
z/OS Basic Skills Information Center

z/OS system installation and management

���

z/OS Basic Skills Information Center

z/OS system installation and management

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 67.

This edition applies to z/OS (product number 5694-A01).

We appreciate your comments about this publication. Comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use

the personal information that you supply to contact you about the issues that you state on this form.

Send your comments through this Web site: http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/
index.jsp?topic=/com.ibm.zcontact.doc/webqs.html

© Copyright International Business Machines Corporation 2005, 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/index.jsp?topic=/com.ibm.zcontact.doc/webqs.html
http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/index.jsp?topic=/com.ibm.zcontact.doc/webqs.html

Contents

z/OS system management roles and

tasks v

Part 1. Installation of z/OS and other

software products 1

Chapter 1. z/OS base elements and

optional features 3

Chapter 2. Methods of installing z/OS . . 7

Chapter 3. Typical organization of IBM

and other software in storage 9

Part 2. z/OS system customization 11

Chapter 4. z/OS system libraries 13

Chapter 5. System symbols in

PARMLIB 15

Chapter 6. Search order for programs 17

Chapter 7. Input/output (I/O) device

configuration 19

Chapter 8. Console configuration . . . 21

Part 3. Starting z/OS: The

initialization (IPL) process 25

Chapter 9. System IPL: Sequence and

key controls 27

Chapter 10. System IPL: Address space

creation and subsystem initialization . . 31

The master scheduler subsystem 31

The job entry subsystem (JES) 32

Initialization of additional subsystems 33

Chapter 11. System IPL: Description of

IPL types 35

Part 4. z/OS system tuning 37

Part 5. z/OS software maintenance 39

Chapter 12. z/OS conventions:

Following a process of change control . 41

Chapter 13. System installation and

maintenance using SMP/E 45

The SMP/E view of the system 45

How the SMP/E environment is similar to a public

library 47

SMP/E data sets for inventory, zones, and libraries 48

What is a SYSMOD? 50

Function SYSMOD: Introducing an element in

the system 51

PTF SYSMOD: Preventing or fixing problems

with an element 52

APAR SYSMOD: Fixing problems with an

element 54

USERMOD SYSMOD: Customizing an element 55

Best practice: Keep track of system elements and

modifications 56

The SMP/E process for installing z/OS elements or

service 57

SMP/E commands 58

The SMP/E RECEIVE command 59

The SMP/E APPLY command 60

The SMP/E ACCEPT command 62

Part 6. Appendixes 65

Notices 67

Programming interface information 68

Trademarks 69

© Copyright IBM Corp. 2005, 2008 iii

iv z/OS Basic Skills Information Center: z/OS system installation and management

z/OS system management roles and tasks

The job of the z/OS® system programmer is very complex and requires skills in

many aspects of the system. The role of the z/OS system programmer can vary

from one installation to another, but usually includes installing, customizing, and

maintaining the operating system. In most large z/OS installations, system

programmers become specialists for only specific tasks.

Generally speaking, the system programmer is responsible for managing the

mainframe hardware configuration, and installing, customizing, and maintaining

the mainframe operating system. System programmers ensure that their

installation’s system and its services are available and operating to meet service

level agreements. Installations with 24-hour, 7-day operations need to plan for

minimal disruption of their operation activities.

The role of system programmer usually includes some degree of involvement in all

of the following aspects of system operation shown in Figure 1.

“Separation of duties” enables specialization

In a large z/OS installation, there is usually a separation of duties both among

members of the system programming staff, and between the system programming

department and other departments in the IT organization. A typical z/OS

installation includes the following roles and more:

v z/OS system programmer

v CICS® system programmer

v Database system programmer

v Database administrator

v Network system programmer

Figure 1. Some areas in which the system programmer is involved

© Copyright IBM Corp. 2005, 2008 v

v Automation specialist

v Security manager

v Hardware management

v Production control analyst

v System operator

v Network operator

v Security administrator

v Service manager

In part, the separation is an audit requirement– ensuring that one person does not

have too much power on a system.

When a new application is to be added to a system, for example, a number of

tasks need to be performed before the application can be used by end users. A

production control analyst is needed to add batch applications into the batch

scheduling package, add the new procedures to a procedure library, and set up the

operational procedures. The system programmer is needed to perform tasks

concerned with the system itself, such as setting up security privileges and adding

programs to system libraries. The programmer is also involved with setting up any

automation for the new application.

On a test system, however, a single person might have to perform all the roles,

including being the operator, and this is often the best way to learn how

everything works.

vi z/OS Basic Skills Information Center: z/OS system installation and management

Part 1. Installation of z/OS and other software products

To install means to perform the tasks necessary to make the system operational,

starting with a decision to either install for the first time or upgrade, and ending

when the system is ready for production.

An installation plan is a record of the actions you need to take to install z/OS.

© Copyright IBM Corp. 2005, 2008 1

2 z/OS Basic Skills Information Center: z/OS system installation and management

Chapter 1. z/OS base elements and optional features

The z/OS operating system consists of base elements and optional features.

v The base elements (or simply elements) deliver essential operating system

functions. Base elements include:

The Base Control Program (BCP)

The BCP provides essential operating system services. The BCP includes

the I/O configuration program (IOCP), the workload manager (WLM),

system management facilities (SMF), the z/OS UNIX® System Services

(z/OS UNIX) kernel, the program management binder, and other

components.

Common Information Model (CIM)

CIM is a standard data model for describing and accessing systems

management data in heterogeneous environments. It allows system

administrators to write applications that measure system resources in a

network with different operating systems and hardware.

Communications Server

Communications Server (also known as CS z/OS) supports secure

TCP/IP, SNA, and UNIX networking throughout an enterprise. It gives

you the ability to connect subsystems and applications to each other, and

to connect network devices (such as terminals and printers) to the

system.

Cryptographic Services

Cryptographic Services provides the following base cryptographic

functions: data secrecy, data integrity, personal identification, digital

signatures, and the management of cryptographic keys. Keys as long as

56 bits are supported by this base element.

DFSMSdfp™

DFSMSdfp provides storage, data, program, and device management

functions.

Distributed File Service

Distributed File Service provides:

– The DCE file serving (DFS(TM)) component of the Open Group Open

Software Foundation (OSF) DCE. The file serving support (the DFS™

client and server) is at the OSF 1.2.2 level.

– The zSeries® File System (zFS). The zFS is a UNIX file system that can

be used in addition to the hierarchical file system (HFS). zFS file

systems contain files and directories that can be accessed with the

z/OS hierarchical file system file APIs. zFS file systems can be

mounted into the z/OS UNIX hierarchy along with other local (or

remote) file system types (such as HFS, TFS, AUTOMNT, and NFS).

The zFS does not replace the HFS; it is complementary to the HFS.

Hardware Configuration Definition (HCD)

HCD defines both the operating system configuration and the processor

hardware configuration for a system.

IBM® HTTP Server

IBM HTTP Server is the Web server for z/OS. It provides scalable, high

performance Web serving for critical e-business applications. It supports

© Copyright IBM Corp. 2005, 2008 3

Secure Sockets Layer (SSL) secure connections, dynamic caching using

the Fast Response Cache Accelerator, multiple IP addresses, proxy

authentication, and double-byte character set characters.

Integrated Security Services

Integrated Security Services provides base security functions for z/OS.

Its components include:

– DCE Security Server, which uses the limited DES algorithm for

encryption.

– Enterprise Identity Mapping (EIM), which allows you to map a user’s

identity on one system to the user’s identity on another system.

– Network Authentication Service, which uses the DES algorithm for

encryption.

Interactive System Productivity Facility (ISPF)

ISPF provides facilities for all aspects of host-based software

development. ISPF has four major components: Dialog Manager,

Program Development Facility, Software Configuration and Library

Manager, and the Client/Server component.

Job entry subsystem (JES)

z/OS installations may use one of two job entry subsystems; a job entry

subsystem accepts the submission of work for the BCP.

– JES2 exercises independent control over its job processing functions.

– JES3 exercises centralized control.

JES2 is a base element of z/OS; JES3 is an optional feature.

Language Environment®

Language Environment provides the run-time environment for programs

generated with C, C++, COBOL, Fortran, and PL/I.

Network File System (NFS)

NFS acts as a file server to workstations, personal computers, or other

authorized systems in a TCP/IP network.

System Modification Program Extended (SMP/E)

SMP/E is a tool for installing and maintaining software, and for

managing the inventory of software that has been installed.

Time Sharing Option/Extensions (TSO/E)

TSO/E allows users to create an interactive session with the z/OS

system. TSO provides a single-user logon capability and a basic

command prompt interface to z/OS.

z/OS UNIX System Services (z/OS UNIX)

z/OS UNIX provides the standard command interface familiar to

interactive UNIX users.
v The optional features (or simply features) are orderable with z/OS and provide

additional operating system functions. Optional features include:

DFSMSdss™

DFSMSdss copies and moves data for backup and recovery, and to

reduce free-space fragmentation.

DFSMShsm™

DFSMShsm provides automated DASD storage management, including

space management for low and inactive data, and availability

management for accidental data loss caused by local and site disasters.

DFSMShsm also lets you make effective use of tape media.

4 z/OS Basic Skills Information Center: z/OS system installation and management

DFSMS™ Transactional VSAM Services (DFSMStvs)

DFSMStvs enables batch jobs and CICS online transactions to update

shared VSAM data sets concurrently.

DFSORT™

DFSORT provides fast and easy sorting, merging, copying, reporting,

and analysis of your business information, as well as versatile data

handling at the record, field, and bit level.

Infoprint Server

Infoprint Server allows you to print files on z/OS printers from any

workstation that has TCP/IP access.

Resource Measurement Facility (RMF™)

RMF gathers data about z/OS resource usage and provides reports at

any system in a sysplex.

System Display and Search Facility (SDSF)

SDSF provides you with information to monitor, manage, and control

your z/OS system.

Chapter 1. z/OS base elements and optional features 5

6 z/OS Basic Skills Information Center: z/OS system installation and management

Chapter 2. Methods of installing z/OS

Several IBM packages are available for installing z/OS. Some are entitled with the

product (as part of your z/OS license, at no additional charge), while others are

available for an additional fee.

The most commonly used methods of installation include:

ServerPac

ServerPac is an entitled software delivery package consisting of products

and service for which IBM has performed the SMP/E installation steps and

some of the post-SMP/E installation steps. To install the package on your

system and complete the installation of the software it includes, you use

the CustomPac Installation Dialog.

Custom-Built Product Delivery Option (CBPDO)

CBPDO is an entitled software delivery package consisting of uninstalled

products and unintegrated service. There is no dialog program to help you

install, as there is with ServerPac. You must use SMP/E to install the

individual z/OS elements and features, and their service, before you can

IPL.

SystemPac®

SystemPac is a software package, available for an additional fee and

offered worldwide, that helps you install z/OS, subsystems (DB2®, IMS™,

CICS, NCP, and WebSphere® Application Server), and selected vendor

products. SystemPac is tailored to your specifications; it is manufactured

according to parameters and input/output definition file (IODF) definitions

that you supply during order entry.

© Copyright IBM Corp. 2005, 2008 7

8 z/OS Basic Skills Information Center: z/OS system installation and management

Chapter 3. Typical organization of IBM and other software in

storage

Your installation’s operating system environment consists of several different types

of code and data– some supplied by IBM, some by other vendors, or some by your

company’s programmers– all of which combine to make your z/OS system unique.

Once these software products and applications have been organized and stored,

system programmers spend much of their time planning when to install updates or

new software products, how to test them, and when to move them into production

systems without adversely affecting workloads.

Figure 2 illustrates the different types of software code and data that exist in a

system, and how they are usually organized in system storage.

The z/OS software– as supplied by IBM– is usually installed on a series of disk

volumes known as the system residence volumes (SYSRES). Much of the flexibility

of z/OS is built on these SYSRES sets. They make it possible to apply maintenance

to a new set that is cloned from the production set while the current set is running

production work. A short outage can then be taken to IPL from the new set--and

the maintenance has been implemented! Also, the change can be backed out by

IPLing from the old set.

Fixes to z/OS are managed with a product called System Modification

Program/Extended (SMP/E). Indirect cataloging using system symbols is used so

that a particular library is cataloged as being on, for example, SYSRES volume 2,

and the name of that volume is resolved by the system at IPL time from the

system symbols.

Figure 2. Typical organization of software

© Copyright IBM Corp. 2005, 2008 9

Other IBM software (such as CICS and DB2), and non-IBM or third-party vendor

software products are usually installed on another group of volumes, rather than

on the SYSRES volumes. The SYSRES sets are usually managed as one entity by

SMP/E, so their content is usually limited to z/OS software. The non-z/OS

software is installed on as many volumes as are required, and thus can be

managed separately.

Another group of volumes is reserved for customization data, which refers to data

such as the z/OS system libraries (SYS1.PARMLIB and SYS1.PROCLIB, for

example); the master catalog; the I/O definition file (IODF); page data sets; job

entry subsystem (JES) spools; the /etc directory; and other items that are essential

to the running of the z/OS system. It is also where SMP/E data is stored to

manage the software.

These data sets are not always located on separate DASD volumes from

IBM-supplied z/OS software; some installations place the PARMLIB and PROCLIB

on the first SYSRES pack, others place them on the master catalog pack or

elsewhere. This is a matter of choice and is dependent on how the SYSRES

volumes are managed. Each installation will have a preferred method.

On many systems, some of the IBM-supplied defaults are not appropriate, so they

need to be modified. User exits and user modifications (usermods) are made to

IBM code so that it will behave as the installation requires. The modifications are

usually managed using SMP/E.

Finally, another set of volumes contains production, test, and user data; this set is

usually the largest pool of disk volumes. This set of volumes is not part of the

system libraries, but is presented here for completeness. It is often split into pools

and managed by System Managed Storage (SMS), which can target data to

appropriately managed volumes. For example, production data can be placed on

volumes that are backed up daily, whereas user data may only be captured weekly

and may be migrated to tape after a short period of inactivity to free up the disk

volumes for further data.

10 z/OS Basic Skills Information Center: z/OS system installation and management

Part 2. z/OS system customization

System customization (also known as tailoring) is the overall process by which an

installation selects its operating system. System programmers thoroughly plan and

complete the steps in this process, selecting system options through several

different mechanisms.

System customization is accomplished through the following mechanisms:

MVS™ hardware configuration definition (HCD)

System programmers use the HCD dialog to perform a variety of tasks,

including defining the operating system and hardware configurations,

activating configuration data (that is, applying configuration changes to the

system), and querying or printing configuration data.

Initialization-time selections

When initializing the operating system, system programmers tailor the

system environment through several sources, including operator actions,

customization data in system libraries (SYS1.PARMLIB and other parmlib

data sets), and job control language (JCL) for the master scheduler

subsystem.

Implicit system parameters

Various system requirements affect the way the system performs. These

system requirements may be considered as ″implicit″ parameters. They

involve DD statements, data sets, hardware choices, and so forth. Some

examples are:

v SYSABEND, SYSMDUMP, and SYSUDUMP DD statements.

v The System Management Facilities (SMF) data sets.

v Addition of new modules to the LPALST concatenation.

v Choice of the device on which the PLPA paging data sets will reside.

v Definition of page data sets through the DEFINE PAGESPACE

command.

© Copyright IBM Corp. 2005, 2008 11

12 z/OS Basic Skills Information Center: z/OS system installation and management

Chapter 4. z/OS system libraries

The z/OS system libraries contain customization data that is essential to the

running of the z/OS system. Some of these data sets are related to IPL processing,

while others are related to the search order of invoked programs or to system

security, among other functions.

SYS1.PARMLIB

SYS1.PARMLIB is a required partitioned data set that contains control

parameters for the whole system. PARMLIB is an important data set in a

z/OS operating system, and can be thought of as performing a function

similar to /etc on a UNIX system. The purpose of PARMLIB is to provide

many control parameters in a pre-specified form in a single data set, thus

minimizing the need for the operator to enter parameters during the

initialization (IPL) process.

 SYS1.PARMLIB must reside on a direct access volume, which can be the

system residence volume. Parameters are specified in both IBM-supplied

and installation-created members. All parameters and members of the

SYS1.PARMLIB data set are described in z/OS MVS Initialization and Tuning

Reference, SA22-7592.

SYS1.LINKLIB

SYS1.LINKLIB contains many of the executable code, also known as

modules, for z/OS components and utilities. By default, SYS1.LINKLIB is

the first data set in the linklist, which is a collection of libraries containing

system and user code.

 One of the modules in SYS1.LINKLIB is MSTJCL00, which contains the

initial job control language (JCL) statements that start the master scheduler

subsystem. The master scheduler subsystem establishes communication

between the operating system and the primary job entry subsystem, which

is either JES2 or JES3.

System libraries for the link pack area (LPA)

The LPA is part of an address space’s common area storage, and is divided

into pageable, fixed, and modified sections:

v Libraries specified in SYS1.LPALIB, the LPALSTxx, or PROGxx parmlib

members are loaded into pageable LPA (PLPA). These libraries contain

modules for read-only system programs, along with any read-only

reenterable user programs selected by an installation that can be shared

among users of the system.

v IEAFIXxx members specify the modules loaded into fixed LPA (FLPA).

This area should be used only for modules that significantly increase

performance when they are fixed rather than pageable. The best

candidates for the FLPA are modules that are infrequently used, but are

needed for fast response. Modules placed in FLPA are always in central

storage.

v IEALPAxx members specify the modules loaded into modified LPA

(MLPA). The MLPA is used to contain reenterable routines from

APF-authorized libraries that are to be part of the pageable extension to

the link pack area during the current IPL. Note that the MLPA exists

only for the duration of an IPL.

© Copyright IBM Corp. 2005, 2008 13

Link pack area (LPA) modules are loaded in common storage, and shared

by all address spaces in the system. Because these modules are reentrant

and are not self-modifying, each can be used by a number of tasks in any

number of address spaces at the same time.

Modules placed anywhere in the LPA are always in virtual storage. To

prevent their pages from being stolen, LPA modules must be referenced

very often. When a page in LPA (other than in FLPA) is not continually

referenced by multiple address spaces, it tends to be stolen.

SYS1.PROCLIB

SYS1.PROCLIB is a required partitioned data set that contains the

IBM-supplied JCL procedures used to perform certain system functions.

The JCL can be for system tasks or for processing program tasks invoked

by the operator or the programmer.

 One JCL procedure in SYS1.PROCLIB is the JES2 cataloged procedure,

which defines job-related procedure libraries.

SYS1.NUCLEUS

SYS1.NUCLEUS contains the basic supervisor modules of the system.

14 z/OS Basic Skills Information Center: z/OS system installation and management

Chapter 5. System symbols in PARMLIB

System symbols are elements that allow different z/OS systems to share PARMLIB

definitions while retaining unique values in those definitions. System symbols act

like variables in a program; they can take on different values, based on the input

to the program.

When you specify a system symbol in a shared PARMLIB definition, the system

symbol acts as a “placeholder”. Each system that shares the definition replaces the

system symbol with a unique value during initialization.

Each system symbol has a name, which begins with an ampersand (&) and

optionally ends with a period (.), and has substitution text, which is the character

string that the system substitutes for a symbol each time it appears.

There are two types of system symbols:

Dynamic

The substitution text can change at any point in an IPL.

Static The substitution text is defined at system initialization and remains fixed

for the life of an IPL.

Some symbols are reserved for system use. You can display the symbols in your

system by entering the D SYMBOLS command. Figure 3 shows the result of

entering this command.

The IEASYMxx PARMLIB member provides a single place to specify system

parameters for each system in a multisystem environment. IEASYMxx contains

statements that define static system symbols and that specify IEASYSxx PARMLIB

members that contain system parameters (the SYSPARM statement). Figure 4 on

page 16

HQX7708 ----------------- SDSF PRIMARY OPTION MENU --

COMMAND INPUT ===> -D SYMBOLS

 IEA007I STATIC SYSTEM SYMBOL VALUES

 &SYSALVL. = "2"

 &SYSCLONE. = "70"

 &SYSNAME. = "SC70"

 &SYSPLEX. = "SANDBOX"

 &SYSR1. = "Z17RC1"

 &ALLCLST1. = "CANCEL"

 &CMDLIST1. = "70,00"

 &COMMDSN1. = "COMMON"

 &DB2. = "V8"

 &DCEPROC1. = "."

 &DFHSMCMD. = "00"

 &DFHSMHST. = "6"

 &DFHSMPRI. = "NO"

 &DFSPROC1. = "."

 &DLIB1. = "Z17DL1"

 &DLIB2. = "Z17DL2"

 &DLIB3. = "Z17DL3"

 &DLIB4. = "Z17DL4"

 &IEFSSNXX. = "R7"

 &IFAPRDXX. = "4A"

Figure 3. Partial output of the D SYMBOLS command (some lines removed)

© Copyright IBM Corp. 2005, 2008 15

page 16 shows an IEASYMxx PARMLIB member.

 In the example, the variable &SYSNAME will have the value specified by the

SYSNAME keyword; SC70 in this case. Because each system in a sysplex has a

unique name, you can use &SYSNAME in the specification of system-unique

resources, where permitted. As an example, you could specify the name of an SMF

data set as SYS1.&SYSNAME..MAN1, with substitution resulting in the name

SYS1.SC70.MAN1 when running on SC70.

You can use variables to construct the values of other variables. In Figure 4,

&SYSCLONE takes on the value of &SYSNAME beginning at position 3 for a

length of 2. Here, &SYSCLONE will have a value of 70. Similarly, &SYSR2 is

constructed from the first 5 positions of &SYSR1 with a suffix of 2. Where is

&SYSR1 defined? &SYSR1 is system-defined with the VOLSER of the IPL volume.

If you refer back to Figure 3 on page 15, you will see the values of &SYSR1 and

&SYSR2.

Figure 4 also shows the definition of a global variable defined to all

systems--&IFAPRDXX with a value of 00--and its redefinition for SC70 to a value

of 4A.

System symbols are used in cases where multiple z/OS systems share a single

PARMLIB. The use of symbols allows individual members to be used with

symbolic substitution, as opposed to having each system require a unique member.

The LOADxx member specifies the IEASYMxx member that the system is to use.

SYSDEF SYSCLONE(&SYSNAME(3:2))

 SYMDEF(&SYSR2=’&SYSR1(1:5).2’)

 SYMDEF(&SYSR3=’&SYSR1(1:5).3’)

 SYMDEF(&DLIB1=’&SYSR1(1:3).DL1’)

 SYMDEF(&DLIB2=’&SYSR1(1:3).DL2’)

 SYMDEF(&DLIB3=’&SYSR1(1:3).DL3’)

 SYMDEF(&DLIB4=’&SYSR1(1:3).DL4’)

 SYMDEF(&ALLCLST1=’CANCEL’)

 SYMDEF(&CMDLIST1=’&SYSCLONE.,00’)

 SYMDEF(&COMMDSN1=’COMMON’)

 SYMDEF(&DFHSMCMD=’00’)

 SYMDEF(&IFAPRDXX=’00’)

 SYMDEF(&DCEPROC1=’.’)

 SYMDEF(&DFSPROC1=’.’)

SYSDEF HWNAME(SCZP901)

 LPARNAME(A13)

 SYSNAME(SC70)

 SYSPARM(R3,70)

 SYMDEF(&IFAPRDXX=’4A’)

 SYMDEF(&DFHSMHST=’6’)

 SYMDEF(&DFHSMPRI=’NO’)

 SYMDEF(&DB2=’V8’)

Figure 4. Partial IEASYMxx PARMLIB member (some lines removed)

16 z/OS Basic Skills Information Center: z/OS system installation and management

Chapter 6. Search order for programs

Modules (programs), whether stored as load modules or program objects, must be

loaded into both virtual storage and central storage before they can be run. When

one module calls another module, either directly by asking for it to be run or

indirectly by requesting a system service that uses it, it does not begin to run

instantly. How long it takes before a requested module begins to run depends on

where in its search order the system finds a usable copy and on how long it takes

the system to make the copy it finds available.

When a program is requested through a system service (like LINK, LOAD, XCTL,

or ATTACH) using default options, the system searches for it in the following

sequence:

1. Job pack area (JPA)

A program in JPA has already been loaded in the requesting address space. If

the copy in JPA can be used, it will be used. Otherwise, the system either

searches for a new copy or defers the request until the copy in JPA becomes

available. (For example, the system defers a request until a previous caller is

finished before reusing a serially-reusable module that is already in JPA.)

2. TASKLIB

A program can allocate one or more data sets to a TASKLIB concatenation.

Modules loaded by unauthorized tasks that are found in TASKLIB must be

brought into private area virtual storage before they can run. Modules that

have previously been loaded in common area virtual storage (LPA modules or

those loaded by an authorized program into CSA) must be loaded into

common area virtual storage before they can run.

3. STEPLIB or JOBLIB

These are specific DD names that can be used to allocate data sets to be

searched ahead of the default system search order for programs. Data sets can

be allocated to both the STEPLIB and JOBLIB concatenations in JCL or by a

program using dynamic allocation. However, only one or the other will be

searched for modules. If both STEPLIB and JOBLIB are allocated for a

particular jobstep, the system searches STEPLIB and ignores JOBLIB.

Any data sets concatenated to STEPLIB or JOBLIB will be searched after any

TASKLIB but before LPA. Modules found in STEPLIB or JOBLIB must be

brought into private area virtual storage before they can run. Modules that

have previously been loaded in common area virtual storage (LPA modules or

those loaded by an authorized program into CSA) must be loaded into

common area virtual storage before they can run.

4. LPA, which is searched in this order:

a. Dynamic LPA modules, as specified in PROGxx members

b. Fixed LPA (FLPA) modules, as specified in IEAFIXxx members

c. Modified LPA (MLPA) modules, as specified in IEALPAxx members

d. Pageable LPA (PLPA) modules, loaded from libraries specified in LPALSTxx

or PROGxx

LPA modules are loaded in common storage, shared by all address spaces in

the system. Because these modules are reentrant and are not self-modifying,

each can be used by any number of tasks in any number of address spaces at

the same time. Modules found in LPA do not need to be brought into virtual

storage, because they are already in virtual storage.

© Copyright IBM Corp. 2005, 2008 17

5. Libraries in the linklist, as specified in PROGxx and LNKLSTxx

By default, the linklist begins with SYS1.LINKLIB, SYS1.MIGLIB, and

SYS1.CSSLIB. However, you can change this order using SYSLIB in PROGxx

and add other libraries to the linklist concatenation. The system must bring

modules found in the linklist into private area virtual storage before the

programs can run.

The default search order can be changed by specifying certain options on the

macros used to call programs. The parameters that affect the search order the

system will use are EP, EPLOC, DE, DCB, and TASKLIB. Some IBM subsystems

(notably CICS and IMS) and applications (such as ISPF) use these facilities to

establish other search orders for programs.

18 z/OS Basic Skills Information Center: z/OS system installation and management

Chapter 7. Input/output (I/O) device configuration

The I/O configurations to the operating system (software) and the channel

subsystem (hardware) must be defined. The Hardware Configuration Definition

(HCD) component of z/OS consolidates the hardware and software I/O

configuration processes under a single interactive end-user interface.

The output of HCD is an I/O definition file (IODF), which contains I/O

configuration data. An IODF is used to define multiple hardware and software

configurations to the z/OS operating system.

When a new IODF is activated, HCD defines the I/O configuration to the channel

subsystem or the operating system, or both. With the HCD activate function or the

z/OS ACTIVATE operator command, changes can be made in the current

configuration without having to initial program load (IPL) the software or

power-on reset (POR) the hardware. Making changes while the system is running

is known as dynamic configuration or dynamic reconfiguration.

© Copyright IBM Corp. 2005, 2008 19

20 z/OS Basic Skills Information Center: z/OS system installation and management

Chapter 8. Console configuration

Operating z/OS involves managing hardware such as processors and peripheral

devices (including the consoles where your operators do their work); and software

such as the z/OS operating control system, the job entry subsystem, subsystems

(such as NetView®) that can control automated operations, and all the applications

that run on z/OS.

The operation of a z/OS system involves the following:

v Message and command processing that forms the basis of operator interaction

with z/OS and the basis of z/OS automation

v Console operations, or how operators interact with z/OS to monitor or control

the hardware and software

Planning z/OS operations for a system must take into account how operators use

consoles to do their work and how to manage messages and commands. The

system programmer needs to ensure that operators receive the necessary messages

at their consoles to perform their tasks, and select the proper messages for

suppression, automation, or other kinds of message processing.

In terms of z/OS operations, how the installation establishes console recovery or

whether an operator must re-IPL a system to change processing options are

important planning considerations.

Because messages are also the basis for automated operations, the system

programmer needs to understand message processing to plan z/OS automation.

As more installations make use of multisystem environments, the need to

coordinate the operating activities of those systems becomes crucial. Even for

single z/OS systems, an installation needs to think about controlling

communication between functional areas.

In both single and multisystem environments, the commands that operators can

enter from consoles can be a security concern that requires careful coordination. As

a planner, the system programmer needs to make sure that the right people are

doing the right tasks when they interact with z/OS.

A console configuration consists of the various consoles that operators use to

communicate with z/OS. Your installation first defines the I/O devices it can use

as consoles through the Hardware Configuration Definition (HCD), an interactive

interface on the host that allows the system programmer to define the hardware

configuration for both the channel subsystem and operating system.

Hardware Configuration Manager (HCM) is the graphical user interface to HCD.

HCM interacts with HCD in a client/server relationship (that is, HCM runs on a

workstation and HCD runs on the host). The host systems require an internal

model of their connections to devices, but it can be more convenient and efficient

for the system programmer to maintain (and supplement) that model in a visual

form. HCM maintains the configuration data as a diagram in a file on the

workstation in sync with the IODF on the host. While it is possible to use HCD

directly for hardware configuration tasks, many customers prefer to use HCM

exclusively, due to its graphical interface.

© Copyright IBM Corp. 2005, 2008 21

Besides HCD, Once the devices have been defined, z/OS is told which devices to

use as consoles by specifying the appropriate device numbers in the CONSOLxx

PARMLIB member.

Generally, operators on a z/OS system receive messages and enter commands on

MCS and SMCS consoles. They can use other consoles (such as NetView consoles)

to interact with z/OS, but here we describe the MCS, SMCS, and EMCS consoles

as they are commonly used at z/OS sites:

v Multiple Console Support (MCS) consoles are devices that are locally attached to a

z/OS system and provide the basic communication between operators and

z/OS. MCS consoles are attached to control devices that do not support systems

network architecture or SNA protocols.

v SNA Multiple Console Support (SMCS) consoles are devices that do not have to be

locally attached to a z/OS system and provide the basic communication between

operators and z/OS. SMCS consoles use z/OS Communications Server to

provide communication between operators and z/OS, instead of direct I/O to

the console device.

v Extended Multiple Console Support (EMCS) consoles are devices (other than MCS or

SMCS consoles) from which operators or programs can enter commands and

receive messages. Defining EMCS consoles as part of the console configuration

allows the system programmer to extend the number of consoles beyond the

MCS console limit, which is 99 for each z/OS system in a sysplex.

The system programmer defines these consoles in a configuration according to

their functions. Important messages that require action can be directed to the

operator, who can act by entering commands on the console. Another console can

act as a monitor to display messages to an operator working in a functional area

like a tape pool library, or to display messages about printers at your installation.

Figure 5 on page 23 shows a console configuration for a z/OS system that also

includes the system console, an SMCS console, NetView, and TSO/E.

22 z/OS Basic Skills Information Center: z/OS system installation and management

The system console function is provided as part of the Hardware Management

Console (HMC). An operator can use the system console to start up z/OS and

other system software, and during recovery situations when other consoles are

unavailable.

In addition to MCS and SMCS consoles, the z/OS system shown in Figure 5 has a

NetView console defined to it. NetView works with system messages and

command lists to help automate z/OS operator tasks. Many system operations can

be controlled from a NetView console.

Users can monitor many z/OS system functions from TSO/E terminals. Using the

System Display and Search Facility (SDSF) and the Resource Measurement Facility

(RMF?), TSO/E users can monitor z/OS and respond to workload balancing and

performance problems. An authorized TSO/E user can also initiate an extended

MCS console session to interact with z/OS.

The MCS consoles shown in Figure 5 are:

v An MCS console from which an operator can view messages and enter z/OS

commands

This console is in full capability mode because it can receive messages and

accept commands. An operator can control the operations for the z/OS system

from an MCS or SMCS console.

v An MCS status display console

An operator can view system status information from DEVSERV, DISPLAY,

TRACK, or CONFIG commands. However, because this is a status display

console, an operator cannot enter commands from the console. An operator on a

full capability console can enter these commands and route the output to a

status display console for viewing.

v An MCS message-stream console

Figure 5. Sample console configuration for a z/OS system

Chapter 8. Console configuration 23

A message-stream console can display system messages. An operator can view

messages routed to this console. However, because this is a message-stream

console, an operator cannot enter commands from here. Routing codes and

message level information for the console are defined so that the system can

direct relevant messages to the console screen for display. Thus, an operator who

is responsible for a functional area like a tape pool library, for example, can view

MOUNT messages.

In many installations, this proliferation of screens has been replaced by operator

workstations that combine many of these screens onto one windowed display.

Generally, the hardware console is separate, but most other terminals are

combined. The systems are managed by alerts for exception conditions from the

automation product.

The IBM Open Systems Adapter-Express Integrated Console Controller (OSA-ICC)

is the modern way of connecting consoles. OSA-ICC uses TCP/IP connections over

Ethernet LAN to attach to personal computers as consoles through a TN3270

connection (telnet).

24 z/OS Basic Skills Information Center: z/OS system installation and management

Part 3. Starting z/OS: The initialization (IPL) process

How often do you start or reboot the operating system for your personal computer

or notebook? Probably at least once a day, maybe more often, if you want to install

upgrades or security patches. Depending on the work you are doing, you might

reboot almost automatically, without doing more than a few save operations.

Starting z/OS is, in a very general sense, a similar process, but is done far less

frequently and only with much careful planning beforehand.

z/OS initialization, or an initial program load (IPL), is the act of loading a copy of

the operating system from disk into the processor’s real storage and executing it.

This process essentially consists of:

v System and storage initialization, including the creation of system component

address spaces

v Master scheduler initialization and subsystem initialization

z/OS systems are designed to run continuously with many months between

reloads, allowing important production workloads to be continuously available.

Change is the usual reason for a reload, and the level of change on a system

dictates the reload schedule. For example:

v A test system may be IPLed daily or even more often.

v A high-availability banking system may only be reloaded once a year, or even

less frequently, to refresh the software levels.

v Outside influences may often be the cause of IPLs, such as the need to test and

maintain the power systems in the machine room.

v Sometimes badly behaved software uses up system resources that can only be

replenished by an IPL, but this sort of behavior is normally the subject of

investigation and correction.

Many of the changes that required an IPL in the past can now be done

dynamically. Examples of these tasks are:

v Adding a library to the linklist for a subsystem such as CICS

v Adding modules to LPA

Shutting down z/OS happens as rarely as an IPL. To shut down the system, each

task must be closed in turn, in the correct order. Today’s z/OS installations use an

automation package to control and execute this process. Shutting down the system

usually requires a single command, which results in the removal of most tasks

except for the automation task itself. The automation task is closed manually,

followed by any commands needed to remove the system from a sysplex or

serialization ring.

© Copyright IBM Corp. 2005, 2008 25

26 z/OS Basic Skills Information Center: z/OS system installation and management

Chapter 9. System IPL: Sequence and key controls

The initialization process begins when the system programmer or operator selects

the LOAD function at the Hardware Management Console (HMC).

To successfully IPL z/OS, the system programmer needs to supply the following

information:

v The device address of the IPL volume

v The LOADxx member that contains pointers to system parameters

v The IODF data set that contains the configuration information

v The device address of the IODF volume

z/OS locates all usable central storage that is online and available, and begins

creating the various system areas.

Not all disks attached to a CPU have loadable code on them. A disk that does is

generally referred to as an ″IPLable″ disk, and more specifically as the SYSRES

volume.

IPLable disks contain a bootstrap module at cylinder 0 track 0. At IPL, this

bootstrap is loaded into storage at real address zero and control is passed to it. The

bootstrap then reads the IPL control program IEAIPL00 (also known as IPL text)

and passes control to it. This in turn starts the more complex task of loading the

operating system and executing it.

After the bootstrap is loaded and control is passed to IEAIPL00, IEAIPL00 prepares

an environment suitable for starting the programs and modules that make up the

operating system, as follows:

1. It clears central storage to zeros before defining storage areas for the master

scheduler.

2. It locates the SYS1.NUCLEUS data set on the SYSRES volume and loads a

series of programs from it known as IPL Resource Initialization Modules

(IRIMs).

Figure 6. IPLing the machine

© Copyright IBM Corp. 2005, 2008 27

3. These IRIMs begin creating the normal operating system environment of

control blocks and subsystems.

Some of the more significant tasks performed by the IRIMs are as follows:

v Read the LOADPARM information entered on the hardware console at the time

the IPL command was executed.

v Search the volume specified in the LOADPARM member for the IODF data set.

IRIM will first attempt to locate LOADxx in SYS0.IPLPARM. If this is

unsuccessful, it will look for SYS1.IPLPARM, and so on, up to and including

SYS9.IPLPARM. If at this point it still has not been located, the search continues

in SYS1.PARMLIB. (If LOADxx cannot be located, the system loads a wait state.)

v If a LOADxx member is found, open and read information including the nucleus

suffix (unless overridden in LOADPARM), the master catalog name, and the

suffix of the IEASYSxx member to be used.

v Load the operating system’s nucleus.

v Initialize virtual storage in the master scheduler address space for the System

Queue Area (SQA), the Extended SQA (ESQA), the Local SQA (LSQA), and the

Prefixed Save Area (PSA). At the end of the IPL sequence, the PSA will replace

IEAIPL00 at real storage location zero, where it will then stay.

v Initialize real storage management, including the segment table for the master

scheduler, segment table entries for common storage areas, and the page frame

table.

The last of the IRIMs then loads the first part of the Nucleus Initialization Program

(NIP), which invokes the Resource Initialization Modules (RIMs), one of the

earliest of which starts up communications with the NIP console defined in the

IODF.

During the NIP stage, the system might prompt the system programmer or

operator to provide system parameters that control the operation of z/OS. The

system also issues informational messages about the stages of the initialization

process. IEASYSnn, a member of PARMLIB, contains parameters and pointers that

control the direction that the IPL takes. The system programmer or operator may

alter these parameters as necessary.

IEASYSnn, a member of PARMLIB, contains parameters and pointers that control

the direction that the IPL takes. Figure 7 on page 29 illustrates partial content of an

IEASYSxx member.

28 z/OS Basic Skills Information Center: z/OS system installation and management

The system continues the initialization process, interpreting and acting on the

system parameters that were specified. NIP carries out the following major

initialization functions:

v Expands the SQA and the extended SQA by the amounts specified on the SQA

system parameter.

v Creates the pageable link pack area (PLPA) and the extended PLPA for a cold

start IPL; resets tables to match an existing PLPA and extended PLPA for a quick

start or a warm start IPL.

v Loads modules into the fixed link pack area (FLPA) or the extended FLPA. Note

that NIP carries out this function only if the FIX system parameter is specified.

v Loads modules into the modified link pack area (MLPA) and the extended

MLPA. Note that NIP carries out this function only if the MLPA system

parameter is specified.

v Allocates virtual storage for the common service area (CSA) and the extended

CSA. The amount of storage allocated depends on the values specified on the

CSA system parameter at IPL.

v Page-protects the NUCMAP, PLPA and extended PLPA, MLPA and extended

MLPA, FLPA and extended FLPA, and portions of the nucleus. An installation

can override page protection of the MLPA and FLPA by specifying NOPROT on

the MLPA and FIX system parameters.

To see information on how your system was IPLed, you can issue the D IPLINFO

command, as Figure 8 on page 30 shows.

--

File Edit Edit_Settings Menu Utilities Compilers Test Help

EDIT SYS1.PARMLIB(IEASYS00) - 01.68 Columns 00001 00072

Command ===> Scroll ===> CSR

*********************************** Top of Data ******************************

000001 ALLOC=00,

000002 APG=07,

000003 CLOCK=00,

000004 CLPA,

000005 CMB=(UNITR,COMM,GRAPH,CHRDR),

000006 CMD=(&CMDLIST1.),

000007 CON=00,

000008 COUPLE=00, WAS FK

000009 CSA=(2M,128M),

000010 DEVSUP=00,

000011 DIAG=00,

000012 DUMP=DASD,

000013 FIX=00,

000014 GRS=STAR,

000015 GRSCNF=ML,

000016 GRSRNL=02,

000017 IOS=00,

000018 LNKAUTH=LNKLST,

000019 LOGCLS=L,

000020 LOGLMT=999999,

000021 LOGREC=SYS1.&SYSNAME..LOGREC,

000022 LPA=(00,L),

000023 MAXUSER=1000,

000024 MSTRJCL=00,

000025 NSYSLX=250,

000026 OMVS=&OMVSPARM.,

Figure 7. Partial listing of IEASYS00 member

Chapter 9. System IPL: Sequence and key controls 29

D IPLINFO

IEE254I 11.11.35 IPLINFO DISPLAY 906

 SYSTEM IPLED AT 10.53.04 ON 08/15/2007

 RELEASE z/OS 01.07.00 LICENSE = z/OS

 USED LOADS8 IN SYS0.IPLPARM ON C730

 ARCHLVL = 2 MTLSHARE = N

 IEASYM LIST = XX

 IEASYS LIST = (R3,65) (OP)

 IODF DEVICE C730

 IPL DEVICE 8603 VOLUME Z17RC1

Figure 8. Output of the D IPLINFO command

30 z/OS Basic Skills Information Center: z/OS system installation and management

Chapter 10. System IPL: Address space creation and

subsystem initialization

In addition to initializing system areas, z/OS establishes system component

address spaces. It establishes an address space for the master scheduler and other

system address spaces for various subsystems and system components. Some of

the component address spaces are: *MASTER*, ALLOCAS, APPC, CATALOG, and

so on.

The master scheduler address space is the first system component address space to

be created (ASID=1). Then, the master scheduler may start the primary job entry

subsystem (JES2 or JES3). On many production systems, JES is not started

immediately; instead, an automation package starts all tasks in a controlled

sequence.

Then other defined subsystems are started. All subsystems are defined in the

PARMLIB library, in member IEFSSNxx. These subsystems are secondary subsystems.

Figure 9 shows some of the important system component address spaces; for

started tasks VTAM®, CICS, TSO; and for a TSO user and a batch initiator. Each

address space has 2 GB of virtual storage by default, whether the system is

running in 31-bit or 64-bit mode.

The private areas are available only to that address space, but common areas are

available to all.

After the system is initialized and the job entry subsystem is active, the installation

can submit jobs for processing by using the START, LOGON, or MOUNT

command. When a job is activated through START (for batch jobs), LOGON (for

time-sharing jobs), or MOUNT, a new address space is allocated.

The master scheduler subsystem

The master scheduler subsystem establishes communication between the operating

system and the primary job entry subsystem, which can be JES2 or JES3.

Figure 9. Virtual storage layout for multiple address spaces

© Copyright IBM Corp. 2005, 2008 31

To do its work, the master scheduler subsystem uses an MSTJCLxx member,

commonly called master JCL, which contains data definition (DD) statements for all

system input and output data sets that are needed to do the communication

between the operating system and JES.

An initial MSTJCL00 load module can be found in the SYS1.LINKLIB library. As

shipped, MSTJCL00 contains an IEFPDSI DD statement that defines the data set

that contains procedure source JCL for started tasks. Normally this data set is

SYS1.PROCLIB; it may be a concatenation. For useful work to be performed,

SYS1.PROCLIB must at least contain the procedure for the primary JES.

If modifications are required, the recommended procedure is to create an

MSTJCLxx member in the PARMLIB data set. The suffix is specified by the

MSTRJCL parameter in the IEASYSxx member of PARMLIB.

Figure 10 shows a sample MSTJCLxx member.

When the master scheduler has to process the start of a started task, the system

determines whether the START command refers to a procedure or to a job. If the

IEFJOBS DD exists in the MSTJCLxx member, the system searches the IEFJOBS DD

concatenation for the member requested in the START command.

If there is no member by that name in the IEFJOBS concatenation, or if the

IEFJOBS concatenation does not exist, the system searches the IEFPDSI DD for the

member requested in the START command. If a member is found, the system

examines the first record for a valid JOB statement and, if one exists, uses the

member as the JCL source for the started task. If the member does not have a valid

JOB statement in its first record, the system assumes that the source JCL is a

procedure and creates JCL to invoke the procedure. After the JCL source has been

created (or found), the system processes the JCL.

As shipped, MSTJCL00 contains an IEFPDSI DD statement that defines the data set

that contains procedure source JCL for started tasks. Normally this data set is

SYS1.PROCLIB; it may be a concatenation. For useful work to be performed,

SYS1.PROCLIB must at least contain the procedure for the primary JES.

The job entry subsystem (JES)

For useful work to be performed on z/OS, SYS1.PROCLIB must contain a job

procedure for the primary job entry subsystem.

File Edit Edit_Settings Menu Utilities Compilers Test Help

EDIT SYS1.PARMLIB(MSTJCL00) - 01.07 Columns 00001 00072

Command ===> Scroll ===> CSR

*********************************** Top of Data ******************************

000100 //MSTRJCL JOB MSGLEVEL=(1,1),TIME=1440

000200 // EXEC PGM=IEEMB860,DPRTY=(15,15)

000300 //STCINRDR DD SYSOUT=(A,INTRDR)

000400 //TSOINRDR DD SYSOUT=(A,INTRDR)

000500 //IEFPDSI DD DSN=SYS1.PROCLIB,DISP=SHR

000600 // DD DSN=CPAC.PROCLIB,DISP=SHR

000700 // DD DSN=SYS1.IBM.PROCLIB,DISP=SHR

000800 //IEFJOBS DD DSN=SYS1.STCJOBS,DISP=SHR

000900 //SYSUADS DD DSN=SYS1.UADS,DISP=SHR

********************************** Bottom of Data ****************************

Figure 10. Sample master JCL

32 z/OS Basic Skills Information Center: z/OS system installation and management

To initialize JES, the master scheduler subsystem looks in SYS1.PROCLIB for the

JES cataloged procedure. This procedure defines the job-related procedure libraries,

including those that the JES subsystem uses to locate the JES initialization

statements. A sample job procedure library is shown in Figure 11.

 Many installations have very long lists of procedure libraries in the JES procedure.

Care should be taken as to the number of users who can delete these libraries

because JES will not start if one is missing. Normally a library that is in use cannot

be deleted, but JES does not hold these libraries although it uses them all the time.

You can override the default specification by specifying this statement: /*JOBPARM

PROCLIB=

After the name of the procedure library, you code the name of the DD statement in

the JES2 procedure that points to the library to be used. For example, in Figure 11,

assume that you run a job in class A and that class has a default PROCLIB

specification on PROC00. If you want to use a procedure that resides in

SYS1.LASTPROC, you’ll need to include this statement in the JCL:/*JOBPARM

PROCLIB=PROC99

Another way to specify a procedure library is to use the JCLLIB JCL statement.

This statement allows you to code and use procedures without using system

procedure libraries. The system searches the libraries in the order in which you

specify them on the JCLLIB statement, prior to searching any unspecified default

system procedure libraries.

Figure 12 shows the use of the JCLLIB statement.

 Assuming that the system default procedure library includes SYS1.PROCLIB only,

the system searches the libraries for procedure MYPROC1 in the following order:

1. MY.PROCLIB.JCL

2. SECOND.PROCLIB.JCL

3. SYS1.PROCLIB

Initialization of additional subsystems

Subsystem initialization is the process of readying a subsystem for use in the

system. IEFSSNxx members of SYS1.PARMLIB contain the definitions for the

primary subsystems such as JES2 or JES3, and the secondary subsystems such as

NetView and DB2.

During system initialization, the defined subsystems are initialized. You should

define the primary subsystem (JES) first because other subsystems, such as DB2,

 //PROC00 DD DSN=SYS1.PROCLIB,DISP=SHR

 // DD DSN=SYS3.PROD.PROCLIB,DISP=SHR

 //PROC01 DD DSN=SYS1.PROC2,DISP=SHR

 ...

 //PROC99 DD DSN=SYS1.LASTPROC,DISP=SHR

 ...

Figure 11. Job procedure libraries in the JES2 procedure

 //MYJOB JOB

 //MYLIBS JCLLIB ORDER=(MY.PROCLIB.JCL,SECOND.PROCLIB.JCL)

 //S1 EXEC PROC=MYPROC1

 ...

Figure 12. Sample JCLLIB statement

Chapter 10. System IPL: Address space creation and subsystem initialization 33

require the services of the primary subsystem in their initialization routines.

Problems can occur if subsystems that use the subsystem affinity service in their

initialization routines are initialized before the primary subsystem. After the

primary JES is initialized, the subsystems are initialized in the order in which the

IEFSSNxx PARMLIB members are specified by the SSN parameter. For example,

for SSN=(aa,bb), PARMLIB member IEFSSNaa would be processed before

IEFSSNbb.

34 z/OS Basic Skills Information Center: z/OS system installation and management

Chapter 11. System IPL: Description of IPL types

Depending on the circumstances under which you want to start or restart z/OS,

you may use one of three types of initialization: Cold start, quick start, or warm

start.

The primary difference between the three types is whether or not certain storage is

treated.

Cold start

An IPL that loads (or reloads) the pageable link pack area (PLPA) and

clears the virtual input/output (VIO) data set pages.

 The first IPL after system installation is always a cold start because the

PLPA is initially loaded. Subsequent IPLs are cold starts when the PLPA is

reloaded, either to alter its contents or to restore its contents if they were

lost. This is usually done when changes have been made to the LPA (for

example, when a new SYSRES containing maintenance is being loaded).

VIO is a method of using memory to store small temporary data sets for

rapid access. However, unlike a RAM disk on a PC, these are actually

backed up to disk and so can be used as a restart point. Obviously there

should not be too much data stored in this way, so the size is restricted.

Quick start

An IPL that does not reload the PLPA, but clears the VIO data set pages.

(The system resets the page and segment tables to match the last-created

PLPA.) This is usually done when there have been no changes to LPA, but

VIO must be refreshed. This prevents the warm start of jobs that were

using VIO data sets.

Warm start

An IPL that does not reload the PLPA, and preserves journaled VIO data

set pages. This will allow jobs that were running at the time of the IPL to

restart with their journaled VIO data sets.

 Often, the preferred approach is to do a cold start IPL (specifying CLPA). The other

options can be used, but extreme care must be taken to avoid unexpected change

or backout of change. A warm start could be used when you have long-running

jobs which you want to restart after IPL, but an alternative approach is to break

down those jobs into smaller pieces which pass real data sets rather than use VIO.

Modern disk controllers with large cache memory have reduced the need for VIO

data to be kept for long periods.

Also, do not confuse a cold start IPL (CLPA would normally be used rather than

the term ″cold start″) with a JES cold start. Cold starting JES is something that is

done extremely rarely, if ever, on a production system, and totally destroys the

existing data in JES.

© Copyright IBM Corp. 2005, 2008 35

36 z/OS Basic Skills Information Center: z/OS system installation and management

Part 4. z/OS system tuning

The task of ″tuning″ a system is an iterative and continuous process, and it is the

discipline that most directly impacts all users of system resources in an enterprise.

The z/OS Workload Management (WLM) component is an important part of this

process and includes initial tuning of selecting appropriate parameters for various

system components and subsystems.

After the system is operational and criteria have been established for the selection

of jobs for execution through job classes and priorities, WLM controls the

distribution of available resources according to the parameters specified by the

installation.

WLM, however, can deal with only available resources. If these are inadequate to

meet the needs of the installation, even optimal distribution may not be the

answer; other areas of the system should be examined to determine the possibility

of increasing available resources. When requirements for the system increase and it

becomes necessary to shift priorities or acquire additional resources (such as a

larger processor, more storage, or more terminals), the system programmer needs

to modify WLM parameters to reflect changed conditions.

© Copyright IBM Corp. 2005, 2008 37

38 z/OS Basic Skills Information Center: z/OS system installation and management

Part 5. z/OS software maintenance

As a z/OS system programmer, it will be your responsibility to ensure that all

software products and their modifications are properly installed on the system.

You will also have to ensure that all products are installed at the proper level so

that the elements of the system can work together.

At first, that might not sound too difficult, but as the complexity of the software

configuration increases, so, too, does the task of monitoring all the elements of the

system. Data center management is typically held accountable for Service Level

Agreements (SLAs), often through a specialist team of service managers. Change

control mechanics and practices in a data center are implemented to ensure that

SLAs are met.

System Modification Program Extended (SMP/E) is the primary means of

installing and updating the software in a z/OS system. SMP/E consolidates

installation data, allows more flexibility in selecting changes to be installed,

provides a dialog interface, and supports dynamic allocation of data sets. SMP/E

can be run either using batch jobs or using dialogs under Interactive System

Productivity Facility/Program Development Facility (ISPF/PDF). With SMP/E

dialogs, you can interactively query the SMP/E database and create and submit

jobs to process SMP/E commands.

Software to be installed by SMP/E must be packaged as system modifications or

SYSMODs, which combine the updated element with control information. This

information describes the elements and any relationships the software has with

other products or service that may also be installed on the same system.

The SMP/E job control language (JCL) and commands will be used frequently by a

large enterprise z/OS system programmer, however, SMP/E modification control

statement (MCS) instructions will rarely be coded by the same system programmer.

The product and SYSMOD packaging will include the necessary MCS statements.

A critical responsibility of the system programmer is to work with IBM defect

support when a problem surfaces in z/OS or optional IBM products. Problem

resolution requires the system programmer to receive and apply fixes to the

enterprise system.

© Copyright IBM Corp. 2005, 2008 39

40 z/OS Basic Skills Information Center: z/OS system installation and management

Chapter 12. z/OS conventions: Following a process of change

control

One of the advantages of the mainframe is the very high availability that it offers;

therefore, all change must therefore be carefully controlled and managed. A high

proportion of any system programmer’s time is involved in the planning and risk

assessment of change. One of the most important aspects of change is how to

reverse it and go back to the previous state.

The implementation of any change must be under the control of the Operations

staff. When a change is introduced into a production environment that results in

problems or instability, Operations staff are responsible for observing, reporting,

and then managing the activities required to correct the problem or back out the

change.

Although system programmers will normally originate and implement their own

changes, sometimes changes are based on a request through the change

management system. Any instructions for Operations or other groups would be in

the change record, and the approval of each group is required.

Implementing business application changes would normally be handled by a

production control analyst. Application changes will normally reside in test

libraries, and an official request (with audit trail) would result in the programs in

the test libraries being promoted to the production environment.

Procedures involved in the change must be circulated to all interested parties.

When all parties consider the change description to be complete, then it is

considered for implementation and either scheduled, deferred, or possibly rejected.

The factors that need to be considered when planning a change are:

v The benefits that will result from the change

v What will happen if the change is not done

v The resources required to implement the change

v The relative importance of the change request compared to others

v Any interdependency of change requests

Risk assessment

It is common practice for data center management to have a weekly change control

meeting to discuss, approve, or reject changes. These changes might be for

applications, a system, a network, hardware, or power.

An important part of any change is risk assessment, in which the change is

considered and evaluated from the point of view of risk to the system. Low risk

changes may be permitted during the day, while higher risk changes would be

scheduled for an outage slot.

It is also common practice for a data center to have periods of low and high risk,

which will influence decisions. For example, if the system runs credit

authorizations, then the periods around major public holidays are usually

© Copyright IBM Corp. 2005, 2008 41

extremely busy and may cause a change freeze. Also, annual sales are extremely

busy periods in retailing and may cause changes to be rejected.

IT organizations achieve their goals through disciplined change management

processes and policy enforcement. These goals include:

v High service availability

v Increased security

v Audit readiness

v Cost savings

Change control record system

A change control record system is typically in place to allow for the requesting,

tracking, and approval of changes. This is usually the partner of a problem

management system. For example, if a production system has a serious problem on a

Monday morning, then one of the first actions will be to examine the changes that

were implemented over the weekend to determine if these have any bearing on the

problem.

These records also show that the system is under control, which is often necessary

to prove to auditors, especially in the heavily regulated financial services sector.

The Sarbanes-Oxley Act of 2002 in the United States, which addresses corporate

governance, has established the need for an effective internal control system.

Demonstrating strong change management and problem management in IT

services is part of compliance with this measure. Additionally, the 8th Directive on

Company Law in the European Union addresses similar areas to Sarbanes-Oxley.

For these reasons, and at a bare minimum, before any change is implemented,

there should be a set of controlled documents defined, which are known as change

request forms. These should include the following:

v Who is responsible for implementing the change, completing the successful test

and responsible for backout if required. Also who will ″sign off″ the change as

successful. This is usually a department, group or person that requires the

change.

v What are the affected systems or services (for example e-mail, file service,

domain, and so on). Include as much detail as possible. Ideally, complete

instructions should be included so that the change could be performed by

someone else in an emergency.

v The start date and time and estimated duration of the change. There are often

three dates: requested, scheduled. and actual.

v The scope of change, the business units, buildings, departments or groups

affected or required to assist with the change.

v The implementation plan and a plan for backing off the changes, if the need

arises.

v The priority of the change; that is, high, medium, low, business as usual,

emergency, dated (for example clock change).

v The risk, which is usually classified as high, medium, or low.

v The impact if the change is implemented; what will happen if it is not; what

other systems may be affected; what will happen if something unexpected

occurs.

42 z/OS Basic Skills Information Center: z/OS system installation and management

Production control

Production control usually involves a specialized staff to manage batch scheduling,

using a tool such as Tivoli® Workload Scheduler to build and manage a complex

batch schedule. This work might involve daily and weekly backups running at

particular points within a complex sequence of application suites. Databases and

online services might also be taken down and brought back up as part of the

schedule. While making such changes, production control often needs to

accommodate public holidays and other special events such as (in the case of a

retail sales business) a winter sale.

Production control is also responsible for taking a programmer’s latest program

and releasing it to production. This task typically involves moving the source code

to a secure production library, recompiling the code to produce a production load

module, and placing that module in a production load library. JCL is copied and

updated to production standards and placed in appropriate procedure libraries,

and application suites added to the job scheduler.

There might also be an interaction with the system programmer if a new library

needs to be added to the linklist, or authorized.

Chapter 12. z/OS conventions: Following a process of change control 43

44 z/OS Basic Skills Information Center: z/OS system installation and management

Chapter 13. System installation and maintenance using SMP/E

System Modification Program Extended (SMP/E) is the z/OS tool for managing

the installation of software products on a z/OS system and for tracking

modifications to those products.

SMP/E controls these changes at the component level by:

v Selecting the proper levels of code to be installed from a large number of

potential changes.

v Calling system utility programs to install the changes.

v Keeping records of the installed changes by providing a facility to enable you to

inquire on the status of your software, and to reverse the change if necessary.

All code and its modifications are located in the SMP/E database called the

consolidated software inventory (CSI), which is comprised of one or more VSAM

data sets.

SMP/E can be run either using batch jobs or using dialogs under ISPF/PDF. With

SMP/E dialogs, you can interactively query the SMP/E database and create and

submit jobs to process SMP/E commands.

The SMP/E view of the system

A z/OS system might appear to be one big block of code that drives the CPU.

Actually, z/OS is a complex system comprising many different smaller blocks of

code, and that’s how SMP/E sees z/OS.

Each of those smaller blocks of code perform a specific function within the system.

Functions that can appear in a z/OS system (some of which are shown in

Figure 13 on page 46) include:

v Base Control Program (BCP)

v Job entry subsystem (JES2 or JES3)

v Time Sharing Option/Extensions (TSO/E)

v Interactive System Productivity Facility (ISPF)

v System Display and Search Facility (SDSF)

v Data Facility Storage Management Subsystem (DFSMS)

v System Modification Program Extended (SMP/E)

v z/OS UNIX System Services (z/OS UNIX)

v Resource Measurement Facility (RMF)

v HTTP Server

v DB2 (Database 2™)

v Customer Information Control System (CICS)

v WebSphere MQ

© Copyright IBM Corp. 2005, 2008 45

Each system function is composed of one or more load modules. In a z/OS

environment, a load module represents the basic unit of machine-readable,

executable code. Load modules are created by combining one or more object

modules and processing them with a link-edit utility. The link-editing of modules

is a process that resolves external references and addresses. The functions on your

system, therefore, are one or more object modules that have been combined and

link-edited.

To see where the object module comes from, look at the example in Figure 14.

Most of the time, object modules are sent to you as part of a product. In this

example, the object module MOD1 was sent as part of the product. Other times,

you might need to assemble source code sent to you by product packagers to

create the object module. You can modify the source code and then assemble it to

produce an object module. In the example, SRCMOD2 is source code that you

assemble to create object module MOD2. When assembled, you link-edit object

module MOD2 with object module MOD1 to form the load module LMOD1.

In addition to object modules and source code, most products distribute many

other parts, such as macros, help-panels, CLISTs and other z/OS library members.

These modules, macros and other types of data and code are the basic building

blocks of your system. All of these building blocks are called elements.

Elements are associated with, and depend upon, other products or services that

may be installed on the same z/OS system. They describe the relationship the

software has with other products or services that may be installed on the same

z/OS system.

Figure 13. SMP/E view of the system

Figure 14. Load module creation

46 z/OS Basic Skills Information Center: z/OS system installation and management

How the SMP/E environment is similar to a public library

To properly perform its processing, SMP/E must maintain a great deal of

information about the structure, content, and modification status of the software it

manages. Think of all the information SMP/E has to maintain as if it were all the

information contained in the public library.

In a public library, you see bookshelves filled with books and a card catalog with

drawers containing a card for each book in the library. These cards contain

information, such as the title, author, publishing dates, type of book, and a pointer

to the actual book on the shelf.

In the SMP/E environment, there are two distinct types of ″bookshelves.″ They are

referred to as the distribution libraries and the target libraries. In much the same

way the bookshelves in the public library hold the library books, the distribution

and target libraries hold the elements of the system.

Distribution libraries contain all the elements, such as modules and macros, that are

used as input for running your system. One very important use of the distribution

libraries is for backup. Should a serious error occur with an element on the

production system, the element can be replaced by a stable level found in the

distribution libraries.

Target libraries contain the executable code needed to run your system (for example,

the libraries from which you run your production system or your test system).

As you think of the analogy of the public library, you can see that there is one

important piece of that picture that we have not yet considered. In the public

library, there is a card catalog to help you find the book or piece of information

you are looking for. SMP/E provides the same type of tracking mechanism in the

form of the consolidated software inventory (CSI).

The CSI data sets contain all the information SMP/E needs to track the distribution

and target libraries. As the card catalog contains a card for each book in the library,

the CSI contains an entry for each element in its libraries. The CSI entries contain

the element name, type, history, how the element was introduced into the system,

and a pointer to the element in the distribution and target libraries. The CSI does

not contain the element itself, but rather a description of the element it represents.

The cards in the public library card catalog are arranged alphabetically by the

author’s last name, and by the topic and title of the book. In the CSI, entries for

the elements in the distribution and target libraries are grouped according to their

installation status. That is, entries representing elements found in the distribution

libraries are contained in the distribution zone. Entries representing elements found

in the target libraries are contained in the target zone. Both of these zones serve

the same purpose as the drawers of the public library card catalog.

In addition to the distribution and target zones, the SMP/E CSI also contains a

global zone. Figure 15 on page 48 shows the relationship between SMPE zones and

libraries.

Chapter 13. System installation and maintenance using SMP/E 47

The global zone contains:

v Entries needed to identify and describe each target and distribution zone to

SMP/E

v Information about SMP/E processing options

v Status information for all system modifications (known as SYSMODs) that

SMP/E has begun to process

v Exception data for SYSMODs requiring special handling or that are in error.

In SMP/E, the term exception data usually refers to HOLDDATA. HOLDDATA is

often supplied for a product to indicate a specified SYSMOD should be held from

installation. Reasons for holding a SYSMOD can be:

v A PTF is in error and should not be installed until the error is corrected (ERROR

HOLD).

v Certain system actions may be required before SYSMOD installation (SYSTEM

HOLD).

v The user may want to perform some actions before installing the SYSMOD

(USER HOLD).

All the information located in the global zone, combined with the information

found in the target and distribution zones, make up the data that SMP/E requires

to install and track the system’s software, which is often a great deal of data. You

can display this information using the following SMP/E facilities:

v Query dialogs: The easiest and fastest way to obtain just the information you

want

v LIST command: When you need an all-inclusive hardcopy listing of information

about your system

v REPORT commands: To check and compare the zone contents and generate

command output that can be used to update your system

v SMP/E CSI application programming interface: To write an application program

to query the contents of your system’s CSI data sets.

SMP/E data sets for inventory, zones, and libraries

To install z/OS elements in target and distribution libraries, SMP/E uses a

database made up of several types of data sets.

Figure 15. Relationship between SMP/E zones and libraries

48 z/OS Basic Skills Information Center: z/OS system installation and management

SMPCSI (CSI) data sets

SMPCSI (CSI) data sets are VSAM data sets used to control the installation

process and record the results of processing. A CSI can be divided into

multiple partitions through the VSAM key structure. Each partition is

referred to as a zone.

 There are three types of zones:

v A single global zone is used to record information about SYSMODs that

have been received into the SMPPTS data set. The global zone also

contains information enabling SMP/E to access the other two types of

zones, information about system utilities that SMP/E calls to install

elements from SYSMODs, and information allowing you to tailor SMP/E

processing.

v One or more target zones are used to record information about the

status and structure of the operating system (or target) libraries. Each

target zone also points to the related distribution zone, which can be

used during APPLY, RESTORE, and LINK when SMP/E is processing a

SYSMOD and needs to check the level of the elements in the distribution

libraries.

v One or more distribution zones are used to record information about

the status and structure of the distribution libraries (DLIBs). Each DLIB

zone also points to the related target zone, which is used when SMP/E

is accepting a SYSMOD and needs to check if the SYSMOD has already

been applied.

There can be more than one zone in an SMPCSI data set (in fact, there can

be up to 32766 zones per data set). For example, an SMPCSI data set can

contain a global zone, several target zones, and several distribution zones.

The zones can also be in separate SMPCSI data sets. One SMPCSI data set

can contain just the global zone, a second SMPCSI data set the target

zones, and a third SMPCSI data set the distribution zones.

SMPPTS (PTS) data set

An SMPPTS (PTS) data set is a data set for temporary storage of SYSMODs

waiting to be installed. The PTS is used strictly as a storage data set for

SYSMODs. The RECEIVE command stores SYSMODs directly on the PTS

without any modifications of SMP/E information. The PTS is related to the

global zone in that both data sets contain information about the received

SYSMODs. Only one PTS can be used for a given global zone. Therefore,

you can look at the global zone and the PTS as a pair of data sets that

must be processed (for example, deleted, saved, or modified) concurrently.

SMPSCDS (SCDS) data set

The SMPSCDS (SCDS) data set contains backup copies of target zone

entries modified during APPLY processing. Therefore, each SCDS is

directly related to a specific target zone, and each target zone must have its

own SCDS. SCDS data sets are used by SMP/E to store backup copies of

target zone entries modified during APPLY processing. Therefore, each

SCDS is directly related to a specific target zone, and each target zone

must have its own SCDS.

 SMP/E also uses the following data sets:

v The SMPMTS (MTS) data set is a library in which SMP/E stores copies of

macros during installation when no other target macro library is identified.

Therefore, the MTS is related to a specific target zone, and each target zone must

have its own MTS data set.

Chapter 13. System installation and maintenance using SMP/E 49

v The SMPSTS (STS) data set is a library in which SMP/E stores copies of source

during installation when no other target source library is identified. Therefore,

the STS is related to a specific target zone, and each target zone must have its

own STS data set.

v The SMPLTS (LTS) data set is a library that maintains the base version of a load

module. The load module in this library specifies a SYSLIB allocation in order to

implicitly include modules. Therefore, the LTS is related to a specific target zone,

and each target zone must have its own LTS data set.

v Other utility and work data sets.

SMP/E uses information in the CSI data sets to select proper element levels for

installation, to determine which libraries should contain which elements, and to

identify which system utilities should be called for the installation.

System programmers can also use the CSI data sets to obtain the latest information

on the structure, content, and status of the system. SMP/E provides this

information in reports, listings, and dialogs to help you:

v Investigate function and service levels

v Understand intersections and relationships of SYSMODs (either installed or

waiting to be installed)

v Build job streams for SMP/E processing.

Figure 16 shows sample job control language (JCL) for creating the CSI data sets.

What is a SYSMOD?

SMP/E can install a large variety of system updates, provided they are packaged

as a system modification or SYSMOD. A SYSMOD is the actual package of

elements and control information that SMP/E needs to install and track system

modifications.

//DEFINE JOB ’accounting info’,MSGLEVEL=(1,1)

//STEP01 EXEC PGM=IDCAMS

//CSIVOL DD UNIT=3380,VOL=SER=volid,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 DEFINE CLUSTER(-

 NAME(SMPE.SMPCSI.CSI) -

 FREESPACE(10 5) -

 KEYS(24 0) -

 RECORDSIZE(24 143) -

 SHAREOPTIONS(2 3) -

 VOLUMES(volid1) -

) -

 DATA(-

 NAME(SMPE.SMPCSI.CSI.DATA) -

 CONTROLINTERVALSIZE(4096) -

 CYLINDERS(250 20) -

) -

 INDEX(-

 NAME(SMPE.SMPCSI.CSI.INDEX) -

 CYLINDERS(5 3) -

) -

 CATALOG(user.catalog)

/*

Figure 16. JCL for defining a CSI VSAM data sets

50 z/OS Basic Skills Information Center: z/OS system installation and management

SYSMODs are composed of a combination of elements and control information.

They are comprised of two parts, as follows:

v Modification control statements (MCSs), designated by ++ as the first two

characters, that tell SMP/E:

v What elements are being updated or replaced

v How the SYSMOD relates to product software and other SYSMODs

v Other specific installation information

v Modification text, which is the object modules, macros, and other elements

supplied by the SYSMOD

There are four different categories of SYSMODs, each supporting a task you might

want to perform:

FUNCTION

This type of SYSMOD introduces a new product, a new version or release

of a product, or updated functions for an existing product into the

system.This type of SYSMOD introduces a new product, a new version or

release of a product, or updated functions for an existing product into the

system.

PTF A program temporary fix (PTF) is an IBM-supplied correction for a reported

problem. They are meant to be installed in all environments. PTFs may be

used as preventive service to avoid certain known problems that may have

not yet appeared on your system, or they may be used as corrective service

to fix problems you have already encountered. The installation of a PTF

must always be preceded by that of a function SYSMOD, and often other

PTFs as well.

APAR An authorized program analysis report (APAR) is a temporary fix designed to

correct or bypass a problem for the first reporter of the problem. An APAR

might not be applicable to your environment. The installation of an APAR

must always be preceded by that of a function SYSMOD, and sometimes of

a particular PTF. That is, an APAR is designed to be installed on a

particular preventive-service level of an element.

USERMOD

This type of SYSMOD is created by you, either to change IBM code or to

add independent functions to the system. The installation of a USERMOD

must always be preceded by that of a function SYSMOD, sometimes

certain PTFs, APAR fixes, or other USERMODs.

SMP/E keeps track of the functional and service levels of each element and uses

this SYSMOD hierarchy to determine such things as which functional and service

levels of an element should be installed and the correct order for installing updates

for elements.

Function SYSMOD: Introducing an element in the system

One way you can modify your system is to introduce new elements into that

system. To accomplish this with SMP/E, you can install a function SYSMOD.

The function SYSMOD introduces a new product, a new version or release of a

product, or updated functions for an existing product into the system. All other

types of SYSMODs are dependent upon the function SYSMOD, because they are all

modifications of the elements originally introduced by the function SYSMOD.

Chapter 13. System installation and maintenance using SMP/E 51

When introducing a function SYSMOD, all of the element’s components or code

are placed in the system data sets, or libraries. Examples of these libraries are

SYS1.LPALIB, SYS1.MIGLIB, and SYS1.SVCLIB.

Figure 17 shows the process of creating executable code in the production system

libraries.

 In Figure 17, the installation of a function SYSMOD link-edits object modules

MOD1, MOD2, MOD3, and MOD4 to create load module LMOD2. The executable

code created in load module LMOD2 is installed in the system libraries through

the installation of the function SYSMOD.

There are two types of function SYSMODs:

v A base function SYSMOD adds or replaces an entire system function. Examples

of base functions are SMP/E and JES2.

v A dependent function SYSMOD provides an addition to an existing system

function. It is called dependent because its installation depends upon a base

function already being installed. Examples of dependent functions are the

language features for SMP/E.

Both base function SYSMODs and dependent function SYSMODs are used to

introduce new elements into the system. Figure 18 shows an example of a simple

function SYSMOD that introduces four elements.

PTF SYSMOD: Preventing or fixing problems with an element

When a problem with a software element is discovered, IBM supplies its customers

with a tested fix for that problem. This fix comes in the form of a program

temporary fix (PTF). Although you may not have experienced the problem the PTF

MOD1

MOD2

MOD3

MOD4

System libraries

LMOD2

Link edit
MOD1

MOD2

MOD3

MOD4

Function
SYSMOD

Z
O

S
B

0
4
6
-0

Figure 17. Introducing an element

 ++FUNCTION(FUN0001) /* SYSMOD type and identifier. */.

 ++VER(Z038) /* For MVS SREL */.

 ++MOD(MOD1) RELFILE(1) /* Introduce this module */

 DISTLIB(AOSFB) /* in this distribution library. */.

 ++MOD(MOD2) RELFILE(1) /* Introduce this module */

 DISTLIB(AOSFB) /* in this distribution library. */.

 ++MOD(MOD3) RELFILE(1) /* Introduce this module */

 DISTLIB(AOSFB) /* in this distribution library. */.

 ++MOD(MOD4) RELFILE(1) /* Introduce this module */

 DISTLIB(AOSFB) /* in this distribution library. */.

Figure 18. Example of a simple function SYSMOD

52 z/OS Basic Skills Information Center: z/OS system installation and management

is intended to prevent, it is wise to install the PTF on your system. The PTF

SYSMOD is used to install the PTF, thereby preventing the occurrence of that

problem on your system.

Usually, PTFs are designed to replace or update one or more complete elements of

a system function. Look at Figure 19, which shows a previously installed load

module, LMOD2. To replace the element MOD1, you would install a PTF SYSMOD

that contains the module MOD1. That PTF SYSMOD replaces the element in error

with the corrected element.

As part of the installation of the PTF SYSMOD, SMP/E relinks LMOD2 to include

the new and corrected version of MOD1.

Figure 20 shows an example of a simple PTF SYSMOD.

PTF SYSMODs are always dependent upon the installation of a function SYSMOD.

In some cases, some PTF SYSMODs may also be dependent upon the installation

of other PTF SYSMODs. These dependencies are called prerequisites.

PTF, APAR, and USERMOD SYSMODs all have the function SYSMOD as a

prerequisite. In addition to their dependencies on the function SYSMOD:

v PTF SYSMODs might be dependent upon other PTF SYSMODs.

v APAR SYSMODs might be dependent upon PTF SYSMODs and other APAR

SYSMODs.

v USERMOD SYSMODs might be dependent upon PTF SYSMODs, APAR

SYSMODs, and other USERMOD SYSMODs.

Sometimes a PTF or even an APAR is dependent upon other PTF SYSMODs called

corequisites. Consider the complexity of these dependencies– When you multiply

that complexity by hundreds of load modules in dozens of libraries, the need for a

tool like SMP/E becomes apparent.

Figure 19. Preventing problems with an element

 ++PTF(PTF0001) /* SYSMOD type and identifier. */.

 ++VER(Z038) FMID(FUN0001) /* Apply to this product. */.

 ++MOD(MOD1) /* Replace this module */

 DISTLIB(AOSFB) /* in this distribution library. */.

 ...

 ... object code for module

 ...

Figure 20. Example of a simple PTF SYSMOD

Chapter 13. System installation and maintenance using SMP/E 53

APAR SYSMOD: Fixing problems with an element

You may sometimes find it is necessary to correct a serious problem that occurs on

your system before a PTF is ready for distribution. In this situation, IBM supplies

you with an authorized program analysis report (APAR). An APAR is a fix

designed to quickly correct a specific area of an element or replace an element in

error. You install an APAR SYSMOD to implement a fix, thereby updating the

incorrect element.

In Figure 21, the shaded section shows an area of MOD2 containing an error.

The processing of the APAR SYSMOD provides a modification for object module

MOD2. During the installation of the APAR SYSMOD, MOD2 is updated (and

corrected) in load module LMOD2.

Figure 22 shows an example of a simple APAR SYSMOD.

The APAR SYSMOD always has the installation of a function SYSMOD as a

prerequisite, and can also be dependent upon the installation of other PTF or

APAR SYSMODs.

PTF, APAR, and USERMOD SYSMODs all have the function SYSMOD as a

prerequisite. In addition to their dependencies on the function SYSMOD:

v PTF SYSMODs might be dependent upon other PTF SYSMODs.

v APAR SYSMODs might be dependent upon PTF SYSMODs and other APAR

SYSMODs.

v USERMOD SYSMODs might be dependent upon PTF SYSMODs, APAR

SYSMODs, and other USERMOD SYSMODs.

Sometimes a PTF or even an APAR is dependent upon other PTF SYSMODs called

corequisites. Consider the complexity of these dependencies– When you multiply

that complexity by hundreds of load modules in dozens of libraries, the need for a

tool like SMP/E becomes apparent.

Figure 21. Fixing problems with an element

++APAR(APAR001) /* SYSMOD type and identifier. */.

++VER(Z038) FMID(FUN0001) /* Apply to this product */

 PRE(UZ00004) /* at this service level. */.

++ZAP(MOD2) /* Update this module */

 DISTLIB(AOSFB) /* in this distribution library. */.

...

... zap control statements

...

Figure 22. Example of a simple APAR SYSMOD

54 z/OS Basic Skills Information Center: z/OS system installation and management

USERMOD SYSMOD: Customizing an element

If you had a requirement for a product to perform differently from the way it was

designed, you might want to customize that element of your system. IBM provides

you with certain modules that allow you to tailor IBM code to meet your specific

needs. After making the desired changes, you add these modules to your system

by installing a USERMOD SYSMOD.

This SYSMOD can be used to replace or update an element, or to introduce a

totally new user-written element into the system. In either case, the USERMOD

SYSMOD is built by you either to change IBM code or to add your own code to

the system.

In Figure 23, MOD3 has been updated through the installation of a USERMOD

SYSMOD.

Figure 24 shows an example of a simple USERMOD SYSMOD.

PTF, APAR, and USERMOD SYSMODs all have the function SYSMOD as a

prerequisite. In addition to their dependencies on the function SYSMOD:

v PTF SYSMODs might be dependent upon other PTF SYSMODs.

v APAR SYSMODs might be dependent upon PTF SYSMODs and other APAR

SYSMODs.

v USERMOD SYSMODs might be dependent upon PTF SYSMODs, APAR

SYSMODs, and other USERMOD SYSMODs.

Sometimes a PTF or even an APAR is dependent upon other PTF SYSMODs called

corequisites. Consider the complexity of these dependencies– When you multiply

that complexity by hundreds of load modules in dozens of libraries, the need for a

tool like SMP/E becomes apparent.

Figure 23. Customizing an element

++USERMOD(USRMOD1) /* SYSMOD type and identifier. */.

++VER(Z038) FMID(FUN0001) /* Apply to this product */

 PRE(UZ00004) /* at this service level. */.

++SRCUPD(JESMOD3) /* Update this source module */

 DISTLIB(AOSFB) /* in this distribution library. */.

...

... update control statements

...

Figure 24. Example of a simple USERMOD SYSMOD

Chapter 13. System installation and maintenance using SMP/E 55

Best practice: Keep track of system elements and

modifications

The importance of keeping track of system elements and their modifications

becomes readily apparent when we examine the z/OS maintenance process.

Often, a PTF contains multiple element replacements. In the example shown in

Figure 25, PTF1 contains replacements for two modules, MOD1 and MOD2.

Although load module LMOD2 contains four modules, only two of those modules

are being replaced.

But what happens if a second PTF replaces some of the code in a module that was

replaced by PTF1, as shown in Figure 26?

In this example, PTF2 contains replacements for MOD2 and MOD3. For MOD1,

MOD2, and MOD3 to interface successfully, PTF1 must be installed before PTF2.

That’s because MOD3 supplied in PTF2 may depend on the PTF1 version of

MOD1 to be present. It is this dependency that constitutes a prerequisite. SYSMOD

prerequisites are identified in the modification control statements (MCS) part of the

SYSMOD package.

In addition to tracking prerequisites, there is another important reason to track

system elements. The same module is often part of many different load modules,

as shown in Figure 27 on page 57.

Figure 25. PTF replacement

Figure 26. PTF prerequisite

56 z/OS Basic Skills Information Center: z/OS system installation and management

In Figure 27, the same MOD2 module is present in LMOD1, LMOD2, and LMOD3.

When a PTF is introduced that replaces the element MOD2, that module must be

replaced in all the load modules in which it exists. Therefore, it is imperative that

we keep track of all load modules and the modules they contain.

Tracking and controlling requisites

To track and control elements successfully, all elements and their modifications and

updates must be clearly identified to SMP/E. SMP/E relies on modification

identifiers to accomplish this. There are three modification identifiers associated

with each element:

v Function Modification Identifiers (FMIDs) identify the function SYSMOD that

introduces the element into the system.

v Replacement Modification Identifiers (RMIDs) identify the last SYSMOD (in

most cases a PTF SYSMOD) to replace an element.

v Update Modification Identifiers (UMIDs) identify the SYSMOD that an update to

an element since it was last replaced.

SMP/E uses these modification identifiers to track all SYSMODs installed on your

system. This ensures that they are installed in the proper sequence.

The SMP/E process for installing z/OS elements or service

This summary of SMP/E processing illustrates how z/OS elements or service

updates are installed.

SMP/E provides an excellent inventory and cross-reference of software

dependencies, and a mechanism for installing new products or applying software

maintenance. These capabilities ensure integrity of the overall system. The

mechanics of using SMP/E to maintain a system can be quite simple, as shown in

Figure 28 on page 58. How SMP/E works and the knowledge needed to package

fixes and software producets for SMP/E is significantly complex. IBM provides

instructions for system programmers to follow with all SMP/E packaged fixes,

System
libraries

Z
O

S
B

0
4
6
a
-0

LMOD1

MOD1

MOD2

MOD3

MOD4

LMOD2

MOD1

MOD2

MOD3

MOD4

LMOD3

MOD1

MOD2

MOD3

MOD4

MOD2

Figure 27. Load module constructions

Chapter 13. System installation and maintenance using SMP/E 57

software upgrades, and products.

Figure 29 provides a sample of the job control language (JCL) that might be used

to automate the process from receiving updates to applying them to a target

system.

SMP/E commands

Three commands– RECEIVE, APPLY, and ACCEPT– drive the SMP/E process for

installing z/OS elements or service.

Additional SMP/E commands include:

v LIST command: When you need an all-inclusive hardcopy listing of information

about your system

v REPORT commands: To check and compare the zone contents and generate

command output that can be used to update your system

CSI

Z
O

S
B

0
5

4
-0

Glob

CSICSI

Targ

TLIBs DLIBs

Distribut

SMPPTS SMPTLIBs
Service
tape

RECEIVE
command

APPLY
command

ACCEPT
command

RESTORE
command

Web
site

Figure 28. Overall SMP/E process flow

//SMPJOB JOB ’accounting info’,MSGLEVEL=(1,1)

//SMPSTEP EXEC SMPPROC

//SMPPTFIN DD ...

/* points to file or data set containing SYSMODs to be received */

//SMPHOLD DD ...

/* points to file or data set containing HOLDDATA to be received */

//SMPTLIB DD UNIT=3380,VOL=SER=TLIB01

//SMPCNTL DD *

 SET BDY(GLOBAL) /* Set to global zone */.

 RECEIVE SYSMOD /* Receive SYSMODs */

 HOLDDATA /* Receive HOLDDATA */

 SOURCEID(MYPTFS) /* Assign a source ID */

 /* */.

 LIST MCS /* List the cover letters */

 SOURCEID(MYPTFS) /* for the SYSMODs */

 /* */.

 SET BDY(TARGET1) /* Set to target zone */.

 APPLY SOURCEID(MYPTFS) /* Apply the SYSMODs */

 /* */.

 LIST LOG /* List the target zone log */.

/*

Figure 29. SMP/E batch job example

58 z/OS Basic Skills Information Center: z/OS system installation and management

The SMP/E RECEIVE command

The RECEIVE command allows you to take a SYSMOD that is outside of SMP/E

and stage it into the SMP/E library domain, which begins to construct the CSI

entries that describe them. This staging allows them to be queried for input into

later processes. More recently, the source can be electronic from a Web site,

although usually it comes from a tape or even a third-party vendor media.

The RECEIVE process accomplishes several tasks that are shown in Figure 30.

These tasks include:

v Constructing entries in the Global Zone for describing the SYSMOD.

v Ensuring the SYSMOD is valid, such as the syntax for modification control

statements (MCS) associated to the products installed in the CSI.

v Installing the SYSMOD into the libraries. Example: the PTF temporary store

library.

v Assessing the HOLDDATA to ensure errors are not introduced.

During the RECEIVE processing, the MCS for each SYSMOD is copied to an

SMP/E temporary storage area called the SMPPTS data set, which contains the

inline element replacement or update for that SYSMOD. There are also RELFILEs

that package the elements in relative files that are separate from MCSs, which are

mostly used by function SYSMODs. Relative files are stored in another temporary

storage area called SMPTLIB data sets.

SMP/E updates the global zone with information about the SYSMODs that it has

received.

In the course of maintaining the system, you need to install service and process the

related HOLDDATA. For example, assume that IBM has supplied you with a

service tape (such as a CBPDO or ESO tape) and you want to install it on the

system. The first step is to receive the SYSMODs and HOLDDATA that are

contained on the tape by entering these commands:

SET BDY(GLOBAL).

RECEIVE.

CSI

Z
O

S
B

0
5

1
-0

Glob

CSICSI

Targ

TLIBs DLIBs

Distribut

SMPPTS SMPTLIBs
Service
tape

RECEIVE
command

APPLY
command

ACCEPT
command

RESTORE
command

Web
site

Glob Targ Distribut

Figure 30. SMP/E RECEIVE processing

Chapter 13. System installation and maintenance using SMP/E 59

Doing so causes SMP/E to receive all the SYSMODs and HOLDDATA on the tape.

Examples of RECEIVE commands

To receive only HOLDDATA that might require special handling or that is in error,

you use this command:

SET BDY(GLOBAL).

RECEIVE HOLDDATA.

To receive only SYSMODs for installation into the global zone, you use this

command:

SET BDY(GLOBAL).

RECEIVE SYSMODS.

To receive all SYSMODs, including HOLDDATA, for a specific product (for

example, WebSphere Application Server), you use a command like the following:

SET BDY(GLOBAL).

RECEIVE FORFMID(H28W500).

The SMP/E APPLY command

The APPLY command specifies which of the received SYSMODs are to be selected

for installation in the target libraries. SMP/E also ensures that all other required

SYSMODs (prerequisites) have been installed or are being installed concurrently as

well as in the proper sequence.

The source of the elements is the SMPTLIB data sets, the SMPPTS data set or

indirect libraries depending on how is was packaged. This phase of the SMP/E

process entails the following:

v Executing the appropriate utility to install the SYSMOD into the target library,

depending on the type of input text supplied and target module being changed.

v Ensuring that the relationship of the new SYSMOD with other SYSMODs in the

target zone is correct.

v The CSI is modified displaying the updated modules.

The APPLY command updates the system libraries and should be carefully used on

a live production system. It is recommended that you initially use a copy of the

production target libraries and zones.

The target zone reflects the content of the target libraries. Therefore, after the

utility is completed and the zone updated, it will accurately reflect the status of

those libraries.

60 z/OS Basic Skills Information Center: z/OS system installation and management

The APPLY processing, shown in Figure 31, is where the target zone is accurately

updated:

v All SYSMOD entries in the Global Zone are updated to reflect that the SYSMOD

has been applied to the target zone.

v The target zone accurately reflects each SYSMOD entry applied. Element entries

(such as MOD and LMOD) are also created in the target zone.

v BACKUP entries are created in the SMPSCDS data set so the SYSMOD can be

restored, if at all necessary.

Similar to the RECEIVE process, the APPLY command has many different

operands for flexibility to select SYSMODs you would like to see for installation in

the target libraries, and provides an assortment of output. The directives used

instruct SMP/E what you want installed.

Examples of APPLY commands

To install only PTF SYSMODs, enter a command like the following:

SET BDY(ZOSTGT1).

APPLY PTFS.

To select PTF SYSMODs, you name them in the directives, for example:

SET BDY(ZOSTGT1).

APPLY SELECT(UZ00001, UZ00002).

Sometimes, you might want to install only corrective fixes (APARs) or user

modifications (USERMODs) into the target library, for example:

SET BDY(ZOSTGT1).

APPLY APARS

 USERMODS.

At other times, you might want to update a selected product from a distribution

tape:

SET BDY(ZOSTGT1).

APPLY PTFS

 FORFMID(H28W500).

Or:

CSI

Z
O

S
B

0
5

2
-0

Glob

CSICSI

Targ

TLIBs DLIBs

Distribut

SMPPTS SMPTLIBs
Service
tape

RECEIVE
command

APPLY
command

ACCEPT
command

RESTORE
command

Web
site

Targ Distribut

Figure 31. SMP/E APPLY processing

Chapter 13. System installation and maintenance using SMP/E 61

SET BDY (ZOSTGT1).

APPLY FORFMID(H28W500).

In these two examples, SMP/E applies all applicable PTFs for the FMID. Unless

you specify otherwise, PTFs are the default SYSMOD type.

The APPLY command with the CHECK operand

There might be times when you want to see which SYSMODs are included before

you actually install them. You can do this by including the CHECK operand with

commands such as the following:

SET BDY(MVSTGT1).

APPLY PTFS

 APARS

 FORFMID(HOP1)

 GROUPEXTEND

 CHECK.

When these commands complete, you can check the SYSMOD status report to see

which SYSMODs would have been installed if you had not specified the CHECK

operand. If you are satisfied with the results of this trial run, you can enter the

commands again, without the CHECK operand, to actually install the SYSMODs.

The SMP/E ACCEPT command

When a SYSMOD is installed into its target library, and you have tested it, you

then accept the change through the ACCEPT command. This step takes the

selected SYSMODs and installs them into the associated distribution libraries.

On the ACCEPT command, you specify operands to indicate which of the received

SYSMODs are to be selected for installation. During this phase, SMP/E also

ensures that the correct functional level of each element is selected.

 The ACCEPT command performs the following tasks, shown in Figure 32:

v Updates CSI entries with the targeted elements in the distribution zone.

v Rebuilds or creates the targeted elements in the distribution libraries using the

content of the SYSMOD as input.

CSI

Z
O

S
B

0
5

3
-0

Glob

CSICSI

Targ

TLIBs DLIBs

Distribut

SMPPTS SMPTLIBs
Service
tape

RECEIVE
command

APPLY
command

ACCEPT
command

RESTORE
command

Web
site

or

Figure 32. SMP/E ACCEPT processing

62 z/OS Basic Skills Information Center: z/OS system installation and management

v Verifies the target zone CSI entries for the affected modules and SYSMODs,

ensuring that they are consistent with the library content.

v Performs housekeeping of obsolete or expired elements. ACCEPT processing

deletes the global zone CSI entries, PTS members and SMPTLIBs for those

SYSMODs affected. For example, ACCEPT deletes the global zone SYSMOD

entries and MCS statements in the SMPPTS data set for those SYSMODs that

have been accepted into the distribution zone.

As a further option, you can skip having SMP/E clean up the global zone cleanup.

If so, SMP/E saves this information.

There is a ″stop″ ACCEPT processing that SMP/E provides so you can ensure that

all prerequisites are satisfied before the installation of the SYSMODs. This is a

check for you to see what will happen (assist you in detecting problems) without

actually modifying the distribution libraries.

After applying the SYSMODs into the Target zone, you can then tell SMP/E to

install only the eligible PTF SYSMODs into the Distribution zone:

SET BDY(ZOSDLB1).

ACCEPT PTFS.

Examples of ACCEPT commands

To install PTF SYSMODS selecting the particular ones:

SET BDY(ZOSDLB1).

ACCEPT SELECT(UZ00001,UZ00002).

There are situations where you may want to update a particular product with all

SYSMODs:

SET BDY(ZOSDLB1).

ACCEPT PTFS

 FORFMID(H28W500).

Or:

SET BDY(ZOSDLB1).

ACCEPT FORFMID(H28W500).

In these two examples, SMP/E accepts all applicable PTFs for the product whose

FMID is H28W500 located in the Distribution zone ZOSDLB1.

Note: Should the SYSMOD be in error, do not accept it. Use the RESTORE process

which takes the updated modules and rebuilds the copies in the Target libraries

from the specific modules in the Distribution libraries. Additionally, RESTORE

updates the Target zone CSI entries to reflect the removal of the SYSMOD.

Note: When ACCEPT processing is complete, it cannot be backed out. ACCEPT

should only be performed after you are satisfied with the performance and

stability of the elements of the SYSMOD. The changes from ACCEPT processing

are permanent.

The ACCEPT processing for prerequisite SYSMODs

When installing a SYSMOD, you may not know whether it has prerequisites

(sometimes, an ERROR SYSMOD is held). In these situations, you can direct

SMP/E to check whether an equivalent (or superseding) SYSMOD is available by

specifying the GROUPEXTEND operand:

Chapter 13. System installation and maintenance using SMP/E 63

SET BDY(ZOSDLB1).

ACCEPT PTFS

 FORFMID(H28W500)

 GROUPEXTEND.

A good way to see which SYSMODs are included before you actually install them

is with the CHECK operand:

SET BDY(ZOSTGT1).

ACCEPT PTFS

 FORMFMID(H28W500)

 GROUPEXTEND

 CHECK.

Note: If SMP/E cannot find a required SYSMOD, it looks for and uses a SYSMOD

that supersedes the required one.

ACCEPT reporting

When this last phase is completed, the following reports will assist you to assess

the results:

v SYSMOD Status Report: Provides a summary of the processing that took place

for each SYSMOD, based on the operands you specified on the ACCEPT

command.

v Element Summary Report: Provides a detailed look at each element affected by

the ACCEPT processing and in which libraries they reside.

v Causer SYSMOD Summary Report: Provides a list of SYSMODs that caused

other SYSMODs to fail and describes the errors that must be fixed in order to be

successfully processed.

v File Allocation Report: Provides a list of the data sets used for the ACCEPT

processing and supplies information about these data sets.

64 z/OS Basic Skills Information Center: z/OS system installation and management

Part 6. Appendixes

© Copyright IBM Corp. 2005, 2008 65

66 z/OS Basic Skills Information Center: z/OS system installation and management

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2005, 2008 67

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, NY 12601-5400

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming interface information

This book documents information that is NOT intended to be used as

Programming Interfaces of z/OS.

68 z/OS Basic Skills Information Center: z/OS system installation and management

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. If these and other IBM trademarked terms are marked on their first

occurrence in this information with a trademark symbol (® or

™), these symbols

indicate U.S. registered or common law trademarks owned by IBM at the time this

information was published. Such trademarks may also be registered or common

law trademarks in other countries. A current list of IBM trademarks is available on

the Web at ″Copyright and trademark information″ at http://www.ibm.com/legal/
copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be trademarks or service marks of

others.

Notices 69

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

70 z/OS Basic Skills Information Center: z/OS system installation and management

����

Printed in USA

	Contents
	z/OS system management roles and tasks
	Part 1. Installation of z/OS and other software products
	Chapter 1. z/OS base elements and optional features
	Chapter 2. Methods of installing z/OS
	Chapter 3. Typical organization of IBM and other software in storage
	Part 2. z/OS system customization
	Chapter 4. z/OS system libraries
	Chapter 5. System symbols in PARMLIB
	Chapter 6. Search order for programs
	Chapter 7. Input/output (I/O) device configuration
	Chapter 8. Console configuration
	Part 3. Starting z/OS: The initialization (IPL) process
	Chapter 9. System IPL: Sequence and key controls
	Chapter 10. System IPL: Address space creation and subsystem initialization
	The master scheduler subsystem
	The job entry subsystem (JES)
	Initialization of additional subsystems

	Chapter 11. System IPL: Description of IPL types
	Part 4. z/OS system tuning
	Part 5. z/OS software maintenance
	Chapter 12. z/OS conventions: Following a process of change control
	Chapter 13. System installation and maintenance using SMP/E
	The SMP/E view of the system
	How the SMP/E environment is similar to a public library
	SMP/E data sets for inventory, zones, and libraries
	What is a SYSMOD?
	Function SYSMOD: Introducing an element in the system
	PTF SYSMOD: Preventing or fixing problems with an element
	APAR SYSMOD: Fixing problems with an element
	USERMOD SYSMOD: Customizing an element
	Best practice: Keep track of system elements and modifications

	The SMP/E process for installing z/OS elements or service
	SMP/E commands
	The SMP/E RECEIVE command
	The SMP/E APPLY command
	The SMP/E ACCEPT command

	Part 6. Appendixes
	Notices
	Programming interface information
	Trademarks

