

Moving from OPNQRYF to SQL
Transforming OPNQRYF programs to an SQL access model

.

Gene Cobb

ISV Business Strategy and Enablement

March 2008

© Copyright IBM Corporation, 2008. All Rights Reserved.

All trademarks or registered trademarks mentioned herein are the property of their respective holders

Table of contents

Abstract ... 1

Introduction .. 1

Reasons to consider conversion .. 2

SQL is the industry standard .. 2

SQL is strategic .. 2

SQE features ... 3

Superior performance of SQE ... 3

Advanced functions of the SQL interface... 4

DB2 performance tools tailored for SQL interfaces .. 5

Application readability and understanding ... 6

Reduction in number of programs and lines of code .. 6

Anatomy of OPNQRYF ... 7

CL program... 8

HLL program... 8

Anatomy of an SQL-based model.. 9

HLL program .. 10

Conversion methodology .. 11

Step 1: Convert the CL commands to equivalent SQL statements ... 12

OVRDBF command .. 12

OPNQRYF command ... 12

Convert OPNQRYF parameters to corresponding SQL clauses .. 12

Build SQL statement .. 12

CALL command .. 13

CLOF command ... 13

DLTOVR command .. 13

Step 2: Create SQL views ... 14

Step 3: Modify HLL program to include embedded SQL ... 15

Step 3.1: Remove the File Specification ... 15

Step 3.2: Add an externally described data structure ... 15

Step 3.3: Add embedded SQL statements to generate a result set 16

Step 3.4: Replace native-access methods with SQL access methods 17

Step 6: Modify or eliminate CL program .. 18

Other conversion considerations .. 18

Set-at-a-time or row-at-a-time processing of result set ... 18

Example 1: Comparing row-at-a-time with set-at-a-time when deleting database rows. 19

Example 2: SQL Set-at-a-time to read rows from a database .. 20

Static or dynamic SQL ... 21

Static SQL ... 21

Dynamic SQL .. 22

SELECT INTO when returning one row ... 23

CPYFRMQRYF ... 23

Moving from OPNQRYF to SQL

Summary .. 24

Appendix A: OPNQRYF command parameters and SQL equivalents 25

File specifications (FILE) ... 25

Open options (OPTIONS) ... 27

Format specifications (FORMAT) .. 27

Query selection expression (QRYSLT) ... 28

Key-field specifications and ordering (KFLD) ... 28

Unique key fields (UNIQUEKEY) ... 29

Join field specifications (JFLD) .. 29

Join file order (JORDER) ... 30

Join file order (JDFTVAL) .. 30

Grouping field names (GRPFLD) .. 31

Group-selection expression (GRPSLT) ... 31

Mapped-field specifications (MAPFLD) ... 32

Ignore decimal-data errors (IGNDECERR) ... 33

Open-file identifier (OPNID) ... 33

Limit to sequential only (SEQONLY) ... 34

Commitment control active (COMMIT) .. 34

Open scope (OPNSCOPE) ... 34

Duplicate key check (DUPKEYCHK) ... 35

Allow copy of data (ALWCPYDTA) .. 35

Performance optimization (OPTIMIZE) .. 35

Optimize all access paths (OPTALLAP) .. 35

Sort sequence (SRTSEQ) ... 36

Language ID (LANID) .. 36

Final-output CCSID (CCSID) ... 36

Type of open (TYPE) ... 36

Appendix B: OPNQRYF functions and SQL equivalents ... 37

Appendix C: Conversion examples and performance measurements 39

Dynamic record selection .. 40

Dynamic ordering .. 41

Grouping .. 41

Dynamic joining ... 41

Unique-key processing .. 42

Final total-only processing ... 42

Random access of result set ... 42

Appendix D: Resources .. 45

Appendix E: About the author .. 46

Acknowledgements ... 46

Trademarks and special notices ... 47

Moving from OPNQRYF to SQL

Abstract

This white paper discusses the major advantages that SQL has in comparison to the IBM i5/OS
Open Query File (OPNQRYF) command. It also provides a methodology for converting
OPNQRYF applications to an SQL-based model, as well as some key points to consider during
the conversion process.

The OPNQRYF command was introduced in 1987, near the end of life for the IBM System/38
platform. This command received rave reviews from the programming community because it
provided an easy interface to dynamically access records in a database file. Consequently,
thousands of programs that use OPNQRYF were developed and are still in production today. A
few years after OPNQRYF was made available, IBM introduced SQL to the IBM AS/400 family
of systems, giving programmers an alternative database-access tool set — one that also
provides great flexibility, but one that actually surpasses OPNQRYF in many important areas.

Introduction

Before SQL was available on the IBM® AS/400® platform (now the IBM System i™ platform), using the

IBM OS/400® operating-system Open Query File (OPNQRYF) command (now an IBM i5/OS® operating-

system command) was a very popular method of accessing information that was stored in a database file.

As SQL does on System i today, OPNQRYF provided midrange application developers with a great deal

of flexibility and ease of use when specifying selection, joining, ordering and grouping. Rather than

hardcoding various access methods within the tiers of multiple-case or if-then-else statements,

programmers simply constructed character strings dynamically with these criteria and passed those

strings as OPNQRYF parameters. The database engine processed that request accordingly to return a

result set. The dynamic nature of this command eliminated many lines of code and made applications

easier to understand and maintain.

OPNQRYF is still widely used on the System i platform today. Thousands of applications take advantage

of its ability to dynamically access information that is stored in an IBM DB2® for i5/OS® database. There

are many ways that you can use OPNQRYF in application programs. Some of the most popular

OPNQRYF uses are listed here:

• Dynamic record selection

• Dynamic ordering without using data description specification (DDS)

• Grouping – summarizing data

• Specifying key fields from different files

• Dynamic joining without using DDS

• Unique-key processing

• Defining fields that are derived from existing field definitions

• Final total-only processing

• Random access of a result set

• Mapping virtual fields

Although OPNQRYF does an excellent job at performing these types of tasks and IBM still fully supports

it, you can use a pure SQL-based implementation to enjoy additional benefits while maintaining the

application flexibility provided by OPNQRYF. In fact, there are many reasons to consider converting your

applications to use pure SQL access. This white paper examines some of these reasons in detail; it also

discusses some approaches to performing this data-access conversion. There are many examples and

other considerations to help you understand and carry out this conversion process successfully.

Moving from OPNQRYF to SQL

1

Reasons to consider conversion

Although OPNQRYF is quite adept at handling the tasks just listed, there are many compelling reasons to

consider converting your programs to a pure SQL-statement model, including the following reasons:

• SQL is the industry standard.

• SQL is the strategic interface for DB2 for i5/OS.

• The SQL query engine (SQE) provides superior performance.

• The SQL interfaces offer advanced functions.

• DB2 performance tools are tailored for SQL interfaces.

• SQL offers simpler application development and maintenance.

• Using SQL reduces the number of programs and lines of code.

Each of these advantages is examined in detail in the following sections of this white paper.

SQL is the industry standard

Several years after OPNQRYF was made available on IBM System/38™ severs, IBM shipped SQL as an

application-development tool for creating and accessing database objects on AS/400. Since that time,

SQL has become the widely adopted industry standard for all relational-database platforms. Although

functional and powerful, OPNQRYF is a proprietary, non-SQL interface and is supported only on IBM

midrange systems. In this evolving world of system openness, this is important: the days of relying on

your green-screen application to provide the sole access to your data are nearing the end. Almost every

non-5250 client application that accesses information from a database on the System i platform will use

an SQL interface.

SQL is strategic

The integrated database engine that is provided with i5/OS processes both OPNQRYF and SQL

requests. Consequently, both methods rely on the engine to optimize the request (that is, to find the

optimal access plan) and to process the result. Even though OPNQRYF and SQL requests are processed

similarly, there are many key differences in the two techniques. First, OPNQRYF is not a strategic

implementation for IBM. It uses the older classic query engine (CQE) to optimize query requests.

Because it is not strategic, IBM has announced no plans to enhance the new SQE to support OPNQRYF

requests or to make any future investment in enhancing the capabilities of non-SQL interfaces. These

non-SQL interfaces include OPNQRYF, the IBM Query/400 product and the IBM QQQQry application

programming interface (API).

IBM introduced SQE in i5/OS V5R2 and offers algorithms and features that give it distinct advantages as

compared to its predecessor, CQE. When a request is submitted to the database engine, the Query

Dispatcher component of the engine first analyzes that request. The Query Dispatcher determines which

engine will optimize and process the query. Only pure SQL queries are considered for SQE. This means

that requests that are initiated from any of the aforementioned non-SQL interfaces are sent down to the

CQE and, therefore, cannot take advantage of all the new features that SQE offers.

Moving from OPNQRYF to SQL

2

SQE features

There are multiple advantages when the SQE processes a query. Some of the major features that are

only available with SQE are as follows:

• SQE plan cache: This internal matrix-like repository holds access plans for queries that the

SQE optimizes and allows plans for identical and similar statements to be shared across

jobs. Reusing existing access plans means that the optimizer does not have to create new

plans, saving time and resources.

• Automated collection of column statistics: These statistics provide a valuable source of

information to the optimizer when evaluating the cost of each available access plan. A better

understanding of the data and more accurate estimates of the number of rows that are to be

processed results in the selection of a better access plan and a more efficient query.

• Autonomic Indexing: This is the ability of the optimizer to create temporarily maintained

indexes that both the current query and future queries can use, system-wide.

Superior performance of SQE

SQE also introduced new data-access primitives to process the data. The improved results are most

evident for complex queries that require grouping, ordering and joining. As a result, SQL statements

that use SQE generally perform better than similar requests that CQE processes. Because CQE

processes all OPNQRYF requests, most SQL-access requests to the database should outperform an

equivalent OPNQRYF request.

Quantifying how much better an application performs after making modifications is a tricky venture.

Many factors influence performance; thus, it is better to conduct your own benchmarks: perform the

conversion on a sample application and record the resulting performance metrics.

However, it is important to have an idea of the degree of improvement that is possible with this

conversion. Some of the more widely used OPNQRYF applications are listed in the Introduction

section. Part of the exercise of writing this white paper included converting examples of some of

these types of applications from OPNQRYF to SQL and then running both versions to measure the

performance differences. The conversion examples and performance results are documented in

Appendix C: Conversion examples and performance measurements.

But again, it must be stressed that each environment is different; thus, the standard disclaimer must

be made, “Your performance can vary.”

To learn more about SQE, refer to Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS,

which you can find at the IBM Redbooks® Web site:

www.redbooks.ibm.com/abstracts/sg246598.html?Open.

Moving from OPNQRYF to SQL

3

http://www.redbooks.ibm.com/abstracts/sg246598.html?Open

Advanced functions of the SQL interface

SQL on DB2 for i5/OS is rich with features that are simply not available with OPNQRYF. The

following list highlights some of the more prominent features that can only be used with pure SQL

data-access methods: Here are some of the more prominent features to consider:

• User-defined functions (UDFs): OPNQRYF provides a base set of built-in functions to use

in query selection and grouping and for defining a derived field. However, OPNQRYF doe not

always have the required functions for you to implement complex business calculations or

processes, such as computing shipping costs or a customer’s credit risk. If you need to

extend OPNQRYF by writing custom functions, there is no way to do so. With SQL, it is easy

to create UDFs and to use them just as you use the SQL built-in functions.

• User-defined table functions (UDTFs): Another valuable SQL feature is the ability to

search for and retrieve data in nonrelational system objects (such as data areas and data

queues, and even information that is stored in the integrated file system [IFS]), and then

return that information to any SQL interface. You can do this by creating UDTFs.

• Materialized query tables (MQTs): This is a summary table that contains the results of a

previously run query, along with the query’s definition. It provides a way to improve the

response time of complex SQL queries. What sets an MQT apart from a regular temporary

summary table is that the SQE optimizer is aware of its relationship to the query and base

tables that are used to create and populate it. This means that the optimizer considers using

the MQT in the access plan of subsequent similar queries. Because the MQT is already

created and populated, this can improve performance significantly for complex queries. For

details on MQTs, see the white paper Creating and using materialized query tables (MQT) in

IBM DB2 for i5/OS (ibm.com/servers/enable/site/education/abstracts/438a_abs.html).

• SQL views: An SQL view is a virtual table. It provides another way to view data in one or

more tables and is created based on an SQL SELECT statement. With views, you can

transform the data and move business logic from the application layer down to the database.

You can define selection, grouping and complex logic through CASE statements. This means

that, in an SQL view, you can define the selection, joining and ordering specifications for an

OPNQRYF command. Because those specifications exist in the view definition, you need not

specify them again in SQL. Instead, the SQL refers to the view. In fact, a technique that many

System i programmers employ is to specify an SQL view in the OPNQRYF FILE parameter.

• Subqueries: By definition, a subquery is a query that is embedded within the WHERE or

HAVING clause of another SQL (parent) statement. The parent statement then uses the rows

that are returned to further restrict the retrieved rows. A subquery can include selection

criteria of its own, and these criteria can also include other subqueries. This means that an

SQL statement can contain a hierarchy of subqueries. This is a powerful SQL searching

mechanism that cannot be accomplished with OPNQRYF.

• Common table expressions (CTEs) and recursive SQL: CTEs can be thought of as

temporary views that only exist when running an SQL statement. After the CTE is defined,

you can reference it multiple times in the same query. You can use this to reduce the

complexity of the query, making it easier to comprehend and maintain.

Moving from OPNQRYF to SQL

4

Among the i5/OS V5R4 enhancements for DB2 for i5/OS, is the ability for a CTE to reference

itself. This feature provides the mechanism for recursive SQL, which is especially useful

when querying data that is hierarchical in nature (such as a bill of materials, organizational

charts and airline flight schedules). (Note: For details on recursive CTEs, see the article

i5/OS V5R4 SQL Packs a Punch, (ibm.com/servers/eserver/iseries/db2/pdf/rcte_olap.pdf).

• Complex joining: To help solve your complex business requirements, SQL provides various

ways of joining data in tables together by using INNER, OUTER and EXCEPTION joins.

• Fullselect: An SQL fullselect is the term for generating an SQL result set by combining

multiple SELECT statements that use the UNION, INTERSECT and EXCEPT operators. This

is yet another feature that helps you solve more complex business requirements and is

beyond the capabilities of OPNQRYF.

• Encryption: The importance of data security in today’s business environment cannot be

overstated. Hackers, phishers and others with malicious intentions constantly and incessantly

attempt to access data to which they have no rights. If you store sensitive information in your

database, it is your obligation (and often a lawful requirement) to protect that information from

these threats. Object security, firewalls and other security measures are all valuable tools to

thwart unauthorized access and to secure the data. Data encryption provides another line of

defense. A hacker who is somehow able to penetrate your security implementations, will only

find encrypted information.

Note: For more information on database encryption, refer to the white paper Protecting i5/OS

data with encryption (ibm.com/servers/enable/site/education/ibo/record.html?efbe).

DB2 performance tools tailored for SQL interfaces

The primary method of gathering feedback from the database is through the use of the SQL performance

monitor. Collected monitor data contains every SQL request that was submitted during the collection

period, and includes valuable information, such as: what statement was requested, which access plan

was used, how much time the database spent optimizing that request, and how much time it took to

complete the request. Although the SQL performance monitors do collect information that relates to non-

SQL requests, such as OPNQRYF, some vital information is not collected from those interfaces.

• No 1000 record – cannot see actual statement: Although the database performance monitor

captures feedback for OPNQRYF requests (such as the implemented access method and index

advisories), the actual statement (contained in the 1000 record) is not contained. This can make

tuning challenging, especially if the OPNQRYF request runs long and causes system problems.

Isolating the specific statement can be difficult if you do not know what the statement is.

• No Visual Explain support: Visual Explain is one of the most powerful features that you can

implement by using collected monitor data. This feature renders a graphical representation of the

query, and shows all of the database objects and access methods that the optimizer chooses.

This provides the ability to drill down on identified problem queries to quickly diagnose and

address problem areas. However, the information needed to support Visual Explain is not

collected for non-SQL interfaces, such as OPNQRYF.

Moving from OPNQRYF to SQL

5

Application readability and understanding

SQL is taught as a core-curriculum subject in most colleges and universities today. Upon graduation,

most programmers have mastered the necessary SQL basics and are ready to be productive. Although

OPNQRYF does provide many of the same functions as SQL, it can be rather cryptic and hard to

understand, especially for a programmer who is new to the System i platform. If you use all the

apostrophes required by OPNQRYF, the various parameters, the cryptic functions and shared-open

considerations, you can end up with an application that is more difficult to comprehend than an equivalent

one that uses SQL. Consider the following example:

OPNQRYF FILE(CUST_MAST) QRYSLT('%XLATE(LASTNAME QSYSTRNTBL) *CT "FRED"

*AND STATE *EQ %VALUES(“CA” “NY” “TX”) ‘)

In this fairly simple example, the query-selection parameter specifies a case-insensitive search of the

column LASTNAME and STATE in table CUST_MAST. Only those rows that contain the value FRED in

the LASTNAME column who live in the states of CA, NY or TX are added to the result set. Now, compare

that syntax with this equivalent SQL example:

SELECT * FROM CUST_MAST WHERE UPPER(LASTNAME) LIKE ‘%FRED%’

AND STATE IN (‘CA’, “NY’, ‘TX’)

Which method is easier to understand? Of course this is a subjective question. A seasoned System i

developer might prefer OPNQRYF because that has been the chosen implementation over the years and

has served its purpose well. However, those who are less experienced with the platform, the control-

language (CL) language or the OPNQRYF command itself will most likely find the SQL statement easier

to comprehend. Its syntax is more English-like and, as mentioned, most programmers have had some

exposure to SQL.

Reduction in number of programs and lines of code

Proper implementation of the SQL programming model usually means a more condensed application.

The OVRDBF command is no longer required to share the ODP, and the OPNQRYF command can be

removed, as can the other CL commands (DLTOVR and CLOF) that are used to support the OPNQRYF

method. In many cases, you can remove a CL program entirely, letting the SQL in the RPG program do

all the work. It also provides overall performance improvements because the additional overhead of those

CL commands and programs are eliminated.

Furthermore, using SQL promotes more of a data-centric programming model, which means moving as

much of the business logic down to the database level as possible. You accomplish this by using

database features such as triggers, stored procedures, functions and referential integrity (primary and

foreign-key constraints). A data-centric model is compelling for multiple reasons:

• The logic is stored in one place; thus, eliminating duplicate code. This frees you from the

unnecessary maintenance that is associated with multiple versions of the same business logic.

• The business logic is enforced for all database interfaces and, thus, you cannot circumvent it.

Database integrity is ensured, regardless of the client who accesses the data.

• It reduces the lines of code. This is important from a programming-management point of view,

because, in many organizations, lines of code are the unit of measure for determining the cost of

Moving from OPNQRYF to SQL

6

program maintenance. Consequently, fewer lines of code to maintain can mean fewer

programmers are needed to maintain the code. This frees up more people for new development.

• It extends the life of an existing application. Many green-screen applications lack data integrity.

Fixing these issues at a database level can extend an application’s usefulness (especially green-

screen applications) when there are no plans to change the presentation layer.

Anatomy of OPNQRYF

To understand how to successfully carry out this transformation, you first must understand the

composition of both techniques. In this section, the focus is on the typical anatomy of an application that

uses OPNQRYF. Although there are multiple ways to implement the OPNQRYF technique, in its simplest

form, it requires three objects (see Figure 1):

• A database file that contains the data to be processed; this can be either a physical or logical file

• A CL program to set up the environment and issue the OPNQRYF command

• A high-level language (HLL) program to read and process the rows in the query file (result set)

Figure 1. The OPNQRYF technique requires three objects

Moving from OPNQRYF to SQL

7

CL program

The CL program typically contains five commands to perform the necessary processing. These

commands and the tasks that they perform are explained as follows:

• OVRDBF (Override database file): This is responsible for the following tasks:

• Specifies the file to override

• Specifies that the open data path (ODP) of the file (that is opened by OPNQRYF

command) is to be shared with other programs in the same routing step

• Specifies the scope of the override (job or activation group)

• OPNQRYF (Open query file): This contains the specification of the selection, joining, sorting

and grouping of the data to be processed. When run, the command opens a file to a set of

database records that satisfies this specification.

• CALL: This invokes the HLL program that reads those records and performs further processing.

• CLOF (Close file): This closes the file created by the OPNQRYF command.

• DLTOVR (Delete override): This deletes the override specified in the OVRDBF command.

Putting it all together, Figure 2 shows a simple example of an OPNQRYF CL program:

OVRDBF FILE(ORD_DTL) SHARE(*YES) OVRSCOPE(*JOB)
OPNQRYF FILE((ORD_DTL)) QRYSLT('YEAR *EQ 1996')OPTION(*INP)
CALL PGM(PROC_ROWS)
CLOF OPNID(ORD_DTL)

DLTOVR FILE(ORD_DTL)LVL(*JOB)

Figure 2. Example of an OPNQRYF CL program

This example program creates a shared ODP of all rows in the ORD_DTL table that have the value of

1996 for the column YEAR. The called program PROC_ROWS can use that shared ODP.

HLL program

The HLL program is typically written in RPG or COBOL and is responsible for the following tasks:

• IT opens the same file (through the shared ODP) as the one previously processed by the

OPNQRYF command.

• It reads the rows in this file. Because SQL was not used to generate the result set, you perform

the access by using record-level access (RLA) methods (also known as native I/O methods).

• It performs additional processing that is based on the data in those rows (for example, using the

information in a row to add a record to a subfile or to add a line to a print file).

A snippet of a simple HLL program example is shown in Figure 3. It uses a looping construct to read each

row in the result set and calls a subroutine to load the contents of each row into a subfile. At the end of

the loop, the subfile is presented on the screen. Figure 3 shows a typical interactive usage of OPNQRYF.

Moving from OPNQRYF to SQL

8

Ford_dtl if e disk

d rowsFetched s 9b 0

c
c

 eval
exsr

rowsFetched = 0
inzSubFile

c
c
c
c
c
c

*start setll
dow
read
if
leave
endif

ord_dtl
not %eof
ord_dtl

%eof

c
c
c
c

 eval
exsr
enddo
exsr

rowsFetched = rowsFetched + 1
loadSubFile

dspSubFile

c
c

 eval
return

*inlr=*on

Figure 3. Example of HLL program that processes results of OPNQRYF

Anatomy of an SQL-based model

As with OPNQRYF, there are various ways to implement the SQL-based model, but in its simplest form, it

requires two objects:

• A database file to hold data to be processed (table [physical file] or view [nonkeyed logical file])

• A HLL program that creates the ODP to the result set and, subsequently, reads and processes

the rows in the result set

The difference between the SQL model and OPNQRYF is that no CL program is needed to issue file overrides

(to share the ODP) and the OPNQRYF command (see Figure 4). Thus, no cleanup CL commands are

needed. The HLL program performs all work through embedded SQL. In fact, there is no need to share the

ODP because it is created in the same routing step (program) that reads the table’s rows.

Figure 4. The SQL-based model requires two objects

Moving from OPNQRYF to SQL

9

Moving from OPNQRYF to SQL

10

HLL program

As is the case with the OPNQRYF-based model, the HLL program is typically written in RPG or COBOL

and is generally responsible for the following tasks:

• It issues the SQL DECLARE statement to define the cursor. This statement contains the actual

SQL that generates the result set. This step also validates the user’s authorization to the table.

• It issues the SQL OPEN statement to open the cursor that is defined in the previous step.

• Within a looping construct, it issues the SQL FETCH statement to read the rows in the result set.

• It performs additional processing, based on the data in those rows.

The RPG program example seen earlier in this white paper has been revised in Figure 5 (see the code

lines shown in bold) to use embedded static SQL to perform the same function. The differences between

static and dynamic embedded SQL are discussed in detail in a later section.

F*ord_dtl if e ** notice this line has been commented out **

d ord_dtl_Data e ds extname(ord_dtl)
d rowsFetched s 9b 0

c eval rowsFetched = 0

c exsr inzSubFile

**** Declare the cursor
C/EXEC SQL
C+ DECLARE c1 CURSOR FOR
c+ SELECT *

c+ FROM ord_dtl
c+ WHERE year = 1996
C/END-EXEC

**** Open the cursor
C/EXEC SQL
C+ OPEN c1
C/END-EXEC

c dow SQLSTAT <> ‘02000’
c eval rowsFetched = rowsFetched + 1
**** Fetch matching record

C/EXEC SQL
C+ FETCH C1 INTO :ord_dtl_Data
C/END-EXEC

c if SQLSTAT = ‘02000’ 0
c leave
c endif

c exsr loadSubFile

c enddo

c exsr dspSubFile

c eval *inlr=*on

c return
Figure 5. RPG program example, modified to use embedded static SQL

Moving from OPNQRYF to SQL

11

Conversion methodology

The example shown in Figure 5 is a fairly simple one. Most production applications are more complex

than this and require a significant amount of effort. Unfortunately, the System i platform does not provide

a comprehensive end-to-end tool to perform such a conversion. As a result, you must perform the

majority of the conversion effort manually. This section describes how to plan for, and approach, this

conversion process. The conversion methodology contains the following tasks:

1. Convert the CL commands to equivalent SQL statements

2. Create SQL views with the converted SQL statements

3. Modify the HLL language to include embedded SQL statements

4. Modify or eliminate the CL program

For this section, the OPNQRYF implementation shown in Figure 6 is converted to SQL (see Figure 7):

OVRDBF FILE(ITEM_JOIN3) TOFILE(ITEM_FACT) +
OVRSCOPE(*JOB) SHARE(*YES)

OPNQRYF FILE((ITEM_FACT) (CUST_DIM) (TIME_DIM)) +
FORMAT(ITEM_JOIN3)
QRYSLT('TIME_DIM/YEAR *EQ 1997') +
JFLD((ITEM_FACT/CUSTKEY CUST_DIM/CUSTKEY) +

(ITEM_FACT/SHIPDATE TIME_DIM/DATEKEY)) +
GRPFLD(CUST_DIM/CUSTOMER) +
MAPFLD((TOTITEMS '%SUM(QUANTITY)') +
(TOTREV '%SUM(REVENUE)') +
(TRANSCOUNT '%COUNT')) +
OPNSCOPE(*JOB)

CALL PGM(PROC_ROWS)
CLOF OPNID(ITEM_FACT)

DLTOVR FILE(ITEM_JOIN3) LVL(*JOB)

Figure 6. An OPNQRYF implementation

Fitem_join3if e k disk

d rowsFetched s 9b 0

/FREE

rowsFetched = 0;

exsr inzSubFile;

dow not %eof;

read item_join3;
if %eof;

leave;
endif;
rowsFetched = rowsFetched + 1;
exsr loadSubFile;

enddo;

exsr dspSubFile;

*inlr=*on;
return;

Figure 7. The same OPNQRYF implementation converted to SQL

Moving from OPNQRYF to SQL

12

Step 1: Convert the CL commands to equivalent SQL statements

As mentioned, the OPNQRYF implementation typically uses five CL commands. You can convert each of

these to an SQL equivalent statement in the HLL program, or you can eliminate then entirely. Table 1.

summarizes each of these commands and lists its corresponding SQL replacement statement.

CL command SQL replacement

OVRDBF No longer needed because embedded SQL performs the work

OPNQRYF PREPARE statement (if dynamic SQL) in the HLL program

DECLARE CURSOR statement in the HLL program

OPEN CURSOR statement in the HLL program

CALL No change in CL program is necessary

CLOF CLOSE CURSOR statement in the HLL program

DLTOVR No longer needed because no override is in effect

Table 1. Summary of commands to replace between OPNQRYF and SQL

OVRDBF command

This command sets up a shared ODP that the subsequently called HLL program uses to read and

process the rows in the file. With an SQL implementation, there is no need to specify a shared ODP

environment because the ODP is actually created in the same program as the one that reads and

processes the rows. In addition, there is no concept of a shared ODP in SQL. For these reasons, no

equivalent SQL statement is required and this CL command does not need to be converted.

OPNQRYF command

This command carries out most of the work of the OPNQRYF implementation. It is responsible for

specifying the selection, joining, sorting and grouping of the data to be processed, as well as opening

the file that meets the specified criteria. As such, perhaps the most challenging part of the conversion

exercise is to transform this command into an SQL statement that generates identical results while

maintaining or enhancing performance. To do this successfully, you must understand a couple of key

SQL concepts so that you can select the optimal implementation for your application environment.

Convert OPNQRYF parameters to corresponding SQL clauses

Most of the OPNQRY parameters have an equivalent SQL clause or can be implemented using

other techniques. To help guide you in this process, refer to “Appendix A: OPNQRYF command

parameters and SQL equivalents.” This appendix lists each OPNQRYF parameter and explains

how you might implement it in your application when moving to an SQL model.

Build SQL statement

After you convert the OPNQRYF commands to SQL equivalents by using the information in

Appendix A, you can build the appropriate SQL statements. These statements are eventually

used to create the SQL view and the view that is embedded into the RPG program. Table 2.

shows the OPNQRYF statement for this example, as well as the converted SQL statement. The

dashed lines separate the segments of code that have been implemented to show the mapping of

OPNQRYF parameters to SQL clauses.

Moving from OPNQRYF to SQL

13

OPNQRYF command Equivalent SQL statement

OPNQRYF SELECT
FORMAT(ITEM_JOIN3) C.CUSTOMER,
MAPFLD((CUSTOMER ‘CUST_DIM/CUSTOMER’) SUM(I.QUANTITY) AS TOTITEMS,

(TOTITEMS '%SUM(QUANTITY)') SUM(I.REVENUE_WO_TAX) AS TOTREV,
(TOTREV '%SUM(REVENUE)') COUNT(*) AS TRANSCOUNT
(TRANSCOUNT '%COUNT')) - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - FROM
FILE((ITEM_FACT) ITEM_FACT I,
(CUST_DIM) CUST_DIM C,
(TIME_DIM)) TIME_DIM T

 - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - WHERE
QRYSLT('TIME_DIM/YEAR *EQ 1997') T.YEAR = 1997

 - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - AND I.SHIPDATE = T.DATEKEY
JFLD((ITEM_FACT/CUSTKEY CUST_DIM/CUSTKEY) AND I.CUSTKEY = C.CUSTKEY

(ITEM_FACT/SHIPDATE TIME_DIM/DATEKEY))
-

GRPFLD(CUST_DIM/CUSTOMER) GROUP BY

 C.CUSTOMER
-

KEYFLD((CUST_DIM/CUSTOMER *ASCEND)) ORDER BY

C.CUSTOMER ASC

Table 2. The OPNQRYF example statement and the equivalent converted SQL statement

CALL command

You do not typically need to change the command to call the HLL program. This is the case unless,

for some reason, you decide to alter the HLL program’s parameter list. However, because it is

possible to convert all of the necessary OPNQRYF-related CL commands into SQL statements in the

HLL program, you might consider analyzing whether the conversion completely eliminates the need

for the CL program. Eliminating a dynamic program call will result in less overhead, better application

performance and a reduction in the application’s complexity.

CLOF command

This command is issued to close the file (result set) created by the OPNQRYF command. If an SQL

cursor has been opened in the converted HLL program, the SQL equivalent is the CLOSE CURSOR

statement in the same HLL program.

DLTOVR command

Because no override needs to be in effect to share an open data path, this command is no longer

needed; you can eliminate it.

Moving from OPNQRYF to SQL

14

Step 2: Create SQL views

As mentioned, SQL views are virtual tables that are based on an SQL Select statement. They exist as

permanent objects on the System i platform and are implemented as nonkeyed logical files. As such, they

have no access-path maintenance and, consequently, none of its associated overhead. They are very

useful and (in the opinion of the author) an often underused tool on the System i platform.

Having said this, implementing SQL views in this conversion process is not a required step. But there are

advantages when you choose to use them. Here are some benefits that you should consider:

• You can move complex business logic (for example, join syntax, grouping, CTEs and CASE

statements) from the HLL program down to the SQL-view definition. When there, the business

logic is enforced for all database interfaces that access the view (including other client

applications, such as ODBC, JDBC and the new DB2 Web Query tool).

• Moving this business logic down to the database effectively masks the complexity of the

underlying database and makes your applications easier to understand and maintain.

• It is possible to implement row- and column-level security by using views. By restricting access to

the underlying tables and forcing all users to access data through SQL views, you can lock down

your database, yet still provide a flexible solution that is easy to maintain.

• Ability to test the view without having to write a single line of program code.

You can use an SQL view to externally describe a data structure in a HLL program. As you will see in

Step 3, you can then use this data structure as the host variable that holds the contents of an SQL

FETCH or SELECT INTO statement.

Using the converted SQL statement that was formulated in Step 1, you can use the SQL statement

shown in Figure 8 to create the view that is necessary for the conversion:

CREATE VIEW CUSTSUM97 (
CUSTOMER ,

TOTITEMS ,
TOTREV ,
TRANSCOUNT)

AS (
SELECT

C.CUSTOMER,

SUM(I.QUANTITY) AS TOTITEMS,
SUM(I.REVENUE_WO_TAX) AS TOTREV,
COUNT(*) AS TRANSCOUNT

FROM
ITEM_FACT I,
CUST_DIM C,
TIME_DIM T

WHERE
I.SHIPDATE = T.DATEKEY

AND I.CUSTKEY = C.CUSTKEY
AND T.YEAR = 1997

GROUP BY C.CUSTOMER)

Figure 8. SQL statement that creates the view that is required for conversion

Step 3: Modify HLL program to include embedded SQL

Now, you must modify the HLL program, by embedding SQL statements and views that were formulated

in previous steps and other tasks that support the embedded SQL statements.

Step 3.1: Remove the File Specification

Because SQL access methods will be used to read the database, you no longer need to declare the

accessed file in the RPG program’s File Specifications (F Specs) — unless the file is accessed by

RLA methods. Therefore, the task in this HLL modification step is to comment out or remove this line

from the RPG program. This is shown in bold in the HLL code example in Figure 9.

F* item_join3if e k disk
d rowsFetched s 9b 0

/FREE

rowsFetched = 0;

exsr inzSubFile;

dow not %eof;

read item_join3;
if %eof;

leave;
endif;
rowsFetched = rowsFetched + 1;
exsr loadSubFile;

enddo;

exsr dspSubFile;

*inlr=*on;
return;

Figure 9. Example of commenting out the file’s F Spec

Step 3.2: Add an externally described data structure

To retrieve the results of an SQL Select statement, you need to be able to access the result set. In a

HLL program, the only way to get the contents of an SQL result set is to receive them into host

variables. There are two ways to declare these variables: by using either externally described data

structures or program described variables and data structures. Tables and views have formats to

describe a result set’s column or field attributes. Consequently, you can use them for externally

described data structures. The ILE RPG compiler uses the external name to locate and extract the

specified table’s (or view’s) format. Then, you can use this structure as the host variable to store the

result set’s contents by using a FETCH or SELECT INTO statement.

Alternatively, you can define program-described data structures, where each result-set column is

explicitly defined in the RPG program’s Data Specifications (D Specs). Two primary disadvantages

with the program-described data-structure method involve program maintenance:

1. You must manually type in each data-structure field, particularly if the result set has many columns.

2. When the format of the table or view changes (for example, a new column is added), you must

manually modify and recompile the program to pick up those changes. With externally described

structures (in the example shown in bold in Figure 10, they are based in the SQL view from Step

2), you only need to recompile the program.

Moving from OPNQRYF to SQL

15

F* item_join3if e k disk

d cust_data e ds extname(custSum97)
d rowsFetched s 9b 0

/FREE

rowsFetched = 0;

exsr inzSubFile;

dow not %eof;

read item_join3;
if %eof;

leave;
endif;
rowsFetched = rowsFetched + 1;
exsr loadSubFile;

enddo;

exsr dspSubFile;

*inlr=*on;
return;

Figure 10. Example of adding new externally described data structure

Step 3.3: Add embedded SQL statements to generate a result set

Now, all required structures are in place. The next HLL program change is to embed SQL statements to

create the result set, including the DECLARE CURSOR and OPEN statements (bold text in Figure 11).

F* item_join3if e k disk

d cust_data e ds extname(custSum97)

d rowsFetched s 9b 0

/FREE

rowsFetched = 0;

exsr inzSubFile;

// Declare the cursor
EXEC SQL
DECLARE c1 CURSOR FOR
SELECT *
FROM custSum97
ORDER BY customer;

// Open the cursor
EXEC SQL

OPEN c1;

dow not %eof;

read item_join3;
if %eof;

leave;
endif;
rowsFetched = rowsFetched + 1;
exsr loadSubFile;

enddo;

exsr dspSubFile;

*inlr=*on;
return;

Figure 11. Example of adding embedded SQL statement to declare and open the cursor

Moving from OPNQRYF to SQL

16

Two things should be pointed out at this stage:

• Because most of the logic (selection, joining, grouping) is defined in the SQL view, the SQL

DECLARE CURSOR statement is greatly simplified.

• The ORDER BY clause was specified in the SQL SELECT statement — not in the SQL view.

Recall that no access paths are associated with SQL. Consequently, you cannot define

ordering within the view. You specify it in the SELECT statement that refers to the view.

Step 3.4: Replace native-access methods with SQL access methods

The final changes to make to the HLL program involve replacing all the RLA-access methods

(SETLL, READ, CHAIN and others) with SQL-access methods. This is shown in Figure 12:

F* item_join3if e k disk
d cust_data e ds extname(custSum97)

d rowsFetched s 9b 0

/FREE

rowsFetched = 0;

exsr inzSubFile;

// Declare the cursor
EXEC SQL
DECLARE c1 CURSOR FOR
SELECT *
FROM custSum97
ORDER BY customer;

// Open the cursor
EXEC SQL

OPEN c1;

//dow not %eof; **this line can be deleted **
dow SQLSTAT <> ‘02000’;

//read item_join3; **this line can be deleted **
EXEC SQL

FETCH C1 INTO :cust_data
//if %eof; **this line can be deleted **
if SQLSTAT = ‘02000’;

leave;
endif;
rowsFetched = rowsFetched + 1;
exsr loadSubFile;

enddo;

exsr dspSubFile;

*inlr=*on;
return;

Figure 12. Example of replacing RLA operations with embedded SQL statements (to retrieve rows in result set)

In the example shown in Figure 12, the following has been done:

• Commented out the lines of code that contain RLA methods (READ) and supporting

statements (As indicated, you can delete the lines for improved readability.)

• Inserted the SQL FETCH statement and supporting operations

Moving from OPNQRYF to SQL

17

Step 6: Modify or eliminate CL program

After making all required conversion changes, remove the unneeded commands from the CL program. In

the example in Figure 13, you can delete all commands shown in bold — they are no longer needed.

OVRDBF FILE(ITEM_JOIN3) TOFILE(ITEM_FACT) +

OVRSCOPE(*JOB) SHARE(*YES)

OPNQRYF FILE((ITEM_FACT) (CUST_DIM) (TIME_DIM)) +
FORMAT(ITEM_JOIN3)
QRYSLT('TIME_DIM/YEAR *EQ 1997') +
JFLD((ITEM_FACT/CUSTKEY CUST_DIM/CUSTKEY) +

(ITEM_FACT/SHIPDATE TIME_DIM/DATEKEY)) +
GRPFLD(CUST_DIM/CUSTOMER) +
MAPFLD((TOTITEMS '%SUM(QUANTITY)') +
(TOTREV '%SUM(REVENUE)') +
(TRANSCOUNT '%COUNT')) +
OPNSCOPE(*JOB)

CALL PGM(PROC_ROWS)
CLOF OPNID(ITEM_FACT)

DLTOVR FILE(ITEM_JOIN3) LVL(*JOB)

Figure 13. The commands shown in bold font can be deleted

If you remove all the commands shown in bold, the only command left is the call to the HLL program

PROC_ROWS. You can leave it this way and the application can run. However, it is recommended that

you perform further analysis to see whether you can remove the entire CL program from the application. If

you can change the process or program that invokes the CL program so that it calls PROC_ROWS

directly, this removes an entry in the program stack and eliminates some overhead. This additional

program-stack entry might not seem like much, but the savings can be significant in high-transaction

environments. CL program overhead can be a performance bottleneck for heavily used transactions.

Other conversion considerations

Additional conversion considerations are worthy of discussion.

Set-at-a-time or row-at-a-time processing of result set

With OPNQRYF, you must read and process file rows one at a time, by using RLA methods in a HLL

program (called row-at-a-time processing). SQL’s set-at-a-time option processes multiple rows (a set of

rows) with a single SQL statement. Thus, with SQL access methods, you can create a cursor and fetch

(read) rows one at a time, or you can use set-at–a-time. With set-at-a-time, the specific implementation in

your HLL varies, depending on your intention with the data. Here are the possible HLL implementations:

• READ and FETCH: To read a set of rows, the HLL program can define an array and fetch blocks

of rows into the array. Depending on the size of array and number of rows you ultimately want to

fetch, you might need to issue multiple FETCH statements to read all the desired rows. For

example, if you want to read 100 000 rows from a table and your array is defined to contain 1000

elements, you must issue the FETCH statement 100 times to retrieve all the rows. Or, if you are

only interested in the first 1000 rows, you need to issue the FETCH once.

• UPDATE: To update all rows that meet specific criteria, you can use a single SQL UPDATE statement.

• DELETE: To delete all rows that meet specific criteria, you can use a single SQL DELETE statement.

• INSERT: Similar to fetching, you can insert sets of rows through arrays and blocked inserts. The HLL

defines an array, populates it and issues a blocked INSERT statement to add the rows to the table.

Moving from OPNQRYF to SQL

18

Moving from OPNQRYF to SQL

19

Example 1: Comparing row-at-a-time with set-at-a-time when deleting database rows

For further clarification on set-at-a-time processing, consider the following OPNQRYF implementation

example that deletes all rows in table ORD_DTL whose YEAR column equals 1996. The CL program

looks similar to the example shown in Figure 14:

OVRDBF FILE(ORD_DTL) SHARE(*YES) OVRSCOPE(*JOB)

OPNQRYF FILE((ORD_DTL)) QRYSLT('YEAR *EQ 1996')OPTION(*ALL)
CALL PGM(DLT_ROWS)
CLOF OPNID(ORD_DTL)

DLTOVR FILE(ORD_DTL)LVL(*JOB)

Figure 14. CL program using OPNQRYF implementation to delete rows

Figure 15 shows the called HLL program DLT_ROWS.

ford_dtl uf e disk

/FREE

setll *start ord_dtl;
dow not %eof;
read ord_dtl;
if %eof;

leave;
endif;
delete ord_rcd;

enddo;

return;

*inlr = *on;

/END-FREE

Figure 15. RPG program that uses the OPNQRYF implementation to delete rows

In this example, OPNQRYF is used to open a file that contains only those rows with the YEAR column

equal to 1996. The RPG DLT_ROWS program is then called to read and delete those rows, by

employing row-at-a-time processing. After converting this application to SQL by using row-at-a-time

processing, the CL program is no longer needed and the HLL program is modified (see Figure 16).

d ord_row e ds extname(ord_dtl)

/FREE

EXEC SQL
DECLARE c1 CURSOR FOR
SELECT *
FROM ord_dtl
WHERE year = 1996;

saXEC SQL
OPEN c1;

dow SQLSTAT <> ‘02000’;
EXEC SQL

FETCH c1 into :itemRow

if SQLSTAT = ‘02000’;

leave;

endif;

EXEC SQL

DELETE FROM item_fact
WHERE CURRENT OF c1

enddo;
return;
*inlr = *on;

/END-FREE

Figure 16. RPG program that uses SQL the row-at-a-time implementation to delete rows

Moving from OPNQRYF to SQL

20

The row-at-a-time conversion works fine, but it is more complex than it needs to be. By implementing

SQL set-at-a-time instead, the program looks similar to the example shown in Figure 17:

/FREE
EXEC SQL

DELETE FROM ord_dtl
WHERE year = 1996;

return;

*inlr = *on;

/END-FREE

Figure 17. RPG program using SQL set-at-a-time implementation to delete rows

With SQL, you can use one statement to delete all the rows that meet the criteria — there is no need

to read these rows one at a time and then issue the DELETE statement. Not only is this version of the

application easier to understand and maintain, it clearly outperforms both the OPNQRYF and SQL

row-at-a-time versions. Several iterations of tests were performed to measure the performance

differences. Results of each of the methods are shown in Table 3.

Method Rows deleted Average elapsed time (seconds)

OPNQRYF row-at-a-time 1 930 560 53.349

SQL row-at-a-time 1 930 560 111.388

SQL set-at-a-time 1 930 560 30.071

Table 3. Results of using different methods to delete rows

Based on the performance results of this example conversion, it is clear that the SQL set-at-a-time

implementation is the optimal choice. This version is easier to understand, easier to maintain and

easily outperforms the OPNQRYF version. It also shows that there can be a significant difference in

performance in SQL row-at-a-time implementations as compared to set-at-a-time. This is a key point

to consider because many RPG programmers are accustomed to programming in the row-at-a-time

paradigm. This is not meant to be overly critical — it is, after all, the only way to write code then using

native-access methods. Set-at-a-time is a different programming mindset and is often overlooked by

programmers who move to SQL access methods. Therefore, it is strongly recommended that you

design your applications to use SQL set-at-a-time implementations. It might mean the difference

between an application that performs well and one that does not.

Example 2: SQL Set-at-a-time to read rows from a database

As stated earlier, an SQL set-at-a-time implementation can also be used when reading the rows of a

file. The example in Figure 18 shows how to use an array (defined with 30 elements) as the host-

variable structure so that a single SQL FETCH statement can retrieve and return multiple rows in the

result set with one trip down to the database. One fetch execution populates all 30 elements of the

array, as long as there are that many rows to satisfy the local selection. The RPG program processes

the array until it has reached the last element of the array (at which time, it issues another fetch to get

the next 30 rows in the result set).

Moving from OPNQRYF to SQL

21

d ord_dtl_Array e ds extname(ord_dtl)

d dim(100)
d rowsFetched s 9b 0

/FREE

EXSR printHeader;

//** Declare the cursor
EXEC SQL

DECLARE c1 CURSOR FOR
SELECT *

FROM ord_dtl

WHERE year = 1996;
//** Open the cursor
EXEC SQL

OPEN c1;

DOW SQLSTAT <> ‘02000’;

//*** Fetch matching records
EXEC SQL

FETCH NEXT FROM C1 FOR 100 ROWS INTO :ord_dtl_Array;
IF SQLSTAT = ‘02000’;

LEAVE;
ENDIF;
for z = 1 to sqler3;

EXSR printDetails;
rowsFetched = rowsFetched + 1;

endfor;
enddo;

EXSR printFooter;

*inlr=*on;
return;

/END-FREE

Figure 18. RPG program using SQL set-at-a-time implementation to read rows and load a subfile

Static or dynamic SQL

Embedded SQL offers two implementation choices: Static or dynamic SQL. For the conversion process,

the one chosen depends on how you built your OPNQRYF parameter values. If the values for selection,

ordering, joining and grouping are passed into the CL program as parameters and the command is built

dynamically, you probably should use dynamic SQL. Yet, if these values are hardcoded in the program

(or if the only thing that changes is the value of the variables that are used in the QRYSLT parameter),

then you can use static SQL, instead. This section describes each implementation type.

Static SQL

With static SQL, the basic structure of the embedded SQL statement does not change. Referenced

tables and columns are the same each time the statement runs. The only things that can vary from

one statement execution to the next are the host-variable values that are used for local selection (in

the WHERE clause). Although not as flexible as dynamic SQL, this technique provides a performance

advantage because the statement can be partially optimized when the HLL compiles. Because the

columns that are specified for selection, joining, ordering and grouping are defined at compile time,

the database engine can use this information to create a preliminary access plan during program

compilation. The plan is stored in the program object and is ready to use when the program is called.

If static SQL is the chosen method for the conversion, you can replace the OPNQRYF command with

two embedded SQL statements: DECLARE CURSOR and OPEN CURSOR.

Dynamic SQL

With dynamic SQL, the contents of the SQL statements are unknown until the program actually runs.

Thus, the HLL program must first resolve the statement by issuing the SQL PREPARE command.

This converts it from a character string to an

executable SQL statement. After the statement

is prepared, it can be run. With this method, the

entire statement can be flexible (for example,

passed into the program as an input parameter)

and need not be known when compiling the HLL

program. Although this flexibility is certainly nice,

there is a bit of a performance price to pay.

Because the statement is not known during

program creation, it cannot be optimized at this

time. Optimization must be deferred until the

program’s run time, and occurs when the

PREPARE statement runs. If you decide to

 Dynamic SQL consideration

If the PREPARE, DECLARE or OPEN

statements run repeatedly, then you must

use the DLYPRP compiler option to limit the

validation to the OPEN statement. If the

SQL statement does not change from one

program execution to the next (only the

host-variable values change), then the

PREPARE and DECLARE statements only

need to run one time.

embed dynamic statements into your HLL program and fetch the rows for further processing, you can

replace the OPNQRYF command with the following embedded SQL statements: PREPARE,

DECLARE CURSOR or OPEN CURSOR.

PGM PARM(&SELECTION &ORDERBY)

DCL VAR(&SELECTION) TYPE(*CHAR) LEN(80)
DCL VAR(&ORDERBY) TYPE(*CHAR) LEN(10)

OVRDBF FILE(ORD_DTL) SHARE(*YES) OVRSCOPE(*JOB)
OPNQRYF FILE((CUST_DIM)) QRYSLT(&SELECTION)

KEYFLD((&ORDERBY *ASCEND))

CALL PGM(PROC_ROWS)
CLOF OPNID(ORD_DTL)

DLTOVR FILE(ORD_DTL)LVL(*JOB)

ENDPGM

Figure 19. Example 2 — OPNQRYF to Dynamic SQL

In this example, the actual table columns to be used for selection and ordering are passed in as input

parameters and can vary each time that the program is called. Consequently, this is not a candidate

for static SQL conversion. You must implement it as a dynamic SQL statement where the statement

can be dynamically built and prepared. After conversion, the CL program is eliminated and the HLL

program named PROC_ROWS contains SQL statements to prepare the statement, as well as to

declare and open the cursor. It looks similar to the statements shown in Figure 20.:

/free

sqlStatement = 'SELECT * +

FROM ord_dtl +
WHERE ' + selection +
'ORDER BY ' + orderBy

exec sql PREPARE sqlStm from :sqlStatement;
exec sql DECLARE c1 CURSOR FOR slqStm;

exec sql OPEN C1 using :sqlStatement;

Figure 20. SQL statements that prepare the dynamic SQL statement

Moving from OPNQRYF to SQL

22

Note: Keep in mind that the input selection parameter, in its original form, is used for OPNQRYF

parameter QRYSLT. Thus, you need to modify it to adhere to the proper SQL WHERE clause syntax.

When deciding which method to use, you must consider the tradeoff between application flexibility,

reusability and performance. Each application is obviously different; it is up to you to measure the

performance degradation with dynamic SQL and to determine whether this method’s flexibility and

reusability is offset by that loss in performance.

SELECT INTO when returning one row

Most of this white paper has focused on using OPNQRYF to process multiple rows in database tables.

However, in some cases, you might use OPNQRYF to return a single row. A good example of this is

returning a count of the rows that satisfy a specified WHERE clause condition. In such cases, some of the

conversion techniques discussed previously (such as declaring a cursor, opening a cursor and fetching

rows in the application) might not be required. In fact, you can probably eliminate these unnecessary

statements and the resulting overhead by simply using the SQL statement SELECT INTO, as shown in

Figure 21. This example retrieves the contents of the matching row into the host variable ord_dtl_var. In

this case, it was not necessary to declare and open a cursor.

d ord_dtl_var e ds extname(ord_dtl)

D custParm s like(custKey)

c *entry plist
c parm custParm

/FREE
EXEC SQL

SELECT *
INTO :ord_dtl_var
FROM cust_dim
WHERE custkey = :custParm;

if SQLSTAT = ‘02000’;
// row not found

else
// row found

endif;
*inlr=*on;
return;

/END-FREE

Figure 21. RPG program using SQL SELECT INTO to retrieve a single row

CPYFRMQRYF

A popular technique when using OPNQRYF is to send the output directly to another file. This is

accomplished by using the Copy from Query File (CPYFRMQRYF) command. The purpose of this

command is to copy the result set from an OPNQRYF request to another file. In effect, this immediately

materializes the result set, allowing you to do things you previously could not, such as issue DSPPFM or

RUNQRY commands to see the contents of the OPNQRYF result set. The target file of the

CPYFRMQRYF command is often (but not always) created in the QTEMP library (for easy cleanup) and

is typically used as the input for a subsequent HLL program call or even for another OPNQRYF

command. An example of this type of CPYFRMQRYF implementation is shown in Figure 22:

Moving from OPNQRYF to SQL

23

Moving from OPNQRYF to SQL

24

PGM (&PARTNUMBER)

OVRDBF FILE(ITEM_JOIN2) TOFILE(ITEM_FACT) +

OVRSCOPE(*JOB) SHARE(*YES)

OPNQRYF FILE((ITEM_FACT) (CUST_DIM)) +

FORMAT(ITEM_JOIN2) KEYFLD((TERRITORY +
*ASCEND) (CUSTOMER *ASCEND)) +
JFLD((ITEM_FACT/CUSTKEY +
CUST_DIM/CUSTKEY)) JDFTVAL(*NO) +
OPNID(JOINFILEID) OPNSCOPE(*JOB)

CPYFRMQRYF FROMOPNID(JOINFILEID) TOFILE(QTEMP/WRKFILE) +
MBROPT(*REPLACE) CRTFILE(*YES)

CALL PROC_ROWS
CLOF OPNID(JOINFILEID)

DLTOVR FILE(ITEM_JOIN2) LVL(*JOB)

ENDPGM

Figure 22. CPYFRMQRY example

In this example, the result set of the OPNQRYF command is materialized into the WRKFILE file object in

library QTEMP. The PROC_ROWS HLL program can then access WRKFILE just as it does any other

table or view.

For the conversion process, if there is a requirement to materialize the result set, consider using CREATE

TABLE AS (…) WITH DATA. You can convert the example shown in Figure 22 by using the SQL

statement shown in Figure 23:

CREATE TABLE QTEMP/WRKFILE AS (

SELECT TERRITORY, SALESREP, CUSTOMER, REVENUE, QUANTITY
FROM ITEM_FACT A
INNER JOIN CUST_DIM B ON A.CUSTKEY = B.CUSTKEY
ORDER BY TERRITORY, CUSTOMER

) WITH DATA

Figure 23. CREATE TABLE AS example

Running this statement results in the creation of the temporary WRKFILE file in library QTEMP. The temp

file is also populated with the result set of the SELECT statement.

The problem with these implementations (including the converted SQL version) is that they both involve

the creation of a temporary object on the system. If possible, it is more efficient to simply eliminate the

temporary file. Fortunately, even in more complex OPNQRFY implementations, there is a way to do this:

using CTEs. For some examples of using CTEs to eliminate temporary objects in this type of conversion

process, see the article in the System i Network entitled “Accessing Data through SQL views” at

www.systeminetwork.com/artarchive/21029/Accessing_Data_Using_SQL_Views.html.

Summary

Even though you might agree with the merits of performing this conversion, you might have concluded

that it is not a trivial exercise. If you are completely content with the performance and functions of your

applications that use OPNQRYF, there is no need to convert them simply for the sake of change (unless

your objective is to claim to have modernized the data-access methods of your application). However, if

some of the advantages listed in this white paper (such as improved performance and SQL-only

functions) seem valuable to you, or new requirements dictate that you need to make enhancements to an

application that uses the OPNQRYF method, this conversion process is something you should seriously

consider.

http://www.systeminetwork.com/artarchive/21029/Accessing_Data_Using_SQL_Views.html

Moving from OPNQRYF to SQL

25

Appendix A: OPNQRYF command parameters and

SQL equivalents

It is important to understand the OPNQRYF command parameters and how to control the behavior that they

influence, by using equivalent SQL settings. To simplify the comparisons and examples, this appendix focuses

on converting the OPNQRYF command to SQL and ignores peripheral aspects that you must also convert.

Other sections in this white paper explain how to convert the peripheral environment.

File specifications (FILE)

This parameter specifies the physical or logical file processed by the OPNQRYF command (see Table 4).

OPNQRYF parameter SQL equivalent

FILE FROM schema table

Member name No equivalent for member (consider using SQL ALIAS)

Record format No equivalent for record format (consider using UNIONs)

Table 4. Using the FILE parameter

The equivalent for the FILE parameter is the FROM clause in the SQL statement. Both OPNQRYF and SQL

support qualified library schemas. But, SQL does not support members or record formats (see Table 5). To

support members, create an SQL alias that points to a specific member and use the alias in the SQL (see

Table 6). To support a specific record format in a multiformat logical file, reference the underlying physical

file directly (see Figure 24). To retrieve data from record format FORMAT3, specify the parameter

information shown in Table 7.

OPNQRYF OPNQRYF FILE((ORD_DTL)) FORMAT(ORD_DTL)

SQL SELECT * FROM ord_dtl

Table 5. Simple physical-file reference

OPNQRYF OPNQRYF FILE((ORD_DTL JANUARY))

SQL CREATE ALIAS OrdersJanuary FOR ord_dtl (january);
SELECT * FROM OrdersJanuary

Table 6. Physical file-member reference

A
A
A
A
A
A

A

R

K
K
S

FORMAT1
CUSNUM
CUSNAM
CUSLOC
CUSNUM
CUSNAM

CUSNUM1

PFILE(CUST_MAST)

COMP(NE '

')

A
A
A
A

A

R

K

FORMAT2
CUSNUM2
CUSNAM2
CUSLOC2

CUSNUM2

PFILE(CUST_MAST)

A
A

K
S

CUSNAM
CUSNUM2

COMP(NE '

')

A
A
A
A
A

R

K

FORMAT3
CONNUM
CONNAM
CONRGN
CONNUM

PFILE(CUST_CON)

A K CONNAM
Figure 24. Multiformat logical-file reference with specific record format (logical file definition)

Moving from OPNQRYF to SQL

26

OPNQRYF OPNQRYF FILE((CUST_LF *FIRST FORMAT3))

SQL SELECT * FROM CUST_CON

Table 7. Retrieving data from a record format

One restriction of OPNQRYF is its inability to

retrieve the data in more than one record

format. If the OPNQRYF command references

a multiformat logical file, you must specify a

specific record format within that logical file.

This means that you cannot query more than

one format (and its underlying physical file) in

a single command (unless you take additional

 Logical file alert

Do not specify DDS logical files as the referenced

database object in an SQL statement — this

causes the CQE to process the query. Always

specify either the physical file (table) or an SQL

view in your SQL statements.

steps to join them together). Although SQL does not directly support the concept of record formats, you

can overcome this single-format restriction in SQL by using UNIONS.

For example, suppose that customer information (customer number, name and location) is spread across

multiple fields and files and you want to centralize this information so that your programs can access a

single interface to retrieve this data. Your files look something like that shown in Table 8 and Table 9:

CUSNUM CUSNAM CUSLOC CUSNUM2 CUSNAM2 CUSLOC2

12345 Jones, Ed SE
223344 Berry, Frank NW

 908343 Anderson, Bob SE

 887733 Ellison, Brit MW

Table 8. CUST_MAST

CONNUM CONNAM CONRGN

89732 Garber, Matt NE

223344 Larson, Ed NW

987777 Stephens, Jackie MW

Table 9. CUST_CON

Notice that the customer numbers, names and locations are scattered throughout various fields and files.

If the goal is to consolidate these into one logical file, you can use a multiformat logical, such as the one

defined in Table 8 and Table 9. Such a logical file allows native-access methods, such as RPG’s READ,

READE or CHAIN, to retrieve all records in the logical file, regardless of the underlying record format.

This is a very typical way of using multiformat logical files. However, because OPNQRYF requires a

specific record format, you cannot easily use this command to access all the records throughout each of

the three record formats in the logical file. To overcome this restriction in SQL, first create a view (through

the use of UNION) that combines the underlying physical files, as shown in Table 10:

CREATE VIEW ALL_CUSTOMERS (CUSNUM, CUSNAM, CUSLOC) AS

SELECT CUSNUM, CUSNAM, CUSLOC FROM CUST_MAST WHERE CUSNUM1 <> ''

UNION
SELECT CUSNUM2, CUSNAM2, CUSLOC2 FROM CUST_MAST WHERE CUSNUM2 <> ''

UNION

SELECT CONNUM, CONNAM, CONRGN FROM CUST_CON

Table 10. Creating a view that combines underlying physical files

Now, through the view, you can access all the rows (that satisfy the selection criteria) from all three

physical files. As such, it becomes the single interface for accessing this customer information. You can

use the SQL statement shown in Figure 25 to generate the result set. The results of the SQL statement

look similar to that shown in Table 11.

Moving from OPNQRYF to SQL

27

SELECT * FROM all_customers

ORDER BY cusnum

Figure 25. SQL statement that generates the result set

CUSNUM CUSNAME CUSLOC

12345 Jones, Ed SE

223344 Berry, Frank NW

908343 Anderson, Bob SE

887733 Ellison, Brit MW

89732 Garber, Matt NE

223344 Larson, Ed NW

987777 Stephens, Jackie MW

Table 11. Results of the SQL statement shown in Figure 25

Open options (OPTIONS)

This parameter specifies the open option to use for the query file. The options you choose on the first full

open of a file do not change on subsequent shared opens. You can specify *ALL or a value that combines

*INP, *OUT,*UPD and *DLT in a list of up to four values in any order (see Table 12 and Table 13).

OPNQRYF parameter SQL equivalent

OPTIONS(*INP) DECLARE CURSOR cursorName FOR READ ONLY

OPTIONS(*OUT) ** Not required for SQL INSERT statement

OPTIONS(*UPD) DECLARE CURSOR cursorName FOR UPDATE

OPTIONS(*DLT) DECLARE CURSOR cursorName FOR UPDATE

Table 12. Defining up to four open options

OPNQRYF OPNQRYF FILE((ORD_DTL)) FORMAT(ORD_DTL) OPTIONS(*INP)

SQL DECLARE CURSOR cursorName FOR READ ONLY

Table 13. Specifying the open options

Format specifications (FORMAT)

This parameter specifies the format for records that are available through the open-query file (see Table 14).

OPNQRYF parameter SQL equivalent

FORMAT

File name

Member name

Record format

Specify columns in the SQL statement or create an SQL view that contains

only the desired columns; then reference that view in your SQL statement

Table 14. Specifying the record format for records that are available through the open-query file

Instead of specifying the FORMAT that contains the columns to be returned, you specify the columns

(that you want returned in the result set) in the SQL statement. As an alternative, if the file name that is

specified in the FORMAT parameter is an SQL view, you can reference that view in your SQL statement

and specify * (all columns) for projection (see Table 15). For example, SELECT * FROM view_name.

OPNQRYF OPNQRYF FILE((ORD_DTL)) FORMAT(ORD_DTL)

SQL SELECT LINENUMBER, QUANTITY, EXTENDEDPRICE FROM ORD_DTL

Table 15. specifying columns in result set

OPNQRYF OPNQRYF FILE((ORD_DTL)) FORMAT(ORD_DTL)

SQL CREATE VIEW ORD_DTL_VIEW (LINENUMBER , QUANTITY , EXTENDEDPRICE)

AS
(SELECT SELECT LINENUMBER, QUANTITY, EXTENDEDPRICE FROM ORD_DTL);
SELECT * FROM ORD_DTL_VIEW

Table 16. Creating a view with columns, specify view in FROM clause

Moving from OPNQRYF to SQL

28

Query selection expression (QRYSLT)

This parameter specifies the selection values that you use (before grouping) to determine the available

records through the open-query file (see Table 17).

OPNQRYF parameter SQL equivalent

QRYSLT WHERE clause of SQL SELECT statement

Table 17. Specifying the selection values for determining available records

The QRYSLT parameter maps to the WHERE clause of the SQL statement. However, it is not a direct

mapping. The apostrophes that OPNQRYF requires are no longer needed with SQL. In addition, you

have to convert the specified QRYSLT functions (such at *EQ) to the SQL equivalent (see Table 18). For

more information, see Appendix B: OPNQRYF functions and SQL equivalents.

OPNQRYF OPNQRYF FILE((ORD_DTL)) QRYSLT('YEAR *EQ 1997')

SQL SELECT * FROM ORD_DTL WHERE YEAR = 1997

Table 18. Using the QRYSLT parameter

Key-field specifications and ordering (KFLD)

This parameter specifies the name of one or more key fields that you use to arrange the query records,

You can also use it to specify that the access-path sequence of the first, or only file, member and record

format (that is specified for the File Specifications (FILE) parameter) is used to arrange the query records

(see Table 19).

OPNQRYF parameter SQL equivalent

KFLD
Key field
File or element
Key field order
Order by absolute value

ORDER BY clause of SQL SELECT statement
DESC or ASC
ABSVAL function in ORDER BY clause

Table 19. Specifying the key fields for arranging query records

The KLFD parameter maps fairly directly to the ORDER BY clause in the SQL statement (see Table 20,

Table 21 and Table 22).

OPNQRYF OPNQRYF FILE((ORD_DTL)) KFLD(PARTKEY)

SQL SELECT * FROM ORD_DTL ORDER BY PARTKEY

Table 20. Returning all rows from ORD_DTL file, ordered by column PARTKEY

OPNQRYF OPNQRYF FILE((ORD_DTL)) KFLD(PARTKEY *DESCEND)

SQL SELECT * FROM ORD_DTL ORDER BY PARTKEY DESC

Table 21. Returning all rows from ORD_DTL file, sorted in descending order by column PARTKEY.

OPNQRYF OPNQRYF FILE((ORD_DTL)) KFLD(DAYS_COMMIT_TO_RECEIPT *ASCEND *ABSVAL)

SQL SELECT * FROM ORD_DTL ORDER BY ABSVAL(DAYS_COMMIT_TO_RECEIPT)

Table 22. Returning all rows from ORD_DTL file, ordered by the absolute value of column
DAYS_COMMIT_TO_RECEIPT

Moving from OPNQRYF to SQL

29

Unique key fields (UNIQUEKEY)

This parameter specifies whether you want to restrict the query to records with unique key values, and

specifies how many of the key fields must be unique (see Table 23).

OPNQRYF parameter SQL equivalent

UNIQUEKEY SQL SELECT statement using a derived table and the ROW_NUMBER function:

Table 23. Restricting the query to unique key values

For example, you can read records that use only some key fields. Assume you are processing a file with

the sequence: SALESPERSON, COUNTRY and REGION, but need only one record per SALESPERSON

and COUNTRY. Essentially, you only want to return the first record of the group (see Table 24).

OPNQRYF OPNQRYF FILE((ORD_DTL)) KEYFLD((SALESREP) (COUNTRY) (REGION))
UNIQUEKEY(2)

SQL SELECT * FROM (SELECT salesperson, country, region, customer,
ROW_NUMBER() OVER (PARTITION BY salesperson, country ORDER BY salesperson,

country, region) AS rowNum
FROM ord_dtl) AS o WHERE rowNum = 1

Table 24. Reading records using only some of the key fields

Join field specifications (JFLD)

This parameter specifies whether the query joins records from multiple file members and how to join field

values from the files, members and record formats (specified for the FILE parameter) to construct query

records (Table 25).

OPNQRYF parameter SQL equivalent
JFLD

From field
To field
Join operator

Join syntax of SQL SELECT statement.

Table 25. Specifying whether the query joins records from multiple file members

OPNQRYF OPNQRYF FILE((ITEM_FACT) (CUST_DIM))
FORMAT(ITEM_JOIN2)
JFLD((ITEM_FACT/CUSTKEY CUST_DIM/CUSTKEY))

SQL SELECT TERRITORY, SALESREP, CUSTOMER, REVENUE, QUANTITY
FROM ITEM_FACT A
INNER JOIN CUST_DIM B

ON A.CUSTKEY = B.CUSTKEY

Table 26. Example of joining records from multiple file members

Moving from OPNQRYF to SQL

30

Join file order (JORDER)

For a join query, this parameter specifies whether the join order must match the order that is specified for

the File Specifications (FILE) parameter (see Table 27 and Table 28).

OPNQRYF parameter SQL equivalent

JORDER QAQQINI setting FORCE_JOIN_ORDER

Table 27. Using the JORDER parameter

OPNQRYF OPNQRYF FILE((ITEM_FACT) (CUST_DIM))
FORMAT(ITEM_JOIN2)
JFLD((ITEM_FACT/CUSTKEY CUST_DIM/CUSTKEY))
JORDER(*FILE)

SQL QAQQINI setting FORCE_JOIN_ORDER = *YES

Table 28. Example of specifying the join order

Join file order (JDFTVAL)

This parameter specifies whether the query file should include join records that use default values for

fields from a join secondary file — when the secondary file does not contain a record with correct field

values that satisfy the join connections specified on the Join Field Specifications (JFLD) parameter. It

describes what the system should do if a record is missing from the secondary file (see Table 29).

OPNQRYF parameter SQL equivalent

JDFTVAL Use SQL LEFT OUTER JOIN or EXCEPTION JOIN

Table 29. Using the JDFTVAL parameter

The OPNQRYF JDFTVAL parameter value of *YES maps to an SQL LEFT OUTER JOIN (see Table 30).

OPNQRYF OPNQRYF FILE((ITEM_FACT) (CUST_DIM))
FORMAT(ITEM_JOIN2)
JFLD((ITEM_FACT/CUSTKEY CUST_DIM/CUSTKEY))
JDFTVAL(*YES)

SQL SELECT TERRITORY, SALESREP, CUSTOMER, REVENUE, QUANTITY
FROM ITEM_FACT A
LEFT OUTER JOIN CUST_DIM B

ON A.CUSTKEY = B.CUSTKEY

Table 30. Using the JDFTVAL parameter with a value of *YES

The value of *ONLYDFT maps to an SQL EXCEPTION JOIN (see Table 31).

OPNQRYF OPNQRYF FILE((ITEM_FACT) (CUST_DIM))
FORMAT(ITEM_JOIN2)
JFLD((ITEM_FACT/CUSTKEY CUST_DIM/CUSTKEY))
JDFTVAL(*ONLYDFT)

SQL SELECT TERRITORY, SALESREP, CUSTOMER, REVENUE, QUANTITY
FROM ITEM_FACT A
EXCEPTION JOIN CUST_DIM B

ON A.CUSTKEY = B.CUSTKEY

Table 31. Using the JDFTVAL parameter with a value of *ONLYDFT

Moving from OPNQRYF to SQL

31

Grouping field names (GRPFLD)

This parameter specifies the field names that are used to group query results (see Table 32 and Table 33).

OPNQRYF parameter SQL equivalent

GRPFLD GROUP BY clause of SQL SELECT statement

Table 32. Using the GRPFLD parameter

OPNQRYF OPNQRYF FILE((ITEM_FACT)) FORMAT(ITMFMT)
GRPFLD(CUSTKEY)
MAPFLD((COUNT '%COUNT'))

SQL SELECT CUSTKEY, COUNT(*)
FROM ITEM_FACT
GROUP BY CUSTKEY

Table 33. Example of grouping field names for query results

Group-selection expression (GRPSLT)

This parameter specifies the selection values that are used after grouping to determine which records are

available through the open-query file (see Table 34).

OPNQRYF parameter SQL equivalent
GRPSLT HAVING clause of SQL SELECT statement

Table 34. Using the OPNQRYF parameter

For example, you can group the data by customer key and then analyze the revenue-sum field. In this case,

you select only the summary records in which the revenue sum is less than 1 000 000 (see Table 35).

OPNQRYF OPNQRYF FILE((ITEM_FACT)) FORMAT(ITMFMT) KEYFLD(CUSTKEY)
GRPFLD(CUSTKEY)
MAPFLD((COUNT '%COUNT')

(REVSUM '%SUM(REVENUE)')
(REVAVG '%AVG(REVENUE)')
(REVMAX '%MAX(REVENUE)'))

GRPSLT('REVSUM *LT 1000000')

SQL SELECT CUSTKEY, COUNT(*), SUM(REVENUE),AVG(REVENUE),MAX(REVENUE) FROM
ITEM_FACT
GROUP BY CUSTKEY
HAVING SUM(REVENUE) < 1000000
ORDER BY CUSTKEY

Table 35. Example of grouping data by customer key to analyze revenue

Moving from OPNQRYF to SQL

32

Mapped-field specifications (MAPFLD)

This parameter defines the query fields that are mapped or derived from other fields (see Table 36).

OPNQRYF parameter SQL equivalent

MAPFLD
Mapped field
Field definition expression

Use system-supplied SQL functions and UDFs
Implementation of Common table expressions and views

Table 36. Using the MAPFLD parameter

What makes the conversion of this parameter somewhat tricky is that OPNQRYF always maps the field

definitions before the QRYSLT parameter is evaluated. This means that, unless the mapped field

specifies the use of an aggregate function such as %AVG, %MIN or %MAX, the mapped field can be

used in the QRYSLT parameter. (You can use the GRPLST list to perform selection on mapped fields

that are aggregated). SQL does not work this way. To obtain this behavior with SQL, you must either

create an SQL view with the derived column, or specify a Common Table Expression (CTE) in the SQL

statements. If you are not using the derived column in the selection, there is no need to implement a CTE.

One example of using a mapped field that is not used in the query-selection criteria is shown in Table 37:

OPNQRYF OPNQRYF FILE((ORD_DTL)) FORMAT(ORDDETAIL)
MAPFLD((CHAR6 '%DIGITS(ORDDATE)') (ORDYEAR '%SST(CHAR6 5 2)' *CHAR 2))

SQL SELECT SUBSTRING(DIGITS(orddate) , 3 , 2) as ordyear, orderpriority, linestatus,
shipmode, revenue

FROM ORD_DTL

Table 37. Example of using the mapped-field parameter

Table 38 shows another example of using a mapped field in query-selection criteria. The SQL version has

two statements: one to create an SQL view and one to reference that SQL view in a SELECT statement.

OPNQRYF OPNQRYF FILE((ORD_DTL)) FORMAT(ORDDETAIL) QRYSLT('ORDYEAR *EQ "05" ')
MAPFLD((CHAR6 '%DIGITS(ORDDATE)') (ORDYEAR '%SST(CHAR6 5 2)' *CHAR 2))

SQL CREATE VIEW ord_dtl_view AS
(SELECT SUBSTRING(DIGITS(orddate) , 3 , 2) as ordyear, orderpriority, linestatus,

shipmode, revenue
FROM ord_dtl);

SELECT * FROM ord_dtl_view WHERE ordyear = '05'

Table 38. Another example of using the mapped-field parameter

Yet another example (see Table 40) involves a mapped field that you might use in the query-selection

criteria. The SQL version uses a CTE:

OPNQRYF OPNQRYF FILE((ORD_DTL)) FORMAT(ORDDETAIL) QRYSLT('ORDYEAR *EQ "05" ')
MAPFLD((CHAR6 '%DIGITS(ORDDATE)') (ORDYEAR '%SST(CHAR6 5 2)' *CHAR 2))

SQL WITH cte1 AS
(SELECT SUBSTRING(DIGITS(orddate) , 3 , 2) as ordyear, orderpriority, linestatus,

shipmode, revenue
FROM ORD_DTL)

SELECT * FROM cte1 WHERE ordyear = '05'

Table 39. Yet another esample of using the mapped-field parameter

Moving from OPNQRYF to SQL

33

Ignore decimal-data errors (IGNDECERR)

This parameter specifies whether the system ignores decimal data errors during query processing. If you

specify *YES, the system ignores decimal data errors. When errors in decimal data are encountered, the

not-valid sign or digits are automatically changed to valid values (see Table 40).

OPNQRYF parameter SQL equivalent
IGNDECERR Use the High level language (HLL) compiler parameter FIXNBR

Table 40. Using the IGNDECERR parameter

The FIXNBR parameter is not available with the HLL precompiler. To specify this parameter, you must

issue the CRTSQLRGPI command with the OPTION(*NOGEN) parameter to instruct the precompiler not

to call the RPG compiler. As a result, no module, program or service program is created. However, the

precompiler still generates a temporary source-file member by the same name. By default, this member is

in the QTEMP library, in the QSQLTEMP1source file. In this member, embedded SQL statements are

converted to comments and calls to the SQL run time. After you locate the temporary member, you can

issue the CRTBNDRPG command (see Table 41).

OPNQRYF OPNQRYF FILE((ORD_DTL))
SQL CRTSQLRPGI OBJ(TESTLIB/TESTPGM1) SRCFILE(TESTLIB/QRPGLESRC)

OPTION(*NOGEN)
CRTBNDRPG PGM(TESTLIB/TESTPGM1) SRCFILE(QTEMP/QSQLTEMP1)
SRCMBR(*PGM) FIXNBR(*ZONED)

Table 41. Example of using the IGNDECERR parameter

Note: The recommended way of handling decimal data errors is to cleanse the offending data. In other

words, if zoned or packed-decimal fields contain blanks or other nonnumeric values, you need to update

these values to contain zeroes or numeric values. To start this kind of analysis, issue the STRSQL

command and use an SQL statement, such as the following, on all your numeric columns in a table:

SELECT COUNT(DISTNICT numeric_column1), COUNT(DISTNICT numeric_column2),

COUNT(DISTNICT numeric_column3), COUNT(DISTNICT numeric_column4)

FROM file_name

This points out numeric columns that contain invalid data. In the results (shown in the following example),

you can see that the first numeric column of the SELECT statement (numeric_column1) contains invalid

data (denoted by the ‘++++++++++++++’ value in the first column).

COUNT COUNT COUNT COUNT

++++++++++++++ 9384 5111 6383

Use the STRSQL command to see the invalid output, as just shown. When you use the iSeries Navigator

Run SQL Scripts interface, the count columns show valid values. Determining which rows contain invalid

data is a trickier. The article Ending those Decimal Data Error Blues provides example RPG code to help

you perform this analysis (www.ibmsystemsmag.com/i5/july03/enewsletterexclusive/13470p1.aspx).

Open-file identifier (OPNID)

This parameter specifies the identifier that you use to name the open-query file — so that it is referred to on the

Close File (CLOF) or Position Database File (POSDBF) command when it is closed (see Table 42).

OPNQRYF parameter SQL equivalent

OPNID There is no SQL equivalent for this parameter. However, because no file needs to
be closed by the CLOF command, this parameter can be eliminated.

Table 42. Using the OPNID parameter

http://www.ibmsystemsmag.com/i5/july03/enewsletterexclusive/13470p1.aspx)
http://www.ibmsystemsmag.com/i5/july03/enewsletterexclusive/13470p1.aspx)

Moving from OPNQRYF to SQL

34

Limit to sequential only (SEQONLY)

This parameter specifies the use of sequential-only file processing and specifies the number of records to

process as a group when performing read or write operations to the open-query file (see Table 43).

OPNQRYF parameter SQL equivalent

SEQONLY
Sequential only
Number of records

OVRDBF CL command
Sequential only
Number of records

Table 43. Using the SEQONLY parameter

To obtain the same blocking behavior, issue the OVRDBF command prior to issuing the SQL SELECT

statement (see Table 44).

OPNQRYF OPNQRYF FILE((ORD_DTL)) SEQONLY(*YES 2000)
CL command (prior to SQL
statement)

OVRDBF FILE(ORD_DTL) SEQONLY(*YES 2000)

Table 44. Example of using the SEQONLY parameter

Commitment control active (COMMIT)

This parameter specifies whether this file is placed under commitment control. You use this setting in

conjunction with the Start Commitment Control (STRCMTCTL) command to establish either a job level or

activation-group level commitment definition (see Table 45).

OPNQRYF parameter SQL equivalent

COMMIT Use the HLL precompiler parameter COMMIT

Table 45. Using the COMMIT parameter

Because you specify the isolation level in the HLL precompiler setting, using the STRCMTCTL command

is no longer required. You should remove this command from the CL program (see Table 46).

OPNQRYF OPNQRYF FILE((ORD_DTL)) COMMIT(*YES)
STRCMTCTL LCKLVL(*CS)

HLL Pre-compiler CRTSQLRPGI OBJ(TESTLIB/TESTPGM1) SRCFILE(TESTLIB/QRPGLESRC)
COMMIT(*CS)

Table 46. Example of enabling commitment control with the isolation level of Cursor Stability

Open scope (OPNSCOPE)

This parameter specifies the extent of influence (scope) of the open operation (see Table 47).

OPNQRYF parameter SQL equivalent

OPNSCOPE No longer required because OPNQRYF command is not used

Table 47. Using the OPNSCOPE parameter

Moving from OPNQRYF to SQL

35

Duplicate key check (DUPKEYCHK)

This parameter (*YES or *NO) specifies whether duplicate-key checking and feedback is provided on

input and output commands. Use the default (*NO) if the programs are not written in COBOL or ILE C and

C++, or if your program does not use the returned duplicate-key feedback information (see Table 48).

OPNQRYF parameter SQL equivalent
DUPKEYCHK Separate SQL SELECT statement – see below.

Table 48. Using the DUPKEYCHK parameter

No direct equivalent exists for this parameter. However, you can embed a separate SQL statement to

perform the duplicate-key check, and then examine the result set. For example, to check for duplicate

keys in the customer file for customer Customer#000000209, the following SQL statement returns a result

set with the customer and the number of occurrences. If no duplicates exist, the result set is empty.

SELECT customer, COUNT(customer) AS custcount FROM cust_dim

WHERE customer = ' Customer#000000209'

GROUP BY customer HAVING (COUNT(customer) > 1)

Allow copy of data (ALWCPYDTA)

This parameter lets the system copy data from the files, members and record formats that are specified for the FILE

parameter. If this parameter is used, the system opens the query file to the copy (see Table 49 and Table 50).

OPNQRYF parameter SQL equivalent

ALWCPYDTA Use the HLL precompiler parameter ALWCPYDTA

Table 49. Using the ALWCPYDTA parameter

OPNQRYF OPNQRYF FILE((ORD_DTL)) ALWCPYDTA(*NO)
HLL precompiler command

for RPG
CRTSQLRPGI OBJ(TESTLIB/TESTPGM1) SRCFILE(TESTLIB/QRPGLESRC)

ALWCPYDTA(*NO)

Table 50. Example of using the ALWCPYDTA parameter

Performance optimization (OPTIMIZE)

This parameter specifies the optimization goal that the system uses to decide how to perform the selection and

join processing that satisfies other specifications on this command (see Table 51 and Table 52).

OPNQRYF parameter SQL equivalent
OPTIMIZE

Performance optimization
Number of records .

OPTIMIZE FOR n ROWS

Table 51. Using the OPTIMIZE parameter

OPNQRYF OPNQRYF FILE((ORDERS)) OPTIMIZE(*FIRSTIO 10)

SQL SELECT * FROM ORD_DTL OPTIMIZE FOR 10 ROWS

Table 52. Example of using the OPTIMIZE parameter

Optimize all access paths (OPTALLAP)

This parameter tells the query optimizer to consider all access paths that exist over the query files when

determining how to do the query (see Table 53). OPTALLAP has no equivalent if the query goes to SQE.

Therefore, if you want SQE process the SQL, this parameter is irrelevant.

OPNQRYF parameter SQL equivalent
OPTALLAP QAQQINI setting OPTIMIZE_STATISTIC_LIMITATION (CQE only)

Table 53. Using the OPTALLAP parameter

Moving from OPNQRYF to SQL

36

Sort sequence (SRTSEQ)

This parameter specifies the sort sequence for sorting and grouping selections that are specified for the

QRYSLT or GRPSLT parameters, as well as joins that are specified for the JFLD parameter, the ordering

that is specified for the KEYFLD parameter, the grouping that is specified for the GRPFLD parameter,

and the %MIN or %MAX built in functions, or unique key values that are specified for the UNIQUEKEY

parameter (see Table 54 and Table 55).

OPNQRYF parameter SQL equivalent
SRTSEQ Use the HLL precompiler parameter SRTSEQ

Table 54. Using the SRTSEQ parameter

OPNQRYF OPNQRYF FILE((ORD_DTL)) KEYFLD(JOB) SRTSEQ(*LANGIDUNQ)

HLL Pre-compiler command
for RPG

CRTSQLRPGI OBJ(TESTLIB/TESTPGM1) SRCFILE(TESTLIB/QRPGLESRC)
SRTSEQ(*LANGIDUNQ)

Table 55. Example of using the SRTSEQ parameter

Language ID (LANID)

This parameter specifies the language identifier to be used when SRTSEQ(*LANGIDUNQ) or

SRTSEQ(*LANGIDSHR) is specified (see Table 56 and Table 57).

OPNQRYF parameter SQL equivalent
LANGID Use the HLL precompiler parameter SRTSEQ

Table 56. Using the LANGID parameter

OPNQRYF OPNQRYF FILE((ORD_DTL)) KEYFLD(JOB) SRTSEQ(*LANGIDUNQ)
LANGID(ITA)

HLL precompiler command
for RPG

CRTSQLRPGI OBJ(TESTLIB/TESTPGM1) SRCFILE(TESTLIB/QRPGLESRC)
SRTSEQ(*LANGIDUNQ) LANGID(ITA)

Table 57. Example of using the LANGID parameter

Final-output CCSID (CCSID)

This parameter specifies the coded character set identifier (CCSID) in which data from character, DBCS-

open, DBCS-either and graphic fields are returned (see Table 58 and Table 59).

OPNQRYF parameter SQL equivalent

CCSID Use the Control specifications (H Specs) of RPG compiler

Table 58. Using the CCSID parameter

OPNQRYF OPNQRYF FILE((ORD_DTL)) CCSID(13488)
Control Spec in HLL

program
H CCSID(*GRAPH :13488)

Table 59. Example of using the CCSID parameter

Type of open (TYPE)

This parameter specifies the level at which the Reclaim Resources (RCLRSC) command closes the file.

OPNQRYF parameter SQL equivalent
TYPE No equivalent — not required because the CLOF command does not need to

close any file

Table 60. Using the TYPE parameter

Moving from OPNQRYF to SQL

37

Appendix B: OPNQRYF functions and SQL

equivalents

Listed in this section are the OPNQRYF operators and built-in functions — along with the equivalent SQL

predicate. Table 61 and Table 62 provide quick summaries of the differences.

Description OPNQRYF operator SQL predicate

Equal *EQ =
Greater than *GT >

Greater than or equal to *GE >=
Less than *LT <

Less than or equal to *LE <=
Contains *CT LIKE

OR operator %OR OR
AND operator %AND AND

NOT %NOT NOT
Range of values %RANGE BETWEEN

Set of values %VALUES IN
Wildcard %WLDCRD LIKE

Table 61. Differences between the OPNQRYF operator and the SQL predicate

Description OPNQRYF built-in function SQL built-in function

Absolute value %ABSVAL (numeric-argument) ABSVAL (expression)
Arc cosine %ARCCOS (numeric-argument) ARCCOS (expression)

Antilogarithm (base 10) %ANTILOG(numeric-argument) ANTILOG (expression)
Arc sine %ASIN (numeric-argument) ASIN (expression)

Arc tangent %ATAN (numeric-argument) ATAN (expression)
Hyperbolic arc tangent %ATANH (numeric-argument)) ATANH (expression)

Average %AVG (numeric-argument) AVG (expression)

Character representation of the
date time

%CHAR (date/time-argument
date/time-format)

CHAR (expression)

Cosine %COS (numeric-argument) COS (expression)
Hyperbolic cosine %COSH (numeric-argument) COSH (expression)

Cotangent %COT (numeric-argument) COT (expression)
Number of records in group %COUNT COUNT(*)

Current date %CURDATE CURDATE
Current server name %CURSERVER DATABASE

Current time %CURTIME CURTIME or CURRENT TIME special
register

Current timestamp %CURTIMESTP CURRENT TIMESTAMP special register

Current time zone %CURTIMEZONE CURRENT TIMEZONE
special register

The date part of the argument %DATE (date/time-argument) DATE (expression)
Day part of the argument %DAY (date/time-argument) DAY (expression)

Integer representation of date %DAYS (date/time-argument) DAYS (expression)

Character representation of
numeric value

%DIGITS (numeric-argument) DIGITS (expression)

Labeled duration of days %DURDAY (integer-argument) TIMESTAMPDIFF (numeric-expression ,
string-expression)

Labeled duration of hours %DURHOUR (integer-argument) TIMESTAMPDIFF (numeric-expression ,
string-expression)

Labeled duration of
microseconds

%DURMICSEC (integer-argument) TIMESTAMPDIFF (numeric-expression ,
string-expression)

Labeled duration of minutes %DURMINUTE (integer-argument) TIMESTAMPDIFF (numeric-expression ,
string-expression)

Labeled duration of months %DURMONTH (integer-argument) TIMESTAMPDIFF (numeric-expression ,
string-expression)

Labeled duration of seconds %DURSEC (integer-argument) TIMESTAMPDIFF (numeric-expression ,
string-expression)

Moving from OPNQRYF to SQL

38

Labeled duration of years %DURYEAR (integer-argument) TIMESTAMPDIFF (numeric-expression ,
string-expression)

Base of the natural logarithm (e)
raised to a power specified by
the argument

%EXP (numeric-argument) EXP (expression)

Partition number of a set of
values

%HASH (expression-argument) HASH (expression)

Hexadecimal equivalent of the
argument's value

%HEX (argument) HEX (expression)

Hour part of the argument %HOUR (date/time-argument) HOUR (expression)
Length of a value. %LEN (length-argument) LENGTH (expression)

Natural logarithm of argument %LN (numeric-argument) LN (expression)

Common logarithm (base 10) of
the argument

%LOG (numeric-argument) LOG (expression)

Maximum value in a set of values %MAX (numeric-or-string-or-
date/time-argument ...))

MAX (expression, expression)

Microsecond %MICSEC (date/time-argument) MICROSECOND (expression)

Minimum value in a set of values %MIN (numeric-or-string-or-
date/time-argument ...)

MIN (expression, expression)

Minute part of the argument %MINUTE (date/time-argument) MINUTE (expression)

Month part of the argument %MONTH (date/time-argument) MONTH (expression)

Relational database name for the
record retrieved

%NODENAME (integer-argument) DBPARTITIONNAME (table-designator) or
NODENAME (table-designator)

Node number %NODENUMBER DBPARTITIONNUM (table-designator) or
NODENUMBER (table-designator)

Value of the first non-null
expression in the argument

%NONNULL (argument ...) COALESCE (expression, expression) or
IFNULL (expression, expression)

Partition map index number of a
row

%PARTITION (integer-argument) HASHED_VALUE (table-designator) or
PARTITION(table-designator)

Second part of the argument %SECOND (date/time-argument) SECOND (expression)
Sine of the argument %SIN (numeric-argument) SIN (expression)

Hyperbolic sine of the argument %SINH (numeric-argument SINH (expression)
Square root of the argument. %SQRT (numeric-argument) SQRT (expression)

Substring of a string %SST (string-argument start-
position-expression <length-
expression>)

SUBSTR (expression, start, <length>) or
SUBSTRING (expression, start, <length>)

Standard deviation of argument
for the group of records

%STDDEV (numeric-argument) STDEV (expression) or
STDEV_POP (expression)

Result string with strip character
removed from string argument as
specified by the strip function

%STRIP STRIP (expression)

Substring of a string %SUBSTRING (string-field-name
start-position length)

SUBSTR (expression, start, <length>) or
SUBSTRING (expression, start, <length>)

Sum of all values for the
argument in the group of records

%SUM (numeric-argument) SUM (numeric-expression)

Tangent of the argument %TAN (numeric-argument) TAN (expression)
Hyperbolic tangent of argument %TANH (numeric-argument) TANH (expression)

Time part of the argument %TIME (date/time-argument) TIME (expression)

Returns a timestamp from its
argument or arguments.

%TIMESTP (date/time-argument
date/time-argument)

TIMESTAMP (expression-1, expression-2)

User-profile name of the job in
which the query is running

%USER USER special register or
SESSION USER special register

Variance of the argument for the
group of records

%VAR (numeric-argument) VARIANCE_SAMP (expression)
or VAR_SAMP (expression)

Returns a translated string %XLATE (string-argument qualified-
table)

TRANSLATE (expression, to-string, from-
string)

Bitwise 'XOR' (logical exclusive
or) of the arguments

%XOR (string-argument...) XOR (expression)

Year part of the argument %YEAR (date/time-argument) YEAR (expression)

Table 62. OPNQRYF built-in functions and the equivalent SQL predicate

Moving from OPNQRYF to SQL

39

Appendix C: Conversion examples and performance

measurements

Benchmark tests had the following characteristics:

• Each test ran five times.

• All referenced database objects were purged from memory prior to each execution.

• Tests were performed against the same files in the same libraries.

Figure 26, Figure 27 and Figure 28 show the template programs used in the performance tests. Notice

that the OPNQRYF command and SQL SELECT statement in the templates are followed by

‘???????????’. This means that these are substituted with the specified OPNQRYF command and the

SQL SELECT statement that is specified in each of the testcase sections that follow in this section of the

white paper.

PGM

SETOBJACC OBJ(FILE_NAME) OBJTYPE(*FILE) POOL(*PURGE)

OVRDBF FILE(FILE_NAME) OVRSCOPE(*JOB) SHARE(*YES)

OPNQRYF ??????????????? OPNSCOPE(*JOB)
CALL PGM(PROC_ROWS)
CLOF OPNID(ITEM_FACT)

DLTOVR FILE(ITEM_FACT) LVL(*JOB)

ENDPGM

Figure 26. CL example: OPNQRYF template

Ffile_name if e disk

d rowsFetched s 9b 0

/FREE

rowsFetched = 0;
setll *start file_name;
dow not %eof;
read file_name;
if %eof;

leave;
endif;
EXSR printDetails;
rowsFetched = rowsFetched + 1;

enddo;

*inlr=*on;
return;

/END-FREE

Figure 27. Code snippet of RPG program PROC_ROWS: Processes rows created by OPNQRY template program

Moving from OPNQRYF to SQL

40

d varArray e ds extname(fileName)
d dim(100)
d rowsFetched s 9b 0

/FREE

//** Declare the cursor
EXEC SQL

DECLARE c1 CURSOR FOR

???????????????;
//** Open the cursor
EXEC SQL

OPEN c1;

DOW SQLSTAT <> ‘02000’;

//*** Fetch matching records
EXEC SQL

FETCH NEXT FROM C1 FOR 100 ROWS INTO :varArray;
IF SQLSTAT = ‘02000’;

LEAVE;
ENDIF;
for z = 1 to sqler3;

EXSR printDetails;
rowsFetched = rowsFetched + 1;

endfor;

enddo;

*inlr=*on;
return;

/END-FREE

Figure 28. Code snippet of RPG program PROC_ROWS after program has been converted to use SQL access:
Uses blocked fetching techniques when retrieving the rows from the table.

Dynamic record selection

Table 63 and Table 64 show the testcase command statement and results for the dynamic record

selection:

OPNQRYF OPNQRYF FILE((CUST_DIM))
QRYSLT('SALESREP *EQ "SalesPerson#00007”')

SQL SELECT *
FROM CUST_DIM
WHERE SALESREP = 'SalesPerson#00007'

Table 63. Testcase command statement for the dynamic record selection

 Average elapsed time
(seconds)

Rows in table Rows selected OPNQRYF SQL Commentary on results

1 500 000 148 700 6756 3039 SQL was more than 2.2 times faster

Table 64. Testcase results for the dynamic record selection

Moving from OPNQRYF to SQL

41

Dynamic ordering

Table 65 and Table 66 show the testcase command statement and the results for dynamic ordering:

OPNQRYF OPNQRYF FILE((ITEM_FACT)) KEYFLD((DAYS_00001 *ASCEND))

SQL SELECT *
FROM item_fact
ORDER BY days_00001

Table 65. Testcase command statement for dynamic ordering

 Average elapsed time
(seconds)

Rows in table Rows ordered OPNQRYF SQL Commentary on results

6 001 215 6 001 215 94 944 30 960 SQL was more than three times faster

Table 66. Testcase results for dynamic ordering

Grouping

Table 67 and Table 68 show the testcase command statement and the results for grouping:

OPNQRYF OPNQRYF FILE((ITEM_FACT)) FORMAT(REVTOTAL) KEYFLD((REVTTL
*DESCEND)) GRPFLD(YEAR MONTH) MAPFLD((REVTTL '%SUM(REVENUE)'))

SQL SELECT *
FROM item_fact
ORDER BY days_00001

Table 67. Testcase command statement for grouping

 Average elapsed time
(seconds)

Rows in table

Rows
processed

of
distinct
groups

OPNQRYF

SQL

Commentary on results

6 001 215

6 001 215

36

101 572

2266
Testcase with the most dramatic improvement
(SQL version was 44 times faster)

Table 68. Testcase results for grouping

Dynamic joining

Table 69 and Table 70 show the testcase command statement and the results for dynamic joining:

OPNQRYF OPNQRYF FILE((ITEM_FACT) (CUST_DIM))
FORMAT(ITEM_JOIN2) KEYFLD((TERRITORY *ASCEND) (CUSTOMER *ASCEND))
JFLD((ITEM_FACT/CUSTKEY CUST_DIM/CUSTKEY)) JDFTVAL(*NO)

SQL SELECT TERRITORY, SALESREP, CUSTOMER, REVENUE, QUANTITY
FROM ITEM_FACT A
INNER JOIN CUST_DIM B
ON A.CUSTKEY = B.CUSTKEY
ORDER BY TERRITORY, CUSTOMER

Table 69. Testcase command statement for dynamic joining

 Average elapsed time
(seconds)

Rows in table Rows ordered OPNQRYF SQL Commentary on results

6 001 215 6 001 215 122 687 32 818 SQL was more than 3.73 times faster.

Table 70. Testcase results for dynamic joining

Moving from OPNQRYF to SQL

42

Unique-key processing

Table 71 and Table 72 show the testcase command statement and results for unique-key processing:

OPNQRYF OPNQRYF FILE((CUST_DIM)) KEYFLD((SALESREP)
(COUNTRY) (REGION)) UNIQUEKEY(2)

SQL SELECT * FROM (SELECT salesperson, country, region, customer,
ROW_NUMBER() OVER (PARTITION BY salesperson, country
ORDER BY salesrep, country, region) AS rowNum

FROM cust_dim) AS o
WHERE rowNum = 1

Table 71. Testcase command statement for unique-key processing

 Average elapsed time
(seconds)

Rows in table

Rows
processed

Number of distinct
groups

OPNQRYF

SQL

Commentary on results

150 000 1 500 000 250 6566 4789 SQL version was 27% faster.

Table 72. Testcase results for unique-key processing

Final total-only processing

Table 73 and Table 74 show the testcase command statement and results or unique-key processing:

OPNQRYF OPNQRYF FILE((ITEM_FACT)) FORMAT(FINTOT)
MAPFLD((ROWCNT '%COUNT') (TOTREV'%SUM(REVENUE)')
MAXREV '%MAX(REVENUE)'))

SQL SELECT COUNT(*), SUM(revenue)AS total_revenue, MAX(revenue)AS max_revenue
FROM item_fact

Table 73. Testcase command statement for final total-only processing

 Average elapsed time
(seconds)

Rows in table Rows ordered OPNQRYF SQL Commentary on results

6 001 215 6 001 215 24 974 3711 SQL was more than 6.7 times faster.

Table 74. Testcase results for final total-only processing

Random access of result set

A commonly used implementation lets the OPNQRYF command generate a result set that the HLL

program can then access randomly (rather than reading it sequentially). This amounts to a two-step

filtering process:

1. OPNQRYF uses the QRYSLT parameter to select a subset of the data and the FORMAT and

KEYFIELD parameters to specify that the result set be in a keyed sequence.

2. This gives the called HLL program the ability to perform further selection filtering against the

result set by using random-access operations (such as SETLL, READE and CHAIN).

Moving from OPNQRYF to SQL

43

Consider the example (shown in Figure 29 and Figure 30) of this implementation:

PGM

OVRDBF FILE(ITEM_JOIN2) TOFILE(ITEM_FACT) +

OVRSCOPE(*JOB) SHARE(*YES)

OPNQRYF FILE((ITEM_FACT) (CUST_DIM)) +

FORMAT(ITEM_JOIN) +
QRYSLT('SALESREP *EQ "SalesPerson#00009”') +
KEYFLD((TERRITORY *ASCEND) (CUSTOMER +
*ASCEND)) JFLD((ITEM_FACT/CUSTKEY +
CUST_DIM/CUSTKEY)) JDFTVAL(*NO) +
OPNSCOPE(*JOB) OPTIMIZE(*ALLIO)

CALL PGM(PROC_ROWS)
CLOF OPNID(ITEM_FACT)

DLTOVR FILE(ITEM_JOIN) LVL(*JOB)

ENDPGM

Figure 29. CL example: Using OPNQRYF to allow random access of result set

fitem_fact if
fitemdspf cf

e

E

 k disk rename(item_fact :
workstn sfile(SFL:SFLRN)

item_rcd)

d rowsFetched s 9b 0

d data s 132a

d keyTerritory s 25a

/FREE

runcount = 0;

dow *in12 = *off;
exfmt getData;
if *in12=*on;
leave;

endif;

exsr InzSubFile;

rowsFetched = 0;

setll keyTerritory item_join;
dow not %eof;

read item_join;
if %eof

or keyTerritory <> territory;
leave;

endif;
rowsFetched = rowsFetched + 1;
exsr loadSubFile;

enddo;

enddo;

*inlr=*on;
return;

/END-FREE

Figure 30. Code snippet of RPG program PROC_ROWS: Performs random access of result set

In this example, OPNQRYF joins two tables for rows that have a SALESREP value of

SalesPerson#00009 and calls the HLL program PROC_ROWS for further processing. PROC_ROWS

presents a screen that allows the user to specify a territory to further filter the rows in the result set before

loading them into the subfile. The key point is that the random access(in step two) only works against a

subset of the table – those rows in the result set selected in step 1 (not the entire table).

Although SQL does not have the direct ability to randomly access the result set, this can be simulated by

adding the matching rows in step 1 to a temporary table, thus, creating an index against that temporary

Moving from OPNQRYF to SQL

44

table, and allowing further searching against the temp table in step 2. Of course, this implementation falls

apart if you want to update the rows in the permanent tables or need a sensitive cursor.

There are more efficient and robust ways to accomplish the same thing in SQL. Rather than implement a

two-step process, you can use one SQL statement. In the case of the example shown in Figure 30, one

SQL statement performs local selection for both SALESREP and TERRITORY (as well, it handles all

joining and ordering). This SQL implementation is shown in Figure 31 (again, the CL program is no longer

needed because the embedded SQL handles the ODP processing).

d join_data e ds extname(item_join)
d rowsFetched s 9b 0
d printData s 80a
d keyTerritory s 25a
d keySalesRep s 25a
d runCount s 9b 0

/FREE

dow *in12 = *off;
exfmt getData;
if *in12=*on;

leave;

endif;

EXEC SQL

DECLARE c1 CURSOR FOR
SELECT territory, salesrep, customer, revenue, quantity
FROM item_fact A
INNER JOIN cust_dim B
ON A.custkey = B.custkey
WHERE salesrep = :keySalesRep
AND territory = :keyTerritory;

rowsFetched = 0;
EXEC SQL

OPEN c1;
dow SQLSTAT <> ‘02000’;

//*** Fetch matching record

EXEC SQL
FETCH C1 INTO :join_data;

if SQLSTAT = ‘02000’;
leave;
endif;

rowsFetched = rowsFetched + 1;
enddo;
EXEC SQL

CLOSE c1;
enddo;
*inlr=*on;
return;

/END-FREE

Figure 31..Code snippet of RPG program PROC_ROWS (one SQL statement for selection, joining and ordering)

From a performance perspective, you might be skeptical about how this implementation compares with

the OPNQRYF method. After all, it does perform local selection of TERRITORY against the entire table,

instead of against a subset of the table (those with SALESREP = ‘00009’). As such, the results shown in

Table 75 might be somewhat surprising:

 Average elapsed time
(seconds)

Rows in table
Rows accessed
randomly

OPNQRYF

SQL

Commentary on results

6 001 215 720 484 84 883 9800 SQL was more than 8.6 times faster.

Table 75. Testcase results for random access

Moving from OPNQRYF to SQL

45

Appendix D: Resources

These Web sites provide useful references to supplement the information contained in this document:

• IBM System i Information Center

http://publib.boulder.ibm.com/iseries/

• i5/OS on IBM PartnerWorld®

ibm.com/partnerworld/i5os

• IBM Publications Center

www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US

• DB2 for i5/OS online manuals

ibm.com/iseries/db2/books.html

• IBM Publications Center

www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US

• IBM Redbooks

ibm.com/redbooks

• Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

www.redbooks.ibm.com/abstracts/sg246598.html?Open

• DB2 Information Center

http://publib.boulder.ibm.com/infocenter/db2help/

• Online educational course: SQL Performance Basics

ibm.com/servers/enable/site/education/ibo/record.html?4fa6

• The new SQL query engine (SQE)

ibm.com/iseries/db2/sqe.html

• White paper: Creating and using materialized query tables (MQT) in IBM DB2 for i5/OS

ibm.com/servers/enable/site/education/abstracts/438a_abs.html

• Article:i5/OS V5R4 SQL Packs a Punch (details on recursive CTEs)

ibm.com/servers/eserver/iseries/db2/pdf/rcte_olap.pdf

• Article: Accessing Data through SQL views

www.systeminetwork.com/artarchive/21029/Accessing_Data_Using_SQL_Views.html

• Article Ending those Decimal Data Error Blues

www.ibmsystemsmag.com/i5/july03/enewsletterexclusive/13470p1.aspx

http://publib.boulder.ibm.com/iseries/
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US
http://www.redbooks.ibm.com/abstracts/sg246598.html?Open
http://publib.boulder.ibm.com/infocenter/db2help/
http://www.systeminetwork.com/artarchive/21029/Accessing_Data_Using_SQL_Views.html
http://www.ibmsystemsmag.com/i5/july03/enewsletterexclusive/13470p1.aspx

Appendix E: About the author

Gene Cobb is a DB2 for i5/OS technology specialist within the IBM ISV Enablement for

System i organization. He has worked on IBM midrange systems since 1988, with 10 years

in the IBM System i Lab Services group – formerly the Client Technology Center (CTC) in

Rochester, Minnesota. When he was with the CTC, he assisted IBM clients with application

design and development using RPG, DB2 for i5/OS, IBM CallPath/400 and IBM Lotus®

Domino®. His current responsibilities include providing consulting services to System i

developers, with special emphasis in application and database modernization.

Acknowledgements

Thanks to the following people who reviewed and contributed to this paper:

• Dan Cruikshank

• Kent Milligan

• Michael Cain

Moving from OPNQRYF to SQL

46

Trademarks and special notices

© Copyright IBM Corporation 2008. All Rights Reserved.

References in this document to IBM products or services do not imply that IBM intends to make them

available in every country.

AS/400, DB2, Domino, i5/OS, IBM, the IBM logo, Lotus, OS/400, PartnerWorld, Redbooks, System/38

and System i are trademarks of International Business Machines Corporation in the United States, other

countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part

of the materials for this IBM product and use of those Web sites is at your own risk.

Moving from OPNQRYF to SQL

47

