Introduction to
DB2 Symmetric Multiprocessing for IBM i

About the Author:

Mike Cain,
DB2 for i Center of Excellence,
IBM STG Lab Services and Training

Mike Cain is the leader of the DB2 for i Center of Excellence team in the IBM Systems and
Technology Group Lab Services and Training organization in Rochester, Minnesota. Prior to his
current position, he was the team leader of the AS/400 Teraplex Integration Center and worked
as an IBM AS/400 systems engineer and technical consultant.

Mike can be reached at: mcain@us.ibm.com

Mike Cain

DB2 for i Center of Excellence
Rochester, MN USA
mcain@us.ibm.com

DB2 Symmetric Multiprocessing

December 2011

220111BM Corporation

Introduction

Welcome to this online course, entitled DB2 Symmetric Multiprocessing: Database Parallelism
within IBM i. The purpose of this course is to explain the DB2® Symmetric Multiprocessing
(SMP) feature of IBM i™. The reader will learn about database parallelism within the IBM i
operating system running on the IBM® POWER® platform.

IBM i was formerly called i5/0S®.
Prerequisites:

This course will be most useful to IBM i™ developers who code SQL queries to access DB2®
for i data, or use solutions that make use of SQL to connect and retrieve data from DB2 for i.

Agenda

This course will first talk about the need for installing the DB2 Symmetric Multiprocessing (SMP)
feature of IBM i. You will even learn how to determine if this feature has already been installed
on your system or on a particular logical partition.

A discussion will follow on the IBM i architecture and how it works cohesively with DB2 for i to
deliver powerful parallelism for database access.

Next, you will learn some usage details on how to turn SMP on and off, and how to manage the
degree of parallelism that is used by a particular job.

Feedback is important to understanding how well your jobs are monitoring SMP performance,
via Visual Explain and other tools. This will be reviewed.

This course will conclude by reviewing several tips and considerations related to the use of
database parallelism in the IBM i environment.

It is strongly recommended that database administrators, engineers, analysts, and developers
who are new to DB2 for i or using SQL on IBM i, attend the DB2 for i SQL Performance
workshop. This class provides in-depth information on the way to architect and implement a
high-performing and scalable DB2 for i solution. You can find more information about this
workshop: ibm.com/systems/i/db2/db2performance.html

DB2 Symmetric Multiprocessing for IBM i

Database parallelism,

while inherently part of DB2 for i,

is enabled by installing the optional IBM i feature
"DB2 Symmetric Multiprocessing"

DB2 SMP must be installed

The DB2 SMP feature is an option of IBM i (a.k.a., i5/0S). This feature—when purchased,
installed, and activated—enables DB2 for i to perform database operations in parallel. The
database parallelism is based on technology that is inherent both within the operating system
and within the database management system. This is one of the advantages of a database
management system that is integrated within the operating system.

Symmetric Multiprocessing

System i Navigator, Configuration and Service, Software, Installed Products

D System § Navigator U—- @ﬁ|
Fle Edt View Hep
e x5 @me 164 minutes o
Environment: My Connections | Ctedbv7rl: Installed Products
+ (W2 Management Central (Tpbxes) || Product Option Resease Description ~ |
= I My Connections [@sr70ss1 0014 VIRIMO GDDM
« I 172.27.420 [Fsr70ss1 0018 VIRIMO Meda and Storage Extensions
= 0 Ctedbvrl Extended NLS Support
« W Basic Operations jectConnect
« B9 Work Management
= [B* Configuration and Service ‘ﬁ@
£l System Values ed Server Support

Qshel
VIRIMO Domain Name System

VIR1MO Portable App Solutions Environment
VIR1MO Digtal Certficate Manager

VIR1MO CCA Cryptographic Service Provider
VIRIMO PSF for IBM i 1-55 IPM Printer Support
VTRIMO IPSF fir TRM | 1-1000 TPM Printer Sunnort

¢4 Hstory Log

-
>

[ventory @ Instal softvare fxes
3] Compare and update software xes B Help for relited tasks

o Zosrlls

Verify DB2 SMP via System i Navigator

To verify the presence of SMP on an IBM i system or one of its logical partitions, display a list of
installed software by using System i Navigator. Drill down the navigation bar as follows:
Configuration and Service —> Software —> Installed Products. DB2 Symmetric Multiprocessing is

option 26 of IBM i (see red circles in the graphic).

Symmetric Multiprocessing
GO LICPGM, option 10 Display installed licensed programs

Display Installed Licensed Programs

Licensed Product
Program Option Description

Verify DB2 SMP via OS Command Line

To verify the DB2 SMP option from a command line, type GO LICPGM, then select option 10 to
“Display installed licensed programs”. Page down through the IBM i options looking for number
26.

IBM i Architecture

g iy " Multiple CPUs
M - " |
L7 |
> g | N-way
: . 4
SMP
e A Single
Single Level 64 bit
Storage POWER System
Processing

Storage Management

3 3 B Ed B3 B3 KO
EEESIIS

Table
_——— SoEmeesr Sommee SOEmerT Emes Emmesy e

IBM i Architecture

The architecture and technology of the POWER system running IBM i provides the foundation

for database parallelism. Starting at the bottom of the diagram...

» The independent 1/0O subsystem, along with IBM i storage management, allows for
synchronous and asynchronous database I/O requests. These requests can make use of
parallel operations to access data on multiple disk units simultaneously via the 1/0
processors (IOPs) and/or I/O adapters (IOAs), without using the CPU.

« DB2 for i uses storage management to spread the database objects across all the available
disk units. For example, as a table is populated, the space is automatically allocated on the
disk units for optimal performance. This spreading of data minimizes contention on any
single disk unit, and it also provides the basis for parallel 1/O.

* As the disk units are accessed, the data is brought into memory. The design of the POWER
hardware supports a very large memory system. As a true 64-bit system, IBM i and DB2 for i
can take full advantage of all the available memory. This provides the advantage of using
main memory like cache for database objects, or an in-memory database.

* IBM i systems have a unique way of addressing storage. It views the disk space on the server
and the server's main memory as one large storage area. This way of addressing storage is
known as single-level storage. The concept of single-level storage means that the
knowledge of the underlying characteristics of hardware devices (in this case, main memory
storage, solid state disk storage and spinning disk storage) resides in the System Licensed
Internal Code (SLIC). All the storage is automatically managed by the system. No user
intervention is needed to take full advantage of any storage technology. Programs work with
objects; and objects are accessed by name, not by address.

* POWER™ systems support multiple 64-bit CPUs or cores (currently up to 256). IBM i can take
advantage of multiple CPUs or cores by automatically dispatching work to one or more
CPUs or cores.

As the query request is processed, the integrated database takes advantage of the advanced
system and operating system technologies to exploit symmetric multiprocessing, and thus
achieve database parallelism.

N-way processing

Processors
- Thread J
Job A —_— /
D : &
3
sors — D * T3 Thread |
p ° @\
Job c/ T/QP 8 Q\ *Thread H
Job E

Job F

v n Processors can work on several jobs or threads at one time without any special programming
v" Memory is shared across all processors

v Database is shared across all jobs and all processors

v' No one job is running on more than one processor

n-way Processing

Within IBM i, a unit of work is defined as a job, thread, or task. Built into the operating system is
the ability to dispatch this work to any one of the available CPUs or cores. This concept has the
advantage of allowing more requests to be processed, as more CPUs are made available. Any
individual job, thread, or task can only run on a single CPU or core. If additional CPUs are
available, they provide little or no help. For example, if one job is executing on a server or LPAR
with eight cores available, this job will only take advantage of one of the CPUs while the other
seven sit idle. To utilize the other cores, additional techniques and strategies must be applied.
This is where DB2 SMP comes into play.

10

Symmetric Multiprocessing

Job A Processors
Task or thread Aa

Task or thread Ab "__O 2 C)
Task or thread Ac ——

2
Task or thread Ad TO ¢ CD
Task or thread Ae -
Task or thread Af J_@ ° CD

Task or thread Ag TI:':D 8 C)

Task or thread Ah

<

The system automatically divides the query work into multiple tasks or threads
Multiple processors can work on one job’s tasks or threads
Process the individual SMP tasks or threads simultaneously (N-way)

S

v" SMP does not necessarily require multiple processors

<

DB parallelism does not require table space partitioning

How SMP Works

The DB2 Symmetric Multiprocessing feature provides the optimizer and database engine with
additional methods and strategies for retrieving data and processing data in parallel. SMP
enables database parallelism on a single server or LPAR where multiple processors (CPU and
I/O) that share memory and disk resources work simultaneously toward achieving a single end
result. This parallel processing means that the database engine can have more than one (or all)
the processors working on a single query simultaneously. The performance of a CPU-bound
guery can be significantly improved with this feature on multi-core systems by distributing the
work load across more than one processor.

While using SMP does not require the presence of more than one CPU or core, database
parallelism is most effective when there is more than one physical processor available to run the
tasks or threads.

Given that SMP is achieved through the use of the POWER server and the IBM i advanced
architecture, table partitioning is not required for database parallelism.

11

Symmetric Multiprocessing

* Classic Query Engine (CQE) uses DB Level 3 tasks
— Large number of tasks needed to drive parallel I/0 and data processing
— Normally 1 task per disk unit (up to 255 per request or 1024 per system)

« SQL Query Engine (SQE) uses threads
— Small number of threads needed to drive parallel |/0O and data processing
— Normally 1 or 2 threads per CPU

CQE versus SQE

Database parallelism is achieved through the use of system licensed internal code (SLIC) tasks
or OS threads. The Classic Query Engine (CQE) database engine uses SLIC tasks as a means
of achieving parallelism. The SQL Query Engine (SQE) query engine uses OS threads.
Generally speaking, CQE limits the number of tasks (for a given request) to the number of disk
units that contain the data. In contrast, SQE limits the number threads (for a given request) to
the number of physical CPUs or cores available to it.

The row selection and column processing is performed in the respective task or thread. The

parent job schedules the work and communicates the requests to the tasks or threads. It also
manages and merges the results into the buffer that is returned to the application.

12

Symmetric Multiprocessing

Features and functions that take advantage of SMP...

* Requests processed by the DB2 Optimizer
— SQL, OPNQRYF, QUERY, QUERY Manager

— High-Level-Language native 1/0O is not SMP enabled
= RPG, COBOL, C, C++, Java programs must use SQL to take advantage of SMP

* Index Creation
— CREATE INDEX
— CREATE ENCODED VECTOR INDEX
— CRTLF
— CHGLF
— Recreation of index (keyed access path) at restore or recovery

* |ndex Maintenance
— Blocked INSERTs and writes

Copy from import file (CPYFRMIMPF)
» Reorganize physical file member (RGZPFM)

Functions Parallel-enabled by SMP

By installing and enabling the DB2 SMP feature, the query optimizer is able to consider parallel
methods and strategies. However, these parallel methods and strategies are only available for
certain database features and functions. Generally speaking, any query request that is
processed by the DB2 optimizer is eligible—regardless of programming interface. A static or
dynamic SQL request from within a high-level language program is eligible to use SMP. In
contrast, native, record level access from within high-level language programs is not enabled for
SMP. For example, RPG READ or CHAIN operations are not parallel enabled. This is one
reason why using SQL DML to access data is advantageous.

Another important use of SMP is to speed up the creation and maintenance of DB2 indexes
(sometimes referred to as “keyed access paths”). Creating indexes with SMP allows the
database engine to use all of the available resources to speed up the creation process. This
may be an important strategy when an application is unavailable until an index for one of the
files accessed by that application is available.

With multiple indexes or keyed logical files over a table or physical file, index maintenance

13

occurs whenever rows are added, changed, or deleted. Normally, each index is maintained
synchronously—that is, one at a time. With SMP enabled, blocked INSERT or WRITE
operations can benefit from the fact that the database engine maintains each index in parallel.
This is accomplished by using one database task to maintain each index — again trading the use
of additional resources for a decrease in time. This has the benefit of reducing the overall index
maintenance time and the overall INSERT time.

It should be noted, the IBM OmniFind Text Search Server for DB2 for i (5733-OMF)
indexes are not affected by DB2 SMP. In other words, the text indexes are not created
in parallel nor maintained in parallel via the SMP feature.

Within IBM i, DB2 has the ability to import fixed format or stream (CSV) data into a table. This
function is known as copy from import file, and is invoked using the command CPYFRMIMPF.
This feature is parallel-enabled via SMP. Note that only when copying data from a fixed format
file is SMP available. Copying data from a stream file is not done in parallel via the SMP feature.
CPYTOIMPF is also not parallel enabled.

Within IBM i, DB2 has the ability to physically reorganize the rows within a table. This function is
known as reorganize physical file member, and is invoked using the System i Navigator (right
click on a table) or the OS command RGZPFM. This feature is parallel-enabled via SMP.

14

Symmetric Multiprocessing

SELECTING

— Index scan or probe \

— Table scan or probe via bitmap or RRN list Wi
— Table scan o

S
JOINING <
— Index scan or probe Ao R .

— Hash /
GROUPING

— Index scan or probe

— Hash
* ORDERING -Creating temporary indexes for joining, grouping or
ordering is SMP enabled
- *INSERT, UPDATE, DELETE are not SMP enabled
SQL Requests and SMP

While INSERT, UPDATE and DELETE operations cannot execute in parallel, most query
methods are parallel enabled via DB2 SMP, This means that if the query is using a table scan,
that particular operation can use parallelism and benefit from SMP. In other words, the table is
scanned and the rows tested in parallel.

Some operations, such as ordering the data via a sort, are not performed in parallel and do not
benefit from SMP.

If a temporary index is created during the query request, the operation can benefit from SMP.
As database operations are analyzed and tuned for performance, it is important to remember

which statements, strategies and methods are parallel-enabled and potentially benefit from
SMP.

15

Parallel Processing

« Allows a user to specify that queries should be able to use either 1/0 or CPU
parallel processing as determined by the optimizer

+ Parallel processing is set on a per-job basis:
— The parameter DEGREE on the CHGQRYA CL command
The parmeter PARALLEL_DEGREE in the QAQQINI file
The system value QQRYDEGREE
The SQL statement SET CURRENT DEGREE
Each job will default to the system value (*NONE is the default)

I

|

« |/O parallelism utilizes shared memory and disk resources by pre-fetching or
pre-loading the data, in parallel, into memory

+ CPU parallelism utilizes one (or all) of the system processors in conjunction with
the shared memory and disk resources in order to reduce the overall elapsed
time of a query

— CPU parallelism is only available when DB2 Symmetric Multiprocessing is installed
— CPU parallelism does not necessarily require multiple processors

Parallel Database Processing

As already mentioned early, the use of database parallelism requires the SMP feature to be
installed on the system (or LPAR). However, SMP must also be enabled for the job processing
the request.

The default setting for DB2 is to allow no database parallelism. The parallel processing degree
can be set via the system value QQRYDEGREE, a query option file (QAQQINI), the DEGREE
parameter on the change query attributes (CHGQRYA) command, or the SQL statement SET
CURRENT DEGREE. In fact, the CHGQRYA command or SET statement can be issued
multiple times within a job to toggle parallelism on and off.

There are two forms of database parallelism: I/O parallelism and CPU parallelism. I/O
parallelism allows for the accessing of data in parallel, but the processing of that data does not
occur in parallel. CPU parallelism allows for both the accessing of data and the processing of
that data in parallel. For example, a table scan can use parallel I/O to access and bring the rows
into memory, but only process rows with one task. With the SMP feature installed and enabled,
CPU parallelism can be used to both access the data in parallel and to process the rows in

16

parallel, using multiple tasks or threads.
Setting the parallel degree allows the query optimizer to consider the use of SMP. The optimizer

determines whether or not the query will benefit from parallel methods, and builds the
appropriate strategy for using database parallelism within the query plan.

17

Degree Parameter Values: *NONE and *I1O

* *NONE
— No parallel processing is allowed for database query processing
— Default setting

« *10
— Any number of tasks may be used when the database query optimizer chooses to
use /O parallel processing for queries
— CPU parallel processing is not allowed

YT SSiy Pl SAne

— SQE always considers |10 parallelism

Degree Parameter Values

*NONE - This is the default value system wide. It stipulates that DB2 for i and the query
optimizer cannot use any parallel methods, neither CPU nor I/O parallelism. Although, SQE can
and will perform parallel I/O regardless of this setting.

*|O — This value indicates that the CQE optimizer can use parallel I/O methods only. This setting

does not require the SMP feature since the ability to use parallel /O is intrinsically part of IBM i.
SQE considers 1/O parallelism with or without this setting.

18

Degree Parameter Values: *OPTIMIZE and *MAX

* *OPTIMIZE

— The query optimizer can choose to use any number of tasks or threads for either
I/0 or CPU parallel processing to process the query

— Use of parallel processing and the number of tasks or threads used will be
determined with respect to the number of processors available in the system, this
job's share of the amount of active memory available in the pool which the job is
run, and whether the expected elapsed time for the query is limited by CPU
processing or I/O resources

— Optional n% allows decrease or increase in degree

= *OPTIMIZE 50%

* "MAX
— The query optimizer can choose to use either I/O or CPU parallel processing to
process the query

— The choices made by the query optimizer will be similar to those made for
parameter value *OPTIMIZE except the optimizer will assume that all active
memory in the pool can be used to process the query

— Optional n% allows decrease or increase in degree

= *MAX 50%

Degree Parameter Values

*OPTIMIZE — This value specifies that the optimizer can use both parallel I/O and parallel CPU
methods. (The use of parallel CPU methods requires the SMP feature.) The optimizer will build
a plan to use a good share of the computing resources, but not all of the resources. Think of this
as a “good neighbor policy.”

*MAX — This value states that the optimizer can use both parallel I/O and parallel CPU methods.
(The use of parallel CPU methods requires the SMP feature.) The optimizer will build a plan to
use all or a good share of the computing resources. Think of this as a “bad neighbor policy.” Or
better yet, a way to allow a much larger share of resources to be used for a given DB job or
request.

Once the query optimizer has determined the parallel degree, the amount can be dialed
up or down based on a percentage. Specifying *OPTIMIZE 50% tells DB2 to reduce the
parallel degree determined at optimization time by 50% - a degree of 8 becomes a
degree of 4. Specifying *OPTIMIZE 150% tells DB2 ro increase the parallel degree
determined at optimization time by 150% - a degree of 8 becomes a degree of 12. This

19

way the optimizer is still responsible for determining the initial parallel degree value, but
the database engineer can adjust the value based on environmental considerations or
criteria unknown to the optimizer.

20

Degree Parameter Values: *SYSVAL and *NBRTASKS

« *SYSVAL

— Specifies that the processing option used should be set to the current value of the
system value, QQRYDEGREE

— Used with CHGQRYA command to “reset” the degree value
« *NBRTASKS nn

— Specifies the number of tasks or threads to be used when the query optimizer

rhnneace tn1iea CODI | narallal nrnrpoccina t
CNO0SES 10 USE Uiy paranti protessing t

— 1/O parallelism will also be allowed

— Not available via the system value

— Used to manually control the degree value

— The value is used whether or not parallelism provides a faster elapsed time
— Primarily for research and testing

— Use with care and caution

(o}

Degree Parameter Values

*SYSVAL — This value is used on the CHGQRYA command to “reset” the job’s query degree to
the system value without knowing what the system value actually is.

*NBRTASKS nn — This value indicates that the optimizer can use both parallel /O and parallel
CPU methods The use of parallel CPU methods requires the SMP feature.) The optimizer will
build a plan to use the number of task or threads requested. This value is used for
experimentation and testing, and is not necessarily designed for use in a production
environment given that it forces. (the optimizer to use parallelism. AVOID THIS VALUE OR USE
WITH EXTREME CAUTION.

21

Background Database Server Jobs

+ QDBSRVxx jobs handle asynchronous requests such as
rebuilding or refreshing indexes after restore or alter operations
— 2 jobs per CPU +1
— Jobs are started at IPL

+ QDBSRVxx jobs get assigned their parallel degree prior to
handling each request

» To change the degree, issue a CHGQRYA DEGREE(...) using
the QDBSRVxx job's name

» Given multiple QDBSRVxx jobs running simultaneously, you
may have to lower or restrict the amount of parallelism for these
jobs

— Example: ALTER TABLE and multiple indexes are recreated

Background Database Server Jobs

Some database requests are executed within the IBM i background database server jobs, and
are recognized on the job list by the name “QDBSRVxx.” These jobs pick up the parallel degree
value from the system value QQRYDEGREE prior to handling a request. To change the degree
value to something other than the system value, use the CHGQRYA command and specify the
particular QDBSRVxx job whose degree value you wish to alter.

22

/

lcon indicates

Feedback - CQE

iz wisual Explain - Terapheb(Teraplxb) | A =10] x|
File View Actions Options Help
BP B0 [fems ¥
= Aftribute Value
Number of Primary Key Columns 0 |
List of Key Columns for Advised .. ORDERKEY, LINENUN
Type of Index Created Binary Radix
Number of Unique Index Values Mot Available
ACS Table Name "HEX
ACS Table Library N
Columns for table selection, key...

L% 1 I 7~

SR K
Final Select

.M

I;SFaITeTFTra-F etch
Parallel Pre-Load
Parallel Degree Requested

System Name

Job Name

Job User

Job Number

Unique Query Count

Subselect Number of the Query

TERAPLXB
QZDASOQINIT
QUSER
065960

104

1

ww LINENUM
-
/ ISP parallel information

areas of 4 | _.r!i‘ilurmalhncmmnlnmm_ ' L’ﬂ
pa ra"ellsm lsnlecl'fmm stari 0g.item_fact where ¥=1000 and i ber <> 0 opimize for all rows
E Statement mﬂ Optimizer messages |

Visual Explain Feedback - CQE

To assist with verifying the use of parallel methods, query plan information is provided. One of
the primary feedback mechanisms is Visual Explain, which is part of IBM i Access for Windows -

System i Navigator - Database. Visual Explain renders the query plan as a picture or graph.

CQE depicts parallel database methods using specific icons within the query graph (shown on
the left in this screen capture), and as textual feedback to the right of the query graph when the
respective icon is selected.

23

Feedback - SQE

Double arrows
indicate areas of

parallelism \

..........

Visual Explain Feedback - SQE

SQE depicts database parallelism by using double arrows — regardless of the parallel degree

used. In these areas of the plan, parallel strategies and methods are used to decrease the run

time of the query. The parallel capabilities of SQE are extensive and not just limited to a

particular method.

24

Feedback

SQL Performance
Monitorand

Plan Cache
Snapshot data

rontaine
AT ILCAT I

information on
parallelism

% Analysis Overview for Wed Aug 22 2007 mw - Tpboe1 (Tpbae1)

File Actons Help

Suenmary Dats |

B-u G207 X919 PM t BI20T T4940PM

-3 Overnew
31 M misth work was requested?

~] WWhat opBons wikre peovided b the optimaer?

3 WRDHHTRNLEEONS G4 he COBFRCTer §50T
® Awprage Runbme 0469355
® Runtime 6540328
® Fullindémid Croated L]
® Sparse indees Crested
® index From index Craated
® index Creates Advised ' v
® Advised Stsatce]
® Average MOTS Used 0
® Avorage indemes Used 2
® Temporasy Tables []
® Sorts L]
® Bamap Creates 1
® Bimap Merges]
® Skp Sequental Stans 1
& Table Scans °
& Nested Loop Jown L]
® Hash Join 1
® Index Group By]
® Hash Oroup By 1
® index Order By]
SeroTer Sy -

® Average Parssel Degres Used 1.28
® Manmumn Parallel Degree 2
& Paraliehsm Restriited 10
® Paratiel Table Scan 0
o

1

L]

i ® Panaliel index Scan

® Pasaliol Hash Join

-~ & Paraliel Hash Geoup By
® Paraliel Bamap Create 1 v
® Pasaliel Bemap Merge L]
® Pacallel Index Create 0
& Paraliel Prefetch 10
& Pacaliel Prefoad 1

AN AN N N

. !

JE=50

cose | new |7

i Wed Aug 22 2007 mwc - Parallel Hash Join - Statements - Tplxe1(Tplxe1)

File Actions Help

i | Parallzl Prefetch

Parallel Preload | Parallel Degree Used | Parallel Degree Requested

Parallelism Restricted

Yes
4

No

=]

2

2

Textual Feedback

Another mechanism for providing optimizer information and query plan feedback is the SQL
Performance Monitor (aka the detailed Database Monitor). The Monitor captures and provides
data that indicates the use of parallel methods and strategies within a query. This data can be
displayed using either handwritten queries or the reports provided by the DB2 Performance
Center within System i Navigator. Right click on an SQL Performance Monitor or SQL Plan
Cache Snapshot and choose Analyze.

25

Work Management Feedback - WRKSYSACT

o1 Session C - [24 x 80] M=
Fle Edt Tromfer Appoarance Commurscation Asgit Window Help

Work with System l'htlvltu TERAPLXD
' /30/01 14:94:¢

Number Thread

13/003

Connected o remobe server/host dadt using port 23

Work Management Feedback - WRKSYSACT

When a database request — query, index creation, etc. — uses SMP, multiple tasks or threads
will be utilized. Those tasks or threads can be seen using the work system activity command
(WRKSYSACT). This command is part of the Performance Tools license program product.

There is no way to tie the SLIC tasks back to a given job. The SMP threads are associated with

a given job. The SLIC tasks that support database parallelism are represented with the name
“DBL3...".

Even though the tasks or threads do much of the parallel I/O and CPU processing of a query,
the accounting of the I1/0O and CPU resources used is transferred to the job. After the work
completes the summarized I/O and CPU resources used by the tasks, threads and job will be
accurately displayed by the command work with active jobs - WRKACTJOB. During the
execution of the query, the job’s I/O and CPU resources may not include the work being
performed by the tasks or threads. In other words, the tasks or threads will not have reported
back any metrics to the parent job while the work is being performed.

26

Symmetric Multiprocessing

* Trade resources for time

* N-way = ability to use multiple CPUs concurrently

To make use of SMP, :
resources must be: v . \
Available and Balanced E CPU& S|:u!!|b||8||y|||8||t|e|!|m|l
)y 9
[—

— More resources used to decrease overall time spent running the request
* SMP = multiple tasks or threads used to perform the work

» Multiple tasks or threads = more resources used to perform the work

Available and Balanced Resources

To take advantage of SMP, the computing resources must be available and balanced. In other
words, the system or LPAR configuration must have a good balance of CPU, memory, and disk
components. Otherwise, the optimizer will not be able to make the best use of SMP. For
example, a robust set of CPU resources must be supported with a robust set of 1/O resources;
else the processors will be waiting for I/O requests to be fulfilled. On the other hand, if the CPU

resources are limited, then the amount of parallelism will also be limited.

Enabling SMP for a given job will allow that job to use multiple tasks or threads to perform the
work. Those multiple tasks or threads will consume more resources with the goal of faster
response times. Multiple CPUs or cores will allow the tasks or threads to execute in parallel. In

other words, more work will be accomplished in the same unit of time.

27

Symmetric Multiprocessing

Job/ Query Job/Query
without with
SMP SMP

1x 5x
Running 10 jobs Running 10 jobs
results in results in
10 * 1x 10 * 5x
or or
10 units of demand 50 units of demand

Allotting Adequate Resources

Assume a given job demands one unit of resources without SMP. Running 10 of those jobs
simultaneously would place 10 units of demand on the system resources.

Now assume a given job demands five units of resources with SMP. Running 10 of those jobs
simultaneously would place 50 units of demand on the system resources.

In other words, enabling the optimizer to choose parallel methods and strategies for the job will
also allow that job to consume more resources. Running multiple jobs with SMP may cause
even more resources to be consumed. If the resources are not available, the computing
resources will be overcommitted and the throughput will be reduced.

For this reason, when considering the use of SMP, ensure there will be enough resources
available to handle the increased demand.

28

Symmetric Multiprocessing

» Work Management is the same, and different
— DB tasks or threads used to perform work on your job's behalf
— Fair share of memory considered
— Automatic preload, prefetch, prebring

Optimization affects use of resources

Avalilable resources affects optimization

|

Work Management and SMP

With SMP-enabled workloads, IBM i Work Management processes are the same, and yet
different. Work Management is the same given that the tasks and threads use the parent job’s
run priority and memory pool. Work Management is different given that the tasks and threads
are working on behalf of the parent job.

To prevent the database engine from consuming all the computing resources for parallelism, the
SMP degree also controls the optimizer. During query optimization, the job’s fair share of
memory is calculated. This fair share helps to determine how aggressive the query plan will be,
including the amount of parallelism. All of the parallel degree values except *MAX, cause the
optimizer to use a fair share of the job’s memory pool. The value *MAX allows the optimizer to
consider using all of the job’s memory pool, which results in a more aggressive query plan and
possibly more use of SMP.

The Max-active value for the memory pool can be viewed and changed via the WRKSYSSTS
command or System i Navigator (Work Management —> Memory Pools).

29

SMP Considerations

Parallel access methods may not be used for queries that require
any of the following:

« Sensitive cursoror ALWCPYDTA(*NO)

* UDF or UDTF with parallel *NO specified

+ Use of the *ALL or *RS commitment control level, or repeatable read
isolation level

» Restoration of the cursor position on rollback
+ Scrollable cursor

Parallel methods can be used on any intermediate temporary
result regardless of the interface used to define the query

Note: SQL does not guarantee order of results, use the ORDER
BY clause to ensure a specific order.

SMP Considerations: Conditions that restrict parallelism

There are some application environments in which SMP cannot be employed because parallel
database techniques are not allowed, do not help, or are not available. When considering or
evaluating the use of SMP, it is important to understand the application environment and
attributes.

SMP may be used for some parts of the query plan and not for others. If the query plan uses
temporary, intermediate results; these results may be processed with parallel methods. An
example of this is the creation of a temporary index to support the query. To speed up the
processing, the temporary index can be created in parallel, but accessed without parallelism.

It is important to remember that SQL does not guarantee the query results will be returned in
any particular order. As a matter of fact, the same query executed multiple times may return the
results in a different order each time. One reason for this phenomenon is the use of SMP. When
running in parallel, the rows can be processed and returned in any order by the multiple tasks or
threads. To ensure a consistent ordering of the query results, specify the SQL ORDER BY
clause.

30

SMP Considerations

* When and where to consider using database parallelism and SMP?

* Application environments that can use and benefit from parallelism
— SQL requests that use methods that are parallel enabled

Longer running or complex SQL queries

Longer running requests like index creation

Few or no concurrent users running in the same memory pool

Willing to dedicate most or all the resources to the specific SQL request(s)

|

« Computing resources
— > 1 (physical) CPU / core
— 16GB memory per CPU / core, possibly more
Properly sized and configured I/O subsystem to support the requests
60% or less average CPU utilization during the time interval of the request

|

SMP Considerations: Application environments, computing
resources

When considering the use and benefits of SMP, remember that some query requests may
benefit from SMP and others may not. Similarly, some environments can support parallel
database techniques while others may not. For example, if a query request is accessing a very
small set of rows via an index, then that particular query will not benefit from SMP. On the other
hand, if a query request is accessing a majority of the rows via a table scan, then that particular
guery might benefit from SMP by allowing the optimizer to use SMP to run the table scan in
parallel.

If the query request is expected to access and process many rows, then allowing the request to
run in parallel can increase the response time of the query. This increase in response time is not
magical or free—it is the result of using more resources to do work in parallel.

31

The additional resources must be available during query optimization and query execution. The
optimizer uses the static resources that are in place at the time of query optimization. These
resources are: the number and type of CPUs or cores as well as their relative power, memory
pool size, and number of disk units that contain the database objects being accessed. If the
resources are not balanced or not sufficient to support SMP, then the optimizer will not use
parallel methods and strategies.

When a parallel query plan is executed, this plan will adhere to the rules of work management.
The parallel tasks or threads running on behalf of the job will compete for resources just like any
other job. If there are not sufficient resources available to support the increase in workload, then
the resources will become saturated and the overall throughput may decrease. If no other jobs
are competing for resources, then the parallel query plan will be free to use all the available
resources and gain the benefits of SMP — namely increased throughput and response time.

The best practice to understand the benefits of using SMP is to study the particular workload
and environment, or run a benchmark / proof of concept. Short of that, some general guidelines
can be used to assess whether or not SMP may be beneficial. A candidate SMP environment
should have more than one physical (dedicated) CPU or at least 2 cores, 16 gigabytes of
memory per CPU or core (POWERG6 and above), and a properly sized and configured I/O
subsystem. The CPU utilization should be below 60% for the interval of time when SMP will be
considered. For example, assuming an SQL query workload, a nightly batch environment has
four cores available and the average (total) CPU utilization is 25% during the nightly processing.
To make use of the remaining CPU resources, SMP can be enabled to allow parallel database
processing. On the other hand, the daily transaction environment has an average (total) CPU
utilization of 85% during the daily processing. During this time interval, the extra computing
resources are not available and using SMP will not increase the throughput.

32

SMP Considerations

« When and where to consider using database parallelism and SMP?

- Start with *OPTIMIZE and adjust the MAX ACTIVE number of the
job's memory pool

For single running jobs try *OPTIMIZE first, then try *MAX

. . .
P T T H

0. . - -~ T I T T P
AUl Jubs i rmernoury puuis wil

The optimization goal "ALL I/O" tends to allow SMP, while "FIRST
I/O" does not

b KCAL M
I vALw

3

Use n% to adjust degree for maximum throughput and resource use

SMP Considerations: First time tips

When using or experimenting with SMP for the first time, start with the parallel degree set to
*OPTIMIZE and analyze the query plan and run time. Set the MAX ACTIVE value for the
memory pool to a number that represents the true number of concurrent, active jobs or threads.
This will allow the optimizer to determine a realistic fair share of the memory pool for the jobs.

For jobs that are running alone in a memory pool, start by using *OPTIMIZE, and then move to
*MAX. *MAX will allow the optimizer to consider using all the memory in the pool, but will also let
the database engine use more CPU resources.

Setting the memory pool’s paging option to *CALC will allow the database engine to be more

intuitive and more aggressive with 1/0O requests. The value of *CALC allows more parallel,
asynchronous 1/O.

33

Based on the application’s behavior and SQL interface, the optimizer can use an optimization
goal of First 1/0 or All I/O. The First I/0O optimization goal tends to avoid parallel methods and
strategies given that these plans are built to deliver the first n rows of the result set as fast as
possible, and a faster query startup time is required. The All I/O optimization goal tends to allow
parallel methods and strategies, given that (1) these plans are built to deliver the entire result
set as fast as possible, and (2) a slower query startup time is acceptable. Using parallel
methods and strategies may require some additional initialization time during query startup in
favor of a faster overall query run time.

34

SMP Considerations

Reminders:
v'SMP is an optional, priced feature of IBM i
v'SMP is included with the DB2 Value Pack for i (5722-DVP)

v'You must have SMP installed and enabled to get the benefits

Conclusion

To receive the benefits of parallel database processing, the DB2 Symmetric Multiprocessing
feature must be installed and enabled. This feature is included in the DB2 Value Pack for i
(5722-DVP) or can be ordered separately.

Db2 Symmetric Multiprocessing provides high performance database processing and in and
excellent way in which to take advantage of all the available resources within the POWER
system running IBM i. This feature relies on the integrated technologies found in IBM i and DB2
for i, and is an example of the outstanding value provided by one of the best business systems
available today.

35

Links

More information regarding DB2 for i and the data-centric technologies within IBM i can be
found at the following Web sites:

DB2 for i home page:

ibm.com/systems/i/software/db2/

IBM DeveloperWorks article: Access your DB2 for iSeries Indexes in Parallel, by Kent
Milligan

ibm.com/developerworks/db2/library/techarticle/0301milligan/0301milligan.html

White paper: IBM DB2 for i indexing methods and strategies, by Mike Cain and Kent
Millgan

ibm.com/partnerworld/wps/servlet/ContentHandler/stg_ast_sys wp_db2_i_indexing_metho
ds_strategies

For additional assistance with getting the most out of DB2 for i, send an e-mail to
Mike Cain at: mcain@us.ibm.com

36

Trademarks and Special Notices

© Copyright IBM Corporation 2011. All rights Reserved.

References in this document to IBM products or services do not imply that IBM intends to make
them available in every country.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both. If these and other
IBM trademarked terms are marked on their first occurrence in this information with a trademark
symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by
IBM at the time this information was published. Such trademarks may also be registered or
common law trademarks in other countries. A current list of IBM trademarks is available on the
Web at "Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Oracle and/or its affiliates.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

SET and the SET Logo are trademarks owned by SET Secure Electronic Transaction LLC.
Other company, product, or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

37

