
IBM i
7.4

Rational Open Access: RPG Edition

IBM

RZAS-M000-02

Note

Before using this information and the product it supports, read the information in “Notices” on page
63.

This edition applies to Rational® Open Access: RPG Edition 7.4 and to all subsequent releases and modifications until
otherwise indicated in new editions.
© Copyright International Business Machines Corporation 2010, 2019.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Rational Open Access: RPG Edition.. 1
What's New.. 1

What's New since 7.3?... 1
What's New in this Release?.. 1

Rational Open Access: RPG Edition...1
RPG coding to use Open Access.. 3
Coding the Open Access handler... 4

Two modes for I/O data.. 4
Handling input data...5
Handling output data.. 6
Using search arguments... 7
Errors detected by the handler...8
Setting the feedback areas in the INFDS... 8

The RPG operations to be handled.. 9
When the Open-Access file is closed... 14

Handler parameter... 14
The subfields of the main parameter structure... 15
The subfields of the names-values structure.. 21

The subfields of the name-value structure describing one field... 22
Data types used in name-value information.. 23
Constants QrnDtzFormat_* defining date, time, and timestamp formats...............................25

System object structure, QrnObject_T... 25
Print-control structure, QrnPrtctl_T... 26
Record-levels structure, QrnRecordLevels_T.. 26

Record-level structure for one level, QrnRecordLevel_T... 27
Data types used in the handler parameter...27
Constants QrnRpgDevice_* defining the RPG device types.. 27
Constants QrnCcsids_*...28
Constants QrnFunctionKey_* defining the values for the functionKey subfield........................... 28

Restrictions for an Open-Access file..28
Writing a parser for the RPG DATA-INTO operation code...29

Parameter passed to a DATA-INTO parser.. 29
Callback procedures for DATA-INTO parsers.. 30
Tracing a DATA-INTO parser.. 33
Example of a DATA-INTO parser.. 34

A DATA-INTO parser that uses a data structure as a communication area.................................. 39
Writing a generator for the RPG DATA-GEN operation code...40

Sequences of DATA-GEN operations... 41
Parameter passed to a DATA-GEN generator.. 41

Types of the user-parameter passed to the DATA-GEN generator..46
Callback procedures for DATA-GEN generators.. 47
Events for DATA-GEN generators...49
Tracing a DATA-GEN operation.. 50
Example of a DATA-GEN generator..51

Notices..63
Programming interface information.. 64
Trademarks.. 64
Terms and conditions...64

 iii

iv

Rational Open Access: RPG Edition

Open Access: RPG Edition allows RPG programmers to access new technologies within their RPG
programs by specifying programs or service programs which connect the new technology with the RPG
programs.

• Handlers for Open Access files. See “Rational Open Access: RPG Edition” on page 1.
• Parsers for the DATA-INTO operation code. See “Writing a parser for the RPG DATA-INTO operation

code” on page 29.

What's New
New and changed features

The following is a list of enhancements made for each release of Open Access since 7.1:

• “What's New in this Release?” on page 1

You can use this section to link to and learn about new Rational Open Access: RPG Edition functions.

Note: The information for this product is up-to-date with the 7.2 release of the RPG compiler. If you are
using a previous release of the compiler, or if you are using a previous target release, you will need to
determine what functions are supported by that release of the compiler. For example, if you are compiling
with target release V6R1M0, the functions new to the 7.2 release will not be supported.

What's New since 7.3?
This section describes the enhancements made to Open Access: RPG Edition since 7.3.

Information about writing a generator for the DATA-GEN operation code
See “Writing a generator for the RPG DATA-GEN operation code” on page 40.

Information about writing a parser for the DATA-INTO operation code
See “Writing a parser for the RPG DATA-INTO operation code” on page 29.

What's New in this Release?
This section describes the enhancements made to Open Access: RPG Edition in 7.2.

CCSID of alphanumeric data for Open Access files
Alphanumeric data can have a CCSID other than the job CCSID. Handlers that can support all CCSIDs
for alphanumeric data must work with two new subfields of the handler parameter.

• canHandleCcsids
• alphaCcsids

Rational Open Access: RPG Edition
Rational Open Access: RPG Edition provides a way for RPG programmers to use the simple and well-
understood RPG I/O model to access resources and devices that are not directly supported by RPG.

Open Access opens up RPG's file I/O capabilities, allowing anyone to write innovative I/O handlers to
access other devices and resources such as:

• Browsers
• Mobile devices
• Cloud computing resources
• Web services

© Copyright IBM Corp. 2010, 2019 1

• External databases
• XML files
• Spreadsheets
• And more

An Open-Access application has three parts:

1. An RPG program that uses standard RPG coding to define an Open Access file and use I/O operations
against the file.

2. A handler procedure or program that is called by Open Access to handle the I/O operations for the file.
3. The resource or device that the handler is using or communicating with.

Open Access is the linkage between parts 1 and 2.

Open-Access handlers
Open Access does not provide the handlers.

Anyone can write the handlers that extend RPG IV's I/O capabilities to new resources and devices.

• Software tool vendors
• Business partners
• Services organizations
• Users

The provider of the handler can choose the RPG device type whose I/O operations best fit the functions
provided by the handler. For example, a user-interface application could map to a WORKSTN file, an Excel
document could map to a PRINTER file, and a web service could map to a keyed DISK file.

Two ways to approach Open Access
1. The handler is written after the application is written.

For example, an existing application that uses 5250 display files is modified to use Open Access for the
WORKSTN files.

• The RPG program is modified by adding the HANDLER keyword to the WORKSTN files
• The handler must handle all the operations and requirements of the existing RPG program.
• This type of handler will often be provided by an outside expert such as a software tool vendor or

business partner.
2. The handler is written before the application is written.

For example, the RPG programmer wants to use a web service that returns information for a specific
set of criteria.

• The handler provider creates a keyed database file matching the web service with a field for each
piece of information returned by the web service, and a key field for each criterion needed by the
web service. This file will not hold any data; it will only be used for defining externally-described files
and data structures in the RPG program and the handler.

• The handler provider can tell the RPG programmer what I/O operations that the handler will support.
For example, it might only support OPEN, CHAIN, CLOSE.

• The RPG programmer codes the RPG program using the file as an externally described keyed DISK
file, with the HANDLER keyword to identify the Open-Access handler.

• The handler uses externally-described data structures defined from the same file.
• This type of handler might be written by the same RPG programmer who uses the Open-Access file,

or it might be provided by an outside expert.

2 IBM i: Rational Open Access: RPG Edition

How Open Access works
When an RPG program performs an I/O operation for a system file, a system data management function is
called to handle the operation.

When an RPG program performs an I/O operation for an Open Access file, the Open-Access handler is
called. The handler receives a data structure parameter with subfields that enable the handler to perform
the correct I/O operation, and provide information back to the RPG program.

If the file is externally-described, it must be available to the RPG compiler at compile-time. Open Access
does not require the file to be present at run-time, but an individual handler may require the file to be
present.

RPG coding to use Open Access
Other than the HANDLER keyword, there is no new RPG syntax related to using an Open-Access file.

HANDLER keyword
The RPG programmer indicates that a file is an Open-Access file by coding the HANDLER keyword on the
File specification. All the operations allowed by RPG for the specified device (DISK, PRINTER, WORKSTN)
are available for the Open-Access file.

The HANDLER keyword identifies the program or procedure that will handle all operations for the file.

Fmyfile CF E WORKSTN HANDLER('MYLIB/MYSRV(hdlMyfile)')

Figure 1. Example of the HANDLER keyword

The HANDLER keyword has two parameters:
Handler

This keyword parameter can have one of the following values:

• A character literal or character variable identifying a procedure in a service program. The value
must be in the form 'LIBRARY/SRVPGM(procedure)' or 'SRVPGM(procedure)'. The names
are case-sensitive.

• A character literal or character variable identifying a program. The value must be in the form
'LIBRARY/PGM' or 'PGM'. The names are case-sensitive.

• A prototype for a bound procedure.
• A procedure pointer literal (%PADDR) or variable.

When the handler is identified by a prototype or by %PADDR, it is resolved at bind time of the RPG
program. When the handler is identified by a character literal or character variable, it is resolved each
time the Open-Access file is opened.

Parameter passed to the handler (optional)
This keyword parameter identifies an RPG variable to be passed to the handler from the RPG program.

This parameter can be used to pass additional information to the handler that is not available through
an RPG file operation.

For example, to process a file in the Integrated File System, the handler needs to know the path to
the file. The RPG programmer can provide this through the second HANDLER keyword parameter.
The second parameter is the name of a variable, usually a data structure. In the example below, the
variable is the data structure ifsDs. When the handler is called, it will receive a pointer to the ifsDs data
structure.

The provider of the handler would tell the RPG programmer whether the additional information was
required, and what data structure to use as a template. Usually, the provider of the handler would

Rational Open Access: RPG Edition 3

provide a template data structure in a /COPY file. In the example, the library MYLIB contains the
handler service program HDL_IFS containing procedure readIfs, the database file HDL_IFS, and the /
COPY File QRPGLESRC with member HDL_IFS. The copy file has the template data structure hdlIfs_t.

FmyIfsFile IF E DISK EXTDESC('MYLIB/HDL_IFS')
F USROPN
F HANDLER(‘MYLIB/HDL_IFS(readIfs)
F : ifsDs)
 /copy MYLIB/QRPGLESRC,HDL_IFS
D ifsDs DS LIKEDS(hdlIfs_t)
 /FREE
 ifsDs.path = '/home/mydir/myIfsFile.txt';
 OPEN myIfsFile;

Figure 2. Example of the HANDLER keyword with two parameters

Comparison to RPG SPECIAL files
An Open-Access file is similar in nature to a SPECIAL file. A SPECIAL file also uses a user-written program
to handle the operations for the file, and it allows additional parameters to be passed to the handler from
the RPG program.

Some of the differences between Open-Access files and SPECIAL files are

• A SPECIAL file only allows the operations available for a sequential (SEQ) file. An Open-Access file can
be defined for any type of RPG device, and can use all the operations available for that device.

• A SPECIAL file handler only receives a minimal amount of information about the file operation. An
Open-Access file handler receives much more information such as the name of the file, record format,
the names and types of the fields.

• A SPECIAL file handler can only pass back a minimal amount of feedback information: the result status
of 0, 1 or 2, and a 5-digit SPECIAL error code value. If an error occurs for a SPECIAL file, the RPG status
code is always 1231 (Error in SPECIAL file). An Open-Access handler has the ability to pass back much
more information such as the RPG status code, the file feedback areas, the relative record number,
function-key pressed, printer overflow.

• A SPECIAL file handler can only be a program. An Open-Access handler can be a program or a
procedure.

Coding the Open Access handler
An Open Access handler can be coded in any ILE language.

Library QOAR has copy files defining the data structures and constants related to the handler parameter
for ILE RPG, ILE C, and ILE COBOL. The member name in each source file (QRPGLESRC, H, QCBLLESRC) is
QRNOPENACC.

Library QOAR is the library for product 5733-OAR. The source files can be used without having a license
for the product.

Two modes for I/O data
There are two modes available for the handler to access and provide data. This applies to input and
output data, and the search argument for keyed operations. It also applies to the indicator array for files
that define the INDARA keyword.

The handler can choose which mode to use when it is processing the OPEN operation by setting the
useNamesValues subfield of the handler parameter to '1'.

Name-value information
This mode is available only for externally-described files.

4 IBM i: Rational Open Access: RPG Edition

The input and output records and the search keys are provided as an array of information about each field.
Any *IN indicators associated with the record are included in the array of field information, whether or not
the file is defined with the INDARA keyword. The information includes the external short name, the data
type, the length, decimals, date and time format, the CCSID of the data, whether the field is null-capable,
and whether the field has the null value. The data for each field is provided in a human-readable form.
For example, numeric values are formatted as they would be by the %CHAR RPG built-in function; for
example '-1.23'.

Most values are in the job CCSID, but UCS-2 and and DBCS values are in the CCSID used in the external
file. Alphanumeric fields may also be in the CCSID used in the external file. See alphaCcsids.

When the value for a field is set by the handler, the handler must set the value in the same human-
readable form that Open Access uses to provide the values for output-capable fields.

Remember:

1. The name-value information is available only for I/O to externally-described record formats and for
input operations to externally-described files when there is only one record format in the file.

2. When name-value information has been requested by the handler, and the information is not available,
either because the file is program-described, or because the operation is an input operation to a file
with more than one record format, the request for name-value information will be ignored by RPG.
No exception will be given; it is up to the handler to detect this situation. The handler may send an
exception, or set the return code to a failing status, or the handler may adjust to the situation and use
the record data information provided by the data structures matching the I/O buffers, key structures,
and indicator array.

3. If the file uses INDARA, the relevant indicators appear as fields in the name-value array.

Data structures matching the I/O buffers
The data related to the I/O operation is passed to the handler in the form of I/O buffer data structures,
null-indicator arrays, and INDARA indicator. These data structures and arrays are formatted exactly as
they would be passed to data-management functions. No name and type information is passed to the
handler. A handler that is specifically written to handle a particular file may use externally described data
structures to access the buffers. A more generic handler that can handle many files may have to call an
API to determine the information about the fields in the file.

If the file uses INDARA, the handler must work with the indara subfield of the handler parameter to use or
set the values of any indicators used by the file.

If the RPG program uses null-indicators for the file, the null-indicator array for the record is in a separate
buffer.

Open Access sets the pointers for all the buffers in the handler parameter. The handler is responsible for
using or setting the data in the buffers.

Handling input data
Several operations require the handler to provide input data to the RPG program.

Using the recordName subfield
If the file is externally described, the RPG program must know which record format is associated with the
input data.

• If the recordName subfield is not blank, the RPG program explicitly specified the required record format,
or there is only one record format for the file. In this case, the handler must provide input data for the
specified record format.

• If the recordName subfield is blank, the RPG program did not specify a specific record format. In this
case, the handler must set the recordName subfield to indicate which record format is associated with
the input data.

Rational Open Access: RPG Edition 5

Using the rrn subfield
If relative record numbers are relevant for the file or record format, the handler may provide this value
in the rrn subfield. The RPG programmer can obtain this value using the RECNO keyword on the File
specification.

Handling input data using data structures
• Use the inputBuffer pointer subfield to locate the input buffer for the file and use the inputBufferLen
subfield to determine the number of bytes provided for the input buffer.

• For an externally-described file, use the inputNullMap pointer subfield to access the input null map for
the file and use the inputNullMapLen subfield to determine the number of bytes provided for the input
null map. The input null map is an array of indicators with one element for each field in the record. For
a field which is null-capable, a value of '1' indicates that the field has the null value, and a value of
'0' indicates that the field does not have the null value. For a field which is not null-capable, the value
should always be '0'. If the inputNullMap pointer is null, the input null map is not relevant for the file
within the RPG program.

• For an externally-described file, set the value of each field in the input buffer according to the data type
of the field, and if null-values are relevant for the file, set the indicator in the input null map for each
null-capable field.

• For a program-described file, set the input buffer according to the definition of the record that is agreed
upon by the RPG programmer and the handler provider.

Handling input data using name-value information
• Use the namesValues pointer subfield to access the array of information about each field in the record

format.
• For each input field, or each input or output field in the case of a subfile record format

– Use the value pointer subfield to locate the buffer available for the field.
– Use the valueMaxLenBytes subfield to determine the maximum length available for the data.
– Set the value of the field in the buffer, according to the data type of the field. See “Data types used in

name-value information” on page 23 for more information.
– Set the valueLenBytes subfield to indicate the number of bytes that were set by the handler in the

buffer.
– If the isNullCapable subfield indicates that the field is null-capable, set the hasNullValue to '1' if the

field has the null value, and to '0' otherwise.

Remember: The data for a field must be set to a valid value even if the hasNullValue subfield is set to
'1'.

Handling output data
Several operations require the handler to use output data from the RPG program.

Using the recordName subfield
If the file is externally described, use the recordName subfield to determine which record format is
associated with the output data.

Using the relative record number
The RPG programmer may use the RECNO to specify the relative record number for the new record. For
system files, the relative record number may only be used to write to existing records which have been
deleted. If the rrn subfield is greater than zero, then the RPG programmer intends the record to replace
the deleted record at the specified relative record number.

6 IBM i: Rational Open Access: RPG Edition

Handling output data using data structures
• Use the outputBuffer pointer subfield to locate the output buffer for the file and use the outputBufferLen
subfield to determine the number of bytes provided for the output buffer.

• For an externally-described file, use the outputNullMap pointer subfield to access the output null map
for the file and use the outputNullMapLen subfield to determine the number of bytes provided for the
output null map. The output null map is an array of indicators with one element for each field in the
record. For a field which is null-capable, a value of '1' indicates that the field has the null value, and a
value of '0' indicates that the field does not have the null value. For a field which is not null-capable, the
value will always be '0'. If the outputNullMap pointer is null, the output null map is not relevant for the
file within the RPG program.

• For an externally-described file, use the value of each field in the output buffer according to the data
type of the field, and if null-values are relevant for the file, use the indicator in the output null map for
each null-capable field.

• For a program-described file, use the output buffer according to the definition of the record that is
agreed upon by the RPG programmer and the handler provider.

Handling output data using name-value information
• Use the namesValues pointer subfield to access the array of information about each field in the record

format.
• For each output field, or each input or output field in the case of a subfile record format

– Use the value pointer subfield to locate the buffer available for the field.
– Use the valueLenBytes subfield to determine the the number of bytes available in the buffer.
– Use the value of the field in the buffer, according to the data type of the field. See “Data types used in

name-value information” on page 23 for more information.
– If the isNullCapable subfield indicates that the field is null-capable, use the hasNullValue to

determine whether the field has the null value.

Using search arguments
Several operations require the handler to use search arguments from the RPG program.

Using the relative record number
If the file is not keyed, search arguments are relative record numbers. Use the rrn subfield.

Handling key data using data structures
• Use the key pointer subfield to locate the key buffer for the file and use the keyLen subfield to determine

the number of bytes provided for the key buffer.
• For an externally-described file, use the keyNullMap pointer subfield to access the key null map for the
file and use the keyNullMapLen subfield to determine the number of bytes provided for the key null map.
The key null map is an array of indicators with one element for each field in the key. For a key field which
is null-capable, a value of '1' indicates that the field has the null value, and a value of '0' indicates that
the field does not have the null value. For a key field which is not null-capable, the value will always be
'0'. If the keyNullMap pointer is null, the key null map is not relevant for the file within the RPG program.

• For an externally-described file, use the value of each key field in the key buffer according to the data
type of the field,and if null-values are relevant for the file, use the indicator in the key null map for each
null-capable key field..

• For a program-described file, use the key buffer according to the definition of the key that is agreed
upon by the RPG programmer and the handler provider.

Rational Open Access: RPG Edition 7

Handling key data using name-value information
• Use the keyNamesValues pointer subfield to access the array of information about each field in the key.
• For each key field

– Use the value pointer subfield to locate the buffer available for the key field.
– Use the valueLenBytes subfield to determine the the number of bytes available in the buffer.
– Use the value of the key field in the buffer, according to the data type of the field. See “Data types

used in name-value information” on page 23 for more information.
– If the isNullCapable subfield indicates that the key field is null-capable, use the hasNullValue to

determine whether the key field has the null value.

Errors detected by the handler
When the handler detects an error, it must convey the error condition to the RPG program.

The handler may either send an exception message to its caller or it may set the rpgStatus subfield in the
handler parameter to a valid RPG I/O status code.

The status code 1299 indicates a general I/O error, and can be used for any operation.

If the handler sends an exception message or if the handler fails with an unhandled exception, RPG will
usually set the status code to 1299. For OPEN and CLOSE operations, RPG will set the status code to
1216 (error in explicit OPEN or CLOSE operation) or 1217 (error in implicit OPEN or CLOSE operation).

Tip: Sending an exception message is the recommended way to signal the error condition to the RPG
program. The message will appear in the job log so the information in the message will be available after
the program has completed. The handler can provide as much detail in the message as is needed to
determine the reason for any unexpected errors.

Setting the feedback areas in the INFDS
The handler may optionally set feedback information that can be used to set the feedback areas in the
RPG File Information Data Structure (INFDS) for the file.

This feedback information is not used directly by RPG or Open Access, but the RPG program may depend
on it. For example, RPG programmers use the rrn subfield at position 397 of the INFDS for a DISK file
to determine the relative record number of the current record. RPG programmers also use the aid-byte
subfield at position 369 of the INFDS for a WORKSTN file to determine the function key that was pressed.

Tip: If the handler provides feedback information, it may not be necessary to set the entire feedback
structure to match the values that would be set for a system file. RPG does not use the values in
the feedback areas, so the handler only needs to provide the information needed by the specific RPG
program.

Setting the feedback information
Each feedback area has an associated pointer and length subfield in the handler parameter.

• The handler must set the pointer subfield to storage that will remain active after the handler returns. It
can be any type of storage other than automatic storage.

• The handler must set the length subfield to indicate the number of bytes of the storage that RPG should
use to set the relevant section in the INFDS.

Open feedback
The open feedback section of the INFDS starts at position 81 and has a length of 160. Use the
openFeedback pointer subfield and the openFeedbackLen length subfield.

I/O feedback
The I/O feedback section of the INFDS starts at position 241 and has a length of 126. Use the
ioFeedback pointer subfield and the ioFeedbackLen length subfield.

8 IBM i: Rational Open Access: RPG Edition

Device-specific feedback
The device-specific feedback section of the INFDS starts at position 367. The length depends on the
nature of the file. Use the deviceFeedback pointer subfield and the deviceFeedbackLen length subfield.

The RPG operations to be handled
The operation to be performed by the handler is specified by the rpgOperation subfield.

Each operation has a description of the operation's meaning in terms of RPG operation codes, and the
actions that the handler must perform to fulfill the operation.

The name of the constant that defines the operation is followed by the numeric value of the constant in
parentheses. This numeric value is provided for debugging purposes only; handler providers should use
the named constant within their code.

QrnOperation_CHAIN (9)
RPG operation Handler action

• If the keyedFile subfield
is '0', the operation is
random retrieval from a
file by relative record
number.

• Otherwise, the operation
is random retrieval from a
file by key.

1. Locate the record specified by the search argument.
2. If the record is available, provide the data and set the found subfield to

'1'. Otherwise, set the found subfield to '0'.
3. See “Using search arguments” on page 7for more information on using

search arguments.
4. See “Handling input data” on page 5for more information on providing

input data.

Remember: The input data for a subfile record contains both input and
output fields. The handler must retain the values of the output fields when
the record is written so that it can provide the values of the output fields
for subsequent input operations.

QrnOperation_CLOSE (18)
RPG operation Handler action

Implicit or explicit close of
the file. See “When the
Open-Access file is closed”
on page 14 for information
on when a file is closed by
RPG.

End the interaction with the resource or device.

QrnOperation_DELETE (16)
RPG operation Handler action

Delete record by relative
record number or key

Delete the record specified by the search argument. See “Using search
arguments” on page 7for more information on using search arguments.

Note: See QrnOperation_DELETE_CURRENT for a similar operation with
no search argument specified.

Rational Open Access: RPG Edition 9

QrnOperation_DELETE_CURRENT (19)
RPG operation Handler action

Delete the current record Delete the most recently input record if it is locked, or set the status to a
failing value if it is not locked.

Note: See QrnOperation_DELETE for a similar operation with a search
argument specified.

QrnOperation_EXFMT (10)
RPG operation Handler action

Write and read a record
format from a user-interface
file

1. Present the output data to the user including any subfile records
associated with the record format

2. Receive the input data from the user, including input data for any
subfile records associated with the record format

3. Provide the input data
4. If there are any subfile records associated with the record format

• Retain an indication of whether each record was changed by the
user.

• Retain the subfile data for further QrnOperation_READC or
QrnOperation_CHAIN for the subfile.

5. See “Handling input data” on page 5for more information on providing
input data.

6. See “Handling output data” on page 6for more information on using
output data.

QrnOperation_FEOD (17)
RPG operation Handler action

Force end of data Set the end-of-file condition

QrnOperation_OPEN (1)
RPG operation Handler action

Implicit or explicit OPEN
operation

Initialize the interaction with the resource or device.

QrnOperation_POSITION_END (3)
RPG operation Handler action

SETLL *END Set the file cursor to the end of the file.

QrnOperation_POSITION_START (2)
RPG operation Handler action

SETLL *START Set the file cursor to the beginning of the file.

10 IBM i: Rational Open Access: RPG Edition

QrnOperation_READ (4)
RPG operation Handler action

• Implicit or explicit
sequential input operation
for a database file or
record format.

• Implicit or explicit input
operation for a user-
interface file or record
format.

1. Move the file cursor forward to the next record.
2. Provide input data or set the eof subfield to '1'.
3. See “Handling input data” on page 5for more information on providing

input data.

QrnOperation_READC (5)
RPG operation Handler action

Read next changed subfile
record

1. Move the file cursor forward to the next changed record.
2. Provide data or set the eof subfield to '1'.
3. See “Handling input data” on page 5for more information on providing

input data.

1.

Remember: The input data for a subfile record contains both input and
output fields. The handler must retain the values of the output fields when
the record is written so that it can provide the values of the output fields
for subsequent input operations.

QrnOperation_READE (6)
RPG operation Handler action

Read the next record if its
key is equal to the search
argument

1. Move the file cursor forward to the next record.
2. Provide input data if the key of the record matches the search

argument, or set the eof subfield to '1'.
3. See “Using search arguments” on page 7for more information on using

key data.
4. See “Handling input data” on page 5for more information on providing

input data.

Note: See QrnOperation_READPE_CURRENT for a similar operation with
no search argument specified.

Rational Open Access: RPG Edition 11

QrnOperation_READE_CURRENT (20)
RPG operation Handler action

Read equal key, with no
search argument specified

1. Move the file cursor forward to the next record.
2. Provide data if the record has the same key as the previously current

record, or set the eof subfield to '1'.
3. See “Handling input data” on page 5for more information on providing

input data.

Note: See QrnOperation_READE for a similar operation with a search
argument specified.

QrnOperation_READP (7)
RPG operation Handler action

Sequential read previous
operation

1. Move the file cursor backward to the previous record.
2. Provide input data or set the eof subfield to '1'.
3. See “Handling input data” on page 5for more information on providing

input data.

QrnOperation_READPE (8)
RPG operation Handler action

Read the previous record if
its key is equal to the search
argument

1. Move the file cursor backward to the previous record.
2. Provide input data if the key of the record matches the search

argument, or set the eof subfield to '1'.
3. See “Using search arguments” on page 7for more information on using

key data.
4. See “Handling input data” on page 5for more information on providing

input data.

Note: See QrnOperation_READE_CURRENT for a similar operation with no
search argument specified.

QrnOperation_READPE_CURRENT (21)
RPG operation Handler action

Read equal key previous,
with no search argument
specified

1. Move the file cursor backward to the previous record.
2. Provide data if the record has the same key as the previously current

record, or set the eof subfield to '1'.
3. See “Handling input data” on page 5for more information on providing

input data.

Note: See QrnOperation_READPE for a similar operation with a search
argument specified.

12 IBM i: Rational Open Access: RPG Edition

QrnOperation_SETGT (11)
RPG operation Handler action

Set greater than 1. Set the file cursor to the first record greater than the search argument.
2. Set the found subfield to '1' if there is such a record.
3. See “Using search arguments” on page 7for more information on using

search arguments.

QrnOperation_SETLL (12)
RPG operation Handler action

Set lower limit 1. Set the file cursor to the last record less than or equal to the search
argument.

2. Set the found subfield to '1' if there is such a record.
3. Set the equal subfield to '1' if the record is an exact match for the

search argument.
4. See “Using search arguments” on page 7for more information on using

search arguments.

QrnOperation_UNLOCK (13)
RPG operation Handler action

Unlock record Unlock the most recently input record if it is locked, or set the status to a
failing value if it is not locked.

QrnOperation_UPDATE (14)
RPG operation Handler action

Update the current record Update the most recently input record if it is locked, or set the status to
a failing value if it is not locked. See “Handling output data” on page 6for
more information on using output data.

QrnOperation_WRITE (15)
RPG operation Handler action

Write record • If the record is a subfile record, retain the output data so it can be
returned as part of the data on a subsequent QrnOperation_READC or
QrnOperation_CHAIN.

• If the record is not a subfile record, output the data to the device or
resource.

• See “Handling output data” on page 6for more information on using
output data.

Rational Open Access: RPG Edition 13

When the Open-Access file is closed
RPG closes the Open-Access file during normal RPG processing and during cancellation.

Implicit closing of Open-Access files
RPG attempts to close Open-Access files when the RPG module is no longer able to use the file.

• Global files in a cycle-main RPG module are implicitly closed when the main procedure ends with LR on,
or when the main procedure ends abnormally.

• Automatic files in a subprocedure are implicitly closed when the subprocedure ends, normally or
abnormally.

• Static files are implicitly closed, where possible, when the RPG module will no longer be active in the
thread, activation group or job.
When the activation group ends

The RPG runtime uses the CEE4RAGE() built-in function to enable an activation group exit to run
when the activation group ends. This function will call the Open-Access handler if the file is still
open.

For a program or service program running in the default activation group, the activation group ends
when the job ends.

Note: Calls to CEE4RAGE() are not permitted for programs compiled with DFTACTGRP(*YES). If an
Open-Access file is still open when the job ends, the Open-Access handler will not be called.

When the secondary thread ends, for a module compiled with THREAD(*CONCURRENT)
The RPG runtime uses the pthread APIs pthread_key_create() and
pthread_set_specific() to enable a destructor function to run when the thread ends. This
function will call the Open-Access handler if the file is still open.

Note: The implementation of pthreads on the system might not call destructors when the thread
ends using a mechanism outside of pthreads. One example is a thread ending due to an unhandled
exception. Please see the pthread documentation in the Information Center for details.

Handler parameter
The same parameter is passed to the handler for all operations to the file.

The parameter is a data structure with several types of subfields:

Subfields that must be set by the handler for later use by RPG
The handler is responsible for setting some of the subfields in the handler parameter before returning
to the RPG program. These subfields provide the information that tells RPG about the result of the
operation. For example

• For the search operation QrnOperation_CHAIN, the found subfield must be set to '1' to indicate that
a matching record was found.

• For an input capable operation, the handler must provide the data for all of the input capable fields.

Subfields that are set by RPG for use by the handler
RPG sets some subfields that tell the handler about the nature of the file, or the nature of the
operation that the handler is required to perform. For example

• The rpgOperation subfield indicates which operation to perform.
• The rpgDevice subfield indicates the type of file defined in the RPG program.

Subfields that may be set by the handler for use by the RPG programmer
Some subfields provide feedback information that may be required by the RPG program. For example

• If the RPG program uses the *INKx indicators, the functionKey subfield can be set to indicate
that one of the function keys F1-F24 was pressed. If the RPG program monitors for status codes

14 IBM i: Rational Open Access: RPG Edition

1121-1126, the functionKey subfield can be set to indicate that one of the special keys such as the
PRINT key was pressed.

• If the RPG program has a File Information Data Structure (INFDS) defined for the file, and the
INFDS is longer than 80 bytes, then the handler may need to provide feedback for the file using the
openFeedback, ioFeedback, and deviceFeedback subfields.

Subfields that allow the handler to maintain private information

• If the handler needs to share additional information with the RPG programmer, the second
parameter of the HANDLER can be used in the RPG program to define a variable whose address
will be passed to the handler in the userArea subfield of the handler parameter.

• If the handler needs to maintain private information across calls to the handler, the stateInfo
subfield can be used to hold a pointer to the information.

The subfields of the main parameter structure
The subfields of the main parameter structure

The name of the main parameter structure is QrnOpenAccess_T.

Table 1. Subfields of QrnOpenAccess_T

Subfield Type Set by Used by

structLen UINT4 RPG Handler

parameterFormat CHAR(8) RPG Handler

userArea Pointer 1 RPG Handler and RPG
programmer

stateInfo Pointer 3 Handler Handler

recordLevels 4 Pointer 1 RPG Handler

inputBuffer Pointer 1, 2 Handler RPG

inputNullMap 4 Pointer 1, 2 Handler RPG

outputBuffer Pointer 1, 2 Handler RPG

outputNullMap 4 Pointer 1, 2 Handler RPG

namesValues 4 Pointer 1, 2 RPG and Handler RPG and Handler

key Pointer 1, 2 Handler RPG

keyNullMap 4 Pointer 1, 2 Handler RPG

keyNamesValues 4 Pointer 1, 2 Handler RPG

indara Pointer 1, 2 Handler RPG

prtctl Pointer 1, 2 Handler RPG

openFeedback Pointer 3 Handler RPG

ioFeedback Pointer 3 Handler RPG

deviceFeedback Pointer 3 Handler RPG

externalFile “System object
structure, QrnObject_T”
on page 25

RPG Handler

externalMember CHAR(10) RPG Handler

Rational Open Access: RPG Edition 15

Table 1. Subfields of QrnOpenAccess_T (continued)

Subfield Type Set by Used by

compileFile 4 “System object
structure, QrnObject_T”
on page 25

RPG Handler

recordName CHAR(10) RPG and Handler RPG and Handler

rpgOperation UINT4 RPG Handler

rpgStatus INT4 Handler RPG

inputBufferLen UINT4 RPG Handler

inputNullMapLen 4 UINT4 RPG Handler

outputBufferLen UINT4 RPG Handler

outputNullMapLen 4 UINT4 RPG Handler

keyLen UINT4 RPG Handler

keyNullMapLen 4 UINT4 RPG Handler

inputDataLen UINT4 Handler RPG

openFeedbackLen UINT4 Handler RPG

ioFeedbackLen UINT4 Handler RPG

deviceFeedbackLen UINT4 Handler RPG

numKeys 4 UINT4 RPG Handler

rrn UINT4 RPG and Handler RPG and Handler

formLen UINT4 RPG Handler

formOfl UINT4 RPG Handler

sln UINT4 RPG Handler

alphaCcsids UINT4 RPG Handler

functionKey UINT1 Handler RPG

externallyDescribed Indicator RPG Handler

keyedFile Indicator RPG Handler

blocked Indicator RPG Handler

eof Indicator Handler RPG

found Indicator Handler RPG

equal Indicator Handler RPG

printerOverflow Indicator Handler RPG

inputWithLock Indicator RPG Handler

useNamesValues 4 Indicator Handler RPG

isSubfile 4 Indicator RPG Handler

canHandleCcsids 4 Indicator Handler RPG

commit Indicator RPG Handler

16 IBM i: Rational Open Access: RPG Edition

Table 1. Subfields of QrnOpenAccess_T (continued)

Subfield Type Set by Used by

rpgDevice CHAR(1) RPG Handler

Additional notes on the table
1. The "Set by" and "Used by" columns refer to the data that the pointer is pointing to.
2. The pointer is set by RPG. The handler sets the data pointed to by the pointer, usually with a variable or

data structure based on the pointer.
3. The pointer is set by the handler.
4. This subfield is meaningful only for externally-described files.

Descriptions of the subfields
alphaCcsids

Whether alphanumeric fields have the job CCSID or the CCSID of the fields in the externally-described
file. See “Constants QrnCcsids_*” on page 28.

Note: If this subfield has the value QrnCcsids_FILE indicating that alphanumeric fields have the CCSID
of the fields in the file, the handler must set the canHandleCcsids subfield to '1'.

blocked
'1' if the file is defined to be blocked in the RPG program. '0' otherwise.

Note: This value is provided for information only. The Open-Access interface does not work with
blocks of record, but the handler may use this information to control whether it block the records from
the device or resource that it is dealing with.

canHandleCcsids
Set to '1' by the handler during the OPEN operation if the handler is able to handle alphanumeric fields
with CCSIDs other than the job CCSID.

commit
'1' if the file should be opened under commitment control. '0' otherwise.

compileFile
The library and file that the RPG compiler used at compile-time for the description of an externally-
described file.

Note: If an override was in effect for the file at compile-time, this reflects the actual file used at
compile-time. For example, if the RPG file specification or EXTDESC keyword specifies file MYFILE,
and there is an override for MYFILE to MYLIB/OTHERFILE, then the compileFile subfield will reflect
library MYLIB and file OTHERFILE.

deviceFeedback
A pointer to the information that the handler provides to RPG to set the device-specific feedback part
of the file's File Information Data Structure (INFDS). If this information is not supplied by the handler,
the device-specific-feedback part of the INFDS is not updated by RPG. The length is specified by
deviceFeedbackLen.

See “Setting the feedback areas in the INFDS” on page 8 for more information.

deviceFeedbackLen
The length of the device-specific-feedback information provided by the handler.

eof
Set to '1' by the handler if the file reached end of file for a sequential input operation or a WRITE
operation to a subfile record. The handler can leave it at '0' otherwise to indicate that the record was
successfully read or written.

Rational Open Access: RPG Edition 17

equal
Set to '1' by the handler if an exact match was found by a SETLL operation. The handler can leave it at
'0' otherwise.

externalFile
The library and file that the RPG program is opening at run time. It is the value specified by the
EXTFILE keyword for the file. If the EXTFILE keyword was not specified, the library is *LIBL and the
file is the internal name of the file in the RPG program..

Note: If an override is in effect for the file at run-time, this does not reflect the overridden file. For
example, if the file specified by the EXTFILE keyword is MYLIB/MYFILE and there is an override
present at run time that overrides file MYFILE to OTHERLIB/OTHERFILE, externalFile subfield will
reflect the RPG value MYLIB/MYFILE. If the handler is interested in overrides, the handler may use
an API to determine whether there is an override for the file.

externalMember
The member that the RPG program is opening at run time. It is the value specified by the EXTMBR
keyword for the file. If the EXTMBR keyword was not specified, it is *FIRST.

Note: If an override is in effect for the file at run-time, this does not reflect the overridden member.

externallyDescribed
'1' if the file is externally-described in the RPG program. '0' otherwise.

formLen
Printer form length. Only meaningful for a program-described PRINTER file.

formOfl
Printer form overflow. Only meaningful for a program-described PRINTER file.

found
Set to '1' by the handler if a record was found by a positioning operation (CHAIN, SETLL, SETGT). The
handler can leave it at '0' if a record was not found.

functionKey
For a user-interface input-capable operation, a function key value of 1-24 causes an *INKx indicator
to be set on in the RPG program. A value of 121-126 indicates one of the PRINT, ROLLUP, ROLLDOWN,
CLEAR, HELP or HOME keys, and causes the RPG status to be set to 1121 - 1126. Any other value
causes an I/O error with status 1299. See “Constants QrnFunctionKey_* defining the values for the
functionKey subfield” on page 28.

indara
A pointer to the INDARA array of 99 indicators used for the WORKSTN or PRINTER I/O operation.
NULL if the file is not defined to use INDARA or if the handler is using name-value information.

inputBuffer
A pointer to a data structure in the format of the input buffer for the file or record. The length is
given by inputBufferLen. NULL if the handler is using name-value information or if the input buffer is
irrelevant to the operation.

inputBufferLen
The length of the input buffer. Zero if the input buffer is not relevant, or if name-value information is
being used.

inputDataLen
When the file is externally-described and the record format was not specified by the RPG program,
this subfield must be set by the handler to indicate the length of the data provided in the input buffer.

Note: This is not necessary if name-value information is being used.

inputNullMap
A pointer to the null-byte map of the input buffer for the file or record. The length is given by
inputNullMapLen.

inputNullMapLen
The length of the input null-byte map. Zero if the input null-byte map is not relevant, or if name-value
information is being used.

18 IBM i: Rational Open Access: RPG Edition

inputWithLock
'1' if the input operation is intended to lock the record for later update or delete. '0' otherwise.

ioFeedback
A pointer to the information that the handler provides to RPG to set the I/O feedback part of the
file's File Information Data Structure (INFDS). The handler must set this pointer to storage that can
be accessed by RPG. If this information is not supplied by the handler, the I/O-feedback part of the
INFDS is not updated by RPG. The length is specified by ioFeedbackLen.

See “Setting the feedback areas in the INFDS” on page 8 for more information.

ioFeedbackLen
The length of the I/O-feedback information provided by the handler.

isSubfile
'1' if the record format used for the operation is a subfile record. '0' otherwise.

key
A pointer to a data structure in the format of the key structure for the file or record. The length is given
by keyLen. NULL if the handler is using name-value information, or if the operation does not involve
keys.

keyedFile
'1' if the file is keyed in the RPG program. '0' otherwise.

keyLen
The length of the key buffer. Zero if the key buffer is not relevant, or if name-value information is being
used.

keyNamesValues
A pointer to the QrnNamesValues_T structure listing the names, types, and values of each subfield in
the key structure. NULL if the handler is not using name-value information, or if the operation does not
involve keys, or if the name-value mode is not available due to the RPG programmer having specified
an input operation to a file name where the file has more than one record format.

keyNullMap
A pointer to the null-byte map of the key information for the file or record. The length is given by
keyNullMapLen. NULL if the handler is using name-value information or if the key is irrelevant to the
operation.

keyNullMapLen
The length of the key null-byte map. Zero if the key null-byte map is not relevant, or if name-value
information is being used.

namesValues
A pointer to the QrnNamesValues_T structure listing the names, types, and values of each subfield
in the record. NULL if the handler is not using name-value information, or if the operation does not
involve input or output, or if the name-value mode is not available due to the RPG programmer having
specified an input operation to a file name where the file has more than one record format.

numKeys
The number of keys for a keyed-operation to an externally-described file or format.

openFeedback
A pointer to the information that the handler provides to RPG to set the open-feedback part of the
file's File Information Data Structure (INFDS). The handler must set this pointer to storage that can
be accessed by RPG. If this information is not supplied by the handler, the open-feedback part of the
INFDS is not updated by RPG. The length is specified by openFeedbackLen.

See “Setting the feedback areas in the INFDS” on page 8 for more information.

openFeedbackLen
The length of the open-feedback information provided by the handler.

outputBuffer
A pointer to a data structure in the format of the output buffer for the file or record. The length is
given by outputBufferLen. NULL if the handler is using name-value information or if the output buffer
is irrelevant to the operation.

Rational Open Access: RPG Edition 19

outputBufferLen
The length of the output buffer. Zero if the output buffer is not relevant, or if name-value information is
being used.

outputNullMap
A pointer to the null-byte map of the output buffer for the file or record. The length is given by
outputNullMapLen. NULL if the handler is using name-value information or if the output buffer is
irrelevant to the operation.

outputNullMapLen
The length of the output null-byte map. Zero if the output null-byte map is not relevant, or if name-
value information is being used.

parameterFormat
The format of the parameter structure. This subfield is provided to allow for the possibility of other
formats in the future. The RPG program may be able to request a different format; this subfield would
indicate the format of the parameter. ROIO0100 is currently the only format.

printerOverflow
Set to '1' by the handler if overflow was detected on an output operation to a printer file. The handler
can leave it at '0' otherwise.

prtctl
A pointer to the print-control structure, QrnPrtctl_T, for a PRINTER file. NULL if the file is not a
PRINTER file.

recordLevels
A pointer to the QrnRecordLevels_T structure listing the compile-time record-level identifier for each
record in the file that is used by the RPG module. NULL if the file is a program-described file.

recordName
RPG sets this to the record name if the current I/O operation specifies the record name or if the file
has only one record format. Otherwise, RPG sets this to blank. When it is blank, and it is an input
operation to an externally-described file, the handler must set this subfield to the name of the record
format that was used. This subfield is only meaningful for I/O operations that work with data. It is
blank for other operations such as the OPEN operation.

rpgOperation
The operation being performed by the RPG program. See “The RPG operations to be handled”
on page 9 for the constants QrnOperation_* that define the possible values. Usually, rpgOperation
maps directly to an RPG operation code, but some operation codes have more than one possible
rpgOperation value. For example, the SETLL RPG operation may map to QrnOperation_SETLL,
QrnOperation_POSITION_START, or QrnOperation_POSITION_END.

rpgDevice
The device type of the file as defined in the RPG program. See “Constants QrnRpgDevice_* defining
the RPG device types” on page 27.

rpgStatus
The handler may leave this subfield set to zero to indicate that the operation was successful. If the
handler determines that the operation is not successful, and the handler does not want to send an
exception message to signal the condition, the handler may set this subfield to an RPG status code to
have RPG signal the exception associated with that status code. Status 1299 is the RPG status code
for general I/O errors, and can be used to signal an error condition for all operations. If this subfield it
set to a value that does not represent a valid RPG error status code, the resulting behavior of the RPG
program is undefined. See “Errors detected by the handler” on page 8 for more information on how
the handler can indicate that it discovered an error.

rrn
Provided by RPG as the relative record number for an output operation or the search argument for a
keyed operation. Provided by the handler for an input operation to a database file or a subfile. The
relative record number is available to the RPG programmer through the RECNO.

20 IBM i: Rational Open Access: RPG Edition

Note: The RPG programmer may also attempt to obtain the relative record number through the
Device-Specific Feedback area in the File Information Data Structure (INFDS). To support this, the
handler must use the deviceFeedback subfield.

sln
The starting line number set by the RPG program for a user-interface record, related to the
SLNO(*VAR) keyword for a system display file. If the SLN keyword is not specified for the file in
the RPG program, this subfield will have a value of zero.

stateInfo
A private area defined by the handler. The handler has complete control of this pointer. The pointer
will retain its value across calls to the handler. Usually the handler will set this pointer when the file is
open, and it will clean up any storage associated with this pointer when the file is closed.

Note: The pointer must be set to storage that will continue to exist after the handler has returned.

structLen
The length of the structure.

useNamesValues
Set to '1' by the handler if the handler uses the name-value information rather than the data structure
information for I/O buffers and keys. The handler can leave it at '0' otherwise. This subfield should
only be changed during the OPEN operation. The behavior is undefined when this subfield is changed
after the file has been opened.

userArea
A pointer to a handler-defined variable owned by the RPG program.

If the handler wants to share additional information with the RPG programmer, the second parameter
of the HANDLER keyword can be used on the File specification for the Open-Access file to specify a
variable to be passed to the handler. This subfield is a pointer to the RPG program variable. The RPG
variable can have any data type; usually it is a data structure. The RPG program and the handler must
agree on the type.

The subfields of the names-values structure
The names-values structure is QrnNamesValues_T.

Table 2. Subfields of QrnNamesValues_T

Subfield Type Set by Used by

num UINT4 RPG Handler

field “The subfields of the
name-value structure
describing one field” on
page 22

RPG Handler

Descriptions of the subfields
field

The array of name-value information.
num

The number of fields described by the information.

Rational Open Access: RPG Edition 21

The subfields of the name-value structure describing one field
The name-value structure describing one field is QrnNameValue_T.

Table 3. Subfields of QrnNameValue_T

Subfield Type Set by Used by

externalName CHAR(10) RPG Handler

datatype UINT1 RPG Handler

numericDefinedLen UINT1 RPG Handler

decimals UINT1 RPG Handler

dtzFormat UINT1 RPG Handler

dtSeparator CHAR(1) RPG Handler

input Indicator RPG Handler

output Indicator RPG Handler

isNullCapable Indicator RPG Handler

hasNullValue Indicator RPG and Handler RPG and Handler

valueLenBytes UINT4 RPG and Handler RPG and Handler

valueMaxLenBytes UINT4 RPG Handler

valueCcsid INT4 RPG Handler

value Pointer 1,2 RPG and Handler Handler

Additional notes on the table
1. The "Set by" and "Used by" columns refer to the data that the pointer is pointing to.
2. The pointer is set by RPG. The handler works with the data pointed to by the pointer, usually with a

variable or data structure based on the pointer.

Descriptions of the subfields
datatype

The data type of the field. For more information see “Data types used in name-value information” on
page 23.

decimals
The number of decimal places for a decimal field. It is only meaningful for decimal fields.

dtzFormat
The format of a date, time, or timestamp field. It is only meaningful for date, time, or timestamp fields.
For more information see “Constants QrnDtzFormat_* defining date, time, and timestamp formats” on
page 25.

dtSeparator
The separator for a date or time field. It is only meaningful for date or time fields.

externalName
The name of the field in the externally-described file.

hasNullValue
'1' indicates that the field has a null value, '0' indicates that the field does not have a null value. Set
by RPG to indicate whether an output field or key field has a null value. Set by the handler to indicate
whether an input field has a null value. Meaningful only when isNullCapable has a value of '1'.

22 IBM i: Rational Open Access: RPG Edition

input
A value of '1' indicates that the field is input capable. This subfield is mainly useful for the EXFMT
operation.

isNullCapable
A value of '1' indicates that the field is null capable in the RPG program.

numericDefinedLen
The defined length of a numeric field. For a decimal type, packed, zoned, or binary, it is the total
number of digits. For a float or integer type, it is the number of bytes. It is only meaningful for numeric
fields.

output
A value of '1' indicates that the field is output capable. This subfield is mainly useful for the EXFMT
operation.

value
A pointer to the value of the field in human-readable form. The length, in bytes, of the value is given by
the valueLenBytes subfield. For numeric values, this is the same value that is provided by the %CHAR
built-in function. For date, time, and timestamp values, this is the same value that is provided by the
%CHAR built-in function in the same format used by the field in the file.

• UCS-2 data is in the CCSID of the field in the file.
• Alphanumeric data is either in the CCSID of the field in the file or in the job CCSID.
• DBCS data is in the CCSID of the field in the file.
• The data for all other types is in the job CCSID.

When providing an input value, the handler must set the value in a similar form, and the handler must
set the valueLenBytes subfield to reflect the length, in bytes, of the data provided. The length of the
data must not exceed the number of bytes indicated by the valueMaxLenBytes subfield.

For more information, see “Data types used in name-value information” on page 23.

valueCcsid
The CCSID of the data in the value pointer. A value of zero indicates that the data is in the job CCSID.

valueLenBytes
Indicates the number of bytes in the data pointed to by the value pointer. Set by RPG for an
output field or a key field. Set by the handler for an input field. It must not be greater than the
valueMaxLenBytes subfield.

valueMaxLenBytes
Indicates the number of bytes in the buffer pointed to by the value pointer.

Data types used in name-value information
Data types used in name-value information.

The name of the constant that defines the type is followed by the numeric value of the constant in
parentheses. This numeric value is provided for debugging purposes only; handler providers should use
the named constant within their code.

QrnDatatype_Alpha (1)
Fixed-length character string in the job CCSID. For input operations, if the value provided by the
handler is shorter than the size of the field, the value will be padded on the right with single-byte
blanks when the value is used to set the RPG field.

QrnDatatype_AlphaVarying (2)
Varying-length character string in the job CCSID.

QrnDatatype_Date (12)
Date. The value is in the job CCSID. The format of the field is given by the dtzFormat subfield and the
separator is given by the dtSeparator subfield. The value for an output field or a key field is in the
form returned by the %CHAR built-in function of RPG, for example "2025-02-28". The value required
for an input field must be in the same format. The value is converted to a date value using the same
processing as the %DATE RPG built-in function.

Rational Open Access: RPG Edition 23

QrnDatatype_Dbcs (5)
Fixed-length DBCS string. The CCSID is indicated by the valueCcsid subfield. For input operations, if
the value provided by the handler is shorter than the size of the field, the value will be padded on the
right with double-byte blanks when the value is used to set the RPG field.

QrnDatatype_DbcsVarying (6)
Varying-length DBCS string. The CCSID is indicated by the valueCcsid subfield.

QrnDatatype_Decimal (8)
Decimal numeric, used for packed, zoned, and binary RPG fields. The value is in the job CCSID. The
total number of digits is given by the numericDefinedLen subfield and the number of decimal places is
given by the decimals subfield. The value for an output field or a key field is in the form returned by
the %CHAR built-in function of RPG, for example "12.34" or "-5,67". The value required for an input
field must be in a similar form. The length of the value is not required to match the length of the field;
the value is converted to a packed, zoned, or binary value using the same processing as the %DECH
RPG built-in function. For example, if the field has 7 digits and 1 decimal position, the value provided
for an input operation could be "-1.76". The value placed in the RPG field would be -1.8.

The decimal point may be the period or the comma.

QrnDatatype_Float (11)
Float numeric. The value is in the job CCSID. The number of bytes of the field (4 or 8) is given by the
numericDefinedLen subfield. The value for an output field or a key field is in the form returned by the
%CHAR built-in function of RPG, for example "+1.2300000E+00". The value required for an input field
must be in a similar form. The length of the value is not required to match the length of the field and
is not required to have the exponent. The value is converted to a float value using the same processing
as the %FLOAT RPG built-in function. For example, if the field has length 4, the value provided for an
input operation could be "-1.76". The value placed in the RPG float field would be -1.76E00.

QrnDatatype_Indicator (7)
Single-byte character with the value '0' or '1', used as a Boolean type in RPG.

QrnDatatype_Integer (9)
Integer numeric. The value is in the job CCSID. The number of bytes of the field (1, 2, 4, or 8) is given
by the numericDefinedLen subfield. The value for an output field or a key field is in the form returned
by the %CHAR built-in function of RPG, for example "12" or "-5". The value required for an input field
must be in a similar form. The length of the value is not required to match the length of the field; the
value is converted to a integer value using the same processing as the %INTH RPG built-in function.
For example, if the field has length 4 (defined as having 10 digits in RPG), the value provided for an
input operation could be "-1.76". The value placed in the RPG integer field would be -2.

QrnDatatype_Time (13)
Time. The value is in the job CCSID. The format of the field is given by the dtzFormat subfield and
the separator is given by the dtSeparator subfield. The value for an output field or a key field is in
the form returned by the %CHAR built-in function of RPG, for example "23.30.01". The value required
for an input field must be in the same format. The value is converted to a date value using the same
processing as the %TIME RPG built-in function.

QrnDatatype_Timestamp (14)
Timestamp. The value is in the job CCSID. The value for an output field or a key field is in the form
returned by the %CHAR built-in function of RPG, for example "2010-12-25-23.30.01.000000". The
value required for an input field must be in the same format. The value is converted to a date value
using the same processing as the %TIMESTAMP RPG built-in function.

QrnDatatype_Unicode (3)
Fixed-length UCS-2 string. The CCSID is indicated by the valueCcsid subfield. For input operations, if
the value provided by the handler is shorter than the size of the field, the value will be padded on the
right with UCS-2 blanks when the value is used to set the RPG field.

QrnDatatype_UnicodeVarying (4)
Varying-length UCS-2 string. The CCSID is indicated by the valueCcsid subfield.

QrnDatatype_Unsigned (10)
Unsigned integer numeric. The value is in the job CCSID. The number of bytes of the field (1, 2, 4, or
8) is given by the numericDefinedLen subfield. The value for an output field or a key field is in the form

24 IBM i: Rational Open Access: RPG Edition

returned by the %CHAR built-in function of RPG, for example "12" or "5". The value required for an
input field must be in a similar form. The length of the value is not required to match the length of the
field; the value is converted to a unsigned integer value using the same processing as the %UNSH RPG
built-in function. For example, if the field has length 2 (defined as having 5 digits in RPG), the value
provided for an input operation could be "1.76". The value placed in the RPG unsigned field would be
2.

Constants QrnDtzFormat_* defining date, time, and timestamp formats
Constants QrnDtzFormat_* defining date, time, and timestamp formats.

The name of the constant that defines the type is followed by the numeric value of the constant in
parentheses. This numeric value is provided for debugging purposes only; handler providers should use
the named constant within their code.

QrnDtzFormat_DMY (7)
*DMY. Valid for date (DD/MM/YY). The separator is given by the dtSeparator subfield.

QrnDtzFormat_EUR (3)
*EUR. Valid for date (DD.MM.YYYY) and time (HH.MM.SS).

QrnDtzFormat_HMS (9)
*HMS. Valid for time (HH:MM:SS). The separator is given by the dtSeparator subfield.

QrnDtzFormat_ISO (1)
*ISO. Valid for date (YYYY-MM-DD), time (HH.MM.SS), and timestamp (YYYY-MM-DD-
HH.MM.SS.UUUUUU).

QrnDtzFormat_JIS (4)
*JIS. Valid for date (YYYY-MM-DD) and time (HH:MM:SS).

QrnDtzFormat_JUL (8)
*JUL. Valid for date (YY/DDD). The separator is given by the dtSeparator subfield.

QrnDtzFormat_MDY (6)
*MDY. Valid for date (MM/YY/DD). The separator is given by the dtSeparator subfield.

QrnDtzFormat_USA (2)
*USA. Valid for date (MM/DD/YYYY) and time (HH:MM PM).

QrnDtzFormat_YMD (5)
*YMD. Valid for date (YY/MM/DD). The separator is given by the dtSeparator subfield.

System object structure, QrnObject_T
Structure QrnObject_T locates a system object

The subfields of the structure
Table 4. Subfields of QrnObject_T

Subfield Type

name CHAR(10)

library CHAR(10)

Descriptions of the subfields
library

The library of the system object
name

The name of the system object

Rational Open Access: RPG Edition 25

Print-control structure, QrnPrtctl_T
Structure QrnPrtctl_T defines an RPG print-control structure

The subfields of the structure
Table 5. Subfields of QrnPrtctl_T

Subfield Type Set by Used by

spaceBefore ZONED(3,0) RPG Handler

spaceAfter ZONED(3,0) RPG Handler

skipBefore ZONED(3,0) RPG Handler

skipAfter ZONED(3,0) RPG Handler

currLine ZONED(3,0) Handler RPG

Descriptions of the subfields
currLine

The current line in the file.
spaceAfter

The number of lines to advance after printing the line.
spaceBefore

The number of lines to advance before printing the line.
skipAfter

The line to skip to after advancing to the next page, after printing the line.
skipBefore

The line to skip to after advancing to the next page, before printing the line.

Record-levels structure, QrnRecordLevels_T
Structure QrnRecordLevels_T describes the record levels for the file

The recordLevels subfield of the handler parameter gives the compile-time record levels of the record
formats used by the RPG program.

The subfields of the QrnRecordLevels_T structure
Table 6. Subfields of QrnRecordLevels_T

Subfield Type

num UINT4

levels QrnRecordLevel_T

Descriptions of the subfields
levels

The array of level information.
num

The number of array elements.

26 IBM i: Rational Open Access: RPG Edition

Record-level structure for one level, QrnRecordLevel_T
Structure QrnRecordLevel_T describes the record level of one record format used in the file

The subfields of the QrnRecordLevel_T structure
Table 7. Subfields of QrnRecordLevel_T

Subfield Type

record CHAR(10)

level CHAR(13)

Descriptions of the subfields
level

The format level identifier for the record format at the time the RPG module was compiled. If the
exact format of the record is important to the handler, the handler may call an API to retrieve the
current format level identifier for the record format to verify that it matches the compile-time version
of the record format.

record
The name of the record.

Data types used in the handler parameter
Data types used in the handler parameter.

CHAR(n)
Single-byte character string with n bytes

Indicator
Single-byte character with the value '0' or '1', used as a Boolean type in RPG

INT4
4-byte integer

UINT1
1-byte unsigned integer

UINT4
4-byte unsigned integer

ZONED(n,p)
Zoned decimal with n digits and p decimal places

Constants QrnRpgDevice_* defining the RPG device types
Constants QrnRpgDevice_* defining the RPG device types for the rpgDevice subfield.

The name of the constant that defines the device is followed by the value of the constant in parentheses.
This value is provided for debugging purposes only; handler providers should use the named constant
within their code.

These constants define the possible values for the rpgDevice subfield.

QrnRpgDevice_Database (D)
A database device, defined with device-type DISK in the RPG module.

QrnRpgDevice_Printer (P)
A printer device, defined with device-type PRINTER in the RPG module.

QrnRpgDevice_UserInterface (U)
A user-interface device, defined with device-type WORKSTN in the RPG module.

Rational Open Access: RPG Edition 27

Constants QrnCcsids_*
Constants QrnCcsids_* defining the possible values for the alphaCcsids subfield.

The name of the constant is followed by the value of the constant in parentheses. This value is provided
for debugging purposes only; handler providers should use the named constant within their code.

These constants define the possible values for the alphaCcsids subfield.

QrnCcsids_JOB (0)
Alphanumeric fields have the job CCSID.

QrnCcsids_FILE (1)
Alphanumeric fields have the same CCSID as the fields in the file.

QrnCcsids_N_A (2)
Not applicable. There are no alphanumeric fields in the file.

Constants QrnFunctionKey_* defining the values for the functionKey subfield
Constants QrnFunctionKey_* defining the values for the functionKey subfield.

The name of the constant that defines the function key is followed by the numeric value of the constant
in parentheses. This numeric value is provided for debugging purposes only; handler providers should use
the named constant within their code.

These constants can be used to set the functionKey subfield of the handler parameter.

QrnFunctionKey_None (0)
No function key was pressed.

QrnFunctionKey_01 (1) - QrnFunctionKey_24 (24)
One of the function keys F1 - F24 was pressed.

QrnFunctionKey_CLEAR (124)
The CLEAR key was pressed.

QrnFunctionKey_HELP (125)
The HELP key was pressed.

QrnFunctionKey_HOME (126)
The HOME key was pressed.

QrnFunctionKey_PRINT (121)
The PRINT key was pressed.

QrnFunctionKey_ROLLDOWN (123)
The ROLLDOWN key was pressed.

QrnFunctionKey_ROLLUP (122)
The ROLLUP key was pressed.

Restrictions for an Open-Access file
There are several RPG restrictions for an Open Access file.

• Name-value information is not available for an input operation to a file name when the file has more
than one record format. If the handler has requested name-value information for the file with more
than one record format, and the RPG program does an input operation by file name, the request for
name-value information will be ignored for that particular operation and data structure buffers will be
passed instead.

• If a global Open-Access file has a handler in the same module as the file, the USROPN keyword must be
specified.

• An Open-Access file cannot be passed as a file parameter.
• An Open-Access file cannot be defined as a TEMPLATE file.

28 IBM i: Rational Open Access: RPG Edition

• An Open-Access file cannot be related to another file by the LIKEFILE keyword, either as the parent or
the child.

• An Open-Access file cannot be defined as a record-address file, or the file that is process a record-
address file.

• An Open-Access file cannot be defined as a table file.
• An Open-Access file cannot be a program-described WORKSTN file.
• An Open-Access file cannot use PRTCTL(*COMPAT).
• An Open-Access file cannot be a multiple-device file. The multiple-device keywords MAXDEV, DEVID,

SAVEDS, SAVEIND cannot be used, and the POST operation for the file cannot have Factor 1 specified.

Writing a parser for the RPG DATA-INTO operation code
The DATA-INTO operation imports the data from a structured document into an RPG data structure. The
operation requires a parser that parses the data in the document, and uses callback functions to pass the
information about named values in the document to the RPG runtime, which places the data into an RPG
data structure.

The parser may not always run to completion
Usually, the parser will be able to complete all its calls to the callback functions and return normally.
However, in some cases, the call to the parser will be terminated before it has finished parsing. This can
occur in the following circumstances:

• Sufficient data has been supplied to set the RPG variable.
• An error occurs while data is assigned to the RPG variable.
• The sequence of calls from the parser is not correct.

Tip: If your parser has code that needs to run when the parsing is complete, enable a cancel handler to
perform this code. For example, if the parser is written in RPG, code the final code in an ON-EXIT section
for the parser procedure, to ensure that it runs whether the parser ends normally or abnormally.

Parameter passed to a DATA-INTO parser
The parameter passed to a DATA-INTO parser is a data structure with type QrnDiParm_T. It has the
following subfields.

data
A pointer to the data in the document. If the document was specified as a file name, this pointer
contains the data in the file.

The CCSID of the data is indicated by the dataCcsid subfield.

The length of the data, in bytes, is indicated by the dataLen subfield.

env
A pointer to a data structure with type QrnDiEnv_T. This data structure has the procedure pointers for
the callback procedures. See “Callback procedures for DATA-INTO parsers” on page 30.

handle
This subfield must be passed as the first parameter for every call to a callback procedure.

userParm
A pointer to either an RPG variable or to a null-terminated string. The userParmisNullTermString
subfield indicates which it is.

If userParmisNullTermString does not have the value '1', no information is available about the data
type of the variable. The RPG programmer coding the DATA-INTO operation is expected to be aware of
the type of parameter that the parser supports.

Note: Do not modify the data pointed to by this pointer if the data is a null-terminated string.

Rational Open Access: RPG Edition 29

dataLen
The length of the data pointed to by the data subfield, measured in bytes.

dataCcsid
The CCSID pointed to by the data subfield, measured in bytes. A value of zero indicates that the data
is in the CCSID of the job.

userParmIsNullTermString
An RPG indicator (one-byte character) describing the data pointed to by the userParm subfield. A
value of '1' indicates that the data is a null-terminated string. A value of '0' indicates that the data is
an RPG variable.

Note: For parsers written in ILE RPG, the %PARMS built-in function cannot be used reliably if the parser
is a procedure. However, since there is always exactly one parameter passed to a parser procedure, this
should not be a concern.

Callback procedures for DATA-INTO parsers
The procedure pointers for the callback procedures are subfields of the parameter passed to the parser.
See “Parameter passed to a DATA-INTO parser” on page 29.

In RPG, the callback procedures are enabled by setting the env pointer to the env subfield of the
parameter passed to the parser. (1)

The prototypes for the callback procedures are in the QRNDTAINTO member of the QOAR/QRPGLESRC
source file.

/COPY QOAR/QRPGLESRC,QRNDTAINTO
DCL-PI *n;
 parm LIKEDS(QrnDiParm_T) CONST;
END-PI;

env = parm.env; // 1
QrnDiStart (...);

In C, the callback procedure pointers are accessed as subfields of the env subfield of the parameter
passed to the parser. 2

#include "QOAR/H,QRNDTAINTO"
main (int argc, void *argv[]) {
 const QrnDiParm_T *parm = (QrnDiParm_T *) argv[1];

 parm->env->QrnDiStart (...); // 2
}

The callback procedures
The first parameter for all the callback procedures is the handle subfield of the parameter that is passed
to the parser.

QrnDiStart(handle)
This procedure must be called before any other callback procedures are called.

QrnDiFinish(handle)
This procedure must be called when parsing is complete.

QrnDiReportError(handle, errorCode, bytesParsed)
The parser can call this procedure to report that it found an error in the document.

Note: Control will not return to the parser after this procedure is called.

• errorCode must be greater than zero. The meaning of the error code is determined by the parser.

30 IBM i: Rational Open Access: RPG Edition

• bytesParsed indicates the number of bytes that the parser had parsed when it discovered the error.

QrnDiTrace(handle, msg, nested)
The parser can call this procedure to add its own tracing information. If the nested parameter has
the value '1', the message will be issued at the current nesting level of the trace output. If the nested
parameter has the value '0', the trace message will be issued starting in column 1 of the trace output.

Note: Tracing is enabled using the QIBM_RPG_DATA_INTO_TRACE_PARSER environment variable.
See the DATA-INTO section of the IBM® Rational Development Studio for i: ILE RPG Reference.

QrnDiReportName(handle, name, nameLength)
The parser calls this procedure to report that it found a name in the document. This may be the name
of a structure, an array, or some data.

• name is a pointer to the value of the name. The value must be in the same CCSID as the document.
If the value is not in the same CCSID as the document, the QrnDiReportNameCcsid procedure
must be used instead.

The call to QrnDiReportName must be followed by a call to QrnDiStartStruct,
QrnDiStartArray, QrnDiReportValue, or QrnDiReportValueCcsid.

• nameLength is the length of the name measured in bytes.

QrnDiReportNameCcsid(handle, name, nameLength, ccsid)
The parser calls this procedure to report that it found a name in the document when the value of the
name is in a different CCSID from the CCSID of the document. This may be the name of a structure, an
array, or scalar data.

The call to QrnDiReportNameCcsid must be followed by a call to QrnDiStartStruct,
QrnDiStartArray,, QrnDiReportValue, or QrnDiReportValueCcsid.

• name is a pointer to the value of the name. The value must be in the CCSID specified by the ccsid
parameter.

• nameLength is the length of the name measured in bytes.
• ccsid is the CCSID of the value of the name.

QrnDiReportValue(handle, value, valueLength)
The parser calls this procedure to report that it found a scalar value in the document.

• name is a pointer to the value. The value must be in the same CCSID as the document. If the value
is not in the same CCSID as the document, the QrnDiReportValueCcsid procedure must be used
instead.

• valueLength is the length of the value measured in bytes.

Normally, the name for the value must have been previously reported by a prior call to
QrnDiReportName. However, the parser may call this procedure without previously reporting a name
if the value is the only thing found in the document. In that case, RPG will assume that the name of the
value is the same as the name of the target variable.

QrnDiReportValueCcsid(handle, value, valueLength, ccsid)
The parser calls this procedure to report that it found a value in the document when the value is in a
different CCSID from the CCSID of the document.

• name is a pointer to the value. The value must be in the CCSID specified by the ccsid parameter.
• valueLength is the length of the value measured in bytes.
• ccsid is the CCSID of the value.

Normally, the name for the value must have been previously reported by a prior call to
QrnDiReportName. However, the parser may call this procedure without previously reporting a name
if the value is the only thing found in the document. In that case, RPG will assume that the name of the
value is the same as the name of the target variable.

Rational Open Access: RPG Edition 31

QrnDiReportAttr(handle, name, nameLength, value, valueLength)
The parser calls this procedure to report an attribute of a name. If the name also contains other child
items, then they must be preceded by a call to QrnDiStartStruct.

For example, the following sequence of calls is valid, although not all the parameters are shown. The
RPG variable matching "employee" must be a data structure with a subfield "type".

QrnDiReportName ("employee")
QrnDiReportAttr ("type", "manager")

The following sequence of calls is also valid, although not all the parameters are shown. The RPG
variable matching "employee" must be a data structure with subfields "type" and "id".

QrnDiReportName ("employee")
QrnDiReportAttr ("type", "manager")
QrnDiStartStruct ()
 QrnDiReportName ("id")
 QrnDiReportValue ("12345");
QrnDiEndStruct ()

RPG supports two special attributes that give additional information about scalar fields.
fmt

This specifies the format for a data, time or timestamp value. The valid values for the follow the
same rules as RPG uses for %DATE, %TIME and %TIMESTAMP respectively. The format defaults
to *ISO with separators. The format may begin with an asterisk, and for formats that allow more
than one separator, the format may be followed by the separator.

For example, the following values are valid for a "fmt" attribute: "dmy", "DMY", "*DMY/", "dmy-",
"*DMY&", "dmy0".

adjust
A value of "right" causes the value for the name to be right-adjusted in the target RPG variable.
Data is left-adjusted by default, but a value of "left" is also supported.

For example, the following sequence of calls is valid, although not all the parameters are shown. The
RPG variable matching "id" must be a data structure with subfields "fmt" and "value".

QrnDiReportName ("id")
QrnDiReportAttr ("fmt", "plain")
QrnDiReportAttr ("value", "12A")

If the special attribute is not relevant, or the value is not valid, the attribute is treated as a normal
attribute.

QrnDiReportAttrCcsid(handle, name, nameLength, nameCcsid, value, valueLength, valueCcsid)
The parser calls this procedure when the name or value are in a different CCSID from the CCSID of the
document. See the discussion for QrnDiReportAttr.

QrnDiStartStruct(handle)
The parser calls this procedure to indicate that the previously reported name is a structure.

The parser may also call this procedure without previously reporting a name if the structure is the
outermost stucture in the document. In that case, RPG will assume that the name of the structure is
the same as the name of the target variable.

QrnDiEndStruct(handle)
The parser calls this procedure to report that the previously reported structure has ended.

32 IBM i: Rational Open Access: RPG Edition

QrnDiStartArray(handle)
The parser calls this procedure to indicate that the previously reported name is an array.

The parser may also call this procedure without previously reporting a name if the array is the
outermost stucture in the document. In that case, RPG will assume that the name of the array is the
same as the name of the target variable.

Note: The parser only reports the name of the array once. It reports each array element the same way
as it reports non-array values, structures, or arrays. For example, if it is an array of scalar values, it
calls QrnDiReportName to report the name of the array, then it calls QrnDiStartStruct, then it
makes repeated calls to QrnDiReportValue, then it calls QrnDiEndArray.

QrnDiEndArray(handle)
The parser calls this procedure to report that the previously reported array has ended.

Tracing a DATA-INTO parser
If you want to know the sequence of calls from the parser, including the names and values, use the
QIBM_RPG_DATA_INTO_TRACE_PARSER environment variable to enable tracing. See the DATA-INTO
section of the IBM Rational Development Studio for i: ILE RPG Reference.

Here is an example of a trace:

---------------- Start ---------------
ReportName: 'petInfo'
StartStruct
 ReportName: 'pets'
 StartArray
 StartStruct
 ReportName: 'name'
 ReportValue: 'Spot'
 ReportName: 'type'
 ReportValue: 'dog'
 ReportName: 'age'
 ReportValue: '3'
 EndStruct
 StartStruct
 ReportName: 'name'
 ReportValue: 'Puff'
 ReportName: 'type'
 ReportValue: 'cat'
 ReportName: 'age'
 ReportValue: '7'
 EndStruct
 EndArray
 ReportName: 'veterinarian'
 ReportValue: 'Dr Smith'
EndStruct
---------------- Finish --------------

Note: If the trace output does not show up immediately, or if it flashes too quickly to see, you can view
the standard output by calling the following ILE RPG program. Compile the program with CRTBNDRPG.

**FREE
CTL-OPT ACTGRP(*NEW);
DCL-PR printf EXTPROC(*DCLCASE);
 p POINTER VALUE OPTIONS(*STRING : *NOPASS);
END-PR;
DCL-PR getchar INT(10) EXTPROC(*DCLCASE) END-PR;
DCL-C EOL x'15';

printf (EOL);
getchar ();
return;

The following C program will accomplish the same thing. Compile the program with CRTBNDC.

Rational Open Access: RPG Edition 33

#include <stdio.h>
main()
{
 printf("\n");
 getchar();
}

Example of a DATA-INTO parser
Note: Detailed explanation is provided only for the aspects of the example that are related to the DATA-
INTO operation.

In this example, a parser parses a properties file for the DATA-INTO operation, and an RPG program uses
the parser to import data from the properties file into a data structure.

This parser works with UCS-2 data. That means that it can parse documents in any CCSID. The "ccsid"
option for the DATA-INTO operation defaults to "ccsid=ucs2", so RPG programmers using this parser will
not have to worry about coding the "ccsid" option.

CAUTION: If the parser expected its data in the job CCSID, then data might be lost if the document
contained data that could not be converted to the job CCSID.

The following shows the RPG program that uses the DATA-INTO operation.

Note the following aspects of the program:

1. The data structures are defined with a subfield for each property expected in the "properties" file.
2. The "properties" file is specified in the first operand of the %DATA built-in function. Option "doc=file"

indicates that the first operand is the name of a file. Option "allowextra=yes" allows the "properties"
file to have additional properties.

3. The program that does the parsing is specified as the first operand of the %PARSER built-in function.
See “Program to parse a "properties" file” on page 35 for the source for the program.

4. The second DATA-INTO operation parses properties in a string. The "doc=file" option is not specified.
5. The string "sep=;" is specified as the second operand of the %PARSER built-in function. The parser

will receive this value as a null-terminated string. See “Main procedure” on page 35 to see how
the parser handles this null-terminated string. See “A DATA-INTO parser that uses a data structure
as a communication area” on page 39 for an example of a parser which uses a data structure to
communicate between the parser and the program with the DATA-INTO operation.

DCL-DS props1 QUALIFIED; // 1
 company VARCHAR(30);
 language VARCHAR(10);
 version VARCHAR(10);
END-DS;
DCL-DS props2 QUALIFIED; // 1
 city VARCHAR(30);
 province VARCHAR(10);
END-DS;

DCL-S propString VARCHAR(50) INZ('city=Toronto;province=Ontario;');

DATA-INTO props1 %DATA(propfileName : 'doc=file allowextra=yes') // 2
 %PARSER('PARSPROP'); // 3

DATA-INTO props2 %DATA(propString : 'allowextra=yes') // 4
 %PARSER('PARSPROP' : 'sep=;'); // // 5

34 IBM i: Rational Open Access: RPG Edition

Program to parse a "properties" file
1. Copy in the file with the definition for the parameter passed to the parser and the prototypes for the

callback procedures.
2. Define named constants for the error codes issued by this parser. Each parser can define its own error

codes.
3. Define other constants and templates related to parsing in UCS-2.
4. Define a data structure template to hold the information about the parse.

**free
ctl-opt main(parsProp);
ctl-opt option(*srcstmt);

/copy qoar/qrpglesrc,qrndtainto 1

// Error codes for this parser 2
dcl-c ERROR_missing_equal1 1;
dcl-c ERROR_blankName2 2;
dcl-c ERROR_blankInName3 3;

// Constants related to working in UCS-2 3
dcl-c UCS2_CCSID 13488;
dcl-c UTF16_CCSID 1200;
dcl-c CR %ucs2(X'0D');
dcl-c LF %ucs2(X'15');
dcl-c CHAR_SIZE 2; // The size of a UCS-2 character
dcl-s oneChar_t UCS2(1);

dcl-ds parseInfo_t template qualified; // 4
 lineStartOffset int(10);
 lineLength int(10);
 equalOffset int(10);
 curOffset int(10);
 sep varUcs2(20);
end-ds;

Main procedure
1. The parser is passed a single parameter. See “Parameter passed to a DATA-INTO parser” on page 29.
2. This parser supports a null-terminated string as the option for the %PARSER built-in function of the

DATA-INTO operation. This parser expects the value of the null-terminated string to begin with "sep=",
followed by the value that separates each option in the data. If this option is not specified, this parser
assumes that the data came from a stream file, and that the CR and or LF characters end each line.

3. This parser expects the data to be UCS-2 or UTF-16. If the RPG programmer specified option
"ccsid=job", this parser sends an escape message which will cause the DATA-INTO operation to fail.

4. Enable access to the callback procedures.
5. QrnDiStart must be called first.
6. Call QrnDiStartStruct to indicate that the document is a structure. Reporting a name for the

outermost structure is not required.
7. The parse() procedure will report the names and values within the document.
8. Call QrnDiEndStruct to indicate that the outer data structure has ended.
9. QrnDiFinish must be called last.

Rational Open Access: RPG Edition 35

dcl-proc parsProp;
 dcl-pi *n extpgm;
 parm likeds(QrnDiParm_T) const; // 1
 end-pi;
 dcl-ds parseInfo likeds(parseInfo_t) inz;
 dcl-s userParm varchar(30);

 if parm.dataCcsid <> UCS2_CCSID // 2
 and parm.dataCcsid <> UTF16_CCSID;
 //We can only parse if option "ccsid=ucs2" was specified!
 //Send an escape message in this case, since it's a user error
 signalException ('%DATA must have ccsid=ucs2 for this parser'
 : %proc());
 // Control will not reach here
 endif;

 if parm.userParmIsNullTermString; // 2
 userParm = %str(parm.userParm);
 if %len(userParm) > 4
 and %scan('sep=' : userParm) = 1;
 // The parameter starts with 'sep='
 // The separator is the remaining part of the parameter
 parseInfo.sep = %subst(userParm : 5);
 endif;
 endif;

 pQrnDiEnv = parm.env; // 4

 QrnDiStart (parm.handle); // 5

 QrnDiStartStruct (parm.handle); // 6

 // Parse the document
 parse (parm : parseInfo); // 7

 // End the outer structure
 QrnDiEndStruct (parm.handle); // 8

 // End the parse
 QrnDiFinish(parm.handle); // 9

on-exit;
 // Nothing to do here yet
end-proc;

parse() procedure
This procedure loops through the document, reporting one property for each line it finds in the document.

dcl-proc parse;
 dcl-pi *n extproc(*dclcase);
 parserParm likeds(QrnDiParm_T) const;
 parseInfo likeds(parseInfo_t);
 end-pi;

 dow findNextLine (parserParm : parseInfo) = *on;
 reportProperty (parserParm : parseInfo);
 enddo;
 return;
end-proc;

findNextLine() procedure
This procedure loops through the data until it finds the end of a line.

1. If the options indicated a separator string, the parser checks whether it has found the separator. If so,
the line is complete, and the procedure returns.

36 IBM i: Rational Open Access: RPG Edition

2. If the options did not indicate a separator string, the parser checks whether it has found an end-of-line
character, either CR (carriage-return) or LF (line-feed). If the procedure had found any prior data for
the line, the procedure returns. Otherwise, it begins a new line without returning the blank line. This
allows the document to have lines that end with both CR and LF.

3. If the document is not valid according to the rules of this parser, the parser calls the “halt() procedure”
on page 38 to indicate that the document is invalid.

Note: Control does not return to the parser after a call to the halt() procedure due to the fact
that the halt() procedure calls the QrnDiReportError procedure, which causes the parse to end
immediately.

dcl-proc findNextLine;
 dcl-pi *n ind extproc(*dclcase);
 parserParm likeds(QrnDiParm_T) const;
 parseInfo likeds(parseInfo_t);
 end-pi;
 dcl-s viewCur like(oneChar_T) based(pData);
 dcl-s viewNext like(oneChar_T) based(pDataNext);
 dcl-s viewSep ucs2(MAX_SEP) based(pData); // must use %SUBST
 dcl-s sep varUcs2(MAX_SEP);
 dcl-s sepSize int(10);

 parseInfo.lineStartOffset = parseInfo.curOffset;
 parseInfo.lineLength = 0;
 parseInfo.equalOffset = 0;
 sep = parseInfo.sep;
 sepSize = %len(sep) * CHAR_SIZE;

 pData = parserParm.data + parseInfo.curOffset;
 dow parseInfo.curOffset < parserParm.dataLen;
 if %len(sep) > 0; // The separator is a string 1
 if parseInfo.curOffset + sepSize <= parserParm.dataLen
 and %subst(viewSep : 1 : %len(sep)) = sep;
 parseInfo.curOffset += sepSize;
 return *on; // End of line
 endif;
 endif;

 parseInfo.curOffset += CHAR_SIZE;
 if %len(sep) = 0 and (viewCur = CR or viewCur = LF); 2
 if parseInfo.lineLength > 0;
 return *on; // The line was not empty
 else; // The previous line was empty, so start again
 parseInfo.lineStartOffset = parseInfo.curOffset;
 parseInfo.lineLength = 0;
 parseInfo.equalOffset = 0;
 endif;
 else;
 parseInfo.lineLength += CHAR_SIZE;
 if viewCur = '=';
 parseInfo.equalOffset = parseInfo.curOffset - CHAR_SIZE;
 elseif viewCur = ' ';
 if parseInfo.equalOffset = 0; // 3
 if parseInfo.lineLength = 0; // Completely blank name
 halt (parserParm : parseInfo : ERROR_blankName2);
 else; // Blanks are not allowed before the equal sign
 halt (parserParm : parseInfo : ERROR_blankInName3);
 endif;
 endif;
 endif;
 endif;
 pData += CHAR_SIZE;// Next character (curOffset already updated)
 enddo;
 return parseInfo.lineLength > 0; // *ON if the line is not empty
end-proc;

reportProperty() procedure
This procedure reports the property found on a line in the document.

1. If the line is not valid, the parser reports the error using the QrnDiReportError callback.

Rational Open Access: RPG Edition 37

Note: Control does not return to the parser after a call to QrnDiReportError.
2. The callback QrnDiReportName is used to report the name of the property. The DATA-INTO operation

will use this name to locate a subfield in the target data structure.
3. The callback QrnDiReportValue is used to report the value of the property. The DATA-INTO

operation will assign this value to the subfield that was located by the call to QrnDiReportName.

dcl-proc reportProperty;
 dcl-pi *n extproc(*dclcase);
 parserParm likeds(QrnDiParm_T) const;
 parseInfo likeds(parseInfo_t);
 end-pi;
 dcl-s len int(10);

 if parseInfo.equalOffset = 0;
 halt (parserParm : parseInfo // 1
 : ERROR_missing_equal1);
 elseif parseInfo.equalOffset = parseInfo.lineStartOffset;
 halt (parserParm : parseInfo // 1
 : ERROR_blankName2);
 endif;

 // Report the name
 len = parseInfo.equalOffset - parseInfo.lineStartOffset;
 QrnDiReportName (parserParm.handle // 2
 : parserParm.data + parseInfo.lineStartOffset
 : len);

 // Report the value
 len = parseInfo.lineLength - (len + CHAR_SIZE);
 QrnDiReportValue (parserParm.handle // 3
 : parserParm.data + parseInfo.equalOffset + CHAR_SIZE
 : len);
 return;
end-proc;

halt() procedure
This procedure reports a parsing error.

1. The parser reports the error using the QrnDiReportError callback.
2. Control does not return to the parser after a call to QrnDiReportError.

dcl-proc halt;
 dcl-pi *n extproc(*dclcase);
 parserParm likeds(QrnDiParm_T) const;
 parseInfo likeds(parseInfo_T) const;
 errorCode int(10) value;
 end-pi;

 QrnDiReportError (parserParm.handle // 1
 : errorCode
 : parseInfo.curOffset - 1);
 // Control will not reach here after the call to QrnDiReportError 2

end-proc;

signalException() procedure
This procedure sends an escape message.

1. The message is sent to the main

38 IBM i: Rational Open Access: RPG Edition

dcl-proc signalException;
 dcl-pi *n;
 msg varchar(200) const;
 mainProcName varchar(200) const;
 end-pi;
 dcl-pr QMHSNDPM extpgm;
 msgId char(7) const;
 msgFile likeds(qualMsgf);
 msgData char(500) const;
 dataLen int(10) const;
 msgType char(10) const;
 stackEntry char(10) const;
 stackOffset int(10) const;
 msgKey char(4) const;
 errorCode likeds(errcode);
 end-pr;
 dcl-ds qualMsgf qualified;
 msgf char(10) inz('QCPFMSG');
 lib char(10) inz('*LIBL');
 end-ds;
 dcl-ds errCode qualified;
 bytesProvided int(10) inz(0); // issue exception if bad parms
 bytesAvailable int(10) inz(0);
 end-ds;
 dcl-s msgkey char(4);

 QMHSNDPM ('CPF9898' : qualMsgf : msg : %len(msg) : '*ESCAPE'
 : mainProcName : 0 // Send to our main procedure 1
 : msgkey : errCode);
 // Control will not return here after sending the escape message
end-proc;

A DATA-INTO parser that uses a data structure as a communication area
This is not a complete example. It is intended to show how the DATA-INTO operation code and the parser
can share information using a data structure. In this case, the second operand of the %PARSER built-in
function is a data structure. The userParm subfield in the parameter passed to the parser is a pointer to
that data structure, and the userParmIsNullTermString subfield has the value '0'.

The previous example shows how the DATA-INTO operation and the parser share information using a
null-terminated string. In that case, the second operand of the %PARSER built-in function is a character
expression. The userParm subfield is a pointer to a null-terminated string with the value of the character
expression, and the userParmIsNullTermString subfield has the value '1'.

When a parser expects a data structure to be coded as the second operand of the %PARSER built-in
function, there should be a copy file containing a template for the data structure. Both the parser and
the RPG programs with the DATA-INTO operations will use the copy file to ensure that they agree on the
nature of the data structure used as a communication area between the RPG program and the parser.

Copy file COMMAREA_H with a data structure template

 DCL-DS commArea_T QUALIFIED TEMPLATE;
 sub1 VARCHAR(10);
 sub2 INT(10);
 END-DS;

Program with a DATA-INTO operation
1. The /COPY directive copies in the source file with the template for the data structure used to

communicate with the parser.
2. The communication-area data structure is defined.

Rational Open Access: RPG Edition 39

3. The subfields of the communication-area data structure are set.
4. The communication-area data structure is specified as the second parameter of the %PARSER built-in

function of the DATA-INTO operation.

 /COPY COMMAREA_H 1
 dcl-ds commArea likeds(commArea_T) inz; // 2

 dcl-ds info qualified;
 city varchar(50);
 state varchar(50);
 end-ds;

 commArea.sub1 = 'x'; // 2
 commArea.sub2 = 5;

 DATA-INTO info %DATA(document : 'doc=file case=any')
 %PARSER('PARS2' : commArea); // 4

Parser program
1. The /COPY directive copies in the source file with the template for the data structure used to

communicate with the parser.
2. The communication-area data structure is defined with the BASED keyword.
3. The basing pointer for the data structure is set from the userParm subfield of the parameter passed to

the parser.
4. The parser can now work with the subfields of the data structure passed from the DATA-INTO

operation.

 CTL-OPT main(pars2);

 /COPY COMMAREA_H 1

 /COPY QOAR/QRPGLESRC,QRNDTAINTO

 DCL-PROC pars2;
 DCL-PI *n EXTPGM;
 parserParm LIKEDS(QrnDiParm_T) CONST;
 END-PI;
 DCL-DS userParm LIKEDS(commArea_T) BASED(pUserParm); // 2

 pUserParm = parserParm.userArea; // 3

 IF userParm.sub1 = *BLANK; // 4

 ...

 END-PROC;

Writing a generator for the RPG DATA-GEN operation code
The DATA-GEN operation generates a structured document from an RPG variable. The operation requires
a generator that creates the document using the names and values repeatedly passed to it by DATA-GEN.
The generator uses callback functions to pass the text for the document to the RPG runtime, which places
the data into an RPG variable or a file in the Integrated File System.

Handling clean-up activities
Usually, the generator can perform its clean-up activities during an "end' event. However, in some cases,
there may not be an "end" event. This can occur in the following circumstances:

40 IBM i: Rational Open Access: RPG Edition

• An error occurs during the DATA-GEN operation.
• A DATA-GEN *START operation begins a sequence of DATA-GEN operations, but no matching DATA-GEN

*END operation is done before the RPG procedure ends. See “Sequences of DATA-GEN operations” on
page 41.

Tip: If your generator has code that needs to run when the generation is complete, set the
doTerminateEvent subfield in the parameter passed to the generator to '1'. If that indicator is
on after the most recent call to the generator, the RPG runtime will call the generator with a
QrnDgEvent_12_Terminate event.

Warning: During the QrnDgEvent_12_Terminate event, the generator cannot call the callback
procedures. Attempting to do so will result in an exception.

Sequences of DATA-GEN operations
A sequence of DATA-GEN operations begins with DATA-GEN *START and ends with DATA-GEN *END.
A DATA-GEN operation is considered to be part of a sequence if the %DATA built-in function for the
operation specifies the same file in the first operand, and specifies the "doc=file" option. A DATA-GEN
operation that is part of a sequence must specify the "output=continue" option.

 DATA-GEN *START %DATA(filename : 'doc=file') %GEN('MYPGM');
 DATA-GEN ds1 %DATA(filename : 'doc=file output=continue') %GEN('MYPGM');
 DATA-GEN *END %DATA('myfile.txt' : 'doc=file') %GEN('MYPGM');

The DATA-GEN operations in a sequence may be done in different procedures, but they must all be in the
same activation group and thread.

However, when the procedure with the DATA-GEN *START operation ends, the sequence ends even if
the DATA-GEN *END operation has not been done. If you want to be sure to get control when the
sequence ends, enable the QrnDgEvent_12_Terminate event. You request this event by setting the
doTerminateEvent subfield of the parameter passed to the generator to '1'.

The generatorState pointer is available to all the operations in the sequence
If you have placed a pointer in the generatorState, this pointer will be available to all the subsequent
operations in the sequence.

Performing clean-up activities when an operation is part of a sequence
If you have activities that must be performed at the end of the generation, and the operation is part of a
sequence, you should wait to perform the clean-up activities until the QrnDgEvent_02_EndMultiple event
or the QrnDgEvent_12_Terminate event, if the doTerminateEvent subfield of the parameter passed to the
generator has been set to '1'.

Parameter passed to a DATA-GEN generator
The parameter passed to a DATA-GEN generator is a data structure with type QrnDgParm_T.

The parameter is defined in member QRNDTAGEN of source file QRPGLESRC for ILE RPG, QCBLLESRC for
ILE COBOL, and H for ILE C/C++.

Warning: It is not possible to check the number of parameters passed to a generator if it is a
bound procedure. The value returned by the %PARMS built-in function for an ILE RPG procedure,
or the PARMS intrinsic function for an ILE COBOL procedure, is not reliable. However, since there
is always exactly one parameter passed to a generator procedure, it should not be necessary to
check the number of parameters passed to the procedure.

The parameter has the following subfields.

Rational Open Access: RPG Edition 41

generatorState
(Input and output) A pointer holding state information owned by the generator. The generator may
place a pointer here, and the same pointer will be available for all subsequent calls to the generator
until the operation ends.

If the operation is part of a sequence of DATA-GEN operations, started by DATA-GEN *START and
ended by DATA-GEN *END, the pointer will be available for all subsequent calls to the generator in the
entire sequence. See “Sequences of DATA-GEN operations” on page 41.

Use the doTerminateEvent subfield to ensure that the generator is called for the
QrnDgEvent_12_Terminate event, so that it can reliably perform cleanup-operations such as
deallocating the generatorState pointer.

env
(Input only) A pointer to a structure with callback procedure pointers. See “Enabling calls to the
callback procedures” on page 47 for information on the way to use this pointer to enable calling the
callback procedures.

handle
(Input only)A pointer passed to every callback procedure

userParm
(Input and output) A pointer to the second operand of %GEN, owned by the RPG program, unless the
userParmType subfield has the value QrnUserParmType_nullTerminatedString which indicates that the
user-parameter is a null- terminated string, in which case it must be considered read-only.

The userParmSize subfield has the size of the value.

The userParmCcsid subfield has the CCSID of the value.

userParmSize
(Input only) This subfield indicates the length in bytes of the user-parameter.

If it is a null-terminated string (userParmType is QrnUserParmType_nullTerminatedString), this is the
length of the string.

If it is a varying-length string (userParmType begins with QrnUserParmType_var), this includes the
two or four bytes of the varying-length prefix. See subfield userParmType for the type of the user-
parameter.

userParmCcsid
(Input only) This subfield indicates the CCSID of the user-parameter.

This subfield is not relevant if the userParm subfield is null, or if the value of the userParmType
subfield is QrnUserParmType_notPassed, QrnUserParmType_dataStruct, or QrnUserParmType_other.
For the possible values of the userParmType subfield, see “Types of the user-parameter passed to the
DATA-GEN generator” on page 46.

userParmType
(Input only) This subfield indicates the type of the value pointed to by the userParm pointer.

Note: Full type information is not available for every type of user-parameter.

For the possible values of this parameter, see “Types of the user-parameter passed to the DATA-GEN
generator” on page 46.

outputIsToFile
(Input only) An indicator whose value is '1' if the output from the callbacks is being written to a stream
file; '0' otherwise.

doTerminateEvent
(Output) An indicator that is set to '1' by the generator if DATA-GEN should call the generator with the
QrnDgEvent_12_Terminate event so that it can do clean-up. The generator can change it to '0' if the
QrnDgEvent_12_Terminate event is no longer needed.

The value of this indicator following the most recent call to the generator is used by DATA-GEN when
deciding whether to call the generator with the QrnDgEvent_12_Terminate event.

42 IBM i: Rational Open Access: RPG Edition

isPartOfSequence
(Input only) An indicator whose value is '1' if the DATA-GEN operation is part of a sequence; '0'
otherwise.

name
(Input only) The name of the array, data structure, or scalar value. The data type is defined as
QrnDgName_t. It is a varying length UTF-16 value, with a maximum length of 4096.

This subfield can be used directly if the generator is written in RPG.

 if parm.name = *blanks;
 ...

For generators written in other languages, this subfield is a data structure with len and name
subfields.

This value is blank for the following events:

• QrnDgEvent_01_StartMultiple
• QrnDgEvent_02_EndMultiple
• QrnDgEvent_03_Start
• QrnDgEvent_04_End
• QrnDgEvent_12_Terminate

event
(Input only) This subfield indicates the type of event that is passed to the generator. See “Events for
DATA-GEN generators” on page 49.

ds (u.ds for generators written in C)
(Input only) This subfield must only be used for the following events:

• QrnDgEvent_05_StartStruct
• QrnDgEvent_06_EndStruct

The type of the ds data structure is QrnDgDs_T. See “Data structure information (type QrnDgDs_T)” on
page 43 for the description of this data structure.

array (u.array for generators written in C)
(Input only) This subfield must only be used for the following events:

• QrnDgEvent_07_StartScalarArray
• QrnDgEvent_08_EndScalarArray
• QrnDgEvent_09_StartStructArray
• QrnDgEvent_10_EndStructArray

The type of the subfield is QrnDgArray_T. See “Array information (type QrnDgArray_T)” on page 44
for the description of this data structure.

scalar (u.scalar for generators written in C)
(Input only) This subfield must only be used for the QrnDgEvent_11_ScalarValue event. The type of
the subfield is QrnDgScalar_T. See “Scalar information (type QrnDgScalar_T)” on page 45 for the
description of this data structure.

Data structure information (type QrnDgDs_T)
An RPG data structure or data structure subfield is described by the ds subfield of the parameter passed
to the generator. The type of the ds subfield is QrnDgDs_T.

All the subfields of the QrnDgDs_T are input-only:

Rational Open Access: RPG Edition 43

elem
If the data structure is part of an array, this subfield indicates the element number. Otherwise, this
subfield is zero. The element number is 1-origin, beginning at 1 and ending with the number of
elements indicated by the totalElems subfield.

totalElems
If the data structure is part of an array, this subfield indicates the number of elements in the array.
Otherwise, this subfield is zero. The current element is indicated by theelem subfield.

numSubfields
This subfield indicates the number of subfields for this data structure.

Tip: If the names of the subfields are needed in advance, this subfield can be used
together with the QrnDgGetSubfieldName callback to obtain the subfield names during the
QrnDgEvent_05_StartStruct or QrnDgEvent_06_EndStruct events.

subfieldNumber
If this RPG data structure is a subfield of another RPG data structure, this subfield indicates the
subfield number in that data structure. If this RPG data structure is the top-level variable for the
DATA-GEN operation, this subfield is zero. The subfield number is 1-origin, beginning at 1 and ending
with the number of subfields in the data structure.

isExtDesc
This subfield is an indicator. The value is '1' if the data structure is externally-described, and '0'
otherwise.

extLibrary
If the data structure is externally-described, this subfield indicates the library with the external file.
Otherwise, this subfield is blank.

extFile
If the data structure is externally-described, this subfield indicates the external file. Otherwise, this
subfield is blank.

extFormat
If the data structure is externally-described, this subfield indicates the external record format.
Otherwise, this subfield is blank.

recordLevelId
If the data structure is externally-described, this subfield indicates the level ID of the external record
format. Otherwise, this subfield is blank.

Array information (type QrnDgArray_T)
An RPG data array or array subfield is described by the array subfield of the parameter passed to the
generator. The type of the array data structure is QrnDgArray_T.

Each element of the array will be described by the QrnDgEvent_05_StartStruct event or the
QrnDgEvent_11_ScalarValue event.

All the subfields of the QrnDgArray_T data structure are input-only:

totalElems
This subfield indicates the number of elements in the array.

numSubfields
If this is an array of data structures, this subfield indicates the number of subfields for this data
structure. Otherwise, this subfield is zero.

Tip: If the names of the subfields are needed in advance, this subfield can be used
together with the QrnDgGetSubfieldName callback to obtain the subfield names during the
QrnDgEvent_09_StartStructArray or QrnDgEvent_10_EndStructArray events.

subfieldNumber
If this RPG array is a subfield of an RPG data structure, this subfield indicates the subfield number in
that data structure. If this RPG array is the top-level variable for the DATA-GEN operation, this subfield

44 IBM i: Rational Open Access: RPG Edition

is zero. The subfield number is 1-origin, beginning at 1 and ending with the number of subfields in the
data structure.

Scalar information (type QrnDgScalar_T)
Scalar information describes an RPG field, subfield, or array element that is not a data structure. The type
of the scalar data structure is QrnDgScalar_T.

All the subfields of the QrnDgScalar_T) data structure are input-only:

elem
If the scalar item is part of an array, this subfield indicates the element number. Otherwise, this
subfield is zero. The element number is 1-origin, beginning at 1 and ending with the number of
elements indicated by the totalElems subfield.

totalElems
If the scalar item is part of an array, this subfield indicates the number of elements in the array.
Otherwise, this subfield is zero. The current element is indicated by theelem subfield.

definedCcsid
This subfield indicates the CCSID of the RPG scalar item. If the data type of the RPG scalar item is not
alphanumeric, UCS-2, or graphic, this subfield is zero.

Note: This is not the CCSID of the data in the value subfield.

subfieldNumber
If this RPG scalar value is a subfield of an RPG data structure, this subfield indicates the subfield
number in that data structure. If this RPG scalar value is the top-level variable for the DATA-GEN
operation, this subfield is zero. The subfield number is 1-origin, beginning at 1 and ending with the
number of subfields in the data structure.

dataType
This subfield indicates the data type of the scalar value. See “Data types used in name-value
information” on page 23.

Note: Varying-length string types are not distinguished from fixed-length string types.

• This subfield is QrnDatatype_Alpha for all alphanumeric scalar values.
• This subfield is QrnDatatype_Unicode for all UCS-2 scalar values.
• This subfield is QrnDatatype_Dbcs for all graphic scalar values.

dtzFormat
If the RPG scalar value is of type Date or Time, this subfield gives the format. See “Constants
QrnDtzFormat_* defining date, time, and timestamp formats” on page 25.

separator
If the RPG scalar value is of type Date or Time, this subfield gives the separator character.

If the RPG scalar value is numeric, this subfield gives the decimal point, either period or comma.
The decimal point character for numeric values is determined by the DECEDIT keyword in the Control
statements of the RPG module. If the DATA-GEN operation is part of a sequence of operations, the
decimal point may not be the same for all the DATA-GEN operations in the sequence. For example, a
numeric value of 12.3 for one DATA-GEN operation in the sequence might be passed to the generator
as "12,3", and the same numeric value for another DATA-GEN operation in a different module might be
"12.3".

valueLenBytes
This subfield indicates the length of the value measured in bytes.

valueLenChars
This subfield indicates the length of the value measured in UTF-16 double-byte characters.

valueCcsid
This subfield indicates the CCSID of the value subfield.

Rational Open Access: RPG Edition 45

Note: This is not necessarily the CCSID of the RPG scalar item. Use the definedCcsid to determine the
CCSID of the RPG scalar item.

value
This subfield is a pointer to the UTF-16 value of the RPG scalar item, in human-readable form.

The length of the value in bytes is given by the valueLenBytes subfield.

The length of the value in double-byte characters is given by the valueLenChars subfield.

String data (types QrnDatatype_Alpha, QrnDatatype_Unicode, and QrnDatatype_Dbcs) is trimmed of
leading and trailing blanks unless option "trim=none" is specified for the DATA-GEN operation. See the
DATA-GEN section of the IBM Rational Development Studio for i: ILE RPG Reference for information
on the trim option.

Numeric data is edited with a leading sign if the value is negative. For QrnDatatype_Decimal and
QrnDatatype_Float data, the decimal point is either a period or a comma, determined by the DECEDIT
keyword of the RPG module. See scalar.separator.

Date, Time, and Timestamp data is edited according to the format and separators of the field in the
RPG module.

Types of the user-parameter passed to the DATA-GEN generator

The name of the constant that defines the type is followed by the character value of the constant in
parentheses. This character value is provided for debugging purposes only; programmers should use the
named constant within their code.

QrnUserParmType_notPassed ('0')
The user-parameter was not specified in the RPG program. The userParm subfield of the parameter
passed to the generator is null.

QrnUserParmType_nullTerminatedString ('1')
The user-parameter is a null-terminated string. The length can be determined by locating the null-
terminator, or by using the userParmSize subfield of the parameter passed to the generator.

The value is in the job ccsid.

QrnUserParmType_indicator ('2')
The user-parameter is an RPG indicator with a value of '0' indicating "false" or '1' indicating "true".

QrnUserParmType_char ('3')
The user parameter is a fixed-length alphanumeric string. See the userParmSize subfield for the
length and the userParmCcsid subfield for the CCSID.

QrnUserParmType_varchar_2 ('4')
The user parameter is a varying-length alphanumeric string with a 2-byte varying-length prefix. See
the userParmSize subfield for the total size in bytes of the variable, including the varying-length prefix,
and the userParmCcsid subfield for the CCSID of the data in the string. The length in characters of the
data in the string can be determined from the value of the varying-length prefix.

QrnUserParmType_varchar-4 ('5')
The user parameter is a varying-length alphanumeric string with a 4-byte varying-length prefix. See
the userParmSize subfield for the total size in bytes of the variable, including the varying-length prefix,
and the userParmCcsid subfield for the CCSID of the data in the string. The length in characters of the
data in the string can be determined from the value of the varying-length prefix.

QrnUserParmType_graph ('6')
The user parameter is a fixed-length graphic string. See the userParmSize subfield for the length in
bytes and the userParmCcsid subfield for the CCSID.

The length in double-byte graphic characters can be determined by dividing the length in bytes by 2.

46 IBM i: Rational Open Access: RPG Edition

QrnUserParmType_vargraph_2 ('7')
The user parameter is a varying-length graphic string with a 2-byte varying-length prefix. See the
userParmSize subfield for the total size in bytes of the variable, including the varying-length prefix,
and the userParmCcsid subfield for the CCSID of the data in the string.

The length in double-byte graphic characters of the data in the string can be determined from the
value of the varying-length prefix.

QrnUserParmType_vargraph_4 ('8')
The user parameter is a varying-length graphic string with a 4-byte varying-length prefix. See the
userParmSize subfield for the total size in bytes of the variable, including the varying-length prefix,
and the userParmCcsid subfield for the CCSID of the data in the string.

The length in double-byte graphic characters of the data in the string can be determined from the
value of the varying-length prefix.

QrnUserParmType_ucs2 ('9')
The user parameter is a fixed-length UCS-2 or UTF-16 string. See the userParmSize subfield for the
length in bytes and the userParmCcsid subfield for the CCSID. If the CCSID is 13488, the value is
UCS-2. If the CCSID is 1200, the value is UTF-16.

The length in double-byte characters can be determined by dividing the length in bytes by 2.

QrnUserParmType_varucs2_2 ('a')
The user parameter is a varying-length UCS-2 or UTF-16 string with a 2-byte varying-length prefix.
See the userParmSize subfield for the total size in bytes of the variable, including the varying-length
prefix, and the userParmCcsid subfield for the CCSID of the data in the string. If the CCSID is 13488,
the value is UCS-2. If the CCSID is 1200, the value is UTF-16.

The length in double-byte characters of the data in the string can be determined from the value of the
varying-length prefix.

QrnUserParmType_varucs2_4 ('b')
The user parameter is a varying-length UCS-2 or UTF-16 string with a 4-byte varying-length prefix.
See the userParmSize subfield for the total size in bytes of the variable, including the varying-length
prefix, and the userParmCcsid subfield for the CCSID of the data in the string. If the CCSID is 13488,
the value is UCS-2. If the CCSID is 1200, the value is UTF-16.

The length in double-byte characters of the data in the string can be determined from the value of the
varying-length prefix.

QrnUserParmType_dataStruct ('c')
The user parameter is a data structure. Information about the subfields is not available. See the
userParmSize subfield for the total size in bytes of the data structure.

QrnUserParmType_other ('d')
The type of the user parameter is not available. See the userParmSize subfield for the total size in
bytes of the value.

Callback procedures for DATA-GEN generators
The procedure pointers for the callback procedures are subfields of the parameter passed to the
generator. See “Parameter passed to a DATA-GEN generator” on page 41.

Enabling calls to the callback procedures
In RPG, the callback procedures are enabled by setting the env pointer to the env subfield of the
parameter passed to the generator. (1)

The prototypes for the callback procedures are in the QRNDTAGEN member of the QOAR/QRPGLESRC
source file.

Rational Open Access: RPG Edition 47

/COPY QOAR/QRPGLESRC,QRNDTAGEN
DCL-PI *n;
 parm LIKEDS(QrnDgParm_T);
END-PI;

env = parm.env; // 1
QrnDgAddText (...);

In C, the callback procedure pointers are accessed as subfields of the env subfield of the parameter
passed to the generator. 2

#include "QOAR/H,QRNDTAGEN"
main (int argc, void *argv[]) {
 QrnDgParm_T *parm = (QrnDgParm_T *) argv[1];

 parm->env->QrnDgAddText (...); // 2
}

The callback procedures
The first parameter for all the callback procedures is the handle subfield of the parameter that is passed
to the generator.

QrnDgReportError(handle, returnCode)
The generator can call this procedure to report that it found an error in the document. The generator
determines the meanings of its own return codes.

 QrnDgReportError (parm.handle : ERR_CODE_1_INVALID_NAME);

Note: Control will not return to the generator after this procedure is called.

QrnDgTrace(handle, message, nested)
The generator can call this procedure to add its own tracing information. If the nested parameter has
the value '1', the message will be issued at the current nesting level of the trace output. If the nested
parameter has the value '0', the trace message will be issued starting in column 1 of the trace output.

 QrnDgTrace (parm.handle : 'Getting the subfield names' : '1');

Note: Tracing is enabled using the QIBM_RPG_DATA_GEN_TRACE environment variable. See the
DATA-GEN section of the IBM Rational Development Studio for i: ILE RPG Reference.

QrnDgAddText(handle, text, textChars)
The generator can call this procedure to add UTF-16 text.

Note: The length is the number of double-byte characters.

 CTL-OPT CCSID(*UCS2:1200);
 ...
 DCL-S name VARUCS2(200);
 ...
 QrnDgAddText (parm.handle
 : %ADDR(name:*DATA)
 : %LEN(name));

48 IBM i: Rational Open Access: RPG Edition

QrnDgAddTextCcsid(handle, text, textBytes, ccsid)
The generator can call this procedure to add text in any CCSID.

Note: The length is the number of bytes. If the data is a double-byte data type, the number of
characters must be multiplied by 2 to obtain the number of bytes.

 DCL-S name VARCHAR(200) CCSID(1208);
 DCL-S addr VARUCS2(200) CCSID(13488);
 ...
 QrnDgAddTextCcsid (parm.handle
 : %ADDR(name:*DATA)
 : %LEN(name)
 : 1208);
 QrnDgAddTextCcsid (parm.handle
 : %ADDR(addr:*DATA)
 : %LEN(addr) * 2
 : 1208);

QrnDgAddTextString(handle, text)
The generator can call this procedure to add text that is in a null-terminated string in the job CCSID.

 QrnDgAddTextString (parm.handle : 'hello');

QrnDgAddTextNewLine(handle)
The generator can call this procedure to add new-line characters to the output.

Tip: The generator may only want to add new-line characters to the output when the output is
intended for a stream file. The outputIsToFile subfield of the parameter passed to the generator has a
value of '1' if the output is intended for a stream file.

 if parm.outputIsFile;
 QrnDgAddTextNewLine (parm.handle);
 endif;

name = QrnDgGetSubfieldName(handle, index)
The generator can call this procedure to find the name of a subfield of the data structure during one
of the events in the list below. The index is 1-origin, beginning at 1 and ending at the number of
subfields. The number of subfields can be obtained using the subfield indicated after each event in the
list.

• QrnDgEvent_05_StartStruct (parm.ds.numSubfields)
• QrnDgEvent_06_EndStruct (parm.ds.numSubfields)
• QrnDgEvent_09_StartStructArray (parm.array.numSubfields)
• QrnDgEvent_10_EndStructArray (parm.array.numSubfields)

if parm.event = QrnDgEvent_05_StartStruct or parm.event = QrnDgEvent_06_EndStruct; for i = 1 to
parm.ds.numSubfields; name = QrnDgAddTextNewLine (parm.handle : i); endfor; elseif parm.event
= QrnDgEvent_09_StartStructArray or parm.event = QrnDgEvent_10_EndStructArray; for i = 1 to
parm.array.numSubfields; name = QrnDgAddTextNewLine (parm.handle : i); endfor; endif;

Events for DATA-GEN generators
The event subfield of the parameter passed to the DATA-GEN generator indicates the type of information
that is passed to the generator.

Rational Open Access: RPG Edition 49

QrnDgEvent_01_StartMultiple
This event indicates that it is a DATA-GEN *START operation. This operation begins a sequence of
DATA-GEN operations that ends with a DATA-GEN *END operation. See “Sequences of DATA-GEN
operations” on page 41.

QrnDgEvent_02_EndMultiple
This event indicates that it is a DATA-GEN *END operation. This operation ends the sequence of
DATA-GEN operations that begins with a DATA-GEN *START operation. See “Sequences of DATA-GEN
operations” on page 41.

QrnDgEvent_03_Start
This event is the first event for a DATA-GEN operation where the first operand is a variable.

QrnDgEvent_04_End
This event is the last event for a DATA-GEN operation where the first operand is a variable unless
you have requested the QrnDgEvent_12_Terminate event using the doTerminateEvent subfield of the
parameter passed to the generator.

QrnDgEvent_05_StartStruct (parm.ds)
This event indicates that the RPG variable or subfield is a data structure. Refer to the name subfield
and ds subfields of the parameter passed to the generator.

The subfields of the RPG data structure are described in subsequent events.

QrnDgEvent_06_EndStruct (parm.ds)
This event indicates the end of the description of the subfields for the RPG data structure. Refer to the
name subfield and ds subfields of the parameter passed to the generator.

QrnDgEvent_07_StartScalarArray (parm.array)
This event indicates that the RPG variable is an array of scalar items. The array elements are
described in subsequent events. Refer to the name subfield and array subfields of the parameter
passed to the generator.

QrnDgEvent_08_EndScalarArray (parm.array)
This event indicates the end of the description of the elements of the array. Refer to the name subfield
and array

QrnDgEvent_09_StartStructArray (parm.array)
This event indicates that the RPG variable is an array of data structures. The array elements are
described in subsequent events. Refer to the name subfield and array

QrnDgEvent_10_EndStructArray (parm.array)
This event indicates the end of the description of the elements of the array. Refer to the name subfield
and array

QrnDgEvent_11_ScalarValue (parm.scalar)
This event indicates that the RPG variable is a scalar value. Refer to the name subfield and scalar

QrnDgEvent_12_Terminate
This event indicates that the generator can safely perform its clean-up activities. The generator is
called with this event only if the generator has set the doTerminateEvent subfield of the parameter
passed to the generator to a value of '1'.

If the DATA-GEN operation is part of a sequence of events started by DATA-GEN *START and ended by
DATA-GEN *END, the generator is called with this event after the DATA-GEN *END has completed, or
when the RPG runtime has determined that the DATA-GEN *END operation will never be done for this
sequence. See “Sequences of DATA-GEN operations” on page 41.

If the DATA-GEN operation is not part of a sequence of events, the generator is called with this event
after the QrnDgEvent_04_End event, or after an exception occurs.

Note: Callbacks cannot be called during this event.

Tracing a DATA-GEN operation
If you want to know the sequence of the calls from DATA-GEN to the generator and the calls from
the generator back to DATA-GEN using the callback procedures, use the QIBM_RPG_DATA_GEN_TRACE

50 IBM i: Rational Open Access: RPG Edition

environment variable to enable tracing. See the DATA-GEN section of the IBM Rational Development
Studio for i: ILE RPG Reference.

Here is an example of a trace:

1. The generator has written its own trace message. The nested parameter was '0', so the trace message
was printed started in column 1.

2. The generator has called the QrnDgAddText callback procedure.
3. The generator has written its own trace message. The nested parameter was '1', so the trace message

was printed at the current indent level.

Start DATA-GEN
 Event 3 (Start)
 Event 5 (StartStruct) for ds
Terminate event enabled 1
 Event 11 (ScalarValue) for item
 AddText: 'Book' 2
 Event 11 (ScalarValue) for price
 AddText: '25.99' 2
 Event 11 (ScalarValue) for discount
 Looking up the discount 3
 AddText: 'sub=-12.50' 2
 Event 6 (EndStruct) for ds
 Event 4 (End)
 Event 12 (Terminate)
End DATA-GEN

Note: The trace output may not show up immediately, or it may flash by too quickly to see. For
information on how to handle this situation, see “Tracing a DATA-INTO parser” on page 33.

Example of a DATA-GEN generator
Note: Detailed explanation is provided only for the aspects of the example that are related to the DATA-
GEN operation.

In this example, a generator generates an HTML table for the DATA-GEN operation.

If you want to try running the code in the example, see “SQL statements to create the file used by the
example” on page 61 for the SQL statements to create the file used by the program.

See “Output generated by the DATA-GEN operations in the example” on page 61 for the HTML generated
by the program.

RPG program with DATA-GEN operations
The following shows the RPG program that uses the DATA-GEN operation.

Note the following aspects of the program:

1. The data structures are defined with a subfield for each row expected in the HTML table.

The externally-described data structure uses EXTFLD statements to set the case of the names
required for the column headings in the HTML table. For the ITEMPRICE field, the EXTFLD statement
also adds an underscore. The generator replaces underscores with blanks when generating the column
headings.

2. For the first three DATA-GEN operations, the output file is specified in the first operand of the %DATA
built-in function. Option "doc=file" indicates that the first operand is the name of a file.

3. The program that does the generation is specified as the first operand of the %GEN built-in function.
See “Program to generate an HTML table” on page 52 for the source for the program. The program
that does the generation supports an optional character or UCS-2 value as the second operand of the
%GEN built-in function. This value is used as the caption for the table.

4. The DATA-GEN *START operation starts a DATA-GEN sequence.

Rational Open Access: RPG Edition 51

5. The next DATA-GEN operation continues the sequence. It writes out a row in the HTML table.
6. The DATA-GEN *END operation ends the sequence.
7. The final DATA-GEN is not part of a sequence. The result of the DATA-GEN operation is put in the

variable specified as the first operand of the %DATA built-in function.

**free

DCL-C FILENAME 'MYORDERS';
DCL-F orders EXTDESC(FILENAME)
 EXTFILE(*EXTDESC);
DCL-DS order EXTNAME(FILENAME : *INPUT) // 1
 QUALIFIED;
 Name extfld('NAME');
 Type extfld('ITEMTYPE');
 Item_Price extfld('ITEMPRICE');
END-DS;
DCL-DS customer QUALIFIED; // 1
 Name VARCHAR(30);
 Address VARCHAR(100);
 Zip_Code PACKED(9);
END-DS;

DCL-S customerTable VARCHAR(1000);

DATA-GEN *START %DATA('order.html' : 'doc=file') // 2, 4
 %GEN('GENHTMLTAB'
 : 'Order for ' + %CHAR(%DATE()));// 3

READ orders order;
DOW NOT %EOF;
 DATA-GEN order %DATA('order.html'
 : 'doc=file output=continue') // 2, 5
 %GEN('GENHTMLTAB'); // 3
 READ orders order;
ENDDO;

DATA-GEN *END %DATA('order.html' : 'doc=file') // 2, 6
 %GEN('GENHTMLTAB'); // 3

customer.Name = 'A. Smith';
customer.Address = '123 Elm Street';
customer.Zip_Code = 11111;
DATA-GEN customer %DATA(customerTable) // 7
 %GEN('GENHTMLTAB'); // 3

*INLR = '1';

Program to generate an HTML table
Note the following aspects of the initial section of the module:

1. This generator is a program.
2. Since the name and value subfields of the parameter passed to the generator have UTF-16 data, it is

convenient to set the default CCSID for UCS-2 items to UTF-16.
3. Copy member QRNDTAGEN in file QOAR/QRPGLESRC defines the parameter passed to the generator

and named constants for other information needed by the generator.
4. The state_t data structure define information used by the generator to keep track of the generation.
5. Several error codes and matching messages are defined for the errors detected by this generator.

52 IBM i: Rational Open Access: RPG Edition

**free

CTL-OPT OPTION(*SRCSTMT);
CTL-OPT MAIN(genHtmlTab); // 1
CTL-OPT CCSID(*UCS2 : *UTF16); // 2
/IF DEFINED(*CRTBNDRPG)
 CTL-OPT DFTACTGRP(*NO);
/ENDIF

/copy QOAR/QRPGLESRC,QRNDTAGEN // 3

DCL-C MAX_CAPTION 10000;

DCL-DS state_t qualified template; // 4
 haveHeader IND;
 inDataStructure IND;
 dataStructureName LIKE(QrnDgName_t);
 numSubfields INT(10);
 caption VARUCS2(MAX_CAPTION);
 haveCaption IND;
END-DS;

DCL-DS errorCodes qualified; // 5
 DCL-DS nestedStructNotAllowed;
 code INT(10) INZ(1);
 msg VARCHAR(100) INZ('Nested structures are not allowed.');
 END-DS;
 DCL-DS differentStruct;
 code INT(10) INZ(2);
 msg VARCHAR(100)
 INZ('The data structure is not the same.');
 END-DS;
 DCL-DS eventNotSupported;
 code INT(10) INZ(3);
 msg VARCHAR(100) INZ('The event is not supported.');
 END-DS;
 DCL-DS valueNotInStruct;
 code INT(10) INZ(4);
 msg VARCHAR(100) INZ('All values must be subfields.');
 END-DS;
 DCL-DS userParmTypeNotSupported;
 code INT(10) INZ(4);
 msg VARCHAR(100) INZ('The user-parm must be UTF-16 or alphanumeric with the job
CCSID.');
 END-DS;
END-DS;

Main procedure
Note the following aspects of the procedure:

1. A single parameter is passed to the generator.
2. The state data structure holds state information maintained by the generator for all calls to the

generator for the DATA-GEN operation or the sequence of DATA-GEN operations.

The data structure is based on a pointer, since the storage for the data structure will be allocated
from the heap.

3. Setting pointer pEnv from the env subfield of the parameter passed to the generator allows the
generator to call the callback procedures

Warning: The env pointer is null for the QrnDgEvent_12_Terminate event.

Do not attempt to call any callback procedures during this event.
4. The generator needs to deallocate the state pointer when the generation is complete, so it enables

the QrnDgEvent_12_Terminate event.
5. Callbacks are not allowed during the QrnDgEvent_12_Terminate event, so the generator just

deallocates the state pointer and returns.

Rational Open Access: RPG Edition 53

6. If the state information has not been allocated yet, the generator allocates and initializes the
generatorParm pointer in the parameter passed to the generator.

7. The generator sets the basing pointer for the state information from the generatorParm pointer.
8. This event signals the beginning of a sequence of DATA-GEN operations.

If the second operand of %GEN was specified, it is passed in the userParm subfield of the parameter
passed to the generator. The generator will call the getCaption procedure to get the value of
userParm.

9. This event signals the end of a sequence of DATA-GEN operations. The generator generates the end
of the HTML table.

10. This event signals the beginning of the events for a DATA-GEN operation related to a variable.

If the second operand of %GEN was specified, it is passed in the userParm subfield of the parameter
passed to the generator. If the caption has not already been determined by a previous call to the
generator, the generator will call the getCaption procedure to get the value of userParm.

11. This event signals the end of the events for a DATA-GEN operation related to a variable. If the
DATA-GEN operation is not part of a sequence of DATA-GEN operations, the generator generates the
end of the HTML table.

12. These events signal the beginning of an array of data structures or a single data structure. Since this
might be the first time the generator has seen anything related to a data structure, it calls procedure
genStartTable to generate the header for the HTML table, if necessary.

If the genStartTable procedure detects an error in the calls to the generator, it will report the error
to DATA-GEN, and control will not return to the statement following the call to the genStartTable
procedure.

13. This event signals the end of an array of data structures. This generator does not need to do anything
during this event.

14. The generator generates the beginning of a row in the HTML table.
15. This event signals the end of a data structure. This generator generates the end of the row in the

HTML table.
16. This event signals a scalar value. If the generator detects that it is not a subfield, it issues an error.
17. The generator generates the beginning of the column in the HTML table.
18. The generator calls the QrnDgAddText callback procedure to generate the value for the column.

The value parameter of the parameter passed to the generator points to UTF-16 data and the
valueLenChars subfield has the number of double-byte characters in the UTF-16 data. These
parameters can be passed directly to the QrnDgAddText procedure, since it expects a pointer to
UTF-16 data and the number of double-byte characters.

19. The generator generates the end of the column in the HTML table.
20. The generator does not support any other events.

54 IBM i: Rational Open Access: RPG Edition

DCL-PROC genHtmlTab;
 DCL-PI *N;
 parm LIKEDS(QrnDgParm_t); // 1
 END-PI;

 DCL-DS state LIKEDS(state_t) based(pState); // 2

 pQrnDgEnv = parm.env; // 3

 parm.doTerminateEvent = *ON; // 4

 IF parm.event = QrnDgEvent_12_Terminate;
 DEALLOC(N) parm.generatorState; // 5
 RETURN;
 ENDIF;

 IF parm.generatorState = *NULL; // 6
 parm.generatorState = %ALLOC(%SIZE(state_t));
 pState = parm.generatorState;
 CLEAR state;
 ENDIF;
 pState = parm.generatorState; // 7

 IF parm.event = QrnDgEvent_01_StartMultiple; // 8
 IF parm.userParm <> *NULL;
 state.caption = getCaption (parm : state);
 state.haveCaption = *ON;
 ENDIF;

 ELSEIF parm.event = QrnDgEvent_02_EndMultiple; // 9
 genEndTable (parm : state);

 ELSEIF parm.event = QrnDgEvent_03_Start; // 10
 IF parm.userParm <> *NULL
 AND state.haveCaption = *OFF;
 state.caption = getCaption (parm : state);
 state.haveCaption = *ON;
 ENDIF;

 ELSEIF parm.event = QrnDgEvent_04_End; // 11
 IF NOT parm.isPartOfSequence;
 genEndTable (parm : state);
 ENDIF;

 ELSEIF parm.event = QrnDgEvent_09_StartStructArray; // 12
 IF parm.userParm <> *NULL
 AND state.haveCaption = *OFF;
 state.caption = getCaption (parm : state);
 state.haveCaption = *ON;
 ENDIF;

 genStartTable (parm : state : parm.array.numSubfields);
 // Control may not return here

 ELSEIF parm.event = QrnDgEvent_10_EndStructArray; // 13

 ELSEIF parm.event = QrnDgEvent_05_StartStruct; // 12
 IF parm.userParm <> *NULL
 AND state.haveCaption = *OFF;
 state.caption = getCaption (parm : state);
 state.haveCaption = *ON;
 ENDIF;

 genStartTable (parm : state : parm.ds.numSubfields);
 // Control might not return here

 state.inDataStructure = *ON; // 14
 writeLine (parm : '<tr>');

 ELSEIF parm.event = QrnDgEvent_06_EndStruct; // 15
 writeLine (parm : '</tr>');
 state.inDataStructure = *OFF;

Rational Open Access: RPG Edition 55

 ELSEIF parm.event = QrnDgEvent_11_ScalarValue; // 16
 IF NOT state.inDataStructure;
 error (parm : state
 : errorCodes.valueNotInStruct.code
 : errorCodes.valueNotInStruct.msg);
 // Control will not return here
 ENDIF;

 writeLine (parm : '<td>' : *ON); // 17

 // The text for the column is written out in the same
 // UTF-16 CCSID as it was passed to the generator
 QrnDgAddText (parm.handle // 18
 : parm.scalar.value
 : parm.scalar.valueLenChars);
 writeLine (parm : '</td>'); // 19

 ELSE;
 error (parm : state // 20
 : errorCodes.eventNotSupported.code
 : errorCodes.eventNotSupported.msg);
 // Control will not return here
 ENDIF;
END-PROC genHtmlTab;

getCaption procedure
This procedure gets the value for the table's caption from the userParm subfield of the parameter passed
to the generator. This subfield is set from the second parameter of the %GEN built-in function for the
DATA-GEN operation.

Note the following aspects of the procedure:

1. The parameter passed to the generator has all the information a generator needs to interpret the
userParm subfield if the second operand of %GEN was a string type. See “Types of the user-parameter
passed to the DATA-GEN generator” on page 46.

However, this generator does not support all possible types. It does not support alphanumeric values if
the CCSID is not the job CCSID. It does not support UCS-2 values if the CCSID is not UTF-16.

The userParm data structure is based on the parm.userParm pointer. A subfield is defined at position 1
of the data structure for every type of string that this generator supports.

2. The %STR built-in function returns the value of a null-terminated string.
3. If the alphanumeric value is in the job CCSID, the generator determines the length from the

parm.userParmSize subfield, and uses that length to control the amount of data returned by the
%SUBST built-in function.

4. If the alphanumeric value is in the job CCSID, the generator does not need to use the
parm.userParmSize information, because the varying-length field holds its own length in its varying-
length prefix.

5. For a UCS-2 or UTF-16 value, the parm.userParmSize must be divided by 2 to determine the number of
characters for the %SUBST built-in function.

6. If the type or CCSID of the user-parameter is not supported by the generator, the generator issues an
error.

56 IBM i: Rational Open Access: RPG Edition

DCL-PROC getCaption;
 DCL-PI *N VARUCS2(10000) EXTPROC(*DCLCASE);
 parm LIKEDS(QrnDgParm_t);
 state LIKEDS(state_t);
 END-PI;

 DCL-DS userParm QUALIFIED BASED(P); // 1
 charFixed CHAR(MAX_CAPTION) POS(1);
 charVar2 VARCHAR(MAX_CAPTION) POS(1);
 charVar4 VARCHAR(MAX_CAPTION:4) POS(1);
 utf16Fixed UCS2(MAX_CAPTION) POS(1);
 utf16Var2 VARUCS2(MAX_CAPTION) POS(1);
 utf16Var4 VARUCS2(MAX_CAPTION:4) POS(1);
 END-DS;
 DCL-S CAPTION VARUCS2(MAX_CAPTION);
 DCL-S LEN INT(10);

 p = parm.userParm;
 IF parm.userParmType = QrnUserParmType_nullTerminatedString; // 2
 caption = %STR(parm.userParm);
 ELSEIF parm.userParmType = QrnUserParmType_char // 3
 AND parm.userParmCcsid = QrnDg_JOB_CCSID;
 len = parm.userParmSize;
 caption = %TRIM(%SUBST(userParm.charFixed : 1 : len));
 ELSEIF parm.userParmType = QrnUserParmType_varchar_2 // 4
 AND parm.userParmCcsid = QrnDg_JOB_CCSID;
 caption = userParm.charVar2;
 ELSEIF parm.userParmType = QrnUserParmType_varchar_4
 AND parm.userParmCcsid = QrnDg_JOB_CCSID;
 caption = userParm.charVar4;
 ELSEIF parm.userParmType = QrnUserParmType_ucs2
 AND parm.userParmCcsid = 1200;
 len = parm.userParmSize / 2; // 5
 caption = %TRIM(%SUBST(userParm.utf16Fixed : 1 : len));
 ELSEIF parm.userParmType = QrnUserParmType_varucs2_2
 AND parm.userParmCcsid = 1200;
 caption = userParm.utf16var2;
 ELSEIF parm.userParmType = QrnUserParmType_varucs2_4
 AND parm.userParmCcsid = 1200;
 caption = userParm.utf16var4;
 ELSE;
 error (parm : state
 : errorCodes.userParmTypeNotSupported.code
 : errorCodes.userParmTypeNotSupported.msg);
 // Control will not return here
 ENDIF;
 RETURN caption;

END-PROC getCaption;

genStartTable procedure
This procedure generates the header for the HTML table, using the subfield names of the RPG data
structure.

Note the following aspects of the procedure:

1. If the generator is already processing a data structure, the generator raises an error condition.
2. If the generator has already generated the header, and the name or the number of subfields of the

current data structure is different from the data structure used to generate the header, the generator
raises an error condition.

3. The generator sets the name and number of subfields of the current data structure in its state
information, so it can ensure that the data structures it encounters are all the same.

4. The generator generates the beginning of the HTML table.
5. The generator generates a row in the header of the HTML table for each subfield of the data structure.
6. The generator calls the QrnDgGetSubfieldName callback procedure to obtain the name of the

subfield.

Rational Open Access: RPG Edition 57

7. The generator generates the end of the header for the HTML table.

DCL-PROC genStartTable;
 DCL-PI *n extproc(*dclcase);
 parm LIKEDS(QrnDgParm_t);
 state LIKEDS(state_t);
 numSubfields int(10) value;
 END-PI;
 DCL-S i INT(10);

 IF state.inDataStructure; // 1
 error (parm : state
 : errorCodes.nestedStructNotAllowed.code
 : errorCodes.nestedStructNotAllowed.msg);
 // Control will not return here
 ENDIF;

 if state.haveHeader;
 if parm.name <> state.dataStructureName // 2
 or numSubfields <> state.numSubfields;
 error (parm : state
 : errorCodes.nestedStructNotAllowed.code
 : errorCodes.nestedStructNotAllowed.msg);
 endif;

 return;
 endif;

 state.dataStructureName = parm.name; // 3
 state.numSubfields = numSubfields;
 state.haveHeader = *ON;

 writeLine (parm // 4
 : '<table border="1">');

 if state.haveCaption;
 writeLine (parm : '<caption>' : *on);
 QrnDgAddText (parm.handle
 : %addr(state.caption : *data)
 : %len(state.caption));
 writeLine (parm : '</caption>');
 endif;

 writeLine (parm
 : '<thead>'
 + '<tr>');

 FOR i = 1 TO numSubfields; // 5
 writeLine (parm
 : '<td>'
 : *ON); // skip the newline for this output
 genColumnName (parm
 : state
 : QrnDgGetSubfieldName (parm.handle : i)); // 6
 writeLine (parm : '</td>');
 ENDFOR;

 writeLine (parm // 7
 : '</tr>'
 + '</thead>'
 + '<tbody>');

END-PROC genStartTable;

genColumnName procedure
This procedure generates the name of a column from the name of a subfield.

Note the following aspects of the procedure:

1. This procedure expects a subfield to have its words separated by underscores, with the words
capitalized as required for the table; for example Column_Heading. To create the column name, this
procedure changes the underscores to spaces.

58 IBM i: Rational Open Access: RPG Edition

See the code for the program using this DATA-GEN generator to see how it defines the subfield names.
2. The columnName variable is a varying length UTF-16 variable, so the generator can use the
QrnDgAddText callback procedure to generate the name for the column.

DCL-PROC genColumnName;
 DCL-PI *n extproc(*dclcase);
 parm LIKEDS(QrnDgParm_t);
 state LIKEDS(state_t);
 name like(QrnDgName_T) const;
 END-PI;
 DCL-S columnName LIKE(name);
 DCL-C underscore %UCS2('_');
 DCL-C BLANK %UCS2(' ');

 columnName = %XLATE(UNDERSCORE : BLANK : name); // 1

 QrnDgAddText (parm.handle // 2
 : %ADDR(columnName : *DATA)
 : %LEN(columnName));
END-PROC genColumnName;

genEndTable procedure
This procedure generates the end of the HTML table.

DCL-PROC genEndTable;
 DCL-PI *n extproc(*dclcase);
 parm LIKEDS(QrnDgParm_t);
 state LIKEDS(state_t);
 END-PI;

 writeLine (parm
 : '</tbody>'
 + '</table>');
END-PROC genEndTable;

writeLine procedure
This procedure generates text in the job CCSID.

Note the following aspects of the procedure:

1. The generator determines whether it should generate a new-line after it generates the text. It first
uses the outputIsToFile subfield of the parameter passed to the generator to determine whether the
generated text is intended for a stream file. If not, then a new-line is not needed.

However, the caller may have indicated that this procedure should not generate a new-line in the
optional skipNewLine parameter.

2. Since the text is in the job CCSID, the generator can use the simple QrnDgAddTextString callback
procedure to output the text.

3. The generator adds the new-line character using the QrnDgAddTextsNewLine callback procedure.

Rational Open Access: RPG Edition 59

DCL-PROC writeLine;
 DCL-PI *N EXTPROC(*DCLCASE);
 parm LIKEDS(QrnDgParm_t);
 line pointer VALUE OPTIONS(*STRING);
 skipNewLine IND CONST OPTIONS(*NOPASS);
 END-PI;
 DCL-S doNewLine IND INZ(*ON);

 doNewLine = parm.outputIsToFile; // 1
 IF %PARMS() >= %PARMNUM(skipNewLine)
 AND skipNewLine;
 doNewLine = *OFF;
 ENDIF;

 QrnDgAddTextString (parm.handle : line); // 2
 IF doNewLine;
 QrnDgAddTextNewline (parm.handle); // 3
 ENDIF;
END-PROC writeLine;

error procedure
This procedure raises an error condition which will cause the DATA-GEN operation to fail.

Note the following aspects of the procedure:

1. This procedure first outputs a trace message using the QrnDgTrace callback procedure. If the user is
tracing the DATA-GEN operation, the trace message will explain the error code that will appear next in
the trace.

2. The QrnDgReportError callback procedure is used to report the error condition. *ON is passed for
the nested parameter, indicating that the trace message should be nested within other information in
the trace.

Control will not return to this procedure after the call to the QrnDgReportError procedure. The
generator will get called again for the final QrnDgEvent_12_Terminate event.

DCL-PROC error;
 DCL-PI *n extproc(*dclcase);
 parm LIKEDS(QrnDgParm_t);
 state LIKEDS(state_t);
 errorCode INT(10) VALUE;
 errorMessage VARCHAR(100) CONST;
 END-PI;

 QrnDgTrace (parm.handle // 1
 : errorMessage
 : '1');

 QrnDgReportError (parm.handle // 2
 : errorCode);
 // Control will not return here

END-PROC error;

60 IBM i: Rational Open Access: RPG Edition

SQL statements to create the file used by the example

CREATE TABLE QGPL/MYORDERS
 (NAME VARCHAR (25) NOT NULL WITH DEFAULT,
 ITEMTYPE VARCHAR (25) NOT NULL WITH DEFAULT,
 ITEMPRICE DECIMAL (9 , 2) NOT NULL WITH DEFAULT)

INSERT INTO QGPL/MYORDERS
 VALUES('Refrigerator', 'Appliance', 525.95)

INSERT INTO QGPL/MYORDERS
 VALUES('Shirt', 'Clothing', 5.95)

INSERT INTO QGPL/MYORDERS
 VALUES('Rake', 'Gardening', 15.95)

Output generated by the DATA-GEN operations in the example
The following is the HTML table generated by the DATA-GEN sequence.

<table border="1">
<caption>Order 2019-11-15</caption>
<thead><tr>
<td>Name</td>
<td>Type</td>
<td>Item Price</td>
</tr></thead><tbody>
<tr>
<td>Refrigerator</td>
<td>Appliance</td>
<td>525.95</td>
</tr>
<tr>
<td>Shirt</td>
<td>Clothing</td>
<td>5.95</td>
<td>5.95</td>
</tr>
<tr>
<td>Rake</td>
<td>Gardening</td>
<td>15.95</td>
</tr>
</tbody></table>

The following shows how the table appears:

Table 8. x

Name Type Item Price

Refrigerator Appliance 525.95

Shirt Clothing 5.95

Rake Gardening 15.95

The following shows the value of the customerTable variable after the final DATA-GEN operation in the
program, as shown in the debugger.

Rational Open Access: RPG Edition 61

> EVAL customerTable
 CUSTOMERTABLE =
 5...10...15...20...25...30...35...40...45...50...55...60
 1 '<table border="1"><thead><tr><td>Name</td><td>Addr'
 61 'ess</td><td>Zip Code</td></tr></thead><tbody><tr>'
 121 '<td>A. Smith</td><td>123 Elm Street</td><td>11111</td></tr><'
 181 '/tbody></table> '

The following shows how the table appears:

Table 9. x

Name Address Zip Code

A. Smith 123 Elm Street 11111

62 IBM i: Rational Open Access: RPG Edition

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Canada Ltd. Laboratory
Information Development
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

© Copyright IBM Corp. 2010, 2019 63

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming interface information
This Rational Open Access: RPG Edition publication documents intended Programming Interfaces that
allow the customer to write programs to obtain the services of Rational Open Access: RPG Edition.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Other product and service names might be trademarks of IBM or other companies.

Terms and conditions
Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

64 IBM i: Rational Open Access: RPG Edition

http://www.ibm.com/legal/copytrade.shtml

IBM®

RZAS-M000-02

	Contents
	Rational Open Access: RPG Edition
	What's New
	What's New since 7.3?
	What's New in this Release?

	Rational Open Access: RPG Edition
	RPG coding to use Open Access
	Coding the Open Access handler
	Two modes for I/O data
	Handling input data
	Handling output data
	Using search arguments
	Errors detected by the handler
	Setting the feedback areas in the INFDS

	The RPG operations to be handled
	When the Open-Access file is closed

	Handler parameter
	The subfields of the main parameter structure
	The subfields of the names-values structure
	The subfields of the name-value structure describing one field
	Data types used in name-value information
	Constants QrnDtzFormat_* defining date, time, and timestamp formats

	System object structure, QrnObject_T
	Print-control structure, QrnPrtctl_T
	Record-levels structure, QrnRecordLevels_T
	Record-level structure for one level, QrnRecordLevel_T

	Data types used in the handler parameter
	Constants QrnRpgDevice_* defining the RPG device types
	Constants QrnCcsids_*
	Constants QrnFunctionKey_* defining the values for the functionKey subfield

	Restrictions for an Open-Access file

	Writing a parser for the RPG DATA-INTO operation code
	Parameter passed to a DATA-INTO parser
	Callback procedures for DATA-INTO parsers
	Tracing a DATA-INTO parser
	Example of a DATA-INTO parser
	A DATA-INTO parser that uses a data structure as a communication area

	Writing a generator for the RPG DATA-GEN operation code
	Sequences of DATA-GEN operations
	Parameter passed to a DATA-GEN generator
	Types of the user-parameter passed to the DATA-GEN generator

	Callback procedures for DATA-GEN generators
	Events for DATA-GEN generators
	Tracing a DATA-GEN operation
	Example of a DATA-GEN generator

	Notices
	Programming interface information
	Trademarks
	Terms and conditions

