
Presenter
Presentation Notes
Introduction
In recent years, IBM has led key initiatives such as the iSeries Developer Roadmap to help IBM i developers modernize their existing applications and toolsets. These initiatives along with new technology offerings such as the IBM Rational Open Access: RPG Edition product and integrated PHP support have improved the competitiveness of IBM i applications and solutions in the marketplace.
Many modernization efforts focus solely on enhancing the user interfaces for the applications. In these situations, many IBM i developers have overlooked the impact of modernizing their IBM DB2 for i databases and the usage of SQL as a data access language. This online course explains the application modernization steps from an SQL and DB2 for i perspective.

Presenter
Presentation Notes
Agenda
This course first discusses why you might want to modernize the DB2 aspects of your application and use SQL. Next, there is a discussion of the possible approaches and methodologies for DB2. Then, this course goes into detail on the two approaches to DB2 modernization: modernization of the database objects and their definitions (for example, moving from data-definition specifications [DDS] to SQL) and modernization of the data-access interfaces in application programs (for instance, moving from native record-level I/O to SQL). This course concludes with some possible first steps you can take in modernizing applications from a DB2 and SQL perspective.

Presenter
Presentation Notes
Why SQL?
Why should an IBM i developer consider using SQL? Modernizing a DB2 for i database with SQL and data-centric programming delivers benefits that range from reduced IT expenses to enhanced developer productivity and improved application performance and scalability.
Obviously, the portability of SQL is one benefit people latch onto because SQL is the industry standard for relational database managements systems. A portability issue often overlooked is the portability of SQL programming skills. Many IBM i enterprises and application development organizations have switched to programming with SQL for this very reason — it is easier to find a programmer with SQL skills than a programmer with RPG and DDS skills. Relying on SQL to for data definition and access provides a bigger pool of programmers from which IBM i development shops can hire.
As a result of SQL being the industry standard, almost all of the new applications and tools in the marketplace use SQL. Consequently, almost all of the new features and functions IBM has added to DB2 for i requires the usage of SQL in order to benefit from them. The table on the next chart contains a comparison of the major DB2 for i enhancements made to the SQL and non-SQL interfaces since Version 5 Release 1 (V5R1), illustrates the commitment from IBM.
While the native (that is, non-SQL) interfaces for DB2 for i are here to stay, the comparison table on the next chart should make it clear that developers using SQL have many more functions to choose from that can make it easier for their IT teams to meet the ever-changing list of business requirements.
Developers can deliver on requirements faster because the modern SQL features allows the DB2 engine to do more work on behalf of the application. In addition, SQL as a programming language can reduce the total lines of code that a developer has to write, because SQL is designed to work on a set of rows (or records) at a time. In comparison, native I/O works with one row at a time. A single SQL request can process multiple rows of data in one request; in the native I/O world, this takes multiple operations.
Improved performance and scalability can be a side benefit as the DB2 engine can perform some business processing faster and more efficiently than a high-level language application because the engine operates at the lowest levels of the system with sophisticated algorithms. SQL-based reporting also is in a better position to exploit the multiple-core processors that are prevalent in IBM Power Systems. The DB2 Symmetric Multiprocessing (SMP) feature enables a single DB2 request to run in parallel across multiple processors without any application changes. In contrast, exploiting parallel process requires much more work with the non-SQL interfaces.
Another advantage of using SQL is that when you start incorporating more modern aspects of the DB2 for i database, it is easier to convince non-IBM i developers in your shop that using the DB2 for i platform as a database server is a viable option. Once developers see that DB2 for i offers capabilities similar to other modern databases there less likely push for the data processing to be done on a different platform. In addition, simply using SQL terminology to describe DB2 for i database objects helps other developers start to see DB2 for i as a full-feature SQL database instead of an old, legacy database.
Additional details on the business and technical benefits of modernizing with SQL can be found in the referenced white paper.

© Copyright IBM Corporation, 2011

IBM Power Systems

4

Enhancements to non-SQL interfaces SQL enhancements
Unicode support - UTF-16 and UTF-8 Unicode support - UTF-16 and UTF-8
Binary character data type Binary character data type
CRTLF PAGESIZE parameter CREATE INDEX PAGESIZE keyword
Larger decimal support Larger decimal support
SSD enablement for physical & logical files SSD enablement for tables and Indexes

XML, National Character, and ROWID data types
Identity column attribute
Hidden and Automatic Timestamp column attributes
Field Procedure column attribute
Sequence object
Column-level and Instead-Of triggers
Merge statement
OLAP and Super Group expressions
Create Table from Select and Insert from Select
SQL functional indexes
XML Publishing and Decomposition functions
IBM OmniFind Text Search Server
SQL Query Engine (SQE)
SQE Result Set Caching
SQE Autonomic Indexes
SQE Self-Learning Query Optimization & Adaptive Query Processing
SQE Encoded Vector Index fast path for aggregate processing
SQE In-memory Database Enablement
IBM i Navigator Plan Cache Tool

Presenter
Presentation Notes
This table compares new DB2 functionality that IBM has delivered for the SQL and non-SQL interfaces since the V5R1 release.

Presenter
Presentation Notes
Traditional Record-Level Access
This approach of using SQL to have DB2 do more work on behalf of the application is known as data-centric programming. A better understanding of this data-centric approach with the traditional record-level access methodology can be garnered by comparing the graphical representation of these two approaches. First, the traditional non-SQL interface which is also known as the record-level access interface.
With the traditional approach, the developer uses the native record-level access interfaces to specify the exact step-by-step instructions for DB2 to follow in the consolidation of data from the four different database tables in this example. This means that not only does the developer have to create application code that implements the requested business functionality, but the developer also must invest time in directing and controlling the relational database processing.

Presenter
Presentation Notes
SQL Data-Centric Programming
The SQL data-centric programming model offers a contrasting approach that this drawing attempts to portray. A developer utilizes SQL to submit a high-level request to DB2 to consolidate the data from the four database tables. At this point, it is up to the DB2 query optimizer to analyze the request and select the best performing low-level step-by-step implementation. This data-centric approach enables developers to focus their time on the creation of application code for business processes while leaving the data processing for the DB2 for i database engine.

Presenter
Presentation Notes
Approaches & Options
To understand the approaches to modernization that are based on DB2-coding techniques, you need to know the various SQL interfaces that go into the DB2 for i database engine. The biggest difference between SQL and the native interface is the interaction with the query optimizer. This emphasizes the point that, to be successful in modernizing your application with SQL, it is necessary to have an in-depth knowledge of the query optimizer.
Some developers may view SQL’s reliance on the query optimizer in weakness. This dependency is actually a positive benefit when you take the perspective that it’s increasing the size of your development staff. Instead of relying solely on your developers to find the fastest way to implement a data processing request, the optimizer handles this responsibility for your team.
�

© Copyright IBM Corporation, 2011

IBM Power Systems

8

Approaches & Options

*Restrictions:
EVIs, LOB
columns,
XML, UDTs, etc.

DDS-created
objects

SQL-created
objects

Native*
Programs

SQL
Programs

Considerations:
Multi-member &
multi-format files

Presenter
Presentation Notes
Approaches & Options (continued)
There is not a clear, step-by-step methodology for modernizing an application from a DB2 perspective. The integrated nature of DB2 for i supports many different permutations and combinations. This flexibility provides a developer with many options as they try to move to the ultimate goal of using SQL for both database definitions and data access.
With this integrated database, you can mix and match SQL and the native, non-SQL database interfaces. If you wanted to start modernizing by just creating your database objects with SQL you could do that, and programs using the interfaces I/O to access the data would still run. If you want to use a new DB2 function such as the super group support and don't have time to convert the database objects from DDS to SQL, then the program could be changed to use the SQL supper group functionally to aggregate the data at multiple levels data even though the underlying objects are not defined with SQL.
This is a huge benefit for IBM i clients because it means that SQL usage can be a gradual evolution instead of a revolution. The advantages of SQL can be realized without first having to convert all of your databases to SQL. DB2 objects created with DDS can be accessed with SQL and objects created with SQL can be accessed with the native record-level access interface. In fact, a methodology exists for converting object definitions to SQL without requiring any changes to existing applications. This methodology for transparently converting to SQL is covered in more detail later in the presentation.

© Copyright IBM Corporation, 2011

IBM Power Systems

9

Modernizing Definitions & Objects

Modeling

Terminology

Moving from DDS to SQL DDL

SQL object management

Embedding business logic into database definitions

Presenter
Presentation Notes
Modernizing Definitions & Objects
This chart lays out the aspects of modernizing your DB2 for i database objects and definitions with SQL and modern relational features. There is a more detailed discussion about each of these over the next few charts.

© Copyright IBM Corporation, 2011

IBM Power Systems

10

Modernizing Definitions & Objects
Data modeling

Database normalization
–Define a separate table for each related set of values
–Define the primary key (surrogate or natural)
–Eliminate redundant data
–Design for Fifth normal form (5NF), performance & storage may drop back to 3NF
–Establish RI constraints

Consider Master Data Management
–Services created to retrieve data – what if multiple copies exist?

Normalization

Presenter
Presentation Notes
Modernizing Definitions & Objects: Data Modeling
Before modernizing your database definitions with SQL, it’s often beneficial to step back and review your database model. Many traditional IBM i databases feature denormalized data models that function as flat file systems instead of a true relational database system. To eliminate data redundancy, it is a good idea to incorporate database normalization into your modernization process.
There’s a good chance that moving to a normalized database model may require application changes, so you really need to appropriately plan and prioritize the data normalization step in your database modernization process.

© Copyright IBM Corporation, 2011

IBM Power Systems

11

Modernizing Definitions & Objects

Data Modeling - IBM InfoSphere Data Architect

Enterprise data modeling and management
– Compare & synchronize
– Forward & reverse engineering
– Logical file support – Fixpack 003
– Model analyzer for enterprise standard conformance

Database development – SQL Stored Procedures and Function

Trial Download: http://ibm.com/software/data/optim/data-architect/

Presenter
Presentation Notes
Modernizing Definitions & Objects: Data Modeling
If you’re need of a tool to aid in the process of reviewing and changing your database model, there are a number of data modeling tools available in the marketplace. The data modeling offering from IBM is the InfoSphere Data Architect product (formerly known as Rational Data Architect).
A nice feature of the InfoSphere Data Architect product is that it’s able to reverse engineer legacy DB2 for i databases that have been created with DDS instead of SQL. This capability is useful in helping you understand the relationships and level of normalization that exist in your current databases.
A trial version of the IBM data modeling tool can be downloaded from the referenced website.

© Copyright IBM Corporation, 2011

IBM Power Systems

12

Modernizing Database Objects

IBM iSQL
Terminology

schema/collection

table

view

index

row

column

log

library

physical file

logical file

keyed logical file

record

field

journal

Presenter
Presentation Notes
Modernizing Database Objects: Terminology
The first thing to comprehend is the terms used by the SQL interface and how they map to IBM i and DDS terms. The terms on the left side of this table equate to the terms on the right. Traditional IBM i developers are accustomed to using the terms on the right. Although the terms used might be different, the underlying objects are the same for the most part.
Most of these term mappings are self-explanatory. An SQL schema is an IBM i library object that contains both a journal and a journal receiver object, each of which is created inside of the library automatically.
One of the simplest ways to begin the modernization of your DB2 for i databases is to start using SQL terminology to describe the objects. The usage of modern terms will make it easier for programmers and administrators to better understand and respect the capabilities of the integrated DB2 for i databases.

Presenter
Presentation Notes
Modernizing Objects: Tables versus Physical Files
This chart compares SQL tables and DDS physical files. The reality is that the DB2 for i engine uses the same IBM i internal object type to create both objects. However, as this charts shows there are differences in terms of the attributes and interfaces used to create the objects.
The first thing to notice is that SQL tables offer a much wider selection of column data types and attributes such as identity columns and row change timestamps. This difference is a direct reinforcement of the statement made earlier about SQL being the strategic interface for DB2 for i. SQL being the strategic interface results in new data types only being added to the SQL interface and not available on the DDS interface.
SQL tables also have a functional advantage of not being limited to short, cryptic-like DDS field names. SQL supports column names and table names up to 128 bytes in length. Longer SQL identifiers allow your object names and definitions to be more self-describing from a documentation point of view. The more descriptive identifiers typically reduce the cost of maintaining SQL objects.
If you want to use data modeling tools, you have a better chance of finding tools that support DB2 for i databases if you use SQL to create your database objects instead of DDS.
The SQL Create Table statement is also more flexible in allowing for the inclusion of constraints definitions in the table definition (beside the column definitions). DDS has no support for constraints. If you add a constraint to a PF, then there is a DDS source file to manage for the physical file definition and a second source file to manage for the constraint definition. This means that there are two sets of source you need to manage with DDS. In contrast, SQL allows both definitions to be easily managed on a single SQL Create Table statement.
�

© Copyright IBM Corporation, 2011

IBM Power Systems

14

Modernizing Objects: CREATE INDEX vs CRTLF (Keyed)
CREATE INDEX EMP_LASTNAME_DEPT

ON EMP_MAST(WORKDEPT, LASTNAME)
RCDFMT EMPLOYEER1
ADD COLUMNS

EMPNO, FIRSTNME, MIDINIT

CREATE ENCODED VECTOR INDEX RegionIX
ON SALES(REGION)

CRTLF FILE(EMPLOYEEL1) SRCFILE(QDDSSRC)
SRCMBR(EMPLOYEEL1)

--Source Data
A R EMPLOYEER1 PFILE(EMPLOYEE)
A WORKDEPT
A LASTNAME
A EMPNO
A FIRSTNME
A MIDINIT
A K WORKDEPT
A K LASTNAME

Encoded Vector Index (EVI) structure

Expressions can be used in the
definition of the key columns

Sparse Indexes with WHERE clause
(ie, Select/Omit)

EVI “Instant” Aggregate support

Larger default logical page size

Only Binary Radix Tree structure support
– no EVIs

Limited support for key derivations and
expressions

Key attributes –FCFO, FIFO, LIFO,

Smaller default logical page size

Presenter
Presentation Notes
Modernizing Objects: Indexes versus Keyed Logical Files
This chart compares SQL indexes with their DDS equivalent – a keyed logical file. Again, in most cases, SQL indexes and keyed logical files both result in the same internal IBM i object being created. The main difference is that SQL indexes can choose between a binary-radix tree structure or an advanced bitmapped index structure known as an EVI (Encoded Vector Index).
Another significant difference between these two objects from a query performance point of view is the logical page size. Since the OS/400 V4R2 releases, SQL indexes have been created with a larger logical-page size than keyed logical files. The reasoning behind this change was that SQL requests tend to do more query processing, which results in SQL indexes frequently being scanned for a range of key values. Because a larger logical-page size allows DB2 to scan more key values on a single I/O request, SQL indexes are created with a logical-page size of 64 KB (instead of the 8 KB logical-page size typically used in keyed logical files).
Memory utilization is another item to consider before switching to the larger-page SQL indexes. If your applications run in a memory-strained environment, the larger 64 KB logical pages increase the memory load. The larger page size also makes journaling a little more difficult because, when you change key values; the journal component has a 64 KB page from the index to write to the journal instead of an 8 KB page. The IBM i 7.1 release features intelligent index journaling where DB2 tries to write only the changed physical pages to the journal instead of the entire 64 KB logical page.
Starting with the IBM i 6.1 release, SQL indexes surpassed the key derivation and selection capabilities of logical files. The only item lacking in the SQL index support is legacy key attributes such as FIFO, LIFO, FCFO that enable logical file users to control the physical ordering of duplicate key values. This type of physical ordering control is not considered to be a best practice for relational databases.

© Copyright IBM Corporation, 2011

IBM Power Systems

15

Modernizing Objects: CREATE VIEW vs CRTLF (non-keyed)
CREATE VIEW

EMPLOYEE_BONUSES_BY_DEPARTMENT
_WITHIN_STATE

AS

SELECT EA.STATE, DM.DEPTNAME,
SUM(EM.BONUS)

FROM EMAST EM

JOIN EADDR EA USING (EM_PK)

JOIN DMAST DM ON WRKDPT = DPTNO

GROUP BY EA.STATE, DM.DEPTNAME

CRTLF FILE(EMPLOYEEJ1) SRCFILE(QDDSSRC)
SRCMBR(EMPLOYEEJ1)

--Source Data
A R EMPLOYEEJA JFILE(EMAST EADDR +
A DMAST)
A J JOIN(1 2)
A JFLD(EM_PK EM_PK)
A J JOIN(1 3)
A JFLD(WRKDPT DPTNO)
A STATE
A DEPTNAME
A BONUS

Full access to advanced query
capabilities of SQL

Can be used as logical files to
enhance native functionality

No support for keying/ordering

Limited Join support

No support for Grouping, Case,
Subqueries, User-Defined
functions, …

Multiple members & formats

Presenter
Presentation Notes
Modernizing Objects: Views versus Non-keyed Logical Files
SQL Views are equivalent to non-keyed logical files. The strongest advantage that SQL Views offer is that they provide a wider variety of data manipulations and processing capabilities than a logical file. SQL Views allow you to embed Case expressions and offer a suite of functions for processing and manipulating Date and Time values. The number of join and grouping operations offered by SQL View is also far superior to anything available when creating a logical file.
Because an SQL view object is so similar to a non-keyed logical file object, programs can use traditional record-level access to open a View in the same manner as a non-keyed logical file. The record-level access of the SQL view does not support keyed access.
Some programmers are concerned about performance because SQL Views cannot be keyed, nor can they have an index created over them. Those concerned developers assume that this limitation makes data access through SQL Views automatically slower than logical files. The reality is that SQL Views have ability to provide fast performance using keyed data access methods, but it is done indirectly. The programmer defines an SQL View to perform the data transformations. Instead of the programmer creating an index over the View, it is the query optimizer's job to figure out the fastest way to access the tables referenced in the View definition. The programmer or administrator must ensure that a good set of indexes are in place over the tables referenced by the View for the query optimizer to utilize. When it makes sense from a performance perspective (remember using an index to retrieve data is not always the fastest method), the query optimizer has the ability to use keyed access whenever the View is referenced; this indirectly provides the same performance characteristics as a keyed logical file.

© Copyright IBM Corporation, 2011

IBM Power Systems

16

Modernizing Database Definitions & Objects
DDS to SQL Conversion Tool

System i Navigator Generate SQL Task (QSQGNDDL API)
– Useful in converting object definitions from DDS to SQL
– Supports physical & logical files

•Not all DDS features can be converted, tool will
convert as much as possible and generate warnings for
unconvertible options (e.g., EDTCDE)
•Logical files converted to SQL Views
•SQL Field Reference File support not used

– Can convert a single object or
a group of objects

– Output can be edited &
saved directly into source
file members

Presenter
Presentation Notes
Modernizing Objects: DDS to SQL Conversion Tool
If you have decided that there are objects to convert some of your existing DDS objects over to an SQL object, then IBM i includes a conversion tool. This tool is accessed by selecting the Generate SQL task provided by the System i Navigator client. This tool provides a graphical interface to the IBM i QSQGNDDL API which is available for any developer to use.
While the tool does not always provide perfect conversions, it does automate the mundane task of replacing DDS type keywords with the matching SQL data type. Any DDS keywords that are not converted to SQL are flagged in a comment to make it easy for the developer to investigate the impact and solution.
The output of the Generate SQL tool can be saved directly to a source physical file member. This output option makes it easy to manage the new SQL source code with existing change management tools and processes.
�

© Copyright IBM Corporation, 2011

IBM Power Systems

17

Modernizing Database Definitions - Transparently

Converting DDS PF to SQL DDL Table
results in format identifiers being changed

– HLL programs accessing the SQL
Table will receive a “level check”
exception message.

– Only solutions prior to V5R4
•recompile the program or
•ignore the exception
•(not recommended)

A surrogate file preserves the original DDS
PF format

– Allows new columns to be added to
SQL DDL Table

– FORMAT keyword used to share
surrogate format

•Prevents level check IDs for
programs accessing original PF or
LFs sharing format

“Best” method for avoiding format id
changes!

PGM1
ORDHST

ORDHSTR
FMT123

ORDHST
ORDHSTR

FMT123

ORD_HST
ORD_HST
FMT321

Reverse
Engineer
DDS to
DDL

IOLevel
Check
Error

PF

ORD_HST
ORD_HST
FMT321

Table

ORDHST
ORDHSTR

FMT123

PGM1
ORDHST

ORDHSTR
FMT123

ORDHST
ORDHSTR
FORMAT

(ORDHSTR)

Surrogate LF

IO Actual IO

Presenter
Presentation Notes
Modernizing Database Definitions - Transparently
A direct conversion of a DDS-created physical file to an SQL table done either manually or using the Generate SQL tool usually results in a change to the Format ID value associated with the DB2 object. A change to the Format ID value will cause any existing high-level language programs that reference the original physical file object (or any logical files that share the form) to receive a level-check error message the next time that they are run. The only way to eliminate this error condition is to spend time recompiling all programs that reference the physical file.
Instead of investing time recompiling all of your application programs, IBM recommends the surrogate file process. This process enables physical files to be converted over to SQL tables without any changes to the Format ID value. Thus, enabling a transparent conversion to SQL without requiring any changes or compilation of existing programs!
As the figure of the bottom of the screen depicts, the original physical file object is used to create both a surrogate logical file and a SQL table. The table is the SQL equivalent of the original physical file except that it has a different name (ORD_HST) than the original physical file. Existing programs continue to run without changes or recompiles because the surrogate logical file has the same object name and record format name as the original physical file.
Later charts contain a detailed step-by-step example of the surrogate logical file process.

© Copyright IBM Corporation, 2011

IBM Power Systems

18

Modernizing Database Definitions – Transparently

Logical files also need to re-engineered to reference the SQL table
– For each logical file which shared the physical file format (FMT123):

•PFILE modified to point at SQL table (FMT321)
•FORMAT keyword specifies surrogate LF (FMT123)

– Some LFs don’t require re-engineering
•DDS LF with unique format name
•DDS Join Logical Files have unique format IDs

ORDHST
ORDHSTR
FORMAT

(ORDHSTR)

ORD_HST
ORD_HST
FMT321

TablePGM2

ORDHLF1
ORDHSTR

FMT123

ORDHLF1
ORDHSTR
FORMAT

(ORDHSTR)

Surrogate LF

IO Actual IO

Existing LF

Presenter
Presentation Notes
Modernizing Database Definitions - Transparently
Once the original physical file is replaced with a surrogate logical file, existing logical files that referenced the physical file will have to be updated and rebuilt because a logical file cannot reference another logical file. Existing logical files need to be updated to point to the SQL table and share the format of the surrogate logical file by using the DDS format keyword.
These updates will allow programs referencing the logical files to continue to run without any knowledge that the underlying data container is an SQL table instead of a physical file.

© Copyright IBM Corporation, 2011

IBM Power Systems

19

Modernizing Database Definitions - Transparently

1. Convert PF to SQL Table (with new name)

2. Create SQL indexes to replace any implicitly created keyed access paths
that exist for DDS files (use “Show Indexes”)

3. Create “Surrogate” LF with same name as original PF name

4. Modify existing LFs to reference SQL table

Presenter
Presentation Notes
Modernizing Database Definitions - Transparently
Here’s a summary of the steps discussed on the previous charts that are required in order to convert a physical file over to an SQL table to avoid impacting existing programs.

© Copyright IBM Corporation, 2011

IBM Power Systems

20

Transparent SQL Migration - Example

Existing PF – INVENTORY
A R INVFMTR
A ITEM 15A
A ORDER 10A
A SUPPLY 15A
A QTY 5P
A QTYDUE 5P

Existing LF - INVLF
A R INVFMTR PFILE(INVENTORY)
A K ITEM
A K ORDER

Surrogate LF – INVENTORY
A R INVFMTR PFILE(SQL_INVENT)
A ITEM 15A
A ORDER 10A
A SUPPLY 15A
A QTY 5P
A QTYDUE 5P

Existing LF - INVLF
A R INVFMTR PFILE(SQL_INVENT)

FORMAT(INVENTORY)
A K ITEM
A K ORDER

Converted SQL Table:
CREATE TABLE sql_invent(

item CHAR(15),
order CHAR(10),
supply CHAR(15),
qty DECIMAL(5,0),
qtydue DECIMAL(5,0))

Presenter
Presentation Notes
Transparent SQL Migration - Example
The left hand side of the chart contains the DDS source for the physical file object, INVENTORY, which needs to be converted to an SQL table. Also, notice that this physical file has one logical file, INVLF, that references it.
The first step is creating the equivalent SQL table definition. That SQL table definition is found on the top right corner of the chart. The columns share the same names, data type, and length as the physical file definition. The name of the SQL table is the only difference between the two objects.
Next, the physical file name is used in the creation of the surrogate logical file. This technique enables existing programs that reference the physical file to continue to run without any changes. As you can see, the surrogate logical file is built over the newly converted SQL table. The surrogate logical file preserves the format identifier of the original file. This approach enables new columns to be added to the converted SQL table without changing the format id value of the surrogate logical file.
The final step involves updating any existing logical files such as INVLF to be built over the SQL table and to utilize the record format of the surrogate logical file. Utilization of the surrogate record format preserves the format id value of the existing logical files.
�

© Copyright IBM Corporation, 2011

IBM Power Systems

21

Transparent SQL Migration - Tooling

XCase for i tooling that automates and manages this migration process
(www.xcaseforsystemi.com)

– Free Diagnostic Modernization download
– Data modeling tool also available

Presenter
Presentation Notes
Transparent SQL Migration - Tooling
A third-party tool, XCase for i, has adopted the surrogate logical file methodology. This tool automates and manages the DDS to SQL conversion process including generating the DDS and moving the data to the SQL tables. Visit the referenced website for additional details.

http://www.xcaseforsystemi.com/

Presenter
Presentation Notes
Modernizing Database Definitions & Objects - SQL Object Management
One of the more common questions for IBM i users looking at switching from DDS to SQL is: How do I manage my SQL source statements? For the majority of traditional programmers, the answer is: "The same way!" Just store your SQL CREATE statements in a source physical file member like you do with DDS source. Then, instead of pointing the CRTPF or CRTLF CL command at DDS stored source file members - you would use the RUNSQLSTM CL command to execute the SQL statements in the specified source member to create your DB2 objects.
One disadvantage that SQL tables used to have on IBM i was the fact the SQL interface did not support the usage of field reference files for reusing common field definitions. That restriction was lifted in the V5R2 release with the CREATE TABLE AS enhancement demonstrated here.
Besides source management, you also need to consider how to move SQL created objects from a development environment into a production environment. The best approach is re-executing the SQL creation step. If that's not possible, then need to look at the referenced web resource to understand the best way to use the normal Save & Restore approach with SQL created objects.

© Copyright IBM Corporation, 2011

IBM Power Systems

23

SQL Object Management

SQL Column & Object names have maximum lengths of 128, but many IBM i utilities,
commands and interfaces only support a 10-character length. How does that work?!?!

– System automatically generates a short 10 character name
• First 5 chars with unique 5 digit number

CUSTOMER_MASTER >> CUSTO00001

 Might be different each time a specific table is created, depending on creation order and
what other objects share the same 5 character prefix

Use IBM i SQL syntax to specify your own short name
– RENAME TABLE (tables & views) & RENAME INDEX
– FOR COLUMN clause for columns
– SPECIFIC clause for procedures, functions

Modernizing Database Definitions & Objects

Presenter
Presentation Notes
Modernizing Database Definitions & Objects - SQL Object Management
One benefit of using SQL is that it allows you to create database column (field) and table (file) names longer than 10 characters. Of course, not all IBM i interfaces support these longer names. The FOR COLUMN clause on the CREATE TABLE statement allows you to specify a short name for your long column names that can be used on the interfaces that can't support field names longer than 10 characters. (If a short name is not specified, the system will automatically generate one).
The CREATE TABLE statement, however, does not allow you to specify a short name for the table name. Again, the system does generate a short name automatically, but the short name is not user-friendly (the system short name for customer_master is CUSTO00001) and is not guaranteed to have the same short name if you re-create the database table object multiple times. For this reason, developers use the RENAME statements and the proprietary FOR COLUMN and SPECIFIC clauses to manually control the short system names.

© Copyright IBM Corporation, 2011

IBM Power Systems

24

SQL Object Management

Short & Long Name Co-existence Example
– Specify the short name at creation:

CREATE TABLE dbtest/cusmst
(customer_name FOR COLUMN cusnam CHAR(20),
customer_city FOR COLUMN cuscty CHAR(40))

– Specify a long name for existing short-name:

RENAME TABLE dbtest/cusmst TO customer_master
FOR SYSTEM NAME cusmst

If long name specified on SQL Table definition, can also add/control the short name after table
created:

RENAME TABLE dbtest/customer_master TO SYSTEM NAME cusmst

Modernizing Database Definitions & Objects

Presenter
Presentation Notes
Modernizing Database Definitions & Objects - SQL Object Management
Here's an example of how to use the RENAME TABLE statement to assign a long descriptive name to the SQL table after creating it with a short name. This method is probably the preferred approach because the short name specified on the CREATE TABLE statement (or generated by DB2 if a long SQL statement is used) is what's used for the record format name. So in this first example, the record format name would be cusmst - an SQL programmer could reference the table either with cusmst name or the customer_master name. If you have some traditional programs using the native record-level access interface, then being able to control the format name with SQL will minimize the changes to those RPG and COBOL programs.

© Copyright IBM Corporation, 2011

IBM Power Systems

25

SQL Object Management

RPG requires system name and record format name to be different
– SQL defaults record format name to the system name

– RCDFMT keyword can be used to override default behavior

CREATE TABLE dbtest/customer_master

(customer_name FOR COLUMN cusnam CHAR(20),

customer_city FOR COLUMN cuscty CHAR(40))

RCDFMT cmfmt

Modernizing Database Definitions & Objects

Presenter
Presentation Notes
Modernizing Database Definitions & Objects - SQL Object Management
RPG programs that use the native record-level access interfaces to access DB2 tables require the record format name to be different from the table’s system name. By default, DB2 for i uses the system name as the record format name for SQL tables. This default naming behavior for the record format can be overridden by specifying the proprietary keyword, RCDFMT, to explicitly specify the record format as shown in this example.

© Copyright IBM Corporation, 2011

IBM Power Systems

26

SQL & Non-relational data

 User-Defined Table Functions
– Allows non-relational & legacy data to be virtualized as an SQL table

SELECT * FROM TABLE(myudtf('Part XYZ'))

 LOBs

– Both SQL & External Table Functions supported
• External UDTFs can be easily written to access multi-format files, S/36 files, and

stream files
• Table functions need to be invoked from SQL-based interfaces or SQL view
• External UDTF Examples: http://ibm.com/systems/i/Db2/db2code.html

– Allows you to keep non-relational data along with all the other business data

Modernizing Definitions & Objects

Presenter
Presentation Notes
Modernizing Database Definitions & Objects - SQL & Non-relational Data
While SQL was designed originally for relational database objects, it has been enhanced to also support non-relational objects. Examples of non-relational objects would be image files and IBM i legacy multi-format and S/36 files – all of these object types cannot be directly accessed with SQL. The User-Defined Table Function (UDTF) support can be used to enable SQL access of non-relational objects such as these. A UDTF can be written entirely in SQL or in one of the high-level programming languages supported by IBM i. If you have an existing IBM i program that extracts data out of a non-relational object such as a data queue or s System 36 file, that existing program can be registered as an external UDTF.
Once the UDTF has been created, SQL programmers can easily access the data stored in these non-relational objects by just invoking the UDTF as demonstrated in this simple example using the TABLE keyword. The programmer knows that they are going to get a result set back from the table function invocation. However, the SQL programmer has no idea if the result set is populated using SQL or legacy RPG code accessing a System 36 file. The invoker of the UDTF is completely isolated from the implementation of the UDTF. A User-Defined Table Function can be referenced anywhere on an SQL statement where a table reference is allowed.
LOB data types (BLOB & CLOB) allow you to store the non-relational object content directly into a database column along with the business data stored in traditional columns.

© Copyright IBM Corporation, 2011

IBM Power Systems

27

Identity Column Attribute
– Attribute that can be added to any “whole” numeric columns
– Not guaranteed to be unique - primary key or unique index must be defined
– Only available for SQL tables, BUT identity column value generated for non-SQL interfaces (eg, RPG)
–

CREATE TABLE emp(empno INTEGER GENERATED ALWAYS AS IDENTITY
(START WITH 10 , INCREMENT BY 10),

name CHAR(30), dept# CHAR(4))

INSERT INTO employee(name,dept) VALUES('MIKE','503A') or…
– INSERT INTO employee VALUES(DEFAULT,'MIKE', '503A')

Sequence Object
– Separate object that can be shared across multiple tables
– Generated value to be part of non-numeric keys

CREATE SEQUENCE order_seq START WITH 10 INCREMENT BY 10

INSERT INTO orders(ordnum,custnum)
– VALUES(NEXT VALUE FOR order_seq, 123)

Modernizing Definitions & Objects

Moving Business Logic into Db2 - Automatic Key Generation

Presenter
Presentation Notes
Modernizing Definitions & Objects - Moving Business Logic into DB2
One of the simplest pieces of business logic that can be embedded into your DB2 object definitions is key value generation. Almost all applications have code that generates a key value for invoice or customer number and then inserts that value into a database table. Because that logic is relatively simple, why not just have the DB2 for i engine automatically generate that value for the application as rows are inserted into a table?

That's exactly the functionality that the Identity column attribute and Sequence object can provide. With both of these capabilities, DB2 handles the generation of key values including the locking and serialization. This enables a programmer to focus their efforts on real business logic.
The biggest difference between the Identity column attribute and Sequence object is that the Sequence object support makes it much easier to share a generated key value across multiple tables.

© Copyright IBM Corporation, 2011

IBM Power Systems

28

CREATE TRIGGER audit_salary
AFTER UPDATE ON employee(salary)
REFERENCING NEW AS n
REFERENCING OLD AS o
FOR EACH ROW
WHEN (n.salary - o.salary >= 5000)

INSERT INTO audit
VALUES(n.empno, n.deptno, n.salary,current timestamp)

 Triggers allow you initiate business policies & processes whenever new data comes in or
existing data is changed

– Db2responsible for always invoking the trigger program
– Execution is independent of the user interface
– Can be used to transform data before it gets into Db2

 Db2 for i Trigger Support
– Before & After: Insert, Update, & Delete events (up to 300 triggers)
– SQL & External(ADDPFTRG) Triggers

• Column-level, Statement-level, and Instead Of triggers only available with SQL Triggers

Modernizing Definitions & Objects

Moving Business Logic into Db2 - Triggers

© Copyright IBM Corporation, 2011

IBM Power Systems

29

Modernizing Data Access

Programming Interfaces

Native I/O to SQL Comparison

Presenter
Presentation Notes
Modernizing Data Access
Up to this point, the focus has been on modernizing your database objects with the usage of SQL. Another way to modernize your databases is the usage of SQL in your applications for data access.

© Copyright IBM Corporation, 2011

IBM Power Systems

30

**Db2 SQL Development Kit only required if embedded SQL (& STRSQL)
is going to be used

Static SQL Extended Dynamic SQL

Embedded Static QSQPRCED

SQL Procedures,
Functions, Triggers

Toolbox JDBC driver

IBM i Access ODBC & OLE DB

Dynamic SQL

Embedded Dynamic

SQL Procedures, Functions,
Triggers

JDBC, SQLJ

ADO.NET, OLE DB

CLI, ODBC

PHP ibm_Db2

RUNSQLSTM

Modernizing Data Access – Programming Interfaces

© Copyright IBM Corporation, 2011

IBM Power Systems

31

Modernizing Data Access C SearchKey KList
C Kfld SearchYear
C Kfld SearchMonth
...
C Times Occur Result_Set
C SearchKey Setll TIME_DIML1
C If %FOUND
C DOU RowsReq = Rows Rd
C READ TIME_DIML1
C If %EOF
C Leave
C Endif
C DATEKEY Setll ITEMFACTL1
C If %FOUND
C DOU RowsReq = RowsRd
C DATEKEY READE ITEMFACTL1
C If %EOF
C Leave
C Endif
C PARTKEY CHAIN PART_DIML1
C If Not %FOUND
C Iter
C Endif
C CUSTKEY CHAIN CUST_DIML1
C If Not %FOUND
C Iter
C Endif
C SUPPKEY CHAIN SUPP_DIML1
C If Not %FOUND
C Iter
C Endif ...

...
C/EXEC SQL
C+ DECLAREsql_jn CURSOR FOR SELECT
C+ t.year,t.month,i.orderdt,c.country,c.cust
C+ p.part,s.supplier,i.quantity,i.revenue
C+ FROM item_fact i
C+ INNER JOIN part_dim p ON (i.partid =p.partid)
C+ INNER JOIN time_dim t ON (i.orderdt=t.datekey)
C+ INNER JOIN cust_dim c ON (i.custid=c.custid)
C+ INNER JOIN supp_dim s ON (i.suppid=s.suppid)
C+ WHERE year=2008 AND month=6
C/END-EXEC

C/EXEC SQL
C+ OPEN sql_jn
C/END-EXEC

C/EXEC SQL
C+ FETCH NEXT FROM sql_jn FOR :RowsReq ROWS
C+ INTO :result_set
C/END-EXEC
C If SQLCOD = 0 and
C SQLER5 = 100 and
C SQLER3 > 0
C Eval RowsRd = SQLER3
...

Native I/O to SQL Example

Presenter
Presentation Notes
Modernizing Data Access - SQL versus Native I/O
This example is a side-by-side comparison of a program using the native record-level access interfaces (also known as Native I/O) and it's SQL equivalent which is it's in simplest form of embedded SQL.
Each program is searching thru five different able to return data for the specified time period of the 6th month 2008. Notice how SQL performs the join in one request. In contrast, the Native program performs Read operations against each table individually and has to specify a logical file to use. While you could write SQL code to access each table separately to mirror the traditional, native record-level access code, that is NOT recommend due to performance reasons. The real value of SQL is processing a set of data on a single request and not sub-dividing a single request into multiple parts.
Also, notice how easy SQL makes it to only retrieve a subset of the columns from the 5 tables. The Native I/O example would retrieve all of the fields by default- in order for the record-level access program to retrieve a subset of columns from each table, a new logical file would have to be created for each table. Definitely, a more cumbersome approach.

© Copyright IBM Corporation, 2011

IBM Power Systems

32

Modernizing Data Access

...

C/EXEC SQL
C+ DECLARE sql_jn CURSOR FOR
C+ SELECT * FROM JoinView
C+ WHERE year=2008 AND month=6
C/END-EXEC

C/EXEC SQL
C+ OPEN sql_jn
C/END-EXEC

C/EXEC SQL
C+ FETCH NEXT FROM sql_jn FOR
C+ :RowsReq ROWS INTO :result_set
C/END-EXEC

C If SQLCOD = 0 and
C SQLER5 = 100 and
C SQLER3 > 0
C Eval RowsRd = SQLER3

..
C SearchKey KList
C Kfld SearchYear
C Kfld SearchMonth
...

C SearchKey SETLL NTVJOIN002
C If %FOUND
C DO RowsReq Times
C Times Occur Result_Set
C READ NTVJOIN002
C If %EOF
C Leave
C Endif

C Eval RowsRd = RowsRd + 1
C ENDDO

C Endif

Native I/O to SQL Example - Joined LFs & Views

Presenter
Presentation Notes
Modernizing Data Access - SQL versus Native I/O
A programmer well-versed in using the traditional native record-level access interfaces might argue that the previous native I/O solution could be simplified by creating a join logical file. That suggestion is correct and shown in this example. However, SQL can do the same thing by hiding the complex join logic inside an SQL View. So in this SQL example, the join query from the previous page has been moved into an SQL view named sql_jn.
SQL views do have an advantage over join logical files in that the join order is not fixed and that more complex join types are available. The query optimizer has an opportunity to analyze the join request and modify the join order coded in the SQL view, if it determines that a different join order will perform better. With join logical files, the burden is on the programmer to code the join order correctly and over time double check that the coded join order is still optimal. Many view this as an advantage of using SQL – this goes back to the benefits of the data-centric programming approach discussed at the beginning of this presentation. With SQL, Programmers can focus more of their effort on coding the business logic instead of also being responsible for coding the low-level data access steps that the database engine should be using.

© Copyright IBM Corporation, 2011

IBM Power Systems

33

Native I/O to SQL Example - Performance Comparison
Modernizing Data Access

Note: Tests run on Model 720 w/1600 CPW & 2 GB Memory - your performance results may vary

Number of Rows
0

5

10

15

20

25

Ti
m

e
(s

ec
)

Native File Join
Native JoinLF
Native JoinLF w
SQL - No IOA
SQL IOA
SQL SQE IOA

1 100 1000 10000
0.002512 0.260248 2.219504 23.228176
0.002304 0.362128 2.544608 21.366480
0.002400 2.144288 2.125032 19.311464
0.145160 0.489136 3.166704 20.452984
0.251168 0.267208 0.417800 1.898800
0.013536 0.019320 0.250160 1.576536

Presenter
Presentation Notes
Modernizing Data Access - Performance Comparison
One of the biggest reasons IBM i programmers decide not to use SQL is that they believe that the native record-level access interface is a better performing interface. This chart compares the performance of the SQL and Native I/O programming examples that were just reviewed.
In general, when processing sets of data, SQL performance is equivalent to or better than the traditional record-level access. Native I/O performed slightly better than SQL when retrieving a small number of rows, but SQL performed better with a large set of result sets. When an index was created, so that SQL could use Index Only Access (IOA) than SQL performance for retrieving a small number of rows dropped dramatically.
Index Only Access is another one of those features only available to SQL interfaces. Normally when performing a key lookup, DB2 engine has to issue two I/O operations - one I/O to retrieve the key out of the index (i.e., logical file) and a second I/O to retrieve the associated row out of the table (i.e., physical file). This "double" I/O processing is always done when a native program is positioning to a row through a keyed logical file. With SQL interfaces, if the index keys contain all of the column data being returned by the SQL query than the query optimizer is smart enough to automatically just extract that column data out of the index with a single I/O and NOT perform the second I/O against the underlying table. The elimination of the second I/O operation against the table can offer significant performance gains on some queries.

© Copyright IBM Corporation, 2011

IBM Power Systems

34

Modernizing Data Access

The issue is throughput not response time
– As growth occurs, programs with Record Level Access (RLA) have a harder time scaling on IBM POWER

Systems
– Throwing hardware at the problem no longer an option
– Application changes will be inevitable

Traditional IO does not
scale as volumes
increase

SQL set based
access remains flat
as growth occurs

SQL and Scalability

Presenter
Presentation Notes
Modernizing Data Access - SQL and Scalability
While there will always be situations where the traditional record-level access interfaces offer faster response items, experiences with large IBM clients has shown that SQL data access scales better as the number of users increase and the size of DB2 tables increase. As a result, some IBM i customers are finding that upgrading to faster hardware no longer solves all of their performance problems. They need to look at using SQL for data access to improve performance from a scalability point of view. This condition is particularly true of queries and reports running on IBM POWER Systems with multiple processors and cores. The DB2 Symmetric Multi-Processing licensed feature enables SQL to automatically run across multiple processors to speed up the performance of a request.

© Copyright IBM Corporation, 2011

IBM Power Systems

35

Native to SQL Considerations
Modernizing Data Access

 ORDER BY clause is the only way to guarantee the sequencing of results when using SQL - no clause,
means ordering by chance

 SQL Precompilers do not always support all the latest features in the high-level language, still missing from
RPG SQL Precompiler:

– Support for qualified names with more than one level of qualification

 Consider impact of SQL isolation level & journaling on native applications

 Critical Performance Success Factors
– Sound Indexing & Statistics Strategy

 ibm.com/partnerworld/wps/servlet/ContentHandler/servers/enable/site/bi/strategy/index.html
– Maximize Open Data Path (ODP) Reuse

• Prepare Once, Execute Many
• Connection Pooling
• Keep Connections & Jobs active as long as possible
• Reference:

ibm.com/partnerworld/wps/servlet/ContentHandler/servers/enable/site/education/ibp/4fa6/
– Use Blocked Fetches & Inserts
– Attend SQL Performance Workshop – ibm.com/systems/i/Db2/db2performance.html

Presenter
Presentation Notes
Modernizing Data Access - Native to SQL Considerations
There are a few issues that need to be considered as you start using SQL for data instead of the native record-level I/O interfaces. The only way to guarantee the sequencing of results with SQL is to specify an ORDER BY clause. Many native applications are dependent on data being returned in arrival sequence without specifying any key or ordering. SQL does not work that way. Even when you have an SQL SELECT statement returning data in the order that’s needed by the application, the absence of an ORDER BY clause means that the ordering of the data is free to change on the next release or next execution without any warning.
Some programmers that are using the latest RPG features have found that the RPG SQL precompiler does not support all of the latest features. Some of the key restrictions (that exist as of the IBM i 7.1 release) are listed here. Since the V5R3 release, IBM has significantly reduced the number of restrictions in the RPG SQL Precompiler.
If you start using SQL and run with isolation level (ie, commitment control level) other than *NONE/NC someone needs to consider the impact of row-level locking on the rest of the application and traditional applications that are accessing the same tables. Certain technologies such as WebSphere applications require an isolation level higher than *NONE to run.
Just like any programming language, SQL has it's own strengths and weaknesses when it comes to performance. An RPG programmer had to learn those over time with the RPG language and programmers using SQL for the first time have to realize it might take them a while to learn the best-performing techniques. A couple of key SQL performance techniques are listed here. One of the key requirements is having a sound indexing strategy - meaning have indexes in place for the query optimizer to use for your most critical or frequently executed SQL statements. Please reference the white paper listed for more details.
Minimizing the number of Open Data Paths (ODPs) created is a key success factor in delivering good performance especially with applications using Dynamic SQL interfaces. In addition, the usage of blocked fetches and inserts with SQL is also quite important.

© Copyright IBM Corporation, 2011

IBM Power Systems

36

Next Steps
1) Identify First Project

– Write a new function/program component using SQL

– Rewrite an existing component using SQL (eg, reporting)
• OPNQRYF to SQL
• Query/400 to Db2 Web Query

– Port SQL-based program to DB2 for i
• Porting guides & conversion tools at:
• http://ibm.com/partnerworld/i/db2porting

Presenter
Presentation Notes
Next Steps
Like with any new venture, it's recommended to start small and then build on that small success. It's not recommended that your first project be the rewrite of an entire native program over to SQL. Instead look for a new project that requires the creation of a new program or module that could use SQL in just the new code you're writing.
Similarly, you might look at an existing component or routine in your application that could be rewritten using SQL. The reporting function for an existing application might be a good candidate. The conversion of OPNQRYF and Query/400 reports to SQL usually provides a performance boost because those conversions result in the SQL Query Engine (SQE) being used instead of Classic Query Engine (CQE).
Some IBM i programmers have been forced into using SQL when they port back an application that was written by some PC programmers for another database such as Microsoft SQL Server. Many times they will port this solution back to an IBM i server since the solution didn't scale very well on the other platform and database. A conversion of an application from another database product is going to require the usage of SQL to complete the conversion in any type of timely manner. The referenced URL provides a list of IBM resources to simplify the process of porting applications to DB2 for i.

© Copyright IBM Corporation, 2011

IBM Power Systems

37

Next Steps
2) Get Education

– IBM i Database Modernization Workshop
• http://ibm.com/systems/i/support/itc/educ/lsdb2mod.html

– Modernizing iSeries Application Data Access Redbooks document
www.redbooks.ibm.com/abstracts/sg246393.html?Open

– Case Study: Modernizing a DB2 for iSeries Application white paper
ibm.com/partnerworld/wps/servlet/ContentHandler/servers/enable/site/education/wp/9e5a/index.html

– DB2 for i SQL Performance Workshop
• ibm.com/systems/i/db2/db2performance.html
• ibm.com/partnerworld/wps/training/i5os/courses

– Indexing & Stats Strategy White Paper
ibm.com/partnerworld/wps/servlet/ContentHandler/servers/enable/site/bi/strategy/index.html

– Database modernization roadmaps
• Modernizing DB2 definitions and usage

https://www.ibm.com/partnerworld/wps/servlet/ContentHandler/SOX_TwGV47Qq9ppycFAT
• Modernizing data access with SQL

https://www.ibm.com/partnerworld/wps/servlet/ContentHandler/SOX_JUGV47Q9cz7ycFAT
• Optimizing SQL performance

https://www.ibm.com/partnerworld/wps/servlet/ContentHandler/SOX_G7FV47QlUAiycFAT

Presenter
Presentation Notes
Next Steps
SQL is no different than any programming language, you need education and experience to learn how to design a high-performing application. It's highly recommend to get educated due to the fact that SQL performance tuning and tools are different than what is used for native record-level access. Just using trial and error to build your experience level with SQL performance tuning will take too long. Education is needed first and then hands on experience with SQL performance tuning is needed to solidify these new skills. The referenced DB2 for i SQL Performance Workshop provides both lecture and lab to give you opportunities in both areas. Portions of the SQL Performance Workshop lab materials are available online at the second URL listed.

© Copyright IBM Corporation, 2011

IBM Power Systems

38

Conclusion

DDS and Native Record-Level Access are

not sustainable

Must migrate both Native to SQL, and your Mind to SQL

There is no reason not to keep your business data in DB2 for i

Presenter
Presentation Notes
Hopefully, the advantages of using SQL on IBM i to create database objects and access data are clear. The transition from the DDS and native record-level access involves not only a physical conversion of the code, but also a change in your mental approach to maximize the benefits offered by SQL’s set-based processing and data-centric methodology.

© Copyright IBM Corporation, 2011

IBM Power Systems

39

Additional Information

DB2 for i Websites
– Homepage: ibm.com/systems/i/db2
– developerWorks Zone: ibm.com/developerworks/db2/products/db2i5OS

Newsgroups
– DeveloperWorks: https://www.ibm.com/developerworks/forums/forum.jspa?forumID=292
– System i Network DB2 Forum - http://forums.systeminetwork.com/isnetforums/

Education Resources - Classroom & Online
– http://ibm.com/systems/i/db2/db2educ_m.html
– http://ibm.com/partnerworld/wps/training/i5os/courses

DB2 for i Publications
– Online Manuals: http://ibm.com/systems/i/db2/books.html
– White Papers: ibm.com/partnerworld/wps/whitepaper/i5os
– Porting Help: http://ibm.com/partnerworld/i/db2porting
– DB2 for i5/OS Redbooks (http://ibm.com/systemi/db2/relredbooks.html)

• Stored Procedures, Triggers, & User-Defined Functions on DB2 for iSeries (SG24-6503)
• DB2 for AS/400 Object Relational Support (SG24-5409)
• Advanced Functions & Administration on DB2 for iSeries (SG24-4249)
• Getting Started with DB2 Web Query for System i (SG24-7214)

– SQL for DB2 by Conte & Cooper
• http://www.amazon.com/SQL-James-Cooper-Paul-Conte/dp/1583041230/

© Copyright IBM Corporation, 2011

IBM Power Systems

40

IBM DB2 for i Consulting and Services

Database modernization

DB2 Web Query

Database design, features and functions

DB2 SQL performance analysis and tuning

Data warehousing and Business Intelligence

DB2 for i education and training

Contact: Mike Cain mcain@us.ibm.com
IBM Systems and Technology Group
Rochester, MN USA

SLOW

Need help?

DB2 Modernization Assistance
DB2 for i Modernization Workshop

http://ibm.com/systems/i/support/itc/educ/lsdb2mod.html

mailto:mcain@us.ibm.com

	Application Modernization – DB2 for i Style���Kent Milligan & Mike Cain�IBM STG Lab Services – DB2 Center of Excellence�ISV Enablement – IBM i & DB2 for i
	Agenda
	Why SQL?
	Slide Number 4
	Traditional Record-Level Access
	SQL Data-Centric Programming
	Approaches & Options
	Approaches & Options
	Modernizing Definitions & Objects
	Modernizing Definitions & Objects
	Modernizing Definitions & Objects
	Modernizing Database Objects
	Modernizing Objects: CREATE TABLE vs CRTPF
	Modernizing Objects: CREATE INDEX vs CRTLF (Keyed)
	Modernizing Objects: CREATE VIEW vs CRTLF (non-keyed)
	Modernizing Database Definitions & Objects
	Modernizing Database Definitions - Transparently
	Modernizing Database Definitions – Transparently
	Modernizing Database Definitions - Transparently
	Transparent SQL Migration - Example
	Transparent SQL Migration - Tooling
	Modernizing Database Definitions & Objects
	Modernizing Database Definitions & Objects
	Modernizing Database Definitions & Objects
	Modernizing Database Definitions & Objects
	Modernizing Definitions & Objects
	Modernizing Definitions & Objects
	Modernizing Definitions & Objects
	Modernizing Data Access
	Modernizing Data Access – Programming Interfaces
	Modernizing Data Access
	Modernizing Data Access
	Modernizing Data Access
	Modernizing Data Access
	Modernizing Data Access
	Next Steps
	Next Steps
	Conclusion
	Additional Information
	Slide Number 40

