

Presenter
Presentation Notes
Introduction

In recent years, IBM has led key initiatives such as the iSeries Developer Roadmap to help IBM i developers modernize their existing applications and toolsets. These initiatives along with new technology offerings such as the IBM Rational Open Access: RPG Edition product and integrated PHP support have improved the competitiveness of IBM i applications and solutions in the marketplace.

Many modernization efforts focus solely on enhancing the user interfaces for the applications. In these situations, many IBM i developers have overlooked the impact of modernizing their IBM DB2 for i databases and the usage of SQL as a data access language. This online course explains the application modernization steps from an SQL and DB2 for i perspective.

Presenter
Presentation Notes
Agenda

This course first discusses why you might want to modernize the DB2 aspects of your application and use SQL. Next, there is a discussion of the possible approaches and methodologies for DB2. Then, this course goes into detail on the two approaches to DB2 modernization: modernization of the database objects and their definitions (for example, moving from data-definition specifications [DDS] to SQL) and modernization of the data-access interfaces in application programs (for instance, moving from native record-level I/O to SQL). This course concludes with some possible first steps you can take in modernizing applications from a DB2 and SQL perspective.

Presenter
Presentation Notes
Why SQL?

Why should an IBM i developer consider using SQL? Modernizing a DB2 for i database with SQL and data-centric programming delivers benefits that range from reduced IT expenses to enhanced developer productivity and improved application performance and scalability.

Obviously, the portability of SQL is one benefit people latch onto because SQL is the industry standard for relational database managements systems. A portability issue often overlooked is the portability of SQL programming skills. Many IBM i enterprises and application development organizations have switched to programming with SQL for this very reason — it is easier to find a programmer with SQL skills than a programmer with RPG and DDS skills. Relying on SQL to for data definition and access provides a bigger pool of programmers from which IBM i development shops can hire.

As a result of SQL being the industry standard, almost all of the new applications and tools in the marketplace use SQL. Consequently, almost all of the new features and functions IBM has added to DB2 for i requires the usage of SQL in order to benefit from them. The table on the next chart contains a comparison of the major DB2 for i enhancements made to the SQL and non-SQL interfaces since Version 5 Release 1 (V5R1), illustrates the commitment from IBM.

While the native (that is, non-SQL) interfaces for DB2 for i are here to stay, the comparison table on the next chart should make it clear that developers using SQL have many more functions to choose from that can make it easier for their IT teams to meet the ever-changing list of business requirements.

Developers can deliver on requirements faster because the modern SQL features allows the DB2 engine to do more work on behalf of the application. In addition, SQL as a programming language can reduce the total lines of code that a developer has to write, because SQL is designed to work on a set of rows (or records) at a time. In comparison, native I/O works with one row at a time. A single SQL request can process multiple rows of data in one request; in the native I/O world, this takes multiple operations.

Improved performance and scalability can be a side benefit as the DB2 engine can perform some business processing faster and more efficiently than a high-level language application because the engine operates at the lowest levels of the system with sophisticated algorithms. SQL-based reporting also is in a better position to exploit the multiple-core processors that are prevalent in IBM Power Systems. The DB2 Symmetric Multiprocessing (SMP) feature enables a single DB2 request to run in parallel across multiple processors without any application changes. In contrast, exploiting parallel process requires much more work with the non-SQL interfaces.

Another advantage of using SQL is that when you start incorporating more modern aspects of the DB2 for i database, it is easier to convince non-IBM i developers in your shop that using the DB2 for i platform as a database server is a viable option. Once developers see that DB2 for i offers capabilities similar to other modern databases there less likely push for the data processing to be done on a different platform. In addition, simply using SQL terminology to describe DB2 for i database objects helps other developers start to see DB2 for i as a full-feature SQL database instead of an old, legacy database.

Additional details on the business and technical benefits of modernizing with SQL can be found in the referenced white paper.

B2

IBM Power Systems

Unicode support - UTF-16 and UTF-8 Unicode support - UTF-16 and UTF-8
Binary character data type Binary character data type

CRTLF PAGESIZE parameter CREATE INDEX PAGESIZE keyword
Larger decimal support Larger decimal support

SSD enablement for physical & logical files SSD enablement for tables and Indexes

XML, National Character, and ROWID data types

Identity column attribute

Hidden and Automatic Timestamp column attributes

Field Procedure column attribute

Sequence object

Column-level and Instead-Of triggers

Merge statement

OLAP and Super Group expressions

Create Table from Select and Insert from Select

SQL functional indexes

XML Publishing and Decomposition functions

IBM OmniFind Text Search Server

SQL Query Engine (SQE)

SQE Result Set Caching

SQE Autonomic Indexes

SQE Self-Learning Query Optimization & Adaptive Query Processing

SQE Encoded Vector Index fast path for aggregate processing

SQE In-memory Database Enablement

IBM i Navigator Plan Cache Tool

4 © Copyright IBM Corporation, 2011

Presenter
Presentation Notes
This table compares new DB2 functionality that IBM has delivered for the SQL and non-SQL interfaces since the V5R1 release.

Presenter
Presentation Notes
Traditional Record-Level Access

This approach of using SQL to have DB2 do more work on behalf of the application is known as data-centric programming. A better understanding of this data-centric approach with the traditional record-level access methodology can be garnered by comparing the graphical representation of these two approaches. First, the traditional non-SQL interface which is also known as the record-level access interface.

With the traditional approach, the developer uses the native record-level access interfaces to specify the exact step-by-step instructions for DB2 to follow in the consolidation of data from the four different database tables in this example. This means that not only does the developer have to create application code that implements the requested business functionality, but the developer also must invest time in directing and controlling the relational database processing.

Presenter
Presentation Notes
SQL Data-Centric Programming

The SQL data-centric programming model offers a contrasting approach that this drawing attempts to portray. A developer utilizes SQL to submit a high-level request to DB2 to consolidate the data from the four database tables. At this point, it is up to the DB2 query optimizer to analyze the request and select the best performing low-level step-by-step implementation. This data-centric approach enables developers to focus their time on the creation of application code for business processes while leaving the data processing for the DB2 for i database engine.

Presenter
Presentation Notes
Approaches & Options

To understand the approaches to modernization that are based on DB2-coding techniques, you need to know the various SQL interfaces that go into the DB2 for i database engine. The biggest difference between SQL and the native interface is the interaction with the query optimizer. This emphasizes the point that, to be successful in modernizing your application with SQL, it is necessary to have an in-depth knowledge of the query optimizer.

Some developers may view SQL’s reliance on the query optimizer in weakness. This dependency is actually a positive benefit when you take the perspective that it’s increasing the size of your development staff. Instead of relying solely on your developers to find the fastest way to implement a data processing request, the optimizer handles this responsibility for your team.

�

()

IBM Power Systems —

Approaches & Options

Considerations:
HEllEIgl] Multi-member &
. multi-format files

SQL-created =
objects

')

DDS-created | 4 > Native*
objects Programs

*Restrictions:
EVis, LOB
columns,

XML, UDTs, etc.

8 © Copyright IBM Corporation, 2011

Presenter
Presentation Notes
Approaches & Options (continued)

There is not a clear, step-by-step methodology for modernizing an application from a DB2 perspective. The integrated nature of DB2 for i supports many different permutations and combinations. This flexibility provides a developer with many options as they try to move to the ultimate goal of using SQL for both database definitions and data access.

With this integrated database, you can mix and match SQL and the native, non-SQL database interfaces. If you wanted to start modernizing by just creating your database objects with SQL you could do that, and programs using the interfaces I/O to access the data would still run. If you want to use a new DB2 function such as the super group support and don't have time to convert the database objects from DDS to SQL, then the program could be changed to use the SQL supper group functionally to aggregate the data at multiple levels data even though the underlying objects are not defined with SQL.

This is a huge benefit for IBM i clients because it means that SQL usage can be a gradual evolution instead of a revolution. The advantages of SQL can be realized without first having to convert all of your databases to SQL. DB2 objects created with DDS can be accessed with SQL and objects created with SQL can be accessed with the native record-level access interface. In fact, a methodology exists for converting object definitions to SQL without requiring any changes to existing applications. This methodology for transparently converting to SQL is covered in more detail later in the presentation.

B2

IBM Power Systems

= Modeling

= Terminology

= Moving from DDS to SQL DDL

= SQL object management

» Embedding business logic into database definitions

9 © Copyright IBM Corporation, 2011

Presenter
Presentation Notes
Modernizing Definitions & Objects

This chart lays out the aspects of modernizing your DB2 for i database objects and definitions with SQL and modern relational features. There is a more detailed discussion about each of these over the next few charts.

()

IBM Power Systems

Modernizing Definitions & Objects

Data modeling

= Database normalization

—Define a separate table for each related set of values

—Define the primary key (surrogate or natural)

—Eliminate redundant data
—Design for Fifth normal form (5NF), performance & storage may drop back to 3NF
—Establish RI constraints

= Consider Master Data Management
—Services created to retrieve data — what if multiple copies exist?

Name

Ed Moore

353 K [Chuck Sellars

2303 Lisa Gibbs

Enrollment [Student ID |Student Course |[Course Name

ID Name D]

200400 3456 Ed Moore M-1932 |Discrete Mathematics

200401 9393 Chuck Sellers [M-3453 |Differential Equations

200402 2303 Lisa Gibbs A-1003 [Intro to Anthropology

200403 3456 Ed Moore A-1003 [Intro to Anthropology
10

E:Ighlmlﬂ

200400 BI— N

200401 [393 M-3459
00402 2303 A-1003
200403 456 A=1003

. IDiscrete Mathematics

M-3455 Diffierential Equations
A-1003 Intr to Anthrapologyl

© Copyright IBM Corporation, 2011

Presenter
Presentation Notes
Modernizing Definitions & Objects: Data Modeling

Before modernizing your database definitions with SQL, it’s often beneficial to step back and review your database model. Many traditional IBM i databases feature denormalized data models that function as flat file systems instead of a true relational database system. To eliminate data redundancy, it is a good idea to incorporate database normalization into your modernization process.

There’s a good chance that moving to a normalized database model may require application changes, so you really need to appropriately plan and prioritize the data normalization step in your database modernization process.

B2

IBM Power Systems

Data Modeling - IBM InfoSphere Data Architect

= Enterprise data modeling and management
— Compare & synchronize
— Forward & reverse en _|neer|n8
— Logical file support — Fixpack 003
— Model analyzer for enterprise standard conformance

= Database development — SQL Stored Procedures and Function

= Trial Download: http://iom.com/software/data/optim/data-architect/

Analyze Maodel ﬁ]
) Palette L4
Model Analysis Contents whables wtables atahles [Select
D DB2ADMIN.CL_SCHED [DB2ADMIN.ORG] DB2ADMIN.DEPARTMEN1 = Mote -
Click on a category or rule to see i - -
oS P T Y SUPSTIN PR PR T TR = Geometric Shapes
Palette L4 = sl
% Select 3 Cylinder
=1 Mate - e Rectangle -
[& Intellectual % Polygan -
Property Line
?Gi?eiiﬁszlﬁc?;uwnnR? = Geometric Shapes # = Storage >
;’; HANE < Orveal &) Regular Tablespace
4 Cylinder
o ABBREVIATION o Ly (1 LOE Tablespace
I Rectangle - B Buffer Paol
O CITY E— Pokygon + ||| .# Table Realization
== CITY ID Line BB Index Table
= L] COUNTRY Realization
o—STATE ID [FK] O COUNTY = COUNTRY ID .= Data -
e
o— COUNTY ID [FK] &= COUNTY ID] Entity
o—STATE ID [FK] @7' Generalization
O STATE A Identifying
= STATE ID D.--"‘ Mon-Idenkifying
0— COUNTRY ID [FK] Optional
1.-‘5‘ Mon-Identifying
< > Mandatge ™
L 9]] = B4

11 © Copyright IBM Corporation, 2011

Presenter
Presentation Notes
Modernizing Definitions & Objects: Data Modeling

If you’re need of a tool to aid in the process of reviewing and changing your database model, there are a number of data modeling tools available in the marketplace. The data modeling offering from IBM is the InfoSphere Data Architect product (formerly known as Rational Data Architect).

A nice feature of the InfoSphere Data Architect product is that it’s able to reverse engineer legacy DB2 for i databases that have been created with DDS instead of SQL. This capability is useful in helping you understand the relationships and level of normalization that exist in your current databases.

A trial version of the IBM data modeling tool can be downloaded from the referenced website.

()

IBM Power Systems

Modernizing Database Objects

Terminology

7

SOL

IBM |

schemal/collection

library

table

physical file

view

logical file

index

keyed logical file

record

Presenter
Presentation Notes
Modernizing Database Objects: Terminology

The first thing to comprehend is the terms used by the SQL interface and how they map to IBM i and DDS terms. The terms on the left side of this table equate to the terms on the right. Traditional IBM i developers are accustomed to using the terms on the right. Although the terms used might be different, the underlying objects are the same for the most part.

Most of these term mappings are self-explanatory. An SQL schema is an IBM i library object that contains both a journal and a journal receiver object, each of which is created inside of the library automatically.

One of the simplest ways to begin the modernization of your DB2 for i databases is to start using SQL terminology to describe the objects. The usage of modern terms will make it easier for programmers and administrators to better understand and respect the capabilities of the integrated DB2 for i databases.

Presenter
Presentation Notes
Modernizing Objects: Tables versus Physical Files

This chart compares SQL tables and DDS physical files. The reality is that the DB2 for i engine uses the same IBM i internal object type to create both objects. However, as this charts shows there are differences in terms of the attributes and interfaces used to create the objects.

The first thing to notice is that SQL tables offer a much wider selection of column data types and attributes such as identity columns and row change timestamps. This difference is a direct reinforcement of the statement made earlier about SQL being the strategic interface for DB2 for i. SQL being the strategic interface results in new data types only being added to the SQL interface and not available on the DDS interface.

SQL tables also have a functional advantage of not being limited to short, cryptic-like DDS field names. SQL supports column names and table names up to 128 bytes in length. Longer SQL identifiers allow your object names and definitions to be more self-describing from a documentation point of view. The more descriptive identifiers typically reduce the cost of maintaining SQL objects.

If you want to use data modeling tools, you have a better chance of finding tools that support DB2 for i databases if you use SQL to create your database objects instead of DDS.

The SQL Create Table statement is also more flexible in allowing for the inclusion of constraints definitions in the table definition (beside the column definitions). DDS has no support for constraints. If you add a constraint to a PF, then there is a DDS source file to manage for the physical file definition and a second source file to manage for the constraint definition. This means that there are two sets of source you need to manage with DDS. In contrast, SQL allows both definitions to be easily managed on a single SQL Create Table statement.

�

()

IBM Power Systems

Modernizing Objects: CREATE INDEX vs CRTLF (Keyed)

CRTLF FILE(EMPLOYEEL1) SRCFILE(QDDSSRC
CREATE INDEX EMP_LASTNAME_DEPT SRCMBF\g(EMPLOYEEL%) Q)
ON EMP_MAST(WORKDEPT, LASTNAME) Source Data
ESBFCMJLEI:\AAZLSOYEER]- A R EMPLOYEER1 PFILE(EMPLOYEE)
EMPNO, FIRSTNME, MIDINIT A WORKDEPT
A LASTNAME
CREATE ENCODED VECTOR INDEX RegionIX A EMPNO
ON SALES(REGION) A FIRSTNME
A MIDINIT
A K WORKDEPT
A K LASTNAME
Encoded Vector Index (EVI) structure Only Binary Radix Tree structure support
—no EVIs

Expressions can be used in the
definition of the key columns Limited support for key derivations and

: expressions
Sparse Indexes with WHERE clause
(ie, Select/Omit) Key attributes —FCFO, FIFO, LIFO,
EVI “Instant” Aggregate support Smaller default logical page size

Larger default logical page size

14 © Copyright IBM Corporation, 2011

Presenter
Presentation Notes
Modernizing Objects: Indexes versus Keyed Logical Files

This chart compares SQL indexes with their DDS equivalent – a keyed logical file. Again, in most cases, SQL indexes and keyed logical files both result in the same internal IBM i object being created. The main difference is that SQL indexes can choose between a binary-radix tree structure or an advanced bitmapped index structure known as an EVI (Encoded Vector Index).

Another significant difference between these two objects from a query performance point of view is the logical page size. Since the OS/400 V4R2 releases, SQL indexes have been created with a larger logical-page size than keyed logical files. The reasoning behind this change was that SQL requests tend to do more query processing, which results in SQL indexes frequently being scanned for a range of key values. Because a larger logical-page size allows DB2 to scan more key values on a single I/O request, SQL indexes are created with a logical-page size of 64 KB (instead of the 8 KB logical-page size typically used in keyed logical files).

Memory utilization is another item to consider before switching to the larger-page SQL indexes. If your applications run in a memory-strained environment, the larger 64 KB logical pages increase the memory load. The larger page size also makes journaling a little more difficult because, when you change key values; the journal component has a 64 KB page from the index to write to the journal instead of an 8 KB page. The IBM i 7.1 release features intelligent index journaling where DB2 tries to write only the changed physical pages to the journal instead of the entire 64 KB logical page.

Starting with the IBM i 6.1 release, SQL indexes surpassed the key derivation and selection capabilities of logical files. The only item lacking in the SQL index support is legacy key attributes such as FIFO, LIFO, FCFO that enable logical file users to control the physical ordering of duplicate key values. This type of physical ordering control is not considered to be a best practice for relational databases.

()

IBM Power Systems

Modernizing Objects: CREATE VIEW vs CRTLF (non-keyed)

CREATE VIEW CRTLF FILE(EMPLOYEEJ1) SRCFILE(QDDSSRC)

EMPLOYEE_BONUSES_BY_DEPARTMENT SRCMBR(EMPLOYEEJ1)

_WITHIN_STATE --Source Data
R EMPLOYEEJA JFILE(EMAST EADDR +

AS DMAST)
SELECT EA.STATE, DM.DEPTNAME, J JOIN(1 2)
SUM(EM.BONUS) JFLD(EM_PK EM_PK)
JOIN(1 3)

FROM EMAST EM
JFLD(WRKDPT DPTNO)
JOIN EADDR EA USING (EM_PK)

> > > > > > > > >
<

STATE
JOIN DMAST DM ON WRKDPT = DPTNO DEPTNAME
GROUP BY EA.STATE, DM.DEPTNAME BONUS
Full access to advanced query Limited Join support
capabilities of SQL No support for Grouping, Case,
Can be used as logical files to Subqueries, User-Defined
enhance native functionality functions, ...

No support for keying/ordering Multiple members & formats

15 © Copyright IBM Corporation, 2011

Presenter
Presentation Notes
Modernizing Objects: Views versus Non-keyed Logical Files

SQL Views are equivalent to non-keyed logical files. The strongest advantage that SQL Views offer is that they provide a wider variety of data manipulations and processing capabilities than a logical file. SQL Views allow you to embed Case expressions and offer a suite of functions for processing and manipulating Date and Time values. The number of join and grouping operations offered by SQL View is also far superior to anything available when creating a logical file.

Because an SQL view object is so similar to a non-keyed logical file object, programs can use traditional record-level access to open a View in the same manner as a non-keyed logical file. The record-level access of the SQL view does not support keyed access.

Some programmers are concerned about performance because SQL Views cannot be keyed, nor can they have an index created over them. Those concerned developers assume that this limitation makes data access through SQL Views automatically slower than logical files. The reality is that SQL Views have ability to provide fast performance using keyed data access methods, but it is done indirectly. The programmer defines an SQL View to perform the data transformations. Instead of the programmer creating an index over the View, it is the query optimizer's job to figure out the fastest way to access the tables referenced in the View definition. The programmer or administrator must ensure that a good set of indexes are in place over the tables referenced by the View for the query optimizer to utilize. When it makes sense from a performance perspective (remember using an index to retrieve data is not always the fastest method), the query optimizer has the ability to use keyed access whenever the View is referenced; this indirectly provides the same performance characteristics as a keyed logical file.

()

IBM Power Systems

Modernizing Database Definitions & Objects
DDS to SQL Conversion Tool

= System i Navigator Generate SQL Task (QSQGNDDL API)
— Useful in converting object definitions from DDS to SQL
— Supports physical & logical files
*Not all DDS features can be converted, tool will
convert as much as possible and generate warnings for e 5]
unconvertible options (e.g., EDTCDE)
sLogical files converted to SQL Views

() iSeries Navigator
File Edit “iew Help

| Environment: My Connections

. . + @ Wark Management [# |
*SQL Field Reference File support not used +-B® Configuration and Service -
— Can convert a single object or + ﬁ Network
a group of objects + Integrated Server Administration
— Output can be edited & + EE'-””W e
. . + SErs an roups
saved directly into source %y Databases g
file members - gy Tolxe1
- [@ Schemas
+/ = DBOSCHEMA

+ IE Explore

Open

Create Shortout
Customize this View b

= Generate SOL... i
| 'll'l & |

I AL AL (A

o o e o I O

16 © Copyright IBM Corporation, 2011

Presenter
Presentation Notes
Modernizing Objects: DDS to SQL Conversion Tool

If you have decided that there are objects to convert some of your existing DDS objects over to an SQL object, then IBM i includes a conversion tool. This tool is accessed by selecting the Generate SQL task provided by the System i Navigator client. This tool provides a graphical interface to the IBM i QSQGNDDL API which is available for any developer to use.

While the tool does not always provide perfect conversions, it does automate the mundane task of replacing DDS type keywords with the matching SQL data type. Any DDS keywords that are not converted to SQL are flagged in a comment to make it easy for the developer to investigate the impact and solution.

The output of the Generate SQL tool can be saved directly to a source physical file member. This output option makes it easy to manage the new SQL source code with existing change management tools and processes.

�

()

IBM Power Systems

Modernizing Database Definitions - Transparently

» Converting DDS PF to SQL DDL Table
results in format identifiers being changed
— HLL programs accessing the SQL
Table will receive a “level check”
exception message.
— Only solutions prior to V5R4
srecompile the program or
signore the exception
*(not recommended)

= A surrogate file preserves the original DDS
PF format
— Allows new columns to be added to
SQL DDL Table
— FORMAT keyword used to share
surrogate format
*Prevents level check IDs for
programs accessing original PF or
LFs sharing format

= “Best” method for avoiding format id
changes!

17

ORDHST
ORDHSTR
FMT123

Reverse
Level Engineer
Check DDS to
Error DDL
ORD_HST

ORD_HST
FMT321

ORDHST
ORDHSTR
FMT123
-

Surrogate LF (-

ORDHST

ORDHSTR Table
FORMAT m
(ORDHSTR)

ORD_HST

ORD_HST
FMT321

© Copyright IBM Corporation, 2011

Presenter
Presentation Notes
Modernizing Database Definitions - Transparently

A direct conversion of a DDS-created physical file to an SQL table done either manually or using the Generate SQL tool usually results in a change to the Format ID value associated with the DB2 object. A change to the Format ID value will cause any existing high-level language programs that reference the original physical file object (or any logical files that share the form) to receive a level-check error message the next time that they are run. The only way to eliminate this error condition is to spend time recompiling all programs that reference the physical file.

Instead of investing time recompiling all of your application programs, IBM recommends the surrogate file process. This process enables physical files to be converted over to SQL tables without any changes to the Format ID value. Thus, enabling a transparent conversion to SQL without requiring any changes or compilation of existing programs!

As the figure of the bottom of the screen depicts, the original physical file object is used to create both a surrogate logical file and a SQL table. The table is the SQL equivalent of the original physical file except that it has a different name (ORD_HST) than the original physical file. Existing programs continue to run without changes or recompiles because the surrogate logical file has the same object name and record format name as the original physical file.

Later charts contain a detailed step-by-step example of the surrogate logical file process.

()

IBM Power Systems

Modernizing Database Definitions — Transparently

» |ogical files also need to re-engineered to reference the SQL table
— For each logical file which shared the physical file format (FMT123):
*PFILE modified to point at SQL table (FMT321)
*FORMAT keyword specifies surrogate LF (FMT123)
— Some LFs don’t require re-engineering
*DDS LF with unique format name
*DDS Join Logical Files have unique format IDs

Existing LF

ORDHLF1
ORDHSTR

FORMAT Actual 10

(ORDHSTR)

Table

ORD_HST

ORD_HST
FMT321

Surrogate LF

A

ORDHST
ORDHSTR
FORMAT
(ORDHSTR)

18

© Copyright IBM Corporation, 2011

Presenter
Presentation Notes
Modernizing Database Definitions - Transparently

Once the original physical file is replaced with a surrogate logical file, existing logical files that referenced the physical file will have to be updated and rebuilt because a logical file cannot reference another logical file. Existing logical files need to be updated to point to the SQL table and share the format of the surrogate logical file by using the DDS format keyword.

These updates will allow programs referencing the logical files to continue to run without any knowledge that the underlying data container is an SQL table instead of a physical file.

B2

IBM Power Systems

1. Convert PF to SQL Table (with new name)

2. Create SQL indexes to replace any implicitly created keyed access paths
that exist for DDS files (use “Show Indexes”)

3. Create “Surrogate” LF with same name as original PF name

4. Modify existing LFs to reference SQL table

19 © Copyright IBM Corporation, 2011

Presenter
Presentation Notes
Modernizing Database Definitions - Transparently

Here’s a summary of the steps discussed on the previous charts that are required in order to convert a physical file over to an SQL table to avoid impacting existing programs.

B2

IBM Power Systems

= Converted SQL Table:
CREATE TABLE sqgl _i nvent (
Item CHAR(15),

» Existing PF — INVENTORY
AR | NVEMIR order CHAR(10),
A ITEM 15A supply CHAR(15),
A ORDER 10A qty DECI MAL(5, 0),
A SUPPLY 15A gt ydue DECI MAL(5, 0))
A Qry 5P
A QIYDUE 5P = Surrogate LF — INVENTORY
A R I NVFMIR PFI LE(SQL_| NVENT)
L. A | TEM 15A
= Existing LF - INVLF A ORDER 10A
A R | NVFMIR A SUPPLY 15A
A K | TEM A OrY 5P
A K ORDER A

\ T
» Existing LF - INVLF

| NVFMTR PFI LE(SQL_| NVENT)

20 © Copyright IBM Corporation, 2011

Presenter
Presentation Notes
Transparent SQL Migration - Example

The left hand side of the chart contains the DDS source for the physical file object, INVENTORY, which needs to be converted to an SQL table. Also, notice that this physical file has one logical file, INVLF, that references it.

The first step is creating the equivalent SQL table definition. That SQL table definition is found on the top right corner of the chart. The columns share the same names, data type, and length as the physical file definition. The name of the SQL table is the only difference between the two objects.

Next, the physical file name is used in the creation of the surrogate logical file. This technique enables existing programs that reference the physical file to continue to run without any changes. As you can see, the surrogate logical file is built over the newly converted SQL table. The surrogate logical file preserves the format identifier of the original file. This approach enables new columns to be added to the converted SQL table without changing the format id value of the surrogate logical file.

The final step involves updating any existing logical files such as INVLF to be built over the SQL table and to utilize the record format of the surrogate logical file. Utilization of the surrogate record format preserves the format id value of the existing logical files.

�

()

IBM Power Systems

Transparent SQL Migration - Tooling

= XCase for i tooling that automates and manages this migration process
(www.xcaseforsystemi.com)
— Free Diagnostic Modernization download
— Data modeling tool also available

Database Modernization Workbench

'_S.ettingij PF Modernization I E.I.hec:k. and"E.opy bala LF i\"iﬁ&erﬁization

FF to Display
Al [Preserved [Migrated [Surogated [Capied [Undefined [Emed
Action

| PF Library PF File Status FLI Target Library Target Mame Target SOL Mame Action M E i
iCMMDATAZ ALGKLASP Surogated = <Default> ALGKLATO ALGKLASP SOL TA.. Maone ILA! O s0L
CHMDATAZ ALGPAR Surogated | = <Default ALGRaR102 ALGPAR_SOL_TABLE | Mane il Os i
CMMDATAZ | ALGPAT Sunogated| = <Diefals ALGPAT