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Introduction

In the past, a large portion of the improvements from one release of the IBM Z® hardware to the next came from CPU clock speed 
increases, which allowed existing programs to bene it from the newer hardware without the need for recompilation. Simply running the 
existing binary on the new hardware was enough to see noticeable improvement in performance. However, as CPU clock speed has 
stagnated due to physical limitations, CPU designers have focused their efforts on other areas within the CPU to improve performance. 
These areas include improved branch prediction, increased cache sizes, and additions to the instruction set architecture (ISA).

One of the biggest additions to the ISA introduced in IBM z13® and IBM z13s® and enhanced in IBM z14™ were the vector instructions and 
vector registers. Vector instructions use the vector registers to operate on multiple elements of data in parallel. These single instruction, 
multiple data (SIMD) class of instructions allow the processor to use the data level parallelism inherent in many workloads to improve 
performance. However, unlike the CPU clock speed improvements of the past, these new SIMD instructions require greater intervention on 
the part of the user. Source code needs to be recompiled with the latest compiler to properly take advantage of these new features. Not 
recompiling means missing out on possibly significant performance improvements and under-utilizing the hardware.

This document describes the vector-related optimizations that are available in the z/OS® V2R3 XL C/C++ compiler. Most of these 
optimizations allow you to take full advantage of the latest hardware with little to no source changes. Simply recompiling with the right set 
of options is often enough to use the new vector instructions.

Note: While the goal of compiler optimizations is to improve the performance of compiled code, there is no guarantee that
performance improvement will always be the case. The benefit and size of impact depends on various factors, including the code to
be compiled and the kinds of operations the code uses.

How this document is organized

This document describes the following features in detail:

Hardware vector facilities
Provides significant performance improvements over the older scalar instructions.

Vector programming support
Allows the user to use vector instructions directly by using built-in functions.

Automatic compiler optimizations
Vector optimizations require recompilation, but not source code changes.

AutoSIMD
Analyzes and transforms the source code to take advantage of SIMD instructions where possible.

Vector single element
Uses vector instructions and registers to perform scalar IEEE-754 binary floating-point operations.

Vector long double
Uses vector registers and instructions for IEEE-754 quadruple precision operations.

Vector packed decimal
Uses vector registers and instructions for binary coded decimal (BCD) operations.

Vectorized C string functions
Uses vector string instructions to implement common C string functions.

Hardware vector facilities

Vector instructions were introduced in the vector facility for z/Architecture® in the z13 hardware. This facility added 32 128-bit wide vector 
registers and a set of corresponding vector instructions that uses these registers. Depending on the instruction, each 128-bit wide vector 
register can be treated as having 1, 2, 4, 8 or 16 element(s). The instructions perform an operation on all elements of the vector register in 
parallel. Most of the vector floating-point instructions can also perform their operation on a single element, which is discussed in details in 
Vector single element.

In z14, the z/Architecture vector enhancements facility 1 and vector packed decimal facility were added, which build upon the existing z13 
vector facility by adding new vector instructions. Among other things, the vector enhancements facility 1 adds support for IEEE-754 single 
and quadruple precision binary floating-point arithmetic. Previously vector instructions were limited to IEEE-754 double precision only. The
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vector packed decimal facility adds support for performing BCD operations that use vector registers instead of memory-to-memory
operations.

These vector facilities can provide significant performance improvements for workloads that are able to take advantage of them relative to
the older scalar instructions. The ability to operate on multiple elements in parallel, having access to larger number of vector registers, and
avoiding expensive memory-to-memory operations, can all help improve performance.

Vector programming support

The vector programming support exposes the hardware vector facilities directly to the user. It provides data types, language extensions, and
built-in functions for C/C++ that allows users to write high-performance vector code. The ideal use case for vector programming support is
performance critical regions that would benefit the most from hand-tuned vector code.

The vector data types allow C/C++ code to work with vector data in the same way that one would work with scalar integer and floating-point
types. The vector data types support the same indexing syntax as arrays, making it easy to access individual elements of a vector.

The language extensions add vector data type support for most unary, binary, and relational operators. When these operators are applied to
vector operands, the operation is performed on each element of the vector. The C/C++ languages are also extended to support vector
literals, making it easier to initialize vector values.

The vector built-in functions expose many of the underlying hardware vector instructions to the users to use directly in their code. These
vector built-ins, along with the data types and language extensions, provide a seamless way to integrate vector instructions into C/C++ code.

Note: To enable the vector programming support, the following options are required: VECTOR, FLOAT(AFP(NOVOLATILE)),
ARCH(11) or higher, and TARGET(zOSV2R1) or higher.

AutoSIMD

The AutoSIMD optimization is available starting from z/OS V2R2 XL C/C++ and supports integers and double precision floating-point values.
AutoSIMD automatically transforms source code to use vector instructions for SIMD. The first step is safety analysis phase that identifies
whether the transformation is safe to apply. The next step is profitability analysis to determine whether the transformation will be beneficial.
Finally, the scalar source code is transformed to use vector instructions. AutoSIMD is able to transform both loops and basic blocks to use
vector instructions.

Figure 1 shows a for loop that is performing a summation of the first 256 values in an array. Figure 2 shows the optimized code of Figure 1
by AutoSIMD to use vector instructions. This transformed code is expressed by using vector programming support. The code in Figure 2 is
longer because it is more explicit, using built-in functions to show the loads and stores. The transformed code does four sums in parallel
using vector registers since a single vector register can hold four floating-point single precision values. This means that we have a quarter of
the total number of iterations, 64 versus 256. Finally, the four summations are themselves added up to get the final value. The AutoSIMD
optimization is able to transform the code to achieve four times as much work in each loop iteration relative to the original scalar code.

float sum = 0.0f;
for (int i = 0; i < 256; i++)
{
    sum += arr[i];
}

Figure 1: Simple loop computing the sum of the first 256 element of an array

vector float tmpA, tmpB;
vec_xst((vector float){0.0f,0.0f,0.0f,0.0f}, 0, tmpA);
int i = 0;
do {
   tmpA = vec_xl(0, tmpA);
   tmpB = vec_xl(0, ((char *)arr + (4)*(i * 4)));
   vec_xst(tmpA + tmpB, 0, tmpA);
   i = i + 1;
} while (i < 64u);
sum = tmpA[0] + tmpA[1] + tmpA[2] + tmpA[3];

Figure 2: Simple loop after AutoSIMD, expressed by using vector programming support

Notes:

• The AutoSIMD optimization requires the following options: HOT, VECTOR(AUTOSIMD), FLOAT(AFP(NOVOLATILE)), ARCH(11)
or higher, and TARGET(zOSV2R1) or higher.

• The FLOAT(IEEE) option is required to enable AutoSIMD for IEEE floating-point values.
• The ARCH(12) option and the z/OS V2R3 XL C/C++ compiler is required to enable AutoSIMD for IEEE single precision floating-

point values.
2



Vector single element

One of the limiting factors for scalar floating-point instructions is that they have access to only 16 floating-point registers. The compiler tries
to keep as many values in these registers as possible. However, there are times where the number of live values exceeds the number of
registers. In these high register pressure situations, the values are temporarily stored out to memory and loaded back later. This spilling
operation can be expensive, especially if the value gets evicted from the L1 cache between the store and the load. The simplest solution is
to have more registers and that is exactly what the vector facility provides for IEEE floating-point values.

Vector instructions are able to access all 32 128-bit vector registers and most vector floating-point instructions have a single element
control bit. When this bit is set, the operation is performed only on the zero-indexed element of a vector register, the values in the other
elements are unpredictable and are ignored. The single element control bit enables the use of vector instructions, and therefore vector
registers, for scalar floating-point operations. This is very useful for code that is suffering from a larger number spills due to register
pressure. Additionally, most scalar floating-point instructions are 2-operand. Instructions of this form have only two operands with one of
the operands being used as both a source and a destination. If that value is required in subsequent operations, then it needs to be copied
into another register. Most vector floating-point instructions are 3-operand, providing distinct operands for the sources and destination and
eliminating the need for register copies to preserve values.

Another aspect that makes this feature useful is that floating-point registers are overlaid with the vector registers. Referring to floating-point
registers 0 - 15 is the same as referring to the most significant half of the corresponding vector registers 0 - 15. This makes it easier to mix
floating-point vector and scalar instructions since extra instructions for moving between register types are not required. Simply ensuring
that the result of a vector instruction is placed in vector registers 0 - 15 makes it available to scalar floating-point instructions. This is
especially useful when a single element vector alternative is not available for a scalar instruction, such as some conversion instructions.

With z/OS V2R3 XL C/C++, the vector single element feature automatically use this single element control bit to improve IEEE floating-point
code. Twice as many values can be live and kept in registers before spilling is necessary. The use of vector single element instructions can
improve performance, reduce code size, and reduce stack space usage. The only down side of using the vector instructions is the larger size
of each instruction compared to the scalar floating-point instruction. Most scalar floating-point instructions are 4 bytes versus the 6-byte
length of vector instructions. However, in internal benchmarks this has not been an issue since the benefits of reduced spills more than
makes up for any negative performance impact of the larger instruction size.

Table 1 shows the listing snippet without and with vector single element respectively. This listing snippet is from a floating-point intensive
workload that is constrained by register pressure. Without vector single element, we notice several loads and stores that are spilling and
restoring values. This is because this code has exhausted all 16 floating-point registers. We also see the need for an LDR, which is a register-
to-register copy of floating-point registers. This LDR preserves the value that is about to be overwritten by the subsequent 2-operand
instruction. The listing snippet without vector single element shows one of the ways of dealing with register pressure without using vector
instructions, register-storage form instructions such as MADB. These register-storage form instructions have a memory reference as one of
their operands, which eliminates the need for a floating-point register. This can help in some cases but still has several tradeoffs:

• The memory reference cannot act as a destination.
• Memory needs to be referenced every time that operand is referenced.
• The use of a floating-point register has been replaced by the use of one or more general purpose registers for addressing. However,

general purpose registers are also limited to 16, so this might cause general purpose register to spill instead.

Table 1: Pseudo-assembly listing without vector single element

Without vector single element With vector single element

STDY     f15,rns18.0.(r14,r8,-128)
MADBR    f2,f4,f3
MADBR    f13,f11,f3
LD f15,#vsSPILL11(,r4,2240)
MADBR    f9,f2,f3
LD f2,#vsSPILL2(,r4,2168)
SDBR     f13,f5
STD      f14,#vsSPILL17(,r4,2288)
SDBR     f9,f5
LD f11,#vsSPILL0(,r4,2152)
LDR      f14,f0
MDBR     f15,f9
LD f9,#vsSPILL5(,r4,2192)
MADB     f15,f9,rns18.0.(r14,r9,40)
LD f9,#vsSPILL9(,r4,2224)
STDY     f15,rns18.0.(r14,r10,-497112)

STDY     f2,rns18.0.(r14,r8,-128)
WFMADB   v24,v6,v24,v10
VLEG     v27,rns18.0.(r14,r9,40),0
WFMDB    v2,v0,v15
WFSDB    v24,v24,v3
WFMDB    v25,v7,v24
WFMADB   v24,v6,v14,v13
WFMADB   v0,v6,v24,v10
WFADB    v24,v4,v5
WFSDB    v26,v0,v3
WFMADB   v0,v27,v9,v25
WFMDB    v7,v7,v26
STDY     f0,rns18.0.(r14,r10,-497112)

Enabling vector single element eliminates all spill-related loads and stores in this snippet since we are able to keep all values in registers.
The 3-operand form of the vector instructions eliminates the need for LDR instructions to preserve operands. Vector instructions lack
register-storage form instructions, but the larger number of registers makes them unnecessary. Overall, the version of the benchmark with
vector single element enabled is 20% faster, has 80% fewer spills, and uses 25% less stack space.
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Notes:

• The following options are necessary to enable vector single element for IEEE-754 double precision: OPT(2) or higher, VECTOR,
FLOAT(AFP(NOVOLATILE), IEEE), ARCH(11) or higher, and TARGET(zOSV2R1) or higher.

• Additionally, ARCH(12) is required to enable vector single element for IEEE-754 single-precision.

Vector long double

The vector long double feature is similar to vector single element, except that it works on IEEE-754 quadruple precision values.
Existing, quadruple precision instructions require the use of floating-point register pairs since the 128-bit values are too large for a single
64-bit floating-point register. However, with the vector enhancements facility 1 in z14, support was added for quadruple precision
operations by using 128-bit vector registers and vector instructions.

Moving from eight floating-point register pairs to 32 vector registers can improve the performance of code that is constrained by register
pressure. The 3-operand form of the vector instructions can also avoid the extra copy code that is needed to preserve operands. In this
case, the savings in copy code are even greater because we save on two instructions, one for each register in the pair. Similarly, the savings
from reduction in spill code are also greater because the register pairs required two load and two store instructions. Unlike the scalar single
and double precision floating-point instructions, quadruple precision instructions don’t have register-storage form instructions.

Table 2 shows the listing from a floating-point intensive workload without and with vector long double enabled respectively. This is the
same work load from Table 1, but operating on quadruple precision values instead of double precision. The first thing to note is the need for
pairs of loads and store due to paring of registers. Sequential even registers or sequential odd registers are paired together to store a full
128-bit value. For example, the loads into f4 and f6 constitute a single 128-bit value. Similarly, the two store instructions (STD) are spilling a
single 128-bit value. With vector long double, the two load and store instructions can be replaced with a single vector load or store
instruction. The listing with vector long double is shorter, but manages to do more meaningful work because it does not need as many
loads before an actual operation.

Table 2: Pseudo-assembly listing without vector long double

Without vector long double With vector long double

LD f4,(*)ldouble(r9,r1,16)
LD f6,(*)ldouble(r9,r1,24)
LDR      f5,f0
LDR      f7,f2
STD      f6,#SPILL0(,r4,1856)
STD      f4,#SPILL1(,r4,1848)
AXBR     f5,f4
LD f4,(*)ldouble(r9,r1,32)
LD f6,(*)ldouble(r9,r1,40)
LD f8,(*)ldouble(r9,r1,48)
LD f10,(*)ldouble(r9,r1,56)

VL v13,(*)ldouble(r9,r1,16)
VL v15,(*)ldouble(r9,r1,32)
VL v5,(*)ldouble(r9,r1,48)
WFAXB    v7,v10,v13
VL v3,(*)ldouble(r9,r1,64)
VL v12,(*)ldouble(r9,r1,128)
WFAXB    v7,v15,v7
WFSXB    v11,v5,v3

Vector long double enabled code provides the same benefits that we saw earlier with vector single element. However, the benefits in this
case are amplified due to the move from register pairs to single vector registers. The vector long double enabled version in Table 2 is over
twice as fast, has 92% fewer spills and uses 76% less stack space.

Note: The z/OS V2R3 XL C/C++ compiler will automatically use the vector long double feature where possible with the
following set of options: OPT(2) or higher, VECTOR, FLOAT(AFP(NOVOLATILE), IEEE), ARCH(12), and TARGET(zOSV2R1) or
higher.

Vector packed decimal

The z/OS XL C/C++ compiler provides a fixed-point decimal type for working with packed decimal values in C code. For operations on these
fixed-point decimal values, the compiler uses storage-and-storage form packed decimal instructions where all the operands are memory
references. These storage-and-storage instructions are necessary because the decimal values, which can be up to 16 bytes in length, are
too large to fit in general purpose registers.

With the release of z14, the new vector packed decimal facility adds vector instructions for operating on packed decimal values in vector
registers. Vector registers are able to hold all 16 bytes of a signed packed decimal value. Instead of repeatedly referencing storage, as is the
case with storage-and-storage instructions, values can instead be loaded into vector registers. Vector decimal instructions are then able to
use these registers as operands. Additionally, the new vector packed decimal instructions are 3-operand versus the 2-operand storage-and-
storage instructions, which means that a storage-to-storage copy is not necessary to preserve an operand when using vector decimal
instructions. So in addition to better performance from the reduced delays between register to register dependencies versus storage to
storage dependencies, we may also have fewer overall instructions.

Note: When compiling with the z/OS V2R3 XL C/C++ compiler, the vector packed decimal feature requires the following options:
VECTOR, ARCH(12), FLOAT(AFP(NOVOLATILE)), and TARGET(zOSV2R1) or higher.
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Vectorized C string functions

The z/OS XL C/C++ compiler performs inline expansion of several C string functions, which allows the code to be better optimized based on
how the string function is being used at each invocation site. Before z/OS V2R3 XL C/C++, these inline expansions used instructions like
Compare Logical Character (CLC) to implement the C string functions. The vector facility for z/Architecture, introduced in z13, added vector
string instructions for the same operations. However, the vector string instructions are able to operate on up to 16 characters in parallel,
potentially improving the performance of these functions.

The z/OS V2R3 XL C/C++ compiler may decide to use these new vector string instructions when expanding certain C string functions. The
following C string functions are candidates for vectorized inline expansions: memchr, memcmp, strcat, strchr, strcmp, strcpy, strlen,
strncat, strncmp, strncpy, and strrchr. For cases where the parameters to these functions are known at compile time, the z/OS XL
C/C++ compiler may evaluate them at compile time and replace the invocation directly with the result. For the cases where this compile-
time evaluation is not possible, the compiler will decide between the scalar and vector expansions based on what it thinks will give the best
performance.

Table 3 shows the possible expansion for the strchr function, which searches for a character in a null terminated string given a pointer to
the string and the character to search for. In the included listings, the pointer to the string is in register r1 and the character to search for is
in register r2. The result, the address of the first occurrence of the character in the string if found and null otherwise, is placed into register
r3.

The scalar expansion uses the Translate and Test (TRT) instruction to do the search. The listing can be broken up into three parts: setup,
search, and cleanup. Everything up to label @1L2 is setting up the table that will be used by the TRT later. MVI instructions are used to place
a value of two at index zero and a value of one at the index corresponding to the numerical value of the search character. All other entries in
the table are zero. The code between the @1L2 and @1L3 labels uses this table with the TRT instruction to search the string for the
character. Finally, after we find either the search character or the null terminator, we reset the nonzero values in the table back to zero.

The vector expansion uses the Vector Find Element Equal (VFEEB) to perform the search. Again, the listing starts with some setup, though in
this case there is no table, instead the search character is replicated across all 16 elements of vector register v2 through the VREPB
instruction. The code then enters a loop, which loads up to 16 bytes of the string and searches it for either the search character or the null
terminator. When a possible match is found, there is an extra check to differentiate between the search character and the null terminator
before the result address is computed into register r3.

Table 3: Scalar and vector pseudo-assembly listing for the strchr function

Scalar expansion Vector expansion

     NILF     r2,F'255'
     L r5,TRT_PTR(,r12,572)
     LR r3,r1
     MVI      TRT(r5,0),2
     LA r8,TRT(r2,r5,0)
     MVI      TRT(r8,0),1
@1L2 DS 0H
     TRT      Cuchar(256,r3,0),TRT(r5,0)
     LA r3,Cuchar(,r3,256)
     JE @1L2
     LA r3,0
     NILF     r2,F'255'
     BRCT     r2,@1L3
     LR r3,r1
@1L3 DS 0H
     MVI      TRT(r5,0),0
     MVI      TRT(r8,0),0

     LR r0,r2
     LA r3,0
     STC      r2,VTEMP1(,r4,2032)
     NILF     r0,F'255'
     LA r2,0
     VL v0,VTEMP1(,r4,2032)
     VREPB    v2,v0,0
@1L2 DS 0H
     VLBB     v0,Cuchar(r2,r1,0),2
     LCBB     r5,Cuchar(r2,r1,0),2
     LR r9,r2
     ALR      r2,r5
     VFEEB    v0,v0,v2,b'0010'
     VLGVB    r10,v0,7
     CLRJNL   r10,r5,@1L2
     ALRK     r2,r10,r9
     LLC      r5,Cuchar(r2,r1,0)
     CLRJNE   r5,r0,@1L1
     LA r3,Cuchar(r2,r1,0)…

The benefit of the vector expansion over its scalar counterpart is that the VFEEB instruction is able to search up to 16 characters at a time.
The TRT instruction must proceed one character at a time, looking up each character in the table before moving on to the next one. There is
some additional bookkeeping that needs to happen with the vector expansion. The Vector Load to Block Boundary (VLBB) and Load Count to
Block Boundary (LCBB) instructions need to be used to avoid crossing a page boundary when loading 16 bytes. This is something the scalar
expansion does not have to deal with. Additionally, code for indexing into the string also needs to be generated for the vector expansion,
whereas it is encapsulated in the TRT instruction in the scalar case. Overall, the vector expansion is able to provide a speed-up of over 2x in
most cases over the scalar expansion.

Notes:

• To allow the compiler to generate these vectorized inline expansions, the string.h header must be included in any source to
use these string functions.
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• The following compiler options are required: OPT(2) or higher, VECTOR(AUTOSIMD), ARCH(11) or higher,
FLOAT(AFP(NOVOLATLE)), and TARGET(zOSV2R1) or higher.

Summary

The improvements that are brought by the vector facilities in the latest Z hardware can offer significant performance improvements for code
that takes advantage of them. The set of vector optimizations that is provided by the z/OS V2R3 XL C/C++ compiler allows users to use
these newest additions to the ISA to improve the performance of their code. In most cases, source changes are not necessary and only
recompilation with the appropriate compiler options is required. The compiler uses the new vector facilities in two distinct ways. The first is
by exposing inherent data level parallelism to the hardware through optimizations like AutoSIMD and vectorized C string functions. The
second is by using new hardware features to speed up scalar operations such as vector single element, vector long double, and vector
packed decimal. The vector optimizations in the z/OS V2R3 XL C/C++ compiler are key to getting the most out of the latest hardware.
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