decryptedText.length);

String decryptedTextStr = new String (decryptedText);

System.out.println ("C_Decrypt succeed.");

System.out.println ("Plain Text = " + plainText + " Decrypted Text = " +
decryptedTextStr);

/* Delete the key */

session.p11.C_DestroyObject (session.sessionHandle, keyID);

System.out.println ("Successfully deleted key");

 Vpkcs11_sample_helper.closeDown(session);

 }

catch (PKCS11Exception e)

 {

System.out.println (e.getMessage());

e.printStackTrace();

 }

catch (Exception e)

 {

System.out.println ("Exception thrown.");

System.out.println (e.getMessage());

 }

 }

}

E n c r y p t i o n U s e C a s e s

Complete Walk-Through

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .53

Example With Thales Java Wrapper

The following code sample shows the GenerateKey class with the Thales Java Wrapper

implemented:

NOTE: For more information see “Using Java 9 and Higher with VAE” on page 33.

 public void testGenerateKey_AES128() {

 String keyname = "QA_PKCS11_" + Utils.randomNumberGenerator(12);

 System.out.println(" key name : " + keyname);

 long sessionHandle = 0;

 CK_ATTRIBUTE[] attrs = new CK_ATTRIBUTE[] {

 new CK_ATTRIBUTE(CKA_LABEL, keyname),

 new CK_ATTRIBUTE(CKA_CLASS, CKO_SECRET_KEY),

 new CK_ATTRIBUTE(CKA_KEY_TYPE, CKK_AES),

 new CK_ATTRIBUTE(CKA_VALUE_LEN, 16 L),

 new CK_ATTRIBUTE(CKA_TOKEN, true),

 new CK_ATTRIBUTE(CKA_ENCRYPT, true),

 new CK_ATTRIBUTE(CKA_DECRYPT, true),

 new CK_ATTRIBUTE(CKA_SIGN, false),

 new CK_ATTRIBUTE(CKA_VERIFY, false),

 new CK_ATTRIBUTE(CKA_WRAP, true),

 new CK_ATTRIBUTE(CKA_UNWRAP, true),

 new CK_ATTRIBUTE(CKA_EXTRACTABLE, false),

 new CK_ATTRIBUTE(CKA_ALWAYS_SENSITIVE, false),

 new CK_ATTRIBUTE(CKA_NEVER_EXTRACTABLE, true),

 new CK_ATTRIBUTE(CKA_SENSITIVE, true)

 };

 char[] pin = password.toCharArray(); //Ssl12345#

 try {

 long[] slotList = p11.C_GetSlotList(false);

 assertNotNull(slotList);

 int size = slotList.length;

 assertTrue(size > 0);

 System.out.println("=== Islot ID = " + slotList[0]);

 sessionHandle = p11.C_OpenSession(slotList[0], 0, null, null);

 System.out.println("=== sessionHandle = " + sessionHandle);

 p11.C_Login(sessionHandle, CKU_USER, pin);

 System.out.println("==== log in pass ====");

 CK_MECHANISM mechamism = new CK_MECHANISM(CKM_AES_KEY_GEN);

 long keyHandle = p11.C_GenerateKey(sessionHandle, mechamism, attrs);

 System.out.println("key handle is: " + keyHandle);

E n c r y p t i o n U s e C a s e s

Complete Walk-Through

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .54

Running Samples with the Java Wrapper

Use the following steps to run the sample code with the Java Wrapper:

1. Remove the previous /build/ folder, otherwise the recompile attempts were not

actually creating new output files.

2. Use the following command for ant compiler:

 } catch (PKCS11Exception e) {

 System.out.println("=== PKCS11Exception is thrown ===");

 String errMsg = e.getMessage();

 System.out.println("=== error message = " + errMsg);

 } finally {

 try {

 p11.C_Logout(sessionHandle);

 System.out.println("=== Successfully log out ===");

 p11.C_CloseSession(sessionHandle);

 System.out.println("=== Successfully close session ===");

 } catch (PKCS11Exception e) {

 }

 }

 }

 }

ant "C:\Program
Files\Vormetric\DataSecurityExpert\agent\pkcs11\java_samples\pkc
s11
-wrapper-6.2.0-27.jar" compile

E n c r y p t i o n U s e C a s e s

Complete Walk-Through

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .55

This command renders the following output:

3. Manually then copy the jar file to the /build/jar folder.

4. Create a key from sample code:

Use “;” instead of a “:” between items in the class path on Windows.

Add the “-m” string with the path to the vorpkcs11.dll file.

Buildfile: c:\Program
Files\Vormetric\DataSecurityExpert\agent\pkcs11\java_sampl
es\build.xml
compile:
[mkdir] Created dir: c:\Program
Files\Vormetric\DataSecurityExpert\agent\pkc
s11\java_samples\build\classes
[javac] c:\Program
Files\Vormetric\DataSecurityExpert\agent\pkcs11\java_samp
les\build.xml:51: warning: 'includeantruntime' was not set,
defaulting to build.
sysclasspath=last; set to false for repeatable builds
[javac] Compiling 16 source files to c:\Program
Files\Vormetric\DataSecurity
Expert\agent\pkcs11\java_samples\build\classes
[javac] Note: Some input files use unchecked or unsafe operations.
[javac] Note: Recompile with -Xlint:unchecked for details.
BUILD SUCCESSFUL
Total time: 5 seconds

c:\Program
Files\Vormetric\DataSecurityExpert\agent\pkcs11\java_samples>
java -cp build/classes/;build/jar/pkcs11-wrapper-6.2.0-27.jar
com.vormetric.pkcs11.sample.CreateKey -p Vormetric456! -m
"C:\Program
Files\Vormetric\DataSecurityExpert\agent\pkcs11\bin\vorpkcs11.dl
l" -k "YourKeyLabel"

E n c r y p t i o n U s e C a s e s

Complete Walk-Through

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .56

This produces the following output:

Start CreateKey ...
Loading the Vormetric PKCS11 library from : C:\Program
Files\Vormetric\DataSecur
ityExpert\agent\pkcs11\bin\vorpkcs11.dll
WARNING: sun.reflect.Reflection.getCallerClass is not supported.
This will impact performance.
Session successfully opened. Handle: 1
Successfully Logged in
The key not found, creating it...
Current End Date: year: 2018 month: 12 day: 21
Before generating Key. Key Handle: 0
Successfully Generated key. Key Label: YourKeyLabel. Key Handle:
536871014
Key successfully Generated. Key Handle: 536871014
Successfully logged out.
Successfully closed session.

End CreateKey.

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

.

. .
API Reference A

This API reference is organized by the following functional groups:

• “General Purpose Functions” on page 58

• “Slot and Token Management Functions” on page 62

• “Session Management Functions” on page 69

• “Object Management Functions” on page 76

• “Digest and MAC Functions” on page 103

• “Signing and Calculating MAC Functions” on page 111

• “Encryption Functions” on page 118

• “Decryption Functions” on page 127

• “Random Data Generation” on page 137

General Purpose Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .58

. General Purpose Functions

C_Initialize

Initializes the pkcs11 library.

NOTE: Only the applications written in C will call C_Initialize. Java and .NET
versions do not. For more examples, see the sample code.

NOTE: We do not support application level or OS level mutexes at this time.

CK_DEFINE_FUNCTION(CK_RV, C_Initialize)(
 CK_VOID_PTR pInitArgs

);

Table 6: Output Parameters

Parameter Description

CKR_ARGUMENTS_BAD Generic error code which indicates that the
arguments supplied to the Cryptoki function were
in some way not appropriate.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed
because the Cryptoki library has not yet been
initialized by a call to C_Initialize.

CKR_FUNCTION_FAILED The requested function could not be performed,
but detailed information about why not is not
available in this error return.

 CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested
function.

CKR_OK The function is executed successfully.

General Purpose Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .59

C_Finalize

Called to indicate that an application is finished with using the pkcs11 library.

C_GetInfo

Provides manufacturer and version information about the library.

CK_DEFINE_FUNCTION(CK_RV, C_Finalize)(
 CK_VOID_PTR pReserved

);

Table 7: Input Parameters

Parameter Description

CK_VOID_PTR pReserved Must be NULL.

Table 8: Return Values

Parameter Description

CKR_ARGUMENTS_BAD Generic error code which indicates that the arguments supplied to the
Cryptoki function were in some way not appropriate.

CKR_CRYPTOKI_NOT_INIT
IALIZED

Indicates that the function cannot be executed because the Cryptoki
library has not yet been initialized by a call to C_Initialize.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_OK The function is executed successfully.

CK_DEFINE_FUNCTION(CK_RV, C_GetInfo)

 (CK_INFO_PTR pInfo);

Table 9: Input Parameters

Parameter Description

CK_INFO_PTR pInfo Pointer to a CK_INFO structure to receive the information.

General Purpose Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .60

Table 10: Output Parameters

Parameter Description

C_GetInfo Fills in the CK_INFO structure with relevant information about

the library.

CK_INFO Provides general information about Cryptoki. Definitions are
outlined in Table 11

Table 11: Cryptoki Responses

Response Description

cryptokiVersion Cryptoki interface version number, for compatibility with future
revisions of this interface.

manufacturerID ID of the Cryptoki library manufacturer. Must be padded with the blank
character (' '). Should not be null-terminated.

flags Bit flags reserved for future versions. Must be zero for this version.

libraryDescription Character-string description of the library. Must be padded with the
blank character (' '). Should not be null-terminated.

libraryVersion Cryptoki library version number.

Table 12: Return Values

Parameter Description

CKR_ARGUMENTS_BAD Generic error code which indicates that the arguments supplied to the
Cryptoki function were in some way not appropriate.

CKR_CRYPTOKI_NOT_INIT
IALIZED

Indicates that the function cannot be executed because the Cryptoki
library has not yet been initialized by a call to C_Initialize.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_OK The function is executed successfully.

General Purpose Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .61

C_GetFunctionList

Allows the application (caller of the Application Encryption Library) to find the list of APIs that are

supported and their addresses.

NOTE: Only the applications written in C will call C_GetFunctionList. Java and
.NET versions do not. For more examples, see the sample code.

CK_DEFINE_FUNCTION(CK_RV, C_GetFunctionList)(
 CK_FUNCTION_LIST_PTR_PTR ppFunctionList
);

Table 13: Input Parameters

Parameter Description

CK_FUNCTION_LIST_PTR_PTR
ppFunctionList;

Pointer to a value that will receive a pointer to
CK_FUNCTION_LIST structure that contains function pointers
for all the API routines in the library.

Table 14: Output Parameters

Parameter Description

ppFunctionList Filled in with the address of the list of function pointers from the
PKCS#11 library.

Table 15: Return Values

Parameter Description

CKR_ARGUMENTS_BAD Generic error code which indicates that the arguments supplied to the
Cryptoki function were in some way not appropriate.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_OK The function is executed successfully.

Slot and Token Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .62

. Slot and Token Management Functions

C_GetSlotList

Provides list of available slots. It can be a single default slot. In C, call this function twice to get the actual

slot list. The first time, it returns the number of available slots. Allocate memory to the available slots, and

then the second call returns the actual slot list.

NOTE: Only the applications written in C will call C_GetSlotList. Java and .NET
versions do not. For more examples, see the sample code.

First Call to Retrieve Number of Slots

First call to C_GetSlotList(CK_FALSE) to retrieve the number of slots.

Parameter Description

Must be CK_FALSE.

Must be NULL_PTR.

Pointer to an unsigned long to hold slot count.

Second Call to Retrieve Slot List

Second call to C_GetSlotList to retrieve the actual slot list.

CK_DEFINE_FUNCTION(CK_RV, C_GetSlotList)(
 CK_BBOOL tokenPresent,
 CK_SLOT_ID_PTR pSlotList,
 CK_ULONG_PTR pulCount);
);

Table 16: Input Parameters

CK_BOOL tokenPresent

CK_SLOT_ID_PTR pSlotList

CK_ULONG_PTR pulCount

Table 17: Input Parameters

Parameter Description

CK_BOOL tokenPresent CK_TRUE

CK_SLOT_ID_PTR Pointer to the space allocated to hold the slot based
on the count retrieved above.

Slot and Token Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .63

Parameter Description

 Generic error code which indicates that the arguments supplied to the
Cryptoki function were in some way not appropriate.

 The output of the function is too large to fit in the supplied buffer.

Indicates that the function cannot be executed because the Cryptoki
library has not yet been initialized by a call to C_Initialize.

The requested function could not be performed, but detailed
information about why not is not available in this error return.

An unrecoverable error has occurred.

 Insufficient memory to perform the requested function.

The function is executed successfully.

C_GetSlotInfo

Provides information about a particular slot in the system.

CK_ULONG_PTR pulCount Pointer to a CK_ULONG holding the number of slots
allocated above.

Parameter Description

pulCount

Table 18: Output Parameters

Points to the number of slots available. It is always 1 for our library.

Table 19: Return Values

CKR_ARGUMENTS_BAD

CKR_BUFFER_TOO_SMALL

CKR_CRYPTOKI_NOT_INIT
IALIZED

CKR_FUNCTION_FAILED

CKR_GENERAL_ERROR

CKR_HOST_MEMORY

CKR_OK

CK_DEFINE_FUNCTION(CK_RV, C_GetSlotInfo)(
 CK_SLOT_ID slotID,
 CK_SLOT_INFO_PTR pInfo

);

Table 17: Input Parameters

Parameter Description

Slot and Token Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .64

C_GetTokenInfo

Provides information about a specific token.

Table 20: Input Parameters

Parameter Description

CK_SLOT_ID slotID Must be 0.

CK_SLOT_INFO_PTR pInfo Pointer to a CK_SLOT_INFO object.

Table 21: Output Parameters

Parameter Description

CK_SLOT_INFO_PTR The structure where CK_SLOT_INFO_PTR points will be filled

in with relevant information about the token.

Table 22: Return Values

Parameter Description

CKR_ARGUMENTS_BAD Generic error code which indicates that the arguments supplied to the
Cryptoki function were in some way not appropriate.

CKR_CRYPTOKI_NOT_INIT
IALIZED

Indicates that the function cannot be executed because the Cryptoki
library has not yet been initialized by a call to C_Initialize.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_OK The function is executed successfully.

CKR_SLOT_ID_INVALID The specified slot ID is not valid.

CK_DEFINE_FUNCTION(CK_RV, C_GetTokenInfo)(
 CK_SLOT_ID slotID,
 CK_SLOT_INFO_PTR pInfo);

Slot and Token Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .65

Table 23: Input Parameters

Parameter Description

CK_SLOT_ID slotID Must be slot 0.

CK_TOKEN_INFO_PTR pInfo Pointer to a CK_TOKEN_INFO object.

Table 24: Output Parameters

Parameter Description

CK_TOKEN_INFO_PTR The structure where CK_TOKEN_INFO_PTR points will be filled in with
relevant information about the token.

Table 25: Return Values

Parameter Description

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error
return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_OK The function is executed successfully.

CKR_SLOT_ID_INVALID The specified slot ID is not valid.

CKR_TOKEN_NOT_PRESENT The token was not present in its slot at the time that the
function was invoked.

CKR_TOKEN_NOT_RECOGNIZED The Cryptoki library and/or slot does not recognize the token
in the slot.

CKR_ARGUMENTS_BAD Generic error code which indicates that the arguments
supplied to the Cryptoki function were in some way not
appropriate.

Slot and Token Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .66

C_GetMechanismList

Provides a list of mechanisms supported.

CK_DEFINE_FUNCTION(CK_RV,C_GetMechanismList)(
 CK_SLOT_ID slotID,
CK_MECHANISM_TYPE_PTR pMechanismList,
CK_ULONG_PTR pulCount

);

Table 26: Input Parameters

Parameter Description

CK_SLOT_ID slotID Must be slot 0.

CK_MECHANISM_TYPE_PTR
pMechanismList

Pointer to memory to hold a list of CK_MECHANISM_TYPE.

CK_ULONG_PTR pulCount Number of CK_MECHANISM_TYPE objects the memory above
can hold.

Table 27: Output Parameters

Parameter Description

CK_MECHANISM The CK_MECHANISM structure where CK_MECHANISM_TYPE_PTR
points will be filled in with the list of supported mechanism types.

Table 28: Return Values

Parameter Description

CKR_BUFFER_TOO_SMALL The output of the function is too large to fit in the supplied buffer.

CKR_CRYPTOKI_NOT_INITIAL
IZED

Indicates that the function cannot be executed because the Cryptoki
library has not yet been initialized by a call to C_Initialize.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error return.

Slot and Token Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .67

GetMechanismInfo

Provides information about a mechanism possibly supported by the token.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_OK The function is executed successfully.

CKR_SLOT_ID_INVALID The specified slot ID is not valid.

CKR_TOKEN_NOT_PRESENT The token was not present in its slot at the time that the function
was invoked.

CKR_TOKEN_NOT_RECOGNIZED The Cryptoki library and/or slot does not recognize the token in the
slot.

CKR_ARGUMENTS_BAD Generic error code which indicates that the arguments supplied to
the Cryptoki function were in some way not appropriate.

CK_DEFINE_FUNCTION(CK_RV, C_GetMechanismInfo)(
CK_SLOT_ID slotID,
CK_MECHANISM_TYPE type,
CK_MECHANISM_INFO_PTR pInfo

);

Table 29: Input Parameters

Parameter Description

CK_SLOT_ID slotID Must be 0.

CK_MECHANISM_TYPE type Mechanism type to retrieve info for.

CK_MECHANISM_INFO_PTR pInfo Pointer to a CK_MECHANISM_INFO structure.

Table 28: Return Values

Parameter Description

Slot and Token Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .68

Table 30: Output Parameters

Parameter Description

 CK_MECHANISM_INFO The CK_MECHANISM_INFO structure where pInfo points is filled in
with information about a particular mechanism.

Table 31: Return Values

Parameter Description

CKR_CRYPTOKI_NOT_INITIALI
ZED

Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to C_Initialize.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_MECHANISM_INVALID An invalid mechanism was specified to the cryptographic
operation.

CKR_OK The function is executed successfully.

CKR_SLOT_ID_INVALID The specified slot ID is not valid.

CKR_TOKEN_NOT_PRESENT The token was not present in its slot at the time that the function
was invoked.

CKR_TOKEN_NOT_RECOGNIZED The Cryptoki library and/or slot does not recognize the token in
the slot.

CKR_ARGUMENTS_BAD Generic error code which indicates that the arguments supplied
to the Cryptoki function were in some way not appropriate.

Session Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .69

. Session Management Functions

C_OpenSession

Starts a cryptographic session with a specific token.

Supported Functionality

• Only read/write sessions are supported. Maximum number of read/write sessions is 1000.

• No read-only sessions are supported.

• Each thread must run in its own session for multi-threaded applications.

CK_DEFINE_FUNCTION(CK_RV, C_OpenSession)(
CK_SLOT_ID slotID,
CK_FLAGS flags, CK_VOID_PTR pApplication,
CK_NOTIFY Notify,
CK_SESSION_HANDLE_PTR phSession

);

Table 32: Input Parameters

Parameter Description

CK_SLOT_ID slotID Must be 0.

CK_FLAGS flags Must be 0.

CK_VOID_PTR pApplication String to describe session name, or NULL.

CK_NOTIFY Notify NULL

CK_SESSION_HANDLE_PTR phSession Pointer to a session ID.

Table 33: Output Parameters

Parameter Description

CK_SESSION_HANDLE_PTR
phSession

The session ID pointer (CK_SESSION_HANDLE_PTR

phSession) will be filled in with the session handle.

Session Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .70

C_CloseSession

Closes a cryptographic session.

Table 34: Return Values

Parameter Description

CKR_CRYPTOKI_NOT_INITI
ALIZED

Indicates that the function cannot be executed because the Cryptoki
library has not yet been initialized by a call to C_Initialize.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_SLOT_ID_INVALID The slot ID is out of range.

CKR_ARGUMENTS_BAD Already initiated.

CK_DEFINE_FUNCTION(CK_RV, C_CloseSession)(
CK_SESSION_HANDLE hSession

);

Table 35: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session to close, identified by the session handle.

Table 36: Return Values

Parameter Description

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_ARGUMENTS_BAD Already initiated.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

Session Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .71

C_CloseAllSessions

Closes all sessions on a slot. C programming language only.

CKR_OK The function is executed successfully.

CKR_SESSION_CLOSED The session was closed during the execution of the function.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that the
function was invoked.

CK_DEFINE_FUNCTION(CK_RV, C_CloseAllSessions)(
CK_SLOT_ID slotID

);

Table 37: Input Parameters

Parameter Description

CK_SLOT_ID slotID Must be 0.

Table 38: Return Values

Parameter Description

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_OK The function is executed successfully.

CKR_ARGUMENTS_BAD Generic error code which indicates that the arguments
supplied to the Cryptoki function were in some way not
appropriate.

Table 36: Return Values

Parameter Description

Session Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .72

C_GetSessionInfo

Provides information about a session.

CK_DEFINE_FUNCTION(CK_RV, C_GetSessionInfo)(
CK_SESSION_HANDLE hSession,
CK_SESSION_INFO_PTR pInfo

);

Table 39: Input Parameters

Parameter Description

CK_SESSION _HANDLE hSession Session handle.

CK_SESSION_INFO_PTR pInfo Pointer to a CK_SESSION_INFO object.

Table 40: Output Parameters

Parameter Description

CK_SESSION_INFO_PTR The structure where CK_SESSION_INFO_PTR points will be filled in
with relevant information about the session.

Table 41: Return Values

Parameter Description

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_OK The function is executed successfully.

CKR_SESSION_CLOSED The session was closed during the execution of the function.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that the
function was invoked.

CKR_ARGUMENTS_BAD Already initiated.

Session Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .73

C_Login

Passes user credentials to login into a token. The credentials can be PIN only for all domain access, include

a user name and password to secure the session access based on key group permissions. Credentials are

entered during Key Agent registration.

All domain access example:

Identity-based key access example:

CK_DEFINE_FUNCTION(CK_RV, C_Login)(
CK_SESSION_HANDLE hSession,
CK_USER_TYPE userType,
CK_UTF8CHAR_PTR pPin,
CK_ULONG ulPinLen

);

CK_DEFINE_FUNCTION(CK_RV, C_Login)
(
 CK_SESSION_HANDLE hSession,
 CK_USER_TYPE userType,
 CK_CHAR_PTR pPin,
 CK_ULONG ulPinLen
);

Table 42: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session to log the user into.

CK_USER_TYPE userType CKU_USER (We support only CKU_USER)

CK_CHAR_PTR pPin Password used to register the key agent with the
Data Security Manager.

For identity based access the value must contain the
following:

• vaepin

• user

• userpassword

Session Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .74

C_Logout

Logs a user out from a token. You can call C_logout() multiple times in a row.

CK_ULONG ulPinLen Length of the PIN.

Table 43: Return Values

Parameter Description

CKR_ARGUMENTS_BAD Already initiated.

CKR_PIN_INVALID The specified PIN has invalid characters in it. This is the default
error when a check for loginforIdentity fails.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_FUNCTION_REJECTED This error is returned when the identity check fails.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_OK The function is executed successfully.

CKR_PIN_INCORRECT The specified PIN is incorrect.

CKR_SESSION_CLOSED The session was closed during the execution of the function.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that the
function was invoked.

CKR_USER_PIN_NOT_INITIALIZED Indicates that the normal user’s PIN has not yet been
initialized.

CKR_USER_TYPE_INVALID An invalid value was specified.

CK_DEFINE_FUNCTION(CK_RV, C_Logout)(
CK_SESSION_HANDLE hSession

);

Table 42: Input Parameters

Parameter Description

Session Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .75

Table 44: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle that you want to log out of.

Table 45: Return Values

Parameter Description

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error
return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_OK The function is executed successfully.

CKR_SESSION_CLOSED The session was closed during the execution of the function.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that the
function was invoked.

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .76

. Object Management Functions

C_WrapKey

Supports key export on the DSM where a symmetric key is wrapped with another symmetric key on the

DSM and then exported. This function supports metadata logging.

CK_DEFINE_FUNCTION(CK_RV, C_WrapKey)(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hWrappingKey,
CK_OBJECT_HANDLE hKey,
CK_BYTE_PTR pWrappedKey,
CK_ULONG_PTR pulWrappedKeyLen

);

Table 46: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

CK_MECHANISM_PTR pMechanism The mechanism pointer only supports
CKM_AES_CBC_PAD mode. It requires a 16 byte IV. The
structure looks like this: 
{CKM_AES_CBC_PAD,iv,16};

CK_OBJECT_HANDLE hWrappingKey Symmetric key used to wrap the key.

CK_OBJECT_HANDLE hKey Symmetric key to export.

CK_BYTE_PTR pWrappedKey Points to an array to put the wrapped key bytes.

CK_ULONG_PTR ulWrappedKeyLen Length of the above array.

CKM_THALES_PEM_FORMAT Export an asymmetric key in a format.

CKA_THALES_DEFINED Export an asymmetric key, or asymmetric key with a custom
Thales vendor-defined constant.

CKM_AES_CBC_PAD Export an asymmetric or symmetric key with a symmetric
key wrapper. The wrapping mechanism needs to be
CKM_RSA_PKCS.

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .77

Table 47: Constants for CK_MECHANISM

Parameter Description

CKM_THALES_PEM_FORMAT Export an asymmetric key in a format.

CKA_THALES_DEFINED Export an asymmetric key, or asymmetric key with a custom Thales
vendor-defined constant.

CKM_AES_CBC_PAD Export an asymmetric or symmetric key with a symmetric key wrapper.
The wrapping mechanism needs to be CKM_RSA_PKCS.

Table 48: Output Parameters

Parameter Description

CK_BYTE_PTR
pWrappedKey

The array where CK_BYTE_PTR pWrappedKey points will be
filled in with the wrapped key bytes.

Table 49: Return Values

Parameter Description

CKR_ARGUMENTS_BAD Already initiated.

CKR_BUFFER_TOO_SMALL The output of the function is too large to fit in the
supplied buffer.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed
because the Cryptoki library has not yet been
initialized by a call to C_Initialize.

CKR_FUNCTION_CANCELED The function was canceled in mid-execution.

CKR_FUNCTION_FAILED The requested function could not be performed, but
detailed information about why not is not available
in this error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested
function.

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .78

C_UnwrapKey

CKR_KEY_HANDLE_INVALID The specified key handle is not valid.

CKR_KEY_NOT_WRAPPABLE Unable to wrap the secret key.

CKR_KEY_SIZE_RANGE The supplied key‘s size is outside the range of key
sizes.

CKR_KEY_UNEXTRACTABLE The specified private or secret key can’t be wrapped
because its CKA_EXTRACTABLE attribute is set to
CK_FALSE.

CKR_MECHANISM_INVALID An invalid mechanism was specified to the
cryptographic operation.

CKR_MECHANISM_PARAM_INVALID Invalid parameters were supplied to the mechanism
specified to the cryptographic operation.

CKR_OK The function is executed successfully.

CKR_OPERATION_ACTIVE There is already an active operation (or combination
of active operations) which prevents Cryptoki from
activating the specified operation.

CKR_PIN_EXPIRED The specified PIN has expired, and the requested
operation cannot be carried out.

CKR_SESSION_CLOSED The session was closed during the execution of the
function.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time
that the function was invoked.

CKR_USER_NOT_LOGGED_IN The desired action cannot be performed because the
appropriate user (or an appropriate user) is not
logged in.

CKR_WRAPPING_KEY_HANDLE_INVALID Indicates that the key handle specified to be used to
wrap another key is not valid.

CKR_WRAPPING_KEY_SIZE_RANGE Indicates that although the requested wrapping
operation could in principle be carried out, the token
is unable to actually do it because the supplied
wrapping key’s size is outside the range of key sizes
that it can handle.

CKR_WRAPPING_KEY_TYPE_INCONSISTENT Indicates that the type of the key specified to wrap
another key is not consistent with the mechanism
specified for wrapping.

Table 49: (Continued)Return Values

Parameter Description

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .79

Used in conjunction with C_WrapKey, where a symmetric key is wrapped with another symmetric key on

the DSM and then exported.

C_UnwrapKey completes the C_WrapKey feature, allowing the exported key to be imported to a

different DSM (or the same DSM with a different name/label) and ready for future use from the destination.

When exporting and importing the key into a new DSM the key attributes are not preserved. Only the key

material is imported. The new template specifies the key attributes.

IMPORTANT: For wrapped keys with set to Store on Server, the unwrap template must include
the CKA_THALES_CACHED_ON_HOST attribute set to false.

Reference the code sample vpkcs11_sample_import_key.c to use C_UnwrapKey.

(CK_RV, C_UnwrapKey)
(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hUnwrappingKey,
CK_BYTE_PTR pWrappedKey,
CK_ULONG ulWrappedKeyLen,
CK_ATTRIBUTE_PTR pTemplate,
CK_ULONG ulAttributeCount,
CK_OBJECT_HANDLE_PTR phKey

);

Table 50: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle

CK_MECHANISM_PTR pMechanism The mechanism pointer supports CKM_AES_CBC_PAD
mode for unwrapping. It requires a 16 byte IV.
The structure looks like this: 
{CKM_AES_CBC_PAD,iv,16};

CK_OBJECT_HANDLE hUnwrappingKey The unwrapping key. Do a FIND to obtain the
hUnwrappingKey handle.

CK_BYTE_PTR pWrappedKey Points to an array to hold the wrapped key bytes as input

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .80

CK_ULONG_PTR ulWrappedKeyLen Length of the above array

CK_ATTRIBUTE_PTR pTemplate Pointer to the new key template such as the
ImportKeyTemplate portion of
vpkcs11_sample_import_key.c

CK_ULONG ulAttributeCount Template length (number of attributes)

CK_OBJECT_HANDLE_PTR phKey Returns pointer to a new handle

Table 51: Template Attributes

Template Attribute Name Type Value

CKA_LABEL CK_UTF8CHA
R

Required. Key name; also displayed on the
DSM.

CKA_APPLICATION CK_UTF8CHA
R

Description of the application generating the
key name, can be NULL. (Optional)

CKA_CLASS CK_OBJECT_
CLASS

Required. Must be CKO_SECRET_KEY.

CKA_KEY_TYPE CK_KEY_TYP
E

Required. Must be CKK_AES.

CKA_VALUE_LEN CK_ULONG Optional: length of the key imported, passed in
bytes. 
16 or 32

CKA_TOKEN CK_BBOOL Required. Must be true.

CKA_ENCRYPT CK_BBOOL Default true.

CKA_DECRYPT CK_BBOOL Default true.

CKA_SIGN CK_BBOOL Default false.

CKA_VERIFY CK_BBOOL Default false.

CKA_WRAP CK_BBOOL Default true.

CKA_UNWRAP CK_BBOOL Default false.

Table 50: Input Parameters (Continued)

Parameter Description

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .81

C_CreateObject

Imports key bytes into the DSM and creates a symmetric key on the DSM. Maximum length of the key

name is 64 characters. There is no minimum length.

CKA_EXTRACTABLE CK_BBOOL Default false.

CKA_ALWAYS_SENSITIVE CK_BBOOL Default false.

CKA_NEVER_EXTRACTABLE CK_BBOOL Default true.

CKA_SENSITIVE CK_BBOOL Default true.

CKA_THALES_CACHED_ON_HOST CK_BBOOL Optional. If attribute is not used, the keys are
cached on the host by default. Insert the
attribute and set to 0 to store a key on the
server. (Equivalent to choosing “Store key on
server” in the DSM GUI.) To make storing on
the server a default for all keys, use a flag in
the agent.conf file. See “Storing Keys on
the Server by Default” on page 42.

This value must be set to false for keys that are
stored on server and not cached on host.

CKA_THALES_KEY_CACHED_TIME CK_ULONG Optional, in minutes. Between 1 and 44640 by
default.

Table 52: Output Parameters

Parameter Description

CK_OBJECT_HANDLE_PT
R phKey

Returns pointer to a new handle that was imported into either the new
DSM or the old DSM with a new key name.

CK_DEFINE_FUNCTION(CK_RV, C_CreateObject)(
CK_SESSION_HANDLE hSession,
CK_ATTRIBUTE_PTR pTemplate,
CK_ULONG ulCount,
CK_OBJECT_HANDLE_PTR phObject

);

Table 51: Template Attributes (Continued)

Template Attribute Name Type Value

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .82

Table 53: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

CK_ATTRIBUTE pTemplate Same template as C_GenerateKey, with the addition of
CKA_VALUE and CKA_VALUE_LEN, which hold the key bytes
and the length of the key bytes, respectively.

CK_ULONG ulCount Number of attributes in pTemplate.

CK_OBJECT_HANDLE phObject Generated key handle.

Table 54: Template Attributes

Template Attribute Name Type Value

CKA_LABEL CK_UTF8CHAR Key Name. Also displayed on the Data Security
Manager.

CKA_APPLICATION CK_UTF8CHAR Description of the application generating the key
name, can be NULL.

CKA_CLASS CK_OBJECT_CLA
SS

Must be CKO_SECRET_KEY.

CKA_KEY_TYPE CK_KEY_TYPE Must be CKK_AES.

CKA_VALUE CK_BYTE Key bytes.

CKA_VALUE_LEN CK_ULONG Length of key bytes. Pass a long value to the
CK_ATTRIBUTE constructor when creating the
CKA_VALUE_LEN attribute. For example:
new CK_ATTRIUBTE(CKA_VALUE_LEN, 32L)

or:
long len = 32;
new CK_ATTRIBUTE(CKA_VALUE_LEN, len)

CKA_TOKEN CK_BBOOL Required. Must be true.

CKA_ENCRYPT CK_BBOOL Optional, recommend true.

CKA_DECRYPT CK_BBOOL Optional, recommend true.

CKA_SIGN CK_BBOOL Optional

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .83

C_DestroyObject

Deletes a key.

Warning! Use this function VERY CAREFULLY. Deleted keys cannot be recovered and
all data encrypted by that key will be lost.

CKA_VERIFY CK_BBOOL Optional

CKA_WRAP CK_BBOOL Optional

CKA_UNWRAP CK_BBOOL Optional

CKA_EXTRACTABLE CK_BOOL Optional

CKA_ALWAYS_SENSITIVE CK_BBOOL Optional

CKA_NEVER_EXTRACTABLE CK_BBOOL Optional

CKA_SENSITIVE CK_BBOOL Optional

Table 55: Output Parameters

Parameter Description

CK_OBJECT_HANDLE
hGenKey

This parameter is filled in with the handle of the newly generated key.

CK_DEFINE_FUNCTION(CK_RV, C_DestroyObject)(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hObject
);

Table 54: Template Attributes (Continued)

Template Attribute Name Type Value

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .84

Table 56: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

CK_OBJECT_HANDLE hObject Handle of the key to be deleted.

Table 57: Return Values

Parameter Description

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_OBJECT_HANDLE_INVALID The specified object handle is not valid.

CKR_OK The function is executed successfully.

CKR_PIN_EXPIRED The specified PIN has expired, and the requested operation
cannot be carried out.

CKR_SESSION_CLOSED The session was closed during the execution of the function.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that the
function was invoked.

CKR_SESSION_READ_ONLY The specified session was unable to accomplish the desired
action because it is a read-only session.

CKR_TOKEN_WRITE_PROTECTED The requested action could not be performed because the
token is write-protected.

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .85

C_FindObjectsInit

Initializes a search for a token and session objects that match a template. We only support searching for a

key by the CKA_LABEL, which corresponds to the key name on the DSM. The search template must have

CKA_LABEL as its required attribute.

The following code shows various attributes that can be searched for:

CK_DEFINE_FUNCTION(CK_RV, C_FindObjectsInit)(
CK_SESSION_HANDLE hSession,
CK_ATTRIBUTE_PTR pTemplate,
CK_ULONG ulCount
);

Table 58: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

CK_ATTRIBUTE_PTR pTemplate Attribute(s) to search for.

CK_ULONG ulCount Attribute template count.

CK_ATTRIBUTE findKeyTemplatePass[] =
{
{CKA_LABEL, ksid, ksid_len},
{CKA_CLASS, &keyType, sizeof(keyType)}
};
switch(keyidType)
{
case keyIdLabel:
findKeyTemplatePass[0].type = CKA_LABEL;
 break;

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .86

 case keyIdUuid:
 findKeyTemplatePass[0].type = CKA_THALES_OBJECT_UUID;
 break;

 case keyIdMuid:
 findKeyTemplatePass[0].type = CKA_THALES_OBJECT_MUID;
 break;

 case keyIdImport:
 findKeyTemplatePass[0].type = CKA_THALES_OBJECT_IKID;
 break;

 case keyIdAlias:
 findKeyTemplatePass[0].type = CKA_THALES_OBJECT_ALIAS;
 break;
}

Table 59: Return Values

Parameter Description

CKR_ARGUMENTS_BAD Already initiated.

CKR_ATTRIBUTE_TYPE_INVALID An invalid attribute type was specified in a template.

CKR_ATTRIBUTE_VALUE_INVALID An invalid value was specified for a particular attribute in a
template.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because
the Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_FUNCTION_FAILED The requested function could not be performed, but
detailed information about why not is not available in this
error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_OK The function is executed successfully.

CKR_OPERATION_ACTIVE There is already an active operation (or combination of
active operations) which prevents Cryptoki from activating
the specified operation.

CKR_PIN_EXPIRED The specified PIN has expired, and the requested
operation cannot be carried out.

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .87

C_FindObjects

Finds an object on the DSM. The only attribute currently supported is KEY_LABEL, which corresponds to the

key name on the DSM. Returns at most 1 key.

NOTE: The DSM honors only the public key name. To query for a public key, pass in
the public key name and CKO_PUBLIC_KEY. To query for the private key, pass in the
public key name and CKO_PRIVATE_KEY.

NOTE: Searching for a key’s handle with C_FindObject may not produce accurate
results immediately in the same session. To ensure accuracy, wait until the key cache
expires.

CKR_SESSION_CLOSED The session was closed during the execution of the
function.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that
the function was invoked.

CKR_KEY_FUNCTION_NOT_PERMITTED The Identity check failed.

CK_DEFINE_FUNCTION(CK_RV, C_FindObjects)(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE_PTR phObject,
CK_ULONG ulMaxObjectCount,
CK_ULONG_PTR pulObjectCount
);

Table 60: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

CK_OBJECT_HANDLE_PTR phObject Pointer to the buffer to put the object handles.

CK_ULONG ulMaxObjectCount The maximum number of objects to put into the
buffer.

Table 59: (Continued)Return Values

Parameter Description

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .88

CK_ULONG_PTR pulObjectCount Pointer to CK_ULONG where the number of objects
found is returned.

Parameter Description

Returns a single key that matches the CKA_LABEL.

This is always 1 the first time the API finds a match.
Subsequent calls return a uplObjectCount of 0,
indicating no other objects matched that key name.

Table 61: Output Parameters

CK_OBJECT_HANDLE_PTR phObject

CK_ULONG_PTR pulObjectCount

Table 62: Return Values

Parameter Description

CKR_ARGUMENTS_BAD Already initiated.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_OK The function is executed successfully.

CKR_OPERATION_NOT_INITIALIZE
D

There is no active operation of an appropriate type in the
specified session.

CKR_SESSION_CLOSED The session was closed during the execution of the function.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that the
function was invoked.

CKR_KEY_FUNCTION_NOT_PERMITT
ED

The Identity check failed.

Table 60: Input Parameters

Parameter Description

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .89

C_FindObjectsFinal

Terminates a search for a token and session objects.

NOTE: If searching for a versioned key on its alias, the alias must not contain spaces
or non-alphanumeric characters.

CK_DEFINE_FUNCTION(CK_RV, C_FindObjectsFinal)(
 CK_SESSION_HANDLE hSession
);

Table 63: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

Table 64: Return Values

Parameter Description

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because
the Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_FUNCTION_FAILED The requested function could not be performed, but
detailed information about why not is not available in this
error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_OK The function is executed successfully.

CKR_OPERATION_NOT_INITIALIZED There is no active operation of an appropriate type in the
specified session.

CKR_SESSION_CLOSED The session was closed during the execution of the
function.

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .90

C_GetAttributeValue

Gets attribute value of a specific Security Object. Argument specifies the Security Object ID.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that
the function was invoked.

CKR_KEY_FUNCTION_NOT_PERMITTED The Identity check failed.

K_RV C_GetAttributeValue (CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hObject,
CK_ATTRIBUTE_PTR pTemplate,
CK_ULONG ulCount
) ;

Table 65: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

CK_OBJECT_HANDLE hObject Object to get the attribute for.

CK_ATTRIBUTE_PTR pTemplate Template containing the attributes to search for. Points to the
CK_ATTRIBUTE structure.

CK_ULONG ulCount Number of attributes in the template.

Table 64: (Continued)Return Values

Parameter Description

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .91

Table 66: Output Parameters

Parameter Description

CK_ATTRIBUTE_PTR pTemplate This parameter is filled in with the values for the attributes
searched for.

There are five custom attributes:

• CKA_LABEL

• CKA_THALES_OBJECT_UUID

• CKA_THALES_OBJECT_MUID

• CKA_THALES_OBJECT_IKID

• CKA_THALES_OBJECT_ALIAS.

Table 67: Return Values

Parameter Description

CKR_ARGUMENTS_BAD Already initiated.

CKR_ATTRIBUTE_SENSITIVE An attempt was made to obtain the value of an attribute of an
object which cannot be satisfied because the object is either
sensitive or un-extractable.

CKR_ATTRIBUTE_TYPE_INVALID An invalid attribute type was specified in a template.

CKR_BUFFER_TOO_SMALL The output of the function is too large to fit in the supplied
buffer.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_FUNCTION_FAILED The function did not execute.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_OBJECT_HANDLE_INVALID The specified object handle is not valid.

CKR_OK The function is executed successfully.

CKR_SESSION_CLOSED The session was closed during the execution of the function.

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .92

C_SetAttributeValue

Sets attribute value of a specific Security Object. The argument specifies the Security Object ID.

NOTE: C_SetAttributeValue does not work if setting the PROCESS_START state
for a key that is in the preactive state.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that the
function was invoked.

CK_DEFINE_FUNCTION(CK_RV, C_SetAttributeValue)(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hObject,
CK_ATTRIBUTE_PTR pTemplate,
CK_ULONG ulCount,
CK_ATTRIBUTE setAttrsTemplate[],
CK_ATTRIBUTE setAttrsTemplateSymm[]
);

Table 68: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

CK_OBJECT_HANDLE hObject Object handle.

CK_ATTRIBUTE_PTR pTemplate Attribute template for the attributes to set.

There area five custom attributes:

• CKA_LABEL

• CKA_THALES_OBJECT_UUID

• CKA_THALES_OBJECT_MUID

• CKA_THALES_OBJECT_IKID

• CKA_THALES_OBJECT_ALIAS

Table 67: Return Values (Continued)

Parameter Description

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .93

CK_ULONG ulCount Number of attributes in the template.

CK_ATTRIBUTE
setAttrsTemplate[]

Contains = {

 {CKA_THALES_KEY_STATE, &state,
sizeof(KeyState) }
};

typedef enum {
 KeyStatePreActive = 0,
 KeyStateActive = 1,
 KeyStateSuspended = 2,
 KeyStateDeactivated = 3,
 KeyStateCompromised = 4,
 KeyStateDestroyed = 5
} KeyState;
Must not be used together with
setAttrsTemplateSymm[]. The NIST diagram of key
states is included below this table.

CK_ATTRIBUTE
setAttrsTemplateSymm[]

Contains {CKA_THALES_KEY_VERSION_ACTION,
&keyVersionAction,
sizeof(keyVersionAction) }. Can accept only 2 as
the parameter (2 = migration from non-versioned to
versioned key.) Must not be used together with
setAttrsTemplate[].

Table 68: Input Parameters (Continued)

Parameter Description

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .94

Figure 9: NIST key states

Table 69: Return Values

Parameter Description

CKR_ARGUMENTS_BAD Already initiated.

CKR_ATTRIBUTE_READ_ONLY An attempt was made to set a value for an attribute which may not be
set or modified.

CKR_ATTRIBUTE_TYPE_INVALID An invalid attribute type was specified in a template.

CKR_ATTRIBUTE_VALUE_INVALID An invalid value was specified for a particular attribute in a template.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the Cryptoki
library has not yet been initialized by a call to C_Initialize.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_OBJECT_HANDLE_INVALID The specified object handle is not valid.

CKR_OK The function is executed successfully.

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .95

C_GenerateKey

Generates a symmetric key. Maximum length of the key name is 64 characters. There is no minimum

length.

By default, keys are stored on the host or on the DSM. If you don’t want them stored on the host, log on to

the DSM Console, click the Keys tab and select the key name from the Name list. From the Edit Agent Keys

window, in the Key Type drop-down menu, select Stored on Server.

Supported Functionality

AES-128 and AES-256 symmetric encryption keys are supported.

CKR_SESSION_CLOSED The session was closed during the execution of the function.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that the function
was invoked.

CKR_SESSION_READ_ONLY The specified session was unable to accomplish the desired action
because it is a read-only session.

CKR_TEMPLATE_INCONSISTENT The template specified for creating an object has conflicting
attributes.

CKR_TOKEN_WRITE_PROTECTED The requested action could not be performed because the token is
write-protected.

CKR_USER_NOT_LOGGED_IN The desired action cannot be performed because the appropriate user
(or an appropriate user) is not logged in.

CK_DEFINE_FUNCTION(CK_RV, C_GenerateKey)(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_ATTRIBUTE_PTR pTemplate,
CK_ULONG ulCount,
CK_OBJECT_HANDLE_PTR phKey
);

Table 69: Return Values (Continued)

Parameter Description

Parameter Description

Session handle.

Key generation mechanism; must have the following values:

The number of attributes in the template.

Pointer to a key handle.

Determines if the DSM should allow the key to leave the DSM
to be cached on the client.

How long the key stays in the local key cache before it is re-
fetched from the DSM. Time in minutes. 

NOTE: When the CKA_VORM_CACHED_TIME property is set
to Zero (0), the key is cached forever on the local host for that
session.

See the pTemplate Attribute table below.

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .96

Table 70: Input Parameters

CK_SESSION_HANDLE hSession

CK_MECHANISM_PTR pMechanism
{CKM_AES_KEY_GEN, NULL_PTR, 0};

CK_ULONG ulCount

CK_OBJECT_HANDLE_PTR phKey

CKA_VORM_CACHED_ON_HOST

CKA_VORM_CACHED_TIME

CK_ATTRIBUTE_PTR pTemplate

Table 71: Template Attributes

Attribute Name Type Description

CKA_LABEL CK_UTF8CHAR Key name; also displayed on the
Data Security Manager

CKA_APPLICATION CK_UTF8CHAR Description of the application
generating the key name, can be
NULL.

CKA_CLASS CK_OBJECT_CLASS Must be CKO_SECRET_KEY.

CKA_KEY_TYPE CK_KEY_TYPE Must be CKK_AES.

CKA_VALUE_LEN CK_ULONG Key size.

CKA_TOKEN CK_BBOOL Required. Must be true.

CKA_ENCRYPT CK_BBOOL Optional. Default true.

CKA_DECRYPT CK_BBOOL Optional. Default true.

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .97

CKA_SIGN CK_BBOOL Optional. Default false.

CKA_VERIFY CK_BBOOL Optional. Default false.

CKA_WRAP CK_BBOOL Optional. Default true.

CKA_UNWRAP CK_BBOOL Optional. Default false.

CKA_EXTRACTABLE CK_BBOOL Optional. Default false.

CKA_ALWAYS_SENSITIVE CK_BBOOL Optional. Default false.

CKA_NEVER_EXTRACTABLE CK_BBOOL Optional.

CKA_SENSITIVE CK_BBOOL Optional.

CKA_THALES_CACHED_ON_HOST CK_BBOOL Optional. If attribute is not used,
the keys are cached on the host
by default. Insert the attribute
and set to 0 to store a key on the
server. (Equivalent to choosing
“Store key on server” in the DSM
GUI.) To make storing on the
server a default for all keys, use a
flag in the agent.conf file.
See “Storing Keys on the
Server by Default” on page 42.

CKA_THALES_KEY_CACHED_TIME CK_ULONG In minutes. Default is 44640 (31
days).

CKA_THALES_DATE_KEY_DEACTIVAT
ION

CK_DATE Epoch time as CK_DATE.

CKA_THALES_KEY_VERSION_ACTION CK_VERSIONACTION Can be omitted; or takes 0, 1, or 3
as a parameter. 0 creates a base
version of a versioned key, 1
rotates a new version for a
versioned key, and 3 indicates
that the key is non-versioned.
See “Automated Key
Versioning” on page 43

CKA_THALES_KEY_VERSION_LIFE_S
PAN

CK_ULIFESPAN Must be greater than 0. Specifies
the time until automatic key
rotation. Omit this attribute if no
key rotation is desired. See
“Automated Key Versioning”
on page 43

Table 71: Template Attributes (Continued)

Attribute Name Type Description

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .98

NOTE: If automatic key rotation is set, the key will rotate 24 hours before the
specified rotation period. This behavior is expected.

NOTE: State changes are supported only by explicitly setting the new state, never by
changing the dates.

Parameter Description

CK_OBJECT_HANDLE_PTR phKey The structure where CK_OBJECT_HANDLE_PTR phKey
points is filled in with the newly created key handle.

Table 72: Output Parameters

Table 73: Return Values

Parameter Description

CKR_ARGUMENTS_BAD Already initiated.

CKR_ATTRIBUTE_READ_ONLY An attempt was made to set a value for an attribute which
may not be set or modified.

CKR_ATTRIBUTE_TYPE_INVALID An invalid attribute type was specified in a template.

CKR_ATTRIBUTE_VALUE_INVALID An invalid value was specified for a particular attribute in a
template.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_FUNCTION_CANCELED The function was canceled in mid-execution.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error
return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_MECHANISM_INVALID An invalid mechanism was specified to the cryptographic
operation.

CKR_MECHANISM_PARAM_INVALID Invalid parameters were supplied to the mechanism specified
to the cryptographic operation.

CKR_OK The function is executed successfully.

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .99

C_GenerateKeyPair

Generates an asymmetric key pair. Arguments specify RSA type and length of the key pair.

Supported Functionality

RSA-1024 and RSA-2048 asymmetric key pairs are supported.

CKR_OPERATION_ACTIVE There is already an active operation (or combination of active
operations) which prevents Cryptoki from activating the
specified operation.

CKR_PIN_EXPIRED The specified PIN has expired, and the requested operation
cannot be carried out.

CKR_SESSION_CLOSED The session was closed during the execution of the function.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that the
function was invoked.

CKR_SESSION_READ_ONLY The specified session was unable to accomplish the desired
action because it is a read-only session.

CKR_TEMPLATE_INCOMPLETE The template specified for creating an object is incomplete,
and lacks some necessary attributes.

CKR_TEMPLATE_INCONSISTENT The template specified for creating an object has conflicting
attributes.

CKR_TOKEN_WRITE_PROTECTED The requested action could not be performed because the
token is write-protected.

CKR_USER_NOT_LOGGED_IN The desired action cannot be performed because the
appropriate user (or an appropriate user) is not logged in.

CK_DEFINE_FUNCTION(CK_RV, C_GenerateKeyPair)(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_ATTRIBUTE_PTR pPublicKeyTemplate,
CK_ULONG ulPublicKeyAttributeCount,
CK_ATTRIBUTE_PTR pPrivateKeyTemplate,
CK_ULONG ulPrivateKeyAttributeCount,
CK_OBJECT_HANDLE_PTR phPublicKey,
CK_OBJECT_HANDLE_PTR phPrivateKey
);

Table 73: Return Values

Parameter Description

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .100

Table 74: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

CK_MECHANISM_PTR pMechanism Key generation mechanism must have the following values:

{ CKM_RSA_PKCS_KEY_PAIR_GEN, NULL_PTR, 0 };

CK_ATTRIBUTE_PTR
pPublicKeyTemplate

{CKA_LABEL, publicKeyLabel,
sizeof(publicKeyLabel) },/* Keyname */
{CKA_CLASS, &pubkey_class,
sizeof(pubkey_class)},
{CKA_ENCRYPT, &bTrue, sizeof(bTrue)},
{CKA_VERIFY, &bTrue, sizeof(bTrue)},
{CKA_WRAP, &bTrue, sizeof(bTrue)},
{CKA_TOKEN, &bTrue, sizeof(bTrue)},
{CKA_PUBLIC_EXPONENT, publicExponent,
sizeof(publicExponent)},
{CKA_MODULUS_BITS, &modulusBits,
sizeof(modulusBits)}

CK_ULONG
ulPublicKeyAttributeCount

Size of the key template publicKeyTemplate.

CK_ATTRIBUTE_PTR
privateKeyTemplate

{CKA_LABEL, privateKeyLabel,
sizeof(publicKeyLabel) },/* Keyname*/
{CKA_CLASS, &privkey_class,
sizeof(privkey_class)},
{CKA_TOKEN, &bTrue, sizeof(bTrue)},
{CKA_PRIVATE, &bTrue, sizeof(bTrue)},
{CKA_SENSITIVE, &bTrue, sizeof(bTrue)},
{CKA_DECRYPT, &bTrue, sizeof(bTrue)},
{CKA_SIGN, &bTrue, sizeof(bTrue)},
{CKA_UNWRAP, &bTrue, sizeof(bTrue)}

CK_ULONG
ulPrivateKeyAttributeCount

Size of the key template privateKeyTemplate.

CK_OBJECT_HANDLE_PTR
phPublicKey

Filled in with the newly created public key handle.

CK_OBJECT_HANDLE_PTR
phPrivateKey

Filled in with the newly created private key handle.

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .101

Table 75: Output Parameters

Parameter Description

CK_OBJECT_HANDLE_PTR
phPublicKey

CK_OBJECT_HANDLE_PTR phPublicKey is filled in with the
object handle of the public key.

CK_OBJECT_HANDLE_PTR
phPublicKey

CK_OBJECT_HANDLE_PTR phPublicKey is filled in with the object
handle of the private key.

Table 76: Return Values

Parameter Description

CKR_ARGUMENTS_BAD Already initiated.

CKR_ATTRIBUTE_READ_ONLY An attempt was made to set a value for an attribute which
may not be set or modified.

CKR_ATTRIBUTE_TYPE_INVALID An invalid attribute type was specified in a template.

CKR_ATTRIBUTE_VALUE_INVALID An invalid value was specified for a particular attribute in a
template.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_DOMAIN_PARAMS_INVALID Invalid or unsupported domain parameters were supplied to
the function.

CKR_FUNCTION_CANCELED The function was canceled in mid-execution.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_MECHANISM_INVALID An invalid mechanism was specified to the cryptographic
operation.

CKR_MECHANISM_PARAM_INVALID Invalid parameters were supplied to the mechanism specified
to the cryptographic operation.

CKR_OK The function is executed successfully.

CKR_OPERATION_ACTIVE There is already an active operation (or combination of active
operations) which prevents Cryptoki from activating the
specified operation.

Object Management Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .102

CKR_PIN_EXPIRED The specified PIN has expired, and the requested operation
cannot be carried out.

CKR_SESSION_CLOSED The session was closed during the execution of the function.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that the
function was invoked.

CKR_SESSION_READ_ONLY The specified session was unable to accomplish the desired
action because it is a read-only session.

CKR_TEMPLATE_INCOMPLETE The template specified for creating an object is incomplete,
and lacks some necessary attributes.

CKR_TEMPLATE_INCONSISTENT The template specified for creating an object has conflicting
attributes.

CKR_TOKEN_WRITE_PROTECTED The requested action could not be performed because the
token is write-protected.

CKR_USER_NOT_LOGGED_IN The desired action cannot be performed because the
appropriate user (or an appropriate user) is not logged in.

Table 76: Return Values

Parameter Description

Digest and MAC Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .103

. Digest and MAC Functions

C_DigestInit

Initializes a digest operation.

CK_DEFINE_FUNCTION(CK_RV, C_DigestInit)(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,

);

Table 77: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

CK_MECHANISM_PTR pMechanism Which cryptographic hash function to use. One of the
following values:
{ CKM_SHA256, NULL_PTR, 0 },
{ CKM_SHA384, NULL_PTR, 0 },
{ CKM_SHA512, NULL_PTR, 0 }
OR

{ CKM_SHA256_HMAC, NULL_PTR, 0 }
Other mechanisms include:

CKM_MD5

CKM_SHA_1

CKM_SHA224

CKM_MD5_HMAC

CKM_SHA_1_HMAC

CKM_SHA224_HMAC

CKM_SHA384_HMAC

CKM_SHA512_HMAC

Table 78: Return Values

Parameter Description

CKR_ARGUMENTS_BAD Already initiated.

Digest and MAC Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .104

C_Digest

Compute data digest in a single part. Must call C_DigestInit before calling C_Digest.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_FUNCTION_CANCELED The function was canceled in mid-execution.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_MECHANISM_INVALID An invalid mechanism was specified to the cryptographic
operation.

CKR_MECHANISM_PARAM_INVALID Invalid parameters were supplied to the mechanism specified
to the cryptographic operation.

CKR_OK The function is executed successfully.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that the
function was invoked.

CK_DEFINE_FUNCTION(CK_RV, C_DigestInit)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pPart,
 CK_ULONG ulPartLen,

CK_BYTE_PTR pDigest,
CK_ULONG_PTR pulDigestLen

);

Table 79: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

Table 78: Return Values

Parameter Description

Digest and MAC Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .105

CK_BYTE_PTR pPart Pointer to the digest input data.

CK_ULONG ulPartLen Length of the data.

CK_BYTE_PTR pDigest Results in the message digest.

CK_ULONG_PTR pulDigestLen The byte count of the digest.

Table 80: Return Values

Parameter Description

CKR_ARGUMENTS_BAD Already initiated.

CKR_BUFFER_TOO_SMALL The output of the function is too large to fit in the supplied
buffer.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_FUNCTION_CANCELED The function was canceled in mid-execution.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error
return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_MECHANISM_INVALID An invalid mechanism was specified to the cryptographic
operation.

CKR_MECHANISM_PARAM_INVALID Invalid parameters were supplied to the mechanism
specified to the cryptographic operation.

CKR_OK The function is executed successfully.

CKR_OPERATION_NOT_INITIALIZED There is no active operation of an appropriate type in the
specified session.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that the
function was invoked.

Table 79: Input Parameters

Parameter Description

Digest and MAC Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .106

C_DigestKey

Specifies HMAC key for digest operation. Must call C_DigestInit before calling C_DigestKey.

NOTE: This function does not work when key is set to Store on Server. The key
must be set to Cached on Host.

NOTE: The key can be either AES or an opaque object.

NOTE: You can call C_DigestKey only once and directly after C_DigestInit.

Parameter Description

Session handle.

Handle to the 256-bit private key.

CK_DEFINE_FUNCTION(CK_RV, C_DigestKey)(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hKey

);

Table 81: Input Parameter

CK_SESSION_HANDLE hSession

CK_OBJECT_HANDLE hKey

Table 82: Return Values

Parameter Description

CKR_ARGUMENTS_BAD Already initiated.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_FUNCTION_CANCELED The function was canceled in mid-execution.

Digest and MAC Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .107

C_DigestUpdate

Continues a multi-part digest operation. Must call C_DigestInit before calling C_DigestUpdate. Can

optionally call C_DigestKey before calling C_DigestUpdate.

CKR_FUNCTION_FAILED The requested function could not be performed, but
detailed information about why not is not available in this
error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_KEY_FUNCTION_NOT_PERMITTED

CKR_KEY_HANDLE_INVALID The specified key handle is not valid.

-CKR_KEY_INDIGESTIBLE The supplied key‘s size is outside the range of key sizes.

CKR_KEY_SIZE_RANGE

CKR_MECHANISM_PARAM_INVALID Invalid parameters were supplied to the mechanism
specified to the cryptographic operation.

CKR_OK The function is executed successfully.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that
the function was invoked.

CK_DEFINE_FUNCTION(CK_RV, C_DigestUpdate)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pPart,
 CK_ULONG ulPartLen
);

Table 83: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

Table 82: Return Values

Parameter Description

Digest and MAC Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .108

CK_BYTE_PTR pPart Pointer to the digest input data.

CK_ULONG ulPartLen Length of the data.

Table 84: Return Values

Parameter Description

CKR_ARGUMENTS_BAD Generic error code which indicates that the arguments
supplied to the Cryptoki function were in some way not
appropriate.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_FUNCTION_CANCELED The function was canceled in mid-execution.

CKR_FUNCTION_FAILED The requested function could not be performed, but
detailed information about why not is not available in this
error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_KEY_FUNCTION_NOT_PERMITTED An attempt has been made to use a key for a cryptographic
purpose that the key’s attributes are not set to allow it to do.

CKR_KEY_HANDLE_INVALID The specified key handle is not valid.

CKR_KEY_SIZE_RANGE The supplied key‘s size is outside the range of key sizes.

CKR_KEY_TYPE_INCONSISTENT The specified key is not the correct type of key to use with
the specified mechanism.

CKR_OK The function is executed successfully.

CKR_OPERATION_NOT_INITIALIZED There is no active operation of an appropriate type in the
specified session.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that the
function was invoked.

Table 83: Input Parameters

Parameter Description

Digest and MAC Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .109

C_DigestFinal

Finishes a multi-part digest operation. This works only with the local key cache. Not supported if crypto is

done remotely on the DSM.

Table 86: Output Parameters

CK_DEFINE_FUNCTION(CK_RV, C_DigestFinal)(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pDigest,
CK_ULONG_PTR pulDigestLen

);

Table 85: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

CK_BYTE_PTR pDigest Results in the message digest.

CK_ULONG_PTR pulDigestLen The byte count of the digest.

Parameter Description

CKR_ARGUMENTS_BAD Generic error code which indicates that the arguments
supplied to the Cryptoki function were in some way not
appropriate.

CKR_BUFFER_TOO_SMALL The output of the function is too large to fit in the supplied
buffer.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error
return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

Digest and MAC Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .110

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_KEY_HANDLE_INVALID The specified key handle is not valid.

CKR_KEY_SIZE_RANGE The supplied key‘s size is outside the range of key sizes.

CKR_KEY_TYPE_INCONSISTENT The specified key is not the correct type of key to use with
the specified mechanism.

CKR_OK The function is executed successfully.

CKR_OPERATION_NOT_INITIALIZED There is no active operation of an appropriate type in the
specified session.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that the
function was invoked.

Parameter (Continued) Description

Signing and Calculating MAC Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .111

. Signing and Calculating MAC Functions

C_SignInit

Initializes a signature operation.

CK_DEFINE_FUNCTION(CK_RV, C_SignInit)(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey

);

Table 87: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

CK_MECHANISM_PTR pMechanism The mechanism should have the following parameters
;{ CKM_RSA_PKCS, NULL_PTR, 0 }.

Available mechanisms include:

• HMAC-SHA 1

• CKM_SHA224_HMAC

• CKM_SHA256_HMAC

• CKM_SHA384_HMAC

• CKM_SHA512_HMAC

• RSA

CK_OBJECT_HANDLE hKey Handle to the RSA private key. The key that this handle
references can be symmetric, asymmetric, or an opaque
object.

Table 88: Return Values

Parameter Description

CKR_ARGUMENTS_BAD Already initiated.

Signing and Calculating MAC Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .112

C_Sign

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_FUNCTION_CANCELED The function was canceled in mid-execution.

CKR_FUNCTION_FAILED The requested function could not be performed, but
detailed information about why not is not available in this
error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_KEY_FUNCTION_NOT_PERMITTED An attempt has been made to use a key for a cryptographic
purpose that the key’s attributes are not set to allow it to
do.

CKR_KEY_HANDLE_INVALID The specified key handle is not valid.

CKR_KEY_SIZE_RANGE The supplied key‘s size is outside the range of key sizes.

CKR_KEY_TYPE_INCONSISTENT The specified key is not the correct type of key to use with
the specified mechanism.

CKR_MECHANISM_INVALID An invalid mechanism was specified to the cryptographic
operation.

CKR_MECHANISM_PARAM_INVALID Invalid parameters were supplied to the mechanism
specified to the cryptographic operation.

CKR_OK The function is executed successfully.

CKR_OPERATION_ACTIVE There is already an active operation (or combination of
active operations) which prevents Cryptoki from activating
the specified operation.

CKR_PIN_EXPIRED The specified PIN has expired, and the requested operation
cannot be carried out.

CKR_SESSION_CLOSED The session was closed during the execution of the
function.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that the
function was invoked.

CKR_USER_NOT_LOGGED_IN The desired action cannot be performed because the
appropriate user (or an appropriate user) is not logged in.

Table 88: Return Values

Parameter Description

Signing and Calculating MAC Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .113

Signs data in a single part.

CK_DEFINE_FUNCTION(CK_RV, C_Sign)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pData,
 CK_ULONG ulDataLen,
 CK_BYTE_PTR pSignature,
 CK_ULONG_PTR pulSignatureLen
);

Table 89: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

CK_BYTE_PTR pData Points to the data.

CK_ULONG ulDataLen Length of data.

CK_BYTE_PTR pSignature Pointer to buffer to receive the signed data.

CK_ULONG_PTR pulSignatureLen Pointer to buffer length.

Table 90: Output Parameters

Parameter Description

CK_BYTE The CK_BYTE structure where pSignature points is filled in with the
signed data.

CK_ULONG The CK_ULONG structure where pulSignatureLen points is
filled in with the signed data length.

Table 91: Return Values

Parameter Description

CKR_ARGUMENTS_BAD Already initiated.

Signing and Calculating MAC Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .114

CKR_BUFFER_TOO_SMALL The output of the function is too large to fit in the supplied
buffer.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_DATA_INVALID The plaintext input data to a cryptographic operation is
invalid.

CKR_DATA_LEN_RANGE The provided signature/MAC can be seen to be invalid
solely on the basis of its length.

CKR_FUNCTION_CANCELED The function was canceled in mid-execution.

CKR_FUNCTION_FAILED The requested function could not be performed, but
detailed information about why not is not available in this
error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_OK The function is executed successfully.

CKR_OPERATION_NOT_INITIALIZED There is no active operation of an appropriate type in the
specified session.

CKR_SESSION_CLOSED The session was closed during the execution of the
function.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid
at the time that the function was
invoked.

CKR_USER_NOT_LOGGED_IN The desired action cannot be performed because the
appropriate user (or an appropriate user) is not logged in.

CKR_FUNCTION_REJECTED The signature request is rejected by the user.

Table 91: Return Values

Parameter Description

Signing and Calculating MAC Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .115

C_VerifyInit

Initializes a verification operation.

CK_DEFINE_FUNCTION(CK_RV, C_VerifyInit) 
(CK_SESSION_HANDLE hSession, 
CK_MECHANISM_PTR pMechanism, 
CK_OBJECT_HANDLE hKey);

Table 92: Input Parameters

Parameter Description

hSession Session handle.

pMechanism Pointer to the structure that specifies the verification mechanism.

Available mechanisms include:

• HMAC-SHA 1

• CKM_SHA224_HMAC

• CKM_SHA256_HMAC

• CKM_SHA384_HMAC

• CKM_SHA512_HMAC

• RSA

hKey Handle for the public key of the key pair used for verification.

Table 93: Return Values

Parameter Description

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because
the Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_FUNCTION_FAILED The requested function could not be performed, but
detailed information about why not is not available in this
error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

Signing and Calculating MAC Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .116

C_Verify

Performs a single-part verification operation. To perform verification, the signature is verified with the
key, the handle of which is provided in C_Verify_Init and compared with the pData.

CKR_KEY_FUCNTION_NOT_PERMITTED An attempt has been made to use a key for a cryptographic
purpose that the key’s attributes are not set to allow it to
do.

CKR_KEY_HANDLE_INVALID The specified key handle is not valid.

CKR_MECHANISM_INVALID An invalid mechanism was specified to the cryptographic
operation.

CKR_SESSION_CLOSED The session was closed during the execution of the
function.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that
the function was invoked.

CKR_USER_NOT_LOGGED_IN The desired action cannot be performed because the
appropriate user (or an appropriate user) is not logged in.

CK_DEFINE_FUNCTION(CK_RV, C_Verify) 
(CK_SESSION_HANDLE hSession, 
CK_BYTE_PTR pData, 
CK_ULONG ulDataLen, 
CK_BYTE_PTR pSignature, 
CK_ULONG ulSignatureLen);

Table 94: Return Values

Parameter Description

CKR_OK The function is executed successfully.

CKR_SIGNATURE_INVALID The provided signature/MAC is invalid.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

Table 93: (Continued)Return Values

Parameter Description

Signing and Calculating MAC Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .117

CKR_SIGNATURE_LEN_RANGE The provided signature/MAC can be seen to be invalid solely on
the basis of its length.

Table 94: (Continued)Return Values

Parameter Description

Encryption Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .118

. Encryption Functions

C_EncryptInit

Initializes an encryption operation. C_EncryptInit must be called before C_Encrypt or

C_EncryptUpdate is called:

NOTE: When using CKM_AES_GCM, the pParameter field of the CK_MECHANISM
structure must point to the address of a CK_GCM_PARAMS structure, and the
ulParameterLen field must equal the length of the structure.

CK_DEFINE_FUNCTION(CK_RV, C_EncryptInit)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey
);

Encryption Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .119

NOTE: Not every header version supports every encryption mechanism. Refer to the
table titled “Header Compatibility with Encryption Methods” earlier in this manual.

Table 95: C_EncryptInit Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

CK_MECHANISM_PTR pMechanism The pointer to the structure that specifies the encryption
mechanism. 

We support the following mechanisms:

CKM_AES_ECB
CKM_AES_CBC
CKM_AES_CBC_PAD
CKM_AES_CTR
CKM_THALES_FPE (in Java, use: 0x80004001L)

CKM_THALES_FF1 (in Java, use: 0x80004002L)

CKM_RSA_PKCS
CKM_AES_GCM
Note: For CKM_THALES_FPE, the IV contains the following field
values:

• tweak (8 bytes)

• character set. ASCII or Unicode characters. The following
Unicode encodings are supported: UTF-8, UTF-16, UTF-32,
big-endian, or little-endian byte order. Be sure there are no
duplicate characters in the character set.

• radix (character set size). The size can be from 2 to 65535.
For more information, see samples.

For CKM_THALES_FF1, the IV contains the same 3 field values,
except that the tweak is not fixed size: it can range from 0 to 232
bytes.

Note: FPE, CTR, and FF1 do not work when key is set to Store
on Server. The key must be set to Cached on Host.

CK_OBJECT_HANDLE hKey The handle to the encryption key to do the encryption.

Table 96: Return Values

Parameter Description

CKR_FUNCTION_CANCELED The function was canceled in mid-execution.

Encryption Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .120

C_Encrypt

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_ARGUMENTS_BAD Already initiated.

CKR_FUNCTION_FAILED The requested function could not be performed, but
detailed information about why not is not available in this
error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_KEY_FUNCTION_NOT_PERMITTED An attempt has been made to use a key for a cryptographic
purpose that the key’s attributes are not set to allow it to
do.

CKR_KEY_HANDLE_INVALID The specified key handle is not valid.

CKR_KEY_SIZE_RANGE The supplied key‘s size is outside the range of key sizes.

CKR_KEY_TYPE_INCONSISTENT The specified key is not the correct type of key to use with
the specified mechanism.

CKR_MECHANISM_INVALID An invalid mechanism was specified to the cryptographic
operation.

CKR_MECHANISM_PARAM_INVALID Invalid parameters were supplied to the mechanism
specified to the cryptographic operation.

CKR_OK The function is executed successfully.

CKR_OPERATION_ACTIVE There is already an active operation (or combination of
active operations) which prevents Cryptoki from activating
the specified operation.

CKR_PIN_EXPIRED The specified PIN has expired, and the requested operation
cannot be carried out.

CKR_SESSION_CLOSED The session was closed during the execution of the
function.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that
the function was invoked.

CKR_USER_NOT_LOGGED_IN The desired action cannot be performed because the
appropriate user (or an appropriate user) is not logged in.

Table 96: (Continued)Return Values

Parameter Description

Encryption Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .121

Encrypts single part data. Must call C_EncryptInit before calling C_Encrypt.

CK_DEFINE_FUNCTION(CK_RV, C_Encrypt)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pData,
 CK_ULONG ulDataLen,
 CK_BYTE_PTR pEncryptedData,
 CK_ULONG_PTR pulEncryptedDataLen
);

Table 97: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

CK_BYTE_PTR pData Pointer to data to be encrypted.

CK_ULONG ulDataLen Length of the data to be encrypted.

CK_BYTE_PTR pEncryptedData Pointer of the buffer to put the data.

First call: Pointer to the metadata to be passed and logged
on the application’s behalf. Must start with “META:”; input
parameter.

Second call: Pointer to the resulting encrypted data; output
parameter.

CK_ULONG_PTR
pulEncryptedDataLen

Pointer to encrypted buffer length.

First call: Pointer to encrypted buffer length. Encrypted
buffer length is zero for metadata logging.

Second call: actual buffer length used for encrypted data,
written encrypted data length.

For GCM this parameter contains the length of the tag in
bytes, plus the length of the remaining ciphertext from
encryption.

Table 98: Output Parameters

Parameter Description

 pEncryptedData When input parameter pEncryptedData is NULL, this function
returns a calculated output buffer length value pointed to by
pulEncryptedDataLen. For C program only.
For GCM the tag of length specified in the ulTagBits field for
CK_GCM_PARAMS in bytes is appended to the end of the buffer.

Encryption Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .122

Table 99: Return Values

Parameter Description

CKR_OK The function is executed successfully.

CKR_ARGUMENTS_BAD Already initiated.

CKR_BUFFER_TOO_SMALL The output of the function is too large to fit in the supplied
buffer.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_DATA_INVALID The plaintext input data to a cryptographic operation is
invalid.

CKR_DATA_LEN_RANGE The plaintext input data to a cryptographic operation has a
bad length.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error
return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_OPERATION_NOT_INITIALIZED There is no active operation of an appropriate type in the
specified session.

CKR_SESSION_CLOSED The session was closed during the execution of the function.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that the
function was invoked.

CKR_PIN_INVALID The specified PIN has invalid characters in it.

CKR_MECHANISM_INVALID An invalid mechanism was specified to the cryptographic
operation.

Encryption Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .123

C_EncryptUpdate

Continues a multi-part encryption. This works only with the local key cache. Not supported if crypto is done

remotely on the DSM.

CK_DEFINE_FUNCTION(CK_RV, C_EncryptUpdate)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pPart,
 CK_ULONG ulPartLen,
 CK_BYTE_PTR pEncryptedPart,
 CK_ULONG_PTR pulEncryptedPartLen

);

Table 100: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

CK_BYTE_PTR pPart Pointer to the data to be encrypted.

CK_ULONG ulPartLen Length of the data.

CK_BYTE_PTR pEncryptedPart Pointer to the data buffer.

First call: Pointer to the metadata to be passed and logged on the
application’s behalf. Must start with “META:”; input parameter.

Second call: Pointer to the resulting encrypted data; output
parameter.

CK_ULONG_PTR
pulEncryptedPartLen

Pointer to encrypted buffer length.

First call: Pointer to encrypted buffer length. Encrypted buffer
length is zero for metadata logging.

Second call: actual buffer length used for encrypted data, written
encrypted data length.

Table 101: Output Parameters

Parameter Description

 pEncryptedPart When input parameter pEncryptedPart is NULL, this function returns a
calculated output buffer length value pointed to by pulEncryptedPartLen.

Encryption Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .124

C_EncryptFinal

Finishes a multi-part encryption. This works only with the local key cache. Not supported if encryption is

done remotely on the DSM.

Table 102: Return Values

Parameter Description

CKR_OK The function is executed successfully.

CKR_ARGUMENTS_BAD Already initiated.

CKR_BUFFER_TOO_SMALL The output of the function is too large to fit in the supplied
buffer.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_DATA_INVALID The plaintext input data to a cryptographic operation is invalid.

CKR_DATA_LEN_RANGE The plaintext input data to a cryptographic operation has a bad
length.

CKR_FUNCTION_CANCELED The function was canceled in mid-execution.

CK_DEFINE_FUNCTION(CK_RV, C_EncryptFinal)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pLastEncryptedPart,
 CK_ULONG_PTR pulEncryptedPartLen
);

Table 103: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

Encryption Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .125

CK_BYTE_PTR pLastEncryptedPart Pointer to any remaining data to be encrypted.

First call: Pointer to the metadata to be passed and logged
on the application’s behalf. Must start with “META:”; input
parameter.

Second call: Pointer to the resulting encrypted data; output
parameter.

CK_ULONG_PTR
pulLastEncryptedPartLen

Buffer length pointer.

First call: Pointer to encrypted buffer length. Encrypted
buffer length is zero for metadata logging.

Second call: actual buffer length used for encrypted data,
written encrypted data length.

For GCM, this parameter contains the length of the tag in
bytes plus the length of the remaining ciphertext from
encryption.

Table 104: Output Parameters

Parameter Description

 pLastEncryptedPart When input parameter pLastEncryptedPart is NULL, this function returns
a calculated output buffer length value pointed to by
pulLastEncryptedPartLen. For C program only.

For GCM, the tag of length is specified in the ulTagBits field for
CK_GCM_PARAMS in bytes, at the end of the buffer.

Table 105: Return Values

Parameter Description

CKR_OK The function is executed successfully.

CKR_ARGUMENTS_BAD Already initiated.

CKR_BUFFER_TOO_SMALL The output of the function is too large to fit in the supplied
buffer.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_DATA_INVALID The plaintext input data to a cryptographic operation is
invalid.

Table 103: Input Parameters

Parameter Description

Encryption Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .126

CKR_DATA_LEN_RANGE The plaintext input data to a cryptographic operation has a
bad length.

CKR_FUNCTION_CANCELED The function was canceled in mid-execution.

Table 105: (Continued)Return Values

Parameter Description

Decryption Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .127

. Decryption Functions

C_DecryptInit

Initializes a decryption option. C_DecryptInit must be called before C_Decrypt or
C_DecryptUpdate.

NOTE: When using CKM_AES_GCM, the pParameter field of the CK_MECHANISM
structure must point to the address of a CK_GCM_PARAMS structure, and the
ulParameterLen field is the length of the structure.

CK_DEFINE_FUNCTION(CK_RV, C_DecryptInit)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey
);

Table 106: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

Decryption Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .128

CK_MECHANISM_PTR pMechanism Pointer to the mechanism for decryption. Must match the
mechanism used to encrypt, including the correct IV if using
CKM_AES_CBC or CKM_AES_CBC_PAD or the correct nonce
and counter concatenated if using CKM_AES_CTR.

We support the following mechanisms:

CKM_AES_ECB
CKM_AES_CBC
CKM_AES_CBC_PAD
CKM_AES_CTR
CKM_THALES_FPE (in Java, use: 0x80004001L)

CKM_THALES_FF1 (in Java, use: 0x80004002L)

CKM_RSA_PKCS
CKM_AES_GCM
Note: For CKM_THALES_FPE, the IV contains the following
field values:

• tweak (8 bytes)

• character set (ASCII characters 0-127)

• radix (character set size). For more information see
samples.

For CKM_THALES_FF1, the IV contains the same field values,
except that the tweak is not a fixed size: it can range from 0 to
232 bytes.

CK_OBJECT_HANDLE hKey Handle of the decryption key; (same as encryption key for
symmetric encryption).

CK_GCM_PARAMS
ulEncryptedPartLen

For GCM, this parameter must include the length of the tag in
bytes, in addition to the ciphertext length.

Table 107: Return Values

Parameter Description

CKR_OK The function is executed successfully.

CKR_ARGUMENTS_BAD Already initiated.

CKR_BUFFER_TOO_SMALL The output of the function is too large to fit in the supplied
buffer.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

Table 106: Input Parameters (Continued)

Parameter Description

Decryption Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .129

CKR_DATA_INVALID The plaintext input data to a cryptographic operation is
invalid.

CKR_DATA_LEN_RANGE The plaintext input data to a cryptographic operation has a
bad length.

CKR_FUNCTION_CANCELED The function was canceled in mid-execution.

CKR_FUNCTION_FAILED The requested function could not be performed, but
detailed information about why not is not available in this
error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_KEY_FUNCTION_NOT_PERMITTED An attempt has been made to use a key for a cryptographic
purpose that the key’s attributes are not set to allow it to
do.

CKR_KEY_HANDLE_INVALID The specified key handle is not valid.

CKR_KEY_SIZE_RANGE The supplied key‘s size is outside the range of key sizes.

CKR_KEY_TYPE_INCONSISTENT The specified key is not the correct type of key to use with
the specified mechanism.

CKR_MECHANISM_INVALID An invalid mechanism was specified to the cryptographic
operation.

CKR_MECHANISM_PARAM_INVALID Invalid parameters were supplied to the mechanism
specified to the cryptographic operation.

CKR_OPERATION_ACTIVE There is already an active operation (or combination of
active operations) which prevents Cryptoki from activating
the specified operation.

CKR_PIN_EXPIRED The specified PIN has expired, and the requested operation
cannot be carried out.

CKR_SESSION_CLOSED The session was closed during the execution of the function.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that the
function was invoked.

CKR_USER_NOT_LOGGED_IN The desired action cannot be performed because the
appropriate user (or an appropriate user) is not logged in.

Table 107: (Continued)Return Values

Parameter Description

Decryption Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .130

C_Decrypt

Decrypts encrypted data in a single part. The operation must have been initialized by a prior call to

C_DecryptInit.

CK_DEFINE_FUNCTION(CK_RV, C_Decrypt)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pEncryptedData,
 CK_ULONG ulEncryptedDataLen,
 CK_BYTE_PTR pData,
 CK_ULONG_PTR pulDataLen

);

Table 108: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

CK_BYTE_PTR pEncryptedData Pointer to the encrypted data to be decrypted.

CK_ULONG ulEncryptedDataLen Length of the encrypted data to be decrypted.

For GCM this parameter must also include the tag length, in
bytes added to the ciphertext length.

CK_BYTE_PTR pData Pointer to the buffer for the decrypted text.

First call: pointer to the metadata to be passed and logged on
application’s behalf. Must start with “META:”; input
parameter.

Second call: pointer to the resulting decrypted data; (output
parameter).

CK_ULONG_PTR pulDataLen Pointer to the length of the buffer for the decrypted text.

First call: Pointer to decrypted buffer length. Decrypted buffer
length is zero for metadata logging.

Second call: actual buffer length used for decrypted data;
length of the written plaintext.

CK_GCM_PARAMS The first bytes of length are specified in the ulTagBits field
and pEncryptedData must contain the tag. Also for GCM, if
the decryption can't be validated, the error
CKR_ENCRYPTED_DATA_INVALID is returned.

Decryption Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .131

Table 109: Output Parameters

Parameter Description

pData When input parameter pData is NULL, this function returns a calculated
output buffer length value pointed to by pulDataLen. For C program
only.

Table 110: Return Values

Parameter Description

CKR_OK The function is executed successfully.

CKR_ARGUMENTS_BAD Generic error code which indicates that the arguments
supplied to the Cryptoki function were in some way not
appropriate.

CKR_BUFFER_TOO_SMALL The output of the function is too large to fit in the supplied
buffer.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_DATA_INVALID The plaintext input data to a cryptographic operation is
invalid.

CKR_DATA_LEN_RANGE The plaintext input data to a cryptographic operation has a
bad length.

CKR_FUNCTION_CANCELED The function was canceled in mid-execution.

CKR_MECHANISM_INVALID An invalid mechanism was specified to the cryptographic
operation.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error
return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_OPERATION_NOT_INITIALIZED There is no active operation of an appropriate type in the
specified session.

CKR_SESSION_CLOSED The session was closed during the execution of the function.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that the
function was invoked.

Decryption Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .132

C_DecryptUpdate

Decrypts multi-part encrypted data. The operation must have been initialized by a prior call to

C_DecryptInit. This works only with the local key cache. Not supported if crypto is done remotely on the

DSM.

CKR_USER_NOT_LOGGED_IN The desired action cannot be performed because the
appropriate user (or an appropriate user) is not logged in.

CKR_MECHANISM_INVALID An invalid mechanism was specified to the cryptographic
operation.

CK_DEFINE_FUNCTION(CK_RV, C_DecryptUpdate)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pEncryptedPart,
 CK_ULONG ulEncryptedPartLen,
 CK_BYTE_PTR pPart,
 CK_ULONG_PTR pulPartLen

);

Table 111: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

CK_BYTE_PTR pEncryptedData Pointer to the encrypted data. For GCM, on the first call to
C_DecryptUpdate, this parameter includes the first bytes of
length specified in the ulTagBits field in bytes and
pEncryptedPart must contain the tag.

CK_ULONG ulEncryptedDataLen Length of the encrypted data. For GCM, his parameter must
include the length of the tag in bytes, in addition to the
ciphertext length.

CK_BYTE_PTR pData Pointer to a buffer to write the decrypted data.

First call: Pointer to the metadata to be passed and logged on
the application’s behalf. Must start with “META:”; input
parameter.

Second call: Pointer to the resulting encrypted data; output
parameter.

Table 110: (Continued)Return Values

Parameter Description

Decryption Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .133

CK_ULONG_PTR pulDataLen Buffer length pointer.

First call: Pointer to buffer length. Buffer length is zero for
metadata logging.

Second call: actual buffer length used for encrypted data,
written encrypted data length.

Table 112: Output Parameters

Parameter Description

pData When input parameter pData is NULL, this function returns a calculated output
buffer length value pointed to by pulDataLen. For C program only.

Table 113: Return Values

Parameter Description

CKR_OK The function is executed successfully.

CKR_ARGUMENTS_BAD Generic error code which indicates that the arguments
supplied to the Cryptoki function were in some way not
appropriate.

CKR_BUFFER_TOO_SMALL The output of the function is too large to fit in the supplied
buffer.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_DATA_INVALID The plaintext input data to a cryptographic operation is
invalid.

CKR_DATA_LEN_RANGE The plaintext input data to a cryptographic operation has a
bad length.

CKR_FUNCTION_CANCELED The function was canceled in mid-execution.

CKR_FUNCTION_FAILED The requested function could not be performed, but detailed
information about why not is not available in this error
return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

Table 111: Input Parameters

Parameter Description

Decryption Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .134

C_DecryptFinal

Finishes a multi-part decryption. This works only with the local key cache. Not supported if crypto is done

remotely on the DSM.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_OPERATION_NOT_INITIALIZED There is no active operation of an appropriate type in the
specified session.

CKR_SESSION_CLOSED The session was closed during the execution of the function.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that the
function was invoked.

CKR_USER_NOT_LOGGED_IN The desired action cannot be performed because the
appropriate user (or an appropriate user) is not logged in.

CKR_MECHANISM_INVALID An invalid mechanism was specified to the cryptographic
operation.

CK_DEFINE_FUNCTION(CK_RV, C_DecryptFinal)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pLastPart,
 CK_ULONG_PTR pulLastPartLen

);

Table 114: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

CK_BYTE_PTR pLastPart Pointer to a buffer to write the decrypted data.

First call: Pointer to the metadata to be passed and logged on
the application’s behalf. Must start with “META:”; input
parameter.

Second call: Pointer to the resulting decrypted data; output
parameter

Table 113: (Continued)Return Values

Parameter Description

Decryption Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .135

CK_ULONG_PTR pulLastPartLen Buffer length pointer.

First call: Pointer to decrypted buffer length. Encrypted buffer
length is zero for metadata logging.

Second call: actual buffer length used for decrypted data,
written encrypted data length.

Table 115: Output Parameters

Parameter Description

pLastPart pLastPart will be filled in with the decrypted text.

pulLastPartLen pulLastPartLen will be filled in with the length of the

decrypted text.

 pLastPart When input parameter pLastPart is NULL, this function

returns a calculated output buffer length value pointed to by

pulLastPartLen. For C program only.

Table 116: Return Values

Parameter Description

CKR_OK The function is executed successfully.

CKR_ARGUMENTS_BAD Generic error code which indicates that the arguments
supplied to the Cryptoki function were in some way not
appropriate.

CKR_BUFFER_TOO_SMALL The output of the function is too large to fit in the supplied
buffer.

CKR_CRYPTOKI_NOT_INITIALIZED Indicates that the function cannot be executed because the
Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR_DATA_INVALID The plaintext input data to a cryptographic operation is
invalid.

CKR_ENCRYPTED_DATA_INVALID For GCM, if the decryption can't be validated.

Table 114: Input Parameters

Parameter Description

Decryption Functions

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .136

Return Values

CKR_DATA_LEN_RANGE The plaintext input data to a cryptographic operation has a
bad length.

CKR_FUNCTION_CANCELED The function was canceled in mid-execution.

CKR_FUNCTION_FAILED The requested function could not be performed, but
detailed information about why not is not available in this
error return.

CKR_GENERAL_ERROR An unrecoverable error has occurred.

CKR_HOST_MEMORY Insufficient memory to perform the requested function.

CKR_OPERATION_NOT_INITIALIZED There is no active operation of an appropriate type in the
specified session.

CKR_SESSION_CLOSED The session was closed during the execution of the function.

CKR_SESSION_HANDLE_INVALID The specified session handle was invalid at the time that the
function was invoked.

CKR_USER_NOT_LOGGED_IN The desired action cannot be performed because the
appropriate user (or an appropriate user) is not logged in.

CKR_MECHANISM_INVALID An invalid mechanism was specified to the cryptographic
operation.

Table 116: (Continued)Return Values

Parameter Description

Random Data Generation

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .137

. Random Data Generation

C_GenerateRandom

Use this function to generate and return random data.

CK_RV GenerateRandom(struct ctx * c, CK_SESSION_HANDLE session,
 CK_BYTE_PTR * rand, CK_ULONG length)
{
*rand = calloc(length, sizeof(CK_BYTE));
if (*rand == NULL) {
return CKR_HOST_MEMORY;
}
CK_RV e = c->sym->C_GenerateRandom(session, *rand, length);
return e;
}

Table 117: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

CK_BYTE_PTR randomdata Receives the random data.

CK_ULONG length The number of byes to generate.

Table 118: Output Parameters

Parameter Description

RandomResult A randomized token is returned.

Random Data Generation

Vormetric Application Encryption 6.2.0 Installation and API Reference Guide v1

. .
 .

. .138

C_SeedRandom

Generate token random numbers by mixing additional seed material into the token random number

generator.

 CK_RV SeedRandom(struct ctx * c, CK_SESSION_HANDLE session, CK_BYTE_PTR
seed,
 CK_ULONG seedlen)
{
CK_RV e = c->sym->C_SeedRandom(session, seed, seedlen);
return e;
}

Table 119: Input Parameters

Parameter Description

CK_SESSION_HANDLE hSession Session handle.

CK_BYTE_PTR pSeed Set the seed value.

CK_ULONG ulSeedLen The seed length

	Contents
	Preface
	Documentation Version History
	Assumptions
	Related Documents
	Guide to VAE Documentation
	Vormetric Data Security Platform—Overview
	Service Updates and Support Information

	Vormetric Application Encryption
	Product Overview
	Application Encryption Workflow
	Components
	Data Security Manager (DSM)
	Key Agent

	Functionality
	Key Cache Options

	Vormetric Encryption Concepts
	VAE and DSM
	Fingerprint
	Shared Secret
	Run-time DSM Functionality

	Key Management
	Key Headers
	DPM Version 1.5
	DPM Version 2.1
	DPM Version 2.7
	Headers in the API

	Versioning
	NIST Key States
	Opaque Objects
	Exporting Opaque Objects from the DSM

	Cached Keys
	GCM Support for Symmetric Keys
	Export Asymmetric Keys
	Identity-Based Key Access

	PKCS#11
	PINs
	Header Files

	Vormetric Application Encryption Installation
	Overview
	Assumptions

	Installation Plan
	Agent Install Checklist
	Before You Begin
	Determine Your Agent Registration Method
	Host Name Resolution
	Using the CLI

	Initial Setup
	To Install the VAE Agent on Windows
	To Verify the Installation on Windows

	To Install the VAE Agent on Linux/UNIX
	Verify the Linux Installation

	Modify the Key Cache
	To Modify the Key Cache on the DSM

	Certificate Renewal
	Uninstalling

	Using the VAE API
	Sample Code
	Compiling and Running Sample Code in c_samples

	Location of Libraries, Samples, and Logs
	Using Java 9 and Higher with VAE
	Verifying Successful API Initialization
	Providing Identity-Based Key Access Credentials
	Creating a Key in a Key Group
	Restricting Encryption Key Access

	Metadata Logging and Sample Code
	C Sample
	Java Sample

	Troubleshooting

	Encryption Use Cases
	Signing
	Hashing
	FPE
	Storing Keys on the Server by Default
	Automated Key Versioning
	What is a versioned key
	How do versioned keys work
	Sample Scenario

	Implementing Automated Key Versioning
	Option 1: In the DSM GUI
	Option 2: In the application code

	Complete Walk-Through
	Create and Import a Key
	Key Creation Java Sample

	Encrypt and Decrypt
	Example With Thales Java Wrapper
	Running Samples with the Java Wrapper

	API Reference
	General Purpose Functions
	C_Initialize
	C_Finalize
	C_GetInfo
	C_GetFunctionList

	Slot and Token Management Functions
	C_GetSlotList
	First Call to Retrieve Number of Slots
	Second Call to Retrieve Slot List

	C_GetSlotInfo
	C_GetTokenInfo
	C_GetMechanismList
	GetMechanismInfo

	Session Management Functions
	C_OpenSession
	Supported Functionality

	C_CloseSession
	C_CloseAllSessions
	C_GetSessionInfo
	C_Login
	C_Logout

	Object Management Functions
	C_WrapKey
	C_UnwrapKey
	CK_BBOOL
	C_CreateObject
	C_DestroyObject
	C_FindObjectsInit
	C_FindObjects
	C_FindObjectsFinal
	C_GetAttributeValue
	C_SetAttributeValue
	C_GenerateKey
	Supported Functionality

	C_GenerateKeyPair
	Supported Functionality

	Digest and MAC Functions
	C_DigestInit
	C_Digest
	C_DigestKey
	C_DigestUpdate
	C_DigestFinal

	Signing and Calculating MAC Functions
	C_SignInit
	C_Sign
	C_VerifyInit
	C_Verify

	Encryption Functions
	C_EncryptInit
	C_Encrypt
	C_EncryptUpdate
	C_EncryptFinal

	Decryption Functions
	C_DecryptInit
	C_Decrypt
	C_DecryptUpdate
	C_DecryptFinal

	Random Data Generation
	C_GenerateRandom
	C_SeedRandom

