
System i
Version 7.2

Programming
Qshell

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
197.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.
© Copyright International Business Machines Corporation 2008, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Qshell... 1
PDF file for Qshell.. 1
Tutorial... 2

Qshell command language features.. 2
Qshell utility features... 4
Putting it all together in a script... 6

Command language... 7
Quoting..7
Parameters... 7
Shell variables...8
Word expansions..12

Tilde expansions... 12
Parameter expansions..13
Command substitutions... 15
Arithmetic expansions.. 16
Field splitting.. 18
Patterns...18

Redirection... 19
Simple commands..20
Pipelines... 21
Lists...21
Shell functions..22

Grouping commands...22
If command...22
Conditional command...23
Case command... 23
Select command... 24
While command.. 24
Until command..25
For command.. 25
Functions...25

Using Qshell... 26
Using a Qshell interactive session... 26
Running Qshell commands from CL...27
Running Qshell commands from PASE.. 28
Customizing the Qshell environment...28
National language support (NLS) considerations..29
Performance considerations..34
Developing your own utilities...34
Editing files with Qshell Interpreter...35
Differences with other interpreters... 35

Utilities... 36
Define aliases... 41

alias... 41
unalias... 42

Run commands...42
builtin.. 42
command.. 43
dot... 44
env...44
eval.. 45

 iii

exec... 45
exit...46
help..47
nohup.. 47
qsh...48
rexec..49
rexx..50
source..51
system...51
type..53
whence..53
xargs..54

Manage data... 55
cmp..55
cut..56
egrep... 57
fgrep.. 57
grep... 58
iconv.. 60
sed...61
sort.. 65
split..67
tr.. 68
uniq..70
wc.. 71

Working with DB2...72
Qshell db2 utility...72
Perl utility.. 73

Working with files and directories... 73
attr...74
basename..78
cat..79
catsplf..80
cd...81
chgrp... 81
chmod... 83
chown..86
compress...87
cp...88
dirname... 90
file..90
find...91
gencat..94
getconf.. 95
head...97
ln..97
ls.. 98
mkdir... 101
mkfifo.. 102
mv..103
od.. 103
pax...105
pr... 112
pwd..114
pwdx..115
Rfile... 115
rm.. 117
rmdir..118

iv

setccsid... 118
tail... 119
tar.. 120
touch... 121
umask..123
uncompress.. 124
zcat..124

Reading and writing input and output... 125
dspmsg..125
echo...126
print...126
printf..127
read... 128

Developing Java programs...129
ajar.. 129
appletviewer... 132
extcheck..132
jar.. 132
jarsigner.. 133
java.. 133
javac.. 134
javadoc.. 134
javah..134
javakey.. 135
javap..135
keytool.. 136
native2ascii...136
policytool.. 136
rmic... 136
rmid... 136
rmiregistry...136
serialver.. 137
tnameserv... 137

Managing jobs.. 137
getjobid... 137
hash...138
jobs..139
kill..139
liblist..140
ps...141
sleep..144
trap..144
wait..145

Working with Kerberos credentials... 146
Working with the LDAP directory server..146
Working with parameters and variables..146

declare.. 146
export..148
local...149
printenv...149
readonly.. 150
set..151
shift... 153
typeset.. 153
unset... 153

Writing scripts.. 154
break... 154
colon..154

 v

continue.. 155
false...155
getopts.. 155
let.. 156
return.. 156
test.. 157
true..159

Miscellaneous utilities... 160
clrtmp..160
dataq... 160
datarea..161
date... 162
expr... 163
hostname.. 164
id..165
ipcrm... 166
ipcs..166
locale...172
logger.. 173
logname.. 173
sysval.. 174
tee... 174
ulimit... 175
uname... 176

Qshell APIs.. 177
QzshSystem() - Run a QSH Command...177
QzshCheckShellCommand() - Find QSH Command..179

Remote client examples..181
Example: Server program.. 181
Example: Client program... 187
Example: Creating and running the server program... 194
Example: Creating and running the client program.. 196

Related information for Qshell.. 196

Notices..197
Programming interface information..198
Trademarks..199

vi

Qshell
Qshell is a command environment based on POSIX and X/Open standards.

It consists of the following two parts:

• The shell interpreter (or qsh) is a program that reads commands from an input source, interprets each
command, and then runs the command using the services of the operating system.

• The utilities (or commands) are external programs that provide additional functions and can be quite
simple or very complex.

Together, the shell interpreter and utilities provide a powerful, standards-based scripting environment. As
you use the new programming models offered by i5/OS, Qshell provides an extensible command
environment that allows you to do the followings tasks:

• Manage files in any file system supported by the Integrated File System.
• Run threaded programs that do thread-safe I/O to and from an interactive session.
• Write shell scripts that can be run without modification on other systems using a cross-platform

command language.
• Write your own utilities to extend the functions provided by Qshell.

This topic provides both new and experienced users with the information needed to use Qshell
commands and write Qshell scripts.

Note: In this information, the terms "job" and "process" are used interchangeably. The term "job" is from
i5/OS and the term "process" is from POSIX.

PDF file for Qshell
You can view and print a PDF file of this information.

To view or download the PDF versions of this document, select Qshell (about 2198 KB).

You can view or download these related topic PDFs:

• IBM® Developer Kit for Java™ (4675 KB)
• IBM Toolbox for Java (6786 KB)

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF link in your browser.
2. Click the option that saves the PDF locally.
3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free
copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html) .

© Copyright IBM Corp. 2008, 2013 1

http://www.adobe.com/products/acrobat/readstep.html

Tutorial
Select this link to learn about using the Qshell command language and utilities. Start here if you are new
to using shells and shell commands.

This topic provides a tutorial to help you get started using the Qshell command language and utilities.

Qshell command language features
Learn more about commands, input and output redirection, path name expansion, parameter expansion,
and command substitution.

The shell interpreter can be used for either an interactive session or for writing shell scripts. A shell script
is just a text file that contains shell commands. The Qshell command language is identical for either
interactive use or for writing scripts. Any command that you run from an interactive command line can be
put in a shell script and it runs the same way. The Qshell command language is interpreted so a shell
script is read and interpreted each time it is run.

Commands

A simple command is the name of a utility that you want to run. If you specify a fully-qualified path name
to the command, for example "/usr/bin/ls", qsh runs that command. If you specify a relative path name to
the command, for example "ls", qsh searches the directories specified by the PATH variable to find it. The
PATH variable is a colon delimited list of directories that tells qsh where to find commands. If the PATH
variable is set to

/usr/bin:.:/QOpenSys/usr/bin

qsh first looks for the command in the "/usr/bin" directory, then in the current working directory, and
finally in the "/QOpenSys/usr/bin" directory. When the PATH variable begins or ends with a colon,
contains two adjacent colons or specifies a dot (.) as a directory, qsh searches in the current working
directory.

By default, qsh waits for the command to complete before running the next command. When the
command is completed, it sets an exit status that describes the result of the command. An exit status of
zero means that the command was successful. An exit status that is greater than zero means that the
command was unsuccessful. Typically, the exit status is one when a command fails. Although, qsh sets
the exit status to 126 when the command was found but could not be run and sets the exit status to 127
when the command was not found.

The compound commands include the if-then-else conditional, [[...]] conditional, case conditional, select
conditional, while loop, until loop, for loop, and functions. These commands provide the features you
would expect in a high-level programming language and allow you to write complex shell scripts.

A pipeline allows you to chain several commands together so the output from one command is the input
to the next command. For example, in the pipeline

ls | grep ^apple

the output from the ls utility becomes the input to the grep utility. The ls utility lists the contents of a
directory and the grep utility searches for matches to a pattern. The final output of the above pipeline is a
list of the files in the current directory that begin with "apple".

You can chain more than two commands in a pipeline. This is a very powerful feature of qsh that allows
you to combine several commands together to accomplish a complex task.

There are two other types of lists that are like pipelines. An "and" list stops when the first command in the
list has non-zero exit status. An "or" list stops when the first command in the list has a zero exit status.

An asynchronous list runs a command in the background. For example, the command

2 System i: Qshell

mypgm &

allows you to start mypgm and then run other commands before mypgm completes. If you have a long
running command, an asynchronous list allows you to start the command and not wait for the command
to complete.

Input and output redirection

Input and output redirections allow you to change where input for a command comes from and where
output for the command goes to. For Qshell commands, input and output work on descriptors. A
descriptor can be opened to either an object in the Integrated File System or to a TCP/IP socket. Input
comes from descriptor 0 or standard input, regular output goes to descriptor 1 or standard output, and
error output goes to descriptor 2 or standard error.

You can change where input comes from by redirecting standard input. For example, in the command

grep orange <fruits.list

when the grep utility reads from standard input it receives the contents of the file fruits.list.

You can change where output goes to by redirecting standard output. For example, in the command

grep apple fruits.list >apple.list

when the grep utility writes the results to standard output, the results are written to the file apple.list.

You can also send standard output and standard error to the same file. For example, in the command

grep apple fruits.list >apple.list 2>&1

standard output (descriptor 1) is written to the file apple.list and standard error (descriptor 2) is
redirected to the same place as descriptor 1.

While most of the time redirections are only used to control standard input, standard output, and
standard error, you can control the descriptors from 0 to 9 using redirections.

Path name expansions

A path name expansion substitutes a pattern for all of the files that match the pattern. A shell pattern
uses:

• A * to match any string of characters. For example, in the command

ls *.java

qsh expands *.java to all of the files that end with .java in the current working directory.
• A ? to match any single character. For example, in the command

ls *.?

qsh expands *.? to all of the files that have a single character extension.
• A [] for a character class. With a character class, qsh matches a set or range of characters. For example,

in the command

ls *.[ch]

qsh expands *.[ch] to all of the files that end in either .c or .h in the current working directory. You can
also specify a range of characters. For example, in the command

ls *.jav[a-c]

Qshell 3

qsh expands *.jav[a-c] to all of the files that end in .java, .javb, or .javc.

Parameter expansions

A parameter expansion substitutes the value of a variable. In the simplest form

$myvar

qsh substitutes the value of the variable myvar.

There are modifiers to use default or alternate values or to indicate an error if the variable is unset or null.
For example, in the parameter expansion

${counter:=0}

qsh sets the default value of the variable counter to zero if the variable is unset or null. If the variable
counter was already set, the value is not changed and the current value is substituted.

There are also modifiers to remove small or large prefix or suffix patterns. The patterns are the same as
the ones used for path name expansions. There are four pattern modifiers:

• The % modifier means to remove the smallest suffix pattern.
• The %% modifier means to remove the largest suffix pattern.
• The # modifier means to remove the smallest prefix pattern.
• The ## modifier means to remove the largest prefix pattern.

For example, if the variable pathname is set to "/fruits/apples/grannysmith", then in the parameter
expansion

${pathname%/*}

qsh removes the smallest right pattern that matches "/*" and "/fruits/apples" is substituted.

Command substitutions

A command substitution allows the output of a command to be substituted in place of the command
name. For example, in the command substitution

$(grep apple fruit.list)

qsh substitutes the output of the grep command. This is an easy way to capture the output of a command
for further processing in a script.

An older form of command substitution that uses backquotes (`) is supported but should not be used
because of its ambiguous quoting rules.

Qshell utility features
There are over 100 utilities provided with Qshell that provide many functions.

There are over 100 utilities provided with Qshell that provide many functions. A utility is one of two types:

• A built-in utility is one qsh can run directly without having to search for it. It runs in the same process as
the shell interpreter.

• A regular utility is a separate program object that qsh finds by searching for it. It runs in a new process
started by the shell interpreter.

A Qshell utility has the following format. The square brackets indicate something that is optionally
specified.

4 System i: Qshell

utility [options] [parameters]

Some utilities allow single letter options preceded by a minus sign (-). For example, several utilities use
the -r option for recursively working on a directory tree. More than one option can be specified and all
options must be specified before any parameters. If a parameter begins with a minus sign, you can use
the -- option to indicate the end of options. For example, in the command line

utility -r -- -1

the -1 is treated as a parameter because the -- marked the end of the options.

Navigating in the Integrated File System

When navigating in the Integrated File System, you always have a current working directory. If a file or
directory is specified without a leading slash (/), it is assumed to be in the current working directory.

You can change the current working directory with the cd utility. For example to change the current
working directory to /usr/bin, use this command:

cd /usr/bin

You can display your current working directory with either the pwd or pwdx utilities. The pwdx utility
resolves symbolic links and displays the absolute current working directory.

You can list the contents of a directory with the ls utility. With no parameters, ls lists the contents of the
current working directory. You can also specify one or more directories as parameters. With the -l
(lowercase ell) option, ls lists detailed information about each object in the directory, including the
permissions for the object, the owner and group of the object, the size of the object, and the date that the
object was last accessed.

Working with files and directories

You can create a new directory with the mkdir utility. When the -p option is specified, mkdir creates all of
the directories in the path. For example, to create the new directories "/fruits" and "/fruits/pears", use
this command:

mkdir -p /fruits/pears

You can copy files with the cp utility. For example, to copy the file "/fruits/apples/delicious" to the file "/
fruits/apples/grannysmith", use this command:

cp /fruits/apples/delicious /fruits/apples/grannysmith

You can rename or move objects with the mv utility. For example, to move the file orange in the current
directory to the file "tangerine" in the "/fruits" directory, use this command:

mv orange /fruits/tangerine

You can delete an object with the rm utility and delete a directory with the rmdir utility. When the -r
option is specified, rm recursively deletes all of the objects in a directory tree. This is an easy way to
delete a large number of objects with one command. For example, to delete all of the files and directories
in the "/fruits" directory tree, use this command:

rm -r /fruits

Qshell 5

Putting it all together in a script
View an example that shows how to write a shell script.

The following example shows a simple shell script that illustrates the features of the shell interpreter and
utilities. The script takes one input parameter that is the name of a directory. The script then copies all of
the files with the .java extension from the input directory to the current directory, keeping a count of the
files it copied.

 1 # Get a list of files
 2 filelist=$(ls ${1}/*.java)
 3 count=0
 4 # Process each file
 5 for file in $filelist ; do
 6 # Strip directory name
 7 target=${file##*/}
 8 # Copy file to current directory
 9 cp $file $target
10 count=$((count+=1))
11 # Print message
12 print Copied $file to $target
13 done
14 print Copied $count files

On lines 1, 4, 6 ,8, 11, the # character denotes a comment. Any characters after the # character are not
interpreted by qsh.

On line 2, the variable filelist is set to the output from the ls command. The ${1} expands to the first input
parameter and the *.java expands to all of the files with the .java extension.

On line 3, the variable count is set to zero.

On line 5 is a for loop. For each iteration of the loop. the variable file is set to the next element in the
variable filelist. Each element is delimited by a field separator. The default field separators are tab, space,
and newline. The semicolon character is a command delimiter and allows you to put more than one
command on a line.

On line 7, the variable target is set to the file name from the fully-qualified path name. The ${file##*/}
parameter expansion removes the largest pattern starting from the left that matches all characters up to
the last slash character.

On line 9, the file is copied with the cp utility from the specified directory to the current working directory.

On line 10, the variable count is incremented by one.

On line 12, a message is printed using the print utility with the files that were copied.

On line 13, the done marks the end of the for loop.

On line 14, a message is printed with the total number of files that were copied.

If the directory /project/src contained two files with the .java extension and the script is called using the
command:

javacopy /project/src

then the output from the script is

Copied /project/src/foo.java to foo.java
Copied /project/src/bar.java to bar.java
Copied 2 files

6 System i: Qshell

Command language
This detailed reference information is a good starting point if you are writing shell scripts or are an
experienced user of shells.

qsh is a program that do the following tasks:

• reads input from either a file or a terminal
• breaks the input into tokens
• parses the input into simple and compound commands
• performs various expansions on each command
• performs redirection of input and output
• runs the commands
• optionally waits for the commands to complete

qsh implements a command language that has flow control constructs, variables, and functions. The
interpretative language is common to both interactive and non-interactive use (shell scripts). So the same
commands that are entered at an interactive command line can also be put in a file and the file can be run
directly by qsh.

See the AIX® Information Center for more information about commands.

Related tasks
qsh - Qshell command language interpreter

Quoting
Use quoting to remove the special meaning of certain characters to qsh.

The following characters can be used:

• The escape character (backslash) to remove the special meaning of the following character with the
exception of <newline>. If a <newline> follows the backslash, qsh interprets it as a line continuation.
For example, \$ removes the special meaning of the dollar sign.

• Literal (or single) quotation marks ('...') to remove the special meaning of all characters except the
single quotation mark.

• Grouping (or double) quotation marks ("...") to remove the special meaning of all characters except
dollar sign ($), back quotation mark (`), and backslash (\). The backslash retains its special meaning as
an escape character only when it is followed by a dollar sign ($), back quotation mark (`), double
quotation mark ("), backslash (\), or <newline>.

Parameters
A parameter is used to store data.

You can access the value of a parameter by preceding its name with a dollar sign ($) and surrounding the
name with brackets ({ }). The brackets are optional when the name is a single digit, is a special parameter,
or is a single identifier.

Positional parameters

A positional parameter is a decimal number starting from one. Initially, qsh sets the positional
parameters to the command line arguments that follow the name of the shell script. The positional
parameters are temporarily replaced when a shell function is called and can be reassigned using the set
and shift utilities.

Special parameters

A special parameter is denoted by one of these special characters:

Qshell 7

http://publib16.boulder.ibm.com/pseries/index.htm

* (Positional parameters)
(Asterisk) Expands to the positional parameters, starting from one. When the expansion occurs within
a string with quotation marks, it expands to a single field with the value of each parameter separated
by the first character of the IFS variable, or by a <space> if IFS is unset.

@ (Positional parameters)
(At sign) Expands to the positional parameters, starting from one. When the expansion occurs within
quotation marks, each positional parameter expands as a separate argument. If there are no
positional parameters, the expansion of @ generates zero arguments, even when @ is in quotation
marks.

(Number of positional parameters)
(Number sign) Expands to the decimal number of positional parameters. It is initially set to the
number of arguments when qsh is invoked. It can be changed by the set, shift, or dot utilities or by
calling a function.

? (Exit status)
(Question mark) Expands to the decimal exit status of the most recent command. A value of zero
indicates successful completion. A non-zero value indicates an error. A command ended by a signal
number has an exit status of 128 plus the signal number.

- (Option flags)
(Minus) Expands to the current option flags (the single-letter option names concatenated into a string)
as specified when qsh is invoked, by set, or implicitly by qsh.

$ (Process ID of current shell)
(Dollar sign) Expands to the decimal process ID of the current shell. A subshell retains the same value
of $ as the current shell even if the subshell is running in a different process.

! (Background process ID)
(Exclamation mark) Expands to the decimal process ID of the most recent background command run
from the current shell. For a pipeline, the process ID is that of the last command in the pipeline.

0 (Name of shell script)
(Zero) Expands to the name of the shell or shell script.

Related concepts
Parameter expansions
Select this link to view information about how qsh expands parameters.

Variables
When it is started, qsh initializes shell variables from the defined environment variables. A variable is
used to store data. .

You can change the value of an existing variable or create a new variable by using one of these methods:

• Assigning a variable using name=value.
• Calling the read or getopts utilities.
• Using the name parameter in a for loop or select conditional construct.
• Using the ${name=value} parameter expansion.
• Calling the declare or typeset utilities.

Variable names can contain alphabetic characters, numeric characters, or the underscore (_). A variable
name cannot begin with a numeric character.

Variables set by qsh
_ (Temporary variable)

This variable is set by qsh to the last argument of the previous simple command.
EGID (Effective primary group identifer)

This variable set by qsh to the effective primary group identifier of the process at the time qsh is
started. This variable is read-only.

8 System i: Qshell

EUID (Effective user identifer)
This variable set by qsh to the effective user identifier of the process at the time qsh is started. This
variable is read-only.

GID (Primary group identifer)
This variable set by qsh to the primary group identifier of the process at the time qsh is started. This
variable is read-only.

HOSTID (IP identifier of host)
This variable set by qsh to the IP address of the host system.

HOSTNAME (Name of host)
This variable set by qsh to the name of the host system.

HOSTTYPE (Type of host)
This variable set by qsh to a string that represents the type of the host system. The value is set to
"powerpc".

JOBNAME (Qualified job name)
This variable is set by qsh to the qualified job name of the current job. The qualified job name is used
by CL commands to identify a job.

LAST_JOBNAME (Qualified job name of last job)
This variable is set by qsh to the qualified job name of the last job it started. The qualified job name is
used by CL commands to identify a job.

LINENO (Line number)
This variable is set by qsh to the current line number (decimal) in a script or function before it runs
each command.

MACHTYPE (Machine type)
This variable is set by qsh to a string that represents the machine type. The value is set to "powerpc-
ibm-os400".

OLDPWD (Previous working directory)
This variable is set by cd to the previous working directory after the current working directory is
changed.

OPTARG (Option argument)
This variable is set by getopts when it finds an option that requires an argument.

OPTIND (Option index)
This variable is set by getopts to the index of the argument to look at for the next option. The variable
is set to one when qsh, a script, or a function is invoked.

OSTYPE (Operating system type)
This variable set by qsh to a string that represents the operating system type. The value is set to
"os400".

PPID (Parent process ID)
This variable is set by qsh to the decimal process ID of the process that invoked the current shell. In a
subshell, the value of the variable is not changed even if the subshell is running in a different process.

PWD (Working directory)
This variable is set by cd to the current working directory after it is changed.

QSH_VERSION (Current version)
This variable is set by qsh to a string that represents the current version. The string is in the form
VxRyMz where x is the version number, y is the release number, and z is the modification number.
This variable is read-only.

RANDOM (Random number generator)
This variable is set by qsh to an integer random number between 1 and 32767 each time it is
referenced. You can seed the random number generator by setting the variable.

REPLY (Reply variable)
This variable is set by read to the characters that are read when you do not specify any arguments and
by the select compound command to the contents of the input line read from standard input.

Qshell 9

TERMINAL_TYPE (Type of terminal)
This variable is set by qsh to the type of terminal attached to the standard file descriptors. The value
is set to "5250" when attached to a 5250 display, to "REMOTE" when attached to a remote client, or
to "PIPELINE" when attached to pipes.

UID (User identifer)
This variable set by qsh to the user identifier of the process at the time qsh is started. This variable is
read-only.

Variables used by qsh
CDPATH (Search path for cd)

If the directory you specify for cd does not begin with a slash (/), qsh searches the directories listed in
CDPATH in order for the specified directory. The value of the variable is a colon separated list of
directories. The current working directory is specified by a period (.) or a null directory before the first
colon, between two colons, or after the last colon. There is no default value.

ENV (Environment file)
When qsh is invoked, it performs parameter expansion, command substitution, and arithmetic
expansion on this variable to generate the path name of a shell script to run in the current
environment. It is typically used to set aliases, define functions, or set options. There is no default
value.

HOME (Home directory)
The value of this variable is the path name of your home directory. The value is used for tilde
expansion and as the default argument for cd. The value is set by default to the value specified in your
user profile.

IFS (Internal field separators)
The value is a string treated as a list of characters that is used for field splitting and to split lines into
fields with read. The first character of the value is used to separate arguments when expanding the *
special parameter. The default value is "<space><tab><newline>".

LANG (Language locale)
This variable defines the locale category used for categories that are not specifically set with a
variable starting with LC_. There is no default value.

LC_ALL (Locale settings)
This variable overrides the value of any variables starting with LC_. There is no default value.

LC_COLLATE (Locale collation)
This variable defines the collation relations between characters. There is no default value.

LC_CTYPE (Locale character classes)
This variable defines character types such as upper-case, lower-case, space, digit and, punctuation.
There is no default value.

LC_MESSAGES (Locale message formatting)
This variable defines the format and values for affirmative and negative responses from applications.
There is no default value.

LC_MONETARY (Locale monetary formatting)
This variable defines the monetary names, symbols, and other details. There is no default value.

LC_NUMERIC (Locale numeric formatting)
This variable defines the decimal point character for formatted input/output and string conversion
functions. There is no default value.

LC_TIME (Locale time formatting)
This variable defines the date and time conventions, such as calendar used, time zone, and days of
the week. There is no default value.

LC_TOD (Locale time zone)
This variable defines the time zone name, time zone difference, and Daylight Savings Time start and
end. There is no default value.

10 System i: Qshell

NLSPATH (Search path for message catalogs)
When opening a message catalog, the system searches the directories listed in the order specified
until it finds the catalog. The value of the variable is a colon separated list of directories. There is no
default value.

PATH (Search path for commands)
If the command you specify does not begin with a slash (/), qsh searches the directories listed in the
order specified until it finds the command to run. The value of the variable is a colon separated list of
directories. The current working directory is specified by a period (.) or a null directory before the first
colon, between two colons, or after the last colon. The default value is "/usr/bin:.:/QOpenSys/usr/
bin".

PS1 (Primary prompt string)
When the interactive option is set, qsh performs parameter expansion, command substitution, and
arithmetic expansion on the variable and displays it on stderr when qsh is ready to read a command.
The default value is "$".

PS2 (Secondary prompt string)
When you enter <newline> before completing a command qsh displays the value of this variable on
stderr. The default value is ">".

PS3 (Select command prompt)
When the select compound command is run, qsh performs parameter expansion, command
substitution, and arithmetic expansion on the variable and displays it on stderr to prompt the user to
select one of the choices displayed by select. The default value is "#?".

PS4 (Debug prompt string)
When the execution trace option is set and the interactive option is set, qsh performs parameter
expansion, command substitution, and arithmetic expansion on the variable and displays it on stderr
before each line in the execution trace. The default value is "+".

QIBM_CCSID (CCSID for translation)
When this variable is set to a numeric value, qsh and various utilities use the value for creating files
and translating data from the CCSID of the job. The default value is "0" for the default job CCSID. A
value of "65535" means no translation is done.

QIBM_CHILD_JOB_SNDINQMSG (Send inquiry message when child process starts)
When this variable is set to a positive numeric value, the parent process is sent an inquiry message
with the qualified job name of the child process. The child process is held until you reply the message.
By setting this variable, you can debug the program running in the child process by setting
breakpoints before the program runs. The value of the variable is the level of descendant processes to
debug. When set to 1, child processes are held, when set to 2 child and grandchild processes are
held, etc. There is no default value.

QIBM_MULTI_THREADED (Start multi-thread capable processes)
This variable determines if processes started by qsh can create multiple threads. When the value of
the variable is "Y", all child processes started by qsh can start threads. The default value is "N".

QSH_REDIRECTION_TEXTDATA (Process data as text for file redirection)
This variable determines if data read from or written to a file specified on a redirection is treated as
text data or binary data. When the value of the variable is "Y", qsh treats the data read from or written
to the file as text data. When the value of the variable is not "Y", qsh treats the data read from or
written to the file as binary data. The default value is "Y".

QSH_USE_PRESTART_JOBS (Use pre-start jobs when available)
This variable determines if processes started by qsh use prestart jobs when available. When the value
of the variable is "Y", qsh uses prestart jobs if they are available in the current subsystem. When the
value of the variable is not "Y", or prestart jobs are not available, the processes started by qsh are
batch immediate jobs. The default value is "Y".

SHELL (Path name of the shell)
When running a script file that does not contain "#!" on the first line, qsh uses the value of this
variable as the path name of the shell interpreter to run the script. There is no default value.

Qshell 11

TRACEFILE (Path name of trace file)
When the trace option is set, qsh uses the value of this variable as the path name of the file to store
the trace information. The default value is "$HOME/qsh_trace".

TRACEOPT (Options for trace file)
When the trace option is set, qsh uses the value of this variable to determine how to handle the trace
file. When the value of the variable is "UNLINK", qsh unlinks the trace file before opening it in a root
shell. When the value of the variable is "KEEP", qsh keeps the current trace file. The default value is
"UNLINK".

Other variables
QIBM_CMP_FILE_SIZE

This variable controls the maximum file size in bytes that cmp reads into an internal buffer for better
performance. For files larger than the maximum size, cmp reads the files one byte at a time.

QIBM_OD_OUTPUT_FORMAT (Output format for od)
This variable controls the output format for the od utility. If the value is "OLD", od uses the old format
from previous releases. The old format is not compatible with the current industry standard and its
use is discouraged. There is no default value.

QIBM_QSH_CMD_ESCAPE_MSG (Send escape messages from QSH CL command)
This variable controls how messages are sent by the QSH CL command when the CMD parameter is
specified. If the value is "Y", the QSH0005 message is sent as an escape message if the exit status is
greater than zero and the QSH0006 and QSH0007 messages are always sent as escape messages.
There is no default value.

QIBM_QSH_CMD_OUTPUT (Control output of QSH CL command)
This variable controls the output from the QSH CL command when the CMD parameter is specified. If
the value is "STDOUT", the output is displayed on the C runtime terminal session. If the value is
"NONE", the output is discarded. If the value is "FILE", the output is written to the specified file. If the
value is "FILEAPPEND", the output is appended to the specified file. The default value is "STDOUT".

QIBM_QSH_INTERACTIVE_CMD (Initial interactive command)
When this variable is set to a command string, qsh runs the command when an interactive session is
started. The variable must be set before calling the QSH CL command to have qsh run the command.
There is no default value.

QIBM_QSH_INTERACTIVE_TYPE (Type of interactive session)
This variable sets the type of the interactive session started by the QSH CL command. If the value is
"NOLOGIN", the interactive session is not a login session. Otherwise the interactive session is a login
session. There is no default value.

QIBM_SYSTEM_ALWMLTTHD (Allow multi-threaded jobs for system)
This variable controls how the system utility behaves in a multi-thread capable job. If the value of the
variable is "Y" and there is only one thread in the job, system runs the CL command in the job.
Otherwise, system starts a new job to the run the CL command. There is no default value.

QIBM_SYSTEM_USE_ILE_RC
Set this environment variable to control how the system utility sets the exit status. If the value of the
variable is "Y", system sets the exit status to the ILE return code of the program called by the CL
command, or zero if the program did not set a return code. There is no default value.

Related tasks
declare - Declare variables and set attributes

Word expansions
View information about word expansions, including tilde expansion, parameter expansion, command
substitution, arithmetic expansion, field splitting, path name expansion, and quote removal.

Tilde expansions
Select this link to view information about how qsh expands tilde characters.

An unquoted tilde character (~) at the beginning of a word is expanded according to the following rules:

12 System i: Qshell

• ~ expands to the value of the HOME variable (the current user's home directory).
• ~user expands to the home directory of the specified user. All the characters up to a slash (/) or the end

of the word are treated as a user name.
• ~+ expands to the value of the PWD (working directory) variable.
• ~- expands to the value of the OLDPWD (previous working directory) variable if it is set.

Examples

1. Change the current directory to the user's home directory:

cd ~

2. Change the current directory to the bin directory in user smith's home directory:

cd ~smith/bin

Parameter expansions
Select this link to view information about how qsh expands parameters.

The format for parameter expansion is as follows:

${expression}

where expression consists of all characters until the matching right brace (}). Any right brace characters
escaped by a backslash or within a string with quotation marks, as well as characters in embedded
arithmetic expansions, command substitutions, and variable expansions, are not examined in determining
the matching right brace.

The simplest form for parameter expansion is as follows:

${parameter}

The value, if any, of parameter is substituted. The parameter name or symbol can be enclosed in braces,
which are optional except for positional parameters with more than one digit or when parameter is
followed by a character that might be interpreted as part of the name. If a parameter expansion occurs
inside double quotation marks, then:

1. Path name expansion is not performed on the results of the expansion.
2. Field splitting is not performed on the results of the expansion, with the exception of @ special

parameter.

A parameter expansion can be modified by using one of the following formats:

${parameter:-word}
Use Default Values. If parameter is unset or null, the expansion of word is substituted. Otherwise, the
value of parameter is substituted.

${parameter:=word}
Assign Default Values. If parameter is unset or null, the expansion of word is assigned to parameter.
In all cases, the final value of parameter is substituted. Only variables, not positional parameters or
special parameters, can be assigned in this way.

${parameter:?word]}
Indicate Error if Null or Unset. If parameter is unset or null, the expansion of word (or a message
indicating it is unset if word is omitted) is written to standard error and a non-interactive shell exits
with a nonzero exit status. Otherwise, the value of parameter is substituted.

${parameter:+word}
Use Alternate Value. If parameter is unset or null, null is substituted. Otherwise, the expansion of
word is substituted.

In the preceding four parameter expansions, using a colon in the format results in a test for a parameter
that is unset or null; removing the colon results in a test for a parameter that is only unset.

Qshell 13

${#parameter}
String Length. If parameter is @ or *, the number of positional parameters is substituted. Otherwise,
the length of the value of parameter is substituted.

${parameter%word}
Remove Smallest Suffix Pattern. The word is expanded to produce a pattern. Then the result is
parameter after removing the smallest portion of the suffix matched by the pattern.

${parameter%%word}
Remove Largest Suffix Pattern. The word is expanded to produce a pattern. Then the result is
parameter after removing the largest portion of the suffix matched by the pattern.

${parameter#word}
Remove Smallest Prefix Pattern. The word is expanded to produce a pattern. Then the result is
parameter after removing the smallest portion of the prefix matched by the pattern.

${parameter##word}
Remove Largest Prefix Pattern. The word is expanded to produce a pattern. Then the result is
parameter after removing the largest portion of the prefix matched by the pattern.

${parameter:offset}
${parameter:offset:length}

Substring Starting at Offset. The value of this expansion is the substring starting at the byte specified
by offset for length bytes. If length is not specified or the value of length causes the expansion to
exceed the length of parameter, the substring ends with the last byte of parameter. Both offset and
length are arithmetic expressions and must evaluate to a value that is greater than or equal to zero.
The first byte of parameter is defined by an offset of zero.

${parameter/pattern/string}
${parameter//pattern/string}

Substitute String for Pattern. The value of this expansion is the value of parameter with the longest
match of pattern replaced with string. In the first form, only the first match of pattern is replaced. In
the second form, all matches of pattern are replaced. If pattern begins with #, it must match at the
beginning of parameter. If pattern begins with a %, it must match at the end of parameter.

Examples

1. Expand the variable QSH_VERSION.

echo ${QSH_VERSION}

2. Expand the variable filename and use a default value.

echo ${filename:-/tmp/default.txt}

3. Expand the variable index and assign a default value.

echo ${index:=0}

4. Expand the variable filename and indicate an error if unset.

echo ${filename:?Variable is not set}

5. Expand the variable DIRLIST using string length.

DIRLIST=/usr/bin:/home/mike
echo ${#DIRLIST}

6. Expand the variable DIRLIST using remove smallest suffix pattern.

14 System i: Qshell

DIRLIST=/usr/bin:/home/mike
echo ${DIRLIST%/*}

7. Expand the variable DIRLIST using remove largest suffix pattern.

DIRLIST=/usr/bin:/home/mike
echo ${DIRLIST%%:*}

8. Expand the variable DIRLIST using remove smallest prefix pattern.

DIRLIST=/usr/bin:/home/mike
echo ${DIRLIST#/usr}

9. Expand the variable DIRLIST using remove largest prefix pattern.

DIRLIST=/usr/bin:/home/mike
echo ${DIRLIST##*/}

10. Expand the variable DIRLIST using a substring starting at offset.

DIRLIST=/usr/bin:/home/mike
echo ${DIRLIST:5:3}

11. Expand the variable DIRLIST using a substitute string for pattern.

DIRLIST=/usr/bin:/home/mike
echo ${DIRLIST/m?ke/joel}

Related concepts
Parameters
A parameter is used to store data.

Command substitutions
Select this link to view information about how qsh expands command substitutions.

Command substitution allows the output of a command to be substituted in place of the command name
itself. Command substitution occurs when the command is enclosed as follows:

$(command)

or by using backquotes:

`command`

The backquoted version is provided for compatibility. Its use is discouraged.

The shell expands the command substitution by running command in a subshell environment and
replacing the command substitution with the standard output of the command, removing sequences of
one or more <newline>s at the end of the substitution. Embedded <newline>s before the end of the
output are not removed; however, during field splitting, they may be translated into <space>s, depending
on the value of the IFS variable and quoting that is in effect.

Examples

1. Set the variable list to the output of the ls command:

list=$(ls)

Qshell 15

Arithmetic expansions
Select this link to view information about how qsh expands arithmetic expressions.

Arithmetic expansion provides a mechanism for evaluating an arithmetic expression and substituting its
value. The format for arithmetic expansion is:

$((expression))

The expression is treated as if it were in double quotation marks, except that a double quotation mark
inside expression is not treated specially. The shell expands all tokens in expression for parameter
expansion, command substitution, and quote removal. qsh treats the result as an arithmetic expression
and substitutes the value of the expression.

Arithmetic expressions

An arithmetic expression can be specified in the following situations:

• in an arithmetic expansion
• for each argument of the let utility
• for the argument of the shift utility
• for the operands of the arithmetic formats of the printf utility
• for the operands to the arithmetic comparison operators of the test utility
• for the argument of the ulimit utility
• in the "Substring Starting at Offset" parameter expansion

qsh performs either integer or floating point arithmetic based on the setting of the float option. When the
float option is set on, qsh performs floating point arithmetic.

An integer number has the format [base#]number where:

• base is a decimal integer between 2 and 36 that specifies the arithmetic base. The default is base 10.
• number is a non-negative number. For a base greater than 10, numbers greater than 9 or represented

using a letter of the alphabet. For example, when using base 16, the decimal number 10 is represented
using A.

A floating point number has the format [+|-] number[.number] [exponent] where:

• number is a non-negative decimal number.
• exponent is E or e followed by + or - and a non-negative decimal number.

Arithmetic expressions use the following ANSI C language operators and precedence.

(expression)
Parenthesis overrides precedence rules

Unary operators
+expression Unary +
-expression Unary -
~expression Bitwise negation
!expression Logical negation

Multiplicative operators
expression * expression Multiplication
expression / expression Division
expression % expression Remainder

Additive operators
expression + expression Addition
expression - expression Subtraction

16 System i: Qshell

Bitwise shift operators
expression << expression Left shift the first expression by the number of bits given in the second
expression
expression >> expression Right shift the first expression by the number of bits given in the second
expression

Relational operators
expression < expression Less than
expression <= expression Less than or equal to
expression > expression Greater than
expression >= expression Greater than or equal to

Bitwise AND operator
expression & expression Bitwise and where the result contains a 1 in each bit position where there is a
1 in both expressions and a 0 in all other bit positions.

Bitwise Exclusive OR operator
expression ^ expression Bitwise exclusive or where the result contains a 1 in each bit position where
there is a 1 in only one of the expressions and a 0 in all other bit positions.

Bitwise OR operator
expression | expression Bitwise or where the result contains a 1 in each bit position where there is a 1
in either expression and a 0 in all other bit positions.

Logical AND operator
expression && expression Logical and where the result is true if both expressions are true

Logical OR operator
expression || expression Logical or where the result is true if one of the expressions is true

Conditional operator
expression ? expression : expression Conditional operator where when the first expression is true, the
second expression is evaluated. Otherwise the third expression is evaluated.

Assignment operators
expression = expression Simple assignment
expression *= expression Assign and multiply
expression /= expression Assign and divide
expression %= expression Assign and remainder
expression += expression Assign and add
expression -= expression Assign and subtract
expression <<= expression Assign and shift left
expression >>= expression Assign and shift right
expression &= expression Assign and bitwise AND
expression ^= expression Assign and bitwise exclusive OR
expression |= expression Assign and bitwise OR

Note: When using floating point arithmetic the
remainder, left shift, right shift, bitwise AND,
bitwise exclusive OR, and bitwise OR operators are
not supported.

Examples

1. Add two decimal numbers:

echo $((2+2))

Qshell 17

2. Add two hexadecimal numbers:

echo $((16#A + 16#20))

3. Increment the variable index by one:

let index+=1

4. Evaluate a complex expression:

echo $((5+9-2*3/2))

5. Add two floating point numbers:

set -F
echo $((5.75+9.157))
set +F

Field splitting
Select this link to view information about how qsh splits fields into words expands path names using
patterns, and remove quotation marks.

After parameter expansion, command substitution, and arithmetic expansion, qsh scans the results of
expansions and substitutions that did not occur in double quotation marks for field splitting. Multiple
fields can result.

qsh treats each character of the IFS variable as a delimiter and uses the delimiters to split the results of
parameter expansion and command substitution into fields. If the value of the IFS variable is null, no field
splitting is performed.

Path name expansion

When the noglob option is not set, path name expansion is performed after field splitting is complete.
Each word is viewed as a series of patterns, separated by slashes. The process of expansion replaces the
word with the names of all existing files whose names can be formed by replacing each pattern with a
string that matches the specified pattern. There are two restrictions:

1. a pattern cannot match a string containing a slash
2. a pattern cannot match a string starting with a period unless the first character of the pattern is a

period

Quote removal

The quote characters, backslash (\), single quotation mark (`), and double quotation mark ("), are
removed unless the character has been quoted.

Patterns
Select this link to view information about how qsh expands patterns.

A pattern consists of normal characters, which match themselves, and meta-characters. The meta-
characters are:

!, *, ?, and [

These characters lose their special meanings if they are quoted. When command or variable substitution
is performed and the dollar sign ($) or backquote (`) are not double quoted, the value of the variable or
the output of the command is scanned for these characters and they are turned into meta-characters.

An asterisk (*) matches any string of characters.

A question mark (?) matches any single character.

18 System i: Qshell

A left bracket ([) introduces a character class. The end of the character class is indicated by a right
bracket (]). If the right bracket is missing then the left bracket matches a [rather than introducing a
character class. A character class matches any of the characters between the square brackets. A range of
characters may be specified using a minus (-). The character class may be complemented by making an
exclamation mark (!) the first character of the character class.

Note: Specifying a range of characters may produce
different results from other systems because
EBCDIC characters are not contiguous.

To include a right bracket in a character class, make it the first character listed (after the !, if any). To
include a minus in a character class, make it the first or last character listed.

Redirection
Redirections are used to change where a command reads its input or sends its output. In general,
redirections open, close, or duplicate an existing reference to a file.

The overall format used for redirection is as follows:

[n] redir-op file

where redir-op is one of the redirection operators listed below and n is an optional number that refers to a
file descriptor. Following is a list of the possible redirections.

[n]< file
Redirect standard input (or n) from file.

[n1]<&n2
Duplicate standard input (or n1) from file descriptor n2.

[n]<&-
Close standard input (or n).

[n]> file
Redirect standard output (or n) to file.

[n]>| file
Redirect standard output (or n) to file, but override the noclobber option.

[n]>> file
Append standard output (or n) to file.

[n1]>&n2
Duplicate standard output (or n1) from n2.

[n]>&-
Close standard output (or n).

It is best not to use the /QSYS.LIB/QTEMP.LIB directory for redirections since it is deleted when a job
ends and a new job is started and ended for each command.

Here-documents

The format of a here-document is as follows:

[n]<<[-] delimiter
here-doc-text ...

delimiter

All the text on successive lines up to delimiter is saved and made available to the command on standard
input, or file descriptor n if it is specified. If delimiter as specified on the initial line is quoted, then here-
doc-text is treated literally, otherwise the text is subjected to parameter expansion, command
substitution, and arithmetic expansion. If the operator is <<- instead of <<, then leading tabs in here-doc-
text are stripped.

Qshell 19

Simple commands
A simple command is a sequence of optional variable assignments and redirections followed by a
command name.

When a simple command is recognized by qsh, it performs the following actions:

1. Leading words of the form name=value are stripped off and assigned to the environment of the simple
command. Redirection operators and their arguments are saved for processing in step 3.

2. The remaining words are expanded as described in Word expansions, and the first remaining word is
considered the command name. Any additional words are considered the arguments of the command.
If no command name is found, then the name=value variable assignments recognized in step 1 affect
the current shell.

3. Redirections are performed as described in Redirection.

Path search

If a simple command does not contain any slashes, qsh finds the command by searching:

1. for a special built-in utility of that name, then
2. for a shell function of that name, then
3. for a regular built-in utility of that name, then
4. each directory in the PATH variable in turn for the regular utility.

Command names containing a slash (/) are run as a regular utility without performing any of the above
searches.

A built-in utility is run internal to the shell, without starting a new process. A special built-in utility is
different from a regular built-in utility in these respects:

1. A syntax error in a special built-in utility causes a non-interactive shell to exit.
2. Variable assignments specified with a special built-in utility remain in effect after the utility completes.

These are the special built-in utilities: break, colon, continue, declare, dot, eval, exec, exit, export, local,
readonly, return, set, shift, source, trap, typeset, and unset.

When a shell function is run, all of the shell positional parameters (except the special parameter 0, which
remains unchanged) are set to the arguments of the shell function. The variables which are explicitly
placed in the environment of the command (by placing assignments to them before the function name)
are made local to the function and are set to the specified values. The positional parameters are restored
to their original values when the shell function completes.

When a regular utility is run, qsh starts a new process, passing the arguments and the environment to the
program. If the program is a shell script, qsh will interpret the program in a subshell. qsh will reinitialize
itself in this case, so that the effect will be as if a new shell had been invoked to handle the shell script.

Command exit status

Each command has an exit status that can influence the behavior of other shell commands. By
convention, a command exits with zero for normal or success, and non-zero for failure, error, or a false
indication. The documentation for each command describes the exit codes it returns and what they mean.
The exit status can be one of these values:

• 0 for success.
• 1 to 125 for failure.
• 126 when qsh finds the command but it is not executable.
• 127 when qsh cannot find the command.
• 128 and above when the command is ended by a signal. The value is 128 plus the signal number.

20 System i: Qshell

Pipelines
A pipeline is a sequence of one or more commands separated by the pipeline control operator (|). The
standard output of all but the last command is connected to the standard input of the next command.

The format for a pipeline is:

[!] command1 [| command2 ...]

The standard output of command1 is connected to the standard input of command2. The standard input,
standard output, or both of a command is considered to be assigned by the pipeline before any
redirection specified by redirection operators that are part of the command. The exit status of the pipeline
is the exit status of the last command.

If the pipeline is not in the background (described below), qsh waits for all commands to complete.

If the reserved word ! does not precede the pipeline, the exit status is the exit status of the last command
specified in the pipeline. Otherwise, the exit status is the logical not of the exit status of the last
command. That is, if the last command returns zero, the exit status is 1; if the last command returns
greater than zero, the exit status is zero.

Because pipeline assignment of standard input or standard output or both takes place before redirection,
it can be modified by redirection. For example:

command1 2>&1 | command2

sends both the standard output and standard error of command1 to the standard input of command2.

Lists
A list is a sequence of commands separated by an ampersand (&) or a semicolon (;), and optionally
terminated by a <newline>, ampersand, or semicolon.

An AND-OR list is a sequence of commands separated by a && or ||. Both operators have the same
priority.

Asynchronous lists

If a command is terminated by the control operator ampersand (&), qsh runs the command
asynchronously. That is, qsh does not wait for the command to finish before running the next command.
The format for running a command in the background is:

command1 & [command2 & ...]

If the interactive option is not set, the standard input of any asynchronous command is set to /dev/qsh-
stdin-null. The exit status of an asynchronous list is the exit status of the last command.

Sequential lists

Commands that are separated by a semicolon (;) are run sequentially. The format for a sequential list is:

command1 [; command2 ...]

The commands in the list are run in the order they are written. The exit status of a sequential list is the
exit status of the last command.

AND lists

The format for an AND list is:

command1 [&& command2 ...]

With an AND list, qsh runs command1, and then runs command2 if the exit status of the command1 is
zero and so on until a command has a non-zero exit status or there are no commands left to run. The exit
status of an AND list is the exit status of the last command that is run.

OR lists

The format for an OR list is:

command1 [|| command2 ...]

Qshell 21

With an OR list, qsh runs command1, and then runs command2 if the exit status of the command1 is non-
zero and so on until a command has a zero exit status or there are no commands left to run. The exit
status of an OR list is the exit status of the last command that is run.

Compound commands
Compound commands provide control flow for other commands. Each compound command starts with a
reserved word and has a corresponding reserved word at the end.
Related tasks
declare - Declare variables and set attributes

Grouping commands
Select this link to view information about the grouping commands.

You can group commands using either

(list)

or

{ list; }

In the first case, qsh runs list in a subshell environment.

Examples

1. Group two commands in a subshell.

(ls | grep apple)

If command
Select this link to view information about the if-then-else-fi command.

The syntax of the if command is as follows:

if list1

then list2

[elif list3

then list4] ...

[else list5]

fi

First, qsh runs list1 and if its exit status is zero then qsh runs list2. Otherwise, each elif list3 is run and if
its exit status is zero then qsh runs list4. Otherwise, qsh runs list5.

Examples

1. An if-then-fi command.

x=4
y=9
if test $x -lt $y
then
 echo $x is less than $y
fi

2. An if-then-else-fi command.

x=10
y=9
if test $x -lt $y

22 System i: Qshell

then
 echo echo $x is less than $y
else
 echo echo $x is greater than or equal to $y
fi

3. An if-then-elif-else-fi command.

x=4
y=4
if test $x -lt $y
then
 echo echo $x is less than $y
elif test $x -eq $y
then
 echo $x is equal to $y
else
 echo $x is greater than or equal to $y
fi

Conditional command
Select this link to view information about the conditional command.

The syntax of the [[...]] command is as follows:

[[expression]]

It returns a status of 0 or 1 depending on the evaluation of the conditional expression expression. The
format of a conditional expression is the same as the expressions evaluated by the test utility. qsh
performs tilde expansion, parameter expansion, arithmetic expansion, command substitution, and quote
removal on expression before it is evaluated.

Examples

1. A conditional command that uses a command substitution.

if [[$(grep -c apple fruits.txt) -eq 0]]
then
 echo There are no apples in fruit.txt
fi

Case command
Select this link to view information about the case-esac command.

The syntax of the case command is as follows:

case word in

pattern1) list1 ;;

pattern2 | pattern3) list2 ;;

...

esac

qsh expands each pattern in turn and sees if it matches the expansion of word. When there is a match,
qsh runs the corresponding list. After the first match, no more patterns are expanded. See Patterns for
more details on patterns.

Examples

1. A case command for processing command line options.

while getopts ap:t: c ; do
 case $c in
 a) aflag=1;;
 p) pflag=1

Qshell 23

 path=$OPTARG;;
 t) time=$OPTARG;;
 *) print -u2 "Invalid option"
 exit 1;;
 esac
done

Select command
Select this link to view information about the select-do-done command.

The syntax of the select command is as follows:

select name [in word ...]

do list

done

The words are expanded, generating a list of items. If word is not specified, the positional parameters are
expanded. The set of expanded words is written to standard error, each preceded by a number. The PS3
prompt is then displayed and a line is read from standard input. If the line consists of a number
corresponding to one of the displayed words, qsh sets the value of name to the word corresponding to the
number. If the line is empty, qsh displays the list again. The REPLY variable is set to the contents of the
input line.

qsh runs the commands in list until a break, return, or exit command is run. select also completes if EOF
is read from standard input.

Examples

1. A select command to select from a list.

PS3="Please select a number "
list="alpha beta gamma delta epsilon"
select value in $list ; do
 echo Value for selection $REPLY is $value
 break
done

While command
Select this link to view information about the while-do-done command.

The syntax of the while command is as follows:

while list1

do list2

done

qsh runs the two lists repeatedly while the exit status of list1 is zero. When the exit status of list1 is non-
zero the command completes.

Examples

1. A while command to iterate until a condition is met.

max=100
index=0
while [[$index -lt $max]] ; do
 echo Index is $index
 let index+=1
done

24 System i: Qshell

Until command
Select this link to view information about the until-do-done command.

The syntax of the until command is as follows:

until list1

do list2

done

qsh runs the two lists repeatedly while the exit status of list1 is non-zero. When the exit status of list1 is
zero the command completes.

Examples

1. An until command to iterate until a condition is met.

max=100
index=0
until [[$index -eq $max]] ; do
 echo Index is $index
 let index+=1
done

For command
Select this link to view information about the for-do-done command.

The syntax of the for command is as follows:

for variable in word ...

do list

done

The words are expanded, and then list is run repeatedly with variable set to each word in turn. You can
replace do and done with braces ({ }).

Examples

1. A for command to process a list of objects.

list=$(ls *.class)
for object in $list
do
 system "DSPJVAPGM $object"
done

Functions
Select this link to view information about functions.

The syntax of a function definition is as follows:

[function] name () command

A function definition is a statement that when run installs a function named name and returns an exit
status of zero. The command is normally a list enclosed between braces ({ }).

When name is specified as a simple command, qsh runs command. The arguments to the simple
command temporarily become the positional parameters while the function is running. The special
parameter 0 is unchanged. By using local, you can declare local variables inside of the function. By using
return, you can end the function and resume execution with the next command after the function call.

Qshell 25

Examples

Here is an example of a function that provides a qsh interface to the PING CL command.

ping()
{
 # Initialize variables and make them local to this function
 local nbrpkt='' waittime='' intnetadr='' msgmode='' pktlen='' ipttl='' host=''
 local c

 # Process the options
 while getopts c:i:I:qs:T:v c
 do case $c in
 c) nbrpkt="NBRPKT($OPTARG)";;
 i) waittime="WAITTIME($OPTARG)";;
 I) intnetadr="INTNETADR('$OPTARG')"
 host="*INTNETADR";;
 q) msgmode='MSGMODE(*QUIET)';;
 s) pktlen="PKTLEN($OPTARG)";;
 T) ipttl="IPTTL($OPTARG)";;
 v) msgmode='MSGMODE(*VERBOSE)';;
 \?) print -u2 "Usage: ping [-c count] [-i seconds] [-I ipaddr] [-q]" \
 "[-s size] [-T ttl] [-v] hostname"
 return 1;;
 esac
 done

 # Run the command
 shift $OPTIND-1
 system ping ${host:-$1} $intnetadr $nbrpkt $waittime $msgmode $pktlen $ipttl
}

Using Qshell
Select this link to find out how to use the QSH CL command, how to configure the Qshell environment,
and how to develop utilities.

Using a Qshell interactive session
The Start QSH (STRQSH) command, also known as QSH, is a CL (control language) command that either
starts a Qshell interactive session or runs a Qshell command.

If running in an interactive job with no parameters, STRQSH starts an interactive Qshell session. If a
Qshell session is not already active in the job, then the following events occur:

1. A new Qshell session is started and a terminal window is displayed.
2. qsh runs the commands from the file /etc/profile if it exists.
3. qsh runs the commands from the file .profile in the user's home directory if it exists.
4. qsh runs the commands from the file specified by the expansion of the ENV variable if it exists.

If a Qshell session is already active in an interactive job, you are reconnected to the existing session.

From the terminal window, you can enter Qshell commands and view output from the commands. The
terminal window has two parts:

• an input line for entering commands
• an output area that contains an echo of the commands you entered and any output generated by the

commands

You can use these function keys:

Function key Description

F3 (Exit) Close the terminal window and end the Qshell
session.

F5 (Refresh) Refresh the output area.

26 System i: Qshell

Function key Description

F6 (Print) Print the output area to a spool file.

F7 (Up) Roll output area up one page. If a number is on the
command line, the output area is rolled up by that
number of lines.

F8 (Down) Roll output area down one page. If a number is on
the command line, the output area is rolled down
by that number of lines.

F9 (Retrieve) Retrieve a previous command. You can press this
key multiple times to retrieve any previous
command. For example, to retrieve the second to
last command you entered, press this key two
times. You can also select a specific command to
be run again by placing the cursor on that
command and pressing this key. When the
interactive job is running in a double-byte CCSID,
this key is not available.

F11 (Toggle line wrap) Toggle the line wrap/truncate mode in the output
area. In line wrap mode, lines longer than the
width of the terminal window are wrapped to the
next line. In truncate mode, the portion of a line
beyond the width of the terminal window is not
shown.

F12 (Disconnect) Disconnect from the Qshell session. This key only
closes the terminal window and does not end the
Qshell session. You can redisplay the disconnected
Qshell session by running STRQSH again.

F13 (Clear) Clear the output area.

F14 (Adjust command line length) Adjust the command line length to four lines. If a
number is on the command line, the command line
length is adjusted to that number of lines.

F17 (Top) Display top of output area.

F18 (Bottom) Display bottom of output area.

F19 (Left) Shift output area to the left. If a number is on the
command line, the output area is shifted by that
number of columns.

F20 (Right) Shift output area to the right. If a number is on the
command line, the output area is shifted by that
number of columns.

F21 (Command entry) Display a command entry window where you can
enter CL commands.

SysReq 2 Interrupt the currently running command by
sending the SIGINT signal to all child processes.

Running Qshell commands from CL
You can run Qshell commands from the CL command environment with the Start Qshell command.

The Start QSH (STRQSH) command, also known as QSH, is a CL (control language) command that either
starts a Qshell interactive session or runs a Qshell command.

Qshell 27

If called with the CMD parameter, STRQSH runs the specified Qshell command. The possible values of the
CMD parameter are as follows:

*NONE
No command is provided and an interactive session is started. If CMD(*NONE) is specified and
STRQSH is run in a batch job, STRQSH does nothing.

command
A Qshell command to run. The command can be a maximum of 5000 bytes in length. If a blank or
other special characters are used, the command must be enclosed in apostrophes. If an apostrophe is
intended, two apostrophes must be used.

When running a command, STRQSH starts qsh, runs the specified Qshell command, displays any output
generated by the command to the C runtime terminal session, and ends qsh. Note that qsh does not run
any profile files when started to run a command.

You can control what happens to the output by setting the QIBM_QSH_CMD_OUTPUT environment
variable. The environment variable can have these values:

STDOUT
Display the output to the C runtime terminal session. This is the default value.

NONE
Throw away any output that is produced.

FILE=pathname
Store the output in the file specified by pathname. The file is truncated before output is written to the
file.

FILEAPPEND=pathname
Store the output in the file specified by pathname. The output is appended to end of the file.

When the command ends, STRQSH sends one of three messages:

• QSH0005 when the process running the command ends normally. The message includes the exit status
of the process.

• QSH0006 when the process running the command ends by signal. The message includes the signal
number.

• QSH0007 when the process running the command ends by exception.

By default, the messages are sent as completion messages. You can have the messages sent as escape
messages by setting the environment variable QIBM_QSH_CMD_ESCAPE_MSG. When the value of the
environment variable is "Y", the QSH0006, and QSH0007 messages are always sent as escape messages
and the QSH0005 message is sent as an escape message if the exit status is greater than zero.

Related tasks
“Using a Qshell interactive session” on page 26
The Start QSH (STRQSH) command, also known as QSH, is a CL (control language) command that either
starts a Qshell interactive session or runs a Qshell command.

Running Qshell commands from PASE
You can run Qshell commands from the PASE environment.

i5/OS PASE provides a qsh command that invokes qsh to either run an interactive session or a command.
You can use it to run any Qshell command from any i5/OS PASE shell.

Related information
i5/OS PASE

Customizing the Qshell environment
Use these three profile files to customize your Qshell environment. Each profile file is a shell script that
can contain any Qshell command.

See the Variables topic for the complete list of supported environment variables.

28 System i: Qshell

Global profile file

If the file /etc/profile exists, qsh runs it in the current environment when you login. It is typically
maintained by an administrator to set system-wide defaults for all users. This file should be secured by
setting the public authority to read and execute.

Here is a sample /etc/profile file that defines a system-wide PATH variable for all users:

Sample /etc/profile file
export PATH=/usr/bin:.:/QOpenSys/usr/bin

Profile file

If the file .profile exists in the user's home directory, qsh runs it in the current environment when you
login. It is used to customize your login environment.

Here is a sample .profile file that defines the user's environment file and customizes the PATH variable to
include a subdirectory under the user's home directory:

Sample .profile file
export ENV=$HOME/.qshrc
export PATH=$PATH:$HOME/bin

Environment file

If the file specified by the expansion of the ENV variable exists, qsh runs it in the current environment
when starting an interactive shell. The environment file is typically used to set aliases, define functions, or
set options for an interactive shell session.

Here is a sample environment file:

Sample environment file
PS1='$PWD'

Note: When qsh is started, the job-level and system-level environment variables are also defined in qsh.
For example, the following CL command can be used to establish the PATH variable system-wide:

ADDENVVAR ENVVAR(PATH) VALUE('/usr/bin:.:/QOpenSys/usr/bin') LEVEL(*SYS)

National language support (NLS) considerations
When qsh starts, it initializes internal tables for processing commands based on the CCSID of the job.
When reading files, qsh and many utilities dynamically translate files from the CCSID of the file to the
CCSID of the job.

For everything to run correctly, you must configure your environment as documented in the tables below.

A locale contains information about a language and country or region, including how to sort and classify
characters and the formats for dates, times, numbers, and monetary values. A locale is set by setting the
LANG environment variable to the path name to a locale object. For example, to set the locale for US
English, the LANG environment variable is set as follows:

LANG=/QSYS.LIB/EN_US.LOCALE

It is best to set the LANG environment variable before starting qsh. Some utilities will not work correctly if
the locale is not valid for the CCSID and language ID of the job as shown in the tables below.

There can be problems in the following situations:

• In an interactive session, if the CCSID of a job is different from the CCSID of the display device, qsh
does not recognize certain special characters.

Qshell 29

• If there is no support for translating between the CCSID of a script file and the CCSID of the job, then
the file cannot be opened.

Supported CCSIDs

The following table shows the supported CCSIDs. It is indexed by CCSID number. If a CCSID is not in the
table, qsh sends message 001-0072 and runs as if it was started in CCSID 37.

Supported CCSIDs

CCSID Code Page Description

00037 00037 USA, Canada

00256 00256 International #1

00273 00273 Germany, Austria

00277 00277 Denmark, Norway

00278 00278 Finland, Sweden

00280 00280 Italy

00284 00284 Spain, Latin America

00285 00285 United Kingdom

00297 00297 France

00424 00424 Israel (Hebrew)

00425 00425 Arabic

00500 00500 Belgium, Canada, Switzerland

00833 00833 Korea Extended Single-byte

00836 00836 Simplified Chinese Extended
Single-byte

00838 00838 Thailand Extended

00870 00870 Latin-2 Multilingual

00871 00871 Iceland

00875 00875 Greece

00880 00880 Cyrillic Multilingual

00905 00905 Turkey Extended

00918 00918 Pakistan

00933 00833, 00834 Korea Extended Mixed

00935 00836, 00837 Simplified Chinese Extended Mixed

00937 00037, 00835 Traditional Chinese Extended Mixed

00939 01027, 00300 Japan English Extended Mixed

01025 01025 Cyrillic Multilingual

01026 01026 Turkey

01027 01027 Japan Latin Extended Single-byte

01097 01097 Farsi

30 System i: Qshell

Supported CCSIDs

CCSID Code Page Description

01112 01112 Baltic Multilingual

01122 01122 Estonian

01123 01123 Cyrllic Ukraine

01130 01130 Vietnam

01132 01132 Lao

01137 01137 Devanagari

01140 01140 USA, Canada euro

01141 01141 Germany, Austria euro

01142 01142 Denmark, Norway euro

01143 01143 Finland, Sweden euro

01144 01144 Italy euro

01145 01145 Spain, Latin America euro

01146 01146 United Kingdom euro

01147 01147 France euro

01148 01148 Belgium, Canada, Switzerland euro

01149 01149 Iceland euro

01153 01153 Latin-2 Multilingual euro

01154 01154 Cyrllic Multilingual euro

01155 01155 Turkey euro

01156 01156 Baltic Multilingual euro

01157 01157 Estonia euro

01158 01158 Cyrillic Ukraine euro

01160 01160 Thailand Extended euro

01164 01164 Vietnam euro

01388 00836, 00837 Simplified Chinese Host Data Mixed

01399 01399, 00300 Japan English Extended Mixed euro

05035 01027, 00300 Japan English Extended Mixed

05123 01399 Japan English Extended Single-byte
euro

09030 00838 Thailand Extended Single-byte

13124 00836 Simplified Chinese Host Data
Single-byte

28709 00037 Traditional Chinese Extended

Qshell 31

Supported Languages

The following table shows the supported languages. It is indexed by language. In the Language field, the
value in parentheses is the value to use for the LANGID parameter of the CHGJOB CL command. In the
Country or Region field, the value in parentheses is the value to use for the CNTRYID parameter of the
CHGJOB CL command.

Note that there are more valid combinations of Language, Country or Region, CCSID, and Locale than are
listed in the table. For example, there is only one entry for the Spanish language even though it is used in
more than one country or region.

When running Qshell, the LANGID, CNTRYID, CCSID job attributes must be set to the values listed in the
table, and the LANG environment variable must be set to the listed locale.

Supported Languages

Language Country or Region Id CCSID Locale

Albanian (SQI) Albania (AL) 00500 /QSYS.LIB/SQ_AL.LOCALE

Arabic (ARA) Arabic Area (AA) 00425 /QSYS.LIB/
AR_AA.LOCALE

Belgian Dutch (NLB) Belgium (BE) 00500 /QSYS.LIB/NL_BE.LOCALE

Belgian Dutch Euro (NLB) Belgium (BE) 01148 /QSYS.LIB/
NL_BE_E.LOCALE

Belgian French (FRB) Belgium (BE) 00500 /QSYS.LIB/FR_BE.LOCALE

Belgian French Euro (FRB) Belgium (BE) 01148 /QSYS.LIB/
FR_BE_E.LOCALE

Belgium English (ENB) Belgium (BE) 00500 /QSYS.LIB/
EN_BE.LOCALE

Brazilian Portugese (PTB) Brazil (BR) 00037 /QSYS.LIB/PT_BR.LOCALE

Bulgarian (BGR) Bulgaria (BG) 00037 /QSYS.LIB/
BG_BG.LOCALE

Canadian French (FRC) Canada (CA) 00500 /QSYS.LIB/FR_CA.LOCALE

Croatian (HRV) Croatia (HR) 00870 /QSYS.LIB/
HR_HR.LOCALE

Czech (CSY) Czech Republic (CZ) 00870 /QSYS.LIB/CS_CZ.LOCALE

Danish (DAN) Denmark (DK) 00277 /QSYS.LIB/
DA_DK.LOCALE

Dutch (NLD) Netherlands (NL) 00037 /QSYS.LIB/NL_NL.LOCALE

Dutch Euro (NLD) Netherlands (NL) 01140 /QSYS.LIB/
NL_NL_E.LOCALE

English Upper Case (ENP) United States (US) 00037 /QSYS.LIB/
EN_UPPER.LOCALE

Estonian (EST) Estonia (EE) 01122 /QSYS.LIB/ET_EE.LOCALE

Finnish (FIN) Finland (FI) 00278 /QSYS.LIB/FI_FI.LOCALE

Finnish Euro (FIN) Finland (FI) 01143 /QSYS.LIB/
FI_FI_E.LOCALE

French (FRA) France (FR) 00297 /QSYS.LIB/FR_FR.LOCALE

32 System i: Qshell

Supported Languages

Language Country or Region Id CCSID Locale

French Euro (FRA) France (FR) 01147 /QSYS.LIB/
FR_FR_E.LOCALE

German (DEU) Germany (DE) 00273 /QSYS.LIB/
DE_DE.LOCALE

German Euro (DEU) Germany (DE) 01141 /QSYS.LIB/
DE_DE_E.LOCALE

Greek (ELL) Greece (GR) 00875 /QSYS.LIB/EL_GR.LOCALE

Hebrew (HEB) Israel (IL) 00424 /QSYS.LIB/IW_IL.LOCALE

Hungarian (HUN) Hungary (HU) 00870 /QSYS.LIB/
HU_HU.LOCALE

Icelandic (ISL) Iceland (IS) 00871 /QSYS.LIB/IS_IS.LOCALE

Italian (ITA) Italy (IT) 00280 /QSYS.LIB/IT_IT.LOCALE

Italian Euro (ITA) Italy (IT) 01144 /QSYS.LIB/
IT_IT_E.LOCALE

Japanese Katakana (JPN) Japan (JP) 05035 /QSYS.LIB/
JA_5035.LOCALE

Japanese Full (JPN) Japan (JP) 13488 /QSYS.LIB/
JA_13488.LOCALE

Korean (KOR) South Korea (KR) 00933 /QSYS.LIB/
KO_KR.LOCALE

Latvian (LVA) Latvia (LV) 01112 /QSYS.LIB/LV_LV.LOCALE

Lithuanian (LTU) Lithuania (LT) 01112 /QSYS.LIB/LT_LT.LOCALE

Macedonian (MKD) Macedonia (MK) 01025 /QSYS.LIB/
MK_MK.LOCALE

Norwegian (NOR) Norway (NO) 00277 /QSYS.LIB/
NO_NO.LOCALE

Polish (PLK) Poland (PL) 00870 /QSYS.LIB/PL_PL.LOCALE

Portugese (PTG) Portugal (PT) 00037 /QSYS.LIB/PT_PT.LOCALE

Portugese Euro (PTG) Portugal (PT) 01140 /QSYS.LIB/
PT_PT_E.LOCALE

Romanian (ROM) Romania (RO) 00870 /QSYS.LIB/
RO_RO.LOCALE

Russian (RUS) Russia (RU) 01025 /QSYS.LIB/
RU_RU.LOCALE

Serbian Cyrillic (SRB) Serbia (SQ) 01025 /QSYS.LIB/SR_SP.LOCALE

Serbian Latin (SRL) Serbia (SQ) 00870 /QSYS.LIB/SH_SP.LOCALE

Simplified Chinese (CHS) China (CN) 00935 /QSYS.LIB/
ZH_CN.LOCALE

Slovakian (SKY) Slovakia (SK) 00870 /QSYS.LIB/SK_SK.LOCALE

Qshell 33

Supported Languages

Language Country or Region Id CCSID Locale

Slovenian (SLO) Slovenia (SI) 00870 /QSYS.LIB/SL_SI.LOCALE

Spanish (ESP) Spain (ES) 00284 /QSYS.LIB/ES_ES.LOCALE

Spanish Euro (ESP) Spain (ES) 01145 /QSYS.LIB/
ES_ES_E.LOCALE

Swedish (SVE) Sweden (SE) 00278 /QSYS.LIB/SV_SE.LOCALE

Swiss French (FRS) Switzerland (CH) 00500 /QSYS.LIB/FR_CH.LOCALE

Swiss German (DES) Switzerland (CH) 00500 /QSYS.LIB/
DE_CH.LOCALE

Thai (THA) Thailand (TH) 00838 /QSYS.LIB/
TH_TH.LOCALE

Turkish (TRK) Turkey (TR) 00905 /QSYS.LIB/TR_TR.LOCALE

Ukrainian (UKR) Ukraine (UA) 01025 /QSYS.LIB/
UK_UA.LOCALE

UK English (ENG) United Kingdom (GB) 00285 /QSYS.LIB/
EN_GB.LOCALE

US English (ENU) United States (US) 00037 /QSYS.LIB/
EN_US.LOCALE

Related information
iSeries Globalization IBM Code Pages

Performance considerations
Configure Qshell for the best possible performance on your system.

The following tips can help improve performance when using qsh:

• Do not use command substitutions in the value of the PS1 variable. This causes a new process to be
started every time you press the <enter> key.

• Use input redirection instead of cat. For example, the following command:

cat myfile | grep Hello

can be replaced with this command:

grep Hello < myfile

• Use built-in utilities whenever possible because they are run in the current process.
• Leave the SHELL variable unset. If a script file does not contain a "#!" on the first line, the script is run in

the current activation of qsh.

Developing your own utilities
You can develop your own utility programs using any language, although ILE/C, ILE/C++, and Java have
the best runtime support.

When creating ILE/C or ILE/C++ programs, you should use Integrated File System I/O when creating all of
the modules in your utility program.

34 System i: Qshell

http://www-1.ibm.com/servers/eserver/iseries/software/globalization/codepages.html

A utility reads input from standard input or descriptor 0, writes output to standard output or descriptor 1,
and writes errors to standard error or descriptor 2.

If your utility program uses the ILE/C or ILE/C++ standard files for I/O, you can run your utility from either
the qsh command line or the QCMD command line. If your utility reads and writes directly from
descriptors 0, 1, and 2, you can only run your utility from the Qshell command line.

Editing files with Qshell Interpreter
You can edit files from any file system using the EDTF CL command. It is an editor that is similar to the
Source Entry Utility (SEU) for editing stream files or database files.

You can edit files from any file system using the EDTF CL command. It is an editor that is similar to the
Source Entry Utility (SEU) for editing stream files or database files. Also, you can display a stream file or
database file using the DSPF CL command.

Another alternative is to connect to the server using System i® Navigator and edit the file using an editor
running on the client. The file can be stored in ASCII and still be used by Qshell.

A shell script is just a text file that contains shell commands. It is important to use the right file system for
storing shell scripts. Shell scripts are stream data and should be stored in the "root" file system. While it is
possible to store shell scripts in source physical files in the QSYS.LIB file system, it causes the shell
scripts to use more storage and to run slower.

Differences with other interpreters
While qsh is compatible with other standard shell interpreters, there are several differences.

• There is no support for the <> redirection operator.
• There is no support for a command history list, the HISTSIZE and HISTFILE variables, or the fc (or hist)

built-in utility. As an alternative, the QSH CL command has support for command retrieval.
• There is no support for command line editing and the EDITOR variable.
• There is no support for the MAIL, MAILCHECK, and MAILPATH variables.
• There is no support for job control. There is no concept of a foreground or background process group on

i5/OS. This means it is possible for multiple jobs to be reading from the terminal at the same time. qsh
does not support:

– The fg or bg built-in utilities.
– Using the Suspend key (typically <ctrl>z) to send the SIGTSTP signal to the foreground process

group.
– Using the Stop key (typically <ctrl>s) to send the SIGSTOP signal to the foreground process group.
– Using the Restart key (typically <ctrl>q) to send the SIGCONT signal to the foreground process group.
– Using the Interrupt key (typically <ctrl>c) to send the SIGINT signal to the foreground process group.

As an alternative, you can use SysReq 2 from an interactive shell session to send the SIGINT signal to
the shell interpreter process and any currently running child processes.

• There is no support for the End-of-file key (typically <ctrl>d). As an alternative, use a here-document to
redirect text entered at the command line to standard input of a utility.

• When calling a program, there is a limit to the maximum number of parameters you can pass to the
command. If the program was built for a release before V5R3, the limit is 255 parameters. If the
program was built for V5R3 or a subsequent release, the limit is 65535 parameters.

• When using path name expansion with some case insensitive file systems, you must use upper case
characters in the pattern. For example, to list all of the program objects in the QSHELL library you
should use this command:

ls /qsys.lib/qshell.lib/*.PGM.

Qshell 35

Utilities
Use this alphabetical list of all the utilities to go directly to the utility that you need.

List of all utilities

A B C D E F G H I J K L M N O P Q R S T U W X Z

A

ajar Alternative Java archive tool

alias Define or display aliases

appletviewer Run applets without a web browser

attr Get or set attributes for files

B

basename Return non-directory portion of path name

break Exit from for, while, or until loop

builtin Run a shell built-in utility

C

cat Concatenate and print files

catsplf Concatenate and print spool files

cd Change working directory

chgrp Change file group permission

chmod Change file modes (permissions)

chown Change file ownership

clrtmp Clear the /tmp directory

cmp Compare two files

colon (:) Null utility

command Run a simple command

compress Compress data

continue Continue for, while, or until loop

cp Copy files

cut Cut out selected fields of each line of a file

D

dataq Send or receive messages from i5/OS data queue

datarea Read or write i5/OS data area

date Write the date and time

db2profc DB2® SQLJ profile customizer

db2profp Print DB2 customized version of SQLJ profile

declare Declare variables and set attributes

36 System i: Qshell

dirname Return directory portion of path name

dot (.) Run commands in current environment

dspmsg Display message from a message catalog

E

echo Write arguments to standard output

egrep Search a file for an extended regular expression
pattern

env Set environment for command invocation

eval Construct command by concatenating arguments

exec Run commands and open, close, or copy
descriptors

exit Exit from the shell

export Set export attribute for variables

expr Evaluate arguments as an expression

extcheck Detect Java archive conflicts

F

false Return false value

fgrep Search a file for a fixed string pattern

file Determine file type

find Find files

G

gencat Generate a formatted message catalog

getconf Get configuration values

getjobid Display job information

getopts Parse utility options

grep Search a file for a pattern

H

hash Remember or report utility locations

head Copy the first part of files

help Display information for built-in utility

hostname Display the name of the current host system

I

iconv Convert characters from one CCSID to another
CCSID

id Return user identity

Qshell 37

ipcrm Remove interprocess communication identifier

ipcs Report interprocess communication status

J

jar Archive Java files

jarsigner Java archive signing and verification

java Run Java interpreter

javac Compile a Java program

javadoc Generate Java documentation

javah Generate C header or stub file

javakey Manage Java security keys and certificates

javap Disassemble a compiled Java program

jobs Display status of jobs in the current session

K

kdestroy Destroy a Kerberos credentials cache

keytab Manage a Kerberos key table file

keytool Key and certificate management tool

kill End or signal processes

kinit Obtain or renew a Kerberos ticket-granting ticket

klist Display the contents of a Kerberos credentials
cache or key table file

ksetup Manage Kerberos service entries in the LDAP
directory for a Kerberos realm

L

ldapadd Add LDAP entry tool

ldapchangepwd Change LDAP Password tool

ldapdelete Delete LDAP entry tool

ldapdiff Compare LDAP replication synchronization tool

ldapexop Extend LDAP operation tool

ldapmodify Change LDAP entry tool

ldapmodrdn Change LDAP Relative Distinguished Name (RDN)
tool

ldapsearch Search LDAP server tool

let Evaluate arithmetic expression

liblist Manage library list

ln Link files

local Assign a local variable in a function

38 System i: Qshell

locale Get locale specific information

logger Log messages

logname Return user's login name

ls List directory contents

M

mkdir Make directories

mkfifo Make FIFO special files

mv Move files

N

native2ascii Convert native characters to ASCII

nohup Run utility without hangups

O

od Dump files in various formats

P

pax Portable archive interchange

policytool Policy file creation and management tool

pr Print files

print Write output

printenv Display values of environment variables

printf Write formatted output

profconv Convert SQLJ serialized profile instance to Java
class

profdb SQLJ profile auditor installer

profp Print SQLJ profile

ps Display process status

pwd Return working directory name

pwdx Return working directory expanded

Q

qsh Qshell command language interpreter

R

read Read a line from standard input

readonly Set read-only attribute for variables

return Return from a function

rexec Run remote command

Qshell 39

rexx Run REXX procedure

Rfile Read or write record files

rm Remove directory entries

rmdir Remove directories

rmic Compile Java RMI stubs

rmid Java RMI activation system

rmiregistry Start a remote object registry

S

sed Stream editor

serialver Return serial version

set Set or unset options and positional parameters

setccsid Set CCSID attribute for a file

sh Qshell command language interpreter

shift Shift positional parameters

sleep Suspend invocation for an interval

sort Sort, merge, or sequence check text files

source Run commands in the current environment

split Split files into pieces

sqlj Structured query language for Java (SQLJ)
translator

system Run CL command

sysval Retrieve system values or network attribute

T

tail Copy the last part of a file

tar File archiver

tee Duplicate standard input

test Evaluate expression

tnameserv Naming service

touch Change file access and modification times

tr Translate characters

trap Trap signals

true Return true value

type Find type of command

typeset Declare variables and set attributes

U

40 System i: Qshell

ulimit Set or display resouce limits

umask Get or set the file mode creation mask

unalias Remove alias definitions

uname Return system name

uncompress Expand compressed data

uniq Report or filter out repeated lines in a file

unset Unset values and attributes of variables and
functions

W

wait Wait for process completion

wc Word, line and byte/character count

whence Determine how command is interpreted

X

xargs Construct argument lists and invoke utility

Z

zcat Expand and concatenate data

Utilities for defining aliases
View the utilities for defining aliases.

alias - Define or display aliases
The alias utility defines an alias name that has the specified value. If only name is specified, qsh displays
the name and value of the alias.

Synopsis

alias [-p] [name [=value] ...]

Description

When no arguments are specified, qsh displays a list of all the aliases and their values.

qsh defines these default aliases:

• float='declare -E'
• functions='declare -f'
• integer='declare -i'

Options

-p
Precede each line of the output with the word "alias " so it is displayed in a re-enterable format.

Operands

Each name specifies an alias in the current environment. If a value is also specified, then the value of the
alias is updated.

Exit status

• 0 when successful.

Qshell 41

• >0 when unsuccessful. The value is the number of names that are not aliases.

Examples

1. Define an alias to list the contents of a directory:

alias ll='ls -l'

2. Display the value of the ll alias:

alias ll

3. Display the values of all currently defined aliases:

alias

Related tasks
unalias - Remove alias definitions
You can use unalias to remove the names from the list of defined aliases.

unalias - Remove alias definitions
You can use unalias to remove the names from the list of defined aliases.

Synopsis

unalias name ...

unalias -a

Description

Options

-a
Remove all aliases

Operands

Each name is a defined alias.

Exit status

• 0 when successful.
• >0 when unsuccessful. The value is the number of names that are not aliases.

Examples

Remove the ll alias: unalias ll

Related tasks
alias - Define or display aliases
The alias utility defines an alias name that has the specified value. If only name is specified, qsh displays
the name and value of the alias.

Utilities for running commands
View the utilities for running commands.

builtin - Run a shell built-in utility

Synopsis

builtin [utility [argument ...]]

Description

42 System i: Qshell

The builtin utility runs the shell built-in utility with the specified arguments. You can use builtin to run a
built-in utility from a shell function of the same name.

Operands

The utility is the name of a shell built-in utility. You can use command, type, or whence to determine the
type of a utility

Exit status

• The exit status of the utility
• 1 if utility is not a built-in utility

Related concepts
“Compound commands” on page 22
Compound commands provide control flow for other commands. Each compound command starts with a
reserved word and has a corresponding reserved word at the end.
Related tasks
command - Run a simple command
type - Find type of command
whence - Determine how command is interpreted
help - Display information for built-in utility

command - Run a simple command

Synopsis

command [-p] command_name [argument ...]

command [-vV] command_name

Description

You can use command to run command_name with the specified arguments with functions eliminated
from the search order. If command_name is a special built-in utility, then it is treated as a regular built-in
utility. Otherwise, the effect of command is the same as omitting command.

Note that command -v is equivalent to whence and command -V is equivalent to whence -v.

Options

-p
Perform the command search using a default value for the PATH variable that is guaranteed to find all
of the standard utilities.

-v
Write a string that shows the path name or command used by qsh to invoke command_name in the
current environment.

-V
Write a string that shows how command_name is interpreted by qsh in the current environment.

Operands

command_name is a utility in the current environment.

Exit status

• 0 when successful.
• >0 when unsuccessful.

Examples

1. Run the export special built-in utility as a regular built-in utility: command export ALPHA
2. Display the path name used to invoke the ls utility: command -v ls
3. Display how the reserved word for is interpreted: command -V for

Qshell 43

Related concepts
exec - Run commands and open, close, or copy descriptors
Related tasks
builtin - Run a shell built-in utility
dot (.) - Run commands in current environment
eval - Construct command by concatenating arguments
whence - Determine how command is interpreted
help - Display information for built-in utility
nohup - Run utility without hangups
type - Find type of command
source - Run commands in current environment

dot (.) - Run commands in current environment

Synopsis

. name [argument ...]

Description

You can use dot to run a script or function in the current environment.

Options

None.

Operands

If name refers to a function, qsh runs the function in the current environment. Otherwise, qsh uses the
search path specified by the PATH variable to find name. If name is found, qsh reads the contents of the
file and runs those commands in the current environment.

If specified, the arguments replace the positional parameters while name is running. Otherwise the
positional parameters are unchanged.

Exit status

Exit status of last command in name.

Related concepts
exec - Run commands and open, close, or copy descriptors
Related tasks
command - Run a simple command
eval - Construct command by concatenating arguments
whence - Determine how command is interpreted

env - Set environment for command invocation

Synopsis

env [-i | -] [name=value ...] [utility [argument ...]]

Description

The env utility obtains the current environment, modifies it according to the arguments, and then invokes
the specified utility. Any arguments are passed to the utility. If no utility is specified, the resulting
environment is written to standard output with one name=value per line.

Options

-
Invoke the utility with exactly the environment specified on the command. The inherited environment
is ignored completely.

44 System i: Qshell

-i
Same as '-'.

Operands

name=value
This modifies the run-time environment and is placed into the inherited environment before the utility
is invoked.

utility
The name of the command or utility to be invoked.

argument
A string to pass to the invoked command or utility.

Exit status

• 0 when successful
• >0 when an error occurs

Related tasks
nohup - Run utility without hangups
printenv - Display values of environment variables

eval - Construct command by concatenating arguments

Synopsis

eval [argument ...]

Description

You can use eval to construct a command by concatenating arguments together, each separated by a
<space>. qsh then reads and runs the constructed command.

Options

None.

Operands

Each argument is expanded twice, once to construct the command and once when the constructed
command is run.

Exit status

Exit status of the constructed command.

Related concepts
exec - Run commands and open, close, or copy descriptors
Related tasks
command - Run a simple command
dot (.) - Run commands in current environment
source - Run commands in current environment
whence - Determine how command is interpreted
xargs - Construct argument lists and invoke utility

exec - Run commands and open, close, or copy descriptors

Synopsis

exec [-c] [command [argument ...]]

Description

The exec utility replaces qsh with command without creating a new process. The specified arguments are
arguments to command. Any redirections affect the current environment.

Qshell 45

When a command is not specified, any redirections are processed in the current environment. Any file
descriptors greater than 2 that are opened by a redirection are not inherited when qsh invokes another
program.

Options

-c
Run command with an empty set of environment variables.

Operands

Each argument is assigned in order to the positional parameters of command.

Exit status

Zero if no command is specified. Otherwise it does not return to qsh.

Examples

1. Open a file for reading on descriptor 5:

exec 5<$HOME/input

2. Close descriptor 5:

exec 5<&-

Related concepts
rexec - Run remote command
Related tasks
command - Run a simple command
dot (.) - Run commands in current environment
eval - Construct command by concatenating arguments
nohup - Run utility without hangups
print - Write output
read - Read a line from standard input
source - Run commands in current environment

exit - Exit from the shell

Synopsis

exit [n]

Description

You can use exit to end the shell and return to the program that called qsh.

Options

None.

Operands

The value of n is an integer that is greater than or equal to 0 and less than or equal to 255.

Exit status

n if specified. Otherwise, the exit status of the preceding command.

Related tasks
return - Return from a function
qsh - Qshell command language interpreter

46 System i: Qshell

help - Display information for built-in utility

Synopsis

help [utility ...]

Description

The help utility displays a usage message for the specified built-in utility. If no arguments are specified,
help displays the list of all built-in utilities.

Operands

The utility is the name of a shell built-in utility.

Exit Status

• 0 when successful
• >0 if utility is not a built-in utility

Related tasks
builtin - Run a shell built-in utility
command - Run a simple command
type - Find type of command
whence - Determine how command is interpreted

nohup - Run utility without hangups

Synopsis

nohup [-C ccsid] utility [argument ...]

Description

The nohup utility runs the specified utility with the specified arguments. When utility is invoked the
SIGHUP signal is set to be ignored. You can use nohup to allow utility to run even after ending the Qshell
session.

If standard output is a terminal, all output written by utility to its standard output is appended to the file
nohup.out in the current directory. If the file cannot be created or opened for appending, all output is
appended to the file $HOME/nohup.out. If neither file can be created or opened, utility is not run. The
default permission for the nohup.out file allows only the owner to read and write the file.

If standard error is a terminal, all output written by utility to its standard error is redirected to the same
descriptor as standard output.

Options

-C ccsid
The nohup.out file is created with the specified ccsid and all data written to the file is converted from
the CCSID of the job to the specified ccsid. This option overrides the value of the QIBM_CCSID
environment variable.

Operands

The utility is the name of a regular utility in the current environment.

Environment Variables

nohup is affected by the following environment variables:

QIBM_CCSID
The value of the environment variable is the CCSID used to create the nohup.out file. All data written
to the file is converted from the CCSID of the job to the specified CCSID.

Exit status

• 126 when utility was found but could not be run

Qshell 47

• 127 when utility was not found or there was an error in nohup
• Otherwise, the exit status of utility

Related concepts
exec - Run commands and open, close, or copy descriptors
Related tasks
command - Run a simple command
env - Set environment for command invocation

qsh - Qshell command language interpreter

Synopsis

qsh [-abCefFijlmntuvx] [-o option] command_file arg ...

qsh -c [-abCefFijlmntuvx] [-o option] command_string

qsh -s [-abCefFijlmntuvx] [-o option] arg ...

Description

The qsh utility is the Qshell command language interpreter. In the first synopsis form, qsh reads the
specified command_file and runs the commands contained in the file. In the second synopsis form, qsh
runs the specified command_string and ends. In the third synopsis form, qsh reads commands from
standard input.

Options

The a, b, C, e, f, F, j, l, m, n, -o option t, u, v, and x options are described in set - Set or unset options and
positional parameters.

-c
Run the command specified in command_string and exit.

-i
The shell is interactive. If there are no operands and standard input is connected to a terminal, the -i
option is set by default.

-s
Read commands from standard input. If there are no operands and the -c option is not specified, the -
s option is set by default.

Operands

The command_file is the pathname of a regular file that contains Qshell commands. If the pathname does
not contain a slash (/) character, qsh searches for command_file using the PATH variable. The special
parameter 0 is set to the value of command_file. Each arg is a positional parameter.

The command_string is any Qshell command, including compound commands.

Exit status

• 0 when successful.
• 1 when unsuccessful.
• 2 when an error occurred in a script.
• 3 when there was an unexpected exception in a root shell.
• 4 when there was an unexpected exception in an exception handler for a root shell.
• 5 when there was an unexpected exception in a child shell.
• 6 when there was an unexpected exception in an exception handler for a child shell.
• 7 when descriptor 0 was not available.
• 8 when descriptor 1 was not available.
• 9 when descriptor 2 was not available.

48 System i: Qshell

• 10 when there was an error opening the message catalog.
• 11-125 when unsuccessful.
• 126 when a command was found but could not be invoked.
• 127 when a command cannot be found.
• >128 when a command was ended by a signal. The value is 128 plus the signal number.

Related concepts
Command language
This detailed reference information is a good starting point if you are writing shell scripts or are an
experienced user of shells.
Related tasks
exit - Exit from the shell
set - Set or unset options and positional parameters

rexec - Run remote command

Synopsis

rexec [-C ccsid] [-p password] [-u user] [-i] host command

Description

The rexec utility runs the specified command on the remote system specified by host. The remote system
must be running a rexec server to process the commands. By default, rexec prompts for a valid user
name and password for the remote system. The user name and password are not encyrpted when they
are sent to the remote system.

The standard output and standard error generated by command on the remote system are written to
standard output and standard error on the local system. Any data read from standard input on the local
system is sent to standard input for the command running on the remote system if the -i option is not
specified.

By default, the data sent to and from the remote system is encoded in CCSID 819. The CCSID used to
encode the data can be specified with either the -C option or the QIBM_CCSID variable. If the CCSID
value is 65535, then no conversion is done on the data.

Options
-C ccsid

Encode the data sent to and from the remote system in the specified ccsid. This option overrides the
value of the QIBM_CCSID environment variable.

-i
Ignore standard input on the local system.

-p password
The password for the user on host.

-u user
A valid user name on host.

Operands

The host is the name of the remote system where the command is run. The command is a command string
that is interpreted by the rexec server running on the remote system.

Environment Variables

rexec uses the following environment variables:
QIBM_CCSID

The value of the variable is the CCSID to use to encode the data sent to and from the remote system.

Qshell 49

Exit status

• 0 when successful
• >0 when unsuccessful

Related concepts
exec - Run commands and open, close, or copy descriptors

rexx - Run REXX procedure

Synopsis

rexx [-c cmdenv] [-t type] path [arg ...]

Description

The rexx utility runs the REXX procedure specified by path with the specified arguments.

The REXX interpreter cannot read REXX commands from standard input. It can only run REXX procedures
stored in members of database files in the QSYS.LIB file system. The interactive debug feature of the
REXX interpreter is not supported by the rexx utility.

The program /QSYS.LIB/QSHELL.LIB/QZSHSHRX.PGM implements the Qshell command environment for
REXX procedures. The Qshell command environment sets the REXX return code and condition as follows:

• When the the shell command ends normally with an exit status of zero, the REXX return code is set to
zero and no condition is raised.

• If the shell command ends normally with an exit status that is non-zero, the REXX return code is set to
the exit status value and the ERROR condition is raised.

• If the shell command ends by signal, the REXX return code is set to the signal number + 128 and the
FAILURE condition is raised.

• If the shell command ends by exception, the REXX return code is set to the exception number from
wait() and the FAILURE condition is raised.

Options

-c cmdenv
Set the command environment program to process commands for the REXX procedure. If the option
is not specified, the default value is command. The cmdenv can be one of the following values:

• command for the i5/OS CL command environment.
• cpicomm for the Common Programming Interface for communications command environment.
• execsql for the Structured Query Language (SQL) command environment.
• qsh for the Qshell command environment.
• path to specify the path to the command environment program. The path must specify a program in

the QSYS.LIB file system.

-t type
Control tracing for the REXX procedure. If the option is not specified, the default value is normal. The
type can be one of the following values:

• all to trace all clauses before processing.
• commands to trace host commands before processing and display any error return codes.
• error to trace host commands after processing that result in an error return code.
• failure to trace host commands after processing that result in a failure along with the return code.
• intermediates to trace all clauses before processing along with intermediate results during the

evaluation of expressions.
• labels to trace labels during processing.
• normal to trace host commands after processing that result in a failure.
• off to turn off all tracing.

50 System i: Qshell

• results to trace all clauses before processing.

Operands

The path is the path name of the REXX procedure. On i5/OS, a REXX procedure can only be stored in the
QSYS.LIB file system.

Exit status

• 0 when successful
• 1 when there is an error running the REXX procedure
• >1 when unsuccessful

Related tasks
system - Run CL command
Related information
REXX information

source - Run commands in current environment

Synopsis

source name [argument ...]

Description

You can use source to run a script or function in the current environment. It is a synonym for the dot
utility.

Related concepts
exec - Run commands and open, close, or copy descriptors
Related tasks
command - Run a simple command
eval - Construct command by concatenating arguments

system - Run CL command

Synopsis

system [-iKknpqsv] CLcommand [arg ...]

Description

The system utility runs a CL command. Any spool file output generated by CLcommand is written to
standard output. By default, the spool files are deleted after they are written and the job log of the job
running system is deleted.

Any messages generated by CLcommand are written to standard error. By default, all messages
generated by CLcommand are written using the following format:

MsgId: Text

where "MsgId" is the seven character i5/OS message identifier (for example CPF0001) and "Text" is the
text of the message. Use the -n option to not include the "MsgId" prefix.

By default, system checks the number of threads running in the job. If there is more than one thread
running, it starts a second job and runs CLcommand in the second job. Use the -i option to force system
to always run CLcommand in the current job.

Options

-i
Always run CLcommand in the current job and set the exit status to the ILE return code of the program
called by CLcommand. Note that some CL commands do not run in a multi-thread capable job or when
there are multiple threads running in the job.

Qshell 51

-K
Keep all spool files generated by CLcommand and the job log of the job running system. If this option
is not specified, all spool files are deleted after they are written and the job log is deleted.

-k
Keep all spool files generated by CLcommand. If this option is not specified, all spool files are deleted
after they are written.

-n
Do not include the message identifier when writing the messages to standard error. Only the message
text of the messages are written to standard error. This option is ignored if the -q option is also
specified.

-p
Only write the messages sent to the program's message queue by CLcommand to standard error. This
option is ignored if the -q option is also specified.

-q
Do not write messages generated by CLcommand to standard error.

-s
Do not write spool files generated by CLcommand to standard output.

-v
Write the complete command string to standard output before running it.

Note that for compatibility with the PASE system utility, system does not return an error if the -b, -e, -E, -
I, or -O options are specified, but the options are ignored.

Operands

Each arg is a parameter to CLcommand. You may need to enclose CLcommand and args in quotes to
prevent qsh from expanding any special characters in them. Both CL and qsh use some of the same
special characters, for example, the asterisk (*) character.

Environment Variables

The system utility is affected by the following environment variables:

QIBM_SYSTEM_ALWMLTTHD
Set this environment variable to control how the system utility behaves in a multi-thread capable job.
If the value of the variable is "N", system starts a new job to run the CL command when the current
job is multi-thread capable even if there is only one thread running in the job. There is no default
value.

QIBM_SYSTEM_USE_ILE_RC
Set this environment variable to control how the system utility sets the exit status. If the value of the
variable is "Y", system sets the exit status to the ILE return code of the program called by
CLcommand, or zero if the program did not set a return code. There is no default value. The
environment variable is ignored if the -i option is specified.

Exit status

• 0 when CLcommand is successful
• >0 when CLcommand is unsuccessful or when set by the program called by CLcommand

When the -i option is specified or the environment variable QIBM_SYSTEM_USE_ILE_RC=Y is set, system
sets the exit status to the ILE return code of the program called by CLcommand, or zero if the program did
not set a return code.

Examples

1. List all of the active jobs:

system wrkactjob

2. Create a test library:

52 System i: Qshell

system "CRTLIB LIB(TESTDATA) TYPE(*TEST)"

3. Delete a library and do not write any messages:

system -q "DLTLIB LIB(TESTDATA)"

Related tasks
rexx - Run REXX procedure
Related information
CL command finder
Running i5/OS commands from i5/OS PASE

type - Find type of command

Synopsis

type [-apt] name ...

Description

The type utility displays the type of each specified name. The name can be an alias, function, special shell
built-in, shell built-in, reserved word, or file.

Options

-a
Show all uses for name.

-p
Do not check to see if name is a reserved word, a built-in utility, an alias, or a function.

-t
Display a one word description for the type of name.

Operands

Each name is a utility in the current environment.

Exit status

• 0 when every name is found
• >0 when unsuccessful

Related tasks
builtin - Run a shell built-in utility
command - Run a simple command
help - Display information for built-in utility
whence - Determine how command is interpreted

whence - Determine how command is interpreted

Synopsis

whence [-afpv] name ...

Description

The whence utility displays how each specified name is interpreted. The name can be an alias, function,
special shell built-in, shell built-in, reserved word, or file.

Note that whence is equivalent to command -v and whence -v is equivalent to command -V.

Options

-a
Show all uses for name.

Qshell 53

-f
Do not check to see if name is a function.

-p
Do not check to see if name is a reserved word, a built-in utility, an alias, or a function.

-v
Display the type of name.

Operands

Each name is a utility in the current environment.

Exit status

• 0 when every name is found
• >0 when unsuccessful

Examples

Find the type of the reserved word for:

whence -v for

Related tasks
builtin - Run a shell built-in utility
command - Run a simple command
dot (.) - Run commands in current environment
help - Display information for built-in utility
type - Find type of command
eval - Construct command by concatenating arguments

xargs - Construct argument lists and invoke utility

Synopsis

xargs [-t] [-e[eofstring]] [-E eofstring] [-l[number]] [-L number] [-n number [-x]] [-s size] [utility
[arguments ...]]

Description

The xargs utility reads space, tab, newline and end-of-file delimited arguments from the standard input
and runs the specified utility with them as arguments.

The utility and any arguments specified on the command line are given to the utility upon each invocation,
followed by some number of the arguments read from standard input. The utility is repeatedly run until
standard input is exhausted.

Spaces, tabs and newlines may be embedded in arguments using single (') or double (") quotation marks
or backslashes (\). Single quotation marks escape all non-single quotation mark characters, excluding
newlines, up to the matching single quotation marks. Double quotation marks escape all non-double
quotation mark characters, excluding newlines, up to the matching double quotation marks. Any single
character, including newlines, may be escaped by a backslash.

If no utility is specified, echo is used by default.

Undefined behavior may occur if utility reads from the standard input.

The xargs utility exits immediately (without processing any further input) if a command line cannot be
assembled, utility cannot be invoked, an invocation of the utility is ended by a signal, or an invocation of
the utility exits with a value of 255.

Options

54 System i: Qshell

-E eofstring
Specify a logical end-of-file string. xargs reads standard input until either end-of-file or the logical
end-of-file string is encountered.

-e[eofstring]
This option is equivalent to the -E option. If eofstring is not specified, the default value is _ (a single
underscore).

-L number
Run utility for each non-empty number lines of arguments read from standard input. The last
invocation of utility will be with fewer lines of arguments if fewer than number remain. A line is
considered to end with the first newline character unless the last character of the line is a blank
character. A trailing blank character signals continuation to the next non-empty line, inclusive. The -L
and -n options are mutually exclusive. The last one specified takes effect.

-l[number]
This option is equivalent to the -L option. If number is not specified, the default value is 1.

-n number
Set the maximum number of arguments read from standard input for each invocation of the utility. An
invocation of utility will use less than number standard input arguments if the number of bytes
accumulated (see the -s option) exceeds the specified size or there are fewer than number arguments
remaining for the last invocation of utility. The maximum number of arguments i5/OS can pass to a
program is 255. The default value for number is 250. The -n and -L options are mutually exclusive.
The last one specified takes effect.

-s size
Set the maximum number of bytes for the command line length provided to utility. The sum of the
length of the utility name and the arguments passed to utility (including NULL terminators) will be less
than or equal to size. The default value for size is 16 252 928 bytes.

-t
Turn on trace mode. The command to be run is written to standard error immediately before it is run.

-x
Force xargs to end immediately if a command line containing number arguments will not fit in the
specified (or default) command line length.

Exit status

• 0 when all invocations of utility returned exit status 0.
• 1-125 when at least one invocation of utility returned a non-zero exit status or there was an error.
• 126 when utility was found but could not be invoked.
• 127 when utility cannot be found.
• >128 when utility was ended by a signal. The value is 128 plus the signal number.

Related tasks
echo - Write arguments to standard output
eval - Construct command by concatenating arguments
find - Find files

Utilities for managing data
View the utilities for managing data.

cmp - Compare two files

Synopsis

cmp [-l | -s] [-t] file1 file2 [skip1 [skip2]]

Description

Qshell 55

You can use cmp to compare two files. By default, a byte for byte binary comparison is done. If no
differences are found, no output is written. If no option flags are specified, cmp writes a message with the
byte and line number of the first difference and exits with an error. Bytes and lines are numbered
beginning with 1.

Options

-l
(Lower case ell) Write the byte number in decimal and the differing bytes in octal for all differences.

-s
Silent mode where no output is written for differing files; only the exit status is set.

-t
Text mode where the files are opened in text mode and translated to the CCSID of the job before
comparing byte for byte.

Operands

The file1 and file2 operands are the two files to be compared byte for byte. The optional skip1 and skip2
are the number of bytes to skip from the beginning of each file, respectively, before the comparison
begins.

Environment variables

cmp is affected by the following environment variables:

QIBM_CMP_FILE_SIZE
Controls the maximum file size in bytes that cmp reads into an internal buffer for better performance.
For files larger than the maximum size, cmp reads the files one byte at a time.

Exit status

• 0 when the files are identical
• 1 when the files are different
• >1 when an error occurred

Examples

Find the exact position where two files differ. It is better to place the reference or good file first and then
the changed or new file second.

cmp myApplet.java.old myApplet.java.new

Related tasks
sed - Stream editor
sort - Sort, merge, or sequence check text files
split - Split files into pieces
uniq - Report or filter out repeated lines in a file

cut - Cut out selected fields of each line of a file

Synopsis

cut -b list [file ...]

cut -c list [file ...]

cut -f list [-d string] [-s] [file ...]

56 System i: Qshell

Description

The cut utility selects portions of each line as specified by list from each file (or the standard input by
default), and writes them to the standard output. The items specified by list can be in terms of column
position or in terms of fields delimited by a special character. Column numbering starts from 1.

The list is a comma or whitespace separated set of increasing numbers and/or number ranges. Number
ranges consist of a number, a dash (-), and a second number and select the fields or columns from the
first number to the second, inclusive. Numbers or number ranges may be preceded by a dash, which
selects all fields or columns from 1 to the first number. Numbers or number ranges may be followed by a
dash, which selects all fields or columns from the last number to the end of the line. Numbers and
number ranges may be repeated, overlapping, and in any order. It is not an error to select fields or
columns not present in the input line.

Options
-b list

The list specifies byte positions.
-c list

The list specifies character positions.
-d string

Use the first character of string as the field delimiter character instead of the tab character.
-f list

The list specifies fields, delimited in the input by a single tab character. Output fields are separated by
a single tab character.

-s
Suppresses lines with no field delimiter characters. Unless specified, lines with no delimiters are
passed through unmodified.

Exit status

• 0 on success
• 1 if an error occurred.

Related tasks
grep - Search a file for a pattern
tr - Translate characters
wc - Word, line and byte/character count

egrep - Search a file for an extended regular expression pattern

Synopsis

egrep [-c|-l|-q] [-ihnsvwxy] [-e pattern_list] [-f pattern_file] [pattern] [file ...]

Description

The egrep utility is equivalent to running the grep utility with the -E option.

Related tasks
fgrep - Search a file for a fixed string pattern
grep - Search a file for a pattern

fgrep - Search a file for a fixed string pattern

Synopsis

fgrep [-c|-l|-q] [-ihnsvwxy] [-e pattern_list] [-f pattern_file] [pattern] [file ...]

Description

The fgrep utility is equivalent to running the grep utility with the -F option.

Qshell 57

Related tasks
egrep - Search a file for an extended regular expression pattern

grep - Search a file for a pattern

Synopsis

grep [-E|-F] [-c|-l|-q] [-R [-H | -L | -P]] [-ihnsvwxy] [-e pattern_list] [-f pattern_file] [pattern] [file ...]

Description

The grep utility searches the given input files selecting lines which match one or more patterns. The type
of patterns is controlled by the options specified. By default, a pattern matches an input line if any regular
expression (RE) in the pattern matches the input line without its trailing newline. A null RE matches every
line. Each input line that matches at least one of the patterns is written to the standard output.

If -E and -F options are both specified, the last one specified is used.

Options

-E
Use Extended Regular Expressions (ERE).

-F
Do not recognize regular expressions.

-H
If the -R option is specified, symbolic links on the command line are followed. Symbolic links
encountered in the tree traversal are not followed.

-L
If the -R option is specified, both symbolic links on the command line and symbolic links encountered
in the tree traversal are followed.

-P
If the -R option is specified, no symbolic links are followed.

-R
If file designates a directory, grep searches each file in the entire subtree connected at that point.

-c
Only a count of selected lines is written to standard output.

-e
pattern_list specifies one or more search patterns. Each pattern should be separated by a newline
character.

-f
pattern_file specifies a file containing search patterns. Each pattern should be separated by a newline
character.

-h
Do not print filename headers.

-i
The case of letters is ignored in making comparisons. That is, upper and lower case are considered
identical.

-l
Only the names of files containing selected lines are written to standard output. Pathnames are listed
once per file searched. If the standard input is searched, the pathname "-" is written.

-n
Each output line is preceded by its relative line number in the file; each file starting at line 1. The line
number counter is reset for each file processed. This option is ignored if the -c, -l, or -s options are
specified.

-q
Quiet mode where no messages are printed. Only the exit status is returned.

58 System i: Qshell

-s
Suppress the error messages ordinarily written for nonexistent or unreadable files. Other messages
are not suppressed.

-v
Selected lines are those not matching the specified patterns.

-w
The expression is searched for as a whole word (as if surrounded by "[[:<:]]" and "[[:>:]]").

-x
Match line if pattern is the only thing on the line. This option takes precedence over the -w option. If
both are specified, the -w option is ignored.

-y
Ignore case (same as -i).

Operands

Each file specifies the path to a text file. If no file operandss are specified, the standard input is used.

Exit status

• 0 when one or more lines were selected.
• 1 when no lines were selected.
• >1 when an error occurred.

Extended regular expressions (ERE)

The following characters are interpreted by grep:

$
Align the match from the end of the line.

^
Align the match from the beginning of the line. (NOTE: This character may not work correctly from a
5250 terminal session.)

|
Add another pattern (see example below).

?
Match one or less sequential repetitions of the pattern.

+
Match one or more sequential repetitions of the pattern.

*
Match zero or more sequential repetitions of the pattern.

.
Match any single character.

[]
Match any single character or range of characters enclosed in the brackets.

Escape special characters which have meaning to grep, that is, the set of {$,.,^,[,],|,?,+,*,(,)}.

Examples

1. Find all occurrences of the word patricia in a file.

grep patricia myfile

2. Find all occurrences of the pattern ".Pp" at the beginning of a line. The single quotation marks assure
the entire expression is evaluated by grep instead of by the shell. The carat (^) means from the
beginning of a line.

Qshell 59

grep '^.Pp' myfile

3. Find either 19, 20 or 25 in the file calendar.

grep -E '19|20|25' calendar

4. Find the total number of lines that matches a character in the range of "a" to "z".

grep -c '[a-z]' reference/alphabet.text

5. Display all lines that have a dollar sign ($) character in them. You must escape the dollar sign character
so grep will not interpret the character. Also, display the line number as well as the line that contains
the match.

grep -n '\$' valid.file

Related concepts
cut - Cut out selected fields of each line of a file
Related tasks
egrep - Search a file for an extended regular expression pattern
tr - Translate characters
wc - Word, line and byte/character count

iconv - Convert characters from one CCSID to another CCSID

Synopsis

iconv -f fromCCSID -t toCCSID [file ...]

Description

The iconv utility converts the encoding of characters read from either standard input or the specified file
from one CCSID to another CCSID and then writes the results to standard output. The input data is
assumed to be in the CCSID specified by the fromCCSID parameter. If file is not specified, the iconv utility
reads from standard input.

You must specify the CCSID values defined on i5/OS with a supported conversion for the fromCCSID and
toCCSID parameters.

Options

-f fromCCSID
The input data is encoded in the fromCCSID.

-t toCCSID
The output data is encoded in the toCCSID.

Operands

The file operand specifies a path name to a regular file.

Exit status

• 0 when successful
• 1 when the conversion is not supported or there is an error with file
• 2 when there is an error during the conversion

Related tasks
locale - Get locale specific information
tr - Translate characters
setccsid - Set CCSID attribute for file

60 System i: Qshell

sed - Stream editor
sort - Sort, merge, or sequence check text files
split - Split files into pieces
uniq - Report or filter out repeated lines in a file

sed - Stream editor

Synopsis

sed [-an] [-C ccsid] command file ...

sed [-an] [-C ccsid] [-e command] [-f command_file] file ...

Description

The sed utility reads the specified files, or the standard input if no files are specified, modifying the input
as specified by a list of commands. The input is then written to the standard output.

A single command may be specified as the first argument to sed. Multiple commands may be specified by
using the -e or -f options. All commands are applied to the input in the order they are specified regardless
of their origin.

Options

-a
By default, the files listed as parameters for the w functions are created (or truncated) before any
processing begins. The -a option causes sed to delay opening each file until a command containing
the related w function is applied to a line of input.

-C ccsid
Any files created by sed are created with the CCSID specified by ccsid. This option overrides the value
of the QIBM_CCSID environment variable.

-e command
Append the editing commands specified by the command argument to the list of commands.

-f command_file
Append the editing commands found in the file command_file to the list of commands. The editing
commands should each be listed on a separate line.

-n
By default, each line of input is echoed to the standard output after all of the commands have been
applied to it. The -n option suppresses this behavior.

Operands

The form of a sed command is as follows:

[address[,address]]function[arguments]

White space may be inserted before the first

address

and the

function

portions of the command.

Normally, sed cyclically copies a line of input, not including its terminating newline character, into a
"pattern space", (unless there is something left after a D function), applies all of the commands with
addresses that select that pattern space, copies the pattern space to the standard output, appending a
newline, and deletes the pattern space.

Some of the functions use a "hold space" to save all or part of the pattern space for subsequent retrieval.

Extended description

Qshell 61

sed Addresses

An address is not required, but if specified must be one of the follows:

• a number that counts input lines cumulatively across input files,
• a dollar ($) character that addresses the last line of input, or
• a context address which consists of a regular expression preceded and followed by a delimiter.

A command line with no addresses selects every pattern space.

A command line with one address selects all of the pattern spaces that match the address.

A command line with two addresses selects the inclusive range from the first pattern space that matches
the first address through the next pattern space that matches the second. If the second address is a
number less than or equal to the line number first selected, only that line is selected. Starting at the first
line following the selected range, sed starts looking again for the first address.

Editing commands can be applied to non-selected pattern spaces by use of the exclamation character (!)
function.

sed Regular expressions

sed regular expressions are basic regular expressions. In addition, sed has the following two additions to
basic regular expressions:

• In a context address, any character other than a backslash (\) or newline character may be used to
delimit the regular expression. Also, putting a backslash character before the delimiting character
causes the character to be treated literally. For example, in the context address \xabc\xdefx, the regular
expression delimiter is an x and the second x stands for itself, so that the regular expression is abcxdef .

• The escape sequence \n matches a newline character embedded in the pattern space. You can't,
however, use a literal newline character in an address or in the substitute command.

One special feature of sed regular expressions is that they can default to the last regular expression used.
If a regular expression is empty, that is, just the delimiter characters are specified, the last regular
expression encountered is used instead. The last regular expression is defined as the last regular
expression used as part of an address or substitute command, and at run-time, not compile-time. For
example, the command:

/abc/s//XXX/

will substitute XXX for the pattern abc.

sed Functions

In the following list of commands, the maximum number of permissible addresses for each command is
indicated by [0addr], [1addr], or [2addr], representing zero, one, or two addresses.

The argument text consists of one or more lines. To embed a newline in the text, precede it with a
backslash. Other backslashes in text are deleted and the following character taken literally.

The r and w functions take an optional file parameter, which should be separated from the function letter
by white space. Each file given as an argument to sed is created (or its contents truncated) before any
input processing begins.

The b, r,s, t,w,y,! , and & functions all accept additional arguments. The following synopses indicate
which arguments have to be separated from the function letters by white space characters.

Two of the functions take a function-list. This is a list of sed functions separated by newlines, as follows:

{ function
 function
 ...
 function
}

62 System i: Qshell

The { can be preceded by white space and can be followed by white space. The function can be preceded
by white space. The terminating } must be preceded by a newline or optional white space.

[2addr] function-list
Execute function-list only when the pattern space is selected.

[1addr]a\ text
Write text to standard output immediately before each attempt to read a line of input, whether by
executing the N function or by beginning a new cycle.

[2addr]b[label]
Branch to the & function with the specified label. If the label is not specified, branch to the end of the
script.

[2addr]c\ text
Delete the pattern space. With 0 or 1 address or at the end of a 2-address range, text is written to the
standard output.

[2addr]d
Delete the pattern space and start the next cycle.

[2addr]D
Delete the initial segment of the pattern space through the first newline character and start the next
cycle.

[2addr]g
Replace the contents of the pattern space with the contents of the hold space.

[2addr]G
Append a newline character followed by the contents of the hold space to the pattern space.

[2addr]h
Replace the contents of the hold space with the contents of the pattern space.

[2addr]H
Append a newline character followed by the contents of the pattern space to the hold space.

[1addr]i\ text
Write text to the standard output.

[2addr]l
(The letter ell.) Write the pattern space to the standard output in a visually unambiguous form. This
form is as follows:

• backslash (\)
• alert (\a)
• form-feed (\f)
• newline (\n)
• carriage-return (\r)
• tab (\t)
• vertical tab (\v)

Nonprintable characters are written as three-digit octal numbers (with a preceding backslash) for
each byte in the character (most significant byte first). Long lines are folded, with the point of folding
indicated by displaying a backslash followed by a newline. The end of each line is marked with a dollar
sign ($).

[2addr]n
Write the pattern space to the standard output if the default output has not been suppressed, and
replace the pattern space with the next line of input.

[2addr]N
Append the next line of input to the pattern space, using an embedded newline character to separate
the appended material from the original contents. Note that the current line number changes.

Qshell 63

[2addr]p
Write the pattern space to standard output.

[2addr]P
Write the pattern space, up to the first newline character to the standard output.

[1addr]q
Branch to the end of the script and quit without starting a new cycle.

[1addr]r file
Copy the contents of file to the standard output immediately before the next attempt to read a line of
input. If file cannot be read for any reason, it is silently ignored and no error condition is set.

[2addr]s/regular_expression/replacement/ flags
Substitute the replacement string for the first instance of the regular_expression in the pattern space.
Any character other than backslash or newline can be used instead of a slash to delimit the
regular_expression and the replacement. Within the regular_expression and the replacement, the
regular expression delimiter itself can be used as a literal character if it is preceded by a backslash.

An ampersand (&) appearing in the replacement is replaced by the string matching the regular
expression. The special meaning of & in this context can be suppressed by preceding it by a
backslash. The string \#, where # is a digit, is replaced by the text matched by the corresponding
backreference expression.

A line can be split by substituting a newline character into it. To specify a newline character in the
replacement string, precede it with a backslash.

The value of flags in the substitute function is zero or more of the following:

0 ... 9
Make the substitution only for the N'th occurrence of the regular expression in the pattern space.

g
Make the substitution for all non-overlapping matches of the regular expression, not just the first
one.

p
Write the pattern space to standard output if a replacement was made. If the replacement string
is identical to that which it replaces, it is still considered to have been a replacement.

w file
Append the pattern space to file if a replacement was made. If the replacement string is identical
to that which it replaces, it is still considered to have been a replacement.

[2addr]t [label]
Branch to the : function bearing the label if any substitutions have been made since the most recent
reading of an input line or execution of a t function. If no label is specified, branch to the end of the
script.

[2addr]w file
Append the pattern space to the file.

[2addr]x
Swap the contents of the pattern and hold spaces.

[2addr]y/string1/string2/
Replace all occurrences of characters in string1 in the pattern space with the corresponding
characters from string2. Any character other than a backslash or newline can be used instead of a
slash to delimit the strings. Within string1 and string2, a backslash followed by any character other
than a newline is that literal character, and a /n is replaced by a newline character.

[2addr]!function
[2addr]!function-list

Apply the function or function-list only to the lines that are not selected by the address(es).
[0addr]:label

This function does nothing; it bears a label to which the b and t commands may branch.

64 System i: Qshell

[1addr]=
Write the line number to the standard output followed by a newline character.

[0addr]
Empty lines are ignored.

[0addr]#
The # and the remainder of the line are ignored (treated as a comment), with the single exception that
if the first two characters in the file are #n, the default output is suppressed. This is the same as
specifying the -n option on the command line.

Environment vriables

sed is affected by the following environment variables:

QIBM_CCSID
Any files created by sed are created with the CCSID specified by the value of the environment
variable.

Exit status

• 0 on success
• >0 if an error occurs

Related tasks
cmp - Compare two files
iconv - Convert characters from one CCSID to another CCSID
locale - Get locale specific information
tr - Translate characters
setccsid - Set CCSID attribute for file
sort - Sort, merge, or sequence check text files
split - Split files into pieces
uniq - Report or filter out repeated lines in a file

sort - Sort, merge, or sequence check text files

Synopsis

sort [-cmubdfinr] [-t char] [-T char] [-k keydef ...] [-o output] [file] ...

Description

The sort utility sorts text files by lines. Comparisons are based on one or more sort keys extracted from
each line of input, and are performed lexicographically. By default, if keys are not given, sort regards each
input line as a single field.

Options

-c
Check that the single input file is sorted. If the file is not sorted, sort produces the appropriate error
messages and exits with code 1. Otherwise, sort returns 0. This option produces no output.

-m
Merge only; the input files are assumed to be presorted.

-o output
The output argument is the name of an output file to be used instead of the standard output. This file
can be the same as one of the input files.

-u
Unique processing to suppress all but one in each set of lines having equal keys. If used with the -c
option, check that there are no lines with duplicate keys.

The following options override the default ordering rules. When ordering options appear independent of
key field specifications, the requested field ordering rules are applied globally to all sort keys. When
attached to a specific key, the ordering options override all global ordering options for that key.

Qshell 65

-d
Only blank space and alphanumeric characters are used in making comparisons.

-f
Considers all lowercase characters that have uppercase equivalents to be the same for purposes of
comparison.

-i
Ignore all non-printable characters.

-n
An initial numeric string, consisting of optional blank space, optional minus sign, and zero or more
digits (including decimal point) is sorted by arithmetic value.

-r
Reverse the sense of comparisons.

The treatment of field separators can be altered using the options:

-b
Ignores leading blank space when determining the start and end of a restricted sort key. A -b option
specified before the first -k option applies globally to all -k options. Otherwise, the -b option can be
attached independently to each field argument of the -k option (see below). Note that the -b option
has no effect unless key fields are specified.

-t char
The char argument is used as the field separator character. The initial char is not considered to be
part of a field when determining key offsets (see below). Each occurrence of char is significant (for
example, "char-char" delimits an empty field). If -t is not specified, blank space characters are used
as default field separators.

-T char
The char argument is used as the record separator character. This option should be used with
discretion. The -T option with an alphanumeric char typically produces undesirable results. The
default line separator is newline.

-k keydef
Select the key fields to use for sorting. keydef as the format:

field_start[type][,field_end[type]]

where field_start is the starting position and field_end is the optional ending position of a key field. If
field_end is not specified, the ending position is the end of the line. The type is a character from the set
of characters b, d, f, i, n, r. The type behaves the same as the corresponding option but only to the
specified key field. If no -k option is specified, a default sort key is used. A maximum of nine -k
options can be specified.

Operands

The path name of a file to be sorted, merged, or checked. If no file operands are specified, the standard
input is used.

Extended description

A field is defined as a minimal sequence of characters followed by a field separator or a newline
character. By default, the first blank space of a sequence of blank spaces acts as the field separator. All
blank spaces in a sequence of blank spaces are considered as part of the next field. For example, all blank
spaces at the beginning of a line are considered to be part of the first field.

Fields are specified by the -k field_start[type][,field_end[type]] option.

The field_start portion of the option argument has the form:

field_number[.first_character]

Fields and characters within fields are numbered starting with 1. The field_number and first_character are
positive decimal integers and specify the first character to be used as part of a sort key. If .first_character
is not specified, it refers to the first character of the field.

66 System i: Qshell

The field_end portion of the option argument has the form:

field_number[.last_character]

The field_number is a positive decimal integer and last_character is a non-negative decimal integer. If
last_character is not specified or is zero, it refers to the last character of the field.

If the -b option or the b type modifier is in effect, characters in fields are counted from the first non-blank
character.

Exit status

• 0 normal behavior.
• 1 on disorder (or non-uniqueness) with the -c option
• 2 an error occurred

Related tasks
cmp - Compare two files
iconv - Convert characters from one CCSID to another CCSID
locale - Get locale specific information
tr - Translate characters
setccsid - Set CCSID attribute for file
sed - Stream editor
split - Split files into pieces
uniq - Report or filter out repeated lines in a file

split - Split files into pieces

Synopsis

split [-b byte_count[k|m]] [-l line_count] [file [prefix]]

Description

The split utility reads the given file (or standard input if no file is specified) and breaks it up into files of
1000 lines each.

Options

-b
Create files that are byte_count bytes in length. If k is appended to the number, the file is split into
byte_count kilobyte pieces. If m is appended to the number, the file is split into byte_count megabyte
pieces.

-l
Create files that are line_count lines in length.

Operands

If additional arguments are specified, the first is used as the name of the input file which is to be split. If a
second additional argument is specified, it is used as a prefix for the names of the files into which the file
is split. In this case, each file into which the file is split is named by the prefix followed by a lexically
ordered suffix in the range of "aa-zz". If the prefix argument is not specified, the default prefix is "x". The
maximum number of possible output file names is 676.

Exit status

• 0 if successful
• >0 if an error occurs

Examples

1. Split the file jdk_v11.jar into files that are 1.44MB in size and use the prefix "jdk_v11.". for the output
files.

Qshell 67

split -b1440k jdk_v11.jar jdk_v11.

2. Split the file myapp.java into files of 100 lines each.

split -l 100 myapp.java

Related tasks
cmp - Compare two files
iconv - Convert characters from one CCSID to another CCSID
locale - Get locale specific information
tr - Translate characters
setccsid - Set CCSID attribute for file
sed - Stream editor
sort - Sort, merge, or sequence check text files
uniq - Report or filter out repeated lines in a file

tr - Translate characters

Synopsis

tr [-cs] string1 string2

tr [-c] -d string1

tr [-c] -s string1

tr [-c] -ds string1 string2

Description

The tr utility copies the standard input to the standard output with substitution or deletion of selected
characters.

In the first synopsis form, the characters in string1 are translated into the characters in string2 where the
first character in string1 is translated into the first character in string2 and so on. If string1 is longer than
string2, the last character found in string2 is duplicated until string1 is exhausted.

In the second synopsis form, the characters in string1 are deleted from the input.

In the third synopsis form, the characters in string1 are compressed as described for the -s option below.

In the fourth synopsis form, the characters in string1 are deleted from the input, and the characters in
string2 are compressed as described for the -s option below.

The following conventions can be used in string1 and string2 to specify sets of characters. Any character
not described by one of the following conventions represents itself.

nnn
A backslash (\) followed by 1, 2 or 3 octal digits represents a character with that encoded value.

char
To follow an octal sequence with a digit as a character, left zero-pad the octal sequence to the full 3
octal digits. A backslash (\) followed by certain special characters maps to special values. The special
characters and their values are:

• a - alert character
• b - backspace
• f - form-feed
• n - newline
• r - carriage return
• t - tab

68 System i: Qshell

• v - vertical tab
• A backslash (\) followed by any other character maps to that character.

c-c
Represents the range of characters between the range endpoints, inclusively.

[:class:]
Represents all characters belonging to the defined character class. These are the class names:

• alnum - alphanumeric characters
• alpha - alphabetic characters
• cntrl - control characters
• digit - numeric characters
• graph - graphic characters
• lower - lower-case alphabetic characters
• print - printable characters
• punct - punctuation characters
• space - space characters
• upper - upper-case characters
• xdigit - hexadecimal characters

Note: With the exception of the upper and lower
classes, characters in the classes are in
unspecified order. In the upper and lower
classes, characters are entered in ascending
order.

Options

-c
Complement the set of characters in string1, that is -c ab includes every character except for "a" and
"b".

-d
Delete characters from the input.

-s
Squeeze multiple occurrences of the characters listed in the last operand (either string1 or string2) in
the input into a single instance of the character. This occurs after all deletion and translation is
completed.

Exit status

• 0 on success
• >0 if an error occurs.

Examples

1. Create a list of the words in file1, one per line, where a word is taken to be a maximal string of letters.

tr -cs '[:alpha:]' 'n' < file1

2. Translate the contents of file1 to upper-case.

tr '[:lower:]' '[:upper:]' < file1
tr 'a-z' 'A-Z' < file1

3. Remove the non-printable characters from file1.

Qshell 69

tr -cd '[:print:]' < file1

Related concepts
cut - Cut out selected fields of each line of a file
Related tasks
grep - Search a file for a pattern
iconv - Convert characters from one CCSID to another CCSID
sed - Stream editor
sort - Sort, merge, or sequence check text files
split - Split files into pieces
uniq - Report or filter out repeated lines in a file
wc - Word, line and byte/character count
locale - Get locale specific information

uniq - Report or filter out repeated lines in a file

Synopsis

uniq [-c | -du] [-f fields] [-s chars] [input_file [output_file]]

Description

The uniq utility reads the standard input comparing adjacent lines, and writes a copy of each unique input
line to the standard output. The second and succeeding copies of identical adjacent input lines are not
written. Repeated lines in the input will not be detected if they are not adjacent, so it may be necessary to
sort the files first.

Options

-c
Precede each output line with the count of the number of times the line occurred in the input,
followed by a single space.

-d
Suppress the writing of lines that are not repeated in the input.

-f fields
Ignore the first fields fields in each input line when doing comparisons. A field is a string of non-blank
characters separated from adjacent fields by blanks. Field numbers are one based, so the first field is
field one.

-s chars
Ignore the first chars characters in each input line when doing comparisons. If specified in
conjunction with the -f option, the first chars characters after the first fields fields will be ignored.
Character numbers are one based, so the first character is character one.

-u
Suppress the writing of lines that are repeated in the input.

Operands

If additional arguments are specified on the command line, the first such argument is used as the name of
an input file, the second is used as the name of an output file.

Exit status

• 0 on success
• >0 if an error occurs

Examples

70 System i: Qshell

In the following examples, the contents of example file are:

There are 5 apples
There are 9 oranges
There are 9 oranges
There are 2 pears

1. Display the unique lines in the file "fruit".

uniq fruit

There are 5 apples
There are 9 oranges
There are 2 pears

2. Display the lines that repeat in the file "fruit".

uniq -d fruit

There are 9 oranges

3. Display a list of how many times a line is repeated in the file "fruit".

uniq -c fruit

1 There are 5 apples
2 There are 9 oranges
1 There are 2 pears

Related tasks
cmp - Compare two files
iconv - Convert characters from one CCSID to another CCSID
locale - Get locale specific information
tr - Translate characters
setccsid - Set CCSID attribute for file
sed - Stream editor
sort - Sort, merge, or sequence check text files
split - Split files into pieces

wc - Word, line and byte/character count

Synopsis

wc [-c | -m] [-lw] [file ...]

Description

The wc utility displays the number of lines, words, and bytes contained in each input file (or standard
input, by default) to standard output. A line is defined as a string of characters delimited by a newline
character. A word is defined as a string of characters delimited by white space characters. If more than
one input file is specified, a line of cumulative counts for all the files is displayed on a separate line after
the output for the last file.

Options

c
Write to standard output the number of bytes in each input file.

l
Write to standard output the number of lines in each input file.

m
Write to standard output the number of characters in each input file.

Qshell 71

w
Write to standard output the number of words in each input file.

Operands

When an option is specified, wc only reports the information requested by that option. The default action
is equivalent to specifying all of the flags.

If no files are specified, the standard input is used and no file name is displayed.

Exit status

• 0 when successful
• >0 when an error occurred

Related concepts
cut - Cut out selected fields of each line of a file
Related tasks
grep - Search a file for a pattern
tr - Translate characters

Utilities for DB2 Universal Database
Select this link to view the utilities for DB2 Universal Database.
Related information
db2profc - DB2 SQLJ profile customizer
db2profp - Print DB2 customized version of SQLJ profile
profconv - Convert SQLJ serialized profile instance to Java class
profdb - SQLJ profile auditor installer
profp - Print SQLJ profile
sqlj - Structured query language for Java (SQLJ) translator

Qshell db2 utility
The db2 utility uses the SQL CLI (Call Level Interface) and allows you to run SQL statements directly,
interactively, or from a file.

When processing SQL interactively or from a file, the db2 utility treats the backslash character at the end
of a line as a continuation character. The backslash and newline character are removed and the remaining
text is used as the SQL statement.

Syntax

db2 [General Options] [Delimiter Options] [Connection Options] [SQL Source Options]

General options
-v

Echo the SQL statement to standard output.
-S

Suppress spaces and padding in output, useful for viewing LOB columns containing text data.

Delimiter options

Only one of the following can be specified:
-T, character

Specified character is used as termination character.
-t

Use the semicolon as the statement termination character.

72 System i: Qshell

-d
Use exclamation point (!) as the termination character.

Connection Options
-r rdbname

Connect to specified remote database (must be name in WRKRDBDIRE). If not specified connection is
to local database.

-u username
The user profile name for connecting to remote database, can only be used with -r option.

-p username
The password to use on remote database connection.

SQL source options
SQL Statement

SQL statement text. If statement contains spaces or shell characters, be sure to correctly quote on
Qshell command line.

-f filename default_lib
Read and run SQL statements from the specified file. Default_lib parameter is optional. When
specified, it is used as the default library/schema for all statements.

-i
Enter SQL statements interactively. Enter quit or exit to end interactive SQL session.

Special character and command support

• Lines starting with two dashes (--) are comments
• Lines starting with an exclamation point are qshell commands
• Lines starting with 'at' symbol (@) are CL commands
• Connect command is ignored, utility uses local connection unless -r option is specified
• Echo command is a command built in to the db2 utility and echoes the text
• Exit or quit commands will end the db2 SQL session
• Help and ? commands will list basic help
• Terminate command is ignored

Example

db2 select constraint_name from qsys2.syscst
db2 -t -f mysqlfile.txt

Contents of mysqlfile.txt:

select constraint_name from qsys2.syscst;
create table qgpl.testtable (c1 integer);

Perl utility
The Perl utility allows you to run Perl scripts on your system. The Perl utility is available as freeware.

For more information about downloading and using this utility, see the DB2 for i5/OS: Qshell, Perl, and
DB2 for i5/OS topic on the System i Website.

Utilities for working with files and directories
Select this link to view the utilities for working with files and directories.

Qshell 73

http://www-03.ibm.com/servers/eserver/iseries/db2/qshellperl.html
http://www-03.ibm.com/servers/eserver/iseries/db2/qshellperl.html

attr - Get or set attributes for files

Synopsis

attr [-hp] file [attribute [=value] ...]

Description

The attr utility gets or sets attributes for the object specified by file. When no attributes are specified, attr
displays all of the attributes for the object in a re-entrable format to standard output. When an attribute is
specified, attr displays the value of the attribute to standard output. When an attribute and value are
specified, attr sets the attribute to the value. Note that all attributes can be displayed, but only some
attributes can be set.

For date and time attributes, the value display by default is formatted with the asctime() function. To
display dates and times in a different format, set the LC_TIME environment variable to the path of a locale
that defines the desired format. The dates and times will be displayed in the format defined by the
d_t_fmt keyword in the LC_TIME section of the locale. See the example on locale programming for more
information on displaying locale source and creating locales. Example: export -s LC_TIME=/QSYS.LIB/
EN_US.LOCALE

Options

-h
Display or set the attributes of a symbolic link instead of the object pointed to by the symbolic link.

-p
Display the attribute in an re-entrable format.

Operands

The file operand specifies a path name to an object. The attribute operand can have the following values:
ACCESS_TIME

The date and time the object was last accessed. This attribute can only be displayed.
ALLOC_SIZE

The number of bytes allocated for the object displayed as a 32-bit number. This attribute can only be
displayed.

ALLOC_SIZE_64
The number of bytes allocated for the object displayed as a 64-bit number. This attribute can only be
displayed.

ALWCKPWRT
An indicator if a stream file can be shared with readers and writers during the save-while-active
checkpoint processing. This attribute can be displayed or set.

ALWSAV
An indicator of whether the object can be saved or not. This attribute can be displayed or set.

ASP
The auxillary storage pool in which the object is stored. This attribute can only be displayed.

AUDIT
The auditing value associated with the object. This attribute can only be displayed.

AUTH_GROUP
The name of the user profile that is the primary group for the object. This attribute can only be
displayed.

AUTH_LIST_NAME
The name of the authorization list used to secure the object. This attribute can only be displayed.

AUTH_OWNER
The name of the user profile that is the owner of the object. This attribute can only be displayed.

AUTH_USERS
The list of user profiles that are authorized to use the object. This attribute can only be displayed.

74 System i: Qshell

CCSID
The coded character set identifier (CCSID) of the object. This attribute can be displayed or set.

CHANGE_TIME
The date and time the object's data or attributes were last changed. This attribute can only be
displayed.

CHECKED_OUT
An indicator if the object is checked out. This attribute can only be displayed.

CHECKED_OUT_USER
The user profile that has the object checked out. This attribute can only be displayed.

CHECKED_OUT_TIME
The date and time that the object was checked out. This attribute can only be displayed.

CODEPAGE
The code page derived from the coded character set identifier (CCSID) of the object. This attribute can
be displayed or set.

CREATE_TIME
The date and time the object was created. This attribute can only be displayed.

CRTOBJAUD
The create object auditing value associated with a directory. The auditing value is given to any objects
created in the directory. This attribute can be displayed or set.

CRTOBJSCAN
An indicator of whether the objects created in a directory will be scanned when exit programs are
registered with any of the integrated file system scan-related exit points. This attribute can be
displayed or set.

DATA_SIZE
The size in bytes of the data in the object displayed as a 32-bit number. This attribute can only be
displayed.

DATA_SIZE_64
The size in bytes of the data in the object displayed as a 64-bit number. This attribute can only be
displayed.

DIR_FORMAT
An indicator of the format of a directory object. This attribute can only be displayed.

DISK_STG_OPT
An indicator of how auxiliary storage storage is allocated by the system for the object. This attribute
can be displayed or set.

EXTENDED_ATTR_SIZE
The number of bytes used for extended attributes for the object. This attribute can only be displayed.

FILE_FORMAT
The format of the stream file. This attribute can only be displayed.

FILE_ID
The file identifier of the object if the object is stored in the "root" (/), the QOpenSys, or a user-defined
file system. This attribute can only be displayed.

JOURNAL_APPLY_CHANGES
An indicator of whether the object was restored with partial transactions which requires an Apply
Journaled Changes (APYJRNCHG) command to complete the transaction. This attribute can only be
displayed.

JOURNAL_ID
The journal identifier that can be used on journal-related commands and APIs. This attribute can only
be displayed.

JOURNAL_LIBRARY
If the object is journaled, the library containing the currently used journal. If the object is not
journaled, the library containing the last used journal. This attribute can only be displayed.

Qshell 75

JOURNAL_NAME
If the object is journaled, the name of the currently used journal. If the object is not journaled, the
name of the last used journal. This attribute can only be displayed.

JOURNAL_OPTIONS
The current journaling options. This attribute can only be displayed.

JOURNAL_RCVR_ASP
The name of the ASP for the library that contains the journal receiver. This attribute can only be
displayed.

JOURNAL_RCVR_LIBRARY
The name of the library that contains the journal receiver. This attribute can only be displayed.

JOURNAL_RCVR_NAME
The name of the oldest journal receiver needed to successfully Apply Journaled Changes
(APYJRNCHG). This attribute can only be displayed.

JOURNAL_ROLLBACK_ENDED
An indicator of whether the object had rollback ended before completion of a request to roll back a
transaction. This attribute can only be displayed.

JOURNAL_START_TIME
The date and time that journaling was last started for the object. This attribute can only be displayed.

JOURNAL_STATUS
An indicator if the object is currently journaled. This attribute can only be displayed.

LOCAL_REMOTE
An indicator if the object is on the local system or a remote system. This attribute can only be
displayed.

MAIN_STG_OPT
An indicator of how main storage is allocated and used by the system for the object. This attribute can
be displayed or set.

MODIFY_TIME
The date and time that the object's data was last modified. This attribute can only be displayed.

MULT_SIGS
An indicator if the object has more than one i5/OS digital signature. This attribute can only be
displayed.

OBJTYPE
A text string describing the type of the object. This attribute can only be displayed.

PC_ARCHIVE
An indicator if the object has changed since the last time the file was examined. This attribute can be
displayed or set.

PC_HIDDEN
An indicator if the object is hidden. This attribute can be displayed or set.

PC_READ_ONLY
An indicator if the object is read-only. This attribute can be displayed or set.

PC_SYSTEM
An indicator if the object is a system object. This attribute can be displayed or set.

RSTDRNMUNL
An indicator of whether renames and unlinks are restricted for objects within a directory. Objects can
be linked into a directory that has this attribute set on, but cannot be renamed or unlinked from it
unless the user has the appropriate authority. This attribute can be displayed or set.

SCAN
An indicator of whether the object will be scanned when exit programs are registered with any of the
integrated file system scan-related exit points. This attribute can be displayed or set.

76 System i: Qshell

SCAN_BINARY
An indicator of whether the object has been scanned in binary mode when it was previously scanned.
This attribute can only be displayed.

SCAN_CCSID1
If an object has been scanned in text mode, the first CCSID used when it was previously scanned. This
attribute can only be displayed.

SCAN_CCSID2
If an object has been scanned in text mode, the second CCSID used when it was previously scanned.
This attribute can only be displayed.

SCAN_SIGS_DIFF
An indicator of whether the scan signature for the object is different from the global scan signature.
This attribute can only be displayed.

SCAN_STATUS
The scan status for the object. This attribute can only be displayed.

SGID
An indicator if the effective group ID is set at run time. This attribute can be displayed or set.

SIGNED
An indicator if the object has an i5/OS digital signature. This attribute can only be displayed.

STG_FREE
An indicator if the data is moved offline. This attribute can only be displayed.

SUID
An indicator if the effective user ID is set at run time. This attribute can be displayed or set.

SYSTEM_ARCHIVE
An indicator if the object has changed and needs to be saved. This attribute can be displayed or set.

SYSTEM_USE
An indicator if the object has a special use by the system. This attribute is valid only for stream files.
This attribute can only be displayed.

SYS_SIGNED
An indicator of whether the i5/OS digital signature is from a source that is trusted by the system. This
attribute can only be displayed.

UDFS_DEFAULT_FORMAT
The default file format of stream files created in the user-defined file system. This attribute can only
be displayed.

USAGE_DAYS_USED
The number of days an object has been used. This attribute can only be displayed.

USAGE_LAST_USED_TIME
The date and time that the object was last used. This attribute can only be displayed.

USAGE_RESET_TIME
The date and time that the object's days used count was reset to zero. This attribute can only be
displayed.

Environment Variables

attr is affected by the following environment variables:

LANG
Provides a default value for locale categories that are not specifically set with a variable starting with
LC_.

LC_TIME
Defines the output format for date and time attributes.

Exit status

• 0 when successful

Qshell 77

• >0 when unsuccessful

Examples

1. Display all of the attributes for a file.

attr script.sh

2. Display the OBJTYPE and PC_READ_ONLY attributes for a file.

attr script.sh OBJTYPE PC_READ_ONLY

3. Display the DATA_SIZE_64 attribute in a re-entrable format for a file.

attr -p script.sh DATA_SIZE_64

4. Set the PC_HIDDEN attribute for a file.

attr script.sh PC_HIDDEN=1

Related tasks
setccsid - Set CCSID attribute for file
touch - Change file access and modification times
Related information
Qp0lGetAttr() - Get attributes
Qp0lSetAttr() - Set attributes

basename - Return non-directory portion of path name

Synopsis

basename string [suffix]

Description

You can use basename to delete any prefix ending with the last slash (/) character present in string, and a
suffix, if specified. The resulting filename is written to standard output. The string is processed using the
following rules:

• If string consists entirely of slash characters, a single slash character is written to standard output and
processing ends.

• If there are any trailing slash characters in string, they are removed.
• If there are any slash characters remaining in string, the prefix of string up to and including the last slash

character is removed.
• If a suffix is specified, and is not identical to the characters remaining in string, and is identical to a
suffix of the characters remaining in string, the suffix is removed. Otherwise string is not modified. It is
not an error if suffix is not found in string.

Exit status

• 0 on success
• >0 if an error occurs.

Examples

1. Set the shell variable FOO to "trail".

FOO=$(basename /usr/bin/trail)

2. Return the last part of the path "/usr/bin/this_test" with the "test" suffix removed.

78 System i: Qshell

basename /usr/bin/this_test test

Related tasks
dirname - Return directory portion of path name

cat - Concatenate and print files

Synopsis

cat [-bcensStuv] [-] [file ...]

Description

The cat utility reads the specified files sequentially, writing them to standard output. The file operands
are processed in command line order. A single dash represents standard input.

By default, cat reads file as text data so the data is translated from the CCSID of the file. When the -c
option is specified, cat reads the file as binary data.

Note that because of the shell language mechanism used to perform output redirection, the command
cat file1 file2 > file2 will cause the original data in file2 to be destroyed. Also, the process will
go into an infinite loop.

Options

-b
Number the output lines but do not number blank lines.

-c
Do not convert the data as it is read.

-e
Number the output lines and display a dollar sign ($) at the end of each line as well.

-n
Number the output lines, starting at 1.

-s
Squeeze multiple adjacent empty lines, causing the output to be single spaced.

-S
Squeeze multiple adjacent empty lines, causing the output to be single spaced.

-t
Display non-printing characters so they are visible like the -v option and display tab characters as
well.

-u
Guarantee that the output is unbuffered.

-v
Display non-printing characters so they are visible. A control character prints as "^X" (for control). The
delete character prints as "^?". A non-display character prints as "M-x" (for meta). Note that in most
locales, all of the characters are displayable.

Exit status

• 0 when successful.
• >0 when an error occurred.

Examples

1. Display the contents of file, "myfile".

cat myfile

2. Display the contents of three different files at the same time and save their contents into a new file.

Qshell 79

cat file1 file2 file3 > all.files

Related tasks
head - Copy the first part of files
tail - Display the last part of a file
zcat - Expand and concatenate data
catsplf - Concatenate and print spool files
od - Dump files in various formats
pr - Print files

catsplf - Concatenate and print spool files

Synopsis

catsplf -j qualified-job [-aen] splfname splfnum

catsplf -p pid [-aen] splfname splfnum

Description

The catsplf utility reads the specified spool file and writes it to standard output.

In the first synopsis form, catsplf finds the spool files associated with the job specified by qualified-job.

In the second synopsis form, catsplf finds the spool files associated with the job specified by pid.

Options

-a
Print all of the spool files associated with the specified job.

-e
Number the output lines starting at 1 and display a dollar sign ($) at the end of each line.

-j qualified-job
Find the spool files associated with the job identified by qualified-job, where qualified-job is a string in
the form number/user/name. The number is a six-digit decimal number, user is the user profile under
which the job was started, and name is the name of job.

-n
Number the output lines starting at 1.

-p pid
Find the spool files associated with the job identified by pid, where pid is the decimal process ID of
the job.

Operands

The splfname operand specifies the name of the spool file and the splfnum operand specifies the number
of the spool file. Both operands are required to uniquely identify a spool file.

Exit status

• 0 when successful
• >0 when unsuccessful

Examples

1. Print the spool file named QPRINT and number 1 for a job using a qualified job name.

catsplf -j 386687/SHELLTST/QZSHCHLD QPRINT 1

2. Print the spool file named QPRINT and number 1 for a job using a pid.

catsplf -p 942 QPRINT 1

80 System i: Qshell

3. Print all of the spool files for a job.

catsplf -a -j 386687/SHELLTST/QZSHCHLD

Related tasks
cat - Concatenate and print files
Rfile - Read or write record files
zcat - Expand and concatenate data

cd - Change working directory

Synopsis

cd [directory]

Description

You can use cd to change the working directory. qsh sets the PWD variable to the new working directory
and the OLDPWD variable to the previous working directory.

Options

None.

Operands

For directory, you can specify:

- (minus)
qsh changes the working directory to the previous directory and displays the new working directory
name.

/name or ../name
qsh changes the working directory to the specified name.

name (does not begin with a / or ../)
If the CDPATH variable is set, qsh prepends each directory in CDPATH to name to construct a
directory name. qsh changes to the first directory that you have permission to. qsh displays the new
working directory name.

If the CDPATH variable is not set, qsh changes the working directory to the specified name.

not specified
qsh changes the working directory to the value of the HOME variable.

You must have permission to the specified directory.

Exit status

• 0 when successful.
• >0 when unsuccessful.

Related tasks
hash - Remember or report utility locations
pwd - Return working directory name
pwdx - Print working directory expanded

chgrp - Change file group ownership

Synopsis

chgrp [-R [-H | -L | -P]] [-h] group file ...

Description

You can use chgrp to set the group of file to the group identifier or profile specified by group.

To change the group identifier, you must have one of the following authorities:

Qshell 81

• The current user has *ALLOBJ special authority.
• The current user is the owner of file and either one of the following:

– The primary group of the job is group.
– One of the supplemental groups of the job is group.

In addition, the current user must have *USE authority to the group profile specified by group.

By default, chgrp follows symbolic links and changes the group of the file pointed to by the symbolic link.

The -H, -L and -P options are ignored unless the -R option is specified. In addition, these options override
each other and the command's actions are determined by the last one specified.

The group of a file cannot be the same as the owner of the file.

Options

-H
If the -R option is specified, symbolic links on the command line are followed. Symbolic links
encountered in the tree traversal are not followed.

-L
If the -R option is specified, both symbolic links on the command line and symbolic links encountered
in the tree traversal are followed.

-P
If the -R option is specified, no symbolic links are followed.

-R
If file is a directory, chgrp recursively changes the group of each file in the entire subtree connected at
that point.

-h
Change the owner and group of a symbolic link instead of the file pointed to by the symbolic link.

Operands

The group operand specifies either a group identifier number or group profile name. The file operand
specifies a path name to an object.

Exit status

• 0 when successful and all requested changes were made.
• >0 when an error occurred.

Examples

1. Change the group to group profile "abbey" for the file "newgui.java".

chgrp abbey newgui.java

2. Change the group to group profile "managers" for the subdirectory "personal.dir" and all files and
subdirectories below this directory.

chgrp -R managers personal.dir

3. Change the group to group identifier "442" for the file "memo.txt".

chgrp 442 memo.txt

Related tasks
chmod - Change file modes
chown - Change file ownership
ls - List directory contents

82 System i: Qshell

chmod - Change file modes

Synopsis

chmod [-R [-H | -L | -P]] [-h] mode file ...

Description

The chmod utility modifies the file mode bits of file as specified by the mode operand.

To change the mode of a file, you must have one of the following authorities:

• The current user has *ALLOBJ special authority.
• The current user is the owner of the file.

By default, chmod follows symbolic links and changes the mode on the file pointed to by the symbolic
link. Symbolic links do not have modes so using chmod on a symbolic link always succeeds and has no
effect.

The -H, -L and -P options are ignored unless the -R option is specified. In addition, these options override
each other and the command's actions are determined by the last one specified.

Note that chmod changes the i5/OS data authorities for an object. Use the CHGAUT CL command to
change the i5/OS object authorities for an object.

Options

-H
If the -R option is specified, symbolic links on the command line are followed. Symbolic links
encountered in the tree traversal are not followed. Since symbolic links do not have modes chmod
has no effect on the symbolic links.

-L
If the -R option is specified, both symbolic links on the command line and symbolic links encountered
in the tree traversal are followed.

-P
If the -R option is specified, no symbolic links are followed. Since symbolic links do not have modes
chmod has no effect on the symbolic links.

-R
If file designates a directory, chmod changes the mode of each file in the entire subtree connected at
that point.

-h
Do not follow symbolic links. Since symbolic links do not have modes chmod has no effect on the
symbolic links.

Operands

A mode may be absolute or symbolic. An absolute mode is a three or four digit octal number constructed
by or-ing the following values:

4000
Set-user-id on execute bit

2000
Set-group-id on execute bit

1000
Restricted deletion bit for a directory

0400
Allow read by owner

0200
Allow write by owner

0100
Allow execute/search by owner

Qshell 83

0040
Allow read by group

0020
Allow write by group

0010
Allow execute/search by group

0004
Allow read by other

0002
Allow write by other

0001
Allow execute/search by other

A symbolic mode is described by the following grammar:

• mode ::= clause [, clause ...]
• clause ::= [who ...] [action ...] last_action
• action ::= op [perm ...]
• last_action ::= op [perm ...]
• who ::= a | u | g | o
• op ::= + | - | =
• perm ::= r | w | x | X | s | t | u | g | o

The who symbols specify who is granted or denied the permissions as follows:

u
The owner permission bits.

g
The group permission bits.

o
The other permission bits.

a
The owner, group, and other permission bits. It is equivalent to specifying the ugo symbols together.

The op symbols represent the operation performed, as follows:

+
Grant the specified permission. If no value is supplied for perm, the "+" operation has no effect. If no
value is supplied for who, each permission bit specified in perm, for which the corresponding bit in the
file mode creation mask is clear, is set. Otherwise, the mode bits represented by the specified who
and perm values are set.

-
Deny the specified permission. If no value is supplied for perm, the "-" operation has no effect. If no
value is supplied for who, each permission bit specified in perm, for which the corresponding bit in the
file mode creation mask is clear, is cleared. Otherwise, the mode bits represented by the specified
who and perm values are cleared.

=
Clear the selected permission field and set it to the specified permission. The mode bits specified by
the who value are cleared, or, if no who value is specified, the owner, group and other mode bits are
cleared. Then, if no value is supplied for who, each permission bit specified in perm, for which the
corresponding bit in the file mode creation mask is clear, is set. Otherwise, the mode bits represented
by the specified who and perm values are set.

The perm symbols represent the portions of the mode bits as follows:

84 System i: Qshell

r
The read bits.

w
The write bits.

x
The execute/search bits.

X
The execute/search bits if the file is a directory or if any of the execute/search bits are set in the
original (unmodified) mode. Operations with this symbol are only meaningful in conjunction with the
op symbol "+", and are ignored in all other cases.

s
The set-user-id on execute bit when the owner permission bits are set or the set-group-id on execute
bit when the group permission bits are set.

t
The restricted deletion bit when the object is a directory. It can be used when the who symbol is a or
there is no who symbol. It is ignored if the file is not a directory or the who symbol is u, g, or o.

Each clause specifies one or more operations to be performed on the mode bits, and each operation is
applied to the mode bits in the order specified.

Exit status

• 0 on success
• >0 if an error occurs

Examples

1. Grant read and write permission to owner and read permission to group and other using an absolute
mode.

chmod 644 myfile

2. Deny write permission to group and other.

chmod go-w myfile

3. Clear all permissions that are currently set and grant read and write permissions to owner, group, and
other.

chmod =rw myfile

4. Grant search permission on a directory to owner, group, and other if search permission is set for one
them.

chmod +X mydir

5. Grant read, write, and execute permission to owner and read and execute permission to group and
other using an absolute mode.

chmod 755 myfile

6. Clear all permissions for group and other.

chmod go= myfile

7. Set the group permissions equal to the owner permission, but deny write permission to the group.

Qshell 85

chmod g=u-w myfile

8. Set the set-user-id on execute bit and grant read, write, and execute permission to the owner and
execute permission for other using an absolute mode.

chmod 4701 myfile

Related tasks
chgrp - Change file group ownership

chown - Change file ownership

Synopsis

chown [-R [-H | -L | -P]] [-h] owner[:group] file ...

Description

You can use chown to set the owner of file to the user identifier or profile specified by owner. Optionally,
chown can also set the group of the file to the group identifier or profile specified by group.

To change the owner of a file, you must have one of the following authorities:

• The current user has *ALLOBJ special authority.
• The current user is the owner of the file or directory.

To change the group of a file, you must have one of the following authorities:

• The current user has *ALLOBJ special authority.
• The current user is the owner of file and either one of the following:

– The primary group of the job is group.
– One of the supplemental groups of the job is group.

In addition, the current user must have *USE authority to the new user profile or group profile.

By default, chown follows symbolic links and changes the owner and group of the file pointed to by the
symbolic link.

The group of a file cannot be the same as the owner of the file.

Options

-H
If the -R option is specified, symbolic links on the command line are followed. Symbolic links
encountered in the tree traversal are not followed.

-L
If the -R option is specified, both symbolic links on the command line and symbolic links encountered
in the tree traversal are followed.

-P
If the -R option is specified, no symbolic links are followed.

-R
If file designates a directory, chown recursively changes the owner and group of each file in the entire
subtree connected at that point.

-h
Change the owner and group of a symbolic link instead of the file pointed to by the symbolic link.

Operands

The owner operand specifies either a user identifer number or a user profile name. The group operand
specifies either a group identifier number or a group profile name. The file operand specifies a path name
to an object.

86 System i: Qshell

Exit status

• 0 when successful and all requested changes were made.
• >0 when an error occurred.

Examples

1. Change the owner to user profile "sam" for the file "personal.file".

chown sam personal.file

2. Recursively change the owner to user profile "larry" for the sub-directory "moe.dir" and all files and
sub-directories below this directory.

chown -R larry moe.dir

3. Change the owner to user identifier "500" for the file "your.file".

chown 500 your.file

4. Change the owner to user profile "sam" and the group to group profile "abbey" for the file "memo.txt".

chown sam:abbey memo.txt

Related tasks
chgrp - Change file group ownership
ls - List directory contents
setccsid - Set CCSID attribute for file

compress - Compress data

Synopsis

compress [-cfv] [-b bits] [file ...]

Description

The compress utility reduces the size of the files using adaptive Lempel-Ziv coding. Each file is renamed
to the same name plus the extension ".Z". As many of the modification time, access time, file flags, file
mode, user ID, and group ID as allowed by permissions are retained in the new file. If compression would
not reduce the size of a file, the file is ignored.

If renaming file would cause files to be overwritten and the standard input device is a terminal, the user is
prompted (on standard error) for confirmation. If prompting is not possible or confirmation is not
received, the files are not overwritten.

Options

-b bits
Specify the bits code limit (see below for details).

-c
Compressed output is written to the standard output. No files are modified.

-f
Force compression of file, even if it is not actually reduced in size. Additionally, files are overwritten
without prompting for confirmation.

-v
Print the percentage of reduction for each file.

Operands

Qshell 87

Each file is a pathname of a file to compress. If no files are specified, the standard input is compressed to
the standard output. If either the input or output files are not regular files, the checks for reduction in size
and file overwriting are not performed, the input file is not removed, and the attributes of the input file are
not retained.

Extended description

The compress utility uses a modified Lempel-Ziv algorithm. Common substrings in the file are first
replaced by 9-bit codes 257 and up. When code 512 is reached, the algorithm switches to 10-bit codes
and continues to use more bits until the limit specified by the -b flag is reached (the default is 16). Bits
must be between 9 and 16.

After the bits limit is reached, compress periodically checks the compression ratio. If it is increasing,
compress continues to use the existing code dictionary. However, if the compression ratio decreases,
compress discards the table of substrings and rebuilds it from scratch. This allows the algorithm to adapt
to the next "block" of the file.

The amount of compression obtained depends on the size of the input, the number of bits per code, and
the distribution of common substrings. Typically, text such as source code or English is reduced by
50-60%.

Exit status

• 0 on success
• >0 if an error occurs.

Related tasks
pax - Portable archive interchange
uncompress - Expand compressed data
zcat - Expand and concatenate data

cp - Copy files

Synopsis

cp [-r | -R [-H | -L | -P]] [-fhipt] source_file target_file

cp [-r | -R [-H | -L | -P]] [-fhipt] source_file ... target_directory

Description

In the first synopsis form, the cp utility copies the contents of the source_file to the target_file.

In the second synopsis form, the cp utility copies the contents of each named source_file to a file in the
destination target_directory. The names of the files themselves are not changed. The target_directory
must exist unless there is only one named source_file which is a directory and the -R flag is specified.

If cp detects an attempt to copy a file to itself, the copy will fail.

If target_file does not exist, the mode of the source_file is used, as modified by the file creation mask,
when creating target_file. The S_ISUID and S_ISGID file permission bits are never set when creating a
new file.

If target_file already exists and the -t option is not specified, its contents are overwritten as binary data
and the CCSID attribute is changed to match the CCSID attribute of source_file. The file permission bits,
owner, and group of target_file are unchanged. You can force the data to be copied as text data by using
the -t option. You can force the file permission bits, owner, and group to be copied using the -p option.

Note that when copying to members in the QSYS.LIB file system, many attributes of source_file cannot be
preserved because they are associated with the file object and not the member.

Symbolic links are always followed unless the -h option is specified or the -R option is specified with the -
H or the -L options. The -H, -L and -P options are ignored unless the -R option is specified. In addition,
these options override each other and the command's actions are determined by the last one specified.

Options

88 System i: Qshell

-H
If the -R option is specified, symbolic links on the command line are followed. Symbolic links
encountered in the tree traversal are not followed and the symbolic link is copied instead of the file
pointed to by the symbolic link.

-L
If the -R option is specified, both symbolic links on the command line and symbolic links encountered
in the tree traversal are followed.

-P
If the -R option is specified, no symbolic links are followed. A symbolic link encountered in the tree
traversal is copied instead of the file pointed to by the symbolic link.

-R
If source_file designates a directory, cp copies the directory and the entire subtree connected at that
point. This option causes cp to create special files rather than copying them as normal files. Created
directories have the same mode as the corresponding source directory, unmodified by the file
creation mask.

-f
Remove target_file if it cannot be opened for write operations. A new file is created before the data is
copied.

-h
Copy symbolic links instead of the file pointed to by the symbolic link.

-i
Write a prompt to standard error before copying a file that would overwrite an existing file. If the
response from the standard input begins with the first character for the YES response in the current
locale, the file copy is attempted.

-p
Preserve in the copy as many of the modification time, access time, file permission bits, owner, and
group as allowed by permissions.

If the owner and group cannot be preserved, no error message is displayed and the exit value is not
altered.

The S_ISUID and S_ISGID file permission bits are only copied when both the owner and group of the
file are successfully copied.

Note: This option has no effect when copying to the
QSYS.LIB file system.

-r
Same as -R except this option copies special files in the same manner as regular files. The -R flag is
preferred to the -r flag.

-t
When the target file exists, treat the data in source_file as text data and translate the data to the
CCSID associated with target_file as it is copied. The CCSID attribute of target_file is not changed.

Exit status

• 0 on success
• >0 if an error occurred.

Examples

1. Copy the file, "file1", into the subdirectory, "data.dir".

cp file1 data.dir

2. Copy all the files with the .java extension from the "code" subdirectory into the subdirectory, "code/
old_code.dir" and prompt the user for overwrite verification only if the file already exists in the
subdirectory, "code/old_code.dir".

Qshell 89

cp -i code/*.java code/old_code.dir

Related tasks
ln - Link files
ls - List directory contents
mv - Move files
rm - Remove directory entries
rmdir - Remove directories
umask - Get or set the file mode creation mask

dirname - Return directory portion of path name

Synopsis

dirname string

Description

You can use dirname to delete the filename portion, beginning with the last slash character (/) to the end
of string, and write the result to standard output. The string is processed using the following rules:

• If string consists entirely of slash characters, a single slash character is written to standard output and
processing ends.

• If there are any trailing slash characters in string, they are removed.
• If there are no slash characters remaining in string, a period character is written to standard output and

processing ends.
• If there are trailing non-slash characters in string, they are removed.
• If there are any trailing slash characters in string, they are removed.
• If the remaining string is empty, string is set to a single slash character.

Operands

The string operand is the path name of which dirname will return the directory portion of.

Exit status

• 0 on success
• >0 if an error occurs.

Examples

Set the shell variable FOO to "/usr/bin".

FOO=$(dirname /usr/bin/trail)

Related tasks
basename - Return non-directory portion of path name

file - Determine file type

Synopsis

file [-m MagicFile] [-f ListFile] [file ...]

file [-c] [-m MagicFile]

Description

In the first synopsis form, the file utility determines the type of object for the specified file. The file utility
will make a best guess determination of the type. The file type is then written to standard output. If the

90 System i: Qshell

pathname is determined to be a regular file, file examines the first 1024 bytes to determine the type. By
default, the file utility uses the /etc/magic file to help identify files that have defined patterns at specified
byte offsets within the object.

In the second synopsis form, the file utility checks the specified MagicFile for format errors.

Options
-c

Checks a specified magic file for format errors.
-f ListFile

Specifies a file containing a list of file names to be tested. This ListFile must have only one file per line
and not contain leading or trailing spaces.

-m MagicFile
Specifies the name of the magic file to use. The default magic file is /etc/magic.

Operands

Each file is a pathname of a file to be tested.

Exit status

• 0 when successful
• >0 when an error occurred

Related tasks
find - Find files

find - Find files

Synopsis

find [-H | -L | -P] [-Xdx] [-f file] file ... [expression]

Description

The find utility recursively descends the directory tree for each file listed, evaluating an expression
(composed of the "primaries" and "operands" listed below) in terms of each file in the tree.

Options

-H
Symbolic links on the command line are followed. Symbolic links encountered in the tree traversal are
not followed. The file information and file type returned for each symbolic link specified on the
command line is for the file referenced by the link. If the referenced file does not exist, the file
information and type will be for the link itself.

-L
Both symbolic links on the command line and symbolic links encountered in the tree traversal are
followed. The file information and file type returned for each symbolic link is for the file referenced by
the link. If the referenced file does not exist, the file information and type will be for the link itself.

-P
No symbolic links are followed. The file information and file type returned for each symbolic link are
for the link itself.

-X
A modification to permit find to be safely used in conjunction with xargs. If a file name contains any of
the delimiting characters used by xargs, a diagnostic message is displayed on standard error, and the
file is skipped. The delimiting characters include single (') and double (") quotation marks, backslash
(\), space, tab and newline characters.

Qshell 91

-d
find performs a depth-first traversal. The directories are visited in post-order and all entries in a
directory will be acted on before the directory itself. By default, find visits directories in pre-order, or
before their contents. Note, the default is not a breadth-first traversal.

-f
Specify a file hierarchy for find to traverse. File hierarchies may also be specified as the operands
immediately following the options.

-x
Prevent find from descending into directories that have a device number different than that of the file
from which the descent began.

Primaries

-atime n
True if the difference between the file last access time and the time find was started, rounded up to
the next full 24-hour period, is n 24-hour periods.

-ctime n
True if the difference between the time of last change of file status information and the time find was
started, rounded up to the next full 24-hour period, is n 24-hour periods.

-exec utility [argument ...] ;
True if the program named utility returns a zero value as its exit status. Optional arguments may be
passed to the utility. The expression must be terminated by a semicolon (;). If the string "{}" appears
anywhere in the utility name or the arguments it is replaced by the path name of the current file. The
utility is run from the directory from which find was run. Since the semicolon is also a special
character for the shell, you may need to escape the semicolon so it is passed as an argument to find.

-group gname
True if the file belongs to the group gname. If gname is numeric and there is no such group name, then
gname is treated as a group identifier.

-inum n
True if the file has inode number n.

-links n
True if the file has n links.

-ls
This primary always evaluates to true. The following information for the current file is written to
standard output:

• inode number
• size in kilobytes
• file permissions
• number of hard links
• owner
• group
• size in bytes
• last modification time
• path name

If the file is a block or character special file, the major and minor numbers will be displayed instead of
the size in bytes. If the file is a symbolic link, the path name of the linked-to file will be displayed
preceded by `->'.

-mtime n
True if the difference between the file last modification time and the time find was started, rounded
up to the next full 24-hour period, is n 24-hour periods.

92 System i: Qshell

-ok utility [argument...] ;
The -ok primary is identical to the -exec primary with the exception that find requests user
affirmation for running the utility by printing a message to standard error and reading a response. If
the response is other than the first character of the YES response in the current locale, the utility is
not run and the value of the ok expression is false.

-name pattern
True if the last component of the path name being examined matches pattern. Special shell pattern
matching characters ([,], *, and ?) may be used as part of pattern. These characters may be matched
explicitly by escaping them with a backslash (\).

-newer file
True if the current file has a more recent last modification time than file.

-nouser
True if the file belongs to an unknown user.

-nogroup
True if the file belongs to an unknown group.

-path pattern
True if the path name being examined matches pattern. Special shell pattern matching characters ([,],
*, and ?) may be used as part of pattern. These characters may be matched explicitly by escaping
them with a backslash (\). Slashes (/) are treated as normal characters and do not need to be matched
explicitly.

-perm [-]mode
The mode can be either symbolic or an octal number in the formats supported by the chmod
command. If the mode is symbolic, a starting value of zero is assumed and the mode sets or clears
permissions without regard to the process file mode creation mask. If the mode is octal, only bits
00777 (S_IRWXU | S_IRWXG | S_IRWXO) of the file's mode bits participate in the comparison. If the
mode is preceded by a dash (-), this primary evaluates to true if at least all of the bits in the mode are
set in the file's mode bits. If the mode is not preceded by a dash, this primary evaluates to true if the
bits in the mode exactly match the file's mode bits. Note, the first character of a symbolic mode may
not be a dash (-).

-print
This primary always evaluates to true. It prints the path name of the current file to standard output.
The expression is appended to the user specified expression if neither -exec, -ls nor -ok is specified.

-prune
This primary always evaluates to true. It causes find to not descend into the current file. Note, the -
prune primary has no effect if the -d option was specified.

-size n[c]
True if the file's size, rounded up, in 512-byte blocks is n. If n is followed by c, then the primary is true
if the file's size is n bytes.

-type t
True if the file is of the specified type. Possible file types are as follows:

• b for block special
• c for character special
• d for directory
• f for regular file
• l for symbolic link
• p for FIFO
• s for socket

-user uname
True if the file belongs to the user uname. If uname is numeric and there is no such user name, then
uname is treated as a user identifier.

Qshell 93

All primaries which take a numeric argument allow the number to be preceded by a plus sign (+) or a
minus sign (-). A preceding plus sign means "more than n", a preceding minus sign means "less than n"
and neither means "exactly n".

Operators

The primaries may be combined using the following operators. The operators are listed in order of
decreasing precedence.

(expression)
This evaluates to true if the parenthesized expression evaluates to true.

!expression
This is the unary NOT operator. It evaluates to true if the expression is false.

expression -and expression
The -and operator is the logical AND operator. As it is implied by the juxtaposition of two expressions
it does not need to be specified. The expression evaluates to true if both expressions are true. The
second expression is not evaluated if the first expression is false.

expression -or expression
The -or operator is the logical OR operator. The expression evaluates to true if either the first or the
second expression is true. The second expression is not evaluated if the first expression is true.

All operands and primaries must be separate arguments to the find utility. Primaries which themselves
take arguments expect each argument to be a separate argument to find. Notes

The special characters used by find are also special characters to many shell programs. In particular, the
characters *, [,], ?, (,), !, and ; may need to be escaped from the shell.

Exit status

• 0 on success
• >0 if an error occurs

Examples

1. Find all *.class files starting at the directory "/project/java/class".

find /project/java/class -name '*.class'

2. Find all the *.java files that have the "import java.awt;" string in them starting at the directory, "/
project/java/code".

find /project/java/code -name '*.java' -exec grep 'import java.awt;' {} \;

3. Find all the *.class files starting at the directory "/project/java/class" and remove the files.

find /project/java/class -name '*.class' -exec rm {} \;

4. Find all the files that belong to the user "abbey" starting at the directory, "/project".

find /project -user abbey

Related concepts
file - Determine file type
Related tasks
xargs - Construct argument lists and invoke utility
chmod - Change file modes

gencat - Generate a formatted message catalog

Synopsis

94 System i: Qshell

gencat [-C ccsid] [-m mode] [-t text] catfile msgfile ...

Description

The gencat utility generates a formatted message catalog catfile from the message text source file
msgfile. You can specify up to 300 message text source files. Message text source files are processed in
the sequence specified. Each successive source file modifies the catalog. If a message number in the
source file already exists in the message catalog, the new message text defined in the source file replaces
the old message text in the message catalog file. If a message number in the source file does not already
exist in the message catalog, the message information is added to the message catalog.

Options

-C ccsid
Create the message catalog and store the message text in the specified ccsid.

-m mode
Set the file permission bits of the message catalog to the specified mode. The mode argument can be
in any of the formats supported by the chmod command. If a symbolic mode is specified, the
operation characters + and - are interpreted relative to an initial mode of "a=rw".

-t text
Assign the specified text to the message catalog object. Assigning text to objects is dependent on the
support provided by the file system or object type used for the message catalog.

Operands

The catfile operand specifies the path to the message catalog to be changed or created. If the -m option is
not specified, the message catalog is created using a default mode that allows read and write permission
for the owner, group, and others (0666) as modified by the current file creation mask.

Each msgfile specifies the path to an input message text source file. There is a limit of 300 message text
source files.

Exit status

• 0 when successful
• >0 when unsuccessful

Examples

1. Create a message catalog using one message text source file.

gencat product.cat msg.src

2. Create a message catalog using multiple message text source files.

gencat product.cat msg1.src msg2.src msg3.src

3. Create a message catalog and set the mode and ccsid.

gencat -C 37 -m a-w product.cat msg.src

Related tasks
chmod - Change file modes
dspmsg - Display message from message catalog

getconf - Get configuration values

Synopsis

getconf [name [pathname]]

Description

Qshell 95

The getconf utility displays the POSIX configuration variables. If you specify name, getconf displays the
value of the configuration variable on standard output. When the configuration variable depends on a path
name you must specify pathname.

When no arguments are specified, getconf displays a list of all the configuration variables and their
values. For those configuration variables that depend on a path name, getconf uses /.

Options

None.

Operands

If specified, name is one of these values:

CCSID
Represents the default coded character set identifier (CCSID) used internally for integrated file
system path names.

CHOWN_RESTRICTED
Restrict the use of chown on the object represented by pathname to a job with appropriate privileges.

CLK_TCK
The number of clock ticks in a second.

LINK_MAX
Maximum number of links the object represented by pathname can have.

NAME_MAX
Maximum number of bytes in a file name (the last component of the path name).

NGROUPS_MAX
Maximum number of supplementary group IDs that can be associated with a job.

NO_TRUNC
Generate an error if a file name is longer than NAME_MAX.

OPEN_MAX
Maximum number of files a single job can have open at one time.

PAGE_SIZE
Represents the system hardware page size.

PAGESIZE
Represents the system hardware page size.

PATH_MAX
Maximum number of bytes in a complete path name.

PIPE_BUF
Maximum number of bytes that can be written atomically to a pipe.

STREAM_MAX
Maximum number of streams that a job can have open at one time.

THREAD_SAFE
The object represented by pathname resides in a thread-safe file system.

Exit status

• 0 when successful.
• >0 when successful.

Examples

1. Determine if the directory /home is in a thread-safe file system:

getconf THREAD_SAFE /home

2. Display the maximum number of bytes in a file name:

96 System i: Qshell

getconf NAME_MAX

3. Display all of the configuration variables:

getconf

head - Copy the first part of files

Synopsis

head [-n count] [file ...]

Description

The head utility displays the first count lines of each of the specified files, or of standard input if no files
are specified. If -n is not specified, then the first 10 lines of the file are displayed.

If more than one file is specified, each file is preceded by a header consisting of the string "==> XXX <=="
where XXX is the name of the file.

Options

-n
Display count number of lines.

Exit status

• 0 on success
• >0 if an error occurs.

Examples

To display the first 20 lines in the file "myfile".

head -n 20 myfile

Related tasks
cat - Concatenate and print files
tail - Display the last part of a file

ln - Link files

Synopsis

ln [-fs] source_file [target_file]

ln [-fs] source_file ... [target_dir]

Description

The ln utility creates a new directory entry (linked file) which has the same modes as the original file. It is
useful for maintaining multiple copies of a file in many places at once without using up storage for the
copies. Instead, a link "points to" the original copy. There are two types of links: hard links and symbolic
links. How a link "points to" a file is one of the differences between a hard or symbolic link.

By default ln makes hard links. A hard link to a file is indistinguishable from the original directory entry;
any changes to a file are effective independent of the name used to reference the file. Hard links may not
normally refer to directories and may not span file systems.

A symbolic link contains the name of the file to which it is linked. Symbolic links may span file systems
and may refer to directories.

Given one or two arguments, ln creates a link to an existing file source_file. If target_file is given, the link
has that name. Target_file may also be a directory in which to place the link. Otherwise it is placed in the

Qshell 97

current directory. If only the directory is specified, the link will be made to the last component of
source_file.

Given more than two arguments, ln makes links in target_dir to all the named source files. The links made
will have the same name as the files being linked to.

Options

-f
Unlink any already existing file, permitting the link to occur.

-s
Create a symbolic link.

Exit status

• 0 when success
• >0 when an error occurs

Examples

1. Create a symbolic link from the file, "/usr/bin/perl5" to the file "/usr/bin/perl".

ln -s /usr/bin/perl5 /usr/bin/perl

2. Create a new link from the file "/usr/bin/qsh" to the file "/bin/qsh" and unlink the file "/bin/qsh" if it
exists.

ln -f /usr/bin/qsh /bin/qsh

Related tasks
cp - Copy files
ls - List directory contents
mv - Move files
rm - Remove directory entries
rmdir - Remove directories

ls - List directory contents

Synopsis

ls [-ACFLRSTacdfiloqrstu1] [file ...]

Description

For each operand that names a file of a type other than directory, ls displays its name as well as any
requested, associated information. For each operand that names a file of type directory, ls displays the
names of files contained within that directory, as well as any requested, associated information.

If no operands are given, the contents of the current directory are displayed. If more than one operand is
given, non-directory operands are displayed first; directory and non-directory operands are sorted
separately and in lexicographical order.

Options

-A
List all entries except for "." and "..".

-C
Force multi-column output; this is the default when output is to a terminal.

-F
Display a slash (/) immediately after each path name that is a directory, an asterisk (*) after each that
is executable, and an at sign (@) after each symbolic link.

98 System i: Qshell

-L
If argument is a symbolic link, list the file or directory the link references rather than the link itself.

-R
Recursively list subdirectories.

-S
Display the CCSID attribute for the file, or sort and display files by size. The behavior depends on
environment variable QIBM_ZSH_LS_SORT_BY_SIZE.

-T
Display complete time information for the file, including month, day, hour, minute, second, and year
when the -l option is also specified.

-a
Include directory entries whose names begin with a dot (.).

-c
Use time when file status was last changed for sorting or printing.

-d
Directories are listed as plain files (not searched recursively) and symbolic links in the argument list
are not indirected through.

-f
Output is not sorted.

-i
For each file, print the file's file serial number (inode number).

-l
(Lowercase letter `ell.') List in long format. See Extended Description below for details. If the output
is to a terminal, a total sum for all the file sizes is output on a line before the long listing.

-o
Include the file flags in a long (-l) output.

-q
Force printing of non-graphic characters in file names as the question mark (?) character. This is the
default when output is to a terminal.

-r
Reverse the order of the sort to get reverse lexicographical order or the oldest entries first.

-s
Display the number of bytes actually allocated for each file, in units of 1024 bytes, where partial units
are rounded up to the next integer value.

-t
Sort by time modified (most recently modified first) before sorting the operands by lexicographical
order.

-u
Use time of last access, instead of last modification of the file for sorting (-t) or printing (-l).

-1
(The numeric digit one) Force output to be one entry per line. This is the default when output is not to
a terminal.

The -1, -C, and -l options all override each other. The last one specified determines the format used.

The -c, and -u options override each other. The last one specified determines the file time used.

By default, ls lists one entry per line to standard output; the exceptions are to terminals or when the -C
option is specified.

File information is displayed with one or more blanks separating the information associated with the -i, -s,
-l, and -S options.

Extended description

Qshell 99

If the -l option is specified, the following long format information is displayed for each file:

• file mode,
• number of links,
• owner name,
• group name,
• number of bytes in the file,
• time the file was last modified, and
• the path name.

If the file was modified within six months of the current date, the time is displayed as the abbreviated
month, day-of-month, hour, and minute. Otherwise the time is displayed as the abbreviated month, day-
of-month, and four-digit year.

In addition, for each directory whose contents are displayed, the total number of bytes used by the files in
the directory is displayed on a line by itself immediately before the information for the files in the
directory.

If the owner or group names are not a known user or group name the numeric identifiers are displayed.

If the file is a character special or block special file, the major and minor device numbers for the file are
displayed in the size field. If the file is a symbolic link the pathname of the linked-to file is preceded by "-
>".

The file mode consists of the entry type, owner permissions, group permissions, and other permissions.
The entry type character describes the type of file, as follows:

• b for a block special file.
• c for a character special file.
• d for a directory.
• l for a symbolic link.
• p for a pipe.
• s for a socket.
• - for a regular file.

The owner permissions, group permissions, and other permissions are each three characters. Each field
has three character positions:

• For the first position, if the value is r, the file is readable. If the value is -, it is not readable.
• For the second position, if the value is w, the file is writable. If the value is -, it is not writable.
• For the third position,

– If the value is S for the owner permissions, the set-user-ID mode is set. If the value is S for the group
permissions, the set-group-ID mode is set.

– If the value is s for the owner permissions, the file is executable and the set-user-ID mode is set. If
the value is s for the group permissions, the file is executable and the set-group-ID mode is set.

– If the value is x, the file is executable or the directory is searchable.
– If the value is -, the object is not executable or searchable.

Environment variables

ls is affected by the following environment variables:

COLUMNS
If this variable contains a string representing a decimal integer, it is used as the column position width
for displaying multiple-text-column output. The ls utility calculates how many path name text
columns to display based on the width provided. See the -C option.

100 System i: Qshell

QIBM_ZSH_LS_SORT_BY_SIZE
Set this environment variable to control how the ls utility to show the ls -S results. If the value of the
variable is '1', ls -S sorts the files by size and display. Otherwise ls -S displays the CCSID attribute for
a file. There is no default value.

Exit status

• 0 on success
• >0 if an error occurs.

Examples

1. Display the list of files in the current directory using the long format.

ls -l

2. Display all date and time details for the file "myfile".

ls -lT myfile
-rwxrwxrwx 1 abbey 0 592 Sep 12 22:47:01 1998 myfile

Related tasks
chgrp - Change file group ownership
chmod - Change file modes
chown - Change file ownership
cp - Copy files
ln - Link files
mkdir - Make directories
mv - Move files
rm - Remove directory entries
rmdir - Remove directories

mkdir - Make directories

Synopsis

mkdir [-p] [-m mode] directory ...

Description

The mkdir utility creates the directories named as operands, in the order specified, using mode
rwxrwxrwx (0777) as modified by the current file creation mask.

The user must have write permission in the parent directory.

Options

-m
Set the file permission bits of the final created directory to the specified mode. The mode argument
can be in any of the formats supported by the chmod command. If a symbolic mode is specified, the
operation characters + and - are interpreted relative to an initial mode of "a=rwx".

-p
Create intermediate directories as required. If this option is not specified, the full path prefix of each
operand must already exist. Intermediate directories are created with permission bits of rwxrwxrwx
(0777) as modified by the current file creation mask, plus write and search permission for the owner.

Exit status

• 0 if successful
• >0 if an error occurred.

Examples

Qshell 101

Create the directories "new", "java", "test", "dir", "4" and "bob" and set the mode to read, write and
execute for owner.

mkdir -p -m 700 /new/java/test/dir/4/bob

Related tasks
chmod - Change file modes
ls - List directory contents
rmdir - Remove directories
umask - Get or set the file mode creation mask
mkfifo - Make FIFO special files

mkfifo - Make FIFO special files

Synopsis

mkfifo [-p] [-m mode] file ...

Description

The mkfifo utility creates the FIFO special files named as operands, in the order specified, using a default
mode that allows read and write permission for the owner, group, and others (0666) as modified by the
current file creation mask.

The user must have write permission in the parent directory.

Options

-m mode
Set the file permission bits of the FIFO special file to the specified mode. The mode argument can be
in any of the formats supported by the chmod command. If a symbolic mode is specified, the
operation characters + and - are interpreted relative to an initial mode of "a=rw".

-p
Create intermediate directories as required. If this option is not specified, the full path prefix of each
file must already exist. Intermediate directories are created with a default mode that allows read,
write, and search permission for the owner, group, and others (0777) as modified by the current file
creation mask.

Operands

Each file is the path name of FIFO special file.

Exit status

• 0 if successful
• >0 if an error occurred.

Examples

1. Create the FIFO special files "fifo1" and "fifo1":

mkfifo fifo1 fifo2

2. Create the the FIFO special file "fifo1" and set the permissons to read, write and execute for the
owner:

mkfifo -m 700 myfifo

3. Create the the FIFO special file "/dir1/dir2/fifo1" and each directory in the path that does not exist:

mkfifo -p /dir1/dir2/fifo1

102 System i: Qshell

Related tasks
chmod - Change file modes
mkdir - Make directories
umask - Get or set the file mode creation mask

mv - Move files

Synopsis

mv [-f | -i] source_file target_file

mv [-f | -i] source_file ... target_dir

Description

In its first form, the mv utility renames the file named by the source_file operand to the destination path
named by the target_file operand. This form is assumed when the last operand does not name an already
existing directory.

In its second form, mv moves each file named by a source_file operand to a destination file in the existing
directory named by the target_dir operand. The destination path for each source_file operand is the path
name produced by the concatenation of target_dir, a slash, and the final path name component from
source_file.

It is an error for either the source_file operand or the destination path to specify a directory except when
both are directories.

If the destination path does not have a mode which permits writing, mv prompts the user for confirmation
as specified for the -i option.

Options

-f
Do not prompt for confirmation before overwriting the destination path. The -i option is ignored if the -
f option is specified.

-i
Write a prompt to standard error before moving a file that would overwrite an existing file. If the
response from the standard input begins with the first character for the YES response in the current
locale, the move is attempted.

Exit status

• 0 on success
• >0 if an error occurs

Examples

Move the file "perl5" into the directory "/usr/bin" and prompt the user to overwrite if the file exists.

mv -i perl5 /usr/bin

Related tasks
cp - Copy files
ln - Link files
ls - List directory contents
rm - Remove directory entries

od - Dump files in various formats

Synopsis

od [-A address_base] [-j skip] [-N count] [-t type_string] [-Cbcdosvx] [file...]

Description

Qshell 103

The od utility writes the contents of the specified files to standard output in a user-specified format. If the
file parameter is not given, the od command reads standard input. The format is specified by the -t flag. If
no format type is specified, -t oS is the default.

Options

-A address_base
Specifies the format for the output offset base. The address_base can be one of these values:

• d for decimal,
• o for octal,
• x for hexadecimal, or
• n for none.

In the case of n, the offset base is not displayed. If -A is not specified, -A o is the default.

-b
Output bytes in octal. It is equivalent to -t 01.

-C
Display the CCSID of the file to standard output before the rest of the output is written.

-c
Output bytes as characters. It is equivalent to -t c.

-d
Output bytes in unsigned decimal. It is equivalent to -t u2.

-j skip
Specifies the number of bytes to skip before beginning to display output. If more than one file is
specified, the number of bytes will be used on the concatenated input of all files specified. An error
will occur if this number is larger than the size of the concatenated inputs. This value can be specified
in hexadecimal (preceded by 0x or 0X), octal (preceded by 0), or decimal (default).

-N count
Specifies the number of bytes to be written. By default, the whole file will be written. This value can
be specified in hexadecimal (preceded by 0x or 0X), octal (preceded by 0), or decimal (default).

-o
Output bytes in octal. It is equivalent to -t o2.

-s
Output bytes in signed decimal. It is equivalent to -t d2.

-t type_string
Specifies one or more output types. The type specified must be a string containing all of the
formatting types that you want. The type_string can contain these values:

• a for character,
• c for character,
• d for signed decimal,
• f for floating point,
• o for octal,
• u for unsigned decimal, or
• x for hexadecimal.

The type specifications of a and c may give unexpected results since they depend on the CCSID on the
data. The a type specifier displays non-printable characters as named characters. The c type specifier
displays non-printable characters as three digit octal numbers.

The type specifications of d, o, u and x can also be followed by 1, 2, 4, C, S, I or L. These specify the
number of bytes to be transformed by each instance of the output type. The values C, S, I and L
correspond to char, short, int and long.

104 System i: Qshell

The type specification of f can be followed by by 4, 8, F, D or L. These specify the number of bytes to
be transformed by each instance of the output type. The values F, D and L correspond to float, double,
and long double. If -t is not specified, the default is -t oS.

-v
Write all input data. Without this option, repeated output lines will not be written. When repeats
occur, only an asterisk (*) will be written.

-x
Output bytes in hexadecimal. It is equivalent to -t x2.

Operands

Each file is a path name of an object to be written to standard output. If no file operands are specified,
standard input will be used.

Exit status

• 0 when successful
• >0 when an error occurred.

Examples

1. Dump a file in hexadecimal format.

od -tx output.txt

2. Dump the first 50 bytes of a file.

od -N50 output.txt

3. Skip the first 100 bytes and then dump the rest of a file.

od -j100 output.txt

4. Dump a file in both hexadecimal and character format.

od -tx1 -tc output.txt

Related tasks
cat - Concatenate and print files
pr - Print files

pax - Portable archive interchange

Synopsis

pax [-cdnv] [-E limit] [-f archive] [-s replstr ...] [-U user ...] [-G group ...] [-T [from_date][,to_date] ...]
[pattern ...]

pax -r [-cdiknuvDYZ] [-C ccsid] [-E limit] [-f archive] [-o options ...] [-p string ...] [-s replstr ...] [-U
user ...] [-G group ...] [-T [from_date][,to_date] ...] [pattern ...]

pax -w [-dituvHLPX] [-b blocksize] [[-a] [-f archive]] [-x format] [-B bytes] [-s replstr ...] [-o options ...] [-U
user ...] [-G group ...] [-T [from_date][,to_date][/[c][m]] ...] [file ...]

pax -r -w [-diklntuvDHLPXYZ] [-p string ...] [-s replstr ...] [-U user ...] [-G group ...] [-T [from_date]
[,to_date][/[c][m]] ...] [file ...] directory

Description

The pax utility reads, writes, and lists the members of an archive file, and copies directory hierarchies.
pax operation is independent of the specific archive format, and supports a wide variety of different
archive formats. A list of supported archive formats can be found under the description of the -x option.

Qshell 105

The presence of the -r and the -w options specifies which of the following functional modes pax will
operate under: list, read, write, and copy.

<none>List
pax writes a table of contents of the members of the archive file read from whose path names match
the specified patterns. The table of contents contains one file name per line and is written using single
line buffering.

-r Read
pax extracts the members of the archive file read from the with path names matching the specified
patterns. The archive format and blocking is automatically determined on input. When an extracted
file is a directory, the entire file hierarchy rooted at that directory is extracted. All extracted files are
created relative to the current file hierarchy. The setting of ownership, access and modification times,
and file mode of the extracted files are discussed in more detail under the -p option.

-w Write
pax writes an archive containing the file operands to standard output using the specified archive
format. When no file operands are specified, a list of files to copy with one per line is read from
standard input. When a file operand is also a directory, the entire file hierarchy rooted at that directory
will be included.

-r -w Copy
pax copies the file operands to the destination directory. When no file operands are specified, a list of
files to copy with one per line is read from standard input. When a file operand is also a directory the
entire file hierarchy rooted at that directory will be included. The effect of the copy is as if the copied
files were written to an archive file and then subsequently extracted, except that there may be hard
links between the original and the copied files (see the -l option below).

Warning: The destination directory must not be one of the
file operands or a member of a file hierarchy rooted
at one of the file operands. The result of a copy
under these conditions is unpredictable.

Note: Archive files must be in CCSID 819 for portability
with other platforms.

While processing a damaged archive during a read or list operation, pax will attempt to recover from
media defects and will search through the archive to locate and process the largest number of archive
members possible (see the -E option for more details on error handling).

Options

-r
Read an archive file from standard input and extract the specified files. If any intermediate directories
are needed in order to extract an archive member, these directories will be created as if mkdir was
called with the bitwise inclusive OR of S_IRWXU, S_IRWXG, and S_IRWXO as the mode argument.
When the selected archive format supports the specification of linked files and these files cannot be
linked while the archive is being extracted, pax will write a diagnostic message to standard error and
exit with a nonzero exit status at the completion of operation.

-w
Write files to the standard output in the specified archive format. When no file operands are specified,
standard input is read for a list of path names with one per line without any leading or trailing
<blanks>.

-a
Append files to the end of an archive that was previously written. If an archive format is not specified
with a -x option, the format currently being used in the archive will be selected. Any attempt to
append to an archive in a format different from the format already used in the archive will cause pax
to exit immediately with a non-zero exit status. The blocking size used in the archive volume where
writing starts will continue to be used for the remainder of that archive volume.

106 System i: Qshell

-b blocksize
When writing an archive, block the output at a positive decimal integer number of bytes per write to
the archive file. The blocksize must be a multiple of 512 bytes with a maximum of 32256 bytes. A
blocksize can end with k or b to specify multiplication by 1024 (1K) or 512. A pair of blocksizes can be
separated by x to indicate a product. When blocking is not specified, the default blocksize is
dependent on the specific archive format being used (see the -x option).

-c
Match all file or archive members except those specified by the pattern and file operands.

-d
Cause files of type directory being copied or archived, or archive members of type directory being
extracted, to match only the directory file or archive member and not the file hierarchy rooted at the
directory.

-f archive
Specify archive as the path name of the input or output archive, overriding the default standard input
(for list and read) or standard output (for write). A single archive may span multiple files and different
archive devices. When required, pax will prompt for the path name of the file or device of the next
volume in the archive.

-i
Interactively rename files or archive members. For each archive member matching a pattern operand
or each file matching a file operand, pax will prompt to the terminal giving the name of the file, its file
mode and its modification time. pax then reads a line from the terminal. If this line is blank, the file or
archive member is skipped. If this line consists of a single period, the file or archive member is
processed with no modification to its name. Otherwise, its name is replaced with the contents of the
line. pax will immediately exit with a non-zero exit status if EOF is encountered when reading a
response. If the LC_TIME environment variable is set, the modification time is formatted using the
format specified by the d_t_fmt keyword in the LC_TIME category of the specified locale.

-k
Do not overwrite existing files.

-l
(The lowercase letter ell) Link files. In the copy mode (-r -w), hard links are made between the source
and destination file hierarchies whenever possible.

-n
Select the first archive member that matches each pattern operand. No more than one archive
member is matched for each pattern. When members of type directory are matched, the file hierarchy
rooted at that directory is also matched (unless -d is also specified).

-o
Information to modify the algorithm for extracting or writing archive files which is specific to the
archive format specified by -x. In general, options take the form: name=value.

-p string
Specify one or more file characteristic options (privileges). The string is a string specifying file
characteristics to be retained or discarded on extraction. The string consists of the specification
characters a, e, m, o, and p. Multiple characteristics can be concatenated within the same string and
multiple -p options can be specified. The meaning of the specification characters are as follows:
a

Do not preserve file access times. By default, file access times are preserved whenever possible.
e

Preserve everything, the user ID, group ID, file mode bits, file access time, and file modification
time. This is intended to be used by someone with all the appropriate privileges in order to
preserve all aspects of the files as they are recorded in the archive. The e flag is the sum of the o
and p flags.

m
Do not preserve file modification times. By default, file modification times are preserved whenever
possible.

Qshell 107

o
Preserve the user ID and group ID.

p
Preserve the file mode bits. This intended to be used by a user with regular privileges who wants
to preserve all aspects of the file other than the ownership. The file times are preserved by
default, but two other flags are offered to disable this and use the time of extraction instead.

In the preceding list, preserve indicates that an attribute stored in the archive is given to the extracted
file, subject to the permissions of the invoking process. Otherwise the attribute of the extracted file is
determined as part of the normal file creation action. If the preservation of any of these items fails for
any reason, pax will write a diagnostic message to standard error. Failure to preserve these items
affects the final exit status, but will not cause the extracted file to be deleted. If the file characteristic
letters in any of the strings are duplicated or conflict with each other, the one given last will take
precedence. For example, if -p eme is specified, file modification times are still preserved.

-s
Modify the file or archive member names specified by the pattern or file operands according to the
substitution expression replstr, using the syntax of the regular expressions. The format of these
regular expressions are:

/old/new/[gp]

Old is a basic regular expression and new can contain an ampersand (&), n (where n is a digit) back-
references, or subexpression matching. The old string may also contain <newline> characters. Any
non-null character can be used as a delimiter (/ is shown here). Multiple -s expressions can be
specified. The expressions are applied in the order they are specified on the command line,
terminating with the first successful substitution. The optional trailing g continues to apply the
substitution expression to the path name substring which starts with the first character following the
end of the last successful substitution. The first unsuccessful substitution stops the operation of the g
option. The optional trailing p will cause the final result of a successful substitution to be written to
standard error in the following format:

<original path name> >> <new path name>

File or archive member names that substitute to the empty string are not selected and will be
skipped.

-t
Reset the access times of any file or directory read or accessed by pax to be the same as they were
before being read or accessed by pax.

-u
Ignore files that are older (having a less recent file modification time) than a pre-existing file or
archive member with the same name. During read, an archive member with the same name as a file in
the file system will be extracted if the archive member is newer than the file. During write, a file
system member with the same name as an archive member will be written to the archive if it is newer
than the archive member. During copy, the file in the destination hierarchy is replaced by the file in
the source hierarchy or by a link to the file in the source hierarchy if the file in the source hierarchy is
newer.

-v
During a list operation, produce a verbose table of contents using the format of the ls utility with the -l
option. For path names representing a hard link to a previous member of the archive, the output has
the format: <ls -l listing> == <link name> For path names representing a symbolic link, the output has
the format: <ls -l listing> = ><link name> Where <ls -l listing> is the output format specified by the ls
utility when used with the -l option. Otherwise for all the other operational modes (read, write, and
copy), path names are written and flushed to standard error without a trailing newline as soon as
processing begins on that file or archive member. The trailing newline is not buffered, and is written
only after the file has been read or written. If the LC_TIME environment variable is set, the output time

108 System i: Qshell

is formatted using the format specified by the d_t_fmt keyword in the LC_TIME category of the
specified locale.

-x
Specify the output archive format, with the default format being ustar. pax currently supports the
following formats:
cpio

The extended cpio interchange format specified in the 1003.2 standard. The default blocksize for
this format is 5120 bytes.

bcpio
The old binary cpio format. The default blocksize for this format is 5120 bytes. This format is not
very portable and should not be used when other formats are available.

sv4cpio
The System V release 4 cpio. The default blocksize for this format is 5120 bytes.

sv4crc
The System V release 4 cpio with file crc checksums. The default blocksize for this format is 5120
bytes.

tar
The old BSD tar format as found in BSD4.3. The default blocksize for this format is 10240 bytes.
Path names stored by this format must be 100 characters or less in length. Only regular files, hard
links, soft links, and directories will be archived (other file system types are not supported). For
backward compatibility with even older tar formats, a -o option can be used when writing an
archive to omit the storage of directories. This option takes the form: -o -Cm -
write_opt=nodir

ustar
The extended tar interchange format specified in the 1003.2 standard. The default blocksize for
this format is 10240 bytes. Path names stored by this format must be 250 characters or less in
length.

pax will detect and report any file that it is unable to store or extract as the result of any specific
archive format restrictions. The individual archive formats may impose additional restrictions on use.
Typical archive format restrictions include (but are not limited to): file path name length, file size, link
path name length and the type of the file.

-A
Run pax as old tar.

-B
Limit the number of bytes written to a single archive volume to bytes. The bytes limit can end with m,
k, or b to specify multiplication by 1048576 (1M), 1024 (1K) or 512. A pair of bytes limits can be
separated by x to indicate a product.

-C ccsid
Create the files extracted from the archive in the specified ccsid. There must be a valid translation
from CCSID 819 to the specified ccsid. This option overrides the value of the QIBM_CCSID
environment variable.

-D
This option is the same as the -u option, except that the file inode change time is checked instead of
the file modification time. The file inode change time can be used to select files whose inode
information (for example, uid, gid, and so on) is newer than a copy of the file in the destination
directory.

-E
Limit the number of consecutive read faults while trying to read a flawed archives. With a positive
limit, pax will attempt to recover from an archive read error and will continue processing starting with
the next file stored in the archive. A limit of 0 will cause pax to stop operation after the first read error
is detected on an archive volume. A limit of NONE will cause pax to attempt to recover from read
errors forever. The default limit is a small positive number of retries.

Qshell 109

Warning: Using this option with NONE should be used with
extreme caution as pax may get stuck in an
infinite loop on a very badly flawed archive.

-G
Select a file based on its group name, or when starting with a #, a numeric gid. A '' can be used to
escape the #. Multiple -G options may be supplied and checking stops with the first match.

-H
Follow only command line symbolic links while performing a physical file system traversal.

-L
Follow all symbolic links to perform a logical file system traversal.

-P
Do not follow symbolic links, perform a physical file system traversal. This is the default mode.

-T
Allow files to be selected based on a file modification or inode change time falling within a specified
time range of from_date to to_date (the dates are inclusive). If only a from_date is supplied, all files
with a modification or inode change time equal to or younger are selected. If only a to_date is
supplied, all files with a modification or inode change time equal to or older will be selected. When the
from_date is equal to the to_date, only files with a modification or inode change time of exactly that
time will be selected.

When pax is in the write or copy mode, the optional trailing field [c][m] can be used to determine
which file time (inode change, file modification or both) are used in the comparison. If neither is
specified, the default is to use file modification time only. The m specifies the comparison of file
modification time (the time when the file was last written). The c specifies the comparison of inode
change time (the time when the file inode was last changed; for example, a change of owner, group,
mode, and so on). When c and m are both specified, then the modification and inode change times are
both compared. The inode change time comparison is useful in selecting files whose attributes were
recently changed or selecting files which were recently created and had their modification time reset
to an older time (as what happens when a file is extracted from an archive and the modification time is
preserved). Time comparisons using both file times is useful when pax is used to create a time based
incremental archive (only files that were changed during a specified time range will be archived).

A time range is made up of seven different fields and each field must contain two digits. The format is:

[cc[yy[mm[dd[hh]]]]]mm[.ss]

where cc is the century, yy is the last two digits of the year, the first mm is the month (from 01 to 12),
dd is the day of the month (from 01 to 31), hh is the hour of the day (from 00 to 23), the second mm is
the minute (from 00 to 59), and ss is the seconds (from 00 to 59). The minute field mm is required,
while the other fields are optional and must be added in the following order: hh, dd, mm, yy, cc.

The ss field may be added independently of the other fields. Time ranges are relative to the current
time, so -T 1234/cm would select all files with a modification or inode change time of 12:34 p.m.
today or later. Multiple -T time range can be supplied and checking stops with the first match.

-U
Select a file based on its user name, or when starting with a #, a numeric uid. A '' can be used to
escape the #. Multiple -U options may be supplied and checking stops with the first match.

-X
When traversing the file hierarchy specified by a path name, do not descend into directories that have
a different device ID.

-Y
This option is the same as the -D option, except that the inode change time is checked using the path
name created after all the file name modifications have completed.

110 System i: Qshell

-Z
This option is the same as the -u option, except that the modification time is checked using the path
name created after all the file name modifications have completed.

The options that operate on the names of files or archive members (-c, -i, -n, -s, -u, -v, -D, -G, -T, -U, -Y,
and -Z) interact as follows.

• When extracting files during a read operation, archive members are selected based only on the user
specified pattern operands as modified by the -c, -n, -u, -D, -G, -T, -U options. Then any -s and -i
options will modify in that order, the names of these selected files. Then the -Y and -Z options will be
applied based on the final path name. Finally the -v option will write the names resulting from these
modifications.

• When archiving files during a write operation, or copying files during a copy operation, archive members
are selected based only on the user specified path names as modified by the -n, -u, -D, -G, -T, and -U
options (the -D option only applies during a copy operation). Then any -s and -i options will modify in
that order, the names of these selected files. Then during a copy operation the -Y and the -Z options will
be applied based on the final path name. Finally the -v option will write the names resulting from these
modifications.

• When one or both of the -u or -D options are specified along with the -n option, a file is not considered
selected unless it is newer than the file to which it is compared.

Operands

The directory operand specifies a destination directory path name. If the directory operand does not exist,
or it is not writable by the user, or it is not of type directory, pax will exit with a non-zero exit status.

The pattern operand is used to select one or more path names of archive members. When the pattern
operand is not supplied, all members of the archive will be selected. When a pattern matches a directory,
the entire file hierarchy rooted at that directory will be selected. When a pattern operand does not select
at least one archive member, pax will write these pattern operands in a diagnostic message to standard
error and then exit with a non-zero exit status.

The file operand specifies the path name of a file to be copied or archived. When a file operand does not
select at least one archive member, pax will write these file operand path names in a diagnostic message
to standard error and then exit with a non-zero exit status.

Environment variables

pax is affected by the following environment variables:

LANG
Provides a default value for locale categories that are not specifically set with a variable starting with
LC_.

LC_TIME
Defines the date and time format used in displaying file times.

QIBM_CCSID
pax creates the file extracted from the archive in the CCSID specified by the value of the environment
variable.

Exit status

• 0 All files were processed successfully
• 1 An error occurred

Examples

1. Copy the contents of the current directory to an archive file:

pax -w -f saved.ar

2. Display the verbose table of contents for an archive file:

Qshell 111

pax -r -v -f saved.ar

3. The following commands copy the entire directory tree anchored at /home/abbey/olddir to /home/
abbey/newdir:

mkdir /home/abbey/newdir
cd /home/abbey/olddir
pax -rw . /home/abbey/newdir

4. Interactively select the files to copy from the current directory to the directory destination:

pax -rw -i . destination

5. Extract all files from an archive file that are owned by user root and group bin and preserve all file
permissions:

pax -r -pe -U root -G bin -f saved.ar

6. List and update only those files in the destination directory /backup which are older than files with the
same name found in the source directory /sourcecode:

pax -r -w -v -Y -Z /sourcecode /backup

Related tasks
compress - Compress data
tar - File archiver

pr - Print files

Synopsis

pr [+page] [-column] [-adFmrt] [-e [char][gap]] [-h header] [-i[char][gap]] [-l line] [-n[char][width]] [-o
offset] [-s[char]] [-w width] [-] [file ...]

Description

The pr utility is a printing and pagination filter for text files. When multiple input files are specified, each is
read, formatted, and written to standard output. By default, the input is separated into 66-line pages,
each with a 5-line header with the page number, date, time, and the path name of the file and a 5-line
trailer consisting of blank lines. If the LC_TIME environment variable is set, the date and time in the
header is formatted using the format specified by the d_t_fmt keyword in the LC_TIME category of the
specified locale.

When multiple column output is specified, text columns are of equal width. By default text columns are
separated by at least one <space>. Input lines that do not fit into a text column are truncated. Lines are
not truncated under single column output.

Error messages are written to standard error during the printing process (if output is redirected) or after
all successful file printing is complete (when printing to a terminal).

If pr receives an interrupt while printing to a terminal, it flushes all accumulated error messages to the
screen before terminating.

Options

Note:

1. In the following option descriptions, column, lines, offset, page, and width are positive decimal integers
and gap is a nonnegative decimal integer.

2. The -s option does not allow the option letter to be separated from its argument.

112 System i: Qshell

3. The -e, -i, and -n options require that both arguments, if present, not be separated from the option
letter.

+page
Begin output at page number page of the formatted input.

-column
Produce output that is columns wide (default is 1) that is written vertically down each column in the
order in which the text is received from the input file. The options -e and -i are assumed. This option
should not be used with the -m option. When used with the -t option the minimum number of lines is
used to display the output.

-a
Modify the effect of the column option so that the columns are filled across the page in a round-robin
order (for example, when column is 2, the first input line heads column 1, the second heads column 2,
the third is the second line in column 1, and so on). This option requires the use of the column option.

-d
Produce output that is double spaced. An extra <newline> character is output following every
<newline> found in the input.

-e [char][gap]
Expand each input <tab> to the next greater column position specified by the formula n*gap+1, where
n is an integer > 0. If gap is zero or is omitted the default is 8. All <tab> characters in the input are
expanded into the appropriate number of <space>s . If any nondigit character, char, is specified, it is
used as the input tab character.

-F
Use a <form-feed> character for new pages, instead of the default behavior that uses a sequence of
<newline> characters.

-h header
Use the string header to replace the file name in the header line.

-i [char][gap]
In output, replace multiple <space>s with <tab>s whenever two or more adjacent <space>s reach
column positions gap+1, 2*gap+1, and so on. If gap is zero or omitted, default <tab> settings at every
eighth column position is used. If any nondigit character, char, is specified, it is used as the output
<tab> character.

-l lines
Override the 66 line default and reset the page length to lines. If lines is not greater than the sum of
both the header and trailer depths (in lines), the pr utility suppresses output of both the header and
trailer, as if the -t option were in effect.

-m
Merge the contents of multiple files. One line from each file specified by a file operand is written side
by side into text columns of equal fixed widths, in terms of the number of column positions. The
number of text columns depends on the number of file operands successfully opened. The maximum
number of files merged depends on page width and the per process open file limit. The options -e and
i are assumed.

-n [char][width]
Provide width digit line numbering. The default for width, if not specified, is 5. The number occupies
the first width column positions of each text column or each line of -m output. If char (any nondigit
character) is given, it is appended to the line number to separate it from whatever follows. The default
for char is a <tab>. Line numbers longer than width columns are truncated.

-o offset
Each line of output is preceded by offset <spaces>s. If this option is not specified, the default is zero.
The space taken is in addition to the output line width.

-r
Write no diagnostic reports on failure to open a file.

Qshell 113

-s char
Separate text columns by the single character char instead of by the appropriate number of <space>s
(default for char is the <tab> character).

-t
Print neither the five-line identifying header nor the five-line trailer typically supplied for each page.
Quit printing after the last line of each file without spacing to the end of the page.

-w width
Set the width of the line to width column positions for multiple text-column output only. If this option
is not specified and the -s option is not specified, the default width is 72. If this option is not specified
and the -s option is specified, the default width is 512.

Operands

Each file is a path name of a file to be printed. If no file operands are specified, or if a file operand is -, the
standard input is used.

Environment variables

pr is affected by the following environment variables:

LANG
Provides a default value for locale categories that are not specifically set with a variable starting with
LC_.

LC_TIME
Defines the format of the date and time used in writing header lines.

Exit status

• 0 on success
• >0 if an error occurs

Examples

1. Print a file starting at page 3:

pr +3 source.java

2. Print every *.java file and change the header message:

pr -h 'JDK source files and examples' code/*.java

Related tasks
cat - Concatenate and print files
od - Dump files in various formats

pwd - Return working directory name

Synopsis

pwd

Description

You can use pwd to display the working directory on standard output.

Options

None.

Operands

None.

Exit status

114 System i: Qshell

• 0 when successful.

Related tasks
cd - Change working directory
pwdx - Print working directory expanded

pwdx - Print working directory expanded

Synopsis

pwdx

Description

You can use pwdx to display the working directory with symbolic links expanded on standard output.

Exit status

• 0 when successful

Related tasks
cd - Change working directory
pwd - Return working directory name

Rfile - Read or write record files

Synopsis

Rfile -r | -w | -h [-abKlqQs] [-c CL-command] [-C CL-command] file ...

Description

The Rfile utility reads i5/OS record files (database or device files) and writes the data to standard output,
or reads standard input and writes the data to record files.

Note: This utility is unique to i5/OS.

Options

-a
Append the contents of standard input to the record file. This option only applies when -w is
specified. If -w is specified without -a, any physical file member is cleared before writing the contents
of the stream.

-b
Process binary data. This option prevents normal processing for newline characters in the input or
output stream. When -b is omitted, newline characters are removed from standard input lines written
to a record file, and newline characters are inserted at the end of records written to standard output.

-c CL-command
Run a CL command in the utility process before processing any record file. This option can be used to
run a CL override command that specifies device-dependent parameters for a record file. If more than
one -c option is specified, the CL commands are processed in sequence before processing any record
file.

-C CL-command
Run a CL command in the utility process after processing all record files. If more than one -C option is
specified, the CL commands are processed in sequence after processing all record files.

-h
Write a brief description of command syntax to standard error.

-K
Keep the job log at job termination. The system normally deletes the job log after running a QShell
utility. This option forces the system to produce a job log listing (which may assist with problem
determination) when the job that runs Rfile ends.

Qshell 115

-l
Do not truncate long text lines. This option only applies to text data. When -l is specified, any standard
input line longer than one output record is folded onto as many records as necessary, and no trailing
blanks are removed from records written to standard output.

-q
Suppress warning messages. This option suppresses messages normally written to standard error
when long text lines are truncated or folded in the output file.

-Q
Use i5/OS qualified name syntax for file names. When this option is specified, the file names specified
as command operands are i5/OS qualified names (instead of Integrated File System path names).

-r
Read the specified record files and write their contents to standard output. Either -r or -w, but not
both, must be specified.

-s
Process source sequence number and date fields as text. This option only applies to text processing
of FILETYPE(*SRC) record files. When -s is specified, the entire contents of every record is processed
as a text line. If -s is omitted, the first 12 bytes is stripped from every source record read, and the first
12 bytes of every source record written is filled with a sequence number and zeros for the date field.

-w
Read standard input and write its contents to the specified record file. The output file must already
exist, or an error is reported (and no file is created). Either -r or -w, but not both, must be specified.

Operands

At least one i5/OS record file name must be specified. If more than one file is specified, they are
processed in sequence as end of file is reached on each input source. When option -Q is omitted, files are
identified by path names in the Integrated File System. If option -Q is specified, file names are specified
in any of these forms:

 file
 library/file
 'file(member)'
 'library/file(member)'

If the library name is omitted or *LIBL is specified for the library name, the file is located using the job
library list. If the member name is omitted or *FIRST is specified as the member name, the first member
of a database file is opened. Specifying *LAST for the member name opens the last member of a database
file. Member name *ALL can be used with option -r to read all members of a database file (from first to
last). Member names are ignored for device files (when specified in i5/OS qualified name form).

Examples

1. Read the contents of source database member QSYSINC/H(SQLCLI), and write it to standard output.
Trailing blanks are removed from each line, as are the first 12 characters of each line (containing
sequence number and date information):

Rfile -rQ 'qsysinc/h(sqlcli)'

2. Write the contents of stream file mydoc.ps to spooled printer device file QPRINT as unconverted ASCII
data, and then use the CL LPR command to send the spool file to another system:

before='ovrprtf qprint devtype(*userascii) spool(*yes)'
after="lpr file(qprint) system(usrchprt01) prtq('rchdps') transform(*no)"
cat -c mydoc.ps | Rfile -wbQ -c "$before" -C "$after" qprint

3. Copy the contents of save file INSAVF in library QGPL to another save file named OUTSAVF located
using the job library list. Note that the data is read and written in binary mode to avoid ASCII/EBCDIC
conversion and newline processing:

116 System i: Qshell

Rfile -rb /qsys.lib/qgpl.lib/insavf.file | Rfile -wbQ outsavf

Related tasks
catsplf - Concatenate and print spool files

rm - Remove directory entries

Synopsis

rm [-f | -i] [-dPRr] file ...

Description

The rm utility attempts to remove the non-directory type files specified on the command line. If the
permissions of the file do not permit writing, and the standard input device is a terminal, the user is
prompted (on standard error) for confirmation.

The rm utility removes symbolic links, not the files referenced by the links.

It is an error to attempt to remove the files "." and "..".

Options

-d
Attempt to remove directories as well as other types of files.

-f
Attempt to remove the files without prompting for confirmation, regardless of the file's permissions. If
the file does not exist, do not display a diagnostic message or modify the exit status to reflect an
error. The -f option overrides any previous -i options.

-i
Request confirmation before attempting to remove each file, regardless of the file's permissions, or
whether the standard input device is a terminal. If the response from the standard input begins with
the first character for the YES response in the current locale, the file is removed. The -i option
overrides any previous -f options.

-P
Overwrite regular files before deleting them. Files are overwritten three times, first with the byte
pattern 0xff, then 0x00, and then 0xff again, before they are deleted.

-R
Attempt to remove the file hierarchy rooted in each file argument. The -R option implies the -d option.
If the -i option is specified, the user is prompted for confirmation before each directory's contents are
processed (as well as before the attempt is made to remove the directory). If the user does not
respond affirmatively, the file hierarchy rooted in that directory is skipped.

-r
Equivalent to -R.

Exit status

• 0 if all of the named files or file hierarchies were removed, or if the -f option was specified and all of the
existing files or file hierarchies were removed.

• >0 if an error occurs.

Examples

1. Remove all the files and the directory "java", as well as any subdirectories or files, or both, and do not
prompt for conformation.

rm -r -f /home/bob/examples/code/java

2. Remove the files "file1", "file2" and "file3".

Qshell 117

rm file1 file2 file3

Related tasks
cp - Copy files
ln - Link files
ls - List directory contents
mv - Move files
rmdir - Remove directories

rmdir - Remove directories

Synopsis

rmdir directory ...

Description

The rmdir utility removes the directory entry specified by each directory argument, provided it is empty.

Arguments are processed in the order given. In order to remove both a parent directory and a
subdirectory of that parent, the subdirectory must be specified first so the parent directory is empty when
rmdir tries to remove it.

Exit status

• 0 if each directory entry specified referred to an empty directory and was removed successfully.
• >0 An error occurred.

Related tasks
cp - Copy files
ln - Link files
ls - List directory contents
mkdir - Make directories
rm - Remove directory entries

setccsid - Set CCSID attribute for file

Synopsis

setccsid [-R [-H | -L | -P]] [-h] ccsid file ...

Description

The setccsid utility sets the CCSID attribute for the specified files to the specified ccsid. The data
contained in file is not changed.

Options

-H
If the -R option is specified, symbolic links on the command line are followed. Symbolic links
encountered in the tree traversal are not followed.

-L
If the -R option is specified, both symbolic links on the command line and symbolic links encountered
in the tree traversal are followed.

-P
If the -R option is specified, no symbolic links are followed.

-R
If file designates a directory, setccsid sets the CCSID of each file in the entire subtree connected at
that point.

-h
Set the CCSID of a symbolic link instead of the file pointed to by the symbolic link.

118 System i: Qshell

Operands

The ccsid is an integer number identifying the coded character set id. Each file is a pathname of a file to
set the CCSID.

Examples

Set the CCSID of the files "file1" and "file2" to 819:

setccsid 819 file1 file2

Related tasks
iconv - Convert characters from one CCSID to another CCSID
sed - Stream editor
sort - Sort, merge, or sequence check text files
split - Split files into pieces
uniq - Report or filter out repeated lines in a file
attr - Get or set attributes for files
chmod - Change file modes
chown - Change file ownership
touch - Change file access and modification times

tail - Display the last part of a file

Synopsis

tail [-f | -r] [-b number | -c number | -k number |-n number] [file ...]

Description

The tail utility displays the contents of file or, by default, standard input, to the standard output.

The display begins at a byte, line, 512-byte block, or kilobyte location in the input. Numbers having a
leading plus sign (+) are relative to the beginning of the input, for example, "-c +2" starts the display at
the second byte of the input. Numbers having a leading minus sign (-) or no explicit sign are relative to the
end of the input, for example, "-n 2" displays the last two lines of the input. The default starting location is
"-n 10", or the last 10 lines of the input.

If more than one file is specified, each file is preceded by a header consisting of the string "==> XXX <=="
where XXX is the name of the file.

Note: tail does not support large files (files greater than
2GB in size).

Options

-b number
The location is number 512-byte blocks.

-c number
The location is number bytes.

-f
Causes tail to not stop when end of file is reached, but rather to wait for additional data to be
appended to the input. The -f option is ignored if the standard input is a pipe, but not if it is a FIFO.

-k number
The location is number kilobytes.

-n number
The location is number lines.

Qshell 119

-r
Causes the input to be displayed in reverse order, by line. Additionally, this option changes the
meaning of the -b, -c and -n options. When the -r option is specified, these options specify the
number of bytes, lines or 512-byte blocks to display, instead of the bytes, lines or blocks from the
beginning or end of the input from which to begin the display. The default for the -r option is to display
all of the input.

Exit status

• 0 on success
• >0 if an error occurs

Examples

Display the last 100 lines from the file "donkeys". If the file "donkeys" is less than 100 lines, then tail
displays the entire file.

tail -n 100 donkeys

Related tasks
cat - Concatenate and print files
head - Copy the first part of files

tar - File archiver

Synopsis

tar -crtux[befmopvwHLPX] [archive] [blocksize] file ...

Description

The tar utility reads, writes, and lists files from an archive file.

Options

The following options select the function tar performs. One of these options must be specified.

-c
Create a new archive.

-r
Add the specified file to end of the achive.

-t
List the names of the files in the archive to standard output.

-u
Update the specified file in the archive if it has been modified since last written to the archive or add
file to the archive if it is not in the archive.

-x
Extract the specified files from the archive. If no files are specified, all files are extracted from the
archive.

The following options affect the operation of tar.

-b
Use the first operand (or the second, if f has already been specified) as the block size for the archive.

-e
Exit after the first error is found.

-f
Use the first operand (or the second, if b has already been specified) as the name of the archive
instead of the default name. If the name of the file is -, tar writes to the standard output or reads from
the standard input depending on the function.

120 System i: Qshell

-m
Do not restore the modification times. The modification time of the file is the time of extraction.

-o
Set the owner and group of extracted files to the user running tar instead of to the user and group
saved with the archive.

-p
Preserve the owner, group, file mode, access time, and modification time of files extracted from the
archive.

-v
Verbose mode. Write to standard error the name of each file being processed. When the t function is
specified, the output also includes the mode, number of links, owner, group, size, and modification
date of each file.

-w
Write the action to be taken, followed by the name of the file, and then wait for the user's
confirmation. If an affirmative response is given, the action is performed. Any other input suppresses
the action.

-H
Follow only command line symbolic links while performing a physical file system traversal.

-L
Follow all symbolic links to perform a logical file system traversal.

-P
Do not follow symbolic links, perform a physical file system traversal. This is the default mode.

-X
When traversing the file hierarchy specified by a path name, do not descend into directories that have
a different device ID.

Operands

Each file is an object that is either added to the archive or extracted from the archive depending on the
function.

Environment variables

tar is affected by the following environment variables:

QIBM_CCSID
The value of the environment variable is the CCSID used to create files extracted from the archive.
There must be a valid translation from CCSID 819 to the specified CCSID.

Exit status

• 0 when successful
• >0 when unsuccessful

Related tasks
pax - Portable archive interchange

touch - Change file access and modification times

Synopsis

touch [-acfm] [-r ref_file] [-t [[CC]YY]MMDDhhmm[.SS]] [-C ccsid] file ...

Description

The touch utility sets the modification and access times of files to the current time of day. If the file
doesn't exist, it is created with default permissions.

Options

Qshell 121

-a
Change the access time of file. The modification time of the file is not changed unless the -m flag is
also specified.

-C ccsid
If file does not exist, create the file with the specified ccsid. This option overrides the value of the
QIBM_CCSID environment variable.

-c
Do not create file if it does not exist. The touch utility does not treat this as an error. No error
messages are displayed and the exit value is not affected.

-f
Attempt to force the update, even if the file permissions do not currently permit it.

-m
Change the modification time of file. The access time of the file is not changed unless the -a flag is
also specified.

-r ref_file
Use the access and modifications times from the specified ref_file instead of the current time of day.

-t
Change the access and modification times to the specified time. The argument should be in the form:

[[CC]YY]MMDDhhmm[.SS]

where each pair of letters represents the following:
CC

The first two digits of the year (the century).
YY

The second two digits of the year. If YY is specified, but CC is not, a value for CC between 69 and
99 results in a YY value of 19. Otherwise, a CC value of 20 is used.

MM
The month of the year, from 1 to 12.

DD
The day of the month, from 1 to 31.

hh
The hour of the day, from 0 to 23.

mm
The minute of the hour, from 0 to 59.

SS
The second of the minute, from 0 to 59.

If the CC and YY letter pairs are not specified, the values default to the current year. If the SS letter
pair is not specified, the value defaults to 0.

Environment variables

touch is affected by the following environment variables:

QIBM_CCSID
If file does not exist, touch creates the file with the CCSID specified by the value of the environment
variable.

Exit status

• 0 on success
• >0 if an error occurs

Examples

1. Change the time-date stamp of the file myfile to match the time-date stamp of the file yourfile.

122 System i: Qshell

touch -r yourfile myfile

2. Change the time-date stamp of the file myfile to a specific time-date stamp.

touch -t 200001010000.00 myfile

Related tasks
attr - Get or set attributes for files
setccsid - Set CCSID attribute for file
umask - Get or set the file mode creation mask

umask - Get or set the file mode creation mask

Synopsis

umask [-S] [mask]

Description

You can use umask to set or display the file creation mask. The mask allows you to control the file
permission bits that are set when creating a file or directory.

If you specify mask, qsh sets the file creation mask to mask. If you do not specify mask, qsh displays the
current file creation mask on standard output.

Options

• -S Use symbolic permissions.

Operands

When using symbolic permissions, mask is an expression that defines which permissions should not be
removed. A symbolic permission is an expression with the format [who] op [permission] where:

• who is a combination of the letters:

– u for owner permissions.
– g for group permissions
– o for other (or public) permissions
– a for all permissions (the default value).

• op is one of the following:

– - (minus) to delete the permission.
– + (plus) to add the permission.

• permission is one or more of the following:

– r for read permission.
– w for write permission.
– x for execute or search permission.

Exit status

• 0 when successful.
• >0 when mask is invalid.

Examples

1. Display the current file creation mask in symbolic form: umask -S
2. Display the current file creation mask: umask
3. Set the file creation mask to remove read permission for others: umask 004
4. Set the file creation mask to remove write permission for group: umask -S g-w

Qshell 123

Related tasks
chmod - Change file modes
cp - Copy files
mkdir - Make directories
mkfifo - Make FIFO special files
touch - Change file access and modification times
ulimit - Set or display resource limits

uncompress - Expand compressed data

Synopsis

uncompress [-cv] [-b bits] [file ...]

Description

The uncompress utility restores the compressed files to their original form, renaming the files by deleting
the ".Z" extension.

If renaming file would cause files to be overwritten and the standard input device is a terminal, the user is
prompted (on standard error) for confirmation. If prompting is not possible or confirmation is not
received, the files are not overwritten.

Options

-b bits
Specify the bits code limit (see below for details).

-c
Uncompressed output is written to the standard output. No files are modified.

-v
Print the percentage of expansion for each file.

Operands

Each file is a pathname of a file to uncompress. If no files are specified, the standard input is
uncompressed to the standard output. If either the input and output files are not regular files, the checks
for reduction in size and file overwriting are not performed, the input file is not removed, and the
attributes of the input file are not retained.

Extended description

The uncompress utility uses a modified Lempel-Ziv algorithm. Common substrings in the file are first
replaced by 9-bit codes 257 and up. When code 512 is reached, the algorithm switches to 10-bit codes
and continues to use more bits until the limit specified by the -b flag is reached (the default is 16). Bits
must be between 9 and 16.

The amount of compression obtained depends on the size of the input, the number of bits per code, and
the distribution of common substrings. Typically, text such as source code or English is reduced by
50-60%.

Exit status

• 0 on success
• >0 if an error occurs.

Related tasks
compress - Compress data
zcat - Expand and concatenate data

zcat - Expand and concatenate data

Synopsis

zcat [file ...]

124 System i: Qshell

Description

The zcat utility expands the compressed data from the specified files and the uncompressed output is
written to standard output.

Operands

Each file is a pathname of a file that contains compressed data.

Exit status

• 0 on success
• >0 if an error occurs.

Related tasks
cat - Concatenate and print files
catsplf - Concatenate and print spool files
compress - Compress data
uncompress - Expand compressed data

Utilities for reading and writing input and output
View the utilities for reading and writing input and output.

dspmsg - Display message from message catalog

Synopsis

dspmsg [-n] [-s set] catalog msgid [defaultMsg [arguments ...]]

Description

The dspmsg utility displays a message from a message catalog created by the GENCAT CL command. The
message is written to standard output. The dspmsg utility can be used as a replacement for echo or print
when a script needs to display messages that are translated to multiple languages.

Options

-n
Display the specified message with no substitution.

-s set
Retrieve the message from the specified set in the message catalog. The default value for set is 1.

Operands

The catalog operand specifies the path name to a message catalog. If the catalog is specified using a
relative path name, the NLSPATH variable and the LC_MESSAGES locale catagory are used to find the
catalog.

The msgid operand specifies the message identifier to retrieve from the message catalog.

When the specified catalog or msgid is not found, the optional defaultMsg is displayed instead. If the
defaultMsg operand is not specified, a system generated message is displayed.

The optional arguments are substituted into the output message if it contains the %s, %n$s, %ld, or %n
$ld printf() conversion specifications. Any other conversion specifications are not valid. Also, the normal
control character escapes (for example, \n) are supported.

Exit status

• 0 if successful
• >0 if an error occurred.

Examples

Display message 5 from catalog mycat.

Qshell 125

dspmsg mycat 5 "Message not found" hello

Related tasks
gencat - Generate a formatted message catalog
echo - Write arguments to standard output
print - Write output
printf - Write formatted output
read - Read a line from standard input

echo - Write arguments to standard output

Synopsis

echo [arg ...]

Description

You can use echo to display each arg on standard output separated by a space character and followed by
a newline character.

Operands

Each arg is echoed on standard output.

Exit status

• 0 when successful
• >0 when an error occurs

Related tasks
xargs - Construct argument lists and invoke utility
dspmsg - Display message from message catalog
print - Write output
printf - Write formatted output
tee - Duplicate standard input

print - Write output

Synopsis

print [-nrR] [-u [n]] [argument ...]

Description

You can use print to display each argument on standard output separated by a <space> character and
followed by a <newline> character.

Unless you specify -r or -R, print formats the output using the following conventions:

• \a Bell.
• \b Backspace.
• \c Print without adding newline character. The remaining arguments are ignored.
• \f Formfeed.
• \n Newline.
• \r Return.
• \t Tab.
• \v Vertical tab.
• \\ Backslash.
• \0x The character whose EBCDIC code is the 1, 2, or 3-digit octal number x.

126 System i: Qshell

Options

-n
Do not add a trailing newline character to the output.

-r
Do not use the conventions listed above.

-R
Do not use the conventions listed above.

-u n
Write output to descriptor n if specified or descriptor 1 by default. The descriptor must be 1, 2, or one
you opened with exec.

Operands

Each argument is printed on standard output.

Exit status

• 0 when successful.
• >0 wnen unsuccessful.

Related concepts
exec - Run commands and open, close, or copy descriptors
Related tasks
dspmsg - Display message from message catalog
echo - Write arguments to standard output
printf - Write formatted output
read - Read a line from standard input

printf - Write formatted output

Synopsis

printf format [argument ...]

Description

You can use printf to format and display output on standard output. The syntax is similar to the ILE C
printf() function. printf formats using the following conversion control string syntax:

%[flags][width].[precision]conversion

conversion specifies how the corresponding argument is displayed. You must specify one of the following
conversion characters:

c
Unsigned character.

d
Signed decimal number.

e,E
Scientific notation.

f
Floating point number.

g,G
Scientific notation with significant digits.

i
Signed decimal number.

o
Unsigned octal number.

Qshell 127

s
String.

u
Unsigned decimal number.

x
Unsigned hexadecimal number with digits 0123456789abcdef.

X
Unsigned hexadecimal number with digits 0123456789ABCDEF.

flags control how the argument is displayed in the following ways:

- (minus)
Left align argument within the field.

+ (plus)
Prefix all numbers with a + or -.

space
Prefix positive numbers with <space> and negative numbers with -.

0
Pad field width with leading zeros for d, e, E, f, g, or G.

#
Use an alternate output form depending on conversion character. For o, prefix octal numbers with "0".
For x, prefix hexadecimal numbers with "0x". For X, prefix hexadecimal numbers with "0X". For e, E, f,
g, or G, display decimal point. For g or G, display trailing zeros.

width is the minimum number of character positions displayed. Using an asterisk (*) character for the
width means the value of the next argument is the field width.

The meaning of precision depends on the conversion character.

• For d, i, o, u, x, or X precision specifies the minimum number of digits to be displayed.
• For e, E, or f precision specifies the number of digits to be displayed after the decimal point.
• For g, or G precision specifies the maximum number of significant digits.
• For s precision specifies the maximum number of characters to be displayed.

Options

None.

Operands

Each argument is converted and displayed as specified by the format.

Exit status

• 0 when successful.
• >0 when unsuccessful.

Related tasks
dspmsg - Display message from message catalog
echo - Write arguments to standard output
print - Write output

read - Read a line from standard input

Synopsis

read [-r] [-p prompt] [-u [n]] [name ...]

Description

128 System i: Qshell

You can use read to read a line and split it into fields using the characters from the IFS variable as
delimiters. By default, a backslash (\) at the end of a line causes the line to be continued on the next line.
qsh removes both the backslash and the <newline>.

Options

-p prompt
When the interactive option is set, display prompt on stderr.

-r
A backslash at the end of a line does not mean continue the line.

-u n
Read from descriptor n if specified or descriptor 0 by default. The descriptor must be 0 or one that you
opened with exec.

Operands

Each name is assigned to the corresponding field from the input line. Any leftover fields are assigned to
the last name. The default name is the REPLY variable.

Exit status

• 0 when successful.
• >0 when unsuccessful.

Examples

1. Read a line from stdin after displaying a prompt: read -p `Enter a name: ' firstname lastname
2. Read a line from descriptor 5: read -u5

Related concepts
exec - Run commands and open, close, or copy descriptors
Related tasks
dspmsg - Display message from message catalog
print - Write output

Utilities for developing Java programs
View the utilities for developing Java programs.

ajar - Alternative Java archive

Synopsis

ajar {-h | --help}

ajar {-l | --list} [-v | --verbose] [-q | --quiet] jarfile [{file | pattern} ...] [{-x | -i} {file | pattern} ...] ...

ajar {-x | --extract} [-v | --verbose] [-q | --quiet] [-N | --neverWrite] [-p | --pipe] jarfile [{file |
pattern} ...] [{-x | -i} {file | pattern} ...] ...

ajar {-c | --create} [-0 | --store-only] [-v | --verbose] [-r | --recurse] [-@ | --stdin] [-D | --nodirs] [-q | --
quiet] [{-m | --manifest} mffile] [-M | --no-manifest] [{-n | --no-deflate} suffix..] jarfile file ... [{-x | -i} {file
| pattern} ...] ...

ajar {-a | --add} [-0 | --store-only] [-v | --verbose] [-r | --recurse] [-@ | --stdin] [-D | --nodirs] [-q | --
quiet] [{-m | --manifest} mffile] [-M | --no-manifest] [{-n | --no-deflate} suffix..] jarfile file ... [{-x | -i} {file
| pattern} ...] ...

ajar {-d | --delete} [-v | --verbose] [-q | --quiet] [{-m | --manifest} mffile] [-M | --no-manifest] jarfile
{file | pattern} ... [{-x | -i} {file | pattern} ...] ...

Description

Qshell 129

ajar may be used as an alternative interface for creating and manipulating Javatm Archive (JAR) files. The
ajar utility combines several of the features found in zip/unzip tools with those of the IBM Developer Kit
for Java jar tool. Use ajar instead of the jar command when you need a zip or unzip like interface.

Like the jar tool, ajar lists the contents of jar files, extracts from jar files, creates new jar files and
supports many of the zip formats.. Additionally, ajar supports adding and deleting files in existing jars.

Actions

-h | --help
Writes command syntax to stdout.

-l | --list
Writes table of contents to stdout.

-x | --extract
Extracts files to the current directory.

-c | --create
Creates a new archive.

-a | --add
Adds new files to the archive and replaces existing files.

-d | --delete
Deletes files from the archive.

Options

-@ | --stdin
Read file list from stdin. The file list consists of parameters that would normally follow the jarfile
parameter on the command line. The file list may consist of multiple lines with one item per line and
no leading blanks. Comments begin with '#' and extend to the end of the line.

-0 | --store-only
Store only. Do not compress/deflate files. Used when adding files and creating jars.

-m | --manifest
Include manifest information from the specified file.

-n | --no-deflate
Do not deflate files with the specified suffixes. The list of suffixes must be terminated by another
option or "--". See examples below.

-p | --pipe
Extract to stdout.

-q | --quiet
Quiet mode. Do not write informational and warning messages.

-r | --recurse
Recurse into directories. Used when adding files and creating jars.

-v | --verbose
Verbose mode. Write diagnostic information to stderr.

-D | --nodirs
Suppress directory entries. Used when adding files and creating jars.

-M | --no-manifest
Do not create a manifest.

-N | --neverWrite
Never overwrite any files when extracting.

Operands

The jarfile operand specifies the pathname of the jar file being operated on. jarfile must be an Integrated
File System (IFS) name.

The file operand specifies the pathname of a file or directory. file must be an IFS name.

130 System i: Qshell

The pattern operand specifies a pattern to match pathnames of files and directories. pattern will match to
IFS names. A pattern is a sequence of characters containing one or more of the following meta
characters:

*
matches 0 or more characters

?
matches any single character

[...]
matches any single character found within the brackets where "..." represents a set of characters.
Ranges are specified by a beginning character, a hyphen, and an ending character. A exclamation ('!')
or carrot ('^') following the left bracket means the characters within the brackets are complemented
(match anything except the characters within the brackets).

Patterns must be contained within quotation marks or the meta characters must be preceded by a back
slash ('\') to prevent Qshell from interpreting them.

The file and pattern operands are used to select the files to be acted upon. Selected files are determined
using three sets of files, a candidate set, an exclusion set, and an inclusion set.

candidate set
The candidate set is determined using the operands listed after jarfile and before any -x or -i. For the
list and extract actions the candidate set defaults to all files contained in the jar file. For all other
actions there is no default value for the candidate set.

exclusion set
The exclusion set is determined using all lists of file and pattern operands preceded by a -x and
followed by another -x, a -i or the end of the command string. The exclusion set defaults to the empty
set.

inclusion set
The inclusion set is determined using all lists of file and pattern operands preceded by a -i and
followed by another -i, a -x or the end of the command string. The inclusion set defaults to all files in
the candidate set.

All candidate files are selected that are in the inclusion set and not in the exclusion set.

Exit status

• 0 when all files were processed successfully
• >0 when an error occurred

Examples

1. To list all files in a jar file named myjar which is located in the current directory: ajar -l myjar
2. To list all .java files in myjar: ajar -l myjar *.java
3. To extract all files from myjar into the current directory: ajar -x myjar
4. To create a jar named myjar containing all directories and files in the file system hierarchy rooted in

the current directory (Note in this example Qshell interprets the '*' and expands it so that the list of
candidate files contains all files and directories in the current directory.): ajar -c -r myjar *

5. To create a jar named myjar containing entries for only the files in the current directory: ajar -c -D
myjar *

6. To create the same jar file without a manifest (which is a zip file for all practical purposes): ajar -c -D -
M myjar *

7. To create a jar named myjar containing all files except .java files in the file system hierarchy rooted in
the current directory: ajar -c -r myjar * -x *.java

8. To create a jar named myjar containing only the .class files in a file system hierarchy rooted in the
current directory: ajar -c -r myjar * -i *.class

9. To create a jar named myjar without deflating the .java files: ajar -c -r -n java -- myjar *
10. To create a jar named myjar while reading the file list from stdin: ajar -@ -c -r myjar

Qshell 131

Sample stdin data:

docs
source
classes
-x
docs/foo/*

11. To add a file named bar to a jar named myjar: ajar -a myjar bar
12. To delete a file named foo/bar from a jar named myjar: ajar -d myjar foo/bar

Note:

1. Short options can be clustered (for example, -c -v -D is the same as -cvD). Long options (--create, --
verbose, --nodirs, ..., and so on.) can be abbreviated as long as the abbreviations are unique.

2. File names can be changed when creating a jar or adding a file to a jar. For example, "ajar -c x.jar bin/
foo : bin/bar" creates the jar file x.jar from the file bin/foo with a single entry, bin/bar. This can also be
done using stdin, "ajar -c@ x.jar", where stdin contains:

bin/foo : bin/bar

3. Use of ajar requires the QIBM_MULTI_THREADED environment variable must be set to 'Y'.

appletviewer - View Java applet

The appletviewer tool allows you to run applets without a web browser. It is compatible with the
appletviewer tool that is supplied by Sun Microsystems, Inc.

The appletviewer tool is available using the Qshell Interpreter.

Related information
appletviewer tool

extcheck - A utility to detect JAR conflicts

The extcheck tool detects version conflicts between a target JAR file and currently installed extension
JAR files. It is compatible with the keytool that is supplied by Sun Microsystems, Inc.

The extcheck tool is available using the Qshell Interpreter.

Related information
extcheck tool

jar - Archive Java files

The jar tool combines multiple files into a single Java ARchive (JAR) file. It is compatible with the jar
tool that is supplied by Sun Microsystems, Inc.

The jar tool is available using the Qshell Interpreter.

Related concepts
Files in the integrated file system
Related information
Integrated File System Information
jar tool

Files in the integrated file system

The integrated file system stores Java-related class files, source files, ZIP files, and JAR files in a
hierarchical file structure. You can also store source files in the integrated file system. You may store the
files in these integrated file systems:

• "root" (/) file system
• open systems file system (QOpenSys)

132 System i: Qshell

http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/appletviewer.html
http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/extcheck.html
http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/jar.html

• user-defined file system
• library file system (QSYS.LIB)
• OS/2 Warp Server for IBM i file system (QLANSrv)
• optical file system (QOPT)

Note: Other integrated file systems are not supported, because they are not thread safe.

Related concepts
jar - Archive Java files

jarsigner - JAR signing and verification

The jarsigner tool signs JAR files and verfies signatures on signed JAR files. The jarsigner tool
accesses the keystore, which the keytool creates and manages, when it needs to find the private key for
signing a JAR file. In J2SDK, the jarsigner and keytool tools replace the javakey tool. It is
compatible with the jarsigner tool that is supplied by Sun Microsystems, Inc.

The jarsigner tool is available using the Qshell Interpreter.

Related information
jarsigner tool

java - Run Java interpreter

The java Qshell command runs Java programs. It is compatible with the java tool that is supplied by
Sun Microsystems, Inc. with a few exceptions.

The IBM Developer Kit for Java ignores the following options of the java Qshell command:

Ignored option Description

-cs Not supported.

-checksource Not supported.

-debug Supported by the system internal debugger.

-noasyncgc Garbage collection is always running with the IBM
Developer Kit for Java.

-noclassgc Garbage collection is always running with the IBM
Developer Kit for Java.

-prof The system has its own performance tools.

-ss Not applicable.

-oss Not applicable.

-t The system uses its own trace function.

-verify Always verify on the system.

-verifyremote Always verify on the system.

-noverify Always verify on the system.

The java Qshell command supports new options. These are the new supported options:

Supported option Description

-secure Checks for public write access to directories in the
CLASSPATH.

-gcfrq Specifies the garbage collection frequency.

Qshell 133

http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/jarsigner.html

Supported option Description

-gcpty Specifies the garbage collection priority.

-opt Specifies the optimization level.

-verbosegc A message is displayed for each garbage collection
sweep.

The Run Java (RUNJVA) command in the CL command reference documentation describes these new
options in detail. The CL command reference documentation for the Create Java Program (CRTJVAPGM)
command, Delete Java Program (DLTJVAPGM) command, and Display Java Program (DSPJVAPGM)
command contains information about managing Java programs.

The java Qshell command is available using the Qshell Interpreter.

Related information
java tool

javac - Compile a Java program

The javac tool compiles Java programs. It is compatible with the javac tool that is supplied by Sun
Microsystems, Inc.

The javac tool is available using the Qshell Interpreter.

Related information
javac tool

javadoc - Generate Java documentation

The javadoc tool generates API documentation. It is compatible with the javadoc tool that is supplied
by Sun Microsystems, Inc.

The javadoc tool is available using the Qshell Interpreter.

Related information
javadoc tool

javah - Generate C header or stub file

The javah tool facilitates the implementation of Java native methods. It is compatible with the javah
tool that is supplied by Sun Microsystems, Inc. with a few exceptions.

Note: Writing native methods means that your
application is not 100% pure Java. It also means
that your application is not directly portable across
platforms. Native methods are, by nature, platform
or system specific. Using native methods may
increase your development and maintenance costs
for your applications.

The javah tool is available using the Qshell Interpreter. It reads a Java class file and creates a C-
language header file in the current working directory. The header file that is written is a Stream File
(STMF). It must be copied to a file member before it can be included in a C program on i5/OS.

The javah tool is compatible with the tool that is provided by Sun Microsystems, Inc. If the following
options are specified; however, the system ignores them:

Ignored option Description

-td The javah tool does not require a temporary
directory.

134 System i: Qshell

http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/java.html
http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/javac.html
http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/javadoc.html

Ignored option Description

-stubs Java on IBM i only supports the Java Native
Interface (JNI) form of native methods. Stubs were
only required for the pre-JNI form of native
methods.

-trace Relates to the .c stub file output, which Java on
IBM i does not support.

-v Not supported.

Note: The -jni option must always be specified. The
system does not support native method
implementations before JNI.

Related information
javah tool

javakey - Manage Java security keys and certificates

Use the javakey tool for encryption key, and certificate generation and management, including
generation of digital signatures for applets. It is compatible with the javakey tool that is supplied by Sun
Microsystems, Inc.

Applet packaging and applet signing is dependent on your browser. Check your browser documentation
to ensure that your browser is compatible with the Javatm JAR file format and javakey applet signing.

Note: The files that are created by the javakey tool
contain sensitive information. Appropriate
Integrated File System security measures protect
the public and private key files.

The javakey tool is available using the Qshell Interpreter.

Related information
Integrated File System
javakey tool

javap - Disassemble a compiled Java program

The javap tool disassembles compiled Java files and prints out a representation of the Java program.
This may be helpful when the original source code is no longer available on a system.

It is compatible with the javap tool that is supplied by Sun Microsystems, Inc. with a few exceptions:

Ignored option Description

-b This option is ignored. Backward compatibility is
not required.

-p On the IBM i platform, -p is not a valid option. You
must spell out -private.

-verify This option is ignored. The javap tool does not
perform verification.

The javap tool is available using the Qshell Interpreter.

Qshell 135

http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/javah.html
http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/javakey.html

Note: The use of the javap tool to disassemble classes
may violate the license agreement for those
classes. Consult the license agreement for the
classes before using the javap tool.

Related information
javap tool

keytool - Key and certificate management tool

The keytool creates public and private key pairs, self-signed certificates, and manages keystores. In
J2SDK, the jarsigner and keytool tools replace the javakey tool. It is compatible with the keytool
that is supplied by Sun Microsystems, Inc.

The keytool is available using the Qshell Interpreter.

Related information
keytool

native2ascii - Convert native characters to ASCII

The native2ascii tool converts a file with native-encoded characters (characters which are non-Latin 1
and non-Unicode) to one with Unicode-encoded characters. It is compatible with the native2ascii tool
that is supplied by Sun Microsystems, Inc.

The native2ascii tool is available using the Qshell Interpreter.

Related information
native2ascii tool

policytool - Policy file creation and management tool

The policytool creates and changes the external policy configuration files that define the Java security
policy of your installation. It is compatible with the policytool that is supplied by Sun Microsystems,
Inc.

Related information
IBM Developer Kit for Java Native Abstract Windowing Toolkit
policytool

rmic - Compile Java RMI stubs

The rmic tool generates stub files and class files for Java objects. It is compatible with the rmic tool that
is supplied by Sun Microsystems, Inc.

The rmic tool is available using the Qshell Interpreter.

Related information
rmic tool

rmid - The Java RMI activation system

The rmid tool starts the activation system daemon, so objects can be registered and activated in a Java
virtual machine. It is compatible with the rmid tool that is supplied by Sun Microsystems, Inc.

The rmid tool is available using the Qshell Interpreter.

Related information
rmid tool

rmiregistry - Start a remote object registry

The rmiregistry tool starts a remote object registry on a specified port. It is compatible with the
rmiregistry tool that is supplied by Sun Microsystems, Inc.

136 System i: Qshell

http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/javap.html
http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/keytool.html
http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/native2ascii.html
http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/policytool.html
http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/rmic.html
http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/rmid.html

The rmiregistry tool is available using the Qshell Interpreter.

Related information
rmiregistry tool

serialver - Return serial version

The serialver tool returns the version number or serialization-unique identifier for one or more classes.
It is compatible with the serialver tool that is supplied by Sun Microsystems, Inc.

The serialver tool is available using the Qshell Interpreter.

Related information
serialver tool

tnameserv - Naming service

The tnameserv tool provides access to the naming service. It is compatible with the tnameserv tool
that is supplied by Sun Microsystems, Inc.

The tnameserv tool is available using the Qshell Interpreter.

Related information
tnameserv tool

Utilities for managing jobs
Select this link to view the utilities for managing jobs.

getjobid - Display job information

Synopsis

getjobid [-csv] [pid ...]

getjobid -j [-csv] [qualified-job ...]

Description

The getjobid utility writes the qualified job name and process ID for the specified process to standard
output. The qualified job name is a string in the form number/user/name. The number is a six-digit decimal
number, user is the user profile under which the job was started, and name is the name of job.

In the first synopsis form, the process is identified using the process ID. In the second synopsis form, the
process is identified using the qualified job name.

When the -v option is specified, getjobid displays the process ID, parent's process ID, process group,
current status, and qualified job name for the specified process.

Note: This utility is unique to i5/OS.

Options

-c
Display information about all of the current child processes of the specified process.

-j
Processes are identified using the qualified job name.

-s
Display a short form with just the qualified job name.

-v
Display detailed information about the specified process, including the process ID, the parent's
process ID, process group, current status, and qualified job name.

Operands

Qshell 137

http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/rmiregistry.html
http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/serialver.html
http://java.sun.com/products/jdk/1.2/docs/guide/idl/jidlNaming.html

Each pid is the decimal process ID of an active process on the system. When pid is not specified, getjobid
displays information for the current process.

Each qualified-job is the qualified job name of an active process on the system. The qualified job name is
a string in the form number/user/name. The number is a six-digit decimal number, user is the user profile
under which the job was started, and name is the name of job.

Exit status

• 0 when successful.
• >0 when an error occurred. The exit status is the number of processes for which information could not

be obtained.

Examples

1. Display the qualified job name of the current process.

getjobid

2. Display detailed information for three processes.

getjobid -v 318 942 1130

3. Display the short form of the qualified job name for one process.

getjobid -s 325

4. Display detailed information for a process identified with the qualified job name.

getjobid -jv 325411/SHELLTST/QZSHCHLD

Related tasks
jobs - Display status of jobs in current session
ps - Display process status

hash - Remember or report utility locations

hash [-p filename] [utility ...]

hash -r

Description

The hash utility adds utility to the list of remembered utility locations or removes all remembered utilities
from the list. By default, hash uses a path search to find utility.

When no arguments are specified, hash reports the contents of the list. An entry that has not been looked
at since the last cd command is marked with an asterisk; it is possible for the entry to be invalid.

Options

-p filename
Do not use a path search to find utility. Use the specified filename as the location of utility.

-r
Remove all previously remembered utility locations.

Operands

Each utility is added to the list of remembered utility locations.

Exit status

• 0 when successful.

138 System i: Qshell

Related tasks
cd - Change working directory

jobs - Display status of jobs in current session

Synopsis

jobs [-ln] [job ...]

Description

You can use jobs to display information about active jobs started by qsh. For each job, qsh displays:

• Job number in brackets ([]).
• Status (Running, Done, Terminated, and so on).
• Return value of the job in parenthesis () when the return value is greater than zero and the job status is

Done.
• Command line for the job.

Options

-l
Display status for each process in the specified job.

-n
Display status only for those jobs whose status has changed but has not been reported yet.

Operands

Each job specifies an active job. The job can be specified as a:

• Number to refer to a process id.
• %number to refer to a job number.
• %string to refer to a job whose name begins with string.

If job is not specified, qsh displays status for all active jobs.

Exit status

• 0 when successful.
• >0 when unsuccessful.

Examples

1. Display status for job number 1: jobs %1
2. Display status for process id 16107: jobs 16107
3. Display status for a job running the ls utility: jobs %ls
4. Display status for all active jobs: jobs

Related tasks
getjobid - Display job information
kill - Terminate or signal processes
wait - Wait for process completion
ps - Display process status

kill - Terminate or signal processes

Synopsis

kill [-s signame] job ...

kill [-n signum] job ...

kill [-sig] job ...

Qshell 139

kill -l [signal ...]

Description

You can use kill to send a signal to the specified jobs. You can specify a signal using:

• signame - A signal name.
• signum - A signal number.
• sig - Either a signal name or signal number with no space after the minus (-).

Note: The valid signal numbers on i5/OS may be different
than the signal numbers on other systems. You can
list the valid signal names by specifying the -l
option. For portability, you should always specify
the signal name.

Options

-l
List signal names. If there are no arguments, qsh displays all of the signal names. If signal is a name,
qsh displays the corresponding signal number. If signal is a number, qsh displays the corresponding
signal name.

-n
A signal number.

-s
A signal name in either uppercase or lowercase.

Operands

Each job specifies an active job. The job can be specified as a:

• Number to refer to a process id.
• %number to refer to a job number.
• %string to refer to a job whose name begins with string.

Exit status

• 0 when successful.
• >0 when unsuccessful. If the -l option was not specified, the exit status is the number of jobs to which

qsh could not send the signal.

Examples

1. Send the USR1 signal to process id 16711: kill -s USR1 16711
2. Send the USR1 signal to job 1: kill -n 7 %1
3. List the valid signal names: kill -l

Related tasks
jobs - Display status of jobs in current session
trap - Trap signals
wait - Wait for process completion

liblist - Manage library list

Synopsis

liblist [-acdfl] [library ...]

Description

You can use liblist to add or delete a library from the user portion of the library list, set the current library,
or display the library list for the current job.

140 System i: Qshell

You can add libraries to the user portion of the library list by specifying the -a option and a list of libraries.
By default, the libraries are added to user portion of the beginning of the library list.

You can remove libraries from the user portion of the library list by specifying the -d option and a list of
libraries.

The current library is set to library when the -c option is specified. The current library can be unset by
specifying both the -c and -d options.

When no arguments are specified, qsh displays the current library list. Each line in the output includes the
library name and the type of the library. A library can be one of the following types:

• SYS for a library in the system portion of the library list.
• PRD for a library in the product portion of the library list.
• CUR for the current library.
• USR for a library in the user portion of the library list.

Options

-a
Add library to the user portion of the library list.

-c
Set the current library to library.

-d
Remove library from the user portion of the library list or unset the current library if the -c option is
also specified.

-f
When the -a option is specified, add library to the beginning of the user portion of the library list.

-l
When the -a option is specified, add library to the end of the user portion of the library list.

Operands

Each library is a library to either add or delete from the user portion of the library list depending on the
options specified.

Exit status

• 0 when successful.
• >0 when unsuccessful.

Examples

1. Add the library MYLIB to the library list: liblist -a MYLIB
2. Remove the library MYLIB from the library list: liblist -d MYLIB
3. Set the current library to MYLIB: liblist -c MYLIB
4. Unset the current library: liblist -cd
5. Display the library list: liblist

ps - Display process status

Synopsis

ps [-Aaefjlt] [-o format] [-p pidlist] [-s sbslist] [-u userlist]

Description

The ps utility displays information about processes. The output from ps can include the following fields:

CGROUP
The current primary group profile of the process.

Qshell 141

CMD
Program, menu, or command most recently run by the process.

CUSER
The current user profile of the process.

DEVICE
Name of the device description object that is associated with the process.

ETIME
The elapsed time since the process started. The time is displayed in the format [[dd-]hh:]mm:ss
where dd is the number of days, hh is the number of hours, mm is the number of minutes, and ss is
the number of seconds.

FUNCTION
Program, menu, or command most recently run by the process.

JOBID
Qualified job name of the process. The qualified job name is a string in the form number/user/name.
The number is a six-digit decimal number, user is the user profile under which the job was started, and
name is the name of job.

JOBNAME
Job name component of the qualified job name.

JOBNUM
Job number component of the qualified job name.

NTHREADS
The number of threads currently running in the process as a decimal number.

PCPU
The ratio of CPU time used recently to CPU time available, expressed as a percentage.

PGID
Process group ID number as a decimal number.

PID
Process ID number as a decimal number.

PPID
Parent process ID number as a decimal number.

PRI
Current priority of the process as a decimal number. Lower numbers mean a higher priority.

SBS
Subsytem in which the process is running.

STATUS
Current status of the process.

STIME
Date and time the process was started. By default, the date and time is displayed in the format mm-
dd-yyyy hh:nn:ss where mm is the month, dd is the day, yyyy is the year, hh is the hour, nn is the
minute, and ss is the second. If the LC_TIME environment variable is set, the date and time is
displayed with the format specified by the d_t_fmt keyword in the LC_TIME category of the specified
locale.

THCOUNT
The number of threads currently running in the process as a decimal number.

TIME
CPU time used by the process in seconds. The time is displayed in the format [[dd-]hh:]mm:ss where
dd is the number of days, hh is the number of hours, mm is the number of minutes, and ss is the
number of seconds.

TMPSZ
The amount of temporary storage used by the process in megabytes as a decimal number.

142 System i: Qshell

TYPE
The type of the process.

USER
User profile component of the qualified job name.

UID
User id number corresponding to the user profile component of the qualified job name.

By default, ps displays the PID, DEVICE, TIME, FUNCTION, STATUS, and JOBID fields about processes
owned by the current user. Use the -o option to select the fields displayed by ps.

To display information about other processes, you must have *JOBCTL special authority.

Options

-a
Display information for all processes associated with a 5250 terminal.

-A
Display information for all processes. This includes processes that are active, on a job queue, or on an
output queue.

-e
Include active processes in the output.

-f
Display a full listing. The output includes the USER, PID, PPID, STIME, DEVICE, TIME and FUNCTION
fields.

-j
Include processes on a job queue in the output.

-l
Display a long listing. The output includes the USER, PID, PPID, PRI, STATUS, JOBID, STIME, DEVICE,
TIME and FUNCTION fields.

-o format
Display information according to the format specification given in format. Multiple -o options can be
specified.

-p pidlist
Write information for processes whose process ID numbers are specified in pidlist. The pidlist must be
a single argument in the form of a blank- or comma-separated list.

-s sbslist
Write information for processes running in the subsystems specified in sbslist. The sbslist must be a
single argument in the form of a blank- or comma-separated list.

-t
Include processes on an out queue in the output.

-u userlist
Write information for processes whose user ID numbers or user names are specified in userlist. The
userlist must be a single argument in the form of a blank- or comma-separated list.

Environment Variables

ps is affected by the following environment variables:

LANG
Provides a default value for locale categories that are not specifically set with a variable starting with
LC_.

LC_TIME
Defines the output format for date and time attributes.

Exit status

• 0 when successful

Qshell 143

• >0 when unsuccessful

Related tasks
getjobid - Display job information
jobs - Display status of jobs in current session

sleep - Suspend invocation for an interval

Synopsis

sleep time

Description

You can use sleep to suspend a process from running for time seconds.

Options

None.

Operands

The value of time must be a positive integer.

Exit status

• 0 when successful.
• >0 when time is invalid.

trap - Trap signals

Synopsis

trap [action condition ...]

trap -p [condition ...]

trap -l

Description

The trap utility sets the action for qsh to take when a condition arises. qsh expands action once when
running trap and again when condition arises.

When the -p option is specified, trap displays the current action for the specified conditions.

When the -l option is specified, trap displays a list of all of the signal names and their corresponding
numbers.

When no arguments are specified, trap displays a list of the currently defined traps.

Options

-l
Display a list of all of the signal names and their corresponding numbers.

-p
Display each trap in a re-enterable format.

Operands

For action, you can specify:

• Null to ignore condition when it arises
• Minus (-) to reset condition to its original value.
• A command to be run each time condition arises.

For condition, you can specify:

• Name or number of a signal. You can use trap -l to display a list of valid signals. For portability, you
should always specify the signal name.

144 System i: Qshell

• 0 or EXIT. qsh runs action when the shell exits.
• ERR. qsh runs action when a command has a non-zero exit status.
• DEBUG. qsh runs action after each simple command.

If more than one condition arises at the same time, qsh runs the traps in this order:

1. DEBUG, if it is specified, then
2. ERR, if it is specified and applicable, then
3. Any other specified traps in signal number order, then
4. EXIT.

Exit status

• 0 when successful.
• >0 when an invalid condition is specified.

Examples

1. Set a trap for the ERR condition:

trap `print Command failed' ERR

2. Ignore the ERR condition:

trap "" ERR

3. Reset the ERR condition to its original value:

trap - ERR

4. Display the current action for the ERR condition:

trap -p ERR

5. Display all of the currently defined traps:

trap

Related tasks
kill - Terminate or signal processes
wait - Wait for process completion

wait - Wait for process completion

Synopsis

wait [job ...]

Description

You can use wait to wait for the specified jobs to end. If job is not specified, qsh waits for all child
processes to end.

Options

None.

Operands

Each job specifies an active job. The job can be specified as a:

• Number to refer to a process id. qsh waits for the given process to end.

Qshell 145

• %number to refer to a job number. qsh waits for all processes in the job to end.
• %string to refer to a job whose name begins with string. qsh waits for all processes in the job to end.

Exit status

When no job was specified, the exit status is:

• 0 when all running jobs have ended.
• >0 when unsuccessful.

When at least one job was specified, the exit status is the exit status of the last job.

Examples

1. Wait for process id 16825 to end: wait 16825
2. Wait for job number 5 to end: wait %5

Related tasks
jobs - Display status of jobs in current session
kill - Terminate or signal processes
trap - Trap signals

Utilities for Kerberos credentials and key tables
Select this link to view the utilities for Kerberos credentials and key tables.

• kdestroy - Destroy a Kerberos credentials cache
• keytab - Manage a Kerberos key table file
• kinit - Obtain or renew a Kerberos ticket-granting ticket
• klist - Display the contents of a Kerberos credentials cache or key table file
• ksetup - Manage Kerberos service entries in the LDAP directory for a Kerberos realm

Utilities for LDAP directory server
Select this link to view the utilities for LDAP directory server.

• ldapadd - Add LDAP entry tool
• ldapmodify - Change LDAP entry tool
• ldapchangepwd - Change LDAP password tool
• ldapmodrdn - Change LDAP Relative Distinguished Name (RDN) tool
• ldapdiff - Compare LDAP replication synchronization tool
• ldapdelete - Delete LDAP entry tool
• ldapexop - Extend LDAP operation tool
• ldapsearch - Search LDAP server tool

Utilities for working with parameters and variables
View the utilities for working with parameters and variables.

declare - Declare variables and set attributes

Synopsis

declare [-Eilrux] name [=value] ...

declare [+Eilrux] name [=value] ...

declare -fF [name ...]

declare -p name ...

declare

146 System i: Qshell

Description

The declare utility declares variables, assigns values to variables, sets or unsets attributes for variables,
and displays the definitions for shell functions. If used in a shell function, declare makes the variable
name local to the function.

In the first synopsis form, declare declares a variable name and optionally assigns it the specified value.
If an option is specified, the corresponding attribute is turned on for the variable.

In the second synopsis form, declare declares a variable name and optionally assigns it the specified
value. If an option is specified, the corresponding attribute is turned off for the variable.

In the third synopsis form, declare displays the names and definitions for all shell functions if no names
are specified or the shell functions specified by name.

In the fourth synopsis form, declare displays the attributes and value of the variables specified by name
in a re-enterable format.

In the fifth synopsis form, declare displays the names and values of all variables.

Options

-E
Set the floating point attribute for the variable. On assignments to the variable the value is evaluated
as a floating point number.

-f
Display the names and definitions of shell functions.

-F
Display the names of shell functions.

-i
Set the integer attribute for the variable. On assignments to the variable the value is evaluated as an
integer number.

-l
Set the lowercase attribute for the variable. On assignments to the variable the value is set to
lowercase characters.

-p
Display each variable in a re-enterable format.

-r
Set the read-only attribute for the variable. The variable cannot have its value changed by a
subsequent assignment and cannot be unset. If a value is also specified, the value of the variable is
updated before setting the read-only attribute.

-u
Set the uppercase attribute for the variable. On assignments to the variable the value is set to
uppercase characters.

-x
Set the export attribute for the variable. The variable is automatically placed in the environment of
subsequently executed commands.

Operands

Each name must be a valid shell variable name.

Exit status

• 0 when successful
• >0 when unsuccessful

Related concepts
Compound commands

Qshell 147

Compound commands provide control flow for other commands. Each compound command starts with a
reserved word and has a corresponding reserved word at the end.
Variables
When it is started, qsh initializes shell variables from the defined environment variables. A variable is
used to store data. .
Related tasks
export - Set export attribute for variables
let - Evaluate arithmetic expression
local - Assign a local variable in a function
readonly - Set read-only attribute for variables
set - Set or unset options and positional parameters
typeset - Declare variables and set attributes
unset - Unset values of variables and functions

export - Set export attribute for variables

Synopsis

export [-ps] [name [=value] ...]

Description

You can use export to set the export attribute for the variables specified by name. A variable with the
export attribute is automatically placed in the environment of subsequently executed commands.

When no arguments are specified, qsh displays a list of all the variables with the export attribute and their
values.

Options

-p
Precede each line of the output with the word "export " so it is displayed in a re-enterable format.

-s
Also set the variable as an environment variable in the current process.

Operands

Each name specifies a variable in the current environment. If a value is also specified, the value of the
variable is updated.

Exit status

• 0 when successful.

Examples

1. Set the export attribute for an existing variable:

export ALPHA

2. Set the value and export attribute of a new variable:

export ALPHA=one

3. List all variables with the export attribute:

export

Related tasks
declare - Declare variables and set attributes
local - Assign a local variable in a function

148 System i: Qshell

readonly - Set read-only attribute for variables
set - Set or unset options and positional parameters
unset - Unset values of variables and functions
printenv - Display values of environment variables
typeset - Declare variables and set attributes

local - Assign a local variable in a function

Synopsis

local [name [=value] ...]

Description

You can use local to make a variable local to a function. When a variable is made local, it inherits the
initial value and exported and read-only attributes from the variable with the same name in the
surrounding scope, if there is one. Otherwise, the variable is initially unset.

qsh uses dynamic scoping, so that if you make the variable alpha local to function foo, which then calls
function bar, references to the variable alpha made inside bar will refer to the variable declared inside
foo, not to the global variable named alpha.

The special parameter - is the only special parameter that can be made local . By making - local, any shell
options that are changed with set inside the function are restored to their original values when the
function returns.

Options

None.

Operands

Each name specifies a variable in the current environment. If a value is also specified, the value of the
variable is updated.

Exit status

• 0 when successful.
• >0 when called from outside of a function.

Related tasks
declare - Declare variables and set attributes
export - Set export attribute for variables
readonly - Set read-only attribute for variables
set - Set or unset options and positional parameters
typeset - Declare variables and set attributes
unset - Unset values of variables and functions

printenv - Display values of environment variables

Synopsis

printenv [-s] [name]

Description

The printenv utility displays the value of the environment variable name. If no name is specified, printenv
displays all of the current environment variables, one per line, in the format "name=value". By default,
printenv displays job environment variables.

Options

-s
Display system environment variables.

Operands

Qshell 149

The name is the name of an environment variable in the current environment or a system environment
variable.

Exit status

• 0 when successful
• >0 if name is not currently defined

Related tasks
export - Set export attribute for variables
env - Set environment for command invocation

readonly - Set read-only attribute for variables

Synopsis

readonly [-p] [name [=value] ...]

Description

You can use readonly to set the read-only attribute for the variables specified by name. A variable with
the read-only attribute cannot have its value changed by a subsequent assignment and cannot be unset.

Note that qsh can change the value of a variable with the read-only attribute. For example, if PWD has the
read-only attribute, it's value will be changed when you change the current working directory.

When no arguments are specified, qsh displays a list of the variables with the read-only attribute and
their values.

Options

-p
Precede each line of the output with the word "readonly " so it is displayed in a re-enterable format.

Operands

Each name specifies a variable in the current environment. If a value is also specified, the value of the
variable is updated before setting the read-only attribute.

Exit status

• 0 when successful.
• >0 when unsuccessful.

Examples

1. Set the read-only attribute for an existing variable:

readonly ALPHA

2. Set the value and read-only attribute of a new variable:

readonly ALPHA=one

3. List all variables with the read-only attribute:

readonly

Related tasks
declare - Declare variables and set attributes
export - Set export attribute for variables
local - Assign a local variable in a function
set - Set or unset options and positional parameters
typeset - Declare variables and set attributes

150 System i: Qshell

unset - Unset values of variables and functions

set - Set or unset options and positional parameters

Synopsis

set [-abCefFjlmntuvx-] [-o option] [argument ...]

set [+abCefFjlmntuvx-] [+o option] [argument ...]

Description

The set utility can:

• Display the names and values of all shell variables by specifying no options or arguments.
• Display the option settings by specifying the -o option but no option.
• Set an option by specifying a - (minus) followed by the option letter or by specifying -o option.
• Unset an option by specifying a + (plus) followed by the option letter or by specifying +o option.
• Set positional parameters by specifying arguments.
• Unset positional parameters by specifying -- but no argument.

Options

All of the single letter options have a corresponding -o option. The option value is listed in parenthesis
following the letter option below. qsh supports the following options:

-a (allexport)
Set the export attribute to each variable that is assigned a value.

-b (notify)
Enable asynchronous notification of background job completion.

-C (noclobber)
Do not overwrite existing files with the > redirection operator.

-e (errexit)
If the interactive option is not set, exit immediately if any untested command fails. The exit status of a
command is considered to be explicitly tested if the command is used to control an if, elif, while, or
until; or if the command is the left hand operand of an && or || operator.

-f (noglob)
Disable path name expansion.

-F (float)
Enable floating point arithmetic in arithmetic expressions.

-j (jobtrace)
Enable job tracing. Each time qsh starts a i5/OS job, it displays a message to standard error with the
fully-qualified job name and process id.

-l (logcmds)
Enable command logging. Write each command to a message in the job log before it is run.

-m (monitor)
Display a message when a job completes. qsh implicitly turns on this option when the interactive
option is set.

-n (noexec)
If the interactive option is not set, read commands but do not run them. This is useful for checking the
syntax of shell scripts.

-t (trace)
Enable internal tracing. qsh traces internal information to the file specified by TRACEFILE variable or
the qsh_trace file in the user's home directory.

-u (nounset)
Write a message to standard error when attempting to expand a variable that is not set, and if the
interactive option is not set exit immediately.

Qshell 151

-v (verbose)
Write input to standard error as it is read.

-x (xtrace)
Write each command to standard error before it is run, preceded by the expansion of the PS4 variable.

Operands

Each argument is assigned in order to the positional parameters.

Exit status

• 0 when successful.

Examples

1. List all variables and their values:

set

2. List all option settings:

set -o

3. Set positional parameters $1, $2, $3:

set alpha beta gamma

4. Set the allexport and notify options:

set -o allexport -o notify

5. Set the verbose and xtrace options:

set -xv

6. Unset the xtrace option:

set +x

7. Unset the notify option:

set +o notify

8. Unset all positional parameters:

set --

Related tasks
declare - Declare variables and set attributes
export - Set export attribute for variables
local - Assign a local variable in a function
readonly - Set read-only attribute for variables
qsh - Qshell command language interpreter
shift - Shift positional parameters
typeset - Declare variables and set attributes
unset - Unset values of variables and functions

152 System i: Qshell

shift - Shift positional parameters

Synopsis

shift [n]

Description

You can use shift to shift the positional parameters to the left by n. Positional parameter 1 is assigned the
value of positional parameter (1+n), positional parameter 2 is assigned the value of positional parameter
(2+n), and so forth. The special parameter # is updated with the new number of positional parameters.

Options

None.

Operands

The value of n must be an unsigned integer less than or equal to the special parameter #. If n is not
specified, the default value is 1. If n is 0, there are no changes to the positional parameters.

Exit status

• 0 when successful.
• >0 when n is invalid.

Examples

Shift the positional parameters by two: shift 2

Related tasks
set - Set or unset options and positional parameters

typeset - Declare variables and set attributes

Synopsis

typeset [-Eilrux] name [=value] ...

typeset [+Eilrux] name [=value] ...

typeset -fF [name ...]

typeset -p name ...

typeset

Description

The typeset utility declares variables, assigns values to variables, sets attributes for variables, and
displays the definitions for shell functions. It is a synonym for the declare utility.

Related tasks
declare - Declare variables and set attributes
export - Set export attribute for variables
local - Assign a local variable in a function
readonly - Set read-only attribute for variables
set - Set or unset options and positional parameters
unset - Unset values of variables and functions

unset - Unset values of variables and functions

Synopsis

unset [-fv] [name ...]

Description

Qshell 153

You can use unset to unset each variable or function specified by name. If no option is specified, name
refers to a variable. Variables with the read-only attribute cannot be unset.

Options

-f
name refers to a function.

-v
name refers to a variable.

Operands

Each name is a variable or function.

Exit status

• 0 when successful.
• >0 when at least one name could not be found. The value is the number of names that are not found.

Examples

1. Unset the variable alpha: unset alpha
2. Unset the function foo: unset -f foo

Related tasks
declare - Declare variables and set attributes
export - Set export attribute for variables
local - Assign a local variable in a function
readonly - Set read-only attribute for variables
set - Set or unset options and positional parameters
typeset - Declare variables and set attributes

Utilities for writing scripts
Select this link to view the utilities for writing scripts.

break - Exit from for, while, or until loop

Synopsis

break[n]

Description

You can use break to exit from the smallest enclosing for, while, or until loop or from the nth enclosing
loop. Processing resumes with the command immediately following the loop.

Options

None.

Operands

The value of n must be greater than or equal to 1.

Exit status

• 0 when successful.

Related tasks
continue - Continue for, while, or until loop

colon (:) - Null utility

Synopsis

: [argument ...]

154 System i: Qshell

Description

You can use colon where you must have a command, but you do not want the command to do anything.
For example, in the then condition of an if command.

Options

None.

Operands

Each argument is expanded.

Exit status

• 0 when successful.

continue - Continue for, while, or until loop

Synopsis

continue [n]

Description

You can use continue to go to the top of the smallest enclosing for, while, or until loop or to the nth
enclosing loop. Processing resumes with the first command at the top of the loop.

Options

None.

Operands

The value of n must be greater than or equal to 1.

Exit status

• 0 when successful.

Related tasks
break - Exit from for, while, or until loop

false - Return false value

Synopsis

false

Description

false returns with an exit code that is non-zero.

Options

None.

Operands

None.

Exit status

• >0 when successful.

Related tasks
true - Return true value

getopts - Parse utility options

Synopsis

getopts optstring varname

Qshell 155

Description

You can use getopts to check the positional parameters for legal options. An option argument begins with
a minus (-). The end of the the options is marked by the first argument that does not begin with a minus or
an argument of --.

Each time you call getopts, it places the next option letter it finds in varname. qsh stores the index of the
next parameter to be processed in the variable OPTIND. When an option requires an argument, qsh
stores the argument in the variable OPTARG.

Options

None.

Operands

The option letters recognized by getopts are identified in optstring. If a letter is followed by a colon (:),
that option is expected to have an argument. The argument can be separated from the option letter by
<space>s.

With each call to getopts, varname is updated with the option letter.

Exit status

• 0 when successful.
• >0 when unsuccessful.

let - Evaluate arithmetic expression

Synopsis

let arg ...

Description

You can use let to evaluate each arg as an arithmetic expression. You may need to quote each arg since
many arithmetic operators have a special meaning to qsh.

Operands

Each arg is evaluated as an arithmetic expression.

Exit status

• 0 when the value of the last expression is non-zero
• 1 when the value of the last expression is zero

Examples

Add one to the variable x.

let x=x+1

Related tasks
declare - Declare variables and set attributes

return - Return from a function

Synopsis

return [n]

Description

You can use return to cause a function or dot script to return to the invoking shell script. If return is
called outside a function or dot script, it is equivalent to exit.

Options

156 System i: Qshell

None.

Operands

The value of n is an integer that is greater than or equal to 0 and less than or equal to 255.

Exit status

n if specified. Otherwise, the exit status of the preceding command.

Related tasks
exit - Exit from the shell

test - Evaluate expression

Synopsis

test expression

[expression]

Description

The test utility checks the type of a file, checks permissions on files, compares two strings, or compares
two arithmetic expressions.

The test utility tests conditions for files using the following primaries:

-b file
True if file exists and is a block special file.

-c file
True if file exists and is a character special file.

-d file
True if file exists and is a directory.

-e file
True if file exists regardless of type.

-f file
True if file exists and is a regular file.

-g file
True if file exists and its set group id flag is set.

-G file
True if file exists and is owned by the effective group id.

-h file
True if file exists and is a symbolic link.

-k file
True if file exists and its restricted deletion flag is set.

-L file
True if file exists and is a symbolic link.

-N file
True if file exists and is a native object.

-O file
True if file exists and is owned by the effective user id.

-p file
True if file exists and is a pipe.

-r file
True if file exists and is readable.

-s file
True if file exists and has a size greater than zero.

Qshell 157

-S file
True if file exists and is a socket.

-u file
True if file exists and its set user id flag is set.

-w file
True if file exists and is writable.

-x file
True if file exists and is executable. This only means that the execute bit is on. If file is a directory, the
directory can be searched.

file1 -ef file2
True if file1 and file2 are different names for the same file (they have the same device and inode
numbers).

file1 -nt file2
True if file1 is newer than file2 or file2 does not exist.

file1 -ot file2
True if file1 is older than file2 or file2 does not exist.

The test utility tests conditions for checking status using the following primaries:

-o optname
True if shell option optname is enabled.

-t fd
True if file descriptor fd is open and associated with a terminal.

The test utility tests conditions for comparing strings using the following primaries:

-n string
True if the length of string is non-zero.

-z string
True if the length of string is zero.

string
True if string is not the null string.

string1 = string2
True if the strings are identical.

string1 == string2
True if the strings are identical.

string1 != string2
True if the strings are not identical.

string1 < string2
True if string1 sorts before string2 in the collation sequence of the current locale.

string1 > string2
True if string1 sorts after string2 in the collation sequence of the current locale.

The test utility tests conditions for comparing arithmetic expressions using the following primaries:

exp1 -eq exp2
True if the arithmetic expressions are equal.

exp1 -ne exp2
True if the arithmetic expressions are not equal.

exp1 -gt exp2
True if the first arithmetic expression is greater than the second arithmetic expression.

exp1 -ge exp2
True if the first arithmetic expression is greater than or equal to the second arithmetic expression.

exp1 -lt exp2
True if the first arithmetic expression is less than the second arithmetic expression.

158 System i: Qshell

exp1 -le exp2
True if the first arithmetic expression is less than or equal to the second arithmetic expression.

The above primaries can be combined to form complex expressions using the following operators:

• ! expr True if expr is false.
• expr1 -a expr2 True if both expressions are true.
• expr1 & expr2 True if both expressions are true.
• expr1 && expr2 True if both expressions are true.
• expr1 -o expr2 True if either expression is true.
• expr1 | expr2 True if either expression is true.
• expr1 || expr2 True if either expression is true.
• (expr) Parentheses are for grouping.

The -a, &, and && operators have higher precedence than the -o, | operators, and || operators.

Options

See above.

Operands

All operators and flags are separate arguments.

Exit status

• 0 when expression is true.
• 1 when expression is false.
• >1 when there is an error.

Examples

1. See if /home is a directory:

test -d /home

2. See if one integer is less than or equal to another:

test "$index" -le "$count"

3. See if two strings are equal:

test "$REPLY" = "Yes"

true - Return true value

Synopsis

true

Description

true returns with an exit code of zero.

Options

None.

Operands

None.

Exit status

Qshell 159

Zero.

Related tasks
false - Return false value

Miscellaneous utilities
View miscellaneous utilities.

clrtmp - Clear the /tmp directory

Synopsis

clrtmp [-c]

Description

The clrtmp utility clears the /tmp directory by removing all of the objects from it. On other systems,
the /tmp directory is cleared each time the system is started. On i5/OS, the /tmp directory is not cleared
when the system is started. You can include a call to the clrtmp utility from the startup program specified
by the QSTRUPPGM system value to have the /tmp directory cleared when i5/OS is started.

To remove objects from the /tmp directory the caller of clrtmp must have *WX authority to each
subdirectory contained in /tmp and *OBJEXIST authority to each object. If the caller does not have the
required authority those objects are not removed from the /tmp directory.

Unpredictable results may occur if clrtmp is called while the system is running. For example, if another
program is writing to a file in the /tmp directory, the path to the file is removed and you will not be able
use the file.

Note: This utility is unique to i5/OS.

Options

-c
Create /tmp if it does not exist.

Exit status

• 0 when successful
• >0 when an error occurs or at least one object could not be removed from the /tmp directory

dataq - Send or receive messages from i5/OS data queue

Synopsis

dataq -c [-l] queue

dataq -r [-lp] [-n number] [-t seconds] queue

dataq -w [-l] [-n number] queue [data ...]

Description

The dataq utility clears messages from a data queue, reads messages from a data queue, or writes
messages to a data queue.

In the first synopsis form, dataq clears all of the messages from the queue.

In the second synopsis form, dataq reads messages from the queue and writes them to standard output.
By default, it reads one message from the queue. If no messages are available from the queue, dataq
waits for a message.

In the third synopsis form, dataq writes messages to the queue. If data is specified, it is written as one
message to the queue. Otherwise, each line read from standard input is written as a message to the
queue.

Options

160 System i: Qshell

-c
Clear all of the messages from the queue.

-l
When a relative path name is specified, use the library list to find the queue.

-n number
If the -r option is specified, read number messages from the queue. If the -w option is specified, write
number messages to the queue.

-p
Peek mode. When reading messages, the messages are left on the queue.

-r
Read messages from the queue.

-t seconds
When reading messages, exit if no messages have been received after seconds seconds of waiting.

-w
Write messages from the queue.

Operands

The queue is the path name to a data queue. A data queue can only exist in the QSYS.LIB file system.

Exit status

• 0 when successful
• >0 when unsuccessful

Related tasks
datarea - Read or write i5/OS(TM) data area
Rfile - Read or write record files

datarea - Read or write i5/OS(TM) data area

Synopsis

datarea -r [-l] [-s substring] data-area

datarea -w [-l] [-s substring] data-area [data ...]

Description

The datarea utility reads or writes a data area.

In the first synopsis form, datarea reads the contents of the data-area and writes it to standard output.
By default, it reads the entire data area.

In the second synopsis form, datarea writes to the data-area. If data is specified, it is written to the data-
area. Otherwise, one line is read from standard input and written to the data-area.

Options

-l
When a relative path name is specified, use the library list to find the data-area.

-r
Read from the data-area.

-s substring
For a character type data area, read or write the character positions specified by substring. The
substring is specified as a number range that consists of a number, a dash (-), and a second number to
select the character positions from the first number to the second number, inclusive. If the first
number is omitted, character positions from 1 to the second number are selected. If the second
number is omitted, character positions from the first number to the end of the data area are selected.

-w
Write to the data-area.

Qshell 161

Operands

The data-area is the path name to a data area. A data area can only exist in the QSYS.LIB file system.

Exit status

• 0 when successful
• >0 when unsuccessful

Related concepts
dataq - Send or receive messages from i5/OS data queue
Related tasks
Rfile - Read or write record files

date - Write the date and time

Synopsis

date [-u] [+format]

Description

The date utility writes the date and time to standard output. By default, the current date and time are
written.

Options

-u
Give time in universal coordinated time (UTC). The QUTCOFFSET system value must be set correctly
for date to return the correct time.

Operands

The +format operand specifies the format of the output from the date command. Each field descriptor is
replaced in the standard output by its corresponding value. All other characters are copied to the output
without change. The output is always terminated with a newline character.

You can use these field descriptors:

%a
Insert abbreviated weekday name from locale.

%A
Insert full weekday name from locale.

%b
Insert abbreviated month name from locale.

%B
Insert full month name from locale.

%c
Insert date and time from locale.

%d
Insert day of the month (01-31).

%H
Insert hour (24-hour clock) as a decimal number (00-23).

%I
Insert hour (12-hour clock) as a decimal number (01-12).

%j
Insert day of the year (001-366).

%m
Insert month (01-12).

%M
Insert minute (00-59).

162 System i: Qshell

%p
Insert equivalent of either AM or PM from locale.

%S
Insert second (00-61).

%U
Insert week number of the year (00-53) where Sunday is the first day of the week.

%w
Insert weekday (0-6) where Sunday is 0. first day of the week.

%W
Insert week number of the year (00-53) where Monday is the first day of the week

%x
Insert date representation from locale.

%X
Insert time representation from locale.

%y
Insert year without the century (00-99).

%Y
Insert year.

%Z
Insert name of time zone, or no characters if time zone is not available.

%%
Insert %.

Exit status

• 0 when successful
• >0 when an error occurred

Examples

1. Print the full weekday name, the full month name, the day and the full year.

date +@(#) 89 1.41@(#), 0 %d%, %Y
Friday, August 14, 1998

2. Print the day, the abbreviated month name, and the abbreviated year.

date +%d%.%b%.%y
14.Aug.98

3. Print the numeric month, day, and abbreviated year.

date +%m%/%d%/%y
08/14/98

expr - Evaluate arguments as an expression

Synopsis

expr operand ...

Description

The expr utility evaluates an expression formed by the operands and writes the result to standard output.

Operands

The format of the expression to evaluate is shown as follows. expr, expr1, and expr2 can be decimal
integers or strings.

Qshell 163

Note: The six relational expressions return the result of a
decimal integer comparison if both arguments are
integers. Otherwise, they return the result of a
string comparison. The result of each comparison
is 1 if the specified relationship is true, or 0 if the
relationship is false.

Expression Description

expr1 | expr2 Returns the evaluation of expr1 if it is neither null
nor zero; otherwise, returns the evaluation of
expr2.

expr1 & expr2 Returns the evaluation of expr1 if neither
expression evaluates to null or zero; otherwise,
returns zero.

expr1 = expr2 Equal.

expr1 > expr2 Greater than.

expr1 >= expr2 Greater than or equal.

expr1 < expr2 Less than.

expr1 <= expr2 Less than or equal.

expr1 != expr2 Not equal.

expr1 + expr2 Addition of decimal integers.

expr1 - expr2 Subtraction of decimal integers.

expr1 * expr2 Multiplication of decimal integers.

expr1 / expr2 Division of decimal integers.

expr1 % expr2 Remainder of decimal integer division.

expr1 : expr2 Matching expression.

(expr) Grouping symbols.

Exit status

• 0 when the expression evaluates to neither null nor zero.
• 1 when the expression evaluates to null or zero.
• 2 when the expression is invalid.
• >2 when an error occurred.

Examples

1. Evaluate an arithmetic expression.

expr 10 + 9 * 3 / 2 - 1

2. Evaluate a true or false condition.

expr 10 = 10

hostname - Display the name of the current host system

Synopsis

164 System i: Qshell

hostname [-is]

Description

The hostname utility writes the name of the current host system to standard output.

Options

-i
Also display the IP address of the host system.

-s
Display the short name of the host system without the domain information.

Exit status

• 0 when successful
• >0 when an error occurs

id - Return user identity

Synopsis

id [user]

id -G [-n] [user]

id -g [-nr] [user]

id -p [user]

id -u [-nr] [user]

Description

The id utility displays the user and group names and numeric identifiers, of the calling process, to
standard output. If the real and effective identifiers are different, both are displayed, otherwise only the
real identifier is displayed.

If a user (login name or user identifier) is specified, the user and group identifiers of that user are
displayed. In this case, the real and effective identifiers are assumed to be the same.

Options

-G
Display the different group identifiers (effective, real and supplementary) as white-space separated
numbers, in no particular order.

-g
Display the effective group identifier as a number.

-n
Display the name of the user or group identifier for the -G, -g and -u options instead of the number. If
any of the identifier numbers cannot be mapped into names, the number will be displayed as usual.

-p
Make the output human-readable. The user identifier as a name is displayed, preceded by the
keyword "uid". If the effective user identifier is different from the real user identifier, the real user
identifier is displayed as a name, preceded by the keyword "euid". If the effective group identifier is
different from the real group identifier, the real group identifier is displayed as a name, preceded by
the keyword "rgid". The list of groups to which the user belongs is then displayed as names, preceded
by the keyword "groups". Each display is on a separate line.

-r
Display the real identifier for the -g and -u options instead of the effective identifier.

-u
Display the effective user identifier as a number.

Exit status

Qshell 165

• 0 on success
• >0 if an error occurs.

Examples

Display all user and groups identifiers that belong to the user "SAM".

id -p SAM
uid SAM
groups 500, 1

Related tasks
logname - Display user's login name

ipcrm - Remove interprocess communication identifier

Synopsis

ipcrm [-m shmid] [-M shmkey] [-q msgid] [-Q msgkey] [-s semid] [-S semkey]

Description

The ipcrm utility removes an interprocess communication (IPC) entry if the caller has the necessary
authority to the IPC entry. The caller can specify an entry either by the key or by the identifier. The caller
can remove multiple entries at once.

Options

-M shmkey
Remove the shared memory segment with the specified key.

-m shmid
Remove the shared memory segment with the specified id.

-Q msgkey
Remove the message queue with the specified key.

-q msgid
Remove the message queue with the specified id.

-S semKey
Remove the semaphore set with the specified key.

-s semid
Remove the semaphore set with the specified id.

Operands

There are no operands.

Exit status

• 0 on success
• >0 if an error occurs

Examples

• Remove a semaphore with key 1283 and a message queue with id 10:

ipcrm -S 1283 -q 10

Related tasks
ipcs - Report interprocess communication status

ipcs - Report interprocess communication status

Synopsis

166 System i: Qshell

ipcs [-ETabcjmnopqstu]

Description

The ipcs utility reports information about existing interprocess communication (IPC) entries on the
system and displays the output on standard output. The ipcs utility is shipped with public authority set to
*EXCLUDE. The user must have *SERVICE special authority to run ipcs.

ipcs automatically reports some information for all entries that match the IPC mechanism specified.
Additional information is reported based on the specified options.

If no IPC mechanism is specified, all five mechanisms are reported. An IPC mechanism is specified by
using the -m option for shared memory, -n option of named semaphores, -s option for semaphores sets, -
q option for message queues, or -u option for unnamed sempahores.

The following information is reported for every shared memory, semaphore set, and message queue
entry:

• The type of the mechanism (column T).
• The id of the entry in decimal form (column ID).
• The key of the entry in hexadecimal form (column KEY).
• The entry's access modes and flags (column MODE).
• The user profile of the owner of the entry (column OWNER).
• The group profile of the owner of the entry (column GROUP).

The following information is reported for every named semaphore entry:

• The type of the mechanism (column T).
• The title for the semaphore (column TITLE).
• The entry's access modes and flags (column MODE).

The following information is reported for every unnamed semaphore entry:

• The type of the mechanism (column T).
• The title for the semaphore (column TITLE).

Warning: Running ipcs locks system-scoped resources that can affect the performance of other IPC
operations.

Options

The following options are used to select the IPC mechanism to report on.

-m
Show the shared memory entries on the system.

-n
Show the named semaphore entries on the system.

-q
Show the message queue entries on the system.

-s
Show the semaphore set entries on the system.

-u
Show the unnamed semaphore entries on the system.

The following options select the additional information that is reported for the IPC mechanism.

-a
Report all information as if the -b, -c, -o, -p, and -t options were specified.

-b
Display the maximum allowable size. If message queues are specified, the report includes the
QBYTES column. If shared memory is specified, the report includes the SEGSZ column. If semaphore

Qshell 167

sets are specified, the report includes the NSEMS column. If named semaphores or unnamed
semaphores are specified, the report includes the VALUE and NWAITERS columns.

-c
Display the user profile and group profile of the creator of the entry. For all mechanisms, the report
includes the CREATOR and CGROUP columns.

-E
Display extended information. If message queues are specified, the report includes the WPID, WTID,
MSGTYPE, and SIZE columns. If shared memory is specified, the report includes the APID, NUMATT,
and PAGESZ columns. If semaphore sets are specified, the report includes the SEMNUM, SEMVAL,
LOPID, WAITZ, WAITP, and WAITVAL columns. If named semaphores are specified, the report
includes the NAME, LPOST, LWAIT, WAITER, JOB, and THREAD columns. If unnamed semaphores are
specified, the report includes the LPOST, LWAIT, WAITER, JOB, and THREAD columns.

Since this level of detail is not available on other systems, this option is kept separate from the -a
option. When this option is specified, at least one row is added for each entry.

-j
Display the qualified job name instead of the process ID when the -E option is also specified. If
message queues are specified, the report includes the WJOBID column instead of WPID. If shared
memory is specifed, the report includes the AJOBID column instead of APID. If semaphore sets are
specified, the report includes the LOJOBID column instead of LOPID, the WAITZJID column instead of
WAITZ, and the WAITPJID column instead of WAITP.

-o
Display information about outstanding usage. If message queues are specified, the report includes
the CBYTES and QNUM columns. If shared memory is specified, the report includes the NATTCH
column.

-p
Display process ID information. If message queues are specified, the report includes the LSPID and
LRPID columns. If shared memory is specified, the report includes the CPID and LPID columns.

-t
Display time information. If message queues are specified, the report includes the CTIME, RTIME, and
STIME columns. If shared memory is specified, the report includes the CTIME, ATIME, and DTIME
columns. If semaphore sets are specified, the report includes the CTIME and OTIME columns.

-T
Display thread information. If message queues are specified, the report includes the LSTID and LRTID
columns. If shared memory is specified, the report includes the CTID and LTID columns. If
semaphore sets are specified and the -E option is specified, the report includes the LOTID,
WAITZTID, and WAITPTID columns.

Operands

There are no operands.

Extended description

Listed below are descriptions for all of the columns that can be reported in the output. After the column
name, the options that display the column are shown. A value of "default" means that the column is
always displayed, no matter what option is specified.

AJOBID (-Ej)
The qualified job name of the jobs attached to the shared memory segment.

ATIME (-t, -a)
The last time a job attached to the shared memory segment.

APID (-E)
The process ID of the job or jobs attached to the shared memory segment.

CBYTES (-o, -a)
The total number of bytes in the messages currently on the message queue.

168 System i: Qshell

CGROUP (-c, -a)
The group profile of the creator of the entry.

CPID (-p, -a)
The process ID of the job that created the shared memory segment.

CTID (-T)
The thread ID of the thread that created the shared memory segment.

CREATOR (-c, -a)
The user profile of the creator of the entry.

CTIME (-t, -a)
The last time the entry was either created or the owner or permissions, or both, were changed.

DTIME (-t, -a)
The last time a job detached from the shared memory segment.

GROUP (default)
The group profile of the owner of the entry.

ID (default)
The id of the entry in decimal.

JOB (-E)
The fully-qualified job name of the job waiting on the named semaphore or unnamed semaphore.

KEY (default)
The key of the entry in hexadecimal.

LOJOBID (-Ej)
The qualified job name of the last job to change the value of the semaphore using semop().

LOPID (-E)
The process ID of the last job to change the value of the semaphore using semop().

LOTID (-TE)
The thread ID of the last thread to change the value of the semaphore using semop().

LPID (-p, -a)
The process ID of the last job to attach or detach from the shared memory segment or change the
semaphore value.

LPOST (-E)
The fully-qualified job name and thread id of the last thread to post the named semaphore or
unnamed semaphore.

LRPID (-p, -a)
The process ID of the last job to receive a message from the message queue using msgrcv().

LRTID (-T)
The thread ID of the last thread to receive a message from the message queue using msgrcv().

LSPID (-p, -a)
The process ID of the last job to send a message to the message queue using msgsnd().

LSTID (-T)
The thread ID of the last thread to send a message to the message queue using msgsnd().

LTID (-T)
The thread ID of the last thread to attach or detach from the shared memory segment.

LWAIT (-E)
The fully-qualified job name and thread id of the last thread to wait for the named semaphore or
unnamed semaphore.

MODE (default)
An 11 character field that provides information about the state and permissions of the entry.

The first character can be one of the following:

Qshell 169

D
The entry has sustained damage, and no operations can be performed on it. The entry should only
be marked damaged if an internal error has occurred.

T
The entry is a shared memory segment and the segment uses teraspace storage.

Y
The entry is a shared memory segment and the segment uses teraspace storage and the entry has
sustained damage.

-

The second character can be one of the following:

R
The entry is a message queue and a thread is waiting on a call to msgrcv().

S
The entry is a message queue and a thread is waiting on a call to msgsnd().

D
The entry is a shared memory segment and the shared memory segment is marked to be removed
when all the jobs detach from the shared memory.

-
None of the above applies.

The next nine characters are interpreted as three sets of three permissions each. The first set refers
to the owner's permissions, the second set to group's permissions, and the third set to other's
permissions. Within each set, the first character indicates permission to read, the second character
indicates permission to write, and the last character is currently unused.

The permissions are indicated as follows:

r
If read permission is granted.

w
If write permission is granted.

-
If the indicated permission is not granted.

MSGTYPE (-E)
The type of the messages that are currently on the message queue.

NAME (-E)
The path name of the named semaphore.

NATTCH (-o, -a)
The current number of attaches to the shared memory segment.

NUMATT (-E)
The number of times the job is attached to the shared memory segment.

NSEMS (-b, -a)
The number of semaphores in the semaphore set.

NWAITERS (-b, -a)
The number of threads waiting on the named semaphore or unnamed semaphore.

OTIME (-t, -a)
The last time that semop() was called using the semaphore set.

OWNER (default)
The user profile of the owner of the entry.

PAGESZ (-E)
The page size (in bytes) of the storage backing the shared memory segment.

170 System i: Qshell

QBYTES (-b, -a)
The maximum number of bytes allowed on the message queue.

QNUM (-o, -a)
The number of messages currently on the message queue.

RTIME (-t, -a)
The last time a msgrcv() was called using the message queue.

SEGSZ (-b, -a)
The size of the shared memory segment.

SEMNUM (-E)
The semaphore number in the semaphore set.

SEMVAL (-E)
The value of the semaphore.

SIZE (-E)
The size of the message on the message queue.

STIME (-t, -a)
The last time a msgsnd() was called using the message queue.

T (default)
The entry type. The value is M for a shared memory segment, N for a named semaphore, Q for a
message queue, S for a semaphore set, or U for an unnamed semaphore.

THREAD (-E)
The thread ID of the thread waiting on the named semaphore or unnamed semaphore.

TITLE (default)
The title of the named semaphore or unnamed semaphore.

VALUE (-b, -a)
The current value of the named semaphore or unnamed semaphore.

WAITER (-E)
The index number of the thread waiting on the named semaphore or unnamed semaphore.

WAITP (-E)
The process ID of the job waiting for the semaphore value to reach a positive number.

WAITPJID (-Ej)
The qualified job name of the job waiting for the semaphore value to reach a positive number.

WAITPTID (-ET)
The thread ID of the thread or threads waiting for the semaphore value to reach a positive number.

WAITVAL (-E)
The value that the thread is waiting for the semaphore to reach.

WAITZ (-E)
The process ID of the job waiting for the semaphore value to reach zero.

WAITZJID (-Ej)
The qualified job name of the job waiting for the semaphore value to reach zero.

WAITZTID (-ET)
The thread ID of the thread or thread waiting for the semaphore value to reach zero.

WJOBID (-Ej)
The qualified job names of the jobs waiting to receive a message.

WPID (-E)
The process ID of the job or jobs waiting to receive a message.

WTID (-E)
The thread ID of the thread waiting to receive a message.

Exit status

• 0 on success

Qshell 171

• >0 if an error occurs

Related tasks
ipcrm - Remove interprocess communication identifier

locale - Get locale specific information

Synopsis

locale [-a]

locale [-ck] name ...

Description

The locale utility displays information about the current locale environment to standard output.

In the first synopsis form, locale writes the names and values of locale environment variables. When the -
a option is specified, locale writes the names of all of the available locales on the system.

In the second synopsis form, locale writes detailed information about the locale category or keyword
specified by name.

Options

-a
Write information about all available locales.

-c
Display the names of the locale categories.

-k
Display the names of the locale keywords.

Operands

The name operand can be one of the following locale categories or keywords:

• For category LC_CTYPE the keywords include alnum, alpha, blank, cntrl, digit, graph, lower, print, punct,
space, upper, xdigit, and codeset.

• For category LC_MESSAGES the keywords include yesexpr, noexpr, yesstr, and nostr.
• For category LC_MONETARY the keywords include int_curr_symbol, currency_symbol,

mon_decimal_point, mon_grouping, mon_thousands_sep, positive_sign, negative_sign, int_frac_digits,
frac_digits, p_cs_precedes, p_sep_by_space, n_cs_precedes, n_sep_by_space, p_sign_posn,
n_sign_posn, debit_sign, credit_sign, left_parenthesis, right_parenthesis, and crncystr.

• For category LC_NUMERIC the keywords include decimal_point, thousands_sep, grouping, and
radixchar.

• For category LC_TIME the keywords include abday, abday_1, abday_2, abday_3, abday_4, abday_5,
abday_6, abday_7, day, day_1, day_2, day_3, day_4, day_5, day_6, day_7, abmon, ab_mon1,
abmon_2, abmon_3, abmon_4, abmon_5, abmon_6, abmon_7, abmon_8, abmon_9, abmon_10,
abmon_11, abmon_12, mon, mon_1 mon_2 mon_3 mon_4 mon_5 mon_6 mon_7 mon_8 mon_9
mon_10 mon_11 mon_12, d_t_fmt, d_fmt, t_fmt, am_pm, am_str, pm_str, era, era_d_fmt, era_year,
t_fmt_ampm, era_t_fmt, era_d_t_fmt, alt_digits.

Exit status

• 0 when successful
• >0 when unsuccessful

Examples

1. Display the current values of the locale environment variables.

locale

2. Display the list of available locales on the system.

172 System i: Qshell

locale -a

Related tasks
iconv - Convert characters from one CCSID to another CCSID
sed - Stream editor
sort - Sort, merge, or sequence check text files
split - Split files into pieces
uniq - Report or filter out repeated lines in a file
tr - Translate characters
Related information
Locale overview

logger - Log messages

Synopsis

logger [-is] [-f file] [-t tag] [message ...]

Description

The logger utility provides a shell command interface for writing messages to the QHST system log. If
message is not specified, and the -f flag is not provided, standard input is logged.

Options

-i
Log the process id of the logger process with each line.

-s
Log the message to standard error, as well as the system log.

-f
Log the specified file.

-t
Mark every line in the log with the specified tag.

Exit status

• 0 on success
• >0 if an error occurs.

Examples

1. Send the file "test.output.log" to the system log.

logger -f test.output.log

2. Send a message to the system log and standard error, and include a tag.

logger -s -t 'Tag your are it' My message is simple

logname - Display user's login name

Synopsis

logname

Description

The logname utility writes the user's login name to standard output followed by a newline.

The logname utility explicitly ignores the LOGNAME and USER environment variables because the
environment cannot be trusted.

Qshell 173

Exit status

• 0 on success
• >0 if an error occurs

Related tasks
id - Return user identity

sysval - Retrieve system values or network attributes

Synopsis

sysval [-p] systemValue ...

sysval -n [-p] networkAttr ...

Description

The sysval utility displays the value of an i5/OS system value or network attribute. One system value or
network attribute is displayed per line of output.

Note: This utility is unique to i5/OS.

Options

-n
Display network attributes.

-p
Display the system value or network attribute name with the value.

Operands

See the Retrieve System Values API for the names and descriptions of the valid system values. See the
Retrieve Network Attributes API for the names and descriptions of the valid network attributes.

Examples

1. Display the QDATE system value.

sysval QDATE

2. Display the SYSNAME network attribute.

sysval -n SYSNAME

tee - Duplicate standard input

Synopsis

tee [-ai] [file ...]

Description

The tee utility copies standard input to standard output, making a copy in zero or more files. The output is
unbuffered.

The tee utility takes the default action for all signals, except when the -i option is specified.

Options

-a
Append the output to the files rather than overwriting them.

-i
Ignore the SIGINT signal.

174 System i: Qshell

Environment variables

tee is affected by the following environment variables:

QIBM_CCSID
The files created by tee are created with the CCSID specified by the value of the environment variable.

Exit status

• 0 on success
• >0 if an error occurs

Examples

1. Save the output of a command into three different files.

grep 'off_set=' code/*.java | tee file1 file2 file3 > logfile

2. Make a working and backup copy of the file, "back9".

cat back9 | tee pro.tees pro.tees.bak

Related tasks
echo - Write arguments to standard output

ulimit - Set or display resource limits

Synopsis

ulimit [-HS] [-acdfmnst] [limit]

Description

The ulimit utility sets or displays resource limits. The resource limits apply to the current process and to
any processes that are started after the resource limit is set.

For each resource, there is a hard or maximum limit and a soft or current limit. The soft limit can be
changed to any value that is less than or equal to the hard limit. The hard limit can be changed to any
value that is greater than or equal to the soft limit. The hard limit can only be increased by a user with
*JOBCTL special authority.

On i5/OS, only the file size (-f) and number of descriptors (-n) resource limits can be set. All of the
resource limits can be displayed.

Options

-a
Display all of the resource limits.

-c
Display the resource limit for the maximum size of a core file in kilobytes.

-d
Display the resource limit for the maximum size of a process' data segment in kilobytes.

-f
Set or display the resource limit for the maximum size of a file in kilobytes.

-H
Set or display the hard limit for the resource.

-m
Display the resource limit for the maximum size of a process' total available storage.

-n
Set or display the resource limit for the maximum number of file descriptors that can be opened by
the process.

Qshell 175

-s
Display the resource limit for the maximum size of the process' stack in kilobytes.

-S
Set or display the soft limit for the resource.

-t
Display the resource limit for the maximum amount of CPU time in seconds.

Operands

When limit is not specified, the value of the resource limit is displayed. When the -H option is specified,
the hard limit is displayed. Otherwise, the soft limit is displayed.

When limit is specified, the value of the resource limit is set. The limit can be an arithmetic expression or
the string "unlimited" for no limit. If neither the -H or -S options are specified, both the hard and soft
limits are set.

If no resource is specified, the default is the file size (-f) resource limit.

Exit status

• 0 when successful
• >0 when unsuccessful

Related tasks
umask - Get or set the file mode creation mask
uname - Return system name

uname - Return system name

Synopsis

uname [-amnrsv]

Description

The uname utility writes the name of the operating system implementation to standard output. When
options are specified, strings representing one or more system characteristics are written to standard
output.

If the -a flag is specified, or multiple flags are specified, all output is written on a single line, separated by
spaces.

Options

-a
Behave as though the -m, -n, -r, -s, and -v options were specified.

-m
Write the name of the hardware type of the system to standard output.

-n
Write the name of the system to standard output.

-r
Write the current release level of the operating system to standard output.

-s
Write the name of the operating system implementation to standard output.

-v
Write the version level of this release of the operating system to standard output.

Exit status

• 0 on success
• >0 if an error occurs

176 System i: Qshell

Related tasks
ulimit - Set or display resource limits

Application Programming Interfaces
These application programming interfaces (APIs) are provided with Qshell.

QzshSystem() - Run a QSH Command
Syntax

 #include <qshell.h>

 int QzshSystem(const char *command);

Threadsafe: Yes

The QzshSystem() function runs the specified shell command by spawning a child process and invoking
qsh in the child process. qsh interprets and runs command and then exits.

The QzshSystem() function returns when the child process has ended. While the QzshSystem() function
is waiting for the child process to end, it ignores the SIGQUIT and SIGINT signals, and blocks the
SIGCHLD signal. The QzshSystem() function does not affect the status information of any other child
processes started by the calling process.

The QzshSystem() function provides an interface that is like the system() function from the X/Open
standard. The input is a shell command string and it returns the status of the command as reported by the
waitpid() function. The QzshSystem() function starts a new process, invokes the shell to run the command
in the new process, and waits for the new process to end. You can determine the results of the command
by using the macros from the sys/wait.h header file.

You are responsible for making sure descriptors 0, 1, and 2 are available and the appropriate environment
variables are set before calling the QzshSystem() function. If your program is called from the QCMD
command line or run via SBMJOB, your program needs to make sure the environment is set correctly.

This option gives you more control over the environment while providing a standard interface that hides
the details of starting a new process. In the example below, the QzshSystem() function is used to run the
command specified by the first input parameter and the output is stored in the file specified by the
second input parameter. Note that the descriptors are only opened if they are not currently allocated in
the process.

The compiler and debugger are notorious for opening descriptors and leaving them open. Make sure you
run the program from a newly started job.

Parameters

*command (Input) Pointer to null-terminated string that contains the shell command to run.

Authorities

Object Referred To Authority Required errno

Each directory in the path name
preceding the executable file

*X EACCES

Executable file *X EACCES

If executable file is a shell script *RX EACCES

Qshell 177

Return value
value

QzshSystem() was successful. The return value is the status returned from the waitpid() function. An
application can use the macros provided in the sys/wait.h header file to interpret the status
information from the child process. The return value can be a negative number.

-1
QzshSystem() was not successful. The errno value is set to indicate the error.

Error conditions

If QzshSystem() is not successful, errno typically indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EACCES]
Permission denied.
An attempt was made to access an object in a way forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

[ECHILD]
Calling process has no remaining child processes on which wait operation can be performed.

[EFAULT]
The address used for an argument is not correct.
In attempting to use an argument in a call, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINVAL]
The value specified for the argument is not correct.
A function was passed incorrect argument values, or an operation was attempted on an object and the
operation specified is not supported for that type of object.

[ENOMEM]
Storage allocation request failed.
A function needed to allocate storage, but no storage is available.
There is not enough memory to perform the requested function.

[ENOSYSRSC]
System resources not available to complete request.

[EUNKNOWN]
Unknown system state.
The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated. Then try the operation again.

Example: Using the QzshSystem() and QzshCheckShellCommand() functions

The following example shows how to use the QzshSystem() and QzshCheckShellCommand() functions.

#include <stdio.h>
#include <qshell.h>
#include <sys/wait.h>
#include <errno.h>

int main(int argc, char *argv[])
{
 int status;
 char *command = "ls";

 /* Verify the user has access to the specified command. */
 if (QzshCheckShellCommand(command, NULL) == 0) {
 /* Run the specified command. */

178 System i: Qshell

 status = QzshSystem(command);
 if (WIFEXITED(status)) {
 printf("Command %s completed with exit status %d.\n",
 command, WEXITSTATUS(status));
 }
 else if (WIFSIGNALED(status)) {
 printf("Command %s ended with signal %d.\n",
 command, WTERMSIG(status));
 }
 else if (WIFEXCEPTION(status)) {
 printf("Command %s ended with exception.\n", command);
 }
 }
 else
 printf("Error %d finding command %s\n", errno, command);

 return(0);
}

Output

Command ls completed with exit status 0.

Related concepts
QzshCheckShellCommand() - Find QSH Command
Related information
spawn() - Spawn Process
waitpid() - Wait for Specific Child Process

QzshCheckShellCommand() - Find QSH Command
Syntax

 #include <qshell.h>

 int QzshCheckShellCommand(const char *command, const char *path);

Threadsafe: Yes

The QzshCheckShellCommand() function finds the specified shell command by searching:

• for a built-in utility, then
• in each directory in the list specified by path or the PATH environment variable in turn.

An application can use QzshCheckShellCommand() to verify that command exists and the user has
authority to command before running it.

Parameters

*command (Input) Pointer to null-terminated string that contains the shell command to find. Note that
the command cannot contain the parameters of it. For example, "ls" is acceptable but "ls -l" is not
acceptable.

*path (Input) Pointer to null-terminated string that contains a colon delimited list of directories to search.
If this parameter is NULL, QzshCheckShellCommand() uses the value of the PATH environment variable.

Authorities

When command is an executable file, the user must have the following authorities.

Qshell 179

Object Referred To Authority Required errno

Each directory in the path name
preceding the executable file

*X EACCES

Executable file *X EACCES

If executable file is a shell script *RX EACCES

Return value
0

QzshCheckShellCommand() was successful. The command was found in the current environment.
-1

Qp0zCheckShellCommand() was not successful. The errno value is set to indicate the error.

Error conditions

If QzshCheckShellCommand() is not successful, errno typically indicates one of the following errors.
Under some conditions, errno could indicate an error other than those listed here.

[EACCES]
Permission denied.
An attempt was made to access an object in a way forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

[EFAULT]
The address used for an argument is not correct.
In attempting to use an argument in a call, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINVAL]
The value specified for the argument is not correct.
A function was passed incorrect argument values, or an operation was attempted on an object and the
operation specified is not supported for that type of object.

[ENOMEM]
Storage allocation request failed.
A function needed to allocate storage, but no storage is available.
There is not enough memory to perform the requested function.

[ENOENT]
No such path or directory.
The directory or component of the path name specified does not exist.
A named file or directory does not exist or is an empty string.

[EUNKNOWN]
Unknown system state.
The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated. Then retry the operation.

Example: Using the QzshCheckShellCommand() function

For an example of using this function, see the QzshSystem() function.

Related concepts
QzshSystem() - Run a QSH Command

180 System i: Qshell

Examples: Using a remote client that connects to a qsh session
This example shows a remote client and server for starting an interactive Qshell session.

IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS PROGRAM
DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT, REGARDING
THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR ANY OF
THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;
2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR
3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT
APPLY TO YOU.

Example: Server program

/**/
/* */
/* Name: server.c */
/* */
/* Description: This program is a server for starting interactive */
/* qsh sessions on remote clients. The program */
/* listens for connections from clients. When a */
/* connection is accepted, it reads the user name */
/* and password of the client. It then swaps to the */
/* the specified user profile and spawns a new */
/* process running the qsh shell interpreter that */
/* handles the connection. */
/* */
/* Parameters: 1. Port number to listen for connections on. */
/* */
/* Notes: 1. The user name and password are sent as plain text */
/* from the client. */
/* 2. The user profile running this program must have */
/* authority to the QSYGETPH, QSYRLSPH, and */
/* QWTSETP APIs. */
/* 3. You will need to change the value of the NLSPATH */
/* environment variable if your system is using a */
/* different language than 2924. */
/* */
/**/

/**/
/* Includes */
/**/

#include <stdio.h> /* fopen(), vfprintf() */
#include <sys/socket.h> /* socket(), bind(), and so on. */
#include <netinet/in.h> /* sockaddr_in, INADDR_ANY, and so on */
#include <arpa/inet.h> /* inet_ntoa() */
#include <spawn.h> /* spawn() */
#include <unistd.h> /* close(), read(), and so on */
#include <stdlib.h> /* exit()*/
#include <stdarg.h> /* va_start(), va_end() */
#include <qp0z1170.h> /* Qp0zInitEnv() */
#include <qsygetph.h> /* QSYGETPH() */
#include <qwtsetp.h> /* QWTSETP() */
#include <qsyrlsph.h> /* QSYRLSPH() */
#include <qusec.h> /* Qus_EC_t */

Qshell 181

#include <pwd.h> /* getpwnam() */
#include <ctype.h> /* toupper() */
#include <time.h> /* ctime(), time() */
#include <except.h> /* Exception and cancel handling */
#include <errno.h> /* errno and constants */

/**/
/* Constants */
/**/

#define DEFAULT_BUF 4096
#define DEFAULT_PORT 6042
#define NULL_PH "\0\0\0\0\0\0\0\0\0\0\0\0"
#define PH_SIZE 12
#define NAME_SIZE 11
#undef PATH_MAX
#define PATH_MAX 4096

/**/
/* Global Variables */
/**/

/* For logging errors */
FILE *log_fp;
char log_file[] = "/tmp/qsh_server.log";
char log_buffer[DEFAULT_BUF];

/**/
/* Function Prototypes */
/**/

int strtoupper(char *);
int GetString(int, char *, size_t);
void LogError(char *, ...);
void SendError(int, char *, ...);
void CleanupHandler(_CNL_Hndlr_Parms_T *);

int main(int argc, char *argv[])
{
 int sfd; /* Server's listening socket */
 int cfd; /* Socket connected to client */
 int on=1; /* Flag for setsockopt() */
 struct sockaddr_in my_addr; /* Address server binds to */
 struct sockaddr_in client_addr; /* Addrress of connected client */
 int client_addr_len; /* Length of client's socket address */
 unsigned short port; /* Server's TCP port */
 char server_ph[PH_SIZE+1] = NULL_PH; /* Server's profile handle */
 char client_ph[PH_SIZE+1] = NULL_PH; /* Client's profile handle */
 char profile[NAME_SIZE]; /* User profile read from client */
 char password[NAME_SIZE]; /* Password read from client */
 char sy_profile[NAME_SIZE]; /* User profile for i5/OS APIs */
 char sy_password[NAME_SIZE]; /* Password for i5/OS APIs */
 char server_profile[NAME_SIZE] = "*CURRENT ";
 char no_pwd[NAME_SIZE] = "*NOPWD ";
 struct passwd *cpw; /* User information for client */
 Qus_EC_t error = { sizeof(Qus_EC_t), 0 }; /* Error code for SPIs */

 /* Parameters for spawn() to shell process */
 char qsh_pgm[] = "/QSYS.LIB/QSHELL.LIB/QZSHSH.PGM";
 char *args[5]; /* Argument array */
 char *envs[10]; /* Environment variable array */
 int fd_count; /* Number of descriptors */
 int fd_map[3]; /* Map of descriptors */
 struct inheritance inherit; /* Inheritance options */
 char server_dir[] = "/"; /* Default current working directory */

 /* Environment variables */
 char home_var[PATH_MAX+10];
 char logname_var[NAME_SIZE+10];
 char path_var[] = "PATH=/usr/bin:.:/QOpenSys/usr/bin";
 char stdio_var[] = "QIBM_USE_DESCRIPTOR_STDIO=I";
 char terminal_type_var[] = "TERMINAL_TYPE=REMOTE";
 char nlspath_var[] = "NLSPATH=/QIBM/ProdData/OS400/Shell/MRI2924/%N";

 volatile _INTRPT_Hndlr_Parms_T ca; /* For exception handler */

 /**/
 /* Process the input parameters. */
 /**/

 /* Use the default port if one is not specified. */
 if (argc < 2) {

182 System i: Qshell

 port = DEFAULT_PORT;
 }

 else {
 port = atoi(argv[1]);
 }

 /**/
 /* Initialize the server environment. */
 /**/

 /* Initialize for environment variables. */
 Qp0zInitEnv();

 /* Change to default directory. */
 chdir(server_dir);

 /* Initialize the server's profile handle. */
 QSYGETPH(server_profile, no_pwd, server_ph, &error);
 if (error.Bytes_Available != 0) {
 LogError("Could not get profile handle for server, "
 "QSYGETPH() failed with exception %7.7s\n",
 error.Exception_Id);
 exit(1);
 }

 /**/
 /* Set up the listening socket. */
 /**/

 /* Create a socket. */
 if ((sfd = socket(AF_INET, SOCK_STREAM, IPPROTO_IP)) < 0) {
 LogError("socket() failed, errno=%d\n", errno);
 exit(1);
 }

 #pragma cancel_handler(CleanupHandler, sfd)
 #pragma exception_handler(Cleanup, ca, _C1_ALL, _C2_ALL)

 /* Allow re-use of this socket address. */
 if (setsockopt(sfd, SOL_SOCKET, SO_REUSEADDR, (char *)&on,
 sizeof(int)) != 0) {
 LogError("setsockopt() failed, errno=%d\n", errno);
 exit(1);
 }

 /* Bind to a port. */
 memset(&my_addr, '\0', sizeof(my_addr));
 my_addr.sin_family = AF_INET;
 my_addr.sin_port = port;
 my_addr.sin_addr.s_addr = INADDR_ANY;
 if (bind(sfd, (struct sockaddr *)&my_addr, sizeof(my_addr)) != 0) {
 LogError("bind() failed for port %d, errno=%d\n", port, errno);
 close(sfd);
 exit(1);
 }

 /* Make this a listening socket. */
 if (listen(sfd, 10) != 0) {
 LogError("listen() failed, errno=%d\n", errno);
 close(sfd);
 exit(1);
 }

 /**/
 /* Accept connections from clients. */
 /**/

 while (1) {
 if ((cfd = accept(sfd, NULL, 0)) < 0) {
 LogError("accept() failed, errno=%d\n", errno);
 close(sfd);
 exit(1);
 }

 /* Read the user profile and password from the client. The client
 sends two null-terminated strings - the first one is the user
 profile and the second one is the password. */
 if (GetString(cfd, profile, 11) != 0) {
 getpeername(cfd, (struct sockaddr *)&client_addr, &client_addr_len);
 LogError("Could not read profile from client at %s, port %hu\n",
 inet_ntoa(client_addr.sin_addr), client_addr.sin_port);

Qshell 183

 close(cfd);
 continue;
 }

 if (GetString(cfd, password, 11) != 0) {
 getpeername(cfd, (struct sockaddr *)&client_addr, &client_addr_len);
 LogError("Could not read password from client at %s, port %hu\n",
 inet_ntoa(client_addr.sin_addr), client_addr.sin_port);
 close(cfd);
 continue;
 }

 /* Check for the special values that turn off password checking in QSYGETPH(). */
 if ((profile[0] == '*') || (password[0] == '*')) {
 getpeername(cfd, (struct sockaddr *)&client_addr, &client_addr_len);
 LogError("Invalid password sent from client at %s, port %hu\n",
 inet_ntoa(client_addr.sin_addr), client_addr.sin_port);
 close(cfd);
 continue;
 }

 /* QSYGETPH() requires that the profile be exactly ten characters,
 left-aligned in the field, and padded with blanks. */
 strtoupper(profile);
 sprintf(sy_profile, "%-10.10s", profile);

 /* Get the profile handle for the client's user profile. */
 QSYGETPH(sy_profile, password, client_ph, &error, strlen(password), 0);
 if (error.Bytes_Available != 0) {
 LogError("Could not get profile handle for profile %s, "
 "QSYGETPH() failed with exception %7.7s\n",
 sy_profile, error.Exception_Id);
 SendError(cfd, "Could not get profile handle for profile %s\n",
 sy_profile);
 close(cfd);
 continue;
 }

 /* Switch to client's user profile. */
 QWTSETP(client_ph, &error);
 if (error.Bytes_Available != 0) {
 LogError("Could not switch to profile %s, "
 "QWTSETP() failed with exception %7.7s\n",
 sy_profile, error.Exception_Id);
 SendError(cfd, "Could not switch to profile %s\n", sy_profile);
 QSYRLSPH(client_ph, NULL);
 close(cfd);
 continue;
 }

 /* Get the info for this user profile. */
 if ((cpw = getpwnam(profile)) == NULL) {
 /* Log error. */
 LogError("Could not retrieve information for profile %s, "
 "getpwnam() failed with errno=%d\n",
 profile, errno);
 SendError(cfd, "Could not retrieve information for profile %s\n",
 profile);

 /* Switch back to the server's user profile. */
 QWTSETP(server_ph, &error);
 if (error.Bytes_Available != 0) {
 LogError("Could not switch back to server's profile, "
 "QWTSETP() failed with exception %7.7s\n",
 error.Exception_Id);
 break;
 }

 /* Release the client's profile handle. */
 QSYRLSPH(client_ph, NULL);
 if (error.Bytes_Available != 0) {
 LogError("Could not release client's profile handle, "
 "QSYRLSPH() failed with exception %7.7s\n",
 error.Exception_Id);
 break;
 }
 close(cfd);
 continue;
 }

 /* Build the file descriptor map for the child. */
 fd_count = 3;

184 System i: Qshell

 fd_map[0] = cfd;
 fd_map[1] = cfd;
 fd_map[2] = cfd;

 /* Build the argv array for the child. */
 args[0] = qsh_pgm;
 args[1] = "-login"; /* Do login processing */
 args[2] = "-s"; /* Take input from stdin */
 args[3] = "-i"; /* Run as an interactive shell */
 args[4] = NULL;

 /* Build the environ array for the child. */
 sprintf(home_var, "HOME=%s", cpw->pw_dir);
 sprintf(logname_var, "LOGNAME=%s", cpw->pw_name);
 envs[0] = home_var;
 envs[1] = logname_var;
 envs[2] = path_var;
 envs[3] = stdio_var;
 envs[4] = terminal_type_var;
 envs[5] = nlspath_var;
 envs[6] = NULL;

 /* Set up the inheritance structure. */
 memset(&inherit, '\0', sizeof(struct inheritance));
 inherit.flags = SPAWN_SETTHREAD_NP;
 inherit.pgroup = SPAWN_NEWPGROUP;

 /* Change to the home directory for the client. The child process
 inherits this as its current working directory. */
 chdir(cpw->pw_dir);

 /* Start a child process running the shell interpreter. */
 if (spawn(args[0], fd_count, fd_map, &inherit, args, envs) < 0) {
 LogError("Could not start qsh process, spawn() failed with "
 "errno=%d\n", errno);
 SendError(cfd, "Could not start qsh process\n");
 }

 /* Clean up for the next connection. */
 chdir(server_dir);
 close(cfd);

 /* Switch back to server's user profile. */
 QWTSETP(server_ph, &error);
 if (error.Bytes_Available != 0) {
 LogError("Could not switch back to server's profile, "
 "QWTSETP() failed with exception %7.7s\n",
 error.Exception_Id);
 break;
 }

 /* Release the client's profile handle. */
 QSYRLSPH(client_ph, &error);
 if (error.Bytes_Available != 0) {
 LogError("Could not release client's profile handle, "
 "QSYRLSPH() failed with exception %7.7s\n",
 error.Exception_Id);
 break;
 }
 } /* End of while */

 /* Clean up. */
 close(sfd);

 #pragma disable_handler /* Exception handler */
 #pragma disable_handler /* Cancel handler */

 exit(0);
 return 0;

 /* Exception handler */
 Cleanup:

 LogError("Unexpected exception %7.7s\n", ca.Msg_Id);
 close(sfd);
 exit(1);
} /* End of main() */

/*
 * Convert a string to uppercase.
 */

Qshell 185

int
strtoupper(char *string)
{
 for (; *string != '\0'; ++string)
 *string = toupper(*string);

 return 0;
} /* End of strtoupper() */

/*
 * Read a string from a socket.
 */

int
GetString(int fd, char *buffer, size_t nbytes)
{
 char c;
 do {
 if (read(fd, &c, 1) != 1) {
 return -1;
 }
 *buffer++ = c;
 if (--nbytes == 0) {
 return 0;
 }
 } while (c != '\0');

 return 0;
} /* End of GetString() */

/*
 * Write an error message to the log file.
 */

void LogError(char *format, ...)
{
 va_list ap;
 time_t now; /* Time stamp */

 /* If needed, open the log file. */
 if (log_fp == NULL) {
 log_fp = fopen(log_file, "w");
 if (log_fp == NULL) {
 return;
 }
 }

 /* Write timestamp to the log file. */
 now=time(NULL);
 fprintf(log_fp, "\n%s", ctime(&now));

 /* Write the formatted string to the log file. */
 va_start(ap, format);
 vfprintf(log_fp, format, ap);
 va_end(ap);

 /* Flush output to log file. */
 fflush(log_fp);

 return;
} /* End of LogError() */

/*
 * Send an error message to the client.
 */

void SendError(int fd, char *format, ...)
{
 va_list ap;

 /* Build the formatted string. */
 va_start(ap, format);
 vsprintf(log_buffer, format, ap);
 va_end(ap);

 /* Write the formatted string. */
 write(fd, log_buffer, strlen(log_buffer));

186 System i: Qshell

 return;
} /* End of SendError() */

/*
 * Handler to clean up when the program is canceled.
 */

void CleanupHandler(_CNL_Hndlr_Parms_T *cancel_info)
{
 int sfd;
 sfd = *((int *)cancel_info->Com_Area);
 close(sfd);
} /* End of CleanupHandler() */

Example: Client program

/**/
/* */
/* Name: qshc.c */
/* */
/* Description: This program is a client for an interactive qsh */
/* session running on a server. The program */
/* first connects to a server on the specified */
/* server and sends the user name and password of */
/* the client. After the qsh session is started, */
/* the program takes input from stdin and sends it */
/* to the server and receives output from the server */
/* and displays it on stdout. */
/* */
/* Parameters: 1. Host running the qsh server (either host name or */
/* IP address). */
/* */
/* Options: 1. -n to force prompt for user name and password. */
/* 2. -p to specify port of qsh server. */
/* */
/* Notes: 1. The user name and password are sent as plain text */
/* to the server. */
/* 2. All translations from ASCII to EBCDIC are done by */
/* this program on the client. */
/* 3. The program includes translation tables for */
/* converting between EBCDIC code page 37 (US English)*/
/* and ASCII code page 850 (US English). You can */
/* modify these tables to support other code pages. */
/* Or if your system supports the iconv APIs, you */
/* can define USE_ICONV to translate using iconv(). */
/* 4. This program has been tested on AIX 4.1.5 and */
/* Linux 2.0.29. */
/* */
/**/

/* Remove the comments from the following line to use iconv(). */
/* #define USE_ICONV 1 */

/**/
/* Includes */
/**/

#include <stdio.h> /* perror() */
#include <sys/socket.h> /* socket(), bind(), and so on */
#include <netinet/in.h> /* sockaddr_in, INADDR_ANY, and so on */
#include <unistd.h> /* close(), read(), write() and so on */
#include <stdlib.h> /* exit() */
#include <stdlib.h> /* exit(), memset() */
#include <sys/ioctl.h> /* ioctl() */
#include <errno.h> /* errno and values */
#include <string.h> /* strlen() */
#include <arpa/inet.h> /* inet_addr() */
#include <netdb.h> /* gethostbyname() */
#include <pwd.h> /* getpwuid() */
#include <signal.h> /* sigaction(), and so on */

#ifdef _AIX
#include <sys/select.h> /* select() */
#include <strings.h> /* bzero() for FD_ZERO */
#endif
#ifdef __linux__
#include <sys/time.h> /* FD_SET(), select */

Qshell 187

#endif

#ifdef USE_ICONV
#include <iconv.h> /* iconv(), and so on */
#endif

/**/
/* Constants */
/**/

#define QSH_PORT 6042
#define DEFAULT_BUF 4096

/**/
/* Types */
/**/

typedef unsigned char uchar;

/**/
/* Global Variables */
/**/

char *sysname; /* Long host name of server system */

#ifdef USE_ICONV
iconv_t ecd; /* Conversion descriptor for ASCII to EBCDIC */
iconv_t acd; /* Conversion descriptor for EBCDIC to ASCII */

#else
/* EBCDIC to ASCII translation table */
static uchar AsciiTable[256] =
{
 0x00,0x01,0x02,0x03,0x20,0x09,0x20,0x7f, /* 00-07 */
 0x20,0x20,0x20,0x0b,0x0c,0x0d,0x0e,0x0f, /* 08-0f */
 0x10,0x11,0x12,0x13,0x20,0x0a,0x08,0x20, /* 10-17 */
 0x18,0x19,0x20,0x20,0x20,0x1d,0x1e,0x1f, /* 18-1f */
 0x20,0x20,0x1c,0x20,0x20,0x0a,0x17,0x1b, /* 20-27 */
 0x20,0x20,0x20,0x20,0x20,0x05,0x06,0x07, /* 28-2f */
 0x20,0x20,0x16,0x20,0x20,0x20,0x20,0x04, /* 30-37 */
 0x20,0x20,0x20,0x20,0x14,0x15,0x20,0x1a, /* 38-3f */
 0x20,0x20,0x83,0x84,0x85,0xa0,0xc6,0x86, /* 40-47 */
 0x87,0xa4,0xbd,0x2e,0x3c,0x28,0x2b,0x7c, /* 48-4f */
 0x26,0x82,0x88,0x89,0x8a,0xa1,0x8c,0x8b, /* 50-57 */
 0x8d,0xe1,0x21,0x24,0x2a,0x29,0x3b,0xaa, /* 58-5f */
 0x2d,0x2f,0xb6,0x8e,0xb7,0xb5,0xc7,0x8f, /* 60-67 */
 0x80,0xa5,0xdd,0x2c,0x25,0x5f,0x3e,0x3f, /* 68-6f */
 0x9b,0x90,0xd2,0xd3,0xd4,0xd6,0xd7,0xd8, /* 70-77 */
 0xde,0x60,0x3a,0x23,0x40,0x27,0x3d,0x22, /* 78-7f */
 0x9d,0x61,0x62,0x63,0x64,0x65,0x66,0x67, /* 80-87 */
 0x68,0x69,0xae,0xaf,0xd0,0xec,0xe7,0xf1, /* 88-8f */
 0xf8,0x6a,0x6b,0x6c,0x6d,0x6e,0x6f,0x70, /* 90-97 */
 0x71,0x72,0xa6,0xa7,0x91,0xf7,0x92,0xcf, /* 98-9f */
 0xe6,0x7e,0x73,0x74,0x75,0x76,0x77,0x78, /* a8-a7 */
 0x79,0x7a,0xad,0xa8,0xd1,0xed,0xe8,0xa9, /* a8-af */
 0x5e,0x9c,0xbe,0xfa,0xb8,0x15,0x14,0xac, /* b0-b7 */
 0xab,0xf3,0x5b,0x5d,0xee,0xf9,0xef,0x9e, /* b8-bf */
 0x7b,0x41,0x42,0x43,0x44,0x45,0x46,0x47, /* c0-c7 */
 0x48,0x49,0xf0,0x93,0x94,0x95,0xa2,0xe4, /* c8-cf */
 0x7d,0x4a,0x4b,0x4c,0x4d,0x4e,0x4f,0x50, /* d0-d7 */
 0x51,0x52,0xfb,0x96,0x81,0x97,0xa3,0x98, /* d8-df */
 0x5c,0xf6,0x53,0x54,0x55,0x56,0x57,0x58, /* e0-e7 */
 0x59,0x5a,0xfc,0xe2,0x99,0xe3,0xe0,0xe5, /* e8-ef */
 0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37, /* f0-f7 */
 0x38,0x39,0xfd,0xea,0x9a,0xeb,0xe9,0xff /* f8-ff */
};

/* ASCII to EBCDIC translation table */
static uchar EbcdicTable[256] =
{
 0x00,0x01,0x02,0x03,0x37,0x2d,0x2e,0x2f, /* 00-07 */
 0x16,0x05,0x25,0x0b,0x0c,0x0d,0x0e,0x0f, /* 08-0f */
 0x10,0x11,0x12,0x13,0x3c,0x3d,0x32,0x26, /* 10-17 */
 0x18,0x19,0x3f,0x27,0x22,0x1d,0x1e,0x1f, /* 18-1f */
 0x40,0x5a,0x7f,0x7b,0x5b,0x6c,0x50,0x7d, /* 20-27 */
 0x4d,0x5d,0x5c,0x4e,0x6b,0x60,0x4b,0x61, /* 28-2f */
 0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7, /* 30-37 */
 0xf8,0xf9,0x7a,0x5e,0x4c,0x7e,0x6e,0x6f, /* 38-3f */
 0x7c,0xc1,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7, /* 40-47 */
 0xc8,0xc9,0xd1,0xd2,0xd3,0xd4,0xd5,0xd6, /* 48-4f */
 0xd7,0xd8,0xd9,0xe2,0xe3,0xe4,0xe5,0xe6, /* 50-57 */
 0xe7,0xe8,0xe9,0xba,0xe0,0xbb,0xb0,0x6d, /* 58-5f */

188 System i: Qshell

 0x79,0x81,0x82,0x83,0x84,0x85,0x86,0x87, /* 60-67 */
 0x88,0x89,0x91,0x92,0x93,0x94,0x95,0x96, /* 68-6f */
 0x97,0x98,0x99,0xa2,0xa3,0xa4,0xa5,0xa6, /* 70-77 */
 0xa7,0xa8,0xa9,0xc0,0x4f,0xd0,0xa1,0x07, /* 78-7f */
 0x68,0xdc,0x51,0x42,0x43,0x44,0x47,0x48, /* 80-87 */
 0x52,0x53,0x54,0x57,0x56,0x58,0x63,0x67, /* 88-8f */
 0x71,0x9c,0x9e,0xcb,0xcc,0xcd,0xdb,0xdd, /* 90-97 */
 0xdf,0xec,0xfc,0x70,0xb1,0x80,0xbf,0x40, /* 98-9f */
 0x45,0x55,0xee,0xde,0x49,0x69,0x9a,0x9b, /* a8-a7 */
 0xab,0xaf,0x5f,0xb8,0xb7,0xaa,0x8a,0x8b, /* a8-af */
 0x40,0x40,0x40,0x40,0x40,0x65,0x62,0x64, /* b0-b7 */
 0xb4,0x40,0x40,0x40,0x40,0x4a,0xb2,0x40, /* b8-bf */
 0x40,0x40,0x40,0x40,0x40,0x40,0x46,0x66, /* c0-c7 */
 0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x9f, /* c8-cf */
 0x8c,0xac,0x72,0x73,0x74,0x89,0x75,0x76, /* d0-d7 */
 0x77,0x40,0x40,0x40,0x40,0x6a,0x78,0x40, /* d8-df */
 0xee,0x59,0xeb,0xed,0xcf,0xef,0xa0,0x8e, /* e0-e7 */
 0xae,0xfe,0xfb,0xfd,0x8d,0xad,0xbc,0xbe, /* e8-ef */
 0xca,0x8f,0x40,0xb9,0xb6,0xb5,0xe1,0x9d, /* f0-f7 */
 0x90,0xbd,0xb3,0xda,0xea,0xfa,0x40,0x40 /* f8-ff */
};
#endif /* USE_ICONV */

/**/
/* Function Prototypes */
/**/

int ConvertToEBCDIC(char *, size_t, char *, size_t);
int ConvertToASCII(char *, size_t, char *, size_t);
int GetPassword(char *, char *, char *);
int Translate(uchar *, size_t, uchar *, uchar *);
void MySignalHandler(int);
void usage(void);

int main (int argc, char *argv[])
{
 struct sigaction sigact; /* Signal action */
 int c; /* Option letter */
 int nflag=0; /* True when -n option is specified */
 int port=QSH_PORT; /* Port to connect to on server */
 int sd; /* Socket to server */
 fd_set read_set; /* For select() */
 int rc; /* Return code */
 struct sockaddr_in svr_addr; /* AF_INET socket address */
 long ip_addr; /* IP address of server system */
 struct in_addr host_addr; /* Host address for gethostbyaddr() */
 char *hostname; /* Short host name of server system */
 size_t len; /* Length of input string */
 char *ascii_user; /* Username in ASCII */
 char *ebcdic_user; /* Username in EBCDIC */
 char *ascii_pwd; /* Password in ASCII */
 char *ebcdic_pwd; /* Password in EBCDIC */
 struct hostent *host_p; /* Pointer to hostent structure returned by
 gethostbyname() */
 char *ascii_buf; /* Buffer for ASCII text */
 char *ebcdic_buf; /* Buffer for EBCDIC text */
 int buf_size; /* Amount of data read from server */

 /**/
 /* Initialization. */
 /**/

 #ifdef USE_ICONV
 /* Open the conversion descriptors for converting between ASCII and
 EBCDIC. Assume the server job is running in CCSID 37.
 This must be changed if the server job is running in a
 different CCSID. The input parameters to iconv_open() may need to
 be changed depending on the operating system. This ioonv_open() is
 coded for AIX. */
 if ((acd = iconv_open("IBM-850", "IBM-037")) < 0) {
 perror("qshc: iconv_open() failed for ASCII to EBCDIC");
 exit(1);
 }

 if ((ecd = iconv_open("IBM-037", "IBM-850")) < 0) {
 perror("qshc: iconv_open() failed for EBCDIC to ASCII");
 exit(1);
 }
 #endif /* USE_IOONV */

 /* Set up a signal handler for SIGINT. The signal is sent to the
 process when the user presses <ctrl>c. */

Qshell 189

 sigemptyset(&sigact.sa_mask);
 sigact.sa_flags = 0;
 sigact.sa_handler = MySignalHandler;
 if (sigaction(SIGINT, &sigact, NULL) != 0) {
 perror("qshc: sigaction(SIGINT) failed");
 exit(1);
 }

 /**/
 /* Process the input parameters. */
 /**/

 if (argc < 2) {
 usage();
 }

 /* Process the options. */
 while ((c = getopt(argc, argv, "hnp:")) != EOF) {
 switch (c) {
 case 'n':
 nflag = 1;
 break;
 case 'p':
 port = atoi(optarg);
 break;
 case 'h':
 default:
 usage();
 break;
 } /* End of switch */
 } /* End of while */

 /* Convert a dotted decimal address to a 32-bit IP address. */
 hostname = argv[optind];
 ip_addr = inet_addr(hostname);

 /* When inet_addr() returns -1 assume the user specified
 a host name. */
 if (ip_addr == -1) {
 /* Try to find the host by name. */
 host_p = gethostbyname(hostname);
 if (host_p) {
 memcpy(&ip_addr, host_p->h_addr, host_p->h_length);
 sysname = host_p->h_name;
 }

 else {
 fprintf(stderr, "qshc: Could not find host %s\n", hostname);
 exit(1);
 }
 } /* End of if */

 /* The user specified a IP address. */
 else {
 /* Try to find the host by address. */
 host_addr.s_addr = ip_addr;
 host_p = gethostbyaddr((char *)&host_addr.s_addr, sizeof(host_addr),
 AF_INET);
 if (host_p) {
 sysname = host_p->h_name;
 }

 else {
 fprintf(stderr, "qshc: Could not find host %s\n", hostname);
 exit(1);
 }
 } /* End of else */

 /**/
 /* Connect to the qsh server on the specified system. */
 /**/

 /* Create a socket. */
 if ((sd = socket(AF_INET, SOCK_STREAM, IPPROTO_IP)) < 0) {
 perror("qshc: socket() failed");
 exit(1);
 }

 /* Connect to the qsh server on the specified system. */
 memset(&svr_addr, '\0', sizeof(svr_addr));
 svr_addr.sin_family = AF_INET;
 svr_addr.sin_port = htons(port);

190 System i: Qshell

 svr_addr.sin_addr.s_addr = ip_addr;
 if (connect(sd, (struct sockaddr *)&svr_addr, sizeof(svr_addr)) != 0) {
 perror("qshc: connect() failed");
 exit(1);
 }

 /**/
 /* Send the user name and password to the server. */
 /**/

 /* Allocate buffers for translating input and output. */
 ascii_buf = (char *)malloc(DEFAULT_BUF);
 memset(ascii_buf, '\0', DEFAULT_BUF);
 ebcdic_buf = (char *)malloc(DEFAULT_BUF);
 memset(ebcdic_buf, '\0', DEFAULT_BUF);

 ascii_user = ascii_buf;
 ascii_pwd = ascii_buf + 100;
 ebcdic_user = ebcdic_buf;
 ebcdic_pwd = ebcdic_buf + 100;

 /* Prompt the user for the user name and password. */
 if (nflag) {
 printf("Enter user name: ");
 gets(ascii_user);
 ascii_pwd = getpass("Enter password: ");
 }

 /* Get the user name and password from the ~/.netrc file. */
 else {
 if (GetPassword(hostname, ascii_user, ascii_pwd) != 0) {
 fprintf(stderr, "qshc: Could not find user or password in ~/.netrc\n");
 exit(1);
 }
 }

 /* Convert the user name and password to EBCDIC. */
 if (ConvertToEBCDIC(ascii_user, strlen(ascii_user)+1, ebcdic_user, 11) < 0) {
 fprintf(stderr, "qshc: Could not convert user %s to EBCDIC\n", ascii_user);
 exit(1);
 }

 if (ConvertToEBCDIC(ascii_pwd, strlen(ascii_pwd)+1, ebcdic_pwd, 11) < 0) {
 fprintf(stderr, "qshc: Could not convert password %s to EBCDIC\n",
 ascii_pwd);
 exit(1);
 }

 /* Send the user name and password to the qsh server. Note that the
 user name and password are sent as plain text. */
 if ((rc = write(sd, (void *)ebcdic_user, strlen(ebcdic_user)+1)) < 0) {
 perror("qshc: write() failed sending username\n");
 close(sd);
 exit(1);
 }

 if ((rc = write(sd, (void *)ebcdic_pwd, strlen(ebcdic_pwd)+1)) < 0) {
 perror("qshc: write() failed sending password\n");
 close(sd);
 exit(1);
 }
 printf("Started qsh session on %s\n\n", sysname);

 /**/
 /* Process input and output between the user and the remote shell. */
 /**/

 /* Loop forever. */
 while (1) {
 /* Select on stdin and the socket connected to the remote shell. */
 FD_ZERO(&read_set);
 FD_SET(0, &read_set);
 FD_SET(sd, &read_set);

 rc = select(sd+1, &read_set, NULL, NULL, NULL);

 if ((rc < 0) && (errno != EINTR)) {
 perror("qshc: select() failed");
 exit(1);
 }

 if (rc == 0) {

Qshell 191

 continue;
 }

 /* Process data entered by the terminal user. */
 if (FD_ISSET(0, &read_set)) {
 /* Read the data from the terminal. */
 gets(ascii_buf);

 /* Convert the string to EBCDIC. */
 len = strlen(ascii_buf);
 if (ConvertToEBCDIC(ascii_buf, len, ebcdic_buf, DEFAULT_BUF) < 0) {
 fprintf(stderr, "qshc: Could not convert input string to EBCDIC\n");
 continue;
 }

 /* Put a newline on the end of the string. */
 *(ebcdic_buf+len) = 0x25;

 /* Send the data to the remote shell. */
 if (write(sd, ebcdic_buf, len+1) < 0) {
 perror("qshc: write() failed sending input");
 }
 }

 /* Process data from the remote shell. */
 if (FD_ISSET(sd, &read_set)) {
 /* Read the data from the remote shell. */
 buf_size = read(sd, ebcdic_buf, DEFAULT_BUF-1);

 /* There was a failure reading from the remote shell. */
 if (buf_size < 0) {
 perror("\nqshc: error reading data from remote shell");
 printf("Ended qsh session on %s\n", sysname);
 exit(0);
 }

 /* The remote shell process ended. */
 else if (buf_size == 0) {
 printf("\nEnded qsh session on %s\n", sysname);
 exit(0);
 }

 /* Process the data from the remote shell. */
 else {
 /* Convert to ASCII. */
 *(ebcdic_buf+buf_size) = '\0';
 if (ConvertToASCII(ebcdic_buf, buf_size+1, ascii_buf,
 DEFAULT_BUF) >= 0) {
 write(1, ascii_buf, buf_size);
 }
 }
 }
 } /* End of while */

 exit(0);
} /* End of main() */

/*
 * Convert a string from ASCII to EBCDIC.
 */

int
ConvertToEBCDIC(char *ibuf, size_t ileft, char *obuf, size_t oleft)
{
 int rc;

 #ifdef USE_ICONV
 rc = iconv(ecd, (const char**)&ibuf, &ileft, &obuf, &oleft);
 #else
 rc = Translate((uchar *)ibuf, ileft, (uchar *)obuf, EbcdicTable);
 #endif
 if (rc < 0)
 perror("qshc: error converting to EBCDIC");

 return rc;
} /* End of ConvertToEBCDIC() */

/*
 * Convert a string from EBCDIC to ASCII.
 */

192 System i: Qshell

int
ConvertToASCII(char *ibuf, size_t ileft, char *obuf, size_t oleft)
{
 int rc;

 #ifdef USE_ICONV
 rc = iconv(acd, (const char**)&ibuf, &ileft, &obuf, &oleft);
 #else
 rc = Translate((uchar *)ibuf, ileft, (uchar *)obuf, AsciiTable);
 #endif
 if (rc < 0)
 perror("qshc: error converting to ASCII");

 return rc;
} /* End of ConvertToASCII() */

/*
 * Get the user name and password for the specified system from the
 * ~/.netrc file.
 */

int
GetPassword(char *sysname, char *logname, char *password)
{
 #define BUFSIZE 256
 char buffer[BUFSIZE];
 char *systag, *logtag;
 int logflag = 0, pwdflag = 0;
 FILE *netrc;
 struct passwd *pwdbuf;
 int rc=0;

 /* Get user's home directory. */
 pwdbuf = getpwuid(getuid());

 /* Does user have a .netrc file in their home directory? */
 strcat(strcpy(buffer, pwdbuf->pw_dir), "/.netrc");

 if ((netrc = fopen(buffer, "r")) == NULL) {
 perror("qshc: open() failed for ~/.netrc file");
 return -1;
 }

 while (!(logflag || pwdflag) && fgets(buffer, BUFSIZE, netrc) != NULL) {
 /* Find system name in ~/.netrc. */
 if ((systag = (char*)strtok(buffer, " \t\n")) != NULL &&
 !strncmp(systag, "machine", 7)) {
 systag = (char *)strtok(NULL, " \t\n");
 if (!strcmp(systag, sysname)) {
 /* Find login and password. */
 while (!logflag || !pwdflag) {
 if ((logtag = (char *)strtok(NULL, " \t\n")) == NULL) {
 /* Nothing else on that line... get another. */
 while (!logtag) {
 fgets(buffer, BUFSIZE, netrc);
 logtag = (char *)strtok(buffer, " \t\n");
 }
 }

 if (!strncmp(logtag, "login", 5)) {
 strcpy(logname, strtok(NULL, " \n\t"));
 ++logflag;
 }
 else if (!strncmp(logtag, "password", 8)) {
 strcpy(password, strtok(NULL, " \n\t"));
 ++pwdflag;
 }
 else
 ;
 } /* while flags not set */
 } /* if found login and passwd in .netrc */
 } /* if machine in .netrc */
 } /* while fgets */

 fclose(netrc);

 /* Login and password not found for system. */
 if (!(logflag && pwdflag)) {
 rc = -1;
 }

Qshell 193

 return rc;
} /* End of GetPassword() */

#ifndef USE_ICONV
/*
 * Translate bytes using the specified translation table.
 */

int
Translate(uchar *ip, size_t ilen, uchar *op, uchar *table)
{
 int index;
 for (index = 0; index < ilen; ++index) {
 *op = table[*ip];
 ip++;
 op++;
 }

 return 0;
} /* End of Translate() */
#endif

/*
 * Signal handler.
 */

void
MySignalHandler(int signo)
{
 switch (signo) {
 case SIGINT:
 printf("\nqshc: <ctrl>c ends this program\n");
 printf("Ended qsh session on %s\n", sysname);
 exit(0);
 break;

 default:
 exit(1);
 break;
 } /* End of switch */

 return;
} /* End of MySignalHandler() */

/*
 * Display usage message.
 */

void usage(void)
{
 fprintf(stderr, "Usage: qshc [-n] [-p port] hostname\n");
 exit(1);
} /* End of usage() */

Example: Creating and running the server program
Creating the server program

The following example shows how to create the server program on i5/OS

. The example assumes that the source for the server program is in member SERVER in the file QGPL/
QCSRC. The server program is owned by a special user profile QSHSVR that has minimal authorities but
private authority to the QSYGETPH(), QSYRLSPH(), and QWTSETP() APIs. It is not possible to sign on
using the QSHSVR user profile. The server program adopts the authority of QSHSVR so it can switch to the
client's user profile.

CRTBNDC PGM(QGPL/SERVER)
 SRCFILE(QGPL/QCSRC)
 SRCMBR(SERVER)
 OPTIMIZE(40)
 SYSIFCOPT(*IFSIO)
 LOCALETYPE(*LOCALE)

194 System i: Qshell

 USRPRF(*OWNER)
 AUT(*USE)
 TEXT('Shell server')
CRTUSRPRF USRPRF(QSHSVR)
 PASSWORD(*NONE)
 USRCLS(*USER)
 TEXT('Shell server profile')
CHGOBJOWN OBJ(QGPL/SERVER)
 OBJTYPE(*PGM)
 NEWOWN(QSHSVR)
GRTOBJAUT OBJ(QSYS/QSYGETPH)
 OBJTYPE(*PGM)
 USER(QSHSVR)
 AUT(*USE)
GRTOBJAUT OBJ(QSYS/QSYRLSPH)
 OBJTYPE(*PGM)
 USER(QSHSVR)
 AUT(*USE)
GRTOBJAUT OBJ(QSYS/QWTSETP)
 OBJTYPE(*PGM)
 USER(QSHSVR)
 AUT(*USE)

Running the server program

You might want to run the server program and any child processes started by the server in their own
subsystem. The following example shows how to create the following objects:

• A subsystem description and related routing entry and prestart job entries for both non-threaded and
multi-thread capable jobs.

• A class.
• A job description.
• A job queue.

CRTSBSD SBSD(QGPL/SHELL)
 POOLS((1 *BASE))
 AUT(*USE)
 TEXT('Shell server subsystem')
CRTCLS CLS(QGPL/SHELL)
 RUNPTY(20)
 TIMESLICE(2000)
 DFTWAIT(30)
 AUT(*USE)
 TEXT('Shell server class')
CRTJOBQ JOBQ(QGPL/SHELL)
 AUTCHK(*DTAAUT)
 AUT(*USE)
 TEXT('Shell server job queue')
CRTJOBD JOBD(QGPL/SHELL)
 JOBQ(QGPL/SHELL)
 AUT(*USE)
 TEXT('Shell server job description')
ADDJOBQE SBSD(QGPL/SHELL)
 JOBQ(QGPL/SHELL)
 MAXACT(*NOMAX)
ADDRTGE SBSD(QGPL/SHELL)
 SEQNBR(1)
 CMPVAL(*ANY)
 PGM(*LIBL/QCMD)
ADDPJE SBSD(QGPL/SHELL)
 PGM(QSYS/QP0ZSPWP)
 USER(QSHSVR)
 STRJOBS(*YES)
 INLJOBS(10)
 THRESHOLD(2)
 ADLJOBS(3)
 MAXJOBS(*NOMAX)
 JOBD(QGPL/SHELL)
ADDPJE SBSD(QGPL/SHELL)
 PGM(QSYS/QP0ZSPWT)
 USER(QSHSVR)
 STRJOBS(*YES)
 INLJOBS(10)
 THRESHOLD(2)
 ADLJOBS(3)

Qshell 195

 MAXJOBS(*NOMAX)
 JOBD(QSYS/QAMTJOBD)

Starting the subsystem

The following example shows how to start the subsystem described in the previous example and the
server program.

STRSBS SBSD(QGPL/QSHELL)
SBMJOB CMD(CALL QGPL/SERVER)
 JOB(SERVER)
 JOBD(QGPL/SHELL)
 JOBQ(QGPL/SHELL)
 USER(QSHSVR)

Example: Creating and running the client program
Creating the client program

The following example shows how to create the client program on AIX using xlc. The example assumes
that the source for the client program is in file qshc.c in the current working directory. The client program
has been compiled and tested on AIX 4.1.5 using xlc and Linux 2.0.29 using gcc 2.7.2.1.

xlc -o qshc qshc.c

Running the client program

The following example shows how to run the client program and connect to a server running on system
myas400. Before running the command, there must be an entry in your ~/.netrc file for the specified
system and the server must be started and listening on TCP/IP port 6042.

qshc myas400

Related information for Qshell
IBM Redbooks® publications, information center topic collections, and other sources contain information
that relates to the Qshell topic collection. You can view or print any of the PDF files.

IBM Redbooks publications

• Building AS/400 Internet-Based Applications with Java (4400 KB)

Other information

Information center topic collections:

• IBM Developer Kit for Java
• IBM Toolbox for Java

Printed books:

• Qshell for iSeries

196 System i: Qshell

http://publib-b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/723cd529d5595808862566cc0060397c?OpenDocument
http://store.yahoo.com/mcpressonline/5061.html

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 2008, 2013 197

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
This Logical partitions publication documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of IBM i.

198 Notices

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications
Agency which is now part of the Office of Government Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office of Government
Commerce, and is registered in the U.S. Patent and Trademark Office.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other
countries, or both and is used under license therefrom.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Other product and service names might be trademarks of IBM or other companies.

Notices 199

http://www.ibm.com/legal/copytrade.shtml

200 System i: Qshell

IBM®

	Contents
	Qshell
	PDF file for Qshell
	Tutorial
	Qshell command language features
	Qshell utility features
	Putting it all together in a script

	Command language
	Quoting
	Parameters
	Shell variables
	Word expansions
	Tilde expansions
	Parameter expansions
	Command substitutions
	Arithmetic expansions
	Field splitting
	Patterns

	Redirection
	Simple commands
	Pipelines
	Lists
	Shell functions
	Grouping commands
	If command
	Conditional command
	Case command
	Select command
	While command
	Until command
	For command
	Functions

	Using Qshell
	Using a Qshell interactive session
	Running Qshell commands from CL
	Running Qshell commands from PASE
	Customizing the Qshell environment
	National language support (NLS) considerations
	Performance considerations
	Developing your own utilities
	Editing files with Qshell Interpreter
	Differences with other interpreters

	Utilities
	Define aliases
	alias
	unalias

	Run commands
	builtin
	command
	dot
	env
	eval
	exec
	exit
	help
	nohup
	qsh
	rexec
	rexx
	source
	system
	type
	whence
	xargs

	Manage data
	cmp
	cut
	egrep
	fgrep
	grep
	iconv
	sed
	sort
	split
	tr
	uniq
	wc

	Working with DB2
	Qshell db2 utility
	Perl utility

	Working with files and directories
	attr
	basename
	cat
	catsplf
	cd
	chgrp
	chmod
	chown
	compress
	cp
	dirname
	file
	find
	gencat
	getconf
	head
	ln
	ls
	mkdir
	mkfifo
	mv
	od
	pax
	pr
	pwd
	pwdx
	Rfile
	rm
	rmdir
	setccsid
	tail
	tar
	touch
	umask
	uncompress
	zcat

	Reading and writing input and output
	dspmsg
	echo
	print
	printf
	read

	Developing Java programs
	ajar
	appletviewer
	extcheck
	jar
	jarsigner
	java
	javac
	javadoc
	javah
	javakey
	javap
	keytool
	native2ascii
	policytool
	rmic
	rmid
	rmiregistry
	serialver
	tnameserv

	Managing jobs
	getjobid
	hash
	jobs
	kill
	liblist
	ps
	sleep
	trap
	wait

	Working with Kerberos credentials
	Working with the LDAP directory server
	Working with parameters and variables
	declare
	export
	local
	printenv
	readonly
	set
	shift
	typeset
	unset

	Writing scripts
	break
	colon
	continue
	false
	getopts
	let
	return
	test
	true

	Miscellaneous utilities
	clrtmp
	dataq
	datarea
	date
	expr
	hostname
	id
	ipcrm
	ipcs
	locale
	logger
	logname
	sysval
	tee
	ulimit
	uname

	Qshell APIs
	QzshSystem() - Run a QSH Command
	QzshCheckShellCommand() - Find QSH Command

	Remote client examples
	Example: Server program
	Example: Client program
	Example: Creating and running the server program
	Example: Creating and running the client program

	Related information for Qshell

	Notices
	Programming interface information
	Trademarks

