Security Bulletin
Summary
Multiple vulnerabilities were addressed in IBM API Connect version 10.0.8.2-ifix2
Vulnerability Details
CVEID: CVE-2019-12900
DESCRIPTION: BZ2_decompress in decompress.c in bzip2 through 1.0.6 has an out-of-bounds write when there are many selectors.
CWE: CWE-787: Out-of-bounds Write
CVSS Source: IBM X-Force
CVSS Base score: 4
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L)
CVEID: CVE-2022-48650
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix memory leak in __qlt_24xx_handle_abts()
Commit 8f394da36a36 ("scsi: qla2xxx: Drop TARGET_SCF_LOOKUP_LUN_FROM_TAG")
made the __qlt_24xx_handle_abts() function return early if
tcm_qla2xxx_find_cmd_by_tag() didn't find a command, but it missed to clean
up the allocated memory for the management command.
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: CVE.org
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2022-49180
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
LSM: general protection fault in legacy_parse_param
The usual LSM hook "bail on fail" scheme doesn't work for cases where
a security module may return an error code indicating that it does not
recognize an input. In this particular case Smack sees a mount option
that it recognizes, and returns 0. A call to a BPF hook follows, which
returns -ENOPARAM, which confuses the caller because Smack has processed
its data.
The SELinux hook incorrectly returns 1 on success. There was a time
when this was correct, however the current expectation is that it
return 0 on success. This is repaired.
CVSS Source: kernel.org
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2022-49376
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
scsi: sd: Fix potential NULL pointer dereference
If sd_probe() sees an early error before sdkp->device is initialized,
sd_zbc_release_disk() is called. This causes a NULL pointer dereference
when sd_is_zoned() is called inside that function. Avoid this by removing
the call to sd_zbc_release_disk() in sd_probe() error path.
This change is safe and does not result in zone information memory leakage
because the zone information for a zoned disk is allocated only when
sd_revalidate_disk() is called, at which point sdkp->disk_dev is fully set,
resulting in sd_disk_release() being called when needed to cleanup a disk
zone information using sd_zbc_release_disk().
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-46129
DESCRIPTION: NATS.io is a high performance open source pub-sub distributed communication technology, built for the cloud, on-premise, IoT, and edge computing. The cryptographic key handling library, nkeys, recently gained support for encryption, not just for signing/authentication. This is used in nats-server 2.10 (Sep 2023) and newer for authentication callouts. In nkeys versions 0.4.0 through 0.4.5, corresponding with NATS server versions 2.10.0 through 2.10.3, the nkeys library's `xkeys` encryption handling logic mistakenly passed an array by value into an internal function, where the function mutated that buffer to populate the encryption key to use. As a result, all encryption was actually to an all-zeros key. This affects encryption only, not signing.
FIXME: FILL IN IMPACT ON NATS-SERVER AUTH CALLOUT SECURITY. nkeys Go library 0.4.6, corresponding with NATS Server 2.10.4, has a patch for this issue. No known workarounds are available. For any application handling auth callouts in Go, if using the nkeys library, update the dependency, recompile and deploy that in lockstep.
CWE: CWE-321: Use of Hard-coded Cryptographic Key
CVSS Source: IBM X-Force
CVSS Base score: 7.5
CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N)
CVEID: CVE-2023-47090
DESCRIPTION: NATS nats-server before 2.9.23 and 2.10.x before 2.10.2 has an authentication bypass. An implicit $G user in an authorization block can sometimes be used for unauthenticated access, even when the intention of the configuration was for each user to have an account. The earliest affected version is 2.2.0.
CWE: CWE-863: Incorrect Authorization
CVSS Source: IBM X-Force
CVSS Base score: 6.5
CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:N)
CVEID: CVE-2023-4752
DESCRIPTION: Use After Free in GitHub repository vim/vim prior to 9.0.1858.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H)
CVEID: CVE-2023-48795
DESCRIPTION: The SSH transport protocol with certain OpenSSH extensions, found in OpenSSH before 9.6 and other products, allows remote attackers to bypass integrity checks such that some packets are omitted (from the extension negotiation message), and a client and server may consequently end up with a connection for which some security features have been downgraded or disabled, aka a Terrapin attack. This occurs because the SSH Binary Packet Protocol (BPP), implemented by these extensions, mishandles the handshake phase and mishandles use of sequence numbers. For example, there is an effective attack against SSH's use of ChaCha20-Poly1305 (and CBC with Encrypt-then-MAC). The bypass occurs in chacha20-poly1305@openssh.com and (if CBC is used) the -etm@openssh.com MAC algorithms. This also affects Maverick Synergy Java SSH API before 3.1.0-SNAPSHOT, Dropbear through 2022.83, Ssh before 5.1.1 in Erlang/OTP, PuTTY before 0.80, AsyncSSH before 2.14.2, golang.org/x/crypto before 0.17.0, libssh before 0.10.6, libssh2 through 1.11.0, Thorn Tech SFTP Gateway before 3.4.6, Tera Term before 5.1, Paramiko before 3.4.0, jsch before 0.2.15, SFTPGo before 2.5.6, Netgate pfSense Plus through 23.09.1, Netgate pfSense CE through 2.7.2, HPN-SSH through 18.2.0, ProFTPD before 1.3.8b (and before 1.3.9rc2), ORYX CycloneSSH before 2.3.4, NetSarang XShell 7 before Build 0144, CrushFTP before 10.6.0, ConnectBot SSH library before 2.2.22, Apache MINA sshd through 2.11.0, sshj through 0.37.0, TinySSH through 20230101, trilead-ssh2 6401, LANCOM LCOS and LANconfig, FileZilla before 3.66.4, Nova before 11.8, PKIX-SSH before 14.4, SecureCRT before 9.4.3, Transmit5 before 5.10.4, Win32-OpenSSH before 9.5.0.0p1-Beta, WinSCP before 6.2.2, Bitvise SSH Server before 9.32, Bitvise SSH Client before 9.33, KiTTY through 0.76.1.13, the net-ssh gem 7.2.0 for Ruby, the mscdex ssh2 module before 1.15.0 for Node.js, the thrussh library before 0.35.1 for Rust, and the Russh crate before 0.40.2 for Rust.
CWE: CWE-354: Improper Validation of Integrity Check Value
CVSS Source: NVD
CVSS Base score: 5.9
CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:H/A:N)
CVEID: CVE-2023-52587
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
IB/ipoib: Fix mcast list locking
Releasing the `priv->lock` while iterating the `priv->multicast_list` in
`ipoib_mcast_join_task()` opens a window for `ipoib_mcast_dev_flush()` to
remove the items while in the middle of iteration. If the mcast is removed
while the lock was dropped, the for loop spins forever resulting in a hard
lockup (as was reported on RHEL 4.18.0-372.75.1.el8_6 kernel):
Task A (kworker/u72:2 below) | Task B (kworker/u72:0 below)
-----------------------------------+-----------------------------------
ipoib_mcast_join_task(work) | ipoib_ib_dev_flush_light(work)
spin_lock_irq(&priv->lock) | __ipoib_ib_dev_flush(priv, ...)
list_for_each_entry(mcast, | ipoib_mcast_dev_flush(dev = priv->dev)
&priv->multicast_list, list) |
ipoib_mcast_join(dev, mcast) |
spin_unlock_irq(&priv->lock) |
| spin_lock_irqsave(&priv->lock, flags)
| list_for_each_entry_safe(mcast, tmcast,
| &priv->multicast_list, list)
| list_del(&mcast->list);
| list_add_tail(&mcast->list, &remove_list)
| spin_unlock_irqrestore(&priv->lock, flags)
spin_lock_irq(&priv->lock) |
| ipoib_mcast_remove_list(&remove_list)
(Here, `mcast` is no longer on the | list_for_each_entry_safe(mcast, tmcast,
`priv->multicast_list` and we keep | remove_list, list)
spinning on the `remove_list` of | >>> wait_for_completion(&mcast->done)
the other thread which is blocked |
and the list is still valid on |
it's stack.)
Fix this by keeping the lock held and changing to GFP_ATOMIC to prevent
eventual sleeps.
Unfortunately we could not reproduce the lockup and confirm this fix but
based on the code review I think this fix should address such lockups.
crash> bc 31
PID: 747 TASK: ff1c6a1a007e8000 CPU: 31 COMMAND: "kworker/u72:2"
--
[exception RIP: ipoib_mcast_join_task+0x1b1]
RIP: ffffffffc0944ac1 RSP: ff646f199a8c7e00 RFLAGS: 00000002
RAX: 0000000000000000 RBX: ff1c6a1a04dc82f8 RCX: 0000000000000000
work (&priv->mcast_task{,.work})
RDX: ff1c6a192d60ac68 RSI: 0000000000000286 RDI: ff1c6a1a04dc8000
&mcast->list
RBP: ff646f199a8c7e90 R8: ff1c699980019420 R9: ff1c6a1920c9a000
R10: ff646f199a8c7e00 R11: ff1c6a191a7d9800 R12: ff1c6a192d60ac00
mcast
R13: ff1c6a1d82200000 R14: ff1c6a1a04dc8000 R15: ff1c6a1a04dc82d8
dev priv (&priv->lock) &priv->multicast_list (aka head)
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
--- ---
#5 [ff646f199a8c7e00] ipoib_mcast_join_task+0x1b1 at ffffffffc0944ac1 [ib_ipoib]
#6 [ff646f199a8c7e98] process_one_work+0x1a7 at ffffffff9bf10967
crash> rx ff646f199a8c7e68
ff646f199a8c7e68: ff1c6a1a04dc82f8 <<< work = &priv->mcast_task.work
crash> list -hO ipoib_dev_priv.multicast_list ff1c6a1a04dc8000
(empty)
crash> ipoib_dev_priv.mcast_task.work.func,mcast_mutex.owner.counter ff1c6a1a04dc8000
mcast_task.work.func = 0xffffffffc0944910 ,
mcast_mutex.owner.counter = 0xff1c69998efec000
crash> b 8
PID: 8 TASK: ff1c69998efec000 CPU: 33 COMMAND: "kworker/u72:0"
--
#3 [ff646f1980153d50] wait_for_completion+0x96 at ffffffff9c7d7646
#4 [ff646f1980153d90] ipoib_mcast_remove_list+0x56 at ffffffffc0944dc6 [ib_ipoib]
#5 [ff646f1980153de8] ipoib_mcast_dev_flush+0x1a7 at ffffffffc09455a7 [ib_ipoib]
#6 [ff646f1980153e58] __ipoib_ib_dev_flush+0x1a4 at ffffffffc09431a4 [ib_ipoib]
#7 [ff
---truncated---
CWE: CWE-667: Improper Locking
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52597
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
KVM: s390: fix setting of fpc register
kvm_arch_vcpu_ioctl_set_fpu() allows to set the floating point control
(fpc) register of a guest cpu. The new value is tested for validity by
temporarily loading it into the fpc register.
This may lead to corruption of the fpc register of the host process:
if an interrupt happens while the value is temporarily loaded into the fpc
register, and within interrupt context floating point or vector registers
are used, the current fp/vx registers are saved with save_fpu_regs()
assuming they belong to user space and will be loaded into fp/vx registers
when returning to user space.
test_fp_ctl() restores the original user space / host process fpc register
value, however it will be discarded, when returning to user space.
In result the host process will incorrectly continue to run with the value
that was supposed to be used for a guest cpu.
Fix this by simply removing the test. There is another test right before
the SIE context is entered which will handles invalid values.
This results in a change of behaviour: invalid values will now be accepted
instead of that the ioctl fails with -EINVAL. This seems to be acceptable,
given that this interface is most likely not used anymore, and this is in
addition the same behaviour implemented with the memory mapped interface
(replace invalid values with zero) - see sync_regs() in kvm-s390.c.
CVSS Source: IBM X-Force
CVSS Base score: 4
CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:L)
CVEID: CVE-2023-52599
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
jfs: fix array-index-out-of-bounds in diNewExt
[Syz report]
UBSAN: array-index-out-of-bounds in fs/jfs/jfs_imap.c:2360:2
index -878706688 is out of range for type 'struct iagctl[128]'
CPU: 1 PID: 5065 Comm: syz-executor282 Not tainted 6.7.0-rc4-syzkaller-00009-gbee0e7762ad2 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/10/2023
Call Trace:
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106
ubsan_epilogue lib/ubsan.c:217 [inline]
__ubsan_handle_out_of_bounds+0x11c/0x150 lib/ubsan.c:348
diNewExt+0x3cf3/0x4000 fs/jfs/jfs_imap.c:2360
diAllocExt fs/jfs/jfs_imap.c:1949 [inline]
diAllocAG+0xbe8/0x1e50 fs/jfs/jfs_imap.c:1666
diAlloc+0x1d3/0x1760 fs/jfs/jfs_imap.c:1587
ialloc+0x8f/0x900 fs/jfs/jfs_inode.c:56
jfs_mkdir+0x1c5/0xb90 fs/jfs/namei.c:225
vfs_mkdir+0x2f1/0x4b0 fs/namei.c:4106
do_mkdirat+0x264/0x3a0 fs/namei.c:4129
__do_sys_mkdir fs/namei.c:4149 [inline]
__se_sys_mkdir fs/namei.c:4147 [inline]
__x64_sys_mkdir+0x6e/0x80 fs/namei.c:4147
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x45/0x110 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x63/0x6b
RIP: 0033:0x7fcb7e6a0b57
Code: ff ff 77 07 31 c0 c3 0f 1f 40 00 48 c7 c2 b8 ff ff ff f7 d8 64 89 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 b8 53 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffd83023038 EFLAGS: 00000286 ORIG_RAX: 0000000000000053
RAX: ffffffffffffffda RBX: 00000000ffffffff RCX: 00007fcb7e6a0b57
RDX: 00000000000a1020 RSI: 00000000000001ff RDI: 0000000020000140
RBP: 0000000020000140 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000286 R12: 00007ffd830230d0
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
[Analysis]
When the agstart is too large, it can cause agno overflow.
[Fix]
After obtaining agno, if the value is invalid, exit the subsequent process.
Modified the test from agno > MAXAG to agno >= MAXAG based on linux-next
report by kernel test robot (Dan Carpenter).
CWE: CWE-129: Improper Validation of Array Index
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52600
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
jfs: fix uaf in jfs_evict_inode
When the execution of diMount(ipimap) fails, the object ipimap that has been
released may be accessed in diFreeSpecial(). Asynchronous ipimap release occurs
when rcu_core() calls jfs_free_node().
Therefore, when diMount(ipimap) fails, sbi->ipimap should not be initialized as
ipimap.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52607
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
powerpc/mm: Fix null-pointer dereference in pgtable_cache_add
kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure. Ensure the allocation was successful
by checking the pointer validity.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52608
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_scmi: Check mailbox/SMT channel for consistency
On reception of a completion interrupt the shared memory area is accessed
to retrieve the message header at first and then, if the message sequence
number identifies a transaction which is still pending, the related
payload is fetched too.
When an SCMI command times out the channel ownership remains with the
platform until eventually a late reply is received and, as a consequence,
any further transmission attempt remains pending, waiting for the channel
to be relinquished by the platform.
Once that late reply is received the channel ownership is given back
to the agent and any pending request is then allowed to proceed and
overwrite the SMT area of the just delivered late reply; then the wait
for the reply to the new request starts.
It has been observed that the spurious IRQ related to the late reply can
be wrongly associated with the freshly enqueued request: when that happens
the SCMI stack in-flight lookup procedure is fooled by the fact that the
message header now present in the SMT area is related to the new pending
transaction, even though the real reply has still to arrive.
This race-condition on the A2P channel can be detected by looking at the
channel status bits: a genuine reply from the platform will have set the
channel free bit before triggering the completion IRQ.
Add a consistency check to validate such condition in the A2P ISR.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: NVD
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52609
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
binder: fix race between mmput() and do_exit()
Task A calls binder_update_page_range() to allocate and insert pages on
a remote address space from Task B. For this, Task A pins the remote mm
via mmget_not_zero() first. This can race with Task B do_exit() and the
final mmput() refcount decrement will come from Task A.
Task A | Task B
------------------+------------------
mmget_not_zero() |
| do_exit()
| exit_mm()
| mmput()
mmput() |
exit_mmap() |
remove_vma() |
fput() |
In this case, the work of ____fput() from Task B is queued up in Task A
as TWA_RESUME. So in theory, Task A returns to userspace and the cleanup
work gets executed. However, Task A instead sleep, waiting for a reply
from Task B that never comes (it's dead).
This means the binder_deferred_release() is blocked until an unrelated
binder event forces Task A to go back to userspace. All the associated
death notifications will also be delayed until then.
In order to fix this use mmput_async() that will schedule the work in
the corresponding mm->async_put_work WQ instead of Task A.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: NVD
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52612
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
crypto: scomp - fix req->dst buffer overflow
The req->dst buffer size should be checked before copying from the
scomp_scratch->dst to avoid req->dst buffer overflow problem.
CWE: CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2023-52617
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
PCI: switchtec: Fix stdev_release() crash after surprise hot remove
A PCI device hot removal may occur while stdev->cdev is held open. The call
to stdev_release() then happens during close or exit, at a point way past
switchtec_pci_remove(). Otherwise the last ref would vanish with the
trailing put_device(), just before return.
At that later point in time, the devm cleanup has already removed the
stdev->mmio_mrpc mapping. Also, the stdev->pdev reference was not a counted
one. Therefore, in DMA mode, the iowrite32() in stdev_release() will cause
a fatal page fault, and the subsequent dma_free_coherent(), if reached,
would pass a stale &stdev->pdev->dev pointer.
Fix by moving MRPC DMA shutdown into switchtec_pci_remove(), after
stdev_kill(). Counting the stdev->pdev ref is now optional, but may prevent
future accidents.
Reproducible via the script at
https://lore.kernel.org/r/20231113212150.96410-1-dns@arista.com
CWE: CWE-459: Incomplete Cleanup
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52631
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix an NULL dereference bug
The issue here is when this is called from ntfs_load_attr_list(). The
"size" comes from le32_to_cpu(attr->res.data_size) so it can't overflow
on a 64bit systems but on 32bit systems the "+ 1023" can overflow and
the result is zero. This means that the kmalloc will succeed by
returning the ZERO_SIZE_PTR and then the memcpy() will crash with an
Oops on the next line.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52638
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
can: j1939: prevent deadlock by changing j1939_socks_lock to rwlock
The following 3 locks would race against each other, causing the
deadlock situation in the Syzbot bug report:
- j1939_socks_lock
- active_session_list_lock
- sk_session_queue_lock
A reasonable fix is to change j1939_socks_lock to an rwlock, since in
the rare situations where a write lock is required for the linked list
that j1939_socks_lock is protecting, the code does not attempt to
acquire any more locks. This would break the circular lock dependency,
where, for example, the current thread already locks j1939_socks_lock
and attempts to acquire sk_session_queue_lock, and at the same time,
another thread attempts to acquire j1939_socks_lock while holding
sk_session_queue_lock.
NOTE: This patch along does not fix the unregister_netdevice bug
reported by Syzbot; instead, it solves a deadlock situation to prepare
for one or more further patches to actually fix the Syzbot bug, which
appears to be a reference counting problem within the j1939 codebase.
[mkl: remove unrelated newline change]
CWE: CWE-667: Improper Locking
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52639
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
KVM: s390: vsie: fix race during shadow creation
Right now it is possible to see gmap->private being zero in
kvm_s390_vsie_gmap_notifier resulting in a crash. This is due to the
fact that we add gmap->private == kvm after creation:
static int acquire_gmap_shadow(struct kvm_vcpu *vcpu,
struct vsie_page *vsie_page)
{
[...]
gmap = gmap_shadow(vcpu->arch.gmap, asce, edat);
if (IS_ERR(gmap))
return PTR_ERR(gmap);
gmap->private = vcpu->kvm;
Let children inherit the private field of the parent.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: NVD
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52645
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
pmdomain: mediatek: fix race conditions with genpd
If the power domains are registered first with genpd and *after that*
the driver attempts to power them on in the probe sequence, then it is
possible that a race condition occurs if genpd tries to power them on
in the same time.
The same is valid for powering them off before unregistering them
from genpd.
Attempt to fix race conditions by first removing the domains from genpd
and *after that* powering down domains.
Also first power up the domains and *after that* register them
to genpd.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52670
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
rpmsg: virtio: Free driver_override when rpmsg_remove()
Free driver_override when rpmsg_remove(), otherwise
the following memory leak will occur:
unreferenced object 0xffff0000d55d7080 (size 128):
comm "kworker/u8:2", pid 56, jiffies 4294893188 (age 214.272s)
hex dump (first 32 bytes):
72 70 6d 73 67 5f 6e 73 00 00 00 00 00 00 00 00 rpmsg_ns........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<000000009c94c9c1>] __kmem_cache_alloc_node+0x1f8/0x320
[<000000002300d89b>] __kmalloc_node_track_caller+0x44/0x70
[<00000000228a60c3>] kstrndup+0x4c/0x90
[<0000000077158695>] driver_set_override+0xd0/0x164
[<000000003e9c4ea5>] rpmsg_register_device_override+0x98/0x170
[<000000001c0c89a8>] rpmsg_ns_register_device+0x24/0x30
[<000000008bbf8fa2>] rpmsg_probe+0x2e0/0x3ec
[<00000000e65a68df>] virtio_dev_probe+0x1c0/0x280
[<00000000443331cc>] really_probe+0xbc/0x2dc
[<00000000391064b1>] __driver_probe_device+0x78/0xe0
[<00000000a41c9a5b>] driver_probe_device+0xd8/0x160
[<000000009c3bd5df>] __device_attach_driver+0xb8/0x140
[<0000000043cd7614>] bus_for_each_drv+0x7c/0xd4
[<000000003b929a36>] __device_attach+0x9c/0x19c
[<00000000a94e0ba8>] device_initial_probe+0x14/0x20
[<000000003c999637>] bus_probe_device+0xa0/0xac
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: CVE.org
CVSS Base score: 6.6
CVSS Vector: (CVSS:3.1/AV:P/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H)
CVEID: CVE-2023-52759
DESCRIPTION: Rejected reason: This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.
CWE: CWE-99: Improper Control of Resource Identifiers ('Resource Injection')
CVSS Source: Red Hat
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N)
CVEID: CVE-2023-52774
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
s390/dasd: protect device queue against concurrent access
In dasd_profile_start() the amount of requests on the device queue are
counted. The access to the device queue is unprotected against
concurrent access. With a lot of parallel I/O, especially with alias
devices enabled, the device queue can change while dasd_profile_start()
is accessing the queue. In the worst case this leads to a kernel panic
due to incorrect pointer accesses.
Fix this by taking the device lock before accessing the queue and
counting the requests. Additionally the check for a valid profile data
pointer can be done earlier to avoid unnecessary locking in a hot path.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52844
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
media: vidtv: psi: Add check for kstrdup
Add check for the return value of kstrdup() and return the error
if it fails in order to avoid NULL pointer dereference.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: CVE.org
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52858
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
clk: mediatek: clk-mt7629: Add check for mtk_alloc_clk_data
Add the check for the return value of mtk_alloc_clk_data() in order to
avoid NULL pointer dereference.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: CVE.org
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-53021
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net/sched: sch_taprio: fix possible use-after-free
syzbot reported a nasty crash [1] in net_tx_action() which
made little sense until we got a repro.
This repro installs a taprio qdisc, but providing an
invalid TCA_RATE attribute.
qdisc_create() has to destroy the just initialized
taprio qdisc, and taprio_destroy() is called.
However, the hrtimer used by taprio had already fired,
therefore advance_sched() called __netif_schedule().
Then net_tx_action was trying to use a destroyed qdisc.
We can not undo the __netif_schedule(), so we must wait
until one cpu serviced the qdisc before we can proceed.
Many thanks to Alexander Potapenko for his help.
[1]
BUG: KMSAN: uninit-value in queued_spin_trylock include/asm-generic/qspinlock.h:94 [inline]
BUG: KMSAN: uninit-value in do_raw_spin_trylock include/linux/spinlock.h:191 [inline]
BUG: KMSAN: uninit-value in __raw_spin_trylock include/linux/spinlock_api_smp.h:89 [inline]
BUG: KMSAN: uninit-value in _raw_spin_trylock+0x92/0xa0 kernel/locking/spinlock.c:138
queued_spin_trylock include/asm-generic/qspinlock.h:94 [inline]
do_raw_spin_trylock include/linux/spinlock.h:191 [inline]
__raw_spin_trylock include/linux/spinlock_api_smp.h:89 [inline]
_raw_spin_trylock+0x92/0xa0 kernel/locking/spinlock.c:138
spin_trylock include/linux/spinlock.h:359 [inline]
qdisc_run_begin include/net/sch_generic.h:187 [inline]
qdisc_run+0xee/0x540 include/net/pkt_sched.h:125
net_tx_action+0x77c/0x9a0 net/core/dev.c:5086
__do_softirq+0x1cc/0x7fb kernel/softirq.c:571
run_ksoftirqd+0x2c/0x50 kernel/softirq.c:934
smpboot_thread_fn+0x554/0x9f0 kernel/smpboot.c:164
kthread+0x31b/0x430 kernel/kthread.c:376
ret_from_fork+0x1f/0x30
Uninit was created at:
slab_post_alloc_hook mm/slab.h:732 [inline]
slab_alloc_node mm/slub.c:3258 [inline]
__kmalloc_node_track_caller+0x814/0x1250 mm/slub.c:4970
kmalloc_reserve net/core/skbuff.c:358 [inline]
__alloc_skb+0x346/0xcf0 net/core/skbuff.c:430
alloc_skb include/linux/skbuff.h:1257 [inline]
nlmsg_new include/net/netlink.h:953 [inline]
netlink_ack+0x5f3/0x12b0 net/netlink/af_netlink.c:2436
netlink_rcv_skb+0x55d/0x6c0 net/netlink/af_netlink.c:2507
rtnetlink_rcv+0x30/0x40 net/core/rtnetlink.c:6108
netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline]
netlink_unicast+0xf3b/0x1270 net/netlink/af_netlink.c:1345
netlink_sendmsg+0x1288/0x1440 net/netlink/af_netlink.c:1921
sock_sendmsg_nosec net/socket.c:714 [inline]
sock_sendmsg net/socket.c:734 [inline]
____sys_sendmsg+0xabc/0xe90 net/socket.c:2482
___sys_sendmsg+0x2a1/0x3f0 net/socket.c:2536
__sys_sendmsg net/socket.c:2565 [inline]
__do_sys_sendmsg net/socket.c:2574 [inline]
__se_sys_sendmsg net/socket.c:2572 [inline]
__x64_sys_sendmsg+0x367/0x540 net/socket.c:2572
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
CPU: 0 PID: 13 Comm: ksoftirqd/0 Not tainted 6.0.0-rc2-syzkaller-47461-gac3859c02d7f #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/22/2022
CWE: CWE-416: Use After Free
CVSS Source: CISA ADP
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2023-53025
DESCRIPTION: Rejected reason: This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.
CWE: CWE-416: Use After Free
CVSS Source: CISA ADP
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-11168
DESCRIPTION: The urllib.parse.urlsplit() and urlparse() functions improperly validated bracketed hosts (`[]`), allowing hosts that weren't IPv6 or IPvFuture. This behavior was not conformant to RFC 3986 and potentially enabled SSRF if a URL is processed by more than one URL parser.
CWE: CWE-918: Server-Side Request Forgery (SSRF)
CVSS Source: CISA ADP
CVSS Base score: 3.7
CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N)
CVEID: CVE-2024-11187
DESCRIPTION: It is possible to construct a zone such that some queries to it will generate responses containing numerous records in the Additional section. An attacker sending many such queries can cause either the authoritative server itself or an independent resolver to use disproportionate resources processing the queries. Zones will usually need to have been deliberately crafted to attack this exposure.
This issue affects BIND 9 versions 9.11.0 through 9.11.37, 9.16.0 through 9.16.50, 9.18.0 through 9.18.32, 9.20.0 through 9.20.4, 9.21.0 through 9.21.3, 9.11.3-S1 through 9.11.37-S1, 9.16.8-S1 through 9.16.50-S1, and 9.18.11-S1 through 9.18.32-S1.
CWE: CWE-405: Asymmetric Resource Consumption (Amplification)
CVSS Source: security-officer@isc.org
CVSS Base score: 7.5
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-12085
DESCRIPTION: A flaw was found in rsync which could be triggered when rsync compares file checksums. This flaw allows an attacker to manipulate the checksum length (s2length) to cause a comparison between a checksum and uninitialized memory and leak one byte of uninitialized stack data at a time.
CWE: CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer
CVSS Source: secalert@redhat.com
CVSS Base score: 7.5
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N)
CVEID: CVE-2024-12797
DESCRIPTION: Issue summary: Clients using RFC7250 Raw Public Keys (RPKs) to authenticate a
server may fail to notice that the server was not authenticated, because
handshakes don't abort as expected when the SSL_VERIFY_PEER verification mode
is set.
Impact summary: TLS and DTLS connections using raw public keys may be
vulnerable to man-in-middle attacks when server authentication failure is not
detected by clients.
RPKs are disabled by default in both TLS clients and TLS servers. The issue
only arises when TLS clients explicitly enable RPK use by the server, and the
server, likewise, enables sending of an RPK instead of an X.509 certificate
chain. The affected clients are those that then rely on the handshake to
fail when the server's RPK fails to match one of the expected public keys,
by setting the verification mode to SSL_VERIFY_PEER.
Clients that enable server-side raw public keys can still find out that raw
public key verification failed by calling SSL_get_verify_result(), and those
that do, and take appropriate action, are not affected. This issue was
introduced in the initial implementation of RPK support in OpenSSL 3.2.
The FIPS modules in 3.4, 3.3, 3.2, 3.1 and 3.0 are not affected by this issue.
CWE: CWE-392: Missing Report of Error Condition
CVSS Source: CISA ADP
CVSS Base score: 6.3
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:L/A:L)
CVEID: CVE-2024-26668
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_limit: reject configurations that cause integer overflow
Reject bogus configs where internal token counter wraps around.
This only occurs with very very large requests, such as 17gbyte/s.
Its better to reject this rather than having incorrect ratelimit.
CWE: CWE-190: Integer Overflow or Wraparound
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26696
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix hang in nilfs_lookup_dirty_data_buffers()
Syzbot reported a hang issue in migrate_pages_batch() called by mbind()
and nilfs_lookup_dirty_data_buffers() called in the log writer of nilfs2.
While migrate_pages_batch() locks a folio and waits for the writeback to
complete, the log writer thread that should bring the writeback to
completion picks up the folio being written back in
nilfs_lookup_dirty_data_buffers() that it calls for subsequent log
creation and was trying to lock the folio. Thus causing a deadlock.
In the first place, it is unexpected that folios/pages in the middle of
writeback will be updated and become dirty. Nilfs2 adds a checksum to
verify the validity of the log being written and uses it for recovery at
mount, so data changes during writeback are suppressed. Since this is
broken, an unclean shutdown could potentially cause recovery to fail.
Investigation revealed that the root cause is that the wait for writeback
completion in nilfs_page_mkwrite() is conditional, and if the backing
device does not require stable writes, data may be modified without
waiting.
Fix these issues by making nilfs_page_mkwrite() wait for writeback to
finish regardless of the stable write requirement of the backing device.
CWE: CWE-667: Improper Locking
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26697
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix data corruption in dsync block recovery for small block sizes
The helper function nilfs_recovery_copy_block() of
nilfs_recovery_dsync_blocks(), which recovers data from logs created by
data sync writes during a mount after an unclean shutdown, incorrectly
calculates the on-page offset when copying repair data to the file's page
cache. In environments where the block size is smaller than the page
size, this flaw can cause data corruption and leak uninitialized memory
bytes during the recovery process.
Fix these issues by correcting this byte offset calculation on the page.
CWE: CWE-787: Out-of-bounds Write
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26702
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
iio: magnetometer: rm3100: add boundary check for the value read from RM3100_REG_TMRC
Recently, we encounter kernel crash in function rm3100_common_probe
caused by out of bound access of array rm3100_samp_rates (because of
underlying hardware failures). Add boundary check to prevent out of
bound access.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 6
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2024-26707
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net: hsr: remove WARN_ONCE() in send_hsr_supervision_frame()
Syzkaller reported [1] hitting a warning after failing to allocate
resources for skb in hsr_init_skb(). Since a WARN_ONCE() call will
not help much in this case, it might be prudent to switch to
netdev_warn_once(). At the very least it will suppress syzkaller
reports such as [1].
Just in case, use netdev_warn_once() in send_prp_supervision_frame()
for similar reasons.
[1]
HSR: Could not send supervision frame
WARNING: CPU: 1 PID: 85 at net/hsr/hsr_device.c:294 send_hsr_supervision_frame+0x60a/0x810 net/hsr/hsr_device.c:294
RIP: 0010:send_hsr_supervision_frame+0x60a/0x810 net/hsr/hsr_device.c:294
...
Call Trace:
hsr_announce+0x114/0x370 net/hsr/hsr_device.c:382
call_timer_fn+0x193/0x590 kernel/time/timer.c:1700
expire_timers kernel/time/timer.c:1751 [inline]
__run_timers+0x764/0xb20 kernel/time/timer.c:2022
run_timer_softirq+0x58/0xd0 kernel/time/timer.c:2035
__do_softirq+0x21a/0x8de kernel/softirq.c:553
invoke_softirq kernel/softirq.c:427 [inline]
__irq_exit_rcu kernel/softirq.c:632 [inline]
irq_exit_rcu+0xb7/0x120 kernel/softirq.c:644
sysvec_apic_timer_interrupt+0x95/0xb0 arch/x86/kernel/apic/apic.c:1076
asm_sysvec_apic_timer_interrupt+0x1a/0x20 arch/x86/include/asm/idtentry.h:649
...
This issue is also found in older kernels (at least up to 5.10).
CWE: CWE-770: Allocation of Resources Without Limits or Throttling
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26737
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix racing between bpf_timer_cancel_and_free and bpf_timer_cancel
The following race is possible between bpf_timer_cancel_and_free
and bpf_timer_cancel. It will lead a UAF on the timer->timer.
bpf_timer_cancel();
spin_lock();
t = timer->time;
spin_unlock();
bpf_timer_cancel_and_free();
spin_lock();
t = timer->timer;
timer->timer = NULL;
spin_unlock();
hrtimer_cancel(&t->timer);
kfree(t);
/* UAF on t */
hrtimer_cancel(&t->timer);
In bpf_timer_cancel_and_free, this patch frees the timer->timer
after a rcu grace period. This requires a rcu_head addition
to the "struct bpf_hrtimer". Another kfree(t) happens in bpf_timer_init,
this does not need a kfree_rcu because it is still under the
spin_lock and timer->timer has not been visible by others yet.
In bpf_timer_cancel, rcu_read_lock() is added because this helper
can be used in a non rcu critical section context (e.g. from
a sleepable bpf prog). Other timer->timer usages in helpers.c
have been audited, bpf_timer_cancel() is the only place where
timer->timer is used outside of the spin_lock.
Another solution considered is to mark a t->flag in bpf_timer_cancel
and clear it after hrtimer_cancel() is done. In bpf_timer_cancel_and_free,
it busy waits for the flag to be cleared before kfree(t). This patch
goes with a straight forward solution and frees timer->timer after
a rcu grace period.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26825
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
nfc: nci: free rx_data_reassembly skb on NCI device cleanup
rx_data_reassembly skb is stored during NCI data exchange for processing
fragmented packets. It is dropped only when the last fragment is processed
or when an NTF packet with NCI_OP_RF_DEACTIVATE_NTF opcode is received.
However, the NCI device may be deallocated before that which leads to skb
leak.
As by design the rx_data_reassembly skb is bound to the NCI device and
nothing prevents the device to be freed before the skb is processed in
some way and cleaned, free it on the NCI device cleanup.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
CWE: CWE-459: Incomplete Cleanup
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26982
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
Squashfs: check the inode number is not the invalid value of zero
Syskiller has produced an out of bounds access in fill_meta_index().
That out of bounds access is ultimately caused because the inode
has an inode number with the invalid value of zero, which was not checked.
The reason this causes the out of bounds access is due to following
sequence of events:
1. Fill_meta_index() is called to allocate (via empty_meta_index())
and fill a metadata index. It however suffers a data read error
and aborts, invalidating the newly returned empty metadata index.
It does this by setting the inode number of the index to zero,
which means unused (zero is not a valid inode number).
2. When fill_meta_index() is subsequently called again on another
read operation, locate_meta_index() returns the previous index
because it matches the inode number of 0. Because this index
has been returned it is expected to have been filled, and because
it hasn't been, an out of bounds access is performed.
This patch adds a sanity check which checks that the inode number
is not zero when the inode is created and returns -EINVAL if it is.
[phillip@squashfs.org.uk: whitespace fix]
CWE: CWE-125: Out-of-bounds Read
CVSS Source: NVD
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2024-27028
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
spi: spi-mt65xx: Fix NULL pointer access in interrupt handler
The TX buffer in spi_transfer can be a NULL pointer, so the interrupt
handler may end up writing to the invalid memory and cause crashes.
Add a check to trans->tx_buf before using it.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-27052
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
wifi: rtl8xxxu: add cancel_work_sync() for c2hcmd_work
The workqueue might still be running, when the driver is stopped. To
avoid a use-after-free, call cancel_work_sync() in rtl8xxxu_stop().
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-34155
DESCRIPTION: Calling any of the Parse functions on Go source code which contains deeply nested literals can cause a panic due to stack exhaustion.
CWE: CWE-1325: Improperly Controlled Sequential Memory Allocation
CVSS Source: IBM X-Force
CVSS Base score: 7.5
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35940
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
pstore/zone: Add a null pointer check to the psz_kmsg_read
kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure. Ensure the allocation was successful
by checking the pointer validity.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36477
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
tpm_tis_spi: Account for SPI header when allocating TPM SPI xfer buffer
The TPM SPI transfer mechanism uses MAX_SPI_FRAMESIZE for computing the
maximum transfer length and the size of the transfer buffer. As such, it
does not account for the 4 bytes of header that prepends the SPI data
frame. This can result in out-of-bounds accesses and was confirmed with
KASAN.
Introduce SPI_HDRSIZE to account for the header and use to allocate the
transfer buffer.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-36904
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
tcp: Use refcount_inc_not_zero() in tcp_twsk_unique().
Anderson Nascimento reported a use-after-free splat in tcp_twsk_unique()
with nice analysis.
Since commit ec94c2696f0b ("tcp/dccp: avoid one atomic operation for
timewait hashdance"), inet_twsk_hashdance() sets TIME-WAIT socket's
sk_refcnt after putting it into ehash and releasing the bucket lock.
Thus, there is a small race window where other threads could try to
reuse the port during connect() and call sock_hold() in tcp_twsk_unique()
for the TIME-WAIT socket with zero refcnt.
If that happens, the refcnt taken by tcp_twsk_unique() is overwritten
and sock_put() will cause underflow, triggering a real use-after-free
somewhere else.
To avoid the use-after-free, we need to use refcount_inc_not_zero() in
tcp_twsk_unique() and give up on reusing the port if it returns false.
[0]:
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 0 PID: 1039313 at lib/refcount.c:25 refcount_warn_saturate+0xe5/0x110
CPU: 0 PID: 1039313 Comm: trigger Not tainted 6.8.6-200.fc39.x86_64 #1
Hardware name: VMware, Inc. VMware20,1/440BX Desktop Reference Platform, BIOS VMW201.00V.21805430.B64.2305221830 05/22/2023
RIP: 0010:refcount_warn_saturate+0xe5/0x110
Code: 42 8e ff 0f 0b c3 cc cc cc cc 80 3d aa 13 ea 01 00 0f 85 5e ff ff ff 48 c7 c7 f8 8e b7 82 c6 05 96 13 ea 01 01 e8 7b 42 8e ff <0f> 0b c3 cc cc cc cc 48 c7 c7 50 8f b7 82 c6 05 7a 13 ea 01 01 e8
RSP: 0018:ffffc90006b43b60 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffff888009bb3ef0 RCX: 0000000000000027
RDX: ffff88807be218c8 RSI: 0000000000000001 RDI: ffff88807be218c0
RBP: 0000000000069d70 R08: 0000000000000000 R09: ffffc90006b439f0
R10: ffffc90006b439e8 R11: 0000000000000003 R12: ffff8880029ede84
R13: 0000000000004e20 R14: ffffffff84356dc0 R15: ffff888009bb3ef0
FS: 00007f62c10926c0(0000) GS:ffff88807be00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020ccb000 CR3: 000000004628c005 CR4: 0000000000f70ef0
PKRU: 55555554
Call Trace:
? refcount_warn_saturate+0xe5/0x110
? __warn+0x81/0x130
? refcount_warn_saturate+0xe5/0x110
? report_bug+0x171/0x1a0
? refcount_warn_saturate+0xe5/0x110
? handle_bug+0x3c/0x80
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? refcount_warn_saturate+0xe5/0x110
tcp_twsk_unique+0x186/0x190
__inet_check_established+0x176/0x2d0
__inet_hash_connect+0x74/0x7d0
? __pfx___inet_check_established+0x10/0x10
tcp_v4_connect+0x278/0x530
__inet_stream_connect+0x10f/0x3d0
inet_stream_connect+0x3a/0x60
__sys_connect+0xa8/0xd0
__x64_sys_connect+0x18/0x20
do_syscall_64+0x83/0x170
entry_SYSCALL_64_after_hwframe+0x78/0x80
RIP: 0033:0x7f62c11a885d
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d a3 45 0c 00 f7 d8 64 89 01 48
RSP: 002b:00007f62c1091e58 EFLAGS: 00000296 ORIG_RAX: 000000000000002a
RAX: ffffffffffffffda RBX: 0000000020ccb004 RCX: 00007f62c11a885d
RDX: 0000000000000010 RSI: 0000000020ccb000 RDI: 0000000000000003
RBP: 00007f62c1091e90 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000296 R12: 00007f62c10926c0
R13: ffffffffffffff88 R14: 0000000000000000 R15: 00007ffe237885b0
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-36960
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Fix invalid reads in fence signaled events
Correctly set the length of the drm_event to the size of the structure
that's actually used.
The length of the drm_event was set to the parent structure instead of
to the drm_vmw_event_fence which is supposed to be read. drm_read
uses the length parameter to copy the event to the user space thus
resuling in oob reads.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: NVD
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2024-36971
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net: fix __dst_negative_advice() race
__dst_negative_advice() does not enforce proper RCU rules when
sk->dst_cache must be cleared, leading to possible UAF.
RCU rules are that we must first clear sk->sk_dst_cache,
then call dst_release(old_dst).
Note that sk_dst_reset(sk) is implementing this protocol correctly,
while __dst_negative_advice() uses the wrong order.
Given that ip6_negative_advice() has special logic
against RTF_CACHE, this means each of the three ->negative_advice()
existing methods must perform the sk_dst_reset() themselves.
Note the check against NULL dst is centralized in
__dst_negative_advice(), there is no need to duplicate
it in various callbacks.
Many thanks to Clement Lecigne for tracking this issue.
This old bug became visible after the blamed commit, using UDP sockets.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-38538
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net: bridge: xmit: make sure we have at least eth header len bytes
syzbot triggered an uninit value[1] error in bridge device's xmit path
by sending a short (less than ETH_HLEN bytes) skb. To fix it check if
we can actually pull that amount instead of assuming.
Tested with dropwatch:
drop at: br_dev_xmit+0xb93/0x12d0 [bridge] (0xffffffffc06739b3)
origin: software
timestamp: Mon May 13 11:31:53 2024 778214037 nsec
protocol: 0x88a8
length: 2
original length: 2
drop reason: PKT_TOO_SMALL
[1]
BUG: KMSAN: uninit-value in br_dev_xmit+0x61d/0x1cb0 net/bridge/br_device.c:65
br_dev_xmit+0x61d/0x1cb0 net/bridge/br_device.c:65
__netdev_start_xmit include/linux/netdevice.h:4903 [inline]
netdev_start_xmit include/linux/netdevice.h:4917 [inline]
xmit_one net/core/dev.c:3531 [inline]
dev_hard_start_xmit+0x247/0xa20 net/core/dev.c:3547
__dev_queue_xmit+0x34db/0x5350 net/core/dev.c:4341
dev_queue_xmit include/linux/netdevice.h:3091 [inline]
__bpf_tx_skb net/core/filter.c:2136 [inline]
__bpf_redirect_common net/core/filter.c:2180 [inline]
__bpf_redirect+0x14a6/0x1620 net/core/filter.c:2187
____bpf_clone_redirect net/core/filter.c:2460 [inline]
bpf_clone_redirect+0x328/0x470 net/core/filter.c:2432
___bpf_prog_run+0x13fe/0xe0f0 kernel/bpf/core.c:1997
__bpf_prog_run512+0xb5/0xe0 kernel/bpf/core.c:2238
bpf_dispatcher_nop_func include/linux/bpf.h:1234 [inline]
__bpf_prog_run include/linux/filter.h:657 [inline]
bpf_prog_run include/linux/filter.h:664 [inline]
bpf_test_run+0x499/0xc30 net/bpf/test_run.c:425
bpf_prog_test_run_skb+0x14ea/0x1f20 net/bpf/test_run.c:1058
bpf_prog_test_run+0x6b7/0xad0 kernel/bpf/syscall.c:4269
__sys_bpf+0x6aa/0xd90 kernel/bpf/syscall.c:5678
__do_sys_bpf kernel/bpf/syscall.c:5767 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5765 [inline]
__x64_sys_bpf+0xa0/0xe0 kernel/bpf/syscall.c:5765
x64_sys_call+0x96b/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:322
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
CWE: CWE-908: Use of Uninitialized Resource
CVSS Source: Red Hat
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-38544
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix seg fault in rxe_comp_queue_pkt
In rxe_comp_queue_pkt() an incoming response packet skb is enqueued to the
resp_pkts queue and then a decision is made whether to run the completer
task inline or schedule it. Finally the skb is dereferenced to bump a 'hw'
performance counter. This is wrong because if the completer task is
already running in a separate thread it may have already processed the skb
and freed it which can cause a seg fault. This has been observed
infrequently in testing at high scale.
This patch fixes this by changing the order of enqueuing the packet until
after the counter is accessed.
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-38581
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu/mes: fix use-after-free issue
Delete fence fallback timer to fix the ramdom
use-after-free issue.
v2: move to amdgpu_mes.c
CWE: CWE-416: Use After Free
CVSS Source: Red Hat
CVSS Base score: 7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-39472
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
xfs: fix log recovery buffer allocation for the legacy h_size fixup
Commit a70f9fe52daa ("xfs: detect and handle invalid iclog size set by
mkfs") added a fixup for incorrect h_size values used for the initial
umount record in old xfsprogs versions. Later commit 0c771b99d6c9
("xfs: clean up calculation of LR header blocks") cleaned up the log
reover buffer calculation, but stoped using the fixed up h_size value
to size the log recovery buffer, which can lead to an out of bounds
access when the incorrect h_size does not come from the old mkfs
tool, but a fuzzer.
Fix this by open coding xlog_logrec_hblks and taking the fixed h_size
into account for this calculation.
CWE: CWE-770: Allocation of Resources Without Limits or Throttling
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-39479
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
drm/i915/hwmon: Get rid of devm
When both hwmon and hwmon drvdata (on which hwmon depends) are device
managed resources, the expectation, on device unbind, is that hwmon will be
released before drvdata. However, in i915 there are two separate code
paths, which both release either drvdata or hwmon and either can be
released before the other. These code paths (for device unbind) are as
follows (see also the bug referenced below):
Call Trace:
release_nodes+0x11/0x70
devres_release_group+0xb2/0x110
component_unbind_all+0x8d/0xa0
component_del+0xa5/0x140
intel_pxp_tee_component_fini+0x29/0x40 [i915]
intel_pxp_fini+0x33/0x80 [i915]
i915_driver_remove+0x4c/0x120 [i915]
i915_pci_remove+0x19/0x30 [i915]
pci_device_remove+0x32/0xa0
device_release_driver_internal+0x19c/0x200
unbind_store+0x9c/0xb0
and
Call Trace:
release_nodes+0x11/0x70
devres_release_all+0x8a/0xc0
device_unbind_cleanup+0x9/0x70
device_release_driver_internal+0x1c1/0x200
unbind_store+0x9c/0xb0
This means that in i915, if use devm, we cannot gurantee that hwmon will
always be released before drvdata. Which means that we have a uaf if hwmon
sysfs is accessed when drvdata has been released but hwmon hasn't.
The only way out of this seems to be do get rid of devm_ and release/free
everything explicitly during device unbind.
v2: Change commit message and other minor code changes
v3: Cleanup from i915_hwmon_register on error (Armin Wolf)
v4: Eliminate potential static analyzer warning (Rodrigo)
Eliminate fetch_and_zero (Jani)
v5: Restore previous logic for ddat_gt->hwmon_dev error return (Andi)
CWE: CWE-400: Uncontrolled Resource Consumption
CVSS Source: Red Hat
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-39501
DESCRIPTION: Rejected reason: This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-41015
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
ocfs2: add bounds checking to ocfs2_check_dir_entry()
This adds sanity checks for ocfs2_dir_entry to make sure all members of
ocfs2_dir_entry don't stray beyond valid memory region.
CWE: CWE-253: Incorrect Check of Function Return Value
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-41022
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix signedness bug in sdma_v4_0_process_trap_irq()
The "instance" variable needs to be signed for the error handling to work.
CWE: CWE-253: Incorrect Check of Function Return Value
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-42252
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
closures: Change BUG_ON() to WARN_ON()
If a BUG_ON() can be hit in the wild, it shouldn't be a BUG_ON()
For reference, this has popped up once in the CI, and we'll need more
info to debug it:
03240 ------------[ cut here ]------------
03240 kernel BUG at lib/closure.c:21!
03240 kernel BUG at lib/closure.c:21!
03240 Internal error: Oops - BUG: 00000000f2000800 [#1] SMP
03240 Modules linked in:
03240 CPU: 15 PID: 40534 Comm: kworker/u80:1 Not tainted 6.10.0-rc4-ktest-ga56da69799bd #25570
03240 Hardware name: linux,dummy-virt (DT)
03240 Workqueue: btree_update btree_interior_update_work
03240 pstate: 00001005 (nzcv daif -PAN -UAO -TCO -DIT +SSBS BTYPE=--)
03240 pc : closure_put+0x224/0x2a0
03240 lr : closure_put+0x24/0x2a0
03240 sp : ffff0000d12071c0
03240 x29: ffff0000d12071c0 x28: dfff800000000000 x27: ffff0000d1207360
03240 x26: 0000000000000040 x25: 0000000000000040 x24: 0000000000000040
03240 x23: ffff0000c1f20180 x22: 0000000000000000 x21: ffff0000c1f20168
03240 x20: 0000000040000000 x19: ffff0000c1f20140 x18: 0000000000000001
03240 x17: 0000000000003aa0 x16: 0000000000003ad0 x15: 1fffe0001c326974
03240 x14: 0000000000000a1e x13: 0000000000000000 x12: 1fffe000183e402d
03240 x11: ffff6000183e402d x10: dfff800000000000 x9 : ffff6000183e402e
03240 x8 : 0000000000000001 x7 : 00009fffe7c1bfd3 x6 : ffff0000c1f2016b
03240 x5 : ffff0000c1f20168 x4 : ffff6000183e402e x3 : ffff800081391954
03240 x2 : 0000000000000001 x1 : 0000000000000000 x0 : 00000000a8000000
03240 Call trace:
03240 closure_put+0x224/0x2a0
03240 bch2_check_for_deadlock+0x910/0x1028
03240 bch2_six_check_for_deadlock+0x1c/0x30
03240 six_lock_slowpath.isra.0+0x29c/0xed0
03240 six_lock_ip_waiter+0xa8/0xf8
03240 __bch2_btree_node_lock_write+0x14c/0x298
03240 bch2_trans_lock_write+0x6d4/0xb10
03240 __bch2_trans_commit+0x135c/0x5520
03240 btree_interior_update_work+0x1248/0x1c10
03240 process_scheduled_works+0x53c/0xd90
03240 worker_thread+0x370/0x8c8
03240 kthread+0x258/0x2e8
03240 ret_from_fork+0x10/0x20
03240 Code: aa1303e0 d63f0020 a94363f7 17ffff8c (d4210000)
03240 ---[ end trace 0000000000000000 ]---
03240 Kernel panic - not syncing: Oops - BUG: Fatal exception
03240 SMP: stopping secondary CPUs
03241 SMP: failed to stop secondary CPUs 13,15
03241 Kernel Offset: disabled
03241 CPU features: 0x00,00000003,80000008,4240500b
03241 Memory Limit: none
03241 ---[ end Kernel panic - not syncing: Oops - BUG: Fatal exception ]---
03246 ========= FAILED TIMEOUT copygc_torture_no_checksum in 7200s
CWE: CWE-617: Reachable Assertion
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-43839
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
bna: adjust 'name' buf size of bna_tcb and bna_ccb structures
To have enough space to write all possible sprintf() args. Currently
'name' size is 16, but the first '%s' specifier may already need at
least 16 characters, since 'bnad->netdev->name' is used there.
For '%d' specifiers, assume that they require:
* 1 char for 'tx_id + tx_info->tcb[i]->id' sum, BNAD_MAX_TXQ_PER_TX is 8
* 2 chars for 'rx_id + rx_info->rx_ctrl[i].ccb->id', BNAD_MAX_RXP_PER_RX
is 16
And replace sprintf with snprintf.
Detected using the static analysis tool - Svace.
CWE: CWE-787: Out-of-bounds Write
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-43841
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
wifi: virt_wifi: avoid reporting connection success with wrong SSID
When user issues a connection with a different SSID than the one
virt_wifi has advertised, the __cfg80211_connect_result() will
trigger the warning: WARN_ON(bss_not_found).
The issue is because the connection code in virt_wifi does not
check the SSID from user space (it only checks the BSSID), and
virt_wifi will call cfg80211_connect_result() with WLAN_STATUS_SUCCESS
even if the SSID is different from the one virt_wifi has advertised.
Eventually cfg80211 won't be able to find the cfg80211_bss and generate
the warning.
Fixed it by checking the SSID (from user space) in the connection code.
CVSS Source: IBM X-Force
CVSS Base score: 5.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:L/I:N/A:H)
CVEID: CVE-2024-43849
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
soc: qcom: pdr: protect locator_addr with the main mutex
If the service locator server is restarted fast enough, the PDR can
rewrite locator_addr fields concurrently. Protect them by placing
modification of those fields under the main pdr->lock.
CWE: CWE-667: Improper Locking
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-43855
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
md: fix deadlock between mddev_suspend and flush bio
Deadlock occurs when mddev is being suspended while some flush bio is in
progress. It is a complex issue.
T1. the first flush is at the ending stage, it clears 'mddev->flush_bio'
and tries to submit data, but is blocked because mddev is suspended
by T4.
T2. the second flush sets 'mddev->flush_bio', and attempts to queue
md_submit_flush_data(), which is already running (T1) and won't
execute again if on the same CPU as T1.
T3. the third flush inc active_io and tries to flush, but is blocked because
'mddev->flush_bio' is not NULL (set by T2).
T4. mddev_suspend() is called and waits for active_io dec to 0 which is inc
by T3.
T1 T2 T3 T4
(flush 1) (flush 2) (third 3) (suspend)
md_submit_flush_data
mddev->flush_bio = NULL;
.
. md_flush_request
. mddev->flush_bio = bio
. queue submit_flushes
. .
. . md_handle_request
. . active_io + 1
. . md_flush_request
. . wait !mddev->flush_bio
. .
. . mddev_suspend
. . wait !active_io
. .
. submit_flushes
. queue_work md_submit_flush_data
. //md_submit_flush_data is already running (T1)
.
md_handle_request
wait resume
The root issue is non-atomic inc/dec of active_io during flush process.
active_io is dec before md_submit_flush_data is queued, and inc soon
after md_submit_flush_data() run.
md_flush_request
active_io + 1
submit_flushes
active_io - 1
md_submit_flush_data
md_handle_request
active_io + 1
make_request
active_io - 1
If active_io is dec after md_handle_request() instead of within
submit_flushes(), make_request() can be called directly intead of
md_handle_request() in md_submit_flush_data(), and active_io will
only inc and dec once in the whole flush process. Deadlock will be
fixed.
Additionally, the only difference between fixing the issue and before is
that there is no return error handling of make_request(). But after
previous patch cleaned md_write_start(), make_requst() only return error
in raid5_make_request() by dm-raid, see commit 41425f96d7aa ("dm-raid456,
md/raid456: fix a deadlock for dm-raid456 while io concurrent with
reshape)". Since dm always splits data and flush operation into two
separate io, io size of flush submitted by dm always is 0, make_request()
will not be called in md_submit_flush_data(). To prevent future
modifications from introducing issues, add WARN_ON to ensure
make_request() no error is returned in this context.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-43858
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
jfs: Fix array-index-out-of-bounds in diFree
CWE: CWE-129: Improper Validation of Array Index
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-43883
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
usb: vhci-hcd: Do not drop references before new references are gained
At a few places the driver carries stale pointers
to references that can still be used. Make sure that does not happen.
This strictly speaking closes ZDI-CAN-22273, though there may be
similar races in the driver.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2024-43904
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Add null checks for 'stream' and 'plane' before dereferencing
This commit adds null checks for the 'stream' and 'plane' variables in
the dcn30_apply_idle_power_optimizations function. These variables were
previously assumed to be null at line 922, but they were used later in
the code without checking if they were null. This could potentially lead
to a null pointer dereference, which would cause a crash.
The null checks ensure that 'stream' and 'plane' are not null before
they are used, preventing potential crashes.
Fixes the below static smatch checker:
drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn30/dcn30_hwseq.c:938 dcn30_apply_idle_power_optimizations() error: we previously assumed 'stream' could be null (see line 922)
drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn30/dcn30_hwseq.c:940 dcn30_apply_idle_power_optimizations() error: we previously assumed 'plane' could be null (see line 922)
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-4533
DESCRIPTION: The KKProgressbar2 Free WordPress plugin through 1.1.4.2 does not sanitize and escape a parameter before using it in a SQL statement, allowing admin users to perform SQL injection attacks
CWE: CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
CVSS Source: CISA ADP
CVSS Base score: 6.5
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:N)
CVEID: CVE-2024-45336
DESCRIPTION: The HTTP client drops sensitive headers after following a cross-domain redirect. For example, a request to a.com/ containing an Authorization header which is redirected to b.com/ will not send that header to b.com. In the event that the client received a subsequent same-domain redirect, however, the sensitive headers would be restored. For example, a chain of redirects from a.com/, to b.com/1, and finally to b.com/2 would incorrectly send the Authorization header to b.com/2.
CVSS Source: CISA ADP
CVSS Base score: 6.1
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N)
CVEID: CVE-2024-45337
DESCRIPTION: Applications and libraries which misuse connection.serverAuthenticate (via callback field ServerConfig.PublicKeyCallback) may be susceptible to an authorization bypass. The documentation for ServerConfig.PublicKeyCallback says that "A call to this function does not guarantee that the key offered is in fact used to authenticate." Specifically, the SSH protocol allows clients to inquire about whether a public key is acceptable before proving control of the corresponding private key. PublicKeyCallback may be called with multiple keys, and the order in which the keys were provided cannot be used to infer which key the client successfully authenticated with, if any. Some applications, which store the key(s) passed to PublicKeyCallback (or derived information) and make security relevant determinations based on it once the connection is established, may make incorrect assumptions. For example, an attacker may send public keys A and B, and then authenticate with A. PublicKeyCallback would be called only twice, first with A and then with B. A vulnerable application may then make authorization decisions based on key B for which the attacker does not actually control the private key. Since this API is widely misused, as a partial mitigation golang.org/x/cry...@v0.31.0 enforces the property that, when successfully authenticating via public key, the last key passed to ServerConfig.PublicKeyCallback will be the key used to authenticate the connection. PublicKeyCallback will now be called multiple times with the same key, if necessary. Note that the client may still not control the last key passed to PublicKeyCallback if the connection is then authenticated with a different method, such as PasswordCallback, KeyboardInteractiveCallback, or NoClientAuth. Users should be using the Extensions field of the Permissions return value from the various authentication callbacks to record data associated with the authentication attempt instead of referencing external state. Once the connection is established the state corresponding to the successful authentication attempt can be retrieved via the ServerConn.Permissions field. Note that some third-party libraries misuse the Permissions type by sharing it across authentication attempts; users of third-party libraries should refer to the relevant projects for guidance.
CVSS Source: CISA
CVSS Base score: 9.1
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N)
CVEID: CVE-2024-46795
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
ksmbd: unset the binding mark of a reused connection
Steve French reported null pointer dereference error from sha256 lib.
cifs.ko can send session setup requests on reused connection.
If reused connection is used for binding session, conn->binding can
still remain true and generate_preauth_hash() will not set
sess->Preauth_HashValue and it will be NULL.
It is used as a material to create an encryption key in
ksmbd_gen_smb311_encryptionkey. ->Preauth_HashValue cause null pointer
dereference error from crypto_shash_update().
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 8 PID: 429254 Comm: kworker/8:39
Hardware name: LENOVO 20MAS08500/20MAS08500, BIOS N2CET69W (1.52 )
Workqueue: ksmbd-io handle_ksmbd_work [ksmbd]
RIP: 0010:lib_sha256_base_do_update.isra.0+0x11e/0x1d0 [sha256_ssse3]
? show_regs+0x6d/0x80
? __die+0x24/0x80
? page_fault_oops+0x99/0x1b0
? do_user_addr_fault+0x2ee/0x6b0
? exc_page_fault+0x83/0x1b0
? asm_exc_page_fault+0x27/0x30
? __pfx_sha256_transform_rorx+0x10/0x10 [sha256_ssse3]
? lib_sha256_base_do_update.isra.0+0x11e/0x1d0 [sha256_ssse3]
? __pfx_sha256_transform_rorx+0x10/0x10 [sha256_ssse3]
? __pfx_sha256_transform_rorx+0x10/0x10 [sha256_ssse3]
_sha256_update+0x77/0xa0 [sha256_ssse3]
sha256_avx2_update+0x15/0x30 [sha256_ssse3]
crypto_shash_update+0x1e/0x40
hmac_update+0x12/0x20
crypto_shash_update+0x1e/0x40
generate_key+0x234/0x380 [ksmbd]
generate_smb3encryptionkey+0x40/0x1c0 [ksmbd]
ksmbd_gen_smb311_encryptionkey+0x72/0xa0 [ksmbd]
ntlm_authenticate.isra.0+0x423/0x5d0 [ksmbd]
smb2_sess_setup+0x952/0xaa0 [ksmbd]
__process_request+0xa3/0x1d0 [ksmbd]
__handle_ksmbd_work+0x1c4/0x2f0 [ksmbd]
handle_ksmbd_work+0x2d/0xa0 [ksmbd]
process_one_work+0x16c/0x350
worker_thread+0x306/0x440
? __pfx_worker_thread+0x10/0x10
kthread+0xef/0x120
? __pfx_kthread+0x10/0x10
ret_from_fork+0x44/0x70
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-46817
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Stop amdgpu_dm initialize when stream nums greater than 6
[Why]
Coverity reports OVERRUN warning. Should abort amdgpu_dm
initialize.
[How]
Return failure to amdgpu_dm_init.
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-46829
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
rtmutex: Drop rt_mutex::wait_lock before scheduling
rt_mutex_handle_deadlock() is called with rt_mutex::wait_lock held. In the
good case it returns with the lock held and in the deadlock case it emits a
warning and goes into an endless scheduling loop with the lock held, which
triggers the 'scheduling in atomic' warning.
Unlock rt_mutex::wait_lock in the dead lock case before issuing the warning
and dropping into the schedule for ever loop.
[ tglx: Moved unlock before the WARN(), removed the pointless comment,
massaged changelog, added Fixes tag ]
CWE: CWE-667: Improper Locking
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-46840
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
btrfs: clean up our handling of refs == 0 in snapshot delete
In reada we BUG_ON(refs == 0), which could be unkind since we aren't
holding a lock on the extent leaf and thus could get a transient
incorrect answer. In walk_down_proc we also BUG_ON(refs == 0), which
could happen if we have extent tree corruption. Change that to return
-EUCLEAN. In do_walk_down() we catch this case and handle it correctly,
however we return -EIO, which -EUCLEAN is a more appropriate error code.
Finally in walk_up_proc we have the same BUG_ON(refs == 0), so convert
that to proper error handling. Also adjust the error message so we can
actually do something with the information.
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-46841
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
btrfs: don't BUG_ON on ENOMEM from btrfs_lookup_extent_info() in walk_down_proc()
We handle errors here properly, ENOMEM isn't fatal, return the error.
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-46849
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
ASoC: meson: axg-card: fix 'use-after-free'
Buffer 'card->dai_link' is reallocated in 'meson_card_reallocate_links()',
so move 'pad' pointer initialization after this function when memory is
already reallocated.
Kasan bug report:
==================================================================
BUG: KASAN: slab-use-after-free in axg_card_add_link+0x76c/0x9bc
Read of size 8 at addr ffff000000e8b260 by task modprobe/356
CPU: 0 PID: 356 Comm: modprobe Tainted: G O 6.9.12-sdkernel #1
Call trace:
dump_backtrace+0x94/0xec
show_stack+0x18/0x24
dump_stack_lvl+0x78/0x90
print_report+0xfc/0x5c0
kasan_report+0xb8/0xfc
__asan_load8+0x9c/0xb8
axg_card_add_link+0x76c/0x9bc [snd_soc_meson_axg_sound_card]
meson_card_probe+0x344/0x3b8 [snd_soc_meson_card_utils]
platform_probe+0x8c/0xf4
really_probe+0x110/0x39c
__driver_probe_device+0xb8/0x18c
driver_probe_device+0x108/0x1d8
__driver_attach+0xd0/0x25c
bus_for_each_dev+0xe0/0x154
driver_attach+0x34/0x44
bus_add_driver+0x134/0x294
driver_register+0xa8/0x1e8
__platform_driver_register+0x44/0x54
axg_card_pdrv_init+0x20/0x1000 [snd_soc_meson_axg_sound_card]
do_one_initcall+0xdc/0x25c
do_init_module+0x10c/0x334
load_module+0x24c4/0x26cc
init_module_from_file+0xd4/0x128
__arm64_sys_finit_module+0x1f4/0x41c
invoke_syscall+0x60/0x188
el0_svc_common.constprop.0+0x78/0x13c
do_el0_svc+0x30/0x40
el0_svc+0x38/0x78
el0t_64_sync_handler+0x100/0x12c
el0t_64_sync+0x190/0x194
CWE: CWE-416: Use After Free
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-46852
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
dma-buf: heaps: Fix off-by-one in CMA heap fault handler
Until VM_DONTEXPAND was added in commit 1c1914d6e8c6 ("dma-buf: heaps:
Don't track CMA dma-buf pages under RssFile") it was possible to obtain
a mapping larger than the buffer size via mremap and bypass the overflow
check in dma_buf_mmap_internal. When using such a mapping to attempt to
fault past the end of the buffer, the CMA heap fault handler also checks
the fault offset against the buffer size, but gets the boundary wrong by
1. Fix the boundary check so that we don't read off the end of the pages
array and insert an arbitrary page in the mapping.
CWE: CWE-193: Off-by-one Error
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-46854
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net: dpaa: Pad packets to ETH_ZLEN
When sending packets under 60 bytes, up to three bytes of the buffer
following the data may be leaked. Avoid this by extending all packets to
ETH_ZLEN, ensuring nothing is leaked in the padding. This bug can be
reproduced by running
$ ping -s 11 destination
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-46858
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
mptcp: pm: Fix uaf in __timer_delete_sync
There are two paths to access mptcp_pm_del_add_timer, result in a race
condition:
CPU1 CPU2
==== ====
net_rx_action
napi_poll netlink_sendmsg
__napi_poll netlink_unicast
process_backlog netlink_unicast_kernel
__netif_receive_skb genl_rcv
__netif_receive_skb_one_core netlink_rcv_skb
NF_HOOK genl_rcv_msg
ip_local_deliver_finish genl_family_rcv_msg
ip_protocol_deliver_rcu genl_family_rcv_msg_doit
tcp_v4_rcv mptcp_pm_nl_flush_addrs_doit
tcp_v4_do_rcv mptcp_nl_remove_addrs_list
tcp_rcv_established mptcp_pm_remove_addrs_and_subflows
tcp_data_queue remove_anno_list_by_saddr
mptcp_incoming_options mptcp_pm_del_add_timer
mptcp_pm_del_add_timer kfree(entry)
In remove_anno_list_by_saddr(running on CPU2), after leaving the critical
zone protected by "pm.lock", the entry will be released, which leads to the
occurrence of uaf in the mptcp_pm_del_add_timer(running on CPU1).
Keeping a reference to add_timer inside the lock, and calling
sk_stop_timer_sync() with this reference, instead of "entry->add_timer".
Move list_del(&entry->list) to mptcp_pm_del_add_timer and inside the pm lock,
do not directly access any members of the entry outside the pm lock, which
can avoid similar "entry->x" uaf.
CWE: CWE-416: Use After Free
CVSS Source: NVD
CVSS Base score: 7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-47606
DESCRIPTION: GStreamer is a library for constructing graphs of media-handling components. An integer underflow has been detected in the function qtdemux_parse_theora_extension within qtdemux.c. The vulnerability occurs due to an underflow of the gint size variable, which causes size to hold a large unintended value when cast to an unsigned integer. This 32-bit negative value is then cast to a 64-bit unsigned integer (0xfffffffffffffffa) in a subsequent call to gst_buffer_new_and_alloc. The function gst_buffer_new_allocate then attempts to allocate memory, eventually calling _sysmem_new_block. The function _sysmem_new_block adds alignment and header size to the (unsigned) size, causing the overflow of the 'slice_size' variable. As a result, only 0x89 bytes are allocated, despite the large input size. When the following memcpy call occurs in gst_buffer_fill, the data from the input file will overwrite the content of the GstMapInfo info structure. Finally, during the call to gst_memory_unmap, the overwritten memory may cause a function pointer hijack, as the mem->allocator->mem_unmap_full function is called with a corrupted pointer. This function pointer overwrite could allow an attacker to alter the execution flow of the program, leading to arbitrary code execution. This vulnerability is fixed in 1.24.10.
CWE: CWE-190: Integer Overflow or Wraparound
CVSS Source: NVD
CVSS Base score: 9.8
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-50059
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
ntb: ntb_hw_switchtec: Fix use after free vulnerability in switchtec_ntb_remove due to race condition
In the switchtec_ntb_add function, it can call switchtec_ntb_init_sndev
function, then &sndev->check_link_status_work is bound with
check_link_status_work. switchtec_ntb_link_notification may be called
to start the work.
If we remove the module which will call switchtec_ntb_remove to make
cleanup, it will free sndev through kfree(sndev), while the work
mentioned above will be used. The sequence of operations that may lead
to a UAF bug is as follows:
CPU0 CPU1
| check_link_status_work
switchtec_ntb_remove |
kfree(sndev); |
| if (sndev->link_force_down)
| // use sndev
Fix it by ensuring that the work is canceled before proceeding with
the cleanup in switchtec_ntb_remove.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-50302
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
HID: core: zero-initialize the report buffer
Since the report buffer is used by all kinds of drivers in various ways, let's
zero-initialize it during allocation to make sure that it can't be ever used
to leak kernel memory via specially-crafted report.
CWE: CWE-908: Use of Uninitialized Resource
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N)
CVEID: CVE-2024-51744
DESCRIPTION: golang-jwt is a Go implementation of JSON Web Tokens. Unclear documentation of the error behavior in `ParseWithClaims` can lead to situation where users are potentially not checking errors in the way they should be. Especially, if a token is both expired and invalid, the errors returned by `ParseWithClaims` return both error codes. If users only check for the `jwt.ErrTokenExpired ` using `error.Is`, they will ignore the embedded `jwt.ErrTokenSignatureInvalid` and thus potentially accept invalid tokens. A fix has been back-ported with the error handling logic from the `v5` branch to the `v4` branch. In this logic, the `ParseWithClaims` function will immediately return in "dangerous" situations (e.g., an invalid signature), limiting the combined errors only to situations where the signature is valid, but further validation failed (e.g., if the signature is valid, but is expired AND has the wrong audience). This fix is part of the 4.5.1 release. We are aware that this changes the behaviour of an established function and is not 100 % backwards compatible, so updating to 4.5.1 might break your code. In case you cannot update to 4.5.0, please make sure that you are properly checking for all errors ("dangerous" ones first), so that you are not running in the case detailed above.
CWE: CWE-755: Improper Handling of Exceptional Conditions
CVSS Source: IBM X-Force
CVSS Base score: 3.1
CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:N/A:N)
CVEID: CVE-2024-52616
DESCRIPTION: A flaw was found in the Avahi-daemon, where it initializes DNS transaction IDs randomly only once at startup, incrementing them sequentially after that. This predictable behavior facilitates DNS spoofing attacks, allowing attackers to guess transaction IDs.
CWE: CWE-334: Small Space of Random Values
CVSS Source: IBM X-Force
CVSS Base score: 5.3
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N)
CVEID: CVE-2024-53113
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
mm: fix NULL pointer dereference in alloc_pages_bulk_noprof
We triggered a NULL pointer dereference for ac.preferred_zoneref->zone in
alloc_pages_bulk_noprof() when the task is migrated between cpusets.
When cpuset is enabled, in prepare_alloc_pages(), ac->nodemask may be
¤t->mems_allowed. when first_zones_zonelist() is called to find
preferred_zoneref, the ac->nodemask may be modified concurrently if the
task is migrated between different cpusets. Assuming we have 2 NUMA Node,
when traversing Node1 in ac->zonelist, the nodemask is 2, and when
traversing Node2 in ac->zonelist, the nodemask is 1. As a result, the
ac->preferred_zoneref points to NULL zone.
In alloc_pages_bulk_noprof(), for_each_zone_zonelist_nodemask() finds a
allowable zone and calls zonelist_node_idx(ac.preferred_zoneref), leading
to NULL pointer dereference.
__alloc_pages_noprof() fixes this issue by checking NULL pointer in commit
ea57485af8f4 ("mm, page_alloc: fix check for NULL preferred_zone") and
commit df76cee6bbeb ("mm, page_alloc: remove redundant checks from alloc
fastpath").
To fix it, check NULL pointer for preferred_zoneref->zone.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: kernel.org
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-53150
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix out of bounds reads when finding clock sources
The current USB-audio driver code doesn't check bLength of each
descriptor at traversing for clock descriptors. That is, when a
device provides a bogus descriptor with a shorter bLength, the driver
might hit out-of-bounds reads.
For addressing it, this patch adds sanity checks to the validator
functions for the clock descriptor traversal. When the descriptor
length is shorter than expected, it's skipped in the loop.
For the clock source and clock multiplier descriptors, we can just
check bLength against the sizeof() of each descriptor type.
OTOH, the clock selector descriptor of UAC2 and UAC3 has an array
of bNrInPins elements and two more fields at its tail, hence those
have to be checked in addition to the sizeof() check.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: NVD
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2024-53197
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix potential out-of-bound accesses for Extigy and Mbox devices
A bogus device can provide a bNumConfigurations value that exceeds the
initial value used in usb_get_configuration for allocating dev->config.
This can lead to out-of-bounds accesses later, e.g. in
usb_destroy_configuration.
CWE: CWE-787: Out-of-bounds Write
CVSS Source: CISA ADP
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-9287
DESCRIPTION: A vulnerability has been found in the CPython `venv` module and CLI where path names provided when creating a virtual environment were not quoted properly, allowing the creator to inject commands into virtual environment "activation" scripts (ie "source venv/bin/activate"). This means that attacker-controlled virtual environments are able to run commands when the virtual environment is activated. Virtual environments which are not created by an attacker or which aren't activated before being used (ie "./venv/bin/python") are not affected.
CWE: CWE-428: Unquoted Search Path or Element
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2025-1094
DESCRIPTION: Improper neutralization of quoting syntax in PostgreSQL libpq functions PQescapeLiteral(), PQescapeIdentifier(), PQescapeString(), and PQescapeStringConn() allows a database input provider to achieve SQL injection in certain usage patterns. Specifically, SQL injection requires the application to use the function result to construct input to psql, the PostgreSQL interactive terminal. Similarly, improper neutralization of quoting syntax in PostgreSQL command line utility programs allows a source of command line arguments to achieve SQL injection when client_encoding is BIG5 and server_encoding is one of EUC_TW or MULE_INTERNAL. Versions before PostgreSQL 17.3, 16.7, 15.11, 14.16, and 13.19 are affected.
CWE: CWE-149: Improper Neutralization of Quoting Syntax
CVSS Source: NVD
CVSS Base score: 8.1
CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2025-21785
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
arm64: cacheinfo: Avoid out-of-bounds write to cacheinfo array
The loop that detects/populates cache information already has a bounds
check on the array size but does not account for cache levels with
separate data/instructions cache. Fix this by incrementing the index
for any populated leaf (instead of any populated level).
CWE: CWE-787: Out-of-bounds Write
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2025-21927
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
nvme-tcp: fix potential memory corruption in nvme_tcp_recv_pdu()
nvme_tcp_recv_pdu() doesn't check the validity of the header length.
When header digests are enabled, a target might send a packet with an
invalid header length (e.g. 255), causing nvme_tcp_verify_hdgst()
to access memory outside the allocated area and cause memory corruptions
by overwriting it with the calculated digest.
Fix this by rejecting packets with an unexpected header length.
CWE: CWE-787: Out-of-bounds Write
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2025-27111
DESCRIPTION: Rack is a modular Ruby web server interface. The Rack::Sendfile middleware logs unsanitised header values from the X-Sendfile-Type header. An attacker can exploit this by injecting escape sequences (such as newline characters) into the header, resulting in log injection. This vulnerability is fixed in 2.2.12, 3.0.13, and 3.1.11.
CWE: CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection')
CVSS Source: security-advisories@github.com
CVSS Base score: 6.9
CVSS Vector: (CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UI:N/VC:N/VI:L/VA:N/SC:N/SI:N/SA:N/E:X/CR:X/IR:X/AR:X/MAV:X/MAC:X/MAT:X/MPR:X/MUI:X/MVC:X/MVI:X/MVA:X/MSC:X/MSI:X/MSA:X/S:X/AU:X/R:X/V:X/RE:X/U:X)
CVEID: CVE-2025-27363
DESCRIPTION: An out of bounds write exists in FreeType versions 2.13.0 and below (newer versions of FreeType are not vulnerable) when attempting to parse font subglyph structures related to TrueType GX and variable font files. The vulnerable code assigns a signed short value to an unsigned long and then adds a static value causing it to wrap around and allocate too small of a heap buffer. The code then writes up to 6 signed long integers out of bounds relative to this buffer. This may result in arbitrary code execution. This vulnerability may have been exploited in the wild.
CWE: CWE-787: Out-of-bounds Write
CVSS Source: NVD
CVSS Base score: 8.1
CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2025-27516
DESCRIPTION: Jinja is an extensible templating engine. Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6.
CWE: CWE-1336: Improper Neutralization of Special Elements Used in a Template Engine
CVSS Source: security-advisories@github.com
CVSS Base score: 5.4
CVSS Vector: (CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:P/VC:H/VI:H/VA:H/SC:N/SI:N/SA:N/E:X/CR:X/IR:X/AR:X/MAV:X/MAC:X/MAT:X/MPR:X/MUI:X/MVC:X/MVI:X/MVA:X/MSC:X/MSI:X/MSA:X/S:X/AU:X/R:X/V:X/RE:X/U:X)
CVEID: CVE-2025-27610
DESCRIPTION: Rack provides an interface for developing web applications in Ruby. Prior to versions 2.2.13, 3.0.14, and 3.1.12, `Rack::Static` can serve files under the specified `root:` even if `urls:` are provided, which may expose other files under the specified `root:` unexpectedly. The vulnerability occurs because `Rack::Static` does not properly sanitize user-supplied paths before serving files. Specifically, encoded path traversal sequences are not correctly validated, allowing attackers to access files outside the designated static file directory. By exploiting this vulnerability, an attacker can gain access to all files under the specified `root:` directory, provided they are able to determine then path of the file. Versions 2.2.13, 3.0.14, and 3.1.12 contain a patch for the issue. Other mitigations include removing usage of `Rack::Static`, or ensuring that `root:` points at a directory path which only contains files which should be accessed publicly. It is likely that a CDN or similar static file server would also mitigate the issue.
CWE: CWE-23: Relative Path Traversal
CVSS Source: security-advisories@github.com
CVSS Base score: 7.5
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N)
CVEID: CVE-2025-30215
DESCRIPTION: NATS-Server is a High-Performance server for NATS.io, the cloud and edge native messaging system. In versions starting from 2.2.0 but prior to 2.10.27 and 2.11.1, the management of JetStream assets happens with messages in the $JS. subject namespace in the system account; this is partially exposed into regular accounts to allow account holders to manage their assets. Some of the JS API requests were missing access controls, allowing any user with JS management permissions in any account to perform certain administrative actions on any JS asset in any other account. At least one of the unprotected APIs allows for data destruction. None of the affected APIs allow disclosing stream contents. This vulnerability is fixed in v2.11.1 or v2.10.27.
CWE: CWE-287: Improper Authentication
CVSS Source: security-advisories@github.com
CVSS Base score: 9.6
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:N/I:H/A:H)
CVEID: CVE-2025-30691
DESCRIPTION: Vulnerability in Oracle Java SE (component: Compiler). Supported versions that are affected are Oracle Java SE: 21.0.6, 24; Oracle GraalVM for JDK: 21.0.6 and 24. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Java SE accessible data as well as unauthorized read access to a subset of Oracle Java SE accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 4.8 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N).
CWE: CWE-284: Improper Access Control
CVSS Source: secalert_us@oracle.com
CVSS Base score: 4.8
CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N)
CVEID: CVE-2025-31498
DESCRIPTION: c-ares is an asynchronous resolver library. From 1.32.3 through 1.34.4, there is a use-after-free in read_answers() when process_answer() may re-enqueue a query either due to a DNS Cookie Failure or when the upstream server does not properly support EDNS, or possibly on TCP queries if the remote closed the connection immediately after a response. If there was an issue trying to put that new transaction on the wire, it would close the connection handle, but read_answers() was still expecting the connection handle to be available to possibly dequeue other responses. In theory a remote attacker might be able to trigger this by flooding the target with ICMP UNREACHABLE packets if they also control the upstream nameserver and can return a result with one of those conditions, this has been untested. Otherwise only a local attacker might be able to change system behavior to make send()/write() return a failure condition. This vulnerability is fixed in 1.34.5.
CWE: CWE-416: Use After Free
CVSS Source: security-advisories@github.com
CVSS Base score: 8.3
CVSS Vector: (CVSS:4.0/AV:N/AC:H/AT:N/PR:N/UI:N/VC:L/VI:L/VA:H/SC:N/SI:N/SA:N/E:X/CR:X/IR:X/AR:X/MAV:X/MAC:X/MAT:X/MPR:X/MUI:X/MVC:X/MVI:X/MVA:X/MSC:X/MSI:X/MSA:X/S:X/AU:X/R:X/V:X/RE:X/U:X)
CVEID: CVE-2025-3277
DESCRIPTION: An integer overflow can be triggered in SQLite’s `concat_ws()` function. The resulting, truncated integer is then used to allocate a buffer. When SQLite then writes the resulting string to the buffer, it uses the original, untruncated size and thus a wild Heap Buffer overflow of size ~4GB can be triggered. This can result in arbitrary code execution.
CWE: CWE-122: Heap-based Buffer Overflow
CVSS Source: cve-coordination@google.com
CVSS Base score: 6.9
CVSS Vector: (CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UI:N/VC:L/VI:L/VA:L/SC:L/SI:L/SA:L/E:X/CR:X/IR:X/AR:X/MAV:X/MAC:X/MAT:X/MPR:X/MUI:X/MVC:X/MVI:X/MVA:X/MSC:X/MSI:X/MSA:X/S:X/AU:X/R:X/V:X/RE:X/U:X)
CVEID: CVE-2025-43859
DESCRIPTION: h11 is a Python implementation of HTTP/1.1. Prior to version 0.16.0, a leniency in h11's parsing of line terminators in chunked-coding message bodies can lead to request smuggling vulnerabilities under certain conditions. This issue has been patched in version 0.16.0. Since exploitation requires the combination of buggy h11 with a buggy (reverse) proxy, fixing either component is sufficient to mitigate this issue.
CWE: CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request/Response Smuggling')
CVSS Source: security-advisories@github.com
CVSS Base score: 9.1
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N)
Affected Products and Versions
| Affected Product(s) | Version(s) |
| API Connect | V10.0.8.0 to V10.0.8.2-iFix1 |
| API Connect | V10.0.5.0 to V10.0.5.9 |
Workarounds and Mitigations
None
Get Notified about Future Security Bulletins
References
Acknowledgement
Change History
10 Jun 2025: Initial Publication
*The CVSS Environment Score is customer environment specific and will ultimately impact the Overall CVSS Score. Customers can evaluate the impact of this vulnerability in their environments by accessing the links in the Reference section of this Security Bulletin.
Disclaimer
According to the Forum of Incident Response and Security Teams (FIRST), the Common Vulnerability Scoring System (CVSS) is an "industry open standard designed to convey vulnerability severity and help to determine urgency and priority of response." IBM PROVIDES THE CVSS SCORES ""AS IS"" WITHOUT WARRANTY OF ANY KIND, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. CUSTOMERS ARE RESPONSIBLE FOR ASSESSING THE IMPACT OF ANY ACTUAL OR POTENTIAL SECURITY VULNERABILITY. In addition to other efforts to address potential vulnerabilities, IBM periodically updates the record of components contained in our product offerings. As part of that effort, if IBM identifies previously unidentified packages in a product/service inventory, we address relevant vulnerabilities regardless of CVE date. Inclusion of an older CVEID does not demonstrate that the referenced product has been used by IBM since that date, nor that IBM was aware of a vulnerability as of that date. We are making clients aware of relevant vulnerabilities as we become aware of them. "Affected Products and Versions" referenced in IBM Security Bulletins are intended to be only products and versions that are supported by IBM and have not passed their end-of-support or warranty date. Thus, failure to reference unsupported or extended-support products and versions in this Security Bulletin does not constitute a determination by IBM that they are unaffected by the vulnerability. Reference to one or more unsupported versions in this Security Bulletin shall not create an obligation for IBM to provide fixes for any unsupported or extended-support products or versions.
Document Location
Worldwide
Was this topic helpful?
Document Information
Modified date:
10 June 2025
UID
ibm17236295