
IBM i
7.2

Electronic business and Web serving
OmniFind Text Search Server for DB2 for i

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
149.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.
© Copyright International Business Machines Corporation 2002, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

OmniFind Text Search Server... 1
What's new for IBM i 7.3..1
PDF file... 1
Introduction... 2

Overview... 2
System requirements... 3

Key concepts.. 4
Create and update index.. 4
Triggers... 5
Document formats..5
Data types...6
Score and Synonyms.. 6
Linguistic processing.. 7

Languages... 7
Chinese, Japanese, and Korean..8

Server alias name... 10
Install and configure.. 11

Install..11
Start text search... 12
Create an index...12
Update an index..13
Search an index.. 13
Document truncation... 13

Stored procedures... 14
SYSTS_START... 14
SYSTS_STOP... 15
SYSTS_CREATE... 17
SYSTS_ALTER... 26
SYSTS_DROP.. 31
SYSTS_UPDATE...32
SYSTS_SHUTDOWN..35

Search an index..36
CONTAINS.. 36
SCORE...39
Search syntax... 41

Simple examples...43
Advanced search operators..43
Searching for special characters.. 46
CONTAINS and SCORE example...48

XML search... 49
Namespaces... 54
Using namespaces..55
Example.. 60
Query grammar... 63

Administer OmniFind...64
Start OmniFind... 64
Stop OmniFind..65
Save and restore...66

Index structure... 66
Index with data... 67

Problem determination.. 69

 iii

View logs...69
Administration tools... 69

Configuration tool... 70
SYSTS_REMOVE.. 74
SYSTS_REPRIMEINDEX..76
SYSTS_CLEAR_INDEX...77
SYSTS_VALIDITYCHECK... 78
QDBTS_ROWS_STATUS.. 79
Synonym dictionaries... 81

Add a synonym dictionary...81
Remove a synonym dictionary.. 82

Find orphaned and missing indexes...83
Advanced administration..84

ServerInstance tool..85
Health Checker... 86
Independent ASP... 87
High Availability..88
Performance analysis...89
Transaction considerations..92
Using IBM Navigator for i... 93

Work with servers... 94
Work with indexes...95

View index builds...97
Use System i Navigator.. 98

Work with servers... 99
Work with indexes.. 101

View index builds.. 104
Administration tables.. 105

SYSTEXTDEFAULTS.. 105
SYSTEXTINDEXES.. 106
SYSTEXTCOLUMNS...108
SYSTEXTSERVERS..109
SYSTEXTCONFIGURATION.. 110
SYSTEXTSERVERHISTORY...110
SYSTS_CREATE...111

Extensions to Index and Search Non-DB2 Data... 112
Overview...112
Create Collection..112
Add Object Set for Spool File Data.. 117
Removing Object Set for Spool File Data...121
Add Object Set for a Stream File..124
Removing Object Set for Stream File Data.. 126
Adding an Object Set for Multiple Members Source Physical File..127
Removing an Object Set for Multiple Members Source Physical File... 129
Removing an Object Set...130
Updating the Collection... 131
Repopulate the Collection... 132
Search Collection... 132
Query Object Sets.. 135
Retrieve Status of Indexes Objects... 136
Objects Not Indexed.. 137
Retrieve Status of Collection..138
Dropping a Text Search Collection...139
Altering a Text Search Collection...140
IASP Considerations.. 143
Backup and Restore Considerations... 143

Messages and codes..144
OmniFind messages...144

iv

Notices..149
Programming interface information..150
Trademarks.. 150

Index.. 153

 v

vi

OmniFind Text Search Server for DB2 for i
OmniFind Text Search Server for DB2® for i allows you to issue SQL statements that satisfy familiar text
search queries on documents that are stored in a DB2 database.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 147.

What's new for IBM i 7.3
Read about new or significantly changed information for the OmniFind Text Search Server for DB2 for i
topic collection.

The major new features include:

• Performance tuning parameter extensions to customize configuration settings

How to see what's new or changed
To help you see where technical changes have been made, the information center uses:

• The image to mark where new or changed information begins.
• The image to mark where new or changed information ends.

In PDF files, you might see revision bars (|) in the left margin of new and changed information.

To find other information about what's new or changed this release, see the Memo to users.

PDF file for OmniFind Text Search Server for DB2 for i
Use this page to view and print a PDF of this information.

To view or download the PDF file for this document, select OmniFind Text Search Server for DB2 for i
(about 1192 KB).

Other information
You can also view or print any of these PDF files:

• Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

• SQL Performance Diagnosis on IBM® DB2 Universal Database for iSeries

.

Saving PDF files
To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the preceding link).
2. Click the option that saves the PDF locally.
3. Go to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader
You need Adobe Reader installed on your system to view or print these PDF files. You can download a free
copy from Adobe (http://get.adobe.com/reader/) .

© Copyright IBM Corp. 2002, 2013 1

http://www.redbooks.ibm.com/abstracts/sg246598.html
http://www.redbooks.ibm.com/abstracts/sg246654.html
http://get.adobe.com/reader/

Introduction to the OmniFind Text Search Server for DB2 for i
DB2 for i uses the OmniFind(r) Text Search Server as an indexing and search engine for documents that
are stored in a DB2 database.

OMNIFIND is a text search product that allows IBM i users to search unstructured text stored in a column
of a DB2 for i table. The text stored in the column can be either simple character text, an XML document,
or any of several different types of rich text documents, such as a PDF or DOC file. The product allows
users to index unstructured data without having to parse it into a structured form such as an SQL table.

OmniFind Text Search Server is a context-based search engine. It supports fuzzy search capability. For
example, a search for 'mice' discovers documents with 'mice' or 'mouse' in them. The search engine
also supports language context. For example, it understands the fuzzy search equivalents of 'mice' and
'mouse' in both English and Spanish.

Many applications can take advantage of this capability. A good example is a Human Resources database.
Candidate resumes can be stored in the database in whatever form they are submitted. Subsequent
searches using OmniFind can be used to search for potential candidates with certain key skills.

Overview of the OmniFind Text Search Server for DB2 for i
OmniFind Text Search Server for DB2 for i provides a set of administrative stored procedures and two
built-in functions: CONTAINS and SCORE. These functions are used to search text indexes created from
documents stored in a DB2 table. The administrative stored procedures are used to enable and disable
text searching and to create, update, and drop text indexes.

A text index can be created over any column of the following data types:

• CHAR
• VARCHAR
• CLOB
• BLOB
• DBCLOB
• GRAPHIC
• VARGRAPHIC
• BINARY
• VARBINARY
• XML

The data can contain plain text, HTML, XML, or many rich document types, such as PDF files. The data is
read from the text column and is converted to Unicode (CCSID 1208) before it is indexed.

Text indexes are not typical DB2 indexes. They are not maintained automatically, cannot be journaled, and
cannot be backed up using the typical backup and restore methods. Text indexes are created and stored
on a text search server.

By default, the text search server is created on the same system as the data stored in the DB2 database.
However, a text search server can be created on another server running IBM i, Linux®, UNIX, AIX®, or
Windows.

The text search server contains a collection of significant terms extracted from each row of the column. A
TCP/IP connection is used to communicate with the text search server.

The CONTAINS and SCORE functions are built-in functions which are integrated into DB2 for i.

DB2 for i uses the OmniFind(r) Text Search Server as an indexing and search engine for documents that
are stored in a DB2 database.

OMNIFIND supports multiple collections. A collection contains one text search index and the index-
specific options for parsing, indexing, and searching.

2 IBM i: OmniFind Text Search Server for DB2 for i

OMNIFIND has a graphical user interface for administration of servers and text indexes.

The text search server also provides SQL stored procedures and command-line tools that you can use
for common tasks. These common tasks include configuring and administering the text search server,
creating a synonym dictionary for a collection, and diagnosing problems.

Related concepts
Administration stored procedures for text search
You can start and stop text search functions and create, drop, and update text search indexes by using
a set of administration SQL stored procedures. These procedures can be called from any SQL interfaces.
You cannot call these procedures from an IBM i command line by using CL commands.
Related reference
CONTAINS
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
SCORE
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

System requirements for installing the OmniFind Text Search Server for DB2
for i

Before you install an OmniFind Text Search Server for DB2 for i, make sure that your system meets all the
hardware, software, and operating system requirements.

When you install OmniFind Text Search Server for DB2 for i, the installation program creates one text
search server for IBM i. You can install text search servers on remote servers running Linux or Windows.
These servers are part of DB2 Accessories Suite for z/OS® (5655-R14) (http://www-01.ibm.com/software/
data/db2imstools/db2tools/accessories-suite/) . The link has information about downloading the
suite.

Software requirements
Make sure that your system meets the following minimum software requirements:

• 5770JV1 IBM Developer Kit for Java™

– One of the following:

- 5770JV1 Option 14 Java SE 7 32 bit
- 5770JV1 Option 15 Java SE 7 64 bit

• DB2 Universal Java Driver installed and configured on the text search server
• For IBM i, the following programs must be installed:

– 5770SS1 Option 30 Qshell
– 5770SS1 Option 33 IBM i Portable Application Solutions Environment (IBM i PASE)
– 5770SS1 Option 39 International Components for Unicode
– The latest Group PTF for IBM DB2 for i is applied on the system.

OmniFind Text Search Server for DB2 for i 3

http://www-01.ibm.com/software/data/db2imstools/db2tools/accessories-suite/

Key concepts
Understanding the key concepts about text search functions helps you to use the benefits of OmniFind
Text Search for DB2 for i. Key concepts include the document types and languages that are supported.

Create and update a text search index
You can create a text search index by defining and declaring the properties of the index. You can update
a text search index by adding new data from a DB2 table to the index. You can also update a text search
index by changing the existing data in the index.

For each text search index that you create, a new collection is created on the OmniFind Text Search Server
for DB2 for i. After initial creation, the text search index contains no data.

You add data to the text search index by calling the SYSPROC.SYSTS_UPDATE stored procedure. The first
update process adds all the text documents from the text column to the text search index. This process is
known as the initial update. The subsequent updates are incremental.

When a text search index is created, the following objects are created or updated:

• The staging table is created in the QSYS2 library.
• The INSERT, DELETE, and UPDATE triggers are added to the base table.
• An SQL view with the name of the text search index is created in the schema of the text search index.

This view contains information about the text index. For example, the view can be used to obtain the
base table name and the staging table name. The view also shows the number of pending changes to
the base table that are not yet reflected in the text search index.

• The text search index catalogs (SYSTEXTINDEXES and SYSTEXTCOLUMNS) in the QSYS2 library are
updated with a new entry added for the new text search index.

Staging table considerations:

• Do not perform any DB operation on the staging table except saving and restoring the file, or changing
authorities.

• If you are changing the authorities on the base table, change the authorities on the staging table also.

Base table considerations:

• Do not remove the DELETE, UPDATE, and INSERT triggers that are added when a text search index is
created.

• Dropping the text search index removes the triggers.
• Do not alter or remove the ROWID, primary key, or unique column that was used as the key in the text

search index.
• Altering the data column of the base table that results in data truncation might result in false positive

matches in the text search index.

Related reference
SYSPROC.SYSTS_UPDATE
You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.
QSYS2.SYSTEXTINDEXES administration table
You can see information about each text search index in the QSYS2.SYSTEXTINDEXES administration
table. Each text search index has a name, schema name, and an associated collection name on the text
search server.
QSYS2.SYSTEXTCOLUMNS administration table

4 IBM i: OmniFind Text Search Server for DB2 for i

You can see information about the text columns for a text search index in the QSYS2.SYSTEXTCOLUMNS
administration table. Each text search index has an index ID, text column names, and the schema name of
the base table.

Asynchronous indexing and triggers
You can update the text search index on the OmniFind Text Search Server for DB2 for i manually or
schedule it to run automatically.

The text search index maintained on the OmniFind Text Search Server for DB2 for i is not updated
synchronously when the DB2 table is updated. Updating a text search index is an extensive operation.

Instead, changes to the DB2 table column are captured by triggers to a local log table. This log table
is also called a staging table. These triggers automatically store information about new, changed, and
deleted documents in a log table. Each log table is associated with one text search index. Applying the
contents of the log table to its corresponding text search index is called an incremental update.

You must periodically update the text search index in order for changes to be reflected in queries.

You can update the text search index manually by calling the SYSPROC.SYSTS_UPDATE stored procedure.

Updates can also be scheduled to occur automatically by using the UPDATE FREQUENCY clause on the
SYSPROC.SYSTS_CREATE procedure when the text index is created.

Related reference
SYSPROC.SYSTS_CREATE
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.
SYSPROC.SYSTS_UPDATE
You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.

Supported document formats
The text column data can be plain text, an HTML document, an XML document, or any document that is
recognized by the search engine.

OmniFind Text Search Server for DB2 for i parses documents to extract the relevant parts and make those
parts searchable. For example, tags and metadata in an HTML document are not indexed.

Parsing of the following document formats is supported:

• TEXT: Flat text
• HTML: Hypertext Markup Language
• XML: Extensible Markup Language
• INSO: The OmniFind Text Search Server for DB2 for i uses filters to detect the format of text documents.

The following INSO document formats are supported:

– XML
– HTML
– JustSystems Ichitaro
– Lotus® 123
– Lotus Freelance
– Lotus WordPro
– Microsoft Excel
– Microsoft PowerPoint
– Microsoft Rich Text Format

OmniFind Text Search Server for DB2 for i 5

– Microsoft Visio
– Microsoft Word
– Microsoft Write
– Portable Document Format (PDF)
– Quattro Pro
– Rich Text RTF
– StarOffice Calc and OpenOffice Calc

All the documents in an indexed text column must be of the same format (TEXT, HTML, XML, or INSO).

XML data
XML structure in the XML data is indexed in the OmniFind Text Search Server for DB2 for i after parsing
the data through an XML parser. Then you can use the supported XML Search query syntax to retrieve the
results.

Related concepts
XML search
You can index and search XML documents. The XML search grammar uses a subset of the W3 XPath
language with extensions for text search. The extensions support range searches of numeric, Date, and
DateTime values that are associated with an XML attribute or element. Structural elements can be used
separately, or combined with free text in queries.

Supported data types
The data in the text columns that you want to index and search can be either binary data or character
data.

The following data types are binary data:

• BINARY
• VARBINARY
• BLOB

In addition, OMNIFIND handles the following data types similarly to binary data:

• CHAR FOR BIT DATA
• VARCHAR FOR BIT DATA

The following data types are character data:

• CHAR FOR SBCS DATA or FOR MIXED DATA
• VARCHAR FOR SBCS DATA or FOR MIXED DATA
• CLOB
• DBCLOB
• GRAPHIC
• VARGRAPHIC
• XML

If the data is binary data, you can specify the coded character set identifier (CCSID) used to build the text
search index. For character data, the DB2 database knows the encoding; therefore, if you explicitly specify
a CCSID, that specification is ignored.

Text score and synonym support
You can use synonyms to improve the results for a query. You can use a text score to find out how closely
a result matches the query.

6 IBM i: OmniFind Text Search Server for DB2 for i

Text score
A text score is calculated as part of the search, and can be included in the query results. A text score is a
value 0 - 1, up to three decimal points; for example, 0.000 to 1.000. A text score denotes how closely a
result matches the query relative to all the other documents in the text search index.

OMNIFIND composes the text score from various factors, such as the general importance of the search
terms and the proximity of occurrences of the search terms. The general importance is based on the
frequency of the terms in each document and offset by the frequency of the terms across all documents.

Synonym support
The OmniFind Text Search Server for DB2 for i supports the use of synonyms to modify the results of a
query. Using synonyms can increase the number of query results by causing more documents to match a
query. However, using synonyms might also decrease the precision of a query and make it more difficult to
find few documents that match the exact search criteria.

By default, synonyms are not used for a query. To use synonyms for a query, create a synonym dictionary,
and add the synonym dictionary to a collection by using the synonym tool.

For more information about synonyms, see “Synonym dictionaries” on page 81.
Related reference
SCORE
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

Linguistic processing
The OmniFind Text Search Server for DB2 for i provides dictionary packs to support the linguistic
processing of documents and queries that are not in English.

As an alternative to dictionary-based word segmentation, the OmniFind Text Search Server for DB2
for i uses n-gram segmentation support for languages such as Chinese, Japanese, and Korean. n-gram
segmentation is a method of analysis that considers overlapping sequences of a given number of
characters as a single word. Alternatively, Unicode-based white-space segmentation uses blank space
to delimit words.

If a text document is in one of the supported languages, linguistic processing is carried out when the text
is parsed into tokens. For unsupported languages, an error code is returned.

When you search a text search index, a match is indicated that contains linguistic variations of the query
terms. The variations of a word depend on the language of the query.

Supported languages
You can specify that text documents be processed using a specific language.

You can specify the language for the indexed text data in the SYSPROC.SYSTS_CREATE administration
stored procedure. If you set the value to AUTO, the OmniFind Text Search Server for DB2 for i tries to
determine the language. For short documents, automatic detection might be not accurate and is not
recommended. The default language for linguistic processing is English (en_US).

The following table shows the five-character language codes for the supported languages.

Table 1. The five-character language codes for the supported languages

Language code Language

ar_AA Arabic

cs_CZ Czech

da_DK Danish

OmniFind Text Search Server for DB2 for i 7

Table 1. The five-character language codes for the supported languages (continued)

Language code Language

de_CH German (Switzerland)

de_DE German (Germany)

el_GR Greek

en_AU English (Australia)

en_GB English (United Kingdom)

en_US English (United States)

es_ES Spanish (Spain)

fi_FI Finnish

fr_CA French (Canada)

fr_FR French (France)

it_IT Italian

ja_JP Japanese

ko_KR Korean

nb_NO Norwegian Bokmal

nl_NL Dutch

nn_NO Norwegian Nynorsk

pl_PL Polish

pt_BR Brazilian Portuguese

pt_PT Portuguese (Portugal)

ru_RU Russian

sv_SE Swedish

zh_CN Simplified Chinese

zh_TW Traditional Chinese

Related reference
SYSPROC.SYSTS_CREATE
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.

Linguistic processing for Chinese, Japanese, and Korean documents
You can process documents that are in Chinese, Japanese, or Korean by using dictionary-based
segmentation or by using n-gram segmentation.

For a search engine, getting good search results depends in large part on the techniques that are used to
process text. After the text is extracted from the document, the first step in text processing is to identify
the individual words in the text. Identifying the individual words in the text is referred to as segmentation.
For many languages, white space (blanks, the end of a line, and certain punctuation) can be used to
recognize word boundaries. However, Chinese, Japanese, and Korean do not use white space between
characters to separate words, so other techniques must be used.

8 IBM i: OmniFind Text Search Server for DB2 for i

The OmniFind Text Search Server for DB2 for i provides the following two methods to support the
linguistic processing of Chinese, Japanese, and Korean:

• Dictionary-based word segmentation (also called morphological analysis)
• N-gram segmentation

Dictionary-based word segmentation
Dictionary-based word segmentation uses a language-specific dictionary to identify words in the sequence
of characters in the document. This technique provides precise search results, because the dictionaries
are used to identify word boundaries. However, dictionary-based word segmentation can miss specific
matching results.

N-gram segmentation
N-gram segmentation avoids the problem of identifying word boundaries, and instead indexes overlapping
pairs of characters. Because the OmniFind Text Search Server for DB2 for i uses two characters, this
technique is also called bi-gram segmentation.

N-gram segmentation always returns all matching documents that contain the search terms; however,
this technique might sometimes return documents that do not match the query.

By default, the OmniFind Text Search Server for DB2 for i comes with a pre-configured index that uses
n-gram segmentation for Chinese, Japanese, and Korean.

To see how both types of linguistic processing work, examine the following text in a document: election
for governor of Kanagawa prefecture. In Japanese, this text contains eight characters. For this
example, the eight characters are represented as A B C D E F G H. A sample query that users might
enter could be election for governor, which is four characters and are represented as E F G H. (The
document text and the sample query share similar characters.)
If you use n-gram segmentation processing:

After the document is indexed, the search engine segments the text election for governor of
Kanagawa prefecture into the following sets of characters: AB BC CD DE EF FG GH

The sample query election for governor is segmented into the following sets of characters: DE
EF FG GH. If you search with the sample query election for governor, the document is found.
The reason is that the tokens for both the document text and the query appear in the same order.

When you enable n-gram segmentation, you might see more results but possibly less precise results.
For example, in Japanese, if you search with the query Kyoto and a document in your index contains
the text City of Tokyo, the document is found. The reason is that City of Tokyo and Kyoto
share two of the same Japanese characters.

If you do not use n-gram segmentation processing:

After the document is indexed, the search engine segments the text election for governor of
Kanagawa prefecture into the following sets of characters: ABC DEF GH.

The sample query election for governor is segmented into the following sets of characters: EF
GH. The characters EF do not appear in the tokens of the document text. (Even though the document
does not have EF, it does have DEF).

The document text contains DEF, but the query contains only EF. Therefore, the document is less likely
to be found by using the sample query.

When you do not enable n-gram segmentation, you probably receive more precise results but possibly
fewer results.

OmniFind Text Search Server for DB2 for i 9

Server alias name
You can use a server alias name to assign a meaningful name to a server.

Each text search server is uniquely identified by column SERVERID in catalog QSYS2.SYSTEXTSERVERS.
The SERVERID column is an incrementally generated integer by database.

The ALIASNAME column in QSYS2.SYSTEXTSERVERS is provided to allow a meaningful alias name to be
assigned to each server. Server alias names can be used to refer to servers in SYSTS_START, SYSTS_STOP
and SYSTS_CREATE , SYSTS_SHUTDOWN and SYSTS_CLEAR_INDEXES procedures.

Note: Server alias name can be changed directly in the QSYS2.SYSTEXTSERVERS catalog table by
updating the ALIASNAME value.

Assign server number 1 an alias name of "PRIMARY_LOCAL_SERVER".

UPDATE QSYS2.SYSTEXTSERVERS
SET ALIASNAME = 'PRIMARY_LOCAL_SERVER'
WHERE SERVERID = 1

To remove an alias name from a server, set the column to NULL.

Remove an alias name from server number 1.

UPDATE QSYS2.SYSTEXTSERVERS
SET ALIASNAME = NULL
WHERE SERVERID = 1

Related reference
QSYS2.SYSTEXTSERVERS administration table
You can see where the text search servers are installed using the QSYS2.SYSTEXTSERVERS
administration table.
SYSPROC.SYSTS_START
You can enable DB2 text search functions by calling the SYSPROC.SYSTS_START stored procedure.
SYSPROC.SYSTS_STOP
You can call the SYSPROC.SYSTS_STOP stored procedure to stop DB2 text search functions. This stored
procedure sets the SERVERSTATUS value in the catalog QSYS2.SYSTEXTSERVERS to 1 (stopped).
SYSPROC.SYSTS_CREATE
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.
SYSPROC.SYSTS_SHUTDOWN
You can call the SYSPROC.SYSTS_SHUTDOWN stored procedure to shutdown DB2® text search functions.
This stored procedure sets the SERVERSTATUS value in the catalog QSYS2.SYSTEXTSERVERS to 1
(stopped) and also ends the text search server jobs on the host system.
SYSTS_CLEAR_INDEXES

10 IBM i: OmniFind Text Search Server for DB2 for i

You can remove orphaned indexes with the SYSPROC. SYSTS_CLEAR_INDEXES SQL stored procedure.
Another implicit way is invoking SYSTS_START directly, which tries to clear orphaned indexes
automatically.

Install and configure text search functions
You can install and configure OmniFind Text Search Server for DB2 for i. You can also create and update a
text search index so that you can start using text search functions against a column in a table.

Install OmniFind Text Search Server for DB2 for i
Install OmniFind Text Search Server for DB2 for i using the standard installation procedures for a licensed
program on IBM i. A default text server is created, and the QSYS2.SYSTEXTSERVERS table is populated
with default server information. Optionally, you can add additional text search servers after the install.

Populate the QSYS2.SYSTEXTSERVERS table
OmniFind Text Search Server for DB2 for i is the licensed program 5733-OMF from IBM. See Installing
additional licensed programs for details about how to install a licensed program. To find this product,
enter GO LICPGM from the command line and select option 10 (Display installed licensed programs). It is
displayed under the list of licensed programs.

The QSYS2.SYSTEXTSERVERS table contains information about the IBM OmniFind Text Search Servers
installed and available for DB2 for i. When the OmniFind Text Search Server for DB2 for i product is first
installed, a default text server is created on the IBM i system. The QSYS.SYSTEXTSERVERS table is also
populated with default server information.

Create additional text search servers
If you are using text search servers on a remote IBM system, or if you are using non-IBM servers such as a
Windows or Linux server, explicitly populate this table by issuing an SQL INSERT statement.

If you want to populate the QSYS2.SYSTEXTSERVERS table with additional servers, follow these steps on
the SQL INSERT:

1. Specify the server port number and server name for each text search server on the SERVERPORT
column and SERVERNAME columns of the QSYS2.SYSTEXTSERVERS table by issuing an SQL INSERT
statement.

2. Specify the authentication token from each text search server on the SERVERAUTHTOKEN column of
the QSYS2.SYSTEXTSERVERS table on the SQL INSERT statement.

When the DB2 database communicates with a text search server, an authentication token is required.
This token is generated on the text search server during the installation.

3. Specify the server key for each text search server on the SERVERMASTERKEY column of
QSYS2.SYSTEXTSERVERS table SQL INSERT statement.

4. OPTIONAL: Specify an ALIASNAME for the server on the ALIASNAME column. This ALIASNAME can be
used to refer to the server on subsequent operations.

Example

The following example of an SQL INSERT statement copies the required information for a text search
server to the columns in the QSYS2.SYSTEXTSERVERS table:

INSERT INTO QSYS2.SYSTEXTSERVERS(SERVERNAME,
 SERVERADRINFO,
 SERVERPORT,
 SERVERTYPE,
 SERVERAUTHTOKEN,
 SERVERMASTERKEY,
 SERVERPATH,
 ALIASNAME)
 VALUES('127.0.0.1',

OmniFind Text Search Server for DB2 for i 11

 VARBINARY(X'0000'),
 49200,
 0,
 'AH2X4w==',
 'b1YhcR9O858ArwxLJeIY/Q==',
 '/QOpenSys/QIBM/ProdData/TextSearch/server1/bin/',
 'LOCALSERVER2');

The example values must be replaced with the actual values for the server.

Related concepts
Server alias name
You can use a server alias name to assign a meaningful name to a server.
Related reference
QSYS2.SYSTEXTSERVERS administration table
You can see where the text search servers are installed using the QSYS2.SYSTEXTSERVERS
administration table.

Start text search functions
Before you start using the text search functions, call the SYSPROC.SYSTS_START stored procedure. By
calling this procedure, you can start all the production servers that you have defined to be local to the
system.

Text search support includes SQL statements that use the CONTAINS function, the SCORE function, and
the following administration stored procedures:

• SYSPROC.SYSTS_CREATE
• SYSPROC.SYSTS_UPDATE
• SYSPROC.SYSTS_DROP

Related reference
SYSPROC.SYSTS_START
You can enable DB2 text search functions by calling the SYSPROC.SYSTS_START stored procedure.
SYSPROC.SYSTS_CREATE
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.
SYSPROC.SYSTS_UPDATE
You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.
SYSPROC.SYSTS_DROP
You can call the SYSPROC.SYSTS_DROP stored procedure to drop a text search index that was defined by
using the SYSPROC.SYSTS_CREATE stored procedure.
CONTAINS
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
SCORE
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

Create a text search index
You can create a text search index by calling the SYSPROC.SYSTS_CREATE stored procedure.

The DB2 base table must contain a ROWID column, unique key, or primary key.

To create a text search index on an existing DB2 table with a column that contains text:

Call the SYSPROC.SYSTS_CREATE stored procedure.

12 IBM i: OmniFind Text Search Server for DB2 for i

The text search index is empty until the first time that you update the index.
Related reference
SYSPROC.SYSTS_CREATE
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.

Update a text search index
You can update a text search index by calling the SYSPROC.SYSTS_UPDATE stored procedure.

The SYSTS_UPDATE call is used to initially populate the text search index. It is also used any time the
contents of the DB2 table changes and you want to synchronize the text search index to those changes.

After a text search index update occurs, you can perform search queries on the text search index. The
base table text search column can be changed after the update. In this case, the search query results do
not reflect those changes until the next text search index update is run.
Related reference
SYSPROC.SYSTS_UPDATE
You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.

Search a text search index
You can search a text search index by using an SQL statement with a CONTAINS or SCORE function. The
search argument criteria is specified on the function.

The user who is performing the text queries on a DB2 table must have the standard privilege set that is
required for any form of query, as specified in the DB2 SQL Reference.
Related reference
CONTAINS
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
SCORE
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

Document truncation
The OmniFind Text Search Server for DB2 for i limits the number of characters that can be indexed for
each text document. Sometimes this character limit results in the truncation of large text documents in
the text search index.

Documents that contain more than 10 million Unicode characters might be truncated by the text search
server. For a rich text document, this limit is applied after the document is transformed to plain text.

If a text document is truncated during the parsing stage, you receive a warning that some documents
were not processed completely. The warning appears in the job log. The document is partially indexed.
Text that is in the document after the limit is reached is not indexed and is not considered during
searches.

You might want to remove the document that has been truncated from the text search index to
avoid unexpected behavior during search processing. You can remove the document by removing the
corresponding record from the DB2 table, or by changing the value for the document to empty or null.

OmniFind Text Search Server for DB2 for i 13

Administration stored procedures for text search
You can start and stop text search functions and create, drop, and update text search indexes by using
a set of administration SQL stored procedures. These procedures can be called from any SQL interfaces.
You cannot call these procedures from an IBM i command line by using CL commands.

When looking at the system catalogs using STRSQL, you can see the content of the columns by setting
your job to a CCSID other than 65535.

SYSPROC.SYSTS_START
You can enable DB2 text search functions by calling the SYSPROC.SYSTS_START stored procedure.

Text search functions include support for SQL queries that use the CONTAINS function, the SCORE
function, and the administration stored procedures that are used to maintain text search indexes.

Run the SYSPROC.SYSTS_START stored procedure each time when a server is added or changed in
QSYS2.SYSTEXTSERVERS table.

If text search functions are not started, the database returns SQLCODE -20424 with reason code 4
for the CONTAINS and SCORE functions. The SYSPROC.SYSTS_CREATE and SYSPROC.SYSTS_UPDATE
administrative procedures also fail with SQLCODE -20424 if the server has not been started.

For the text search servers that are contained in the QSYS2.SYSTEXTSERVERS table, TCP/IP names are
resolved. Multiple calls to the SYSPROC.SYSTS_START stored procedure are not considered an error. This
process allows you to verify the address resolution in the QSYS2.SYSTEXTSERVERS table.

If the server is a local server, then this stored procedure call starts the server if it is not already started.
If the server is a remote server, the procedure call verifies that the server is active, but does not actually
start the server.

Prerequisites
Before you call the SYSPROC.SYSTS_START stored procedure, verify that the QSYS2.SYSTEXTSERVERS
table contains at least one entry.

Authorization
The user ID under which this stored procedure is invoked must have the following privileges:

• *EXECUTE authority on the procedure
• SELECT and UPDATE privilege on the SYSTXTSRVR table.
• *EXECUTE authority on the QSYS2 library of the SYSTXTSRVR file.
• *JOBCTL authority or QIBM_DB_SQLADM security special function usage.

For information about the system authorities corresponding to SQL privileges, see GRANT (Table or View
Privileges).

Syntax
SYSPROC.SYSTS_START (

serverid

aliasname

)

The schema qualifier is SYSPROC.

14 IBM i: OmniFind Text Search Server for DB2 for i

Parameter
serverid or aliasname

Specifies the identifier of the server to be started. A serverid or server aliasname is a string. If no
identifier is provided, the default is to start all servers. The identifier string must either be a valid
serverid that exists in the SERVERID column, or a valid server aliasname that exists in the ALIASNAME
column of the QSYS2.SYSTEXTSERVERS table. If the identifier can be converted to an integer value, it
is interpreted as a serverid. If the identifier cannot be converted to an integer value, it is interpreted as
a server aliasname.

The data type of this parameter is VARCHAR(128).

Note: Only the servers that are identified as production servers are started if no value is specified
for serverid or aliasname. Production servers are identified by the parameter SERVERCLASS = 0 in
the QSYS2.SYSTEXTSERVERS table. Any test servers must be started by specifying the serverid or
aliasname that is associated with the test server.

To start all production servers:
CALL SYSPROC.SYSTS_START().

To start a server with an ID of 1:
CALL SYSPROC.SYSTS_START(1)

To start a server with an alias name of "LOCAL_SERVER":
CALL SYSPROC.SYSTS_START('LOCAL_SERVER')

To start a server with an alias name of "local_server":
CALL SYSPROC.SYSTS_START('"local_server"')

Related concepts
Server alias name
You can use a server alias name to assign a meaningful name to a server.
Related tasks
Start the OmniFind Text Search Server for DB2 for i
You can start the OmniFind Text Search Server for DB2 for i by calling SYSPROC.SYSTS_START.
Related reference
QSYS2.SYSTEXTSERVERS administration table
You can see where the text search servers are installed using the QSYS2.SYSTEXTSERVERS
administration table.
CONTAINS
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
SCORE
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

SYSPROC.SYSTS_STOP
You can call the SYSPROC.SYSTS_STOP stored procedure to stop DB2 text search functions. This stored
procedure sets the SERVERSTATUS value in the catalog QSYS2.SYSTEXTSERVERS to 1 (stopped).

After this stored procedure has completed, SQL queries that use the CONTAINS or SCORE functions or
administration stored procedures used for index maintenance return a failure without trying to contact a
text search server.

Note: Administrative procedures and SQL queries using the CONTAINS or SCORE built-in functions that
were running when SYSTS_STOP was invoked are allowed to complete.

Changes to the based-on table of the index continue to be logged, even when the server is stopped.
However, scheduled updates of the index do not occur until SYSPROC.SYSTS_START has been invoked.

OmniFind Text Search Server for DB2 for i 15

Authorization
The user ID under which this stored procedure is invoked must have the following privileges:

• *EXECUTE authority on the procedure
• SELECT and UPDATE privileges on the SYSTEXTSERVERS table.
• *EXECUTE authority on the QSYS2 library of the SYSTEXTSERVERS file.
• *JOBCTL authority or QIBM_DB_SQLADM security special function usage.

For information about the system authorities corresponding to SQL privileges, see GRANT (Table or View
Privileges).

Syntax
SYSTS_STOP (

serverid

aliasname

)

The schema qualifier is SYSPROC.

Parameter
serverid or aliasname

Specifies the identifier of the server to be stopped. A serverid or server aliasname is a string. If no
identifier is provided, the default is to stop all servers. The identifier string must either be a valid
serverid that exists in the SERVERID column, or a valid server aliasname that exists in the ALIASNAME
column of the QSYS2.SYSTEXTSERVERS table. If the identifier can be converted to an integer value, it
is interpreted as a serverid. If the identifier cannot be converted to an integer value, it is interpreted as
a server aliasname.

The data type of this parameter is VARCHAR(128).

To stop all production servers:
CALL SYSPROC.SYSTS_STOP().

To stop a server with an ID of 1:
CALL SYSPROC.SYSTS_STOP(1)

To stop a server with an alias name of "LOCAL_SERVER":
CALL SYSPROC.SYSTS_STOP('LOCAL_SERVER')

To stop a server with an alias name of "local_server":
CALL SYSPROC.SYSTS_STOP('"local_server"')

Related concepts
Server alias name
You can use a server alias name to assign a meaningful name to a server.
Related reference
QSYS2.SYSTEXTSERVERS administration table
You can see where the text search servers are installed using the QSYS2.SYSTEXTSERVERS
administration table.
SYSPROC.SYSTS_START
You can enable DB2 text search functions by calling the SYSPROC.SYSTS_START stored procedure.
CONTAINS
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
SCORE

16 IBM i: OmniFind Text Search Server for DB2 for i

You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

SYSPROC.SYSTS_CREATE
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.

The text search index is created on one of the text search servers that is listed in the
QSYS2.SYSTEXTSERVERS table. The text search index is not updated synchronously when the DB2 table
is updated. Instead, a log of changes to the DB2 table column is captured by triggers and placed in a
staging table.

Note: This stored procedure only defines the text search index. The text search index does not contain
any data until after the first invocation of the SYSPROC.SYSTS_UPDATE stored procedure for the new text
search index. You create the text search index after the table is initially populated. By creating the text
search index after the table is initially populated, you avoid the firing of change triggers before an initial
index update.

Prerequisites
Before the SYSPROC.SYSTS_CREATE stored procedure call, verify the following prerequisites:

• DB2 text search functions were started by invoking the SYSPROC.SYSTS_START stored procedure and at
least one text search server is running.

• The table includes a column that is defined as primary key, unique index, or ROWID.
• The QSYS2.SYSTEXTSERVERS table contains at least one entry.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
privileges:

• The privilege to create in the schema. For more information, see Authorization, privileges and object
ownership.

• Administrative authority

The privileges held by the authorization ID of the statement must include at least one of the following
privileges:

• The following system authorities:

– *USE to the Create Logical File (CRTLF) command
– *CHANGE to the data dictionary if the library into which the text index is created is an SQL schema

with a data dictionary
• Administrative authority

The privileges held by the authorization ID of the statement must also include at least one of the following
privileges:

• For the referenced table:

– The INDEX privilege on the table
– The system authority *EXECUTE on the library containing the table

• Administrative authority
• If SQL names are specified, and a user profile exists that has the same name as the library into which

the text index is created, and that name is different from the authorization ID of the statement, then
the privileges held by the authorization ID of the statement must include at least one of the following
privileges:

OmniFind Text Search Server for DB2 for i 17

– The system authority *ADD to the user profile with that name
– Administrative authority

If a distinct type is referenced, the privileges held by the authorization ID of the statement must include at
least one of the following privileges:

• For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

• Administrative authority

If the column that the text search index is built over contains a field procedure, the authorization ID must
have one of

• *EXECUTE authority to the program and
• *EXECUTE authority on the library containing the program

Or

• Administrative authority

For information about the system authorities corresponding to SQL privileges, see GRANT (Table or View
Privileges).

Syntax
SYSTS_CREATE (indexSchema

null

, indexName , textSource ,

options)

The schema qualifier is SYSPROC.

Parameters
indexSchema

Identifies the schema of the text search index. If this parameter is null, the value of the CURRENT
SCHEMA special register for the invoker is used. This value must be a valid SQL name.

Note: Enclose names in double quotation marks if the names conflict with SQL keywords or OmniFind
keywords that can be used.

The data type of this parameter is VARCHAR(128).

indexName
Identifies the name of the text search index. The name of the text search index with the index schema
uniquely identifies the text search index in the DB2 subsystem. You must specify a non-null value for
this parameter. This value must be a valid SQL name.

Note: Enclose names in double quotation marks if the names conflict with SQL keywords or OmniFind
keywords that can be used.

The data type for this parameter is VARCHAR(128).

textSource
Identifies the table and column specification for the document text source. This parameter can
include user-defined functions. You must specify a non-null value for this parameter.

The data type for this parameter is VARCHAR(1024).
textSource

18 IBM i: OmniFind Text Search Server for DB2 for i

 tableSchema . tableName (

 text-column-name

function-schema .
 function-name (text-column-name)

)

tableSchema
Identifies the schema of the table on which the text search index is created.

Note: Enclose names in double quotation marks if the names conflict with SQL keywords or
OmniFind keywords that can be used.

tableName
Identifies the name of the text table that contains the column that the external text search index is
created on.

Notes:

• Views and logical files are not supported.
• An alias must point to a table or a single member of a physical file.
• Enclose names in double quotation marks if the names conflict with SQL keywords or OmniFind

keywords.

text-column-name
Identifies the name of the column that contains the text that is used for creating the text search
index. This column must be of type CHAR, CHAR FOR BIT DATA, BINARY, VARCHAR, VARCHAR
FOR BIT DATA, VARBINARY, CLOB, DBCLOB, BLOB, XML, GRAPHIC, or VARGRAPHIC. If the data
type is not one of these data types, you can specify an external function that returns a supported
data type.

Notes:

• Only one text search index is allowed for a column. If a text search index exists for the column,
SQLCODE-20427 is returned.

• Enclose names in double quotation marks if the names conflict with SQL keywords or OmniFind
keywords.

function-schema. function-name
Identifies the schema and the name of a built-in or user-defined function. The function can be
used to modify a text document stored in the column. The function can also be used to access text
documents in a column that is not of a supported data type. Or the function can be used to access
a document that is stored elsewhere. The function has one input parameter for the text column
data type. For example, an integer that serves as a foreign key to the document content in another
table. The function returns a value of one of the OmniFind Text Search for DB2 for i supported data
types. The function transforms the text column content to the indexed document content.

Notes:

• Cast functions and functions with more than one argument are not allowed.
• Enclose names in double quotation marks if the names conflict with SQL keywords or OmniFind

keywords that can be used.

options
A character string that specifies the various options that are available for this stored procedure.

The data type for this parameter is VARCHAR(32000).
options

OmniFind Text Search Server for DB2 for i 19

 text-default-information update-characteristics

 index-configuration-options

text-default-information

CCSID ccsid LANGUAGE language FORMAT format

text-default-information
Specifies the coded character set identifier used when indexing binary text documents. Also
specifies the language that is used when processing documents, and the format of text documents
in the column.
CCSID ccsid

Specifies the coded character set identifier that is used for a text search index in a
column with a binary data type. The default value is 1208 (UTF-8) and is taken from the
QSYS2.SYSTEXTDEFAULTS table. All the CCSIDs that are supported for conversion to UTF-8 by
IBM i conversion services are allowed for this parameter.

This parameter is ignored for a text search index in a column with a non-binary data type. Text
columns inherit the CCSID from the table specification. The ccsid value is ignored when the
format value is set to INSO.

LANGUAGE language
Specifies the language that OmniFind Text Search Server for DB2 for i uses for the linguistic
processing of text documents. The default value is en_US (English). If you specify the value
for this parameter as AUTO, OmniFind Text Search Server for DB2 for i tries to determine the
language.

Important: If the language of the documents is not English, do not use the default value of
en_US. Change the value to the language of the documents; otherwise, linguistic processing
does not work as expected.

FORMAT format
Identifies the format of text documents in the column, such as HTML. The OmniFind Text
Search Server for DB2 for i needs to know the format, or content type, of the text documents
that you intend to index and search. If you do not specify the format parameter, the
default value is taken from the FORMAT column in the QSYS2.SYSTEXTDEFAULTS table. The
supported format values are TEXT, HTML, XML, and INSO.

The format value INSO allows OmniFind Text Search Server for DB2 for i to determine the
format. In this case, the ccsid value is ignored. If the OmniFind Text Search Server for DB2 for
i cannot determine the document format, then a document error is noted in the job log during
processing by the SYSPROC.SYSTS_UPDATE stored procedure.

Note: If you do not specify the format parameter while creating the index over an XML data
type column, the default value is XML. If you specify the format parameter as TEXT or INSO,
the XML search capability is not available over this index. In addition, a warning message
appears in the job log.

update-characteristics

UPDATE FREQUENCY

NONE

< update-frequency >

UPDATE MINIMUM minchanges

update-characteristics
Specifies the frequency of automatic updates to the text search index. Also specifies the minimum
number of changes to text documents before the text search index is updated incrementally at the
specified time.

20 IBM i: OmniFind Text Search Server for DB2 for i

UPDATE FREQUENCY update-frequency
Specifies when to make automatic updates to the text search index. The default value is
NONE. This option might be useful for a text column in which there are no further changes. The
format of the update-frequency option supports two different formats.

update-frequency (Format 1)
NONE

D (*

0..6

,

0..6

) H (*

0..23

,

0..23

) M (*

0..59

,

0..59

)

NONE
If NONE is specified, then no further index updates are made. The update must be started
manually. This option might be useful for a text column in which no further changes are
planned.

D
Specifies the day or days of the week when the index is updated. An asterisk (*) specifies
all days. 0 specifies Sunday.

H
Specifies the hour or hours when the index is updated. An asterisk (*) specifies all hours.

M
Specifies the minute or minutes when the index is updated. An asterisk (*) cannot be
specified. The minimum update frequency is 5 minutes.

Example: This example specifies that the index update is to run every 30 minutes.

UPDATE FREQUENCY D(*) H(*) M(0,30)

update-frequency (Format 2, chronological)
< minute > < hour > < dayOfMonth > < monthOfYear > < dayOfWeek>

The format of the update-frequency (chronological) option is a list of the five values separated
by a blank space. The five values represent the minutes, hours, days of the month, months of
the year, and days of the week beginning with Sunday.

If you specify an interval of values or an asterisk (*), you can specify a step value by using a
forward slash (/) at the end of the defined interval.

Example: This example specifies that the index update is to run every quarter hour
(0,15,30,45) on the even hours between 8 a.m. and 6:45 p.m. (8-18/2 is equivalent to
8,10,12,14,16,18), from Monday to Friday every month of the year (* * 1-5).

0,15,30,45 8-18/2 * * 1-5

minute
Specifies the minutes of the hour when the text search index is to be updated. You can
specify an asterisk (*) for an interval of every 5 minutes, or you can specify an integer 0
- 59. You cannot repeat values. The minimum update frequency is 5 minutes. A value of
1,4,8 is not valid.

update-frequency (minute)
*

/ 0...59

,

0...59 - 0...59

/ 0...59

0...59

OmniFind Text Search Server for DB2 for i 21

hour
Specifies the hours of the day when the text search index is to be updated. You can specify
an asterisk (*) for every hour, or you can specify an integer 0 - 23. You cannot repeat
values.

update-frequency (hour)
*

/ 0...23

,

0...23 - 0...23

/ 0...23

0...23

dayOfMonth
Specifies the days of the month when the text search index is to be updated. You can
specify an asterisk (*) for every day, or you can specify an integer 1 - 31. You cannot repeat
values.

update-frequency (dayOfMonth)
*

/ 1...31

,

1...31 - 1...31

/ 1...31

1...31

monthOfYear
Specifies the months of the year when the text search index is to be updated. You can
specify an asterisk (*) for every month, or you can specify an integer 1 - 12. You cannot
repeat values.

update-frequency (monthOfYear)
*

/ 1...12

,

1...12 - 1...12

/ 1...12

1...12

dayOfWeek
Specifies the days of the week when the text search index is to be updated. You can
specify an asterisk (*) for every day, or you can specify an integer 0 - 7. Both 0 and 7 are
valid values for Sunday. You cannot repeat values.

update-frequency (dayOfWeek)
*

/ 0...7

,

0...7 - 0...7

/ 0...7

0...7

UPDATE MINIMUM minchanges
Specifies the minimum number of record changes made to the underlying table before the
text search index is updated incrementally at the time specified in the update-frequency

22 IBM i: OmniFind Text Search Server for DB2 for i

option. The value must be an integer 1 - 2147483647. The default value is taken from the
UPDATEMINIMUM column in the QSYS2.SYSTEXTDEFAULTS table.

This option is ignored when you update the text search index, unless you specify the USING
UPDATE MINIMUM option in the SYSPROC.SYSTS_UPDATE stored procedure.

index-configuration-options

INDEX CONFIGURATION (

,

option value)

ROW_COLUMN_ACCESS

NOT SECURED SECURED

index-configuration-options
Specifies additional index-specific values as option value pairs. You must enclose string values in
single quotation marks. A single quotation mark within a string value must be represented by two
consecutive single quotation marks.
CJKSEGMENTATION

Specifies the segmentation method to use when you index documents for CJK (Chinese,
Japanese, Korean) languages. The supported values are MORPHOLOGICAL and NGRAM. If
the CJKSEGMENTATION value is not specified, the default value is used. The default value is
specified by the DEFAULTNAME value in the QSYS2.SYSTEXTDEFAULTS table.

COMMENT
Specifies a comment that is stored in the REMARKS column of the QSYS2.SYSTEXTINDEXES
administration table and as the description of the OmniFind Text Search Server for DB2 for i
collection.

The value for this option is a string value that is less than or equal to 512 bytes.

IGNOREEMPTYDOCS
Specifies whether to represent empty documents in the text search index. Empty documents
are those documents with an empty string or a null value.

The supported values for this option are 0 (zero) and 1. The default value is 1.

If this option is set to 1, empty documents are not represented in the text search index. If
you use this option and change the document content to empty, the next incremental update
deletes the documents from the text search index.

KEYCOLUMN
Specifies the name of a unique column to be used as the key column in the text index. The key
column is used to associate data in the text index to a document or row in the base table. The
specified column must have a primary key constraint or unique index. If KEYCOLUMN is not
specified, the ROWID column from the table is used, if one exists. Otherwise, the primary key
defined on the table is used.

SERVER
Specifies the ID or alias name of the server to be used to store the text search index.
If an ID is used, the value is an integer that must exist in the SERVERID column of the
QSYS2.SYSTEXTSERVERS catalog. If an alias name is used, the value is a string that must exist
in the ALIASNAME column of the QSYS2.SYSTEXTSERVERS catalog. If SERVER is not specified,
the default is to select the server with the fewest text search indexes from the servers in
the QSYS2.SYSTEXTSERVERS table where parameter SERVERSTATUS is set to 0 (zero), which
means that the server is available.

UPDATEAUTOCOMMIT
Specifies how often a commit operation is performed when fetching documents during an
index update. A value of 0 (zero) means that a commit operation occurs only at the end of
processing.

The value must be an integer between 0 (zero) and 2147483647. The default value is 100.

OmniFind Text Search Server for DB2 for i 23

Performance tip: The value of UPDATEAUTOCOMMIT can have a substantial impact on
the performance of index updates. The commit operation that takes place at the specified
interval ensures a consistent checkpoint from which to restart the index update, if it is
interrupted. However, the commit also temporarily suspends the update process. Increasing
the UPDATEAUTOCOMMIT value (or setting it to 0) can substantially improve the update
performance, especially the initial update. The value you specify must balance the need for
performance with the need for recoverability, based on the frequency of the index updates.

ROW_COLUMN_ACCESS
Specifies whether the text search index is considered secure for row access control and
column access control.
NOT_SECURED

Specifies that the text search index is considered not secure for row access control and
column access control. This is the default.

The based on table for the index must not have an active permission or Mask.

SECURED
Specifies that the index is considered secure for row access control and column access
control.

A text search index must be defined as secured to be built over a table with an active
permission or column Mask. If a function is referenced to access or modify data in a
masked column, the function must be defined as secured. The authorization ID must have
QIBM_DB_SECADM authority to create a text search index with the SECURED attribute.

When a text search index is built over sensitive information there are additional
considerations:

The database administrator needs to be aware that the data specified as key column(s) for
the text search index will be stored in a staging table in QSYS2 and sent to the text search
server using network protocols.

The database administrator needs to be aware that data indexed by a text search index is
sent to the text search server using network protocols and stored outside of DB2 on the
text search server.

Default values for the options parameter
When you install OmniFind Text Search for DB2 for i, the QSYS2.SYSTEXTDEFAULTS table is created
and populated with default values for the options parameter of the SYSPROC.SYSTS_CREATE stored
procedure.

The following table lists the options, default values, and descriptions of the options.

Table 2. Default values for the options parameter

Option
Default
value Description

CCSID 1208 Specifies the coded character set identifier that is
used when binary text documents are indexed.

CJKSEGMENTATION NGRAM Specifies the segmentation method to use when
you index documents for CJK (Chinese, Japanese,
Korean) languages.

LANGUAGE en_US Specifies the language used to process text
documents.

FORMAT TEXT Identifies the format of text documents in the
column. The default format is plain text unless the
data type is XML.

24 IBM i: OmniFind Text Search Server for DB2 for i

Table 2. Default values for the options parameter (continued)

Option
Default
value Description

UPDATEFREQUENCY NONE Indicates that no automatic updates are
scheduled.

UPDATEMINIMUM 1 If at least one document changed since the
last index update, the SYSPROC.SYSTS_UPDATE
stored procedure starts processing.

IGNOREEMPTYDOCS 1 Specifies that empty documents (documents
with an empty string or a null value) are
not represented in the text search index. The
metadata fields for these documents are not
available for search.

UPDATEAUTOCOMMIT 100 Specifies how often a commit operation is
performed when documents are fetched during an
index update.

MINIMUMUPDATEINTERVAL 5 Specifies the intervals for the
UPDATEFREQUENCY option. Intervals cannot be
shorter than 5 minutes.

ROW_COLUMN_ACCESS NOT_SECUR
ED

Specifies whether the index is created as secured
or not.

USEREXITTHREADS 0 Reserved

Related concepts
Supported document formats
The text column data can be plain text, an HTML document, an XML document, or any document that is
recognized by the search engine.
Supported data types
The data in the text columns that you want to index and search can be either binary data or character
data.
Related reference
QSYS2.SYSTEXTSERVERS administration table
You can see where the text search servers are installed using the QSYS2.SYSTEXTSERVERS
administration table.
QSYS2.SYSTEXTINDEXES administration table
You can see information about each text search index in the QSYS2.SYSTEXTINDEXES administration
table. Each text search index has a name, schema name, and an associated collection name on the text
search server.
QSYS2.SYSTEXTDEFAULTS administration table
You can see the default parameters and values in the QSYS2.SYSTEXTDEFAULTS administration table.
This table is created when you install OmniFind Text Search for DB2 for i.
SYSPROC.SYSTS_UPDATE
You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.
SYSPROC.SYSTS_START
You can enable DB2 text search functions by calling the SYSPROC.SYSTS_START stored procedure.
Supported languages

OmniFind Text Search Server for DB2 for i 25

You can specify that text documents be processed using a specific language.

SYSPROC.SYSTS_ALTER
You can call the SYSPROC.SYSTS_ALTER stored procedure to modify attributes of an index that was
created by SYSPROC.SYSTS_CREATE. Only attributes explicitly specified on this procedure are changed.
All other attributes of the index remain unchanged.

This is useful if you need to change the attributes of the index, such as the update frequency, after the
index has already been created.

Prerequisites
Before you call the SYSPROC.SYSTS_ALTER stored procedure, verify the following prerequisite:

• The text search index was created (by invocation of the SYSPROC.SYSTS_CREATE stored procedure).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
privileges:

• The privilege to create in the schema. For more information, see Authorization, privileges and object
ownership.

• Administrative authority

The privileges held by the authorization ID of the statement must include at least one of the following
privileges:

• The following system authorities:

– *USE to the Create Logical File (CRTLF) command
– *CHANGE to the data dictionary if the library into which the text index is created is an SQL schema

with a data dictionary
• Administrative authority

The privileges held by the authorization ID of the statement must also include at least one of the following
privileges:

• For the referenced table:

– The INDEX privilege on the table
– The system authority *EXECUTE on the library containing the table

• Administrative authority
• If SQL names are specified, and a user profile exists that has the same name as the library into which

the text index is created, and that name is different from the authorization ID of the statement, then
the privileges held by the authorization ID of the statement must include at least one of the following
authorities:

– System authority *ADD to the user profile with that name
– Administrative authority

If a distinct type is referenced, the privileges held by the authorization ID of the statement must include at
least one of the following privileges:

• For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

• Administrative authority

26 IBM i: OmniFind Text Search Server for DB2 for i

For information about the system authorities corresponding to SQL privileges, see GRANT (Table or View
Privileges).

Syntax
SYSTS_ALTER (indexSchema , indexName , options)

The schema qualifier is SYSPROC.

Parameters
indexSchema

Identifies the schema of the text search index. If this parameter is null, the value of the CURRENT
SCHEMA special register for the invoker is used.

The data type of this parameter is VARCHAR(128).

indexName
Identifies the name of the text search index. The name of the text search index together with the
index schema uniquely identifies the text search index in the DB2 subsystem. You must specify a
non-null value for this parameter.

The data type of this parameter is VARCHAR(128).

options
A character string that specifies the various options that are available for this stored procedure.

The data type of this parameter is VARCHAR(32000).

The parameter cannot be NULL.
options

 rename-function-information update-characteristics

 index-configuration-options

rename-function-information
RENAME FUNCTION

function-schema .

 function-name

Specifies the user-defined function to be renamed.

function-schema.function-name
Specifies the schema and name of a user-defined function.

This option is used to change a function that was specified while creating an index. If the function is
changed, SYSTS_UPDATE uses the new function to index the text column.

If the function was changed, SYSTS_UPDATE does not change the existing data of the index. Only the
new changed data after the last update is processed.

update-characteristics

UPDATE FREQUENCY

NONE

update-frequency

UPDATE MINIMUM minchanges

update-characteristics
Specifies the frequency of automatic updates to the text search index. Also specifies the minimum
number of changes to text documents before the text search index is updated incrementally at the
specified time.

OmniFind Text Search Server for DB2 for i 27

UPDATE FREQUENCY update-frequency
Specifies when to make automatic updates to the text search index. The default value is
NONE. This option might be useful for a text column in which there are no further changes. The
format of the update-frequency option supports two different formats.

update-frequency (Format 1)
NONE

D (*

0..6

,

0..6

) H (*

0..23

,

0..23

) M (*

0..59

,

0..59

)

NONE
If NONE is specified, then no further index updates are made. The update must be started
manually. This option might be useful for a text column in which no further changes are
planned.

D
Specifies the day or days of the week when the index is updated. An asterisk (*) specifies
all days. 0 specifies Sunday.

H
Specifies the hour or hours when the index is updated. An asterisk (*) specifies all hours.

M
Specifies the minute or minutes when the index is updated. An asterisk (*) cannot be
specified. The minimum update frequency is 5 minutes.

Example: This example specifies that the index update is to run every 30 minutes.

UPDATE FREQUENCY D(*) H(*) M(0,30)

update-frequency (Format 2, chronological)
< minute > < hour > < dayOfMonth > < monthOfYear > < dayOfWeek>

The format of the update-frequency (chronological) option is a list of the five values separated
by a blank space. The five values represent the minutes, hours, days of the month, months of
the year, and days of the week beginning with Sunday.

If you specify an interval of values or an asterisk (*), you can specify a step value by using a
forward slash (/) at the end of the defined interval.

Example: This example specifies that the index update is to run every quarter hour
(0,15,30,45) on the even hours between 8 a.m. and 6:45 p.m. (8-18/2 is equivalent to
8,10,12,14,16,18), from Monday to Friday every month of the year (* * 1-5).

0,15,30,45 8-18/2 * * 1-5

minute
Specifies the minutes of the hour when the text search index is to be updated. You can
specify an asterisk (*) for an interval of every 5 minutes, or you can specify an integer 0 -
59. You cannot repeat values. The minimum update frequency is 5 minutes. A value of 1,4,
or 8 is not allowed.

update-frequency (minute)
*

/ 0...59

,

0...59 - 0...59

/ 0...59

0...59

28 IBM i: OmniFind Text Search Server for DB2 for i

hour
Specifies the hours of the day when the text search index is to be updated. You can specify
an asterisk (*) for every hour, or you can specify an integer 0 - 23. You cannot repeat
values.

update-frequency (hour)
*

/ 0...23

,

0...23 - 0...23

/ 0...23

0...23

dayOfMonth
Specifies the days of the month when the text search index is to be updated. You can
specify an asterisk (*) for every day, or you can specify an integer 1 - 31. You cannot repeat
values.

update-frequency (dayOfMonth)
*

/ 1...31

,

1...31 - 1...31

/ 1...31

1...31

monthOfYear
Specifies the months of the year when the text search index is to be updated. You can
specify an asterisk (*) for every month, or you can specify an integer 1 - 12. You cannot
repeat values.

update-frequency (monthOfYear)
*

/ 1...12

,

1...12 - 1...12

/ 1...12

1...12

dayOfWeek
Specifies the days of the week when the text search index is to be updated. You can
specify an asterisk (*) for every day, or you can specify an integer 0 - 7. Both 0 and 7 are
valid values for Sunday. You cannot repeat values.

update-frequency (dayOfWeek)
*

/ 0...7

,

0...7 - 0...7

/ 0...7

0...7

OmniFind Text Search Server for DB2 for i 29

UPDATE MINIMUM minchanges
Specifies the minimum number of record changes made to the underlying table before the text
search index is updated incrementally at the time specified in the update-frequency option.
The value must be an integer 1 - 2147483647.

index-configuration-options

INDEX CONFIGURATION (

,

option value)

ROW_COLUMN_ACCESS

NOT SECURED SECURED

COMMENT
Specifies a comment that is stored in the REMARKS column of the QSYS2.SYSTEXTINDEXES
administration table and as the description of the OmniFind Text Search Server for DB2 for i
collection.

The value for this option is a string value that is less than or equal to 512 bytes.

UPDATEAUTOCOMMIT
Specifies how often a commit operation is performed when fetching documents during an index
update. A value of 0 (zero) means that a commit operation occurs only at the end of processing.

The value must be an integer between 0 (zero) and 2147483647.

Performance tip: The value of UPDATEAUTOCOMMIT can have a substantial impact on
the performance of index updates. The commit operation that takes place at the specified
interval ensures a consistent checkpoint from which to restart the index update, if it is
interrupted. However, the commit also temporarily suspends the update process. Increasing the
UPDATEAUTOCOMMIT value (or setting it to 0) can substantially improve the update performance,
especially the initial update. The value you specify must balance the need for performance with
the need for recoverability, based on the frequency of the index updates.

ROW_COLUMN_ACCESS
Specifies whether the text search index is considered secure for row access control and column
access control.
NOT_SECURED

Specifies that the text search index is considered not secure for row access control and
column access control. This is the default.

The based on table for the index must not have an active permission or Mask.

SECURED
Specifies that the index is considered secure for row access control and column access
control.

A text search index must be defined as secured to be built over a table with an active
permission or column Mask. If a function is referenced to access or modify data in a
masked column, the function must be defined as secured. The authorization ID must have
QIBM_DB_SECADM authority to create a text search index with the SECURED attribute.

When a text search index is built over sensitive information there are additional
considerations:

The database administrator needs to be aware that the data specified as key column(s) for the
text search index will be stored in a staging table in QSYS2 and sent to the text search server
using network protocols.

The database administrator needs to be aware that data indexed by a text search index is sent
to the text search server using network protocols and stored outside of DB2 on the text search
server.

30 IBM i: OmniFind Text Search Server for DB2 for i

Tips: If users alter an index from SECURED to NOT SECURED, users have to make sure the based table
must not have an active permission mask. Or an error will be thrown.

Related reference
SYSPROC.SYSTS_CREATE
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.
SYSPROC.SYSTS_UPDATE
You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.
QSYS2.SYSTEXTINDEXES administration table
You can see information about each text search index in the QSYS2.SYSTEXTINDEXES administration
table. Each text search index has a name, schema name, and an associated collection name on the text
search server.

SYSPROC.SYSTS_DROP
You can call the SYSPROC.SYSTS_DROP stored procedure to drop a text search index that was defined by
using the SYSPROC.SYSTS_CREATE stored procedure.

It is recommended that you drop a text search index by using the SYSPROC.SYSTS_DROP stored
procedure before dropping the table.

Dropping the view representing the text search index, even as the result of a DROP TABLE CASCADE
statement, attempts to drop the text search index. However, because the text search index cannot be
dropped under commitment control, the SQL view cannot be dropped under commitment control.

If the text search server cannot be reached, the collection on the server might become orphaned. If
that happens, the collection needs to be deleted manually. When the server is available again, use the
OmniFind Text Search Server for DB2 for i administration tool to delete the collection on the server.

In “Administration tools” on page 69, you can find information about the tools to identify orphaned
indexes and the stored procedure STSPROC.SYSTS_REMOVE or SYSPROC.SYSTS_CLEAR_INDEXES to
delete orphaned indexes.

Prerequisites
Before you call the SYSPROC.SYSTS_DROP stored procedure, verify the following prerequisites:

• DB2 text search functions were started by calling the SYSPROC.SYSTS_START stored procedure.
• The text search index was created (by invocation of the SYSPROC.SYSTS_CREATE stored procedure).
• Ensure that the following stored procedures are not running for the text search index that you want to

drop: SYSPROC.SYSTS_CREATE, SYSPROC.SYSTS_UPDATE, and SYSPROC.SYSTS_DROP.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
privileges:

• The following system authorities:

– The system authorities of *OBJOPR and *OBJEXIST on the text index to be dropped
– The system authority *EXECUTE on the library that contains the text index to be dropped

• Administrative authority

For information about the system authorities corresponding to SQL privileges, see GRANT (Table or View
Privileges).

OmniFind Text Search Server for DB2 for i 31

Syntax
SYSTS_DROP (indexSchema

null

, indexName)

The schema qualifier is SYSPROC.

Parameters
indexSchema

Identifies the schema of the text search index. If this parameter is null, the value of the CURRENT
SCHEMA special register for the invoker is used.

The data type of this parameter is VARCHAR(128).

indexName
Identifies the name of the text search index. The name of the text search index together with the
index schema uniquely identifies the text search index in the DB2 subsystem. You must specify a
non-null value for this parameter.

The data type of this parameter is VARCHAR(128).

Related reference
SYSPROC.SYSTS_CREATE
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.
SYSPROC.SYSTS_START
You can enable DB2 text search functions by calling the SYSPROC.SYSTS_START stored procedure.
SYSPROC.SYSTS_UPDATE
You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.
SYSPROC.SYSTS_REMOVE
You can remove orphaned indexes with the SYSPROC.SYSTS_REMOVE SQL stored procedure.
SYSTS_CLEAR_INDEXES
You can remove orphaned indexes with the SYSPROC. SYSTS_CLEAR_INDEXES SQL stored procedure.
Another implicit way is invoking SYSTS_START directly, which tries to clear orphaned indexes
automatically.

SYSPROC.SYSTS_UPDATE
You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.

Because updating a text search index is an extensive operation, the text search index is not updated
synchronously when the DB2 table is updated. Instead, changes to the DB2 table column are captured
by a trigger and written to a staging table. The text search index is updated the next time the
SYSPROC.SYSTS_UPDATE stored procedure is invoked or when the UPDATE FREQUENCY option indicates
it is updated. Therefore, some search requests might not reflect recent updates to the table.

This stored procedure returns only after all the update processing for the text search index on the
OmniFind Text Search Server for DB2 for i is completed. The duration depends on the number of entries
in the staging table at the time the SYSTS_UPDATE was called. During the update process, the text search
index remains searchable.

32 IBM i: OmniFind Text Search Server for DB2 for i

If an issue occurred while indexing a document from the base table, the staging table column with the
TOBEDELETED has a value set to either E (error) or W (warning). ERRORMSG column has value to record
error messages. You can retrieve these records with a stored procedure that includes the following query:

SELECT s.TOBEDELETED, s.ERRORMSG, based_on_columns
FROM based_on_table t INNER JOIN QSYS2.stagingtables
ON (QQQ_TEXTSEARCH_KEY(t.k1, t.k2, t.k3, ...) = s.KEYID)
WHERE s.TOBEDELETED IN('E','W')

In this case, based_on_columns is the column list that you need to see from the based_on_table.
based_on_table is the table being indexed. staging table is the staging table listed in the catalogs
for the text search index. k1, k2, k3, ... is the list of key columns in the primary key, row ID, or
unique key that is used to build the text search index. ERRORMSG is a column records the error messages
while indexing this document. Once you correct the errors for those documents, run the update again.

If an index update is requested at the same time an update is already running for that index, an error is
returned. Only one update is allowed to run at a time for a given index.

If an index is created as SECURED, the unmasked data is retrieved from the base table and be indexed,
like there is no mask or permission created on this table.

If there is field procedure created on the base table, the original unmasked data is indexed.

Prerequisites
Before calling the SYSPROC.SYSTS_UPDATE stored procedure, verify the following prerequisites:

• The text search index was created (by invocation of the SYSPROC.SYSTS_CREATE stored procedure).
• The following stored procedures are not running for the text search index that you want to update:

SYSPROC.SYSTS_CREATE, SYSPROC.SYSTS_UPDATE, and SYSPROC.SYSTS_DROP.
• The text search server that the index resides on must have been started using the SYSTS_START stored

procedure. The SERVERSTATUS column in QSYS2.SYSTEXTSERVERS must have a value of '0' (started).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
privileges:

• The privilege to create in the schema. For more information, see Authorization, privileges and object
ownership.

• Administrative authority

The privileges held by the authorization ID of the statement must include at least one of the following
privileges:

• The following system authorities:

– *USE to the Create Logical File (CRTLF) command
– *CHANGE to the data dictionary if the library into which the text index is created is an SQL schema

with a data dictionary
• Administrative authority

The privileges held by the authorization ID of the statement must also include at least one of the following
privileges:

• For the referenced table:

– The INDEX privilege on the table
– The system authority *EXECUTE on the library containing the table

• Administrative authority
• If SQL names are specified, and a user profile exists that has the same name as the library into which

the text index is created, and that name is different from the authorization ID of the statement, then

OmniFind Text Search Server for DB2 for i 33

the privileges held by the authorization ID of the statement must include at least one of the following
privileges:

– The system authority *ADD to the user profile with that name
– Administrative authority

If a distinct type is referenced, the privileges held by the authorization ID of the statement must include at
least one of the following privileges:

• For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

• Administrative authority

If the index was created by SYSTS_CREATE as SECURED index, the authorization ID must have
DB_SECADMIN authority.

For information about the system authorities corresponding to SQL privileges, see GRANT (Table or View
Privileges).

Syntax
SYSTS_UPDATE (indexSchema

null

, indexName , options)

The schema qualifier is SYSPROC.

Parameters
indexSchema

Identifies the schema of the text search index. If this parameter is null, the value of the CURRENT
SCHEMA special register for the invoker is used.

The data type of this parameter is VARCHAR(128).

indexName
Identifies the name of the text search index. The name of the text search index together with the
index schema uniquely identifies the full-text index in the DB2 subsystem. You must specify a non-
null value for this parameter.

The data type for this parameter is VARCHAR(128).

options
A character string that specifies the option that is available for this stored procedure.

The available option is USING UPDATE MINIMUM. This option uses the USING UPDATE MINIMUM
settings that you specified for the SYSPROC.SYSTS_CREATE stored procedure. It starts an incremental
update only if the specified number of changes was reached. The default is to unconditionally start the
update process.

USING UPDATE MINIMUM

USING UPDATE MINIMUM

Related concepts
Document truncation

34 IBM i: OmniFind Text Search Server for DB2 for i

The OmniFind Text Search Server for DB2 for i limits the number of characters that can be indexed for
each text document. Sometimes this character limit results in the truncation of large text documents in
the text search index.
Related reference
SYSPROC.SYSTS_CREATE
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.
SYSPROC.SYSTS_START
You can enable DB2 text search functions by calling the SYSPROC.SYSTS_START stored procedure.
SYSPROC.SYSTS_DROP
You can call the SYSPROC.SYSTS_DROP stored procedure to drop a text search index that was defined by
using the SYSPROC.SYSTS_CREATE stored procedure.

SYSPROC.SYSTS_SHUTDOWN
You can call the SYSPROC.SYSTS_SHUTDOWN stored procedure to shutdown DB2® text search functions.
This stored procedure sets the SERVERSTATUS value in the catalog QSYS2.SYSTEXTSERVERS to 1
(stopped) and also ends the text search server jobs on the host system.

After this stored procedure has completed, SQL queries that use the CONTAINS or SCORE functions or
administration stored procedures used for index maintenance return a failure without trying to contact a
text search server.

Changes to the based-on table of the index continue to be logged, even when the server is shutdown.
However, scheduled updates of the index do not occur until SYSPROC.SYSTS_START has been invoked.

Authorization
The user ID under which this stored procedure is invoked must have the following privileges:

• *EXECUTE authority on the procedure.
• SELECT and UPDATE privileges on the SYSTEXTSERVERS table.
• *EXECUTE authority on the QSYS2 library of the SYSTEXTSERVERS file.
• *JOBCTL authority or QIBM_DB_SQLADM security special function usage.

For information about the system authorities corresponding to SQL privileges, see GRANT (Table or View
Privileges).

Syntax
 >>-SYSTS_SHUTDOWN--(--+-----------+--)-----------------------------><
 +-serverid--+
 '-aliasname-'

Parameters
serverid or aliasname

Specifies the identifier of the server for clear orphaned indexes. A serverid or server aliasname is a
string. If no identifier is provided, the default is to clear orphaned indexes on all servers. The identifier
string must either be a valid serverid that exists in the SERVERID column, or a valid server aliasname
that exists in the ALIASNAME column of the QSYS2.SYSTEXTSERVERS table. If the identifier can be
converted to an integer value, it is interpreted as a serverid. If the identifier cannot be converted to an
integer value, it is interpreted as a server aliasname.

The data type of this parameter is VARCHAR(128).

OmniFind Text Search Server for DB2 for i 35

Example

• To shutdown all production servers:

CALL SYSPROC.SYSTS_SHUTDOWN().

• To shutdown a server with an ID of 1:

CALL SYSPROC.SYSTS_SHUTDOWN(1)

• To shutdown a server with an alias name of "LOCAL_SERVER":

CALL SYSPROC.SYSTS_SHUTDOWN('LOCAL_SERVER')

• To shutdown a server with an alias name of "local_server":

CALL SYSPROC.SYSTS_SHUTDOWN('local_server')

Related concepts
Server alias name
You can use a server alias name to assign a meaningful name to a server.
Related reference
QSYS2.SYSTEXTSERVERS administration table
You can see where the text search servers are installed using the QSYS2.SYSTEXTSERVERS
administration table.
SYSPROC.SYSTS_START
You can enable DB2 text search functions by calling the SYSPROC.SYSTS_START stored procedure.
CONTAINS
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
SCORE
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

Search with a text search index
You can use the CONTAINS function and the SCORE function in an SQL statement with OMNIFIND.
CONTAINS and SCORE are used to search a text search index using the search argument criteria that you
specify. You can also index and search XML documents.

CONTAINS
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.

CONTAINS (column-name , search-argument

, string-constant

)
1

Notes:
1 string-constant must conform to the rules for the search-argument options.

search-argument-options

36 IBM i: OmniFind Text Search Server for DB2 for i

QUERYLANGUAGE = value

RESULTLIMIT = value

SYNONYM =

OFF

ON

1

Notes:
1 The same clause must not be specified more than once.

The schema is QSYS2.

column-name
Specifies a qualified or unqualified name of a column that has a text search index that is to be
searched. The column must exist in the table or view that is identified in the FROM clause of the
statement. The column of the table, or the column of the underlying base table of the view, must
have an associated text search index (SQLSTATE 38H12). The underlying expression of the column of
a view must be a simple column reference to the column of an underlying table, directly or through
another nested view.

search-argument
Specifies an expression that returns a string value containing the terms used in the search. The
expression must not be all blanks or the empty string (SQLSTATE 38H14). The actual length of the
string must not exceed 32704 bytes. This length might be further limited by what is supported by the
text search server (SQLSTATE 38H10). The value is converted to Unicode before it is used to search
the text search index.

string-constant
Identifies a string constant that specifies the search argument options that are in effect for the
function.

The options that can be specified as part of the search-argument-options are as follows:

QUERYLANGUAGE = value
Specifies the query language. The value can be any of the supported language codes. If the
QUERYLANGUAGE option is not specified, the default is the language value of the text search
index that is used when this function is invoked. If the language value of the text search index is
AUTO, the default value for QUERYLANGUAGE is en_US.

RESULTLIMIT = value
Specifies the maximum number of results to be returned from the underlying search engine. The
value can be an integer value 1 - 2 147 483 647. If the RESULTLIMIT option is not specified, no
result limit is in effect for the query.

This scalar function might not be called for each row of the result table, depending on the plan
that the optimizer chooses. This function can be called once for the entire query to the underlying
search engine. A result set of all the primary keys that match are returned. This result set is
then joined to the table containing the column to identify the result rows. In this case, the
RESULTLIMIT value acts like FETCH FIRST ?? ROWS from the underlying text search engine, and
can be used as an optimization. If the search engine is called for each row of the result because
that is the best plan, then the RESULTLIMIT option is ignored.

SYNONYM = OFF or SYNONYM = ON
Specifies whether to use a synonym dictionary that is associated with the text search index. You
can add a synonym dictionary to a collection by using the synonym tool.
OFF

OFF is the default value.

OmniFind Text Search Server for DB2 for i 37

ON
Use the synonym dictionary that is associated with the text search index.

The result of the function is a large integer. If the second argument can be null, the result can be null. If
the second argument is null, the result is the null value.

The result is 1 if the document contains a match for the search criteria that are specified in the search
argument. Otherwise, the result is 0. The result is also 0 if the column is null. If the search argument is
Null, then the result is the null value.

CONTAINS is a nondeterministic function.

Example 1

The following statement finds all the employees who have ″COBOL″ in their resume.

SELECT EMPNO
FROM EMP_RESUME
WHERE RESUME_FORMAT = 'ascii'
AND CONTAINS(RESUME, 'COBOL') = 1

Example 2

The search argument does not need to be a string constant. The search argument can be any SQL string
expression, including a string contained in a host variable. The following statement searches for the exact
term "ate" in the COMMENT column.

Note: The term "ate" must be delimited in double quotes so that only the exact term is searched for and
linguistic variations are not considered.

char search_arg[100]; /* input host variable */
...
EXEC SQL DECLARE C3 CURSOR FOR
SELECT CUSTKEY
FROM K55ADMIN.CUSTOMERS
WHERE CONTAINS(COMMENT, :search_arg)= 1
ORDER BY CUSTKEY;
strcpy(search_arg, "\"ate\""');
EXEC SQL OPEN C3;
...

Example 3

The following statement finds 10 students at random who wrote online essays that contain the phrase
"fossil fuel" in Spanish, which is "combustible fósil." These students are for a radio interview. Use the
synonym dictionary that was created for the associated text search index. Because only 10 students are
needed, optimize the query by using the RESULTLIMIT option to limit the number of results from the
underlying text search server.

SELECT FIRSTNME, LASTNAME
 FROM STUDENT_ESSAYS
 WHERE CONTAINS(TERM_PAPER, 'combustible fósil',
 'QUERYLANGUAGE= es_ES RESULTLIMIT = 10 SYNONYM=ON') = 1

Related tasks
Search a text search index
You can search a text search index by using an SQL statement with a CONTAINS or SCORE function. The
search argument criteria is specified on the function.
Related reference
SCORE
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.
Search argument syntax

38 IBM i: OmniFind Text Search Server for DB2 for i

You can specify a search argument as the condition of a search for terms in text documents. It consists of
search parameters and one or more search terms. The SQL scalar text search functions that use search
arguments are CONTAINS and SCORE.

SCORE
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

1
SCORE (column-name , search-argument

, string-constant

)

Notes:
1 string-constant must conform to the rules for the search-argument options.

search-argument-options

1
QUERYLANGUAGE = value

RESULTLIMIT = value

SYNONYM =

OFF

ON

Notes:
1 The same clause must not be specified more than once.

The schema is QSYS2.

column-name
Specifies a qualified or unqualified name of a column that has a text search index that is to be
searched. The column must exist in the table or view that is identified in the FROM clause of the
statement. The column of the table, or the column of the underlying base table of the view, must
have an associated text search index (SQLSTATE 38H12). The underlying expression of the column
of a view must be a simple column reference to the column of an underlying table, either directly or
through another nested view.

search-argument
Specifies an expression that returns a string value containing the terms used in the search. The
expression must not be all blanks or the empty string (SQLSTATE 38H14). The actual length of the
string must not exceed 32704 bytes. This length might be further limited by what is supported by the
text search server (SQLSTATE 38H10). The value is converted to Unicode before it is used to search
the text search index. If the search-argument is null, the result is the null value.

string-constant
Identifies a string constant that specifies the search argument options that are in effect for the
function.

The options that can be specified as part of the search-argument-options are as follows:

QUERYLANGUAGE = value
Specifies the query language. The value can be any of the supported language codes. If the
QUERYLANGUAGE option is not specified, the default is the language value of the text search
index that is used when this function is invoked. If the language value of the text search index is
AUTO, the default value for QUERYLANGUAGE is en_US.

RESULTLIMIT = value
Specifies the maximum number of results that are to be returned from the underlying search
engine. The value can be an integer value 1 - 2 147 483 647. If the RESULTLIMIT option is not
specified, no result limit is in effect for the query.

OmniFind Text Search Server for DB2 for i 39

This scalar function might not be called for each row of the result table, depending on the plan
that the optimizer chooses. This function can be called once for the entire query to the underlying
search engine. A result set of all the primary keys that match are returned. This result set is
then joined to the table containing the column to identify the result rows. In this case, the
RESULTLIMIT value acts like FETCH FIRST ?? ROWS from the underlying text search engine and
can be used as an optimization. If the search engine is called for each row of the result because
that is the best plan, then the RESULTLIMIT option is ignored.

SYNONYM = OFF or SYNONYM = ON
Specifies whether to use a synonym dictionary that is associated with the text search index. You
can add a synonym dictionary to a collection by using the synonym tool.
OFF

OFF is the default value.
ON

Use the synonym dictionary that is associated with the text search index.

The result of the function is a double-precision floating-point number. If the second argument can be null,
the result can be null. If the second argument is null, the result is the null value.

The result is greater than 0 but less than 1 if the column contains a match for the search criteria that
the search argument specifies. The more frequently a match is found, the larger the result value. If the
column does not contain a match, the result is 0. The score is also 0 if the column is null.

SCORE is a nondeterministic function.

Example

The following statement generates a list of employees ordered by how well their resumes match
programmer AND (java OR cobol). In addition, a relevance value that is normalized between 0
(zero) and 100 is returned.

SELECT EMPNO, INTEGER(SCORE(RESUME, 'programmer AND
 (java OR cobol)') * 100) AS RELEVANCE
 FROM EMP_RESUME
 WHERE RESUME_FORMAT = 'ascii'
 ORDER BY RELEVANCE DESC

Related tasks
Search a text search index
You can search a text search index by using an SQL statement with a CONTAINS or SCORE function. The
search argument criteria is specified on the function.
Related reference
CONTAINS
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
SYSPROC.SYSTS_CREATE
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.
Search argument syntax

40 IBM i: OmniFind Text Search Server for DB2 for i

You can specify a search argument as the condition of a search for terms in text documents. It consists of
search parameters and one or more search terms. The SQL scalar text search functions that use search
arguments are CONTAINS and SCORE.

Search argument syntax
You can specify a search argument as the condition of a search for terms in text documents. It consists of
search parameters and one or more search terms. The SQL scalar text search functions that use search
arguments are CONTAINS and SCORE.

For any language-specific processing during a search, you can specify a value for the QUERYLANGUAGE
parameter as a search argument option. The value can be any of the supported language codes.

If the QUERYLANGUAGE parameter is not specified, the default value is the language value of the text
search index used when this function is called.

If the language value of the text search index is AUTO, the default value for QUERYLANGUAGE is en_US.

Limitations
You cannot use the CONTAINS and SCORE functions in an SQL constraint or index definition. You can use
them in SQL query statements and view definitions under the following restrictions:

• If a view, nested table expression, or common table expression provides a text search column for a
CONTAINS or SCORE scalar function, and if the applicable view, nested table expression, or common
table expression has a DISTINCT clause on the outermost SELECT statement, then the SELECT list must
contain all the corresponding key fields of the text search index. Otherwise, SQL message 38H12 is
returned.

• If a view, nested table expression, or common table expression provides a text search column for a
CONTAINS or SCORE scalar function, then the applicable view, nested table expression, or common
table expression cannot have a UNION, an EXCEPT, or an INTERSECT statement at the outermost
SELECT level. Otherwise, SQL message 38H12 is returned.

• If a common table expression provides a text search column for a CONTAINS or SCORE scalar function,
the common table expression can be referenced again in the entire query only when the reference does
not provide a text search column for a CONTAINS or SCORE scalar function. Otherwise, SQL message
38H12 is returned.

• A function cannot be created sourced on the CONTAINS or SCORE scalar functions. Otherwise, SQL
message SQL0457 is returned.

• The query can run through the SQL Query Engine (SQE).

Simple search
To do a simple keyword search, enter one or more keywords in the query. The search engine returns
documents that contain all those keywords, or variations of the keywords.

For example, if you enter king, the search engine returns all documents that contain the word king or
kings. If you enter the query king lear, the search engine returns documents that contain the terms
king and lear.

To see more precise results, use more specific keywords. For example, use French roast coffee
rather than coffee, or use Kauai hiking tours rather than Hawaiian vacations.

If a simple keyword search returns too many documents that are not what you are looking for, you can use
operators to refine your search.

Exclusion of terms in a search
Use the minus sign (-) to exclude terms. For example, if you want to find documents with the term lear,
and not edward, enter the query lear -edward.

OmniFind Text Search Server for DB2 for i 41

The minus sign (-) also applies to a term and its variants. For example, the query -edward excludes
documents that contain the word edward's.

Phrase search
If you want to ensure that terms are displayed exactly in the sequence that you typed them in, you
can use double quotation marks. For example, if you want to see documents with the term king lear
exactly, and not related phrases such as kingly lear or king and queen lear, enter "king
lear". The search is not case-sensitive, but term variants are not considered matches.

Language processing
OmniFind Text Search performs language-specific processing on terms by using the language that is
specified by the query. When the language is not specified, the default language is used.

When you search for a word, the base form of the word is also searched. For example, searching for tests
or testing also finds the word test.

During language processing, predefined synonyms are added to the query. Language processing is not
performed on phrases and on terms in all capital letters, for example, DOG.

Wildcard character in a search
The wildcard character (*) helps you find documents when you do not know the full spelling, or if you want
to find variations of the term. For example, the query czech* returns documents with the terms czech,
czechoslovakia, czechoslovakian, czech republic, and other possible results.

You can also use the wildcard character in a phrase search. For example, the query "John * Kennedy"
returns documents with the terms John Fitzgerald Kennedy and John F Kennedy but not John
Kennedy. The query Mi*l Gorbachev returns Mikhail Gorbachev.

Adding a wildcard character to the beginning of a query (for example, *zech) might cause the search
engine to take longer to return results.

Searches for at least one of the terms
The logical operator OR specifies that at least one of the terms in a query must be displayed in the
returned document. For example, the query (othello OR otello) returns documents that contain the
term othell or otello.

You can also use the logical operators AND, OR, and NOT in combinations by using parentheses. For
example, the query cougar OR (jaguar AND NOT car) returns documents with the terms cougar or
jaguar but not car.

You must enter the logical operators AND, OR, and NOT in all uppercase. Use parentheses for grouping.

Related concepts
XML search
You can index and search XML documents. The XML search grammar uses a subset of the W3 XPath
language with extensions for text search. The extensions support range searches of numeric, Date, and
DateTime values that are associated with an XML attribute or element. Structural elements can be used
separately, or combined with free text in queries.
Related reference
CONTAINS
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
SCORE

42 IBM i: OmniFind Text Search Server for DB2 for i

You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

Simple query examples
Simple queries for the CONTAINS and SCORE functions search for a single word or multiple words in a
text search index.

The search engine ignores white space between characters. The search string must not be empty or
contain all blanks (SQLSTATE 38H14).

The following table shows some examples of simple search queries.

Table 3. Simple query examples

Search word types Examples Query results

Single word king Returns all documents that contain
the word king or kings. This query
matches different surface forms and
is not case sensitive.

Multiple words king lear Returns all documents that contain
king and lear. The default
operator is the logical operator AND.

The operators AND and + are implicit in every query. For example, the query King Lear returns the
same results as King AND Lear or King + Lear.

You must enter the logical operators NOT, AND, and OR in all uppercase.

Related reference
CONTAINS
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
SCORE
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

Advanced search operators
You can use advanced search operators to refine the search results for the CONTAINS function and the
SCORE function.

In the following table, the first column describes the operator that you can use in a search query. You
must enter the logical operators NOT, AND, and OR in all uppercase letters. The second column shows
a sample query that you might enter. The third column describes the types of results that you might see
from the example query.

Table 4. Advanced search operators and complex query examples

Operators Examples Query results

AND
"King Lear" AND "Othello"

"King Lear" "Othello"

Either query returns documents that
contain both terms King Lear and
Othello. The AND operator is the
default conjunction operator. If no
logical operator is between the two
terms, the AND operator is used. For
example, the query King Lear is the
same as the query King AND Lear.

OmniFind Text Search Server for DB2 for i 43

Table 4. Advanced search operators and complex query examples (continued)

Operators Examples Query results

OR
"King Lear" OR Lear

Returns documents that contain either
King Lear or just Lear. The OR
operator links the two terms and finds
a matching document if either of the
terms exist in a document.

NOT
"King Lear"
NOT "Norman Lear"

Returns documents that contain King
Lear but not Norman Lear.

" "

(Exact match)

First query:

"King Lear"

Second query:

"king"

The first query returns the exact
phrase King Lear.

The second query returns only the
word king and no other forms, such
as kings or kingly.

*

(Wildcard character)
test*
te*t

Returns documents that can match
possible combinations, such as test,
tests, and tester, or test and
text.

^

(Score boost factor)

some word or phrase^number

First query:

"King Lear"^4 "Richard III"

Second query:

title: (software download)^5
pdf viewer -shipping

The first query forces documents
with the phrase King Lear to be
displayed higher in the list of search
results.

The second query forces a document
titled software download to be
displayed higher in the list of results.

Although a boost factor must be
positive, the boost factor can be less
than 1. For example, 0.2. The boost
factor number has no limit.

+

(Includes)
+Lear King Returns all documents that contain

Lear and King, which is the same as
the query Lear AND King.

-

(Excludes)
"King Lear" -"Lear Jet"

Returns documents that contain King
Lear but not Lear Jet.

()
(King OR Lear) AND plays

Returns documents that contain either
King or Lear and plays. The
parentheses ensure that plays is
found and either term King or Lear
is present.

44 IBM i: OmniFind Text Search Server for DB2 for i

Table 4. Advanced search operators and complex query examples (continued)

Operators Examples Query results

\

(Escape character)
\(1\+1\)\:2

Returns documents that contain
(1+1):2.Use the \ as an escape
character so that you can use special
characters that are normally part of
the query syntax. If a special character
is preceded by the escape character,
the special character is analyzed as
part of the query. Special characters
are: +, -, &&, ||, !, (,), {, }, [,], ^, ",
~, *, ?, :, and \. If a special character
is cleared, the special character is
analyzed as part of the query.

%

Optional terms
log %file

Returns documents that include the
term log and optionally include the
term file.

~

Fuzzy Search
analytics~
analytics~0.8

The first query returns documents that
include the terms analytics, analyze,
analysis, and so on.

A fuzzy search query searches for
character sequences that are not only
the same but similar to the query
term. Use the tilde symbol (~) at the
end of a term to do a fuzzy search.

You can add an optional parameter to
specify the required similarity. Specify
a value greater than 0 and less than
1. The value must be preceded by a 0
and decimal point, for example, 0.8. A
value closer to 1 matches terms with
a higher similarity. If the parameter is
not specified, the default is 0.5.

Restriction: Special characters are not
supported in proximity search queries.

~

Proximity searches
"IBM WebSphere"~7 Returns documents that contain "IBM"

and "WebSphere" within seven words
of each other.

A proximity search finds documents
that contain terms within a specified
number of words of each other. Use
the tilde symbol (~) to do a proximity
search.

Proximity search is supported for
individual terms, not for phrases. Also
note that a word after a sentence
break is not considered adjacent to
words in the previous sentence.

Restriction: Special characters are not
supported in proximity search queries.

OmniFind Text Search Server for DB2 for i 45

Related reference
CONTAINS
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
SCORE
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

Searching for special characters
OmniFind supports indexing and searching special characters.

You can search for special characters like other query terms. To find a special character in a document,
include the special character in the query expression. In some cases, escaping special characters is
required.

Escaping special characters
Special characters can serve different functions in the query syntax. For example, question marks (?) can
be used as wildcard characters. To search for a special character that has a special function in the query
syntax, you must escape the special character by adding a backslash before it, for example:

• To search for the string “where?”, escape the question mark as follows: “where\?”
• To search for the string “c:\temp,” escape the colon and backslash as follows: “c\:\\temp”

Not escaping such special characters can result in syntax errors.

Table 5. Special characters that must be escaped to be searched

Special Character Notes on behavior when not escaped

Ampersand (&)

Asterisk(*) Used as a wildcard character.

At sign (@) A syntax error is generated when an at sign is the
first character of a query. In xmlxp expressions, the
at sign is used to refer to an attribute.

Brackets [] Used in xmlxp expressions to search the contents of
elements and attributes

Braces { } Generates a syntax error.

Backslash (\)

Caret (^) Used for weighting (boosting) terms.

Colon (:) Used to search in the contents of fields.

Equal sign (=) Generates a syntax error.

Exclamation point (!) A syntax error is returned when an exclamation point
is the first character of a query.

Forward slash (/) In xmlxp expressions, a forward slash is used as an
element path separator.

Greater than symbol (>) Less than symbol (<) Used in xmlxp expressions to compare the value of
an attribute. Otherwise, these characters generate
syntax errors.

46 IBM i: OmniFind Text Search Server for DB2 for i

Table 5. Special characters that must be escaped to be searched (continued)

Special Character Notes on behavior when not escaped

Minus sign (-) When a minus sign is the first character of a term,
only documents that do not contain the term are
returned.

Parentheses () Used for grouping.

Percent sign (%) Specifies that a search term is optional.

Plus sign (+)

Question mark (?) Handled as a wildcard character.

Semicolon (;)

Single quotation mark (‘) Single quotation marks are used to contain xmlxp
expressions.

Tilda (~) Handled as proximity and fuzzy search operators

Vertical bar (|)

Escaping special characters that do not serve a special function in the query syntax is optional. The
following table shows some examples of special characters that do not require escaping.

Table 6. Examples of special characters that do not require escaping

Special Character Notes on behavior when not escaped

Comma (,)

Dollar sign ($)

Period (.) In xmlxp expressions, a period is used to search the
content of elements.

Pound sign (#)

Underscore (_)

Special characters adjacent to query terms
When a special character is adjacent to a word in a query, documents that contain the special character
and word in the same order are returned. For example, searching for “30$” finds documents that contain
“30$”, but does not find documents that contain “$30”. However, searching for “30 $” (with a space)
finds all documents that contain “30” and “$” anywhere in the documents including both “30$” and
“$30”.

When a special character is adjacent to a stop word in a query, the stop word is not removed from the
query. For example, searching for “at&t” does not remove the stop word “at”. However, searching for “at &
t” with spaces removes the stop word “at”.

When a special character separates two words, the sequence of tokens is searched as a sequence. For
example, searching for “jack_jones” finds documents that contain “jack_jones” but not documents that
contain “jack_and_jones”.

Words that are adjacent to special characters are lemmatized. For example, searching for “cats&dogs” in
English finds documents that contain “cat&dog”.

You can use special characters in wildcard search expressions. For example, searching for “ja*_” finds
documents that contain “jack_jones”. However, you cannot use wildcard characters to find special
characters. For example, searching for “ca*s” finds documents that contain “cats”, “categories”, or “cas”,
but not documents that contain “ca_s”.

OmniFind Text Search Server for DB2 for i 47

Indexing special characters
During tokenization and language processing, OmniFind server identifies and indexes special characters
as punctuation. Special characters are token delimiters.

For example, “jack_jones” is tokenized as three separate tokens: “jack”, “_”, and “jones”. Emails, URLs,
and file paths are broken down into tokens, for example:

• Jack_jones@ibm.com is tokenized as jack _ jones @ ibm . com
• http://www.ibm.com is tokenized as http :// www . ibm . com

Special characters do not occupy a token position in the file. For example, "jack_jones" is indexed with the
underscore in the same token position as "jack". Special characters also do not occupy a token position
when spaces are included. For example, “jack_jones” is indexed in the same way as “jack _ jones”.

The token position is used for exact phrase search and for proximity search. For example, if a document
contains the expression jack_jones, searching for the exact phrase ““jack jones”” finds this document.

When a sequence of special characters are indexed separately, they are searched in no particular order.
For example, searching for “#$” also finds documents that contain “$#”.

Special characters in CJK languages
To find a sequence of characters that includes special characters, the query expression must include the
special characters. If you omit the special characters from the query expression, the character sequence
might not be found. In non-CJK languages, the character sequence is always found, even if the query
expression omits the special characters. For example, if an indexed document contains john_smith, you
can search for john_smith or "john smith" (exact match, without the underscore) and both queries return
the document that contains john_smith.

Restriction: You cannot search for the following special characters in CJK documents: ? * \

Example using CONTAINS and SCORE functions
You can use the CONTAINS and SCORE functions in the same query. The query searches a text search
index and return if and how frequently the text document matches the search argument criteria.

The example in the following table uses data from the base table BOOKS with the columns ISBN
(VARCHAR(20)), ABSTRACT (VARCHAR(10000)), and PRICE (INTEGER).

Table 7. The base table BOOKS

ISBN ABSTRACT PRICE

i1 "a b c" 7

i2 "a b d" 10

i3 "a e a" 8

You run the following query:

SELECT ISBN, SCORE(ABSTRACT,'"b"')
FROM BOOKS
WHERE CONTAINS (ABSTRACT,'"b"') = 1

This query returns the following two rows:

i1, 0.3
i3, 0.4

The score values might differ depending on the content of the text column.

Related reference
CONTAINS

48 IBM i: OmniFind Text Search Server for DB2 for i

You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
SCORE
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

XML search
You can index and search XML documents. The XML search grammar uses a subset of the W3 XPath
language with extensions for text search. The extensions support range searches of numeric, Date, and
DateTime values that are associated with an XML attribute or element. Structural elements can be used
separately, or combined with free text in queries.

Documents must be indexed to include the XML markup before the index can be searched using the
xmlxp query syntax. Document indexing is done by using the “FORMAT XML” option at index creation
time.

Indexes created on a previous release can be used to perform searches. However, documents indexed on
a previous release do not have the information necessary to use all the XML search capabilities available
in a newer release. Documents added or updated in the text search index after the upgrade to the new
release include the additional information.

An upgrade might result in documents indexed on the prior release not being included in some search
results. The SYSPROC.SYSTS_REPRIMEINDEX stored procedure can be used to rebuild the index and
resolve this problem.

To use the OMNIFIND CONTAINS and SCORE built-in functions to search XML data, the query string must
start with the @xmlxp: query prefix. The prefix is followed by a valid XML Search query expression. The
@xmlxp 'opaque' term prefix indicates that a search is performed using the query path expression.

For example: CONTAINS(columnname, ‘@xmlxp:''query_expression'' ‘).

The single quotes ‘ ' surrounding the query_expression must be doubled because they are
contained within an SQL string, in effect, a string within a string.

The @xpath: opaque term prefix that was used in previous releases of OmniFind Text Search Server for
DB2 for i is supported for compatibility with earlier versions. However, it has been deprecated and is not
recommended.

The following list highlights the key features of XML search:

XML structural search

By including special opaque XML terms in queries, you can search XML documents for structural elements
and text that is scoped by those elements. Structural elements are tag names, attribute names, and
attribute values. Element and tag names are case sensitive.

XML query tokenization

Tokenization is the process of parsing input into tokens. Free text in XML query terms is tokenized the
same way that text in non-XML query terms is tokenized. An exception is that nested opaque terms are
not supported. Free text search is not case sensitive.

XML Schema and DTD

Any XML schema associated with the XML document is not downloaded, and default values are not
indexed.

Numeric values

Predicates that compare attribute or element values to numbers are supported.

Element values

OmniFind Text Search Server for DB2 for i 49

Predicates that compare element values to numbers or dates are supported. The element containing the
date or number must be an XML element that contains only the number or date. Leading and trailing white
space are ignored.

String values

Use of the = operator for a string argument in a predicate requires a complete match of all key words in
the string with tokens in the identified text span. The order of the tokens is not significant when matching
is performed.

DateTime values

Predicates that compare Date or DateTime attributes or elements are supported.

Path expressions:
Table 8. Path expressions

@xmlxp Expression Description

TagName Selects a tag named TagName, and all children of
that tag.

@AttributeName Selects an attribute named @AttributeName.

/ Selects from root node.

// Selects matching tags and attributes that are
descendants of the current position and match the
expression.

. Self: the current tag or element node.

Table 9. Path expression examples:

@xmlxp Expression Result

/Document Returns all documents with a top-level tag
Document.

//Document Returns all documents with a tag Document at any
level.

/Document/Child1 Returns all documents with a top-level tag
Document that has a direct child tag Child1.

/Document//Child1 Returns all documents with a top-level tag
Document that has a descendant tag Child1 at
any level.

/Root/@attr1 Returns all document with a top-level tag Root
with an attribute attr1.

/Root//@attr1 Returns all documents with a top-level tag Root
with an attribute attr1 on that root tag or any
descendant tag.

//@attr1 Returns all documents that have an attribute
@attr1 at any level.

Note: The XML Search expression must have an actual tag or attribute name in the relative path
expression. / and // by themselves are not valid search queries.

Path expressions are only allowed in the forward direction, and only on a single axis.

50 IBM i: OmniFind Text Search Server for DB2 for i

It is recommended that a path expression start with a leading/ or //. This indicates that the expression's
initial context is the document's root node. When the leading / or // is omitted, the expression is
matched at any level. In other words, 'Sentences' is treated as '//Sentences' . The behavior is defined
this way to be compatible with prior releases, and does not follow the W3 or SQL/XML standard.

Path expression wildcard support
In the path expression, the special wild-card character * can be used to indicate exactly one tag, with any
name.

Trailing path expression wildcards are ignored.

The following uses of path expression wildcards are not supported and result in an error:

• An expression that references only wildcards and no specific elements or attributes.
• A wildcard attribute at any level: /Tag/@*.
• A wildcard that immediately precedes a predicate expression: /Root/*[//anytag].
• A wildcard that is used in a predicate comparison: /Root[* > 5].
• A wildcard as an XML namespace prefix: //*:tagname.
• A wildcard prefixed with an XML namespace prefix: //ns:*.
• A wildcard character used as part of a tag name: /start*.

Table 10. Path expression wildcard examples:

@xmlxp Expression Result

/Root/*/T1 All documents having a top-level tag Root that has
a descendant tag T1 with one intermediate level.

/Root/*//T1 All documents having a top-level tag Root that has
a descendant tag T1 with one or more intermediate
levels.

Predicates
Predicates are used to specify a value or condition that an element or attribute node must satisfy.
Predicates are always enclosed in square brackets: [].

Table 11. Predicate examples:

@xmlxp Expression Result

/Book[Sentences] Top-level tag is Book and must have a direct child
Sentences.

/Book[.//Sentences and .//Author] Top-level tag is Book and must have both
Sentences and Author descendants. Each
descendant can be at any level below Book.

Because path expressions are always in the forward direction, and limited to a single access, path
expressions in predicates must be relative to the current node. /Book[/Root] and /Book[//Root] are
not valid, because in both cases the predicate path expression begins with the top-level tag ‘Root' instead
of the current node.

Numeric comparisons
OMNIFINDsupports the =, <=, >=, >, <, and != operators for comparisons of elements and attributes to
integers and floating point values.

OmniFind Text Search Server for DB2 for i 51

Elements have only their numeric values indexed if they are simple elements. They must not contain
additional characters (other than white space) and must not have any descendant elements. Complex
elements are indexed as text only.

Table 12. Numeric comparison examples:

@xmlxp Expression Result

/Book[@id_num = 12345] Top-level tag is Book and must have an attribute
id_num with a value of 12345.

/Book[Cost <= 100.50] Top-level tag is Book. Book has a direct child
element Cost with a numeric value less than or
equal to 100.50.

Date and DateTime comparisons
OMNIFIND supports the =, <=, >=, >, <, and != operators for comparisons of elements and attributes to
Date and DateTime values.

Simple elements have only their DateTime values indexed. These elements must not contain additional
characters (other than white space) and must not have any descendant elements. Complex elements are
indexed as text only.

During indexing, attribute values and text contained within simple XML tags are examined. If the text is
determined to match an ISO Date or DateTime format, it is indexed as a Date or DateTime that can be
searched in a predicate.

During a search, the Date or DateTime value must be enclosed within an xs:date() or xs:dateTime()
function call in order to be recognized as the correct data type.

An XML DateTime data type in an XML document can specify a timezone value. However, when a DateTime
is indexed, the Text Search server truncates timezone values during indexing. Therefore, timezones are
not considered during XML searches that involve Date or DateTime data types.

In addition, a DateTime with an hour of 24 is permitted only if the minutes and seconds are zero. It will be
treated as a value between the last instant of that day and the first instant of the next day.

When a value Date or DateTime is specified in an XML search predicate, a syntax error occurs if a time
zone is specified on the value.

The DateTime data type supports up to 12 digits of fractional seconds.

Table 13. Date and DateTime comparison examples:

@xmlxp Expression Result

/Book[@publishDate >
xs:date(“2000-01-01”)]

Top-level tag is Book. Book has an attribute
publishDate that is greater than the date of
2000-01-01.

/Book[purchaseTime >
xs:dateTime(“2009-05-20T13:00:00”)]

Top-level tag is Book. Book has a direct child
purchaseTime that is a DateTime expression
greater than 2009-05-20T13:00:00.000000.

Contains and excludes in XML markup
The contains and excludes functions are used to perform full text searches within the XML markup.
Contains returns true if the query is contained within the target node; excludes returns true if the query is
NOT contained within the target node.

52 IBM i: OmniFind Text Search Server for DB2 for i

For example, find all documents with a top-level tag called email, and a direct descendant called body
that contains variations of the phrase “Department budget”.

@xnkxo:''/email[body contains (“department budget”)]''

The free text passed to the contains or excludes function is handled in the same way as any other free
text search. The search is not case-sensitive, and linguistic variations are considered. The earlier query
matches “departments budgets” and also “budget for the department”.

The search can be restricted to an exact match by using the traditional quotation marks, for example,
@xmlxp:''/email[body contains(“””department budget”””)] ''. The quotes indicating an
exact match must be doubled so that they are not interpreted as the end of the contains free text string.

Table 14. Contains and excludes examples:

@xmlxp Expression Result

/Book[abstract contains(“cat AND
dog”)]

Top-level tag Book that has a child tag abstract
which contains linguistic variations of the terms
cat and dog.

/Book[abstract contains(“cat AND
dog”)] /Book/@title[. contains(“cat OR
dog”)]

Top-level tag Book has an attribute title that
contains linguistic variations of either cat or dog.

/Book/Title[. contains(“””All good
dogs go to heaven”””)]

Top-level tag Book with a direct child Title
that contains all good dogs go to heaven
in order, and without linguistic variations being
considered.

/Book[abstract excludes(“cat AND
dog”)]

Top-level tag Book that has a child tag abstract
which does not contain linguistic variations of the
terms cat and dog.

Complete string match operator
The = operator with a string argument in a predicate calls for a complete match of all tokens in the string
with all tokens in the identified text span. Linguistic equivalents are not considered. The order of the
terms searched for is not significant. It is not required that the element or attribute contain only the text
that was searched for.

Table 15. Complete string match operator examples:

@xmlxp Expression Result

/Book[@author = “Nicholas Lawrence”] Top-level tag Book that has an attribute author.
author must contain the terms Nicholas
Lawrence. Linguistic variations on those terms are
not considered matches.

/Book[author = “””Nicholas
Lawrence”””]

Top-level tag Book that has a direct descendant
author. author must contain the terms
Nicholas Lawrence in order. Linguistic
variations on those terms are not considered
matches.

Logical Operators
The logical operators and and or can be used in predicates.

OmniFind Text Search Server for DB2 for i 53

Table 16. Logical operator examples:

@xmlxp Expression Result

/Book[@author = “””Nicholas
Lawrence”””]/Price[. < 1000 and @unit
= “dollars”]

Top-level tag Book that has an attribute author.
author must contain the terms Nicholas
Lawrence in order. Linguistic variations on those
terms are not considered matches.

Book must have a direct child Price with a value
< 1000. The Price node must have an attribute
@unit that has a value of dollars.

Operator precedence

In XML search predicates, containment operators and comparison operators take precedence over logical
operators, and all logical operators have the same precedence.

• Containment operators are contains and excludes.
• Comparison operators are =, !=, <, >, <= and >=.
• Logical operators are and and or.

You can use parentheses to ensure the precedence that you want.

Related reference
Search argument syntax
You can specify a search argument as the condition of a search for terms in text documents. It consists of
search parameters and one or more search terms. The SQL scalar text search functions that use search
arguments are CONTAINS and SCORE.
SYSPROC.SYSTS_REPRIMEINDEX
You can reprime the index and start an initial update using the SYSPROC.SYSTS_REPRIMEINDEX stored
procedure. Use this stored procedure when you want to restore data from the base table.
CONTAINS
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
SCORE
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

XML Search Namespace Support
You can use a namespace to scope elements and attributes in a document. Namespaces are useful in
restricting the query search to the meaningful elements within the document.

Overview
In XML, element and attribute names are chosen by the developer. These names can create conflicts
when XML documents from different applications are mixed.

It is therefore useful to restrict the query search to the meaningful elements within the document,
especially when multiple different document types might be indexed. Restricting the search can be
accomplished by using namespaces.

Namespaces provide scoping of the elements and attributes of the document to ensure correct
interpretation of the values. Namespaces are described with long name (URI) and optionally a short
name called the Qname (qualified name).

<?xml version='1.0'?>
 <doc xmlns:x="http://example.com/ns/abc">

54 IBM i: OmniFind Text Search Server for DB2 for i

 <x:p/>
 </doc>

http://example.com/ns/abc is the long namespace name and x is the Qname prefix. A Qname prefix
is useful as a shorthand for the namespace of each element reference.

Element p is qualified by namespace http://example.com/ns/abc.

The default namespace

A default namespace can be specified for XML elements. The default namespace applies to the current
tag and any descendent tags. Any unqualified tag in the namespace inherits the default namespace.

<?xml version='1.0'?>
 <doc xmlns="http://example.com/ns/abc">
 <p/>
 </doc>

In this case both doc and p elements are in the http://example.com/ns/abc namespace.

Attribute namespaces

An attribute might have a different namespace than its associated element.

Element and attribute, qualified:

<dog xmlns:an="http://example.org/animals" xmlns:sz=”http://example.org/sizes”>
<an:breed sz:size=”Medium”>Mutt</an:breed>
</dog>

There is a difference in how elements and attributes inherit namespace when it is not explicitly specified.
Unqualified elements pick up the default namespace of the scope within which they lie. Unqualified
attributes do not have any namespace.

Element and attribute, non-qualified:

<dog xmlns:an="http://example.org/animals">
<breed size=”Medium”>Mutt</an:breed>
</dog>

In this example, element breed has a namespace of http://example.org/animals. However,
attribute size has no namespace associated with it.

For more information about XML namespaces, consult the W3C Recommendation for Namespaces in XML
which can be found at the World Wide Web Consortium(W3C) (http://www.w3.org) .

Reserved Qname prefixes

The following Qname prefixes are reserved and must not be used to qualify user-defined elements or
attributes: xml, xs, xsi, fn, local.

Using namespaces in search
QName prefixes and default element namespaces must be defined in the @xmlxp query prolog of the
search term.

An example prolog that maps namespace ns1 to URI "http://mycompany.com"

declare namespace ns1 = "http://mycompany.com";

An example prolog that specifies that all unqualified elements are qualified by URI "http://
mycompany.com":

declare default element namespace "http://mycompany.com"

OmniFind Text Search Server for DB2 for i 55

http://www.w3.org/

If a query does not declare any namespace QName prefix or default element namespace, then
namespaces are not considered in the query. An element or attribute name is considered a match if
it exists in any namespace.

If any QName prefix or default namespace is declared, element or attribute names are a match only if
they exist in the namespace specified.

The syntax

declare default element namespace "”;

could be used to indicate that unqualified tags are not in any namespace.

QName prefixes used in the XML search string are NOT required to match the QName prefix used in the
XML document. Matches are based solely on the long name URI.

Examples:

Restrict search to attribute attr of element test where element test is mapped to namespace
"http://posample.org", and attr is not in any namespace. Use default namespace to simplify
syntax.

CONTAINS(myxmlcol, '@xmlxp:''declare default element namespace “http://myexample.org”;
 /test[@attr > xs:date(“2005-01-01”)]''')

Restrict search to attribute attr of element test where element test has a namespace of "http://
myexample.org". Use explicit namespace syntax by using the QName prefix abc.

CONTAINS(myxmlcol, '@xmlxp:''declare namespace abc = “http://myexample.org”;
 /abc:test[@attr < xs:date(“2009-01-01”)]''')

Restrict search to shipTo name and billTo name child elements of element purchaseOrder,
which is explicitly mapped to namespace "http://myexample.org" using QName prefix ns1. A
default namespace is also defined ("http://mastsample.org"), which applies to shipTo, name, and
billTo.

CONTAINS(myxmlcol, '@xmlxp:'' declare default namespace "http://mastsample.org";
 declare namespace ns1 = "http://posample.org"; /ns1:purchaseOrder[shipTo/name = "Jane"
 and billTo/name = "Jason"]''')

Restrict search to attribute name (explicitly defined in namespace "http://posample.org") of
shipTo element (in default namespace "http://mastsample.org"), which is a child of element
purchaseOrder (explicitly defined in namespace "http://posample.org"). The default namespace
"http://mastsample.org" applies to elements shipTo, billTo and name.

CONTAINS(myxmlcol, '@xmlxp:'' declare default namespace "http://mastsample.org";
 declare namespace ns1 = "http://posample.org"; /ns1:purchaseOrder/shipTo[@ns1:name =
"Jane" and billTo/name = "Jason"]''')

XML Search Example
• Create a table XML_DOCUMENTS in schema XMLTEST to store the XML documents:

CREATE TABLE XMLTEST.XML_DOCUMENTS (ID INT, XML_DATA XML, PRIMARY KEY (ID));

• Create a text search index called XML_INDEX over the XML column:

call SYSPROC.SYSTS_CREATE('XMLTEST', 'XML_INDEX', 'XMLTEST.XML_DOCUMENTS(XML_DATA)', '');

• Insert some XML Documents:

INSERT INTO XMLTEST.XML_DOCUMENTS (ID, XML_DATA)
VALUES(1,

56 IBM i: OmniFind Text Search Server for DB2 for i

 '<BOOK publication_date="2009-01-01">' ||
 ' <TITLE> OmniFind Text Search Server for DB2 </TITLE>' ||
 ' <ID_NUMBER> 1 ></ID_NUMBER>' ||
 ' <CHAPTER>' ||
 ' <NUMBER> 1 </NUMBER>' ||
 ' <TITLE> Introduction </TITLE>' ||
 ' <ABSTRACT> This chapter will introduce the reader to the capabilities of OmniFind
 for DB2 for IBM i </ABSTRACT>' ||
 ' </CHAPTER>'||
 ' <CHAPTER>' ||
 ' <NUMBER> 2 </NUMBER>' ||
 ' <TITLE> Creating a Text Search Index </TITLE>' ||
 ' <ABSTRACT> This chapter will explain how to create a text search index </ABSTRACT>'
||
 ' </CHAPTER>' ||
 '</BOOK>');

INSERT INTO XMLTEST.XML_DOCUMENTS (ID, XML_DATA)
VALUES(2,
 '<BOOK publication_date="2010-02-01">' ||
 ' <TITLE> Using the XML data type for DB2 for IBM i </TITLE>' ||
 ' <ID_NUMBER> 2 ></ID_NUMBER>' ||
 ' <CHAPTER>' ||
 ' <NUMBER> 1 </NUMBER>' ||
 ' <TITLE> Introduction </TITLE>' ||
 ' <ABSTRACT> This chapter will introduce the reader to the DB2 XML data type </
ABSTRACT>' ||
 ' </CHAPTER> ' ||
 ' <CHAPTER>' ||
 ' <NUMBER> 2 </NUMBER>' ||
 ' <TITLE> Inserting XML data into a DB2 table </TITLE>' ||
 ' <ABSTRACT> This chapter will explain how to insert XML data into a DB2 table </
ABSTRACT>' ||
 ' </CHAPTER>' ||
 ' <CHAPTER>' ||
 ' <NUMBER> 3 </NUMBER>' ||
 ' <TITLE> Searching XML data </TITLE>' ||
 ' <ABSTRACT> This chapter will explain how to query data in XML columns
 using the CONTAINS and SCORE UDFS </ABSTRACT>' ||
 ' </CHAPTER>' ||
 '</BOOK>');

INSERT INTO XMLTEST.XML_DOCUMENTS (ID, XML_DATA)
VALUES(3,
 '<BOOK xmlns="http://www.ibm.com/digital_media_library"' ||
 ' publication_date="2010-02-01">' ||
 ' <TITLE> Using Namespaces with OmniFind Text Search Server for DB2 for IBM i </
TITLE>' ||
 ' <ID_NUMBER> 2 </ID_NUMBER>' ||
 ' <CHAPTER>' ||
 ' <NUMBER> 1 </NUMBER>' ||
 ' <TITLE> Introduction </TITLE>' ||
 ' <ABSTRACT> This chapter will introduce the reader to XML namespaces </ABSTRACT>' ||
 ' </CHAPTER>' ||
 ' <CHAPTER>' ||
 ' <NUMBER> 2 </NUMBER>' ||
 ' <TITLE> Using default namespaces </TITLE>' ||
 ' <ABSTRACT> This chapter will explain how to use a namespace in an XML search </
ABSTRACT>' ||
 ' </CHAPTER>' ||
 '</BOOK>');

• Update the index:

CALL SYSPROC.SYSTS_UPDATE('XMLTEST', 'XML_INDEX', '');

Example queries
Example 1:

Find all documents that have a root element BOOK with a direct descendant TITLE that contains DB2.

SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, '@xmlxp:''/BOOK/TITLE[. contains("DB2")]'' ') = 1;

OmniFind Text Search Server for DB2 for i 57

Because a namespace prolog is not specified in the search term, no namespace is considered in the
search.

Table 17. Result

ID

1

2

3

Example 2:

Find all documents that have a root element BOOK with a direct descendant TITLE that contains DB2. Use
a default element namespace to indicate that BOOK and TITLE must be in the "http://www.ibm.com/
digital_media_library” namespace.

SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, '@xmlxp:''declare default element namespace
 "http://www.ibm.com/digital_media_library";
 /BOOK/TITLE[. contains("DB2")]'' ') = 1;

Table 18. Result

ID

3

Example 3:

Find all documents that have a root element BOOK that has an attribute publication_date after
"2010-01-01" and has a child element TITLE that contains DB2. Restrict the search so that tags BOOK
and TITLE must not exist in any namespace.

SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, '@xmlxp:''declare default element namespace "";
/BOOK[@publication_date > xs:date("2010-01-01")]/TITLE[. contains("DB2")]'' ') = 1;

Table 19. Result

ID

2

Example 4:

Find all documents with a root element BOOK (not in any namespace) that have a direct descendant
CHAPTER (also not in a namespace) that contains information about inserting data into an XML table.

SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, '@xmlxp:''declare default element namespace "";
/BOOK/CHAPTER[. contains("inserting XML data into a table")]'' ') = 1;

Note:

• The text contained within CHAPTER includes the text contained within the ABSTRACT and TITLE
elements that are the descendants of CHAPTER.

• The search string is not case-sensitive, and linguistic variations of the search words are considered.

58 IBM i: OmniFind Text Search Server for DB2 for i

Table 20. Result

ID

2

Example 5:

Find all documents with a root element BOOK (in namespace “http://www.ibm.com/
digital_media_library”) that have a direct descendant CHAPTER (also in namespace “http://
www.ibm.com/digital_media_library”). CHAPTER must have a direct descendant NUMBER (in
namespace “http://www.ibm.com/digital_media_library") with a value of 1, and also contain
text information about searching an XML namespace.

SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, '@xmlxp:''declare namespace ns1 = "http://www.ibm.com/
digital_media_library";
/ns1:BOOK/ns1:CHAPTER[. contains("search XML using a namespace") and NUMBER = 1]'' ') = 1;

Document #3 is the only document with tags in the correct namespace, but it has key word matches only
in a chapter with a number value of 2 (not 1).

No rows are returned.

Table 21. Result

ID

Example 6:

Find all documents with a root element BOOK(in namespace “http://www.ibm.com/
digital_media_library”) that have a direct descendant CHAPTER (in namespace “http://
www.ibm.com/digital_media_library”). CHAPTER must have a direct descendant NUMBER (in
namespace “http://www.ibm.com/digital_media_library”) with a value of 1. BOOK must have a
descendant CHAPTER (not necessarily with a NUMBER descendant) that contains text information about
searching an XML namespace.

SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, '@xmlxp:''declare namespace ns1 = "http://www.ibm.com/
digital_media_library";
/ns1:BOOK[ns1:CHAPTER contains("search XML using a namespace")]/ns1:CHAPTER[ns1:NUMBER = 1]''
') = 1;

Document 3 does have a CHAPTER element that matches the CONTAINS criteria, and also has a CHAPTER
element with a descendant NUMBER that has a value of 1. Therefore, document 3 is a match for this query.

Table 22. Result

ID

3

Related reference
SYSPROC.SYSTS_CREATE
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.
SYSPROC.SYSTS_UPDATE
You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.
CONTAINS

OmniFind Text Search Server for DB2 for i 59

You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.

XML search example
This example includes a table of XML documents, a text search index over an XML column in the table,
and six SQL text searches using CONTAINS.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 147.

• Create a table XML_DOCUMENTS in schema XMLTEST to store the XML documents:

CREATE TABLE XMLTEST.XML_DOCUMENTS (ID INT, XML_DATA XML, PRIMARY KEY (ID));

• Create a text search index called XML_INDEX over the XML column:

call SYSPROC.SYSTS_CREATE('XMLTEST', 'XML_INDEX', 'XMLTEST.XML_DOCUMENTS(XML_DATA)', '');

• Insert some XML documents:

INSERT INTO XMLTEST.XML_DOCUMENTS (ID, XML_DATA)
VALUES(1,
 '<BOOK publication_date="2009-01-01">' ||
 ' <TITLE> OmniFind Text Search Server for DB2 </TITLE>' ||
 ' <ID_NUMBER> 1 ></ID_NUMBER>' ||
 ' <CHAPTER>' ||
 ' <NUMBER> 1 </NUMBER>' ||
 ' <TITLE> Introduction </TITLE>' ||
 ' <ABSTRACT> This chapter will introduce the reader to the capabilities of OmniFind
 for DB2 for IBM i </ABSTRACT>' ||
 ' </CHAPTER>'||
 ' <CHAPTER>' ||
 ' <NUMBER> 2 </NUMBER>' ||
 ' <TITLE> Creating a Text Search Index </TITLE>' ||
 ' <ABSTRACT> This chapter will explain how to create a text search index </ABSTRACT>'
||
 ' </CHAPTER>' ||
 '</BOOK>');

INSERT INTO XMLTEST.XML_DOCUMENTS (ID, XML_DATA)
VALUES(2,
 '<BOOK publication_date="2010-02-01">' ||
 ' <TITLE> Using the XML data type for DB2 for IBM i </TITLE>' ||
 ' <ID_NUMBER> 2 ></ID_NUMBER>' ||
 ' <CHAPTER>' ||
 ' <NUMBER> 1 </NUMBER>' ||
 ' <TITLE> Introduction </TITLE>' ||
 ' <ABSTRACT> This chapter will introduce the reader to the DB2 XML data type </
ABSTRACT>' ||
 ' </CHAPTER> ' ||
 ' <CHAPTER>' ||
 ' <NUMBER> 2 </NUMBER>' ||
 ' <TITLE> Inserting XML data into a DB2 table </TITLE>' ||
 ' <ABSTRACT> This chapter will explain how to insert XML data into a DB2 table </
ABSTRACT>' ||
 ' </CHAPTER>' ||
 ' <CHAPTER>' ||
 ' <NUMBER> 3 </NUMBER>' ||
 ' <TITLE> Searching XML data </TITLE>' ||
 ' <ABSTRACT> This chapter will explain how to query data in XML columns
 using the CONTAINS and SCORE UDFS </ABSTRACT>' ||
 ' </CHAPTER>' ||
 '</BOOK>');

INSERT INTO XMLTEST.XML_DOCUMENTS (ID, XML_DATA)
VALUES(3,
 '<BOOK xmlns="http://www.ibm.com/digital_media_library"' ||
 ' publication_date="2010-02-01">' ||
 ' <TITLE> Using Namespaces with OmniFind Text Search Server for DB2 for IBM i </
TITLE>' ||
 ' <ID_NUMBER> 2 </ID_NUMBER>' ||
 ' <CHAPTER>' ||
 ' <NUMBER> 1 </NUMBER>' ||

60 IBM i: OmniFind Text Search Server for DB2 for i

 ' <TITLE> Introduction </TITLE>' ||
 ' <ABSTRACT> This chapter will introduce the reader to XML namespaces </ABSTRACT>' ||
 ' </CHAPTER>' ||
 ' <CHAPTER>' ||
 ' <NUMBER> 2 </NUMBER>' ||
 ' <TITLE> Using default namespaces </TITLE>' ||
 ' <ABSTRACT> This chapter will explain how to use a namespace in an XML search </
ABSTRACT>' ||
 ' </CHAPTER>' ||
 '</BOOK>');

• Update the index:

CALL SYSPROC.SYSTS_UPDATE('XMLTEST', 'XML_INDEX', '');

Example queries
Search 1:

Find all documents that have a root element BOOK with a direct descendant TITLE that contains DB2.

SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, '@xmlxp:''/BOOK/TITLE[. contains("DB2")]'' ') = 1;

Because a namespace prolog is not specified in the search term, no namespace is considered in the
search.

Table 23. Result

ID

1

2

3

Search 2:

Find all documents that have a root element BOOK with a direct descendant TITLE that contains DB2. Use
a default element namespace to indicate that BOOK and TITLE must be in the "http://www.ibm.com/
digital_media_library” namespace.

SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, '@xmlxp:''declare default element namespace
 "http://www.ibm.com/digital_media_library";
 /BOOK/TITLE[. contains("DB2")]'' ') = 1;

Table 24. Result

ID

3

Search 3:

Find all documents that have a root element BOOK that has an attribute publication_date after
"2010-01-01" and has a child element TITLE that contains DB2. Restrict the search so that tags BOOK
and TITLE must not exist in any namespace.

SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, '@xmlxp:''declare default element namespace "";
/BOOK[@publication_date > xs:date("2010-01-01")]/TITLE[. contains("DB2")]'' ') = 1;

OmniFind Text Search Server for DB2 for i 61

Table 25. Result

ID

2

Search 4:

Find all documents with a root element BOOK (not in any namespace) that have a direct descendant
CHAPTER (also not in a namespace) that contains information about inserting data into an XML table.

SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, '@xmlxp:''declare default element namespace "";
/BOOK/CHAPTER[. contains("inserting XML data into a table")]'' ') = 1;

Note:

• The text contained within CHAPTER includes the text contained within the ABSTRACT and TITLE
elements that are the descendants of CHAPTER.

• The search string is not case-sensitive, and linguistic variations of the search words are considered.

Table 26. Result

ID

2

Search 5:

Find all documents with a root element BOOK (in namespace “http://www.ibm.com/
digital_media_library”) that have a direct descendant CHAPTER (also in namespace “http://
www.ibm.com/digital_media_library”). CHAPTER must have a direct descendant NUMBER (in
namespace “http://www.ibm.com/digital_media_library") with a value of 1, and also contain
text information about searching an XML namespace.

SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, '@xmlxp:''declare namespace ns1 = "http://www.ibm.com/
digital_media_library";
/ns1:BOOK/ns1:CHAPTER[. contains("search XML using a namespace") and NUMBER = 1]'' ') = 1;

Document #3 is the only document with tags in the correct namespace, but it has key word matches only
in a chapter with a number value of 2 (not 1).

No rows are returned.

Table 27. Result

ID

Search 6:

Find all documents with a root element BOOK(in namespace “http://www.ibm.com/
digital_media_library”) that have a direct descendant CHAPTER (in namespace “http://
www.ibm.com/digital_media_library”). CHAPTER must have a direct descendant NUMBER (in
namespace “http://www.ibm.com/digital_media_library”) with a value of 1. BOOK must have a
descendant CHAPTER (not necessarily with a NUMBER descendant) that contains text information about
searching an XML namespace.

SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, '@xmlxp:''declare namespace ns1 = "http://www.ibm.com/
digital_media_library";

62 IBM i: OmniFind Text Search Server for DB2 for i

/ns1:BOOK[ns1:CHAPTER contains("search XML using a namespace")]/ns1:CHAPTER[ns1:NUMBER = 1]''
') = 1;

Document 3 does have a CHAPTER element that matches the CONTAINS criteria, and also has a CHAPTER
element with a descendant NUMBER that has a value of 1. Therefore, document 3 is a match for this query.

Table 28. Result

ID

3

XML search query grammar
The grammar for XML Search is based on a subset of the XPath language, which is defined by Extended
Backus-Naur Form (EBNF) grammar. Queries that do not conform to the supported grammar are rejected
by the query parser.

The EBNF grammar has been simplified in the following ways by:

• Disallowing absolute path names in predicate expressions.
• Recognizing only one axis (tag) and only in the forward direction.
• Applying additional semantic restrictions to the use of the Wildcard character (see previous section on

"Path Expression Wildcard Support" in “XML search” on page 49.
• Requiring that the namespace declaration is specified in the search string before any usage, implied

or explicit, of the namespace. If the namespace declaration is not included, namespaces are not
considered in the search.

• Relative path expressions must have a tag or attribute name included in the expression. The query ‘/' to
select the root node, and ‘//' to select all nodes are not valid expressions.

The following table shows the supported grammar in EBNF notation.

Table 29. Supported query grammar in EBNF notation

Symbol Production

XMLQuery ::= QueryPrefix NameSpaceDeclaration QueryString
 | QueryPrefix QueryString

QueryPrefix ::= @xmlxp:

QueryString ::= "'" PathExpr "'"

PathExpr ::= RelativePathExpr
| "/" RelativePathExpr?
| "//" RelativePathExpr

RelativePathExpr ::= StepExpr (("/" | "//") StepExpr)*

StepExpr ::= ("." | AbbrevForwardStep) Predicate?

AbbrevForwardStep ::= "@"? (QName | "*")

Predicate ::= "[" PredicateExpr "]"

PredicateExpr ::= Expr
| PredicateExpr ("and" | "or")
| "(" PredicateExpr ")"

Expr ::= ComparisonExpr | ContainmentExpr

ComparisonExpr ::= PathExpr ComparisonOp Literal

OmniFind Text Search Server for DB2 for i 63

Table 29. Supported query grammar in EBNF notation (continued)

ComparisonOp ::= "=" | "<" | ">" | "!=" | "<=" | ">="

Literal ::= StringLiteral | NumericLiteral | DateLiteral

ContainmentExpr ::= PathExpr "contains" "(" StringLiteral ")"
| PathExpr "excludes" "(" StringLiteral ")"

StringLiteral ::= "\"" [^"]* "\""
| "'" [^']* "'"

DateLiteral ::= "xs:date(\"" xmlDate "\")"
| "xs:dateTime(\"" xmlDateTime "\")"

xmlDate ::= yyyy"-"mm"-"dd

xmlDateTime ::= yyyy"-"mm"-"dd [T] hh":"mm":"ss"."uuuuuu

NameSpaceDeclaration ::= defaultNameSpace (NameSpacePrefixDeclaration)*

defaultNameSpace ::= “declare default element namespace
“ StringLiteral “;”

NameSpacePrefixDeclaration :
:= “declare namespace” NameSpacePrefix “=”

StringLiteral “;”

NameSpacePrefix ::= [^”:]+

Administer an OmniFind(r) Text Search Server for DB2(r) for i
You can administer the OmniFind Text Search Server for DB2 for i using the following techniques and
tools.

Start the OmniFind Text Search Server for DB2 for i
You can start the OmniFind Text Search Server for DB2 for i by calling SYSPROC.SYSTS_START.

OMNIFIND starts the text search server automatically as needed, as long as the SERVERSTATUS in
QSYS2.SYSTEXTSERVERS is 0. This policy allows the text search server to start automatically when the
host system starts. However, you can start the server manually if necessary.

To start the server:

CALL SYSPROC.SYSTS_START(serverid)

If successful, the SERVERSTATUS in QSYS2.SYSTEXTSERVERS is set to 0 after you call the procedure.
When the server is local, the following jobs are active in the background:

• QJVAEXEC QDBTS BCI 0.0 JVM-com.ibm.es
• QJVAEXEC QDBTS BCI 0.0 PGM-textExtrac
• QJVAEXEC QDBTS BCI 0.0 PGM-textExtrac
• QJVAEXEC QDBTS BCI 0.0 PGM-textExtrac
• QJVAEXEC QDBTS BCI 0.0 PGM-textExtrac

where QDBTS is the OmniFind user profile created while installing product.

It might take a few minutes before all these jobs are active and the text server can be used.

64 IBM i: OmniFind Text Search Server for DB2 for i

Related reference
SYSPROC.SYSTS_START
You can enable DB2 text search functions by calling the SYSPROC.SYSTS_START stored procedure.
QSYS2.SYSTEXTSERVERS administration table
You can see where the text search servers are installed using the QSYS2.SYSTEXTSERVERS
administration table.

Stop the OmniFind Text Search Server for DB2 for i
You can stop the OmniFind Text Search Server for DB2 for i manually by using the shutdown script that is
provided.

If you installed the OmniFind Text Search Server for DB2 for i as a service, the text search server stops
automatically each time that the host system is shut down. However, you can stop the server manually
even if you installed the OmniFind Text Search Server for DB2 for i as a service.

To stop the OmniFind Text Search Server for DB2 for i:

1. Indicate in the SYSTEXTSERVER catalog that the server is stopped by calling SYSPROC.SYSTS_STOP.

• To stop all servers: CALL SYSPROC.SYSTS_STOP().
• To stop a specific server:

a. Query the server catalog to get the serverid that you want to stop:

SELECT SERVERID,SERVERPORT,SERVERSTATUS,SERVERPATH

FROM QSYS2.SYSTEXTSERVERS

Note: SERVERPATH identifies the server. SERVERSTATUS indicates whether the server is
currently active (0) or inactive (1).

b. Call SYSPROC.SYSTS_STOP, specifying the numeric serverid or the alias name of the server you
want to stop:

CALL SYSPROC.SYSTS_STOP(serverid).
2. Indicate in the SYSTEXTSERVER catalog that the server is stopped by calling

SYSPROC.SYSTS_SHUTDOWN.Beside set SERVERSTATUS to inactive(1), this procedure will also end
the text search server jobs on the host system.

• To shutdown all servers: CALL SYSPROC.SYSTS_SHUTDOWN().
• To shutdown a specific server:

a. Query the server catalog to get the serverid that you want to shutdown:

SELECT SERVERID,SERVERPORT,SERVERSTATUS,SERVERPATH

FROM QSYS2.SYSTEXTSERVERS

Note: SERVERPATH identifies the server. SERVERSTATUS indicates whether the server is
currently active (0) or inactive (1).

b. Call SYSPROC.SYSTS_SHUTDOWN, specifying the numeric serverid or the alias name of the server
you want to shutdown:

CALL SYSPROC.SYSTS_SHUTDOWN(serverid).
3. (Optional) Stop the server itself by calling the shutdown script. Stopping the server ends all the text

search server jobs on the host system.
Stop the server in the Qshell environment.

To shut down the local server, enter the following command from the command line:

QSH CMD('cd /QOpenSys/QIBM/ProdData/TextSearch/server1/bin; shutdown.sh') .

OmniFind Text Search Server for DB2 for i 65

If the server to be shut down is not the default local server created by the install process, you need to
obtain the correct SERVERPATH value from QSYS2.SYSTEXTSERVERS. Use that SERVERPATH instead
of /QOpenSys/QIBM/ProdData/TextSearch/server1/bin.

If you stop the server by using the shutdown script, the SERVERSTATUS catalog is not changed to the
inactive (1) status. When the SYSTS_CREATE, SYSTS_UPDATE, and SYSTS_DROP stored procedures are
called the next time, or when a CONTAINS or SCORE built-in function is invoked as part of an SQL
query, the server will start automatically.

Related reference
SYSPROC.SYSTS_STOP
You can call the SYSPROC.SYSTS_STOP stored procedure to stop DB2 text search functions. This stored
procedure sets the SERVERSTATUS value in the catalog QSYS2.SYSTEXTSERVERS to 1 (stopped).
SYSPROC.SYSTS_SHUTDOWN
You can call the SYSPROC.SYSTS_SHUTDOWN stored procedure to shutdown DB2® text search functions.
This stored procedure sets the SERVERSTATUS value in the catalog QSYS2.SYSTEXTSERVERS to 1
(stopped) and also ends the text search server jobs on the host system.
QSYS2.SYSTEXTSERVERS administration table
You can see where the text search servers are installed using the QSYS2.SYSTEXTSERVERS
administration table.

Save and restore text search indexes
You can save and restore your text search indexes with or without data.

Save and restore a text search index without data
You can save and restore a text search index structure without the index data. The save and restore
process can be accomplished using the SAVOBJ and SAVLIB CL commands.

When you create a text search index using SYSTS_CREATE, a DB2 view is created using the index schema
and name as the view name. The view serves as a mechanism for saving and restoring the structure of the
index.

The user can save the view using the same methods for saving database tables and views. (See SAVOBJ
or SAVLIB CL commands.) Saving the view automatically saves additional information needed to recreate
the index during restore.

The view can be restored using the RSTOBJ or RSTLIB CL command. DB2 for i recognizes that the view
represents a text search index and recreates the index. After the index structure has been recreated, an
update will be submitted to a background job to repopulate the index data.

Additional considerations need to be made during the restore process:

1. If the text search server cannot be started, or a required product is not installed on the system, the
restore fails. See the Software requirements for a list of required products.

2. If the text search index exists on the system, the following actions are taken.

a. If the existing index information exactly matches the index being restored, the restore succeeds.
The index is not rebuilt.

b. If the existing index information does not match the index being restored, and cannot be modified
to match without recreating the index, the restore fails.

c. If the existing index information does not match the index being restored, but can be modified to
match using SYSTS_ALTER, then the existing index is altered to match the index that was saved.
The index is not rebuilt.

3. The index is restored to use the same text search server that was in use at the time of the save. If the
server that was used at the time of the save is not defined, a currently available server is selected. If
the saved server is defined but not available, the restore fails.

66 IBM i: OmniFind Text Search Server for DB2 for i

4. If the text search index cannot be created for any other reason, such as an incompatible column in the
based-on table, the restore fails.

5. The staging table name in QSYS2, trigger names that are added to the based-on table, and the
collection name on the text search server can change, since they are generated by the system.

6. Synonyms that have been added to the text search index synonym dictionary are not preserved.
7. If the index exists in the System catalogs at restore time, and the view does not currently exist on the

system, only the view is restored. The staging table, text search server collection, and triggers on the
based-on table are not created.

In this case, the text search index is assumed to be part of a larger restore where the individual pieces
of the index were saved explicitly by the user, and are now all being restored (such as restoring the
entire system).

All the required pieces of the index must be restored before the index works. It is the users
responsibility to ensure that all pieces of the index are synchronized.

Text search indexes are supported by the Restore Deferred Objects (RSTDFROBJ) command. The use of
the DFRID parameter on the RSTOBJ and RSTLIB CL commands is recommended. This parameter allows
Text Search indexes to be restored using the RSTDFROBJ command after correcting common conditions
that prevent creation of the index.

Examples of conditions that cause the index to be deferred are:

• A required product was not installed.
• A text search server was not available or defined.
• The based on table did not exist.

Related reference
SYSPROC.SYSTS_CREATE
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.
SYSPROC.SYSTS_ALTER
You can call the SYSPROC.SYSTS_ALTER stored procedure to modify attributes of an index that was
created by SYSPROC.SYSTS_CREATE. Only attributes explicitly specified on this procedure are changed.
All other attributes of the index remain unchanged.
Related information
Save Object (SAVOBJ)
Save Library (SAVLIB)
Restore Object (RSTOBJ)
Restore Library (RSTLIB)
Restore Deferred Objects (RSTDFROBJ)

Save and restore a text search index with data
Saving and restoring a text search index with data is a more completed operation than without data.

You must save the following objects:

• The text search index (stored in the integrated file system).
• The staging table used as a log file that tracks record changes in the base table (over which the index is

built). The staging table is in library QSYS2. Its name begins with QDBTS, for example, QDBTS00001.
• The view, which is the database object representing the text index. The view has the same name as the

text index.
• The base table over which the index is built.
• The SQL catalogs that store the information to track the index.

OmniFind Text Search Server for DB2 for i 67

Complete the following steps to save the text search indexes:

1. Recommended: bring the indexes up to date by first performing update operations (SYSTS_UPDATE)
for the text search indexes.

2. Save the base table and view using standard save techniques such as the SAVOBJ command.
3. Save the staging tables that are in QSYS2 using standard save techniques. For example, SAVOBJ
LIB(QSYS2) OBJ(QDBTS*).

4. Save the text search index catalogs in QSYS2:

The catalog names all begin with SYSTXT, for example, SYSTXTSRVR. Like the other SQL catalogs in
QSYS2, it is your responsibility to ensure that a backup copy is saved and available.

This backup copy can be accomplished in one of two ways:

a. The entire library can be saved as part of the SAVLIB command, specifying parameter LIB as either
*ALLUSR or *IBM.

b. The specific text search catalogs can be saved using the SAVOBJ command, specifying LIB(QSYS2)
and OBJ((SYSTXT*)).

5. Save the text search index information in the integrated file system. This information includes the
entire contents of the config directory under the text server path.

The text server path can be determined by querying the SERVERPATH column of the SYSTXTSRVR
catalog for the server of interest. The server path has the directory bin appended to it, which you
replace with the config directory.

A common save technique is to use the SAV command, though any type of save compression works.

Note: This save information is only applicable to text servers running on IBM i.

Example:

Suppose you want to save all the text indexes associated with the default text server created by
OMNIFIND. You have a table QGPL/MYDOCS with text index QGPL/MYDOCIX built over it. In this example,
the save media are save files.

Complete the following steps:

1. Save all the staging tables and the OMNIFIND catalogs from QSYS2:

SAVOBJ OBJ(QDBTS* SYSTXT*) LIB(QSYS2) DEV(*SAVF) SAVF(QGPL/SAVFQSYS2)
2. Save the base table and view:

SAVOBJ OBJ(MYDOCS MYDOCIX) LIB(QGPL) DEV(*SAVF) SAVF(QGPL/SAVFMYFILE)
3. Using SQL, get the path name of the text server. In this example, serverid = 2:

SELECT SERVERPATH FROM systxtsrvr WHERE serverid=2

The SERVERPATH value returned is /QOpenSys/QIBM/ProdData/TextSearch/server1/bin/.

Note: Verify that you are querying for the correct server.
4. Substitute config for bin/ and save the text indexes:

SAV DEV('/QSYS.LIB/QGPL.LIB/SAVIFS.FILE') OBJ(('/QOpenSys/QIBM/ProdData/
TextSearch/server1/config'))

The text indexes are now saved in save files QGPL/SAVFMYFILE, QGPL/SAVFQSYS2, and QGPL/SAVIFS.

The text index restore must be done in the same order as the save. The QSYS2 catalogs MUST be restored
first.

Related reference
SYSPROC.SYSTS_UPDATE

68 IBM i: OmniFind Text Search Server for DB2 for i

You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.
Related information
Save Object (SAVOBJ)
Save Library (SAVLIB)

Problem determination
You can use the system and trace messages logged to determine the source of problems that might occur.

The OmniFind Text Search Server for DB2 for iserver logs are located in the <INSTALL_HOME>/log
directory. The default server log created at installation is located in the /QOpenSys/QIBM/ProdData/
TextSearch/server1/log directory.

By default, the trace log is turned off, and the system log level is set to informational. You can use the
configuration tool to change the trace and log level options.

You can view the server logs directly in the log directory.

View server logs
The server logs are located in integrated-file-system directory /QOpenSys/QIBM/ProdData/TextSearch/
server<servernumber>/log. These logs can help you determine the source of problems.

The following log files are written to the log directory:

admin_audit*.csv
Collects information about configuration changes that are made by the API.

commandLineTools*.log
Records command-line tool information, warning, and error messages.

default*.log
Contains information, warning, and error messages that are logged during server activity.

documentErrors*.log
Contains warning and error messages about documents that were not indexed because their file
formats are not supported. These document warning and error messages are not recorded in the trace
and default logs.

monitor*.csv
Contains information about the indexing status, queue status, query load, and other system statistics.

serverConfiguration.log
Provides information about the server configuration on startup.

trace*.log
Contains trace information, warning, and error messages. You can enable tracing by using the
administration tool and set the log level by using the configuration tool.

version.log
Records the history of version changes for some of the main components of the server, such as the
server JAR file.

Administration tools
OMNIFIND provides tools that you can use for common tasks. These tasks include configuring and
administering an additional text search server, and adding a synonym dictionary to a collection.

These tools are shell scripts rather than CL commands. They can be called within the script environment
that is started through either the Start QSH (STRQSH) or QSH (QSH) CL commands.

These tools do not authenticate user IDs. However, these tools can be run only by a user with valid access
to the text search server.

OmniFind Text Search Server for DB2 for i 69

Related information
Start QSH (STRQSH)
Start QSH (QSH)

Configuration tool
Use the configuration tool to customize configuration settings after you install OmniFind Text Search
Server for DB2 for i.

To customize most of the configuration settings, you must stop the text search server before running the
configuration tool.

However, when the server is running, you can display the following options:

• the current authentication token
• the server port
• the current properties of the system

The configServerAndDB2 tool
The configServerAndDB2 (configServerAndDB2.sh) tool is located in integrated-file-system
directory /QOpenSys/QIBM/ProdData/TextSearch. This tool can be used to create or modify entries
in the DB2 catalog file SYSTEXTSERVERS.

It can also be used to configure the authentication token or the port number associated with the specific
server. The tool modifies or sets the values for SERVERAUTHTOKEN and SERVERPORT in the DB2 catalog
file SYSTEXTSERVERS.

If you want to create an additional server that runs locally to your system, use the “ServerInstance tool”
on page 85 instead.

The configServerAndDB2 (configServerAndDB2.sh) tool is called with five parameters:

1. The first parameter is either generateToken or configureHTTPListener.
2. The second parameter is -serverPath.
3. The third parameter is the path to the root node in the integrated file system where the information

related to the server is stored. Example: /QOpenSys/QIBM/ProdData/TextSearch/server2.
4. The fourth and fifth parameters vary depending on the value of the first parameter.

• If the first parameter is generateToken, then the fourth parameter is -seed followed by an integer
(for example, 1) as the fifth parameter

• If the first parameter is configureHTTPListener, then the fourth parameter is
-adminHTTPPort. The fifth parameter is an integer value that is used as the socket port for the
server.

Here are two examples:

• STRQSH
cd /QOpenSys/QIBM/ProdData/TextSearch
configServerAndDB2.sh generateToken -serverPath /QOpenSys/QIBM/ProdData/TextSearch/server2
-seed 1

• STRQSH
cd /QOpenSys/QIBM/ProdData/TextSearch
configServerAndDB2.sh configureHTTPListener -serverPath /QOpenSys/QIBM/ProdData/TextSearch/
server2
 -adminHTTPPort 9997

The configTool script
The configTool.sh script is available for each local server. It is located in Integrated File System (IFS)
directory:

70 IBM i: OmniFind Text Search Server for DB2 for i

/QOpenSys/QIBM/ProdData/TextSearch/server<servernumber>/bin.

This tool can be used to list and set parameters for OmniFind Text Search Server. Prior to using it
to modify server configuration, it is recommended that you review the following OmniFind article to
understand how to tune OmniFind:

• Introduction to IBM i OmniFind (ECM Text Search component) upgrade

Restriction: Some parameters are read only, while others can only be modified when the OmniFind Text
Search Server is stopped.

Authorization
To use the configTool.sh tool, the user must have the following privilege:

• *ALLOBJ special authority

Syntax
configTool.sh <command> [-command_options] [-locale value] [-configPath value]

Commands and command options
list -system [-details] [-showAdvanced][-parameter_name]

Prints system-level parameters and their current values. See the following sections for descriptions of
each parameter.

-details
Prints detailed information about each parameter, including a description, default value, type, and
whether it is modifiable.

-showAdvanced
Prints information about advanced configuration parameters.

-parameter_name

Prints detailed information about the specified parameter.

set -system -parameter_name value
Specifies the value of a system-level parameter.

generateToken
Generates the authentication token.

printToken
Prints the current authentication token and encryption key.

sysinfo
Prints system information, such as the build version number, operating system, and JAR manifest
version.

Parameters
-configPath

Specifies the absolute path to the configuration directory. This directory contains configuration files
and the \collections subdirectory. This parameter cannot be modified.

-directoryTypeForSearch

Advanced: The type of file system to use for search. Specify one of the following values:

mmap Specify mmap to store shared indexes by using memory mapped files. Using mmap improves
search performance, especially for concurrent searches. Using this option results in increased heap
memory consumption.

simple Specify simple for standard file input/output.

OmniFind Text Search Server for DB2 for i 71

https://www.ibm.com/support/pages/node/1274614

noifs Specify niofs to store shared indexes by using New Input/Output (default for OmniFind Text
Search Server for DB2 for i).

Important: When you specify mmap, it is recommended to configure 64-bit JVM for OmniFind Text
Search Server and increase the heap size accordingly by specifying the maxHeapSize parameter to
avoid out-of-memory error.

-logFolder
Specifies the absolute path to the log directory.

-maxDocumentSizeBytes
Specifies the maximum size (in bytes) of documents that are indexed. The default value is
120000000.

-maxHeapSize

Specifies the maximum heap size of the server. Set this value according to JVM heap size
specifications. For example, the maximum heap size that can be allocated to a 32-bit Java virtual
machine is 1.8 GB. The default value is 1500M for 32-bit JVMs and 4G for 64-bit JVMs(M=megabytes,
G=gigabytes). The value must be an integer. For example, to specify 1.8 gigabytes, enter 1800M. This
parameter can be modified only when the server is stopped.

Attention: In OmniFind Text Search Server ECMTS version 1.5.0, maxHeapSize was called
startupHeapSize.

-numberOfIndexerThreads
Advanced: Specifies the number of indexing threads that run on the server. The default value is 8.

-numberOfTokenizers
Specifies the number of language processors that are used for parsing input into tokens. The default
value is 20.

-port
Specifies the number of the port on which the OmniFind Text Search server listens for requests.

-queryCacheSizeMB
Advanced: Specifies the size (in MB) of the query cache. This parameter can be modified only when
the server is stopped. The default value is 200 MB.

-searchableRefreshRateMS
Advanced: Time period (in milliseconds) for checking whether the index has changed and the
searchable must be reopened. The default value is 1.

-tempDirectory
Specifies the absolute path to the temporary directory.

-useQueryCache
Advanced: Enables query caching. The default value is not to use the query cache (false).

Important: when you enable the query cache, it is recommended to configure 64-bit JVM for
OmniFind Text Search Server and increase the heap size accordingly by specifying the maxHeapSize
parameter to avoid out-of-memory error.

Global arguments
-configPath

Specifies the absolute path to the configuration folder that contains the config.xml file. This global
argument is mandatory.

-locale
Optional: Specifies the two- or five-character locale setting for writing messages to the trace file. If
you do not specify this setting, the default value, en (English), is used.

72 IBM i: OmniFind Text Search Server for DB2 for i

Table 30. The supported locales

Locale value Language

cs Czech

da Danish

de German

en English

es Spanish

fi Finnish

fr French

hu Hungarian

it Italian

ja Japanese

ko Korean

nl Dutch

no Norwegian

pl Polish

pt Portuguese

pt_BR Brazilian Portuguese

ru Russian

sv Swedish

zh Chinese

zh_TW Chinese-Taiwanese

Replaced commands and arguments
With IBM i 7.3, the IBM i OmniFind Text Search Server was upgraded from ECM Text Search (ECMTS)
version 1.5.0 to 5.2.1. By upgrading the ECMTS version, DB2 for i OmniFind users received infrastructure
improvements, security fixes, and serviceability enhancements. These changes also result in the
replacement of some OmniFind configuration commands and arguments. Review the list below to
understand the configuration tool changes.

configureParams
Use the set –system command instead.

-adminHTTPPort
Use the -port parameter instead.

-logPath
Use the -logFolder parameter instead.

-tempDirPath
Use the -tempDirectory parameter instead.

-numberOfIndexers
Use the –numberOfIndexerThreads parameter instead.

-maxDocumentSize
Use the -maxDocumentSizeBytes parameter instead.

OmniFind Text Search Server for DB2 for i 73

printAll
Use the list -system command instead.

printAdminHTTPPort
Use the list -system -port command instead.

Examples

Assume the configuration directory is /QOpenSys/QIBM/ProdData/TextSearch/server1/config.

• Print the current authentication token.

configTool.sh printToken -configPath /QOpenSys/QIBM/ProdData/TextSearch/server1/config

• List the maximum of documents size (in bytes) that can be indexed.

configTool.sh list -system -details -maxDocumentSizeBytes -configPath /QOpenSys/QIBM/ProdData/
TextSearch/server1/config

• Set the maximum heap size of the server to 1800M.

configTool.sh set -system -maxHeapSize 1800M -configPath /QOpenSys/QIBM/ProdData/TextSearch/
server1/config

• Increase the index change checking time period to one minute, to reduce index checking contention
with search performance.

configTool.sh set -system -searchableRefreshRateMS 60000 -configPath /QOpenSys/QIBM/ProdData/
TextSearch/server1/config

• Use mmap to improve search performance.

configTool.sh set -system -directoryTypeForSearch mmap -configPath /QOpenSys/QIBM/ProdData/
TextSearch/server1/config

• Enable the query cache to improve search performance and reduce overall CPU consumption.

configTool.sh set -system -useQueryCache true -configPath /QOpenSys/QIBM/ProdData/TextSearch/
server1/config

Related information
Start QSH (QSH)

SYSPROC.SYSTS_REMOVE
You can remove orphaned indexes with the SYSPROC.SYSTS_REMOVE SQL stored procedure.

Authorization
The collection-name of the possible orphaned indexes can be identified by using the QDBTS_LISTINXSTS
User Defined Table Function (UDTF).

The privileges held by the authorization ID of the statement must include at least one of these privileges:

• *JOBCTL authority
• QIBM_DB_SQLADM security special function usage

Syntax
>>-SYSPROC.SYSTS_REMOVE (collection-name) -><

74 IBM i: OmniFind Text Search Server for DB2 for i

Parameter
collection-name

Specifies a string literal that identifies the name of the collection to be removed.

Note: This procedure uses the adminTool.sh shell script to remove the collection directory. To use this
shell script, the server must be in the working state. If the server is not started, this procedure returns an
error message.

SQL for SYSTS_REMOVE
CREATE PROCEDURE SYSPROC.SYSTS_REMOVE(
 IN COLLECTIONNAME VARCHAR(255) CCSID 1208)
 EXTERNAL NAME QDBTSLIB.DSN5RMCOLL
 DYNAMIC RESULT SETS 0
 LANGUAGE C++
 PARAMETER STYLE SQL
 PROGRAM TYPE MAIN
 COMMIT ON RETURN NO
 INHERIT SPECIAL REGISTERS;

Examples

• To remove an orphaned index with a collection name of 0_65_2815_2008_06_02_11_58_22_901726
from the ASP group *SYSBASE , enter the following command from any SQL interface:

CALL SYSPROC.SYSTS_REMOVE('0_65_2815_2008_06_02_11_58_22_901726')

The SYSTS_REMOVE stored procedure checks whether the index information is in catalog table
QSYS2.SYSTEXTINDEXES. If it is true, error message DSX_INDEX_EXIST is returned; if not, the
procedure searches under the config/collections directory of server 65.

If the collection does not exist, error message DSX_COLLECTION_NOT_FOUND is returned; if the
collection exists, the procedure calls adminTool.sh to remove the collection.

Then the procedure checks the directory again to see whether the collection has been removed. If the
collection is not removed, error message DSX_REMOVE_COLLECTION_FAILED is returned to the user.

Note: When the collection on the text search server is in an independent ASP group, the thread that
calls the SYSTS_REMOVE stored procedure must run in the namespace of the independent ASP. Use the
Set Auxiliary Storage Pool Group (SETASPGRP) command.

• To remove an orphaned index with a collection name of 33_7_26_2008_06_18_21_28_39_407824
from an independent ASP iaspXXX, you can use the following commands:

CL:

SETASPGRP(isapXXX)

SQL:

CALL SYSPROC.SYSTS_REMOVE(' 33_7_26_2008_06_18_21_28_39_407824')

Note: If you use System i® Navigator, right-click the database name for the independent ASP, and run your
SQL scripts.

Related reference
QSYS2.SYSTEXTINDEXES administration table
You can see information about each text search index in the QSYS2.SYSTEXTINDEXES administration
table. Each text search index has a name, schema name, and an associated collection name on the text
search server.
Find orphaned and missing indexes

OmniFind Text Search Server for DB2 for i 75

You can find orphaned and missing indexes using an SQL User Defined Table Function (UDTF) named
QDBTS_LISTINXSTS.

SYSPROC.SYSTS_REPRIMEINDEX
You can reprime the index and start an initial update using the SYSPROC.SYSTS_REPRIMEINDEX stored
procedure. Use this stored procedure when you want to restore data from the base table.

If the data from the base table is restored, the updated content of the base table cannot be indexed while
the SYSTS_UPDATE stored procedure is called. In this case, the SYSPROC.SYSTS_REPRIMEINDEX stored
procedure can be called to reprime the index.

Note: If a synonym dictionary has been created for the text search index, this process removes the
dictionary.

Syntax
>>-SYSPROC.SYSTS_REPRIMEINDEX(indexSchema, indexName, options) -><

The schema qualifier is SYSPROC.

Parameters
indexSchema

Identifies the schema of the text search index. If this parameter is null, the value of the CURRENT
SCHEMA special register for the invoker is used.

The data type of this parameter is VARCHAR(128).

indexName
Identifies the name of the text search index. The name of the text search index with the index schema
uniquely identifies the full-text index in the DB2 subsystem. You must specify a value that is not null
for this parameter.

The data type for this parameter is VARCHAR(128).

options
A character string that specifies options that can be added in the future for this stored procedure.

Important: You must specify a null value for the options parameter. Otherwise, errors can be
generated. Read the following Example for how to specify the options parameter.

SQL for SYSTS_REPRIMEINDEX
CREATE PROCEDURE SYSPROC.SYSTS_REPRIMEINDEX(
 IN INDEXSCHEMA VARCHAR(128) CCSID 1208,
 IN INDEXNAME VARCHAR(128) CCSID 1208,
 IN OPTIONS VARCHAR(32000) CCSID 1208)
 EXTERNAL NAME QDBTSLIB.DSN5RPMIDX
 DYNAMIC RESULT SETS 0
 LANGUAGE C
 PARAMETER STYLE SQL
 MODIFIES SQL DATA
 PROGRAM TYPE MAIN
 COMMIT ON RETURN NO
 INHERIT SPECIAL REGISTERS

Example

• To reprime an index from any SQL interface, type the following command from any SQL interface:

CALL SYSPROC.SYSTS_REPRIMEINDEX(‘indexSchema1','indexName1','')

Related reference
SYSPROC.SYSTS_UPDATE

76 IBM i: OmniFind Text Search Server for DB2 for i

You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.

SYSTS_CLEAR_INDEXES
You can remove orphaned indexes with the SYSPROC. SYSTS_CLEAR_INDEXES SQL stored procedure.
Another implicit way is invoking SYSTS_START directly, which tries to clear orphaned indexes
automatically.

Authorization
The orphaned indexes can be identified by using the QDBTS_LISTINXSTS User Defined Table Function
(UDTF).

The privileges held by the authorization ID of the statement must include at least one of these privileges:

• *JOBCTL authority
• QIBM_DB_SQLADM security special function usage

Syntax
>>- SYSTS_CLEAR_INDEXES
--(--+-----------+--)-----------------------------><
 +-serverid--+
 '-aliasname-'

Parameters
serverid or aliasname

Specifies the identifier of the server for clear orphaned indexes. A serverid or server aliasname is a
string. If no identifier is provided, the default is to clear orphaned indexes on all servers. The identifier
string must either be a valid serverid that exists in the SERVERID column, or a valid server aliasname
that exists in the ALIASNAME column of the QSYS2.SYSTEXTSERVERS table. If the identifier can be
converted to an integer value, it is interpreted as a serverid. If the identifier cannot be converted to an
integer value, it is interpreted as a server aliasname.

The data type of this parameter is VARCHAR(128).

Example

• Clear all the orphaned indexes:

Call SYSPROC.SYSTS_CLEAR_INDEXES();

• Clear orphaned indexes on a specific server with ID 50:

Call SYSPROC.SYSTS_CLEAR_INDEXES(50);
Call SYSPROC.SYSTS_CLEAR_INDEXES('50');

• Clear orphaned indexes on a specific server with alias name “Local_server”:

Call SYSPROC.SYSTS_CLEAR_INDEXES('Local_server');

• Implicitly clear orphaned indexes:

CALL SYSPROC.SYSTS_START();
CALL SYSPROC.SYSTS_START(50);

Note: When the collection on the text search server is in an independent ASP group, the thread that calls
the SYSTS_CLEAR_INDEXES stored procedure must run in the namespace of the independent ASP. Use
the Set Auxiliary Storage Pool Group (SETASPGRP) command.

OmniFind Text Search Server for DB2 for i 77

To remove an orphaned index from an independent ASP iaspXXX, you can use the following commands:

 CL:
 SETASPGRP(isapXXX)
 SQL:
 CALL SYSPROC.SYSTS_CLEAR_INDEXES()

Note: If you use System i® Navigator, right-click the database name for the independent ASP, and run your
SQL scripts.

Related concepts
Server alias name
You can use a server alias name to assign a meaningful name to a server.
Related reference
QSYS2.SYSTEXTINDEXES administration table
You can see information about each text search index in the QSYS2.SYSTEXTINDEXES administration
table. Each text search index has a name, schema name, and an associated collection name on the text
search server.
Find orphaned and missing indexes
You can find orphaned and missing indexes using an SQL User Defined Table Function (UDTF) named
QDBTS_LISTINXSTS.

SYSPROC.SYSTS_VALIDITYCHECK
You can check for valid index items using the SYSPROC.SYSTS_VALIDITYCHECK SQL stored procedure.

Syntax
This stored procedure can fix some items that are not valid if the autoFix parameter is specified.

>>-SYSPROC.SYSTS_VALIDITYCHECK (indexSchema, indexName, autoFix) -><

The schema qualifier is SYSPROC.

Parameters
indexSchema

Identifies the schema of the text search index. If this parameter is null, the value of the CURRENT
SCHEMA special register for the invoker is used.

The data type of this parameter is VARCHAR(128).

indexName
Identifies the name of the text search index. The name of the text search index with the index schema
uniquely identifies the full-text index in the DB2 subsystem. You must specify a value that is not null
for this parameter.

The data type for this parameter is VARCHAR(128).

autoFix
Identifies whether automatic fix is required. The value for this parameter can only be 0 or 1. The
meanings of these values are described as follows:
0

Only the index validity is checked.
1

Index validity is checked and items that are not valid are fixed.

Note:

If values other than 0 or 1 are specified, they are considered as 0.

The data type for this parameter is INTEGER.

78 IBM i: OmniFind Text Search Server for DB2 for i

Restrictions: If indexSchema and indexName are both specified as *NONE, then the stored procedure
checks only the validity for common parts of the product.

SQL for SYSTS_VALIDITYCHECK
CREATE PROCEDURE SYSPROC.SYSTS_VALIDITYCHECK
 (IN INDEXSCHEMA VARCHAR(128) CCSID 1208,
 IN INDEXNAME VARCHAR(128) CCSID 1208,
 IN AUTOFIX INTEGER)
 EXTERNAL NAME QDBTSLIB.DSN5VALCHK
 DYNAMIC RESULT SETS 0
 LANGUAGE C
 PARAMETER STYLE SQL
 MODIFIES SQL DATA
 PROGRAM TYPE MAIN
 COMMIT ON RETURN NO
 INHERIT SPECIAL REGISTERS

Examples

• To check the validity for an index, type the following command from any SQL interface:

CALL SYSPROC.SYSTS_VALIDITYCHECK(‘indexSchema1','indexName1',0)

• To check and fix an index automatically:

CALL SYSPROC.SYSTS_VALIDITYCHECK(‘indexSchema1','indexName1',1)

QDBTSLIB.QDBTS_ROWS_STATUS
Users can check which documents were not indexed successfully using the
QDBTSLIB.QDBTS_ROWS_STATUS SQL stored procedure after calling SYSTS_UPDATE.

With this stored procedure, users can get a result set which presents those documents which were not
indexed successful. Or users can choose generating a new table to store related info of those documents
which were not indexed successful.

Syntax
>>-QDBTSLIB.QDBTS_ROWS_STATUS (IndexSchema, IndexName, ResultSetIndicator,
TableSchema, TableName) -><

The schema qualifier is QDBTSLIB.

Parameter
Required Parameter Group

IndexSchema
Identifies the schema of the text search index. You must specify a value that is not null for this
parameter.

The data type of this parameter is VARCHAR(128).

IndexName
Identifies the name of the text search index. The name of the text search index with the index schema
uniquely identifies the full-text index in the DB2® subsystem. You must specify a value that is not null
for this parameter.

The data type for this parameter is VARCHAR(128).

Optional Parameter Group

ResultSetIndicator
Identifies whether return the result set to user directly or not.

OmniFind Text Search Server for DB2 for i 79

If the ResultSetIndicator is not passed or it’s set to zero, the result set is returned to the caller.
If the ResultSetIndicator is specified and is NOT set to zero, no result set is returned and the caller
can query the table specified by TableSchema and TableName.

The data type for this parameter is INTEGER.

TableSchema
Identifies the table schema of the table. If ResultSetIndicator is specified and is NOT zero, then this
schema must exist.

TableName
Identifies the table name generated by this stored procedure. If ResultSetIndicator is specified and is
NOT zero, this stored procedure will create a new table with this table name.

Result Set or Table Structure
TIME TIMESTAMP

STATUS INTEGER

TEXT_STA
TUS

VARCHAR(50)

MESSAGE VARCHAR(1024)

KEYCOLU
MNNAME
S

Depends on the key columns defined in base table

TIME
This is the time when error/warning was thrown out. ..

STATUS, TEXT_STATUS

30 WARNIN
G

this record was indexed but there is warning about it

40 ERROR this record was not indexed successful for some errors

50 FATAL
ERROR

this record returns a fatal error and breaks up the indexing

MESSAGE
This shows the error code and error message. According to this column, users can know why the
record was not indexed successful.

KEYCOLUMNNAMES
There might be more than one key columns specified. If so, all the key columns will be returned. Each
key column name will have a prefix ‘PK_’.

Examples

• To check if the index has document not indexed successful:

CALL QDBTSLIB.QDBTS_ROWS_STATUS('indexSchema1','indexName1')

The result set will be returned to caller directly.
• To generate a new table to stored the result:

CALL QDBTSLIB.QDBTS_ROWS_STATUS('indexSchema1','indexName1',1,'TableSchema','ResultTable')

80 IBM i: OmniFind Text Search Server for DB2 for i

Then users can query from the result table to get more info.

SELECT * FROM TABLESCHEMA.RESULTTABLE;

Assume there are 2 columns (K1, K2) of the base table to be indexed.

To get the rows not indexed of base table, users can use following SQL statement.

SELECT b.*,r.MESSAGE FROM TABLESCHEMA.RESULTTABLE r LFET JOIN BASETABLESCHEMA.BASETABLE b on
r.PK_K1=b.K1 and r.PK_K2=b.K2;

Then users can update that row based on the message returned, then invoke SYSTS_UPDATE again to
index the new changed row.

Synonym dictionaries
A synonym dictionary can improve the quality of search results.

You can add a synonym dictionary to a collection at any time.

A synonym dictionary consists of synonym groups that you define in an XML file. For example:

<?xml version="1.0" encoding="UTF-8"?>
<synonymgroups version="1.0">
<synonymgroup>
 <synonym>Paixão</synonym>
 <synonym>amor</synonym>
 <synonym>flor</synonym>
 <synonym>linda</synonym>
</synonymgroup>
<synonymgroup>
 <synonym>worldwide patent tracking system</synonym>
 <synonym>wpts</synonym>
</synonymgroup>
</synonymgroups>

Add a synonym dictionary to a collection
Specifying the synonym groups in a synonym dictionary improves the quality of text search results.
The OMNIFIND administrator has the correct authority and privileges to run the synonym tool and IBM
Navigator for i.

• To add a synonym dictionary to a collection with the synonym tool , follow these steps:
a) Create a synonym XML file by specifying the synonym groups, as shown in the following example:

<?xml version="1.0" encoding="UTF-8"?>
<synonymgroups version="1.0">
<synonymgroup>
 <synonym>Paixão</synonym>
 <synonym>amor</synonym>
 <synonym>flor</synonym>
 <synonym>linda</synonym>
</synonymgroup>
<synonymgroup>
 <synonym>worldwide patent tracking system</synonym>
 <synonym>wpts</synonym>
</synonymgroup>
</synonymgroups>

b) Copy the synonym XML file to any directory on the text search server.
c) Use the synonym tool to add the synonym dictionary to a collection.

You can add a synonym dictionary in append mode or replace mode. If you add a synonym
dictionary in append mode, the new synonyms are added to the existing synonym dictionary. If
you add a synonym dictionary in replace mode, the existing synonyms are replaced by the new
synonyms that you defined for the text search index.

OmniFind Text Search Server for DB2 for i 81

Option Description

On IBM i, enter the following command (within the
QSH interface):

synonymTool.sh importSynonym
-synonymFile <absolute path to synonym
XML file>
-collectionName <collection name>
-replace <[true|false]>
-configPath <absolute path to
configuration folder>

On a Linux server, enter the following command: synonymTool.sh importSynonym
-synonymFile <absolute path to synonym
XML file>
-collectionName <collection name>
-replace <[true|false]>
-configPath <absolute path to
configuration folder>

On a Windows server, enter the following command: synonymTool.bat importSynonym
-synonymFile <absolute path to synonym
XML file>
-collectionName <collection name>
-replace <[true|false]>
-configPath <absolute path to
configuration folder>

If the format of the XML file is not valid, or if the XML file is empty, an error code is returned.
• To import synonym dictionary to a collection from IBM Navigator for i, follow these steps.

a) From IBM Navigator for i, expand IBM i Management > System > All Tasks.
b) On the right panel, select System > OmniFind > Collection List.
c) Right click the collection and select Import Synonym Dictionary.

Remove a synonym dictionary from a collection
Use the script that is provided to remove a synonym dictionary from a collection.

The OMNIFIND administrator needs to retrieve the name of the collection from which you want the
synonym dictionary to be removed.

Run the script to remove the synonym dictionary from a collection.
Option Description

On IBM i, enter the following command (within the QSH
interface): removeSynonym.sh

-collectionName <collection name>
-configPath <absolute path to
configuration folder>

On a Linux server, enter the following command: removeSynonym.sh
-collectionName <collection name>
-configPath <absolute path to
configuration folder>

On a Windows server, enter the following command:
removeSynonym.bat
-collectionName <collection name>
-configPath <absolute path to
configuration folder>

If a database has several text search indexes, you must complete this task for each of the corresponding
collections.

82 IBM i: OmniFind Text Search Server for DB2 for i

Find orphaned and missing indexes
You can find orphaned and missing indexes using an SQL User Defined Table Function (UDTF) named
QDBTS_LISTINXSTS.

An index can be orphaned if a SYSTS_DROP stored procedure is called and the server is stopped at the
time the procedure is running.

The QDBTS_LISTINXSTS function combines all the integrated-file-system collections and catalog indexes
in the current namespace into one table. The function decides which independent auxiliary storage pool
(ASP) or *SYSBASE is set. It then scans the collection directory of each server in the independent ASP or
*SYSBASE.

For *SYSBASE, each server directory under /QOpenSys/QIBM/ProdData/TextSearch is checked.
For independent ASPs, each server directory under /the ASP number/QOpenSys/QIBM/ProdData/
TextSearch is checked. For example, if the independent ASP number is 67, each server directory
under /67/QOpenSys/QIBM/ProdData/TextSearch is checked.

For catalog index information, data is obtained from catalog table QSYS2.SYSTEXTINDEXES. If you want
to check servers on an independent ASP, issue the Set Auxiliary Storage Pool Group (SETASPGRP)
command before this function is called.

If you want to remove possible orphaned indexes from the integrated file system after they are
identified, use the SYSPROC.SYSTS_REMOVE or SYSPROC. SYSTS_CLEAR_INDEXES stored procedure or
the “Advanced administration” on page 84 (adminTool.sh).

Terms
Orphaned index

A collection (an index) exists in the integrated file system directory of the server, but no corresponding
index is recorded in catalog QSYS2.SYSTEXTINDEXES.

Missing index
Index records exist in catalog QSYS2.SYSTEXTINDEXES, but the corresponding collection directory
does not exist.

Syntax
>>-QDBTS_LISTINXSTS(--null--)---><

Return format
The QDBTS_LISTINXSTS function returns information of detected indexes in a table. See the following
SQL command that is used to create the UDTF.

SQL for LISTINXSTS UDTF
CREATE FUNCTION QDBTSLIB.QDBTS_LISTINXSTS()
 RETURNS TABLE(COLLECTIONNAME VARCHAR(255),
 INDEXID INTEGER,
 INDEXSCHEMA VARCHAR(128),
 INDEXNAME VARCHAR(128),
 SERVERID INTEGER)
 SPECIFIC qdbts_listinxsts
 SCRATCHPAD
 NO FINAL CALL
 LANGUAGE C++
 PARAMETER STYLE DB2SQL
 EXTERNAL NAME 'QDBTSLIB/QDBTSSP(checkIndex)';

Examples

• Detect all orphaned indexes:

OmniFind Text Search Server for DB2 for i 83

SELECT COLLECTIONNAME, SERVERID
 FROM TABLE(QDBTSLIB.QDBTS_LISTINXSTS()) AS T
 WHERE T.INDEXSCHEMA IS NULL AND T.INDEXNAME IS NULL

• Detect all missing indexes:

SELECT INDEXSCHEMA, INDEXNAME
 FROM TABLE(QDBTSLIB. QDBTS_LISTINXSTS()) AS T
 WHERE T.COLLECTIONNAME is NULL

• Detect orphaned indexes in serverid = 2 on the independent ASP iaspXXX:

CONNECT TO iaspXXX

SQL:

SELECT T.COLLECTIONNAME, S.SERVERPATH
 FROM TABLE(QDBTSLIB.QDBTS_LISTINXSTS())
 AS T LEFT OUTER JOIN QSYS2.SYSTEXTSERVERS S ON (T.SERVERID = S.SERVERID)
 WHERE T.INDEXSCHMEA IS NULL AND T.INDEXNAME IS NULL AND T.SERVERID = 2

Related reference
SYSPROC.SYSTS_DROP
You can call the SYSPROC.SYSTS_DROP stored procedure to drop a text search index that was defined by
using the SYSPROC.SYSTS_CREATE stored procedure.
SYSPROC.SYSTS_REMOVE
You can remove orphaned indexes with the SYSPROC.SYSTS_REMOVE SQL stored procedure.
SYSTS_CLEAR_INDEXES
You can remove orphaned indexes with the SYSPROC. SYSTS_CLEAR_INDEXES SQL stored procedure.
Another implicit way is invoking SYSTS_START directly, which tries to clear orphaned indexes
automatically.
QSYS2.SYSTEXTINDEXES administration table
You can see information about each text search index in the QSYS2.SYSTEXTINDEXES administration
table. Each text search index has a name, schema name, and an associated collection name on the text
search server.

Advanced administration
You can use the administration tool for advanced administration.

The OmniFind Text Search Server for DB2 for i can be running when you use the administration tool.

You can use the administration tool to do the following tasks:

• Check the status of collections, such as finding out how many documents are present
• Delete orphan collections
• Report the version of the server
• Report all the collections that are on the text search server

Commands
The command that you issue to run the administration tool depends on what operating system the text
search server is installed on. The command also depends on the task that you want to do.

84 IBM i: OmniFind Text Search Server for DB2 for i

Table 31. Commands to check the status of collections and to delete orphaned collections

On IBM i (within the QSH
interface) On a Linux server On a Windows server

adminTool.sh -[delete|
status]
–collectionName <collection
name>
-configPath <absolute path
to
configuration folder>

adminTool.sh -[delete|
status]
–collectionName <collection
name>
-configPath <absolute path
to
configuration folder>

adminTool.bat -[delete|
status]
–collectionName <collection
name>
-configPath <absolute path
to
configuration folder>

Table 32. Commands to display the version of the server and to report all the collections

On IBM i (within the QSH
interface) On a Linux server On a Windows server

adminTool.sh -[version]
-configPath <absolute path
to
configuration folder>

adminTool.sh -[version|
reportAll]
-configPath <absolute path
to
configuration folder>

adminTool.bat -[version|
reportAll]
-configPath <absolute path
to
configuration folder>

Options
status

Checks the status of the collection.
delete

Specifies that you want to delete the orphaned collection.
version

Displays the version of the server.
reportAll

Reports all the collections that are on the text search server.

Example

To find out the version of the server, enter the following command on a Linux server:

adminTool.sh –version -s <absolute path to server config.xml>

When you use a Windows server, a corresponding .bat script is provided.

ServerInstance tool
You can use the ServerInstance tool to create or delete servers on *SYSBASE or an independent auxiliary
storage pool (ASP). You can also use the ServerInstance tool to link files from a server to the server where
OmniFind Text Search Server for DB2 for i is installed.

By default, OmniFind Text Search Server for DB2 for i is installed under directory /QOpenSys/QIBM/
ProdData/TextSearch/server1.

You can use the ServerInstance tool to complete the following tasks before you use it to stop server1 on
*SYSBASE:

• Create a server on *SYSBASE or independent ASPs
• Delete a server on *SYSBASE or independent ASPs
• Link files from a server to server1

OmniFind Text Search Server for DB2 for i 85

Syntax
ServerInstance.sh –[create|delete|relink]
–servernum <server number>
(-port <port>)
(-device <device name>)

Command options
create

Creates a server.
delete

Deletes a server.
relink

Links files from a server to server1.

Note: You do not need this option after you have program temporary fix (PTF) SI31548 installed on
your system. The system automatically processes the linking operation if you have this PTF installed.

Parameters
servernum

Specifies the server number. For example, when a server with server number 3 is created, the
directory of the server is /QOpenSys/QIBM/ProdData/TextSearch/server3.

port
Specifies the port of the server. This parameter is needed only when you create a server.

device
Specifies the name of the independent ASP. This parameter is needed only when the operation is
completed on the independent ASP.

Examples

• To create a server with server number 2 and port number 50000 on *SYSBASE:

ServerInstance.sh -create -servernum 2 -port 50000

• To create a server with server number 3 and port number 50001 on independent ASP iasp1:

ServerInstance.sh -create -servernum 3 -port 50001 -device iasp1

• To delete a server with server number 2 on *SYSBASE:

ServerInstance.sh -delete -servernum 2

• To delete a server with server number 3 on independent ASP iasp1:

ServerInstance.sh -delete -servernum 3 -device iasp1

• To link files from a server to server number 2 on *SYSBASE:

ServerInstance.sh -relink -servernum 2

• To link files from a server to server number 3 on independent ASP iasp1:

ServerInstance.sh -relink -servernum 3 -device iasp1

Health Checker
Health checker is an environment verification tool that can be used to diagnose any OmniFind Text Search
Server for DB2 for i configuration problems. It can be used to verify that the OmniFind Text Search Server

86 IBM i: OmniFind Text Search Server for DB2 for i

for DB2 for i text servers and indexes are correctly functioning, and will generate a report with warnings or
errors for any potential issues found.

Prerequisites
The OmniFind Text Search Server for DB2 for i health checker is based on ARE (Application Runtime
Expert for i, product 5770-ARE). Therefore, ARE must be installed for this tool to run.

Health Checker Procedures
Health checker is invoked through a series of DB2 SQL stored procedures. The procedures can be invoked
through any SQL interface, including from a high level language such as RPG and COBOL. All information,
including warnings or errors, is returned through a corresponding result set.

SYSPROC.SYSTS_HC_GENERAL()
This stored procedure is used to check the general health of the OmniFind Text Search Server for DB2
for i product. The procedure checks the configuration of the product. This is an example to return all
warning and error messages related to general OmniFind Text Search Server for DB2 for i configuration
information:

> CALL SYSPROC.SYSTS_HC_GENERAL();

SYSPROC.SYSTS_HC_USR_AUTH()
This stored procedure is used to identify any authority issues for the invoking user that would prevent
them from using the OmniFind Text Search Server for DB2 for i for searches. This is an example to return
any warnings or errors regarding the invoking user’s authorities:

> CALL SYSPROC.SYSTS_HC_USR_AUTH();

SYSPROC.SYSTS_HC_IDX()
This stored procedure is used to check all OmniFind Text Search Server for DB2 for i text indexes to
ensure they are in a valid state. Note: If using an IASP (Independent Auxiliary Storage Pool) group, this
only applies to the IASP group currently active in the job.

SYSSTS.HC_SVR()
This stored procedure is used to check the health of all local OmniFind Text Search Server for DB2 for i
text servers that have been defined.

Additional Information
More information about the OmniFind Text Search Server for DB2 for i health checker, including numerous
additional stored procedures options as well as a QShell interface, is available on developerWorks
OmniFind Text Search Server for DB2 for i under the article ’Health Checker’.

Independent ASP considerations for OmniFind Text Search Server for DB2
for i

You can administer a text search index on an independent auxiliary storage pool (ASP). The ASP can be
switched between multiple systems, so there are additional considerations.

A local text search server is created during the installation of OMNIFIND. For independent ASPs, a local
text server is created by an administrator using the ServerInstance tool (ServerInstance.sh) after the
independent ASP group is created.

OmniFind Text Search Server for DB2 for i 87

https://www.ibm.com/support/pages/node/1274614

After you create a local text search server on the independent ASP, the index data exists on the
independent ASP file system. The data is available if the independent ASP is switched to a different
system. The administrator needs to create a local text search server only once for each independent ASP
group.

Text search indexes that are on the independent ASP must be contained in text search servers that
have been defined in the independent ASP. You cannot view a text search server defined in a different
independent ASP group or in the system ASP when the job is connected to the independent ASP.

To create a text search server on an independent ASP named myiasp, follow these steps:

1. Vary on the independent ASP with the Work with Configuration Status (WRKCFGSTS) CL command or
by using System i Navigator.

2. Connect to the namespace of the independent ASP group by using the Set Auxiliary Pool Group
(SETASPGRP) CL command.

3. Use the ServerInstance.sh script to create a text search server.

Here is an example QSH command to use:

/QOpenSys/QIBM/ProdData/TextSearch/ServerInstance.sh -create
-servernum 2 -port nnnnn -device myiasp

In the command, nnnnn is an available port number for the server to use. This port number must be
available for use on all systems that the independent ASP group can be switched to.

After a text search server is defined for the independent ASP group, the administrative stored procedures
can be used to start and stop the text search server. The stored procedures can also be used to create,
drop, and update text search indexes.

Note: Job scheduler entries are added when the independent ASP is varied on for any indexes with
scheduled updates that exist in the independent ASP. The job scheduler entries allow scheduled updates
to continue, even when the independent ASP is switched between systems.

Restrictions of using text search indexes and independent ASPs
• All systems that the independent ASP can be switched between must have OmniFind Text Search

Server for DB2 for i installed, and must be at the same program temporary fix (PTF) levels.
• Do not create text search indexes on an ASP other than the one that the table index is built over.
• The system catalogs SYSTEXTSERVERS, SYSTEXTINDEXES, SYSTEXTDEFAULTS, SYSTEXTCOLUMNS,

and SYSTEXTCONFIGURATION do not contain records for indexes and servers that are defined in a
different ASP group, including the system ASP. The catalogs contain rows only for indexes and servers
that are defined for the independent ASP group that the job is connected to.

• The administrative stored procedures can be used to perform functions only on text search servers and
indexes that are defined in the independent ASP group that the job is connected to.

Note: You can use the CONTAINS and SCORE SQL statements when a job is connected to an independent
ASP group, even if the column is based on a table that exists on the system ASP.

High Availability
You can implement a high availability solution that includes text search indexes using existing APIs and
commands. DB2 for IBM i now recognizes text search indexes and takes special actions during DB2
operations that affect these indexes.

Special considerations for text search indexes, high availability, and database administration

• A delete file (DLTF CL command) or DROP VIEW SQL statement against the view representing the text
search index results in a drop of the text search index. The drop fails if the drop is executed under
commitment control.

• Restoring a table or physical file that was saved with a text search index over a column does not enable
the triggers that were created for the text search index before the save. If the text search index is later

88 IBM i: OmniFind Text Search Server for DB2 for i

restored or created, triggers are added as part of the index creation. This method enables applications
to work, even if the text search index originally built over the table is not restored or created.

Replaying journal entries for OmniFind Administrative stored procedures

• A replay of the journal entry (QDBRPLAY API) for the creation of the view that represents the text search
index results in creating the text search index.

• The addition and removal of the triggers on the based-on table during SYSTS_CREATE or SYSTS_DROP
procedure calls does not cause journal entries to be logged.

• A call to the SYSTS_UPDATE or SYSTS_REPRIMEINDEX stored procedure results in a journal entry being
logged against the view of the text search index. A replay of this journal entry using the QDBRPLAY API
results in the correct procedure call being replayed.

• Automatically scheduled updates do NOT result in journal entries for the index and cannot be replayed.
• A call to SYSTS_ALTER results in a change journal entry against the view. A replay of the journal entry

using the QDBRPLAY API causes the SYSTS_ALTER call to be replayed.

High Availability recommendations

If you want to implement a high availability solution, consider the following recommendations:

• After Creating the text search index on the primary system, the QDBRPLAY API can be used to replay
the create on the backup system.

• The backup system now contains a duplicate index, with scheduled updates that occur at the same
frequency as the primary system.

• As record changes are replayed into the backup systems based on table, they are logged in the staging
table of the backup system.

• Calls to SYSTS_UPDATE, SYSTS_REPRIMEINDEX, and SYSTS_ALTER on the primary system results in
journal entries that can be replayed on the backup system.

• It is NOT necessary for customers to journal and replicate the IFS files for the Text Search indexes.
• It is necessary to ensure that the triggers that have been added as part of SYSTS_CREATE are enabled

to record changes to the based on table. These triggers can be identified by using the special "QDBTS"
prefix on the name of the trigger.

Apply Journal Changes CL command (APYJRNCHG)

The Apply Journal Changes (APYJRNCHG) CL command can be used to replay OmniFind events. Users
wanting to use this command must carefully consider the order in which journal entries are replayed.
The staging table in QSYS2 must be exactly synchronized with the based-on table at the time a
SYSTS_UPDATE is replayed or invoked.

Record changes that are applied to the based-on table are NOT logged in the staging table during the
APYJRNCHG process. In some cases, it might be necessary to call the SYSTS_REPRIMEINDEX stored
procedure to rebuild the index after using this command.

Related reference
SYSPROC.SYSTS_REPRIMEINDEX
You can reprime the index and start an initial update using the SYSPROC.SYSTS_REPRIMEINDEX stored
procedure. Use this stored procedure when you want to restore data from the base table.

Performance analysis
OMNIFIND performance analysis includes choosing the correct index definition, handling documents
efficiently, and specifying a selective search.

Background
OmniFind processing is a combination of work on a front end ‘client' job and work on a backend ‘server'
job, with communication occurring between these jobs. Communication is performed using standard
socket connections.

OmniFind Text Search Server for DB2 for i 89

The client job reads records from the appropriate database table during index builds and maintenance. It
processes the log of table changes, sends documents for ingestion, and handles any text search requests
using the CONTAINS or SCORE SQL functions. The client job is the one in which the procedure, for
example, SYSTS_CREATE or SYSTS_UPDATE, or the query with CONTAINS or SCORE, is run. Client job
performance is dependent on processing database actions quickly, and retrieving and transporting text
documents efficiently to the server job.

The server job parses documents sent from the client job, maintains the associated text index with
inserts and deletions, and handles search requests within the index. The performance of the server job
is dependent on its ability to communicate efficiently with the client jobs and to handle documents
efficiently. There is normally a single server job serving multiple client jobs. Consequently, the server job
is a multi-threaded job so that it can handle multiple clients.

A text index is not updated immediately with any changes to the underlying database table. Instead, any
record changes to the table are logged using a combination of a database trigger and a staging table. The
staging table records the update type (insert, update, or delete) along with an indication of which record
in the base table was changed. The changed text is not captured in the log; only information to identify the
record that was changed.

Table record changes are not reflected in the text index, and consequently not in searches with
CONTAINS or SCORE, until the next successful SYSTS_UPDATE.

Subsequent updates to a text index after the initial update are called incremental updates. These updates
add or delete documents to the text index based on any record changes made to the underlying table
since the last update.

Any changes made to the base table are registered in a staging table. On an incremental update, the
staging table is used to determine which records in the base table have changed. Those records are later
read from the base table and their updated contents are reflected in the index.

The initial update is a more efficient process, per row, than an incremental update. The base table is
processed without needing to also process the staging table. Therefore, a good performance technique
is to do the initial update on the text index after the underlying table has been initially populated. This
technique minimizes the time to populate the documents into the index.

An important performance-related configuration option is UPDATEAUTOCOMMIT. This value defines how
frequently the database client job interrupts document processing. The client waits for the server job
to confirm that it has processed all documents currently sent to it. UPDATEAUTOCOMMIT is used as a
checkpoint method to allow the database to set boundaries of completed work.

If the index update is interrupted and continued later, the process restarts at the checkpoint boundary.
As with any interruption, a checkpoint boundary forces the flow of documents to be suspended and
the pipeline between the client and server to be cleared of documents, or in other words, emptied of
documents. This start and stop process can have considerable negative effect on performance.

The default value for UPDATEAUTOCOMMIT is 100, which provides frequent checkpoints. Setting the
value higher usually results in better response time performance for SYSTS_UPDATE calls. However, the
higher value does mean a longer recovery time if the update is canceled and restarted.

Setting UPDATEAUTOCOMMIT to a large number (or zero, which means no checkpoint occurs) provides
the best response time performance. However, if the initial update is canceled, OmniFind must start over
from the beginning of the index build because there was no checkpoint.

For some customers, setting the value 5000 - 20000 appears to provide a reasonable balance between
performance and checkpoint recoverability.

Choose the correct index definition
A text index can be specified with one of four FORMAT configuration types: TEXT, HTML, XML, and INSO.

1. TEXT is usually the most efficient format. The text is read from the database record and sent to the
text server and the server processes it directly.

90 IBM i: OmniFind Text Search Server for DB2 for i

2. HTML is used when the documents are known to be in the form of HyperText Markup Language. The
text is processed with consideration of ignoring markup control values within the document.

3. XML is used when the documents are known to be in the form of eXtensible Markup Language. Special
consideration of the structural nature of the document contents is done, with tracking of elements,
attributes, and the hierarchy within the document. Marking an index as XML provides the ability to do
XML searches using the xmlxp (xpath) search language on the CONTAINS and SCORE functions.

4. INSO is used when the document needs to be processed INSide Out. In this form, the contents of
each document is assumed to be more than simple text. Each document is pre-analyzed to determine
which type of document it is, then converted to plain text. INSO documents are usually rich text
word-processing documents generated by word-processing programs.

From a performance perspective, the work to index a document increases as you move from format
TEXT to format INSO. While format INSO handles simple text, it is more overhead than format TEXT, as
interpretation takes place. Use TEXT when the document is simple text in the database column.

The LANGUAGE configuration option is not strictly required, as OmniFind determines the language of the
document based on examination. However, if the language of the documents is known, specifying it on
the LANGUAGE option can speed up performance. It limits the amount of interpretation that needs to be
done.

Handle documents efficiently
The client and server jobs communicate the document information using UTF (Unicode Transformation
Format). To get the document into this format, the client reads the document from the database,
converting the resulting data into UTF-8, also known as CCSID 1208. All text is converted to UTF-8
before being sent to the server.

To improve performance, set the text column being indexed to CCSID 1208 to avoid this conversion,
improving the efficiency of the document handling process.

Use SYSTS_REPRIMEINDEX instead of SYSTS_UPDATE for a possible performance
improvement
SYSTS_REPRIMEINDEX and SYSTS_UPDATE are used to update the text search index.
SYSTS_REPRIMEINDEX is used to recreate the index. SYSTS_UPDATE is used to update the index with
the incremental changes used after last successful update. In some instances, SYSTS_REPRIMEINDEX
may perform better than the SYSTS_UPDATE.

To determine if the SYSTS_REPRIMEINDEX will perform better than the SYSTS_UPDATE, check the
column, PENDINGCOUNT of Text Search Index view. The PENDINGCOUNT column will indicate how
many rows will need to be changed for the next update process. If the user updated the same record
in base table 10 times, the PENDINGCOUNT column will be increased by 10. Therefore, if the user is
updating the base table frequently, the PENDINGCOUNT column will be increased. In most cases, if the
PENDINGCOUNT column is larger than the total count of the base table, then the SYSTS_REPRIMEINDEX
procedure will be the better choice to use rather than the SYSTS_UPDATE.

Specify a selective search
Text searches are done using the CONTAINS or SCORE functions within an SQL query statement. These
searches compare the function search criteria to the documents associated with the column being
searched. Matching records are identified and selected. The client job sends the search request to the
server and receives the answer on whether a match is found.

As with all search criteria, the more selective the search, the more efficient the search is. Looking for
common phrases, such as ‘the' in the English language, results in numerous matches and can negatively
affect performance. Practically speaking, such a search is unlikely to provide meaningful information.
Specifying more selective search phrases results in fewer, more meaningful matches.

When using CONTAINS in the WHERE clause of an SQL statement, it usually performs best to have it
ANDed to other criteria. For example:

OmniFind Text Search Server for DB2 for i 91

SELECT bn, pubdate, description
FROM myBooks
WHERE CONTAINS(description,'Alladin') = 1
AND Pubdate > ‘2004-01-01'

Using CONTAINS and SCORE
The optimizer can improve the performance of the CONTAINS and SCORE functions by internally
combining and replacing these built-in functions with a user-defined table function (UDTF). The UDTF
returns a list of matching documents in one result. This UDTF processing in many cases performs better
than the alternative process of invoking the bult-in function for each record to determine a match.

To enable the optimizer to perform the UDTF rewrite, the CONTAINS function must:

• reside in the WHERE clause of the SQL statement
• be connected by "AND" to every additional predicate in the WHERE clause
• be a comparison with the value 1.

For example, the clause:

WHERE CONTAINS(MyDocuments, 'java performance') = 1

could be rewritten by the optimizer in the UDTF form. However, the clause:

WHERE CONTAINS(MyDocuments, 'java performance') = 1 OR price >100

could not be rewritten due to the CONTAINS being ORed to other predicates.

Note: when a UDTF rewrite is enabled, the optimizer still uses cost comparison to choose the optimal
plan.

Related reference
CONTAINS
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
SCORE
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.
SYSPROC.SYSTS_UPDATE
You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.
SYSPROC.SYSTS_CREATE
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.

Transaction considerations
Consider your environment when deciding how often to update your text indexes from the underlying data
in the database tables.

A large consideration for traditional database users is the concept of transaction boundaries and
transaction processing. A classic example is a bank transaction where money is transferred from one
account to another. The transfer is considered to be a single transaction; either the transfer occurs or it
does not. The customer would not appreciate having the money removed from one account but not show
up in the other account until some time later. Conversely, the bank would not want the money to show up
in both accounts for some amount of time until the transaction was finally completed. The idea is that if a
change is made, it is reflected immediately.

92 IBM i: OmniFind Text Search Server for DB2 for i

There are many examples in information management where delays are more acceptable and even
expected. In a traditional data warehouse design, the contents of the data warehouse often lag the
operational data by hours or more. This acceptance of delay is based on a combination of realistic
expectations of a data warehouse and a desire for predictable, coherent data.

Unstructured text searches lie somewhere between these two boundaries. Practically speaking, indexing
text documents is an intensive process to analyze and break down the underlying meaning of the words in
the document. Text searches allow a search for ‘mice' to find documents with ‘mouse'. This search result
happens due to the ability of the indexing technique to break down words into their underlying meanings.
This analysis is done at the time when a document is indexed in order to make subsequent searches as
fast as possible.

Users of a traditional database index expect the index to reflect the state of the data in the database
table. This same expectation does not hold for a text index. The contents of the text index reflect the state
of the table based on the time when the last update (SYSTS_UPDATE) was performed.

In a highly changing environment, it is unlikely that the text index would reflect the current state of the
table at any given time. However, in a more predictable environment where the database table is updated
less frequently or in batch mode, the text index updates can be timed to perform after the table update,
accurately reflecting the state of the table.

It is important to have the appropriate expectation for a text index. Use the UPDATE FREQUENCY option
on the text index “SYSPROC.SYSTS_CREATE” on page 17 or “SYSPROC.SYSTS_UPDATE ” on page 32, or
explicitly call the SYSTS_UPDATE procedure to update the contents of the text index appropriately.

For more static environments such as bulk data loads, it makes sense to time the text index update to
take place after the bulk load is completed. For more transaction-oriented environments, the UPDATE
FREQUENCY value can be set to a short duration or the SYSTS_UPDATE procedure can be invoked
frequently. It is normally true that the more frequent the update, the more workload is placed on the
machine.

Related reference
QSYS2.SYSTEXTINDEXES administration table
You can see information about each text search index in the QSYS2.SYSTEXTINDEXES administration
table. Each text search index has a name, schema name, and an associated collection name on the text
search server.

Using IBM Navigator for i
You can administer your OmniFind text search servers and text search indexes using IBM Navigator for i.

1. In theIBM Navigator for i window, expand the system you want to use.
2. Expand Databases.
3. Expand the database that you want to work with.
4. Select OmniFind Text Search.

OmniFind Text Search Server for DB2 for i 93

Work with text search servers
You can start and stop your OmniFind text search servers and create a text search index using IBM
Systems Director Navigator for i.

Viewing the status of your OmniFind Text Servers:

1. Select the Text Servers folder in the right pane.
2. View the status of the currently configured text search servers on the system in the right pane.
3. Select Refresh to refresh the list of servers.

94 IBM i: OmniFind Text Search Server for DB2 for i

Starting and stopping your OmniFind Text Servers:

1. Select the box in front of your selected Server ID in the right pane.
2. Select from the Actions menu:

• Start server
• Stop server
• Create a text search index

Creating a text search index:

Work with text search indexes
You can perform operations on any text search index on a system using IBM Systems Director Navigator
for i.

Viewing the OmniFind text indexes for a text server:

1. In the IBM Systems Director Navigator window, expand the system you want to use.
2. Expand Databases.
3. Expand the database that you want to work with.
4. Select OmniFind Text Search.
5. Select Text Servers.
6. Select the text server that you want to work with. The indexes for that server are displayed in the right

pane.

OmniFind Text Search Server for DB2 for i 95

Viewing the OmniFind text indexes for this system:

1. Select OmniFind Text Search.
2. Select Text Indexes. These indexes are all the text search indexes for this system in the current

partition.

Perform operations on a text index:

1. Select the box for the index in the right pane that you want to work with.
2. Select Action from the box at the top of the panel.

• Definition
• Update

96 IBM i: OmniFind Text Search Server for DB2 for i

• Reprime
• Delete
• Description

Viewing the OmniFind text indexes for a schema:

1. In the IBM Systems Director Navigator window, expand the system you want to use.
2. Expand Databases.
3. Expand the database that you want to work with.
4. Expand Schemas.
5. Expand the schema that you want to work with.
6. Select OmniFind Text Indexes. These indexes are all the text search indexes for this schema.

View text search index builds
You can view text indexes that are being built by the database using IBM Systems Director Navigator. This
view is helpful in determining when text search indexes become available to your applications.

To display text search indexes that are being built, follow these steps:

1. In the IBM Systems Director Navigator window, expand the system you want to use.
2. Expand Databases.
3. Expand the database that you want to work with.
4. Select Database Maintenance.
5. Select Text Index Builds.

This panel shows only text search index updates in progress. It is empty if there are no updates or
repriming currently running on the system.

OmniFind Text Search Server for DB2 for i 97

Using System i Navigator
You can administer your OmniFind text search servers and text search indexes using System i Navigator.

1. In the System i Navigator window, expand the system you want to use.
2. Expand Databases.
3. Expand the database that you want to work with.
4. Select OmniFind Text Search.

98 IBM i: OmniFind Text Search Server for DB2 for i

Work with text search servers
You can start and stop your OmniFind text search servers and create a text search index using System i
Navigator.

Viewing the status of your OmniFind Text Servers:

1. Select the Text Servers folder in the right pane.
2. View the status of the currently configured text search servers on the system in the right pane.
3. Select F5 to refresh the list of servers.

OmniFind Text Search Server for DB2 for i 99

Starting and stopping your OmniFind Text Servers:

1. Select your selected Server ID in the right pane.
2. Right-click to view options:

• Start server
• Stop server
• Create a text search index

Creating a text search index:

100 IBM i: OmniFind Text Search Server for DB2 for i

Work with text search indexes
You can perform operations on any text search index on a system using System i Navigator.

Viewing the OmniFind text indexes for a text server:

1. In the System i Navigator window, expand the system you want to use.
2. Expand Databases.
3. Expand the database that you want to work with.
4. Select OmniFind Text Search.
5. Select Text Servers.
6. Select the text server that you want to work with. The indexes for that server are displayed in the right

pane.

OmniFind Text Search Server for DB2 for i 101

Viewing the OmniFind text indexes for this system:

1. Select OmniFind Text Search.
2. Select Text Indexes. The indexes shown are all the text search indexes for this system in the current

partition.

102 IBM i: OmniFind Text Search Server for DB2 for i

Perform operations on a text index:

1. Select an index in the right pane that you want to work with.
2. Right-click on the index.
3. Select an operation:

• update
• reprime
• delete
• view description
• view definition
• alter definition

Viewing the OmniFind text indexes for a schema:

1. In the System i Navigator window, expand the system you want to use.
2. Expand Databases.
3. Expand the database that you want to work with.
4. Expand Schemas.
5. Expand the schema that you want to work with.
6. Select OmniFind Text Indexes. These indexes are all the text search indexes for this schema.

OmniFind Text Search Server for DB2 for i 103

View text search index builds
You can view text indexes that are being built by the database with System i Navigator. This view is helpful
in determining when text search indexes become available to your applications.

To display text search indexes that are being built, follow these steps:

1. In the System i Navigator window, expand the system you want to use.
2. Expand Databases.
3. Expand the database that you want to work with.
4. Expand Database Maintenance.
5. Select Text Index Builds.

This panel shows only text search index updates in progress. It is empty if there are no updates or
repriming currently running on the system.

104 IBM i: OmniFind Text Search Server for DB2 for i

Text search administration tables
You can support your text search servers and indexes using the administration tables in QSYS2.

QSYS2.SYSTEXTDEFAULTS administration table
You can see the default parameters and values in the QSYS2.SYSTEXTDEFAULTS administration table.
This table is created when you install OmniFind Text Search for DB2 for i.

The following table shows the contents of the QSYS2.SYSTEXTDEFAULTS administration table.

Table 33. Contents of the QSYS2.SYSTEXTDEFAULTS administration table

Column name Data type Nullable? Description

NAME VARCHAR(30) No Name of a default parameter for
the database for text search.

VALUE VARCHAR(512) No Value for the default parameter for
text search.

TYPE INTEGER No Reserved.

OmniFind Text Search Server for DB2 for i 105

QSYS2.SYSTEXTINDEXES administration table
You can see information about each text search index in the QSYS2.SYSTEXTINDEXES administration
table. Each text search index has a name, schema name, and an associated collection name on the text
search server.

The following table shows the contents of the QSYS2.SYSTEXTINDEXES administration table. The unique
key for this table is the INDEXSCHEMA column with the INDEXNAME column. The primary key is the
INDEXID column.

Table 34. Contents of the QSYS2.SYSTEXTINDEXES administration table

Column name Data type Nullable? Description

INDEXID INTEGER No Uniquely generated index ID for the
text search index.

INDEXSCHEMA VARCHAR(128) No Schema name for the text search
index.

INDEXNAME VARCHAR(128) No Unqualified name of the text search
index.

TABLESCHEMA VARCHAR(128) No Schema name of the base table.

TABLENAME VARCHAR(128) No Unqualified name of the base table.

TABLEIASP SMALLINT No Independent ASP of the base table.

COLLECTIONNAME VARCHAR(255) No Name of the associated collection on
the text search server.

SERVERID INTEGER No The server ID for the text search
index.

TAKEOVERSERVERID INTEGER Yes Reserved for future use.

TAKEOVERSERVERPULSE TIMESTAMP Yes Reserved for future use.

SEARCHARGS VARBINARY(1024) Yes Reserved for future use.

ALIASSCHEMA VARCHAR(128) No The alias for the schema of the
base table that was used in
the SYSPROC.SYSTS_CREATE stored
procedure. If no alias is used, this
value is identical to TABLESCHEMA.

ALIASNAME VARCHAR(128) No The alias for the name of the
base table that was used in
the SYSPROC.SYSTS_CREATE stored
procedure. If no alias is used, this
value is identical to TABLENAME.

STAGINGTABLENAME VARCHAR(128) Yes The name of the log table for the text
search index.

EVENTTABLENAME VARCHAR(128) No The name of the event table for the
text search index.

OFINDEXTABLENAME VARCHAR(128) No The name of the table for the text
search index on the OmniFind Text
Search Server for DB2 for i.

UPDATEMINIMUM INTEGER No Minimum number of entries in the log
table before an incremental update of
the text search index is performed.

106 IBM i: OmniFind Text Search Server for DB2 for i

Table 34. Contents of the QSYS2.SYSTEXTINDEXES administration table (continued)

Column name Data type Nullable? Description

UPDATEFREQUENCY VARCHAR(512) No The update frequency for the
text search index as specified by
the SYSPROC.SYSTS_CREATE stored
procedure.

UPDATEMODE INTEGER No Indicates the update mode of the text
search index. The integer 0 (zero)
indicates the initial update of the text
search index. A value of 1 indicates
subsequent, incremental updates.

REORGANIZATIONMODE INTEGER No Indicates the reorganization mode of
the text search index.

CREATETIME TIMESTAMP No The time that the text search index
was created.

LASTUPDATETIME TIMESTAMP Yes The time that the text search index
was last updated.

LASTUPDATESTATUS CHAR Yes Indicates the internal status for
optimizing the cleanup process after
an initial or incremental update of
the text search index. Typical values
include:

• (Null) indicates that the index has
never been updated.

• 'C' indicates that an initial update
was initiated. If the update mode
is not incremental, then the initial
update is either still in progress or
did not complete.

• 'N' indicates that an incremental
update has successfully completed.

Other codes are used internally
during update processing. The update
process uses these codes to
determine specific recovery actions
that can be taken if the update fails
to complete.

SCHEDULERTASKID INTEGER Yes Reserved for future use.

EXPRESSIONLISTS CLOB (32 K) Yes Reserved for future use.

EXPRESSIONNUMBERS VARBINARY(32) Yes Reserved for future use.

USEREXITFUNCTION VARCHAR(18) Yes Reserved for future use.

REMARKS VARCHAR(2000) Yes Remarks made in the
COMMENTS option of the
index-configuration-options
parameter of the
SYSPROC.SYSTS_CREATE stored
procedure.

OmniFind Text Search Server for DB2 for i 107

Table 34. Contents of the QSYS2.SYSTEXTINDEXES administration table (continued)

Column name Data type Nullable? Description

TABLEMBR VARCHAR(10) Yes The table member over which the
text index is built. Used to track the
specific member being indexed if the
file is a multi-member file. If the value
is null, the member is the first and
only member of the table.

Related concepts
Server alias name
You can use a server alias name to assign a meaningful name to a server.

QSYS2.SYSTEXTCOLUMNS administration table
You can see information about the text columns for a text search index in the QSYS2.SYSTEXTCOLUMNS
administration table. Each text search index has an index ID, text column names, and the schema name of
the base table.

The following table shows the contents of the QSYS2.SYSTEXTCOLUMNS administration table. The
primary key for this table is the INDEXID column with the COLUMNNAME column. The foreign key is
the INDEXID column.

Table 35. Contents of the QSYS2.SYSTEXTCOLUMNS administration table

Column name Data type Nullable? Description

INDEXID INTEGER No Uniquely generated index ID for the
text search index.

COLUMNNAME VARCHAR(128) No Unqualified name of the text column.

TABLESCHEMA VARCHAR(128) No Schema name of the base table.

TABLENAME VARCHAR(128) No Unqualified name of the base table.

LANGUAGE VARCHAR(5) No The language that the text search
server uses for the linguistic
processing of text documents. The
default value is en_US (English).

FUNCTIONSCHEMA VARCHAR(128) Yes The schema of a user-defined
function used by OMNIFIND to access
text documents that are in a column
that is not of a supported data type, or
that are stored elsewhere.

FUNCTIONNAME VARCHAR(18) Yes The name of a user-defined function
used by OMNIFIND to access text
documents that are in a column that
is not of a supported data type, or that
are stored elsewhere.

CCSID INTEGER No The coded character set identifier that
is used for a text search index on a
column with a binary data type.

FORMAT VARCHAR(30) No The format of text documents in the
column. The supported format values
are TEXT, HTML, XML, and INSO.

108 IBM i: OmniFind Text Search Server for DB2 for i

Table 35. Contents of the QSYS2.SYSTEXTCOLUMNS administration table (continued)

Column name Data type Nullable? Description

KEYCOLUMNCOUNT INTEGER No The count of key columns for the text
search index.

KEYCOLUMNNAMES VARCHAR(1200) No The key column names for the text
search index.

QSYS2.SYSTEXTSERVERS administration table
You can see where the text search servers are installed using the QSYS2.SYSTEXTSERVERS
administration table.

The following table shows the contents of the QSYS2.SYSTEXTSERVERS administration table. The unique
key for this table is the SERVERNAME column with the SERVERPORT column. The primary key is the
SERVERID column.

Table 36. Contents of the QSYS2.SYSTEXTSERVERS administration table

Column name Data type Nullable? Description

SERVERID INTEGER No Uniquely generated ID for the text search
server.

SERVERNAME VARCHAR(128) No The host name or IP address of the text
search server.

SERVERADRINFO VARBINARY(3000) Yes The internal representation
of the SERVERNAME and
SERVERPORT as determined by
the SYSPROC.SYSTS_START stored
procedure.

SERVERPORT INTEGER No The port number for the text search
server.

SERVERPATH VARCHAR(512) No The server path for the text search server.

SERVERTYPE INTEGER No The server type for the text search server.
The value 0 (zero) indicates an IBM i
text search server. The value 1 indicates
a Linux text search server. The value 2
indicates a Windows text search server.

SERVERAUTHTOKEN VARCHAR(256) No The authentication token for the text
search server.

SERVERMASTERKEY VARCHAR(36) No The server key for the text search server.

SERVERCLASS INTEGER No The server class for the text search
server. The value 0 (zero) indicates a
production server, available for automatic
selection. the value 9 indicates a test
server, never allocated automatically.

SERVERSTATUS INTEGER No Indicates whether the server can be used
as a text search server to create new text
search indexes. The default value is 0
(zero), which means that the server can
be used.

OmniFind Text Search Server for DB2 for i 109

Table 36. Contents of the QSYS2.SYSTEXTSERVERS administration table (continued)

Column name Data type Nullable? Description

ALIASNAME VARCHAR(128) Yes Alias name is unique when not null and is
case sensitive.

Related concepts
Server alias name
You can use a server alias name to assign a meaningful name to a server.

QSYS2.SYSTEXTCONFIGURATION administration table
You can see the configuration parameters for the text search index, as passed by the
SYSPROC.SYSTS_CREATE stored procedure, in the QSYS2.SYSTEXTCONFIGURATION administration
table.

The following table shows the contents of the QSYS2.SYSTEXTCONFIGURATION administration table. The
primary key is the INDEXID column with the PARAMETER column. The foreign key is the INDEXID column.

Table 37. Contents of the QSYS2.SYSTEXTCONFIGURATION administration table

Column name Data type Nullable? Description

INDEXID INTEGER No Uniquely generated index ID for the
text search index.

PARAMETER VARCHAR(30) No Parameters that are specified
for the text search index in
the SYSPROC.SYSTS_CREATE stored
procedure.

VALUE VARCHAR(512) No Values for the specified parameters.

Related reference
SYSPROC.SYSTS_CREATE
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.

QSYS2.SYSTEXTSERVERHISTORY administration table
You can see the history of servers used for the SYSPROC.SYSTS_DROP stored procedure by viewing the
auxiliary table QSYS2.SYSTEXTSERVERHISTORY.

The following table shows the contents of the QSYS2.SYSTEXTSERVERHISTORY administration table.
The unique key for this table is the INDEXID column with the SERVERID column. The foreign key is the
INDEXID column.

Table 38. Contents of the QSYS2.SYSTEXTSERVERHISTORY administration table

Column name Data type Nullable? Description

INDEXID INTEGER No The index ID for a created text search
index.

SERVERID INTEGER No The server ID where a text search
index needs to be dropped on
SYSPROC.SYSTS_DROP.

Related reference
SYSPROC.SYSTS_DROP

110 IBM i: OmniFind Text Search Server for DB2 for i

You can call the SYSPROC.SYSTS_DROP stored procedure to drop a text search index that was defined by
using the SYSPROC.SYSTS_CREATE stored procedure.

Text Search Index view
When a text search index is created with SYSTS_CREATE, a view representing the index will be created.
Querying the text search index’s view can help the user obtain the status of the index. The text search
index view’s name is same name as the text search index’s name that was specified while creating the
index with SYSTS_CREATE.

The following table shows the content of text search index’s view.

Table 39. Contents of the view created by SYSTS_CREATE

Column name Data type CCSID Nullable? Description

TABLESCHEMA VARCHAR(128) 1208 No Schema name of the base
table.

TABLENAME VARCHAR(128) 1208 No Unqualified name of the base
table.

COLUMNNAME VARCHAR(128) 1208 No Unqualified name of the text
column from the base table.

SERVERID INTEGER No Unique server ID from
SYSTEXTSERVERS.

SERVERNAME VARCHAR(128) 1208 No Unqualified name of the text
search server.

SERVERSTATUS VARCHAR(32) 1208 No • ‘STARTED’ – Server is
running.

• ‘STOPPED’ – Server is
stopped.

STAGINGTABLENAME VARCHAR(128) 1208 No Unqualified name of the log
table for the text search index.

LASTUPDATETIME TIMESTAMP Yes The time that the text search
index was last updated.

LASTUPDATESTATUS VARCHAR(30) 1208 Yes • ’NEVER UPDATED’ – The
index was not updated
before.

• ‘UP TO DATE’ – Last update
succeed and there is no
pending changes to do.

• ‘CHANGES PENDING’ – Last
update succeed, but there
are still new changes to be
updated.

• ‘FAILED’ – Last update
failed.

UPDATEMINIMUM INTEGER No Minimum number of entries
in the log table before an
incremental update of the text
search index is performed.

OmniFind Text Search Server for DB2 for i 111

Table 39. Contents of the view created by SYSTS_CREATE (continued)

Column name Data type CCSID Nullable? Description

UPDATEFREQUENCY VARCHAR(512) 1208 No The update frequency
for the text search
index as specified by
the SYSPROC.SYSTS_CREATE
stored procedure.

PENDINGCOUNT INTEGER No Indicate how many rows to
be indexed in next update
process.

Extensions to Index and Search Non-DB2 Data
The OmniFind Text Search for DB2 for i provides an additional set of stored procedures to create,
administer, and search text search collections.

Extensions Overview
OmniFind Text Search Server for DB2 for i provides an additional set of stored procedures to create,
administer, and search text search collections. A text search collection is used to index data associated
with system objects such as spool files in an output queue, or stream file data in the integrated file
system.

A text search collection describes one or more sets of system objects that will have their associated
text data indexed and searched. For example, a collection may contain an object set of all spool files
in output queue QUSRSYS/QEZJOBLOG, and/or an object set for all stream files in directory '/home/alice/
text_data'.

The text search collection referred to in this documentation should not be confused with a DB2 schema
(sometimes also referred to as a collection), or a Lucene collection (Part of the internal structure of a DB2
text search index).

When a text search collection is created, several DB2 objects are created on the system in an SQL
schema. The following objects will be created in the schema:

• Catalogs for tracking the collection's configuration.
• Catalogs for tracking the objects that have been indexed.
• SQL Stored procedures to administer and search the collection.
• A DB2 text search index for indexing the associated text.

Administration of the collection is provided with stored procedures, most of which are created in the
schema.

An explanation of other OmniFind Text Search Server for DB2 for i enhancements can be found at:
OmniFind Text Search Server for DB2 for i enhancements.

Creating a Text Search Collection
This procedure creates an empty search collection. An SQL schema will be created on the system to
contain information about the collection. The schema will contain DB2 objects necessary to track and
index objects.

SYSPROC.SYSTS_CRTCOL and SYSPROC.SYSTS_CREATE_COLLECTION

112 IBM i: OmniFind Text Search Server for DB2 for i

https://www.ibm.com/support/pages/node/1274614

Authorization
SYSTS_CRTCOL and SYSTS_CREATE_COLLECTION will be shipped with *EXECUTE authority granted to
public.

These procedures will not adopt any additional authority and will run under the invoking profile.

In order to create a text search collection the invoker must have:

• Authority to create a DB2 schema
• Authority/ability to create a text search index

The DB2 Objects created as part of the collection, including the administrative stored procedures are
created with public authority *EXCLUDE

The user profile creating the collection owns all objects in the collection. A user may grant authority to
specific procedure to other users in order to allow another user to administer and search the text search
collection.

Syntax
SYSTS_CREATE (indexSchema

null

, indexName , textSource ,

options)

Syntax
SYSTS_CREATE_COLLECTION (collection_name

, options

, asp_device_name

)

The schema qualifier is SYSPROC.

Parameters
collection_name

Name of Collection. This name uniquely identifies the collection and must be a non null string. A
schema of the name specified for collection name will be created to hold the associated DB2 objects.

Note: Enclose names in double quotation marks if the names conflict with SQL keywords or OmniFind
keywords that can be used.

The collection name parameter will follow the SQL rules for schema names.

The collection name must not match the name of an existing user profile.

The data type of this parameter is VARCHAR(128).

options
A character string that specifies the various options that are available for this stored procedure.

The data type for this parameter is VARCHAR(32000).
options

 text-default-information update-characteristics

 index-configuration-options

text-default-information

OmniFind Text Search Server for DB2 for i 113

LANGUAGE language FORMAT format

text-default-information
Specifies the language that is used when processing documents, and the format of text
documents in the column.
LANGUAGE language

Specifies the language that OmniFind Text Search Server for DB2 for i uses for the linguistic
processing of text documents. The default value is en_US (English). If you specify the value
for this parameter as AUTO, OmniFind Text Search Server for DB2 for i tries to determine the
language.

Important: If the language of the documents is not English, do not use the default value of
en_US. Change the value to the language of the documents; otherwise, linguistic processing
does not work as expected.

FORMAT format
Identifies the format of text documents to be indexes, such as TEXT or INSO. The OmniFind
Text Search Server for DB2 for i needs to know the format, or content type, of the text
documents that you intend to index and search. If you do not specify the format parameter,
the default is TEXT.

The format value INSO allows OmniFind Text Search Server for DB2 for i to determine the
format. If the OmniFind Text Search Server for DB2 for i cannot determine the document
format, then a document error is logged in the job log during processing by the UPDATE stored
procedure.

update-characteristics

UPDATE FREQUENCY

NONE

< update-frequency >

update-characteristics
Specifies the frequency of automatic updates to the text search collection. The update process for
a text search collection involves both indexing the text data, and crawling system objects to detect
new or changed data.
UPDATE FREQUENCY update-frequency

Specifies when to make automatic updates to the text search collection. The default value is
NONE.

update-frequency (Format 1)
NONE

D (*

0..6

,

0..6

) H (*

0..23

,

0..23

) M (*

0..59

,

0..59

)

NONE
If NONE is specified, then no further index updates are made. The update must be started
manually.

D
Specifies the day or days of the week when the index is updated. An asterisk (*) specifies
all days. 0 specifies Sunday.

H
Specifies the hour or hours when the index is updated. An asterisk (*) specifies all hours.

M
Specifies the minute or minutes when the index is updated. An asterisk (*) cannot be
specified. The minimum update frequency is 5 minutes.

114 IBM i: OmniFind Text Search Server for DB2 for i

Example: This example specifies that the index update is to run every 30 minutes.

UPDATE FREQUENCY D(*) H(*) M(0,30)

update-frequency (Format 2, chronological)
 tableSchema . tableName (

 text-column-name

function-schema .
 function-name (text-column-name)

)

The format of the update-frequency (chronological) option is a list of the five values separated
by a blank space. The five values represent the minutes, hours, days of the month, months of
the year, and days of the week beginning with Sunday.

If you specify an interval of values or an asterisk (*), you can specify a step value by using a
forward slash (/) at the end of the defined interval.

Example: This example specifies that the index update is to run every quarter hour
(0,15,30,45) on the even hours between 8 a.m. and 6:45 p.m. (8-18/2 is equivalent to
8,10,12,14,16,18), from Monday to Friday every month of the year (* * 1-5).

0,15,30,45 8-18/2 * * 1-5

minute
Specifies the minutes of the hour when the text search index is to be updated. You can
specify an asterisk (*) for an interval of every 5 minutes, or you can specify an integer 0
- 59. You cannot repeat values. The minimum update frequency is 5 minutes. A value of
1,4,8 is not valid.

update-frequency (minute)
*

/ 0...59

,

0...59 - 0...59

/ 0...59

0...59

hour
Specifies the hours of the day when the text search index is to be updated. You can specify
an asterisk (*) for every hour, or you can specify an integer 0 - 23. You cannot repeat
values.

update-frequency (hour)
*

/ 0...59

,

0...59 - 0...59

/ 0...59

0...59

dayOfMonth
Specifies the days of the month when the text search index is to be updated. You can
specify an asterisk (*) for every day, or you can specify an integer 1 - 31. You cannot repeat
values.

update-frequency (dayOfMonth)

OmniFind Text Search Server for DB2 for i 115

*

/ 0...23

,

0...23 - 0...23

/ 0...23

0...23

monthOfYear
Specifies the months of the year when the text search index is to be updated. You can
specify an asterisk (*) for every month, or you can specify an integer 1 - 12. You cannot
repeat values.

update-frequency (monthOfYear)
*

/ 1...31

,

1...31 - 1...31

/ 1...31

1...31

dayOfWeek
Specifies the days of the week when the text search index is to be updated. You can
specify an asterisk (*) for every day, or you can specify an integer 0 - 7. Both 0 and 7 are
valid values for Sunday. You cannot repeat values.

update-frequency (dayOfWeek)
*

/ 1...12

,

1...12 - 1...12

/ 1...12

1...12

index-configuration-options

INDEX CONFIGURATION (

,

option value)

index-configuration-options
Specifies additional index-specific values as option value pairs. You must enclose string values in
single quotation marks. A single quotation mark within a string value must be represented by two
consecutive single quotation marks.
CJKSEGMENTATION

Specifies the segmentation method to use when you index documents for CJK (Chinese,
Japanese, Korean) languages. The supported values are MORPHOLOGICAL and NGRAM. If
the CJKSEGMENTATION value is not specified, the default value is used. The default value is
specified by the DEFAULTNAME value in the QSYS2.SYSTEXTDEFAULTS table.

SERVER
Specifies the ID or alias name of the server to be used to store the text search index.
If an ID is used, the value is an integer that must exist in the SERVERID column of the
QSYS2.SYSTEXTSERVERS catalog. If an alias name is used, the value is a string that must exist
in the ALIASNAME column of the QSYS2.SYSTEXTSERVERS catalog. If SERVER is not specified,
the default is to select the server with the fewest text search indexes from the servers in

116 IBM i: OmniFind Text Search Server for DB2 for i

the QSYS2.SYSTEXTSERVERS table where parameter SERVERSTATUS is set to 0 (zero), which
means that the server is available.

UPDATEAUTOCOMMIT
Specifies how often a commit operation is performed when fetching documents during an
index update. A value of 0 (zero) means that a commit operation occurs only at the end of
processing.

The value must be an integer between 0 (zero) and 2147483647. The default value is 100.

Performance tip: The value of UPDATEAUTOCOMMIT can have a substantial impact on
the performance of index updates. The commit operation that takes place at the specified
interval ensures a consistent checkpoint from which to restart the index update, if it is
interrupted. However, the commit also temporarily suspends the update process. Increasing
the UPDATEAUTOCOMMIT value (or setting it to 0) can substantially improve the update
performance, especially the initial update. The value you specify must balance the need for
performance with the need for recoverability, based on the frequency of the index updates.

asp_device_name
This parameter, if specified and not null, determines which Auxiliary storage pool the collection is
created into. This parameter is optionally available to match the CREATE SCHEMA capability to create
the DB2 objects on a specific ASP device.

If a value is supplied for this parameter, the value must name a disk pool in the primary asp group of
the current namespace, or a basic ASP unit if the namespace is the system ASP only.

The data type for this parameter is VARCHAR(10).

Examples
1. CALL SYSTS_CRTCOL(‘mycollection');

A collection MYCOLLECTION is created.
2. CALL SYSTS_CRTCOL(‘”mycollection”', “UPDATE FREQUENCY D(*) H(*) M(0)”)

A collection mycollection (lower case not including the delimiters) is created.

The text search collection will have an update frequency of every day, at the top of every hour.
3. CALL SYSTS_CRTCOL(‘ur_collection',‘UPDATE FREQUENCY NONE ‘ || ‘ LANGUAGE zh_CN INDEX

CONFIGURATION(‘ || ‘ CJKSEGMENTATION MORPHOLOGICAL) ‘, ‘23')

A collection UR_COLLECTION is created.

The collection has no update frequency.

The collection's language is simplified Chinese, using dictionary linguistic analysis (morphological).

The SQL schema is created in basic ASP #23.

When the text search collection is created, procedures are created in the DB2 schema to administer
the collection.

To create a collection from IBM Navigator for i, follow these steps.

1. From IBM Navigator for i, expand IBM i Management > System > All Tasks.
2. On the right panel, select System > Omnifind > Create Collection.

Adding an Object Set for Spool File Data
The stored procedure is in the DB2 schema to add an object set for spool file data.

Note: only SNA Character String (SCS) data is supported. Spool files that contain other types of data
cannot be indexed and will result in a document level error when encountered. The error will be logged

OmniFind Text Search Server for DB2 for i 117

in the job log, and indexing will continue with the next spool file. The GET_OBJECTS_NOT_INDEXED
procedure can be used to determine which spool files were not included in the indexing process.

ADD_SPLF_OBJECT_SET

Authorization
This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection. will be shipped with *EXECUTE authority granted to public.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax
Add a Spool File Object Set:

ADD_SPLF_OBJECT_SET (output_queue_lib

null

,

output_queue_name

null

, user_name

null

, qual_job_name

null

,

qual_job_user

null

, qual_job_number

null

, user_data

null

,

begin_timestamp

null

, ending_timestamp

null , output_set_id

)

The following simplified versions of the add spool file object set procedure may be used for convenience.

Select spool files by output queue only:

ADD_SPLF_OBJECT_SET (output_queue_lib

null

, output_queue_name

null

)

Select spool files by output queue, and user name only:

ADD_SPLF_OBJECT_SET (output_queue_lib

null

, output_queue_name

null

,

user_name

null

)

The schema qualifier is the name of the text search collection.

Parameters
output_queue_lib

A system name for the output queue library.

A NULL value or empty string indicates that output queues in all libraries will be included in the index.

The data type for this parameter is VARCHAR(10)

[See system name conventions]

[See additional restrictions]

output_queue_name
A system name for the output queue name.

A NULL value or empty string indicates that any output queue will be included in the index.

118 IBM i: OmniFind Text Search Server for DB2 for i

The data type for this parameter is VARCHAR(10)

[See system name conventions]

[See additional restrictions]

user_name
A system name for the user that owns the spool file.

A NULL value or empty string indicates that no filtering on the user name will be performed.

The data type for this parameter is VARCHAR(10)

[See system name conventions]

[See additional restrictions]

qual_job_name
Name of the job that created the spool file.

A NULL value or empty string indicates that no filtering on the job name will occur.

The data type for this parameter is VARCHAR(10)

[See system name conventions]

qual_job_user
System name for the user profile name of the job associated with the spool file.

A NULL value or empty string will indicate that no filtering on the job user will occur.

The data type for this parameter is VARCHAR(10)

A non-null, non-empty value for this parameter is required if QUALIFIED_JOB_NAME is specified.

If QUALIFIED_JOB_NAME is empty string or NULL, this parameter must also be NULL or empty string.

[See system name conventions]

[See additional restrictions]

qual_job_number
A six character string representing the job number. (Must be digits 0-9)

A NULL value or empty string will indicate that no filtering on the job number will occur.

The data type for this parameter is VARCHAR(6)

A non-null, non-empty value for this parameter is required if QUALIFIED_JOB_NAME is specified.

If QUALIFIED_JOB_NAME is empty string or NULL, this parameter must also be NULL or empty string.

[See system name conventions]

[See additional restrictions]

user_data
A ten character string that the user associates with a spool file.

This string is not converted to uppercase, and must exactly match the user data associated with a
spool file in order to be considered a match.

Note: A value of 'abc' is different than 'ABC'

A NULL value, or empty string will indicate that no filtering on the user data will occur.

The data type for this parameter is VARCHAR(10)

begin_timestamp
Timestamp value indicating the earliest creation time that will be included in the collection. Spool files
created earlier than this timestamp will not be indexed.

OmniFind Text Search Server for DB2 for i 119

A value of NULL can be provided to indicate that any spool file created before the ending creation
timestamp value should be indexed. If END_TIMESTAMP is also NULL, then no filtering on the creation
timestamp will occur.

The data type for this parameter is TIMESTAMP

end_timestamp
Timestamp value indicating the latest creation time that will be included in the collection. Spool files
created after this timestamp will not be indexed.

A value of NULL can be provided to indicate that any spool file created after the BEGIN_TIMESTAMP
will be indexed. If BEGIN_TIMESTAMP is also NULL, then no filtering on the creation timestamp will
occur.

The data type for this parameter is TIMESTAMP

output_set_id
Output Integer value that returns the set id for the object set that was added.

This value can be used to remove the object set at a later time.

This parameter is optional.

The data type for this parameter is INTEGER

System Naming Conventions
Parameters that require system names as input must be valid system names or an error will occur. This
parameters will be processed the same way the command analyzer processes names for CL commands.
See Object naming rules for more information on system names

call nick12345.add_splf_object_set('ntl', 'justtext', 'ntl', '', '', '', '', NULL, NULL);

The filter information passed to the procedure will be an output queue NTL/JUSTTEXT for user NTL
(converted to uppercase)

Unlike SQL names, for a system name the delimiters will remain on the name, but only if necessary. call
nick12345.add_splf_object_set('"ntl"', '"justtext"', '"NTL"', '', '', '', '', NULL, NULL);

The filter information passed to the api will be output queue "ntl"/"justtext" for user NTL (no quotes
around user NTL)

Note: The stored procedure has a ten character limit on the interface and does not support unnecessary
double quotes that cause this limit to be exceeded.

Invalid system names will cause an error.

Additional Restrictions
• Generic names are not supported. In other words it is not possible to index all output queues that start

with MYOUT by adding an object set for MYOUT*
• The output queue library name and output queue name must either be both null (or empty string)...or

both have valid system names. It is not possible filter on all output queues in library xyz, or to filter on
all output queues named 'abc' in any library.

• If a specific output queue name and library are specified, that output queue must exist at the time the
object set is added. There is no logic to prevent the deletion of the output queue at some later time, but
the object set will effectively become 'empty'.

• If both USER_NAME and QUALIFIED_JOB_USER are non-null, non-empty values, then they must be
equal. A spool file owner will always match the qualified job user, and therefore these values can never
be different when both are used as a filter.

120 IBM i: OmniFind Text Search Server for DB2 for i

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_71/rbam6/rbam6names.htm

Authorities to Indexed Objects
When adding a spool file object set, consider the authority requirements needed to retrieve the text from
the spool files carefully. These authorities will be a factor when the UPDATE stored procedure is invoked.
See the update stored procedure documentation for information on the authority requirements to indexed
objects.

Examples
Add an object set to collection nick789 for all spool files in output queue NTL/MYOUTQ.

> call nick789.add_splf_object_set('NTL', 'MYOUTQ');

Add an object set to collection nick123 to index all spool files owned by user NTL.

> call nick123.add_splf_object_set('', '', 'NTL');

Add an object set to collection default_search_col to index all spool files created in 2010

> call default_search_col.add_splf_object_set('', '', '', '', '', '', '',
'2010-01-01T00:00:00', '2011-01-01T00:00:00');

Add an object set to collection default_search_col to index all spool files created in 2010 with user data
'MYAPP':

> call default_search_col.add_splf_object_set('', '', '', '', '', '', 'MYAPP',
'2010-01-01T00:00:00', '2011-01-01T00:00:00');

To add spool file object set to a collection from IBM Navigator for i, follow these steps.

1. From IBM Navigator for i, expand IBM i Management > System > All Tasks.
2. On the right panel, select System > OmniFind > Collection List.
3. Right click the collection and select Properties. On the Object tab, press Add Output Queues or Add

Spooled Files button.

Removing Object Set for Spool File Data
This stored procedure will remove an object set for spool file data from a text search collection.

RMV_SPLF_OBJECT_SET

Authorization
This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax
Remove a Spool File Object Set:

OmniFind Text Search Server for DB2 for i 121

>--+-output_queue_name-+--,--+-user_name-+--,------------------->

'-null -------------' '-null -----'

>--+-qual_job_name-+--,--+-qual_job_user-+--,------------------->

'-null ---------' '-null ---------'

>--+-qual_job_number-+--,--+-user_data-+--,--------------------->

'-null -----------' '-null -----'

>--+-begin_timestamp-+--,--+-ending_timestamp-+----------------->

'-null -----------' '-null ------------'

The following simplified versions of the remove spool file object set procedure may be used for
convenience.

Select spool files by output queue only:

>>-RMV_SPLF_OBJECT_SET--(--+-output_queue_lib-+--,-------------->

 '-null ------------'

>--+-output_queue_name-+--)------------------------------------><

'-null -------------'

Select spool files by output queue, and user name only:

>>-RMV_SPLF_OBJECT_SET--(--+-output_queue_lib-+--,-------------->

 '-null ------------'

>--+-output_queue_name-+--,--+-user_name-+--)------------------><

 '-null -------------' '-null -----'

The schema qualifier is the name of the text search collection.

Parameters
output_queue_lib

A system name for the output queue library.

The data type for this parameter is VARCHAR(10)

output_queue_name
A system name for the output queue name.

The data type for this parameter is VARCHAR(10)

user_name
A system name for the user that owns the spool file.

The data type for this parameter is VARCHAR(10)

qual_job_name
Name of the job that created the spool file.

The data type for this parameter is VARCHAR(10)

qual_job_user
System name for the user profile name of the job associated with the spool file.

The data type for this parameter is VARCHAR(10)

A non-null, non-empty value for this parameter is required if QUALIFIED_JOB_NAME is specified.

122 IBM i: OmniFind Text Search Server for DB2 for i

If QUALIFIED_JOB_NAME is empty string or NULL, this parameter must also be NULL or empty string.

qual_job_number
A six character string representing the job number. (Must be digits 0-9)

The data type for this parameter is VARCHAR(6)

A non-null, non-empty value for this parameter is required if QUALIFIED_JOB_NAME is specified.

If QUALIFIED_JOB_NAME is empty string or NULL, this parameter must also be NULL or empty string.

user_data
A ten character string that the user associates with a spool file.

This string is not converted to uppercase, and must exactly match the user data associated with a
spool file in order to be considered a match.

Note: A value of 'abc' is different than 'ABC'

The data type for this parameter is VARCHAR(10)

begin_timestamp
This timestamp value indicating the earliest creation time of the spool files added in the object set.

The data type for this parameter is TIMESTAMP

end_timestamp
This timestamp value indicating the latest creation time of the spool files added in the object set.

The data type for this parameter is TIMESTAMP

Note: For more detail meaning and restrictions of above parameters Please refer store procedure
add_splf_object_set description.

Result Note
In following case remove will be failed due to object set not found:

>User inputs incorrect parameters

>Specifies parameters corresponding object set has been deleted previously User will get error message
show that the object set doesn’t exist with the specific attribute.

QUERY_OBJECT_SET() returns the object set list and the input parameters. User can specify correct input
parameters while invoking this stored procedure to remove the object set.

Examples
Remove an object set in collection nick789 for all spool files in output queue NTL/MYOUTQ.

> call nick789.rmv_splf_object_set('NTL', 'MYOUTQ');

Remove an object set in collection nick123 for all spool files owned by user NTL.

> call nick123.rmv_splf_object_set('', '', 'NTL');

Remove an object set in collection test_col for all spool files created in 2010

> call test_col.rmv_splf_object_set('', '', '', '', '', '', '', '2010-01-01T00:00:00',
'2011-01-01T00:00:00');

Add an object set to collection default_search_col to index all spool files created in 2010 with user data
'MYAPP':

> call default_search_col.add_splf_object_set('', '', '', '', '', '', 'MYAPP',
'2010-01-01T00:00:00', '2011-01-01T00:00:00');

OmniFind Text Search Server for DB2 for i 123

Adding an Object Set for Stream File Data
The stored procedure is in the DB2 schema to add an object set for stream file data.

ADD_IFS_STMF_OBJECT_SET

Authorization
This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax
This procedure allows a user to add an object set of stream files (STMF) in the Integrated File System
(IFS).

Add an object set for stream file data (stream files in IFS):

ADD_IFS_STMF_OBJECT_SET (stmf_expression_string

, output_set_id

)

The schema qualifier is the name of the text search collection.

Parameters
stmf_expression_string

This parameter contains an absolute path to a directory containing the files that will be indexed.

This must be a valid directory (type *DIR) on a file system that is accessible. Stream file objects
(type *STMF) within this directory will be indexed. The path name should be absolute and should not
contain any regular expressions.

The data type for this parameter is VARCHAR(32000)

Stream files contained within the specified directory are indexed.

• Symbolic links are NOT followed
• Sub-directories are NOT processed
• Path names must not be delimited, characters such as '*', '?', etc do not have any special meaning

and should not be escaped.
• Path names may or may not be case sensitive, depending on the attribute of the file system.

A check will be performed when adding the object set to verify that a duplicate set does not already
exist in the text search collection. This check does not consider equivalent paths to be duplicate.

In other words the following paths could all represent the same directory, but will be considered
unique object sets, furthermore, the objects in those sets will be indexed multiple times as unique
objects.

/dir1/DIR2
/dir1//DIR2//
/DIR1/DIR2/ (if file system is case insensitive)
/dir1/DIR2/../DIR2
etc.

output_set_id
Output Integer value that returns the set id for the object set that was added. This value can be used
to remove the object set at a later time.

124 IBM i: OmniFind Text Search Server for DB2 for i

This parameter is optional.

The data type for this parameter is INTEGER.

Special Considerations for Update Processing
Non-existent file systems:

If a directory cannot be located during an update operation, the files associated with that directory will
not be removed from the index. This avoids unnecessary re-indexing of documents when a files system is
unmounted and later remounted.

If these files need to be removed from the index, several options exist:

• Issue the remove object set stored procedure against the IFS Stream file object set. This will remove
any documents associated with the object set.

• Issue the REPRIME stored procedure against the collection. All data will be removed from the index,
and only files that can be located will be reindexed.

• Create the directory as an empty directory and issue the update

CCSID Conversion
If the collection's FORMAT is TEXT:

• The CCSID attribute of the file is used to convert the file's extracted data to UTF-8 for indexing. The
CCSID attribute of the file must be correct in order for the file to be correctly indexed.

If the collection's FORMAT is INSO:

• The data from the file will be extracted from the file and sent to the text search server for processing. No
character set conversion will occur, and the CCSID attribute of the file will be ignored. The text search
server will use its rich text processing to determine the format and encoding of the document. This can
be used to index rich text (such as PDF) files, or ordinary text files. For some plain text documents,
it may not be possible for the text search server to determine encoding of the document with enough
confidence to index the data. This is more likely for very small documents, but can occur for larger
documents that use a wide range of characters as well. If the format and encoding of the file cannot be
determined, the file will not be indexed and a document error will be logged.

Authorities to Indexed Objects
When adding an IFS stream file object set, consider the authority requirements to read the stream
files carefully. Adopted authorities are not honored when accessing the stream file's data. In addition,
scheduled updates run under the user profile that owns the index. See the update stored procedure
documentation for information on the authority requirements to indexed objects.

ADD_IFS_STMF_OBJECT_SET_WITH_SUBDIR
The syntax and authority requirement of this stored procedure are similar as
ADD_IFS_STMF_OBJECT_SET. With this stored procedure, user can add a directory as an object set to
the collection. All the files and subdirectories under this directory will be indexed recursively.

Example
Add an object set to MYCOLLECTION to index all stream files in an IFS directory '/home/ntl/stmf':

> CALL MYCOLLECTION.ADD_IFS_STMF_OBJECT_SET('/home/ntl/stmf');

Add an object set to MYCOLLECTION to index all stream files and subdirectories in an IFS directory
'/home/ntl/stmf':

> CALL MYCOLLECTION.ADD_IFS_STMF_OBJECT_SET_WITH_SUBDIR('/home/ntl/stmf');

OmniFind Text Search Server for DB2 for i 125

To add IFS path to a collection from IBM Navigator for i, follow these steps.

1. From IBM Navigator for i, expand IBM i Management > System > All Tasks.
2. On the right panel, select System > OmniFind > Collection List.
3. Right click the collection and select Properties. On the Object tab, press Add IFS Path button. Choose

Include sub-directories to add all sub directories under the specified IFS path.

Removing Object Set for Stream File Data
The stored procedure is in the DB2® schema to remove an object set for stream file data.

RMV_IFS_STMF_OBJECT_SET

Authorization
This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax
This procedure allows a user to remove an object set of stream files (STMF) in the Integrated File System
(IFS).

Remove an object set for stream file data (stream files in IFS):

>>-RMV_IFS_STMF_OBJECT_SET -(--stmf_expression_string-----------><

The schema qualifier is the name of the text search collection.

Parameters
stmf_expression_string

This parameter is an absolute path to a directory which is the object set attribute.

It’s no need to be a valid directory on a file system that is accessible since the path could be deleted
by user, but object set still exist. The path name should be absolute and should not contain any
regular expressions.

The data type for this parameter is VARCHAR(32000)

Note: Note for the specified directory path name:

• Path names must not be delimited, characters such as '*', '?', etc do not have any special meaning
and should not be escaped.

• Path names may or may not be case sensitive, depending on the attribute of the file system.

Since RMV_IFS_STMF_OBJECT_SET does not consider equivalent paths to be duplicate object set,
user should indicate exactly the same path as ADD_IFS_STMF_OBJECT_SET added when try to
remove the specific object set.

In other words the following paths could all represent the same directory, but will be considered as
different object sets.

/dir1/DIR2
/dir1//DIR2//
/DIR1/DIR2/ (if file system is case insensitive)
/dir1/DIR2/../DIR2
etc.

126 IBM i: OmniFind Text Search Server for DB2 for i

RMV_IFS_STMF_OBJECT_SET_WITH_SUBDIR
This stored procedure can remove an object set which include sub directory IFS files. Such object set
could be added by procedure

ADD_IFS_STMF_OBJECT_SET_WITH_SUBDIR.

The syntax 、authority requirement and parameters of this stored procedure are similar as
RMV_IFS_STMF_OBJECT_SET. If user add an IFS path to both with sub-dir object set and without sub-dir
object set, use this procedure will only remove the one object set with sub-dir.

Result Note
In following case remove will be failed due to object set not found:

>User inputs incorrect IFS path

>Specifies IFS path corresponding object set has been deleted previously User will get error message
show that the object set doesn’t exist with the specific attribute.

QUERY_OBJECT_SET() returns the object set list and the input parameters. User can specify correct input
parameters while invoking this stored procedure to remove the object set.

Examples
Remove an object set in MYCOLLECTION which IFS directory is '/home/ntl/stmf':

> CALL MYCOLLECTION.RMV_IFS_STMF_OBJECT_SET('/home/ntl/stmf');

Remove an object set in MYCOLLECTION which include all stream files and subdirectories in an IFS
directory '/home/ntl/stmf':

> CALL MYCOLLECTION.RMV_IFS_STMF_OBJECT_SET_WITH_SUBDIR('/home/ntl/stmf');

Adding an Object Set for Multiple Members Source Physical File
The stored procedure is in the DB2® schema to remove an object set for multi-member source physical
file.

ADD_SRCPF_OBJECT_SET

Authorization
This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax
This procedure allows a user to add an object set of multi-member source physical file (MMPF).

Add an object set for multi-member source physical file:

>>-ADD_SRCPF_OBJECT-SET -(---SRCPF_LIB----------->
>-------- SRCPF_NAME ------)-------------------------------------><

>--+------------------+--)-------------------------------------><
 '-,-- OUT_SETID -'

The schema qualifier is the name of the text search collection.

OmniFind Text Search Server for DB2 for i 127

Parameter
SRCPF_LIB

This parameter means an absolute library which contains the source physical files that will be
indexed.
This must be a valid library name in the system. Multiple members source physical file object within
this library will be indexed. The library name should be absolute and should not contain any regular
expressions.
The data type for this parameter is VARCHAR(10)

SRCPF_NAME
This parameter means an absolute source physical file which can have one or more members, all the
members in the source physical file will be indexed. The file name should be absolute and should not
contain any regular expressions.

Note: If the source physical file is deleted after adding the object set to the text search collection, the
subsequent call to the UPDATE stored procedure will detect it, then the search result will not contains
the members of that source physical file.

*ALLSRCPF
If *ALLSRCPF was specified as source physical name, it means all the source physical files in
SRCPF_LIB will be indexed while updating index.

Note: If user specify *ALLSRCPF as source physical name while adding an object set, it’s also allowed
that adding another specific PF under the same library as an object set. This will NOT lead to duplicate
error.

The data type for this parameter is VARCHAR(10)
OUT_SETID

Output Integer value that returns the set id for the object set that was added. This value can be used
to remove the object set at a later time.
This parameter is optional.
The data type for this parameter is INTEGER.

Additional Restrictions
• A check will be performed when adding the object set to verify that a duplicate set does not already

exist in the text search collection.
• While adding a source physical file object set to a text search collection, OmniFind verifies that the

source physical file exists. If the source physical file does not exist, an error message is returned and
the object set is not added.

• If the file specified is not a source physical file, the procedure call fails with an error.

Authorities to Indexed Objects
When adding a Multiple members source physical file object set, consider the authority requirements to
read the files carefully. Adopted authorities are not honored when accessing the source physical file's
data. In addition, scheduled updates run under the user profile that owns the index. See the update
stored procedure documentation for information on the authority requirements to indexed objects.

Examples
Add an object set to MYCOLLECTION to index the multi-member source physical file QCSRC in library
ISVSQLLP:

> CALL MYCOLLECTION.ADD_SRCPF_OBJECT_SET('ISVSQLLP','QCSRC');

128 IBM i: OmniFind Text Search Server for DB2 for i

Add an object set to MYCOLLECTION to index the multiple members source physical file QCSRC in a
library ISVSQLLP, and expect to get the setid.

> create variable setid int default 0;
> CALL MYCOLLECTION.ADD_SRCPF_OBJECT_SET('ISVSQLLP','QCSRC',setid);

Add an object set to MYCOLLECTION to index all the multi-member source physical files library
ISVSQLLP:

> CALL MYCOLLECTION.ADD_SRCPF_OBJECT_SET('ISVSQLLP','*ALLSRCPF');

To add source physical file object set to a collection from IBM® Navigator for i, follow these steps.

1. From IBM Navigator for i, expand IBM i Management > System > All Tasks >OmniFind > Collection
List.

2. Right click the collection and select Properties. On the Object tab, press pull-down menu, choose Add
Source physical file, then press ADD.

Removing an Object Set for Multiple Members Source Physical File
The stored procedure is in the DB2® schema to remove an object set for multi-member source physical
file.

RMV_SRCPF_OBJECT_SET

Authorization
This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax
This procedure allows a user to remove an object set of multi-member source physical file (MMPF).

remove an object set for multi-member source physical file:

>>-RMV_SRCPF_OBJECT-SET -(---SRCPF_LIB----------->
>-------- SRCPF_NAME ------)-------------------------------------><

The schema qualifier is the name of the text search collection.

Parameter
SRCPF_LIB

This parameter means an absolute library which contains the source physical files.
The library name should be absolute and should not contain any regular expressions.
The data type for this parameter is VARCHAR(10)

SRCPF_NAME
This parameter means an absolute source physical file which can have one or more members, all the
members in the source physical file will be indexed. The file name should be absolute and should not
contain any regular expressions.

*ALLSRCPF
If *ALLSRCPF was specified as source physical name, it means will remove the object set for all the
source physical files in SRCPF_LIB.
The data type for this parameter is VARCHAR(10)

OmniFind Text Search Server for DB2 for i 129

Result Note
In following case remove will failed due to object set not found:

>User inputs incorrect SRCPF_LIB or SRCPF_NAME
>Specifies SRCPF_LIB/SRCPF_NAME corresponding object set has been deleted previously.

User will get error message show that the object set doesn’t exist with the specific attribute.

QUERY_OBJECT_SET() returns the object set list and the input parameters. User can specify correct input
parameters while invoking this stored procedure to remove the object set.

Examples
Remove an object set in MYCOLLECTION for the multi-member source physical file QCSRC in library
ISVSQLLP:

> CALL MYCOLLECTION.RMV_SRCPF_OBJECT_SET('ISVSQLLP','QCSRC');

Remove an object set in MYCOLLECTION for all the multi-member source physical files library ISVSQLLP:

> CALL MYCOLLECTION.RMV_SRCPF_OBJECT_SET('ISVSQLLP','*ALLSRCPF');

Removing an Object Set
This stored procedure will remove an object set from a text search collection.

REMOVE_OBJECT_SET

Authorization
This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax
REMOVE_OBJECT_SET (setid)

The schema qualifier is the name of the text search collection.

Parameters
setid

The set id which was obtained when adding object set.

The object set ID can also be obtained using the QUERY_OBJECT_SET stored procedure after the
object set has been added.

The data type for this parameter is INTEGER.

Examples
Remove object set #1 from collection MYCOLLECTION.

> CALL MYCOLLECTION.remove_object_set(1)

To remove an object set from a collection from IBM Navigator for i, follow these steps.

130 IBM i: OmniFind Text Search Server for DB2 for i

1. From IBM Navigator for i, expand IBM i Management > System > All Tasks.
2. On the right panel, select System > OmniFind > Collection List.
3. Right click the collection and select Properties. On the Object tab, press Remove button.

Update the Collection
This stored procedure updates the collection. When called initially, all objects included in the object sets
for the collection are indexed. When this stored procedure is called after a successful initial update has
completed, all changed objects are updated in the index. The procedure will not return control to the
caller until after the update has completed.

UPDATE

Authorization
This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax
UPDATE

The schema qualifier is the name of the text search collection.

Parameters
None

Authority Requirements on Indexed Objects
Scheduled updates run under the profile that owns the text search collection.

Calls to the UPDATE stored procedures run under the profile invoking the procedure.

It is recommended that both the owner of the index, and the profile administering the index have
authority to read the text data from all objects indexed in the collection. Failure to have sufficient
authority can cause unpredictable results.

Adopted authority will not necessarily be honored for crawling objects and extracting text from those
objects.

Authority problems during the update process may cause the update to fail, or individual documents not
to be indexed.

Examples

CALL MYCOLLECTION.UPDATE;

To update the collection index from IBM Navigator for i, follow these steps.

1. From IBM Navigator for i, expand IBM i Management > System > All Tasks.
2. On the right panel, select System > OmniFind > Collection List.
3. Right click the collection and select Update.

OmniFind Text Search Server for DB2 for i 131

Repopulate the Text Search Collection
The REPRIME stored procedure clears the collection, and then performs an initial update. The procedure
will not return control to the caller until after the update has completed.

REPRIME

Authorization
This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax
REPRIME

The schema qualifier is the name of the text search collection.

Parameters
None

Reprime Authority Considerations to Indexed Objects
Scheduled updates run under the profile that owns the text search collection.

Calls to the REPRIME stored procedures run under the profile invoking the procedure.

It is recommended that both the owner of the index, and the profile administering the index have
authority to read the text data from all objects indexed in the collection. Failure to have sufficient
authority can cause unpredictable results.

Adopted authority will not necessarily be honored for crawling objects and extracting text from those
objects.

Authority problems during the update process may cause the update to fail, or individual documents not
to be indexed.

Examples

CALL MYCOLLECTION.REPRIME;

To repopulate the text search collection from IBM Navigator for i, follow these steps.

1. From IBM Navigator for i, expand IBM i Management > System > All Tasks.
2. On the right panel, select System > OmniFind > Collection List.
3. Right click the collection and select Reprime.

Search the Collection
This procedure allows a user to search a text search collection for objects that match a search.

SEARCH

132 IBM i: OmniFind Text Search Server for DB2 for i

Authorization
This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax
SEARCH (search_string

, search_options

, number_of_results

)

The schema qualifier is the name of the text search collection.

Parameters
search_string

A string parameter that contains the search expression.

Note: This expression must not be all blanks or empty string.

See the Search Argument Syntax of the OmniFind Reference for details.

The data type of this parameter is VARCHAR(32700).

search_options
Identifies a string constant that specifies the search argument options that are in effect for the
function.

The data type of this parameter is VARCHAR(32700).
search_options

, QUERYLANGUAGE = value , RESULTLIMIT = value

, SYNONYM = OFF

ON

QUERYLANGUAGE
Specifies the query language. The value can be any of the supported language codes. If the
QUERYLANGUAGE option is not specified, the default is the language value of the text search
index that is used when this function is invoked. If the language value of the text search index is
AUTO, the default value for QUERYLANGUAGE is en_US.

RESULTLIMIT
This provides a clue to the DB2 optimizer for how many rows of the result set are expected to be
used. The optimizer may choose a different plan to return fewer rows from the SEARCH procedure.
The optimizer may also ignore this option if a performance benefit during the search will not be
obtained.

SYNONYM
Specifies whether to use a synonym dictionary that is associated with the text search index. You
can add a synonym dictionary to a collection by using the synonym tool. OFF is the default value.

number_of_results
Output Integer value that returns the number of documents for the search result.

The data type of this parameter is VARCHAR(32700).

OmniFind Text Search Server for DB2 for i 133

RESULT SET RETURNED
The search procedure returns a result set with matches for the search expression.

The result set contains following columns:

OBJTYPE CHAR(10) CCSID 1208
OBJATTR CHAR(10) CCSID 1208
CONTAINING_OBJECT_LIB CHAR(10) CCSID 1208
CONTAINING_OBJECT_NAME CHAR(10) CCSID 1208
OBJECTINFOR XML
MODIFY_TIME TIMESTAMP
SCORE DOUBLE

OBJTYPE - The type of system object for this result (*STMF, *OUTQ, etc).

OBJATR - The attribute of the system object that matched the search expression (*SPLF, *DATA, etc).

CONTAINING_OBJECT_LIB - The library for the matched system object.

CONTAINING_OBJECT_NAME - The name of the matching system object.

OBJECTINFOR - An XML value that describes the location information of the indexed data that matched
the search_string expression. An example spool file location will look like:

<Spool_File xmlns=”http://www.ibm.com/xmlns/prod/db2textsearch/obj1”>
 <job_name>QPADEV000Cjob_name>QPADEV000C>
 <job_user_name>USERAjob_user_name>USERA>
 <spool_file_name>DSXSVRALSspool_file_name>DSXSVRALS>
 <spool_file_number>1spool_file_number>1>
 <job_system_name>ZD21BP1job_system_name>ZD21BP1>
 <create_date>1081027create_date>1081027>
 <create_time>035554create_time>035554>
</Spool_File>

An example IFS stream file location might look like:

<Stream_File xmlns=”http://www.ibm.com/xmlns/prod/db2textsearch/obj1”>
 <file_path>/home/usera/a.txt</file_path>
</Spool_File>

An example physical file member location might look like:

<Source_Physical_File_Member xmlns=”http://www.ibm.com/xmlns/prod/db2textsearch/obj1>
 <file_library>MYLIB</file_library>
 <file_name>MYPF</file_name>
 <member_name>member1</member_name>
</Source_Physical_File_Member>

DB2 provides a number of ways to convert an XML value into other formats so that applications can
access the data. One possibility is to create an xsl-stylesheet and use the XSLTRANSFORM function.
Another possibility is to create an annotated schema for the XML values and use the XDBDECOMPXML
procedure to populate relational tables with the values. The SQL Reference in the infocenter contains
details on both of these functions.

MODIFY_TIME - A timestamp indicating the last modification time of the object that is in the collection.
This timestamp will never be more recent than the last update process.

SCORE - The result is greater than 0 but less than 1 if the indexed text data contains a match for the
search criteria that the search argument specifies. The more frequently a match is found, the larger the
result value. If the column does not contain a match, the result is 0.

The result set is ordered by score descending.

Examples
1. call MYCOLLECTION.search('big bad wolf');
2. call MYCOLLECTION.search('big bad wolf', 'QUERYLANGUAGE=en_US');

134 IBM i: OmniFind Text Search Server for DB2 for i

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_71/db2/rbafzscaxsltransform.htm
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_71/db2/rbafzprocxdbdecomp.htm

To search the collection from IBM Navigator for i, follow these steps.

1. From IBM Navigator for i, expand IBM i Management > System > Search.
2. Select Search.

Query Object Set Information
This procedure allows a user to see the list of object sets that are contained within the collection.

QUERY_OBJECT_SET

Authorization
This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax
QUERY_OBJECT_SET

The schema qualifier is the name of the text search collection.

Parameters
None

RESULT SET RETURNED
The procedure returns a result set that has one row for each object set:

SETID INTEGER
SETSTATE CHAR(10) CCSID 1208
LASTREFRESHTIME TIMESTAMP
ADDOBJSETSQL VARCHAR(2000) CCSID 1208

SETID - A unique identifier assigned to each object set. This identifier may be used on the
remove_object_set stored procedure to remove the object set from the collection.

SETSTATE - The state of the object set. This is reserved for future expansion and is always 'ACTIVE'.

LASTREFRESHTIME - The last time the object set has been refreshed to reflect objects actually on the
system.

ADDOBJSETSQL - The SQL stored procedure call that was used to add this object set.

Examples

Call MYCOLLECTION.QUERY_OBJECT_SET;

To query object set information from a collection from IBM Navigator for i, follow these steps.

1. From IBM Navigator for i, expand IBM i Management > System > All Tasks.
2. On the right panel, select System > OmniFind > Collection List.
3. Right click the collection and select Properties. Click the Object tab.

OmniFind Text Search Server for DB2 for i 135

Retrieve Status of Indexes Objects
This procedure returns the status of all objects in the text search collection.

GET_OBJECT_STATUS

Authorization
This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax
GET_OBJECT_STATUS

The schema qualifier is the name of the text search collection.

Parameters
None

RESULT SET RETURNED
The procedure returns a result set that has one row for each object set:

OBJECT XML
STATUS_TIMESTAMP TIMESTAMP
STATUS_CODE INTEGER
TEXT_STATUS VARCHAR(100)

OBJECT - The location information for the object in the index, this matches the format returned by search
for the OBJECTINFOR column.

STATUS_TIMESTAMP - If the object is in the INDEXED state, then this is the modification timestamp of the
object in the index. In other words changes made to the object prior to this time are reflected in the text
search index. For all other state values, this timestamp is the time the state was recorded in the index. For
example: If the object's state is ERROR, this is the time that the error was recorded.

STATUS_CODE - A numeric value representing the state of this object:

0 = The object has been indexed and no changes were detected to the object.
10 = The object is currently in the process of being indexed.
20 = Changes to the object have been detected.
30 = The object was indexed, but a warning occurred during the indexing process.
40 = An error prevented the object from being indexed.

These values allow more complex selection criteria. i.e. retrieve all objects not current in the index could
be expressed as STATUS_CODE > 0.

Note: the state of objects that are in the process of being updated, or were in the process of being
updated when an update was canceled, could differ from reality. It is possible for an object to report
there are changes pending, when in fact the text to be indexed has already been sent to the server. It
is also possible to a document's status to be 'INDEXED', but the object may not be search-able until a
future commit point in the update process. The STATUS_CODE will reflect reality when the update stored
procedure has completed.

The result set is sorted (descending) by status code.

TEXT_STATUS - The Text Version of the status code:

136 IBM i: OmniFind Text Search Server for DB2 for i

0 = INDEXED
10 = INDEXING
20 = CHANGES PENDING
30 = WARNING
40 = ERROR

Examples

Call MYCOLLECTION.GET_OBJECT_STATUS;

Get Objects Not Indexed
This procedure returns the objects which are not indexed in the text search collection.

GET_OBJECTS_NOT_INDEXED

Authorization
This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax
GET_OBJECTS_NOT_INDEXED

The schema qualifier is the name of the text search collection.

Parameters
None

RESULT SET RETURNED
The procedure returns a result set that has one row for each object set:

OBJECT XML
STATUS_TIMESTAMP TIMESTAMP
STATUS_CODE INTEGER
TEXT_STATUS VARCHAR(100)

OBJECT - The location information for the object in the index, this matches the format returned by search
for the OBJECTINFOR column.

STATUS_TIMESTAMP - If the object is in the INDEXED state, then this is the modification timestamp of the
object in the index. In other words changes made to the object prior to this time are reflected in the text
search index. For all other state values, this timestamp is the time the state was recorded in the index. For
example: If the object's state is ERROR, this is the time that the error was recorded.

STATUS_CODE - A numeric value representing the state of this object:

0 = The object has been indexed and no changes were detected to the object.
10 = The object is currently in the process of being indexed.
20 = Changes to the object have been detected.
30 = The object was indexed, but a warning occurred during the indexing process.
40 = An error prevented the object from being indexed.

These values allow more complex selection criteria. i.e. retrieve all objects not current in the index could
be expressed as STATUS_CODE > 0.

OmniFind Text Search Server for DB2 for i 137

Note: the state of objects that are in the process of being updated, or were in the process of being
updated when an update was canceled, could differ from reality. It is possible for an object to report
there are changes pending, when in fact the text to be indexed has already been sent to the server. It
is also possible to a document's status to be 'INDEXED', but the object may not be search-able until a
future commit point in the update process. The STATUS_CODE will reflect reality when the update stored
procedure has completed.

The result set is sorted (descending) by status code.

TEXT_STATUS - The Text Version of the status code:

0 = INDEXED
10 = INDEXING
20 = CHANGES PENDING
30 = WARNING and ERROR
40 = WARNING and ERROR

Examples

Call MYCOLLECTION.GET_OBJECTS_NOT_INDEXED;

Retrieve Status of Collection
This procedure returns the status of the text search collection.

STATUS

Authorization
This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax
STATUS

The schema qualifier is the name of the text search collection.

Parameters
None

RESULT SET RETURNED
The procedure returns a result set that has one row for each object set:

SERVERID INTEGER
SERVERNAME VARCHAR(128)
SERVERSTATUS VARCHAR(32)
LASTUPDATETIME TIMESTAMP
LASTUPDATESTATUS VARCHAR(30)
UPDATEFREQUENCY VARCHAR(512)

SERVERID - The server ID for the text search index.

SERVERNAME - The host name or IP address of the text search server.

SERVERSTATUS - Indicates whether the server can be used as a text search server to create new text
search indexes. The default value is 0 (zero), which means that the server can be used.

138 IBM i: OmniFind Text Search Server for DB2 for i

LASTUPDATETIME - The time that the text search index was last updated.

LASTUPDATESTATUS - Indicate last update status for the text search index.

NEVER UPDATED - The text search index is never updated before.
UP TO DATE - The text search index is up to date.
CHANGES PENDING - There are changes pending. User need update the index to make the text search
index up to date.
FAILED - The text search index was updated failed last time.

UPDATEFREQUENCY - When to make automatic updates to the text search index.

Examples

Call MYCOLLECTION.STATUS;

To retrieve status of collection from IBM Navigator for i, follow these steps.

1. From IBM Navigator for i, expand IBM i Management > System > All Tasks.
2. On the right panel, select System > OmniFind > Collection List.

Dropping a Text Search Collection
This procedure removes a text search collection from the system.

SYSPROC.SYSTS_DRPCOL and SYSPROC.SYSTS_DROP_COLLECTION

Authorization
The SYSPROC.SYSTS_DRPCOL and SYSPROC.SYSTS_DROP_COLLECTION stored procedures are shipped
with public authority *EXECUTE.

No authority is adopted and the procedure runs under the user's profile.

The user must have authority to drop the SQL schema (including all objects within) in order to successfully
drop the collection.

Syntax
SYSTS_DRPCOL (collection_name)

Syntax
SYSTS_DROP_COLLECTION (collection_name)

The schema qualifier is SYSPROC.

Parameters
collection_name

The name of the collection as supplied on the SYSTS_CREATE_COLLECTION stored procedure.

The data type for this parameter is VARCHARE(128).

Examples
CALL SYSPROC.SYTS_DRPCOL(‘”MYCOLLECTION”')

OmniFind Text Search Server for DB2 for i 139

Other examples using text search collection procedures

> CALL SYSPROC.SYSTS_CREATE_COLLECTION('MYCOLLECTION', 'FORMAT TEXT');

By default, always called the stored procedures associated with the new collection
> SET SCHEMA MYCOLLECTION
> SET PATH MYCOLLECTION

Add an object set for all spool files owned by user ZOOKEEPER
> CALL.ADD_SPLF_OBJECT_SET('', '', 'ZOOKEEPER');

Add an object set for all spool files created on 06/14/2010
> CALL ADD_SPLF_OBJECT_SET('', '', '', '', '', '', '', '2010-06-14T00:00:00',
'2010-06-15T00:00:00');

Add an object set for all stream files in the IFS directory '/home/zookeeper'
> CALL ADD_IFS_STMF_OBJECT_SET('/home/zookeeper');

Update the collection
> CALL UPDATE;

Search for 'Lions AND tigers AND bears'
> CALL SEARCH('lions AND tigers AND bears');

Grant authority to another user (SEARCHER)
> GRANT EXECUTE ON SPECIFIC PROCEDURE SEARCH1 TO SEARCHER

Drop the collection
> CALL SYSPROC.SYSTS_DROP_COLLECTION('MYCOLLECTION')

To drop a text search collection from IBM Navigator for i, follow these steps.

1. From IBM Navigator for i, expand IBM i Management > System > All Tasks.
2. On the right panel, select System > OmniFind > Collection List.
3. Right click the collection and select Delete.

Altering a Text Search Collection
You can call this stored procedure to modify attributes of a collection that was created by
SYSPROC.SYSTS_CREATE_COLLECTION. Only attributes explicitly specified on this procedure are
changed. All other attributes of the index remain unchanged.

This is useful if you need to change the attributes of the collection, such as the update frequency, after the
collection has already been created.

ALTER_COLLECTION

Authorization
This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax
 >>-ALTER_COLLECTION--(--options-----------------------------><

The schema qualifier is the name of the text search collection.

Parameters
options

A character string that specifies the various options that are available for this stored procedure.

140 IBM i: OmniFind Text Search Server for DB2 for i

The data type for this parameter is VARCHAR(32000).
options

SYSTS_CREATE (indexSchema

null

, indexName , textSource ,

options)

update-characteristics

UPDATE FREQUENCY

NONE

< update-frequency >

update-characteristics
Specifies the frequency of automatic updates to the text search collection. The update process for a
text search collection involves both indexing the text data, and crawling system objects to detect new
or changed data.
UPDATE FREQUENCY update-frequency

Specifies when to make automatic updates to the text search collection. The default value is
NONE.

update-frequency (Format 1)
NONE

D (*

0..6

,

0..6

) H (*

0..23

,

0..23

) M (*

0..59

,

0..59

)

NONE
If NONE is specified, then no further index updates are made. The update must be started
manually.

D
Specifies the day or days of the week when the index is updated. An asterisk (*) specifies all
days. 0 specifies Sunday.

H
Specifies the hour or hours when the index is updated. An asterisk (*) specifies all hours.

M
Specifies the minute or minutes when the index is updated. An asterisk (*) cannot be
specified. The minimum update frequency is 5 minutes.

Example: This example specifies that the index update is to run every 30 minutes.

UPDATE FREQUENCY D(*) H(*) M(0,30)

update-frequency (Format 2, chronological)
 tableSchema . tableName (

 text-column-name

function-schema .
 function-name (text-column-name)

)

The format of the update-frequency (chronological) option is a list of the five values separated by a
blank space. The five values represent the minutes, hours, days of the month, months of the year,
and days of the week beginning with Sunday.

If you specify an interval of values or an asterisk (*), you can specify a step value by using a
forward slash (/) at the end of the defined interval.

OmniFind Text Search Server for DB2 for i 141

Example: This example specifies that the index update is to run every quarter hour (0,15,30,45)
on the even hours between 8 a.m. and 6:45 p.m. (8-18/2 is equivalent to 8,10,12,14,16,18),
from Monday to Friday every month of the year (* * 1-5).

0,15,30,45 8-18/2 * * 1-5

minute
Specifies the minutes of the hour when the text search index is to be updated. You can specify
an asterisk (*) for an interval of every 5 minutes, or you can specify an integer 0 - 59. You
cannot repeat values. The minimum update frequency is 5 minutes. A value of 1,4,8 is not
valid.

update-frequency (minute)
*

/ 0...59

,

0...59 - 0...59

/ 0...59

0...59

hour
Specifies the hours of the day when the text search index is to be updated. You can specify an
asterisk (*) for every hour, or you can specify an integer 0 - 23. You cannot repeat values.

update-frequency (hour)
*

/ 0...59

,

0...59 - 0...59

/ 0...59

0...59

dayOfMonth
Specifies the days of the month when the text search index is to be updated. You can specify
an asterisk (*) for every day, or you can specify an integer 1 - 31. You cannot repeat values.

update-frequency (dayOfMonth)
*

/ 0...23

,

0...23 - 0...23

/ 0...23

0...23

monthOfYear
Specifies the months of the year when the text search index is to be updated. You can specify
an asterisk (*) for every month, or you can specify an integer 1 - 12. You cannot repeat values.

update-frequency (monthOfYear)
*

/ 1...31

,

1...31 - 1...31

/ 1...31

1...31

142 IBM i: OmniFind Text Search Server for DB2 for i

dayOfWeek
Specifies the days of the week when the text search index is to be updated. You can specify an
asterisk (*) for every day, or you can specify an integer 0 - 7. Both 0 and 7 are valid values for
Sunday. You cannot repeat values.

update-frequency (dayOfWeek)
*

/ 1...12

,

1...12 - 1...12

/ 1...12

1...12

Examples
1. CALL MYCOLLECTION.ALTER_COLLECTION(‘UPDATE FREQUENCY H(0) M(0) D(*)');

The update frequency value of collection MYCOLLECTION is changed. The text search collection
will have an update frequency of every day, at 00:00.

2. CALL MYCOLLECTION.ALTER_COLLECTION(‘UPDATE FREQUENCY NONE');

This text search collection is changed to not scheduled.

To alter a collection from IBM Navigator for i, follow these steps.

1. From IBM Navigator for i, expand IBM i Management > System > All Tasks.
2. On the right panel, select System > OmniFind > Alter Collection.

Independent ASP Considerations for Text Search Collections
IASP considerations for a text search collection.

Text Search Collections may be created in an Independent Auxiliary Storage Pool (ASP) environment with
the following restrictions:

1. If an Independent ASP Group is associated with the current thread, then the collection must reside on
an ASP in the independent ASP Group. It is not possible to administer a text search collection in the
system ASP or a basic user ASP while the thread is set to an Independent ASP group. It is possible to
search a collection that exists in the system ASP or basic user ASP, however because that index cannot
include data on the Independent ASP group, only objects that are accessible when the ASP Group is
*NONE will be included.

2. A text search collection can index any objects visible from the ASP Group Namespace of the collection.
3. If an object set includes objects that exist within the namespace of the ASP group, but not on the

group itself, significant indexing time can occur if the Independent ASP Group is moved to another
system. For example: If a collection is created on Independent ASP 33 to index all spool files on the
system, and the ASP group is switched to a different machine, then all spool files from the old machine
not in the ASP group will be removed from the index, and all spool files on the new machine not in the
index will be added.

Backup and Restore Considerations for Text Search Collections
Saving and restoring a text search collection.

A text search collection may be backed up and restored by saving and restoring the library of the schema
created for the collection. During the restore, an update will be initiated asynchronously. The update will
crawl the objects on the system, and repopulate the index.

OmniFind Text Search Server for DB2 for i 143

It is necessary to be able to restore the text search index contained within the collection in order for the
collection to be usable. These considerations for restoring a text search index must be considered:

• All required products must be installed.
• The text search server should be available.

Messages and codes
You can see the messages and SQL return codes for OmniFind Text Search for DB2 for i. The messages are
listed in numeric sequence.

OmniFind messages
You can see the OmniFind messages for OmniFind Text Search for DB2 for i. The messages are listed in
numeric sequence.

Messages are added to the OmniFind message file (QDBTSLIB/QOMFMSGF) for the following errors.

Table 40. OmniFind messages

Number Type Message

OMF0011 Information Text search index restored with different configuration options.

OMF0012 Warning The FORMAT type for the index being created is not XML. XML searches are
not supported.

OMF0334 Error The object ''{0}''.''{1}'' you specified is not supported. A Text Search index
can only be built over an SQL table, an SQL alias, or a single member of a
physical file.

OMF0358 Error The current user does not have enough authority to perform the requested
operation.

OMF0359 Error Restore failed. The text server for the text index is not available.

SQLCODE
-0196

Column &3 in &1 in &2 cannot be
dropped.

Explanation:
An attempt was made to drop column &3. The column
cannot be dropped because a view, a constraint, a
trigger, or an index is dependent on the column and
RESTRICT was specified, or the column is part of the
partition key.

User response
Specify CASCADE on the ALTER TABLE statement
to drop the column and the views, constraints,
triggers, and indexes that are dependent on it. If
the column is part of the partition key, specify DROP
PARTITIONING on the ALTER TABLE statement to
remove the partitioning for the table. Try the request
again.

SQLSTATE: 42817

SQLCODE
-5003

Cannot perform operation under
commitment control.

Explanation
The following operations cannot be performed
under commitment control with COMMIT(*CHG),
COMMIT(*CS), or COMMIT(*ALL) specified:

• DROP SCHEMA statement.
• GRANT or REVOKE statement to an object that has

an authority holder.
• CREATE statement in SQL naming mode of an object

that has an authority holder.
• DROP of a text search index.

These operations cannot be committed or rolled back.

User response
Specify COMMIT(*NONE), and try the statement again.

SQLSTATE: 42922

SQLCODE
-20423

Error occurred during text search
processing.

Explanation
An error occurred during the text search processing of
a CONTAINS or SCORE function. The error happened

144 IBM i: OmniFind Text Search Server for DB2 for i

on server server using text search index index-name
for reason code reason-code. Text describing the
problem is:text.

server: The host name or IP address and port of the
text search server where the error was encountered.

index-name: The name of the index used in the text
search processing.

Note: Include the schema and a period with the index
name in a single token.

reason-code: The reason code returned from the
OmniFind Text Search Server for DB2 for i.

text: The text returned from the OmniFind Text Search
Server for DB2 for i.

System action:
The statement cannot be processed.

User response
Contact your system administrator to check that
the OmniFind Text Search Server for DB2 for i is
successfully installed.

SQLSTATE: 38H10

Related reference
CONTAINS
You can use the CONTAINS function to search a
text search index using criteria you specify in a
search argument. The function returns a result
indicating whether a match was found.
SCORE
You can use the SCORE function to search a
text search index using criteria that you specify
in a search argument. The function returns
a relevance score that measures how well a
document matches the query.

SQLCODE
-20424

Text search support is not
available for reason reason-code.

Explanation
A problem with one of the text search administrative
tables was detected. The reason code is reason-code.
1

One of the text search administration
tables was not found (QSYS2.SYSTEXTINDEXES,
QSYS2.SYSTEXTCOLUMNS, or
QSYS2.SYSTEXTSERVERS).

3
The Text Search support is not started.

4
The STATUS column in QSYS2.SYSTEXTSERVERS
table has a value of 1, indicating that the support
for the text search is stopped.

7
No OmniFind Text Search Server for DB2 for is
have been defined.

System action:
The statement cannot be processed.

User response
Contact your system administrator to make sure that
support for text searching is successfully set up on
your system.

SQLSTATE: 38H11

Related reference
QSYS2.SYSTEXTSERVERS administration table
You can see where the text search servers are
installed using the QSYS2.SYSTEXTSERVERS
administration table.
QSYS2.SYSTEXTINDEXES administration table
You can see information about each text
search index in the QSYS2.SYSTEXTINDEXES
administration table. Each text search index
has a name, schema name, and an associated
collection name on the text search server.
QSYS2.SYSTEXTCOLUMNS administration table
You can see information about the text
columns for a text search index in the
QSYS2.SYSTEXTCOLUMNS administration table.
Each text search index has an index ID, text
column names, and the schema name of the
base table.

SQLCODE
-20425

Text search not allowed for column
column-name.

Explanation:
A CONTAINS or SCORE text search function specified
column column-name in table table-name in table-
schema. A text index does not exist for this column
so text search processing cannot be performed.

System action:
The statement cannot be processed.

User response
Verify that the column and table are registered to the
OmniFind Text Search Server for DB2 for i.

SQLSTATE: 38H12

Related reference
CONTAINS
You can use the CONTAINS function to search a
text search index using criteria you specify in a
search argument. The function returns a result
indicating whether a match was found.
SCORE

OmniFind Text Search Server for DB2 for i 145

You can use the SCORE function to search a
text search index using criteria that you specify
in a search argument. The function returns
a relevance score that measures how well a
document matches the query.

SQLCODE
-20426

Conflicting text search
administration procedure is
already running.

Explanation:
A conflicting text search administrative procedure
such as update is already running on this index.

System action:
The statement cannot be processed.

User response
Invoke the administration stored procedure again after
the currently running stored procedure completes.

SQLSTATE: 38H13

SQLCODE
-20427

Error occurred during text search
administrative procedure.

Explanation:
An error occurred during a text search administrative
procedure. The reason code is reason-code. The text
returned is: text. The error text describes the problem.

System action:
The CALL statement fails with this SQLCODE.

User response
Fix the problem that is indicated by error and invoke
the administrative stored procedure again.

SQLSTATE: 38H14

CPF32fa Operation not allowed on text
search index &2 in &1.

Explanation
An operation was attempted that is not supported for
a text search index. Text search indexes do not allow
some operations that are allowed for traditional DB2
indexes and views.

If this was an attempt to delete the index, the
operation may have failed because commitment
control was active.

User response
Perform text search administrative operations using
the administrative SQL stored procedures that are
included with OmniFind Text Search Server for DB2 for
i.

For more information on text search indexes, and
what restrictions apply to them, refer to the

documentation in the Information Center: http://
www.ibm.com/systems/i/infocenter/

CPF32fb Operation on text search index &2
in &1 could not be completed.

Explanation
An operation was attempted against text search index
&2 in &1. The requested operation is not currently
valid for reason code &3 reason codes and their
meanings are:

1. A required product is not installed
2. The requested text search server &4 is not

available or is not defined.
3. A restore of the index was attempted but the index

already exists. The existing index could not be
modified to match the saved index.

4. A dependent object &5 in &6 type &7 did not exist.
5. An object &5 in &6 type &7 was not available.
6. The auxiliary storage pool (ASP) for the current

thread does not match the ASP of the text search
index.

7. A text search index already exists for column &8,
table &5 in library &6.

User response
Correct the problem and retry the operation.

For more information on text search indexes, refer to
the documentation in the Information Center: http://
www.ibm.com/systems/i/infocenter

CPI321E File &1 in library &2 deferred.

Explanation
File &1 in library &2 was deferred during this restore
request with specified Defer ID of &4. The file was
deferred because of reason code &3. The reason
codes are:

1. Based-on file &5 in library &6 did not exist when &1
was being created for the restore.

2. File &1 failed to create for some other reason than
a missing based-on file. See previous message(s) to
determine why the create of the file failed.

3. One or more of the members for file &1 failed to
create. See previous message(s) to determine why
the create of the member(s) failed.

4. The file represents a Text Search Index, and the
required licensed program objects do not exist on
the system.

5. The File represents a Text Search Index, and the
index could not be recreated.

146 IBM i: OmniFind Text Search Server for DB2 for i

User response
For reason code 1: Either restore the missing based-on
file, or use the Restore Deferred Objects (RSTDFROBJ)
command specifying the same Defer ID (DFRID
parameter) &4 on either of the commands used.

For reason codes 2 and 3: Correct the reasons for
the failed create, and then use the Restore Deferred
Objects (RSTDFROBJ) command specifying the same
Defer ID (DFRID parameter) &4 on the command.

For reason code 5: See the previous messages in the
job log, correct any errors, and then use the Restore
Deferred Objects (RSTDFROBJ) command, specifying
the same Defer ID (DFRID parameter) &4 on the
command.

Related information
Restore Deferred Objects (RSTDFROBJ)

Code license and disclaimer information
IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS PROGRAM
DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT, REGARDING THE PROGRAM OR
TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR ANY OF
THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;
2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR
3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT
APPLY TO YOU.

OmniFind Text Search Server for DB2 for i 147

148 IBM i: OmniFind Text Search Server for DB2 for i

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 2002, 2013 149

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
This Common Information Model (CIM) publication documents intended Programming Interfaces that
allow the customer to write programs to obtain the services of the IBM i.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be

150 Notices

trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications
Agency which is now part of the Office of Government Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office of Government
Commerce, and is registered in the U.S. Patent and Trademark Office.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other
countries, or both and is used under license therefrom.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Other product and service names might be trademarks of IBM or other companies.

Notices 151

http://www.ibm.com/legal/copytrade.shtml

152 IBM i: OmniFind Text Search Server for DB2 for i

Index

A
add an object set for a stream file

ADD_IFS_STMF_OBJECT_SET 124
add an object set for spool file data

ADD_SPLF_OBJECT_SET 117
ADD_SPLF_OBJECT_SET 117, 124
administration tables

QSYS2.SYSTEXTCOLUMNS 108, 111
QSYS2.SYSTEXTCONFIGURATION 110
QSYS2.SYSTEXTINDEXES 106
QSYS2.SYSTEXTSERVERHISTORY 110
QSYS2.SYSTEXTSERVERS 109
SYSIBMTS.SYSTEXTDEFAULTS 105

Administration Tool 84
advanced search operators

CONTAINS function 43
SCORE function 43

asynchronous indexing 5

C
client and server communication 2
COLLECTION_NAME.UPDATE 131
collection.status 138
command line tools

Administration Tool 84
Configuration Tool 70
Health Checker 86
ServerInstance Tool 85
Synonym Tool 81

Configuration Tool 70
configure 11
CONTAINS 43
CONTAINS function

example 48

D
data types

supported 6
dictionary pack 7
dictionary-based segmentation 8
document formats

supported 5
document size 13
document truncation 13
dropping a texst search collection

SYSTS_DROP_COLLECTION 139

E
EBNF grammar 63
extensions header

text search collections 112

F
functions

CONTAINS 36
SCORE 39

G
Get Objects Not Indexed 137
Get_object_status 136
GET_OBJECTS_NOT_INDEXED 137

H
hardware

requirements 3
Health Checker 86
high availability 88

I
IASP for Text Search Collections

Text Search Collections 143
IBM OmniFind Text Search Server

starting 64
stopping 65

IBM text search server 3
install 11
installation 11

K
key concepts

text search functions 4

L
language codes 7
languages

supported 7
linguistic processing

Chinese
linguistic processing 8

Japanese
linguistic processing 8

Korean
linguistic processing 8

log files 69

M
messages 144

Index 153

N
n-gram segmentation 7, 8

O
OmniFind 2, 11
OmniFind Text Search 11
OmniFind text search server

OmniFind 2
text index 2
text search 2

OmniFind Text Search Server 11
operating system

requirements 3

P
performance 89
populating 11
problem determination 69
product overview 2

Q
QDBTS_LISTINXSTS

UDTF 83
QDBTS_LISTINXSTS UDTF 83
QSYS2.SYSTEXTCOLUMNS 108, 111
QSYS2.SYSTEXTCONFIGURATION 110
QSYS2.SYSTEXTINDEXES 106
QSYS2.SYSTEXTSERVERHISTORY 110
QSYS2.SYSTEXTSERVERS 11, 109
query examples

CONTAINS function 43
SCORE function 43

query information about object sets 135
QUERY_OBJECT_SET 135

R
relevance score 39
removing an object set

REMOVE_OBJECT_SET 130
repopulate the text search collection 132
reprime collection 132
restore 66, 67
Restore for Text Search Collections

Restore Text Search Collections 143
retrieve status of collection 138
retrieve status of indexed objects 136

S
save 66, 67
save and restore 66, 67
SCORE 43
SCORE function

example 48
search 89, 92
search argument 36, 39
search argument syntax

excluding terms 41

search argument syntax (continued)
including terms 41
phrase search 41
simple search 41
wildcard character 41

search collection
SEARCH 132
SYSPROC.SYSTS_CRTCOL 112

search syntax 36
server log

saving 69
viewing 69

ServerInstance Tool 85
software

requirements 3
SQL return codes 144
stored procedure

SYSPROC.SYSTS_REMOVE 74
SYSPROC.SYSTS_REPRIMEINDEX 76, 77
SYSPROC.SYSTS_VALIDITYCHECK 78

stored procedures
SYSPROC.SYSTS_ALTER 26
SYSPROC.SYSTS_CREATE 17
SYSPROC.SYSTS_DROP 31
SYSPROC.SYSTS_START 14
SYSPROC.SYSTS_STOP 15
SYSPROC.SYSTS_UPDATE 32

synonym dictionary
adding 81
removing 82

synonym support 6
Synonym Tool 81
SYSIBMTS.SYSTEXTDEFAULTS 105
SYSPROC.SYSTS_CREATE 17
SYSPROC.SYSTS_CREATE_COLLECTION 112
SYSPROC.SYSTS_CRTCOL 112
SYSPROC.SYSTS_DROP 26, 31
SYSPROC.SYSTS_START 14
SYSPROC.SYSTS_STOP 15
SYSPROC.SYSTS_UPDATE 32
system requirements 3
SYSTEXTSERVERS 11

T
text index 2, 66, 67
text score 6
text search

starting 12
text search collections

extensions header 112
Text Search for DB2 for i 11
text search functions

key concepts 4
text search index

creating 12
creation 4, 112
searching 13
updates 4, 112
updating 13

text search servers 11
transaction 92
triggers 5

154 IBM i: OmniFind Text Search Server for DB2 for i

U
UPDATEAUTOCOMMIT 89, 92
updating the collection 131
user-defined functions 36

X
XML data

indexing 5
XML search

features 49
query grammar 63

XPath language 63

Index 155

156 IBM i: OmniFind Text Search Server for DB2 for i

IBM®

Product Number: 5733-OMF

	Contents
	OmniFind Text Search Server
	What's new for IBM i 7.3
	PDF file
	Introduction
	Overview
	System requirements

	Key concepts
	Create and update index
	Triggers
	Document formats
	Data types
	Score and Synonyms
	Linguistic processing
	Languages
	Chinese, Japanese, and Korean

	Server alias name

	Install and configure
	Install
	Start text search
	Create an index
	Update an index
	Search an index
	Document truncation

	Stored procedures
	SYSTS_START
	SYSTS_STOP
	SYSTS_CREATE
	SYSTS_ALTER
	SYSTS_DROP
	SYSTS_UPDATE
	SYSTS_SHUTDOWN

	Search an index
	CONTAINS
	SCORE
	Search syntax
	Simple examples
	Advanced search operators
	Searching for special characters
	CONTAINS and SCORE example

	XML search
	Namespaces
	Using namespaces
	Example
	Query grammar

	Administer OmniFind
	Start OmniFind
	Stop OmniFind
	Save and restore
	Index structure
	Index with data

	Problem determination
	View logs
	Administration tools
	Configuration tool
	SYSTS_REMOVE
	SYSTS_REPRIMEINDEX
	SYSTS_CLEAR_INDEX
	SYSTS_VALIDITYCHECK
	QDBTS_ROWS_STATUS
	Synonym dictionaries
	Add a synonym dictionary
	Remove a synonym dictionary

	Find orphaned and missing indexes
	Advanced administration

	ServerInstance tool
	Health Checker
	Independent ASP
	High Availability
	Performance analysis
	Transaction considerations
	Using IBM Navigator for i
	Work with servers
	Work with indexes
	View index builds

	Use System i Navigator
	Work with servers
	Work with indexes
	View index builds

	Administration tables
	SYSTEXTDEFAULTS
	SYSTEXTINDEXES
	SYSTEXTCOLUMNS
	SYSTEXTSERVERS
	SYSTEXTCONFIGURATION
	SYSTEXTSERVERHISTORY
	SYSTS_CREATE

	Extensions to Index and Search Non-DB2 Data
	Overview
	Create Collection
	Add Object Set for Spool File Data
	Removing Object Set for Spool File Data
	Add Object Set for a Stream File
	Removing Object Set for Stream File Data
	Adding an Object Set for Multiple Members Source Physical File
	Removing an Object Set for Multiple Members Source Physical File
	Removing an Object Set
	Updating the Collection
	Repopulate the Collection
	Search Collection
	Query Object Sets
	Retrieve Status of Indexes Objects
	Objects Not Indexed
	Retrieve Status of Collection
	Dropping a Text Search Collection
	Altering a Text Search Collection
	IASP Considerations
	Backup and Restore Considerations

	Messages and codes
	OmniFind messages

	Notices
	Programming interface information
	Trademarks

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	X

