IBM Support

IBM Deep Learning Engine (DLE) Installation Instructions V2.5

Product Documentation


Abstract

Installation instructions for IBM Deep Learning Engine V2.5 and usage instructions for a new Deep Learning Orchestrator (DLO) Command Line Interface (CLI) that allows you to add or remove models to the DLE configuration files.

Content

Prerequisites

  1. Red Hat Enterprise Linux Server release 7.5 on the POWER9 or x86_64 architecture.

  2. At least one NVIDIA CUDA-capable GPU with at least 8GB GPU memory for x86_64 architecture and at least 10GB GPU memory for Power9.

  3. NVIDIA driver version 396.xx or later (the driver must be compatible with CUDA 9.2).

  4. Docker 17.12.0-ce or later.

  5. NVIDIA Container Runtime for Docker (nvidia-docker) 2.0.3 or later.

  6. Docker Compose 1.21.2 or later.

Install the prerequisites

  1. NVIDIA GPU driver

    a) Go to http://www.nvidia.com/Download/index.aspx

    b) Select the options that match your GPU and operating system (if prompted, select 9.2 for CUDA toolkit).

    c) Install the driver.

    d) Check that the driver installation was successful by typing:

    nvidia-smi
     

    You should see output similar to the output below:

    Fri Jun 22 13:51:51 2018       
     +-----------------------------------------------------------------------------+
     | NVIDIA-SMI 396.26                 Driver Version: 396.26                    |
     |-------------------------------+----------------------+----------------------+
     | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
     | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
     |===============================+======================+======================|
     |   0  Tesla V100-SXM2...  On   | 00000004:04:00.0 Off |                    0 |
     | N/A   30C    P0    38W / 191W |      0MiB / 15360MiB |      0%      Default |
     +-------------------------------+----------------------+----------------------+
     |   1  Tesla V100-SXM2...  On   | 00000004:05:00.0 Off |                    0 |
     | N/A   33C    P0    35W / 191W |      0MiB / 15360MiB |      0%      Default |
     +-------------------------------+----------------------+----------------------+
     |   2  Tesla V100-SXM2...  On   | 00000035:03:00.0 Off |                    0 |
     | N/A   28C    P0    36W / 191W |      0MiB / 15360MiB |      0%      Default |
     +-------------------------------+----------------------+----------------------+
     |   3  Tesla V100-SXM2...  On   | 00000035:04:00.0 Off |                    0 |
     | N/A   35C    P0    37W / 191W |      0MiB / 15360MiB |      0%      Default |
     +-------------------------------+----------------------+----------------------+
     																										 
     +-----------------------------------------------------------------------------+
     | Processes:                                                       GPU Memory |
     |  GPU       PID   Type   Process name                             Usage      |
     |=============================================================================|
     |  No running processes found                                                 |
     +-----------------------------------------------------------------------------+
  2. Docker and NVIDIA Container Runtime for Docker (nvidia-docker)

    a) Install Docker:

    See https://docs.docker.com/install/

    b) Install nvidia-docker

    See https://github.com/NVIDIA/nvidia-docker

    c) Verify the installation:

    $ nvidia-docker version
    NVIDIA Docker: 2.0.3
    Client:
     Version:	17.12.0-ce
     API version:	1.35
     Go version:	go1.9.2
     Git commit:	52b8a7c
     Built:	Wed Jan 17 16:35:55 2018
     OS/Arch:	linux/ppc64le
    
    Server:
     Engine:
      Version:	17.12.0-ce
      API version:	1.35 (minimum version 1.12)
      Go version:	go1.9.2
      Git commit:	52b8a7c
      Built:	Wed Jan 17 16:42:23 2018
      OS/Arch:	linux/ppc64le
      Experimental:	false
  3. Docker Compose

    a) Install Docker Compose

    See https://docs.docker.com/compose/install/#install-compose

    b) Verify the installation:

    $ docker-compose version
    docker-compose version 1.21.2, build a133471
    docker-py version: 3.4.0
    CPython version: 2.7.5
    OpenSSL version: OpenSSL 1.0.2k-fips  26 Jan 2017

Unpack the DLE installer archive and start the DLE service

Note: You may need to run some commands as sudo.

  1. Obtain the installer archive file for your computer architecture.

  2. Select a directory on your DLE host to contain the DLE and copy the installer archive file to this location. For example, /opt/ibm (hereafter referred to as $DLE_HOME).

  3. Change to the $DLE_HOME directory and extract the installer archive.

    cd $DLE_HOME
    tar -xvzf 2.5.0.0-IVA-DLE-Cntr-$(COMPUTER_ARCHITECTURE).tar.gz
    
  4. Change to the ivadle subdirectory and start the DLE. The first time you run this command, you will be prompted to accept the license agreement and it will take longer as the Docker images are loaded.

    cd ivadle
    ./start.sh
    
  5. If you are deploying the DLE on a POWER9 system with V100 GPUs, you can instead run a customized service that allocates additional instances of the person parts detection models:

    ./start.sh --service_file=docker-compose-ppc64le-v100.yml
    

Verify the installation

  1. Check that the service is running by typing:

    docker ps
     

    The output should look similar to the output below (on POWER9, the image names will be slightly different):

    CONTAINER ID        IMAGE                          COMMAND                   CREATED             STATUS              PORTS                              NAMES
    215b4c17ca39        nginx                          "nginx -g 'daemon of…"    11 seconds ago      Up 6 seconds        80/tcp, 0.0.0.0:14001->14001/tcp   ivadle_nginx_1
    af8f44411d58        frapps_x86_64                  "/bin/sh -c \"frapps\""   15 seconds ago      Up 11 seconds       18003/tcp                          ivadle_align-extract_1
    5e2cedc5e3bc        frapps_x86_64                  "/bin/sh -c \"frapps\""   15 seconds ago      Up 11 seconds       18002/tcp                          ivadle_detect-align-extract_1
    356570d85482        dlie_caffe_x86_64_gpu:latest   "/bin/sh -c \"dlie-se…"   26 seconds ago      Up 15 seconds       16004/tcp                          ivadle_torso-pattern_1
    7e8112e51d9a        dlie_caffe_x86_64_gpu:latest   "/bin/sh -c \"dlie-se…"   26 seconds ago      Up 15 seconds       16003/tcp                          ivadle_face-combined_1
    db4e635e1aed        dlie_caffe_x86_64_gpu:latest   "/bin/sh -c \"dlie-se…"   26 seconds ago      Up 15 seconds       15001/tcp                          ivadle_person-parts_1
    465cd1a3c061        dlie_caffe_x86_64_gpu:latest   "/bin/sh -c \"dlie-se…"   26 seconds ago      Up 15 seconds       16005/tcp                          ivadle_whole-body-backpack_1
    4c69856305bc        dlcomp_x86_64                  "/bin/sh -c \"dlcomp\""   26 seconds ago      Up 16 seconds       17001/tcp                          ivadle_face-comp_1
    ea0a02537da2        dlie_caffe_x86_64_gpu:latest   "/bin/sh -c \"dlie-se…"   26 seconds ago      Up 15 seconds       16001/tcp                          ivadle_face-gender_1
    5f69a893ded9        dlie_caffe_x86_64_gpu:latest   "/bin/sh -c \"dlie-se…"   26 seconds ago      Up 15 seconds       16002/tcp                          ivadle_face-age_1
    c5b2c266e3b1        dlie_caffe_x86_64_gpu:latest   "/bin/sh -c \"dlie-se…"   26 seconds ago      Up 15 seconds       18001/tcp                          ivadle_face-recognition_1

  2. Run the "check" script. This will feed test images to the DLE and compare the output with the expected output. If the difference is not within a defined margin of error, the tests will fail.

    bin/check-default-service.sh
 

Uninstall the DLE

If you would like to uninstall the DLE, complete the following steps.

cd $DLE_HOME
  1. Change to the $DLE_HOME directory. As indicated above, $DLE_HOME is one level above the ivadle directory, which contains the DLE installation files.
  2. Run the uninstall script.

If you only want to delete the DLE Docker containers and images:

ivadle/uninstall.sh
 

If you want to delete both the DLE Docker containers and all of the DLE installation files:

ivadle/uninstall.sh --full

 

 

Deep Learning Orchestrator (DLO) Command line Interface (CLI) 

The CLI is an executable file named svc-cfg located in the bin subdirectory that allows you to add or remove models from the DLE configuration files.  The usage instructions can be found here:  Deep Learning Orchestrator (DLO) Command Line Interface (CLI) Usage Instructions. 

 

[{"Business Unit":{"code":"BU059","label":"IBM Software w\/o TPS"},"Product":{"code":"SS88XH","label":"IBM Intelligent Video Analytics"},"Component":"IBM Deep Learning Engine (DLE)","Platform":[{"code":"PF016","label":"Linux"}],"Version":"V2.5","Edition":"","Line of Business":{"code":"LOB59","label":"Sustainability Software"}}]

Product Synonym

IVA

Document Information

Modified date:
14 October 2022

UID

ibm10719995