— — — S—

Replacing DB2 XML Extender with
integrated IBM DB2 for | XML capabilities

Learn how to use DB2 integrated XML functionality to replace solutions
based on DB2 XML Extender

Nick Lawrence
Kent Milligan
Yi Yuan
IBM Systems and Technology Group

February 2013

© Copyright IBM Corporation, 2013

]
pil
1

llm]
f
I
Ill
in

Table of contents

N 1] 1 = T U UUUUTUUUT 1
T e Lo Lo 1V [od A o o NPT 1
Overview of the XML data tyPeooviiiiiiiiiiiiie ettt aaeeaees 2
User-defined XML types in DB2 XML EXIENUETcoiiiiiiiiiiiiiiie ittt ettt e e sineeee 2
LU 1Y 1Y 1= S PPRPRR 2
Creating an XML value using the XMLPARSE fUNCLONooiuiiiiiiiieeieee et 5
YT VT4 T o 11 | I - - PSR 6
Implicit XMLPARSE and XMLSERIALIZEoooiiiiee ettt 6
Handling of boundary white space when parsing XML data...........c..cooiiiiieiiiiieiieeeieee e 9
XML as an SQL parameter of an external roUtINEcoeeeiiiiiiiiiiiiie e e 11
DY T 0 S AR = T =] [SRRSO 15
XML values in IDBC and SQL CL....coooiiiiiiii 17
Processing external XML filES ...ttt e e e e e e e s rnae e e e e e e an 18
L1 I Y I SR 19

XML file reference variables...........ocueiiiiiiiii e 19

Reading XML from @ fil€oooiiiiii e 20

WIting XML INTO @ fil€.....coiiiieeeece e 21

SCENAINO OVEIVIEW ..eiiiiiiiiiieeeieeee ettt ettt ettt ettt ettt ettt e eeeeseesseesseesssesseeseseesenssesessnnsnneneeeens 23
DY [o] (o Tt TS [To IR (] o1 TP SURT PP 24
Store XML documMeNtS iN DB2........oooiiiiiiiiiie ettt 25
(O U L= YAV | o - | - PSSP 25
XML Extender eXtraction FUNCHIONSooiiiiiiiiiei ettt e e e e e e e e e e e e abbeeeeeas 26
Using the XMLTABLE table fUNCLIONooiiiiii e 27
Using the XMLTABLE function to retrieve a scalar result.............cccocvevveeeeiiviiciiienneeeenn, 29

XML and SQL data type CONVEISIONS........eutieiiiiiieiiiiee ettt e s 32

Return an xs:date, xs:time, or xs:dateTime value’s local timeccccceevvieieiiiiienens 36

Decompose XML to arelational database table ..., 37
L0 oo F= 1= 41T/ | o = 41
Compose XML documents from relational tablesS........cccoooeeviiiiiiiii e, 43
SQL XML publishing fUNCLONS........coiiiiiiiie e e e e e s e e e e e e e e s ennnnreeeees 49
NamMeESPACE AECIAIrAtIONSceiiiiiiiiieieie et eeaeas 51

QUETY TESITN ..ttt ettt et e e st e et e skt e et e e sabb e e e e aabb e e e e sabbeeeesnnneeas 53

Representation of XML values obtained from SQLccooiiiiiiiiiiiie e 53
Validation Of XIML GOCUMENTSuuiieeeeeee e a e a e s e e e e e e e e e e e e e e aaeeaaaaeas 55
Validating an XML schema with XML EXTENAENcooouuiiiiiiiieiiieeie e 57
Registering an XML schema With DB2 fOF 1cccuiiiiiiieei i e e e e ennere e e e e 58
Registering an XML schema and adding XSD fileSccccovvveiieiiiiiiiiiicece e, 58

Assigning a target namespace and [0CatioNcoccoviiiiiiiie i 59

Completing the schema registration using the XSR_COMPLETE stored procedure 60

Validating XML documents with BUilt-in FUNCLIONSccuuiiiiiii e 60

]
pil
1

llm]
f
I
Ill
in

ANNotated dECOMPOSITIONuuuiiiii e 64
XML SChem@ @NNOLALIONScoviiiiiiiiiieiii e e e e s e et e e e e e e s s st e e e e e e s e snnntrneeeeessnnnreneeeas 65
DB2 for i decoOmMpOSItioN @NNOLALIONSciiiiiiiiiiiiiie e e e e e e s e e e e e s r e e e e e e e e s sannnreeeeeeaean 66
Registering XML schemas for deCOMPOSITIONuiiiiiiiiiiiiiiiee et 70
Annotated decomposition with SQL dates and timMeSeevvieeiiiiiiiiiiieic e 71
Annotated decomposition of values that have time zone compoNeNtsccuveiiiiieiiiiiiiiiieeeee s 72

FUIT TEXE SBANCR ..t et e e e e e s s e e e e e s e e e 73

RECOMMENAALIONS ... e e et e e e e e e e e e e atb e e eeeeeseessbaa s aeeeseeesrrenes 75
Comparing decomposition with XMLTABLE with annotated XML schema............occccuviiiiiiiiinniiiinen, 75
Improving query performance using Side tableS...........cccviiiiiiie e 75

SUMIMAIY .. iieeiieeeeee ettt ettt et ettt ettt ettt ettt e et ee e e eeeeeeee e seesaeeseeessessennnsensnnnnnrneeeeeeeeeees 82

RN T] o U] of <1 ST PP TUUPPPURPPPPRPTR 83

ADOUL TN AQULNOT ... e e e st e e e e e e e e e e e e e s 86

Trademarks and SPECIAl NOTICESuvuviiiiiiiiiiiieiiieieiee ettt et e eee e beeebesesereaesrreeerreereresrrrnnnes 87

|l
H]
||III
1

I

1
|
I
Ill
in

Abstract

This white paper explores using the new integrated XML features in IBM DB2 fori 7.1 as a
replacement for the XML-related functions and data types provided by the priced DB2 XML
Extender option, which is part of DB2 Extenders for IBM i licensed product (5761DE1 and
5770DEL1). The paper reviews the differences between the DB2 XML Extender and the
integrated XML support. A fictional company’s application is used as a mechanism to compare
the integrated XML functionality with the capabilities provided by XML Extender. The application-
based comparison can provide programmers a much better understanding of the integrated XML
support.

Introduction

IBM® DB2® for i 7.1 provides integrated support for XML, allowing application developers to more easily
store and process XML data. In addition to the XML support available in the initial release of DB2 for i 7.1,
significant enhancements have been made available since the initial release; customers who need to
make the most of the XML support should apply the DB2 Group PTF SF99701 Level 14. IBM encourages
customers to regularly install the most recent version of the DB2 Group PTF to avoid problem rediscovery
and to be able to use new technologies. A link to a list of the most recent IBM i technology updates is
included in the references section.

The built-in support includes a new XML built-in data type. Also available are built-in functions and
procedures for composing XML documents from relational data, XML schema validation, shredding XML
data into relational tables, style sheet transformation, and XML query capabilities. Additionally, advanced
text searches can be performed against XML documents stored in DB2 for i databases using the IBM
OmniFind® Text Search Server product (5733-OMF).

In prior releases, applications that needed to integrate XML with DB2 for i had to use the DB2 XML
Extender support. The DB2 XML Extender support is part of the IBM DB2 Extenders™ licensed program
product, which was first made available in the V5R1 release. The DB2 Extenders product was a
chargeable feature that had to be purchased separately from IBM. In contrast, the new XML support
included in DB2 for i 7.1 is integrated into the base IBM i operating system, requiring no additional charge.
In addition, the integrated XML support provides a wider range of functionality and is more consistent with
rest of the DB2 product family, the World Wide Web Consortium (W3C) XML standards, and the SQL/XML
standard (ISO 9075-14 2011). Customers are encouraged to modify their applications to use the new
support delivered in DB2 fori 7.1.

This white paper provides a good description of the new function for those customers who need to replace
XML Extender with the built-in XML data type and built-in functions. This paper includes an overview of the
XML data type as a replacement for the user-defined data types offered by the XML Extender product.
The overview is followed by an example scenario (involving a fictional company) that is used to illustrate
how common use cases for XML might be implemented using the built-in capabilities, as opposed to using
XML Extender. Together, these comparisons can depict what considerations are necessary when moving
from a solution that employs XML Extender to a solution based on the built-in XML data type.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

1

|l
H]
||III
1

I

1
|
I
Ill
in

Overview of the XML data type

It is necessary to first understand some important differences between the user-defined XML types
provided by the DB2 XML Extender and the built-in XML data type available in DB2 for i 7.1.

User-defined XML types in DB2 XML Extender

XML Extender defines three user-defined types (UDTs) for XML: XMLVARCHAR, XMLCLOB, and
XMLFILE. Using these types, developers can define whether the XML value is stored in DB2 as a
VARCHAR, CLOB, or in an external IFS stream file (known to XML Extender by an IFS path name). A
table with user-defined XML typed columns might have been created, as shown in Listing 1.

CREATE TABLE Ext ender _sanple (
col 1 DB2XM.. XMLVARCHAR,
col 2 DB2XM.. XM_CLOB,
col 3 DB2XM.. XM_FI LE

)
Listing 1: Column with XML Extender UDTs

Each of the user-defined types is based on character data types; meaning that values of these types
contain serialized XML documents (or in the case of XMLFILE, a reference to a file with a serialized XML
document).

The term serialized XML document means that the XML is represented as text data that can be
transmitted between applications. XML parsers are able to convert serialized documents into whatever
representation is optimal for the needs of the application. Applications can choose to store and process
XML data using the most appropriate data structure for the type of processing being performed, and
exchange XML data with other applications as serialized text data.

When constructing a serialized XML document, an important concept to be aware of is that the author has
a variety of choices for representing the same logical XML ideas. For example, if an element has no
content, it can be written as either <element></element> or <element/>. Special characters provide
another example; authors have several ways to inform an XML parser that special characters (such as <)
are ordinary characters and not part of the XML markup.

As XML Extender defines the user-defined XML data types based on the serialized document, XML
documents are stored and retrieved exactly the way they are authored when received by DB2 for i. No
parsing or validation of the XML document is performed, and DB2 for i can handle the XML data as simple
character data, rather than a complex data type.

A user-defined type that represents serialized XML values is a disadvantage because a UDT offers no
built-in understanding of the structure and relationships defined within the XML document. This is a topic
that is discussed in more detail throughout this paper.

Built-in XML type

In contrast to a user-defined type, the built-in XML type that exists in DB2 for i 7.1 describes the structure

and data within an XML document in terms of an XML Data Model (XDM). DB2 for i defines the XDM to

be consistent with the industry-standard XPath 2.0 data model. The XPath 2.0 data model is an abstract
Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

2

]
pil
1

llm]
f
I
Ill
in

representation of XML that is defined by the W3C. Using the XML Data Model as the basis for describing
XML values allows DB2 for i to keep the data model consistent between SQL and XML technologies.

Rather than a character string, the XDM describes an XML document in terms of a tree of nodes
(document, element, attribute, text node, and so on). Listing 2 illustrates a sample XML document, and
Figure 1 illustrates how this document is described using the XML Data Model.

<product xm ns="http://posanpl e. org"
pi d="100-101- 01" >
<descri ption>
<nane>Snow Shovel, Del uxe 24</name>
<det ai | s>A Del uxe Snow Shovel ,
24 inches wi de, ergononic curved handle with DGip
</ detail s>
<price>19.99</pri ce>
<wei ght >2 kg</ wei ght >
</ description>
</ pr oduct >

Listing 2: XML document

In addition to nodes, the XDM also includes atomic values (xs:string, xs:integer, xs:double, xs:date,
xs:dateTime, xs:time, and so on) which are used within built-in functions and procedures for processing
XML. Nodes in an XML document can be converted to atomic values during XML operations. For example,
the text node 19.99 inside the price element in Listing 2 may need to be converted to xs:double for
arithmetic comparison. DB2 does not associate type annotations with each node, but built-in functions
know how to convert the untyped data in the document to a specific atomic type when necessary.

For a complete explanation of the data model, refer to the “Resources” section for a link to the topic in the
IBM i Information Center.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

3

]
pil
1

llm]
f
I
Ill
in

Dezument

‘ httpposzample.org

Marnespass
praduct
Element
‘ pid="00-104-04"
Attribute
description
Element
narn e detailz price wiaight
Elerment Ekernant Ekerneant Element
Show Shovral, A Deluxe
Dehoe 24 Snow Shovel. = A1
Text Test Tt Text

Figure 1: XML data model

It is important to understand that in SQL, each XML value is an instance of the XDM. The idea that an
XML value is described by a separate data model is a big difference from other SQL types. XML values
can be further divided up into nodes, atomic values, and relationships, while most other SQL data types
represent a single value that cannot be further divided.

Describing an XML value in terms of the XDM means that the built-in XML type is not a synonym for a
serialized XML document that can be exchanged with an application as plain text. In other words, in DB2
for i, the XML data type is neither a character, binary, or graphic type nor a path name to a file on the file
system that contains the XML document. A table with XML columns (as shown in Listing 3 might be
created.

| CREATE TABLE sanple (col1 XM, col 2 XM, col 3 XM.)

Listing 3: Column with built-in XML type

Unlike the CREATE TABLE statement in Listing 1 the built-in XML data type does not define the storage
mechanism that DB2 should use for the XML data. Not being defined to be based on a character, graphic,
or binary data type means that the built-in XML type does not guarantee that the XML data is physically

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

4

|l
H]
||III
1

I

1
|
I
Ill
in

stored as a serialized XML document. What is guaranteed is that the XML value can be serialized to a
character, graphic, or binary data type when necessary.

As the storage and representation of the XML type is not determined by the application, the XML data type
does not have an associated maximum length attribute. Be that as it may, DB2 for i restricts the maximum
length of a serialized XML value (in bytes) to 2 147 483 647. The maximum length of an XML schema
document is (in bytes) 2 147 483 647.

Another effect of not describing the built-in XML data type in terms of serialized data is that the XML
document is not preserved exactly the way it was originally authored. As an example, an element that is
originally authored and stored as <element></element> appears as <element/> when retrieved from DB2
for i. In terms of the XML Data Model, there is no distinction between these authoring decisions, and
therefore, DB2 for i does not need to retain this information. For more information on this topic, refer to the
link in the “Resources” section on the differences between storage and retrieval of XML values.

DB2 for i provides built-in functions and procedures for creating and working with XML values. These are
designed to be consistent with the XDM, and effectively encapsulate the storage and internal
representation of XML data from the application’s logic.

Creating an XML value using the XMLPARSE function

With XML Extender, an instance of the XMLVARCHAR or XMLCLOB data type can be created from
character data with a simple SQL CAST because both the source and target type are based on character
data. Listing 4 shows how to construct an XMLCLOB value from a VARCHAR value.

CREATE VARI ABLE seri al i zed_doc VARCHAR(2000) CCSID 1208;
SET serialized _doc = ‘<doc> this is an XML docunent </doc>’;

CREATE VARI ABLE xml cl ob_val ue DB2XM.. XM_CLOB;
SET xm cl ob_val ue = CAST(serialized_doc as DB2XM.. XM_.CLCB) ;

Listing 4: Create an XMLCLOB value

It is important to understand that Listing 4 demonstrates a cast between two compatible SQL types that
are each defined for character data, rather than a parse of a serialized XML document into something
described by the XDM. No checks are performed during the cast to ensure that the XML document is
syntactically correct. An application might encounter errors when processing values that are of these user-
defined types, if the original XML document was not a well formed XML document.

In comparison, creating an instance of the built-in XML type from serialized data must be done with the
XMLPARSE function. XMLPARSE converts a serialized XML document into an XML value that is
described by the XDM. Listing 5 shows how to construct an XML value using a serialized XML document
stored in the VARCHAR variable defined in by Listing 4.

CREATE VARI ABLE xml val ue XM
SET xm val ue =
XM_LPARSE(DOCUMENT seri al i zed_doc) ;

Listing 5: Create an XML value

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

5

|l
H]
||III
1

I

1
|
I
Ill
in

The DOCUMENT keyword is required for XMLPARSE, and tells DB2 that the resulting XML value must be
a well-formed XML document, or in other words, the document must have a single root element. The result
of the XMLPARSE function is an instance of the XML data type.

If the serialized document that is provided to XMLPARSE is not a syntactically legal XML document,
XMLPARSE will fail with an error. This prevents problems later on where an application might encounter
errors that result from the original XML document not being legal.

Serializing XML data

The process of converting XML data from the XDM into a character value that can be transmitted to an
application is called serializing. In SQL, serializing is necessary when we need to convert an XML value to
a character, graphic, or binary value (VARCHAR, CLOB, BLOB, and so on) that can be processed by the
application.

With XML Extender, an instance of the XMLCLOB or XMLVARCHAR types can be converted to a CLOB
or VARCHAR type by performing a simple cast of the user-defined XML type to the target SQL CLOB or
VARCHAR type as illustrated in Listing 6.

\ SET serialized_doc = CAST(xm cl ob_val ue AS CLOB(1G)) \

Listing 6: Cast of XMLCOB to VARCHAR

Listing 7 shows the result of the CAST expression.

‘ <doc> this is an XM. docunent </doc>

Listing 7: Result of CAST

With the new XML type, the XMLSERIALIZE function must be used to perform this XML to character
conversion. An SQL CAST expression cannot be used to convert an XML value to a character value.
Listing 8 shows an example of the XMLSERIALIZE function in action.

SET serialized_doc =
XMLSERI ALI ZE(xm val ue AS VARCHAR(2000) CCSID 1208
I NCLUDI NG XM_LDECLARATI ON)

Listing 8: Serialize XML data

The INCLUDING XMLDECLARATION clause is optional and tells DB2 to include the encoding declaration
on the result string. The result shown in Listing 9 will be a VARCHAR(2000) value in the UTF-8 character
set.

<?xm version="1.0" encodi ng="UTF-8"?>
<doc> this is an XM. docunent </doc>

Listing 9: Serialized XML document

Implicit XMLPARSE and XMLSERIALIZE

Using an XML Extender type for XML values means that the SQL rules for implicit type conversions of
UDTs apply. The built-in XML type provides similar functionality by implicitly parsing and serializing in
certain situations.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

6

|l
H]
||III
1

I

1
|
I
Ill
in

Listing 10 provides an example of how implicit type conversion works during an insert when using XML
Extender. The variable serialized_doc has a source type of VARCHAR, and can therefore be promoted to
CLOB. The column coll is of type XMLCLOB, which has a source type of CLOB. Consequently, the insert
of a CLOB into an XMLCLOB column in Listing 10 is valid, and easier to read than an explicit cast from
VARCHAR to XMLCLOB.

The INSERT statement in Listing 10 has no XML awareness. This INSERT statement is an insert of a
character value into a column with a user-defined type that has a compatible source type. There is no
implicit parsing or validation of the XML value. DB2 for i will not prevent invalid XML data from being
stored in the column. This can cause an application to encounter errors when processing the invalid XML
later on.

CREATE TABLE ext enders(col 1 DB2XM.. XM_CLOB) ;
DECLARE serial i zed_doc VARCHAR(2000) CCSID 37;

SET serialized_doc =
‘<?xm version="1.0" encodi ng="ibm 037" ?><doc> nmy document </doc>';

I NSERT | NTO extenders (col 1) VALUES(serialized_doc);

Listing 10: Implicit type conversion using XML Extender

Listing 11 shows the serialization scenario using XML Extender. In this example, the column coll is
defined using the XML Extender XMLCLOB UDT. The XMLCLOB is being fetched into a CLOB variable.
As both have the same source type, the fetch of an XMLCLOB value into a CLOB variable in Listing 11 is
valid.

DECLARE serialized_doc CLOB(2G CCSID 1208;

DECLARE col 1 _cursor CURSOR FOR SELECT col 1 FROM ext enders;

OPEN col 1_cursor;
FETCH col 1_cursor |INTO serialized_doc;

Listing 11: Implicit conversion during fetch from an XMLCLOB column

The value of the variable serialized_doc, after the FETCH statement is shown in Listing 12. The result
looks innocent enough, but it demonstrates an important problem. As XML Extender deals only with XML
as strings of character data, the encoding declaration in the document was not updated and still indicates
that the data is in CCSID 37, when in reality the CLOB variable has a CCSID of 1208. This causes an
error to occur if the CCSID 1208 CLOB value is passed to an application and parsed as XML.

‘ <?xm version="1.0" encodi ng="i bm 037" ?><doc> ny docunent </doc> ‘

Listing 12: Value of serialized_doc after fetch

The built-in XML type provides the ability to parse and serialize data implicitly in situations similar to the
implicit casting that is supported for the XML Extender UDTs. Using the built-in type’s implicit parsing and
serialization simplifies the SQL statement, guarantees that XML values are legal, and also helps to avoid
the encoding issue that was demonstrated in Listing 12. For these reasons, the best practice is to avoid
explicitly coding XMLPARSE and XMLSERIALIZE in SQL statements where XML data is exchanged with
an application.

DB2 for i performs an implicit XMLPARSE when a character, graphic, or binary type is assigned to an XML
column in an INSERT, UPDATE, or MERGE statement. Listing 13 shows a valid insert operation of a
VARCHAR value into an XML column. DB2 for i implicitly performs the XMLPARSE function on the XML

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

7

]
pil
1

llm]
f
I
Ill
in

value stored in the serialized_doc value. Similar to the explicit XMLPARSE function, if the serialized value
is not a legal XML document, an SQL error occurs at the time the INSERT statement is ran.

CREATE TABLE sanple (coll XM);

DECLARE serial i zed_doc VARCHAR(2000) CCSID 37;
SET serialized_doc =
<?xm version="1.0" encodi ng="i bm 037" ?><doc> nmy document </doc>';
I NSERT | NTO sanpl e (col 1)
VALUES(seri al i zed_doc) ;

Listing 13: Implicit XMLPARSE during an SQL INSERT

When a query returns an XML value and a non-XML data type is needed, an XMLSERIALIZE is implicitly
performed. Implicit serialization is often preferred when XML data is being retrieved by the application.

Listing 14 shows an example of an implicit XMLSERIALIZE. Assuming that sample is the table created in
Listing 13, XML data is being retrieved into a non-XML data type (CLOB) during the fetch from a cursor
coll_cursor. An implicit XMLSERIALIZE will be performed in this case. Scenarios where the XML value is
fetched into a non-XML variable are a common occurrence due to the fact that host languages such as C,
C++, RPG, COBOL, and Java™ do not support a native XML type.
DECLARE result CLOB CCsSI D 1208;

DECLARE col 1_cursor CURSOR FOR SELECT col 1 FROM sanpl €;

OPEN col 1_cursor;
FETCH col 1_cursor INTO result;

Listing 14: Implicit XMLSERIALIZE

The value of the result variable after fetch in Listing 14 is shown in Listing 15. The serialization process
has serialized the XML data (using UTF-8 as a character set), and updated the encoding declaration of the
XML document to the correct CCSID (UTF-8). In Listing 11, XML Extender could not update the encoding
declaration, because the user-defined type was based on character data.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<doc> ny docunent </doc>

Listing 15: Results from implicit XMLSERIALIZE

The maintenance of the encoding declaration is a major reason why implicit serialization is often preferred
when using the built-in XML type. After the XML value has been serialized, any CCSID translation that is
performed on the value might cause the encoding declaration to no longer be the same as the actual
encoding. Implicit serialization allows the application to decide the type and character set encoding that it
will obtain for XML data, and avoids CCSID translations of the serialized value.

There is one more circumstance where DB2 for i can implicitly parse an XML value. When DB2 for i
receives an XML document through the host variable or parameter marker, and the DB2 target type is
XML, it implicitly invokes the XMLPARSE function.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

8

|l
H]
||III
1

I

1
|
I
Ill
in

The SQL statement in Listing 16 is a valid way to provide DB2 for i with XML data. DB2 for i interprets the
typed parameter marker as a promise to provide XML data. Providing a character, graphic, or binary value
at runtime causes DB2 for i to interpret the value as a serialized XML document, causing DB2 for i to
perform an implicit XMLPARSE invocation.

| SET xml _val ue = CAST(? AS XM.) |

Listing 16: Implicit XMLPARSE for parameter markers

Supporting the typed parameter marker syntax for the built-in XML type allows the application to determine
what data type and encoding will be used when supplying the serialized document.

Using typed parameter markers is also possible with user-defined types, including the user-defined types

provided by XML Extender. However, similar to the problems with serialization, XML Extender would have
issues if the document being supplied to DB2 had a different encoding specified in the document than the
character set associated with the parameter marker’s XML Extender type.

Handling of boundary white space when parsing XML data

To improve the readability of XML by users, XML documents often contain text nodes that consist only of
white space characters (spaces, carriage returns, line feeds and tabs). These text nodes are also referred
to as boundary white space because they are normally used to visually separate the end of one element
from the beginning of the next, or to emphasize a new nesting level within the document. For example, the
serialized XML in Listing 2 has carriage return characters and indenting spaces for each new level of
nesting, and after the end of each element. While these white space text nodes can be represented in the
XML Data Model, they are seldom interesting to an application. For instance, the boundary white space in
Listing 2 was not included in the diagram of the XML Data Model (shown in Figure 1), and the omission is
unlikely to be a problem.

When XML data is stored in DB2 using one of the UDTs provided by XML Extender, there is no way for
DB2 to detect boundary white space. Thus, the boundary white space is always preserved, even though it
is normally irrelevant and wastes storage. The built-in XML data type is more flexible, and by default,
stores XML values with this insignificant white space data removed. Although the existence or non-
existence of boundary white space is not usually significant to an application, it is important to understand
the white space options that are available when parsing XML data, especially if the boundary white space
needs to be preserved.

When parsing serialized data into an XML value using the XMLPARSE function, the default behavior is to
remove (or strip) boundary white space. Although stripping white space is the default behavior, it is
possible for clarity to explicitly specify that boundary white space should be stripped by adding the STRIP
WHITESPACE option to the XMLPARSE function invocation, as shown in Listing 17.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

9

]
pil
1

llm]
f
I
Ill
in

VALUES XM_SERI ALI ZE(
XM_PARSE(DOCUVENT
' <pr oduct >
<descri ption>
<det ai | s>A Del uxe Snow Shovel ,
24 inches wi de
</ detail s>
</ description>
</ pr oduct >'
STRI P WHI TESPACE)
AS VARCHAR(2000))

Listing 17: XMLPARSE with STRIP WHITESPACE option

The results of the XMLPARSE are shown in Listing 18. It is essential to understand that only the text
nodes that contain all whitespace characters are removed. The white space characters that are contained
within a text node that has significant characters (such as the text node within the details element) are
preserved.

<product ><descri pti on><det ai | s>A Del uxe Snow Shovel
24 inches wide
</ det ai | s></ descri ption></product >

Listing 18: XML document with white space stripped

If the boundary white space is relevant, the PRESERVE WHITESPACE option can be used to prevent
XMLPARSE from removing these text nodes, as shown in Listing 19.

VALUES XM_SERI ALI ZE(
XM_PARSE(DOCUVENT
' <pr oduct >
<descri ption>
<det ai | s>A Del uxe Snow Shovel ,
24 inches wi de
</ detail s>
</ description>
</ pr oduct >'
PRESERVE WHI TESPACE)
AS VARCHAR(2000))

Listing 19: XMLPARSE with PRESERVE WHITESPACE option

When serialized XML data is implicitly parsed into an XML value, the handling of boundary white space is
controlled by the CURRENT IMPLICIT XMLPARSE OPTION special register. The initial value of this
special register is STRIP WHITESPACE. Listing 20 shows an SQL statement that changes the value of
the special register so that boundary white space is preserved.

‘ SET CURRENT | MPLICI' T XMLPARSE OPTI ON = PRESERVE VI TESPACE ‘

Listing 20: Set the IMPLICIT XMLPARSE OPTION special register

Often, if boundary white space is significant, it is significant only for a smaller portion of an XML document.
In these cases, the easiest solution might be to override the white space option that is used for an implicit
or explicit XMLPARSE operation. This is accomplished by providing an xml:space attribute on the
element where the white space option needs to be overridden. The xml:space attribute is defined by the
W3C XML standard which means that it can be understood by other compliant XML parsers, if the
document is transmitted to an application. In Listing 21, the text nodes for the boundary white space

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

10

|l
H]
||III
1

I

1
|
I
Ill
in

before and after the start of the b element are preserved, regardless of the white space option used for the
implicit or explicit XMLPARSE operation.

| <doc> <a xm : space="preserve"> <c>c</c>b </ b> </doc> |

Listing 21: XML document with xml:space attribute

XML as an SQL parameter of an external routine

The XML Extender user-defined types can be used for parameter definitions of an external user-defined
function or stored procedure. External functions and procedures are written in a host language such as C,
C++, COBOL, or RPG. As the host languages do not understand user-defined types, the values are
passed to the application using the same format as the source type for the user-defined type. Listing 22
contains an SQL CREATE PROCEDURE statement which registers the specified RPG service program
(UR_LIB/UR_SRVPGM) as an external stored procedure. The input parameter is defined with the
XMLVARCHAR type.

CREATE PROCEDURE writexm (I N DB2XM.. XMLVARCHAR)

LANGUAGE RPGLE

PARAVETER STYLE SQL

NO SQL
EXTERNAL NAME ' UR_LI B/ UR_SRVPGM VR TEXM.) '

Listing 22: SQL CREATE PROCEDURE statement (external RPG) using XML Extender data type

Listing 23 shows the source code for the RPG procedure that is used for the external procedure defined in
Listing 22. This code performs the minor task of storing the input data in a stream file. Note that the type of
the XML input parameter myDocument is a varying character array. A character array is the RPG
equivalent of the SQL VARCHAR type, which is the source data type that XMLVARCHAR user-defined
type is based on.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

11

]
pil
1

llm]
f
I
Ill
in

H NOVAI N
* Include IFS file apis
/ COPY QSYSI NC/ QRPGLESRC, | FS

Rk S R R O I Sk O S R Sk S b S o S R R R Sk e S A

* Procedure prototype
Rk S R R R O I S R R Sk S b S S R R R S S S S R o

D WRI TEXML PR

D 3000A varying
D 51 0

D 5A

D 517A varying
D 128A varying
D 1000A varying

R R I S S R O S R O R

*Procedure | nplenentation
LR EE R R EEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEE SRR

P WRI TEXML B EXPORT
D PI

D nyDocunent 3000A varying
D nyDocNul | 51 0

D oSQState 5A

D qual Name 517A varying
D specificNanme 128A varying
D oMessage 1000A varying

LR S O S kS O

*Local variabl es

LR S O S

D outputFile S 28A varyi ng

D INZ(' / hore/ ntl/out _xm .xm")
D

D fd S 101 O

Drc S 101 O

| FREE

/1 open file, node 384 is octal 600 (user +rw

EVAL fd = open(outputFile: O CREAT+O WRONLY: 384) ;

/'l wite data

EVAL rc = wite(fd: %addr(myDocunent)+2: % en(nyDocunent));

/1l close file
EVAL rc = cl ose(fd);
/1 indicate all K
EVAL 0SQLSTATE = ' 00000 ;
/1 program conpl ete
EVAL *I NLR = *ON;
RETURN;
| END- FREE
P E

Listing 23: RPG procedure source code using an XML input parameter

Despite the commonality between the VARCHAR and XMLVARCHAR types within the external routine,
the stored procedure invocation must pass an XMLVARCHAR type for the input parameter. The user-
defined type’s casting function can be used to convert a VARCHAR value into an XMLVARCHAR value.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

12

|l
h
||III
1

I

1
I
Ill
in

Listing 24 shows a typical call that uses a casting function in this manner. This casting only changes the
data type for the purpose of SQL data type analysis; casting between types does not verify that the
VARCHAR value is a syntactically valid XML document.

| CALL writexni (DB2XM.. XMLVARCHAR(' <doc> This is M/ XM Docunent </doc>')) |

Listing 24: SQL procedure call using XML Extender types

When using the new built-in XML type, the CREATE PROCEDURE statement must explicitly specify how
the XML data will be passed into the external procedure. This is accomplished by using the XML cast
syntax. In Listing 25, the XML input parameter definition includes the AS clause to indicate to DB2 for i that
the external procedure expects the XML data to be provided in the format of an SQL VARCHAR string with
a length of 3000 characters and CCSID value of 37. DB2 will serialize the XML document to this data type
before providing the value to the stored procedure. The source code for the RPG procedure can remain
the same as the original code shown in Listing 24.

CREATE PROCEDURE writexm xm (I N XM. AS VARCHAR(3000) CCSI D 37)

LANGUAGE RPGLE

PARAMETER STYLE SQL

NO SQL
EXTERNAL NAME ' UR LI B/ UR_SRVPGM WRI TEXM.) '

Listing 25: Creating a procedure using the built-in XML type and XML cast syntax

The input parameter must be an XML value on the stored procedure invocation. If the parameter is a
different SQL type that contains serialized XML data, it is necessary to use the XMLPARSE function to
convert the data to an XML value. Listing 26 shows how an XML value created by the XMLPARSE
function can be included in a procedure call.

CALL xmtest.writexm _xm (
XMLPARSE(DOCUMENT ' <doc> This is My new XM. docunent </doc>')
)

Listing 26: Procedure invocation with a parameter using the built-in XML type

With the XML Extender support, the XMLCLOB data type can be passed as a locator for improved
performance. The built-in XML data type also supports locators. Listing 27 shows a trivial C function to
return a CLOB locator that references a CLOB value containing serialized XML data.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

13

]
pil
1

llm]
f
I
Ill
in

#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <sql . h>

#i ncl ude <sql udf. h>

#define MY_XM__DOC "<exanple> this is an exanpl e </ exanpl e>"

int build_xm _doc(
udf | ocator * |ob_output,

short * | ob_out put _nul I,
char * sql state,
char * f uncnane,
char * specnane,
char * megt ext)
{
int rc;

short ccsid = 37;
| ong byt es_appended;

/1 create | ob and append out put
rc = sqludf_create_l ocator_with_ccsid(SQ_TYP_CLOB,
ccsid,
& ob_out put) ;
sql udf _append(| ob_out put,
MY_XM__DCC,
strlen(MY_XM._DQOC),
&byt es_appended) ;

/1l SQSTATE is K

nenmcpy(sql state, "00000", 5);
/1 result is not null

*| ob_out put_null = 0;

return O;

}

Listing 27: C program to return XML data as a locator

Listing 28 demonstrates how an SQL CREATE FUNCTION statement can be written using XML Extender
user-defined XMLCLOB type. The result type of the SQL function is a locator for an XMLCLOB value.

CREATE FUNCTI ON t his_returns_xm cl ob()

RETURNS DB2XM.. XMLCLOB AS LOCATOR

LANGUAGE C

PARAMETER STYLE SQL

NO SQL

EXTERNAL NAME ' UR LI B/ UR_SRVPGM bui | d_xni _doc)"

Listing 28: External function that returns an XMLCLOB locator

Listing 29 shows how to create the function so that it returns XML data using a locator. DB2 for i parses
the data referenced by the locator into an instance of the XML type when the locator is returned to the
invoker. The source code in Listing 27 does not need to change.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

14

|l
h
||III
1

I

1
I
Ill
in

CREATE FUNCTI ON t his_returns_xm ()

RETURNS XML AS LOCATOR

LANGUAGE C

PARAMETER STYLE SQL

NO SQL

EXTERNAL NAME ' UR LI B/ UR_SRVPGM bui | d_xm _doc)"

Listing 29: External function that returns an XML locator

XML host variables

Host languages that support embedded SQL are not aware of the user-defined types defined by XML
Extender, but they are able to process the data in the application by declaring a host variable that matches
the source data type of the UDT. For example, a host variable that needs to store an XMLCLOB value
should be declared in the host language with an SQL CLOB data type.

The XML data type is not based on a source type and no IBM i host languages support a built-in XML data
type. To resolve this difficulty, the DB2 for i SQL precompilers have been enhanced to support the new
SQL XML data types which specify what data type should be used for XML values within the host
language.

Listing 30 is an RPG program that demonstrates the differences between host variables that represent the
user-defined types from XML Extender and host variables that represent the built-in XML type available
starting with the IBM i 7.1 release. This example assumes that a stored procedure named
example_using_extender has been created with an XMLCLOB input parameter and a procedure named
example_using_xml has been created with an input parameter declared with built-in XML data type.

As CLOB is the source type for the XMLCLOB UDT, the host variable ExtendersXV is declared with the
CLOB data type. The CLOB data type for the ExtendersXV variable is defined using the keyword,
SQLTYPE(CLOB:3000). This keyword directs the SQL precompiler to create a data structure that includes
the LEN (length) and DATA subfields that RPG statements can refer to.

In order to satisfy the data type requirements of the SQL language, a casting function is sometimes
needed when the host variable is used in embedded SQL statements. The construction of a XMLCLOB
value from a CLOB value can be seen when calling the example_using_extender procedure. As discussed
earlier, this casting is necessary because the stored procedure requires an XMLCLOB value to be passed
rather than a CLOB value.

Host variables that represent built-in XML values are declared so that the SQL type of the host variable is
the built-in XML data type. The type declaration must include an SQL character or binary type that will be
used as the format for representing the serialized XML data within the host variable. When the host
variable is used in an SQL statement, DB2 for i will parse or serialize the data to and from an instance of
the built-in XML type.

In the example program, the variable BuiltinXV is declared using the keyword
SQLTYPE(XML_CLOB:3000). This declaration tells the SQL precompiler to create a character large object
(CLOB) data structure where RPG stores and manipulates the serialized XML data. Although RPG will
process the XML document as serialized data in a CLOB structure, the data type of the host variable when
referenced on SQL statements will be XML. When the XML_CLOB data is provided as a host variable on

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

15

]
pil
1

llm]
f
I
Ill
in

a call to the example_using_xml stored procedure, DB2 for i will parse the data in the builtinXV variable
into an XML value.

As the data type of the BuiltinXV variable in SQL is XML, parsing the serialized data into an instance of the
XML data type happens implicitly when the host variable’s data is used in an SQL statement. Parsing
BuiltinXV with an explicit invocation of the XMLPARSE function is not valid because the SQL data type of
the host variable is XML, rather than a character or binary type.

Although not shown in this example, an automatic serialize is also possible; if an XML_CLOB host variable
is used as the target of a FETCH, SELECT INTO, or VALUES INTO, DB2 for i will serialize the XML

document into the host variable for use by the application.
H MAI N(PGML) DFTACTGRP(*NO) ACTGRP(* NEW
EE R R I R R R R O

* Procedure Prototype

Rk b R bk R IR I kb R R SRk S o kR

DPGVL PR EXTPGM ' PGML')

R S I R Ik kR R R S R S R I o S R

*Serialized XM. Docunent

R S o O O
D Serialized_ XM. S 3000A varying

D I NZ(' <DOCl >')

R I S O

* Host vari abl es

IR SRR S SRR RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEES]
*Ext enders Version for XM.CLOB

D Ext ender sXV S SQLTYPE(CLOB: 3000)
C/ EXEC SQL

C+ DECLARE : Ext ender sXV VARI ABLE CCSI D 37

C/ END- EXEC

*Built-in Version of XM Type
D Buil ti nXV S SQLTYPE(XM__CLOB: 3000)
C/ EXEC SQL
C+ DECLARE : BuiltinXV VAR ABLE CCSI D 37
C/ END- EXEC

R S R O O R S

*Procedure inplenentation
LR R R R R R R R R R R R R R R R R R R R
PPGML B
D PI
| FREE

EVAL ExtendersXV_Len = % en(Serialized_XM);

EVAL ExtendersXV_Data = Serialized XM;

EXEC SQL

CALL exanpl e_usi ng_ext ender (
DB2XM.. XMLCLOB(: Ext ender sXV)

)

EVAL BuiltinXV_Len = %en(Serialized_XWM);
EVAL BuiltinXV_Data = Serialized_XM;
EXEC SQL CALL exanpl e_using_xm (: BuiltinXV);
| END- FREE
P E

Listing 30: RPG program with XML host variables

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

16

|l
H]
||III
1

I

1
|
I
Ill
in

The program in Listing 30 also illustrates another important concept. The RPG program uses the SQL
DECLARE VARIABLE statement to indicate to SQL that the host variable, BuiltinXV, will store data using
the CCSID 37 encoding scheme. An XML document that has been associated with a CCSID by the
application is said to have external encoding. In contrast, XML documents that include an encoding
declaration such as the document in Listing 9 are said to have internal encoding. When an XML document
is retrieved from Internet, the sender usually constructs the XML document using internal encoding, rather
than negotiating the encoding with the intended receiver.

The encoding of an XML document is a common source of problems. If both internal and external
encodings are supplied, both encodings must match in order to parse the XML value. If there is an
encoding conflict, a parse error will occur when the serialized XML document is parsed. The user-defined
types available in XML Extender are based on character types and do not make it easy to resolve issues
when the internal encoding declaration is not known in advance.

With the built-in XML data type, binary data types can be used to avoid encoding issues when transferring
data to or from a host language. A binary data type does not have an associated CCSID; therefore the
encoding of the XML data is entirely determined from the encoding declaration within the XML document.
Listing 31 shows a C example where a host variable has been declared to be of type XML as a BLOB.
The host variable is used in the call of the example_using_xml stored procedure that expects an XML
value to be passed in as a parameter.

voi d cal | _sql _exanpl e(
const char * const input_docunent,
unsi gned | ong i nput _docunent _| engt h)

{

EXEC SQL BEG N DECLARE SECTI ON;

SQL TYPE IS XML AS BLOB(5000) var 1;
EXEC SQL END DECLARE SECTI ON;

varl.l ength = input_docunent _| engt h;
nencpy(varl. data, input_docunent, input_docunent_|ength);

EXEC SQL CALL exanpl e_using_xm (:varl);

}

Listing 31: C function with XML_BLOB host variable

XML values in JDBC and SQL CLI

Similar to other user-defined types, the XML Extender user-defined types are not included in the JDBC
standard, or by the SQL call level interface (SQL CLI). These interfaces are forced to deal with the XML
Extender types by using the data type that matches the source type of the XML Extender user-defined
type. For example java.sql.CLOB might be used to contain an XMLCLOB in JDBC, and SQL_CLOB might
be used as the SQL type for XMLCLOB when using SQL CLI. Both JDBC and SQL CLI have been
enhanced in DB2 for i 7.1 to support the built-in XML data type.

JDBC 4.0 provides a java.sql.SQLXML class as a host data type. This class represents serialized XML
data. DB2 for i will parse and serialize the XML values as needed when the data is exchanged. An
important consideration when using JDBC 4.0 is that it requires Java version 1.6 or later.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

17

]
pil
1

llm]
f
I
Ill
in

Listing 32 shows how an XML column can be updated by assigning an SQLXML object to a parameter
marker.

Connection | BM;
IBM = DriverManager. get Connecti on("jdbc: as400: your _url _here");

SQXM. doc = I BM . createSQLXM.();
/1 Assune a table named dept has been created with
/1 the follow ng statenent:
/1 CREATE TABLE dept (id CHAR(8), deptdoc XM.)
PreparedSt at ement updateStnt =

I BM . prepar eSt at ement (

"UPDATE xnl test?2.dept SET deptdoc = ? " +

"WHERE | D = ' 0001""

)

doc. set Stri ng("<dept doc> new departnent data </deptdoc> ");
updat eSt nt . set SQLXM_(1, doc);

updat eSt nt . execut eUpdat e() ;

Listing 32: Using the JDBC SQLXML type to update a column

When using SQL CLI on DB2 for i 7.1, applications can retrieve and store XML data using a new
SQL_XML data type. This data type corresponds to the XML built-in data type, and can be bound to a
supported C type such as SQL_BLOB or SQL_CLOB.

The example in Listing 33 shows how to update XML data in an XML column using the SQL_C_BINARY
type. The SQLBindParameter API associates the parameter marker with the built-in XML type (SQL_XML)
and binds it to xmIBuffer; a variable that contains binary data (SQL_C_BINARY). Similar to the other
interfaces, DB2 will parse the XML data in xmIBuffer when the statement is ran.

char xm Buffer[10240];
i nteger |ength;
/1 Assune a table nanmed dept has been created with the follow ng statement:
/| CREATE TABLE dept (id CHAR(8), deptdoc XM.)
/1 xm Buffer contains an internally encoded XM. docunent that is to replace
/1 the existing XML docunent
length = strlen (xm Buffer);
SQLPrepare (hStnt, "UPDATE dept SET deptdoc = ? WHERE id = *001'", SQ._NTS);
SQLBi ndParaneter (hStnt, 1, SQ _PARAM | NPUT,

SQ._C BI NARY, SQ._XM., 0, O,

xm Buf fer, 10240, & ength);

SQLExecute (hStnt);

Listing 33: Update an XML column using SQL CLI

The SQL/XML Programmer’s guide contains more information and examples about using these interfaces
to process XML. Several links have been included in the “Resources” section for further reading.

Processing external XML files

XML Extender provides the XMLFILE UDT that can be used as a reference for stream files that contain
XML data. User-defined functions (UDFs) are provided for accessing and storing XML data in stream files.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

18

]
pil
1

llm]
f
I
Ill
in

The built-in XML type contains an XML value, described by the XDM and never refers to a value outside of
DB2. DB2 for i provides a GET_XML_FILE function and file reference variables for working with XML data
that is stored in stream files. Serialized XML data may be loaded into DB2 and parsed, so that it can be
stored in a DB2 column or referenced within a query. Similarly, XML data stored in DB2 can be serialized
and stored in a stream file.

This section discusses several approaches for working with XML data and stream files.

GET_XML_FILE

XML Extender provides the db2xml.XMLCLOBFromFile user-defined function. This function can be
used to retrieve an XMLCLOB value when given a file's IFS path. Listing 34 demonstrates this function
in action.

CREATE TABLE Ext ender _exanple (col 1 DB2XM.. XMLCLOB) ;
I NSERT | NTO Ext ender _exanpl e (col 1)
VALUES(db2xm . XMLCLOBFr onFi | e(' / home/ntl/myfile.xm"));

Listing 34: XMLCLOBFromFile example

DB2 for i 7.1 includes a built-in GET_XML_FILE function that provides similar capabilities. The
GET_XML_FILE function will read the file specified by the argument and convert the data to UTF-8. If
the file does not contain an XML declaration, one will be added. The GET_XML_FILE function returns
a BLOB locator, which can be used to construct an XML value with XMLPARSE.

An important consideration when using the GET_XML_FILE function is that, because it returns a
BLOB locator, it must be used under commitment control. The locator will be freed when a commit or
rollback is performed. Listing 35 demonstrates a possible usage of the GET_XML_FILE function.

CREATE TABLE exanple (coll XM);
SET TRANSACTI ON | SCLATI ON LEVEL READ COWM TTED;
I NSERT | NTO exanmpl e (col 1)
VALUES(XM_PARSE(DOCUMENT GET_XM__FI LE(' / home/ ntl/myfile.xm"')));
COW T;

Listing 35: GET_XML_FILE example

As some interfaces require a serialized XML document as a BLOB, a BLOB type is returned by the
GET_XML_FILE function rather than the XML data type. An implicit or explicit XMLPARSE must be
performed to obtain an instance of an XML type.

The BLOB result type returned from the GET_XML_FILE function can be an advantage over a CLOB
result because it avoids character set conversion that is typically associated with a CLOB data type.
As discussed earlier, when working with XML documents as a serialized character value, a common
problem is to accidently convert the document to a different character set, which invalidates the
encoding declaration. Using a binary type helps avoid such issues.

XML file reference variables

Another way to accomplish the task of reading XML data from a file is by using file reference
variables. File reference variables can be used by embedded SQL in host languages (C++, C, RPG,
COBOL), and provide a handle to serialized XML data stored in a stream file. A file reference variable
represents (rather than contains) the file, just as a large object (LOB) locator represents (rather than

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

19

]
pil
1

llm]
f
I
Ill
in

contains) the LOB value. File reference variables can be used for both reading XML from files and
writing XML data into files within a database query.

Reading XML from a file

Listing 36 contains C code that shows how to declare a file-reference variable for a stream file
(/doc/input_file.xml), and how to insert the contents of the file into an XML column my_xml_col of
table my_schema.my_table.

const char xm _file_nane[255] = "/doc/input _file.xm";

EXEC SQL BEG N DECLARE SECTI ON;
SQL TYPE IS XML AS BLOB FILE ny file ref;
EXEC SQL END DECLARE SECTI ON;

nenset (&ry_file_ref, 0x0, sizeof(nmy_file_ref));
strepy(ny_file_ref.name, xm _file_nane);
ny_file_ref.nane_length = strlen(xm _file_nane);
my_file_ref.file_options = SQ_FI LE_READ,

EXEC SQL | NSERT | NTO ny_schena. ny_t abl e(ny_xm _col)
VALUES(: ny_file_ref);

Listing 36: XML file reference for read

The variable my_file_ref is defined to have an SQL type of XML AS BLOB_FILE. This means that
DB2 will construct XML values from a BLOB_FILE host variable. A CLOB_FILE type could also be
used, however, when the XML document specifies its own encoding, it is generally a good idea to
use a binary data type so that CCSID conversions and encoding mismatches are easier to avoid.

The precompiler creates a data structure for the BLOB_FILE variable, as shown in Listing 36.

static _Packed struct {
unsi gned | ong nane_| engt h;
unsi gned | ong data_l engt h;
unsi gned long file_options;
char name[255];

} ny_xm _file;

Listing 37: Generated structure for the XML file locator

Within the structure, the name component is the IFS path to the file, and name_length is the
length of this file name.

The data_length component is an output parameter. When the file reference variable is used for
reading data, DB2 returns the length of the file (in bytes) in the data_length component. If the file
reference variable is used for writing data, data_length will be set to the length of the new data
that was written to the file.

The file_options component determines how the referenced file is to be used. The C precompiler
generates the constants for this variable that are described in the following points. As in this
example, the file reference variable is being used to read data from the file, the file option is set to
SQL_FILE_READ.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

20

|l
H]
||III
1

I

1
|
I
Ill
in

e Constants for read operations
- SQL_FILE_READ (2) — The file can be opened, read, and closed
e Constants for write operations

- SQL_FILE_CREATE (8) — The file will be created. An error will be returned if the file
already exists when the SQL statement is ran.

- SQL_FILE_OVERWRITE (16) — The file will be created if it does not exist, or
overwritten with the new data if it already exists.

- SQL_FILE_APPEND (32) — This option has the output appended to the file if it exists,
otherwise a new file is created.

Writing XML into a file

XML Extender offers the db2xml. XMLFileFromCLOB and db2xml.XMLFileFromVarchar functions
to store XML data in a file and return an XMLFILE type as a reference to the data. In Listing 38,
the db2xml.XMLFileFromClob function is used to write out the serialized XML document (as a
CLOB) to a stream file with the IFS path /home/ntl/outl.xml.

CREATE TABLE Ext ender _exanple (col 1 DB2XM.. XMLCLOB) ;

I NSERT | NTO Ext ender _exanpl e(col 1)
VALUES(' <doc> this is ny docunent </doc>');

SELECT
db2xm . XMLFi | eFr onCLOB(cast (col 1 as CLOB(2g)), '/hone/ntl/outl.xm")
FROM Ext ender _exanpl e;

Listing 38: db2xml.XMLFileFromCLOB Example

In DB2 for i 7.1, file reference host variables can be used to write serialized XML data into a file.
This process is very similar to the task of reading XML data from an XML file with a file reference
host variable.

Listing 39 contains the RPG code that selects the XML document stored in my_xml_col column
from the table, myschema.my_table, where the column named pk is equal to one. The serialized
data is stored in a file named, /home/ntl/out2.xml.

D outputFile S 28A varying
D INZ('/ home/ntl/out2.xm")
Dny_xmfile S SQLTYPE(XM__BLOB_FI LE)
| FREE
EVAL ny_xm file_NAVE = outputFile;
EVAL nmy_xm file_NL = % en(outputFile);
EVAL ny xmfile_FO = SQFOVR,

EXEC SQL SELECT ny.nmy_xm _col INTO :ny_xnmfile
FROM ny_schera. mytabl e mt WHERE pk = 1;

| END- FREE

Listing 39: XML file reference for write

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

21

|l
H]
||III
1

I

1
|
I
Ill
in

The host variable, my_xmilfile, is declared with the keyword SQLTYPE(XML_BLOB_FILE), which will
cause the RPG precompiler to create a data structure for the variable that is shown in
Listing 40.

D MY_XMLFI LE DS

D MY_XMLFI LE_NL 10U
D MY_XM.FI LE_DL 10U
D MY_XM.FI LE_FO 10U
D MY_XMLFI LE_NANE 255A

Listing 40: Structure generated by RPG precompiler

In the data structure, MY_XMLFILE_NAME and MY_XMLFILE_NL correspond to name, and
name_length shown in Listing 37. MY_XMLFILE_DL corresponds to data_length in Listing 37 and will
be set to the number of bytes written to the file after the SELECT statement has been ran.
MY_XMLFILE_FO corresponds to file_options in Listing 40.

Similar to the SQL precompiler for C, the RPG SQL precompiler can generate constants that can be

used for the file options variable. The generated constants and their values are shown in the following
list. Each constant corresponds to the constant that has the same value mentioned in the list. For this
example, MY_XML_FO is set to SQFOVR so that the output file is overwritten if the file already exists.

e SQFRD (2)

e SQFCRT (8)
e SQFOVR (16)
e SQFAPP (32)

As the application handles this XML value as a BLOB_FILE reference, the file will be created as a
binary file and the XML value will be implicitly serialized to UTF-8. The encoding declaration of UTF-8
will be included in the document.

Working with binary files helps to avoid encoding mismatches and CCSID conversions, but it can
make it more difficult to process these files as text. Text editors and other tools need to convert the
data in the file from the file’s CCSID to the CCSID required for processing or display, and these tools
might not be able to interpret the XML encoding declaration. If a binary file creates problems for these
non-XML aware tools, an XML_CLOB_FILE type can be used instead of XML_BLOB_FILE. Using a
CLOB file reference sets the CCSID of the result file to match the data, rather than setting the result
file CCSID to 65535 for binary data. Additional care must be taken with this approach to ensure that
the CCSID of the file, the encoding of the data in the file, and the encoding declaration for the XML
data stay synchronized.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

22

]
pil
1

llm]
f
I
lll
in

Scenario overview

The following fictional scenario is used throughout the rest of this white paper to contrast the DB2 XML
Extender and integrated XML support.

The automobile parts manufacturer, ABC Corporation has been running transaction processing and data
warehouse applications on the IBM i; they have been using the integrated relational database for many
years with great success. To maintain a competitive advantage, XML data must be used to communicate
customer and order information over a complex corporate infrastructure. Previously, the company was
using XML Extender to perform XML related tasks; however, in comparison to the new functionality, XML
Extender has limited capabilities and does not conform to an industry standard. As a result, the
corporation now wants to use the new XML support in their environment.

Figure 2 shows an overview of the data flow used by ABC Corporation.

Order XML Document
#3 Decompose XML % N Stored XML

#2 queries of XML data

Factory Database

#4 updates of #5 Publish summary report
relational and XML om relational data

E Daily Summary Report XML document

6 Validate XML document against an XML schema
gg{gg;astee HQ E %Decompose XML to relational tables

Product Database a

Figure 2: ABC Corporation overview

#8 Full Text Search of Product Information
(stored in XML format)

Each factory provides a web application to accept automobile part orders from customers. Part orders are
received from the web application in an XML format, and processed throughout the organization.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

23

]
pil
1

llm]
f
I
Ill
in

XML processing steps

XML processing includes the following steps:
1. The original order (an XML document) is inserted into a DB2 table as XML for auditing purposes.
2. Queries are occasionally performed using the XML documents.

3. Applications prefer to use relational data, rather than XML data. Relational data integrates better
with the company’s existing data model, and offers improved scalability and performance benefits.
For this reason, the original XML order documents are decomposed (shredded) into to a table.

4. Inrare cases, XML order documents are updated with new information. For example, if a
customer’s name changes, all previous orders must be changed to reflect the new name (following
a today for yesterday strategy). This is necessary to ensure that the information in the relational
database is consistent with the XML documents.

5. Atthe end of each day, each factory uses its relational data to compose and send a summary
report of new orders (in XML format) to the corporate headquarters database.

6. The corporate headquarters validates that the XML documents conform to corporate standards.

7. The validated XML documents are shredded into a relational database. Business intelligence
applications can then integrate the relational data into a data warehouse.

8. The corporate headquarters maintains a DB2 column that contains a set of documents (in XML
format) which describe the products that are in its inventory. The business needs to search this
column for products that contain linguistic matches of keywords, where the search is scoped to
specific elements within the document. The search also needs to incorporate values such as date
ranges in the request.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

24

|l
h
||III
1

I

1
I
Ill
in

Store XML documents in DB2

The first step is to store the order document (Listing 41) received from the Web application into a DB2
XML column. To simplify the example, the XML order documents will be loaded from an IFS stream file.

<?xm version="1.0"?>
<orders xm ns="http://ww. abcconpany. cont >
<subm ssi onCode>123ABC</ subm ssi onCode>
<submi ssi onDat e>2012- 06- 14</ subm ssi onDat e>
<order _i nfor>
<part_nanme>Val ve</ part _nanme>
<quant i ty>1000</ quantity>
<order _dateti ne>2012-06- 14T08: 20: 00+03: 00</ order _dat eti me>
<cust oner _nane>Fi rst Aut onobi | e Wrks</ cust onmer _nane>
</ order _i nfor>
<order _i nfor>
<part _nanme>Fl ywheel </ part _nanme>
<quant i ty>2000</ quantity>
<order _dateti ne>2012-06- 14T13: 20: 00+03: 00</ order _dateti me>
<cust oner _nanme>Second Aut onobi | e Wr ks</ cust oner _nane>
</ order_infor>
</ order s>

Listing 41: XML order document

The original_orders table contains a column with the XML data type and is defined with the CREATE
TABLE statement in Listing 42.

CREATE TABLE ori gi nal _orders (
order _doc_id BI G NT
GENERATED ALWAYS AS | DENTI TY
(START WTH 1
| NCREMENT BY 1 NOCYCLE)
order_doc XML NOT NULL,
PRI MARY KEY (order _doc_id))

Listing 42: Table for original_orders document

Inserting the XML document into the table can be done with the GET_XML_FILE function, as shown in the
following listing.

I NSERT | NTO origi nal _orders (order_doc)
VALUES(XM_PARSE(DOCUMENT
GET_XM._FI LE(' / Order/ 2012- 06- 14- 123456. xm ')))

Listing 43: Insert into original_orders

Query XML data

ABC Corporation needs to occasionally perform SQL queries that involve data contained in the XML
documents archived in DB2. The XML Extender option provides scalar and table extraction functions to
satisfy this requirement. The XMLTABLE function provides a much wider set of capabilities and can be
used to replace the already existing function. This section compares the capabilities offered by the XML
Extender functions with the capabilities provided by the XMLTABLE function in DB2 fori 7.1.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

25

]
pil
1

llm]
f
I
Ill
in

XML Extender extraction functions

XML Extender provides a set of scalar and table extraction functions for retrieving data from columns
defined using one of the XML Extender user-defined types. The XML Extender functions are named for the
SQL data type that was extracted from the document. The singular version of the name (for example,
db2xml.extractVarchar) indicated the scalar function, and the plural version of the name (for example,
db2xml.extractVarchars) represented the table function. For example, if the order_doc column is defined
with the XMLCLOB UDT, a developer can extract the submission code as an SQL VARCHAR value with
the following query.
SELECT
order_doc_id,

db2xm . extract Var char (order _doc, '/orders/subm ssionCode')
FROM ori gi nal _orders

Listing 44: db2xml.extractVarchar scalar function

The scalar function returned an error if more than one XML node matched the location path expression.
Repeating elements are common in XML documents. For this reason, table functions that return result
sets were more commonly used for extracting information.

Using XML Extender, the query in the following listing invokes the db2xml.extractVarchars table function to
retrieve a result set that contains one row for each customer name.

SELECT origi nal _orders. order_doc_id,
customer _rs. cust omer _nane
FROM
original _orders,
TABLE(db2xm . extract Var char s(
order _doc,
"/ orders/order_infor/custoner_nane'

)

) customer _rs(custoner_nane)

Listing 45: db2xml.extractVarchars table function

The result set (shown in the following table) contains one column for the order’s document ID and another
column for the extracted customer name as an SQL VARCHAR data type. The join between the
original_orders table and the db2xml.extractVarchars table function produces two rows for the order XML
document with the ID number 1.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

26

|l
h
||III
1

I

1
I
Ill
in

ORDER_DOC_ID | CUSTOMER_NAME

1 First Automobile Works

1 Second Automobile Works

Table 1: Result set

These XML Extender extraction functions are useful, but there are a number of deficiencies associated
with their usage:

e The path expressions are namespace unaware which can cause erroneous matches with
elements and attributes in another namespace. The inability to specify a namespace in the path
expression creates challenges for some XML environments where the same local name exists in
multiple namespaces.

o XML Extender does not have any awareness of the atomic XML data types defined by the XML
Data Model. Extracting SQL data from XML documents required that the data in the XML
documents to be stored in an SQL character data format. As most applications expect XML data
to use data types defined by the XDM, the inability to convert from a data type defined by the XDM
to an SQL type was not preferred. This issue is discussed in detail later in this paper.

e Using the extraction functions to create a result set with multiple columns required multiple table
references and correlations. This type of implementation can cause performance issues and is
also difficult to code.

The XMLTABLE function provided in DB2 for i 7.1 provides similar functionality, but does not have the
same weaknesses as the DB2 XML Extender table functions.

Using the XMLTABLE table function

The DB2 for i 7.1 Group PTF SF99701 Level 14 (or higher) includes a powerful XMLTABLE table function
for queries that need to access XML data. This function returns a result set containing one or more
columns with the specified portions of the XML document. Instead of location paths, the result set’s values
are determined using a very similar, but more expressive XPath 2.0 syntax. The function handles the
conversion of the data in the document from the XML data type to the SQL type of the result set's column
when necessary. XMLTABLE properly supports XML namespaces, and provides a rich set of expressions
that can be used within XPath predicates.

The following query offers a comparison of the XMLTABLE function with the extractVarchars table function
example in Listing 45. The following query uses the XMLTABLE function to return a result set with
customer names from XML documents in the order_doc column.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

27

|l
h
||III
1

I

1
I
Ill
in

SELECT o0o0. order_doc_id,
cust oner _rs. cust omer _nane
FROM original _orders oo,
XMLTABLE(
XMLNAMESPACES(DEFAULT ' htt p://ww. abcconpany. com),
'/ orders/order _infor/customer_nang'
PASSI NG o0o0. order _doc
COLUMWNS
cust oner _nanme VARCHAR(255) PATH '.°'
) customer_rs

Listing 46: XMLTABLE function used to return a VARCHAR column

The XMLTABLE keyword defines a table reference, meaning that the columns it defines can be referenced
in the query the same way as the columns of a table function or table. For practical purposes, XMLTABLE
is considered a special type of table function, rather than a completely unique SQL concept.

The XMLNAMESPACES declaration defines the namespace bindings used for the XPath expressions. In
this example, http://www.abccompany.com is the default element namespace for all unqualified element
names. Element and attribute names in path expressions will not match elements and attributes in the
document unless both share this namespace Uniform Resource Identifier (URI) value.

The literal ‘/orders/order_infor/customer_name’ is the row expression; it indicates that the result set will
contain one row for each customer_name element. Each element returned from the row expression
becomes the context item, or starting point for evaluation of the column path expressions.

The PASSING clause defines order_doc as the initial context, or relative starting point for the row XPath
expression.

The COLUMNS clause defines the columns that will appear in the result set from XMLTABLE. The
CUSTOMER_NAME column will be a VARCHAR(255) column. The value of this column is determined
from the PATH expression ('."). The period indicates that the current context item should be used to
determine the customer name. In this example, the context item is the customer_name element
(determined by the row expression) that is being used as a starting point for the evaluation of the column
expressions.

Although its syntax is unique, the XMLTABLE function shares the same correlation rules as a table
function. In Listing 46, the function invocation references oo.order_doc, a column in an object table
declared previously (left-to-right) in the same FROM clause as XMLTABLE. This situation is called lateral
correlation. Each row of original_orders is cross-joined with the rows returned by the XMLTABLE function
for that row. Rows from original_orders for which the XMLTABLE function returns no rows will not appear
in the final result set.

The results from the query in Listing 46 are shown in the following table. The cross-join between the
original_orders table and XMLTABLE produces two rows for the order document with the ID number 1.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

28

]
pil
1

llm]
f
I
Ill
in

ORDER_DOC_ID | CUSTOMER_NAME

1 First Automobile Works

1 Second Automobile Works

Table 2: XMLTABLE query results

The XMLTABLE function is capable of much more powerful queries than that were ever possible with XML
Extender. It supports much improved capabilities for using XPath expressions. XMLTABLE also has the
ability to pass values from SQL as parameters and reference the equivalent XML values within XPath
expressions. You can find more detailed discussion and tutorial for the XMLTABLE function’s syntax and
capabilities in the IBM i information center. Refer to the links provided in the “Resources” section at the
end of the paper.

Using the XMLTABLE function to retrieve a scalar result

DB2 for i does not include a scalar counterpart to the XMLTABLE function. However, a scalar function
is not necessary as the table function can be effectively used to return scalar values. At first glance, a
guery to extract submissionCode from the XML order document that was shown in Listing 41 might use
a subquery as a column in the select list. In this approach, the subquery invokes the XMLTABLE
function. This solution is shown in the following listing.

SELECT
order_doc_id,

SELECT xt. subm ssi onCode
FROM
XMLTABLE(
XMLNAMESPACES(DEFAULT ' http://ww. abcconpany. com),
' order s/ subm ssi onCode’
PASSI NG ori gi nal _orders. order_doc
COLUWNS
subm ssi onCode VARCHAR(100) PATH '.'
) xt
) AS submi ssi oncode
FROM ori gi nal _orders

Listing 47: Using XMLTABLE in a subquery

The subquery returns a scalar VARCHAR value, given an XML document from the order_doc column
in the original_orders table. If the subquery were to ever return more than one row, the query will fail
when the attempt to return the additional row occurs. When the subquery does not return any rows, a
null value is returned for the submissioncode result. The result set from the query is shown in the
following table.

ORDER_DOC_ID | SUBMISSIONCODE

1 123ABC

Table 3: XMLTABLE result set

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

29

|l
h
||III
1

I

1
I
Ill
in

Replacing the scalar extract function call with a subquery is easy to do, but is not the most efficient
solution, especially if many columns are being extracted from an XML document.

If a developer knows that the subquery will always return exactly one row, then the previous SQL query
can be written using a cross join instead of a subquery. The cross join implementation is shown in the
following listing.

SELECT order_doc_id, xt.subm ssionCode
FROM
original _orders CROSS JON
XMLTABLE(
XMLNAMESPACES(DEFAULT ' htt p://ww. abcconpany. com),

PASSI NG ori gi nal _orders. order_doc

COLUWNS

subm ssi onCode VARCHAR(100) PATH ' or der s/ subm ssi onCode'
) xt

Listing 48: Using the XMLTABLE function in a cross join

This query was written in such a way that when the order_doc column contains a non-null value, the
XMLTABLE function always returns exactly one row to use in the join. The row expression ('.") is a
reference to the context item, which in this case is the root node of the XML document provided by the
order_doc column. The table function can therefore result in at most one row per input document. The
only way the row expression would not find a match for the root node (causing the table function to
return no rows) is when the order_doc column value is null.

The submissionCode column’s XPath expression (orders/submissionCode) contains the path to the
value that needs to be returned. If the column’s path expression results in no matches, the null value is
assigned to the column. If the column’s path expression results in more than one value, the query
results in an error; SQL does not allow a row to have multiple values for a single column.

The result of the query in Listing 48 matches the query in Listing 47 and is shown in Table 3.

Suppose that the order_doc column had been created as null capable, and that the INSERT statement
in Listing 49 has been run to insert a null value. The query in Listing 48 will not return a row for the
newly inserted row in the order_doc table that contains the null value.

| INSERT [NTO ori gi nal _orders (order_doc) VALUES(NULL) \

Listing 49: Insert of null value into an XML column

If the value for the order_doc column is null, then the row expression will not result in a match for any
node, and the result of the XMLTABLE function will return an empty table. The cross join will not
include the rows from original_orders for which the XMLTABLE function resulted in an empty table, as
those rows have nothing to join with. This issue can be resolved by changing the join operator from
cross join to a left outer join. Unlike the cross join, the left outer join query includes the rows in
original_orders, which do not have rows from the XMLTABLE function to join with, assigning null to the
values of columns of those rows. A trivial join condition is used because there is no join column. The
left outer join version of this query is shown in the following listing.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

30

]
pil
1

llm]
f
I
Ill
in

SELECT order_doc_id, xt.subm ssionCode
FROM
original _orders LEFT QUTER JO N
XMLTABLE(
XMLNAMESPACES(DEFAULT ' http://ww. abcconpany. com),

PASSI NG ori gi nal _orders. order_doc

COLUWNS

subm ssi onDat e VARCHAR(100) PATH ' or der s/ submi ssi onCode'
) xt ON (1 =1)

Listing 50: Using the XMLTABLE function in a LEFT OUTER JOIN

The results from the query are shown in the following table. The dash character (*-) is used to
represent a null value.

ORDER_DOC_ID | SUBMISSIONCODE

1 123ABC

2 -

Table 4: Results from the LEFT OUTER JOIN

Using either type of joins is an advantage over using a scalar function (or a subquery) in the select list.
Multiple columns can be extracted from a single XMLTABLE invocation, which allows many path
expressions to be combined into one XMLTABLE function call. For example, the following query uses
XML Extender functions to extract and compare the values stored in an XML document. The three UDF
invocations require evaluations of three location paths. The first two UDF invocations are used to
extract submission date and code value, and the third UDF invocation is used to check if the value of
the SubmissionDate element meets the specified selection criteria.
SELECT
db2xm . ext ract Dat e(order _doc, '/orders/subm ssionDate') sd,
db2xm . ext ract Var char (order _doc, '/orders/subnissionCode') code
FROM ori gi nal _orders
WHERE

db2xm . extract Dat e(order _doc, '/orders/subnissionDate') >
DATE(' 2012-06-12")

Listing 51: Multiple scalar functions in XML Extender

A simpler solution is implemented with a single XMLTABLE invocation, as shown in Listing 52. This
guery can perform better, because fewer expressions need to be evaluated, and the XML document
does not need to be evaluated by multiple user-defined functions.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

31

|l
H]
||III
1

I

1
|
I
Ill
in

SELECT xt.sd, xt.code FROM
origi nal _orders,
XMLTABLE(
XMLNAMESPACES(DEFAULT ' htt p://ww. abcconpany. com),

PASSI NG ori gi nal _orders. order _doc

COLUMWNS
sd DATE PATH ' or der s/ subm ssi onDat e'
code VARCHAR(100) PATH 'orders/subni ssi onCode'
) XT

VWHERE xt.sd > DATE('2012-06-12")

Listing 52: Multiple column expressions in XMLTABLE

When extracting scalar values, evaluating multiple path expressions within a single table function offers
a performance advantage over multiple function invocations, and makes the query more readable.

XML and SQL data type conversions

The XML Extender extraction functions assume that the data in the XML document is string data that
represented an SQL data type. In order to extract an SQL value from an XML document, XML
Extender simply extracts the string value using a location path, and converts the string result to the
specified SQL type with the SQL Cast function.

The lexical format and properties of the XDM and SQL types are not always the same. For instance,
the ISO SQL TIMESTAMP has a lexical format of yyyy-mm-dd hh:mm:ss.uuuuuu. However, the
most similar XDM type xs:dateTime has a lexical format of yyyy-mm-
ddThh:mm:ss.sssssssssssszzzzzz, where zzzzzz is an optional time zone component. In addition
to lexical differences, the inclusion of a time zone component makes the properties of the xs:dateTime
type fundamentally different than the SQL TIMESTAMP type.

As XML is used for exchanging information in platform- and application-independent environments,
applications usually expect data in an XML document to conform to the XML standard, rather than the
SQL representation. This makes the XML Extender approach inadequate for many environments, as it
cannot handle the XDM types.

While the XML Extender functions expect XML documents to contain SQL data strings, the
XMLTABLE function expects the XML document to contain XDM types and will convert a value of an
XDM type to the appropriate SQL type whenever the value is returned to SQL. This allows
XMLTABLE to work with XML documents that conform to the W3C standard, rather than documents
built exclusively for consumption by SQL.

When using XMLTABLE, the required XDM type for the result of a column’s PATH expression is
determined by the mapping described in the following table. In this table, the SQL type represents the
data type of the SQL column in the COLUMNS clause; the XDM type represents the required result
type of the XPath expression. It is not necessary to explicitly specify the XDM type in the path
expression because DB2 for i can determine this using the SQL type of the column and the mapping
in Table 5. The result of the path expression will be implicitly casted to the appropriate XDM type,
before converting the value to the requested SQL data type.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

32

|l
H]
||III
1

I

1
|
I
Ill
in

SQL data type

DB2 for i XDM type

SMALLINT
INTEGER
BIGINT

xs:integer

DECIMAL
NUMERIC

xs:decimal

FLOAT
DOUBLE
DECFLOAT

xs:double

DATE

xs:date

TIME

xs:time

TIMESTAMP

xs:dateTime

CHAR
VARCHAR
GRAPHIC
VARGRAPHIC
CLOB
DBCLOB

Xs:string

Table 5: Supported SQL and XML type conversions

An example of XML to SQL conversion is shown in Listing 53. The order_datetime column specified in
the COLUMNS clause on the XMLTABLE function has an SQL data type of TIMESTAMP. For this
reason, XMLTABLE builds an xs:dateTime XML value using the result of the PATH expression. The
xs:dateTime value is then converted into the SQL Timestamp format. The results of the query are

shown in Table 6.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

33

|l
H]
||III
1

I

1
|
I
Ill
in

SELECT xt.order_datetinme
FROM

original _orders,

XMLTABLE(
XMLNAMESPACES(DEFAULT ' http://ww. abcconpany. com),
"orders/order _infor/order_datetinme'
PASSI NG ori gi nal _orders. order_doc
COLUWNS

order_datetime TI MESTAMP PATH '.') xt

Listing 53: Query with timestamp result column

One thing to notice in the following table is that the timestamp values are different than the timestamp
values in the XML document (refer to Listing 41). Because the SQL TIMESTAMP data type on DB2
for i does not support time zones, the XMLTABLE function normalizes the xs:dateTime value to the
Coordinated Universal Time (UTC) and removes the time zone when the value is returned to the
invoking SQL statement.

ORDER_DATETIME

2012-06-14 05:20:00.000000

2012-06-14 10:20:00.000000

Table 6: ORDER_DATETIME result column

Consistency with the ISO SQL/XML and W3C standards is a requirement for the ABC Corporation.
So, they have chosen to always represent their timestamp values as xs:dateTime within their XML
documents. This implementation ensures that applications that follow the W3C XML standard will now
have no trouble in processing the date and timestamp values stored within their XML document.

Applications that need to extract values from an XML document using XML Extender have to store all
timestamp data within XML documents as string data that represents SQL values with an ISO format.
If ABC Corporation had stored timestamp values in this fashion, then these values would not be valid
xs:dateTime values, and the built-in XML functions available in DB2 for i 7.1 would not be able to work
with them as timestamps. The XMLTABLE function would not be able to return these values as an
SQL TIMESTAMP, as the function expects to find data that can be recognized as an xs:dateTime
value.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

34

]
pil
1

llm]
f
I
Ill
in

Listing 54 contains an example that is the XMLTABLE function equivalent of the example given by the
XML Extender administrative guide for the db2xml.extractTimestamps function.

SELECT xt.*
FROM
XMLTABLE(' // dat a'
PASSI NG
XM_PARSE(DOCUVENT
"<stuff>
<dat a>2003-11-11-11. 12. 13. 888888</ dat a>
<dat a>2003- 12- 22-11. 12. 13. 888888</ dat a>
</stuff>")
COLUWNS
ti mestanp_col TI MESTAMP PATH '.') xt

Listing 54: XMLTABLE example of an invalid xs:dateTime conversion

The query in Listing 54 will fail with an error. This error occurs because the timestamps in element
‘data’ are not valid xs:dateTime values. This is a common problem in the industry when working with
XML applications that did not represent their data according to the XDM.

In these cases, the most common solution is to have the XMLTABLE function return the value as a
VARCHAR value and then convert the value to a timestamp value on the SELECT list. This approach
is shown in the following listing.

SELECT
TI MESTAMP_FORMAT(xt . ti nest anp_as_varchar _col,
"YYYY- MM DD- HH24. M . SS. NNNNNN') AS out _col
FROM
XMLTABLE(' // dat a'
PASSI NG
XMLPARSE(DOCUMENT
‘<stuff>
<dat a>2003- 11-11-11. 12. 13. 888888</ dat a>
<dat a>2003- 12-22-11. 12. 13. 888888</ dat a>
</stuff>'
)
COLUMWNS
ti mestanp_as_varchar_col VARCHAR(26) PATH '.'
) xt

Listing 55: Building a TIMESTAMP from a VARCHAR result to an SQL type

Due to the fact that the query in Listing 55 uses a VARCHAR type for the timestamp_as_varchar_col
column, the XDM type for the path expression is required to be xs:string (the type mapped to
VARCHAR by Table 5). The XMLTABLE function casts each data element to xs:string, and coverts
the xs:string to an SQL VARCHAR with no issues, the VARCHAR is assigned to the
timestamp_as_varchar_col column of the table function. The timestamp_as_varchar_col column
becomes an input to the TIMESTAMP_FORMAT function, which creates the timestamp result that is
stored in the column out_col.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

35

]
pil
1

llm]
f
I
Ill
in

The output of the query is shown in the following table.

OUT_coL

2003-11-11 11:12:13.888888

2003-12-22 11:12:13.888888

Table 7: TIMESTAMP result from a VARCHAR column

Return an xs:date, xs:time, or xs:dateTime value’s local time

When an xs:date, xs:time, or xs:dateTime includes a time zone, the XMLTABLE function normalizes
the value to UTC and removes the time zone before returning the value to SQL as a Date, Time, or

Timestamp value. This processing causes a loss of information because after normalization, it is no
longer possible to determine the original local date and time for the value.

Sometimes the local date and time is important to an application and normalizing values of these
types to UTC causes a problem. For example, given a set of XML order documents similar to the one
shown in Listing 41, a business intelligence application might need to determine on what dates, or at
what time of day, the most purchases have been made. When customers are placing orders from
many different time zones, normalizing the values to UTC is not helpful. It is the date and time of the
purchase in the purchaser’s local time zone that is interesting.

An additional problem is that some tools for working with XML do not support normalizing date, time,
and timestamp values to UTC. These tools usually truncate the time zone component, which causes
the result value to contain only the local time portion of the original value. In some cases, this makes it
necessary to retrieve xs:date, xs:time, or xs:dateTime values with the time zone component removed
when using the XMLTABLE function.

XPath built-in functions can be used to remove the time zone component from an xs:date, xs:time, or
xs:dateTime value before returning the value to SQL. The fn:adjust-date-to-timezone, fn:adjust-time-
to-timezone, and fn:adjust-date Time-to-timezone built-in functions are provided to adjust the time zone
component of an xs:date, xs:time, or xs:dateTime value respectively. When the new time zone is an
empty sequence (written as a pair of empty parenthesis (‘()’) in XPath), the result of the function is the
input value with the time zone removed. As the adjusted value does not have a time zone, it is not
normalized to UTC when it is returned to SQL.

The following listing shows how the query in Listing 53 can be modified so that each row contains a
timestamp that represents the local time of the original value. The xs:dateTime function is used to
construct an xs:dateTime value using the current context node (."). The xs:dateTime is then passed
into the fn:adjust-dateTime-to-timezone function. The second parameter to the adjust-dateTime-to-
timezone function is an empty sequence, which causes the time zone component to be removed.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

36

|l
H]
||III
1

I

1
|
I
Ill
in

SELECT xt.order_datetinme
FROM ori gi nal _orders,

XMLTABLE(
XMLNAMESPACES(DEFAULT ' htt p://ww. abccompany. com),
"orders/order _i nfor/order_datetine'
PASSI NG ori gi nal _orders. order_doc
COLUWNS

order_datetime TI MESTAMP
PATH 'fn:adjust-dateTine-to-ti nezone(
xs: dateTi ne(.),

0

) xt

Listing 56: Return an xs:dateTime’s local dateTime as a TIMESTAMP

The result of the query is shown in the following table. The difference between Table 8 and Table 6 is
that the normalization to UTC did not occur for the output displayed in Table 8.

ORDER_DATETIME

2012-06-14 08:20:00.000000

2012-06-14 13:20:00.000000

Table 8: order_datetime results based on using the original value's local time

Decompose XML to a relational database table

Decomposition (also known as shredding) is the process of storing the values encapsulated within an XML
document into columns of one or more relational tables.

ABC Corporation’s business applications are dependent on data being available in a relational model.
XML is typically used only in specific scenarios related to web interfaces. As a result, the order XML
document needs to be decomposed into a relational database table. The target table for the
decomposition is defined by the SQL CREATE TABLE statement displayed in Listing 57.

CREATE TABLE orders (
order _doc_id Bl G NT,
order_id Bl G NT,
part _name VARCHAR(1000),
part _nunber Bl G NT,
order _tinmestanp Tl MESTAMP,
cust oner _namne VARCHAR(1000) ,
PRI MARY KEY (order_doc_id, order_id))

Listing 57: Orders table definition

With the DB2 XML Extender, an XML document is decomposed into a relational table by using either the
db2xml.dxxInsertXML or db2xml.dxxShredXML stored procedures. These procedures require the
mapping between the XML document and target relational table to be defined in advance with a document
access definition (DAD) file or XML collection file.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

37

|l
h
||III
1

I

1
I
Ill
in

A sample DAD file is shown in Listing 58. This DAD file could have been used with XML Extender for
decomposing the part_name and quantity elements from Listing 41 into the SQL columns part_name and
part_number columns in the orders table defined in Listing 57.

<?xm version="1.0"?>
<DAD>
<val i dati on>NO</ val i dati on>
<Xcol | ecti on>
<r oot _node>
<el enent _node nane="orders">
<RDB_node>
<t abl e name="EXAMPLE. ORDERS" />
</ RDB_node>
<el enment _node nane="order _infor"
mul ti _occurrence="YES">
<el enent _node nane="part_nane">
<t ext _node>
<RDB_node>
<t abl e nane="EXAVPLE. ORDERS" />
<col um nanme="PART_NAME" type="VARCHAR(1000)" />
</ RDB_node>
</t ext _node>
</ el ement _node>
<el emrent _node nane="quantity">
<t ext _node>
<RDB_node>
<t abl e nane="EXAWMPLE. ORDERS" />
<col um name="PART_NUMBER' type="BI A NT" />
</ RDB_node>
</ text _node>
</ el ement _node>
</ el ement _node>
</ el ement _node>
</ root _node>
<Xcol | ecti on>
</ DAD>

Listing 58: DAD file for decomposition

Using DAD files to decompose an XML document had a number of important limitations. The xs:dateTime
value within the order_dateTime element of the Orders document cannot be directly mapped to the
TIMESTAMP field of the ORDERS table using a DAD file because the XML Extender does not have an
understanding of the XDM data types. Also, the XML Extender support is not able to easily include data
values that are not stored in the XML document. A good example of where this feature is needed can be
seen with the order_doc_id column on the original_orders table (created in Listing 42). This column was
created as an identity column, so that DB2 would generate a unique document identifier for each XML
document when the XML document was inserted into the original_orders table. The unique identifier needs
to be included as a column on each of the tables that are the targets of the decomposition, so that the
decomposed data can be linked back to the source XML document.

The limitations for decomposing XML data using XML Extender are no longer a problem with the
integrated XML support in the IBM i 7.1 release. As the XMLTABLE function returns a result set, it can be
used within an SQL INSERT statement as part of a query to decompose an XML document. This is
particularly useful when we only need to decompose documents into a single target table. When multiple
target tables are needed and an XML schema is available, annotating the XML schema and using the XML

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

38

]
pil
1

llm]
f
I
Ill
in

decomposition stored procedures can be a better option. Schema annotations and decomposition are
discussed later on.

After the order XML document has been stored into the original_orders table (refer to Listing 42), the
statement in Listing 59 will insert the information from the order XML document into the orders table whose
definition can be found in Listing 57.

I NSERT | NTO orders(order_doc_id, order_id, part_name, part_nunber,
order _timestanp, custoner_nane)
SELECT
00. order_doc_i d,
t.row_nunber,
. part _nane,
. part _nunber,
.order_ti nmestanp,
. cust oner _nane
FROM ori gi nal _orders oo,
XMLTABLE(XM_LNAMESPACES(DEFAULT ' htt p: // ww. abcconpany. com),
"/ orders/order_infor'
PASSI NG 0o0. order _doc

t
t
t
t

COLUWNS
r ow_nunber FOR ORDI NALI TY,
part _name VARCHAR (1000) PATH './part_nane',
part _nunber Bl G NT PATH ' ./quantity',
order_timestanp Tl MESTAWP PATH ' ./order_datetime ',
cust oner _nane VARCHAR (1000) PATH './custoner_nane'
) AS't

Listing 59: Decompose using the XMLTABLE function

The diagram in Figure 3 graphically represents this insertion process.

Cross-join
[ORIGINAL_ORDERS
[¥MLTABLE
5 ORDER_DOC_ID EH
g ROW_NUMBER
8 PART_MNAME
E ORDER_DOC [PART_MUMBER
f ORDER_TIMESTAMP
d CUSTOMER_MNAME
Insert values from rows from the For each row on the left hand side
cross-join into the target table. of the join, ¥MLTABLE returns a
result set for that row to use in the
cross join, The result set is the
specified decomposition of
CRDER_DOC,
=] ORDERS
2 ORDER_DOC_ID
2 ORDER_ID
B PART_NAME
5 PART_NUMBER
E ORDER_TIMESTAMP
g CUSTOMER_NAME

Figure 3: Graphical representation of the insertion process using the XMLTABLE function

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

39

o[k
||III
1

llm]
I
I
Ill
in

The row_number column does not have an explicit data type or XPath expression associated with it.
Instead, it specifies that the value returned should be the ordinality, or row number, for the row returned for
this particular XML document. An ordinality column always has an SQL type of BIGINT. This value
combined with the document ID associated with the original XML document can be used as a primary key
for the target table.

Due to the fact that the XMLTABLE function handles the conversion of XML types to the specified SQL
types of each column, dealing with xs:dateTime values are no longer a challenge. If a time zone is present
on the xs:dateTime value for the order_dateTime element, the XMLTABLE function normalizes the time
zone to UTC and removes the time zone. The dateTime value is then converted to an SQL timestamp and
returned to SQL as the value for the order_timestamp column.

If the XML document stored in the order_doc column had been created so that the order_datetime element
did not conform to the xs:dateTime type in the XML data model, then using a data type of VARCHAR for
the order_timestamp column and casting the VARCHAR string to a TIMESTAMP type in SQL would allow
the requested value to be inserted into the target table. This is the same approach that was shown in
Table 6.

Table 9 contains a listing of the rows stored in the orders table after running the INSERT statement in
Listing 59. These results assume that the original_orders table contains only a single order XML document
(described in Listing 41), which has been assigned a document identifier of 1.

ORDER_DOC_ID | ORDER_ID | PART_NAME | PART_NUMBER ORDER_TIMESTAMP CUSTOMER_NAME

1 1 Valve 1000 2012-06-14 First Automobile Works
05:20:00.000000

1 2 Flywheel 2000 2012-06-14 Second Automobile
10:20:00.000000 Works

Table 9: Rows in the orders table

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

40

]
pil
1

llm]
f
I
Ill
in

Update XML data

The XML data stored by ABC Corporation in their DB2 for i database is usually read-only and not updated.
However, sometimes ABC Corporation does need to modify the XML documents stored in DB2. For
example, if a customer changes their name, all of the order documents for that customer must be updated
to the new name. This section describes how to update the relational and XML data so that the customer
name, Second Automobile Works, is changed to Ultimate Automobile Works.

With the XML Extender product, simple changes to an element or attribute’s value can be made to XML
documents using the db2xml.update UDF. Listing 60 contains an SQL statement that invokes the
db2xml.update function to change all customer names in a document to Ultimate Automobile Works .

UPDATE ori gi nal _orders oo SET o0o0.order_doc =
db2xm . updat e(00. or der _doc,
‘/ orders/order_infor/customer_nane’,
“Utinmte Autonobile Wrks”)

Listing 60: Update function in XML Extender

The capabilities of the db2xml.update function are very limited. Conditional changes are inadequate
because only attributes and literals can be referenced in predicates. For example, it is not possible to use
the update function to change the contents of the customer_name element to Ultimate Automobile
Works only in the cases where the current content is Second Automobile Works, because
customer_name is an element (rather than an attribute). In addition, changes to the structure of the
document are not possible with this function, and there is no way to add or remove elements or attributes.
Another problem is that the function has no understanding of XML namespaces.

More complex changes to XML documents can be made with the XML Extender support using an
Extensible Stylesheet Language Transformation (XSLT) template and either the
db2xml.XSLTransformToCLOB or db2xml.XSLTransformToFile UDFs.

The XML support in the DB2 for i 7.1 release does not provide an update built-in function, but it does
include XSLT support. The XSLTRANSFORM built-in function can be used with an XSLT 1.10 template to
modify an XML document. XSLT uses XPath expressions to find and transform information in an XML
document.

A prerequisite to using XSLTRANSFORM on IBM i is that additional products and options must be
installed to use it.

e XML Toolkit for IBM System i5® (5733-XT2 options 1 and 6)
e International Components for Unicode (5770-SS1 option 39)

The 5733-XT2 product is a priced licensed program; 5770-SS1 option 39 is a no additional charge option
of 5770-SS1.

One thing to keep in mind is that XSLT 1.10 supports only XPath 1.0 expressions, while XMLTABLE
supports a subset of the XPath 2.0 standard. This makes the XPath expressions that are used in style
sheet transformations less versatile than the ones that can be used with the XMLTABLE function. While
not as versatile, XSLT 1.10 offers the same level of support that is available in XML Extender and simple
modifications to XML documents should not be a problem. A link to the XSLT 1.10 standard is included in
the references.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

41

]
pil
1

llm]
f
I
Ill
in

Listing 61 shows an XSLT stylesheet that can be used to conditionally change an element’s content within
an XML document. The stylesheet changes the content of customer_name elements to Ultimate
Automobile Works when the current element content is Second Automobile Works. The content of
other customer_name elements are left unchanged.

<?xm version="1.0"?>
<xsl :styl esheet version="1.0"
xm ns: abc="htt p: // ww. abcconpany. conf
xm ns: xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or m' >
<xsl :output nmethod="xm" indent="yes"/>

<xsl:tenplate match="node()| @" >
<xsl : copy>
<xsl : appl y-tenpl ates/ >
</ xsl : copy>
</ xsl:tenpl ate>

<xsl:tenpl ate match=
"/ abc: orders/abc: order_i nfor/abc: cust omer _nane/
text()[.= 'Second Autonobile Wrks']">
<xsl:text>U timate Autonobile Wrks</xsl:text>
</ xsl:tenpl at e>

</ xsl : styl esheet >

Listing 61: XSLT stylesheet

The stylesheet in Listing 61 defines two templates for matches. Nodes in the XML document will be
processed by at most one template. In cases where a node is matched by multiple templates, the default
priority is used to determine the template that can be used. In this example, the second template has a
higher priority because it specifies a specific element name and node test.

The first template is applied to all nodes that are not processed by the higher priority second template. In
this example, the first template results in all of the elements except the customer_name element being
copied into the output document. The second template is applied for text nodes under the customer_name
element that are equal to Second Automobile Works. The second template replaces the text node with a
text node that contains Ultimate Automobile Works.

Using the stylesheet approach, updates to the XML document and relational data can be done with a
couple of SQL statements. An example of this approach is shown in Listing 62. Notice how the WHERE
clause (in bold format) on the first UDATE SQL statement uses relational data to limit the number of XSL
transformations to the XML documents that need them. An XSL transform is an expensive operation, and
it is preferred to only apply the template to documents that actually need to be changed.

For simplicity, this example assumes that the stylesheet in Listing 61 is stored in the global variable
xsl_stylesheet.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

42

|l
h
||III
1

I

1
I
Ill
in

-- update affected XM. docunents
UPDATE ori gi nal _orders oo SET o0o0.order_doc = XSLTRANSFORM (00. order_doc
US| NG XMLPARSE(DOCUMENT xs| _styl esheet) AS CLOB(2G))
WHERE 00. order_doc_id IN (
SELECT order_doc_id FROM orders
WHERE cust oner _nanme = ' Second Autonobile Works');

-- update relational data

UPDATE or ders SET custoner_name = "U timte Autonobile Wrks'
WHERE cust oner_nanme = ' Second Autonobil e Works';

Listing 62: SQL script to update XML and relational data

After the transform and update operations have completed, the order document in the original_orders table
will have the data value shown in the following listing. The second update statement in Listing 62 updates
the relational data stored in the orders table.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<orders xm ns="http://ww:. abcconpany. com' >
<submi ssi onCode>123ABC</ subni ssi onCode>
<submi ssi onDat e>2012- 06- 14</ submni ssi onDat e>
<order _i nfor>
<part _nane>Val ve</ part _nanme>
<quant i ty>1000</ quantity>
<order_dat eti ne>2012- 06- 14T08: 20: 00+03: 00</ or der _dat et i ne>
<cust onmer _nane>Fi r st Aut onobi | e Wor ks</ cust ormer _name>
</ order_infor>
<order _i nfor>
<part _nanme>F| ywheel </ part _nanme>
<quantity>2000</ quantity>
<order_dat eti ne>2012- 06- 14T13: 20: 00+03: 00</ or der _dat et i ne>
<custoner _nane>U ti mate Aut onobi |l e Wor ks</ cust oner _nane>
</ order _i nfor>
</ order s>

Listing 63: Orders document after update

This XSLT-based solution provided with DB2 for i 7.1 is not as elegant as the db2xml.update function seen
in the XML Extender product; however, the db2xml.update function does not have the capability to perform
this modification as it lacks the ability to express the predicate and namespace conditions. It is a relatively
trivial task to adapt the stylesheet presented here to handle the simpler modifications that the
db2xml.update function might have handled in the past.

Compose XML documents from relational tables

ABC Corporation performs most of its transaction processing using relational tables. For example,
customer account information is maintained in relational tables within the database, and the information is
not part of an XML document. One important function of the application is to compose the XML summary
report documents to capture the first time a customer places an order. These XML summary reports will be
sent from each factory to the corporate server. This processing requires data stored in DB2 tables for new
customers to be converted into an XML summary report. The table for storing customer data is defined by
the CREATE TABLE statement, as shown in Listing 64.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

43

|l
h
||III
1

I

1
I
Ill
in

CREATE TABLE CUSTOMERS (

cust_id Bl G NT GENERATED ALWAYS AS | DENTI TY,
cust _name VARCHAR(1000) ,

add_ti nestanp TI MESTAMP,

cust _phone VARCHAR(50) ,

cust _address VARCHAR(200) ,
PRI MARY KEY (cust _id),
UNI QUE (cust_name))

Listing 64: Customer table definition

The examples that follow assume that two rows have been inserted into the customers table using the
INSERT statement in Listing 65.

I NSERT | NTO cust oner s(cust _nane, add_tinestanp, cust_phone, cust_address)
VALUES(' Fi rst Aut onobile Wrks',
' 2012- 06- 14- 05. 20. 00. 000000', ' 86-10-12345678', 'Dongfeng St.'),
("Utimte Autonobile Works',
' 2012- 06- 15- 05. 30. 00. 000000, '99-10-12345678', 'Main St.')

Listing 65: Insert rows in customers

Customer data needs to be combined with the part_name, part_number, order_timestamp columns from
the orders table (created in Listing 57) to produce the XML document shown in Listing 66.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

44

]
pil
1

llm]
f
I
Ill
in

<?xm version="1.0" encodi ng="UTF-8"?>
<dai |l y_summary xm ns="htt p://ww. abcconpany. conf >
<new_cust omer _report>
<name>Fi r st Aut onobi | e Wr ks</ name>
<phone>86- 10- 12345678</ phone>
<addr ess>Dongfeng St.</address>
<added_dat eti ne>2012- 06- 14T05: 20: 00. 000000</ added_dat et i ne>
<or der s>
<order _i nfor>
<part _nanme>Val ve</ part _nanme>
<quantity>1000</ quantity>
<order _dateti ne>2012- 06- 14T05: 20: 00. 000000</ or der _dat et i ne>
</ order_infor>
</ order s>
</ new_cust oner _report>
<new_cust onmer _report>
<name>U ti mat e Aut onobil e Wor ks</ nane>
<phone>99- 10- 12345678</ phone>
<address>Mai n St. </address>
<added_dat eti ne>2012- 06- 15T05: 30: 00. 000000</ added_dat et i ne>
<orders>
<order _i nfor>
<part _name>F| ywheel </ part _nanme>
<quantity>2000</ quantity>
<order _dat eti ne>2012- 06- 14T10: 20: 00. 000000</ or der _dat et i ne>
</ order _infor>
</ order s>
</ new_cust oner _report>
</ dai | y_sumary>

Listing 66: Daily summary XML document

A graphical representation of the process is shown in Figure 4.

F= ORDERS [CUSTOMERS
. ORDER_DOC_ID : BIGINT " CLUST_ID : BIGIMT

| ORDER_ID : BIGINT CUST_MAME : VARCHAR(1000)
PART_MAME : VARCHAR(1000) ADD_TIMESTAMP : TIMESTAMP

PART_MUMBER : BIGINT CUST_PHONE @ VARCHAR(S0)
CRDER_TIMESTAMP : TIMESTAMP CUST_ADDRESS @ WVARCHAR(200)

CUSTOMER_MNAME : WARCHAR(1000)

i R
k<]

00 OIn 0O oo ki
1 008 008 0On

Daily Summary ¥ML Document

Figure 4: Composition process

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

45

|l
H]
||III
1

I

1
|
I
Ill
in

In XML Extender, DAD files are used for composing XML. The db2xml.dxxRetrieveXMLClob procedure
composes an XML document from an enabled XML collection. The procedure accepts a collection name
as a parameter; collection needs to have a DAD file associated with it, and this provides XML Extender
with a mapping for creating the XML document. The db2xml.dxxGenXMLClob procedure accepts a DAD
file and applies the mappings defined in it to generate one or more XML documents.

Although a DAD file might specify a mapping that results in many XML documents being generated, both
the db2xml.dxxRetrieveXMLClob and db2xml.dxxGenXMLClob are able to return only the first XML
document that is generated. In many practical use cases, only one XML document needs to be generated
and the restriction is not a problem. On the other hand, if the generation and processing of many XML
documents is required, this limitation can be a problem.

Listing 67 shows an example of a DAD file that can be used to produce the output shown in Listing 68
using the db2xml.dxxGenXMLClob procedure.

The XML Extender support does not make it easy to get the hierarchical relationships represented
correctly. A unique table reference is required for each level of elements that have content (other than
child elements) in them. In addition, support for namespaces is almost non-existent. With XML Extender, it
is often necessary to do some extra programming using the SYSDUMMY1 table to get the structure of the
document correct and to get the namespace declaration included.

XML Extender is not able to handle very many variations on the SQL query. The order of the columns in
the select list must appear exactly as they are presented in Listing 67. The columns are expected to be
specified in a top-down order by the hierarchy of the XML document structure. In addition, the columns
and their ordering in the order by clause contribute to the determination of the document structure. A more
complete definition of how the SQL_Stmt element works can be found in the XML Extender Administration
and Programming guide. A link to this document is in the “Resources” section. Due to the fact that the
XML Extender support is dependent on the way the SQL statement is written, it is difficult to write more
complex queries.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

46

]
pil
1

llm]
f
I
Ill
in

<?xm version="1.0" encodi ng="UTF-8"?>
<DAD><val i dat i on>NO</ val i dat i on>
<Xcol | ecti on>
<SQ__stnt>
SELECT doc_nanespace, cust_name, add_tinestanp, cust_phone, cust_address
part _name, part_nunber, order_tinestanp
FROM TABLE (SELECT ' http://ww. abcconpany. com AS DOC_NAMESPACE
FROM sysi bm sysdummyl) AS D,
TABLE (SELECT cust_nanme, add_ti mestanp, cust_phone
cust_address FROM custoners) AS C
TABLE (SELECT db2xmnl . generate_uni que() as id,
custoner _nane, part_nanme, part_nunber, order_tinmestanp
FROM orders) AS O
WHERE (c.cust_nanme = o.custoner_nane) AND
C. add_tinmestanp > TI MESTAMP(' 2012-06-14 00: 00: 00")
ORDER BY doc_nanespace, cust_nane, part_nane;
</ SQL_stnt>
<prol og>?xm versi on="1. 0" ?</ prol og>
<root _node>
<el enent _node nane="dai |l y_sunmary">
<attri bute_node name="xm ns">
<col um name="DOC_NAMESPACE" />
</attribute_node>
<el ement _node nane="new_custoner _report" nulti_occurrence="YES">
<el emrent _node nane="nane" >
<t ext _node> <col um nanme=" CUST_NAME" />
</t ext _node>
</ el enent _node>
<el enrent _node nane="phone" >
<t ext _node> <col um name="CUST_PHONE" />
</t ext _node>
</ el enent _node>
<el enment _node nane="address">
<t ext _node> <col um nane="CUST_ADDRESS" />
</t ext _node>
</ el enent _node>
<el enrent _node nane="added_dateti nme">
<t ext _node> <col um name="ADD_TI MESTAMP" />
</t ext _node>
</ el ement _node>
<el ement _node nane="order _infor" nulti_occurrence="YES">
<el erent _node nane="part_nane">
<text_node> <col um nane="PART_NAME" />
</text_node>
</ el enent _node>
<el enent _node name="quantity">
<t ext _node> <col um name="PART_NUMBER' />
</text_node>
</ el enent _node>
<el ement _node name="order dateti nme">
<t ext _node> <col um name="CORDER_TI MESTAMP" />
</ text _node>
</ el enent _node>
</ el ement _node>
</ el enent _node>
</ el ement _node>
</ root _node></ Xcol | ecti on></ DAD>

Listing 67: Sample DAD file for composition

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

a7

|jmnj]

i
1 Il

iHlllll

Listing 68 contains the result of the daily summary XML document that is generated by the XML Extender
product. This XML document is similar to the desired result (shown in Listing 66), but there is one
important difference. In Listing 68, the timestamps are in the SQL lexical format, rather than being
converted to the XDM xs:dateTime format. This will be a problem for XML aware applications that will
expect dates and times to conform to the XML standards.

<?xm version="1.0"?>
<dai |l y_sunmmary xm ns="http://ww. abcconpany. coni >
<new_cust onmer _r eport >
<name>Fi r st Aut onobi |l e Wor ks</ nanme>
<phone>86- 10- 12345678</ phone>
<addr ess>Dongf eng St. </ address>
<added_dat eti ne>2012- 06- 14- 05. 20. 00. 000000</ added_dat et i ne>
<order _i nfor>
<part _nanme>Val ve</ part _name>
<quantity>1000</ quantity>
<order _dat eti ne>2012- 06- 14- 05. 20. 00. 000000</ or der _dat et i ne>
</ order_infor>
</ new_cust oner _report>
<new_cust oner _r eport >
<name>U ti mat e Aut onpbil e Wrks</ nane>
<phone>99- 10- 12345678</ phone>
<address>Mai n St. </ address>
<added_dat eti ne>2012- 06- 15- 05. 30. 00. 000000</ added_dat et i ne>
<order _i nfor>
<part _name>Fl ywheel </ part _nanme>
<quantity>2000</ quantity>
<order _dat eti ne>2012- 06- 14- 10. 20. 00. 000000</ or der _dat et i ne>
</ order _i nfor>
</ new_cust onmer _report>
</daily_sunmary>

Listing 68: Output from db2xml.dxxGenXMLClob

Designing, coding, and maintaining a DAD file is an expensive process. DAD files are unique to the XML
Extender option and are not based on an industry standard. Significant time can be spent attempting to
master and maintain DAD files that are used by only a minority of database developers.

In contrast, SQL/XML publishing functions are based on an industry standard. An industry-standard
function greatly improves platform independence, and ensures the existence of improved technical support
and supporting documentation.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

48

]
pil
1

llm]
f
I
Ill
in

SQL XML publishing functions

With DB2 for i 7.1, the task of publishing relational data as an XML document is entirely accomplished
using SQL queries. XML publishing functions and namespace declarations are used within the query to
create XML nodes and to convert relational data types into XML data types. When compared to the XML
Extender option, the XML publishing functions provide the same advantage of improved data control that
is mentioned throughout this article.

DB2 for i provides the following set of scalar publishing functions for constructing each XML node type.
e XMLATTRIBUTES
e XMLCOMMENT
e XMLDOCUMENT
e XMLELEMENT
e XMLPI
o XMLTEXT

An additional set of functions allow the creation of siblings within the XML document, rather than a
parent/child (nesting) relationship.

e XMLCONCAT
o XMLAGG

The XMLCONCAT scalar publishing function concatenates multiple XML values into a single value. The
XMLAGG function is an aggregate function that aggregates values from multiple rows into a single XML
value.

Although these functions provide enough functionality to construct an XML document, several additional
publishing functions are included for convenience. The results of an invocation of one of these functions
can be obtained by using other publishing functions, but the following functions provide a simpler way of
coding common scenarios.

e XMLFOREST
e XMLROW
e XMLGROUP

The XMLFOREST scalar function is particularly useful as it performs the task of both the XMLCONCAT
and XMLELEMENT publishing functions in a single call. This function is frequently used to create several
new elements at the same level within an XML document without requiring multiple calls to XMLCONCAT
and XMLELEMENT. Listing 69 shows a query where XMLFOREST is used to create two child elements,
nested within a parent element root.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

49

]
pil
1

llm]
f
I
Ill
in

SELECT XMLELEMENT(NAME "root",
XMLFOREST(1 AS "el enent1", 2 AS "el ement2")

FROM SYSI BM SYSDUMWY'1

Listing 69: Query using XMLFOREST

The XML document that results from the query in Listing 69 is shown in Listing 70.

<r oot >
<el enent 1>1</ el enent 1>
<el enent 2>2</ el enent 2>
</ root >

Listing 70: Results of a query using XMLFOREST

The XMLROW scalar function converts one or more values into the contents of new child elements (or
optionally attributes) of a new element. This function can be used to avoid the need for directly using the
XMLELEMENT and XMLCONCAT functions to construct an XML document for each row in a result set.
An example of the XMLROW expression is shown in Listing 71.

SELECT XMLRON1 AS "a", 2 AS "b", 3 AS "¢"

OPTI ON ROW "r oot _el enent ")
FROM SYSI BM SYSDUMWY1

Listing 71: Query using XMLROW

A single row results from this query, which contains the XML document is shown in Listing 72.

<r oot _el enent >
<a>1</ a>
2</ b>
<c>3</c>

</root _el ement >

Listing 72: Result of a query using the XMLROW function

The XMLGROUP aggregate function is an aggregate version of XMLROW. This function essentially
combines the capabilities of the XMLROW and XMLAGG functions. A sample query using XMLGROUP is
shown in Listing 73.

SELECT XMLGROUP(rs. col 1 AS "col 1",
rs.col 2 AS "col 2",
rs.col 3 AS "col 3"

ORDER BY rs.col1l DESC
OPTI ON ROW "row_el enent” ROOT "result _set"

FROM TABLE(VALUES
(1, 'Row_1-col _2', 'Row_1-col _3'),
(2, '"Row_2-col _2', 'Row_2-col _3")
) rs(coll, col2, col3)

Listing 73: Query using the XMLGROUP function

The resulting document from the query in Listing 73 is shown in Listing 74. As the SELECT statement

does not contain a GROUP BY clause, the aggregation results in only a single row. The XMLAGG and

XMLGROUP functions include an optional ORDER BY clause. In this example, the ORDER BY clause is
Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

50

]
pil
1

llm]
f
I
Ill
in

used to ensure that the row_element elements are ordered (descending) by rs.coll in the resulting
document.

<result_set>
<row_el ement >
<col 1>2</ col 1>
<col 2>Row_2- col _2</ col 2>
<col 3>Row_2-col _3</col 3>
</ row_el enent >
<row_el enent >
<col 1>1</ col 1>
<col 2>Row_1-col _2</col 2>
<col 3>Row_1- col _3</col 3>
</row_el ement >
</result_set>

Listing 74: Result set from the XMLGROUP function

Namespace declarations

The XMLNAMESPACES declaration can be specified as an argument of the XMLELEMENT and
XMLFOREST publishing functions. This declaration is used to define the in-scope namespaces for the
input values of the XMLELEMENT or XMLFOREST function. When using SQL/XML publishing
functions to construct an XML element or attribute, if the name of the element or attribute is qualified
with a namespace prefix, then the prefix must be in-scope. In other words, the prefix must be mapped
to a URI by using an XMLNAMESPACES declaration. The scope of namespace mappings defined by
the XMLNAMESPACES declaration includes the XMLELEMENT or XMLFOREST function for which
the declaration is an argument, and any nested XML publishing functions. The XMLNAMESPACES
declaration can also define the default namespace URI that is used when constructing elements that
are not qualified with a namespace prefix.

The SQL query shown in Listing 75 generates the summary document shown in Listing 66. The
XMLNAMESPACES declaration is used so that all of the constructed elements are defined in the
namespace, http://www.abccompany.com.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

51

]
pil
1

llm]
f
I
Ill
in

W TH
order_infor AS (
SELECT
XMLAGH
XMLELEMENT(NAME "order _i nfor",
XMLNAMESPACES(DEFAULT ' htt p://ww. abcconpany. com),

XMLFOREST(p. part _nane AS "part_nane",
p. part _nunber AS "quantity",
p. order _ti nestanp AS "order _datetine"
)
)
CRDER BY p. part_nanme
) -- XMLAGG

AS order _infor_xm,

cust omer _nanme AS cust_nane
FROM orders p
GROUP BY p. cust oner _nane

).

new_cust oner_report AS (
SELECT
XMLEL EMENT(
NAME "new_custoner_report”,
XMLNAMESPACES(DEFAULT ' http://ww. abcconpany. com),
XMLFOREST(
cr.cust_nane AS "nane",
cr.cust_phone AS "phone",
cr.cust_address AS "address",
cr.add_tinmestanp AS "added_datetine",
order _infor.order_infor_xm AS "orders"
)
) AS new_custoner_report_xm,
cr.cust _nane
FROM
custoners cr INNER JO N order_infor
ON (cr.cust_nanme = order_infor.cust_nane)
VWHERE cr. add_ti mestanp > TI MESTAMP(' 2012- 06- 14 00: 00: 00")

)

-- documnent root
SELECT
XML DOCUMENT(
XMLELEMENT(
NAME "dai |l y_sunmary",
XMLNAMESPACES(DEFAULT ' http://ww. abcconpany. com),
XMLAGE(new_cust omer _report. new_cust omer _report _xm
CORDER BY new_cust oner _report.cust_nane)

)
) — XM.DOCUMENT
AS DAI LY_SUWARY
FROM new_cust oner _report

Listing 75: SQL query using XML publishing functions

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

52

]
pil
1

llm]
f
I
Ill
in

Query design

These SQL queries that construct XML values can be complicated. A trick to writing XML publishing
gueries is to code common table expressions for repeating elements starting from the inside (or
bottom) of the XML document and working outward (or upward) towards the root node of the
document.

For example, to create the query in Listing 75, a developer could have started by determining how to
build the list of order_infor elements (grouped by each customer), using the data in the orders table
(Listing 57). The next step is to move up a level and build the new_customer_report elements, which
involves a join between the previous results and rows in the customers table (Listing 64). Finally, the
root element, daily_summary, is constructed around the aggregation of those rows.

Representation of XML values obtained from SQL

The result of the query in Listing 75 is an XML document that stores its data in the appropriate XML type
that corresponds to the original SQL type. (In other words, SQL timestamps are casted to xs:dateTime
values). This is likely what the ABC Corporation wants because this encoding allows the XML values to be
handled by XML-aware applications. However, as mentioned earlier, the composition functions included
with XML Extender will not do this conversion automatically; as shown in Listing 68.

Representing the value as an xs:dateTime type as opposed to an xs:string type (which happens to be an
SQL Timestamp) is usually best practice. However, if an SQL representation is necessary, then a simple
cast of the timestamp to a character value can help to achieve the required result.

Listing 76 contains the modified query with the cast of the timestamp value highlighted in bold format. This
causes the added_datetime element to be built with string data, rather than an xs:dateTime type. The
output is the same document that was produced by the db2xml.dxxGenXMLClob procedure in Listing 68.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

53

]
pil
1

llm]
f
I
Ill
in

W TH order _infor AS (
SELECT XM_AGH
XMLELEMENT(NAME "order _i nfor",
XMLNAMESPACES(DEFAULT ' htt p://ww. abcconpany. com),

XMLFOREST(p. part _nane AS "part_nane",
p. part _nunber AS "quantity",
p. order _ti nestanp AS "order _datetine"
)
)
CRDER BY p. part_nanme
) -- XMLAGG

AS order _infor_xm,

cust omer _nanme AS cust_nane
FROM orders p
GROUP BY p. cust oner _nane

).

new_custonmer _report as (
sel ect
XMLEL EMENT(
NAME "new_customner_report”,
XMLNAMESPACES(DEFAULT ' htt p://ww. abcconpany. com),
XMLFOREST(
cr.cust_nane AS "nane",
cr.cust_phone AS "phone",
cr.cust_address AS "address",
CAST(cr. add_timestanp AS VARCHAR(26)) AS "added_datetinme",
order _infor.order_infor_xm AS "orders"
)
) AS new_custoner_report_xm,
cr.cust _name
FROM
custoners cr INNER JO N order_infor
ON (cr.cust_nanme = order _infor.cust_nane)
VWHERE cr. add_ti mestanp > Tl MESTAMP(' 2012-06- 14 00: 00: 00")
)
-- document root
sel ect
XML DOCUMENT (
XMLEL EMENT(
NAME "dai |l y_sunmary",
XMLNAMESPACES(DEFAULT ' http://ww. abcconpany. com),
XMLAGE new_cust oner _report. new_cust onmer _report _xm
ORDER BY new_cust onmer _report . cust _nane)

)
) — XM_DOCUMENT
AS DAI LY_SUWARY
FROM new_cust oner _report

Listing 76: Modified query to represent timestamps as strings of SQL ISO timestamps

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

54

|l
H]
||III
1

I

1
|
I
Ill
in

Validation of XML documents

ABC Corporation prefers to validate that the summary documents received by the corporate headquarters
conform to an agreed upon XML schema. Using an XML schema ensures that both the factory and
headquarters can validate that the summary XML documents follow the agreed upon model.

XML documents can be validated using a schema. There are two commonly used industry-standard
schema definitions for XML:

e Document type definition (DTD)
e W3C XML Schema Definition (XSD)

To simplify this paper, the terms DTD file and XSD file are used to describe an instance of a DTD or XSD,
however an instance of a DTD or XSD need not exist in a file as such, as it might exist in a database row,
or as a stream of bytes sent between applications.

The XSD language is a successor to the DTD language and is both more powerful and more extensible.
Thus, it is recommended that XSD files be used instead of DTD files. Many tools, even ones that do not
offer IBM i features (such as IBM Rational Application Developer), are available for developing an XML
schema; these tools can be used to create XSD files from existing DTD files or from XML documents. The
XSD language is an industry standard and therefore XSD design tools do not need to have any IBM i or
DB2 awareness to be useful.

XML Extender offers several ways to validate an XML document. XML documents can be automatically
validated during insert by registering a DTD file and binding it to a DAD file for an XML collection. XML
Extender also provides the db2xml.svalidate and db2xml.dvalidate UDFs for explicitly validating XML
documents against the XSD files or DTD files respectively.

The integrated DB2 for i XML functionality only supports validation of XML documents using XSD files.
DTD files need to be converted to XSD files in order to use the schema to validate XML documents.

An XSD file can be created or edited with any text editor. However, most developers might want to use a
toolset that is capable of designing and editing XSD files. Finding the tools to do this is not a problem
because XSD is an industry standard; creating an XSD file does not require an IBM i toolset. For the
example scenario, an XSD file for the summary document in Listing 66 was generated from an XML
document using IBM Rational Application Developer. The resulting XSD file was modified so that the
elements have the correct type annotations, and finally the XSD file was copied into a directory in IFS.
This XSD file is shown in the following listing.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

55

]
pil
1

llm]
f
I
Ill
in

<?xm version="1.0" encodi ng="UTF-8"?>
<xsd: schenma t ar get Nanespace="http://ww. abcconpany. cont
xm ns: Ql="ht t p: // ww. abcconpany. conf
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma" >
<xsd: el emrent nane="dai |l y_summary" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nmaxCccur s="unbounded"
ref ="QL: new_cust oner _report"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement name="orders">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent ref="QLl:order _infor"
maxQccur s="unbounded" mi nCccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement name="order_infor">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement ref="QL: part_nane"
maxCccur s="1" m nCccurs="1"/>
<xsd: el ement ref="Ql:quantity" maxCccurs="1" m nCccurs="1" />
<xsd: el ement ref="QLl: order_datetinme"
maxQccurs="1" m nCccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nane="address" type="xsd:string"/>
<xsd: el ement name="new_cust oner_report">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent ref="QL: nanme" nmaxQccurs="1" nmi nCccurs="1"/>
<xsd: el ement ref="QL: phone" maxCccurs="1" mi nCccurs="1"/>
<xsd: el enent ref="QlL: address" maxCccurs="1" m nCccurs="1"/>
<xsd: el enent ref="Ql: added_dateti nme"
maxQccurs="1" m nCccurs="1"/>
<xsd: el enent ref="QL: orders"
maxQccurs="1" m nCccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement name="part_nane" type="xsd:string"/>
<xsd: el ement nane="added_dateti ne" type="xsd: dateTi me" />
<xsd: el ement nanme="nane" type="xsd:string"/>
<xsd: el ement nane="order _datetine" type="xsd: dateTi ne"/>
<xsd: el ement name="quantity" type="xsd:integer"/>
<xsd: el ement nane="phone" type="xsd:string"/>

</ xsd: schema>

Listing 77: XSD for daily summary XML document

An XSD file is often difficult to read and understand. Using tools to generate the XSD file can make this
worse because the result of automatically generating an XSD file is typically a schema that defines the
structural constraints on a set of sample data, rather than a well thought out model that describes the

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

56

]
pil
1

llm]
f
I
Ill
in

relationships and constraints within the data. The complexity of the schema design and generation is an
important reason why tools are often also used to design and diagram XML schemas before registering
them with DB2 for i. Figure 5 shows a diagram of the schema definition in Listing 77.

X550 Complex Types
#¥5SD Element: Q daily_summary_Type
Q daily_summary | — —
oy g:}new_customel _report : new_cusktomer_report_Type
M
«X¥SD Complex Types
«¥5D Elements 1 Q new_customer_report_Type

new_customer_report — | -
e [Eg name ! string

|_|_—C-‘.,phone 1 string

[Eg address : string #¥50 Complex Types

d T
%added_datetime : dateTime Q EliEE

|_q:-‘.,orders orders_Type [order_infor : order_infor_Type

‘ «¥5D Complex Types
— order_infor_Type

[

0 & part_name : string
I I | I — 53 quanity : integer
«¥5D Element:= «%5D Elements= «¥5SD Elements= £X5D Elements ® rder datetime : dateTi
] phone] address £ added_datetime £ orders I3 order_datetime ! dateTime
[_"
I¢;|

5D Elements
order_infor

#¥5D Elements #¥5D Element: #¥5D Elements
Q part_name Q quaniky Q order_datetime

Figure 5: Diagram of daily summary XSD

Validating an XML schema with XML Extender

The XML Extender provides the db2xml.svalidate function for performing schema-based validation. In
Listing 78, the db2xml.svalidate function validates an XML document stored in a stream file with a file path
of /ISummary/daily_summary.xml. Elements that are in the http://www.abccompany.com namespace are
validated by the XSD found in the daily_summary.xsd file in the schemas directory.

VALUES db2xm . Sval i date('/ Summary/daily_summary. xm ', .
"http://ww. abcconpany. conf schenas/ dai |l y_summary. xsd')

Listing 78: XML Extender db2xml.svalidate function

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

57

|l
H]
||III
1

I

1
|
I
Ill
in

The result of the function is a boolean integer value indicating whether the XML document was
successfully validated. A value of one indicates success and a value of zero indicates failure.

There are a number of different variations on the db2xml.svalidate function that allow different ways of
specifying which schemas can be considered in the validation process, and whether the schemas are in a
DB2 column or an IFS stream file. For example, if both the XML document and schema are stored in
columns of a DB2 table, the db2xml.svalidate function can be invoked as shown in Listing 79.

| SELECT db2xni . Sval i dat e(doc, schema) FROM ny_tabl e |

Listing 79: Alternate db2xml.svalidate invocation

Registering an XML schema with DB2 for i

DB2 for i 7.1 introduces a set of catalogs that contain information about XML schemas called the XML
schema repository (XSR). On IBM i, an XML schema contains a binary representation of one or more XSD
files. The binary representation is used to validate XML documents; DB2 for i will only resolve XSD files
that are included in this representation. Each XML schema is represented by catalog entries and a named
object that is called an XSR object. An XSR object is an IBM i object and is housed within an SQL schema
(library).

Registering an XML schema and adding XSD files

Before an XML schema can be used to validate an XML document in DB2 for i, the XML schema must
be registered with the database. When an XML schema is registered with DB2 for i, the DB2 engine
creates an XSR object with the specified SQL identifier.

The XSR_REGISTER stored procedure registers the XML schema in DB2 (creating the XSR object in
the process), and adds the first XSD file to the XML schema. The first XSD file is referred to as the
primary XSD for the XML schema.

Listing 80 shows a call to the XSR_REGISTER procedure to create an XML schema for the daily
summary schema presented in Listing 77.

CALL XSR _REG STER(
'sqgl _schena',
‘daily_sunmmary_xsr',
"dail y_summary. xsd',
GET_XM__FI LE(' / schemas/ dai |l y_sunmary. xsd'),
NULL)

Listing 80: Call the XSR_REGISTER procedure

The first two parameters of the procedure call in Listing 80 specify that the XSR object will be created
in the SQL schema named sqgl_schema and will have the name daily_summary_xsr. The combination
of the schema and object name of the XSR object is also referred to as the SQL identifier or relational
ID of the XML schema.

The third parameter defines the location URI for the XSD file. The location is an XML concept, and
therefore, the SQL naming rules do not apply to this parameter. On DB2 for i, an XSD file is physically
located in the XML schema, however, XML documents and XSD files are usually constructed to be
used in many environments, including those environments which locate to the XSD file using a path
name or web address. DB2 for i will make use of the location URI in several situations in order to

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

58

]
pil
1

llm]
f
I
Ill
in

provide behavior that is more consistent with other XML solutions. Consequently, although this
parameter can be a NULL value, proving a value is usually advised. The location is discussed in more
detail later in this paper.

The fourth parameter of the XSR_REGISTER procedure is for passing in the contents of the XSD file.
This data needs to be passed as a BLOB value. In this example, it has been loaded from a stream file
using the GET_XML_FILE function.

The fifth parameter of the XSR_REGISTER procedure provides a way to add additional user-defined
information (properties) about the XML schema definition, such as a version number. These
properties can be retrieved from the QSYS2.XSROBJECTCOMPONENTS catalog. This parameter is
allowed to be the null value if there is no user-defined information.

After the XSR_REGISTER procedure call, the XML schema is registered, but cannot be used for
validation until all XSD files associated with the XML schema have been added to the repository and
the XSR_COMPLETE stored procedure has been invoked. This example needs only one XSD file,
but it is fairly common for an XSR to have many XSD files contained within it. The primary XSD might
need to import or include types and elements from other XSD files. If this is necessary, the
XSR_ADDSCHEMADOC procedure can be used to add additional XSD files. XSD files added by the
XSR_ADDSCHEMADOC procedure are called secondary XSD files. The XSR_ADDSCHEMADOC
procedure accepts the same parameters as the XSR_REGISTER procedure.

A secondary XSD file must be directly or indirectly connected to the primary XSD file. In other words,
the primary XSD file must directly or indirectly import or include all secondary XSD files. If an XSD file
is not connected, or if a required XSD file has not been added, an error will occur when the
XSR_COMPLETE procedure is called to complete the XML schema.

Assigning a target namespace and location

A target namespace is associated with each XSD file. This is the namespace (or lack of a namespace)
that contains the elements defined by the XSD file. During XML validation, an element is validated
using the definitions in an XSD file that has a target namespace that matches the element’s
namespace. The target namespace is defined within the XSD file itself and is not specified as a
parameter when adding the XSD file to an XML schema. The XSD file in Listing 77 defines the target
namespace of the daily_summary.xsd XSD file to be http://www.abccompany.com.

The target namespace of the primary XSD file determines the primary target namespace of the XML
schema. While the target namespace defines the scope of what is defined by the XSD file, it does not
provide any information to identify the location of the XSD file within the XML schema. This location
information is needed by processes that refer to the XSD file.

The location is provided as a parameter when the XSD file is added to the XML schema using either
the XSR_REGISTER or XSR_ADDSCHEMADOC stored procedures. The location is essentially the
name that is used to refer to the XSD file. It needs to be set correctly in order to successfully complete
the schema registration.

The location is needed during XML schema registration for importing and including types and
elements from another XSD file. An XSD file can specify that elements and types defined by a
different XSD file should be imported by using the schema location. This example uses only one XSD

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

59

]
pil
1

llm]
f
I
Ill
in

file, but if daily_summary.xsd referenced types defined in a second XSD file named
daily_summary_types.xsd, an import element (similar to the one in Listing 81) would exist in the
daily_summary.xsd file.

\ <inport schemalLocati on="daily_summary_types. xsd"/>

Listing 81: Import element

In order for DB2 to import a secondary XSD file, the imported XSD file must be added to the XML
schema using the XSR_REGISTER or XSR_ADDSCHEMADOC procedures. In addition, the schema

location that is assigned to the imported XSD file must match the schemalLocation attribute referenced

on the import.

The location can also play an important role during XML document validation. The location of the XSD
file that is provided on the XSR_REGISTER stored procedure call becomes the primary schema
location; the primary location and primary target namespace can be used during validation of an XML
document to identify which XML schema to use. Validation is discussed in more detail later in this
paper.

The location URI that is supplied when an XSD file is added to an XML schema must match the
location that will be provided when importing the XSD file and must also match the location that is
used to identify the XML schema when validating an XML document.

Completing the schema registration using the XSR_COMPLETE stored procedure

After all XSD files have been added to the XML schema, the XSR_COMPLETE procedure must be
invoked as shown in Listing 82. The procedure compiles the XSD files in the schema into a binary
format that can be used later by DB2 for validation. After this procedure is called, it is no longer

possible to modify or add additional XSD files to the XML schema without dropping and re-creating the

associated XSR object.

CALL XSR_COWPLETE(
'sql _schema',
‘daily_sumary_xsr',
NULL,

0)

Listing 82: XSR_COMPLETE procedure call

The first two parameters of the XSR_COMPLETE procedure call specify which XSR object is being
completed. The third parameter allows some additional user-defined information (properties) to be
associated with the XSR object, such as a version number. This parameter can be NULL. These
properties can be retrieved from the QSYS2.XSROBJECTS catalog. The final parameter of the
XSR_COMPLETE procedure indicates whether the schema contains decomposition annotations. A
value of 0 indicates that the schema does not contain annotations. Decomposition annotations are
discussed later in this paper.

Validating XML documents with built-in functions

The built-in XMLVALIDATE function corresponds to the db2xml.svalidate user-defined function provided
by XML Extender. The db2xml.svalidate function simply returns a value flag of 1 or 0 to indicate whether
the XML document is valid according to the XML schema. The XMLVALIDATE built-in function takes a

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

60

|l
H]
||III
1

I

1
|
I
Ill
in

different approach and returns an XML value for the validated document whenever the document is valid.
An error is returned if the document is not valid.

An advantage of returning a validated XML document instead of a boolean flag is that the validated XML
document includes default values that have been defined by the schema for missing elements and
attributes in the XML document. One example of where this might be useful is if an XML schema evolves
to include new elements or attributes. The new schema definition can provide a default value for each new
element and attribute if the element or attribute is missing. The XML value that is returned from the
XMLVALIDATE function contains the new elements and attributes. Application logic does not have to
include special code to deal with missing data in documents that were created according to older versions
of an XML schema.

The XMLVALIDATE function provides the optional ACCORDING TO XMLSCHEMA clause that can be
used to explicitly specify the XML schema that can be used for validation. An example of how to use this
clause to identify an XML schema, by providing the XSR name that was registered in Listing 80 is shown
in Listing 83. The data in the /Summary/daily_summary.xml file is assumed to appear similar to what is
shown in Listing 66.
VALUES

XMLVALI DATE(

XM_PARSE(DOCUMENT
GET_XM__FI LE(' / Sunmary/ dai l y_sunmary. xm ')

)
ACCORDI NG TO XMLSCHEMA | D
sql _schema. dai | y_summary_xsr

)
Listing 83: XMLVALIDATE with ACCORDING TO

Most database applications use the name of the XSR object to reference the XML schema; however, there
might be cases where it is more convenient to identify an XML schema using the target namespace and
location of the primary XSD. For example, suppose that ABC Corporation has many applications and each
application shares the same XML schema. The XML schema might be registered with DB2 once for the
entire database (possibly by the first application that uses the XML schema). Different systems and
databases will have different applications and therefore possibly different SQL identifiers for the same
XML schema. Although the name of the XSR object for the XML schema cannot always be determined in
advance, the namespace URI and location can be used to identify the XML schema.

Listing 84 shows how to specify these identifiers when using XMLVALIDATE. The URI and location must
identify exactly one XML schema or an error occurs when the function is evaluated.

VALUES XMLVALI DATE(
XMLPARSE(DOCUVENT GET_XM._FI LE(' / Summary/daily_sunmmary. xm "))
ACCORDI NG TO XMLSCHEMA URI ' http://ww. abcconpany. comni
LOCATI ON 'dail y_sunmary. xsd')

Listing 84: XMLVALIDATE according to Schema URI and location hint

When specifying the XML schema URI and XML schema LOCATION, it is hecessary to supply only the
necessary information to uniquely identify a single schema. For example, if there is only one XML schema
for the URI http://www.abccompany.com, it is not necessary to also specify the LOCATION, as the URI
provides DB2 for i with sufficient information to find the XML schema. Best practice would dictate
specifying both values because this reduces the possibility of errors due to duplicate XML schemas later

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

61

]
pil
1

llm]
f
I
Ill
in

on. It is possible an XML schema may need to co-exist with an updated version that uses the same
namespace with a different location.

An XML schema can define many global elements that might be the root of an XML document. If it is
necessary to validate that a specific element is the root element of the document being validated, the
ELEMENT clause should be used within the XMLVALIDATE function. Listing 85 includes a validation
example which verifies that the daily_summary element in namespace http://www.abccompany.com is the
root element of the input XML document.

VALUES XMLVALI DATE(
XMLPARSE(DOCUMENT GET_XM__FI LE(' / Summary/dail y_summary. xm '))
ACCORDI NG TO XMLSCHEMA | D sql _schena. dai | y_sunmmary_xsr
NAMESPACE ' http://ww. abcconmpany. com
ELEMENT "dai |l y_summary"

)
Listing 85: XMLVALIDATE with a valid element clause

When the XMLVALIDATE function is used to validate an XML document without specifying the
ACCORDING TO XMLSCHMEA clause, DB2 for i examines the XML document to determine the XML
schema. This kind of validation is called implicit validation.

When using implicit validation, the XML document indicates which XML schema should be used for
validation by providing the target namespace and a location hint of the primary XSD file for the XML
schema. Depending on whether the elements are defined to be in a namespace, either the
xsi:schemalocation or xsi:noNamespaceSchemalocation attribute can be used to accomplish this.
Listing 86 shows how the root element of the daily summary (introduced in Listing 66) can be written to
provide a schema location.

<dai l y_sumary
xm ns="http://ww. abcconpany. cont
xm ns: xsi="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://ww. abcconpany. com dai |l y_sumary. xsd” >

Listing 86: Root Element that specifies a XSD for validation

For the example in Listing 86, the xsi:schemalocation indicates that the target namespace of
http://www.abccompany.com has an XSD file that can be found using the hint daily_summary.xsd file. The
target namespace and schema location must match the primary target namespace and location of an XML
schema that can be used for the validation. An error occurs if the XML schema cannot be located, or if
more than one XML schema matches the search.

It is possible to include more than one namespace in an XML document, and each namespace can have a
xsi:schemalocation hint defined for it. In other environments, the validation code might have to locate an
XSD file for each namespace using the provided location hint. DB2 for i requires the information it needs to
be contained inside the XML schema; therefore, only the target namespace and location of the primary
XSD is used to identify the XML schema, regardless of how many namespace and location pairs are
defined within the XML document.

In some XML documents, the elements might not exist in any namespace. In that case, the location hint is
supplied to the validation code using the xsi:noNamespaceSchemalocation attribute.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

62

|l
H]
||III
1

I

1
|
I
Ill
in

The location hint is called a hint because it is designed so that the application requesting the validation can
override the location hint, and provide an explicit location for the schema. An XML schema that is specified
by the ACCORDING TO clause overrides the schema location hint in the XML document (if there is a hint).

Assume that the daily_summary.xml document (shown in Listing 66) has been modified so that the
xsi:schemalocation attribute is defined for the root element (as shown in Listing 86) and stored in the IFS
stream file /Summary/daily_summary.xml, the validated XML document can be obtained by invoking the
XMLVALIDATE function shown in in the following listing.

VALUES XMLVALI DATE(
XMLPARSE(DOCUVENT GET_XM__FI LE(' / Summary/dail y_sunmary. xm '))
)

Listing 87: XMLVALIDATE function

The DB2 validation processing finds the XML schema to use for validation by using the target namespaces
and schema location hints defined by the document.

Although it offers great flexibility, implicit validation significantly decreases performance because the XML
document must be examined one more time before validation. Allowing an XML document to define how it
should be validated is also an issue in cases where the document is not from a trusted source. Customers
are advised to use the ACCORDING TO clause to explicitly specify which XML schema should be used for
validation whenever possible.

Due to the fact that an error is returned for invalid documents and the XML document is returned for valid
documents, the XMLVALIDATE function can be used within an INSERT or UPDATE statement to ensure
that only valid XML data is assigned to an XML column. The example in Listing 88 invokes the
XMLVALIDATE function from an INSERT statement. In this example, the xml_doc column is defined with
the XML data type in the table named, daily_summary_table.

I NSERT | NTO dai |l y_summary_t abl e(xm _doc)
VALUES
XMLVALI DATE(
XMLPARSE(DOCUVENT GET_XM__FI LE(' / Sunmary/ dai l y_sunmary. xm '))
ACCORDI NG TO XMLSCHEMA | D sqgl _schema. dai | y_summary_xsr

)
Listing 88: Using XMLVALIDATE on an INSERT statement

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

63

]
pil
1

llm]
f
I
Ill
in

Annotated decomposition

The applications used by the ABC Corporation’s headquarters are based on a relational model. It is a
requirement that the data contained within the XML document for the daily summary (Listing 66) be
decomposed (shredded) into multiple relational tables. With XML Extender, this can be accomplished by
defining the mapping in a DAD file and using the db2xml.dxxShredXml stored procedure. The structure of
a DAD file for this task closely resembles Listing 58 with the exception that multiple tables must be
referenced within the DAD. This approach for decomposition is not easy to implement, and suffers from
similar problems as decomposing an XML document into a single table.

A better decomposition solution can be implemented in DB2 for i 7.1 by updating the XML schema that
was shown in Listing 77 to include a mapping of the XML values to the columns in the target tables. After
the addition of the relational mapping specifications, the XML schema document is known as an annotated
XML schema. The annotated XML schema and XML document can be passed into the XDBDECOMPXML
stored procedure to decompose the document.

Assume that the target tables, summary_customers and summary_orders, in schema sql_schema are
created with the SQL statements in Listing 89. Two tables are necessary, because of the potential one-to-
many relationship between first-time customer elements and the orders element.

CREATE TABLE sql _schema. summary_cust oners (

cust _name VARCHAR(1000) ,
add_ti nestanp TI MESTAWP,
cust _phone VARCHAR(50) ,

cust _address VARCHAR(200)) ;

CREATE TABLE sql _schema. summary_orders (

order_id Bl G NT GENERATED ALWAYS AS | DENTI TY,
cust _name VARCHAR(1000) ,

part _name VARCHAR(1000) ,

quantity Bl G NT,

order_tinmestanp Tl MESTAMP);

Listing 89: Table definitions for summary_customers and summary_orders tables

The decomposition process of an XML document is graphically represented in Figure 6.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

64

|l
h
||III
1

I

1
I
Ill
in

Daily Surmmary ¥ML Document

annotated XML Schema
Definition

SY5PROC. XDEDECOMPXML

[SUMMARY_ORDERS E SUMMARY _CUSTOMERS

CRDER_ID : BIGIMT
CUST_MAME : VARCHAR(1000)

] CUST_MAME : VARCHAR(1000)
a

f PART_MAME : VARCHAR(1000)

B

B

ADD_TIMESTAMP : TIMESTAMP
CUST_PHONE : VARCHAR(S0)
CUST_ADDRESS : VARCHAR (200)

[T OO0 OO0 078

QUANTITY : BIGINT
CORDER_TIMESTAMP : TIMESTAMP

Figure 6: Decomposition process in DB2 fori 7.1

XML schema annotations

The W3C XML schema definition language allows XML schemas to contain annotations that are not used
to validate the XML document. Instead, these annotations make extra information available to XML
processing and validating tools. Annotations can be included as attributes of XSD components or as an
annotation element as the first child of an XSD component.

Listing 90 shows a trivial XML schema that contains annotations. The definition of the element named root
contains an attribute, annotation_ns:attrib, that does not exist in the XML schema namespace. This
attribute is treated as an annotation, as its meaning is not defined by the XSD language. The definition of
the root2 element shows a different approach. The xsd:annotation component indicates the existence of
an annotation for the root2 element. The xsd:appinfo component indicates that the enclosed information
will be used by an application. Using an xsd:annotation element is more verbose than the attribute
approach, however, in some cases an xsd:annotation element is required because the annotation might
need to include a complex data structure.

How the information in the annotations is used is not defined by the W3C standard. Instead, annotation
usage is determined by the tool that is using the XML schema to process an XML document.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

65

]
pil
1

[n]]
|

!!=
it

<?xm version="1.0" encodi ng="UTF-8"?>

<xsd: schena t ar get Nanespace="http://ww. a_t arget _nanmespace. cont
xm ns: annot ati on_ns="non_xsd_nanespace"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma" >

<xsd: el ement name="root" annotation_ns:attrib="Data for tools" />
<!-- Define an elenment and include annotations
as a child of the XSD el ement component -->

<xsd: el ement nane="r oot 2" >
<xsd: annot ati on>

<xsd: appi nf o>

<annot ati on_ns: nmyTool >
Data for tools
</ annot ati on_ns: nmyTool >

</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd: el ement >
</ xsd: schema>

<l-- Define an el enent and include an annotation as an attribute -->

Listing 90: Annotations in an XML schema

DB2 for i decomposition annotations

DB2 for i recognizes a number of XML schema annotations that are designed to be used for decomposing

an XML document into relational tables.

Listing 91 shows the XSD file from Listing 77, with the addition of decomposition annotations. The
decomposition annotations contain the information needed by the XDBDECOMPXML procedure to
decompose an XML document into relational tables. This example XSD file in Listing 91 makes use of the

most common annotations, which are described in detail in this paper.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

66

]
pil
1

llm]
f
I
Ill
in

<?xm version="1.0" encodi ng="UTF-8"?>

<xsd: schenma t ar get Nanespace="http://ww. abcconpany. cont
xm ns: Ql="ht t p: // ww. abcconpany. conf
xm ns:sql ="http://ww.ibm com xm ns/ prod/ db2/ xdb1"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema" >

<xsd: el ement nane="dai |l y_summary" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nmaxQccur s="unbounded" ref="QLl: new_customer_report"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement nane="orders">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement maxQccur s="unbounded" m nQccurs="1" ref="QLl: order_infor"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement name="order_infor">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement maxQccurs="1" m nCccurs="1" ref="QL: part_nane"/>
<xsd: el ement nmaxCccurs="1" m nCccurs="1" ref="Ql: quantity"/>
<xsd: el ement maxCccurs="1" m nCccurs="1" ref="Ql: order_datetinme"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement name="address"
sql : col um=" CUST_ADDRESS"
sql : | ocati onPat h=
"/ QLl:dail y_sunmary/ QL: new_cust oner _r eport/ Ql: addr ess"
sql : rowSet =" CUSTOVERS _ROWBET"
type="xsd:string"/>
<xsd: el ement nanme="new_custoner_report">
<xsd: conmpl exType>
<xsd: sequence>
<xsd: el enent maxQccurs="1" mi nQccurs="1" ref="QL: name"/>
<xsd: el ement maxQccurs="1" m nCccurs="1" ref="Ql: phone"/>
<xsd: el enent maxQccurs="1" m nQccurs="1" ref="QLl: address"/>
<xsd: el ement nmaxCccurs="1" m nCccurs="1" ref="Ql: added_dateti nme"/>
<xsd: el enent maxQccurs="1" m nQccurs="1" ref="Ql: orders"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement nane="part_nanme"
sql : col um=" PART_NAME"
sql : 1 ocati onPat h=
"/ QL:daily_sunmmary/ QL: new_cust oner _report/ QL: orders/ QL: order _i nfor/ QL: part _nane
sql : ronwSet =" ORDERS_ROWSET'
type="xsd:string"/>
<xsd: el ement nane="added_dateti ne"
sql : col um="ADD_TI MESTAMP"
sql : 1 ocati onPat h=
"/ QLl:daily_sunmmary/ QL: new_cust oner_report/Ql: added_dat et i ne"
sql : rowSet =" CUSTOVERS ROWBET"
type="xsd: dat eTi ne"/ >

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

67

|l
h
||III
1

I

1
I
Ill
in

<xsd: el ement name="nanme" type="xsd:string">
<xsd: annot at i on>
<xsd: appi nfo xm : space="preserve">
<sql : rowSet Mappi ng sql : | ocati onPat h=
"/ QLl:dail y_sunmary/ QL: new_cust oner _r eport/ QL: nanme" >
<sql : r onSet >CUSTOVERS_ROWSET</ sql : r owSet >
<sql : col um>CUST_NAME</ sql : col um>
</ sql : r owSet Mappi ng>
<sql : rowSet Mappi ng sql : | ocati onPat h=
"/ QL: dai l y_sunmmary/ QL: new_cust oner _r eport/ QL: nane" >
<sql : rowSet >CRDERS_ROWBET</ sqgl : r owSet >
<sqgl : col utm>CUST_NAME</ sql : col utm>
</ sql : r owSet Mappi ng>
</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el enent nane="order_datetinme"
sql : col um="ORDER_TI MESTAMP"
sql : | ocati onPat h=
"/ QL:daily_summary/ QL: new_cust oner_report/ QL: orders/ QL: order _i nfor/ QL: order _dat et
ime"
sql : rowSet =" ORDERS_ROWSET" type="xsd: dateTi ne"/ >
<xsd: el ement nanme="quantity" sql:col um="QUANTI TY"
sql : 1 ocati onPat h=
"/ QL:daily_summary/ QL: new_cust oner _report/Ql: orders/ QL: order _i nfor/ QL: quantity"
sql : rowSet =" ORDERS_ROWSET" type="xsd:integer"/>
<xsd: el ement nane="phone" sql: col um="CUST_PHONE"
sql : 1 ocati onPat h=
"/ Ql:dail y_sunmmary/ QL: new_cust omer _report/ QL: phone"
sql : rowSet =" CUSTOVERS ROABET" type="xsd:string"/>
<xsd: annot at i on>
<xsd: appi nfo xm : space="preserve">
<sql : tabl e>
<sql : SQLSchema>SQL_SCHEMA</ sql : SQLSchenma>
<sgl : name>SUMVARY_CRDERS</ sql : nane>
<sql : r onSet >ORDERS_ROWSET</ sql : r owSet >
</sql:tabl e>
<sql : tabl e>
<sql : SQL.Schema>SQL_SCHEMA</ sql : SQ.Schena>
<sql : name>SUMVARY_CUSTOMERS</ sql : nane>
<sql : rowSet >CUSTOVERS_ROWBET</ sql : r owSet >
</sql:tabl e>
</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd: schema>

Listing 91: XML schema with annotations

All DB2 for i decomposition annotations are qualified by the namespace URI
http://www.ibm.com/xmins/prod/db2/xdb1. In the example XML schema found in Listing 91, this

namespace is mapped to the prefix sql. However, other prefixes are frequently used. The decomposition
annotation examples contained in the IBM i Information Center use db2-xdb as the prefix. The decision on
which prefix value to use is entirely up to the programmer building the annotated XML schema. DB2 for i

processes annotations using the associated namespace URI rather than the prefix.

Two annotations that are the critical features of the decomposition process are the sqgl:rowSet and

sqgl:column annotations. These annotations are provided for each element or attribute to specify a mapping

of the associated data value to a target table and column. These two annotations must be specified in
order for the decomposition process to successfully complete.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

68

]
pil
1

llm]
f
I
Ill
in

The sqgl:table annotation defines the SQL table for the rowset. This annotation is optional and can be
omitted. If this annotation is omitted, the name of the rowset is used as the table name, and the default
schema is used as the table’s schema. The default schema can be set with the sql:defaultSQLSchema
annotation.

The sqgl:locationPath annotation is often used to describe the mapping of elements and attributes
conditionally, depending on the location of the element or attribute in the XML document. The reason why
this is useful requires a bit of explanation for how XSD files can be written to reuse an element’s structure.

In an XSD file, an element can be declared globally, as a child of the xs:schema component, rather than
locally as part of another element component’s content. The global element can then be referenced from
within other element components in the XML schema. This provides a way to reuse the definition of the
global element, similar to how a global data structure might be reused within a program. A well-designed
XML schema usually will not use this approach, and will instead, use real data types to facilitate reuse of
structural ideas; however, automated tools for creating XML schemas most of the times cannot derive
meaningful type information from an XML document. Thus, when a tool is used to generate an XML
schema from a set of XML documents, the elements are usually declared globally, and then referenced at
the locations in which they can appear in the XML document. Listing 77 was generated with automated
tools, and so, it uses global elements and references. Listing 92 shows how the new_customer_report
element was declared in Listing 77. Child elements of the new_customer_report element are declared by
referring to global elements, rather than duplicating the declarations of these elements.

<xsd: el ement nane="new_custoner_report">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent naxCQccurs="1"
m nCccurs="1" ref="QL: nane"/>
<xsd: el enent maxCccurs="1"
m nCccurs="1" ref="QL: phone"/ >
<xsd: el enent naxQccurs="1"
m nCccurs="1" ref="Ql: address"/ >
<xsd: el enent nmaxQccurs="1"
m nCccurs="1" ref="Ql: added_dateti ne"/>
<xsd: el enent nmaxQccurs="1"
m nCccurs="1" ref="Ql: orders"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

Listing 92: new_customer_report element declaration

Child elements of the new_customer_report element in Listing 92 are declared by referring to global
elements, rather than duplicating the declarations of these elements. Decomposition annotations cannot
be included on any of the child elements of the new_customer_report element because they all reference
global elements. However, decomposition annotations for these child elements can appear on the global
element that is being referenced. This limitation creates some complexity because the global element
might appear at multiple locations in the XML document, and each location can be decomposed
differently.

This problem is resolved by using the sgl:locationPath annotation. The annotation is used to describe the
mapping for a specific element at a specific location. Listing 93 shows how the address global element has
been annotated with a decomposition annotation that maps the address child element of the

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

69

]
pil
1

llm]
f
I
Ill
in

new_customer_report element to the CUST_ADDRESS column. If the global address element was
referenced by other child elements, then additional annotations can be added to the global address
element to map address values to other columns.

The syntax for the sql:locationPath is based on a very small subset of the XPath syntax and is described in
the IBM i Information Center. Refer to the link included in the “Resources” section at the end of this paper.

<xsd: el enent
name="addr ess"
sql : col um=" CUST_ADDRESS"
sql : 1 ocationPat h="/QLl: dai | y_sumary/ QL: new_cust oner _report/ QL: addr ess"
sql : r owSet =" CUSTOVERS ROWBET"
type="xsd:string"/>

Listing 93: Declaration of the address global element

There are a number of other optional annotations that are not included in this example. These annotations
allow for conditional shredding, transformation of the data that is inserted, and ordering of the inserts into
the target tables. These optional annotations provide a super-set of the functionality offered by the XML
Extender decomposition support. Refer to the “Resources” section for a more detailed documentation on
supported annotations.

While the XSD language is an industry standard, the decomposition annotations are specific to IBM and
DB2 for i. The result is that tools for generating these annotations on DB2 for i are difficult to find.
Customers should consider that the annotations used by DB2 for i 7.1 are consistent with the annotations
used by DB2 for Linux, UNIX, and Windows(LUW), and this allows annotated XML schemas that were
built with tools designed for DB2 for LUW to also be used for IBM i. At the time of this writing, IBM Data
Studio does not officially support XML decomposition on IBM i, but does support generating a subset of
the decomposition annotations for use with DB2 for Linux, UNIX and Windows.

Registering XML schemas for decomposition

Registering an annotated schema with DB2 works almost exactly the same as registering a non-annotated
schema. If the XSR object already exists, you must first remove it with the XSR_REMOVE procedure as
shown in Listing 94.

| CALL XSR_REMOVE(' sql _schema', 'daily_sunmary_xsr') \

Listing 94: XSR_REMOVE

The new annotated XSD file must be registered using the XSR_REGISTER stored procedure as shown in
Listing 95. This procedure call works the same way as the previous XSR_REGISTER call in Listing 80.

CALL XSR _REGQ STER(' sql _schema', 'daily_summary_xsr',
‘daily_summary. xsd',
CGET_XM._FI LE(' / home/ nt|/schemas/ dai | y_sunmary_annot at ed. xsd'),
NULL)

Listing 95: XSR_REGISTER with annotations

The key difference is that when the XSR_COMPLETE procedure is invoked, the fourth parameter must
indicate that decomposition annotations exist, by supplying a one instead of a zero value. This invocation
type is shown in Listing 96.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

70

|l
h
||III
1

I

1
I
Ill
in

| CALL XSR_COVPLETE(' sqgl _schema', 'daily_summary_xsr', NULL, 1) |

Listing 96: XSR_COMPLETE with annotations for decomposition

The XML document shown in Listing 66 can nhow be decomposed using the annotated schema by using
the XDBDECOMPXML stored procedure call shown in Listing 97.
CALL XDBDECOWPXM_('sql _schema', 'daily_summary_xsr',

GET_XM__FILE(' / hone/ntl/daily_sunmary.xm '),
NULL)

Listing 97: XDBDECOMPXML procedure

The first two parameters on the XDBDECOMPXML procedure specify the XSR object, and the third
supplies the XML document to be shredded. The third parameter expects the XML document to be passed
as a BLOB value rather than an instance of the XML type.

The fourth parameter in this invocation example is NULL. This parameter can be used to supply a
variable-length character string that can be referenced during the decomposition as the document ID.
XML documents frequently do not contain an identifier that will be unique across all documents to be
shredded. Therefore, when decomposing, it is often necessary to provide a unique identifier for the
document which is being decomposed, so that the identifier can be used as a key value in the target
tables.

After the XDBDECOMPXML procedure call successfully completes, the summary_orders and
summary_customers tables contain the data shown in Table 10 and Table 11.

ORDER_ID | CUST_NAME PART_NAME | QUANTITY | ORDER_TIMESTAMP
1 First Automobile Works Valve 1000 2012-06-14 05:20:00.000000
2 Ultimate Automobile Works | Flywheel 2000 2012-06-14 10:20:00.000000

Table 10: Content of the summary_orders table

CUST_NAME ADD_TIMESTAMP CUST_PHONE | CUST_ADDRESS

First Automobile Works 2012-06-14 05:20:00.000000 | 86-10-12345678 | Dongfeng St.

Ultimate Automobile Works | 2012-06-15 05:30:00.000000 | 99-10-12345678 | Main St.

Table 11: Content of the summary_customers table

Annotated decomposition with SQL dates and times

Although dates and times in an XML document should ideally be represented using the XML Data Model,
the annotated decomposition feature can also be used to decompose XML documents where these values
are stored as XML strings that contain an SQL data type in character format. This capability makes the
decomposition process easier for XML documents that were originally designed to be decomposed by
using the XML Extender support.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

71

]
pil
1

llm]
f
I
Ill
in

The following listing shows a sample document with an SQL timestamp value stored as an xs:string.
Customers using XML Extender to decompose their XML documents had to store their timestamp values
in this format.

<?xm version="1.0" encodi ng="UTF-8"?>
<SQ._Ti meSt anp>2012- 01- 01 00: 00: 00. 000000</ SQL_Ti neSt anp>

Listing 98: Sample XML document with SQL timestamps

Listing 99 includes the definition of the timestamp_decomp table which contains a timestamp column that
can be used for storing the timestamp value embedded within in the SQL_TimeStamp element.

| CREATE TABLE exanpl e. ti mest anp_deconp(SQL_Ti meSt anpCol Tl MESTANP) |

Listing 99: Decomposition target table with timestamp column

Listing 100 shows an annotated XSD that has been defined to decompose the XML document in Listing 98
into the timestamp_decomp table. In order for the XML document to be valid according to this XML
schema, the type of the SQL_TimeStamp element must be defined with the xs:string because the data is
not a valid xs:dateTime value. During the decomposition process, the XDBDECOMPXML procedure will
first convert the xs:string value to an SQL character type and the SQL character string will eventually be
cast to an SQL Timestamp value during the insert into the target table.

<?xm version="1.0" encodi ng="UTF-8"?>
<xsd: schema xm ns:sql ="http://ww.ibm com xm ns/ prod/ db2/xdb1"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma" >
<xsd: el ement nanme="SQ._Ti meSt anp”
sql : col utm="SQ._TI MESTAMPCCL"
sql : 1 ocati onPat h="/ SQ._Ti meSt anp"
sql : rowSet =" EXAMPLE_AXSD_TI MESTAMP_DECOWP_0"
type="xsd:string"/>
<xsd: annot at i on>
<xsd: appi nfo xm : space="preserve">
<sql : tabl e>
<sqgl : SQLSchema>EXAMPLE</ sql : SQLSchena>
<sgl : name>TI MESTAMP_DECOWP</ sql : nane>
<sql : rowSet >EXAMPLE_AXSD_TI MESTAMP_DECOWP_0</ sqgl : r owSet >
</sql:tabl e>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: schema>

Listing 100: Annotated XSD with SQL timestamps

Annotated decomposition of values that have time zone components

Unlike the XMLTABLE function, the XDBDECOMPXML procedure cannot normalize an xs:date, xs:time,
or xs:dateTime value to UTC when the value contains a time zone. The stored procedure can only be used
to truncate the time zone. This capability allows the value to be shredded based on the value’s local time
zone.

An additional truncation annotation can be used in the XSD file to instruct the XDBDECOMPXML
procedure to remove the time zone from the xs:date, xs:time or xs:dateTime value before converting the
value to an SQL DATE, TIME, or TIMESTAMP value. Listing 101 shows an XML document that contains a
timestamp with a time zone offset.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

72

]
pil
1

llm]
f
I
Ill
in

<?xm version="1.0" encodi ng="UTF-8"?>
<XM__Ti meSt anp>2012- 01- 01T00: 00: 00. 000000+03: 00</ XM__Ti neSt anp>

Listing 101: XML document with xs:dateTime that has a time zone

The annotated XSD file shown in Listing 102 can be used to perform the decomposition of the XML
document shown in Listing 101. A value of 1 for the truncate option indicates that the time zone will be
removed from the xs:dateTime. If the truncate option is not provided, it defaults to a value of 0 which
means that the XDBDECOMPXML procedure will fail with an error if a time zone component is part of the
value.

<?xm version="1.0" encodi ng="UTF-8"?>
<xsd: schema xm ns:sql ="http://ww.ibm com xm ns/ prod/ db2/xdb1"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma" >
<xsd: el ement nanme="XM__Ti meSt anp”
sql : col utm="SQ._TI MESTAMPCCL"
sql : 1 ocati onPat h="/ XM__Ti meSt anp"
sql : rowSet =" EXAMPLE_AXSD_TI MESTAMP_DECOWP_0"
sql : truncate="1"
type="xsd: dat eTi ne"/ >
<xsd: annot ati on>
<xsd: appi nfo xm : space="preserve">
<sql : tabl e>
<sgl : SQL.Schema>EXAMPLE</ sql : SQL.Schema>
<sql : name>TlI MESTAMP_DECOWP</ sql : nane>
<sql : rowSet >EXAMPLE_AXSD_TI MESTAMP_DECOWP_0</ sqgl : r owSet >
</sql:tabl e>
</ xsd: appi nf o>
</ xsd: annot at i on>
</ xsd: schema>

Listing 102: Annotated XSD with truncate option

Table 12 contains the result of the decomposition.

SQL_TIMESTAMPCOL

2012-01-01 00:00:00.000000

Table 12: Truncated timestamp

Full text search

Full text search is an important function in many XML environments. Assume that the ABC Corporation
has created a products table with a product column that is used to store product descriptions using an
XML format. A sample XML document with a description of the flywheel product is found in Listing 103.

<pr oduct >
<name>f | ywheel </ nane>
<descri pti on>nechani cal device used for storing
rotational energy
</ descri ption>
<dat e_added>2012- 06- 02</ dat e_added>
</ pr oduct >

Listing 103: Sample XML product description

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

73

]
pil
1

llm]
f
I
Ill
in

The XML Extender product does not itself contain full text search capabilities for XML documents.
However, these capabilities are available through the DB2 Text Extender options (5770-DE1 options 1 and
3). The DB2 Text Extender search support requires a model file to be set up in advance. The model file
indicated which parts of the XML document should be indexed. A search can be performed on keywords
within the indexed sections of the XML documents using the Contains user-defined function.

A sample query that uses the db2tx.contains function is provided in Listing 104. The query assumes that
handle is a column handle defined for the product column, and that a model file has been created with a
model called mymodel defined to include the /product/description section of the XML document.

SELECT * FROM products
WHERE db2t x. Cont ai ns(handl e,

'model nynodel sections (/product/description) “energy” ') =1

Listing 104: Text Extender query search of XML document

Full text search for the integrated XML data type is supported by the OmniFind Text Search server for DB2
for IBM i (5733-OMF) product. OmniFind is a no additional charge licensed product. The OmniFind full text
search support does not require determining in advance which specific sections of the XML document
must be indexed and searched. The functions used for searching and ranking documents are built-in
functions, allowing for better integration with the SQL language than the user-defined function provided by
the Text Extender product. A link to a white paper that explains how to use OmniFind for XML searches is
included in the “Resources” section of this paper.

A sample search using the built-in CONTAINS function and xmlixp search syntax is found in Listing 105.
The query will search for products that were added after 1 June 2012 and contain variations on the phrase
stores energy in the description.

When including xs:date and xs:dateTime values in a search, an important consideration is that OmniFind
Text Search for DB2 for i stores only the local time in the index (in other words, the time zone component
is truncated). Adding a time zone component to an xs:date or xs:dateTime that is used in the search
criteria is not supported.
SELECT *
FROM product s WHERE

CONTAI NS(pr oduct ,

@m xp: "'/ product[date_added > xs:date("2012-06-01")]/
description[. contains("stores energy")]’'’'') =1

Listing 105: Full text search with date comparison

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

74

|l
h
||III
1

I

1
I
Ill
in

Recommendations:

The following section documents general recommendations and guidelines to consider when using the
built-in XML type.

Comparing decomposition with XMLTABLE with annotated XML
schema

There are two methods for performing XML decomposition using the integrated DB2 for i 7.1 XML support.
One approach is to use the XMLTABLE function and the other is to use annotated XML schemas with the
XDBDECOMPXML stored procedure. Deciding which approach to use is an important step in building your
XML solution. The method of decomposition that was used with the XML Extender support is not usually a
deciding factor in choosing which approach to use.

If no XML schema exists for the XML documents that need to be decomposed and creating a schema is
impractical, then the annotated schema method cannot be performed. In this situation, the XMLTABLE
function is the only option.

The XMLTABLE function also tends to be the preferred solution when the structure of the XML documents
and decomposition requirements frequently change. The XMLTABLE function can dynamically decompose
XML document without requiring pre-registration of a mapping XSD file. The XMLTABLE invocation can be
easily changed whenever the decomposition mappings change. With annotated decomposition, it is
necessary to define the mapping relationship of XML to DB2 tables in advance and maintain the
annotations. If the mapping relationship needs to be updated, the registered XSR must be removed,
updated, and registered again.

The XMLTABLE function is better suited for manipulations on xs:date, xs:time, and xs:dateTime values.
The function can be used to return these values by normalizing them to UTC or truncating the time zone.
The XDBDECOMPXML procedure can only return the values with the time zone truncated.

The XMLTABLE function does not require manipulation of an XML schema, but does require detailed
knowledge of the XPath syntax. The XPath syntax might be easier for some developers to understand, but
there also are very few tools capable of assisting a developer in building an SQL statement that includes
an XMLTABLE reference for decomposition.

A major advantage of the annotated XML decomposition is that it supports shredding into more than one
table. The XMLTABLE function requires a unique INSERT statement and function invocation for each
target table.

Another consideration is the designer’s familiarity with the XML technology and tools that are available.
The annotated schema method, although similar to the mapping approach used by XML Extender,
requires a detailed knowledge of the XML schema language and decomposition annotations. This can be
a large learning curve, unless a proper XML toolset is available for creating and working with XML
schemas and annotations.

Improving query performance using side tables

Users of XML Extender routinely use side tables for improving query performance. Side tables are
additional tables that are created by the DB2 XML Extender product to improve performance of searches

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

75

]
pil
1

llm]
f
I
Ill
in

over the elements and attributes in XML documents that were stored in a column. A DAD file defines how
an element or attribute value is mapped to a specific column of a side table. As XML documents are
inserted, data for specified elements and attributes are copied into the columns of the side table.

When the XML Extender support is used to enable a column for XML, the product created side tables with
the columns corresponding to the elements and attributes defined in the DAD. The XML Extender support
also ensures that the data in the side tables stays consistent with the data in the XML column. This is
accomplished by creating triggers on the table to synchronize the XML data with side tables when insert,
update, and delete operations are performed.

The relational data can then be used in a query, instead of processing the XML document, as long as the
available relational data is sufficient to answer the query. This provides a way of optimizing location path
expressions. In addition, users can build DB2 indexes over the columns in the side tables to further
improve the performance of some queries.

The built-in XML type does not provide a concept of automatically creating and maintaining a side table for
an XML column.

One suggestion is to manually create tables or materialized query tables (MQTSs) to store a relational
version of the XML data that is searched most frequently. These tables can be used to store decomposed
XML values. Data within the tables can be maintained by creating triggers or by a REFRESH TABLE
statement (if an MQT is used).

When a query involves XML data, the corresponding relational criterion can be added to the SQL query,
improving performance. This process is essentially equivalent to the side tables that are available with
XML Extender, and offers a manual way of using relational indexes to retrieve rows from an SQL table
when the selection criteria involves data stored in XML documents.

An MQT is not automatically used by the optimizer in this scenario. The advantage of using an MQT as
compared to a regular DB2 table is that the MQT has the SQL query associated with it that was used to
initially populate its data. The contents of the table can be completely reloaded using the REFRESH
TABLE statement. In addition, it is easier to recognize the dependency that the MQT has on the table that
contains the XML document when exploring the database with tools.

The DB2 optimizer is fully aware of the relational aspects of an SQL query. When side tables are involved
in a query, the optimizer considers indexes that are built over the side tables when building an access
plan. One thing that the DB2 optimizer cannot do is understand the mapping of the data in the side tables
to the XML data in the column. It is up to the application developer to reference data stored in side tables
when creating a query. The developer must also determine which data is shredded into the side tables.

The first step is determining the elements and attributes that should be duplicated in a side table and how
many side tables should be created. These considerations are similar to the recommendations used for
the XML Extender product. However, because the XMLTABLE function supports more complex predicates
and multiple result columns, additional possibilities exist.

An important step when designing the mapping between an XML document and a DB2 table is to
determine whether or not an element or attribute can occur multiple times. If an element or attribute can
occur multiple times then that value needs to be stored in its own side table. For example, if ABC
Corporation wants to improve queries over the XML order documents (Listing 63) in the original_orders
table (Listing 42).

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

76

|l
h
||III
1

I

1
I
Ill
in

More specifically, they would like to optimize the XPath expression, /orders/order_infor/customer_name
by storing the value of the customer_name element in a relational format. The result of the expression will
need its own side table because the relationship between the XML document and the customer_name
element is one to many, meaning the customer_name element can occur multiple times in the document.

The XMLTABLE function offers a new and important trick for determining which side tables to create. The
secret is to look at the row expressions on XMLTABLE invocations, and especially focus on the predicates
in the row expressions.

For example, assume ABC Corporation often runs the queries similar to the one in Listing 106. These
queries try to find XML documents in the original_orders table (Listing 42) to retrieve order information for
orders placed after a certain date.

SELECT xt.*
FROM ori gi nal _orders oo,
XMLTABLE(XMLNAMESPACES(DEFAULT ' htt p: //ww. abcconpany. com),
"/ orders/order _infor[xs:dateTi me(order_datetine) >
xs: dat eTi me("2012-06-14T12: 10: 00+03: 00")]"
PASSI NG
00. or der _doc
COLUWNS
"cust oner _nane" VARCHAR(255) PATH ' cust orrer _nane',
"part_name" VARCHAR(255) PATH ' part _nane',
"quantity" Bl G NT PATH ' quantity’
) XT

Listing 106: XMLTABLE query with timestamp search

The most complete solution for optimizing this query is to decompose the contents of the customer_name,
part_name, quantity, and order_datetime elements into a DB2 table. This is shown in Figure 7.

["order_infor"

[ORIGINAL_ORDERS 2. ORDER_DOC_ID ; BIGINT
i" ORDER_DOC_ID BIGIMT 1 dECUmIJUSE "CLIStCII'I"IEI'_r'IaI'I"IE" :VﬂRCH.&R(ESS}
B ORDER DOC: XML : "part_name" : VARCHAR(255)
= "quantity” : BIGINT
"order_datetime" : TIMESTAMP

I8 OT8 078 Oom

Figure 7: Side table for original orders

The one-to-many relationship between the XML document and the order_infor element necessitates a side
table that contains one row for each order_infor element. As there can be only one customer_name,
part_name, quantity, and order_datetime element contained within each order_infor element, additional
side tables for each individual element will not be required in this example. The order_datetime element is
included in the decomposition only to enable filtering on the order’s timestamp.

Using the data in the side table, the query can be satisfied by using a traditional SQL query, as shown in
Listing 107. As the order_datetime column has been normalized to UTC, the query must also use a
timestamp value that has been normalized for UTC.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

77

|l
h
||III
1

I

1
I
Ill
in

SELECT "custoner_nanme", "part_name", "quantity"
FROM “order _infor” side_table
VWHERE si de_t abl e. "order _datetine" > TI MESTAMP(' 2012- 06-14 09: 10: 00")

Listing 107: Query using only a side table

In real-world scenarios, it is not always practical to decompose all the necessary information from the XML
document in advance. More realistic is to decompose the portions of the XML documents that are useful
for the widest range of queries. The example that follows will decompose only the order_datetime
elements from the order_doc XML document. A graphic representation of this decomposition is shown in
Figure 8.

7 ORIGINAL_ORDERS B original_orders(order_doc)/orders/order_infar/order_datetime
12 ORDER_DOC ID : BIGINT # ORDER_DOCID: BIGINT

= 1 decompose L — :
£ ORDER_DOC: XML: g "order_datetime" : TIMESTAMP

Figure 8: Diagram of a side table for order_datetime elements

Decomposing the order_datetime elements does not provide sufficient information to satisfy the sample
query in Listing 106 using only relational tables, but it does make it possible to reduce the number of XML
documents that must be analyzed as part of the query. Eliminating irrelevant documents using a relational
guery improves performance, because it is not necessary to process those XML documents that are not
relevant to the query.

Creating a side table for the timestamp value of the order_datetime element involves creating an MQT and
loading it with data. The reason for using an MQT for a side table as opposed to a regular table is more
aesthetic than functional. The DB2 optimizer is not going to rewrite the SQL query to use the MQT;
however, using an MQT creates a dependency in the database between the table with the XML column
and the MQT. This dependency can make it easier to locate, manage, and use the side table in the future.
Listing 108 shows the MQT definition.

CREATE TABLE
"original _orders(order_doc)/orders/order_infor/order_datetime" as (
SELECT o0o0.order_doc_id, xt."order_datetine"
FROM ori gi nal _orders oo,
XMLTABLE(XMLNAMESPACES(DEFAULT ' htt p: // www. abcconpany. coni),
"/orders/order _infor/order_datetine'
PASSI NG 00. or der _doc
COLUWNS
"order _datetime" TIMESTAMP path '.'
) XT

)

DATA I NI TI ALLY | MVEDI ATE
REFRESH DEFERRED

MAI NTAI NED BY USER

DI SABLE QUERY OPTI M ZATI ON

Listing 108: Side table for order_datetime as an MQT

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

78

]
pil
1

llm]
f
I
Ill
in

The materialized query table is defined so that it is immediately loaded with data when it is created. The
path-based table name is used so that it is easier to see the XPath expression that is stored in the side
table. The MQTs SELECT statement returns one row for each order_datetime element in the document.
Each row has two columns, a document ID, and an SQL timestamp version of the xs:dateTime value
stored in the order_datetime element. The document ID is used to link the rows in the MQT back to the
XML document that generated them.

The next step is to create some triggers to keep the data in the table in synchronization with the XML
documents. These triggers are not all that complicated. They insert, update, or delete the XML document’s
result rows from the associated XPath expression into the side table. You can find example trigger
definitions in Listing 109.

CREATE TRI GGER “order _dat eti me- >l NS"

AFTER | NSERT ON origi nal _orders

REFERENCI NG NEW TABLE AS NEWP

FOR EACH STATEMENT MODE DB2SQL

BEG N ATOM C

I NSERT | NTO

"original _orders(order_doc)/orders/order_infor/order_datetine"

(order_doc_id, "order_datetine")
SELECT nt.order_doc_id, xt."order_datetine"
FROM newt nt,
XMLTABLE(XMLNAMESPACES(DEFAULT ' htt p: // www. abcconpany. coni),

"/orders/order _infor/order_datetine'
PASSI NG nt . or der _doc
COLUWNS "order_datetime" TINMESTAMP path '.') XT;

END,;

CREATE TRI GGER "order _dat et i me- >UPD"
AFTER UPDATE OF ORDER_DOC, ORDER _DOC I D ON original _orders
REFERENCI NG NEW TABLE AS NEWI OLD TABLE AS ol dt
FOR EACH STATEMENT MODE DB2SQL
BEG N ATOM C
DELETE FROM
"original _orders(order_doc)/orders/order_infor/order_datetine"
where order_doc_id in (select oldt.order_doc_id fromoldt);
I NSERT | NTO
"original _orders(order_doc)/orders/order_infor/order_datetine"
(order _doc_id, "order_datetinme")
SELECT nt.order_doc_id, xt."order_datetine"
FROM newt nt,
XMLTABLE(XMLNAMESPACES(DEFAULT ' htt p://ww. abcconpany. com),
"/orders/order_infor/order_datetine'
PASSI NG nt . or der _doc
COLUWNS "order_datetime" TIMESTAMP path '."') XT;
END,

CREATE TRI GCER "or der _dat et i me- >DEL"
AFTER DELETE ON origi nal _orders
REFERENCI NG OLD TABLE AS ol dt FOR EACH STATEMENT MODE DB2SQL
BEG N ATOM C
DELETE FROM
"original _orders(order_doc)/orders/order_infor/order_datetine"
VWHERE order_doc_id IN (SELECT ol dt.order_doc_id FROM ol dt);
END;

Listing 109: Same trigger definitions

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

79

]
pil
1

llm]
f
I
Ill
in

When dealing with relational versions of XML data, the query must consider any conversions that occurred
when converting XML data types to SQL data types. In this example, the TIMESTAMP value in the
order_datetime column was converted to a timestamp in the UTC time zone by the XMLTABLE function.
As a result, the SQL comparisons against this column must use timestamp values that correspond to a
time zone of UTC rather than the xs:dateTime’s local date and time that was used in Listing 106. This is
not a huge consideration, but it is one more detail to keep in mind. The query in Listing 110 uses the side
table to produce the same results as the query in Listing 106.

WTH eligible_rows AS (
SELECT * FROM original _orders cani date_rows
WHERE cani date_rows. order_doc_id IN
(SELECT order_doc_id
FROM "ori gi nal _orders(order_doc)/orders/order_infor/order_datetine" AS rd
VWHERE rd. "order_datetime" > '2012-06-14 09:10: 00
))
SELECT xt . *
FROM el i gi bl e_rows,
XMLTABLE(XMLNAMESPACES(DEFAULT ' http://ww. abcconpany. com),
'/ orders/order _infor[xs: dateTi me(order_datetine) >
xs: dat eTi ne("2012-06-14T12: 10: 00+03: 00")]"
PASSING eligible_rows.order_doc

COLUWS "cust oner_namne" VARCHAR(255) PATH ' cust onmer _nane',
"part _nane" VARCHAR(255) PATH ' part _nane',
"quantity"” Bl G NT PATH 'quantity') XT

Listing 110: SQL/XML query using a side table

The eligible_rows common table expression is evaluated first. The eligible_rows expression results in only
the rows from original_orders where the XML document (order_doc) has at least one order_datetime
element containing an xs:dateTime value that is greater than the value 2012-06-14T12:10:00+03:00. The
rows that do not appear in the results of the eligible_rows expression have an XML value for order_doc
that will result in an empty table being returned from the XMLTABLE function. It is therefore only
necessary to provide the rows from the eligible_rows expression to the XMLTABLE function because it is
known that the rows that have been removed will never appear in the result of a cross-join between the
original_orders table and the XMLTABLE function.

The matching documents produced by the eligible_rows expression are cross-joined with the main query
that involves the XMLTABLE function. For the common table expression to be useful, the number of rows
produced by the eligible_rows expression must be much less than the number of rows that exist in the
original_orders table. If this is not true, then the number of XML documents to be analyzed has not been
reduced, and the performance improvements will not be achieved.

The query in Listing 110 returns the results displayed in Table 13.

customer_name part_name | quantity

Ultimate Automobile Works | Flywheel 2000

Table 13: Query results

It is very important to understand that the eligible_rows common table expression returns all XML
documents that will return at least one row when provided to the XMLTABLE function, thus preventing the
XML documents that are irrelevant from being passed into an expensive table function. The table

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

80

|l
h
||III
1

I

1
I
Ill
in

expression does not filter the rows that result from the XMLTABLE function. This is the reason that the
predicate needs to appear on the row expression for the XMLTABLE function. This idea is best illustrated
by looking at the query in Listing 111. This query is exactly the same as the previous query in Listing 110,
except that the row expression does not include the xs:dateTime comparison in a predicate.

WTH eligible_rows AS (
SELECT * FROM original _orders cani date_rows
WHERE cani date_rows. order_doc_id IN
(SELECT order_doc_id
FROM
"original _orders(order_doc)/orders/order_infor/order_datetine"
AS rd
VWHERE rd. "order_datetime" > '2012-06-14 09:10: 00
))
SELECT xt.*
FROM el i gi bl e_rows,
XMLTABLE(XM_LNAMESPACES(DEFAULT ' htt p: // ww. abcconpany. com),
"/orders/order_infor '
PASSI NG el igible_rows. order_doc

COLUWS "cust omner _nane" VARCHAR(255) PATH ' cust orrer _nane',
"part_nane" VARCHAR(255) PATH ' part _nane',
"quantity" Bl G NT PATH 'quantity') XT

Listing 111: Query omitting the row expression predicate

The results are shown in the following table. An extra row appears in the results because the query only
filtered based on XML documents and not the rows that result from the XMLTABLE function.

customer_name part_name | quantity

First Automobile Works Valve 1000

Ultimate Automobile Works | Flywheel 2000

Table 14: Result with row expression predicate omitted

The extra complexity of a query that uses side tables is worth the effort in some scenarios. Performance is
significantly improved by using the common table expression because all of the documents that are known
to result in an empty table are removed without the need for the XMLTABLE function to evaluate the XML
document.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

81

]
pil
1

llm]
f
I
Ill
in

Summary

This paper has covered a wide range of XML-related functions. In earlier releases, DB2 for i could only
interpret XML as a serialized character string. Any understanding or interpretation of the XML data itself
was left up to licensed products and applications, such as DB2 XML Extender.

With the availability of DB2 for i 7.1, the integrated relational database has a deeper understanding of XML
data in terms of the XML Data Model. The database now includes a built-in type capable of representing
the values and relationships defined in the XML document. The data type is well-defined and does not
permit corruption of the XML value by using non-XML operations. Additionally, built-in functions and
procedures have been added for parsing, serialization, validation, decomposition, composition, query,
transformation, and full text search.

This paper provided a general comparison between the built-in XML data type and the user-defined types
previously offered by XML Extender. Examples were presented for using the built-in XML type to perform
real-world XML related tasks that might have been previously handled with the XML Extender support.
Also presented was the idea that the built-in XML support in DB2 for i 7.1 adds improvements for working
with industry-standard XML data types, such as xs:dateTime, xs:date, and xs:time. Finally, the paper
introduced some best practices for choosing a decomposition method, and also for improving query
performance of queries over XML data by creating side tables.

Customers now have a strong motivation to move away from XML Extender in favor of the built-in XML
type, built-in functions, and procedures. The SQL/XML functionality available for DB2 fori 7.1 is an
improvement over non-integrated solutions because it:

e Simplifies publishing relational data as XML data

e Simplifies decomposing XML data into a relational model
e Simplifies the coding required to query XML data

e Encourages platform-independent applications

e Ensures the existence of greater technical support and educational resources

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

82

]
pil
1

llm]
f
I
Ill
in

Resources

The following websites provide useful references to supplement the information contained in this paper:

e IBM Systems on PartnerWorld
ibm.com/partnerworld/systems

e Virtual Loaner Program
ibm.com/systems/vip

o DB2 for i developerWorks forum
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=292

e DB2 for i Technology Updates wiki
ibm.com/developerworks/ibmi/techupdates/db2

e DB2 fori SQL CLI Reference
http://publib.boulder.ibm.com/infocenter/iseries/v7rlmO/topic/cli/rzadpkickoff.htm

e DB2 fori SQL Reference
http://publib.boulder.ibm.com/infocenter/iseries/v7rimO0/index.jsp?topic=%2Fdb2%2Frbafz
printthis.htm

DB2 XML Extender resources:

e The Ins and Outs of XML and DB2 for i5/0S
ibm.com/redbooks/abstracts/sg247258.html

o DB2 XML Extender Hints and Tips for the IBM eServer iSeries Server
ibm.com/redbooks/abstracts/redp0135.html?Open

Integrated XML resources:

e Using RPG to exploit IBM DB2 XML support:
ibm.com/developerworks/ibmi/library/i-using-rpg/index.html

e XML Meets DB2 for i - Getting Started With the XML Data Type Using DB2 for i
http://www.ibmsystemsmag.com/ibmi/developer/general/xml_db2_part1/

e Using XML With DB2 for i - How to Use XML Data Type With DB2 for i
http://www.ibmsystemsmag.com/ibmi/developer/general/xml_db2_part2/

e Integrating XML with DB2 fori 7.1

http://www.iprodeveloper.com/article/databasesql/integrating-xml-with-db2-for-i-71-65081

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

83

]
pil
1

llm]
f
I
Ill
in

e Introducing XML in SQL on DB2 for i
http://www.mcpressonline.com/sqgl/now-introducing-xml-in-sql-on-db2-for-ibm-i.html

SQL XML documentation:

e |IBMiSQL XML Programmers Guide
http://publib.boulder.ibm.com/infocenter/iseries/v7rimO0/index.jsp?topic=%2Frzasp%2Frza
spkickoff.htm

e |IBMi XML Data Model
http://publib.boulder.ibm.com/infocenter/iseries/v7rimO0/index.jsp?topic=%2Frzasp%2Frza
sp_datamodel.htm

o Differences in an XML document after storage and retrieval
http://publib.boulder.ibm.com/infocenter/iseries/v7rilmO0/index.jsp?topic=%2Frzasp%2Frba
fyxmi3852.htm

e Application programming language support for XML
http://publib.boulder.ibm.com/infocenter/iseries/v7rilmO0/index.jsp?topic=%2Frzasp%2Frba
fyxml2265.htm

e XMLTABLE SQL Reference
http://publib.boulder.ibm.com/infocenter/iseries/v7rimO0/index.jsp?topic=%2Fdb2%2Frbafz
scaxmitable.htm

e XMLTABLE Tutorial
http://publib.boulder.ibm.com/infocenter/iseries/v7rimO0/index.jsp?topic=%2Frzasp%2Frba
fyxmltexample.htm

e Stylesheet transformation with XSLTRANSFORM
http://publib.boulder.ibm.com/infocenter/iseries/v7rimO0/index.jsp?topic=%2Fdb2%2Frbafz
scaxsltransform.htm

e XML Publishing Functions
http://publib.boulder.ibm.com/infocenter/iseries/v7rimO0/index.jsp?topic=%2Frzasp%2Frba
fyxmI3909.htm

e XML Schema Validation
http://publib.boulder.ibm.com/infocenter/iseries/v7rimO0/index.jsp?topic=%2Fdb2%2Frbafz
scaxmlvalidate.htm

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

84

|jmnj]

i
1 Il

iHlllll

XML schema annotated decomposition documentation:

e Decomposition Overview
http://publib.boulder.ibm.com/infocenter/iseries/v7rilmO0/index.jsp?topic=%2Frzasp%2Frba
fyxmlI2319.htm

e Annotations
http://publib.boulder.ibm.com/infocenter/iseries/v7rimO0/index.jsp?topic=%2Frzasp%2Frba
fyxml2725.htm

IBM OmniFind Text Search Server for DB2 for i resources:

e Rev Up XML Searches with IBM OmniFind
http://www.iprodeveloper.com/article/databasesql/rev-up-xml-searches-with-ibm-omnifind-
64984

e OmniFind white paper
http://www.ibm.com/partnerworld/wps/servlet/ContentHandler/whitepaper/i/omnifind/searc
h

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

85

About the authors

Nick Lawrence is an Advisory Software Engineer working on DB2 for i in IBM
Rochester. He has been involved with DB2 for i since 1999. His most recent
responsibilities have been in the area of full text search, SQL/XML, and XMLTABLE.
You can reach Nick at ntl@us.ibm.com.

Yi Yuan is a Software Developer in DB2 team in China System and Technology
Lab (CSTL). Yi has been working on XML new features of DB2 for i since 2009.
Before that, Yi worked on development of OmniFind Text Search Server for
DB2 for i. You can reach Yi at cdlyuany@cn.ibm.com.

Kent Milligan is a Senior Certified DB2 for i Consultant on the ISV Enablement
team for IBM i in Rochester, Minnesota. After graduating from the University of lowa,
Kent spent the first eight years of his IBM career as a member of the AS/400 and
DB2 development group in Rochester. He speaks and writes regularly about
relational database topics and DB2 for i. You can reach Kent at kmill@us.ibm.com.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

86

]
pil
1

llm]
f
I
Ill
in

Trademarks and special notices

© Copyright IBM Corporation 2013.

References in this document to IBM products or services do not imply that IBM intends to make them
available in every country.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. A
current list of IBM trademarks is available on the Web at "Copyright and trademark information™ at
www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM
products and the results they may have achieved. Actual environmental costs and performance
characteristics may vary by customer.

Information concerning non-IBM products was obtained from a supplier of these products, published
announcement material, or other publicly available sources and does not constitute an endorsement of
such products by IBM. Sources for non-IBM list prices and performance numbers are taken from publicly
available information, including vendor announcements and vendor worldwide homepages. IBM has not
tested these products and cannot confirm the accuracy of performance, capability, or any other claims
related to non-IBM products. Questions on the capability of non-IBM products should be addressed to the
supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice,
and represent goals and objectives only. Contact your local IBM office or IBM authorized reseller for the
full text of the specific Statement of Direction.

Some information addresses anticipated future capabilities. Such information is not intended as a definitive
statement of a commitment to specific levels of performance, function or delivery schedules with respect to
any future products. Such commitments are only made in IBM product announcements. The information is

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

87

http://www.ibm.com/legal/copytrade.shtml

|l
h
||III
1

I

1
I
Ill
in

presented here to communicate IBM's current investment and development activities as a good faith effort
to help with our customers' future planning.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled
environment. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the
storage configuration, and the workload processed. Therefore, no assurance can be given that an
individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

Photographs shown are of engineering prototypes. Changes may be incorporated in production models.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

Replacing DB2 XML Extender with integrated IBM DB2 for i XML capabilities

88

	Abstract
	Introduction
	Overview of the XML data type
	User-defined XML types in DB2 XML Extender
	Built-in XML type
	Creating an XML value using the XMLPARSE function
	Serializing XML data
	Implicit XMLPARSE and XMLSERIALIZE
	Handling of boundary white space when parsing XML data
	XML as an SQL parameter of an external routine
	XML host variables
	XML values in JDBC and SQL CLI
	Processing external XML files
	GET_XML_FILE
	XML file reference variables
	Reading XML from a file
	Writing XML into a file

	Scenario overview
	XML processing steps

	Store XML documents in DB2
	Query XML data
	XML Extender extraction functions
	Using the XMLTABLE table function
	Using the XMLTABLE function to retrieve a scalar result
	XML and SQL data type conversions
	Return an xs:date, xs:time, or xs:dateTime value’s local time

	Decompose XML to a relational database table
	Update XML data
	Compose XML documents from relational tables
	SQL XML publishing functions
	Namespace declarations
	Query design

	Representation of XML values obtained from SQL

	Validation of XML documents
	Validating an XML schema with XML Extender
	Registering an XML schema with DB2 for i
	Registering an XML schema and adding XSD files
	Assigning a target namespace and location
	Completing the schema registration using the XSR_COMPLETE stored procedure

	Validating XML documents with built-in functions

	Annotated decomposition
	XML schema annotations
	DB2 for i decomposition annotations
	Registering XML schemas for decomposition
	Annotated decomposition with SQL dates and times
	Annotated decomposition of values that have time zone components

	Full text search
	Recommendations:
	Comparing decomposition with XMLTABLE with annotated XML schema
	Improving query performance using side tables

	Summary
	Resources
	About the authors
	Trademarks and special notices

