Security Bulletin
Summary
The product includes vulnerable components (e.g., framework libraries) that may be identified and exploited with automated tools. IBM QRadar SIEM has addressed the applicable CVEs.
Vulnerability Details
CVEID: CVE-2025-22097
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
drm/vkms: Fix use after free and double free on init error
If the driver initialization fails, the vkms_exit() function might
access an uninitialized or freed default_config pointer and it might
double free it.
Fix both possible errors by initializing default_config only when the
driver initialization succeeded.
CWE: CWE-416: Use After Free
CVSS Source: CISA ADP
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2025-37914
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net_sched: ets: Fix double list add in class with netem as child qdisc
As described in Gerrard's report [1], there are use cases where a netem
child qdisc will make the parent qdisc's enqueue callback reentrant.
In the case of ets, there won't be a UAF, but the code will add the same
classifier to the list twice, which will cause memory corruption.
In addition to checking for qlen being zero, this patch checks whether
the class was already added to the active_list (cl_is_active) before
doing the addition to cater for the reentrant case.
[1] https://lore.kernel.org/netdev/CAHcdcOm+03OD2j6R0=YHKqmy=VgJ8xEOKuP6c7m…
CVSS Source: Red Hat
CVSS Base score: 7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2025-38250
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: Fix use-after-free in vhci_flush()
syzbot reported use-after-free in vhci_flush() without repro. [0]
From the splat, a thread close()d a vhci file descriptor while
its device was being used by iotcl() on another thread.
Once the last fd refcnt is released, vhci_release() calls
hci_unregister_dev(), hci_free_dev(), and kfree() for struct
vhci_data, which is set to hci_dev->dev->driver_data.
The problem is that there is no synchronisation after unlinking
hdev from hci_dev_list in hci_unregister_dev(). There might be
another thread still accessing the hdev which was fetched before
the unlink operation.
We can use SRCU for such synchronisation.
Let's run hci_dev_reset() under SRCU and wait for its completion
in hci_unregister_dev().
Another option would be to restore hci_dev->destruct(), which was
removed in commit 587ae086f6e4 ("Bluetooth: Remove unused
hci-destruct cb"). However, this would not be a good solution, as
we should not run hci_unregister_dev() while there are in-flight
ioctl() requests, which could lead to another data-race KCSAN splat.
Note that other drivers seem to have the same problem, for exmaple,
virtbt_remove().
[0]:
BUG: KASAN: slab-use-after-free in skb_queue_empty_lockless include/linux/skbuff.h:1891 [inline]
BUG: KASAN: slab-use-after-free in skb_queue_purge_reason+0x99/0x360 net/core/skbuff.c:3937
Read of size 8 at addr ffff88807cb8d858 by task syz.1.219/6718
CPU: 1 UID: 0 PID: 6718 Comm: syz.1.219 Not tainted 6.16.0-rc1-syzkaller-00196-g08207f42d3ff #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025
Call Trace:
dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xd2/0x2b0 mm/kasan/report.c:521
kasan_report+0x118/0x150 mm/kasan/report.c:634
skb_queue_empty_lockless include/linux/skbuff.h:1891 [inline]
skb_queue_purge_reason+0x99/0x360 net/core/skbuff.c:3937
skb_queue_purge include/linux/skbuff.h:3368 [inline]
vhci_flush+0x44/0x50 drivers/bluetooth/hci_vhci.c:69
hci_dev_do_reset net/bluetooth/hci_core.c:552 [inline]
hci_dev_reset+0x420/0x5c0 net/bluetooth/hci_core.c:592
sock_do_ioctl+0xd9/0x300 net/socket.c:1190
sock_ioctl+0x576/0x790 net/socket.c:1311
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl+0xf9/0x170 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fcf5b98e929
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fcf5c7b9038 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007fcf5bbb6160 RCX: 00007fcf5b98e929
RDX: 0000000000000000 RSI: 00000000400448cb RDI: 0000000000000009
RBP: 00007fcf5ba10b39 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000000 R14: 00007fcf5bbb6160 R15: 00007ffd6353d528
Allocated by task 6535:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4359
kmalloc_noprof include/linux/slab.h:905 [inline]
kzalloc_noprof include/linux/slab.h:1039 [inline]
vhci_open+0x57/0x360 drivers/bluetooth/hci_vhci.c:635
misc_open+0x2bc/0x330 drivers/char/misc.c:161
chrdev_open+0x4c9/0x5e0 fs/char_dev.c:414
do_dentry_open+0xdf0/0x1970 fs/open.c:964
vfs_open+0x3b/0x340 fs/open.c:1094
do_open fs/namei.c:3887 [inline]
path_openat+0x2ee5/0x3830 fs/name
---truncated---
CVSS Source: Red Hat
CVSS Base score: 7.3
CVSS Vector: ( CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H)
CVEID: CVE-2025-38380
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
i2c/designware: Fix an initialization issue
The i2c_dw_xfer_init() function requires msgs and msg_write_idx from the
dev context to be initialized.
amd_i2c_dw_xfer_quirk() inits msgs and msgs_num, but not msg_write_idx.
This could allow an out of bounds access (of msgs).
Initialize msg_write_idx before calling i2c_dw_xfer_init().
CVSS Source: Red Hat
CVSS Base score: 7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2023-49083
DESCRIPTION: cryptography is a package designed to expose cryptographic primitives and recipes to Python developers. Calling `load_pem_pkcs7_certificates` or `load_der_pkcs7_certificates` could lead to a NULL-pointer dereference and segfault. Exploitation of this vulnerability poses a serious risk of Denial of Service (DoS) for any application attempting to deserialize a PKCS7 blob/certificate. The consequences extend to potential disruptions in system availability and stability. This vulnerability has been patched in version 41.0.6.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: NVD
CVSS Base score: 7.5
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2025-8194
DESCRIPTION: There is a defect in the CPython “tarfile” module affecting the “TarFile” extraction and entry enumeration APIs. The tar implementation would process tar archives with negative offsets without error, resulting in an infinite loop and deadlock during the parsing of maliciously crafted tar archives.
This vulnerability can be mitigated by including the following patch after importing the “tarfile” module: https://gist.github.com/sethmlarson/1716ac5b82b73dbcbf23ad2eff8b33e1
CWE: CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop')
CVSS Source: cna@python.org
CVSS Base score: 7.5
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2025-6032
DESCRIPTION: A flaw was found in Podman. The podman machine init command fails to verify the TLS certificate when downloading the VM images from an OCI registry. This issue results in a Man In The Middle attack.
CWE: CWE-295: Improper Certificate Validation
CVSS Source: secalert@redhat.com
CVSS Base score: 8.3
CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:C/C:H/I:H/A:H)
CVEID: CVE-2025-5994
DESCRIPTION: A multi-vendor cache poisoning vulnerability named 'Rebirthday Attack' has been discovered in caching resolvers that support EDNS Client Subnet (ECS). Unbound is also vulnerable when compiled with ECS support, i.e., '--enable-subnet', AND configured to send ECS information along with queries to upstream name servers, i.e., at least one of the 'send-client-subnet', 'client-subnet-zone' or 'client-subnet-always-forward' options is used. Resolvers supporting ECS need to segregate outgoing queries to accommodate for different outgoing ECS information. This re-opens up resolvers to a birthday paradox attack (Rebirthday Attack) that tries to match the DNS transaction ID in order to cache non-ECS poisonous replies.
CWE: CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data
CVSS Source: sep@nlnetlabs.nl
CVSS Base score: 8.7
CVSS Vector: (CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UI:N/VC:N/VI:H/VA:N/SC:N/SI:N/SA:N/E:X/CR:X/IR:X/AR:X/MAV:X/MAC:X/MAT:X/MPR:X/MUI:X/MVC:X/MVI:X/MVA:X/MSC:X/MSI:X/MSA:X/S:X/AU:X/R:U/V:C/RE:X/U:X)
CVEID: CVE-2021-47670
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
can: peak_usb: fix use after free bugs
After calling peak_usb_netif_rx_ni(skb), dereferencing skb is unsafe.
Especially, the can_frame cf which aliases skb memory is accessed
after the peak_usb_netif_rx_ni().
Reordering the lines solves the issue.
CWE: CWE-416: Use After Free
CVSS Source: CISA ADP
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-56644
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net/ipv6: release expired exception dst cached in socket
Dst objects get leaked in ip6_negative_advice() when this function is
executed for an expired IPv6 route located in the exception table. There
are several conditions that must be fulfilled for the leak to occur:
* an ICMPv6 packet indicating a change of the MTU for the path is received,
resulting in an exception dst being created
* a TCP connection that uses the exception dst for routing packets must
start timing out so that TCP begins retransmissions
* after the exception dst expires, the FIB6 garbage collector must not run
before TCP executes ip6_negative_advice() for the expired exception dst
When TCP executes ip6_negative_advice() for an exception dst that has
expired and if no other socket holds a reference to the exception dst, the
refcount of the exception dst is 2, which corresponds to the increment
made by dst_init() and the increment made by the TCP socket for which the
connection is timing out. The refcount made by the socket is never
released. The refcount of the dst is decremented in sk_dst_reset() but
that decrement is counteracted by a dst_hold() intentionally placed just
before the sk_dst_reset() in ip6_negative_advice(). After
ip6_negative_advice() has finished, there is no other object tied to the
dst. The socket lost its reference stored in sk_dst_cache and the dst is
no longer in the exception table. The exception dst becomes a leaked
object.
As a result of this dst leak, an unbalanced refcount is reported for the
loopback device of a net namespace being destroyed under kernels that do
not contain e5f80fcf869a ("ipv6: give an IPv6 dev to blackhole_netdev"):
unregister_netdevice: waiting for lo to become free. Usage count = 2
Fix the dst leak by removing the dst_hold() in ip6_negative_advice(). The
patch that introduced the dst_hold() in ip6_negative_advice() was
92f1655aa2b22 ("net: fix __dst_negative_advice() race"). But 92f1655aa2b22
merely refactored the code with regards to the dst refcount so the issue
was present even before 92f1655aa2b22. The bug was introduced in
54c1a859efd9f ("ipv6: Don't drop cache route entry unless timer actually
expired.") where the expired cached route is deleted and the sk_dst_cache
member of the socket is set to NULL by calling dst_negative_advice() but
the refcount belonging to the socket is left unbalanced.
The IPv4 version - ipv4_negative_advice() - is not affected by this bug.
When the TCP connection times out ipv4_negative_advice() merely resets the
sk_dst_cache of the socket while decrementing the refcount of the
exception dst.
CVSS Source: Red Hat
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2025-21727
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
padata: fix UAF in padata_reorder
A bug was found when run ltp test:
BUG: KASAN: slab-use-after-free in padata_find_next+0x29/0x1a0
Read of size 4 at addr ffff88bbfe003524 by task kworker/u113:2/3039206
CPU: 0 PID: 3039206 Comm: kworker/u113:2 Kdump: loaded Not tainted 6.6.0+
Workqueue: pdecrypt_parallel padata_parallel_worker
Call Trace:
dump_stack_lvl+0x32/0x50
print_address_description.constprop.0+0x6b/0x3d0
print_report+0xdd/0x2c0
kasan_report+0xa5/0xd0
padata_find_next+0x29/0x1a0
padata_reorder+0x131/0x220
padata_parallel_worker+0x3d/0xc0
process_one_work+0x2ec/0x5a0
If 'mdelay(10)' is added before calling 'padata_find_next' in the
'padata_reorder' function, this issue could be reproduced easily with
ltp test (pcrypt_aead01).
This can be explained as bellow:
pcrypt_aead_encrypt
...
padata_do_parallel
refcount_inc(&pd->refcnt); // add refcnt
...
padata_do_serial
padata_reorder // pd
while (1) {
padata_find_next(pd, true); // using pd
queue_work_on
...
padata_serial_worker crypto_del_alg
padata_put_pd_cnt // sub refcnt
padata_free_shell
padata_put_pd(ps->pd);
// pd is freed
// loop again, but pd is freed
// call padata_find_next, UAF
}
In the padata_reorder function, when it loops in 'while', if the alg is
deleted, the refcnt may be decreased to 0 before entering
'padata_find_next', which leads to UAF.
As mentioned in [1], do_serial is supposed to be called with BHs disabled
and always happen under RCU protection, to address this issue, add
synchronize_rcu() in 'padata_free_shell' wait for all _do_serial calls
to finish.
[1] https://lore.kernel.org/all/20221028160401.cccypv4euxikusiq@parnassus.l…
[2] https://lore.kernel.org/linux-kernel/jfjz5d7zwbytztackem7ibzalm5lnxldi2…
CWE: CWE-416: Use After Free
CVSS Source: CISA ADP
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2025-21759
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
ipv6: mcast: extend RCU protection in igmp6_send()
igmp6_send() can be called without RTNL or RCU being held.
Extend RCU protection so that we can safely fetch the net pointer
and avoid a potential UAF.
Note that we no longer can use sock_alloc_send_skb() because
ipv6.igmp_sk uses GFP_KERNEL allocations which can sleep.
Instead use alloc_skb() and charge the net->ipv6.igmp_sk
socket under RCU protection.
CWE: CWE-416: Use After Free
CVSS Source: CISA ADP
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2025-38085
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
mm/hugetlb: fix huge_pmd_unshare() vs GUP-fast race
huge_pmd_unshare() drops a reference on a page table that may have
previously been shared across processes, potentially turning it into a
normal page table used in another process in which unrelated VMAs can
afterwards be installed.
If this happens in the middle of a concurrent gup_fast(), gup_fast() could
end up walking the page tables of another process. While I don't see any
way in which that immediately leads to kernel memory corruption, it is
really weird and unexpected.
Fix it with an explicit broadcast IPI through tlb_remove_table_sync_one(),
just like we do in khugepaged when removing page tables for a THP
collapse.
CVSS Source: Red Hat
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2025-38159
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: fix the 'para' buffer size to avoid reading out of bounds
Set the size to 6 instead of 2, since 'para' array is passed to
'rtw_fw_bt_wifi_control(rtwdev, para[0], ¶[1])', which reads
5 bytes:
void rtw_fw_bt_wifi_control(struct rtw_dev *rtwdev, u8 op_code, u8 *data)
{
...
SET_BT_WIFI_CONTROL_DATA1(h2c_pkt, *data);
SET_BT_WIFI_CONTROL_DATA2(h2c_pkt, *(data + 1));
...
SET_BT_WIFI_CONTROL_DATA5(h2c_pkt, *(data + 4));
Detected using the static analysis tool - Svace.
CVSS Source: Red Hat
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2025-22058
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
udp: Fix memory accounting leak.
Matt Dowling reported a weird UDP memory usage issue.
Under normal operation, the UDP memory usage reported in /proc/net/sockstat
remains close to zero. However, it occasionally spiked to 524,288 pages
and never dropped. Moreover, the value doubled when the application was
terminated. Finally, it caused intermittent packet drops.
We can reproduce the issue with the script below [0]:
1. /proc/net/sockstat reports 0 pages
# cat /proc/net/sockstat | grep UDP:
UDP: inuse 1 mem 0
2. Run the script till the report reaches 524,288
# python3 test.py & sleep 5
# cat /proc/net/sockstat | grep UDP:
UDP: inuse 3 mem 524288 <-- (INT_MAX + 1) >> PAGE_SHIFT
3. Kill the socket and confirm the number never drops
# pkill python3 && sleep 5
# cat /proc/net/sockstat | grep UDP:
UDP: inuse 1 mem 524288
4. (necessary since v6.0) Trigger proto_memory_pcpu_drain()
# python3 test.py & sleep 1 && pkill python3
5. The number doubles
# cat /proc/net/sockstat | grep UDP:
UDP: inuse 1 mem 1048577
The application set INT_MAX to SO_RCVBUF, which triggered an integer
overflow in udp_rmem_release().
When a socket is close()d, udp_destruct_common() purges its receive
queue and sums up skb->truesize in the queue. This total is calculated
and stored in a local unsigned integer variable.
The total size is then passed to udp_rmem_release() to adjust memory
accounting. However, because the function takes a signed integer
argument, the total size can wrap around, causing an overflow.
Then, the released amount is calculated as follows:
1) Add size to sk->sk_forward_alloc.
2) Round down sk->sk_forward_alloc to the nearest lower multiple of
PAGE_SIZE and assign it to amount.
3) Subtract amount from sk->sk_forward_alloc.
4) Pass amount >> PAGE_SHIFT to __sk_mem_reduce_allocated().
When the issue occurred, the total in udp_destruct_common() was 2147484480
(INT_MAX + 833), which was cast to -2147482816 in udp_rmem_release().
At 1) sk->sk_forward_alloc is changed from 3264 to -2147479552, and
2) sets -2147479552 to amount. 3) reverts the wraparound, so we don't
see a warning in inet_sock_destruct(). However, udp_memory_allocated
ends up doubling at 4).
Since commit 3cd3399dd7a8 ("net: implement per-cpu reserves for
memory_allocated"), memory usage no longer doubles immediately after
a socket is close()d because __sk_mem_reduce_allocated() caches the
amount in udp_memory_per_cpu_fw_alloc. However, the next time a UDP
socket receives a packet, the subtraction takes effect, causing UDP
memory usage to double.
This issue makes further memory allocation fail once the socket's
sk->sk_rmem_alloc exceeds net.ipv4.udp_rmem_min, resulting in packet
drops.
To prevent this issue, let's use unsigned int for the calculation and
call sk_forward_alloc_add() only once for the small delta.
Note that first_packet_length() also potentially has the same problem.
[0]:
from socket import *
SO_RCVBUFFORCE = 33
INT_MAX = (2 ** 31) - 1
s = socket(AF_INET, SOCK_DGRAM)
s.bind(('', 0))
s.setsockopt(SOL_SOCKET, SO_RCVBUFFORCE, INT_MAX)
c = socket(AF_INET, SOCK_DGRAM)
c.connect(s.getsockname())
data = b'a' * 100
while True:
c.send(data)
CVSS Source: Red Hat
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2025-38200
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
i40e: fix MMIO write access to an invalid page in i40e_clear_hw
When the device sends a specific input, an integer underflow can occur, leading
to MMIO write access to an invalid page.
Prevent the integer underflow by changing the type of related variables.
CVSS Source: Red Hat
CVSS Base score: 7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2025-5914
DESCRIPTION: A vulnerability has been identified in the libarchive library, specifically within the archive_read_format_rar_seek_data() function. This flaw involves an integer overflow that can ultimately lead to a double-free condition. Exploiting a double-free vulnerability can result in memory corruption, enabling an attacker to execute arbitrary code or cause a denial-of-service condition.
CWE: CWE-415: Double Free
CVSS Source: secalert@redhat.com
CVSS Base score: 7.3
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H)
CVEID: CVE-2025-6020
DESCRIPTION: A flaw was found in linux-pam. The module pam_namespace may use access user-controlled paths without proper protection, allowing local users to elevate their privileges to root via multiple symlink attacks and race conditions.
CWE: CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
CVSS Source: secalert@redhat.com
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
Affected Products and Versions
| Affected Product(s) | Version(s) |
| IBM QRadar SIEM | 7.5 - 7.5.0 UP13 IF01 |
Remediation/Fixes
IBM encourages customers to update their systems promptly.
| Product | Version | Fix |
| IBM QRadar SIEM | 7.5.0 | QRadar 7.5.0 UP13 IF02 |
Workarounds and Mitigations
None
Get Notified about Future Security Bulletins
References
Acknowledgement
Change History
12 Sep 2025: Initial Publication
*The CVSS Environment Score is customer environment specific and will ultimately impact the Overall CVSS Score. Customers can evaluate the impact of this vulnerability in their environments by accessing the links in the Reference section of this Security Bulletin.
Disclaimer
According to the Forum of Incident Response and Security Teams (FIRST), the Common Vulnerability Scoring System (CVSS) is an "industry open standard designed to convey vulnerability severity and help to determine urgency and priority of response." IBM PROVIDES THE CVSS SCORES ""AS IS"" WITHOUT WARRANTY OF ANY KIND, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. CUSTOMERS ARE RESPONSIBLE FOR ASSESSING THE IMPACT OF ANY ACTUAL OR POTENTIAL SECURITY VULNERABILITY. In addition to other efforts to address potential vulnerabilities, IBM periodically updates the record of components contained in our product offerings. As part of that effort, if IBM identifies previously unidentified packages in a product/service inventory, we address relevant vulnerabilities regardless of CVE date. Inclusion of an older CVEID does not demonstrate that the referenced product has been used by IBM since that date, nor that IBM was aware of a vulnerability as of that date. We are making clients aware of relevant vulnerabilities as we become aware of them. "Affected Products and Versions" referenced in IBM Security Bulletins are intended to be only products and versions that are supported by IBM and have not passed their end-of-support or warranty date. Thus, failure to reference unsupported or extended-support products and versions in this Security Bulletin does not constitute a determination by IBM that they are unaffected by the vulnerability. Reference to one or more unsupported versions in this Security Bulletin shall not create an obligation for IBM to provide fixes for any unsupported or extended-support products or versions.
Document Location
Worldwide
Was this topic helpful?
Document Information
Modified date:
12 September 2025
UID
ibm17244786