Security Bulletin
Summary
Multiple security vulnerabilities in the dependent components have been addressed in the latest update to IBM Security Verify Governance.
Vulnerability Details
CVEID: CVE-2022-40609
DESCRIPTION: IBM SDK, Java Technology Edition 7.1.5.18 and 8.0.8.0 could allow a remote attacker to execute arbitrary code on the system, caused by an unsafe deserialization flaw. By sending specially-crafted data, an attacker could exploit this vulnerability to execute arbitrary code on the system. IBM X-Force ID: 236069.
CWE: CWE-502: Deserialization of Untrusted Data
CVSS Source: IBM X-Force
CVSS Base score: 8.1
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-43796
DESCRIPTION: expressjs express is vulnerable to cross-site scripting, caused by improper validation of user-supplied input. A remote attacker could exploit this vulnerability using a specially crafted URL to execute script in a victim's Web browser within the security context of the hosting Web site, once the URL is clicked. An attacker could use this vulnerability to steal the victim's cookie-based authentication credentials.
CWE: CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
CVSS Source: IBM X-Force
CVSS Base score: 5
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:L/A:L)
CVEID: CVE-2020-26555
DESCRIPTION: Bluetooth Core and Mesh Specifications could allow a remote attacker to bypass security restrictions, caused by an impersonation in the BR/EDR PIN Pairing procedure flaw. By spoofing the Bluetooth Device Address (BD_ADDR) of the device, an attacker could exploit this vulnerability to complete pairing with a known link key, encrypt communications with the vulnerable device, and access any profiles permitted.
CWE: CWE-863: Incorrect Authorization
CVSS Source: IBM X-Force
CVSS Base score: 5.4
CVSS Vector: (CVSS:3.1/AV:A/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:N)
CVEID: CVE-2021-46909
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
ARM: footbridge: fix PCI interrupt mapping
Since commit 30fdfb929e82 ("PCI: Add a call to pci_assign_irq() in
pci_device_probe()"), the PCI code will call the IRQ mapping function
whenever a PCI driver is probed. If these are marked as __init, this
causes an oops if a PCI driver is loaded or bound after the kernel has
initialised.
CWE: CWE-754: Improper Check for Unusual or Exceptional Conditions
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-46972
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
ovl: fix leaked dentry
Since commit 6815f479ca90 ("ovl: use only uppermetacopy state in
ovl_lookup()"), overlayfs doesn't put temporary dentry when there is a
metacopy error, which leads to dentry leaks when shutting down the related
superblock:
overlayfs: refusing to follow metacopy origin for (/file0)
...
BUG: Dentry (____ptrval____){i=3f33,n=file3} still in use (1) [unmount of overlay overlay]
...
WARNING: CPU: 1 PID: 432 at umount_check.cold+0x107/0x14d
CPU: 1 PID: 432 Comm: unmount-overlay Not tainted 5.12.0-rc5 #1
...
RIP: 0010:umount_check.cold+0x107/0x14d
...
Call Trace:
d_walk+0x28c/0x950
? dentry_lru_isolate+0x2b0/0x2b0
? __kasan_slab_free+0x12/0x20
do_one_tree+0x33/0x60
shrink_dcache_for_umount+0x78/0x1d0
generic_shutdown_super+0x70/0x440
kill_anon_super+0x3e/0x70
deactivate_locked_super+0xc4/0x160
deactivate_super+0xfa/0x140
cleanup_mnt+0x22e/0x370
__cleanup_mnt+0x1a/0x30
task_work_run+0x139/0x210
do_exit+0xb0c/0x2820
? __kasan_check_read+0x1d/0x30
? find_held_lock+0x35/0x160
? lock_release+0x1b6/0x660
? mm_update_next_owner+0xa20/0xa20
? reacquire_held_locks+0x3f0/0x3f0
? __sanitizer_cov_trace_const_cmp4+0x22/0x30
do_group_exit+0x135/0x380
__do_sys_exit_group.isra.0+0x20/0x20
__x64_sys_exit_group+0x3c/0x50
do_syscall_64+0x45/0x70
entry_SYSCALL_64_after_hwframe+0x44/0xae
...
VFS: Busy inodes after unmount of overlay. Self-destruct in 5 seconds. Have a nice day...
This fix has been tested with a syzkaller reproducer.
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47069
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
ipc/mqueue, msg, sem: avoid relying on a stack reference past its expiry
do_mq_timedreceive calls wq_sleep with a stack local address. The
sender (do_mq_timedsend) uses this address to later call pipelined_send.
This leads to a very hard to trigger race where a do_mq_timedreceive
call might return and leave do_mq_timedsend to rely on an invalid
address, causing the following crash:
RIP: 0010:wake_q_add_safe+0x13/0x60
Call Trace:
__x64_sys_mq_timedsend+0x2a9/0x490
do_syscall_64+0x80/0x680
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f5928e40343
The race occurs as:
1. do_mq_timedreceive calls wq_sleep with the address of `struct
ext_wait_queue` on function stack (aliased as `ewq_addr` here) - it
holds a valid `struct ext_wait_queue *` as long as the stack has not
been overwritten.
2. `ewq_addr` gets added to info->e_wait_q[RECV].list in wq_add, and
do_mq_timedsend receives it via wq_get_first_waiter(info, RECV) to call
__pipelined_op.
3. Sender calls __pipelined_op::smp_store_release(&this->state,
STATE_READY). Here is where the race window begins. (`this` is
`ewq_addr`.)
4. If the receiver wakes up now in do_mq_timedreceive::wq_sleep, it
will see `state == STATE_READY` and break.
5. do_mq_timedreceive returns, and `ewq_addr` is no longer guaranteed
to be a `struct ext_wait_queue *` since it was on do_mq_timedreceive's
stack. (Although the address may not get overwritten until another
function happens to touch it, which means it can persist around for an
indefinite time.)
6. do_mq_timedsend::__pipelined_op() still believes `ewq_addr` is a
`struct ext_wait_queue *`, and uses it to find a task_struct to pass to
the wake_q_add_safe call. In the lucky case where nothing has
overwritten `ewq_addr` yet, `ewq_addr->task` is the right task_struct.
In the unlucky case, __pipelined_op::wake_q_add_safe gets handed a
bogus address as the receiver's task_struct causing the crash.
do_mq_timedsend::__pipelined_op() should not dereference `this` after
setting STATE_READY, as the receiver counterpart is now free to return.
Change __pipelined_op to call wake_q_add_safe on the receiver's
task_struct returned by get_task_struct, instead of dereferencing `this`
which sits on the receiver's stack.
As Manfred pointed out, the race potentially also exists in
ipc/msg.c::expunge_all and ipc/sem.c::wake_up_sem_queue_prepare. Fix
those in the same way.
CWE: CWE-672: Operation on a Resource after Expiration or Release
CVSS Source: NVD
CVSS Base score: 7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2021-47073
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
platform/x86: dell-smbios-wmi: Fix oops on rmmod dell_smbios
init_dell_smbios_wmi() only registers the dell_smbios_wmi_driver on systems
where the Dell WMI interface is supported. While exit_dell_smbios_wmi()
unregisters it unconditionally, this leads to the following oops:
[ 175.722921] ------------[ cut here ]------------
[ 175.722925] Unexpected driver unregister!
[ 175.722939] WARNING: CPU: 1 PID: 3630 at drivers/base/driver.c:194 driver_unregister+0x38/0x40
...
[ 175.723089] Call Trace:
[ 175.723094] cleanup_module+0x5/0xedd [dell_smbios]
...
[ 175.723148] ---[ end trace 064c34e1ad49509d ]---
Make the unregister happen on the same condition the register happens
to fix this.
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47236
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an error related to tx fixup skb leak. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47310
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net: ti: fix UAF in tlan_remove_one
priv is netdev private data and it cannot be
used after free_netdev() call. Using priv after free_netdev()
can cause UAF bug. Fix it by moving free_netdev() at the end of the
function.
CWE: CWE-416: Use After Free
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2021-47311
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net: qcom/emac: fix UAF in emac_remove
adpt is netdev private data and it cannot be
used after free_netdev() call. Using adpt after free_netdev()
can cause UAF bug. Fix it by moving free_netdev() at the end of the
function.
CWE: CWE-416: Use After Free
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2021-47353
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
udf: Fix NULL pointer dereference in udf_symlink function
In function udf_symlink, epos.bh is assigned with the value returned
by udf_tgetblk. The function udf_tgetblk is defined in udf/misc.c
and returns the value of sb_getblk function that could be NULL.
Then, epos.bh is used without any check, causing a possible
NULL pointer dereference when sb_getblk fails.
This fix adds a check to validate the value of epos.bh.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47356
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
mISDN: fix possible use-after-free in HFC_cleanup()
This module's remove path calls del_timer(). However, that function
does not wait until the timer handler finishes. This means that the
timer handler may still be running after the driver's remove function
has finished, which would result in a use-after-free.
Fix by calling del_timer_sync(), which makes sure the timer handler
has finished, and unable to re-schedule itself.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 6.7
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2021-47456
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
can: peak_pci: peak_pci_remove(): fix UAF
When remove the module peek_pci, referencing 'chan' again after
releasing 'dev' will cause UAF.
Fix this by releasing 'dev' later.
The following log reveals it:
[ 35.961814 ] BUG: KASAN: use-after-free in peak_pci_remove+0x16f/0x270 [peak_pci]
[ 35.963414 ] Read of size 8 at addr ffff888136998ee8 by task modprobe/5537
[ 35.965513 ] Call Trace:
[ 35.965718 ] dump_stack_lvl+0xa8/0xd1
[ 35.966028 ] print_address_description+0x87/0x3b0
[ 35.966420 ] kasan_report+0x172/0x1c0
[ 35.966725 ] ? peak_pci_remove+0x16f/0x270 [peak_pci]
[ 35.967137 ] ? trace_irq_enable_rcuidle+0x10/0x170
[ 35.967529 ] ? peak_pci_remove+0x16f/0x270 [peak_pci]
[ 35.967945 ] __asan_report_load8_noabort+0x14/0x20
[ 35.968346 ] peak_pci_remove+0x16f/0x270 [peak_pci]
[ 35.968752 ] pci_device_remove+0xa9/0x250
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47495
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by the lack of a sanity check for maxpacket. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-5090
DESCRIPTION: A flaw was found in KVM. An improper check in svm_set_x2apic_msr_interception() may allow direct access to host x2apic msrs when the guest resets its apic, potentially leading to a denial of service condition.
CWE: CWE-755: Improper Handling of Exceptional Conditions
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52464
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
EDAC/thunderx: Fix possible out-of-bounds string access
Enabling -Wstringop-overflow globally exposes a warning for a common bug
in the usage of strncat():
drivers/edac/thunderx_edac.c: In function 'thunderx_ocx_com_threaded_isr':
drivers/edac/thunderx_edac.c:1136:17: error: 'strncat' specified bound 1024 equals destination size [-Werror=stringop-overflow=]
1136 | strncat(msg, other, OCX_MESSAGE_SIZE);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
...
1145 | strncat(msg, other, OCX_MESSAGE_SIZE);
...
1150 | strncat(msg, other, OCX_MESSAGE_SIZE);
...
Apparently the author of this driver expected strncat() to behave the
way that strlcat() does, which uses the size of the destination buffer
as its third argument rather than the length of the source buffer. The
result is that there is no check on the size of the allocated buffer.
Change it to strlcat().
[ bp: Trim compiler output, fixup commit message. ]
CWE: CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2023-52560
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
mm/damon/vaddr-test: fix memory leak in damon_do_test_apply_three_regions()
When CONFIG_DAMON_VADDR_KUNIT_TEST=y and making CONFIG_DEBUG_KMEMLEAK=y
and CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN=y, the below memory leak is detected.
Since commit 9f86d624292c ("mm/damon/vaddr-test: remove unnecessary
variables"), the damon_destroy_ctx() is removed, but still call
damon_new_target() and damon_new_region(), the damon_region which is
allocated by kmem_cache_alloc() in damon_new_region() and the damon_target
which is allocated by kmalloc in damon_new_target() are not freed. And
the damon_region which is allocated in damon_new_region() in
damon_set_regions() is also not freed.
So use damon_destroy_target to free all the damon_regions and damon_target.
unreferenced object 0xffff888107c9a940 (size 64):
comm "kunit_try_catch", pid 1069, jiffies 4294670592 (age 732.761s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 06 00 00 00 6b 6b 6b 6b ............kkkk
60 c7 9c 07 81 88 ff ff f8 cb 9c 07 81 88 ff ff `...............
backtrace:
[] kmalloc_trace+0x27/0xa0
[] damon_new_target+0x3f/0x1b0
[] damon_do_test_apply_three_regions.constprop.0+0x95/0x3e0
[] damon_test_apply_three_regions1+0x21e/0x260
[] kunit_generic_run_threadfn_adapter+0x4a/0x90
[] kthread+0x2b6/0x380
[] ret_from_fork+0x2d/0x70
[] ret_from_fork_asm+0x11/0x20
unreferenced object 0xffff8881079cc740 (size 56):
comm "kunit_try_catch", pid 1069, jiffies 4294670592 (age 732.761s)
hex dump (first 32 bytes):
05 00 00 00 00 00 00 00 14 00 00 00 00 00 00 00 ................
6b 6b 6b 6b 6b 6b 6b 6b 00 00 00 00 6b 6b 6b 6b kkkkkkkk....kkkk
backtrace:
[] damon_new_region+0x22/0x1c0
[] damon_do_test_apply_three_regions.constprop.0+0xd1/0x3e0
[] damon_test_apply_three_regions1+0x21e/0x260
[] kunit_generic_run_threadfn_adapter+0x4a/0x90
[] kthread+0x2b6/0x380
[] ret_from_fork+0x2d/0x70
[] ret_from_fork_asm+0x11/0x20
unreferenced object 0xffff888107c9ac40 (size 64):
comm "kunit_try_catch", pid 1071, jiffies 4294670595 (age 732.843s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 06 00 00 00 6b 6b 6b 6b ............kkkk
a0 cc 9c 07 81 88 ff ff 78 a1 76 07 81 88 ff ff ........x.v.....
backtrace:
[] kmalloc_trace+0x27/0xa0
[] damon_new_target+0x3f/0x1b0
[] damon_do_test_apply_three_regions.constprop.0+0x95/0x3e0
[] damon_test_apply_three_regions2+0x21e/0x260
[] kunit_generic_run_threadfn_adapter+0x4a/0x90
[] kthread+0x2b6/0x380
[] ret_from_fork+0x2d/0x70
[] ret_from_fork_asm+0x11/0x20
unreferenced object 0xffff8881079ccc80 (size 56):
comm "kunit_try_catch", pid 1071, jiffies 4294670595 (age 732.843s)
hex dump (first 32 bytes):
05 00 00 00 00 00 00 00 14 00 00 00 00 00 00 00 ................
6b 6b 6b 6b 6b 6b 6b 6b 00 00 00 00 6b 6b 6b 6b kkkkkkkk....kkkk
backtrace:
[] damon_new_region+0x22/0x1c0
[] damon_do_test_apply_three_regions.constprop.0+0xd1/0x3e0
[] damon_test_apply_three_regions2+0x21e/0x260
[] kunit_generic_run_threadfn_adapter+0x4a/0x90
[] kthread+0x2b6/0x380
[] ret_from_fork+0x2d/0x70
[
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: IBM X-Force
CVSS Base score: 3.3
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L)
CVEID: CVE-2023-52615
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
hwrng: core - Fix page fault dead lock on mmap-ed hwrng
There is a dead-lock in the hwrng device read path. This triggers
when the user reads from /dev/hwrng into memory also mmap-ed from
/dev/hwrng. The resulting page fault triggers a recursive read
which then dead-locks.
Fix this by using a stack buffer when calling copy_to_user.
CWE: CWE-667: Improper Locking
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52626
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix operation precedence bug in port timestamping napi_poll context
Indirection (*) is of lower precedence than postfix increment (++). Logic
in napi_poll context would cause an out-of-bound read by first increment
the pointer address by byte address space and then dereference the value.
Rather, the intended logic was to dereference first and then increment the
underlying value.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: NVD
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2023-52667
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: fix a potential double-free in fs_any_create_groups
When kcalloc() for ft->g succeeds but kvzalloc() for in fails,
fs_any_create_groups() will free ft->g. However, its caller
fs_any_create_table() will free ft->g again through calling
mlx5e_destroy_flow_table(), which will lead to a double-free.
Fix this by setting ft->g to NULL in fs_any_create_groups().
CWE: CWE-415: Double Free
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2023-52669
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a buffer overread in CTR mode. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52675
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by the lack of a null pointer check in update_events_in_group(). By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52686
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by the lack of a null pointer check in opal_event_init(). By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52700
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a kernel warning when sending SYN message. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52703
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an error related to act_len in usb_bulk_msg error path. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-15: External Control of System or Configuration Setting
CVSS Source: IBM X-Force
CVSS Base score: 3.3
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L)
CVEID: CVE-2023-52781
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an iteration issue in 'usb_get_bos_descriptor()'. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52813
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
crypto: pcrypt - Fix hungtask for PADATA_RESET
We found a hungtask bug in test_aead_vec_cfg as follows:
INFO: task cryptomgr_test:391009 blocked for more than 120 seconds.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
Call trace:
__switch_to+0x98/0xe0
__schedule+0x6c4/0xf40
schedule+0xd8/0x1b4
schedule_timeout+0x474/0x560
wait_for_common+0x368/0x4e0
wait_for_completion+0x20/0x30
wait_for_completion+0x20/0x30
test_aead_vec_cfg+0xab4/0xd50
test_aead+0x144/0x1f0
alg_test_aead+0xd8/0x1e0
alg_test+0x634/0x890
cryptomgr_test+0x40/0x70
kthread+0x1e0/0x220
ret_from_fork+0x10/0x18
Kernel panic - not syncing: hung_task: blocked tasks
For padata_do_parallel, when the return err is 0 or -EBUSY, it will call
wait_for_completion(&wait->completion) in test_aead_vec_cfg. In normal
case, aead_request_complete() will be called in pcrypt_aead_serial and the
return err is 0 for padata_do_parallel. But, when pinst->flags is
PADATA_RESET, the return err is -EBUSY for padata_do_parallel, and it
won't call aead_request_complete(). Therefore, test_aead_vec_cfg will
hung at wait_for_completion(&wait->completion), which will cause
hungtask.
The problem comes as following:
(padata_do_parallel) |
rcu_read_lock_bh(); |
err = -EINVAL; | (padata_replace)
| pinst->flags |= PADATA_RESET;
err = -EBUSY |
if (pinst->flags & PADATA_RESET) |
rcu_read_unlock_bh() |
return err
In order to resolve the problem, we replace the return err -EBUSY with
-EAGAIN, which means parallel_data is changing, and the caller should call
it again.
v3:
remove retry and just change the return err.
v2:
introduce padata_try_do_parallel() in pcrypt_aead_encrypt and
pcrypt_aead_decrypt to solve the hungtask.
CWE: CWE-833: Deadlock
CVSS Source: Red Hat
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52835
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an out-of-bounds read. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52877
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
usb: typec: tcpm: Fix NULL pointer dereference in tcpm_pd_svdm()
It is possible that typec_register_partner() returns ERR_PTR on failure.
When port->partner is an error, a NULL pointer dereference may occur as
shown below.
[91222.095236][ T319] typec port0: failed to register partner (-17)
...
[91225.061491][ T319] Unable to handle kernel NULL pointer dereference
at virtual address 000000000000039f
[91225.274642][ T319] pc : tcpm_pd_data_request+0x310/0x13fc
[91225.274646][ T319] lr : tcpm_pd_data_request+0x298/0x13fc
[91225.308067][ T319] Call trace:
[91225.308070][ T319] tcpm_pd_data_request+0x310/0x13fc
[91225.308073][ T319] tcpm_pd_rx_handler+0x100/0x9e8
[91225.355900][ T319] kthread_worker_fn+0x178/0x58c
[91225.355902][ T319] kthread+0x150/0x200
[91225.355905][ T319] ret_from_fork+0x10/0x30
Add a check for port->partner to avoid dereferencing a NULL pointer.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52878
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an error related can_put_echo_skb(): don't crash kernel if can_priv::echo_skb is accessed out of bounds. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52881
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
tcp: do not accept ACK of bytes we never sent
This patch is based on a detailed report and ideas from Yepeng Pan
and Christian Rossow.
ACK seq validation is currently following RFC 5961 5.2 guidelines:
The ACK value is considered acceptable only if
it is in the range of ((SND.UNA - MAX.SND.WND) <= SEG.ACK <=
SND.NXT). All incoming segments whose ACK value doesn't satisfy the
above condition MUST be discarded and an ACK sent back. It needs to
be noted that RFC 793 on page 72 (fifth check) says: "If the ACK is a
duplicate (SEG.ACK < SND.UNA), it can be ignored. If the ACK
acknowledges something not yet sent (SEG.ACK > SND.NXT) then send an
ACK, drop the segment, and return". The "ignored" above implies that
the processing of the incoming data segment continues, which means
the ACK value is treated as acceptable. This mitigation makes the
ACK check more stringent since any ACK < SND.UNA wouldn't be
accepted, instead only ACKs that are in the range ((SND.UNA -
MAX.SND.WND) <= SEG.ACK <= SND.NXT) get through.
This can be refined for new (and possibly spoofed) flows,
by not accepting ACK for bytes that were never sent.
This greatly improves TCP security at a little cost.
I added a Fixes: tag to make sure this patch will reach stable trees,
even if the 'blamed' patch was adhering to the RFC.
tp->bytes_acked was added in linux-4.2
Following packetdrill test (courtesy of Yepeng Pan) shows
the issue at hand:
0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3
+0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0
+0 bind(3, ..., ...) = 0
+0 listen(3, 1024) = 0
// ---------------- Handshake ------------------- //
// when window scale is set to 14 the window size can be extended to
// 65535 * (2^14) = 1073725440. Linux would accept an ACK packet
// with ack number in (Server_ISN+1-1073725440. Server_ISN+1)
// ,though this ack number acknowledges some data never
// sent by the server.
+0 < S 0:0(0) win 65535
+0 > S. 0:0(0) ack 1 <...>
+0 < . 1:1(0) ack 1 win 65535
+0 accept(3, ..., ...) = 4
// For the established connection, we send an ACK packet,
// the ack packet uses ack number 1 - 1073725300 + 2^32,
// where 2^32 is used to wrap around.
// Note: we used 1073725300 instead of 1073725440 to avoid possible
// edge cases.
// 1 - 1073725300 + 2^32 = 3221241997
// Oops, old kernels happily accept this packet.
+0 < . 1:1001(1000) ack 3221241997 win 65535
// After the kernel fix the following will be replaced by a challenge ACK,
// and prior malicious frame would be dropped.
+0 > . 1:1(0) ack 1001
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 5.9
CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26583
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a race condition in the tls subsystem. By sending a specially crafted request, a local attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: IBM X-Force
CVSS Base score: 5.1
CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26584
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw when setting the CRYPTO_TFM_REQ_MAY_BACKLOG flag on requests to the crypto API in the tls subsystem. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-755: Improper Handling of Exceptional Conditions
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26585
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a race condition when submitting thread in the tls subsystem. By sending a specially crafted request, a local attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: IBM X-Force
CVSS Base score: 5.1
CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26656
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix use-after-free bug
The bug can be triggered by sending a single amdgpu_gem_userptr_ioctl
to the AMDGPU DRM driver on any ASICs with an invalid address and size.
The bug was reported by Joonkyo Jung .
For example the following code:
static void Syzkaller1(int fd)
{
struct drm_amdgpu_gem_userptr arg;
int ret;
arg.addr = 0xffffffffffff0000;
arg.size = 0x80000000; /*2 Gb*/
arg.flags = 0x7;
ret = drmIoctl(fd, 0xc1186451/*amdgpu_gem_userptr_ioctl*/, &arg);
}
Due to the address and size are not valid there is a failure in
amdgpu_hmm_register->mmu_interval_notifier_insert->__mmu_interval_notifier_insert->
check_shl_overflow, but we even the amdgpu_hmm_register failure we still call
amdgpu_hmm_unregister into amdgpu_gem_object_free which causes access to a bad address.
The following stack is below when the issue is reproduced when Kazan is enabled:
[ +0.000014] Hardware name: ASUS System Product Name/ROG STRIX B550-F GAMING (WI-FI), BIOS 1401 12/03/2020
[ +0.000009] RIP: 0010:mmu_interval_notifier_remove+0x327/0x340
[ +0.000017] Code: ff ff 49 89 44 24 08 48 b8 00 01 00 00 00 00 ad de 4c 89 f7 49 89 47 40 48 83 c0 22 49 89 47 48 e8 ce d1 2d 01 e9 32 ff ff ff <0f> 0b e9 16 ff ff ff 4c 89 ef e8 fa 14 b3 ff e9 36 ff ff ff e8 80
[ +0.000014] RSP: 0018:ffffc90002657988 EFLAGS: 00010246
[ +0.000013] RAX: 0000000000000000 RBX: 1ffff920004caf35 RCX: ffffffff8160565b
[ +0.000011] RDX: dffffc0000000000 RSI: 0000000000000004 RDI: ffff8881a9f78260
[ +0.000010] RBP: ffffc90002657a70 R08: 0000000000000001 R09: fffff520004caf25
[ +0.000010] R10: 0000000000000003 R11: ffffffff8161d1d6 R12: ffff88810e988c00
[ +0.000010] R13: ffff888126fb5a00 R14: ffff88810e988c0c R15: ffff8881a9f78260
[ +0.000011] FS: 00007ff9ec848540(0000) GS:ffff8883cc880000(0000) knlGS:0000000000000000
[ +0.000012] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ +0.000010] CR2: 000055b3f7e14328 CR3: 00000001b5770000 CR4: 0000000000350ef0
[ +0.000010] Call Trace:
[ +0.000006]
[ +0.000007] ? show_regs+0x6a/0x80
[ +0.000018] ? __warn+0xa5/0x1b0
[ +0.000019] ? mmu_interval_notifier_remove+0x327/0x340
[ +0.000018] ? report_bug+0x24a/0x290
[ +0.000022] ? handle_bug+0x46/0x90
[ +0.000015] ? exc_invalid_op+0x19/0x50
[ +0.000016] ? asm_exc_invalid_op+0x1b/0x20
[ +0.000017] ? kasan_save_stack+0x26/0x50
[ +0.000017] ? mmu_interval_notifier_remove+0x23b/0x340
[ +0.000019] ? mmu_interval_notifier_remove+0x327/0x340
[ +0.000019] ? mmu_interval_notifier_remove+0x23b/0x340
[ +0.000020] ? __pfx_mmu_interval_notifier_remove+0x10/0x10
[ +0.000017] ? kasan_save_alloc_info+0x1e/0x30
[ +0.000018] ? srso_return_thunk+0x5/0x5f
[ +0.000014] ? __kasan_kmalloc+0xb1/0xc0
[ +0.000018] ? srso_return_thunk+0x5/0x5f
[ +0.000013] ? __kasan_check_read+0x11/0x20
[ +0.000020] amdgpu_hmm_unregister+0x34/0x50 [amdgpu]
[ +0.004695] amdgpu_gem_object_free+0x66/0xa0 [amdgpu]
[ +0.004534] ? __pfx_amdgpu_gem_object_free+0x10/0x10 [amdgpu]
[ +0.004291] ? do_syscall_64+0x5f/0xe0
[ +0.000023] ? srso_return_thunk+0x5/0x5f
[ +0.000017] drm_gem_object_free+0x3b/0x50 [drm]
[ +0.000489] amdgpu_gem_userptr_ioctl+0x306/0x500 [amdgpu]
[ +0.004295] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu]
[ +0.004270] ? srso_return_thunk+0x5/0x5f
[ +0.000014] ? __this_cpu_preempt_check+0x13/0x20
[ +0.000015] ? srso_return_thunk+0x5/0x5f
[ +0.000013] ? sysvec_apic_timer_interrupt+0x57/0xc0
[ +0.000020] ? srso_return_thunk+0x5/0x5f
[ +0.000014] ? asm_sysvec_apic_timer_interrupt+0x1b/0x20
[ +0.000022] ? drm_ioctl_kernel+0x17b/0x1f0 [drm]
[ +0.000496] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu]
[ +0.004272] ? drm_ioctl_kernel+0x190/0x1f0 [drm]
[ +0.000492] drm_ioctl_kernel+0x140/0x1f0 [drm]
[ +0.000497] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu]
[ +0.004297] ? __pfx_drm_ioctl_kernel+0x10/0x10 [d
---truncated---
CWE: CWE-416: Use After Free
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26675
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
ppp_async: limit MRU to 64K
syzbot triggered a warning [1] in __alloc_pages():
WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)
Willem fixed a similar issue in commit c0a2a1b0d631 ("ppp: limit MRU to 64K")
Adopt the same sanity check for ppp_async_ioctl(PPPIOCSMRU)
[1]:
WARNING: CPU: 1 PID: 11 at mm/page_alloc.c:4543 __alloc_pages+0x308/0x698 mm/page_alloc.c:4543
Modules linked in:
CPU: 1 PID: 11 Comm: kworker/u4:0 Not tainted 6.8.0-rc2-syzkaller-g41bccc98fb79 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/17/2023
Workqueue: events_unbound flush_to_ldisc
pstate: 204000c5 (nzCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __alloc_pages+0x308/0x698 mm/page_alloc.c:4543
lr : __alloc_pages+0xc8/0x698 mm/page_alloc.c:4537
sp : ffff800093967580
x29: ffff800093967660 x28: ffff8000939675a0 x27: dfff800000000000
x26: ffff70001272ceb4 x25: 0000000000000000 x24: ffff8000939675c0
x23: 0000000000000000 x22: 0000000000060820 x21: 1ffff0001272ceb8
x20: ffff8000939675e0 x19: 0000000000000010 x18: ffff800093967120
x17: ffff800083bded5c x16: ffff80008ac97500 x15: 0000000000000005
x14: 1ffff0001272cebc x13: 0000000000000000 x12: 0000000000000000
x11: ffff70001272cec1 x10: 1ffff0001272cec0 x9 : 0000000000000001
x8 : ffff800091c91000 x7 : 0000000000000000 x6 : 000000000000003f
x5 : 00000000ffffffff x4 : 0000000000000000 x3 : 0000000000000020
x2 : 0000000000000008 x1 : 0000000000000000 x0 : ffff8000939675e0
Call trace:
__alloc_pages+0x308/0x698 mm/page_alloc.c:4543
__alloc_pages_node include/linux/gfp.h:238 [inline]
alloc_pages_node include/linux/gfp.h:261 [inline]
__kmalloc_large_node+0xbc/0x1fc mm/slub.c:3926
__do_kmalloc_node mm/slub.c:3969 [inline]
__kmalloc_node_track_caller+0x418/0x620 mm/slub.c:4001
kmalloc_reserve+0x17c/0x23c net/core/skbuff.c:590
__alloc_skb+0x1c8/0x3d8 net/core/skbuff.c:651
__netdev_alloc_skb+0xb8/0x3e8 net/core/skbuff.c:715
netdev_alloc_skb include/linux/skbuff.h:3235 [inline]
dev_alloc_skb include/linux/skbuff.h:3248 [inline]
ppp_async_input drivers/net/ppp/ppp_async.c:863 [inline]
ppp_asynctty_receive+0x588/0x186c drivers/net/ppp/ppp_async.c:341
tty_ldisc_receive_buf+0x12c/0x15c drivers/tty/tty_buffer.c:390
tty_port_default_receive_buf+0x74/0xac drivers/tty/tty_port.c:37
receive_buf drivers/tty/tty_buffer.c:444 [inline]
flush_to_ldisc+0x284/0x6e4 drivers/tty/tty_buffer.c:494
process_one_work+0x694/0x1204 kernel/workqueue.c:2633
process_scheduled_works kernel/workqueue.c:2706 [inline]
worker_thread+0x938/0xef4 kernel/workqueue.c:2787
kthread+0x288/0x310 kernel/kthread.c:388
ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:860
CWE: CWE-770: Allocation of Resources Without Limits or Throttling
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26735
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
ipv6: sr: fix possible use-after-free and null-ptr-deref
The pernet operations structure for the subsystem must be registered
before registering the generic netlink family.
CWE: CWE-416: Use After Free
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26759
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
mm/swap: fix race when skipping swapcache
When skipping swapcache for SWP_SYNCHRONOUS_IO, if two or more threads
swapin the same entry at the same time, they get different pages (A, B).
Before one thread (T0) finishes the swapin and installs page (A) to the
PTE, another thread (T1) could finish swapin of page (B), swap_free the
entry, then swap out the possibly modified page reusing the same entry.
It breaks the pte_same check in (T0) because PTE value is unchanged,
causing ABA problem. Thread (T0) will install a stalled page (A) into the
PTE and cause data corruption.
One possible callstack is like this:
CPU0 CPU1
---- ----
do_swap_page() do_swap_page() with same entry
swap_read_folio() <- read to page A swap_read_folio() <- read to page B
... set_pte_at()
swap_free() <- entry is free
pte_same() <- Check pass, PTE seems
unchanged, but page A
is stalled!
swap_free() <- page B content lost!
set_pte_at() <- staled page A installed!
And besides, for ZRAM, swap_free() allows the swap device to discard the
entry content, so even if page (B) is not modified, if swap_read_folio()
on CPU0 happens later than swap_free() on CPU1, it may also cause data
loss.
To fix this, reuse swapcache_prepare which will pin the swap entry using
the cache flag, and allow only one thread to swap it in, also prevent any
parallel code from putting the entry in the cache. Release the pin after
PT unlocked.
Racers just loop and wait since it's a rare and very short event. A
schedule_timeout_uninterruptible(1) call is added to avoid repeated page
faults wasting too much CPU, causing livelock or adding too much noise to
perf statistics. A similar livelock issue was described in commit
029c4628b2eb ("mm: swap: get rid of livelock in swapin readahead")
Reproducer:
This race issue can be triggered easily using a well constructed
reproducer and patched brd (with a delay in read path) [1]:
With latest 6.8 mainline, race caused data loss can be observed easily:
$ gcc -g -lpthread test-thread-swap-race.c && ./a.out
Polulating 32MB of memory region...
Keep swapping out...
Starting round 0...
Spawning 65536 workers...
32746 workers spawned, wait for done...
Round 0: Error on 0x5aa00, expected 32746, got 32743, 3 data loss!
Round 0: Error on 0x395200, expected 32746, got 32743, 3 data loss!
Round 0: Error on 0x3fd000, expected 32746, got 32737, 9 data loss!
Round 0 Failed, 15 data loss!
This reproducer spawns multiple threads sharing the same memory region
using a small swap device. Every two threads updates mapped pages one by
one in opposite direction trying to create a race, with one dedicated
thread keep swapping out the data out using madvise.
The reproducer created a reproduce rate of about once every 5 minutes, so
the race should be totally possible in production.
After this patch, I ran the reproducer for over a few hundred rounds and
no data loss observed.
Performance overhead is minimal, microbenchmark swapin 10G from 32G
zram:
Before: 10934698 us
After: 11157121 us
Cached: 13155355 us (Dropping SWP_SYNCHRONOUS_IO flag)
[kasong@tencent.com: v4]
Link: https://lkml.kernel.org/r/20240219082040.7495-1-ryncsn@gmail.com
CWE: CWE-787: Out-of-bounds Write
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26801
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Avoid potential use-after-free in hci_error_reset
While handling the HCI_EV_HARDWARE_ERROR event, if the underlying
BT controller is not responding, the GPIO reset mechanism would
free the hci_dev and lead to a use-after-free in hci_error_reset.
Here's the call trace observed on a ChromeOS device with Intel AX201:
queue_work_on+0x3e/0x6c
__hci_cmd_sync_sk+0x2ee/0x4c0 [bluetooth ]
? init_wait_entry+0x31/0x31
__hci_cmd_sync+0x16/0x20 [bluetooth ]
hci_error_reset+0x4f/0xa4 [bluetooth ]
process_one_work+0x1d8/0x33f
worker_thread+0x21b/0x373
kthread+0x13a/0x152
? pr_cont_work+0x54/0x54
? kthread_blkcg+0x31/0x31
ret_from_fork+0x1f/0x30
This patch holds the reference count on the hci_dev while processing
a HCI_EV_HARDWARE_ERROR event to avoid potential crash.
CWE: CWE-416: Use After Free
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26804
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net: ip_tunnel: prevent perpetual headroom growth
syzkaller triggered following kasan splat:
BUG: KASAN: use-after-free in __skb_flow_dissect+0x19d1/0x7a50 net/core/flow_dissector.c:1170
Read of size 1 at addr ffff88812fb4000e by task syz-executor183/5191
[..]
kasan_report+0xda/0x110 mm/kasan/report.c:588
__skb_flow_dissect+0x19d1/0x7a50 net/core/flow_dissector.c:1170
skb_flow_dissect_flow_keys include/linux/skbuff.h:1514 [inline]
___skb_get_hash net/core/flow_dissector.c:1791 [inline]
__skb_get_hash+0xc7/0x540 net/core/flow_dissector.c:1856
skb_get_hash include/linux/skbuff.h:1556 [inline]
ip_tunnel_xmit+0x1855/0x33c0 net/ipv4/ip_tunnel.c:748
ipip_tunnel_xmit+0x3cc/0x4e0 net/ipv4/ipip.c:308
__netdev_start_xmit include/linux/netdevice.h:4940 [inline]
netdev_start_xmit include/linux/netdevice.h:4954 [inline]
xmit_one net/core/dev.c:3548 [inline]
dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3564
__dev_queue_xmit+0x7c1/0x3d60 net/core/dev.c:4349
dev_queue_xmit include/linux/netdevice.h:3134 [inline]
neigh_connected_output+0x42c/0x5d0 net/core/neighbour.c:1592
...
ip_finish_output2+0x833/0x2550 net/ipv4/ip_output.c:235
ip_finish_output+0x31/0x310 net/ipv4/ip_output.c:323
..
iptunnel_xmit+0x5b4/0x9b0 net/ipv4/ip_tunnel_core.c:82
ip_tunnel_xmit+0x1dbc/0x33c0 net/ipv4/ip_tunnel.c:831
ipgre_xmit+0x4a1/0x980 net/ipv4/ip_gre.c:665
__netdev_start_xmit include/linux/netdevice.h:4940 [inline]
netdev_start_xmit include/linux/netdevice.h:4954 [inline]
xmit_one net/core/dev.c:3548 [inline]
dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3564
...
The splat occurs because skb->data points past skb->head allocated area.
This is because neigh layer does:
__skb_pull(skb, skb_network_offset(skb));
... but skb_network_offset() returns a negative offset and __skb_pull()
arg is unsigned. IOW, we skb->data gets "adjusted" by a huge value.
The negative value is returned because skb->head and skb->data distance is
more than 64k and skb->network_header (u16) has wrapped around.
The bug is in the ip_tunnel infrastructure, which can cause
dev->needed_headroom to increment ad infinitum.
The syzkaller reproducer consists of packets getting routed via a gre
tunnel, and route of gre encapsulated packets pointing at another (ipip)
tunnel. The ipip encapsulation finds gre0 as next output device.
This results in the following pattern:
1). First packet is to be sent out via gre0.
Route lookup found an output device, ipip0.
2).
ip_tunnel_xmit for gre0 bumps gre0->needed_headroom based on the future
output device, rt.dev->needed_headroom (ipip0).
3).
ip output / start_xmit moves skb on to ipip0. which runs the same
code path again (xmit recursion).
4).
Routing step for the post-gre0-encap packet finds gre0 as output device
to use for ipip0 encapsulated packet.
tunl0->needed_headroom is then incremented based on the (already bumped)
gre0 device headroom.
This repeats for every future packet:
gre0->needed_headroom gets inflated because previous packets' ipip0 step
incremented rt->dev (gre0) headroom, and ipip0 incremented because gre0
needed_headroom was increased.
For each subsequent packet, gre/ipip0->needed_headroom grows until
post-expand-head reallocations result in a skb->head/data distance of
more than 64k.
Once that happens, skb->network_header (u16) wraps around when
pskb_expand_head tries to make sure that skb_network_offset() is unchanged
after the headroom expansion/reallocation.
After this skb_network_offset(skb) returns a different (and negative)
result post headroom expansion.
The next trip to neigh layer (or anything else that would __skb_pull the
network header) makes skb->data point to a memory location outside
skb->head area.
v2: Cap the needed_headroom update to an arbitarily chosen upperlimit to
prevent perpetual increase instead of dropping the headroom increment
completely.
CWE: CWE-416: Use After Free
CVSS Source: CISA ADP
CVSS Base score: 5.3
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L)
CVEID: CVE-2024-26826
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix data re-injection from stale subflow
When the MPTCP PM detects that a subflow is stale, all the packet
scheduler must re-inject all the mptcp-level unacked data. To avoid
acquiring unneeded locks, it first try to check if any unacked data
is present at all in the RTX queue, but such check is currently
broken, as it uses TCP-specific helper on an MPTCP socket.
Funnily enough fuzzers and static checkers are happy, as the accessed
memory still belongs to the mptcp_sock struct, and even from a
functional perspective the recovery completed successfully, as
the short-cut test always failed.
A recent unrelated TCP change - commit d5fed5addb2b ("tcp: reorganize
tcp_sock fast path variables") - exposed the issue, as the tcp field
reorganization makes the mptcp code always skip the re-inection.
Fix the issue dropping the bogus call: we are on a slow path, the early
optimization proved once again to be evil.
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26859
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net/bnx2x: Prevent access to a freed page in page_pool
Fix race condition leading to system crash during EEH error handling
During EEH error recovery, the bnx2x driver's transmit timeout logic
could cause a race condition when handling reset tasks. The
bnx2x_tx_timeout() schedules reset tasks via bnx2x_sp_rtnl_task(),
which ultimately leads to bnx2x_nic_unload(). In bnx2x_nic_unload()
SGEs are freed using bnx2x_free_rx_sge_range(). However, this could
overlap with the EEH driver's attempt to reset the device using
bnx2x_io_slot_reset(), which also tries to free SGEs. This race
condition can result in system crashes due to accessing freed memory
locations in bnx2x_free_rx_sge()
799 static inline void bnx2x_free_rx_sge(struct bnx2x *bp,
800 struct bnx2x_fastpath *fp, u16 index)
801 {
802 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
803 struct page *page = sw_buf->page;
....
where sw_buf was set to NULL after the call to dma_unmap_page()
by the preceding thread.
EEH: Beginning: 'slot_reset'
PCI 0011:01:00.0#10000: EEH: Invoking bnx2x->slot_reset()
bnx2x: [bnx2x_io_slot_reset:14228(eth1)]IO slot reset initializing...
bnx2x 0011:01:00.0: enabling device (0140 -> 0142)
bnx2x: [bnx2x_io_slot_reset:14244(eth1)]IO slot reset --> driver unload
Kernel attempted to read user page (0) - exploit attempt? (uid: 0)
BUG: Kernel NULL pointer dereference on read at 0x00000000
Faulting instruction address: 0xc0080000025065fc
Oops: Kernel access of bad area, sig: 11 [#1]
.....
Call Trace:
[c000000003c67a20] [c00800000250658c] bnx2x_io_slot_reset+0x204/0x610 [bnx2x] (unreliable)
[c000000003c67af0] [c0000000000518a8] eeh_report_reset+0xb8/0xf0
[c000000003c67b60] [c000000000052130] eeh_pe_report+0x180/0x550
[c000000003c67c70] [c00000000005318c] eeh_handle_normal_event+0x84c/0xa60
[c000000003c67d50] [c000000000053a84] eeh_event_handler+0xf4/0x170
[c000000003c67da0] [c000000000194c58] kthread+0x1c8/0x1d0
[c000000003c67e10] [c00000000000cf64] ret_from_kernel_thread+0x5c/0x64
To solve this issue, we need to verify page pool allocations before
freeing.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26906
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an error related to vsyscall page read for copy_from_kernel_nofault(). By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26907
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to gain elevated privileges on the system, caused by an error related to fortifying source warning while accessing Eth segment. An attacker could exploit this vulnerability to gain elevated privileges on the system.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-26974
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
crypto: qat - resolve race condition during AER recovery
During the PCI AER system's error recovery process, the kernel driver
may encounter a race condition with freeing the reset_data structure's
memory. If the device restart will take more than 10 seconds the function
scheduling that restart will exit due to a timeout, and the reset_data
structure will be freed. However, this data structure is used for
completion notification after the restart is completed, which leads
to a UAF bug.
This results in a KFENCE bug notice.
BUG: KFENCE: use-after-free read in adf_device_reset_worker+0x38/0xa0 [intel_qat]
Use-after-free read at 0x00000000bc56fddf (in kfence-#142):
adf_device_reset_worker+0x38/0xa0 [intel_qat]
process_one_work+0x173/0x340
To resolve this race condition, the memory associated to the container
of the work_struct is freed on the worker if the timeout expired,
otherwise on the function that schedules the worker.
The timeout detection can be done by checking if the caller is
still waiting for completion or not by using completion_done() function.
CWE: CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition
CVSS Source: NVD
CVSS Base score: 7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-26982
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
Squashfs: check the inode number is not the invalid value of zero
Syskiller has produced an out of bounds access in fill_meta_index().
That out of bounds access is ultimately caused because the inode
has an inode number with the invalid value of zero, which was not checked.
The reason this causes the out of bounds access is due to following
sequence of events:
1. Fill_meta_index() is called to allocate (via empty_meta_index())
and fill a metadata index. It however suffers a data read error
and aborts, invalidating the newly returned empty metadata index.
It does this by setting the inode number of the index to zero,
which means unused (zero is not a valid inode number).
2. When fill_meta_index() is subsequently called again on another
read operation, locate_meta_index() returns the previous index
because it matches the inode number of 0. Because this index
has been returned it is expected to have been filled, and because
it hasn't been, an out of bounds access is performed.
This patch adds a sanity check which checks that the inode number
is not zero when the inode is created and returns -EINVAL if it is.
[phillip@squashfs.org.uk: whitespace fix]
Link: https://lkml.kernel.org/r/20240409204723.446925-1-phillip@squashfs.org…
CWE: CWE-125: Out-of-bounds Read
CVSS Source: NVD
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2024-27397
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: use timestamp to check for set element timeout
Add a timestamp field at the beginning of the transaction, store it
in the nftables per-netns area.
Update set backend .insert, .deactivate and sync gc path to use the
timestamp, this avoids that an element expires while control plane
transaction is still unfinished.
.lookup and .update, which are used from packet path, still use the
current time to check if the element has expired. And .get path and dump
also since this runs lockless under rcu read size lock. Then, there is
async gc which also needs to check the current time since it runs
asynchronously from a workqueue.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 7
CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-27410
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw when change the mesh ID and change interface to mesh mode at the same time in the WiFi module. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35789
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a use-after-free flaw when moving a station out of a VLAN and deleting the VLAN afterwards. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35835
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: fix a double-free in arfs_create_groups
When `in` allocated by kvzalloc fails, arfs_create_groups will free
ft->g and return an error. However, arfs_create_table, the only caller of
arfs_create_groups, will hold this error and call to
mlx5e_destroy_flow_table, in which the ft->g will be freed again.
CWE: CWE-415: Double Free
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35838
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a sta-link leak due to removing the station without ever marking links
valid in the WiFI module. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak')
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35845
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: dbg-tlv: ensure NUL termination
The iwl_fw_ini_debug_info_tlv is used as a string, so we must
ensure the string is terminated correctly before using it.
CWE: CWE-134: Use of Externally-Controlled Format String
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35852
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix memory leak when canceling rehash work
The rehash delayed work is rescheduled with a delay if the number of
credits at end of the work is not negative as supposedly it means that
the migration ended. Otherwise, it is rescheduled immediately.
After "mlxsw: spectrum_acl_tcam: Fix possible use-after-free during
rehash" the above is no longer accurate as a non-negative number of
credits is no longer indicative of the migration being done. It can also
happen if the work encountered an error in which case the migration will
resume the next time the work is scheduled.
The significance of the above is that it is possible for the work to be
pending and associated with hints that were allocated when the migration
started. This leads to the hints being leaked [1] when the work is
canceled while pending as part of ACL region dismantle.
Fix by freeing the hints if hints are associated with a work that was
canceled while pending.
Blame the original commit since the reliance on not having a pending
work associated with hints is fragile.
[1]
unreferenced object 0xffff88810e7c3000 (size 256):
comm "kworker/0:16", pid 176, jiffies 4295460353
hex dump (first 32 bytes):
00 30 95 11 81 88 ff ff 61 00 00 00 00 00 00 80 .0......a.......
00 00 61 00 40 00 00 00 00 00 00 00 04 00 00 00 ..a.@...........
backtrace (crc 2544ddb9):
[<00000000cf8cfab3>] kmalloc_trace+0x23f/0x2a0
[<000000004d9a1ad9>] objagg_hints_get+0x42/0x390
[<000000000b143cf3>] mlxsw_sp_acl_erp_rehash_hints_get+0xca/0x400
[<0000000059bdb60a>] mlxsw_sp_acl_tcam_vregion_rehash_work+0x868/0x1160
[<00000000e81fd734>] process_one_work+0x59c/0xf20
[<00000000ceee9e81>] worker_thread+0x799/0x12c0
[<00000000bda6fe39>] kthread+0x246/0x300
[<0000000070056d23>] ret_from_fork+0x34/0x70
[<00000000dea2b93e>] ret_from_fork_asm+0x1a/0x30
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35853
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix memory leak during rehash
The rehash delayed work migrates filters from one region to another.
This is done by iterating over all chunks (all the filters with the same
priority) in the region and in each chunk iterating over all the
filters.
If the migration fails, the code tries to migrate the filters back to
the old region. However, the rollback itself can also fail in which case
another migration will be erroneously performed. Besides the fact that
this ping pong is not a very good idea, it also creates a problem.
Each virtual chunk references two chunks: The currently used one
('vchunk->chunk') and a backup ('vchunk->chunk2'). During migration the
first holds the chunk we want to migrate filters to and the second holds
the chunk we are migrating filters from.
The code currently assumes - but does not verify - that the backup chunk
does not exist (NULL) if the currently used chunk does not reference the
target region. This assumption breaks when we are trying to rollback a
rollback, resulting in the backup chunk being overwritten and leaked
[1].
Fix by not rolling back a failed rollback and add a warning to avoid
future cases.
[1]
WARNING: CPU: 5 PID: 1063 at lib/parman.c:291 parman_destroy+0x17/0x20
Modules linked in:
CPU: 5 PID: 1063 Comm: kworker/5:11 Tainted: G W 6.9.0-rc2-custom-00784-gc6a05c468a0b #14
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
RIP: 0010:parman_destroy+0x17/0x20
[...]
Call Trace:
mlxsw_sp_acl_atcam_region_fini+0x19/0x60
mlxsw_sp_acl_tcam_region_destroy+0x49/0xf0
mlxsw_sp_acl_tcam_vregion_rehash_work+0x1f1/0x470
process_one_work+0x151/0x370
worker_thread+0x2cb/0x3e0
kthread+0xd0/0x100
ret_from_fork+0x34/0x50
ret_from_fork_asm+0x1a/0x30
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35854
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix possible use-after-free during rehash
The rehash delayed work migrates filters from one region to another
according to the number of available credits.
The migrated from region is destroyed at the end of the work if the
number of credits is non-negative as the assumption is that this is
indicative of migration being complete. This assumption is incorrect as
a non-negative number of credits can also be the result of a failed
migration.
The destruction of a region that still has filters referencing it can
result in a use-after-free [1].
Fix by not destroying the region if migration failed.
[1]
BUG: KASAN: slab-use-after-free in mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230
Read of size 8 at addr ffff8881735319e8 by task kworker/0:31/3858
CPU: 0 PID: 3858 Comm: kworker/0:31 Tainted: G W 6.9.0-rc2-custom-00782-gf2275c2157d8 #5
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
Call Trace:
dump_stack_lvl+0xc6/0x120
print_report+0xce/0x670
kasan_report+0xd7/0x110
mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230
mlxsw_sp_acl_ctcam_entry_del+0x2e/0x70
mlxsw_sp_acl_atcam_entry_del+0x81/0x210
mlxsw_sp_acl_tcam_vchunk_migrate_all+0x3cd/0xb50
mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300
process_one_work+0x8eb/0x19b0
worker_thread+0x6c9/0xf70
kthread+0x2c9/0x3b0
ret_from_fork+0x4d/0x80
ret_from_fork_asm+0x1a/0x30
Allocated by task 174:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x8f/0xa0
__kmalloc+0x19c/0x360
mlxsw_sp_acl_tcam_region_create+0xdf/0x9c0
mlxsw_sp_acl_tcam_vregion_rehash_work+0x954/0x1300
process_one_work+0x8eb/0x19b0
worker_thread+0x6c9/0xf70
kthread+0x2c9/0x3b0
ret_from_fork+0x4d/0x80
ret_from_fork_asm+0x1a/0x30
Freed by task 7:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
poison_slab_object+0x102/0x170
__kasan_slab_free+0x14/0x30
kfree+0xc1/0x290
mlxsw_sp_acl_tcam_region_destroy+0x272/0x310
mlxsw_sp_acl_tcam_vregion_rehash_work+0x731/0x1300
process_one_work+0x8eb/0x19b0
worker_thread+0x6c9/0xf70
kthread+0x2c9/0x3b0
ret_from_fork+0x4d/0x80
ret_from_fork_asm+0x1a/0x30
CWE: CWE-416: Use After Free
CVSS Source: CISA ADP
CVSS Base score: 8.8
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-35855
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix possible use-after-free during activity update
The rule activity update delayed work periodically traverses the list of
configured rules and queries their activity from the device.
As part of this task it accesses the entry pointed by 'ventry->entry',
but this entry can be changed concurrently by the rehash delayed work,
leading to a use-after-free [1].
Fix by closing the race and perform the activity query under the
'vregion->lock' mutex.
[1]
BUG: KASAN: slab-use-after-free in mlxsw_sp_acl_tcam_flower_rule_activity_get+0x121/0x140
Read of size 8 at addr ffff8881054ed808 by task kworker/0:18/181
CPU: 0 PID: 181 Comm: kworker/0:18 Not tainted 6.9.0-rc2-custom-00781-gd5ab772d32f7 #2
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_rule_activity_update_work
Call Trace:
dump_stack_lvl+0xc6/0x120
print_report+0xce/0x670
kasan_report+0xd7/0x110
mlxsw_sp_acl_tcam_flower_rule_activity_get+0x121/0x140
mlxsw_sp_acl_rule_activity_update_work+0x219/0x400
process_one_work+0x8eb/0x19b0
worker_thread+0x6c9/0xf70
kthread+0x2c9/0x3b0
ret_from_fork+0x4d/0x80
ret_from_fork_asm+0x1a/0x30
Allocated by task 1039:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x8f/0xa0
__kmalloc+0x19c/0x360
mlxsw_sp_acl_tcam_entry_create+0x7b/0x1f0
mlxsw_sp_acl_tcam_vchunk_migrate_all+0x30d/0xb50
mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300
process_one_work+0x8eb/0x19b0
worker_thread+0x6c9/0xf70
kthread+0x2c9/0x3b0
ret_from_fork+0x4d/0x80
ret_from_fork_asm+0x1a/0x30
Freed by task 1039:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
poison_slab_object+0x102/0x170
__kasan_slab_free+0x14/0x30
kfree+0xc1/0x290
mlxsw_sp_acl_tcam_vchunk_migrate_all+0x3d7/0xb50
mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300
process_one_work+0x8eb/0x19b0
worker_thread+0x6c9/0xf70
kthread+0x2c9/0x3b0
ret_from_fork+0x4d/0x80
ret_from_fork_asm+0x1a/0x30
CWE: CWE-416: Use After Free
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-35888
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
erspan: make sure erspan_base_hdr is present in skb->head
syzbot reported a problem in ip6erspan_rcv() [1]
Issue is that ip6erspan_rcv() (and erspan_rcv()) no longer make
sure erspan_base_hdr is present in skb linear part (skb->head)
before getting @ver field from it.
Add the missing pskb_may_pull() calls.
v2: Reload iph pointer in erspan_rcv() after pskb_may_pull()
because skb->head might have changed.
[1]
BUG: KMSAN: uninit-value in pskb_may_pull_reason include/linux/skbuff.h:2742 [inline]
BUG: KMSAN: uninit-value in pskb_may_pull include/linux/skbuff.h:2756 [inline]
BUG: KMSAN: uninit-value in ip6erspan_rcv net/ipv6/ip6_gre.c:541 [inline]
BUG: KMSAN: uninit-value in gre_rcv+0x11f8/0x1930 net/ipv6/ip6_gre.c:610
pskb_may_pull_reason include/linux/skbuff.h:2742 [inline]
pskb_may_pull include/linux/skbuff.h:2756 [inline]
ip6erspan_rcv net/ipv6/ip6_gre.c:541 [inline]
gre_rcv+0x11f8/0x1930 net/ipv6/ip6_gre.c:610
ip6_protocol_deliver_rcu+0x1d4c/0x2ca0 net/ipv6/ip6_input.c:438
ip6_input_finish net/ipv6/ip6_input.c:483 [inline]
NF_HOOK include/linux/netfilter.h:314 [inline]
ip6_input+0x15d/0x430 net/ipv6/ip6_input.c:492
ip6_mc_input+0xa7e/0xc80 net/ipv6/ip6_input.c:586
dst_input include/net/dst.h:460 [inline]
ip6_rcv_finish+0x955/0x970 net/ipv6/ip6_input.c:79
NF_HOOK include/linux/netfilter.h:314 [inline]
ipv6_rcv+0xde/0x390 net/ipv6/ip6_input.c:310
__netif_receive_skb_one_core net/core/dev.c:5538 [inline]
__netif_receive_skb+0x1da/0xa00 net/core/dev.c:5652
netif_receive_skb_internal net/core/dev.c:5738 [inline]
netif_receive_skb+0x58/0x660 net/core/dev.c:5798
tun_rx_batched+0x3ee/0x980 drivers/net/tun.c:1549
tun_get_user+0x5566/0x69e0 drivers/net/tun.c:2002
tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048
call_write_iter include/linux/fs.h:2108 [inline]
new_sync_write fs/read_write.c:497 [inline]
vfs_write+0xb63/0x1520 fs/read_write.c:590
ksys_write+0x20f/0x4c0 fs/read_write.c:643
__do_sys_write fs/read_write.c:655 [inline]
__se_sys_write fs/read_write.c:652 [inline]
__x64_sys_write+0x93/0xe0 fs/read_write.c:652
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Uninit was created at:
slab_post_alloc_hook mm/slub.c:3804 [inline]
slab_alloc_node mm/slub.c:3845 [inline]
kmem_cache_alloc_node+0x613/0xc50 mm/slub.c:3888
kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:577
__alloc_skb+0x35b/0x7a0 net/core/skbuff.c:668
alloc_skb include/linux/skbuff.h:1318 [inline]
alloc_skb_with_frags+0xc8/0xbf0 net/core/skbuff.c:6504
sock_alloc_send_pskb+0xa81/0xbf0 net/core/sock.c:2795
tun_alloc_skb drivers/net/tun.c:1525 [inline]
tun_get_user+0x209a/0x69e0 drivers/net/tun.c:1846
tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048
call_write_iter include/linux/fs.h:2108 [inline]
new_sync_write fs/read_write.c:497 [inline]
vfs_write+0xb63/0x1520 fs/read_write.c:590
ksys_write+0x20f/0x4c0 fs/read_write.c:643
__do_sys_write fs/read_write.c:655 [inline]
__se_sys_write fs/read_write.c:652 [inline]
__x64_sys_write+0x93/0xe0 fs/read_write.c:652
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
CPU: 1 PID: 5045 Comm: syz-executor114 Not tainted 6.9.0-rc1-syzkaller-00021-g962490525cff #0
CWE: CWE-908: Use of Uninitialized Resource
CVSS Source: CISA ADP
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35890
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a ownership transfer issue if packets are GROed with fraglist. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35958
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net: ena: Fix incorrect descriptor free behavior
ENA has two types of TX queues:
- queues which only process TX packets arriving from the network stack
- queues which only process TX packets forwarded to it by XDP_REDIRECT
or XDP_TX instructions
The ena_free_tx_bufs() cycles through all descriptors in a TX queue
and unmaps + frees every descriptor that hasn't been acknowledged yet
by the device (uncompleted TX transactions).
The function assumes that the processed TX queue is necessarily from
the first category listed above and ends up using napi_consume_skb()
for descriptors belonging to an XDP specific queue.
This patch solves a bug in which, in case of a VF reset, the
descriptors aren't freed correctly, leading to crashes.
CVSS Source: CISA ADP
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35959
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw in the mlx5e_priv_init() cleanup flow. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-459: Incomplete Cleanup
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35960
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Properly link new fs rules into the tree
Previously, add_rule_fg would only add newly created rules from the
handle into the tree when they had a refcount of 1. On the other hand,
create_flow_handle tries hard to find and reference already existing
identical rules instead of creating new ones.
These two behaviors can result in a situation where create_flow_handle
1) creates a new rule and references it, then
2) in a subsequent step during the same handle creation references it
again,
resulting in a rule with a refcount of 2 that is not linked into the
tree, will have a NULL parent and root and will result in a crash when
the flow group is deleted because del_sw_hw_rule, invoked on rule
deletion, assumes node->parent is != NULL.
This happened in the wild, due to another bug related to incorrect
handling of duplicate pkt_reformat ids, which lead to the code in
create_flow_handle incorrectly referencing a just-added rule in the same
flow handle, resulting in the problem described above. Full details are
at [1].
This patch changes add_rule_fg to add new rules without parents into
the tree, properly initializing them and avoiding the crash. This makes
it more consistent with how rules are added to an FTE in
create_flow_handle.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36004
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
i40e: Do not use WQ_MEM_RECLAIM flag for workqueue
Issue reported by customer during SRIOV testing, call trace:
When both i40e and the i40iw driver are loaded, a warning
in check_flush_dependency is being triggered. This seems
to be because of the i40e driver workqueue is allocated with
the WQ_MEM_RECLAIM flag, and the i40iw one is not.
Similar error was encountered on ice too and it was fixed by
removing the flag. Do the same for i40e too.
[Feb 9 09:08] ------------[ cut here ]------------
[ +0.000004] workqueue: WQ_MEM_RECLAIM i40e:i40e_service_task [i40e] is
flushing !WQ_MEM_RECLAIM infiniband:0x0
[ +0.000060] WARNING: CPU: 0 PID: 937 at kernel/workqueue.c:2966
check_flush_dependency+0x10b/0x120
[ +0.000007] Modules linked in: snd_seq_dummy snd_hrtimer snd_seq
snd_timer snd_seq_device snd soundcore nls_utf8 cifs cifs_arc4
nls_ucs2_utils rdma_cm iw_cm ib_cm cifs_md4 dns_resolver netfs qrtr
rfkill sunrpc vfat fat intel_rapl_msr intel_rapl_common irdma
intel_uncore_frequency intel_uncore_frequency_common ice ipmi_ssif
isst_if_common skx_edac nfit libnvdimm x86_pkg_temp_thermal
intel_powerclamp gnss coretemp ib_uverbs rapl intel_cstate ib_core
iTCO_wdt iTCO_vendor_support acpi_ipmi mei_me ipmi_si intel_uncore
ioatdma i2c_i801 joydev pcspkr mei ipmi_devintf lpc_ich
intel_pch_thermal i2c_smbus ipmi_msghandler acpi_power_meter acpi_pad
xfs libcrc32c ast sd_mod drm_shmem_helper t10_pi drm_kms_helper sg ixgbe
drm i40e ahci crct10dif_pclmul libahci crc32_pclmul igb crc32c_intel
libata ghash_clmulni_intel i2c_algo_bit mdio dca wmi dm_mirror
dm_region_hash dm_log dm_mod fuse
[ +0.000050] CPU: 0 PID: 937 Comm: kworker/0:3 Kdump: loaded Not
tainted 6.8.0-rc2-Feb-net_dev-Qiueue-00279-gbd43c5687e05 #1
[ +0.000003] Hardware name: Intel Corporation S2600BPB/S2600BPB, BIOS
SE5C620.86B.02.01.0013.121520200651 12/15/2020
[ +0.000001] Workqueue: i40e i40e_service_task [i40e]
[ +0.000024] RIP: 0010:check_flush_dependency+0x10b/0x120
[ +0.000003] Code: ff 49 8b 54 24 18 48 8d 8b b0 00 00 00 49 89 e8 48
81 c6 b0 00 00 00 48 c7 c7 b0 97 fa 9f c6 05 8a cc 1f 02 01 e8 35 b3 fd
ff <0f> 0b e9 10 ff ff ff 80 3d 78 cc 1f 02 00 75 94 e9 46 ff ff ff 90
[ +0.000002] RSP: 0018:ffffbd294976bcf8 EFLAGS: 00010282
[ +0.000002] RAX: 0000000000000000 RBX: ffff94d4c483c000 RCX:
0000000000000027
[ +0.000001] RDX: ffff94d47f620bc8 RSI: 0000000000000001 RDI:
ffff94d47f620bc0
[ +0.000001] RBP: 0000000000000000 R08: 0000000000000000 R09:
00000000ffff7fff
[ +0.000001] R10: ffffbd294976bb98 R11: ffffffffa0be65e8 R12:
ffff94c5451ea180
[ +0.000001] R13: ffff94c5ab5e8000 R14: ffff94c5c20b6e05 R15:
ffff94c5f1330ab0
[ +0.000001] FS: 0000000000000000(0000) GS:ffff94d47f600000(0000)
knlGS:0000000000000000
[ +0.000002] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ +0.000001] CR2: 00007f9e6f1fca70 CR3: 0000000038e20004 CR4:
00000000007706f0
[ +0.000000] DR0: 0000000000000000 DR1: 0000000000000000 DR2:
0000000000000000
[ +0.000001] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7:
0000000000000400
[ +0.000001] PKRU: 55555554
[ +0.000001] Call Trace:
[ +0.000001]
[ +0.000002] ? __warn+0x80/0x130
[ +0.000003] ? check_flush_dependency+0x10b/0x120
[ +0.000002] ? report_bug+0x195/0x1a0
[ +0.000005] ? handle_bug+0x3c/0x70
[ +0.000003] ? exc_invalid_op+0x14/0x70
[ +0.000002] ? asm_exc_invalid_op+0x16/0x20
[ +0.000006] ? check_flush_dependency+0x10b/0x120
[ +0.000002] ? check_flush_dependency+0x10b/0x120
[ +0.000002] __flush_workqueue+0x126/0x3f0
[ +0.000015] ib_cache_cleanup_one+0x1c/0xe0 [ib_core]
[ +0.000056] __ib_unregister_device+0x6a/0xb0 [ib_core]
[ +0.000023] ib_unregister_device_and_put+0x34/0x50 [ib_core]
[ +0.000020] i40iw_close+0x4b/0x90 [irdma]
[ +0.000022] i40e_notify_client_of_netdev_close+0x54/0xc0 [i40e]
[ +0.000035] i40e_service_task+0x126/0x190 [i40e]
[ +0.000024] process_one_work+0x174/0x340
[ +0.000003] worker_th
---truncated---
CWE: CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak')
CVSS Source: Red Hat
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36007
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix warning during rehash
As previously explained, the rehash delayed work migrates filters from
one region to another. This is done by iterating over all chunks (all
the filters with the same priority) in the region and in each chunk
iterating over all the filters.
When the work runs out of credits it stores the current chunk and entry
as markers in the per-work context so that it would know where to resume
the migration from the next time the work is scheduled.
Upon error, the chunk marker is reset to NULL, but without resetting the
entry markers despite being relative to it. This can result in migration
being resumed from an entry that does not belong to the chunk being
migrated. In turn, this will eventually lead to a chunk being iterated
over as if it is an entry. Because of how the two structures happen to
be defined, this does not lead to KASAN splats, but to warnings such as
[1].
Fix by creating a helper that resets all the markers and call it from
all the places the currently only reset the chunk marker. For good
measures also call it when starting a completely new rehash. Add a
warning to avoid future cases.
[1]
WARNING: CPU: 7 PID: 1076 at drivers/net/ethernet/mellanox/mlxsw/core_acl_flex_keys.c:407 mlxsw_afk_encode+0x242/0x2f0
Modules linked in:
CPU: 7 PID: 1076 Comm: kworker/7:24 Tainted: G W 6.9.0-rc3-custom-00880-g29e61d91b77b #29
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
RIP: 0010:mlxsw_afk_encode+0x242/0x2f0
[...]
Call Trace:
mlxsw_sp_acl_atcam_entry_add+0xd9/0x3c0
mlxsw_sp_acl_tcam_entry_create+0x5e/0xa0
mlxsw_sp_acl_tcam_vchunk_migrate_all+0x109/0x290
mlxsw_sp_acl_tcam_vregion_rehash_work+0x6c/0x470
process_one_work+0x151/0x370
worker_thread+0x2cb/0x3e0
kthread+0xd0/0x100
ret_from_fork+0x34/0x50
CWE: CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak')
CVSS Source: CISA ADP
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-45296
DESCRIPTION: path-to-regexp turns path strings into a regular expressions. In certain cases, path-to-regexp will output a regular expression that can be exploited to cause poor performance. Because JavaScript is single threaded and regex matching runs on the main thread, poor performance will block the event loop and lead to a DoS. The bad regular expression is generated any time you have two parameters within a single segment, separated by something that is not a period (.). For users of 0.1, upgrade to 0.1.10. All other users should upgrade to 8.0.0.
CWE: CWE-1333: Inefficient Regular Expression Complexity
CVSS Source: CVE.org
CVSS Base score: 7.5
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-37370
DESCRIPTION: In MIT Kerberos 5 (aka krb5) before 1.21.3, an attacker can modify the plaintext Extra Count field of a confidential GSS krb5 wrap token, causing the unwrapped token to appear truncated to the application.
CWE: CWE-345: Insufficient Verification of Data Authenticity
CVSS Source: IBM X-Force
CVSS Base score: 7.4
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:H/A:H)
CVEID: CVE-2024-37371
DESCRIPTION: In MIT Kerberos 5 (aka krb5) before 1.21.3, an attacker can cause invalid memory reads during GSS message token handling by sending message tokens with invalid length fields.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 6.5
CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2018-15209
DESCRIPTION: LibTIFF is vulnerable to a denial of service, caused by a heap-based buffer overflow in the ChopUpSingleUncompressedStrip in tif_dirread.c. By persuading a victim to open a specially-crafted file, a remote attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-787: Out-of-bounds Write
CVSS Source: IBM X-Force
CVSS Base score: 3.3
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:L)
CVEID: CVE-2023-6228
DESCRIPTION: LibTIFF is vulnerable to a denial of service, caused by a heap-based buffer overflow in cpStripToTile() function in tools/tiffcp.c. By persuading a victim to open a specially crafted content, a remote attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-787: Out-of-bounds Write
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-25433
DESCRIPTION: LibTIFF is vulnerable to a denial of service, caused by a heap-based buffer overflow in /libtiff/tools/tiffcrop.c. By persuading a victim to open a specially crafted file, a remote attacker could exploit this vulnerability to cause the application to crash.
CWE: CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52356
DESCRIPTION: LibTIFF is vulnerable to a denial of service, caused by a segment fault (SEGV) flaw in the TIFFReadRGBATileExt() API. By passing a specially crafted tiff file, a remote attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-122: Heap-based Buffer Overflow
CVSS Source: IBM X-Force
CVSS Base score: 7.5
CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-20952
DESCRIPTION: An unspecified vulnerability in Java SE related to the Security component could allow a remote attacker to cause high confidentiality impact and high integrity impact.
CWE: CWE-284: Improper Access Control
CVSS Source: secalert_us@oracle.com
CVSS Base score: 7.4
CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N)
CVEID: CVE-2024-20918
DESCRIPTION: An unspecified vulnerability in Java SE related to the VM component could allow a remote attacker to cause high confidentiality impact and high integrity impact.
CVSS Source: IBM X-Force
CVSS Base score: 7.4
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N)
CVEID: CVE-2024-20921
DESCRIPTION: An unspecified vulnerability in Java SE related to the VM component could allow a remote attacker to cause high confidentiality impact.
CWE: CWE-276: Incorrect Default Permissions
CVSS Source: IBM X-Force
CVSS Base score: 5.9
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N)
CVEID: CVE-2024-20919
DESCRIPTION: An unspecified vulnerability in Java SE related to the VM component could allow a remote attacker to cause high integrity impact.
CVSS Source: IBM X-Force
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:H/A:N)
CVEID: CVE-2024-20926
DESCRIPTION: An unspecified vulnerability in Java SE related to the Scripting component could allow a remote attacker to cause high confidentiality impact.
CVSS Source: IBM X-Force
CVSS Base score: 5.9
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N)
CVEID: CVE-2024-20945
DESCRIPTION: An unspecified vulnerability in Java SE related to the VM component could allow a local authenticated attacker to cause high confidentiality impact.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:N)
CVEID: CVE-2023-33850
DESCRIPTION: IBM GSKit-Crypto could allow a remote attacker to obtain sensitive information, caused by a timing-based side channel in the RSA Decryption implementation. By sending an overly large number of trial messages for decryption, an attacker could exploit this vulnerability to obtain sensitive information.
CWE: CWE-203: Observable Discrepancy
CVSS Source: IBM
CVSS Base score: 5.9
CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N)
CVEID: CVE-2019-25162
DESCRIPTION: Linux Kernel s vulnerable to a denial of service, caused by a use-after-free flaw in the i2c driver module. By sending a specially crafted request, a local attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2020-36777
DESCRIPTION: Linux Kernel s vulnerable to a denial of service, caused by a memory leak flaw in the dvb_media_device_free() function. By sending a specially crafted request, a local attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-46934
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by improper validating user data in compat ioctl. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-754: Improper Check for Unusual or Exceptional Conditions
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47013
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to obtain sensitive information, caused by a use-after-free flaw in the emac_mac_tx_buf_send function. By sending a specially crafted request, an attacker could exploit this vulnerability to obtain sensitive information or cause a denial of service condition.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 5.1
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:L/I:N/A:H)
CVEID: CVE-2021-47055
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
mtd: require write permissions for locking and badblock ioctls
MEMLOCK, MEMUNLOCK and OTPLOCK modify protection bits. Thus require
write permission. Depending on the hardware MEMLOCK might even be
write-once, e.g. for SPI-NOR flashes with their WP# tied to GND. OTPLOCK
is always write-once.
MEMSETBADBLOCK modifies the bad block table.
CWE: CWE-667: Improper Locking
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47118
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
pid: take a reference when initializing `cad_pid`
During boot, kernel_init_freeable() initializes `cad_pid` to the init
task's struct pid. Later on, we may change `cad_pid` via a sysctl, and
when this happens proc_do_cad_pid() will increment the refcount on the
new pid via get_pid(), and will decrement the refcount on the old pid
via put_pid(). As we never called get_pid() when we initialized
`cad_pid`, we decrement a reference we never incremented, can therefore
free the init task's struct pid early. As there can be dangling
references to the struct pid, we can later encounter a use-after-free
(e.g. when delivering signals).
This was spotted when fuzzing v5.13-rc3 with Syzkaller, but seems to
have been around since the conversion of `cad_pid` to struct pid in
commit 9ec52099e4b8 ("[PATCH] replace cad_pid by a struct pid") from the
pre-KASAN stone age of v2.6.19.
Fix this by getting a reference to the init task's struct pid when we
assign it to `cad_pid`.
Full KASAN splat below.
==================================================================
BUG: KASAN: use-after-free in ns_of_pid include/linux/pid.h:153 [inline]
BUG: KASAN: use-after-free in task_active_pid_ns+0xc0/0xc8 kernel/pid.c:509
Read of size 4 at addr ffff23794dda0004 by task syz-executor.0/273
CPU: 1 PID: 273 Comm: syz-executor.0 Not tainted 5.12.0-00001-g9aef892b2d15 #1
Hardware name: linux,dummy-virt (DT)
Call trace:
ns_of_pid include/linux/pid.h:153 [inline]
task_active_pid_ns+0xc0/0xc8 kernel/pid.c:509
do_notify_parent+0x308/0xe60 kernel/signal.c:1950
exit_notify kernel/exit.c:682 [inline]
do_exit+0x2334/0x2bd0 kernel/exit.c:845
do_group_exit+0x108/0x2c8 kernel/exit.c:922
get_signal+0x4e4/0x2a88 kernel/signal.c:2781
do_signal arch/arm64/kernel/signal.c:882 [inline]
do_notify_resume+0x300/0x970 arch/arm64/kernel/signal.c:936
work_pending+0xc/0x2dc
Allocated by task 0:
slab_post_alloc_hook+0x50/0x5c0 mm/slab.h:516
slab_alloc_node mm/slub.c:2907 [inline]
slab_alloc mm/slub.c:2915 [inline]
kmem_cache_alloc+0x1f4/0x4c0 mm/slub.c:2920
alloc_pid+0xdc/0xc00 kernel/pid.c:180
copy_process+0x2794/0x5e18 kernel/fork.c:2129
kernel_clone+0x194/0x13c8 kernel/fork.c:2500
kernel_thread+0xd4/0x110 kernel/fork.c:2552
rest_init+0x44/0x4a0 init/main.c:687
arch_call_rest_init+0x1c/0x28
start_kernel+0x520/0x554 init/main.c:1064
0x0
Freed by task 270:
slab_free_hook mm/slub.c:1562 [inline]
slab_free_freelist_hook+0x98/0x260 mm/slub.c:1600
slab_free mm/slub.c:3161 [inline]
kmem_cache_free+0x224/0x8e0 mm/slub.c:3177
put_pid.part.4+0xe0/0x1a8 kernel/pid.c:114
put_pid+0x30/0x48 kernel/pid.c:109
proc_do_cad_pid+0x190/0x1b0 kernel/sysctl.c:1401
proc_sys_call_handler+0x338/0x4b0 fs/proc/proc_sysctl.c:591
proc_sys_write+0x34/0x48 fs/proc/proc_sysctl.c:617
call_write_iter include/linux/fs.h:1977 [inline]
new_sync_write+0x3ac/0x510 fs/read_write.c:518
vfs_write fs/read_write.c:605 [inline]
vfs_write+0x9c4/0x1018 fs/read_write.c:585
ksys_write+0x124/0x240 fs/read_write.c:658
__do_sys_write fs/read_write.c:670 [inline]
__se_sys_write fs/read_write.c:667 [inline]
__arm64_sys_write+0x78/0xb0 fs/read_write.c:667
__invoke_syscall arch/arm64/kernel/syscall.c:37 [inline]
invoke_syscall arch/arm64/kernel/syscall.c:49 [inline]
el0_svc_common.constprop.1+0x16c/0x388 arch/arm64/kernel/syscall.c:129
do_el0_svc+0xf8/0x150 arch/arm64/kernel/syscall.c:168
el0_svc+0x28/0x38 arch/arm64/kernel/entry-common.c:416
el0_sync_handler+0x134/0x180 arch/arm64/kernel/entry-common.c:432
el0_sync+0x154/0x180 arch/arm64/kernel/entry.S:701
The buggy address belongs to the object at ffff23794dda0000
which belongs to the cache pid of size 224
The buggy address is located 4 bytes inside of
224-byte region [ff
---truncated---
CWE: CWE-416: Use After Free
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2021-47153
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to obtain sensitive information, caused by an out-of-bounds read flaw in the interrupt handler (i801_isr). By sending a specially crafted request, an attacker could exploit this vulnerability to obtain sensitive information or cause a denial of service condition.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 6
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2021-47171
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a memory leak in smsc75xx_bind. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47185
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
tty: tty_buffer: Fix the softlockup issue in flush_to_ldisc
When running ltp testcase(ltp/testcases/kernel/pty/pty04.c) with arm64, there is a soft lockup,
which look like this one:
Workqueue: events_unbound flush_to_ldisc
Call trace:
dump_backtrace+0x0/0x1ec
show_stack+0x24/0x30
dump_stack+0xd0/0x128
panic+0x15c/0x374
watchdog_timer_fn+0x2b8/0x304
__run_hrtimer+0x88/0x2c0
__hrtimer_run_queues+0xa4/0x120
hrtimer_interrupt+0xfc/0x270
arch_timer_handler_phys+0x40/0x50
handle_percpu_devid_irq+0x94/0x220
__handle_domain_irq+0x88/0xf0
gic_handle_irq+0x84/0xfc
el1_irq+0xc8/0x180
slip_unesc+0x80/0x214 [slip]
tty_ldisc_receive_buf+0x64/0x80
tty_port_default_receive_buf+0x50/0x90
flush_to_ldisc+0xbc/0x110
process_one_work+0x1d4/0x4b0
worker_thread+0x180/0x430
kthread+0x11c/0x120
In the testcase pty04, The first process call the write syscall to send
data to the pty master. At the same time, the workqueue will do the
flush_to_ldisc to pop data in a loop until there is no more data left.
When the sender and workqueue running in different core, the sender sends
data fastly in full time which will result in workqueue doing work in loop
for a long time and occuring softlockup in flush_to_ldisc with kernel
configured without preempt. So I add need_resched check and cond_resched
in the flush_to_ldisc loop to avoid it.
CWE: CWE-667: Improper Locking
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2022-48627
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to obtain sensitive information, caused by a memory overlapping flaw when deleting chars in the buffer. By sending a specially crafted request, an attacker could exploit this vulnerability to obtain sensitive information, and use this information to launch further attacks against the affected system.
CWE: CWE-1260: Improper Handling of Overlap Between Protected Memory Ranges
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:N)
CVEID: CVE-2022-48669
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a memory leak flaw in the papr_get_attr() function. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-6240
DESCRIPTION: Linux Kernel could allow a remote attacker to obtain sensitive information, caused by a Marvin vulnerability side-channel leakage in the RSA decryption operation. By exploiting the side-channel leakage, an attacker could exploit this vulnerability to decrypt ciphertexts or forge signatures, limiting the services that use that private key.
CWE: CWE-203: Observable Discrepancy
CVSS Source: CVE.org
CVSS Base score: 6.5
CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:L/A:N)
CVEID: CVE-2023-52439
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
uio: Fix use-after-free in uio_open
core-1 core-2
-------------------------------------------------------
uio_unregister_device uio_open
idev = idr_find()
device_unregister(&idev->dev)
put_device(&idev->dev)
uio_device_release
get_device(&idev->dev)
kfree(idev)
uio_free_minor(minor)
uio_release
put_device(&idev->dev)
kfree(idev)
-------------------------------------------------------
In the core-1 uio_unregister_device(), the device_unregister will kfree
idev when the idev->dev kobject ref is 1. But after core-1
device_unregister, put_device and before doing kfree, the core-2 may
get_device. Then:
1. After core-1 kfree idev, the core-2 will do use-after-free for idev.
2. When core-2 do uio_release and put_device, the idev will be double
freed.
To address this issue, we can get idev atomic & inc idev reference with
minor_lock.
CWE: CWE-415: Double Free
CVSS Source: IBM X-Force
CVSS Base score: 7
CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2023-52445
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a use-after-free on context disconnection. A local attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52477
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a NULL pointer dereference flaw when usb_get_bos_descriptor() fails. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52513
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an error related to the handling of a connection failure. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52520
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a reference leak. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52528
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an error related to uninit-value access in __smsc75xx_read_reg. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-908: Use of Uninitialized Resource
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52565
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to obtain sensitive information, caused by an out-of-bounds read. By sending a specially crafted request, n attacker could exploit this vulnerability to obtain sensitive information.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 3.3
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N)
CVEID: CVE-2023-52578
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an error related to using DEV_STATS_INC(). By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: IBM X-Force
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52594
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an array-index-out-of-bounds read in ath9k_htc_txstatus(). By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-129: Improper Validation of Array Index
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52595
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an error related to the restart beacon queue when hardware reset. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-667: Improper Locking
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52598
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
s390/ptrace: handle setting of fpc register correctly
If the content of the floating point control (fpc) register of a traced
process is modified with the ptrace interface the new value is tested for
validity by temporarily loading it into the fpc register.
This may lead to corruption of the fpc register of the tracing process:
if an interrupt happens while the value is temporarily loaded into the
fpc register, and within interrupt context floating point or vector
registers are used, the current fp/vx registers are saved with
save_fpu_regs() assuming they belong to user space and will be loaded into
fp/vx registers when returning to user space.
test_fp_ctl() restores the original user space fpc register value, however
it will be discarded, when returning to user space.
In result the tracer will incorrectly continue to run with the value that
was supposed to be used for the traced process.
Fix this by saving fpu register contents with save_fpu_regs() before using
test_fp_ctl().
CWE: CWE-125: Out-of-bounds Read
CVSS Source: NVD
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2023-52606
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
powerpc/lib: Validate size for vector operations
Some of the fp/vmx code in sstep.c assume a certain maximum size for the
instructions being emulated. The size of those operations however is
determined separately in analyse_instr().
Add a check to validate the assumption on the maximum size of the
operations, so as to prevent any unintended kernel stack corruption.
CWE: CWE-770: Allocation of Resources Without Limits or Throttling
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52607
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
powerpc/mm: Fix null-pointer dereference in pgtable_cache_add
kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure. Ensure the allocation was successful
by checking the pointer validity.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52610
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_ct: fix skb leak and crash on ooo frags
act_ct adds skb->users before defragmentation. If frags arrive in order,
the last frag's reference is reset in:
inet_frag_reasm_prepare
skb_morph
which is not straightforward.
However when frags arrive out of order, nobody unref the last frag, and
all frags are leaked. The situation is even worse, as initiating packet
capture can lead to a crash[0] when skb has been cloned and shared at the
same time.
Fix the issue by removing skb_get() before defragmentation. act_ct
returns TC_ACT_CONSUMED when defrag failed or in progress.
[0]:
[ 843.804823] ------------[ cut here ]------------
[ 843.809659] kernel BUG at net/core/skbuff.c:2091!
[ 843.814516] invalid opcode: 0000 [#1] PREEMPT SMP
[ 843.819296] CPU: 7 PID: 0 Comm: swapper/7 Kdump: loaded Tainted: G S 6.7.0-rc3 #2
[ 843.824107] Hardware name: XFUSION 1288H V6/BC13MBSBD, BIOS 1.29 11/25/2022
[ 843.828953] RIP: 0010:pskb_expand_head+0x2ac/0x300
[ 843.833805] Code: 8b 70 28 48 85 f6 74 82 48 83 c6 08 bf 01 00 00 00 e8 38 bd ff ff 8b 83 c0 00 00 00 48 03 83 c8 00 00 00 e9 62 ff ff ff 0f 0b <0f> 0b e8 8d d0 ff ff e9 b3 fd ff ff 81 7c 24 14 40 01 00 00 4c 89
[ 843.843698] RSP: 0018:ffffc9000cce07c0 EFLAGS: 00010202
[ 843.848524] RAX: 0000000000000002 RBX: ffff88811a211d00 RCX: 0000000000000820
[ 843.853299] RDX: 0000000000000640 RSI: 0000000000000000 RDI: ffff88811a211d00
[ 843.857974] RBP: ffff888127d39518 R08: 00000000bee97314 R09: 0000000000000000
[ 843.862584] R10: 0000000000000000 R11: ffff8881109f0000 R12: 0000000000000880
[ 843.867147] R13: ffff888127d39580 R14: 0000000000000640 R15: ffff888170f7b900
[ 843.871680] FS: 0000000000000000(0000) GS:ffff889ffffc0000(0000) knlGS:0000000000000000
[ 843.876242] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 843.880778] CR2: 00007fa42affcfb8 CR3: 000000011433a002 CR4: 0000000000770ef0
[ 843.885336] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 843.889809] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 843.894229] PKRU: 55555554
[ 843.898539] Call Trace:
[ 843.902772]
[ 843.906922] ? __die_body+0x1e/0x60
[ 843.911032] ? die+0x3c/0x60
[ 843.915037] ? do_trap+0xe2/0x110
[ 843.918911] ? pskb_expand_head+0x2ac/0x300
[ 843.922687] ? do_error_trap+0x65/0x80
[ 843.926342] ? pskb_expand_head+0x2ac/0x300
[ 843.929905] ? exc_invalid_op+0x50/0x60
[ 843.933398] ? pskb_expand_head+0x2ac/0x300
[ 843.936835] ? asm_exc_invalid_op+0x1a/0x20
[ 843.940226] ? pskb_expand_head+0x2ac/0x300
[ 843.943580] inet_frag_reasm_prepare+0xd1/0x240
[ 843.946904] ip_defrag+0x5d4/0x870
[ 843.950132] nf_ct_handle_fragments+0xec/0x130 [nf_conntrack]
[ 843.953334] tcf_ct_act+0x252/0xd90 [act_ct]
[ 843.956473] ? tcf_mirred_act+0x516/0x5a0 [act_mirred]
[ 843.959657] tcf_action_exec+0xa1/0x160
[ 843.962823] fl_classify+0x1db/0x1f0 [cls_flower]
[ 843.966010] ? skb_clone+0x53/0xc0
[ 843.969173] tcf_classify+0x24d/0x420
[ 843.972333] tc_run+0x8f/0xf0
[ 843.975465] __netif_receive_skb_core+0x67a/0x1080
[ 843.978634] ? dev_gro_receive+0x249/0x730
[ 843.981759] __netif_receive_skb_list_core+0x12d/0x260
[ 843.984869] netif_receive_skb_list_internal+0x1cb/0x2f0
[ 843.987957] ? mlx5e_handle_rx_cqe_mpwrq_rep+0xfa/0x1a0 [mlx5_core]
[ 843.991170] napi_complete_done+0x72/0x1a0
[ 843.994305] mlx5e_napi_poll+0x28c/0x6d0 [mlx5_core]
[ 843.997501] __napi_poll+0x25/0x1b0
[ 844.000627] net_rx_action+0x256/0x330
[ 844.003705] __do_softirq+0xb3/0x29b
[ 844.006718] irq_exit_rcu+0x9e/0xc0
[ 844.009672] common_interrupt+0x86/0xa0
[ 844.012537]
[ 844.015285]
[ 844.017937] asm_common_interrupt+0x26/0x40
[ 844.020591] RIP: 0010:acpi_safe_halt+0x1b/0x20
[ 844.023247] Code: ff 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 65 48 8b 04 25 00 18 03 00 48 8b 00 a8 08 75 0c 66 90 0f 00 2d 81 d0 44 00 fb
---truncated---
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-0340
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to obtain sensitive information, caused by a flaw in the vhost_new_msg function in drivers/vhost/vhost.c. By reading the /dev/vhost-net device file, an attacker could exploit this vulnerability to obtain kernel memory information, and use this information to launch further attacks against the affected system.
CWE: CWE-200: Exposure of Sensitive Information to an Unauthorized Actor
CVSS Source: CVE.org
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:N)
CVEID: CVE-2024-23307
DESCRIPTION: Integer Overflow or Wraparound vulnerability in Linux Linux kernel kernel on Linux, x86, ARM (md, raid, raid5 modules) allows Forced Integer Overflow.
CWE: CWE-190: Integer Overflow or Wraparound
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-25744
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to bypass security restrictions, caused by a flaw in rch/x86/coco/tdx/tdx.c and arch/x86/mm/mem_encrypt_amd.c. By sending a specially crafted request, an attacker could exploit this vulnerability to trigger int80 syscall handling at any given point.
CVSS Source: IBM X-Force
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:C/C:H/I:H/A:H)
CVEID: CVE-2024-26593
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to obtain sensitive information, caused by an out-of-bounds read within i2c: i801. An attacker could exploit this vulnerability to cause the wrong portion of the block buffer to be read or a denial of service.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 6
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2024-26603
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by the reliance of userspace for info to fault in xsave buffer. A local attacker could exploit this vulnerability to cause a segmentation fault.
CWE: CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop')
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26610
DESCRIPTION: Linux Kernel could allow a local attacker to execute arbitrary code on the system, caused by a memory corruption error. A local attacker could exploit this vulnerability to execute arbitrary code on the system.
CWE: CWE-787: Out-of-bounds Write
CVSS Source: IBM X-Force
CVSS Base score: 8.4
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-26615
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by illegal rmb_desc access in SMC-D connection dump. A local attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26642
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: disallow anonymous set with timeout flag
Anonymous sets are never used with timeout from userspace, reject this.
Exception to this rule is NFT_SET_EVAL to ensure legacy meters still work.
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26643
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: mark set as dead when unbinding anonymous set with timeout
While the rhashtable set gc runs asynchronously, a race allows it to
collect elements from anonymous sets with timeouts while it is being
released from the commit path.
Mingi Cho originally reported this issue in a different path in 6.1.x
with a pipapo set with low timeouts which is not possible upstream since
7395dfacfff6 ("netfilter: nf_tables: use timestamp to check for set
element timeout").
Fix this by setting on the dead flag for anonymous sets to skip async gc
in this case.
According to 08e4c8c5919f ("netfilter: nf_tables: mark newset as dead on
transaction abort"), Florian plans to accelerate abort path by releasing
objects via workqueue, therefore, this sets on the dead flag for abort
path too.
CWE: CWE-667: Improper Locking
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26659
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
xhci: handle isoc Babble and Buffer Overrun events properly
xHCI 4.9 explicitly forbids assuming that the xHC has released its
ownership of a multi-TRB TD when it reports an error on one of the
early TRBs. Yet the driver makes such assumption and releases the TD,
allowing the remaining TRBs to be freed or overwritten by new TDs.
The xHC should also report completion of the final TRB due to its IOC
flag being set by us, regardless of prior errors. This event cannot
be recognized if the TD has already been freed earlier, resulting in
"Transfer event TRB DMA ptr not part of current TD" error message.
Fix this by reusing the logic for processing isoc Transaction Errors.
This also handles hosts which fail to report the final completion.
Fix transfer length reporting on Babble errors. They may be caused by
device malfunction, no guarantee that the buffer has been filled.
CWE: CWE-787: Out-of-bounds Write
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26664
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
hwmon: (coretemp) Fix out-of-bounds memory access
Fix a bug that pdata->cpu_map[] is set before out-of-bounds check.
The problem might be triggered on systems with more than 128 cores per
package.
CWE: CWE-787: Out-of-bounds Write
CVSS Source: NVD
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2024-26693
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: fix a crash when we run out of stations
A DoS tool that injects loads of authentication frames made our AP
crash. The iwl_mvm_is_dup() function couldn't find the per-queue
dup_data which was not allocated.
The root cause for that is that we ran out of stations in the firmware
and we didn't really add the station to the firmware, yet we didn't
return an error to mac80211.
Mac80211 was thinking that we have the station and because of that,
sta_info::uploaded was set to 1. This allowed
ieee80211_find_sta_by_ifaddr() to return a valid station object, but
that ieee80211_sta didn't have any iwl_mvm_sta object initialized and
that caused the crash mentioned earlier when we got Rx on that station.
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26694
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: fix double-free bug
The storage for the TLV PC register data wasn't done like all
the other storage in the drv->fw area, which is cleared at the
end of deallocation. Therefore, the freeing must also be done
differently, explicitly NULL'ing it out after the free, since
otherwise there's a nasty double-free bug here if a file fails
to load after this has been parsed, and we get another free
later (e.g. because no other file exists.) Fix that by adding
the missing NULL assignment.
CWE: CWE-415: Double Free
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-26743
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
RDMA/qedr: Fix qedr_create_user_qp error flow
Avoid the following warning by making sure to free the allocated
resources in case that qedr_init_user_queue() fail.
-----------[ cut here ]-----------
WARNING: CPU: 0 PID: 143192 at drivers/infiniband/core/rdma_core.c:874 uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
Modules linked in: tls target_core_user uio target_core_pscsi target_core_file target_core_iblock ib_srpt ib_srp scsi_transport_srp nfsd nfs_acl rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs 8021q garp mrp stp llc ext4 mbcache jbd2 opa_vnic ib_umad ib_ipoib sunrpc rdma_ucm ib_isert iscsi_target_mod target_core_mod ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_cm hfi1 intel_rapl_msr intel_rapl_common mgag200 qedr sb_edac drm_shmem_helper rdmavt x86_pkg_temp_thermal drm_kms_helper intel_powerclamp ib_uverbs coretemp i2c_algo_bit kvm_intel dell_wmi_descriptor ipmi_ssif sparse_keymap kvm ib_core rfkill syscopyarea sysfillrect video sysimgblt irqbypass ipmi_si ipmi_devintf fb_sys_fops rapl iTCO_wdt mxm_wmi iTCO_vendor_support intel_cstate pcspkr dcdbas intel_uncore ipmi_msghandler lpc_ich acpi_power_meter mei_me mei fuse drm xfs libcrc32c qede sd_mod ahci libahci t10_pi sg crct10dif_pclmul crc32_pclmul crc32c_intel qed libata tg3
ghash_clmulni_intel megaraid_sas crc8 wmi [last unloaded: ib_srpt]
CPU: 0 PID: 143192 Comm: fi_rdm_tagged_p Kdump: loaded Not tainted 5.14.0-408.el9.x86_64 #1
Hardware name: Dell Inc. PowerEdge R430/03XKDV, BIOS 2.14.0 01/25/2022
RIP: 0010:uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
Code: 5d 41 5c 41 5d 41 5e e9 0f 26 1b dd 48 89 df e8 67 6a ff ff 49 8b 86 10 01 00 00 48 85 c0 74 9c 4c 89 e7 e8 83 c0 cb dd eb 92 <0f> 0b eb be 0f 0b be 04 00 00 00 48 89 df e8 8e f5 ff ff e9 6d ff
RSP: 0018:ffffb7c6cadfbc60 EFLAGS: 00010286
RAX: ffff8f0889ee3f60 RBX: ffff8f088c1a5200 RCX: 00000000802a0016
RDX: 00000000802a0017 RSI: 0000000000000001 RDI: ffff8f0880042600
RBP: 0000000000000001 R08: 0000000000000001 R09: 0000000000000000
R10: ffff8f11fffd5000 R11: 0000000000039000 R12: ffff8f0d5b36cd80
R13: ffff8f088c1a5250 R14: ffff8f1206d91000 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff8f11d7c00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000147069200e20 CR3: 00000001c7210002 CR4: 00000000001706f0
Call Trace:
? show_trace_log_lvl+0x1c4/0x2df
? show_trace_log_lvl+0x1c4/0x2df
? ib_uverbs_close+0x1f/0xb0 [ib_uverbs]
? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
? __warn+0x81/0x110
? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
? report_bug+0x10a/0x140
? handle_bug+0x3c/0x70
? exc_invalid_op+0x14/0x70
? asm_exc_invalid_op+0x16/0x20
? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
ib_uverbs_close+0x1f/0xb0 [ib_uverbs]
__fput+0x94/0x250
task_work_run+0x5c/0x90
do_exit+0x270/0x4a0
do_group_exit+0x2d/0x90
get_signal+0x87c/0x8c0
arch_do_signal_or_restart+0x25/0x100
? ib_uverbs_ioctl+0xc2/0x110 [ib_uverbs]
exit_to_user_mode_loop+0x9c/0x130
exit_to_user_mode_prepare+0xb6/0x100
syscall_exit_to_user_mode+0x12/0x40
do_syscall_64+0x69/0x90
? syscall_exit_work+0x103/0x130
? syscall_exit_to_user_mode+0x22/0x40
? do_syscall_64+0x69/0x90
? syscall_exit_work+0x103/0x130
? syscall_exit_to_user_mode+0x22/0x40
? do_syscall_64+0x69/0x90
? do_syscall_64+0x69/0x90
? common_interrupt+0x43/0xa0
entry_SYSCALL_64_after_hwframe+0x72/0xdc
RIP: 0033:0x1470abe3ec6b
Code: Unable to access opcode bytes at RIP 0x1470abe3ec41.
RSP: 002b:00007fff13ce9108 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: fffffffffffffffc RBX: 00007fff13ce9218 RCX: 00001470abe3ec6b
RDX: 00007fff13ce9200 RSI: 00000000c0181b01 RDI: 0000000000000004
RBP: 00007fff13ce91e0 R08: 0000558d9655da10 R09: 0000558d9655dd00
R10: 00007fff13ce95c0 R11: 0000000000000246 R12: 00007fff13ce9358
R13: 0000000000000013 R14: 0000558d9655db50 R15: 00007fff13ce9470
--[ end trace 888a9b92e04c5c97 ]--
CWE: CWE-770: Allocation of Resources Without Limits or Throttling
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26744
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
RDMA/srpt: Support specifying the srpt_service_guid parameter
Make loading ib_srpt with this parameter set work. The current behavior is
that setting that parameter while loading the ib_srpt kernel module
triggers the following kernel crash:
BUG: kernel NULL pointer dereference, address: 0000000000000000
Call Trace:
parse_one+0x18c/0x1d0
parse_args+0xe1/0x230
load_module+0x8de/0xa60
init_module_from_file+0x8b/0xd0
idempotent_init_module+0x181/0x240
__x64_sys_finit_module+0x5a/0xb0
do_syscall_64+0x5f/0xe0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26779
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix race condition on enabling fast-xmit
fast-xmit must only be enabled after the sta has been uploaded to the driver,
otherwise it could end up passing the not-yet-uploaded sta via drv_tx calls
to the driver, leading to potential crashes because of uninitialized drv_priv
data.
Add a missing sta->uploaded check and re-check fast xmit after inserting a sta.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26872
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an error related to registering event handler when srpt device is not fully setup. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26892
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921e: fix use-after-free in free_irq()
From commit a304e1b82808 ("[PATCH] Debug shared irqs"), there is a test
to make sure the shared irq handler should be able to handle the unexpected
event after deregistration. For this case, let's apply MT76_REMOVED flag to
indicate the device was removed and do not run into the resource access
anymore.
BUG: KASAN: use-after-free in mt7921_irq_handler+0xd8/0x100 [mt7921e]
Read of size 8 at addr ffff88824a7d3b78 by task rmmod/11115
CPU: 28 PID: 11115 Comm: rmmod Tainted: G W L 5.17.0 #10
Hardware name: Micro-Star International Co., Ltd. MS-7D73/MPG B650I
EDGE WIFI (MS-7D73), BIOS 1.81 01/05/2024
Call Trace:
dump_stack_lvl+0x6f/0xa0
print_address_description.constprop.0+0x1f/0x190
? mt7921_irq_handler+0xd8/0x100 [mt7921e]
? mt7921_irq_handler+0xd8/0x100 [mt7921e]
kasan_report.cold+0x7f/0x11b
? mt7921_irq_handler+0xd8/0x100 [mt7921e]
mt7921_irq_handler+0xd8/0x100 [mt7921e]
free_irq+0x627/0xaa0
devm_free_irq+0x94/0xd0
? devm_request_any_context_irq+0x160/0x160
? kobject_put+0x18d/0x4a0
mt7921_pci_remove+0x153/0x190 [mt7921e]
pci_device_remove+0xa2/0x1d0
__device_release_driver+0x346/0x6e0
driver_detach+0x1ef/0x2c0
bus_remove_driver+0xe7/0x2d0
? __check_object_size+0x57/0x310
pci_unregister_driver+0x26/0x250
__do_sys_delete_module+0x307/0x510
? free_module+0x6a0/0x6a0
? fpregs_assert_state_consistent+0x4b/0xb0
? rcu_read_lock_sched_held+0x10/0x70
? syscall_enter_from_user_mode+0x20/0x70
? trace_hardirqs_on+0x1c/0x130
do_syscall_64+0x5c/0x80
? trace_hardirqs_on_prepare+0x72/0x160
? do_syscall_64+0x68/0x80
? trace_hardirqs_on_prepare+0x72/0x160
entry_SYSCALL_64_after_hwframe+0x44/0xae
CWE: CWE-416: Use After Free
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-26897
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by the failure to delay all of ath9k_wmi_event_tasklet() until init is complete. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 4.1
CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26901
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by the failure to use kzalloc() to fix kernel-infoleak. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-908: Use of Uninitialized Resource
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26919
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a debugfs directory leak. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26933
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a deadlock in port "disable" sysfs attribute. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-667: Improper Locking
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26934
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a deadlock in usb_deauthorize_interface(). By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-667: Improper Locking
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26964
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
usb: xhci: Add error handling in xhci_map_urb_for_dma
Currently xhci_map_urb_for_dma() creates a temporary buffer and copies
the SG list to the new linear buffer. But if the kzalloc_node() fails,
then the following sg_pcopy_to_buffer() can lead to crash since it
tries to memcpy to NULL pointer.
So return -ENOMEM if kzalloc returns null pointer.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26973
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an uninitialized field in nostale filehandles. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26993
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
fs: sysfs: Fix reference leak in sysfs_break_active_protection()
The sysfs_break_active_protection() routine has an obvious reference
leak in its error path. If the call to kernfs_find_and_get() fails then
kn will be NULL, so the companion sysfs_unbreak_active_protection()
routine won't get called (and would only cause an access violation by
trying to dereference kn->parent if it was called). As a result, the
reference to kobj acquired at the start of the function will never be
released.
Fix the leak by adding an explicit kobject_put() call when kn is NULL.
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-27014
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a deadlock issue while disabling aRFS. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-667: Improper Locking
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-27048
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
wifi: brcm80211: handle pmk_op allocation failure
The kzalloc() in brcmf_pmksa_v3_op() will return null if the
physical memory has run out. As a result, if we dereference
the null value, the null pointer dereference bug will happen.
Return -ENOMEM from brcmf_pmksa_v3_op() if kzalloc() fails
for pmk_op.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-27052
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a use-after-free flaw due to workqueue might still be running, when the driver is stopped. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-27056
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: ensure offloading TID queue exists
The resume code path assumes that the TX queue for the offloading TID
has been configured. At resume time it then tries to sync the write
pointer as it may have been updated by the firmware.
In the unusual event that no packets have been send on TID 0, the queue
will not have been allocated and this causes a crash. Fix this by
ensuring the queue exist at suspend time.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-27059
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
USB: usb-storage: Prevent divide-by-0 error in isd200_ata_command
The isd200 sub-driver in usb-storage uses the HEADS and SECTORS values
in the ATA ID information to calculate cylinder and head values when
creating a CDB for READ or WRITE commands. The calculation involves
division and modulus operations, which will cause a crash if either of
these values is 0. While this never happens with a genuine device, it
could happen with a flawed or subversive emulation, as reported by the
syzbot fuzzer.
Protect against this possibility by refusing to bind to the device if
either the ATA_ID_HEADS or ATA_ID_SECTORS value in the device's ID
information is 0. This requires isd200_Initialization() to return a
negative error code when initialization fails; currently it always
returns 0 (even when there is an error).
CWE: CWE-369: Divide By Zero
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-21235
DESCRIPTION: Vulnerability in Java SE (component: Hotspot). Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to accessible data as well as unauthorized read access to a subset of accessible data.
CVSS Source: Oracle
CVSS Base score: 4.8
CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N)
CVEID: CVE-2024-21217
DESCRIPTION: Vulnerability in Java SE (component: Serialization). Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS).
CWE: CWE-502: Deserialization of Untrusted Data
CVSS Source: Oracle
CVSS Base score: 3.7
CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L)
CVEID: CVE-2024-21210
DESCRIPTION: Vulnerability in Java SE (component: Hotspot). Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some accessible data.
CWE: CWE-203: Observable Discrepancy
CVSS Source: Oracle
CVSS Base score: 3.7
CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N)
CVEID: CVE-2024-21208
DESCRIPTION: Vulnerability in Java SE (component: Networking). Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS).
CWE: CWE-203: Observable Discrepancy
CVSS Source: Oracle
CVSS Base score: 3.7
CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L)
CVEID: CVE-2024-10917
DESCRIPTION: In Eclipse OpenJ9 versions up to 0.47, the JNI function GetStringUTFLength may return an incorrect value which has wrapped around. From 0.48 the value is correct but may be truncated to include a smaller number of characters.
CWE: CWE-190: Integer Overflow or Wraparound
CVSS Source: NVD
CVSS Base score: 5.3
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N)
CVEID: CVE-2024-45590
DESCRIPTION: expressjs body-parser is vulnerable to a denial of service, caused by a flaw when url encoding is enabled. By sending a specially crafted payload, a remote attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-405: Asymmetric Resource Consumption (Amplification)
CVSS Source: IBM X-Force
CVSS Base score: 7.5
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-43799
DESCRIPTION: pillarjs send is vulnerable to cross-site scripting, caused by improper validation of user-supplied input. A remote attacker could exploit this vulnerability using a specially crafted URL to execute script in a victim's Web browser within the security context of the hosting Web site, once the URL is clicked. An attacker could use this vulnerability to steal the victim's cookie-based authentication credentials.
CWE: CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
CVSS Source: IBM X-Force
CVSS Base score: 5
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:L/A:L)
CVEID: CVE-2021-46939
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw in the ring buffer recursion detection. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-662: Improper Synchronization
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47018
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
powerpc/64: Fix the definition of the fixmap area
At the time being, the fixmap area is defined at the top of
the address space or just below KASAN.
This definition is not valid for PPC64.
For PPC64, use the top of the I/O space.
Because of circular dependencies, it is not possible to include
asm/fixmap.h in asm/book3s/64/pgtable.h , so define a fixed size
AREA at the top of the I/O space for fixmap and ensure during
build that the size is big enough.
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47257
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net: ieee802154: fix null deref in parse dev addr
Fix a logic error that could result in a null deref if the user sets
the mode incorrectly for the given addr type.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47284
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
isdn: mISDN: netjet: Fix crash in nj_probe:
'nj_setup' in netjet.c might fail with -EIO and in this case
'card->irq' is initialized and is bigger than zero. A subsequent call to
'nj_release' will free the irq that has not been requested.
Fix this bug by deleting the previous assignment to 'card->irq' and just
keep the assignment before 'request_irq'.
The KASAN's log reveals it:
[ 3.354615 ] WARNING: CPU: 0 PID: 1 at kernel/irq/manage.c:1826
free_irq+0x100/0x480
[ 3.355112 ] Modules linked in:
[ 3.355310 ] CPU: 0 PID: 1 Comm: swapper/0 Not tainted
5.13.0-rc1-00144-g25a1298726e #13
[ 3.355816 ] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[ 3.356552 ] RIP: 0010:free_irq+0x100/0x480
[ 3.356820 ] Code: 6e 08 74 6f 4d 89 f4 e8 5e ac 09 00 4d 8b 74 24 18
4d 85 f6 75 e3 e8 4f ac 09 00 8b 75 c8 48 c7 c7 78 c1 2e 85 e8 e0 cf f5
ff <0f> 0b 48 8b 75 c0 4c 89 ff e8 72 33 0b 03 48 8b 43 40 4c 8b a0 80
[ 3.358012 ] RSP: 0000:ffffc90000017b48 EFLAGS: 00010082
[ 3.358357 ] RAX: 0000000000000000 RBX: ffff888104dc8000 RCX:
0000000000000000
[ 3.358814 ] RDX: ffff8881003c8000 RSI: ffffffff8124a9e6 RDI:
00000000ffffffff
[ 3.359272 ] RBP: ffffc90000017b88 R08: 0000000000000000 R09:
0000000000000000
[ 3.359732 ] R10: ffffc900000179f0 R11: 0000000000001d04 R12:
0000000000000000
[ 3.360195 ] R13: ffff888107dc6000 R14: ffff888107dc6928 R15:
ffff888104dc80a8
[ 3.360652 ] FS: 0000000000000000(0000) GS:ffff88817bc00000(0000)
knlGS:0000000000000000
[ 3.361170 ] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 3.361538 ] CR2: 0000000000000000 CR3: 000000000582e000 CR4:
00000000000006f0
[ 3.362003 ] DR0: 0000000000000000 DR1: 0000000000000000 DR2:
0000000000000000
[ 3.362175 ] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7:
0000000000000400
[ 3.362175 ] Call Trace:
[ 3.362175 ] nj_release+0x51/0x1e0
[ 3.362175 ] nj_probe+0x450/0x950
[ 3.362175 ] ? pci_device_remove+0x110/0x110
[ 3.362175 ] local_pci_probe+0x45/0xa0
[ 3.362175 ] pci_device_probe+0x12b/0x1d0
[ 3.362175 ] really_probe+0x2a9/0x610
[ 3.362175 ] driver_probe_device+0x90/0x1d0
[ 3.362175 ] ? mutex_lock_nested+0x1b/0x20
[ 3.362175 ] device_driver_attach+0x68/0x70
[ 3.362175 ] __driver_attach+0x124/0x1b0
[ 3.362175 ] ? device_driver_attach+0x70/0x70
[ 3.362175 ] bus_for_each_dev+0xbb/0x110
[ 3.362175 ] ? rdinit_setup+0x45/0x45
[ 3.362175 ] driver_attach+0x27/0x30
[ 3.362175 ] bus_add_driver+0x1eb/0x2a0
[ 3.362175 ] driver_register+0xa9/0x180
[ 3.362175 ] __pci_register_driver+0x82/0x90
[ 3.362175 ] ? w6692_init+0x38/0x38
[ 3.362175 ] nj_init+0x36/0x38
[ 3.362175 ] do_one_initcall+0x7f/0x3d0
[ 3.362175 ] ? rdinit_setup+0x45/0x45
[ 3.362175 ] ? rcu_read_lock_sched_held+0x4f/0x80
[ 3.362175 ] kernel_init_freeable+0x2aa/0x301
[ 3.362175 ] ? rest_init+0x2c0/0x2c0
[ 3.362175 ] kernel_init+0x18/0x190
[ 3.362175 ] ? rest_init+0x2c0/0x2c0
[ 3.362175 ] ? rest_init+0x2c0/0x2c0
[ 3.362175 ] ret_from_fork+0x1f/0x30
[ 3.362175 ] Kernel panic - not syncing: panic_on_warn set ...
[ 3.362175 ] CPU: 0 PID: 1 Comm: swapper/0 Not tainted
5.13.0-rc1-00144-g25a1298726e #13
[ 3.362175 ] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[ 3.362175 ] Call Trace:
[ 3.362175 ] dump_stack+0xba/0xf5
[ 3.362175 ] ? free_irq+0x100/0x480
[ 3.362175 ] panic+0x15a/0x3f2
[ 3.362175 ] ? __warn+0xf2/0x150
[ 3.362175 ] ? free_irq+0x100/0x480
[ 3.362175 ] __warn+0x108/0x150
[ 3.362175 ] ? free_irq+0x100/0x480
[ 3.362175 ] report_bug+0x119/0x1c0
[ 3.362175 ] handle_bug+0x3b/0x80
[ 3.362175 ] exc_invalid_op+0x18/0x70
[ 3.362175 ] asm_exc_invalid_op+0x12/0x20
[ 3.362175 ] RIP: 0010:free_irq+0x100
---truncated---
CWE: CWE-400: Uncontrolled Resource Consumption
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47304
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a memory leak flaw in the tcp_init_transfer() function due to not reset icsk_ca_initialized. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak')
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47373
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
irqchip/gic-v3-its: Fix potential VPE leak on error
In its_vpe_irq_domain_alloc, when its_vpe_init() returns an error,
there is an off-by-one in the number of VPEs to be freed.
Fix it by simply passing the number of VPEs allocated, which is the
index of the loop iterating over the VPEs.
[maz: fixed commit message]
CWE: CWE-193: Off-by-one Error
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47408
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw related to serialize hash resizes and cleanups. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-667: Improper Locking
CVSS Source: IBM X-Force
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47461
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to gain elevated privileges on the system, caused by a race condition between writeprotect and exit_mmap(). By sending a specially crafted request, an authenticated attacker could exploit this vulnerability to gain elevated privileges.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: IBM X-Force
CVSS Base score: 7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2021-47468
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw with sleeping function called from invalid context. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-99: Improper Control of Resource Identifiers ('Resource Injection')
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47491
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by improper input validation. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause collapse in read-only THP for filesystems.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47548
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
ethernet: hisilicon: hns: hns_dsaf_misc: fix a possible array overflow in hns_dsaf_ge_srst_by_port()
The if statement:
if (port >= DSAF_GE_NUM)
return;
limits the value of port less than DSAF_GE_NUM (i.e., 8).
However, if the value of port is 6 or 7, an array overflow could occur:
port_rst_off = dsaf_dev->mac_cb[port]->port_rst_off;
because the length of dsaf_dev->mac_cb is DSAF_MAX_PORT_NUM (i.e., 6).
To fix this possible array overflow, we first check port and if it is
greater than or equal to DSAF_MAX_PORT_NUM, the function returns.
CWE: CWE-129: Improper Validation of Array Index
CVSS Source: IBM X-Force
CVSS Base score: 6
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:L/I:L/A:H)
CVEID: CVE-2021-47579
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw with cgroup2 filesystem returns from mkdir without instantiating the new dentry. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-457: Use of Uninitialized Variable
CVSS Source: IBM X-Force
CVSS Base score: 4.1
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47624
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by reference count leaks in rpc_sysfs_xprt_state_change. An attacker could exploit this vulnerability to cause a denial of service.
CVSS Source: IBM X-Force
CVSS Base score: 3.3
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L)
CVEID: CVE-2022-48632
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
i2c: mlxbf: prevent stack overflow in mlxbf_i2c_smbus_start_transaction()
memcpy() is called in a loop while 'operation->length' upper bound
is not checked and 'data_idx' also increments.
CWE: CWE-122: Heap-based Buffer Overflow
CVSS Source: IBM X-Force
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2022-48743
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a skb data length underflow. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-787: Out-of-bounds Write
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2022-48747
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
block: Fix wrong offset in bio_truncate()
bio_truncate() clears the buffer outside of last block of bdev, however
current bio_truncate() is using the wrong offset of page. So it can
return the uninitialized data.
This happened when both of truncated/corrupted FS and userspace (via
bdev) are trying to read the last of bdev.
CWE: CWE-908: Use of Uninitialized Resource
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2022-48757
DESCRIPTION: Linux Kernel could allow a remote authenticated attacker to obtain sensitive information, caused by incorrect default permissions in netdevice.h. By sending a specially crafted request, a remote attacker could exploit this vulnerability to obtain sensitive information and use this information to launch further attacks against the affected system.
CWE: CWE-276: Incorrect Default Permissions
CVSS Source: IBM X-Force
CVSS Base score: 3.3
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N)
CVEID: CVE-2023-28746
DESCRIPTION: Information exposure through microarchitectural state after transient execution from some register files for some Intel(R) Atom(R) Processors may allow an authenticated user to potentially enable information disclosure via local access.
CWE: CWE-1342: Information Exposure through Microarchitectural State after Transient Execution
CVSS Source: secure@intel.com
CVSS Base score: 6.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:N/A:N)
CVEID: CVE-2023-52451
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an error related to access beyond end of drmem array. A local attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-129: Improper Validation of Array Index
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52463
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by force RO when remounting if SetVariable is not supported. A local attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52469
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a use-after-free in kv_parse_power_table. A local attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52471
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a NULL pointer dereference in ice_ptp.c. A local attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52486
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
drm: Don't unref the same fb many times by mistake due to deadlock handling
If we get a deadlock after the fb lookup in drm_mode_page_flip_ioctl()
we proceed to unref the fb and then retry the whole thing from the top.
But we forget to reset the fb pointer back to NULL, and so if we then
get another error during the retry, before the fb lookup, we proceed
the unref the same fb again without having gotten another reference.
The end result is that the fb will (eventually) end up being freed
while it's still in use.
Reset fb to NULL once we've unreffed it to avoid doing it again
until we've done another fb lookup.
This turned out to be pretty easy to hit on a DG2 when doing async
flips (and CONFIG_DEBUG_WW_MUTEX_SLOWPATH=y). The first symptom I
saw that drm_closefb() simply got stuck in a busy loop while walking
the framebuffer list. Fortunately I was able to convince it to oops
instead, and from there it was easier to track down the culprit.
CWE: CWE-667: Improper Locking
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52530
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by use-after-free in ieee80211_key_link in mac80211. By sending a specially crafted request, a local attacker could exploit this vulnerability to a denial of service condition.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 7.5
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52619
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
pstore/ram: Fix crash when setting number of cpus to an odd number
When the number of cpu cores is adjusted to 7 or other odd numbers,
the zone size will become an odd number.
The address of the zone will become:
addr of zone0 = BASE
addr of zone1 = BASE + zone_size
addr of zone2 = BASE + zone_size*2
...
The address of zone1/3/5/7 will be mapped to non-alignment va.
Eventually crashes will occur when accessing these va.
So, use ALIGN_DOWN() to make sure the zone size is even
to avoid this bug.
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52622
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid online resizing failures due to oversized flex bg
When we online resize an ext4 filesystem with a oversized flexbg_size,
mkfs.ext4 -F -G 67108864 $dev -b 4096 100M
mount $dev $dir
resize2fs $dev 16G
the following WARN_ON is triggered:
==================================================================
WARNING: CPU: 0 PID: 427 at mm/page_alloc.c:4402 __alloc_pages+0x411/0x550
Modules linked in: sg(E)
CPU: 0 PID: 427 Comm: resize2fs Tainted: G E 6.6.0-rc5+ #314
RIP: 0010:__alloc_pages+0x411/0x550
Call Trace:
__kmalloc_large_node+0xa2/0x200
__kmalloc+0x16e/0x290
ext4_resize_fs+0x481/0xd80
__ext4_ioctl+0x1616/0x1d90
ext4_ioctl+0x12/0x20
__x64_sys_ioctl+0xf0/0x150
do_syscall_64+0x3b/0x90
==================================================================
This is because flexbg_size is too large and the size of the new_group_data
array to be allocated exceeds MAX_ORDER. Currently, the minimum value of
MAX_ORDER is 8, the minimum value of PAGE_SIZE is 4096, the corresponding
maximum number of groups that can be allocated is:
(PAGE_SIZE << MAX_ORDER) / sizeof(struct ext4_new_group_data) ≈ 21845
And the value that is down-aligned to the power of 2 is 16384. Therefore,
this value is defined as MAX_RESIZE_BG, and the number of groups added
each time does not exceed this value during resizing, and is added multiple
times to complete the online resizing. The difference is that the metadata
in a flex_bg may be more dispersed.
CWE: CWE-770: Allocation of Resources Without Limits or Throttling
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52623
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a race condition related to RCU usage. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52648
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw related to unreferencing the plane state surface. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak')
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52653
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a memory leak in the gss_import_v2_context function. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52658
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw related to switchdev mode with ns inconsistency. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-130: Improper Handling of Length Parameter Inconsistency
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52662
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: fix a memleak in vmw_gmrid_man_get_node
When ida_alloc_max fails, resources allocated before should be freed,
including *res allocated by kmalloc and ttm_resource_init.
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52679
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
of: Fix double free in of_parse_phandle_with_args_map
In of_parse_phandle_with_args_map() the inner loop that
iterates through the map entries calls of_node_put(new)
to free the reference acquired by the previous iteration
of the inner loop. This assumes that the value of "new" is
NULL on the first iteration of the inner loop.
Make sure that this is true in all iterations of the outer
loop by setting "new" to NULL after its value is assigned to "cur".
Extend the unittest to detect the double free and add an additional
test case that actually triggers this path.
CWE: CWE-415: Double Free
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2023-52707
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
sched/psi: Fix use-after-free in ep_remove_wait_queue()
If a non-root cgroup gets removed when there is a thread that registered
trigger and is polling on a pressure file within the cgroup, the polling
waitqueue gets freed in the following path:
do_rmdir
cgroup_rmdir
kernfs_drain_open_files
cgroup_file_release
cgroup_pressure_release
psi_trigger_destroy
However, the polling thread still has a reference to the pressure file and
will access the freed waitqueue when the file is closed or upon exit:
fput
ep_eventpoll_release
ep_free
ep_remove_wait_queue
remove_wait_queue
This results in use-after-free as pasted below.
The fundamental problem here is that cgroup_file_release() (and
consequently waitqueue's lifetime) is not tied to the file's real lifetime.
Using wake_up_pollfree() here might be less than ideal, but it is in line
with the comment at commit 42288cb44c4b ("wait: add wake_up_pollfree()")
since the waitqueue's lifetime is not tied to file's one and can be
considered as another special case. While this would be fixable by somehow
making cgroup_file_release() be tied to the fput(), it would require
sizable refactoring at cgroups or higher layer which might be more
justifiable if we identify more cases like this.
BUG: KASAN: use-after-free in _raw_spin_lock_irqsave+0x60/0xc0
Write of size 4 at addr ffff88810e625328 by task a.out/4404
CPU: 19 PID: 4404 Comm: a.out Not tainted 6.2.0-rc6 #38
Hardware name: Amazon EC2 c5a.8xlarge/, BIOS 1.0 10/16/2017
Call Trace:
dump_stack_lvl+0x73/0xa0
print_report+0x16c/0x4e0
kasan_report+0xc3/0xf0
kasan_check_range+0x2d2/0x310
_raw_spin_lock_irqsave+0x60/0xc0
remove_wait_queue+0x1a/0xa0
ep_free+0x12c/0x170
ep_eventpoll_release+0x26/0x30
__fput+0x202/0x400
task_work_run+0x11d/0x170
do_exit+0x495/0x1130
do_group_exit+0x100/0x100
get_signal+0xd67/0xde0
arch_do_signal_or_restart+0x2a/0x2b0
exit_to_user_mode_prepare+0x94/0x100
syscall_exit_to_user_mode+0x20/0x40
do_syscall_64+0x52/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Allocated by task 4404:
kasan_set_track+0x3d/0x60
__kasan_kmalloc+0x85/0x90
psi_trigger_create+0x113/0x3e0
pressure_write+0x146/0x2e0
cgroup_file_write+0x11c/0x250
kernfs_fop_write_iter+0x186/0x220
vfs_write+0x3d8/0x5c0
ksys_write+0x90/0x110
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 4407:
kasan_set_track+0x3d/0x60
kasan_save_free_info+0x27/0x40
____kasan_slab_free+0x11d/0x170
slab_free_freelist_hook+0x87/0x150
__kmem_cache_free+0xcb/0x180
psi_trigger_destroy+0x2e8/0x310
cgroup_file_release+0x4f/0xb0
kernfs_drain_open_files+0x165/0x1f0
kernfs_drain+0x162/0x1a0
__kernfs_remove+0x1fb/0x310
kernfs_remove_by_name_ns+0x95/0xe0
cgroup_addrm_files+0x67f/0x700
cgroup_destroy_locked+0x283/0x3c0
cgroup_rmdir+0x29/0x100
kernfs_iop_rmdir+0xd1/0x140
vfs_rmdir+0xfe/0x240
do_rmdir+0x13d/0x280
__x64_sys_rmdir+0x2c/0x30
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
CWE: CWE-416: Use After Free
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2023-52730
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved: mmc: sdio: fix possible resource leaks in some error paths If sdio_add_func() or sdio_init_func() fails, sdio_remove_func() can not release the resources, because the sdio function is not presented in these two cases, it won't call of_node_put() or put_device().
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52756
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a double shift flaw. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52762
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a stack-based buffer overflow on virtio_max_dma_size. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-121: Stack-based Buffer Overflow
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52764
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a shift-out-of-bounds in set_flicker. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52775
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a data corruption issue during testing of SMC-R on Redis applications. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52777
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix gtk offload status event locking
The ath11k active pdevs are protected by RCU but the gtk offload status
event handling code calling ath11k_mac_get_arvif_by_vdev_id() was not
marked as a read-side critical section.
Mark the code in question as an RCU read-side critical section to avoid
any potential use-after-free issues.
Compile tested only.
CWE: CWE-416: Use After Free
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2023-52784
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw in the bond_setup_by_slave() function. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-99: Improper Control of Resource Identifiers ('Resource Injection')
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52791
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an incomplete cleanup in the i2c module. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-459: Incomplete Cleanup
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52796
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a stack-based buffer overflow in the ipvlan module. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-121: Stack-based Buffer Overflow
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52803
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a use-after-free in dget_parent. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52811
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
scsi: ibmvfc: Remove BUG_ON in the case of an empty event pool
In practice the driver should never send more commands than are allocated
to a queue's event pool. In the unlikely event that this happens, the code
asserts a BUG_ON, and in the case that the kernel is not configured to
crash on panic returns a junk event pointer from the empty event list
causing things to spiral from there. This BUG_ON is a historical artifact
of the ibmvfc driver first being upstreamed, and it is well known now that
the use of BUG_ON is bad practice except in the most unrecoverable
scenario. There is nothing about this scenario that prevents the driver
from recovering and carrying on.
Remove the BUG_ON in question from ibmvfc_get_event() and return a NULL
pointer in the case of an empty event pool. Update all call sites to
ibmvfc_get_event() to check for a NULL pointer and perfrom the appropriate
failure or recovery action.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52832
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: don't return unset power in ieee80211_get_tx_power()
We can get a UBSAN warning if ieee80211_get_tx_power() returns the
INT_MIN value mac80211 internally uses for "unset power level".
UBSAN: signed-integer-overflow in net/wireless/nl80211.c:3816:5
-2147483648 * 100 cannot be represented in type 'int'
CPU: 0 PID: 20433 Comm: insmod Tainted: G WC OE
Call Trace:
dump_stack+0x74/0x92
ubsan_epilogue+0x9/0x50
handle_overflow+0x8d/0xd0
__ubsan_handle_mul_overflow+0xe/0x10
nl80211_send_iface+0x688/0x6b0 [cfg80211]
[...]
cfg80211_register_wdev+0x78/0xb0 [cfg80211]
cfg80211_netdev_notifier_call+0x200/0x620 [cfg80211]
[...]
ieee80211_if_add+0x60e/0x8f0 [mac80211]
ieee80211_register_hw+0xda5/0x1170 [mac80211]
In this case, simply return an error instead, to indicate
that no data is available.
CWE: CWE-920: Improper Restriction of Power Consumption
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52834
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an DMA RX overflow issue. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52845
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
tipc: Change nla_policy for bearer-related names to NLA_NUL_STRING
syzbot reported the following uninit-value access issue [1]:
=====================================================
BUG: KMSAN: uninit-value in strlen lib/string.c:418 [inline]
BUG: KMSAN: uninit-value in strstr+0xb8/0x2f0 lib/string.c:756
strlen lib/string.c:418 [inline]
strstr+0xb8/0x2f0 lib/string.c:756
tipc_nl_node_reset_link_stats+0x3ea/0xb50 net/tipc/node.c:2595
genl_family_rcv_msg_doit net/netlink/genetlink.c:971 [inline]
genl_family_rcv_msg net/netlink/genetlink.c:1051 [inline]
genl_rcv_msg+0x11ec/0x1290 net/netlink/genetlink.c:1066
netlink_rcv_skb+0x371/0x650 net/netlink/af_netlink.c:2545
genl_rcv+0x40/0x60 net/netlink/genetlink.c:1075
netlink_unicast_kernel net/netlink/af_netlink.c:1342 [inline]
netlink_unicast+0xf47/0x1250 net/netlink/af_netlink.c:1368
netlink_sendmsg+0x1238/0x13d0 net/netlink/af_netlink.c:1910
sock_sendmsg_nosec net/socket.c:730 [inline]
sock_sendmsg net/socket.c:753 [inline]
____sys_sendmsg+0x9c2/0xd60 net/socket.c:2541
___sys_sendmsg+0x28d/0x3c0 net/socket.c:2595
__sys_sendmsg net/socket.c:2624 [inline]
__do_sys_sendmsg net/socket.c:2633 [inline]
__se_sys_sendmsg net/socket.c:2631 [inline]
__x64_sys_sendmsg+0x307/0x490 net/socket.c:2631
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Uninit was created at:
slab_post_alloc_hook+0x12f/0xb70 mm/slab.h:767
slab_alloc_node mm/slub.c:3478 [inline]
kmem_cache_alloc_node+0x577/0xa80 mm/slub.c:3523
kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:559
__alloc_skb+0x318/0x740 net/core/skbuff.c:650
alloc_skb include/linux/skbuff.h:1286 [inline]
netlink_alloc_large_skb net/netlink/af_netlink.c:1214 [inline]
netlink_sendmsg+0xb34/0x13d0 net/netlink/af_netlink.c:1885
sock_sendmsg_nosec net/socket.c:730 [inline]
sock_sendmsg net/socket.c:753 [inline]
____sys_sendmsg+0x9c2/0xd60 net/socket.c:2541
___sys_sendmsg+0x28d/0x3c0 net/socket.c:2595
__sys_sendmsg net/socket.c:2624 [inline]
__do_sys_sendmsg net/socket.c:2633 [inline]
__se_sys_sendmsg net/socket.c:2631 [inline]
__x64_sys_sendmsg+0x307/0x490 net/socket.c:2631
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
TIPC bearer-related names including link names must be null-terminated
strings. If a link name which is not null-terminated is passed through
netlink, strstr() and similar functions can cause buffer overrun. This
causes the above issue.
This patch changes the nla_policy for bearer-related names from NLA_STRING
to NLA_NUL_STRING. This resolves the issue by ensuring that only
null-terminated strings are accepted as bearer-related names.
syzbot reported similar uninit-value issue related to bearer names [2]. The
root cause of this issue is that a non-null-terminated bearer name was
passed. This patch also resolved this issue.
CWE: CWE-908: Use of Uninitialized Resource
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52847
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to execute arbitrary code on the system, caused by a use-after-free flaw due to btv->timeout timer. By sending a specially crafted request, an attacker could exploit this vulnerability to execute arbitrary code on the system.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 5.2
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:L/I:L/A:H)
CVEID: CVE-2023-52864
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a memory corruption flaw in the wmi_char_open() function. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak')
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-2201
DESCRIPTION: A cross-privilege Spectre v2 vulnerability allows attackers to bypass all deployed mitigations, including the recent Fine(IBT), and to leak arbitrary Linux kernel memory on Intel systems.
CWE: CWE-200: Exposure of Sensitive Information to an Unauthorized Actor
CVSS Source: CISA ADP
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:N)
CVEID: CVE-2024-21823
DESCRIPTION: Intel DSA and IAA are vulnerable to a denial of service, caused by a hardware logic with insecure de-synchronization. A local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-1264: Hardware Logic with Insecure De-Synchronization between Control and Data Channels
CVSS Source: IBM X-Force
CVSS Base score: 6.4
CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:C/C:N/I:L/A:H)
CVEID: CVE-2024-25739
DESCRIPTION: create_empty_lvol in drivers/mtd/ubi/vtbl.c in the Linux kernel through 6.7.4 can attempt to allocate zero bytes, and crash, because of a missing check for ubi->leb_size.
CWE: CWE-754: Improper Check for Unusual or Exceptional Conditions
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26586
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a stack corruption in mlxsw: spectrum_acl_tcam. A local attacker could exploit this vulnerability to cause a kernel panic.
CWE: CWE-787: Out-of-bounds Write
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26614
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
tcp: make sure init the accept_queue's spinlocks once
When I run syz's reproduction C program locally, it causes the following
issue:
pvqspinlock: lock 0xffff9d181cd5c660 has corrupted value 0x0!
WARNING: CPU: 19 PID: 21160 at __pv_queued_spin_unlock_slowpath (kernel/locking/qspinlock_paravirt.h:508)
Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
RIP: 0010:__pv_queued_spin_unlock_slowpath (kernel/locking/qspinlock_paravirt.h:508)
Code: 73 56 3a ff 90 c3 cc cc cc cc 8b 05 bb 1f 48 01 85 c0 74 05 c3 cc cc cc cc 8b 17 48 89 fe 48 c7 c7
30 20 ce 8f e8 ad 56 42 ff <0f> 0b c3 cc cc cc cc 0f 0b 0f 1f 40 00 90 90 90 90 90 90 90 90 90
RSP: 0018:ffffa8d200604cb8 EFLAGS: 00010282
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff9d1ef60e0908
RDX: 00000000ffffffd8 RSI: 0000000000000027 RDI: ffff9d1ef60e0900
RBP: ffff9d181cd5c280 R08: 0000000000000000 R09: 00000000ffff7fff
R10: ffffa8d200604b68 R11: ffffffff907dcdc8 R12: 0000000000000000
R13: ffff9d181cd5c660 R14: ffff9d1813a3f330 R15: 0000000000001000
FS: 00007fa110184640(0000) GS:ffff9d1ef60c0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020000000 CR3: 000000011f65e000 CR4: 00000000000006f0
Call Trace:
_raw_spin_unlock (kernel/locking/spinlock.c:186)
inet_csk_reqsk_queue_add (net/ipv4/inet_connection_sock.c:1321)
inet_csk_complete_hashdance (net/ipv4/inet_connection_sock.c:1358)
tcp_check_req (net/ipv4/tcp_minisocks.c:868)
tcp_v4_rcv (net/ipv4/tcp_ipv4.c:2260)
ip_protocol_deliver_rcu (net/ipv4/ip_input.c:205)
ip_local_deliver_finish (net/ipv4/ip_input.c:234)
__netif_receive_skb_one_core (net/core/dev.c:5529)
process_backlog (./include/linux/rcupdate.h:779)
__napi_poll (net/core/dev.c:6533)
net_rx_action (net/core/dev.c:6604)
__do_softirq (./arch/x86/include/asm/jump_label.h:27)
do_softirq (kernel/softirq.c:454 kernel/softirq.c:441)
__local_bh_enable_ip (kernel/softirq.c:381)
__dev_queue_xmit (net/core/dev.c:4374)
ip_finish_output2 (./include/net/neighbour.h:540 net/ipv4/ip_output.c:235)
__ip_queue_xmit (net/ipv4/ip_output.c:535)
__tcp_transmit_skb (net/ipv4/tcp_output.c:1462)
tcp_rcv_synsent_state_process (net/ipv4/tcp_input.c:6469)
tcp_rcv_state_process (net/ipv4/tcp_input.c:6657)
tcp_v4_do_rcv (net/ipv4/tcp_ipv4.c:1929)
__release_sock (./include/net/sock.h:1121 net/core/sock.c:2968)
release_sock (net/core/sock.c:3536)
inet_wait_for_connect (net/ipv4/af_inet.c:609)
__inet_stream_connect (net/ipv4/af_inet.c:702)
inet_stream_connect (net/ipv4/af_inet.c:748)
__sys_connect (./include/linux/file.h:45 net/socket.c:2064)
__x64_sys_connect (net/socket.c:2073 net/socket.c:2070 net/socket.c:2070)
do_syscall_64 (arch/x86/entry/common.c:51 arch/x86/entry/common.c:82)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:129)
RIP: 0033:0x7fa10ff05a3d
Code: 5b 41 5c c3 66 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89
c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d ab a3 0e 00 f7 d8 64 89 01 48
RSP: 002b:00007fa110183de8 EFLAGS: 00000202 ORIG_RAX: 000000000000002a
RAX: ffffffffffffffda RBX: 0000000020000054 RCX: 00007fa10ff05a3d
RDX: 000000000000001c RSI: 0000000020000040 RDI: 0000000000000003
RBP: 00007fa110183e20 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000202 R12: 00007fa110184640
R13: 0000000000000000 R14: 00007fa10fe8b060 R15: 00007fff73e23b20
The issue triggering process is analyzed as follows:
Thread A Thread B
tcp_v4_rcv //receive ack TCP packet inet_shutdown
tcp_check_req tcp_disconnect //disconnect sock
... tcp_set_state(sk, TCP_CLOSE)
inet_csk_complete_hashdance ...
inet_csk_reqsk_queue_add
---truncated---
CWE: CWE-667: Improper Locking
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26640
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
tcp: add sanity checks to rx zerocopy
TCP rx zerocopy intent is to map pages initially allocated
from NIC drivers, not pages owned by a fs.
This patch adds to can_map_frag() these additional checks:
- Page must not be a compound one.
- page->mapping must be NULL.
This fixes the panic reported by ZhangPeng.
syzbot was able to loopback packets built with sendfile(),
mapping pages owned by an ext4 file to TCP rx zerocopy.
r3 = socket$inet_tcp(0x2, 0x1, 0x0)
mmap(&(0x7f0000ff9000/0x4000)=nil, 0x4000, 0x0, 0x12, r3, 0x0)
r4 = socket$inet_tcp(0x2, 0x1, 0x0)
bind$inet(r4, &(0x7f0000000000)={0x2, 0x4e24, @multicast1}, 0x10)
connect$inet(r4, &(0x7f00000006c0)={0x2, 0x4e24, @empty}, 0x10)
r5 = openat$dir(0xffffffffffffff9c, &(0x7f00000000c0)='./file0\x00',
0x181e42, 0x0)
fallocate(r5, 0x0, 0x0, 0x85b8)
sendfile(r4, r5, 0x0, 0x8ba0)
getsockopt$inet_tcp_TCP_ZEROCOPY_RECEIVE(r4, 0x6, 0x23,
&(0x7f00000001c0)={&(0x7f0000ffb000/0x3000)=nil, 0x3000, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0}, &(0x7f0000000440)=0x40)
r6 = openat$dir(0xffffffffffffff9c, &(0x7f00000000c0)='./file0\x00',
0x181e42, 0x0)
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26660
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Implement bounds check for stream encoder creation in DCN301
'stream_enc_regs' array is an array of dcn10_stream_enc_registers
structures. The array is initialized with four elements, corresponding
to the four calls to stream_enc_regs() in the array initializer. This
means that valid indices for this array are 0, 1, 2, and 3.
The error message 'stream_enc_regs' 4 <= 5 below, is indicating that
there is an attempt to access this array with an index of 5, which is
out of bounds. This could lead to undefined behavior
Here, eng_id is used as an index to access the stream_enc_regs array. If
eng_id is 5, this would result in an out-of-bounds access on the
stream_enc_regs array.
Thus fixing Buffer overflow error in dcn301_stream_encoder_create
reported by Smatch:
drivers/gpu/drm/amd/amdgpu/../display/dc/resource/dcn301/dcn301_resource.c:1011 dcn301_stream_encoder_create() error: buffer overflow 'stream_enc_regs' 4 <= 5
CWE: CWE-125: Out-of-bounds Read
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26669
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net/sched: flower: Fix chain template offload
When a qdisc is deleted from a net device the stack instructs the
underlying driver to remove its flow offload callback from the
associated filter block using the 'FLOW_BLOCK_UNBIND' command. The stack
then continues to replay the removal of the filters in the block for
this driver by iterating over the chains in the block and invoking the
'reoffload' operation of the classifier being used. In turn, the
classifier in its 'reoffload' operation prepares and emits a
'FLOW_CLS_DESTROY' command for each filter.
However, the stack does not do the same for chain templates and the
underlying driver never receives a 'FLOW_CLS_TMPLT_DESTROY' command when
a qdisc is deleted. This results in a memory leak [1] which can be
reproduced using [2].
Fix by introducing a 'tmplt_reoffload' operation and have the stack
invoke it with the appropriate arguments as part of the replay.
Implement the operation in the sole classifier that supports chain
templates (flower) by emitting the 'FLOW_CLS_TMPLT_{CREATE,DESTROY}'
command based on whether a flow offload callback is being bound to a
filter block or being unbound from one.
As far as I can tell, the issue happens since cited commit which
reordered tcf_block_offload_unbind() before tcf_block_flush_all_chains()
in __tcf_block_put(). The order cannot be reversed as the filter block
is expected to be freed after flushing all the chains.
[1]
unreferenced object 0xffff888107e28800 (size 2048):
comm "tc", pid 1079, jiffies 4294958525 (age 3074.287s)
hex dump (first 32 bytes):
b1 a6 7c 11 81 88 ff ff e0 5b b3 10 81 88 ff ff ..|......[......
01 00 00 00 00 00 00 00 e0 aa b0 84 ff ff ff ff ................
backtrace:
[] __kmem_cache_alloc_node+0x1e8/0x320
[] __kmalloc+0x4e/0x90
[] mlxsw_sp_acl_ruleset_get+0x34d/0x7a0
[] mlxsw_sp_flower_tmplt_create+0x145/0x180
[] mlxsw_sp_flow_block_cb+0x1ea/0x280
[] tc_setup_cb_call+0x183/0x340
[] fl_tmplt_create+0x3da/0x4c0
[] tc_ctl_chain+0xa15/0x1170
[] rtnetlink_rcv_msg+0x3cc/0xed0
[] netlink_rcv_skb+0x170/0x440
[] netlink_unicast+0x540/0x820
[] netlink_sendmsg+0x8d8/0xda0
[] ____sys_sendmsg+0x30f/0xa80
[] ___sys_sendmsg+0x13a/0x1e0
[] __sys_sendmsg+0x11c/0x1f0
[] do_syscall_64+0x40/0xe0
unreferenced object 0xffff88816d2c0400 (size 1024):
comm "tc", pid 1079, jiffies 4294958525 (age 3074.287s)
hex dump (first 32 bytes):
40 00 00 00 00 00 00 00 57 f6 38 be 00 00 00 00 @.......W.8.....
10 04 2c 6d 81 88 ff ff 10 04 2c 6d 81 88 ff ff ..,m......,m....
backtrace:
[] __kmem_cache_alloc_node+0x1e8/0x320
[] __kmalloc_node+0x51/0x90
[] kvmalloc_node+0xa6/0x1f0
[] bucket_table_alloc.isra.0+0x83/0x460
[] rhashtable_init+0x43b/0x7c0
[] mlxsw_sp_acl_ruleset_get+0x428/0x7a0
[] mlxsw_sp_flower_tmplt_create+0x145/0x180
[] mlxsw_sp_flow_block_cb+0x1ea/0x280
[] tc_setup_cb_call+0x183/0x340
[] fl_tmplt_create+0x3da/0x4c0
[] tc_ctl_chain+0xa15/0x1170
[] rtnetlink_rcv_msg+0x3cc/0xed0
[] netlink_rcv_skb+0x170/0x440
[] netlink_unicast+0x540/0x820
[] netlink_sendmsg+0x8d8/0xda0
[] ____sys_sendmsg+0x30f/0xa80
[2]
# tc qdisc add dev swp1 clsact
# tc chain add dev swp1 ingress proto ip chain 1 flower dst_ip 0.0.0.0/32
# tc qdisc del dev
---truncated---
CWE: CWE-787: Out-of-bounds Write
CVSS Source: NVD
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2024-26686
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
fs/proc: do_task_stat: use sig->stats_lock to gather the threads/children stats
lock_task_sighand() can trigger a hard lockup. If NR_CPUS threads call
do_task_stat() at the same time and the process has NR_THREADS, it will
spin with irqs disabled O(NR_CPUS * NR_THREADS) time.
Change do_task_stat() to use sig->stats_lock to gather the statistics
outside of ->siglock protected section, in the likely case this code will
run lockless.
CWE: CWE-667: Improper Locking
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26698
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
hv_netvsc: Fix race condition between netvsc_probe and netvsc_remove
In commit ac5047671758 ("hv_netvsc: Disable NAPI before closing the
VMBus channel"), napi_disable was getting called for all channels,
including all subchannels without confirming if they are enabled or not.
This caused hv_netvsc getting hung at napi_disable, when netvsc_probe()
has finished running but nvdev->subchan_work has not started yet.
netvsc_subchan_work() -> rndis_set_subchannel() has not created the
sub-channels and because of that netvsc_sc_open() is not running.
netvsc_remove() calls cancel_work_sync(&nvdev->subchan_work), for which
netvsc_subchan_work did not run.
netif_napi_add() sets the bit NAPI_STATE_SCHED because it ensures NAPI
cannot be scheduled. Then netvsc_sc_open() -> napi_enable will clear the
NAPIF_STATE_SCHED bit, so it can be scheduled. napi_disable() does the
opposite.
Now during netvsc_device_remove(), when napi_disable is called for those
subchannels, napi_disable gets stuck on infinite msleep.
This fix addresses this problem by ensuring that napi_disable() is not
getting called for non-enabled NAPI struct.
But netif_napi_del() is still necessary for these non-enabled NAPI struct
for cleanup purpose.
Call trace:
[ 654.559417] task:modprobe state:D stack: 0 pid: 2321 ppid: 1091 flags:0x00004002
[ 654.568030] Call Trace:
[ 654.571221]
[ 654.573790] __schedule+0x2d6/0x960
[ 654.577733] schedule+0x69/0xf0
[ 654.581214] schedule_timeout+0x87/0x140
[ 654.585463] ? __bpf_trace_tick_stop+0x20/0x20
[ 654.590291] msleep+0x2d/0x40
[ 654.593625] napi_disable+0x2b/0x80
[ 654.597437] netvsc_device_remove+0x8a/0x1f0 [hv_netvsc]
[ 654.603935] rndis_filter_device_remove+0x194/0x1c0 [hv_netvsc]
[ 654.611101] ? do_wait_intr+0xb0/0xb0
[ 654.615753] netvsc_remove+0x7c/0x120 [hv_netvsc]
[ 654.621675] vmbus_remove+0x27/0x40 [hv_vmbus]
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: NVD
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26704
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
ext4: fix double-free of blocks due to wrong extents moved_len
In ext4_move_extents(), moved_len is only updated when all moves are
successfully executed, and only discards orig_inode and donor_inode
preallocations when moved_len is not zero. When the loop fails to exit
after successfully moving some extents, moved_len is not updated and
remains at 0, so it does not discard the preallocations.
If the moved extents overlap with the preallocated extents, the
overlapped extents are freed twice in ext4_mb_release_inode_pa() and
ext4_process_freed_data() (as described in commit 94d7c16cbbbd ("ext4:
Fix double-free of blocks with EXT4_IOC_MOVE_EXT")), and bb_free is
incremented twice. Hence when trim is executed, a zero-division bug is
triggered in mb_update_avg_fragment_size() because bb_free is not zero
and bb_fragments is zero.
Therefore, update move_len after each extent move to avoid the issue.
CWE: CWE-415: Double Free
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-26733
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
arp: Prevent overflow in arp_req_get().
syzkaller reported an overflown write in arp_req_get(). [0]
When ioctl(SIOCGARP) is issued, arp_req_get() looks up an neighbour
entry and copies neigh->ha to struct arpreq.arp_ha.sa_data.
The arp_ha here is struct sockaddr, not struct sockaddr_storage, so
the sa_data buffer is just 14 bytes.
In the splat below, 2 bytes are overflown to the next int field,
arp_flags. We initialise the field just after the memcpy(), so it's
not a problem.
However, when dev->addr_len is greater than 22 (e.g. MAX_ADDR_LEN),
arp_netmask is overwritten, which could be set as htonl(0xFFFFFFFFUL)
in arp_ioctl() before calling arp_req_get().
To avoid the overflow, let's limit the max length of memcpy().
Note that commit b5f0de6df6dc ("net: dev: Convert sa_data to flexible
array in struct sockaddr") just silenced syzkaller.
[0]:
memcpy: detected field-spanning write (size 16) of single field "r->arp_ha.sa_data" at net/ipv4/arp.c:1128 (size 14)
WARNING: CPU: 0 PID: 144638 at net/ipv4/arp.c:1128 arp_req_get+0x411/0x4a0 net/ipv4/arp.c:1128
Modules linked in:
CPU: 0 PID: 144638 Comm: syz-executor.4 Not tainted 6.1.74 #31
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-debian-1.16.0-5 04/01/2014
RIP: 0010:arp_req_get+0x411/0x4a0 net/ipv4/arp.c:1128
Code: fd ff ff e8 41 42 de fb b9 0e 00 00 00 4c 89 fe 48 c7 c2 20 6d ab 87 48 c7 c7 80 6d ab 87 c6 05 25 af 72 04 01 e8 5f 8d ad fb <0f> 0b e9 6c fd ff ff e8 13 42 de fb be 03 00 00 00 4c 89 e7 e8 a6
RSP: 0018:ffffc900050b7998 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff88803a815000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffff8641a44a RDI: 0000000000000001
RBP: ffffc900050b7a98 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 203a7970636d656d R12: ffff888039c54000
R13: 1ffff92000a16f37 R14: ffff88803a815084 R15: 0000000000000010
FS: 00007f172bf306c0(0000) GS:ffff88805aa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f172b3569f0 CR3: 0000000057f12005 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
arp_ioctl+0x33f/0x4b0 net/ipv4/arp.c:1261
inet_ioctl+0x314/0x3a0 net/ipv4/af_inet.c:981
sock_do_ioctl+0xdf/0x260 net/socket.c:1204
sock_ioctl+0x3ef/0x650 net/socket.c:1321
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__x64_sys_ioctl+0x18e/0x220 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x37/0x90 arch/x86/entry/common.c:81
entry_SYSCALL_64_after_hwframe+0x64/0xce
RIP: 0033:0x7f172b262b8d
Code: 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f172bf300b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007f172b3abf80 RCX: 00007f172b262b8d
RDX: 0000000020000000 RSI: 0000000000008954 RDI: 0000000000000003
RBP: 00007f172b2d3493 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007f172b3abf80 R15: 00007f172bf10000
CWE: CWE-787: Out-of-bounds Write
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26740
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_mirred: use the backlog for mirred ingress
The test Davide added in commit ca22da2fbd69 ("act_mirred: use the backlog
for nested calls to mirred ingress") hangs our testing VMs every 10 or so
runs, with the familiar tcp_v4_rcv -> tcp_v4_rcv deadlock reported by
lockdep.
The problem as previously described by Davide (see Link) is that
if we reverse flow of traffic with the redirect (egress -> ingress)
we may reach the same socket which generated the packet. And we may
still be holding its socket lock. The common solution to such deadlocks
is to put the packet in the Rx backlog, rather than run the Rx path
inline. Do that for all egress -> ingress reversals, not just once
we started to nest mirred calls.
In the past there was a concern that the backlog indirection will
lead to loss of error reporting / less accurate stats. But the current
workaround does not seem to address the issue.
CWE: CWE-667: Improper Locking
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26772
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid allocating blocks from corrupted group in ext4_mb_find_by_goal()
Places the logic for checking if the group's block bitmap is corrupt under
the protection of the group lock to avoid allocating blocks from the group
with a corrupted block bitmap.
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26773
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid allocating blocks from corrupted group in ext4_mb_try_best_found()
Determine if the group block bitmap is corrupted before using ac_b_ex in
ext4_mb_try_best_found() to avoid allocating blocks from a group with a
corrupted block bitmap in the following concurrency and making the
situation worse.
ext4_mb_regular_allocator
ext4_lock_group(sb, group)
ext4_mb_good_group
// check if the group bbitmap is corrupted
ext4_mb_complex_scan_group
// Scan group gets ac_b_ex but doesn't use it
ext4_unlock_group(sb, group)
ext4_mark_group_bitmap_corrupted(group)
// The block bitmap was corrupted during
// the group unlock gap.
ext4_mb_try_best_found
ext4_lock_group(ac->ac_sb, group)
ext4_mb_use_best_found
mb_mark_used
// Allocating blocks in block bitmap corrupted group
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26802
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an error related to clear variable when destroying workqueue. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26810
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a race condition when mask operations through config space changes to DisINTx. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26837
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net: bridge: switchdev: Skip MDB replays of deferred events on offload
Before this change, generation of the list of MDB events to replay
would race against the creation of new group memberships, either from
the IGMP/MLD snooping logic or from user configuration.
While new memberships are immediately visible to walkers of
br->mdb_list, the notification of their existence to switchdev event
subscribers is deferred until a later point in time. So if a replay
list was generated during a time that overlapped with such a window,
it would also contain a replay of the not-yet-delivered event.
The driver would thus receive two copies of what the bridge internally
considered to be one single event. On destruction of the bridge, only
a single membership deletion event was therefore sent. As a
consequence of this, drivers which reference count memberships (at
least DSA), would be left with orphan groups in their hardware
database when the bridge was destroyed.
This is only an issue when replaying additions. While deletion events
may still be pending on the deferred queue, they will already have
been removed from br->mdb_list, so no duplicates can be generated in
that scenario.
To a user this meant that old group memberships, from a bridge in
which a port was previously attached, could be reanimated (in
hardware) when the port joined a new bridge, without the new bridge's
knowledge.
For example, on an mv88e6xxx system, create a snooping bridge and
immediately add a port to it:
root@infix-06-0b-00:~$ ip link add dev br0 up type bridge mcast_snooping 1 && \
> ip link set dev x3 up master br0
And then destroy the bridge:
root@infix-06-0b-00:~$ ip link del dev br0
root@infix-06-0b-00:~$ mvls atu
ADDRESS FID STATE Q F 0 1 2 3 4 5 6 7 8 9 a
DEV:0 Marvell 88E6393X
33:33:00:00:00:6a 1 static - - 0 . . . . . . . . . .
33:33:ff:87:e4:3f 1 static - - 0 . . . . . . . . . .
ff:ff:ff:ff:ff:ff 1 static - - 0 1 2 3 4 5 6 7 8 9 a
root@infix-06-0b-00:~$
The two IPv6 groups remain in the hardware database because the
port (x3) is notified of the host's membership twice: once via the
original event and once via a replay. Since only a single delete
notification is sent, the count remains at 1 when the bridge is
destroyed.
Then add the same port (or another port belonging to the same hardware
domain) to a new bridge, this time with snooping disabled:
root@infix-06-0b-00:~$ ip link add dev br1 up type bridge mcast_snooping 0 && \
> ip link set dev x3 up master br1
All multicast, including the two IPv6 groups from br0, should now be
flooded, according to the policy of br1. But instead the old
memberships are still active in the hardware database, causing the
switch to only forward traffic to those groups towards the CPU (port
0).
Eliminate the race in two steps:
1. Grab the write-side lock of the MDB while generating the replay
list.
This prevents new memberships from showing up while we are generating
the replay list. But it leaves the scenario in which a deferred event
was already generated, but not delivered, before we grabbed the
lock. Therefore:
2. Make sure that no deferred version of a replay event is already
enqueued to the switchdev deferred queue, before adding it to the
replay list, when replaying additions.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: NVD
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26840
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
cachefiles: fix memory leak in cachefiles_add_cache()
The following memory leak was reported after unbinding /dev/cachefiles:
==================================================================
unreferenced object 0xffff9b674176e3c0 (size 192):
comm "cachefilesd2", pid 680, jiffies 4294881224
hex dump (first 32 bytes):
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc ea38a44b):
[] kmem_cache_alloc+0x2d5/0x370
[] prepare_creds+0x26/0x2e0
[] cachefiles_determine_cache_security+0x1f/0x120
[] cachefiles_add_cache+0x13c/0x3a0
[] cachefiles_daemon_write+0x146/0x1c0
[] vfs_write+0xcb/0x520
[] ksys_write+0x69/0xf0
[] do_syscall_64+0x72/0x140
[] entry_SYSCALL_64_after_hwframe+0x6e/0x76
==================================================================
Put the reference count of cache_cred in cachefiles_daemon_unbind() to
fix the problem. And also put cache_cred in cachefiles_add_cache() error
branch to avoid memory leaks.
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26843
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to obtain sensitive information, caused by a stack-based buffer overflow in soft-reserved region size md_size. By sending a specially crafted request, an attacker could exploit this vulnerability to obtain sensitive information or cause a denial of service condition.
CWE: CWE-121: Stack-based Buffer Overflow
CVSS Source: IBM X-Force
CVSS Base score: 6
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2024-26852
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net/ipv6: avoid possible UAF in ip6_route_mpath_notify()
syzbot found another use-after-free in ip6_route_mpath_notify() [1]
Commit f7225172f25a ("net/ipv6: prevent use after free in
ip6_route_mpath_notify") was not able to fix the root cause.
We need to defer the fib6_info_release() calls after
ip6_route_mpath_notify(), in the cleanup phase.
[1]
BUG: KASAN: slab-use-after-free in rt6_fill_node+0x1460/0x1ac0
Read of size 4 at addr ffff88809a07fc64 by task syz-executor.2/23037
CPU: 0 PID: 23037 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-01035-gea7f3cfaa588 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
Call Trace:
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2e0 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x167/0x540 mm/kasan/report.c:488
kasan_report+0x142/0x180 mm/kasan/report.c:601
rt6_fill_node+0x1460/0x1ac0
inet6_rt_notify+0x13b/0x290 net/ipv6/route.c:6184
ip6_route_mpath_notify net/ipv6/route.c:5198 [inline]
ip6_route_multipath_add net/ipv6/route.c:5404 [inline]
inet6_rtm_newroute+0x1d0f/0x2300 net/ipv6/route.c:5517
rtnetlink_rcv_msg+0x885/0x1040 net/core/rtnetlink.c:6597
netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2543
netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline]
netlink_unicast+0x7ea/0x980 net/netlink/af_netlink.c:1367
netlink_sendmsg+0xa3b/0xd70 net/netlink/af_netlink.c:1908
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:745
____sys_sendmsg+0x525/0x7d0 net/socket.c:2584
___sys_sendmsg net/socket.c:2638 [inline]
__sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667
do_syscall_64+0xf9/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
RIP: 0033:0x7f73dd87dda9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f73de6550c8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00007f73dd9ac050 RCX: 00007f73dd87dda9
RDX: 0000000000000000 RSI: 0000000020000140 RDI: 0000000000000005
RBP: 00007f73dd8ca47a R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000006e R14: 00007f73dd9ac050 R15: 00007ffdbdeb7858
Allocated by task 23037:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:372 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:389
kasan_kmalloc include/linux/kasan.h:211 [inline]
__do_kmalloc_node mm/slub.c:3981 [inline]
__kmalloc+0x22e/0x490 mm/slub.c:3994
kmalloc include/linux/slab.h:594 [inline]
kzalloc include/linux/slab.h:711 [inline]
fib6_info_alloc+0x2e/0xf0 net/ipv6/ip6_fib.c:155
ip6_route_info_create+0x445/0x12b0 net/ipv6/route.c:3758
ip6_route_multipath_add net/ipv6/route.c:5298 [inline]
inet6_rtm_newroute+0x744/0x2300 net/ipv6/route.c:5517
rtnetlink_rcv_msg+0x885/0x1040 net/core/rtnetlink.c:6597
netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2543
netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline]
netlink_unicast+0x7ea/0x980 net/netlink/af_netlink.c:1367
netlink_sendmsg+0xa3b/0xd70 net/netlink/af_netlink.c:1908
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:745
____sys_sendmsg+0x525/0x7d0 net/socket.c:2584
___sys_sendmsg net/socket.c:2638 [inline]
__sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667
do_syscall_64+0xf9/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
Freed by task 16:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x4e/0x60 mm/kasan/generic.c:640
poison_slab_object+0xa6/0xe0 m
---truncated---
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-26853
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
igc: avoid returning frame twice in XDP_REDIRECT
When a frame can not be transmitted in XDP_REDIRECT
(e.g. due to a full queue), it is necessary to free
it by calling xdp_return_frame_rx_napi.
However, this is the responsibility of the caller of
the ndo_xdp_xmit (see for example bq_xmit_all in
kernel/bpf/devmap.c) and thus calling it inside
igc_xdp_xmit (which is the ndo_xdp_xmit of the igc
driver) as well will lead to memory corruption.
In fact, bq_xmit_all expects that it can return all
frames after the last successfully transmitted one.
Therefore, break for the first not transmitted frame,
but do not call xdp_return_frame_rx_napi in igc_xdp_xmit.
This is equally implemented in other Intel drivers
such as the igb.
There are two alternatives to this that were rejected:
1. Return num_frames as all the frames would have been
transmitted and release them inside igc_xdp_xmit.
While it might work technically, it is not what
the return value is meant to represent (i.e. the
number of SUCCESSFULLY transmitted packets).
2. Rework kernel/bpf/devmap.c and all drivers to
support non-consecutively dropped packets.
Besides being complex, it likely has a negative
performance impact without a significant gain
since it is anyway unlikely that the next frame
can be transmitted if the previous one was dropped.
The memory corruption can be reproduced with
the following script which leads to a kernel panic
after a few seconds. It basically generates more
traffic than a i225 NIC can transmit and pushes it
via XDP_REDIRECT from a virtual interface to the
physical interface where frames get dropped.
#!/bin/bash
INTERFACE=enp4s0
INTERFACE_IDX=`cat /sys/class/net/$INTERFACE/ifindex`
sudo ip link add dev veth1 type veth peer name veth2
sudo ip link set up $INTERFACE
sudo ip link set up veth1
sudo ip link set up veth2
cat << EOF > redirect.bpf.c
SEC("prog")
int redirect(struct xdp_md *ctx)
{
return bpf_redirect($INTERFACE_IDX, 0);
}
char _license[] SEC("license") = "GPL";
EOF
clang -O2 -g -Wall -target bpf -c redirect.bpf.c -o redirect.bpf.o
sudo ip link set veth2 xdp obj redirect.bpf.o
cat << EOF > pass.bpf.c
SEC("prog")
int pass(struct xdp_md *ctx)
{
return XDP_PASS;
}
char _license[] SEC("license") = "GPL";
EOF
clang -O2 -g -Wall -target bpf -c pass.bpf.c -o pass.bpf.o
sudo ip link set $INTERFACE xdp obj pass.bpf.o
cat << EOF > trafgen.cfg
{
/* Ethernet Header */
0xe8, 0x6a, 0x64, 0x41, 0xbf, 0x46,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
const16(ETH_P_IP),
/* IPv4 Header */
0b01000101, 0, # IPv4 version, IHL, TOS
const16(1028), # IPv4 total length (UDP length + 20 bytes (IP header))
const16(2), # IPv4 ident
0b01000000, 0, # IPv4 flags, fragmentation off
64, # IPv4 TTL
17, # Protocol UDP
csumip(14, 33), # IPv4 checksum
/* UDP Header */
10, 0, 1, 1, # IP Src - adapt as needed
10, 0, 1, 2, # IP Dest - adapt as needed
const16(6666), # UDP Src Port
const16(6666), # UDP Dest Port
const16(1008), # UDP length (UDP header 8 bytes + payload length)
csumudp(14, 34), # UDP checksum
/* Payload */
fill('W', 1000),
}
EOF
sudo trafgen -i trafgen.cfg -b3000MB -o veth1 --cpp
CWE: CWE-787: Out-of-bounds Write
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26870
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a nfs4_listxattr kernel BUG at mm/usercopy.c. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26878
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
quota: Fix potential NULL pointer dereference
Below race may cause NULL pointer dereference
P1 P2
dquot_free_inode quota_off
drop_dquot_ref
remove_dquot_ref
dquots = i_dquot(inode)
dquots = i_dquot(inode)
srcu_read_lock
dquots[cnt]) != NULL (1)
dquots[type] = NULL (2)
spin_lock(&dquots[cnt]->dq_dqb_lock) (3)
....
If dquot_free_inode(or other routines) checks inode's quota pointers (1)
before quota_off sets it to NULL(2) and use it (3) after that, NULL pointer
dereference will be triggered.
So let's fix it by using a temporary pointer to avoid this issue.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: NVD
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26921
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a buffer underflow when skb fragments reassembled via netfilter or similar
modules. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-124: Buffer Underwrite ('Buffer Underflow')
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26925
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an error related to netfilter: nf_tables: release mutex after nft_gc_seq_end from abort path. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-667: Improper Locking
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26940
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Create debugfs ttm_resource_manager entry only if needed
The driver creates /sys/kernel/debug/dri/0/mob_ttm even when the
corresponding ttm_resource_manager is not allocated.
This leads to a crash when trying to read from this file.
Add a check to create mob_ttm, system_mob_ttm, and gmr_ttm debug file
only when the corresponding ttm_resource_manager is allocated.
crash> bt
PID: 3133409 TASK: ffff8fe4834a5000 CPU: 3 COMMAND: "grep"
#0 [ffffb954506b3b20] machine_kexec at ffffffffb2a6bec3
#1 [ffffb954506b3b78] __crash_kexec at ffffffffb2bb598a
#2 [ffffb954506b3c38] crash_kexec at ffffffffb2bb68c1
#3 [ffffb954506b3c50] oops_end at ffffffffb2a2a9b1
#4 [ffffb954506b3c70] no_context at ffffffffb2a7e913
#5 [ffffb954506b3cc8] __bad_area_nosemaphore at ffffffffb2a7ec8c
#6 [ffffb954506b3d10] do_page_fault at ffffffffb2a7f887
#7 [ffffb954506b3d40] page_fault at ffffffffb360116e
[exception RIP: ttm_resource_manager_debug+0x11]
RIP: ffffffffc04afd11 RSP: ffffb954506b3df0 RFLAGS: 00010246
RAX: ffff8fe41a6d1200 RBX: 0000000000000000 RCX: 0000000000000940
RDX: 0000000000000000 RSI: ffffffffc04b4338 RDI: 0000000000000000
RBP: ffffb954506b3e08 R8: ffff8fee3ffad000 R9: 0000000000000000
R10: ffff8fe41a76a000 R11: 0000000000000001 R12: 00000000ffffffff
R13: 0000000000000001 R14: ffff8fe5bb6f3900 R15: ffff8fe41a6d1200
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
#8 [ffffb954506b3e00] ttm_resource_manager_show at ffffffffc04afde7 [ttm]
#9 [ffffb954506b3e30] seq_read at ffffffffb2d8f9f3
RIP: 00007f4c4eda8985 RSP: 00007ffdbba9e9f8 RFLAGS: 00000246
RAX: ffffffffffffffda RBX: 000000000037e000 RCX: 00007f4c4eda8985
RDX: 000000000037e000 RSI: 00007f4c41573000 RDI: 0000000000000003
RBP: 000000000037e000 R8: 0000000000000000 R9: 000000000037fe30
R10: 0000000000000000 R11: 0000000000000246 R12: 00007f4c41573000
R13: 0000000000000003 R14: 00007f4c41572010 R15: 0000000000000003
ORIG_RAX: 0000000000000000 CS: 0033 SS: 002b
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26958
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
nfs: fix UAF in direct writes
In production we have been hitting the following warning consistently
------------[ cut here ]------------
refcount_t: underflow; use-after-free.
WARNING: CPU: 17 PID: 1800359 at lib/refcount.c:28 refcount_warn_saturate+0x9c/0xe0
Workqueue: nfsiod nfs_direct_write_schedule_work [nfs]
RIP: 0010:refcount_warn_saturate+0x9c/0xe0
PKRU: 55555554
Call Trace:
? __warn+0x9f/0x130
? refcount_warn_saturate+0x9c/0xe0
? report_bug+0xcc/0x150
? handle_bug+0x3d/0x70
? exc_invalid_op+0x16/0x40
? asm_exc_invalid_op+0x16/0x20
? refcount_warn_saturate+0x9c/0xe0
nfs_direct_write_schedule_work+0x237/0x250 [nfs]
process_one_work+0x12f/0x4a0
worker_thread+0x14e/0x3b0
? ZSTD_getCParams_internal+0x220/0x220
kthread+0xdc/0x120
? __btf_name_valid+0xa0/0xa0
ret_from_fork+0x1f/0x30
This is because we're completing the nfs_direct_request twice in a row.
The source of this is when we have our commit requests to submit, we
process them and send them off, and then in the completion path for the
commit requests we have
if (nfs_commit_end(cinfo.mds))
nfs_direct_write_complete(dreq);
However since we're submitting asynchronous requests we sometimes have
one that completes before we submit the next one, so we end up calling
complete on the nfs_direct_request twice.
The only other place we use nfs_generic_commit_list() is in
__nfs_commit_inode, which wraps this call in a
nfs_commit_begin();
nfs_commit_end();
Which is a common pattern for this style of completion handling, one
that is also repeated in the direct code with get_dreq()/put_dreq()
calls around where we process events as well as in the completion paths.
Fix this by using the same pattern for the commit requests.
Before with my 200 node rocksdb stress running this warning would pop
every 10ish minutes. With my patch the stress test has been running for
several hours without popping.
CWE: CWE-416: Use After Free
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-26960
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
mm: swap: fix race between free_swap_and_cache() and swapoff()
There was previously a theoretical window where swapoff() could run and
teardown a swap_info_struct while a call to free_swap_and_cache() was
running in another thread. This could cause, amongst other bad
possibilities, swap_page_trans_huge_swapped() (called by
free_swap_and_cache()) to access the freed memory for swap_map.
This is a theoretical problem and I haven't been able to provoke it from a
test case. But there has been agreement based on code review that this is
possible (see link below).
Fix it by using get_swap_device()/put_swap_device(), which will stall
swapoff(). There was an extra check in _swap_info_get() to confirm that
the swap entry was not free. This isn't present in get_swap_device()
because it doesn't make sense in general due to the race between getting
the reference and swapoff. So I've added an equivalent check directly in
free_swap_and_cache().
Details of how to provoke one possible issue (thanks to David Hildenbrand
for deriving this):
--8<-----
__swap_entry_free() might be the last user and result in
"count == SWAP_HAS_CACHE".
swapoff->try_to_unuse() will stop as soon as soon as si->inuse_pages==0.
So the question is: could someone reclaim the folio and turn
si->inuse_pages==0, before we completed swap_page_trans_huge_swapped().
Imagine the following: 2 MiB folio in the swapcache. Only 2 subpages are
still references by swap entries.
Process 1 still references subpage 0 via swap entry.
Process 2 still references subpage 1 via swap entry.
Process 1 quits. Calls free_swap_and_cache().
-> count == SWAP_HAS_CACHE
[then, preempted in the hypervisor etc.]
Process 2 quits. Calls free_swap_and_cache().
-> count == SWAP_HAS_CACHE
Process 2 goes ahead, passes swap_page_trans_huge_swapped(), and calls
__try_to_reclaim_swap().
__try_to_reclaim_swap()->folio_free_swap()->delete_from_swap_cache()->
put_swap_folio()->free_swap_slot()->swapcache_free_entries()->
swap_entry_free()->swap_range_free()->
...
WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
What stops swapoff to succeed after process 2 reclaimed the swap cache
but before process1 finished its call to swap_page_trans_huge_swapped()?
--8<-----
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26961
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
mac802154: fix llsec key resources release in mac802154_llsec_key_del
mac802154_llsec_key_del() can free resources of a key directly without
following the RCU rules for waiting before the end of a grace period. This
may lead to use-after-free in case llsec_lookup_key() is traversing the
list of keys in parallel with a key deletion:
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 4 PID: 16000 at lib/refcount.c:25 refcount_warn_saturate+0x162/0x2a0
Modules linked in:
CPU: 4 PID: 16000 Comm: wpan-ping Not tainted 6.7.0 #19
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
RIP: 0010:refcount_warn_saturate+0x162/0x2a0
Call Trace:
llsec_lookup_key.isra.0+0x890/0x9e0
mac802154_llsec_encrypt+0x30c/0x9c0
ieee802154_subif_start_xmit+0x24/0x1e0
dev_hard_start_xmit+0x13e/0x690
sch_direct_xmit+0x2ae/0xbc0
__dev_queue_xmit+0x11dd/0x3c20
dgram_sendmsg+0x90b/0xd60
__sys_sendto+0x466/0x4c0
__x64_sys_sendto+0xe0/0x1c0
do_syscall_64+0x45/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
Also, ieee802154_llsec_key_entry structures are not freed by
mac802154_llsec_key_del():
unreferenced object 0xffff8880613b6980 (size 64):
comm "iwpan", pid 2176, jiffies 4294761134 (age 60.475s)
hex dump (first 32 bytes):
78 0d 8f 18 80 88 ff ff 22 01 00 00 00 00 ad de x.......".......
00 00 00 00 00 00 00 00 03 00 cd ab 00 00 00 00 ................
backtrace:
[] __kmem_cache_alloc_node+0x1e2/0x2d0
[] kmalloc_trace+0x25/0xc0
[] mac802154_llsec_key_add+0xac9/0xcf0
[] ieee802154_add_llsec_key+0x5a/0x80
[] nl802154_add_llsec_key+0x426/0x5b0
[] genl_family_rcv_msg_doit+0x1fe/0x2f0
[] genl_rcv_msg+0x531/0x7d0
[] netlink_rcv_skb+0x169/0x440
[] genl_rcv+0x28/0x40
[] netlink_unicast+0x53c/0x820
[] netlink_sendmsg+0x93b/0xe60
[] ____sys_sendmsg+0xac5/0xca0
[] ___sys_sendmsg+0x11d/0x1c0
[] __sys_sendmsg+0xfa/0x1d0
[] do_syscall_64+0x45/0xf0
[] entry_SYSCALL_64_after_hwframe+0x6e/0x76
Handle the proper resource release in the RCU callback function
mac802154_llsec_key_del_rcu().
Note that if llsec_lookup_key() finds a key, it gets a refcount via
llsec_key_get() and locally copies key id from key_entry (which is a
list element). So it's safe to call llsec_key_put() and free the list
entry after the RCU grace period elapses.
Found by Linux Verification Center (linuxtesting.org).
CWE: CWE-416: Use After Free
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-27010
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net/sched: Fix mirred deadlock on device recursion
When the mirred action is used on a classful egress qdisc and a packet is
mirrored or redirected to self we hit a qdisc lock deadlock.
See trace below.
[..... other info removed for brevity....]
[ 82.890906]
[ 82.890906] ============================================
[ 82.890906] WARNING: possible recursive locking detected
[ 82.890906] 6.8.0-05205-g77fadd89fe2d-dirty #213 Tainted: G W
[ 82.890906] --------------------------------------------
[ 82.890906] ping/418 is trying to acquire lock:
[ 82.890906] ffff888006994110 (&sch->q.lock){+.-.}-{3:3}, at:
__dev_queue_xmit+0x1778/0x3550
[ 82.890906]
[ 82.890906] but task is already holding lock:
[ 82.890906] ffff888006994110 (&sch->q.lock){+.-.}-{3:3}, at:
__dev_queue_xmit+0x1778/0x3550
[ 82.890906]
[ 82.890906] other info that might help us debug this:
[ 82.890906] Possible unsafe locking scenario:
[ 82.890906]
[ 82.890906] CPU0
[ 82.890906] ----
[ 82.890906] lock(&sch->q.lock);
[ 82.890906] lock(&sch->q.lock);
[ 82.890906]
[ 82.890906] *** DEADLOCK ***
[ 82.890906]
[..... other info removed for brevity....]
Example setup (eth0->eth0) to recreate
tc qdisc add dev eth0 root handle 1: htb default 30
tc filter add dev eth0 handle 1: protocol ip prio 2 matchall \
action mirred egress redirect dev eth0
Another example(eth0->eth1->eth0) to recreate
tc qdisc add dev eth0 root handle 1: htb default 30
tc filter add dev eth0 handle 1: protocol ip prio 2 matchall \
action mirred egress redirect dev eth1
tc qdisc add dev eth1 root handle 1: htb default 30
tc filter add dev eth1 handle 1: protocol ip prio 2 matchall \
action mirred egress redirect dev eth0
We fix this by adding an owner field (CPU id) to struct Qdisc set after
root qdisc is entered. When the softirq enters it a second time, if the
qdisc owner is the same CPU, the packet is dropped to break the loop.
CWE: CWE-667: Improper Locking
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-27011
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: fix memleak in map from abort path
The delete set command does not rely on the transaction object for
element removal, therefore, a combination of delete element + delete set
from the abort path could result in restoring twice the refcount of the
mapping.
Check for inactive element in the next generation for the delete element
command in the abort path, skip restoring state if next generation bit
has been already cleared. This is similar to the activate logic using
the set walk iterator.
[ 6170.286929] ------------[ cut here ]------------
[ 6170.286939] WARNING: CPU: 6 PID: 790302 at net/netfilter/nf_tables_api.c:2086 nf_tables_chain_destroy+0x1f7/0x220 [nf_tables]
[ 6170.287071] Modules linked in: [...]
[ 6170.287633] CPU: 6 PID: 790302 Comm: kworker/6:2 Not tainted 6.9.0-rc3+ #365
[ 6170.287768] RIP: 0010:nf_tables_chain_destroy+0x1f7/0x220 [nf_tables]
[ 6170.287886] Code: df 48 8d 7d 58 e8 69 2e 3b df 48 8b 7d 58 e8 80 1b 37 df 48 8d 7d 68 e8 57 2e 3b df 48 8b 7d 68 e8 6e 1b 37 df 48 89 ef eb c4 <0f> 0b 48 83 c4 08 5b 5d 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc 0f
[ 6170.287895] RSP: 0018:ffff888134b8fd08 EFLAGS: 00010202
[ 6170.287904] RAX: 0000000000000001 RBX: ffff888125bffb28 RCX: dffffc0000000000
[ 6170.287912] RDX: 0000000000000003 RSI: ffffffffa20298ab RDI: ffff88811ebe4750
[ 6170.287919] RBP: ffff88811ebe4700 R08: ffff88838e812650 R09: fffffbfff0623a55
[ 6170.287926] R10: ffffffff8311d2af R11: 0000000000000001 R12: ffff888125bffb10
[ 6170.287933] R13: ffff888125bffb10 R14: dead000000000122 R15: dead000000000100
[ 6170.287940] FS: 0000000000000000(0000) GS:ffff888390b00000(0000) knlGS:0000000000000000
[ 6170.287948] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 6170.287955] CR2: 00007fd31fc00710 CR3: 0000000133f60004 CR4: 00000000001706f0
[ 6170.287962] Call Trace:
[ 6170.287967]
[ 6170.287973] ? __warn+0x9f/0x1a0
[ 6170.287986] ? nf_tables_chain_destroy+0x1f7/0x220 [nf_tables]
[ 6170.288092] ? report_bug+0x1b1/0x1e0
[ 6170.287986] ? nf_tables_chain_destroy+0x1f7/0x220 [nf_tables]
[ 6170.288092] ? report_bug+0x1b1/0x1e0
[ 6170.288104] ? handle_bug+0x3c/0x70
[ 6170.288112] ? exc_invalid_op+0x17/0x40
[ 6170.288120] ? asm_exc_invalid_op+0x1a/0x20
[ 6170.288132] ? nf_tables_chain_destroy+0x2b/0x220 [nf_tables]
[ 6170.288243] ? nf_tables_chain_destroy+0x1f7/0x220 [nf_tables]
[ 6170.288366] ? nf_tables_chain_destroy+0x2b/0x220 [nf_tables]
[ 6170.288483] nf_tables_trans_destroy_work+0x588/0x590 [nf_tables]
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-27019
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by potential data-race in __nft_obj_type_get() in netfilter: nf_tables. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-27020
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by potential data-race in __nft_expr_type_get() in netfilter: nf_tables. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-27025
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
nbd: null check for nla_nest_start
nla_nest_start() may fail and return NULL. Insert a check and set errno
based on other call sites within the same source code.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-27065
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw in the table flag updates, in the netfilter: nf_tables module. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-27388
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: fix some memleaks in gssx_dec_option_array
The creds and oa->data need to be freed in the error-handling paths after
their allocation. So this patch add these deallocations in the
corresponding paths.
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-27395
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net: openvswitch: Fix Use-After-Free in ovs_ct_exit
Since kfree_rcu, which is called in the hlist_for_each_entry_rcu traversal
of ovs_ct_limit_exit, is not part of the RCU read critical section, it
is possible that the RCU grace period will pass during the traversal and
the key will be free.
To prevent this, it should be changed to hlist_for_each_entry_safe.
CWE: CWE-416: Use After Free
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-27434
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw relate to setting the MFP flag for the GTK. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-31076
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to obtain sensitive information, caused by a vector leak during CPU offline. By sending a specially crafted request, an attacker could exploit this vulnerability to obtain sensitive information or cause a denial of service condition.
CWE: CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak')
CVSS Source: Red Hat
CVSS Base score: 5.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:L)
CVEID: CVE-2024-33621
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw with using skb->sk in ipvlan_process_v{4,6}_outbound. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35790
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a NULL pointer dereference flaw in the DisplayPort driver. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35801
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw when CPU hotplug MSR_IA32_XFD is reset to the init_fpstate.xfd. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35807
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a corruption during on-line resize of a file system that is larger than 16 TiB with 4k block size. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35810
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a use-after-free flaw when manage the lifetime of the buffer objects held by the vmw_plane_state. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-416: Use After Free
CVSS Source: Red Hat
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35814
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a double-allocation of slots due to broken alignment handling. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35823
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
vt: fix unicode buffer corruption when deleting characters
This is the same issue that was fixed for the VGA text buffer in commit
39cdb68c64d8 ("vt: fix memory overlapping when deleting chars in the
buffer"). The cure is also the same i.e. replace memcpy() with memmove()
due to the overlaping buffers.
CWE: CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35824
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw related to regulators getting en-/dis-abled twice on suspend/resume. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35847
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
irqchip/gic-v3-its: Prevent double free on error
The error handling path in its_vpe_irq_domain_alloc() causes a double free
when its_vpe_init() fails after successfully allocating at least one
interrupt. This happens because its_vpe_irq_domain_free() frees the
interrupts along with the area bitmap and the vprop_page and
its_vpe_irq_domain_alloc() subsequently frees the area bitmap and the
vprop_page again.
Fix this by unconditionally invoking its_vpe_irq_domain_free() which
handles all cases correctly and by removing the bitmap/vprop_page freeing
from its_vpe_irq_domain_alloc().
[ tglx: Massaged change log ]
CWE: CWE-415: Double Free
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-35893
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a kernel-infoleak in the tcf_skbmod_dump() function. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak')
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35896
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
netfilter: validate user input for expected length
I got multiple syzbot reports showing old bugs exposed
by BPF after commit 20f2505fb436 ("bpf: Try to avoid kzalloc
in cgroup/{s,g}etsockopt")
setsockopt() @optlen argument should be taken into account
before copying data.
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset include/linux/sockptr.h:49 [inline]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr include/linux/sockptr.h:55 [inline]
BUG: KASAN: slab-out-of-bounds in do_replace net/ipv4/netfilter/ip_tables.c:1111 [inline]
BUG: KASAN: slab-out-of-bounds in do_ipt_set_ctl+0x902/0x3dd0 net/ipv4/netfilter/ip_tables.c:1627
Read of size 96 at addr ffff88802cd73da0 by task syz-executor.4/7238
CPU: 1 PID: 7238 Comm: syz-executor.4 Not tainted 6.9.0-rc2-next-20240403-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
Call Trace:
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
kasan_check_range+0x282/0x290 mm/kasan/generic.c:189
__asan_memcpy+0x29/0x70 mm/kasan/shadow.c:105
copy_from_sockptr_offset include/linux/sockptr.h:49 [inline]
copy_from_sockptr include/linux/sockptr.h:55 [inline]
do_replace net/ipv4/netfilter/ip_tables.c:1111 [inline]
do_ipt_set_ctl+0x902/0x3dd0 net/ipv4/netfilter/ip_tables.c:1627
nf_setsockopt+0x295/0x2c0 net/netfilter/nf_sockopt.c:101
do_sock_setsockopt+0x3af/0x720 net/socket.c:2311
__sys_setsockopt+0x1ae/0x250 net/socket.c:2334
__do_sys_setsockopt net/socket.c:2343 [inline]
__se_sys_setsockopt net/socket.c:2340 [inline]
__x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x72/0x7a
RIP: 0033:0x7fd22067dde9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fd21f9ff0c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000036
RAX: ffffffffffffffda RBX: 00007fd2207abf80 RCX: 00007fd22067dde9
RDX: 0000000000000040 RSI: 0000000000000000 RDI: 0000000000000003
RBP: 00007fd2206ca47a R08: 0000000000000001 R09: 0000000000000000
R10: 0000000020000880 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007fd2207abf80 R15: 00007ffd2d0170d8
Allocated by task 7238:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:370 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:387
kasan_kmalloc include/linux/kasan.h:211 [inline]
__do_kmalloc_node mm/slub.c:4069 [inline]
__kmalloc_noprof+0x200/0x410 mm/slub.c:4082
kmalloc_noprof include/linux/slab.h:664 [inline]
__cgroup_bpf_run_filter_setsockopt+0xd47/0x1050 kernel/bpf/cgroup.c:1869
do_sock_setsockopt+0x6b4/0x720 net/socket.c:2293
__sys_setsockopt+0x1ae/0x250 net/socket.c:2334
__do_sys_setsockopt net/socket.c:2343 [inline]
__se_sys_setsockopt net/socket.c:2340 [inline]
__x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x72/0x7a
The buggy address belongs to the object at ffff88802cd73da0
which belongs to the cache kmalloc-8 of size 8
The buggy address is located 0 bytes inside of
allocated 1-byte region [ffff88802cd73da0, ffff88802cd73da1)
The buggy address belongs to the physical page:
page: refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff88802cd73020 pfn:0x2cd73
flags: 0xfff80000000000(node=0|zone=1|lastcpupid=0xfff)
page_type: 0xffffefff(slab)
raw: 00fff80000000000 ffff888015041280 dead000000000100 dead000000000122
raw: ffff88802cd73020 000000008080007f 00000001ffffefff 00
---truncated---
CWE: CWE-125: Out-of-bounds Read
CVSS Source: NVD
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2024-35897
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw with discard table flag update with pending basechain deletion. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: Red Hat
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35899
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a race condition between exit_net and the destroy workqueue. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35900
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw when trying to unregister and already unregistered chain. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35910
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to execute arbitrary code on the system, caused by a flaw with improperly terminate timers for kernel sockets. By sending a specially crafted request, an attacker could exploit this vulnerability to execute arbitrary code on the system.
CWE: CWE-94: Improper Control of Generation of Code ('Code Injection')
CVSS Source: IBM X-Force
CVSS Base score: 6.6
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H)
CVEID: CVE-2024-35912
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a response leaks when the rx payload length check fails, or if kmemdup() fails. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak')
CVSS Source: Red Hat
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35924
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by buffer overflow when reading for UCSI 1.2. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35925
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
block: prevent division by zero in blk_rq_stat_sum()
The expression dst->nr_samples + src->nr_samples may
have zero value on overflow. It is necessary to add
a check to avoid division by zero.
Found by Linux Verification Center (linuxtesting.org) with Svace.
CWE: CWE-369: Divide By Zero
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35930
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix possible memory leak in lpfc_rcv_padisc()
The call to lpfc_sli4_resume_rpi() in lpfc_rcv_padisc() may return an
unsuccessful status. In such cases, the elsiocb is not issued, the
completion is not called, and thus the elsiocb resource is leaked.
Check return value after calling lpfc_sli4_resume_rpi() and conditionally
release the elsiocb resource.
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35937
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: check A-MSDU format more carefully
If it looks like there's another subframe in the A-MSDU
but the header isn't fully there, we can end up reading
data out of bounds, only to discard later. Make this a
bit more careful and check if the subframe header can
even be present.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: NVD
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2024-35938
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a page allocation failure in wifi: ath11k. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35946
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: fix null pointer access when abort scan
During cancel scan we might use vif that weren't scanning.
Fix this by using the actual scanning vif.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35947
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
dyndbg: fix old BUG_ON in >control parser
Fix a BUG_ON from 2009. Even if it looks "unreachable" (I didn't
really look), lets make sure by removing it, doing pr_err and return
-EINVAL instead.
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35952
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a soft lockup error. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36000
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an error related to missing hugetlb_lock for resv uncharge. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36005
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an error related to netfilter: nf_tables: honor table dormant flag from netdev release event path. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36006
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an error related to spectrum_acl_tcam. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36010
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by string truncation warnings in igb_set_fw_version. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36016
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
tty: n_gsm: fix possible out-of-bounds in gsm0_receive()
Assuming the following:
- side A configures the n_gsm in basic option mode
- side B sends the header of a basic option mode frame with data length 1
- side A switches to advanced option mode
- side B sends 2 data bytes which exceeds gsm->len
Reason: gsm->len is not used in advanced option mode.
- side A switches to basic option mode
- side B keeps sending until gsm0_receive() writes past gsm->buf
Reason: Neither gsm->state nor gsm->len have been reset after
reconfiguration.
Fix this by changing gsm->count to gsm->len comparison from equal to less
than. Also add upper limit checks against the constant MAX_MRU in
gsm0_receive() and gsm1_receive() to harden against memory corruption of
gsm->len and gsm->mru.
All other checks remain as we still need to limit the data according to the
user configuration and actual payload size.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 6.4
CVSS Vector: (CVSS:3.1/AV:A/AC:H/PR:H/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-36017
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an out-of-bounds read when accessing the saved (casted) entry in ivvl. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 6.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:H)
CVEID: CVE-2024-36020
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a race condition in the Ethernet Controller XL710 family driver. A remote authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: IBM X-Force
CVSS Base score: 5.3
CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36025
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an off-by-one in qla_edif_app_getstats(). A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-787: Out-of-bounds Write
CVSS Source: IBM X-Force
CVSS Base score: 5.2
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:L/I:L/A:H)
CVEID: CVE-2024-36270
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a NULL pointer dereference error. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36286
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
netfilter: nfnetlink_queue: acquire rcu_read_lock() in instance_destroy_rcu()
syzbot reported that nf_reinject() could be called without rcu_read_lock() :
WARNING: suspicious RCU usage
6.9.0-rc7-syzkaller-02060-g5c1672705a1a #0 Not tainted
net/netfilter/nfnetlink_queue.c:263 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
2 locks held by syz-executor.4/13427:
#0: ffffffff8e334f60 (rcu_callback){....}-{0:0}, at: rcu_lock_acquire include/linux/rcupdate.h:329 [inline]
#0: ffffffff8e334f60 (rcu_callback){....}-{0:0}, at: rcu_do_batch kernel/rcu/tree.c:2190 [inline]
#0: ffffffff8e334f60 (rcu_callback){....}-{0:0}, at: rcu_core+0xa86/0x1830 kernel/rcu/tree.c:2471
#1: ffff88801ca92958 (&inst->lock){+.-.}-{2:2}, at: spin_lock_bh include/linux/spinlock.h:356 [inline]
#1: ffff88801ca92958 (&inst->lock){+.-.}-{2:2}, at: nfqnl_flush net/netfilter/nfnetlink_queue.c:405 [inline]
#1: ffff88801ca92958 (&inst->lock){+.-.}-{2:2}, at: instance_destroy_rcu+0x30/0x220 net/netfilter/nfnetlink_queue.c:172
stack backtrace:
CPU: 0 PID: 13427 Comm: syz-executor.4 Not tainted 6.9.0-rc7-syzkaller-02060-g5c1672705a1a #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/02/2024
Call Trace:
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
lockdep_rcu_suspicious+0x221/0x340 kernel/locking/lockdep.c:6712
nf_reinject net/netfilter/nfnetlink_queue.c:323 [inline]
nfqnl_reinject+0x6ec/0x1120 net/netfilter/nfnetlink_queue.c:397
nfqnl_flush net/netfilter/nfnetlink_queue.c:410 [inline]
instance_destroy_rcu+0x1ae/0x220 net/netfilter/nfnetlink_queue.c:172
rcu_do_batch kernel/rcu/tree.c:2196 [inline]
rcu_core+0xafd/0x1830 kernel/rcu/tree.c:2471
handle_softirqs+0x2d6/0x990 kernel/softirq.c:554
__do_softirq kernel/softirq.c:588 [inline]
invoke_softirq kernel/softirq.c:428 [inline]
__irq_exit_rcu+0xf4/0x1c0 kernel/softirq.c:637
irq_exit_rcu+0x9/0x30 kernel/softirq.c:649
instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1043 [inline]
sysvec_apic_timer_interrupt+0xa6/0xc0 arch/x86/kernel/apic/apic.c:1043
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36489
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by missing memory barrier in tls_init. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 6.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:L)
CVEID: CVE-2024-36886
DESCRIPTION: Linux Kernel could allow a remote attacker to execute arbitrary code on the system, caused by a use-after-free when processing fragmented TIPC messages. By sending a specially crafted request, an attacker could exploit this vulnerability to execute code in the context of the kernel.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36889
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by the failure to ensure snd_nxt is properly initialized on connect. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36896
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
USB: core: Fix access violation during port device removal
Testing with KASAN and syzkaller revealed a bug in port.c:disable_store():
usb_hub_to_struct_hub() can return NULL if the hub that the port belongs to
is concurrently removed, but the function does not check for this
possibility before dereferencing the returned value.
It turns out that the first dereference is unnecessary, since hub->intfdev
is the parent of the port device, so it can be changed easily. Adding a
check for hub == NULL prevents further problems.
The same bug exists in the disable_show() routine, and it can be fixed the
same way.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36904
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to gain elevated privileges, caused by a use-after-free in the TCP protocol. An attacker could exploit this vulnerability to gain elevated privileges on the system.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-36905
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
tcp: defer shutdown(SEND_SHUTDOWN) for TCP_SYN_RECV sockets
TCP_SYN_RECV state is really special, it is only used by
cross-syn connections, mostly used by fuzzers.
In the following crash [1], syzbot managed to trigger a divide
by zero in tcp_rcv_space_adjust()
A socket makes the following state transitions,
without ever calling tcp_init_transfer(),
meaning tcp_init_buffer_space() is also not called.
TCP_CLOSE
connect()
TCP_SYN_SENT
TCP_SYN_RECV
shutdown() -> tcp_shutdown(sk, SEND_SHUTDOWN)
TCP_FIN_WAIT1
To fix this issue, change tcp_shutdown() to not
perform a TCP_SYN_RECV -> TCP_FIN_WAIT1 transition,
which makes no sense anyway.
When tcp_rcv_state_process() later changes socket state
from TCP_SYN_RECV to TCP_ESTABLISH, then look at
sk->sk_shutdown to finally enter TCP_FIN_WAIT1 state,
and send a FIN packet from a sane socket state.
This means tcp_send_fin() can now be called from BH
context, and must use GFP_ATOMIC allocations.
[1]
divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI
CPU: 1 PID: 5084 Comm: syz-executor358 Not tainted 6.9.0-rc6-syzkaller-00022-g98369dccd2f8 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
RIP: 0010:tcp_rcv_space_adjust+0x2df/0x890 net/ipv4/tcp_input.c:767
Code: e3 04 4c 01 eb 48 8b 44 24 38 0f b6 04 10 84 c0 49 89 d5 0f 85 a5 03 00 00 41 8b 8e c8 09 00 00 89 e8 29 c8 48 0f af c3 31 d2 <48> f7 f1 48 8d 1c 43 49 8d 96 76 08 00 00 48 89 d0 48 c1 e8 03 48
RSP: 0018:ffffc900031ef3f0 EFLAGS: 00010246
RAX: 0c677a10441f8f42 RBX: 000000004fb95e7e RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: 0000000027d4b11f R08: ffffffff89e535a4 R09: 1ffffffff25e6ab7
R10: dffffc0000000000 R11: ffffffff8135e920 R12: ffff88802a9f8d30
R13: dffffc0000000000 R14: ffff88802a9f8d00 R15: 1ffff1100553f2da
FS: 00005555775c0380(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1155bf2304 CR3: 000000002b9f2000 CR4: 0000000000350ef0
Call Trace:
tcp_recvmsg_locked+0x106d/0x25a0 net/ipv4/tcp.c:2513
tcp_recvmsg+0x25d/0x920 net/ipv4/tcp.c:2578
inet6_recvmsg+0x16a/0x730 net/ipv6/af_inet6.c:680
sock_recvmsg_nosec net/socket.c:1046 [inline]
sock_recvmsg+0x109/0x280 net/socket.c:1068
____sys_recvmsg+0x1db/0x470 net/socket.c:2803
___sys_recvmsg net/socket.c:2845 [inline]
do_recvmmsg+0x474/0xae0 net/socket.c:2939
__sys_recvmmsg net/socket.c:3018 [inline]
__do_sys_recvmmsg net/socket.c:3041 [inline]
__se_sys_recvmmsg net/socket.c:3034 [inline]
__x64_sys_recvmmsg+0x199/0x250 net/socket.c:3034
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7faeb6363db9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 c1 17 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffcc1997168 EFLAGS: 00000246 ORIG_RAX: 000000000000012b
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007faeb6363db9
RDX: 0000000000000001 RSI: 0000000020000bc0 RDI: 0000000000000005
RBP: 0000000000000000 R08: 0000000000000000 R09: 000000000000001c
R10: 0000000000000122 R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000001
CWE: CWE-369: Divide By Zero
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36917
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
block: fix overflow in blk_ioctl_discard()
There is no check for overflow of 'start + len' in blk_ioctl_discard().
Hung task occurs if submit an discard ioctl with the following param:
start = 0x80000000000ff000, len = 0x8000000000fff000;
Add the overflow validation now.
CWE: CWE-190: Integer Overflow or Wraparound
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36921
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: guard against invalid STA ID on removal
Guard against invalid station IDs in iwl_mvm_mld_rm_sta_id as that would
result in out-of-bounds array accesses. This prevents issues should the
driver get into a bad state during error handling.
CWE: CWE-129: Improper Validation of Array Index
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-36927
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
ipv4: Fix uninit-value access in __ip_make_skb()
KMSAN reported uninit-value access in __ip_make_skb() [1]. __ip_make_skb()
tests HDRINCL to know if the skb has icmphdr. However, HDRINCL can cause a
race condition. If calling setsockopt(2) with IP_HDRINCL changes HDRINCL
while __ip_make_skb() is running, the function will access icmphdr in the
skb even if it is not included. This causes the issue reported by KMSAN.
Check FLOWI_FLAG_KNOWN_NH on fl4->flowi4_flags instead of testing HDRINCL
on the socket.
Also, fl4->fl4_icmp_type and fl4->fl4_icmp_code are not initialized. These
are union in struct flowi4 and are implicitly initialized by
flowi4_init_output(), but we should not rely on specific union layout.
Initialize these explicitly in raw_sendmsg().
[1]
BUG: KMSAN: uninit-value in __ip_make_skb+0x2b74/0x2d20 net/ipv4/ip_output.c:1481
__ip_make_skb+0x2b74/0x2d20 net/ipv4/ip_output.c:1481
ip_finish_skb include/net/ip.h:243 [inline]
ip_push_pending_frames+0x4c/0x5c0 net/ipv4/ip_output.c:1508
raw_sendmsg+0x2381/0x2690 net/ipv4/raw.c:654
inet_sendmsg+0x27b/0x2a0 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x274/0x3c0 net/socket.c:745
__sys_sendto+0x62c/0x7b0 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x130/0x200 net/socket.c:2199
do_syscall_64+0xd8/0x1f0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Uninit was created at:
slab_post_alloc_hook mm/slub.c:3804 [inline]
slab_alloc_node mm/slub.c:3845 [inline]
kmem_cache_alloc_node+0x5f6/0xc50 mm/slub.c:3888
kmalloc_reserve+0x13c/0x4a0 net/core/skbuff.c:577
__alloc_skb+0x35a/0x7c0 net/core/skbuff.c:668
alloc_skb include/linux/skbuff.h:1318 [inline]
__ip_append_data+0x49ab/0x68c0 net/ipv4/ip_output.c:1128
ip_append_data+0x1e7/0x260 net/ipv4/ip_output.c:1365
raw_sendmsg+0x22b1/0x2690 net/ipv4/raw.c:648
inet_sendmsg+0x27b/0x2a0 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x274/0x3c0 net/socket.c:745
__sys_sendto+0x62c/0x7b0 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x130/0x200 net/socket.c:2199
do_syscall_64+0xd8/0x1f0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x6d/0x75
CPU: 1 PID: 15709 Comm: syz-executor.7 Not tainted 6.8.0-11567-gb3603fcb79b1 #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-1.fc39 04/01/2014
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: NVD
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36929
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an untrusted pointer reference error. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-822: Untrusted Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36933
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by the use of uninitialized variable. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-457: Use of Uninitialized Variable
CVSS Source: IBM X-Force
CVSS Base score: 5.9
CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:H)
CVEID: CVE-2024-36940
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
pinctrl: core: delete incorrect free in pinctrl_enable()
The "pctldev" struct is allocated in devm_pinctrl_register_and_init().
It's a devm_ managed pointer that is freed by devm_pinctrl_dev_release(),
so freeing it in pinctrl_enable() will lead to a double free.
The devm_pinctrl_dev_release() function frees the pindescs and destroys
the mutex as well.
CWE: CWE-415: Double Free
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-36941
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
wifi: nl80211: don't free NULL coalescing rule
If the parsing fails, we can dereference a NULL pointer here.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36945
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net/smc: fix neighbour and rtable leak in smc_ib_find_route()
In smc_ib_find_route(), the neighbour found by neigh_lookup() and rtable
resolved by ip_route_output_flow() are not released or put before return.
It may cause the refcount leak, so fix it.
CVSS Source: IBM X-Force
CVSS Base score: 3.3
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L)
CVEID: CVE-2024-36950
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an error related to mask bus reset interrupts between ISR and bottom half. A local attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-99: Improper Control of Resource Identifiers ('Resource Injection')
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36954
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
tipc: fix a possible memleak in tipc_buf_append
__skb_linearize() doesn't free the skb when it fails, so move
'*buf = NULL' after __skb_linearize(), so that the skb can be
freed on the err path.
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36960
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Fix invalid reads in fence signaled events
Correctly set the length of the drm_event to the size of the structure
that's actually used.
The length of the drm_event was set to the parent structure instead of
to the drm_vmw_event_fence which is supposed to be read. drm_read
uses the length parameter to copy the event to the user space thus
resuling in oob reads.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: NVD
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2024-36971
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net: fix __dst_negative_advice() race
__dst_negative_advice() does not enforce proper RCU rules when
sk->dst_cache must be cleared, leading to possible UAF.
RCU rules are that we must first clear sk->sk_dst_cache,
then call dst_release(old_dst).
Note that sk_dst_reset(sk) is implementing this protocol correctly,
while __dst_negative_advice() uses the wrong order.
Given that ip6_negative_advice() has special logic
against RTF_CACHE, this means each of the three ->negative_advice()
existing methods must perform the sk_dst_reset() themselves.
Note the check against NULL dst is centralized in
__dst_negative_advice(), there is no need to duplicate
it in various callbacks.
Many thanks to Clement Lecigne for tracking this issue.
This old bug became visible after the blamed commit, using UDP sockets.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-36978
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an out--of-bounds write in multiq_tune(). A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-787: Out-of-bounds Write
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36979
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a vlan use-after-free. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 6.6
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H)
CVEID: CVE-2024-38538
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an uninit value[1] error in bridge device's xmit path. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-908: Use of Uninitialized Resource
CVSS Source: Red Hat
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-38555
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a use-after-free flaw when FW completion arrives while device is in internal error state. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-416: Use After Free
CVSS Source: Red Hat
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-38573
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
cppc_cpufreq: Fix possible null pointer dereference
cppc_cpufreq_get_rate() and hisi_cppc_cpufreq_get_rate() can be called from
different places with various parameters. So cpufreq_cpu_get() can return
null as 'policy' in some circumstances.
Fix this bug by adding null return check.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-38575
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: pcie: handle randbuf allocation failure
The kzalloc() in brcmf_pcie_download_fw_nvram() will return null
if the physical memory has run out. As a result, if we use
get_random_bytes() to generate random bytes in the randbuf, the
null pointer dereference bug will happen.
In order to prevent allocation failure, this patch adds a separate
function using buffer on kernel stack to generate random bytes in
the randbuf, which could prevent the kernel stack from overflow.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-38596
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a race condition in unix_release_sock/unix_stream_sendmsg. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: IBM X-Force
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-38598
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw in Md. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-667: Improper Locking
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-38615
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an error related to exit() callback being optional. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-459: Incomplete Cleanup
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-38627
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a double-free in stm_register_device(). A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-415: Double Free
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-39276
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
ext4: fix mb_cache_entry's e_refcnt leak in ext4_xattr_block_cache_find()
Syzbot reports a warning as follows:
============================================
WARNING: CPU: 0 PID: 5075 at fs/mbcache.c:419 mb_cache_destroy+0x224/0x290
Modules linked in:
CPU: 0 PID: 5075 Comm: syz-executor199 Not tainted 6.9.0-rc6-gb947cc5bf6d7
RIP: 0010:mb_cache_destroy+0x224/0x290 fs/mbcache.c:419
Call Trace:
ext4_put_super+0x6d4/0xcd0 fs/ext4/super.c:1375
generic_shutdown_super+0x136/0x2d0 fs/super.c:641
kill_block_super+0x44/0x90 fs/super.c:1675
ext4_kill_sb+0x68/0xa0 fs/ext4/super.c:7327
[...]
============================================
This is because when finding an entry in ext4_xattr_block_cache_find(), if
ext4_sb_bread() returns -ENOMEM, the ce's e_refcnt, which has already grown
in the __entry_find(), won't be put away, and eventually trigger the above
issue in mb_cache_destroy() due to reference count leakage.
So call mb_cache_entry_put() on the -ENOMEM error branch as a quick fix.
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N)
CVEID: CVE-2024-39472
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by incorrect h_size values used for the initial
umount record in xfs_log_recover.c. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-770: Allocation of Resources Without Limits or Throttling
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-39476
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an error related to deadlock that raid5d() wait for itself to clear MD_SB_CHANGE_PENDING. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-667: Improper Locking
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-39487
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an out-of-bounds read in bond_option_arp_ip_targets_set(). A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-39502
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by use-after-free in netif_napi_del(). A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 6.7
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-40927
DESCRIPTION: Linux Kernel is vulnerable to a denial of service caused by a deadlock in ieee80211_sta_ps_deliver_wakeup() in xhci-ring.c . A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-833: Deadlock
CVSS Source: IBM X-Force
CVSS Base score: 6.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:H)
CVEID: CVE-2024-40974
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw in powerpc/pseries. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-46984
DESCRIPTION: Linux Kernel could allow a local attacker to obtain sensitive information, caused by an out-of-bounds read flaw when preempted. By sending a specially crafted request, an attacker could exploit this vulnerability to obtain sensitive information or cause a denial of service condition.
CWE: CWE-129: Improper Validation of Array Index
CVSS Source: IBM X-Force
CVSS Base score: 6
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2021-47097
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
Input: elantech - fix stack out of bound access in elantech_change_report_id()
The array param[] in elantech_change_report_id() must be at least 3
bytes, because elantech_read_reg_params() is calling ps2_command() with
PSMOUSE_CMD_GETINFO, that is going to access 3 bytes from param[], but
it's defined in the stack as an array of 2 bytes, therefore we have a
potential stack out-of-bounds access here, also confirmed by KASAN:
[ 6.512374] BUG: KASAN: stack-out-of-bounds in __ps2_command+0x372/0x7e0
[ 6.512397] Read of size 1 at addr ffff8881024d77c2 by task kworker/2:1/118
[ 6.512416] CPU: 2 PID: 118 Comm: kworker/2:1 Not tainted 5.13.0-22-generic #22+arighi20211110
[ 6.512428] Hardware name: LENOVO 20T8000QGE/20T8000QGE, BIOS R1AET32W (1.08 ) 08/14/2020
[ 6.512436] Workqueue: events_long serio_handle_event
[ 6.512453] Call Trace:
[ 6.512462] show_stack+0x52/0x58
[ 6.512474] dump_stack+0xa1/0xd3
[ 6.512487] print_address_description.constprop.0+0x1d/0x140
[ 6.512502] ? __ps2_command+0x372/0x7e0
[ 6.512516] __kasan_report.cold+0x7d/0x112
[ 6.512527] ? _raw_write_lock_irq+0x20/0xd0
[ 6.512539] ? __ps2_command+0x372/0x7e0
[ 6.512552] kasan_report+0x3c/0x50
[ 6.512564] __asan_load1+0x6a/0x70
[ 6.512575] __ps2_command+0x372/0x7e0
[ 6.512589] ? ps2_drain+0x240/0x240
[ 6.512601] ? dev_printk_emit+0xa2/0xd3
[ 6.512612] ? dev_vprintk_emit+0xc5/0xc5
[ 6.512621] ? __kasan_check_write+0x14/0x20
[ 6.512634] ? mutex_lock+0x8f/0xe0
[ 6.512643] ? __mutex_lock_slowpath+0x20/0x20
[ 6.512655] ps2_command+0x52/0x90
[ 6.512670] elantech_ps2_command+0x4f/0xc0 [psmouse]
[ 6.512734] elantech_change_report_id+0x1e6/0x256 [psmouse]
[ 6.512799] ? elantech_report_trackpoint.constprop.0.cold+0xd/0xd [psmouse]
[ 6.512863] ? ps2_command+0x7f/0x90
[ 6.512877] elantech_query_info.cold+0x6bd/0x9ed [psmouse]
[ 6.512943] ? elantech_setup_ps2+0x460/0x460 [psmouse]
[ 6.513005] ? psmouse_reset+0x69/0xb0 [psmouse]
[ 6.513064] ? psmouse_attr_set_helper+0x2a0/0x2a0 [psmouse]
[ 6.513122] ? phys_pmd_init+0x30e/0x521
[ 6.513137] elantech_init+0x8a/0x200 [psmouse]
[ 6.513200] ? elantech_init_ps2+0xf0/0xf0 [psmouse]
[ 6.513249] ? elantech_query_info+0x440/0x440 [psmouse]
[ 6.513296] ? synaptics_send_cmd+0x60/0x60 [psmouse]
[ 6.513342] ? elantech_query_info+0x440/0x440 [psmouse]
[ 6.513388] ? psmouse_try_protocol+0x11e/0x170 [psmouse]
[ 6.513432] psmouse_extensions+0x65d/0x6e0 [psmouse]
[ 6.513476] ? psmouse_try_protocol+0x170/0x170 [psmouse]
[ 6.513519] ? mutex_unlock+0x22/0x40
[ 6.513526] ? ps2_command+0x7f/0x90
[ 6.513536] ? psmouse_probe+0xa3/0xf0 [psmouse]
[ 6.513580] psmouse_switch_protocol+0x27d/0x2e0 [psmouse]
[ 6.513624] psmouse_connect+0x272/0x530 [psmouse]
[ 6.513669] serio_driver_probe+0x55/0x70
[ 6.513679] really_probe+0x190/0x720
[ 6.513689] driver_probe_device+0x160/0x1f0
[ 6.513697] device_driver_attach+0x119/0x130
[ 6.513705] ? device_driver_attach+0x130/0x130
[ 6.513713] __driver_attach+0xe7/0x1a0
[ 6.513720] ? device_driver_attach+0x130/0x130
[ 6.513728] bus_for_each_dev+0xfb/0x150
[ 6.513738] ? subsys_dev_iter_exit+0x10/0x10
[ 6.513748] ? _raw_write_unlock_bh+0x30/0x30
[ 6.513757] driver_attach+0x2d/0x40
[ 6.513764] serio_handle_event+0x199/0x3d0
[ 6.513775] process_one_work+0x471/0x740
[ 6.513785] worker_thread+0x2d2/0x790
[ 6.513794] ? process_one_work+0x740/0x740
[ 6.513802] kthread+0x1b4/0x1e0
[ 6.513809] ? set_kthread_struct+0x80/0x80
[ 6.513816] ret_from_fork+0x22/0x30
[ 6.513832] The buggy address belongs to the page:
[ 6.513838] page:00000000bc35e189 refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1024d7
[ 6.513847] flags: 0x17ffffc0000000(node=0|zone=2|lastcpupid=0x1fffff)
[ 6.513860] raw: 0
---truncated---
CWE: CWE-125: Out-of-bounds Read
CVSS Source: NVD
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2021-47101
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
asix: fix uninit-value in asix_mdio_read()
asix_read_cmd() may read less than sizeof(smsr) bytes and in this case
smsr will be uninitialized.
Fail log:
BUG: KMSAN: uninit-value in asix_check_host_enable drivers/net/usb/asix_common.c:82 [inline]
BUG: KMSAN: uninit-value in asix_check_host_enable drivers/net/usb/asix_common.c:82 [inline] drivers/net/usb/asix_common.c:497
BUG: KMSAN: uninit-value in asix_mdio_read+0x3c1/0xb00 drivers/net/usb/asix_common.c:497 drivers/net/usb/asix_common.c:497
asix_check_host_enable drivers/net/usb/asix_common.c:82 [inline]
asix_check_host_enable drivers/net/usb/asix_common.c:82 [inline] drivers/net/usb/asix_common.c:497
asix_mdio_read+0x3c1/0xb00 drivers/net/usb/asix_common.c:497 drivers/net/usb/asix_common.c:497
CWE: CWE-908: Use of Uninitialized Resource
CVSS Source: NVD
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2021-47289
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
ACPI: fix NULL pointer dereference
Commit 71f642833284 ("ACPI: utils: Fix reference counting in
for_each_acpi_dev_match()") started doing "acpi_dev_put()" on a pointer
that was possibly NULL. That fails miserably, because that helper
inline function is not set up to handle that case.
Just make acpi_dev_put() silently accept a NULL pointer, rather than
calling down to put_device() with an invalid offset off that NULL
pointer.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47321
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
watchdog: Fix possible use-after-free by calling del_timer_sync()
This driver's remove path calls del_timer(). However, that function
does not wait until the timer handler finishes. This means that the
timer handler may still be running after the driver's remove function
has finished, which would result in a use-after-free.
Fix by calling del_timer_sync(), which makes sure the timer handler
has finished, and unable to re-schedule itself.
CWE: CWE-416: Use After Free
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2021-47338
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
fbmem: Do not delete the mode that is still in use
The execution of fb_delete_videomode() is not based on the result of the
previous fbcon_mode_deleted(). As a result, the mode is directly deleted,
regardless of whether it is still in use, which may cause UAF.
==================================================================
BUG: KASAN: use-after-free in fb_mode_is_equal+0x36e/0x5e0 \
drivers/video/fbdev/core/modedb.c:924
Read of size 4 at addr ffff88807e0ddb1c by task syz-executor.0/18962
CPU: 2 PID: 18962 Comm: syz-executor.0 Not tainted 5.10.45-rc1+ #3
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ...
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x137/0x1be lib/dump_stack.c:118
print_address_description+0x6c/0x640 mm/kasan/report.c:385
__kasan_report mm/kasan/report.c:545 [inline]
kasan_report+0x13d/0x1e0 mm/kasan/report.c:562
fb_mode_is_equal+0x36e/0x5e0 drivers/video/fbdev/core/modedb.c:924
fbcon_mode_deleted+0x16a/0x220 drivers/video/fbdev/core/fbcon.c:2746
fb_set_var+0x1e1/0xdb0 drivers/video/fbdev/core/fbmem.c:975
do_fb_ioctl+0x4d9/0x6e0 drivers/video/fbdev/core/fbmem.c:1108
vfs_ioctl fs/ioctl.c:48 [inline]
__do_sys_ioctl fs/ioctl.c:753 [inline]
__se_sys_ioctl+0xfb/0x170 fs/ioctl.c:739
do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Freed by task 18960:
kasan_save_stack mm/kasan/common.c:48 [inline]
kasan_set_track+0x3d/0x70 mm/kasan/common.c:56
kasan_set_free_info+0x17/0x30 mm/kasan/generic.c:355
__kasan_slab_free+0x108/0x140 mm/kasan/common.c:422
slab_free_hook mm/slub.c:1541 [inline]
slab_free_freelist_hook+0xd6/0x1a0 mm/slub.c:1574
slab_free mm/slub.c:3139 [inline]
kfree+0xca/0x3d0 mm/slub.c:4121
fb_delete_videomode+0x56a/0x820 drivers/video/fbdev/core/modedb.c:1104
fb_set_var+0x1f3/0xdb0 drivers/video/fbdev/core/fbmem.c:978
do_fb_ioctl+0x4d9/0x6e0 drivers/video/fbdev/core/fbmem.c:1108
vfs_ioctl fs/ioctl.c:48 [inline]
__do_sys_ioctl fs/ioctl.c:753 [inline]
__se_sys_ioctl+0xfb/0x170 fs/ioctl.c:739
do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46
entry_SYSCALL_64_after_hwframe+0x44/0xa9
CWE: CWE-416: Use After Free
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2021-47352
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by not properly validate the length of data provided by an untrusted device in the virtio-net driver. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: Red Hat
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47383
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to execute arbitrary code on the system, caused by an out-of-bound vmalloc access flaw in imageblit. By sending a specially crafted request, an attacker could exploit this vulnerability to execute arbitrary code on the system.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: Red Hat
CVSS Base score: 6.6
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H)
CVEID: CVE-2021-47384
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
hwmon: (w83793) Fix NULL pointer dereference by removing unnecessary structure field
If driver read tmp value sufficient for
(tmp & 0x08) && (!(tmp & 0x80)) && ((tmp & 0x7) == ((tmp >> 4) & 0x7))
from device then Null pointer dereference occurs.
(It is possible if tmp = 0b0xyz1xyz, where same literals mean same numbers)
Also lm75[] does not serve a purpose anymore after switching to
devm_i2c_new_dummy_device() in w83791d_detect_subclients().
The patch fixes possible NULL pointer dereference by removing lm75[].
Found by Linux Driver Verification project (linuxtesting.org).
[groeck: Dropped unnecessary continuation lines, fixed multi-line alignments]
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: Red Hat
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47386
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
hwmon: (w83791d) Fix NULL pointer dereference by removing unnecessary structure field
If driver read val value sufficient for
(val & 0x08) && (!(val & 0x80)) && ((val & 0x7) == ((val >> 4) & 0x7))
from device then Null pointer dereference occurs.
(It is possible if tmp = 0b0xyz1xyz, where same literals mean same numbers)
Also lm75[] does not serve a purpose anymore after switching to
devm_i2c_new_dummy_device() in w83791d_detect_subclients().
The patch fixes possible NULL pointer dereference by removing lm75[].
Found by Linux Driver Verification project (linuxtesting.org).
[groeck: Dropped unnecessary continuation lines, fixed multi-line alignment]
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: Red Hat
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47393
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw with return non-zero value when fan current state is enforced from sysfs. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-754: Improper Check for Unusual or Exceptional Conditions
CVSS Source: Red Hat
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47432
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
lib/generic-radix-tree.c: Don't overflow in peek()
When we started spreading new inode numbers throughout most of the 64
bit inode space, that triggered some corner case bugs, in particular
some integer overflows related to the radix tree code. Oops.
CWE: CWE-190: Integer Overflow or Wraparound
CVSS Source: Red Hat
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-47497
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
nvmem: Fix shift-out-of-bound (UBSAN) with byte size cells
If a cell has 'nbits' equal to a multiple of BITS_PER_BYTE the logic
*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
will become undefined behavior because nbits modulo BITS_PER_BYTE is 0, and we
subtract one from that making a large number that is then shifted more than the
number of bits that fit into an unsigned long.
UBSAN reports this problem:
UBSAN: shift-out-of-bounds in drivers/nvmem/core.c:1386:8
shift exponent 64 is too large for 64-bit type 'unsigned long'
CPU: 6 PID: 7 Comm: kworker/u16:0 Not tainted 5.15.0-rc3+ #9
Hardware name: Google Lazor (rev3+) with KB Backlight (DT)
Workqueue: events_unbound deferred_probe_work_func
Call trace:
dump_backtrace+0x0/0x170
show_stack+0x24/0x30
dump_stack_lvl+0x64/0x7c
dump_stack+0x18/0x38
ubsan_epilogue+0x10/0x54
__ubsan_handle_shift_out_of_bounds+0x180/0x194
__nvmem_cell_read+0x1ec/0x21c
nvmem_cell_read+0x58/0x94
nvmem_cell_read_variable_common+0x4c/0xb0
nvmem_cell_read_variable_le_u32+0x40/0x100
a6xx_gpu_init+0x170/0x2f4
adreno_bind+0x174/0x284
component_bind_all+0xf0/0x264
msm_drm_bind+0x1d8/0x7a0
try_to_bring_up_master+0x164/0x1ac
__component_add+0xbc/0x13c
component_add+0x20/0x2c
dp_display_probe+0x340/0x384
platform_probe+0xc0/0x100
really_probe+0x110/0x304
__driver_probe_device+0xb8/0x120
driver_probe_device+0x4c/0xfc
__device_attach_driver+0xb0/0x128
bus_for_each_drv+0x90/0xdc
__device_attach+0xc8/0x174
device_initial_probe+0x20/0x2c
bus_probe_device+0x40/0xa4
deferred_probe_work_func+0x7c/0xb8
process_one_work+0x128/0x21c
process_scheduled_works+0x40/0x54
worker_thread+0x1ec/0x2a8
kthread+0x138/0x158
ret_from_fork+0x10/0x20
Fix it by making sure there are any bits to mask out.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: Red Hat
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2022-48619
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw in the input_set_capability() function when an event code is outside the bitmap. By sending a specially crafted request, a local attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-755: Improper Handling of Exceptional Conditions
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2022-48754
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
phylib: fix potential use-after-free
Commit bafbdd527d56 ("phylib: Add device reset GPIO support") added call
to phy_device_reset(phydev) after the put_device() call in phy_detach().
The comment before the put_device() call says that the phydev might go
away with put_device().
Fix potential use-after-free by calling phy_device_reset() before
put_device().
CWE: CWE-416: Use After Free
CVSS Source: CISA ADP
CVSS Base score: 8.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2022-48760
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
USB: core: Fix hang in usb_kill_urb by adding memory barriers
The syzbot fuzzer has identified a bug in which processes hang waiting
for usb_kill_urb() to return. It turns out the issue is not unlinking
the URB; that works just fine. Rather, the problem arises when the
wakeup notification that the URB has completed is not received.
The reason is memory-access ordering on SMP systems. In outline form,
usb_kill_urb() and __usb_hcd_giveback_urb() operating concurrently on
different CPUs perform the following actions:
CPU 0 CPU 1
---------------------------- ---------------------------------
usb_kill_urb(): __usb_hcd_giveback_urb():
... ...
atomic_inc(&urb->reject); atomic_dec(&urb->use_count);
... ...
wait_event(usb_kill_urb_queue,
atomic_read(&urb->use_count) == 0);
if (atomic_read(&urb->reject))
wake_up(&usb_kill_urb_queue);
Confining your attention to urb->reject and urb->use_count, you can
see that the overall pattern of accesses on CPU 0 is:
write urb->reject, then read urb->use_count;
whereas the overall pattern of accesses on CPU 1 is:
write urb->use_count, then read urb->reject.
This pattern is referred to in memory-model circles as SB (for "Store
Buffering"), and it is well known that without suitable enforcement of
the desired order of accesses -- in the form of memory barriers -- it
is entirely possible for one or both CPUs to execute their reads ahead
of their writes. The end result will be that sometimes CPU 0 sees the
old un-decremented value of urb->use_count while CPU 1 sees the old
un-incremented value of urb->reject. Consequently CPU 0 ends up on
the wait queue and never gets woken up, leading to the observed hang
in usb_kill_urb().
The same pattern of accesses occurs in usb_poison_urb() and the
failure pathway of usb_hcd_submit_urb().
The problem is fixed by adding suitable memory barriers. To provide
proper memory-access ordering in the SB pattern, a full barrier is
required on both CPUs. The atomic_inc() and atomic_dec() accesses
themselves don't provide any memory ordering, but since they are
present, we can use the optimized smp_mb__after_atomic() memory
barrier in the various routines to obtain the desired effect.
This patch adds the necessary memory barriers.
CWE: CWE-820: Missing Synchronization
CVSS Source: Red Hat
CVSS Base score: 4.1
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2022-48804
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
vt_ioctl: fix array_index_nospec in vt_setactivate
array_index_nospec ensures that an out-of-bounds value is set to zero
on the transient path. Decreasing the value by one afterwards causes
a transient integer underflow. vsa.console should be decreased first
and then sanitized with array_index_nospec.
Kasper Acknowledgements: Jakob Koschel, Brian Johannesmeyer, Kaveh
Razavi, Herbert Bos, Cristiano Giuffrida from the VUSec group at VU
Amsterdam.
CWE: CWE-191: Integer Underflow (Wrap or Wraparound)
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2022-48836
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
Input: aiptek - properly check endpoint type
Syzbot reported warning in usb_submit_urb() which is caused by wrong
endpoint type. There was a check for the number of endpoints, but not
for the type of endpoint.
Fix it by replacing old desc.bNumEndpoints check with
usb_find_common_endpoints() helper for finding endpoints
Fail log:
usb 5-1: BOGUS urb xfer, pipe 1 != type 3
WARNING: CPU: 2 PID: 48 at drivers/usb/core/urb.c:502 usb_submit_urb+0xed2/0x18a0 drivers/usb/core/urb.c:502
Modules linked in:
CPU: 2 PID: 48 Comm: kworker/2:2 Not tainted 5.17.0-rc6-syzkaller-00226-g07ebd38a0da2 #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-2 04/01/2014
Workqueue: usb_hub_wq hub_event
...
Call Trace:
aiptek_open+0xd5/0x130 drivers/input/tablet/aiptek.c:830
input_open_device+0x1bb/0x320 drivers/input/input.c:629
kbd_connect+0xfe/0x160 drivers/tty/vt/keyboard.c:1593
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2022-48866
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
HID: hid-thrustmaster: fix OOB read in thrustmaster_interrupts
Syzbot reported an slab-out-of-bounds Read in thrustmaster_probe() bug.
The root case is in missing validation check of actual number of endpoints.
Code should not blindly access usb_host_interface::endpoint array, since
it may contain less endpoints than code expects.
Fix it by adding missing validaion check and print an error if
number of endpoints do not match expected number
CWE: CWE-125: Out-of-bounds Read
CVSS Source: NVD
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2023-6040
DESCRIPTION: An out-of-bounds access vulnerability involving netfilter was reported and fixed as: f1082dd31fe4 (netfilter: nf_tables: Reject tables of unsupported family); While creating a new netfilter table, lack of a safeguard against invalid nf_tables family (pf) values within `nf_tables_newtable` function enables an attacker to achieve out-of-bounds access.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2023-52470
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a NULL pointer dereference in radeon_crtc_init(). A local attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52476
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
perf/x86/lbr: Filter vsyscall addresses
We found that a panic can occur when a vsyscall is made while LBR sampling
is active. If the vsyscall is interrupted (NMI) for perf sampling, this
call sequence can occur (most recent at top):
__insn_get_emulate_prefix()
insn_get_emulate_prefix()
insn_get_prefixes()
insn_get_opcode()
decode_branch_type()
get_branch_type()
intel_pmu_lbr_filter()
intel_pmu_handle_irq()
perf_event_nmi_handler()
Within __insn_get_emulate_prefix() at frame 0, a macro is called:
peek_nbyte_next(insn_byte_t, insn, i)
Within this macro, this dereference occurs:
(insn)->next_byte
Inspecting registers at this point, the value of the next_byte field is the
address of the vsyscall made, for example the location of the vsyscall
version of gettimeofday() at 0xffffffffff600000. The access to an address
in the vsyscall region will trigger an oops due to an unhandled page fault.
To fix the bug, filtering for vsyscalls can be done when
determining the branch type. This patch will return
a "none" branch if a kernel address if found to lie in the
vsyscall region.
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52478
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
HID: logitech-hidpp: Fix kernel crash on receiver USB disconnect
hidpp_connect_event() has *four* time-of-check vs time-of-use (TOCTOU)
races when it races with itself.
hidpp_connect_event() primarily runs from a workqueue but it also runs
on probe() and if a "device-connected" packet is received by the hw
when the thread running hidpp_connect_event() from probe() is waiting on
the hw, then a second thread running hidpp_connect_event() will be
started from the workqueue.
This opens the following races (note the below code is simplified):
1. Retrieving + printing the protocol (harmless race):
if (!hidpp->protocol_major) {
hidpp_root_get_protocol_version()
hidpp->protocol_major = response.rap.params[0];
}
We can actually see this race hit in the dmesg in the abrt output
attached to rhbz#2227968:
[ 3064.624215] logitech-hidpp-device 0003:046D:4071.0049: HID++ 4.5 device connected.
[ 3064.658184] logitech-hidpp-device 0003:046D:4071.0049: HID++ 4.5 device connected.
Testing with extra logging added has shown that after this the 2 threads
take turn grabbing the hw access mutex (send_mutex) so they ping-pong
through all the other TOCTOU cases managing to hit all of them:
2. Updating the name to the HIDPP name (harmless race):
if (hidpp->name == hdev->name) {
...
hidpp->name = new_name;
}
3. Initializing the power_supply class for the battery (problematic!):
hidpp_initialize_battery()
{
if (hidpp->battery.ps)
return 0;
probe_battery(); /* Blocks, threads take turns executing this */
hidpp->battery.desc.properties =
devm_kmemdup(dev, hidpp_battery_props, cnt, GFP_KERNEL);
hidpp->battery.ps =
devm_power_supply_register(&hidpp->hid_dev->dev,
&hidpp->battery.desc, cfg);
}
4. Creating delayed input_device (potentially problematic):
if (hidpp->delayed_input)
return;
hidpp->delayed_input = hidpp_allocate_input(hdev);
The really big problem here is 3. Hitting the race leads to the following
sequence:
hidpp->battery.desc.properties =
devm_kmemdup(dev, hidpp_battery_props, cnt, GFP_KERNEL);
hidpp->battery.ps =
devm_power_supply_register(&hidpp->hid_dev->dev,
&hidpp->battery.desc, cfg);
...
hidpp->battery.desc.properties =
devm_kmemdup(dev, hidpp_battery_props, cnt, GFP_KERNEL);
hidpp->battery.ps =
devm_power_supply_register(&hidpp->hid_dev->dev,
&hidpp->battery.desc, cfg);
So now we have registered 2 power supplies for the same battery,
which looks a bit weird from userspace's pov but this is not even
the really big problem.
Notice how:
1. This is all devm-maganaged
2. The hidpp->battery.desc struct is shared between the 2 power supplies
3. hidpp->battery.desc.properties points to the result from the second
devm_kmemdup()
This causes a use after free scenario on USB disconnect of the receiver:
1. The last registered power supply class device gets unregistered
2. The memory from the last devm_kmemdup() call gets freed,
hidpp->battery.desc.properties now points to freed memory
3. The first registered power supply class device gets unregistered,
this involves sending a remove uevent to userspace which invokes
power_supply_uevent() to fill the uevent data
4. power_supply_uevent() uses hidpp->battery.desc.properties which
now points to freed memory leading to backtraces like this one:
Sep 22 20:01:35 eric kernel: BUG: unable to handle page fault for address: ffffb2140e017f08
...
Sep 22 20:01:35 eric kernel: Workqueue: usb_hub_wq hub_event
Sep 22 20:01:35 eric kernel: RIP: 0010:power_supply_uevent+0xee/0x1d0
...
Sep 22 20:01:35 eric kernel: ? asm_exc_page_fault+0x26/0x30
Sep 22 20:01:35 eric kernel: ? power_supply_uevent+0xee/0x1d0
Sep 22 20:01:35 eric kernel: ? power_supply_uevent+0x10d/0x1d0
Sep 22 20:01:35 eric kernel: dev_uevent+0x10f/0x2d0
Sep 22 20:01:35 eric kernel: kobject_uevent_env+0x291/0x680
Sep 22 20:01:35 eric kernel:
---truncated---
CWE: CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition
CVSS Source: NVD
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52605
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a NULL pointer dereference check. A local attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52809
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a NULL pointer dereference in fc_lport_ptp_setup(). A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52817
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a NULL pointer dereference when the smc_rreg pointer is NULL. An attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-23848
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a use-after-free in cec_queue_msg_fh. A local attacker could exploit this vulnerability to cause the system to crash.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26595
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix NULL pointer dereference in error path
When calling mlxsw_sp_acl_tcam_region_destroy() from an error path after
failing to attach the region to an ACL group, we hit a NULL pointer
dereference upon 'region->group->tcam' [1].
Fix by retrieving the 'tcam' pointer using mlxsw_sp_acl_to_tcam().
[1]
BUG: kernel NULL pointer dereference, address: 0000000000000000
[...]
RIP: 0010:mlxsw_sp_acl_tcam_region_destroy+0xa0/0xd0
[...]
Call Trace:
mlxsw_sp_acl_tcam_vchunk_get+0x88b/0xa20
mlxsw_sp_acl_tcam_ventry_add+0x25/0xe0
mlxsw_sp_acl_rule_add+0x47/0x240
mlxsw_sp_flower_replace+0x1a9/0x1d0
tc_setup_cb_add+0xdc/0x1c0
fl_hw_replace_filter+0x146/0x1f0
fl_change+0xc17/0x1360
tc_new_tfilter+0x472/0xb90
rtnetlink_rcv_msg+0x313/0x3b0
netlink_rcv_skb+0x58/0x100
netlink_unicast+0x244/0x390
netlink_sendmsg+0x1e4/0x440
____sys_sendmsg+0x164/0x260
___sys_sendmsg+0x9a/0xe0
__sys_sendmsg+0x7a/0xc0
do_syscall_64+0x40/0xe0
entry_SYSCALL_64_after_hwframe+0x63/0x6b
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26600
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a NULL pointer dereference for SRP. A local attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26638
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
nbd: always initialize struct msghdr completely
syzbot complains that msg->msg_get_inq value can be uninitialized [1]
struct msghdr got many new fields recently, we should always make
sure their values is zero by default.
[1]
BUG: KMSAN: uninit-value in tcp_recvmsg+0x686/0xac0 net/ipv4/tcp.c:2571
tcp_recvmsg+0x686/0xac0 net/ipv4/tcp.c:2571
inet_recvmsg+0x131/0x580 net/ipv4/af_inet.c:879
sock_recvmsg_nosec net/socket.c:1044 [inline]
sock_recvmsg+0x12b/0x1e0 net/socket.c:1066
__sock_xmit+0x236/0x5c0 drivers/block/nbd.c:538
nbd_read_reply drivers/block/nbd.c:732 [inline]
recv_work+0x262/0x3100 drivers/block/nbd.c:863
process_one_work kernel/workqueue.c:2627 [inline]
process_scheduled_works+0x104e/0x1e70 kernel/workqueue.c:2700
worker_thread+0xf45/0x1490 kernel/workqueue.c:2781
kthread+0x3ed/0x540 kernel/kthread.c:388
ret_from_fork+0x66/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:242
Local variable msg created at:
__sock_xmit+0x4c/0x5c0 drivers/block/nbd.c:513
nbd_read_reply drivers/block/nbd.c:732 [inline]
recv_work+0x262/0x3100 drivers/block/nbd.c:863
CPU: 1 PID: 7465 Comm: kworker/u5:1 Not tainted 6.7.0-rc7-syzkaller-00041-gf016f7547aee #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/17/2023
Workqueue: nbd5-recv recv_work
CWE: CWE-908: Use of Uninitialized Resource
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26645
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
tracing: Ensure visibility when inserting an element into tracing_map
Running the following two commands in parallel on a multi-processor
AArch64 machine can sporadically produce an unexpected warning about
duplicate histogram entries:
$ while true; do
echo hist:key=id.syscall:val=hitcount > \
/sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger
cat /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/hist
sleep 0.001
done
$ stress-ng --sysbadaddr $(nproc)
The warning looks as follows:
[ 2911.172474] ------------[ cut here ]------------
[ 2911.173111] Duplicates detected: 1
[ 2911.173574] WARNING: CPU: 2 PID: 12247 at kernel/trace/tracing_map.c:983 tracing_map_sort_entries+0x3e0/0x408
[ 2911.174702] Modules linked in: iscsi_ibft(E) iscsi_boot_sysfs(E) rfkill(E) af_packet(E) nls_iso8859_1(E) nls_cp437(E) vfat(E) fat(E) ena(E) tiny_power_button(E) qemu_fw_cfg(E) button(E) fuse(E) efi_pstore(E) ip_tables(E) x_tables(E) xfs(E) libcrc32c(E) aes_ce_blk(E) aes_ce_cipher(E) crct10dif_ce(E) polyval_ce(E) polyval_generic(E) ghash_ce(E) gf128mul(E) sm4_ce_gcm(E) sm4_ce_ccm(E) sm4_ce(E) sm4_ce_cipher(E) sm4(E) sm3_ce(E) sm3(E) sha3_ce(E) sha512_ce(E) sha512_arm64(E) sha2_ce(E) sha256_arm64(E) nvme(E) sha1_ce(E) nvme_core(E) nvme_auth(E) t10_pi(E) sg(E) scsi_mod(E) scsi_common(E) efivarfs(E)
[ 2911.174738] Unloaded tainted modules: cppc_cpufreq(E):1
[ 2911.180985] CPU: 2 PID: 12247 Comm: cat Kdump: loaded Tainted: G E 6.7.0-default #2 1b58bbb22c97e4399dc09f92d309344f69c44a01
[ 2911.182398] Hardware name: Amazon EC2 c7g.8xlarge/, BIOS 1.0 11/1/2018
[ 2911.183208] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 2911.184038] pc : tracing_map_sort_entries+0x3e0/0x408
[ 2911.184667] lr : tracing_map_sort_entries+0x3e0/0x408
[ 2911.185310] sp : ffff8000a1513900
[ 2911.185750] x29: ffff8000a1513900 x28: ffff0003f272fe80 x27: 0000000000000001
[ 2911.186600] x26: ffff0003f272fe80 x25: 0000000000000030 x24: 0000000000000008
[ 2911.187458] x23: ffff0003c5788000 x22: ffff0003c16710c8 x21: ffff80008017f180
[ 2911.188310] x20: ffff80008017f000 x19: ffff80008017f180 x18: ffffffffffffffff
[ 2911.189160] x17: 0000000000000000 x16: 0000000000000000 x15: ffff8000a15134b8
[ 2911.190015] x14: 0000000000000000 x13: 205d373432323154 x12: 5b5d313131333731
[ 2911.190844] x11: 00000000fffeffff x10: 00000000fffeffff x9 : ffffd1b78274a13c
[ 2911.191716] x8 : 000000000017ffe8 x7 : c0000000fffeffff x6 : 000000000057ffa8
[ 2911.192554] x5 : ffff0012f6c24ec0 x4 : 0000000000000000 x3 : ffff2e5b72b5d000
[ 2911.193404] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0003ff254480
[ 2911.194259] Call trace:
[ 2911.194626] tracing_map_sort_entries+0x3e0/0x408
[ 2911.195220] hist_show+0x124/0x800
[ 2911.195692] seq_read_iter+0x1d4/0x4e8
[ 2911.196193] seq_read+0xe8/0x138
[ 2911.196638] vfs_read+0xc8/0x300
[ 2911.197078] ksys_read+0x70/0x108
[ 2911.197534] __arm64_sys_read+0x24/0x38
[ 2911.198046] invoke_syscall+0x78/0x108
[ 2911.198553] el0_svc_common.constprop.0+0xd0/0xf8
[ 2911.199157] do_el0_svc+0x28/0x40
[ 2911.199613] el0_svc+0x40/0x178
[ 2911.200048] el0t_64_sync_handler+0x13c/0x158
[ 2911.200621] el0t_64_sync+0x1a8/0x1b0
[ 2911.201115] ---[ end trace 0000000000000000 ]---
The problem appears to be caused by CPU reordering of writes issued from
__tracing_map_insert().
The check for the presence of an element with a given key in this
function is:
val = READ_ONCE(entry->val);
if (val && keys_match(key, val->key, map->key_size)) ...
The write of a new entry is:
elt = get_free_elt(map);
memcpy(elt->key, key, map->key_size);
entry->val = elt;
The "memcpy(elt->key, key, map->key_size);" and "entry->val = elt;"
stores may become visible in the reversed order on another CPU. This
second CPU might then incorrectly determine that a new key doesn't match
an already present val->key and subse
---truncated---
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26649
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix the null pointer when load rlc firmware
If the RLC firmware is invalid because of wrong header size,
the pointer to the rlc firmware is released in function
amdgpu_ucode_request. There will be a null pointer error
in subsequent use. So skip validation to fix it.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26665
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
tunnels: fix out of bounds access when building IPv6 PMTU error
If the ICMPv6 error is built from a non-linear skb we get the following
splat,
BUG: KASAN: slab-out-of-bounds in do_csum+0x220/0x240
Read of size 4 at addr ffff88811d402c80 by task netperf/820
CPU: 0 PID: 820 Comm: netperf Not tainted 6.8.0-rc1+ #543
...
kasan_report+0xd8/0x110
do_csum+0x220/0x240
csum_partial+0xc/0x20
skb_tunnel_check_pmtu+0xeb9/0x3280
vxlan_xmit_one+0x14c2/0x4080
vxlan_xmit+0xf61/0x5c00
dev_hard_start_xmit+0xfb/0x510
__dev_queue_xmit+0x7cd/0x32a0
br_dev_queue_push_xmit+0x39d/0x6a0
Use skb_checksum instead of csum_partial who cannot deal with non-linear
SKBs.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: NVD
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2024-26717
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
HID: i2c-hid-of: fix NULL-deref on failed power up
A while back the I2C HID implementation was split in an ACPI and OF
part, but the new OF driver never initialises the client pointer which
is dereferenced on power-up failures.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26720
DESCRIPTION: Rejected reason: This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.
CWE: CWE-369: Divide By Zero
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26855
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net: ice: Fix potential NULL pointer dereference in ice_bridge_setlink()
The function ice_bridge_setlink() may encounter a NULL pointer dereference
if nlmsg_find_attr() returns NULL and br_spec is dereferenced subsequently
in nla_for_each_nested(). To address this issue, add a check to ensure that
br_spec is not NULL before proceeding with the nested attribute iteration.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-35989
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: Fix oops during rmmod on single-CPU platforms
During the removal of the idxd driver, registered offline callback is
invoked as part of the clean up process. However, on systems with only
one CPU online, no valid target is available to migrate the
perf context, resulting in a kernel oops:
BUG: unable to handle page fault for address: 000000000002a2b8
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 1470e1067 P4D 0
Oops: 0002 [#1] PREEMPT SMP NOPTI
CPU: 0 PID: 20 Comm: cpuhp/0 Not tainted 6.8.0-rc6-dsa+ #57
Hardware name: Intel Corporation AvenueCity/AvenueCity, BIOS BHSDCRB1.86B.2492.D03.2307181620 07/18/2023
RIP: 0010:mutex_lock+0x2e/0x50
...
Call Trace:
__die+0x24/0x70
page_fault_oops+0x82/0x160
do_user_addr_fault+0x65/0x6b0
__pfx___rdmsr_safe_on_cpu+0x10/0x10
exc_page_fault+0x7d/0x170
asm_exc_page_fault+0x26/0x30
mutex_lock+0x2e/0x50
mutex_lock+0x1e/0x50
perf_pmu_migrate_context+0x87/0x1f0
perf_event_cpu_offline+0x76/0x90 [idxd]
cpuhp_invoke_callback+0xa2/0x4f0
__pfx_perf_event_cpu_offline+0x10/0x10 [idxd]
cpuhp_thread_fun+0x98/0x150
smpboot_thread_fn+0x27/0x260
smpboot_thread_fn+0x1af/0x260
__pfx_smpboot_thread_fn+0x10/0x10
kthread+0x103/0x140
__pfx_kthread+0x10/0x10
ret_from_fork+0x31/0x50
__pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
Fix the issue by preventing the migration of the perf context to an
invalid target.
CVSS Source: Red Hat
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36883
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an out-of-bounds access in ops_init. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-36919
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by improper locking related to spin_lock_bh while releasing resources after upload. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-667: Improper Locking
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-38570
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by Glock Use-After-Free on Unmount. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-38579
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw in Crypto: Bcm. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-823: Use of Out-of-range Pointer Offset
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-38619
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw in Usb-Storage: Alauda. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-39471
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an out-of-bounds read in sdma_v4_0.c. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-39499
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by speculation leaks by sanitizing event in event_deliver() of vmci_event.c . A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-39501
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a race condition in core.c. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-39506
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a NULL pointer handling path in lio_vf_rep_copy_packet In lio_vf_rep_copy_packet(). A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-40901
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by out-of-bounds access when using test_bit() in mpt3sas_base.c. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-121: Stack-based Buffer Overflow
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-40904
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by CPU lockup due to excessive log messages. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-40911
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a NULL pointer dereference in util.c. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-40912
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by deadlock in ieee80211_sta_ps_deliver_wakeup() in sta_info.c. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-667: Improper Locking
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-40929
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an out-of-bound access in iwlwifi/mvm/scan.c. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-40931
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
mptcp: ensure snd_una is properly initialized on connect
This is strictly related to commit fb7a0d334894 ("mptcp: ensure snd_nxt
is properly initialized on connect"). It turns out that syzkaller can
trigger the retransmit after fallback and before processing any other
incoming packet - so that snd_una is still left uninitialized.
Address the issue explicitly initializing snd_una together with snd_nxt
and write_seq.
CWE: CWE-908: Use of Uninitialized Resource
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-40941
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw in iwlwifi/mvm/fw.c . A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CVSS Source: IBM X-Force
CVSS Base score: 4.1
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-40954
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net: do not leave a dangling sk pointer, when socket creation fails
It is possible to trigger a use-after-free by:
* attaching an fentry probe to __sock_release() and the probe calling the
bpf_get_socket_cookie() helper
* running traceroute -I 1.1.1.1 on a freshly booted VM
A KASAN enabled kernel will log something like below (decoded and stripped):
==================================================================
BUG: KASAN: slab-use-after-free in __sock_gen_cookie (./arch/x86/include/asm/atomic64_64.h:15 ./include/linux/atomic/atomic-arch-fallback.h:2583 ./include/linux/atomic/atomic-instrumented.h:1611 net/core/sock_diag.c:29)
Read of size 8 at addr ffff888007110dd8 by task traceroute/299
CPU: 2 PID: 299 Comm: traceroute Tainted: G E 6.10.0-rc2+ #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
Call Trace:
dump_stack_lvl (lib/dump_stack.c:117 (discriminator 1))
print_report (mm/kasan/report.c:378 mm/kasan/report.c:488)
? __sock_gen_cookie (./arch/x86/include/asm/atomic64_64.h:15 ./include/linux/atomic/atomic-arch-fallback.h:2583 ./include/linux/atomic/atomic-instrumented.h:1611 net/core/sock_diag.c:29)
kasan_report (mm/kasan/report.c:603)
? __sock_gen_cookie (./arch/x86/include/asm/atomic64_64.h:15 ./include/linux/atomic/atomic-arch-fallback.h:2583 ./include/linux/atomic/atomic-instrumented.h:1611 net/core/sock_diag.c:29)
kasan_check_range (mm/kasan/generic.c:183 mm/kasan/generic.c:189)
__sock_gen_cookie (./arch/x86/include/asm/atomic64_64.h:15 ./include/linux/atomic/atomic-arch-fallback.h:2583 ./include/linux/atomic/atomic-instrumented.h:1611 net/core/sock_diag.c:29)
bpf_get_socket_ptr_cookie (./arch/x86/include/asm/preempt.h:94 ./include/linux/sock_diag.h:42 net/core/filter.c:5094 net/core/filter.c:5092)
bpf_prog_875642cf11f1d139___sock_release+0x6e/0x8e
bpf_trampoline_6442506592+0x47/0xaf
__sock_release (net/socket.c:652)
__sock_create (net/socket.c:1601)
...
Allocated by task 299 on cpu 2 at 78.328492s:
kasan_save_stack (mm/kasan/common.c:48)
kasan_save_track (mm/kasan/common.c:68)
__kasan_slab_alloc (mm/kasan/common.c:312 mm/kasan/common.c:338)
kmem_cache_alloc_noprof (mm/slub.c:3941 mm/slub.c:4000 mm/slub.c:4007)
sk_prot_alloc (net/core/sock.c:2075)
sk_alloc (net/core/sock.c:2134)
inet_create (net/ipv4/af_inet.c:327 net/ipv4/af_inet.c:252)
__sock_create (net/socket.c:1572)
__sys_socket (net/socket.c:1660 net/socket.c:1644 net/socket.c:1706)
__x64_sys_socket (net/socket.c:1718)
do_syscall_64 (arch/x86/entry/common.c:52 arch/x86/entry/common.c:83)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
Freed by task 299 on cpu 2 at 78.328502s:
kasan_save_stack (mm/kasan/common.c:48)
kasan_save_track (mm/kasan/common.c:68)
kasan_save_free_info (mm/kasan/generic.c:582)
poison_slab_object (mm/kasan/common.c:242)
__kasan_slab_free (mm/kasan/common.c:256)
kmem_cache_free (mm/slub.c:4437 mm/slub.c:4511)
__sk_destruct (net/core/sock.c:2117 net/core/sock.c:2208)
inet_create (net/ipv4/af_inet.c:397 net/ipv4/af_inet.c:252)
__sock_create (net/socket.c:1572)
__sys_socket (net/socket.c:1660 net/socket.c:1644 net/socket.c:1706)
__x64_sys_socket (net/socket.c:1718)
do_syscall_64 (arch/x86/entry/common.c:52 arch/x86/entry/common.c:83)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
Fix this by clearing the struct socket reference in sk_common_release() to cover
all protocol families create functions, which may already attached the
reference to the sk object with sock_init_data().
CWE: CWE-416: Use After Free
CVSS Source: NVD
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-40958
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a use-after-free in net_namespace.c. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-40959
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a Null pointer dereference xfrm6_get_saddr() ip6_dst_idev(). A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-40960
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a NULL Dereference in Rt6_probe(). By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-40972
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
ext4: do not create EA inode under buffer lock
ext4_xattr_set_entry() creates new EA inodes while holding buffer lock
on the external xattr block. This is problematic as it nests all the
allocation locking (which acquires locks on other buffers) under the
buffer lock. This can even deadlock when the filesystem is corrupted and
e.g. quota file is setup to contain xattr block as data block. Move the
allocation of EA inode out of ext4_xattr_set_entry() into the callers.
CWE: CWE-667: Improper Locking
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-40977
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by potential Hung Tasks During Chip Recovery in Wifi: Mt76: Mt7921. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-667: Improper Locking
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-40978
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw in Scsi: Qedi. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-40988
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by UBSAN Warning in Kv_dpm.C. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-40989
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw in KVM: Arm64. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-40995
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an infinite loop in Tcf_idr_check_alloc(). By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop')
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-40997
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a memory leak on CPU EPP Exit. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-40998
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by uninitialized Ratelimit_state->Lock Access in __ext4_fill_super(). By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-41005
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a race condition in netpoll_owner_active. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: Red Hat
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-41007
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
tcp: avoid too many retransmit packets
If a TCP socket is using TCP_USER_TIMEOUT, and the other peer
retracted its window to zero, tcp_retransmit_timer() can
retransmit a packet every two jiffies (2 ms for HZ=1000),
for about 4 minutes after TCP_USER_TIMEOUT has 'expired'.
The fix is to make sure tcp_rtx_probe0_timed_out() takes
icsk->icsk_user_timeout into account.
Before blamed commit, the socket would not timeout after
icsk->icsk_user_timeout, but would use standard exponential
backoff for the retransmits.
Also worth noting that before commit e89688e3e978 ("net: tcp:
fix unexcepted socket die when snd_wnd is 0"), the issue
would last 2 minutes instead of 4.
CVSS Source: NVD
CVSS Base score: 3.3
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L)
CVEID: CVE-2024-41008
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw in the handling and lifecycle of vm->task_info object. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-99: Improper Control of Resource Identifiers ('Resource Injection')
CVSS Source: Red Hat
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-41012
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by improper locking flaw when fcntl/close race is detected. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-416: Use After Free
CVSS Source: Red Hat
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-41013
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
xfs: don't walk off the end of a directory data block
This adds sanity checks for xfs_dir2_data_unused and xfs_dir2_data_entry
to make sure don't stray beyond valid memory region. Before patching, the
loop simply checks that the start offset of the dup and dep is within the
range. So in a crafted image, if last entry is xfs_dir2_data_unused, we
can change dup->length to dup->length-1 and leave 1 byte of space. In the
next traversal, this space will be considered as dup or dep. We may
encounter an out of bound read when accessing the fixed members.
In the patch, we make sure that the remaining bytes large enough to hold
an unused entry before accessing xfs_dir2_data_unused and
xfs_dir2_data_unused is XFS_DIR2_DATA_ALIGN byte aligned. We also make
sure that the remaining bytes large enough to hold a dirent with a
single-byte name before accessing xfs_dir2_data_entry.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: Red Hat
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2024-41014
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
xfs: add bounds checking to xlog_recover_process_data
There is a lack of verification of the space occupied by fixed members
of xlog_op_header in the xlog_recover_process_data.
We can create a crafted image to trigger an out of bounds read by
following these steps:
1) Mount an image of xfs, and do some file operations to leave records
2) Before umounting, copy the image for subsequent steps to simulate
abnormal exit. Because umount will ensure that tail_blk and
head_blk are the same, which will result in the inability to enter
xlog_recover_process_data
3) Write a tool to parse and modify the copied image in step 2
4) Make the end of the xlog_op_header entries only 1 byte away from
xlog_rec_header->h_size
5) xlog_rec_header->h_num_logops++
6) Modify xlog_rec_header->h_crc
Fix:
Add a check to make sure there is sufficient space to access fixed members
of xlog_op_header.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: Red Hat
CVSS Base score: 6.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:H)
CVEID: CVE-2024-41023
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to obtain sensitive information, caused by a task_struct reference leak flaw. By sending a specially crafted request, an attacker could exploit this vulnerability to obtain sensitive information or cause a denial of service condition.
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: Red Hat
CVSS Base score: 6.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:H)
CVEID: CVE-2024-41035
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a duplicate endpoint bug in the usb_parse_endpoint() function. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-99: Improper Control of Resource Identifiers ('Resource Injection')
CVSS Source: Red Hat
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-41038
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a buffer overrun when processing V2 alg headers. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
CVSS Source: Red Hat
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-41039
DESCRIPTION: Linux Kernel is vulnerable to a stack-based buffer overflow, caused by improper bounds checking by the wmfw header. By sending a specially crafted request, a local authenticated attacker could overflow a buffer and execute arbitrary code on the system.
CWE: CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
CVSS Source: Red Hat
CVSS Base score: 5.2
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:L/I:L/A:H)
CVEID: CVE-2024-41040
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to execute arbitrary code on the system, caused by a use-after-free flaw when resolving a clash. By sending a specially crafted request, an attacker could exploit this vulnerability to execute arbitrary code on the system.
CWE: CWE-416: Use After Free
CVSS Source: Red Hat
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:H/UI:N/S:U/C:L/I:L/A:H)
CVEID: CVE-2024-41041
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw related to set SOCK_RCU_FREE earlier in udp_lib_get_port(). By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-911: Improper Update of Reference Count
CVSS Source: Red Hat
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-41044
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an error related to ppp_async_encode() in ppp_generic.c. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 4.9
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-41055
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by Null pointer dereference in mmzone.h. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-41056
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Use strnlen() on name fields in V1 wmfw files
Use strnlen() instead of strlen() on the algorithm and coefficient name
string arrays in V1 wmfw files.
In V1 wmfw files the name is a NUL-terminated string in a fixed-size
array. cs_dsp should protect against overrunning the array if the NUL
terminator is missing.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-41060
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: check bo_va->bo is non-NULL before using it
The call to radeon_vm_clear_freed might clear bo_va->bo, so
we have to check it before dereferencing it.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-41064
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw in Powerpc/Eeh. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-41065
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw in Powerpc/Pseries. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-41071
DESCRIPTION: Rejected reason: This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.
CWE: CWE-129: Improper Validation of Array Index
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-41076
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw in NFSv4. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-41090
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by missing check against the validity of the frame length in the tap_get_user_xdp() path. By sending a specially crafted request, a local attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:C/C:N/I:N/A:H)
CVEID: CVE-2024-41091
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by missing check against the validity of the frame length in the tun_xdp_one() path. By sending a specially crafted request, a local attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:C/C:N/I:N/A:H)
CVEID: CVE-2024-41097
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw in Usb: Atm: Cxacru. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-42090
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by deadlock in create_pinctrl() when handling -EPROBE_DEFER. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-667: Improper Locking
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-42114
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a lack of proper range validation by NL80211_ATTR_TXQ_QUANTUM in nl80211.c. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-667: Improper Locking
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-42124
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
scsi: qedf: Make qedf_execute_tmf() non-preemptible
Stop calling smp_processor_id() from preemptible code in
qedf_execute_tmf90. This results in BUG_ON() when running an RT kernel.
[ 659.343280] BUG: using smp_processor_id() in preemptible [00000000] code: sg_reset/3646
[ 659.343282] caller is qedf_execute_tmf+0x8b/0x360 [qedf]
CWE: CWE-1287: Improper Validation of Specified Type of Input
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-42131
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
mm: avoid overflows in dirty throttling logic
The dirty throttling logic is interspersed with assumptions that dirty
limits in PAGE_SIZE units fit into 32-bit (so that various multiplications
fit into 64-bits). If limits end up being larger, we will hit overflows,
possible divisions by 0 etc. Fix these problems by never allowing so
large dirty limits as they have dubious practical value anyway. For
dirty_bytes / dirty_background_bytes interfaces we can just refuse to set
so large limits. For dirty_ratio / dirty_background_ratio it isn't so
simple as the dirty limit is computed from the amount of available memory
which can change due to memory hotplug etc. So when converting dirty
limits from ratios to numbers of pages, we just don't allow the result to
exceed UINT_MAX.
This is root-only triggerable problem which occurs when the operator
sets dirty limits to >16 TB.
CWE: CWE-190: Integer Overflow or Wraparound
CVSS Source: NVD
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-42152
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by memory leak in nvmet. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-42154
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to obtain sensitive information, caused by insufficient validation of the length of the source address for TCP metrics in the tcp_metrics subsystem. An attacker could exploit this vulnerability to lead to incorrect memory read.
CWE: CWE-754: Improper Check for Unusual or Exceptional Conditions
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:N)
CVEID: CVE-2024-42225
DESCRIPTION: Linux Kernel could allow a remote attacker to execute arbitrary code on the system, caused by reusing uninitialized data in 'wifi: mt76'. By sending a specially-crafted request, an attacker could exploit this vulnerability to execute arbitrary code on the system or cause a denial of service condition.
CWE: CWE-908: Use of Uninitialized Resource
CVSS Source: IBM X-Force
CVSS Base score: 8.1
CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-42228
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to execute arbitrary code on the system, caused by reusing uninitialized data when calling amdgpu_vce_cs_reloc in drm/amdgpu. By sending a specially-crafted request, an attacker could exploit this vulnerability to execute arbitrary code on the system or or cause a denial of service condition..
CWE: CWE-908: Use of Uninitialized Resource
CVSS Source: IBM X-Force
CVSS Base score: 7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-42237
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by improperly validating payload length in cs_dsp_load() and cs_dsp_coeff_load(). By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-834: Excessive Iteration
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-42238
DESCRIPTION: Linux Kernel is vulnerable to a buffer overflow, caused by improper bounds checking in cs_dsp_power_up(). By sending a specially crafted request, a remote attacker could overflow to cause a denial of service.
CWE: CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
CVSS Source: IBM X-Force
CVSS Base score: 6.5
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-42240
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by infinite loop in x86/bhi. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop')
CVSS Source: IBM X-Force
CVSS Base score: 7.5
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-42246
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by connection failure in xs_tcp_setup_socket. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop')
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-42265
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by the failure to protect the fetch of ->fd[fd] in do_dup2() from mispredictions. A local authenticated attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-43871
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a memory leakage when using driver API devm_free_percpu(). By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: Red Hat
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-38820
DESCRIPTION: VMware Tanzu Spring Framework could provide weaker than expected security, caused by a flaw related to disallowedFields patterns in DataBinder is case insensitive. A remote attacker could exploit this vulnerability to launch further attacks on the system.
CWE: CWE-178: Improper Handling of Case Sensitivity
CVSS Source: IBM X-Force
CVSS Base score: 3.1
CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:N)
CVEID: CVE-2023-22081
DESCRIPTION: An unspecified vulnerability in Java SE related to the JSSE component could allow a remote attacker to cause no confidentiality impact, no integrity impact, and low availability impact.
CVSS Source: IBM X-Force
CVSS Base score: 5.3
CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L)
CVEID: CVE-2023-5676
DESCRIPTION: Eclipse OpenJ9 is vulnerable to a denial of service, caused by a flaw when a shutdown signal (SIGTERM, SIGINT or SIGHUP) is received before the JVM has finished initializing. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause an infinite busy hang on a spinlock or a segmentation fault.
CWE: CWE-364: Signal Handler Race Condition
CVSS Source: IBM X-Force
CVSS Base score: 4.1
CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-21535
DESCRIPTION: Versions of the package markdown-to-jsx before 7.4.0 are vulnerable to Cross-site Scripting (XSS) via the src property due to improper input sanitization. An attacker can execute arbitrary code by injecting a malicious iframe element in the markdown.
CWE: CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
CVSS Source: CVE.org
CVSS Base score: 6.1
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N)
CVEID: CVE-2024-43800
DESCRIPTION: expressjs serve-static is vulnerable to cross-site scripting, caused by improper validation of user-supplied input. A remote attacker could exploit this vulnerability using a specially crafted URL to execute script in a victim's Web browser within the security context of the hosting Web site, once the URL is clicked. An attacker could use this vulnerability to steal the victim's cookie-based authentication credentials.
CWE: CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
CVSS Source: IBM X-Force
CVSS Base score: 5
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:L/A:L)
CVEID: CVE-2019-13631
DESCRIPTION: Linux Kernel could allow a physical attacker to execute arbitrary code on the system, caused by an an out-of-bounds write flaw in the parse_hid_report_descriptor function in drivers/input/tablet/gtco.c. By using a specially-crafted USB device to send an HID report, an attacker could exploit this vulnerability to execute arbitrary code or cause a denial of service condition on the system.
CWE: CWE-787: Out-of-bounds Write
CVSS Source: IBM X-Force
CVSS Base score: 6.8
CVSS Vector: (CVSS:3.0/AV:P/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2019-15505
DESCRIPTION: Linux Kernel could allow a physical attacker to obtain sensitive information, caused by an out-of-bounds read flaw in technisat-usb2.c. By using a specially-crafted USB device, an attacker could exploit this vulnerability to obtain sensitive information or cause a denial of service condition on the system.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 6.1
CVSS Vector: (CVSS:3.0/AV:P/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2020-25656
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a use-after-free in the vt_do_kdgkb_ioctl function. By executing a specially-crafted program, a local authenticated attacker could exploit this vulnerability to cause the system to crash.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2021-3753
DESCRIPTION: Linux Kernel could allow a local attacker to obtain sensitive information, caused by an out-of-bounds read flaw in VT. By using a specially-crafted vc_visible_origin setting, an attacker could exploit this vulnerability to obtain sensitive information, or cause a denial of service condition.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 7.7
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2021-4204
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to gain elevated privileges on the system, caused by improper input validation in the handling of eBPF programs. By executing a specially-crafted eBPF program, an authenticated attacker could exploit this vulnerability to gain elevated privileges and execute code in the context of the kernel.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2022-0500
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to gain elevated privileges on the system, caused by an out-of-bounds write flaw in the BPF_BTF_LOAD function in the BPF subsystem. By executing a specially-crafted eBPF program, an authenticated attacker could exploit this vulnerability to gain elevated privileges or crash the system.
CWE: CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer
CVSS Source: IBM X-Force
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2022-3565
DESCRIPTION: A use-after-free in the function del_timer of the file drivers/isdn/mISDN/l1oip_core.c of the component Bluetooth in Linux Kernel could allow a remote authenticated attacker from within the local network to cause an unknown impact.
CWE: CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer
CVSS Source: IBM X-Force
CVSS Base score: 4.6
CVSS Vector: (CVSS:3.0/AV:A/AC:H/PR:L/UI:N/S:U/C:L/I:L/A:L)
CVEID: CVE-2022-23222
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to gain elevated privileges on the system, caused by improper input validation by the bpf verifier in kernel/bpf/verifier.c. By executing a specially-crafted eBPF program with certain *_OR_NULL pointer types, an authenticated attacker could exploit this vulnerability to gain elevated privileges and execute code in the context of the kernel.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2022-45934
DESCRIPTION: An integer wraparound in the function l2cap_config_req in net/bluetooth/l2cap_core.c in Linux Kernel could allow a remote authenticated attacker from within the local network using L2CAP_CONF_REQ packets to cause an unknown impact.
CWE: CWE-190: Integer Overflow or Wraparound
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:A/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:L)
CVEID: CVE-2023-1513
DESCRIPTION: A flaw was found in KVM. When calling the KVM_GET_DEBUGREGS ioctl, on 32-bit systems, there might be some uninitialized portions of the kvm_debugregs structure that could be copied to userspace, causing an information leak.
CWE: CWE-665: Improper Initialization
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N)
CVEID: CVE-2023-3567
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to obtain sensitive information, caused by a use-after-free flaw in the vcs_read function in drivers/tty/vt/vc_screen.c in vc_screen. By sending a specially crafted request, an attacker could exploit this vulnerability to obtain internal kernel information or cause the system to crash.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H)
CVEID: CVE-2023-39192
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to obtain sensitive information, caused by an out-of-bounds read flaw in the u32_match_it function in Netfilter Xtables. By sending a specially crafted request, an attacker could exploit this vulnerability to obtain sensitive information, and use this information to launch further attacks against the affected system.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 6.7
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:N/A:L)
CVEID: CVE-2023-39193
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to obtain sensitive information, caused by an out-of-bounds read flaw in the match_flags function in Netfilter Xtables. By sending a specially crafted request, an attacker could exploit this vulnerability to obtain sensitive information, and use this information to launch further attacks against the affected system.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 5.1
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:L)
CVEID: CVE-2023-39194
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to obtain sensitive information, caused by an out-of-bounds read flaw in the processing of state filters in XFRM. By sending a specially crafted request, an attacker could exploit this vulnerability to obtain sensitive information, and use this information to launch further attacks against the affected system.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 3.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:C/C:L/I:N/A:N)
CVEID: CVE-2023-39198
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to gain elevated privileges on the system, caused by a race condition in the QXL driver. By sending a specially crafted request, an authenticated attacker could exploit this vulnerability to gain elevated privileges or cause a denial of service condition.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 7.5
CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:H/UI:N/S:C/C:H/I:H/A:H)
CVEID: CVE-2023-4133
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a use-after-free flaw in the cxgb4 driver. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause the system to crash.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-4244
DESCRIPTION: A use-after-free vulnerability in the Linux kernel's netfilter: nf_tables component can be exploited to achieve local privilege escalation.
Due to a race condition between nf_tables netlink control plane transaction and nft_set element garbage collection, it is possible to underflow the reference counter causing a use-after-free vulnerability.
We recommend upgrading past commit 3e91b0ebd994635df2346353322ac51ce84ce6d8.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2023-42754
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a NULL pointer dereference flaw in the ipv4_send_dest_unreach function in net/ipv4/route.c. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-42755
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an out-of-bounds read in the rsvp traffic classifier. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause the kernel to crash.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 6.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:C/C:N/I:N/A:H)
CVEID: CVE-2023-45863
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to execute arbitrary code on the system, caused by a race condition that results in a fill_kobj_path out-of-bounds write in lib/kobject.c. By sending a specially crafted request, an attacker could exploit this vulnerability to execute arbitrary code or cause a denial of service condition.
CWE: CWE-787: Out-of-bounds Write
CVSS Source: IBM X-Force
CVSS Base score: 6.7
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2023-51779
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to execute arbitrary code on the system, caused by a use-after-free flaw in the bt_sock_recvmsg function in net/bluetooth/af_bluetooth.c. By sending a specially crafted request, an attacker could exploit this vulnerability to execute arbitrary code or cause a denial of service on the system.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 7
CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2023-51780
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to execute arbitrary code on the system, caused by a use-after-free flaw in the do_vcc_ioctl function in net/atm/ioctl.c. By sending a specially crafted request, an attacker could exploit this vulnerability to execute arbitrary code or cause a denial of service. on the system.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 7
CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2023-52340
DESCRIPTION: The IPv6 implementation in the Linux kernel before 6.3 has a net/ipv6/route.c max_size threshold that can be consumed easily, e.g., leading to a denial of service (network is unreachable errors) when IPv6 packets are sent in a loop via a raw socket.
CWE: CWE-400: Uncontrolled Resource Consumption
CVSS Source: IBM X-Force
CVSS Base score: 6.5
CVSS Vector: (CVSS:3.0/AV:A/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52434
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential OOBs in smb2_parse_contexts()
Validate offsets and lengths before dereferencing create contexts in
smb2_parse_contexts().
This fixes following oops when accessing invalid create contexts from
server:
BUG: unable to handle page fault for address: ffff8881178d8cc3
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 4a01067 P4D 4a01067 PUD 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 3 PID: 1736 Comm: mount.cifs Not tainted 6.7.0-rc4 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014
RIP: 0010:smb2_parse_contexts+0xa0/0x3a0 [cifs]
Code: f8 10 75 13 48 b8 93 ad 25 50 9c b4 11 e7 49 39 06 0f 84 d2 00
00 00 8b 45 00 85 c0 74 61 41 29 c5 48 01 c5 41 83 fd 0f 76 55 <0f> b7
7d 04 0f b7 45 06 4c 8d 74 3d 00 66 83 f8 04 75 bc ba 04 00
RSP: 0018:ffffc900007939e0 EFLAGS: 00010216
RAX: ffffc90000793c78 RBX: ffff8880180cc000 RCX: ffffc90000793c90
RDX: ffffc90000793cc0 RSI: ffff8880178d8cc0 RDI: ffff8880180cc000
RBP: ffff8881178d8cbf R08: ffffc90000793c22 R09: 0000000000000000
R10: ffff8880180cc000 R11: 0000000000000024 R12: 0000000000000000
R13: 0000000000000020 R14: 0000000000000000 R15: ffffc90000793c22
FS: 00007f873753cbc0(0000) GS:ffff88806bc00000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffff8881178d8cc3 CR3: 00000000181ca000 CR4: 0000000000750ef0
PKRU: 55555554
Call Trace:
? __die+0x23/0x70
? page_fault_oops+0x181/0x480
? search_module_extables+0x19/0x60
? srso_alias_return_thunk+0x5/0xfbef5
? exc_page_fault+0x1b6/0x1c0
? asm_exc_page_fault+0x26/0x30
? smb2_parse_contexts+0xa0/0x3a0 [cifs]
SMB2_open+0x38d/0x5f0 [cifs]
? smb2_is_path_accessible+0x138/0x260 [cifs]
smb2_is_path_accessible+0x138/0x260 [cifs]
cifs_is_path_remote+0x8d/0x230 [cifs]
cifs_mount+0x7e/0x350 [cifs]
cifs_smb3_do_mount+0x128/0x780 [cifs]
smb3_get_tree+0xd9/0x290 [cifs]
vfs_get_tree+0x2c/0x100
? capable+0x37/0x70
path_mount+0x2d7/0xb80
? srso_alias_return_thunk+0x5/0xfbef5
? _raw_spin_unlock_irqrestore+0x44/0x60
__x64_sys_mount+0x11a/0x150
do_syscall_64+0x47/0xf0
entry_SYSCALL_64_after_hwframe+0x6f/0x77
RIP: 0033:0x7f8737657b1e
CWE: CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N)
CVEID: CVE-2023-52448
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a NULL pointer dereference in gfs2_rgrp_dump. A local attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52489
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
mm/sparsemem: fix race in accessing memory_section->usage
The below race is observed on a PFN which falls into the device memory
region with the system memory configuration where PFN's are such that
[ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL]. Since normal zone start and end
pfn contains the device memory PFN's as well, the compaction triggered
will try on the device memory PFN's too though they end up in NOP(because
pfn_to_online_page() returns NULL for ZONE_DEVICE memory sections). When
from other core, the section mappings are being removed for the
ZONE_DEVICE region, that the PFN in question belongs to, on which
compaction is currently being operated is resulting into the kernel crash
with CONFIG_SPASEMEM_VMEMAP enabled. The crash logs can be seen at [1].
compact_zone() memunmap_pages
------------- ---------------
__pageblock_pfn_to_page
......
(a)pfn_valid():
valid_section()//return true
(b)__remove_pages()->
sparse_remove_section()->
section_deactivate():
[Free the array ms->usage and set
ms->usage = NULL]
pfn_section_valid()
[Access ms->usage which
is NULL]
NOTE: From the above it can be said that the race is reduced to between
the pfn_valid()/pfn_section_valid() and the section deactivate with
SPASEMEM_VMEMAP enabled.
The commit b943f045a9af("mm/sparse: fix kernel crash with
pfn_section_valid check") tried to address the same problem by clearing
the SECTION_HAS_MEM_MAP with the expectation of valid_section() returns
false thus ms->usage is not accessed.
Fix this issue by the below steps:
a) Clear SECTION_HAS_MEM_MAP before freeing the ->usage.
b) RCU protected read side critical section will either return NULL
when SECTION_HAS_MEM_MAP is cleared or can successfully access ->usage.
c) Free the ->usage with kfree_rcu() and set ms->usage = NULL. No
attempt will be made to access ->usage after this as the
SECTION_HAS_MEM_MAP is cleared thus valid_section() return false.
Thanks to David/Pavan for their inputs on this patch.
[1] https://lore.kernel.org/linux-mm/994410bb-89aa-d987-1f50-f514903c55aa@q…
On Snapdragon SoC, with the mentioned memory configuration of PFN's as
[ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL], we are able to see bunch of
issues daily while testing on a device farm.
For this particular issue below is the log. Though the below log is
not directly pointing to the pfn_section_valid(){ ms->usage;}, when we
loaded this dump on T32 lauterbach tool, it is pointing.
[ 540.578056] Unable to handle kernel NULL pointer dereference at
virtual address 0000000000000000
[ 540.578068] Mem abort info:
[ 540.578070] ESR = 0x0000000096000005
[ 540.578073] EC = 0x25: DABT (current EL), IL = 32 bits
[ 540.578077] SET = 0, FnV = 0
[ 540.578080] EA = 0, S1PTW = 0
[ 540.578082] FSC = 0x05: level 1 translation fault
[ 540.578085] Data abort info:
[ 540.578086] ISV = 0, ISS = 0x00000005
[ 540.578088] CM = 0, WnR = 0
[ 540.579431] pstate: 82400005 (Nzcv daif +PAN -UAO +TCO -DIT -SSBSBTYPE=--)
[ 540.579436] pc : __pageblock_pfn_to_page+0x6c/0x14c
[ 540.579454] lr : compact_zone+0x994/0x1058
[ 540.579460] sp : ffffffc03579b510
[ 540.579463] x29: ffffffc03579b510 x28: 0000000000235800 x27:000000000000000c
[ 540.579470] x26: 0000000000235c00 x25: 0000000000000068 x24:ffffffc03579b640
[ 540.579477] x23: 0000000000000001 x22: ffffffc03579b660 x21:0000000000000000
[ 540.579483] x20: 0000000000235bff x19: ffffffdebf7e3940 x18:ffffffdebf66d140
[ 540.579489] x17: 00000000739ba063 x16: 00000000739ba063 x15:00000000009f4bff
[ 540.579495] x14: 0000008000000000 x13: 0000000000000000 x12:0000000000000001
[ 540.579501] x11: 0000000000000000 x10: 0000000000000000 x9 :ffffff897d2cd440
[ 540.579507] x8 : 0000000000000000 x7 : 0000000000000000 x6 :ffffffc03579b5b4
[ 540.579512] x5 : 0000000000027f25 x4 : ffffffc03579b5b8 x3 :0000000000000
---truncated---
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: NVD
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52574
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a NULL pointer dereference flaw when team device type is changed. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52580
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
net/core: Fix ETH_P_1588 flow dissector
When a PTP ethernet raw frame with a size of more than 256 bytes followed
by a 0xff pattern is sent to __skb_flow_dissect, nhoff value calculation
is wrong. For example: hdr->message_length takes the wrong value (0xffff)
and it does not replicate real header length. In this case, 'nhoff' value
was overridden and the PTP header was badly dissected. This leads to a
kernel crash.
net/core: flow_dissector
net/core flow dissector nhoff = 0x0000000e
net/core flow dissector hdr->message_length = 0x0000ffff
net/core flow dissector nhoff = 0x0001000d (u16 overflow)
...
skb linear: 00000000: 00 a0 c9 00 00 00 00 a0 c9 00 00 00 88
skb frag: 00000000: f7 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
Using the size of the ptp_header struct will allow the corrected
calculation of the nhoff value.
net/core flow dissector nhoff = 0x0000000e
net/core flow dissector nhoff = 0x00000030 (sizeof ptp_header)
...
skb linear: 00000000: 00 a0 c9 00 00 00 00 a0 c9 00 00 00 88 f7 ff ff
skb linear: 00000010: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
skb linear: 00000020: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
skb frag: 00000000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
Kernel trace:
[ 74.984279] ------------[ cut here ]------------
[ 74.989471] kernel BUG at include/linux/skbuff.h:2440!
[ 74.995237] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
[ 75.001098] CPU: 4 PID: 0 Comm: swapper/4 Tainted: G U 5.15.85-intel-ese-standard-lts #1
[ 75.011629] Hardware name: Intel Corporation A-Island (CPU:AlderLake)/A-Island (ID:06), BIOS SB_ADLP.01.01.00.01.03.008.D-6A9D9E73-dirty Mar 30 2023
[ 75.026507] RIP: 0010:eth_type_trans+0xd0/0x130
[ 75.031594] Code: 03 88 47 78 eb c7 8b 47 68 2b 47 6c 48 8b 97 c0 00 00 00 83 f8 01 7e 1b 48 85 d2 74 06 66 83 3a ff 74 09 b8 00 04 00 00 eb ab <0f> 0b b8 00 01 00 00 eb a2 48 85 ff 74 eb 48 8d 54 24 06 31 f6 b9
[ 75.052612] RSP: 0018:ffff9948c0228de0 EFLAGS: 00010297
[ 75.058473] RAX: 00000000000003f2 RBX: ffff8e47047dc300 RCX: 0000000000001003
[ 75.066462] RDX: ffff8e4e8c9ea040 RSI: ffff8e4704e0a000 RDI: ffff8e47047dc300
[ 75.074458] RBP: ffff8e4704e2acc0 R08: 00000000000003f3 R09: 0000000000000800
[ 75.082466] R10: 000000000000000d R11: ffff9948c0228dec R12: ffff8e4715e4e010
[ 75.090461] R13: ffff9948c0545018 R14: 0000000000000001 R15: 0000000000000800
[ 75.098464] FS: 0000000000000000(0000) GS:ffff8e4e8fb00000(0000) knlGS:0000000000000000
[ 75.107530] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 75.113982] CR2: 00007f5eb35934a0 CR3: 0000000150e0a002 CR4: 0000000000770ee0
[ 75.121980] PKRU: 55555554
[ 75.125035] Call Trace:
[ 75.127792]
[ 75.130063] ? eth_get_headlen+0xa4/0xc0
[ 75.134472] igc_process_skb_fields+0xcd/0x150
[ 75.139461] igc_poll+0xc80/0x17b0
[ 75.143272] __napi_poll+0x27/0x170
[ 75.147192] net_rx_action+0x234/0x280
[ 75.151409] __do_softirq+0xef/0x2f4
[ 75.155424] irq_exit_rcu+0xc7/0x110
[ 75.159432] common_interrupt+0xb8/0xd0
[ 75.163748]
[ 75.166112]
[ 75.168473] asm_common_interrupt+0x22/0x40
[ 75.173175] RIP: 0010:cpuidle_enter_state+0xe2/0x350
[ 75.178749] Code: 85 c0 0f 8f 04 02 00 00 31 ff e8 39 6c 67 ff 45 84 ff 74 12 9c 58 f6 c4 02 0f 85 50 02 00 00 31 ff e8 52 b0 6d ff fb 45 85 f6 <0f> 88 b1 00 00 00 49 63 ce 4c 2b 2c 24 48 89 c8 48 6b d1 68 48 c1
[ 75.199757] RSP: 0018:ffff9948c013bea8 EFLAGS: 00000202
[ 75.205614] RAX: ffff8e4e8fb00000 RBX: ffffb948bfd23900 RCX: 000000000000001f
[ 75.213619] RDX: 0000000000000004 RSI: ffffffff94206161 RDI: ffffffff94212e20
[ 75.221620] RBP: 0000000000000004 R08: 000000117568973a R09: 0000000000000001
[ 75.229622] R10: 000000000000afc8 R11: ffff8e4e8fb29ce4 R12: ffffffff945ae980
[ 75.237628] R13: 000000117568973a R14: 0000000000000004 R15: 0000000000000000
[ 75.245635] ?
---truncated---
CVSS Source: NVD
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-52581
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: fix memleak when more than 255 elements expired
When more than 255 elements expired we're supposed to switch to a new gc
container structure.
This never happens: u8 type will wrap before reaching the boundary
and nft_trans_gc_space() always returns true.
This means we recycle the initial gc container structure and
lose track of the elements that came before.
While at it, don't deref 'gc' after we've passed it to call_rcu.
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: IBM X-Force
CVSS Base score: 7
CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2023-52620
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a resource injection flaw in timeout parameter in nf_tables. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-99: Improper Control of Resource Identifiers ('Resource Injection')
CVSS Source: IBM X-Force
CVSS Base score: 2.5
CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L)
CVEID: CVE-2023-6121
DESCRIPTION: Linux Kernel could allow a remote authenticated attacker to obtain sensitive information, caused by an out-of-bounds read flaw in the NVMe-oF/TCP subsystem. By sending a specially crafted TCP packet, an attacker could exploit this vulnerability to obtain kmalloc data information, and use this information to launch further attacks against the affected system.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 4.3
CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N)
CVEID: CVE-2023-6176
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a NULL pointer dereference flaw in the API for the cryptographic algorithm scatterwalk function. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause the system to crash or gain elevated privileges.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 4.4
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-6622
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a NULL pointer dereference flaw in the nft_dynset_init() function in net/netfilter/nft_dynset.c. By sending a specially crafted request, a local authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 5.5
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-6915
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a NULL pointer dereference flaw in the ida_free function in lib/idr.c. By sending a specially crafted request, a remote authenticated attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 6.5
CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-6932
DESCRIPTION: A use-after-free vulnerability in the Linux kernel's ipv4: igmp component can be exploited to achieve local privilege escalation.
A race condition can be exploited to cause a timer be mistakenly registered on a RCU read locked object which is freed by another thread.
We recommend upgrading past commit e2b706c691905fe78468c361aaabc719d0a496f1.
CWE: CWE-416: Use After Free
CVSS Source: IBM X-Force
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2023-24023
DESCRIPTION: Bluetooth BR/EDR devices with Secure Simple Pairing and Secure Connections pairing in Bluetooth Core Specification is vulnerable to a machine-in-the-middle attack. By sniffing the network traffic, a network adjacent attacker could exploit this vulnerability to launch a man-in-the-middle attack and force a short key length, leading to the discovery of the encryption key and potentially live injection.
CVSS Source: IBM X-Force
CVSS Base score: 5.4
CVSS Vector: (CVSS:3.0/AV:A/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:N)
CVEID: CVE-2023-25775
DESCRIPTION: Intel Ethernet Controller Remote Direct Memory Access (RDMA) driver for Linux could allow a remote attacker to gain elevated privileges on the system, caused by improper access control. An attacker could exploit this vulnerability to gain elevated privileges.
CWE: CWE-284: Improper Access Control
CVSS Source: IBM X-Force
CVSS Base score: 5.6
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:L)
CVEID: CVE-2023-28464
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to gain elevated privileges on the system, caused by a double free flaw in the hci_conn_cleanup function in the Bluetooth subsystem. By sending a specially-crafted request, an authenticated attacker could exploit this vulnerability to gain elevated privileges or cause a denial of service condition.
CWE: CWE-415: Double Free
CVSS Source: IBM X-Force
CVSS Base score: 7.8
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2023-31083
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a race condition between HCIUARTSETPROTO and HCIUARTGETPROTO in the hci_uart_tty_ioctl function in drivers/bluetooth/hci_ldisc.c. By sending a specially crafted request, a local attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-37453
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an out-of-bounds flaw in the read_descriptors function in drivers/usb/core/sysfs.c in the USB subsystem. By using a specially crafted USB device, a physical attacker could exploit this vulnerability to cause the system to crash.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: IBM X-Force
CVSS Base score: 4.6
CVSS Vector: (CVSS:3.0/AV:P/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-38409
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a flaw in the set_con2fb_map function in drivers/video/fbdev/core/fbcon.c. By sending a specially crafted request, a local attacker could exploit this vulnerability to cause a denial of service condition.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: IBM X-Force
CVSS Base score: 2.9
CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L)
CVEID: CVE-2023-39189
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to obtain sensitive information, caused by an out-of-bounds read flaw in the nfnl_osf_add_callback function in the Netfilter subsystem. By sending a specially crafted request, an attacker could exploit this vulnerability to obtain sensitive information or cause a denial of service condition.
CWE: CWE-125: Out-of-bounds Read
CVSS Source: CVE.org
CVSS Base score: 5.1
CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:L)
CVEID: CVE-2024-0841
DESCRIPTION: Linux Kernel could allow a local authenticated attacker to gain elevated privileges on the system, caused by a NULL pointer dereference flaw in the hugetlbfs_fill_super function in the hugetlbfs (HugeTLB pages) functionality. By sending a specially crafted request, an authenticated attacker could exploit this vulnerability to gain elevated privileges or cause the system to crash.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 6.6
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H)
CVEID: CVE-2024-25742
DESCRIPTION: In the Linux kernel before 6.9, an untrusted hypervisor can inject virtual interrupt 29 (#VC) at any point in time and can trigger its handler. This affects AMD SEV-SNP and AMD SEV-ES.
CWE: CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe
CVSS Source: CISA ADP
CVSS Base score: 6.5
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:L)
CVEID: CVE-2024-25743
DESCRIPTION: In the Linux kernel through 6.9, an untrusted hypervisor can inject virtual interrupts 0 and 14 at any point in time and can trigger the SIGFPE signal handler in userspace applications. This affects AMD SEV-SNP and AMD SEV-ES.
CWE: CWE-20: Improper Input Validation
CVSS Source: IBM X-Force
CVSS Base score: 7.1
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N)
CVEID: CVE-2024-26602
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by an error related to sched/membarrier: reducing the ability to hammer on sys_membarrier. A local attacker could exploit this vulnerability to cause a denial of service.
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26609
DESCRIPTION: Linux Kernel is vulnerable to a denial of service, caused by a use-after-free error related to rejecting QUEUE/DROP verdict parameters. A local attacker could exploit this vulnerability to cause a denial of service.
CVSS Source: IBM X-Force
CVSS Base score: 6.2
CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26671
DESCRIPTION: In the Linux kernel, the following vulnerability has been resolved:
blk-mq: fix IO hang from sbitmap wakeup race
In blk_mq_mark_tag_wait(), __add_wait_queue() may be re-ordered
with the following blk_mq_get_driver_tag() in case of getting driver
tag failure.
Then in __sbitmap_queue_wake_up(), waitqueue_active() may not observe
the added waiter in blk_mq_mark_tag_wait() and wake up nothing, meantime
blk_mq_mark_tag_wait() can't get driver tag successfully.
This issue can be reproduced by running the following test in loop, and
fio hang can be observed in < 30min when running it on my test VM
in laptop.
modprobe -r scsi_debug
modprobe scsi_debug delay=0 dev_size_mb=4096 max_queue=1 host_max_queue=1 submit_queues=4
dev=`ls -d /sys/bus/pseudo/drivers/scsi_debug/adapter*/host*/target*/*/block/* | head -1 | xargs basename`
fio --filename=/dev/"$dev" --direct=1 --rw=randrw --bs=4k --iodepth=1 \
--runtime=100 --numjobs=40 --time_based --name=test \
--ioengine=libaio
Fix the issue by adding one explicit barrier in blk_mq_mark_tag_wait(), which
is just fine in case of running out of tag.
CWE: CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVSS Source: NVD
CVSS Base score: 4.7
CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-50314
DESCRIPTION: IBM WebSphere Application Server Liberty 17.0.0.3 through 24.0.0.8 could allow an attacker with access to the network to conduct spoofing attacks. An attacker could exploit this vulnerability using a certificate issued by a trusted authority to obtain sensitive information. IBM X-Force ID: 274713.
CWE: CWE-295: Improper Certificate Validation
CVSS Source: IBM X-Force
CVSS Base score: 5.3
CVSS Vector: (CVSS:3.0/AV:A/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N)
CVEID: CVE-2024-21147
DESCRIPTION: An unspecified vulnerability in Java SE related to the VM component could allow a remote attacker to cause high confidentiality, high integrity impacts.
CWE: CWE-200: Exposure of Sensitive Information to an Unauthorized Actor
CVSS Source: IBM X-Force
CVSS Base score: 7.4
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N)
CVEID: CVE-2024-21145
DESCRIPTION: An unspecified vulnerability in Java SE related to the 2D component could allow a remote attacker to cause low confidentiality, low integrity impacts.
CWE: CWE-284: Improper Access Control
CVSS Source: IBM X-Force
CVSS Base score: 4.8
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N)
CVEID: CVE-2024-21140
DESCRIPTION: An unspecified vulnerability in Java SE related to the VM component could allow a remote attacker to cause low confidentiality, low integrity impacts.
CWE: CWE-200: Exposure of Sensitive Information to an Unauthorized Actor
CVSS Source: IBM X-Force
CVSS Base score: 4.8
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N)
CVEID: CVE-2024-21144
DESCRIPTION: An unspecified vulnerability in Java SE related to the Concurrency component could allow a remote attacker to cause low availability impact.
CVSS Source: IBM X-Force
CVSS Base score: 3.7
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L)
CVEID: CVE-2024-21138
DESCRIPTION: An unspecified vulnerability in Java SE related to the VM component could allow a remote attacker to cause a low availability impact.
CVSS Source: IBM X-Force
CVSS Base score: 3.7
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L)
CVEID: CVE-2024-21131
DESCRIPTION: An unspecified vulnerability in Java SE related to the VM component could allow a remote attacker to cause low integrity impact.
CVSS Source: IBM X-Force
CVSS Base score: 3.7
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N)
CVEID: CVE-2024-27267
DESCRIPTION: The Object Request Broker (ORB) in IBM SDK, Java Technology Edition 7.1.0.0 through 7.1.5.18 and 8.0.0.0 through 8.0.8.26 is vulnerable to remote denial of service, caused by a race condition in the management of ORB listener threads. IBM X-Force ID: 284573.
CWE: CWE-300: Channel Accessible by Non-Endpoint
CVSS Source: IBM X-Force
CVSS Base score: 5.9
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-21930
DESCRIPTION: An unspecified vulnerability in Oracle Java SE, Oracle GraalVM Enterprise Edition related to the JSSE component could allow an unauthenticated attacker to cause high confidentiality impact and high integrity impact.
CVSS Source: IBM X-Force
CVSS Base score: 7.4
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N)
CVEID: CVE-2023-21967
DESCRIPTION: An unspecified vulnerability in Oracle Java SE, Oracle GraalVM Enterprise Edition related to the JSSE component could allow a remote attacker to cause high availability impact.
CVSS Source: IBM X-Force
CVSS Base score: 5.9
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-21954
DESCRIPTION: An unspecified vulnerability in Oracle Java SE, Oracle GraalVM Enterprise Edition related to the Hotspot component could allow a remote attacker to cause high confidentiality impact.
CVSS Source: IBM X-Force
CVSS Base score: 5.9
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N)
CVEID: CVE-2023-21939
DESCRIPTION: An unspecified vulnerability in Oracle Java SE, Oracle GraalVM Enterprise Edition related to the Swing component could allow a remote attacker to cause integrity impact.
CVSS Source: IBM X-Force
CVSS Base score: 5.3
CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N)
CVEID: CVE-2023-21968
DESCRIPTION: An unspecified vulnerability in Oracle Java SE and GraalVM Enterprise Edition related to the Libraries component could allow an unauthenticated attacker to cause low integrity impact.
CVSS Source: IBM X-Force
CVSS Base score: 3.7
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N)
CVEID: CVE-2023-21937
DESCRIPTION: An unspecified vulnerability in Oracle Java SE, Oracle GraalVM Enterprise Edition related to the Networking component could allow a remote attacker to cause integrity impact.
CVSS Source: IBM X-Force
CVSS Base score: 3.7
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N)
CVEID: CVE-2023-21938
DESCRIPTION: An unspecified vulnerability in Oracle Java SE, Oracle GraalVM Enterprise Edition related to the Libraries component could allow a remote attacker to cause integrity impact.
CVSS Source: IBM X-Force
CVSS Base score: 3.7
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N)
CVEID: CVE-2023-2597
DESCRIPTION: Eclipse Openj9 is vulnerable to a buffer overflow, caused by improper bounds checking by the getCachedUTFString() function. By using specially crafted input, a local authenticated attacker could overflow a buffer and execute arbitrary code on the system.
CWE: CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
CVSS Source: IBM X-Force
CVSS Base score: 7
CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H)
CVEID: CVE-2024-26458
DESCRIPTION: Kerberos 5 is vulnerable to a denial of service, caused by a memory leak in /krb5/src/lib/rpc/pmap_rmt.c. By sending a specially crafted request, a remote attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-401: Missing Release of Memory after Effective Lifetime
CVSS Source: IBM X-Force
CVSS Base score: 5.9
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2024-26461
DESCRIPTION: Kerberos 5 is vulnerable to a denial of service, caused by a memory leak in /krb5/src/lib/gssapi/krb5/k5sealv3.c. By sending a specially crafted request, a remote attacker could exploit this vulnerability to cause a denial of service.
CWE: CWE-770: Allocation of Resources Without Limits or Throttling
CVSS Source: IBM X-Force
CVSS Base score: 5.9
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-22067
DESCRIPTION: An unspecified vulnerability in Java SE related to the CORBA component could allow a remote attacker to cause no confidentiality impact, low integrity impact, and no availability impact.
CVSS Source: IBM X-Force
CVSS Base score: 5.3
CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N)
CVEID: CVE-2024-22329
DESCRIPTION: IBM WebSphere Application Server 8.5, 9.0 and IBM WebSphere Application Server Liberty 17.0.0.3 through 24.0.0.3 are vulnerable to server-side request forgery (SSRF). By sending a specially crafted request, an attacker could exploit this vulnerability to conduct the SSRF attack. X-Force ID: 279951.
CWE: CWE-918: Server-Side Request Forgery (SSRF)
CVSS Source: IBM
CVSS Base score: 4.3
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:L/A:N)
CVEID: CVE-2024-7006
DESCRIPTION: LibTIFF is vulnerable to a denial of service, caused by a NULL pointer dereference flaw tif_dirinfo.c. By sending a specially crafted request, a remote attacker could exploit this vulnerability to cause application to crash.
CWE: CWE-476: NULL Pointer Dereference
CVSS Source: IBM X-Force
CVSS Base score: 7.5
CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)
CVEID: CVE-2023-31582
DESCRIPTION: Jose4J could allow a remote attacker to obtain sensitive information, caused by allowing of a low iteration count of 1000 or less. By utilize cryptographic attack techniques, an attacker could exploit this vulnerability to obtain hashed password values, and use this information to launch further attacks against the affected system.
CWE: CWE-331: Insufficient Entropy
CVSS Source: IBM X-Force
CVSS Base score: 5.9
CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N)
CVEID: CVE-2024-3596
DESCRIPTION: RADIUS Protocol under RFC 2865 is susceptible to forgery attacks by a local attacker who can modify any valid Response (Access-Accept, Access-Reject, or Access-Challenge) to any other response using a chosen-prefix collision attack against MD5 Response Authenticator signature.
CWE: CWE-354: Improper Validation of Integrity Check Value
CVSS Source: NVD
CVSS Base score: 9
CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H)
CVEID: CVE-2023-5388
DESCRIPTION: NSS was susceptible to a timing side-channel attack when performing RSA decryption. This attack could potentially allow an attacker to recover the private data. This vulnerability affects Firefox < 124, Firefox ESR < 115.9, and Thunderbird < 115.9.
CVSS Source: IBM X-Force
CVSS Base score: 6.5
CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N)
CVEID: CVE-2023-33844
DESCRIPTION: IBM Security Verify Governance is vulnerable to cross-site scripting. This vulnerability allows users to embed arbitrary JavaScript code in the Web UI thus altering the intended functionality potentially leading to credentials disclosure within a trusted session.
CWE: CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
CVSS Source: IBM X-Force
CVSS Base score: 5.4
CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:C/C:L/I:L/A:N)
Affected Products and Versions
| Affected Product(s) | Version(s) |
| IBM Security Verify Governance | ISVG 10.0.2 |
| IBM Security Verify Governance, Identity Manager Software Stack | ISVG 10.0.2 |
| IBM Security Verify Governance, Identity Manager Virtual Appliance | ISVG 10.0.2 |
| IBM Security Verify Governance Identity Manager Container | ISVG 10.0.2 |
Remediation/Fixes
IBM strongly recommends customers update their systems promptly.
Customers should update their systems by downloading the following fix pack:
| Affected product(s) | Version(s) | Fix Availability |
| IBM Security Verify Governance | 10.0.2 | 10.0.2.0-ISS-ISVG-IGVA-FP0005 |
| IBM Security Verify Governance - Identity Manager Software Stack | 10.0.2 | 10.0.2.0-ISS-ISVG-IMSW-FP0005 |
| IBM Security Verify Governance - Identity Manager Virtual Appliance | 10.0.2 | 10.0.2.0-ISS-ISVG-IMVA-FP0005 |
| IBM Security Verify Governance - Identity Manager Container | 10.0.2 | 10.0.2.0-ISS-ISVG-IMCT-FP0005 |
Workarounds and Mitigations
None
Get Notified about Future Security Bulletins
References
Acknowledgement
Change History
09 Apr 2025: Initial Publication
*The CVSS Environment Score is customer environment specific and will ultimately impact the Overall CVSS Score. Customers can evaluate the impact of this vulnerability in their environments by accessing the links in the Reference section of this Security Bulletin.
Disclaimer
According to the Forum of Incident Response and Security Teams (FIRST), the Common Vulnerability Scoring System (CVSS) is an "industry open standard designed to convey vulnerability severity and help to determine urgency and priority of response." IBM PROVIDES THE CVSS SCORES ""AS IS"" WITHOUT WARRANTY OF ANY KIND, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. CUSTOMERS ARE RESPONSIBLE FOR ASSESSING THE IMPACT OF ANY ACTUAL OR POTENTIAL SECURITY VULNERABILITY. In addition to other efforts to address potential vulnerabilities, IBM periodically updates the record of components contained in our product offerings. As part of that effort, if IBM identifies previously unidentified packages in a product/service inventory, we address relevant vulnerabilities regardless of CVE date. Inclusion of an older CVEID does not demonstrate that the referenced product has been used by IBM since that date, nor that IBM was aware of a vulnerability as of that date. We are making clients aware of relevant vulnerabilities as we become aware of them. "Affected Products and Versions" referenced in IBM Security Bulletins are intended to be only products and versions that are supported by IBM and have not passed their end-of-support or warranty date. Thus, failure to reference unsupported or extended-support products and versions in this Security Bulletin does not constitute a determination by IBM that they are unaffected by the vulnerability. Reference to one or more unsupported versions in this Security Bulletin shall not create an obligation for IBM to provide fixes for any unsupported or extended-support products or versions.
Document Location
Worldwide
Was this topic helpful?
Document Information
Modified date:
09 April 2025
UID
ibm17230443