
IBM i

e-business and Web serving
OmniFind Text Search Server for DB2 for i
7.1

IBM

IBM i

e-business and Web serving
OmniFind Text Search Server for DB2 for i
7.1

IBM

Note
Before using this information and the product it supports, read the information in “Notices,” on
page 129.

This edition applies to version 1, release 2, modification 0 of OmniFind Text Search Server for DB2 for i (product
number 5733-OMF) and to all subsequent releases and modifications until otherwise indicated in new editions. This
version does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright IBM Corporation 2002, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

OmniFind Text Search Server for DB2
for i 1
What's new for IBM i 7.1 1
PDF file for OmniFind Text Search Server for DB2 for
i 2
Introduction to the OmniFind Text Search Server for
DB2 for i 2

Overview of the OmniFind Text Search Server for
DB2 for i 2
System requirements for installing the OmniFind
Text Search Server for DB2 for i 4

Key concepts 4
Create and update a text search index 4
Asynchronous indexing and triggers 5
Supported document formats 6
Supported data types 7
Text score and synonym support 7
Linguistic processing 8
Server alias name 10

Install and configure text search functions 11
Install OmniFind Text Search Server for DB2 for i 11
Start text search functions 12
Create a text search index 13
Update a text search index 13
Search a text search index 14
Document truncation 14

Administration stored procedures for text search . . 14
SYSPROC.SYSTS_START 14
SYSPROC.SYSTS_STOP 16
SYSPROC.SYSTS_CREATE 17
SYSPROC.SYSTS_ALTER 26
SYSPROC.SYSTS_DROP 31
SYSPROC.SYSTS_UPDATE 32

Search with a text search index 35
CONTAINS 35
SCORE 37
Search argument syntax 39
XML search 44

Administer an OmniFind(r) Text Search Server for
DB2(r) for i 59

Start the OmniFind Text Search Server for DB2
for i 59
Stop the OmniFind Text Search Server for DB2
for i 60
Save and restore text search indexes 61
Problem determination 63

View and save server logs 64
Administration tools 65
ServerInstance tool 75
Health Checker 76
Independent ASP considerations for OmniFind
Text Search Server for DB2 for i 77
High Availability 78
Performance analysis 79
Transaction considerations 82
Using IBM Navigator for i 83
Using System i Navigator 89

Text search administration tables 96
QSYS2.SYSTEXTDEFAULTS administration table 96
QSYS2.SYSTEXTINDEXES administration table 97
QSYS2.SYSTEXTCOLUMNS administration table 99
QSYS2.SYSTEXTSERVERS administration table 99
QSYS2.SYSTEXTCONFIGURATION
administration table 100
QSYS2.SYSTEXTSERVERHISTORY
administration table 101
Text Search Index view 101

Extensions to Index and Search Non-DB2 Data . . 102
Extensions Overview 102
Creating a Text Search Collection 103
Adding an Object Set for Spool File Data . . . 108
Adding an Object Set for Stream File Data. . . 112
Removing an Object Set 114
Update the Collection 115
Repopulate the Text Search Collection 116
Search the Collection 117
Query Object Set Information 119
Retrieve Status of Indexes Objects 120
Get Objects Not Indexed 121
Retrieve Status of Collection 122
Dropping a Text Search Collection 123
Independent ASP Considerations for Text Search
Collections 124
Backup and Restore Considerations for Text
Search Collections 125

Messages and codes 125
OmniFind messages 125

Appendix. Notices 129
Programming interface information 131
Trademarks 131
Terms and conditions. 131

© Copyright IBM Corp. 2002, 2010 iii

||

|
||
|
||
|
||

||

||

||

||
||

||

||

||
||
||
||
||

||

iv IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

OmniFind Text Search Server for DB2 for i

OmniFind Text Search Server for DB2® for i allows you to issue SQL statements that satisfy familiar text
search queries on documents that are stored in a DB2 database.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 128.

What's new for IBM i 7.1
Read about new or significantly changed information for the OmniFind Text Search Server for DB2 for i
topic collection.

The major new features include:
v Enhanced “XML search” on page 44

– “Using namespaces in search” on page 51
– “Numeric comparisons” on page 47
– “Date and DateTime comparisons” on page 47

v Text search index for DB2 XML columns: “XML search example” on page 55
v “Save and restore a text search index without data” on page 61
v “Server alias name” on page 10
v Two GUI interfaces:

– “Using IBM Navigator for i” on page 83
– “Using System i Navigator” on page 89

v “High Availability” on page 78
v “Performance analysis” on page 79
v “Transaction considerations” on page 82

What's new as of 3 October 2012:

v Using IBM® Navigator for i to support “Extensions to Index and Search Non-DB2 Data” on page 102

What’s new as of 14 October 2011:

v “Extensions to Index and Search Non-DB2 Data” on page 102
v “Health Checker” on page 76
v An explanation of other OmniFind Text Search Server for DB2 for i enhancements can be found at:

OmniFind Text Search Server for DB2 for i enhancements.

How to see what's new or changed

To help you see where technical changes have been made, the information center uses:
v The

image to mark where new or changed information begins.

v The

image to mark where new or changed information ends.

In PDF files, you might see revision bars (|) in the left margin of new and changed information.

To find other information about what's new or changed this release, see the Memo to users.

© Copyright IBM Corp. 2002, 2010 1

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

https://www.ibm.com/developerworks/ibmi/techupdates/db2/omf

PDF file for OmniFind Text Search Server for DB2 for i
Use this page to view and print a PDF of this information.

To view or download the PDF file for this document, select OmniFind Text Search Server for DB2 for i
(about 1192 KB).

Other information

You can also view or print any of these PDF files:

v Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

v SQL Performance Diagnosis on IBM DB2 Universal Database™ for iSeries

.

Saving PDF files

To save a PDF on your workstation for viewing or printing:
1. Right-click the PDF in your browser (right-click the preceding link).
2. Click the option that saves the PDF locally.
3. Go to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDF files. You can download a

free copy from Adobe (http://get.adobe.com/reader/) .

Introduction to the OmniFind Text Search Server for DB2 for i
DB2 for i uses the OmniFind(r) Text Search Server as an indexing and search engine for documents that
are stored in a DB2 database.

OMNIFIND is a text search product that allows IBM i users to search unstructured text stored in a
column of a DB2 for i table. The text stored in the column can be either simple character text, an XML
document, or any of several different types of rich text documents, such as a PDF or DOC file. The
product allows users to index unstructured data without having to parse it into a structured form such as
an SQL table.

OmniFind Text Search Server is a context-based search engine. It supports fuzzy search capability. For
example, a search for 'mice' discovers documents with 'mice' or 'mouse' in them. The search engine also
supports language context. For example, it understands the fuzzy search equivalents of 'mice' and 'mouse'
in both English and Spanish.

Many applications can take advantage of this capability. A good example is a Human Resources database.
Candidate resumes can be stored in the database in whatever form they are submitted. Subsequent
searches using OmniFind can be used to search for potential candidates with certain key skills.

Overview of the OmniFind Text Search Server for DB2 for i
OmniFind Text Search Server for DB2 for i provides a set of administrative stored procedures and two
built-in functions: CONTAINS and SCORE. These functions are used to search text indexes created from

2 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|

|
|

|
|
|
|
|

|
|
|
|

|
|
|

|

|
|

http://www.redbooks.ibm.com/abstracts/sg246598.html
http://www.redbooks.ibm.com/abstracts/sg246654.html
http://get.adobe.com/reader/

documents stored in a DB2 table. The administrative stored procedures are used to enable and disable
text searching and to create, update, and drop text indexes.

A text index can be created over any column of the following data types:
v CHAR
v VARCHAR
v CLOB
v BLOB
v DBCLOB
v GRAPHIC
v VARGRAPHIC
v BINARY
v VARBINARY
v XML

The data can contain plain text, HTML, XML, or many rich document types, such as PDF files. The data
is read from the text column and is converted to Unicode (CCSID 1208) before it is indexed.

Text indexes are not typical DB2 indexes. They are not maintained automatically, cannot be journaled,
and cannot be backed up using the typical backup and restore methods. Text indexes are created and
stored on a text search server.

By default, the text search server is created on the same system as the data stored in the DB2 database.
However, a text search server can be created on another server running IBM i, Linux, UNIX, AIX®, or
Windows.

The text search server contains a collection of significant terms extracted from each row of the column. A
TCP/IP connection is used to communicate with the text search server.

The CONTAINS and SCORE functions are built-in functions which are integrated into DB2 for i.

DB2 for i uses the OmniFind(r) Text Search Server as an indexing and search engine for documents that
are stored in a DB2 database.

OMNIFIND supports multiple collections. A collection contains one text search index and the
index-specific options for parsing, indexing, and searching.

OMNIFIND has a graphical user interface for administration of servers and text indexes.

The text search server also provides SQL stored procedures and command-line tools that you can use for
common tasks. These common tasks include configuring and administering the text search server,
creating a synonym dictionary for a collection, and diagnosing problems.
Related concepts:
“Administration stored procedures for text search” on page 14
You can start and stop text search functions and create, drop, and update text search indexes by using a
set of administration SQL stored procedures. These procedures can be called from any SQL interfaces.
You cannot call these procedures from an IBM i command line by using CL commands.
Related reference:
“CONTAINS” on page 35
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.

OmniFind Text Search Server 3

|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|

|
|
|

|
|

|

|
|

|
|

|

|
|
|

|

|
|
|
|

|

|
|
|

“SCORE” on page 37
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

System requirements for installing the OmniFind Text Search Server
for DB2 for i
Before you install an OmniFind Text Search Server for DB2 for i, make sure that your system meets all
the hardware, software, and operating system requirements.

When you install OmniFind Text Search Server for DB2 for i, the installation program creates one text
search server for IBM i. You can install text search servers on remote servers running Linux or Windows.
These servers are part of DB2 Accessories Suite for z/OS® (5655-R14) (http://www-01.ibm.com/

software/data/db2imstools/db2tools/accessories-suite/) . The link has information about
downloading the suite.

Software requirements

Make sure that your system meets the following minimum software requirements:
v 5761JV1 IBM Developer Kit for Java™

– One of the following:
- 5761JV1 Option 11 Java SE 6 32 bit
- 5761JV1 Option 12 Java SE 6 64 bit

v DB2 Universal Java Driver installed and configured on the text search server
v For IBM i, the following programs must be installed:

– 5770SS1 Option 30 Qshell
– 5770SS1 Option 33 IBM i Portable Application Solutions Environment (IBM i PASE)
– 5770SS1 Option 39 International Components for Unicode
– The latest Group PTF for IBM DB2 for i is applied on the system.

Key concepts
Understanding the key concepts about text search functions helps you to use the benefits of OmniFind
Text Search for DB2 for i. Key concepts include the document types and languages that are supported.

Create and update a text search index

You can create a text search index by defining and declaring the properties of the index. You can update
a text search index by adding new data from a DB2 table to the index. You can also update a text search
index by changing the existing data in the index.

For each text search index that you create, a new collection is created on the OmniFind Text Search Server
for DB2 for i. After initial creation, the text search index contains no data.

You add data to the text search index by calling the SYSPROC.SYSTS_UPDATE stored procedure. The
first update process adds all the text documents from the text column to the text search index. This
process is known as the initial update. The subsequent updates are incremental.

When a text search index is created, the following objects are created or updated:
v The staging table is created in the QSYS2 library.
v The INSERT, DELETE, and UPDATE triggers are added to the base table.

4 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|
|
|

|

|

|
|

|
|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

http://www-01.ibm.com/software/data/db2imstools/db2tools/accessories-suite/

v An SQL view with the name of the text search index is created in the schema of the text search index.
This view contains information about the text index. For example, the view can be used to obtain the
base table name and the staging table name. The view also shows the number of pending changes to
the base table that are not yet reflected in the text search index.

v The text search index catalogs (SYSTEXTINDEXES and SYSTEXTCOLUMNS) in the QSYS2 library are
updated with a new entry added for the new text search index.

Staging table considerations:
v Do not perform any DB operation on the staging table except saving and restoring the file, or changing

authorities.
v If you are changing the authorities on the base table, change the authorities on the staging table also.

Base table considerations:
v Do not remove the DELETE, UPDATE, and INSERT triggers that are added when a text search index is

created.
v Dropping the text search index removes the triggers.
v Do not alter or remove the ROWID, primary key, or unique column that was used as the key in the

text search index.
v Altering the data column of the base table that results in data truncation might result in false positive

matches in the text search index.
Related reference:
“SYSPROC.SYSTS_UPDATE” on page 32
You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.
“QSYS2.SYSTEXTINDEXES administration table” on page 97
You can see information about each text search index in the QSYS2.SYSTEXTINDEXES administration
table. Each text search index has a name, schema name, and an associated collection name on the text
search server.
“QSYS2.SYSTEXTCOLUMNS administration table” on page 99
You can see information about the text columns for a text search index in the QSYS2.SYSTEXTCOLUMNS
administration table. Each text search index has an index ID, text column names, and the schema name of
the base table.

Asynchronous indexing and triggers

You can update the text search index on the OmniFind Text Search Server for DB2 for i manually or
schedule it to run automatically.

The text search index maintained on the OmniFind Text Search Server for DB2 for i is not updated
synchronously when the DB2 table is updated. Updating a text search index is an extensive operation.

Instead, changes to the DB2 table column are captured by triggers to a local log table. This log table is
also called a staging table. These triggers automatically store information about new, changed, and
deleted documents in a log table. Each log table is associated with one text search index. Applying the
contents of the log table to its corresponding text search index is called an incremental update.

You must periodically update the text search index in order for changes to be reflected in queries.

You can update the text search index manually by calling the SYSPROC.SYSTS_UPDATE stored
procedure.

Updates can also be scheduled to occur automatically by using the UPDATE FREQUENCY clause on the
SYSPROC.SYSTS_CREATE procedure when the text index is created.

OmniFind Text Search Server 5

|

|
|

|

|

|
|

|

|
|

|
|

|
|

|
|

Related reference:
“SYSPROC.SYSTS_CREATE” on page 17
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.
“SYSPROC.SYSTS_UPDATE” on page 32
You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.

Supported document formats
The text column data can be plain text, an HTML document, an XML document, or any document that is
recognized by the search engine.

OmniFind Text Search Server for DB2 for i parses documents to extract the relevant parts and make those
parts searchable. For example, tags and metadata in an HTML document are not indexed.

Parsing of the following document formats is supported:
v TEXT: Flat text
v HTML: Hypertext Markup Language
v XML: Extensible Markup Language
v INSO: The OmniFind Text Search Server for DB2 for i uses filters to detect the format of text

documents. The following INSO document formats are supported:
– XML
– HTML
– JustSystems Ichitaro
– Lotus® 123
– Lotus Freelance
– Lotus WordPro
– Microsoft Excel
– Microsoft PowerPoint
– Microsoft Rich Text Format
– Microsoft Visio
– Microsoft Word
– Microsoft Write
– Portable Document Format (PDF)
– Quattro Pro
– Rich Text RTF
– StarOffice Calc and OpenOffice Calc

All the documents in an indexed text column must be of the same format (TEXT, HTML, XML, or INSO).

XML data

XML structure in the XML data is indexed in the OmniFind Text Search Server for DB2 for i after parsing
the data through an XML parser. Then you can use the supported XML Search query syntax to retrieve
the results.
Related concepts:

6 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

“XML search” on page 44
You can index and search XML documents. The XML search grammar uses a subset of the W3 XPath
language with extensions for text search. The extensions support range searches of numeric, Date, and
DateTime values that are associated with an XML attribute or element. Structural elements can be used
separately, or combined with free text in queries.

Supported data types
The data in the text columns that you want to index and search can be either binary data or character
data.

The following data types are binary data:
v BINARY
v VARBINARY
v BLOB

In addition, OMNIFIND handles the following data types similarly to binary data:
v CHAR FOR BIT DATA
v VARCHAR FOR BIT DATA

The following data types are character data:
v CHAR FOR SBCS DATA or FOR MIXED DATA
v VARCHAR FOR SBCS DATA or FOR MIXED DATA
v CLOB
v DBCLOB
v GRAPHIC
v VARGRAPHIC
v XML

If the data is binary data, you can specify the coded character set identifier (CCSID) used to build the text
search index. For character data, the DB2 database knows the encoding; therefore, if you explicitly specify
a CCSID, that specification is ignored.

Text score and synonym support

You can use synonyms to improve the results for a query. You can use a text score to find out how
closely a result matches the query.

Text score

A text score is calculated as part of the search, and can be included in the query results. A text score is a
value 0 - 1, up to three decimal points; for example, 0.000 to 1.000. A text score denotes how closely a
result matches the query relative to all the other documents in the text search index.

OMNIFIND composes the text score from various factors, such as the general importance of the search
terms and the proximity of occurrences of the search terms. The general importance is based on the
frequency of the terms in each document and offset by the frequency of the terms across all documents.

Synonym support

The OmniFind Text Search Server for DB2 for i supports the use of synonyms to modify the results of a
query. Using synonyms can increase the number of query results by causing more documents to match a

OmniFind Text Search Server 7

|
|

|
|
|

|
|

query. However, using synonyms might also decrease the precision of a query and make it more difficult
to find few documents that match the exact search criteria.

By default, synonyms are not used for a query. To use synonyms for a query, create a synonym
dictionary, and add the synonym dictionary to a collection by using the synonym tool.

For more information about synonyms, see “Synonym dictionaries” on page 71.
Related reference:
“SCORE” on page 37
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

Linguistic processing
The OmniFind Text Search Server for DB2 for i provides dictionary packs to support the linguistic
processing of documents and queries that are not in English.

As an alternative to dictionary-based word segmentation, the OmniFind Text Search Server for DB2 for i
uses n-gram segmentation support for languages such as Chinese, Japanese, and Korean. n-gram
segmentation is a method of analysis that considers overlapping sequences of a given number of characters
as a single word. Alternatively, Unicode-based white-space segmentation uses blank space to delimit words.

If a text document is in one of the supported languages, linguistic processing is carried out when the text
is parsed into tokens. For unsupported languages, an error code is returned.

When you search a text search index, a match is indicated that contains linguistic variations of the query
terms. The variations of a word depend on the language of the query.

Supported languages
You can specify that text documents be processed using a specific language.

You can specify the language for the indexed text data in the SYSPROC.SYSTS_CREATE administration
stored procedure. If you set the value to AUTO, the OmniFind Text Search Server for DB2 for i tries to
determine the language. For short documents, automatic detection might be not accurate and is not
recommended. The default language for linguistic processing is English (en_US).

The following table shows the five-character language codes for the supported languages.

Table 1. The five-character language codes for the supported languages

Language code Language

ar_AA Arabic

cs_CZ Czech

da_DK Danish

de_CH German (Switzerland)

de_DE German (Germany)

el_GR Greek

en_AU English (Australia)

en_GB English (United Kingdom)

en_US English (United States)

es_ES Spanish (Spain)

fi_FI Finnish

8 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|

Table 1. The five-character language codes for the supported languages (continued)

Language code Language

fr_CA French (Canada)

fr_FR French (France)

it_IT Italian

ja_JP Japanese

ko_KR Korean

nb_NO Norwegian Bokmal

nl_NL Dutch

nn_NO Norwegian Nynorsk

pl_PL Polish

pt_BR Brazilian Portuguese

pt_PT Portuguese (Portugal)

ru_RU Russian

sv_SE Swedish

zh_CN Simplified Chinese

zh_TW Traditional Chinese

Related reference:
“SYSPROC.SYSTS_CREATE” on page 17
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.

Linguistic processing for Chinese, Japanese, and Korean documents
You can process documents that are in Chinese, Japanese, or Korean by using dictionary-based
segmentation or by using n-gram segmentation.

For a search engine, getting good search results depends in large part on the techniques that are used to
process text. After the text is extracted from the document, the first step in text processing is to identify
the individual words in the text. Identifying the individual words in the text is referred to as segmentation.
For many languages, white space (blanks, the end of a line, and certain punctuation) can be used to
recognize word boundaries. However, Chinese, Japanese, and Korean do not use white space between
characters to separate words, so other techniques must be used.

The OmniFind Text Search Server for DB2 for i provides the following two methods to support the
linguistic processing of Chinese, Japanese, and Korean:
v Dictionary-based word segmentation (also called morphological analysis)
v N-gram segmentation

Dictionary-based word segmentation

Dictionary-based word segmentation uses a language-specific dictionary to identify words in the sequence of
characters in the document. This technique provides precise search results, because the dictionaries are
used to identify word boundaries. However, dictionary-based word segmentation can miss specific
matching results.

OmniFind Text Search Server 9

N-gram segmentation

N-gram segmentation avoids the problem of identifying word boundaries, and instead indexes overlapping
pairs of characters. Because the OmniFind Text Search Server for DB2 for i uses two characters, this
technique is also called bi-gram segmentation.

N-gram segmentation always returns all matching documents that contain the search terms; however, this
technique might sometimes return documents that do not match the query.

By default, the OmniFind Text Search Server for DB2 for i comes with a pre-configured index that uses
n-gram segmentation for Chinese, Japanese, and Korean.

To see how both types of linguistic processing work, examine the following text in a document: election
for governor of Kanagawa prefecture. In Japanese, this text contains eight characters. For this example,
the eight characters are represented as A B C D E F G H. A sample query that users might enter could be
election for governor, which is four characters and are represented as E F G H. (The document text and
the sample query share similar characters.)

If you use n-gram segmentation processing:

After the document is indexed, the search engine segments the text election for governor of
Kanagawa prefecture into the following sets of characters: AB BC CD DE EF FG GH

The sample query election for governor is segmented into the following sets of characters: DE
EF FG GH. If you search with the sample query election for governor, the document is found.
The reason is that the tokens for both the document text and the query appear in the same order.

When you enable n-gram segmentation, you might see more results but possibly less precise
results. For example, in Japanese, if you search with the query Kyoto and a document in your
index contains the text City of Tokyo, the document is found. The reason is that City of Tokyo
and Kyoto share two of the same Japanese characters.

If you do not use n-gram segmentation processing:

After the document is indexed, the search engine segments the text election for governor of
Kanagawa prefecture into the following sets of characters: ABC DEF GH.

The sample query election for governor is segmented into the following sets of characters: EF
GH. The characters EF do not appear in the tokens of the document text. (Even though the
document does not have EF, it does have DEF).

The document text contains DEF, but the query contains only EF. Therefore, the document is less
likely to be found by using the sample query.

When you do not enable n-gram segmentation, you probably receive more precise results but
possibly fewer results.

Server alias name
You can use a server alias name to assign a meaningful name to a server.

Each text search server is uniquely identified by column SERVERID in catalog QSYS2.SYSTEXTSERVERS.
The SERVERID column is an incrementally generated integer by database.

The ALIASNAME column in QSYS2.SYSTEXTSERVERS is provided to allow a meaningful alias name to
be assigned to each server. Server alias names can be used to refer to servers in SYSTS_START,
SYSTS_STOP and SYSTS_CREATE procedures.

Note: Server alias name can be changed directly in the QSYS2.SYSTEXTSERVERS catalog table by
updating the ALIASNAME value.

10 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|
|
|

|

|

|
|

|
|
|

|
|

Assign server number 1 an alias name of "PRIMARY_LOCAL_SERVER".
UPDATE QSYS2.SYSTEXTSERVERS
SET ALIASNAME = ’PRIMARY_LOCAL_SERVER’
WHERE SERVERID = 1

To remove an alias name from a server, set the column to NULL.

Remove an alias name from server number 1.
UPDATE QSYS2.SYSTEXTSERVERS
SET ALIASNAME = NULL
WHERE SERVERID = 1

Related reference:
“QSYS2.SYSTEXTSERVERS administration table” on page 99
You can see where the text search servers are installed using the QSYS2.SYSTEXTSERVERS administration
table.
“SYSPROC.SYSTS_START” on page 14
You can enable DB2 text search functions by calling the SYSPROC.SYSTS_START stored procedure.
“SYSPROC.SYSTS_STOP” on page 16
You can call the SYSPROC.SYSTS_STOP stored procedure to stop DB2 text search functions. This stored
procedure sets the SERVERSTATUS value in the catalog QSYS2.SYSTEXTSERVERS to 1 (stopped).
“SYSPROC.SYSTS_CREATE” on page 17
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.

Install and configure text search functions

You can install and configure OmniFind Text Search Server for DB2 for i. You can also create and update
a text search index so that you can start using text search functions against a column in a table.

Install OmniFind Text Search Server for DB2 for i
Install OmniFind Text Search Server for DB2 for i using the standard installation procedures for a
licensed program on IBM i. A default text server is created, and the QSYS2.SYSTEXTSERVERS table is
populated with default server information. Optionally, you can add additional text search servers after
the install.

Populate the QSYS2.SYSTEXTSERVERS table

OmniFind Text Search Server for DB2 for i is the licensed program 5733-OMF from IBM. See Installing
additional licensed programs for details about how to install a licensed program. To find this product,
enter GO LICPGM from the command line and select option 10 (Display installed licensed programs). It is
displayed under the list of licensed programs.

The QSYS2.SYSTEXTSERVERS table contains information about the IBM OmniFind Text Search Servers
installed and available for DB2 for i. When the OmniFind Text Search Server for DB2 for i product is first
installed, a default text server is created on the IBM i system. The QSYS.SYSTEXTSERVERS table is also
populated with default server information.

Create additional text search servers

If you are using text search servers on a remote IBM system, or if you are using non-IBM servers such as
a Windows or Linux server, explicitly populate this table by issuing an SQL INSERT statement.

OmniFind Text Search Server 11

|

|
|
|

|

|

|
|
|

|

|
|
|

|
|

|
|
|

|
|
|
|

|
|

|

|
|
|
|

|

|
|
|
|

|
|
|
|

|

|
|

If you want to populate the QSYS2.SYSTEXTSERVERS table with additional servers, follow these steps on
the SQL INSERT:
1. Specify the server port number and server name for each text search server on the SERVERPORT

column and SERVERNAME columns of the QSYS2.SYSTEXTSERVERS table by issuing an SQL
INSERT statement.

2. Specify the authentication token from each text search server on the SERVERAUTHTOKEN column of
the QSYS2.SYSTEXTSERVERS table on the SQL INSERT statement.
When the DB2 database communicates with a text search server, an authentication token is required.
This token is generated on the text search server during the installation.

3. Specify the server key for each text search server on the SERVERMASTERKEY column of
QSYS2.SYSTEXTSERVERS table SQL INSERT statement.

4. OPTIONAL: Specify an ALIASNAME for the server on the ALIASNAME column. This ALIASNAME
can be used to refer to the server on subsequent operations.

Example

The following example of an SQL INSERT statement copies the required information for a text search
server to the columns in the QSYS2.SYSTEXTSERVERS table:
INSERT INTO QSYS2.SYSTEXTSERVERS(SERVERNAME,

SERVERADRINFO,
SERVERPORT,
SERVERTYPE,
SERVERAUTHTOKEN,
SERVERMASTERKEY,
SERVERPATH,

ALIASNAME)
VALUES(’127.0.0.1’,

VARBINARY(X’0000’),
49200,
0,
’AH2X4w==’,
’b1YhcR9O858ArwxLJeIY/Q==’,
’/QOpenSys/QIBM/ProdData/TextSearch/server1/bin/’,
’LOCALSERVER2’);

The example values must be replaced with the actual values for the server.
Related concepts:
“Server alias name” on page 10
You can use a server alias name to assign a meaningful name to a server.
Related reference:
“QSYS2.SYSTEXTSERVERS administration table” on page 99
You can see where the text search servers are installed using the QSYS2.SYSTEXTSERVERS administration
table.

Start text search functions
Before you start using the text search functions, call the SYSPROC.SYSTS_START stored procedure. By
calling this procedure, you can start all the production servers that you have defined to be local to the
system.

Text search support includes SQL statements that use the CONTAINS function, the SCORE function, and
the following administration stored procedures:
v SYSPROC.SYSTS_CREATE
v SYSPROC.SYSTS_UPDATE
v SYSPROC.SYSTS_DROP
Related reference:

12 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|

|
|
|

|
|

|
|

|
|

|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|
|
|

“SYSPROC.SYSTS_START” on page 14
You can enable DB2 text search functions by calling the SYSPROC.SYSTS_START stored procedure.
“SYSPROC.SYSTS_CREATE” on page 17
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.
“SYSPROC.SYSTS_UPDATE” on page 32
You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.
“SYSPROC.SYSTS_DROP” on page 31
You can call the SYSPROC.SYSTS_DROP stored procedure to drop a text search index that was defined
by using the SYSPROC.SYSTS_CREATE stored procedure.
“CONTAINS” on page 35
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
“SCORE” on page 37
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

Create a text search index
You can create a text search index by calling the SYSPROC.SYSTS_CREATE stored procedure.

The DB2 base table must contain a ROWID column, unique key, or primary key.

To create a text search index on an existing DB2 table with a column that contains text:

Call the SYSPROC.SYSTS_CREATE stored procedure.

The text search index is empty until the first time that you update the index.
Related reference:
“SYSPROC.SYSTS_CREATE” on page 17
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.

Update a text search index
You can update a text search index by calling the SYSPROC.SYSTS_UPDATE stored procedure.

The SYSTS_UPDATE call is used to initially populate the text search index. It is also used any time the
contents of the DB2 table changes and you want to synchronize the text search index to those changes.

After a text search index update occurs, you can perform search queries on the text search index. The
base table text search column can be changed after the update. In this case, the search query results do
not reflect those changes until the next text search index update is run.
Related reference:
“SYSPROC.SYSTS_UPDATE” on page 32
You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.

OmniFind Text Search Server 13

|

|

|

|
|

|
|
|

|

|
|
|

Search a text search index

You can search a text search index by using an SQL statement with a CONTAINS or SCORE function.
The search argument criteria is specified on the function.

The user who is performing the text queries on a DB2 table must have the standard privilege set that is
required for any form of query, as specified in the DB2 SQL Reference.
Related reference:
“CONTAINS” on page 35
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
“SCORE” on page 37
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

Document truncation
The OmniFind Text Search Server for DB2 for i limits the number of characters that can be indexed for
each text document. Sometimes this character limit results in the truncation of large text documents in the
text search index.

Documents that contain more than 10 million Unicode characters might be truncated by the text search
server. For a rich text document, this limit is applied after the document is transformed to plain text.

If a text document is truncated during the parsing stage, you receive a warning that some documents
were not processed completely. The warning appears in the job log. The document is partially indexed.
Text that is in the document after the limit is reached is not indexed and is not considered during
searches.

You might want to remove the document that has been truncated from the text search index to avoid
unexpected behavior during search processing. You can remove the document by removing the
corresponding record from the DB2 table, or by changing the value for the document to empty or null.

Administration stored procedures for text search

You can start and stop text search functions and create, drop, and update text search indexes by using a
set of administration SQL stored procedures. These procedures can be called from any SQL interfaces.
You cannot call these procedures from an IBM i command line by using CL commands.

When looking at the system catalogs using STRSQL, you can see the content of the columns by setting
your job to a CCSID other than 65535.

SYSPROC.SYSTS_START
You can enable DB2 text search functions by calling the SYSPROC.SYSTS_START stored procedure.

Text search functions include support for SQL queries that use the CONTAINS function, the SCORE
function, and the administration stored procedures that are used to maintain text search indexes.

Run the SYSPROC.SYSTS_START stored procedure each time when a server is added or changed in
QSYS2.SYSTEXTSERVERS table.

14 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|

|
|

|
|
|

|
|

|

|

|
|

|
|

If text search functions are not started, the database returns SQLCODE -20424 with reason code 4 for the
CONTAINS and SCORE functions. The SYSPROC.SYSTS_CREATE and SYSPROC.SYSTS_UPDATE
administrative procedures also fail with SQLCODE -20424 if the server has not been started.

For the text search servers that are contained in the QSYS2.SYSTEXTSERVERS table, TCP/IP names are
resolved. Multiple calls to the SYSPROC.SYSTS_START stored procedure are not considered an error. This
process allows you to verify the address resolution in the QSYS2.SYSTEXTSERVERS table.

If the server is a local server, then this stored procedure call starts the server if it is not already started. If
the server is a remote server, the procedure call verifies that the server is active, but does not actually
start the server.

Prerequisites

Before you call the SYSPROC.SYSTS_START stored procedure, verify that the QSYS2.SYSTEXTSERVERS
table contains at least one entry.

Authorization

The user ID under which this stored procedure is invoked must have the following privileges:
v *EXECUTE authority on the procedure
v SELECT and UPDATE privilege on the SYSTXTSRVRS table.
v *EXECUTE authority on the QSYS2 library of the SYSTXTSRVRS file.
v *JOBCTL authority or QIBM_DB_SQLADM security special function usage.

For information about the system authorities corresponding to SQL privileges, see GRANT (Table or View
Privileges).

Syntax

►► SYSPROC.SYSTS_START ()
serverid
aliasname

►◄

The schema qualifier is SYSPROC.

Parameter

serverid or aliasname
Specifies the identifier of the server to be started. A serverid or server aliasname is a string. If no
identifier is provided, the default is to start all servers. The identifier string must either be a valid
serverid that exists in the SERVERID column, or a valid server aliasname that exists in the
ALIASNAME column of the QSYS2.SYSTEXTSERVERS table. If the identifier can be converted to an
integer value, it is interpreted as a serverid. If the identifier cannot be converted to an integer value, it
is interpreted as a server aliasname.

The data type of this parameter is VARCHAR(128).

Note: Only the servers that are identified as production servers are started if no value is specified for
serverid or aliasname. Production servers are identified by the parameter SERVERCLASS = 0 in the
QSYS2.SYSTEXTSERVERS table. Any test servers must be started by specifying the serverid or
aliasname that is associated with the test server.

To start all production servers:
CALL SYSPROC.SYSTS_START().

OmniFind Text Search Server 15

|
|
|

|
|
|

|
|
|

|

|
|

|

|

|

|

|

|

|
|

|

|||||||||||||||||||

|

|

|

|
|
|
|
|
|
|

|

|
|
|
|

|
|

To start a server with an ID of 1:
CALL SYSPROC.SYSTS_START(1)

To start a server with an alias name of "LOCAL_SERVER":
CALL SYSPROC.SYSTS_START('LOCAL_SERVER')

To start a server with an alias name of "local_server":
CALL SYSPROC.SYSTS_START('"local_server"')

Related concepts:
“Server alias name” on page 10
You can use a server alias name to assign a meaningful name to a server.
Related tasks:
“Start the OmniFind Text Search Server for DB2 for i” on page 59
You can start the OmniFind Text Search Server for DB2 for i by calling SYSPROC.SYSTS_START.
Related reference:
“QSYS2.SYSTEXTSERVERS administration table” on page 99
You can see where the text search servers are installed using the QSYS2.SYSTEXTSERVERS administration
table.
“CONTAINS” on page 35
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
“SCORE” on page 37
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

SYSPROC.SYSTS_STOP
You can call the SYSPROC.SYSTS_STOP stored procedure to stop DB2 text search functions. This stored
procedure sets the SERVERSTATUS value in the catalog QSYS2.SYSTEXTSERVERS to 1 (stopped).

After this stored procedure has completed, SQL queries that use the CONTAINS or SCORE functions or
administration stored procedures used for index maintenance return a failure without trying to contact a
text search server.

Note: Administrative procedures and SQL queries using the CONTAINS or SCORE built-in functions
that were running when SYSTS_STOP was invoked are allowed to complete.

Changes to the based-on table of the index continue to be logged, even when the server is stopped.
However, scheduled updates of the index do not occur until SYSPROC.SYSTS_START has been invoked.

Authorization

The user ID under which this stored procedure is invoked must have the following privileges:
v *EXECUTE authority on the procedure
v SELECT and UPDATE privileges on the SYSTEXTSERVERS table.
v *EXECUTE authority on the QSYS2 library of the SYSTEXTSERVERS file.
v *JOBCTL authority or QIBM_DB_SQLADM security special function usage.

For information about the system authorities corresponding to SQL privileges, see GRANT (Table or View
Privileges).

16 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|

|
|

|
|

|

|
|

|

|
|

|

|
|
|

|
|
|

|
|
|
|

|

|
|

|
|
|

|
|

|
|

|

|

|

|

|

|

|
|

Syntax

►► SYSTS_STOP ()
serverid
aliasname

►◄

The schema qualifier is SYSPROC.

Parameter

serverid or aliasname
Specifies the identifier of the server to be stopped. A serverid or server aliasname is a string. If no
identifier is provided, the default is to stop all servers. The identifier string must either be a valid
serverid that exists in the SERVERID column, or a valid server aliasname that exists in the
ALIASNAME column of the QSYS2.SYSTEXTSERVERS table. If the identifier can be converted to an
integer value, it is interpreted as a serverid. If the identifier cannot be converted to an integer value, it
is interpreted as a server aliasname.

The data type of this parameter is VARCHAR(128).

To stop all production servers:
CALL SYSPROC.SYSTS_STOP().

To stop a server with an ID of 1:
CALL SYSPROC.SYSTS_STOP(1)

To stop a server with an alias name of "LOCAL_SERVER":
CALL SYSPROC.SYSTS_STOP('LOCAL_SERVER')

To stop a server with an alias name of "local_server":
CALL SYSPROC.SYSTS_STOP('"local_server"')

Related concepts:
“Server alias name” on page 10
You can use a server alias name to assign a meaningful name to a server.
Related reference:
“QSYS2.SYSTEXTSERVERS administration table” on page 99
You can see where the text search servers are installed using the QSYS2.SYSTEXTSERVERS administration
table.
“SYSPROC.SYSTS_START” on page 14
You can enable DB2 text search functions by calling the SYSPROC.SYSTS_START stored procedure.
“CONTAINS” on page 35
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
“SCORE” on page 37
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

SYSPROC.SYSTS_CREATE

You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.

OmniFind Text Search Server 17

|

|||||||||||||||||||

|

|

|

|
|
|
|
|
|
|

|

|
|

|
|

|
|

|
|

|

|
|

|

|
|
|

|
|

|
|
|

|
|
|
|

|
|
|

The text search index is created on one of the text search servers that is listed in the
QSYS2.SYSTEXTSERVERS table. The text search index is not updated synchronously when the DB2 table
is updated. Instead, a log of changes to the DB2 table column is captured by triggers and placed in a
staging table.

Note: This stored procedure only defines the text search index. The text search index does not contain
any data until after the first invocation of the SYSPROC.SYSTS_UPDATE stored procedure for the
new text search index. You create the text search index after the table is initially populated. By
creating the text search index after the table is initially populated, you avoid the firing of change
triggers before an initial index update.

Prerequisites

Before the SYSPROC.SYSTS_CREATE stored procedure call, verify the following prerequisites:
v DB2 text search functions were started by invoking the SYSPROC.SYSTS_START stored procedure and

at least one text search server is running.
v The table includes a column that is defined as primary key, unique index, or ROWID.
v The QSYS2.SYSTEXTSERVERS table contains at least one entry.

Authorization

The privileges held by the authorization ID of the statement must include at least one of the following
privileges:
v The privilege to create in the schema. For more information, see Authorization, privileges and object

ownership.
v Administrative authority

The privileges held by the authorization ID of the statement must include at least one of the following
privileges:
v The following system authorities:

– *USE to the Create Logical File (CRTLF) command
– *CHANGE to the data dictionary if the library into which the text index is created is an SQL schema

with a data dictionary
v Administrative authority

The privileges held by the authorization ID of the statement must also include at least one of the
following privileges:
v For the referenced table:

– The INDEX privilege on the table
– The system authority *EXECUTE on the library containing the table

v Administrative authority
v If SQL names are specified, and a user profile exists that has the same name as the library into which

the text index is created, and that name is different from the authorization ID of the statement, then the
privileges held by the authorization ID of the statement must include at least one of the following
privileges:
– The system authority *ADD to the user profile with that name
– Administrative authority

If a distinct type is referenced, the privileges held by the authorization ID of the statement must include
at least one of the following privileges:
v For each distinct type identified in the statement:

18 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|
|
|

|
|
|
|
|

|
|

|

|
|

|
|

|

|
|

|

|

|
|

|

|
|

|

|

|

|

|
|
|
|

|

|

|
|

|

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

v Administrative authority

For information about the system authorities corresponding to SQL privileges, see GRANT (Table or View
Privileges).

Syntax

►► SYSTS_CREATE (indexSchema
null

, indexName , textSource , options) ►◄

The schema qualifier is SYSPROC.

Parameters

indexSchema
Identifies the schema of the text search index. If this parameter is null, the value of the CURRENT
SCHEMA special register for the invoker is used. This value must be a valid SQL name.

Note: Enclose names in double quotation marks if the names conflict with SQL keywords or
OmniFind keywords that can be used.

The data type of this parameter is VARCHAR(128).

indexName
Identifies the name of the text search index. The name of the text search index with the index schema
uniquely identifies the text search index in the DB2 subsystem. You must specify a non-null value for
this parameter. This value must be a valid SQL name.

Note: Enclose names in double quotation marks if the names conflict with SQL keywords or
OmniFind keywords that can be used.

The data type for this parameter is VARCHAR(128).

textSource
Identifies the table and column specification for the document text source. This parameter can include
user-defined functions. You must specify a non-null value for this parameter.

The data type for this parameter is VARCHAR(1024).

textSource:

tableSchema. tableName (text-column-name)
function-name (text-column-name)

function-schema .

tableSchema
Identifies the schema of the table on which the text search index is created.

Note: Enclose names in double quotation marks if the names conflict with SQL keywords or
OmniFind keywords that can be used.

tableName
Identifies the name of the text table that contains the column that the external text search
index is created on.

Notes:

OmniFind Text Search Server 19

|

|

|

|
|

|
|

|
|

|

v Views and logical files are not supported.
v An alias must point to a table or a single member of a physical file.
v Enclose names in double quotation marks if the names conflict with SQL keywords

or OmniFind keywords.

text-column-name
Identifies the name of the column that contains the text that is used for creating the text
search index. This column must be of type CHAR, CHAR FOR BIT DATA, BINARY,
VARCHAR, VARCHAR FOR BIT DATA, VARBINARY, CLOB, DBCLOB, BLOB, XML,
GRAPHIC, or VARGRAPHIC. If the data type is not one of these data types, you can specify
an external function that returns a supported data type.

Notes:

v Only one text search index is allowed for a column. If a text search index exists for
the column, SQLCODE-20427 is returned.

v Enclose names in double quotation marks if the names conflict with SQL keywords
or OmniFind keywords.

function-schema. function-name
Identifies the schema and the name of a built-in or user-defined function. The function can be
used to modify a text document stored in the column. The function can also be used to access
text documents in a column that is not of a supported data type. Or the function can be used
to access a document that is stored elsewhere. The function has one input parameter for the
text column data type. For example, an integer that serves as a foreign key to the document
content in another table. The function returns a value of one of the OmniFind Text Search for
DB2 for i supported data types. The function transforms the text column content to the
indexed document content.

Notes:

v Cast functions and functions with more than one argument are not allowed.
v Enclose names in double quotation marks if the names conflict with SQL keywords

or OmniFind keywords that can be used.

options
A character string that specifies the various options that are available for this stored procedure.

The data type for this parameter is VARCHAR(32000).

options:

text-default-information update-characteristics index-configuration-options

text-default-information:

CCSID ccsid LANGUAGE language FORMAT format

text-default-information
Specifies the coded character set identifier used when indexing binary text documents. Also
specifies the language that is used when processing documents, and the format of text documents
in the column.

CCSID ccsid
Specifies the coded character set identifier that is used for a text search index in a column
with a binary data type. The default value is 1208 (UTF-8) and is taken from the

20 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|

|

|
|

|
|
|
|
|

|

|
|

|
|

|
|
|
|
|
|
|
|
|

|

|

|
|

|

QSYS2.SYSTEXTDEFAULTS table. All the CCSIDs that are supported for conversion to UTF-8
by IBM i conversion services are allowed for this parameter.

This parameter is ignored for a text search index in a column with a non-binary data type.
Text columns inherit the CCSID from the table specification. The ccsid value is ignored when
the format value is set to INSO.

LANGUAGE language
Specifies the language that OmniFind Text Search Server for DB2 for i uses for the linguistic
processing of text documents. The default value is en_US (English). If you specify the value
for this parameter as AUTO, OmniFind Text Search Server for DB2 for i tries to determine the
language.

Important: If the language of the documents is not English, do not use the default value of
en_US. Change the value to the language of the documents; otherwise, linguistic
processing does not work as expected.

FORMAT format
Identifies the format of text documents in the column, such as HTML. The OmniFind Text
Search Server for DB2 for i needs to know the format, or content type, of the text documents
that you intend to index and search. If you do not specify the format parameter, the default
value is taken from the FORMAT column in the QSYS2.SYSTEXTDEFAULTS table. The
supported format values are TEXT, HTML, XML, and INSO.

The format value INSO allows OmniFind Text Search Server for DB2 for i to determine the
format. In this case, the ccsid value is ignored. If the OmniFind Text Search Server for DB2 for
i cannot determine the document format, then a document error is noted in the job log
during processing by the SYSPROC.SYSTS_UPDATE stored procedure.

Note: If you do not specify the format parameter while creating the index over an XML data
type column, the default value is XML. If you specify the format parameter as TEXT or
INSO, the XML search capability is not available over this index. In addition, a
warning message appears in the job log.

update-characteristics:

NONE
UPDATE FREQUENCY < update-frequency >

UPDATE MINIMUM minchanges

update-characteristics
Specifies the frequency of automatic updates to the text search index. Also specifies the minimum
number of changes to text documents before the text search index is updated incrementally at the
specified time.

UPDATE FREQUENCY update-frequency
Specifies when to make automatic updates to the text search index. The default value is
NONE. This option might be useful for a text column in which there are no further changes.
The format of the update-frequency option supports two different formats.

update-frequency (Format 1):

▼ ▼ ▼

NONE
D (*) H (*) M (*)

, , ,

0..6 0..23 0..59
0..6 0..23 0..59

OmniFind Text Search Server 21

|
|
|
|

NONE
If NONE is specified, then no further index updates are made. The update must be
started manually. This option might be useful for a text column in which no further
changes are planned.

D Specifies the day or days of the week when the index is updated. An asterisk (*)
specifies all days. 0 specifies Sunday.

H Specifies the hour or hours when the index is updated. An asterisk (*) specifies all
hours.

M Specifies the minute or minutes when the index is updated. An asterisk (*) cannot be
specified. The minimum update frequency is 5 minutes.

Example: This example specifies that the index update is to run every 30 minutes.
UPDATE FREQUENCY D(*) H(*) M(0,30)

update-frequency (Format 2, chronological):

< minute> < hour> <dayOfMonth> <monthOfYear> <dayOfWeek>

The format of the update-frequency (chronological) option is a list of the five values separated by
a blank space. The five values represent the minutes, hours, days of the month, months of the
year, and days of the week beginning with Sunday.

If you specify an interval of values or an asterisk (*), you can specify a step value by using a
forward slash (/) at the end of the defined interval.

Example: This example specifies that the index update is to run every quarter hour
(0,15,30,45) on the even hours between 8 a.m. and 6:45 p.m. (8-18/2 is equivalent to
8,10,12,14,16,18), from Monday to Friday every month of the year (* * 1-5).
0,15,30,45 8-18/2 * * 1-5

minute
Specifies the minutes of the hour when the text search index is to be updated. You
can specify an asterisk (*) for an interval of every 5 minutes, or you can specify an
integer 0 - 59. You cannot repeat values. The minimum update frequency is 5
minutes. A value of 1,4,8 is not valid.

update-frequency (minute):

▼

*
/ 0...59

,

0...59 - 0...59
/ 0...59

0...59

hour Specifies the hours of the day when the text search index is to be updated. You can
specify an asterisk (*) for every hour, or you can specify an integer 0 - 23. You cannot
repeat values.

22 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|

|
|
|

update-frequency (hour):

▼

*
/ 0...23

,

0...23 - 0...23
/ 0...23

0...23

dayOfMonth
Specifies the days of the month when the text search index is to be updated. You can
specify an asterisk (*) for every day, or you can specify an integer 1 - 31. You cannot
repeat values.

update-frequency (dayOfMonth):

▼

*
/ 1...31

,

1...31 - 1...31
/ 1...31

1...31

monthOfYear
Specifies the months of the year when the text search index is to be updated. You can
specify an asterisk (*) for every month, or you can specify an integer 1 - 12. You
cannot repeat values.

update-frequency (monthOfYear):

▼

*
/ 1...12

,

1...12 - 1...12
/ 1...12

1...12

dayOfWeek
Specifies the days of the week when the text search index is to be updated. You can
specify an asterisk (*) for every day, or you can specify an integer 0 - 7. Both 0 and 7
are valid values for Sunday. You cannot repeat values.

update-frequency (dayOfWeek):

▼

*
/ 0...7

,

0...7 - 0...7
/ 0...7

0...7

UPDATE MINIMUM minchanges
Specifies the minimum number of record changes made to the underlying table before the
text search index is updated incrementally at the time specified in the update-frequency option.

OmniFind Text Search Server 23

|

|||||||||||||||||||||||||||||||||||||

|

|
|
|
|

|

|||||||||||||||||||||||||||||||||||||

|

|
|
|
|

|

|||||||||||||||||||||||||||||||||||||

|

|
|
|
|

|

|||||||||||||||||||||||||||||||||||||

|

|
|
|

The value must be an integer 1 - 2147483647. The default value is taken from the
UPDATEMINIMUM column in the QSYS2.SYSTEXTDEFAULTS table.

This option is ignored when you update the text search index, unless you specify the USING
UPDATE MINIMUM option in the SYSPROC.SYSTS_UPDATE stored procedure.

index-configuration-options:

INDEX CONFIGURATION (▼

,

option value)

index-configuration-options
Specifies additional index-specific values as option value pairs. You must enclose string values in
single quotation marks. A single quotation mark within a string value must be represented by
two consecutive single quotation marks.

CJKSEGMENTATION
Specifies the segmentation method to use when you index documents for CJK (Chinese,
Japanese, Korean) languages. The supported values are MORPHOLOGICAL and NGRAM. If
the CJKSEGMENTATION value is not specified, the default value is used. The default value
is specified by the DEFAULTNAME value in the QSYS2.SYSTEXTDEFAULTS table.

COMMENT
Specifies a comment that is stored in the REMARKS column of the QSYS2.SYSTEXTINDEXES
administration table and as the description of the OmniFind Text Search Server for DB2 for i
collection.

The value for this option is a string value that is less than or equal to 512 bytes.

IGNOREEMPTYDOCS
Specifies whether to represent empty documents in the text search index. Empty documents
are those documents with an empty string or a null value.

The supported values for this option are 0 (zero) and 1. The default value is 1.

If this option is set to 1, empty documents are not represented in the text search index. If you
use this option and change the document content to empty, the next incremental update
deletes the documents from the text search index.

KEYCOLUMN
Specifies the name of a unique column to be used as the key column in the text index. The
key column is used to associate data in the text index to a document or row in the base table.
The specified column must have a primary key constraint or unique index. If KEYCOLUMN
is not specified, the ROWID column from the table is used, if one exists. Otherwise, the
primary key defined on the table is used.

SERVER
Specifies the ID or alias name of the server to be used to store the text search index. If an ID
is used, the value is an integer that must exist in the SERVERID column of the
QSYS2.SYSTEXTSERVERS catalog. If an alias name is used, the value is a string that must
exist in the ALIASNAME column of the QSYS2.SYSTEXTSERVERS catalog. If SERVER is not
specified, the default is to select the server with the fewest text search indexes from the
servers in the QSYS2.SYSTEXTSERVERS table where parameter SERVERSTATUS is set to 0
(zero), which means that the server is available.

UPDATEAUTOCOMMIT
Specifies how often a commit operation is performed when fetching documents during an
index update. A value of 0 (zero) means that a commit operation occurs only at the end of
processing.

The value must be an integer between 0 (zero) and 2147483647. The default value is 100.

24 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|

|

Performance tip: The value of UPDATEAUTOCOMMIT can have a substantial impact on the
performance of index updates. The commit operation that takes place at the specified interval
ensures a consistent checkpoint from which to restart the index update, if it is interrupted.
However, the commit also temporarily suspends the update process. Increasing the
UPDATEAUTOCOMMIT value (or setting it to 0) can substantially improve the update
performance, especially the initial update. The value you specify must balance the need for
performance with the need for recoverability, based on the frequency of the index updates.

Default values for the options parameter

When you install OmniFind Text Search for DB2 for i, the QSYS2.SYSTEXTDEFAULTS table is created
and populated with default values for the options parameter of the SYSPROC.SYSTS_CREATE stored
procedure.

The following table lists the options, default values, and descriptions of the options.

Table 2. Default values for the options parameter

Option Default value Description

CCSID 1208 Specifies the coded character set identifier that is used
when binary text documents are indexed.

CJKSEGMENTATION NGRAM Specifies the segmentation method to use when you
index documents for CJK (Chinese, Japanese, Korean)
languages.

LANGUAGE en_US Specifies the language used to process text documents.

FORMAT TEXT Identifies the format of text documents in the column.
The default format is plain text unless the data type is
XML.

UPDATEFREQUENCY NONE Indicates that no automatic updates are scheduled.

UPDATEMINIMUM 1 If at least one document changed since the last index
update, the SYSPROC.SYSTS_UPDATE stored
procedure starts processing.

IGNOREEMPTYDOCS 1 Specifies that empty documents (documents with an
empty string or a null value) are not represented in the
text search index. The metadata fields for these
documents are not available for search.

UPDATEAUTOCOMMIT 100 Specifies how often a commit operation is performed
when documents are fetched during an index update.

MINIMUMUPDATEINTERVAL 5 Specifies the intervals for the UPDATEFREQUENCY
option. Intervals cannot be shorter than 5 minutes.

USEREXITTHREADS 0 Reserved

Related concepts:
“Supported document formats” on page 6
The text column data can be plain text, an HTML document, an XML document, or any document that is
recognized by the search engine.
“Supported data types” on page 7
The data in the text columns that you want to index and search can be either binary data or character
data.
Related reference:
“QSYS2.SYSTEXTSERVERS administration table” on page 99
You can see where the text search servers are installed using the QSYS2.SYSTEXTSERVERS administration
table.

OmniFind Text Search Server 25

|
|
|
|
|
|
|

||

|||

|||
|

|||
|
|

|||

|||
|
|

|||

|||
|
|

|||
|
|
|

|||
|

|||
|

|||
|

“QSYS2.SYSTEXTINDEXES administration table” on page 97
You can see information about each text search index in the QSYS2.SYSTEXTINDEXES administration
table. Each text search index has a name, schema name, and an associated collection name on the text
search server.
“QSYS2.SYSTEXTDEFAULTS administration table” on page 96
You can see the default parameters and values in the QSYS2.SYSTEXTDEFAULTS administration table.
This table is created when you install OmniFind Text Search for DB2 for i.
“SYSPROC.SYSTS_UPDATE” on page 32
You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.
“SYSPROC.SYSTS_START” on page 14
You can enable DB2 text search functions by calling the SYSPROC.SYSTS_START stored procedure.
“Supported languages” on page 8
You can specify that text documents be processed using a specific language.

SYSPROC.SYSTS_ALTER
You can call the SYSPROC.SYSTS_ALTER stored procedure to modify attributes of an index that was
created by SYSPROC.SYSTS_CREATE. Only attributes explicitly specified on this procedure are changed.
All other attributes of the index remain unchanged.

This is useful if you need to change the attributes of the index, such as the update frequency, after the
index has already been created.

Prerequisites

Before you call the SYSPROC.SYSTS_ALTER stored procedure, verify the following prerequisite:
v The text search index was created (by invocation of the SYSPROC.SYSTS_CREATE stored procedure).

Authorization

The privileges held by the authorization ID of the statement must include at least one of the following
privileges:
v The privilege to create in the schema. For more information, see Authorization, privileges and object

ownership.
v Administrative authority

The privileges held by the authorization ID of the statement must include at least one of the following
privileges:
v The following system authorities:

– *USE to the Create Logical File (CRTLF) command
– *CHANGE to the data dictionary if the library into which the text index is created is an SQL schema

with a data dictionary
v Administrative authority

The privileges held by the authorization ID of the statement must also include at least one of the
following privileges:
v For the referenced table:

– The INDEX privilege on the table
– The system authority *EXECUTE on the library containing the table

v Administrative authority

26 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|

|
|
|

|
|

|

|

|

|

|
|

|
|

|

|
|

|

|

|
|

|

|
|

|

|

|

|

v If SQL names are specified, and a user profile exists that has the same name as the library into which
the text index is created, and that name is different from the authorization ID of the statement, then the
privileges held by the authorization ID of the statement must include at least one of the following
authorities:
– System authority *ADD to the user profile with that name
– Administrative authority

If a distinct type is referenced, the privileges held by the authorization ID of the statement must include
at least one of the following privileges:
v For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

v Administrative authority

For information about the system authorities corresponding to SQL privileges, see GRANT (Table or View
Privileges).

Syntax

►► SYSTS_ALTER (indexSchema , indexName , options) ►◄

The schema qualifier is SYSPROC.

Parameters

indexSchema
Identifies the schema of the text search index. If this parameter is null, the value of the CURRENT
SCHEMA special register for the invoker is used.

The data type of this parameter is VARCHAR(128).

indexName
Identifies the name of the text search index. The name of the text search index together with the
index schema uniquely identifies the text search index in the DB2 subsystem. You must specify a
non-null value for this parameter.

The data type of this parameter is VARCHAR(128).

options
A character string that specifies the various options that are available for this stored procedure.

The data type of this parameter is VARCHAR(32000).

The parameter cannot be NULL.

options:

rename-function-information update-characteristics index-configuration-options

rename-function-information:

RENAME FUNCTION function-name
function-schema .

Specifies the user-defined function to be renamed.

OmniFind Text Search Server 27

|
|
|
|

|

|

|
|

|

|

|

|

|
|

|

|||||||||||||||||||||
|

|

|

|
|
|

|

|
|
|
|

|

|
|

|

|

|

||||||||||||||||||||||||||||

|

|

||||||||||||||||||

|

|

function-schema.function-name
Specifies the schema and name of a user-defined function.

This option is used to change a function that was specified while creating an index. If the function is
changed, SYSTS_UPDATE uses the new function to index the text column.

If the function was changed, SYSTS_UPDATE does not change the existing data of the index. Only
the new changed data after the last update is processed.

update-characteristics:

NONE
UPDATE FREQUENCY update-frequency

UPDATE MINIMUM minchanges

update-characteristics
Specifies the frequency of automatic updates to the text search index. Also specifies the minimum
number of changes to text documents before the text search index is updated incrementally at the
specified time.

UPDATE FREQUENCY update-frequency
Specifies when to make automatic updates to the text search index. The default value is
NONE. This option might be useful for a text column in which there are no further changes.
The format of the update-frequency option supports two different formats.

update-frequency (Format 1):

▼ ▼ ▼

NONE
D (*) H (*) M (*)

, , ,

0..6 0..23 0..59
0..6 0..23 0..59

NONE
If NONE is specified, then no further index updates are made. The update must be
started manually. This option might be useful for a text column in which no further
changes are planned.

D Specifies the day or days of the week when the index is updated. An asterisk (*)
specifies all days. 0 specifies Sunday.

H Specifies the hour or hours when the index is updated. An asterisk (*) specifies all
hours.

M Specifies the minute or minutes when the index is updated. An asterisk (*) cannot be
specified. The minimum update frequency is 5 minutes.

Example: This example specifies that the index update is to run every 30 minutes.
UPDATE FREQUENCY D(*) H(*) M(0,30)

update-frequency (Format 2, chronological):

< minute> < hour> <dayOfMonth> <monthOfYear> <dayOfWeek>

The format of the update-frequency (chronological) option is a list of the five values separated by
a blank space. The five values represent the minutes, hours, days of the month, months of the
year, and days of the week beginning with Sunday.

28 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|

|
|

|
|

|

||||||||||||||||||||||||||||||

|

|
|
|
|

|
|
|
|

|

||

|

|
|
|
|

||
|

||
|

||
|

|

|

|

|||||||||||||||||
|

|
|
|

If you specify an interval of values or an asterisk (*), you can specify a step value by using a
forward slash (/) at the end of the defined interval.

Example: This example specifies that the index update is to run every quarter hour
(0,15,30,45) on the even hours between 8 a.m. and 6:45 p.m. (8-18/2 is equivalent to
8,10,12,14,16,18), from Monday to Friday every month of the year (* * 1-5).
0,15,30,45 8-18/2 * * 1-5

minute
Specifies the minutes of the hour when the text search index is to be updated. You
can specify an asterisk (*) for an interval of every 5 minutes, or you can specify an
integer 0 - 59. You cannot repeat values. The minimum update frequency is 5
minutes. A value of 1,4, or 8 is not allowed.

update-frequency (minute):

▼

*
/ 0...59

,

0...59 - 0...59
/ 0...59

0...59

hour Specifies the hours of the day when the text search index is to be updated. You can
specify an asterisk (*) for every hour, or you can specify an integer 0 - 23. You cannot
repeat values.

update-frequency (hour):

▼

*
/ 0...23

,

0...23 - 0...23
/ 0...23

0...23

dayOfMonth
Specifies the days of the month when the text search index is to be updated. You can
specify an asterisk (*) for every day, or you can specify an integer 1 - 31. You cannot
repeat values.

update-frequency (dayOfMonth):

▼

*
/ 1...31

,

1...31 - 1...31
/ 1...31

1...31

monthOfYear
Specifies the months of the year when the text search index is to be updated. You can
specify an asterisk (*) for every month, or you can specify an integer 1 - 12. You
cannot repeat values.

OmniFind Text Search Server 29

|
|

|
|
|

|

|
|
|
|
|

|

|||||||||||||||||||||||||||||||||||||

|

||
|
|

|

|||||||||||||||||||||||||||||||||||||

|

|
|
|
|

|

|||||||||||||||||||||||||||||||||||||

|

|
|
|
|

update-frequency (monthOfYear):

▼

*
/ 1...12

,

1...12 - 1...12
/ 1...12

1...12

dayOfWeek
Specifies the days of the week when the text search index is to be updated. You can
specify an asterisk (*) for every day, or you can specify an integer 0 - 7. Both 0 and 7
are valid values for Sunday. You cannot repeat values.

update-frequency (dayOfWeek):

▼

*
/ 0...7

,

0...7 - 0...7
/ 0...7

0...7

UPDATE MINIMUM minchanges
Specifies the minimum number of record changes made to the underlying table before the
text search index is updated incrementally at the time specified in the update-frequency option.
The value must be an integer 1 - 2147483647.

index-configuration-options:

INDEX CONFIGURATION (▼

,

option value)

COMMENT
Specifies a comment that is stored in the REMARKS column of the QSYS2.SYSTEXTINDEXES
administration table and as the description of the OmniFind Text Search Server for DB2 for i
collection.

The value for this option is a string value that is less than or equal to 512 bytes.

UPDATEAUTOCOMMIT
Specifies how often a commit operation is performed when fetching documents during an index
update. A value of 0 (zero) means that a commit operation occurs only at the end of processing.

The value must be an integer between 0 (zero) and 2147483647.

Performance tip: The value of UPDATEAUTOCOMMIT can have a substantial impact on the
performance of index updates. The commit operation that takes place at the specified interval
ensures a consistent checkpoint from which to restart the index update, if it is interrupted.
However, the commit also temporarily suspends the update process. Increasing the
UPDATEAUTOCOMMIT value (or setting it to 0) can substantially improve the update
performance, especially the initial update. The value you specify must balance the need for
performance with the need for recoverability, based on the frequency of the index updates.

Related reference:

30 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|

|||||||||||||||||||||||||||||||||||||

|

|
|
|
|

|

|||||||||||||||||||||||||||||||||||||

|

|
|
|
|

|

|||||||||||||||||||||||||

|

|
|
|
|

|

|
|
|

|

|
|
|
|
|
|
|

|

“SYSPROC.SYSTS_CREATE” on page 17
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.
“SYSPROC.SYSTS_UPDATE” on page 32
You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.
“QSYS2.SYSTEXTINDEXES administration table” on page 97
You can see information about each text search index in the QSYS2.SYSTEXTINDEXES administration
table. Each text search index has a name, schema name, and an associated collection name on the text
search server.

SYSPROC.SYSTS_DROP
You can call the SYSPROC.SYSTS_DROP stored procedure to drop a text search index that was defined
by using the SYSPROC.SYSTS_CREATE stored procedure.

It is recommended that you drop a text search index by using the SYSPROC.SYSTS_DROP stored
procedure before dropping the table.

Dropping the view representing the text search index, even as the result of a DROP TABLE CASCADE
statement, attempts to drop the text search index. However, because the text search index cannot be
dropped under commitment control, the SQL view cannot be dropped under commitment control.

If the text search server cannot be reached, the collection on the server might become orphaned. If that
happens, the collection needs to be deleted manually. When the server is available again, use the
OmniFind Text Search Server for DB2 for i administration tool to delete the collection on the server.

In “Administration tools” on page 65, you can find information about the tools to identify orphaned
indexes and the stored procedure STSPROC.SYSTS_REMOVE to delete orphaned indexes.

Prerequisites

Before you call the SYSPROC.SYSTS_DROP stored procedure, verify the following prerequisites:
v DB2 text search functions were started by calling the SYSPROC.SYSTS_START stored procedure.
v The text search index was created (by invocation of the SYSPROC.SYSTS_CREATE stored procedure).
v Ensure that the following stored procedures are not running for the text search index that you want to

drop: SYSPROC.SYSTS_CREATE, SYSPROC.SYSTS_UPDATE, and SYSPROC.SYSTS_DROP.

Authorization

The privileges held by the authorization ID of the statement must include at least one of the following
privileges:
v The following system authorities:

– The system authorities of *OBJOPR and *OBJEXIST on the text index to be dropped
– The system authority *EXECUTE on the library that contains the text index to be dropped

v Administrative authority

For information about the system authorities corresponding to SQL privileges, see GRANT (Table or View
Privileges).

OmniFind Text Search Server 31

|
|
|
|

|
|
|

|
|
|
|

Syntax

►► SYSTS_DROP (indexSchema
null

, indexName) ►◄

The schema qualifier is SYSPROC.

Parameters

indexSchema
Identifies the schema of the text search index. If this parameter is null, the value of the CURRENT
SCHEMA special register for the invoker is used.

The data type of this parameter is VARCHAR(128).

indexName
Identifies the name of the text search index. The name of the text search index together with the
index schema uniquely identifies the text search index in the DB2 subsystem. You must specify a
non-null value for this parameter.

The data type of this parameter is VARCHAR(128).
Related reference:
“SYSPROC.SYSTS_CREATE” on page 17
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.
“SYSPROC.SYSTS_START” on page 14
You can enable DB2 text search functions by calling the SYSPROC.SYSTS_START stored procedure.
“SYSPROC.SYSTS_UPDATE”
You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.
“SYSPROC.SYSTS_REMOVE” on page 67
You can remove orphaned indexes with the SYSPROC.SYSTS_REMOVE SQL stored procedure.

SYSPROC.SYSTS_UPDATE

You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.

Because updating a text search index is an extensive operation, the text search index is not updated
synchronously when the DB2 table is updated. Instead, changes to the DB2 table column are captured by
a trigger and written to a staging table. The text search index is updated the next time the
SYSPROC.SYSTS_UPDATE stored procedure is invoked or when the UPDATE FREQUENCY option
indicates it is updated. Therefore, some search requests might not reflect recent updates to the table.

This stored procedure returns only after all the update processing for the text search index on the
OmniFind Text Search Server for DB2 for i is completed. The duration depends on the number of entries
in the staging table at the time the SYSTS_UPDATE was called. During the update process, the text
search index remains searchable.

If an issue occurred while indexing a document from the base table, the staging table column with the
TOBEDELETED has a value set to either E (error) or W (warning). You can retrieve these records with a
stored procedure that includes the following query:

32 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|

|
|
|
|
|

|
|
|
|

|
|
|

SELECT s.TOBEDELETED, based_on_columns
FROM based_on_table t INNER JOIN QSYS2.stagingtables
ON (QQQ_TEXTSEARCH_KEY(t.k1, t.k2, t.k3, ...) = s.KEYID)
WHERE s.TOBEDELETED IN(’E’,’W’)

In this case, based_on_columns is the column list that you need to see from the based_on_table.
based_on_table is the table being indexed. staging table is the staging table listed in the catalogs for the
text search index. k1, k2, k3, ... is the list of key columns in the primary key, row ID, or unique key
that is used to build the text search index. Once you correct the errors for those documents, run the
update again.

If an index update is requested at the same time an update is already running for that index, an error is
returned. Only one update is allowed to run at a time for a given index.

Prerequisites

Before calling the SYSPROC.SYSTS_UPDATE stored procedure, verify the following prerequisites:
v The text search index was created (by invocation of the SYSPROC.SYSTS_CREATE stored procedure).
v The following stored procedures are not running for the text search index that you want to update:

SYSPROC.SYSTS_CREATE, SYSPROC.SYSTS_UPDATE, and SYSPROC.SYSTS_DROP.
v The text search server that the index resides on must have been started using the SYSTS_START stored

procedure. The SERVERSTATUS column in QSYS2.SYSTEXTSERVERS must have a value of '0' (started).

Authorization

The privileges held by the authorization ID of the statement must include at least one of the following
privileges:
v The privilege to create in the schema. For more information, see Authorization, privileges and object

ownership.
v Administrative authority

The privileges held by the authorization ID of the statement must include at least one of the following
privileges:
v The following system authorities:

– *USE to the Create Logical File (CRTLF) command
– *CHANGE to the data dictionary if the library into which the text index is created is an SQL schema

with a data dictionary
v Administrative authority

The privileges held by the authorization ID of the statement must also include at least one of the
following privileges:
v For the referenced table:

– The INDEX privilege on the table
– The system authority *EXECUTE on the library containing the table

v Administrative authority
v If SQL names are specified, and a user profile exists that has the same name as the library into which

the text index is created, and that name is different from the authorization ID of the statement, then the
privileges held by the authorization ID of the statement must include at least one of the following
privileges:
– The system authority *ADD to the user profile with that name
– Administrative authority

OmniFind Text Search Server 33

|
|
|
|

|
|
|
|
|

|
|

|

|

|

|
|

|
|

|

|
|

|
|

|

|
|

|

|

|
|

|

|
|

|

|

|

|

|
|
|
|

|

|

If a distinct type is referenced, the privileges held by the authorization ID of the statement must include
at least one of the following privileges:
v For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

v Administrative authority

For information about the system authorities corresponding to SQL privileges, see GRANT (Table or View
Privileges).

Syntax

►► SYSTS_UPDATE (indexSchema
null

, indexName , options) ►◄

The schema qualifier is SYSPROC.

Parameters

indexSchema
Identifies the schema of the text search index. If this parameter is null, the value of the CURRENT
SCHEMA special register for the invoker is used.

The data type of this parameter is VARCHAR(128).

indexName
Identifies the name of the text search index. The name of the text search index together with the
index schema uniquely identifies the full-text index in the DB2 subsystem. You must specify a
non-null value for this parameter.

The data type for this parameter is VARCHAR(128).

options
A character string that specifies the option that is available for this stored procedure.

The available option is USING UPDATE MINIMUM. This option uses the USING UPDATE
MINIMUM settings that you specified for the SYSPROC.SYSTS_CREATE stored procedure. It starts
an incremental update only if the specified number of changes was reached. The default is to
unconditionally start the update process.

USING UPDATE MINIMUM:

USING UPDATE MINIMUM

Related concepts:
“Document truncation” on page 14
The OmniFind Text Search Server for DB2 for i limits the number of characters that can be indexed for
each text document. Sometimes this character limit results in the truncation of large text documents in the
text search index.
Related reference:
“SYSPROC.SYSTS_CREATE” on page 17
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.

34 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|

|

|

|

|

|
|

“SYSPROC.SYSTS_START” on page 14
You can enable DB2 text search functions by calling the SYSPROC.SYSTS_START stored procedure.
“SYSPROC.SYSTS_DROP” on page 31
You can call the SYSPROC.SYSTS_DROP stored procedure to drop a text search index that was defined
by using the SYSPROC.SYSTS_CREATE stored procedure.

Search with a text search index
You can use the CONTAINS function and the SCORE function in an SQL statement with OMNIFIND.
CONTAINS and SCORE are used to search a text search index using the search argument criteria that
you specify. You can also index and search XML documents.

CONTAINS
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.

►► CONTAINS (column-name , search-argument
, string-constant

(1)
) ►◄

Notes:

1 string-constant must conform to the rules for the search-argument options.

search-argument-options:

▼
(1)

QUERYLANGUAGE = value
RESULTLIMIT = value

OFF
SYNONYM = ON

Notes:

1 The same clause must not be specified more than once.

The schema is QSYS2.

column-name
Specifies a qualified or unqualified name of a column that has a text search index that is to be
searched. The column must exist in the table or view that is identified in the FROM clause of the
statement. The column of the table, or the column of the underlying base table of the view, must have
an associated text search index (SQLSTATE 38H12). The underlying expression of the column of a
view must be a simple column reference to the column of an underlying table, directly or through
another nested view.

search-argument
Specifies an expression that returns a string value containing the terms used in the search. The
expression must not be all blanks or the empty string (SQLSTATE 38H14). The actual length of the
string must not exceed 32704 bytes. This length might be further limited by what is supported by the
text search server (SQLSTATE 38H10). The value is converted to Unicode before it is used to search
the text search index.

string-constant
Identifies a string constant that specifies the search argument options that are in effect for the
function.

OmniFind Text Search Server 35

|
|
|
|
|
|

|
|
|
|
|

The options that can be specified as part of the search-argument-options are as follows:

QUERYLANGUAGE = value
Specifies the query language. The value can be any of the supported language codes. If the
QUERYLANGUAGE option is not specified, the default is the language value of the text
search index that is used when this function is invoked. If the language value of the text
search index is AUTO, the default value for QUERYLANGUAGE is en_US.

RESULTLIMIT = value
Specifies the maximum number of results to be returned from the underlying search engine.
The value can be an integer value 1 - 2 147 483 647. If the RESULTLIMIT option is not
specified, no result limit is in effect for the query.

This scalar function might not be called for each row of the result table, depending on the
plan that the optimizer chooses. This function can be called once for the entire query to the
underlying search engine. A result set of all the primary keys that match are returned. This
result set is then joined to the table containing the column to identify the result rows. In this
case, the RESULTLIMIT value acts like FETCH FIRST ?? ROWS from the underlying text
search engine, and can be used as an optimization. If the search engine is called for each row
of the result because that is the best plan, then the RESULTLIMIT option is ignored.

SYNONYM = OFF or SYNONYM = ON
Specifies whether to use a synonym dictionary that is associated with the text search index.
You can add a synonym dictionary to a collection by using the synonym tool.

OFF OFF is the default value.

ON Use the synonym dictionary that is associated with the text search index.

The result of the function is a large integer. If the second argument can be null, the result can be null. If
the second argument is null, the result is the null value.

The result is 1 if the document contains a match for the search criteria that are specified in the search
argument. Otherwise, the result is 0. The result is also 0 if the column is null. If the search argument is
Null, then the result is the null value.

CONTAINS is a nondeterministic function.

Example 1

The following statement finds all the employees who have ⌂COBOL⌂ in their resume.
SELECT EMPNO
FROM EMP_RESUME
WHERE RESUME_FORMAT = ’ascii’
AND CONTAINS(RESUME, ’COBOL’) = 1

Example 2

The search argument does not need to be a string constant. The search argument can be any SQL string
expression, including a string contained in a host variable. The following statement searches for the exact
term "ate" in the COMMENT column.

Note: The term "ate" must be delimited in double quotes so that only the exact term is searched for and
linguistic variations are not considered.

char search_arg[100]; /* input host variable */
...
EXEC SQL DECLARE C3 CURSOR FOR
SELECT CUSTKEY
FROM K55ADMIN.CUSTOMERS
WHERE CONTAINS(COMMENT, :search_arg)= 1

36 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|
|

|
|
|
|
|
|
|

ORDER BY CUSTKEY;
strcpy(search_arg, "\"ate\""’);
EXEC SQL OPEN C3;
...

Example 3

The following statement finds 10 students at random who wrote online essays that contain the phrase
"fossil fuel" in Spanish, which is "combustible fósil." These students are for a radio interview. Use the
synonym dictionary that was created for the associated text search index. Because only 10 students are
needed, optimize the query by using the RESULTLIMIT option to limit the number of results from the
underlying text search server.
SELECT FIRSTNME, LASTNAME

FROM STUDENT_ESSAYS
WHERE CONTAINS(TERM_PAPER, ’combustible fósil’,

’QUERYLANGUAGE= es_ES RESULTLIMIT = 10 SYNONYM=ON’) = 1

Related tasks:
“Search a text search index” on page 14
You can search a text search index by using an SQL statement with a CONTAINS or SCORE function.
The search argument criteria is specified on the function.
Related reference:
“SCORE”
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

“Search argument syntax” on page 39
You can specify a search argument as the condition of a search for terms in text documents. It consists of
search parameters and one or more search terms. The SQL scalar text search functions that use search
arguments are CONTAINS and SCORE.

SCORE
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

►►
(1)

SCORE (column-name , search-argument
, string-constant

) ►◄

Notes:

1 string-constant must conform to the rules for the search-argument options.

search-argument-options:

▼
(1)

QUERYLANGUAGE = value
RESULTLIMIT = value

OFF
SYNONYM = ON

Notes:

1 The same clause must not be specified more than once.

The schema is QSYS2.

OmniFind Text Search Server 37

column-name
Specifies a qualified or unqualified name of a column that has a text search index that is to be
searched. The column must exist in the table or view that is identified in the FROM clause of the
statement. The column of the table, or the column of the underlying base table of the view, must have
an associated text search index (SQLSTATE 38H12). The underlying expression of the column of a
view must be a simple column reference to the column of an underlying table, either directly or
through another nested view.

search-argument
Specifies an expression that returns a string value containing the terms used in the search. The
expression must not be all blanks or the empty string (SQLSTATE 38H14). The actual length of the
string must not exceed 32704 bytes. This length might be further limited by what is supported by the
text search server (SQLSTATE 38H10). The value is converted to Unicode before it is used to search
the text search index. If the search-argument is null, the result is the null value.

string-constant
Identifies a string constant that specifies the search argument options that are in effect for the
function.

The options that can be specified as part of the search-argument-options are as follows:

QUERYLANGUAGE = value
Specifies the query language. The value can be any of the supported language codes. If the
QUERYLANGUAGE option is not specified, the default is the language value of the text
search index that is used when this function is invoked. If the language value of the text
search index is AUTO, the default value for QUERYLANGUAGE is en_US.

RESULTLIMIT = value
Specifies the maximum number of results that are to be returned from the underlying search
engine. The value can be an integer value 1 - 2 147 483 647. If the RESULTLIMIT option is not
specified, no result limit is in effect for the query.

This scalar function might not be called for each row of the result table, depending on the
plan that the optimizer chooses. This function can be called once for the entire query to the
underlying search engine. A result set of all the primary keys that match are returned. This
result set is then joined to the table containing the column to identify the result rows. In this
case, the RESULTLIMIT value acts like FETCH FIRST ?? ROWS from the underlying text
search engine and can be used as an optimization. If the search engine is called for each row
of the result because that is the best plan, then the RESULTLIMIT option is ignored.

SYNONYM = OFF or SYNONYM = ON
Specifies whether to use a synonym dictionary that is associated with the text search index.
You can add a synonym dictionary to a collection by using the synonym tool.

OFF OFF is the default value.

ON Use the synonym dictionary that is associated with the text search index.

The result of the function is a double-precision floating-point number. If the second argument can be null,
the result can be null. If the second argument is null, the result is the null value.

The result is greater than 0 but less than 1 if the column contains a match for the search criteria that the
search argument specifies. The more frequently a match is found, the larger the result value. If the
column does not contain a match, the result is 0. The score is also 0 if the column is null.

SCORE is a nondeterministic function.

38 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|
|
|
|
|

|
|
|
|
|

Example

The following statement generates a list of employees ordered by how well their resumes match
programmer AND (java OR cobol). In addition, a relevance value that is normalized between 0 (zero) and
100 is returned.
SELECT EMPNO, INTEGER(SCORE(RESUME, ’programmer AND
(java OR cobol)’) * 100) AS RELEVANCE
FROM EMP_RESUME
WHERE RESUME_FORMAT = ’ascii’
ORDER BY RELEVANCE DESC

Related tasks:
“Search a text search index” on page 14
You can search a text search index by using an SQL statement with a CONTAINS or SCORE function.
The search argument criteria is specified on the function.
Related reference:
“CONTAINS” on page 35
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
“SYSPROC.SYSTS_CREATE” on page 17
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.
“Search argument syntax”
You can specify a search argument as the condition of a search for terms in text documents. It consists of
search parameters and one or more search terms. The SQL scalar text search functions that use search
arguments are CONTAINS and SCORE.

Search argument syntax

You can specify a search argument as the condition of a search for terms in text documents. It consists of
search parameters and one or more search terms. The SQL scalar text search functions that use search
arguments are CONTAINS and SCORE.

For any language-specific processing during a search, you can specify a value for the
QUERYLANGUAGE parameter as a search argument option. The value can be any of the supported
language codes.

If the QUERYLANGUAGE parameter is not specified, the default value is the language value of the text
search index used when this function is called.

If the language value of the text search index is AUTO, the default value for QUERYLANGUAGE is
en_US.

Limitations

You cannot use the CONTAINS and SCORE functions in an SQL constraint or index definition. You can
use them in SQL query statements and view definitions under the following restrictions:
v If a view, nested table expression, or common table expression provides a text search column for a

CONTAINS or SCORE scalar function, and if the applicable view, nested table expression, or common
table expression has a DISTINCT clause on the outermost SELECT statement, then the SELECT list
must contain all the corresponding key fields of the text search index. Otherwise, SQL message 38H12
is returned.

v If a view, nested table expression, or common table expression provides a text search column for a
CONTAINS or SCORE scalar function, then the applicable view, nested table expression, or common

OmniFind Text Search Server 39

|
|
|

|
|
|
|
|

|

|
|
|

table expression cannot have a UNION, an EXCEPT, or an INTERSECT statement at the outermost
SELECT level. Otherwise, SQL message 38H12 is returned.

v If a common table expression provides a text search column for a CONTAINS or SCORE scalar
function, the common table expression can be referenced again in the entire query only when the
reference does not provide a text search column for a CONTAINS or SCORE scalar function.
Otherwise, SQL message 38H12 is returned.

v A function cannot be created sourced on the CONTAINS or SCORE scalar functions. Otherwise, SQL
message SQL0457 is returned.

v The query can run through the SQL Query Engine (SQE).

Simple search

To do a simple keyword search, enter one or more keywords in the query. The search engine returns
documents that contain all those keywords, or variations of the keywords.

For example, if you enter king, the search engine returns all documents that contain the word king or
kings. If you enter the query king lear, the search engine returns documents that contain the terms king
and lear.

To see more precise results, use more specific keywords. For example, use French roast coffee rather
than coffee, or use Kauai hiking tours rather than Hawaiian vacations.

If a simple keyword search returns too many documents that are not what you are looking for, you can
use operators to refine your search.

Exclusion of terms in a search

Use the minus sign (-) to exclude terms. For example, if you want to find documents with the term lear,
and not edward, enter the query lear -edward.

The minus sign (-) also applies to a term and its variants. For example, the query -edward excludes
documents that contain the word edward's.

Phrase search

If you want to ensure that terms are displayed exactly in the sequence that you typed them in, you can
use double quotation marks. For example, if you want to see documents with the term king lear exactly,
and not related phrases such as kingly lear or king and queen lear, enter "king lear". The search is
not case-sensitive, but term variants are not considered matches.

Language processing

OmniFind Text Search performs language-specific processing on terms by using the language that is
specified by the query. When the language is not specified, the default language is used.

When you search for a word, the base form of the word is also searched. For example, searching for tests
or testing also finds the word test.

During language processing, predefined synonyms are added to the query. Language processing is not
performed on phrases and on terms in all capital letters, for example, DOG.

40 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

Wildcard character in a search

The wildcard character (*) helps you find documents when you do not know the full spelling, or if you
want to find variations of the term. For example, the query czech* returns documents with the terms
czech, czechoslovakia, czechoslovakian, czech republic, and other possible results.

You can also use the wildcard character in a phrase search. For example, the query "John * Kennedy"
returns documents with the terms John Fitzgerald Kennedy and John F Kennedy but not John Kennedy.
The query Mi*l Gorbachev returns Mikhail Gorbachev.

Adding a wildcard character to the beginning of a query (for example, *zech) might cause the search
engine to take longer to return results.

Searches for at least one of the terms

The logical operator OR specifies that at least one of the terms in a query must be displayed in the
returned document. For example, the query (othello OR otello) returns documents that contain the
term othell or otello.

You can also use the logical operators AND, OR, and NOT in combinations by using parentheses. For
example, the query cougar OR (jaguar AND NOT car) returns documents with the terms cougar or jaguar
but not car.

You must enter the logical operators AND, OR, and NOT in all uppercase. Use parentheses for grouping.
Related concepts:
“XML search” on page 44
You can index and search XML documents. The XML search grammar uses a subset of the W3 XPath
language with extensions for text search. The extensions support range searches of numeric, Date, and
DateTime values that are associated with an XML attribute or element. Structural elements can be used
separately, or combined with free text in queries.
Related reference:
“CONTAINS” on page 35
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
“SCORE” on page 37
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

Simple query examples

Simple queries for the CONTAINS and SCORE functions search for a single word or multiple words in a
text search index.

The search engine ignores white space between characters. The search string must not be empty or
contain all blanks (SQLSTATE 38H14).

The following table shows some examples of simple search queries.

Table 3. Simple query examples

Search word types Examples Query results

Single word king Returns all documents that contain the
word king or kings. This query matches
different surface forms and is not case
sensitive.

OmniFind Text Search Server 41

|
|

Table 3. Simple query examples (continued)

Search word types Examples Query results

Multiple words king lear Returns all documents that contain king
and lear. The default operator is the
logical operator AND.

The operators AND and + are implicit in every query. For example, the query King Lear returns the same
results as King AND Lear or King + Lear.

You must enter the logical operators NOT, AND, and OR in all uppercase.
Related reference:
“CONTAINS” on page 35
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
“SCORE” on page 37
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

Advanced search operators
You can use advanced search operators to refine the search results for the CONTAINS function and the
SCORE function.

In the following table, the first column describes the operator that you can use in a search query. You
must enter the logical operators NOT, AND, and OR in all uppercase letters. The second column shows a
sample query that you might enter. The third column describes the types of results that you might see
from the example query.

Table 4. Advanced search operators and complex query examples

Operators Examples Query results

AND "King Lear" AND "Othello"

"King Lear" "Othello"

Either query returns documents that
contain both terms King Lear and
Othello. The AND operator is the
default conjunction operator. If no
logical operator is between the two
terms, the AND operator is used. For
example, the query King Lear is the
same as the query King AND Lear.

OR "King Lear" OR Lear Returns documents that contain either
King Lear or just Lear. The OR operator
links the two terms and finds a
matching document if either of the
terms exist in a document.

NOT "King Lear"
NOT "Norman Lear"

Returns documents that contain King
Lear but not Norman Lear.

" "

(Exact match)

First query:

"King Lear"

Second query:

"king"

The first query returns the exact phrase
King Lear.

The second query returns only the word
king and no other forms, such as kings
or kingly.

*

(Wildcard character)

test*
te*t

Returns documents that can match
possible combinations, such as test,
tests, and tester, or test and text.

42 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

Table 4. Advanced search operators and complex query examples (continued)

Operators Examples Query results

^

(Score boost factor)
some word or phrase^number

First query:

"King Lear"^4 "Richard III"

Second query:

title: (software download)^5
pdf viewer -shipping

The first query forces documents with
the phrase King Lear to be displayed
higher in the list of search results.

The second query forces a document
titled software download to be displayed
higher in the list of results.

Although a boost factor must be
positive, the boost factor can be less
than 1. For example, 0.2. The boost
factor number has no limit.

+

(Includes)

+Lear King Returns all documents that contain Lear
and King, which is the same as the
query Lear AND King.

-

(Excludes)

"King Lear" -"Lear Jet" Returns documents that contain King
Lear but not Lear Jet.

() (King OR Lear) AND plays Returns documents that contain either
King or Lear and plays. The parentheses
ensure that plays is found and either
term King or Lear is present.

\

(Escape character)

\(1\+1\)\:2 Returns documents that contain
(1+1):2.Use the \ as an escape character
so that you can use special characters
that are normally part of the query
syntax. If a special character is preceded
by the escape character, the special
character is analyzed as part of the
query. Special characters are: +, -, &&, ||,
!, (,), {, }, [,], ^, ", ~, *, ?, :, and \. If
a special character is cleared, the special
character is analyzed as part of the
query.

Related reference:
“CONTAINS” on page 35
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
“SCORE” on page 37
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

Example using CONTAINS and SCORE functions

You can use the CONTAINS and SCORE functions in the same query. The query searches a text search
index and return if and how frequently the text document matches the search argument criteria.

The example in the following table uses data from the base table BOOKS with the columns ISBN
(VARCHAR(20)), ABSTRACT (VARCHAR(10000)), and PRICE (INTEGER).

OmniFind Text Search Server 43

|
|

Table 5. The base table BOOKS

ISBN ABSTRACT PRICE

i1 "a b c" 7

i2 "a b d" 10

i3 "a e a" 8

You run the following query:
SELECT ISBN, SCORE(ABSTRACT,’"b"’)
FROM BOOKS
WHERE CONTAINS (ABSTRACT,’"b"’) = 1

This query returns the following two rows:
i1, 0.3
i3, 0.4

The score values might differ depending on the content of the text column.
Related reference:
“CONTAINS” on page 35
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
“SCORE” on page 37
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

XML search
You can index and search XML documents. The XML search grammar uses a subset of the W3 XPath
language with extensions for text search. The extensions support range searches of numeric, Date, and
DateTime values that are associated with an XML attribute or element. Structural elements can be used
separately, or combined with free text in queries.

Documents must be indexed to include the XML markup before the index can be searched using the
xmlxp query syntax. Document indexing is done by using the “FORMAT XML” option at index creation
time.

Indexes created on a previous release can be used to perform searches. However, documents indexed on
a previous release do not have the information necessary to use all the XML search capabilities available
in a newer release. Documents added or updated in the text search index after the upgrade to the new
release include the additional information.

An upgrade might result in documents indexed on the prior release not being included in some search
results. The SYSPROC.SYSTS_REPRIMEINDEX stored procedure can be used to rebuild the index and
resolve this problem.

To use the OMNIFIND CONTAINS and SCORE built-in functions to search XML data, the query string
must start with the @xmlxp: query prefix. The prefix is followed by a valid XML Search query expression.
The @xmlxp 'opaque' term prefix indicates that a search is performed using the query path expression.

For example: CONTAINS(columnname, '@xmlxp:’’query_expression’’ ').

The single quotes ' ’ surrounding the query_expression must be doubled because they are contained
within an SQL string, in effect, a string within a string.

44 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|

|
|

The @xpath: opaque term prefix that was used in previous releases of OmniFind Text Search Server for
DB2 for i is supported for compatibility with earlier versions. However, it has been deprecated and is not
recommended.

The following list highlights the key features of XML search:

XML structural search

By including special opaque XML terms in queries, you can search XML documents for structural
elements and text that is scoped by those elements. Structural elements are tag names, attribute names,
and attribute values. Element and tag names are case sensitive.

XML query tokenization

Tokenization is the process of parsing input into tokens. Free text in XML query terms is tokenized the
same way that text in non-XML query terms is tokenized. An exception is that nested opaque terms are
not supported. Free text search is not case sensitive.

XML Schema and DTD

Any XML schema associated with the XML document is not downloaded, and default values are not
indexed.

Numeric values

Predicates that compare attribute or element values to numbers are supported.

Element values

Predicates that compare element values to numbers or dates are supported. The element containing the
date or number must be an XML element that contains only the number or date. Leading and trailing
white space are ignored.

String values

Use of the = operator for a string argument in a predicate requires a complete match of all key words in
the string with tokens in the identified text span. The order of the tokens is not significant when
matching is performed.

DateTime values

Predicates that compare Date or DateTime attributes or elements are supported.

Path expressions:

Table 6. Path expressions

@xmlxp Expression Description

TagName Selects a tag named TagName, and all children of that tag.

@AttributeName Selects an attribute named @AttributeName.

/ Selects from root node.

// Selects matching tags and attributes that are descendants
of the current position and match the expression.

. Self: the current tag or element node.

OmniFind Text Search Server 45

|
|
|

|

|

|
|
|

|

|
|
|

|

|
|

|

|

|

|
|
|

|

|
|
|

|

|

|

||

||

||

||

||

||
|

||
|

Table 7. Path expression examples:

@xmlxp Expression Result

/Document Returns all documents with a top-level tag Document.

//Document Returns all documents with a tag Document at any level.

/Document/Child1 Returns all documents with a top-level tag Document that
has a direct child tag Child1.

/Document//Child1 Returns all documents with a top-level tag Document that
has a descendant tag Child1 at any level.

/Root/@attr1 Returns all document with a top-level tag Root with an
attribute attr1.

/Root//@attr1 Returns all documents with a top-level tag Root with an
attribute attr1 on that root tag or any descendant tag.

//@attr1 Returns all documents that have an attribute @attr1 at
any level.

Note: The XML Search expression must have an actual tag or attribute name in the relative path
expression. / and // by themselves are not valid search queries.

Path expressions are only allowed in the forward direction, and only on a single axis.

It is recommended that a path expression start with a leading/ or //. This indicates that the
expression's initial context is the document's root node. When the leading / or // is omitted, the
expression is matched at any level. In other words, 'Sentences' is treated as ’//Sentences’ . The
behavior is defined this way to be compatible with prior releases, and does not follow the W3 or
SQL/XML standard.

Path expression wildcard support

In the path expression, the special wild-card character * can be used to indicate exactly one tag, with any
name.

Trailing path expression wildcards are ignored.

The following uses of path expression wildcards are not supported and result in an error:
v An expression that references only wildcards and no specific elements or attributes.
v A wildcard attribute at any level: /Tag/@*.
v A wildcard that immediately precedes a predicate expression: /Root/*[//anytag].
v A wildcard that is used in a predicate comparison: /Root[* > 5].
v A wildcard as an XML namespace prefix: //*:tagname.
v A wildcard prefixed with an XML namespace prefix: //ns:*.
v A wildcard character used as part of a tag name: /start*.

Table 8. Path expression wildcard examples:

@xmlxp Expression Result

/Root/*/T1 All documents having a top-level tag Root that has a
descendant tag T1 with one intermediate level.

/Root/*//T1 All documents having a top-level tag Root that has a
descendant tag T1 with one or more intermediate levels.

46 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

||

||

||

||

||
|

||
|

||
|

||
|

||
|
|

|
|

|

|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|

|

||

||

||
|

||
|
|

Predicates

Predicates are used to specify a value or condition that an element or attribute node must satisfy.
Predicates are always enclosed in square brackets: [].

Table 9. Predicate examples:

@xmlxp Expression Result

/Book[Sentences] Top-level tag is Book and must have a direct child
Sentences.

/Book[.//Sentences and .//Author] Top-level tag is Book and must have both Sentences and
Author descendants. Each descendant can be at any level
below Book.

Because path expressions are always in the forward direction, and limited to a single access, path
expressions in predicates must be relative to the current node. /Book[/Root] and /Book[//Root] are not
valid, because in both cases the predicate path expression begins with the top-level tag ‘Root' instead of
the current node.

Numeric comparisons

OMNIFINDsupports the =, <=, >=, >, <, and != operators for comparisons of elements and attributes to
integers and floating point values.

Elements have only their numeric values indexed if they are simple elements. They must not contain
additional characters (other than white space) and must not have any descendant elements. Complex
elements are indexed as text only.

Table 10. Numeric comparison examples:

@xmlxp Expression Result

/Book[@id_num = 12345] Top-level tag is Book and must have an attribute id_num
with a value of 12345.

/Book[Cost <= 100.50] Top-level tag is Book. Book has a direct child element Cost
with a numeric value less than or equal to 100.50.

Date and DateTime comparisons

OMNIFIND supports the =, <=, >=, >, <, and != operators for comparisons of elements and attributes to
Date and DateTime values.

Simple elements have only their DateTime values indexed. These elements must not contain additional
characters (other than white space) and must not have any descendant elements. Complex elements are
indexed as text only.

During indexing, attribute values and text contained within simple XML tags are examined. If the text is
determined to match an ISO Date or DateTime format, it is indexed as a Date or DateTime that can be
searched in a predicate.

During a search, the Date or DateTime value must be enclosed within an xs:date() or xs:dateTime()
function call in order to be recognized as the correct data type.

An XML DateTime data type in an XML document can specify a timezone value. However, when a
DateTime is indexed, the Text Search server truncates timezone values during indexing. Therefore,
timezones are not considered during XML searches that involve Date or DateTime data types.

OmniFind Text Search Server 47

|

|
|

||

||

||
|

||
|
|
|

|
|
|
|

|

|
|

|
|
|

||

||

||
|

||
|
|

|

|
|

|
|
|

|
|
|

|
|

|
|
|

In addition, a DateTime with an hour of 24 is permitted only if the minutes and seconds are zero. It will
be treated as a value between the last instant of that day and the first instant of the next day.

When a value Date or DateTime is specified in an XML search predicate, a syntax error occurs if a time
zone is specified on the value.

The DateTime data type supports up to 12 digits of fractional seconds.

Table 11. Date and DateTime comparison examples:

@xmlxp Expression Result

/Book[@publishDate > xs:date(“2000-01-01”)] Top-level tag is Book. Book has an attribute publishDate
that is greater than the date of 2000-01-01.

/Book[purchaseTime > xs:dateTime(“2009-05-
20T13:00:00”)]

Top-level tag is Book. Book has a direct child
purchaseTime that is a DateTime expression greater than
2009-05-20T13:00:00.000000.

Contains and excludes in XML markup

The contains and excludes functions are used to perform full text searches within the XML markup.
Contains returns true if the query is contained within the target node; excludes returns true if the query is
NOT contained within the target node.

For example, find all documents with a top-level tag called email, and a direct descendant called body
that contains variations of the phrase “Department budget”.
@xnkxo:’’/email[body contains (“department budget”)]’’

The free text passed to the contains or excludes function is handled in the same way as any other free text
search. The search is not case-sensitive, and linguistic variations are considered. The earlier query
matches “departments budgets” and also “budget for the department”.

The search can be restricted to an exact match by using the traditional quotation marks, for example,
@xmlxp:’’/email[body contains(“””department budget”””)] ’’. The quotes indicating an exact match
must be doubled so that they are not interpreted as the end of the contains free text string.

Table 12. Contains and excludes examples:

@xmlxp Expression Result

/Book[abstract contains(“cat AND dog”)] Top-level tag Book that has a child tag abstract which
contains linguistic variations of the terms cat and dog.

/Book[abstract contains(“cat AND dog”)]
/Book/@title[. contains(“cat OR dog”)]

Top-level tag Book has an attribute title that contains
linguistic variations of either cat or dog.

/Book/Title[. contains(“””All good dogs go to
heaven”””)]

Top-level tag Book with a direct child Title that contains
all good dogs go to heaven in order, and without
linguistic variations being considered.

/Book[abstract excludes(“cat AND dog”)] Top-level tag Book that has a child tag abstract which
does not contain linguistic variations of the terms cat
and dog.

Complete string match operator

The = operator with a string argument in a predicate calls for a complete match of all tokens in the string
with all tokens in the identified text span. Linguistic equivalents are not considered. The order of the
terms searched for is not significant. It is not required that the element or attribute contain only the text
that was searched for.

48 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|

|
|

|

||

||

||
|

|
|
|
|
|
|

|

|
|
|

|
|

|

|
|
|

|
|
|

||

||

||
|

|
|
|
|

|
|
|
|
|

||
|
|
|

|

|
|
|
|

Table 13. Complete string match operator examples:

@xmlxp Expression Result

/Book[@author = “Nicholas Lawrence”] Top-level tag Book that has an attribute author. author
must contain the terms Nicholas Lawrence. Linguistic
variations on those terms are not considered matches.

/Book[author = “””Nicholas Lawrence”””] Top-level tag Book that has a direct descendant author.
author must contain the terms Nicholas Lawrence in
order. Linguistic variations on those terms are not
considered matches.

Logical Operators

The logical operators and and or can be used in predicates.

Table 14. Logical operator examples:

@xmlxp Expression Result

/Book[@author = “””Nicholas Lawrence”””]/Price[. <
1000 and @unit = “dollars”]

Top-level tag Book that has an attribute author. author
must contain the terms Nicholas Lawrence in order.
Linguistic variations on those terms are not considered
matches.

Book must have a direct child Price with a value < 1000.
The Price node must have an attribute @unit that has a
value of dollars.

Operator precedence

In XML search predicates, containment operators and comparison operators take precedence over logical
operators, and all logical operators have the same precedence.
v Containment operators are contains and excludes.
v Comparison operators are =, !=, <, >, <= and >=.
v Logical operators are and and or.

You can use parentheses to ensure the precedence that you want.
Related reference:
“Search argument syntax” on page 39
You can specify a search argument as the condition of a search for terms in text documents. It consists of
search parameters and one or more search terms. The SQL scalar text search functions that use search
arguments are CONTAINS and SCORE.
“SYSPROC.SYSTS_REPRIMEINDEX” on page 69
You can reprime the index and start an initial update using the SYSPROC.SYSTS_REPRIMEINDEX stored
procedure. Use this stored procedure when you want to restore data from the base table.
“CONTAINS” on page 35
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
“SCORE” on page 37
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

OmniFind Text Search Server 49

||

||

||
|
|

||
|
|
|
|

|

|

||

||

|
|
|
|
|
|

|
|
|
|

|

|
|

|

|

|

|

|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

XML Search Namespace Support
You can use a namespace to scope elements and attributes in a document. Namespaces are useful in
restricting the query search to the meaningful elements within the document.

Overview

In XML, element and attribute names are chosen by the developer. These names can create conflicts when
XML documents from different applications are mixed.

It is therefore useful to restrict the query search to the meaningful elements within the document,
especially when multiple different document types might be indexed. Restricting the search can be
accomplished by using namespaces.

Namespaces provide scoping of the elements and attributes of the document to ensure correct
interpretation of the values. Namespaces are described with long name (URI) and optionally a short
name called the Qname (qualified name).
<?xml version=’1.0’?>

<doc xmlns:x="http://example.com/ns/abc">
<x:p/>

</doc>

http://example.com/ns/abc is the long namespace name and x is the Qname prefix. A Qname prefix is
useful as a shorthand for the namespace of each element reference.

Element p is qualified by namespace http://example.com/ns/abc.

The default namespace

A default namespace can be specified for XML elements. The default namespace applies to the current tag
and any descendent tags. Any unqualified tag in the namespace inherits the default namespace.
<?xml version=’1.0’?>

<doc xmlns="http://example.com/ns/abc">
<p/>

</doc>

In this case both doc and p elements are in the http://example.com/ns/abc namespace.

Attribute namespaces

An attribute might have a different namespace than its associated element.

Element and attribute, qualified:
<dog xmlns:an="http://example.org/animals" xmlns:sz=”http://example.org/sizes”>
<an:breed sz:size=”Medium”>Mutt</an:breed>
</dog>

There is a difference in how elements and attributes inherit namespace when it is not explicitly specified.
Unqualified elements pick up the default namespace of the scope within which they lie. Unqualified
attributes do not have any namespace.

Element and attribute, non-qualified:
<dog xmlns:an="http://example.org/animals">
<breed size=”Medium”>Mutt</an:breed>
</dog>

In this example, element breed has a namespace of http://example.org/animals. However, attribute size
has no namespace associated with it.

50 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|
|

|

|
|

|
|
|

|
|
|

|
|
|
|

|
|

|

|

|
|

|
|
|
|

|

|

|

|

|
|
|

|
|
|

|

|
|
|

|
|

For more information about XML namespaces, consult the W3C Recommendation for Namespaces in

XML which can be found at the World Wide Web Consortium(W3C) (http://www.w3.org) .

Reserved Qname prefixes

The following Qname prefixes are reserved and must not be used to qualify user-defined elements or
attributes: xml, xs, xsi, fn, local.

Using namespaces in search
QName prefixes and default element namespaces must be defined in the @xmlxp query prolog of the
search term.

An example prolog that maps namespace ns1 to URI "http://mycompany.com"
declare namespace ns1 = "http://mycompany.com";

An example prolog that specifies that all unqualified elements are qualified by URI "http://
mycompany.com":
declare default element namespace "http://mycompany.com"

If a query does not declare any namespace QName prefix or default element namespace, then
namespaces are not considered in the query. An element or attribute name is considered a match if it
exists in any namespace.

If any QName prefix or default namespace is declared, element or attribute names are a match only if
they exist in the namespace specified.

The syntax
declare default element namespace "”;

could be used to indicate that unqualified tags are not in any namespace.

QName prefixes used in the XML search string are NOT required to match the QName prefix used in the
XML document. Matches are based solely on the long name URI.

Examples:

Restrict search to attribute attr of element test where element test is mapped to namespace
"http://posample.org", and attr is not in any namespace. Use default namespace to simplify syntax.
CONTAINS(myxmlcol, ’@xmlxp:’’declare default element namespace “http://myexample.org”;
/test[@attr > xs:date(“2005-01-01”)]’’’)

Restrict search to attribute attr of element test where element test has a namespace of
"http://myexample.org". Use explicit namespace syntax by using the QName prefix abc.
CONTAINS(myxmlcol, ’@xmlxp:’’declare namespace abc = “http://myexample.org”;
/abc:test[@attr < xs:date(“2009-01-01”)]’’’)

Restrict search to shipTo name and billTo name child elements of element purchaseOrder, which is
explicitly mapped to namespace "http://myexample.org" using QName prefix ns1. A default namespace is
also defined ("http://mastsample.org"), which applies to shipTo, name, and billTo.
CONTAINS(myxmlcol, ’@xmlxp:’’ declare default namespace "http://mastsample.org";
declare namespace ns1 = "http://posample.org"; /ns1:purchaseOrder[shipTo/name = "Jane"
and billTo/name = "Jason"]’’’)

Restrict search to attribute name (explicitly defined in namespace "http://posample.org") of shipTo
element (in default namespace "http://mastsample.org"), which is a child of element purchaseOrder

OmniFind Text Search Server 51

|

|

|

|
|

|
|
|

|

|

|
|

|

|
|
|

|
|

|

|

|

|
|

|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

http://www.w3.org/

(explicitly defined in namespace "http://posample.org"). The default namespace "http://
mastsample.org" applies to elements shipTo, billTo and name.
CONTAINS(myxmlcol, ’@xmlxp:’’ declare default namespace "http://mastsample.org";
declare namespace ns1 = "http://posample.org"; /ns1:purchaseOrder/shipTo[@ns1:name =
"Jane" and billTo/name = "Jason"]’’’)

XML Search Example
v Create a table XML_DOCUMENTS in schema XMLTEST to store the XML documents:

CREATE TABLE XMLTEST.XML_DOCUMENTS (ID INT, XML_DATA XML, PRIMARY KEY (ID));

v Create a text search index called XML_INDEX over the XML column:
call SYSPROC.SYSTS_CREATE(’XMLTEST’, ’XML_INDEX’, ’XMLTEST.XML_DOCUMENTS(XML_DATA)’, ’’);

v Insert some XML Documents:
INSERT INTO XMLTEST.XML_DOCUMENTS (ID, XML_DATA)
VALUES(1,

’<BOOK publication_date="2009-01-01">’ ||
’ <TITLE> OmniFind Text Search Server for DB2 </TITLE>’ ||
’ <ID_NUMBER> 1 ></ID_NUMBER>’ ||
’ <CHAPTER>’ ||
’ <NUMBER> 1 </NUMBER>’ ||
’ <TITLE> Introduction </TITLE>’ ||
’ <ABSTRACT> This chapter will introduce the reader to the capabilities of OmniFind

for DB2 for IBM i </ABSTRACT>’ ||
’ </CHAPTER>’||
’ <CHAPTER>’ ||
’ <NUMBER> 2 </NUMBER>’ ||
’ <TITLE> Creating a Text Search Index </TITLE>’ ||
’ <ABSTRACT> This chapter will explain how to create a text search index </ABSTRACT>’ ||
’ </CHAPTER>’ ||
’</BOOK>’);

INSERT INTO XMLTEST.XML_DOCUMENTS (ID, XML_DATA)
VALUES(2,

’<BOOK publication_date="2010-02-01">’ ||
’ <TITLE> Using the XML data type for DB2 for IBM i </TITLE>’ ||
’ <ID_NUMBER> 2 ></ID_NUMBER>’ ||
’ <CHAPTER>’ ||
’ <NUMBER> 1 </NUMBER>’ ||
’ <TITLE> Introduction </TITLE>’ ||
’ <ABSTRACT> This chapter will introduce the reader to the DB2 XML data type </ABSTRACT>’ ||
’ </CHAPTER> ’ ||
’ <CHAPTER>’ ||
’ <NUMBER> 2 </NUMBER>’ ||
’ <TITLE> Inserting XML data into a DB2 table </TITLE>’ ||
’ <ABSTRACT> This chapter will explain how to insert XML data into a DB2 table </ABSTRACT>’ ||
’ </CHAPTER>’ ||
’ <CHAPTER>’ ||
’ <NUMBER> 3 </NUMBER>’ ||
’ <TITLE> Searching XML data </TITLE>’ ||
’ <ABSTRACT> This chapter will explain how to query data in XML columns

using the CONTAINS and SCORE UDFS </ABSTRACT>’ ||
’ </CHAPTER>’ ||
’</BOOK>’);

INSERT INTO XMLTEST.XML_DOCUMENTS (ID, XML_DATA)
VALUES(3,

’<BOOK xmlns="http://www.ibm.com/digital_media_library"’ ||
’ publication_date="2010-02-01">’ ||
’ <TITLE> Using Namespaces with OmniFind Text Search Server for DB2 for IBM i </TITLE>’ ||
’ <ID_NUMBER> 2 </ID_NUMBER>’ ||
’ <CHAPTER>’ ||
’ <NUMBER> 1 </NUMBER>’ ||
’ <TITLE> Introduction </TITLE>’ ||
’ <ABSTRACT> This chapter will introduce the reader to XML namespaces </ABSTRACT>’ ||
’ </CHAPTER>’ ||
’ <CHAPTER>’ ||

52 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|

|
|
|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

’ <NUMBER> 2 </NUMBER>’ ||
’ <TITLE> Using default namespaces </TITLE>’ ||
’ <ABSTRACT> This chapter will explain how to use a namespace in an XML search </ABSTRACT>’ ||
’ </CHAPTER>’ ||
’</BOOK>’);

v Update the index:
CALL SYSPROC.SYSTS_UPDATE(’XMLTEST’, ’XML_INDEX’, ’’);

Example queries

Example 1:

Find all documents that have a root element BOOK with a direct descendant TITLE that contains DB2.
SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, ’@xmlxp:’’/BOOK/TITLE[. contains("DB2")]’’ ’) = 1;

Because a namespace prolog is not specified in the search term, no namespace is considered in the search.

Table 15. Result

ID

1

2

3

Example 2:

Find all documents that have a root element BOOK with a direct descendant TITLE that contains DB2. Use a
default element namespace to indicate that BOOK and TITLE must be in the "http://www.ibm.com/
digital_media_library” namespace.
SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, ’@xmlxp:’’declare default element namespace
"http://www.ibm.com/digital_media_library";
/BOOK/TITLE[. contains("DB2")]’’ ’) = 1;

Table 16. Result

ID

3

Example 3:

Find all documents that have a root element BOOK that has an attribute publication_date after
"2010-01-01" and has a child element TITLE that contains DB2. Restrict the search so that tags BOOK and
TITLE must not exist in any namespace.
SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, ’@xmlxp:’’declare default element namespace "";
/BOOK[@publication_date > xs:date("2010-01-01")]/TITLE[. contains("DB2")]’’ ’) = 1;

Table 17. Result

ID

2

OmniFind Text Search Server 53

|
|
|
|
|

|

|

|

|

|

|
|
|

|

||

|

|

|

|
|

|

|
|
|

|
|
|
|
|

||

|

|
|

|

|
|
|

|
|
|
|

||

|

|
|

Example 4:

Find all documents with a root element BOOK (not in any namespace) that have a direct descendant
CHAPTER (also not in a namespace) that contains information about inserting data into an XML table.
SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, ’@xmlxp:’’declare default element namespace "";
/BOOK/CHAPTER[. contains("inserting XML data into a table")]’’ ’) = 1;

Note:

v The text contained within CHAPTER includes the text contained within the ABSTRACT and TITLE
elements that are the descendants of CHAPTER.

v The search string is not case-sensitive, and linguistic variations of the search words are
considered.

Table 18. Result

ID

2

Example 5:

Find all documents with a root element BOOK (in namespace “http://www.ibm.com/
digital_media_library”) that have a direct descendant CHAPTER (also in namespace “http://www.ibm.com/
digital_media_library”). CHAPTER must have a direct descendant NUMBER (in namespace
“http://www.ibm.com/digital_media_library") with a value of 1, and also contain text information about
searching an XML namespace.
SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, ’@xmlxp:’’declare namespace ns1 = "http://www.ibm.com/digital_media_library";
/ns1:BOOK/ns1:CHAPTER[. contains("search XML using a namespace") and NUMBER = 1]’’ ’) = 1;

Document #3 is the only document with tags in the correct namespace, but it has key word matches only
in a chapter with a number value of 2 (not 1).

No rows are returned.

Table 19. Result

ID

Example 6:

Find all documents with a root element BOOK(in namespace “http://www.ibm.com/
digital_media_library”) that have a direct descendant CHAPTER (in namespace “http://www.ibm.com/
digital_media_library”). CHAPTER must have a direct descendant NUMBER (in namespace
“http://www.ibm.com/digital_media_library”) with a value of 1. BOOK must have a descendant CHAPTER
(not necessarily with a NUMBER descendant) that contains text information about searching an XML
namespace.
SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, ’@xmlxp:’’declare namespace ns1 = "http://www.ibm.com/digital_media_library";
/ns1:BOOK[ns1:CHAPTER contains("search XML using a namespace")]/ns1:CHAPTER[ns1:NUMBER = 1]’’ ’) = 1;

54 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|

|
|

|
|
|
|

|

|
|

|
|

||

|

|
|

|

|
|
|
|
|

|
|
|
|

|
|

|

||

|

|
|

|

|
|
|
|
|
|

|
|
|
|

Document 3 does have a CHAPTER element that matches the CONTAINS criteria, and also has a CHAPTER
element with a descendant NUMBER that has a value of 1. Therefore, document 3 is a match for this query.

Table 20. Result

ID

3

Related reference:
“SYSPROC.SYSTS_CREATE” on page 17
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.
“SYSPROC.SYSTS_UPDATE” on page 32
You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.
“CONTAINS” on page 35
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.

XML search example
This example includes a table of XML documents, a text search index over an XML column in the table,
and six SQL text searches using CONTAINS.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 128.

v Create a table XML_DOCUMENTS in schema XMLTEST to store the XML documents:
CREATE TABLE XMLTEST.XML_DOCUMENTS (ID INT, XML_DATA XML, PRIMARY KEY (ID));

v Create a text search index called XML_INDEX over the XML column:
call SYSPROC.SYSTS_CREATE(’XMLTEST’, ’XML_INDEX’, ’XMLTEST.XML_DOCUMENTS(XML_DATA)’, ’’);

v Insert some XML documents:
INSERT INTO XMLTEST.XML_DOCUMENTS (ID, XML_DATA)
VALUES(1,

’<BOOK publication_date="2009-01-01">’ ||
’ <TITLE> OmniFind Text Search Server for DB2 </TITLE>’ ||
’ <ID_NUMBER> 1 ></ID_NUMBER>’ ||
’ <CHAPTER>’ ||
’ <NUMBER> 1 </NUMBER>’ ||
’ <TITLE> Introduction </TITLE>’ ||
’ <ABSTRACT> This chapter will introduce the reader to the capabilities of OmniFind

for DB2 for IBM i </ABSTRACT>’ ||
’ </CHAPTER>’||
’ <CHAPTER>’ ||
’ <NUMBER> 2 </NUMBER>’ ||
’ <TITLE> Creating a Text Search Index </TITLE>’ ||
’ <ABSTRACT> This chapter will explain how to create a text search index </ABSTRACT>’ ||
’ </CHAPTER>’ ||
’</BOOK>’);

INSERT INTO XMLTEST.XML_DOCUMENTS (ID, XML_DATA)
VALUES(2,

’<BOOK publication_date="2010-02-01">’ ||
’ <TITLE> Using the XML data type for DB2 for IBM i </TITLE>’ ||
’ <ID_NUMBER> 2 ></ID_NUMBER>’ ||
’ <CHAPTER>’ ||
’ <NUMBER> 1 </NUMBER>’ ||
’ <TITLE> Introduction </TITLE>’ ||
’ <ABSTRACT> This chapter will introduce the reader to the DB2 XML data type </ABSTRACT>’ ||
’ </CHAPTER> ’ ||
’ <CHAPTER>’ ||

OmniFind Text Search Server 55

|
|

||

|

|
|

|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

’ <NUMBER> 2 </NUMBER>’ ||
’ <TITLE> Inserting XML data into a DB2 table </TITLE>’ ||
’ <ABSTRACT> This chapter will explain how to insert XML data into a DB2 table </ABSTRACT>’ ||
’ </CHAPTER>’ ||
’ <CHAPTER>’ ||
’ <NUMBER> 3 </NUMBER>’ ||
’ <TITLE> Searching XML data </TITLE>’ ||
’ <ABSTRACT> This chapter will explain how to query data in XML columns

using the CONTAINS and SCORE UDFS </ABSTRACT>’ ||
’ </CHAPTER>’ ||
’</BOOK>’);

INSERT INTO XMLTEST.XML_DOCUMENTS (ID, XML_DATA)
VALUES(3,

’<BOOK xmlns="http://www.ibm.com/digital_media_library"’ ||
’ publication_date="2010-02-01">’ ||
’ <TITLE> Using Namespaces with OmniFind Text Search Server for DB2 for IBM i </TITLE>’ ||
’ <ID_NUMBER> 2 </ID_NUMBER>’ ||
’ <CHAPTER>’ ||
’ <NUMBER> 1 </NUMBER>’ ||
’ <TITLE> Introduction </TITLE>’ ||
’ <ABSTRACT> This chapter will introduce the reader to XML namespaces </ABSTRACT>’ ||
’ </CHAPTER>’ ||
’ <CHAPTER>’ ||
’ <NUMBER> 2 </NUMBER>’ ||
’ <TITLE> Using default namespaces </TITLE>’ ||
’ <ABSTRACT> This chapter will explain how to use a namespace in an XML search </ABSTRACT>’ ||
’ </CHAPTER>’ ||
’</BOOK>’);

v Update the index:
CALL SYSPROC.SYSTS_UPDATE(’XMLTEST’, ’XML_INDEX’, ’’);

Example queries

Search 1:

Find all documents that have a root element BOOK with a direct descendant TITLE that contains DB2.
SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, ’@xmlxp:’’/BOOK/TITLE[. contains("DB2")]’’ ’) = 1;

Because a namespace prolog is not specified in the search term, no namespace is considered in the search.

Table 21. Result

ID

1

2

3

Search 2:

Find all documents that have a root element BOOK with a direct descendant TITLE that contains DB2. Use a
default element namespace to indicate that BOOK and TITLE must be in the "http://www.ibm.com/
digital_media_library” namespace.
SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, ’@xmlxp:’’declare default element namespace
"http://www.ibm.com/digital_media_library";
/BOOK/TITLE[. contains("DB2")]’’ ’) = 1;

56 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|
|
|

|

||

|

|

|

|
|

|

|
|
|

|
|
|
|
|

Table 22. Result

ID

3

Search 3:

Find all documents that have a root element BOOK that has an attribute publication_date after
"2010-01-01" and has a child element TITLE that contains DB2. Restrict the search so that tags BOOK and
TITLE must not exist in any namespace.
SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, ’@xmlxp:’’declare default element namespace "";
/BOOK[@publication_date > xs:date("2010-01-01")]/TITLE[. contains("DB2")]’’ ’) = 1;

Table 23. Result

ID

2

Search 4:

Find all documents with a root element BOOK (not in any namespace) that have a direct descendant
CHAPTER (also not in a namespace) that contains information about inserting data into an XML table.
SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, ’@xmlxp:’’declare default element namespace "";
/BOOK/CHAPTER[. contains("inserting XML data into a table")]’’ ’) = 1;

Note:

v The text contained within CHAPTER includes the text contained within the ABSTRACT and TITLE
elements that are the descendants of CHAPTER.

v The search string is not case-sensitive, and linguistic variations of the search words are
considered.

Table 24. Result

ID

2

Search 5:

Find all documents with a root element BOOK (in namespace “http://www.ibm.com/
digital_media_library”) that have a direct descendant CHAPTER (also in namespace “http://www.ibm.com/
digital_media_library”). CHAPTER must have a direct descendant NUMBER (in namespace
“http://www.ibm.com/digital_media_library") with a value of 1, and also contain text information about
searching an XML namespace.
SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, ’@xmlxp:’’declare namespace ns1 = "http://www.ibm.com/digital_media_library";
/ns1:BOOK/ns1:CHAPTER[. contains("search XML using a namespace") and NUMBER = 1]’’ ’) = 1;

Document #3 is the only document with tags in the correct namespace, but it has key word matches only
in a chapter with a number value of 2 (not 1).

No rows are returned.

OmniFind Text Search Server 57

||

|

|
|

|

|
|
|

|
|
|
|

||

|

|
|

|

|
|

|
|
|
|

|

|
|

|
|

||

|

|
|

|

|
|
|
|
|

|
|
|
|

|
|

|

Table 25. Result

ID

Search 6:

Find all documents with a root element BOOK(in namespace “http://www.ibm.com/
digital_media_library”) that have a direct descendant CHAPTER (in namespace “http://www.ibm.com/
digital_media_library”). CHAPTER must have a direct descendant NUMBER (in namespace
“http://www.ibm.com/digital_media_library”) with a value of 1. BOOK must have a descendant CHAPTER
(not necessarily with a NUMBER descendant) that contains text information about searching an XML
namespace.
SELECT ID
FROM XMLTEST.XML_DOCUMENTS
WHERE CONTAINS(XML_DATA, ’@xmlxp:’’declare namespace ns1 = "http://www.ibm.com/digital_media_library";
/ns1:BOOK[ns1:CHAPTER contains("search XML using a namespace")]/ns1:CHAPTER[ns1:NUMBER = 1]’’ ’) = 1;

Document 3 does have a CHAPTER element that matches the CONTAINS criteria, and also has a CHAPTER
element with a descendant NUMBER that has a value of 1. Therefore, document 3 is a match for this query.

Table 26. Result

ID

3

XML search query grammar
The grammar for XML Search is based on a subset of the XPath language, which is defined by Extended
Backus-Naur Form (EBNF) grammar. Queries that do not conform to the supported grammar are rejected
by the query parser.

The EBNF grammar has been simplified in the following ways by:
v Disallowing absolute path names in predicate expressions.
v Recognizing only one axis (tag) and only in the forward direction.
v Applying additional semantic restrictions to the use of the Wildcard character (see previous section on

"Path Expression Wildcard Support" in “XML search” on page 44.
v Requiring that the namespace declaration is specified in the search string before any usage, implied or

explicit, of the namespace. If the namespace declaration is not included, namespaces are not considered
in the search.

v Relative path expressions must have a tag or attribute name included in the expression. The query ‘/'
to select the root node, and ‘//' to select all nodes are not valid expressions.

The following table shows the supported grammar in EBNF notation.

Table 27. Supported query grammar in EBNF notation

Symbol Production

XMLQuery ::= QueryPrefix NameSpaceDeclaration QueryString
| QueryPrefix QueryString

QueryPrefix ::= @xmlxp:

QueryString ::= "'" PathExpr "'"

PathExpr ::= RelativePathExpr
| "/" RelativePathExpr?
| "//" RelativePathExpr

58 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

||

|

|
|

|

|
|
|
|
|
|

|
|
|
|

|
|

||

|

|
|

|
|
|
|

|

|

|

|
|

|
|
|

|
|

|

||

||

||
|

||

||

||
|
|

Table 27. Supported query grammar in EBNF notation (continued)

RelativePathExpr ::= StepExpr (("/" | "//") StepExpr)*

StepExpr ::= ("." | AbbrevForwardStep) Predicate?

AbbrevForwardStep ::= "@"? (QName | "*")

Predicate ::= "[" PredicateExpr "]"

PredicateExpr ::= Expr
| PredicateExpr ("and" | "or")
| "(" PredicateExpr ")"

Expr ::= ComparisonExpr | ContainmentExpr

ComparisonExpr ::= PathExpr ComparisonOp Literal

ComparisonOp ::= "=" | "<" | ">" | "!=" | "<=" | ">="

Literal ::= StringLiteral | NumericLiteral | DateLiteral

ContainmentExpr ::= PathExpr "contains" "(" StringLiteral ")"
| PathExpr "excludes" "(" StringLiteral ")"

StringLiteral ::= "\"" [^"]* "\""
| "'" [^']* "'"

DateLiteral ::= "xs:date(\"" xmlDate "\")"
| "xs:dateTime(\"" xmlDateTime "\")"

xmlDate ::= yyyy"-"mm"-"dd

xmlDateTime ::= yyyy"-"mm"-"dd [T] hh":"mm":"ss"."uuuuuu

NameSpaceDeclaration ::= defaultNameSpace (NameSpacePrefixDeclaration)*

defaultNameSpace ::= “declare default element namespace
“ StringLiteral “;”

NameSpacePrefixDeclaration ::= “declare namespace” NameSpacePrefix “=”
StringLiteral “;”

NameSpacePrefix ::= [^”:]+

Administer an OmniFind(r) Text Search Server for DB2(r) for i
You can administer the OmniFind Text Search Server for DB2 for i using the following techniques and
tools.

Start the OmniFind Text Search Server for DB2 for i
You can start the OmniFind Text Search Server for DB2 for i by calling SYSPROC.SYSTS_START.

OMNIFIND starts the text search server automatically as needed, as long as the SERVERSTATUS in
QSYS2.SYSTEXTSERVERS is 0. This policy allows the text search server to start automatically when the
host system starts. However, you can start the server manually if necessary.

To start the server:

CALL SYSPROC.SYSTS_START(serverid)

If successful, the SERVERSTATUS in QSYS2.SYSTEXTSERVERS is set to 0 after you call the procedure.
When the server is local, the following jobs are active in the background:
v QJVAEXEC userx BCI 0.0 JVM-com.ibm.es
v QJVAEXEC userx BCI 0.0 PGM-textExtrac
v QJVAEXEC userx BCI 0.0 PGM-textExtrac

OmniFind Text Search Server 59

|

||

||

||

||

||
|
|

||

||

||

||

||
|

||
|

||
|

||

||

||

||
|

||
|

||
|

|

|

|

|

v QJVAEXEC userx BCI 0.0 PGM-textExtrac
v QJVAEXEC userx BCI 0.0 PGM-textExtrac

where userx is the user ID of the administrator that called the stored procedure.

It might take a few minutes before all these jobs are active and the text server can be used.
Related reference:
“SYSPROC.SYSTS_START” on page 14
You can enable DB2 text search functions by calling the SYSPROC.SYSTS_START stored procedure.
“QSYS2.SYSTEXTSERVERS administration table” on page 99
You can see where the text search servers are installed using the QSYS2.SYSTEXTSERVERS administration
table.

Stop the OmniFind Text Search Server for DB2 for i
You can stop the OmniFind Text Search Server for DB2 for i manually by using the shutdown script that
is provided.

If you installed the OmniFind Text Search Server for DB2 for i as a service, the text search server stops
automatically each time that the host system is shut down. However, you can stop the server manually
even if you installed the OmniFind Text Search Server for DB2 for i as a service.

To stop the OmniFind Text Search Server for DB2 for i:
1. Indicate in the SYSTEXTSERVER catalog that the server is stopped by calling SYSPROC.SYSTS_STOP.
v To stop all servers: CALL SYSPROC.SYSTS_STOP().
v To stop a specific server:

a. Query the server catalog to get the serverid that you want to stop:
SELECT SERVERID,SERVERPORT,SERVERSTATUS,SERVERPATH

FROM QSYS2.SYSTEXTSERVERS

Note: SERVERPATH identifies the server. SERVERSTATUS indicates whether the server is currently
active (0) or inactive (1).

b. Call SYSPROC.SYSTS_STOP, specifying the numeric serverid or the alias name of the server you
want to stop:
CALL SYSPROC.SYSTS_STOP(serverid).

2. (Optional) Stop the server itself by calling the shutdown script. Stopping the server ends all the text
search server jobs on the host system. Stop the server in the Qshell environment.
To shut down the local server, enter the following command from the command line:
QSH CMD(’cd /QOpenSys/QIBM/ProdData/TextSearch/server1/bin; shutdown.sh’) .
If the server to be shut down is not the default local server created by the install process, you need to
obtain the correct SERVERPATH value from QSYS2.SYSTEXTSERVERS. Use that SERVERPATH
instead of /QOpenSys/QIBM/ProdData/TextSearch/server1/bin.
If you stop the server by using the shutdown script, the SERVERSTATUS catalog is not changed to the
inactive (1) status. When the SYSTS_CREATE, SYSTS_UPDATE, and SYSTS_DROP stored procedures
are called the next time, or when a CONTAINS or SCORE built-in function is invoked as part of an
SQL query, the server will start automatically.

Related reference:
“SYSPROC.SYSTS_STOP” on page 16
You can call the SYSPROC.SYSTS_STOP stored procedure to stop DB2 text search functions. This stored
procedure sets the SERVERSTATUS value in the catalog QSYS2.SYSTEXTSERVERS to 1 (stopped).
“QSYS2.SYSTEXTSERVERS administration table” on page 99
You can see where the text search servers are installed using the QSYS2.SYSTEXTSERVERS administration

60 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|

|

|
|

|

|

|
|
|

|
|
|
|

table.

Save and restore text search indexes

You can save and restore your text search indexes with or without data.

Save and restore a text search index without data
You can save and restore a text search index structure without the index data. The save and restore
process can be accomplished using the SAVOBJ and SAVLIB CL commands.

When you create a text search index using SYSTS_CREATE, a DB2 view is created using the index
schema and name as the view name. The view serves as a mechanism for saving and restoring the
structure of the index.

The user can save the view using the same methods for saving database tables and views. (See SAVOBJ
or SAVLIB CL commands.) Saving the view automatically saves additional information needed to recreate
the index during restore.

The view can be restored using the RSTOBJ or RSTLIB CL command. DB2 for i recognizes that the view
represents a text search index and recreates the index. After the index structure has been recreated, an
update will be submitted to a background job to repopulate the index data.

Additional considerations need to be made during the restore process:
1. If the text search server cannot be started, or a required product is not installed on the system, the

restore fails. See the Software requirements for a list of required products.
2. If the text search index exists on the system, the following actions are taken.

a. If the existing index information exactly matches the index being restored, the restore succeeds.
The index is not rebuilt.

b. If the existing index information does not match the index being restored, and cannot be modified
to match without recreating the index, the restore fails.

c. If the existing index information does not match the index being restored, but can be modified to
match using SYSTS_ALTER, then the existing index is altered to match the index that was saved.
The index is not rebuilt.

3. The index is restored to use the same text search server that was in use at the time of the save. If the
server that was used at the time of the save is not defined, a currently available server is selected. If
the saved server is defined but not available, the restore fails.

4. If the text search index cannot be created for any other reason, such as an incompatible column in the
based-on table, the restore fails.

5. The staging table name in QSYS2, trigger names that are added to the based-on table, and the
collection name on the text search server can change, since they are generated by the system.

6. Synonyms that have been added to the text search index synonym dictionary are not preserved.
7. If the index exists in the System catalogs at restore time, and the view does not currently exist on the

system, only the view is restored. The staging table, text search server collection, and triggers on the
based-on table are not created.
In this case, the text search index is assumed to be part of a larger restore where the individual pieces
of the index were saved explicitly by the user, and are now all being restored (such as restoring the
entire system).
All the required pieces of the index must be restored before the index works. It is the users
responsibility to ensure that all pieces of the index are synchronized.

OmniFind Text Search Server 61

|

|
|
|

|
|
|

|
|
|

|
|
|

|

|
|

|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|

|
|
|

|
|
|

|
|

Text search indexes are supported by the Restore Deferred Objects (RSTDFROBJ) command. The use of
the DFRID parameter on the RSTOBJ and RSTLIB CL commands is recommended. This parameter allows
Text Search indexes to be restored using the RSTDFROBJ command after correcting common conditions
that prevent creation of the index.

Examples of conditions that cause the index to be deferred are:
v A required product was not installed.
v A text search server was not available or defined.
v The based on table did not exist.
Related reference:
“SYSPROC.SYSTS_CREATE” on page 17
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.
“SYSPROC.SYSTS_ALTER” on page 26
You can call the SYSPROC.SYSTS_ALTER stored procedure to modify attributes of an index that was
created by SYSPROC.SYSTS_CREATE. Only attributes explicitly specified on this procedure are changed.
All other attributes of the index remain unchanged.
Related information:
Save Object (SAVOBJ)
Save Library (SAVLIB)
Restore Object (RSTOBJ)
Restore Library (RSTLIB)
Restore Deferred Objects (RSTDFROBJ)

Save and restore a text search index with data
Saving and restoring a text search index with data is a more completed operation than without data.

You must save the following objects:
v The text search index (stored in the integrated file system).
v The staging table used as a log file that tracks record changes in the base table (over which the index is

built). The staging table is in library QSYS2. Its name begins with QDBTS, for example, QDBTS00001.
v The view, which is the database object representing the text index. The view has the same name as the

text index.
v The base table over which the index is built.
v The SQL catalogs that store the information to track the index.

Complete the following steps to save the text search indexes:
1. Recommended: bring the indexes up to date by first performing update operations (SYSTS_UPDATE)

for the text search indexes.
2. Save the base table and view using standard save techniques such as the SAVOBJ command.
3. Save the staging tables that are in QSYS2 using standard save techniques. For example, SAVOBJ

LIB(QSYS2) OBJ(QDBTS*).
4. Save the text search index catalogs in QSYS2:

The catalog names all begin with SYSTXT, for example, SYSTXTSRVR. Like the other SQL catalogs in
QSYS2, it is your responsibility to ensure that a backup copy is saved and available.
This backup copy can be accomplished in one of two ways:
a. The entire library can be saved as part of the SAVLIB command, specifying parameter LIB as

either *ALLUSR or *IBM.

62 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|
|
|

|

|

|

|

|

|
|
|
|

|
|
|
|

|

|

|

|

|

|

|
|

|

|

|
|

|
|

|

|

|

|
|

|

|
|

|

|
|

|

|
|

b. The specific text search catalogs can be saved using the SAVOBJ command, specifying LIB(QSYS2)
and OBJ((SYSTXT*)).

5. Save the text search index information in the integrated file system. This information includes the
entire contents of the config directory under the text server path.
The text server path can be determined by querying the SERVERPATH column of the SYSTXTSRVR
catalog for the server of interest. The server path has the directory bin appended to it, which you
replace with the config directory.
A common save technique is to use the SAV command, though any type of save compression works.

Note: This save information is only applicable to text servers running on IBM i.

Example:

Suppose you want to save all the text indexes associated with the default text server created by
OMNIFIND. You have a table QGPL/MYDOCS with text index QGPL/MYDOCIX built over it. In this
example, the save media are save files.

Complete the following steps:
1. Save all the staging tables and the OMNIFIND catalogs from QSYS2:

SAVOBJ OBJ(QDBTS* SYSTXT*) LIB(QSYS2) DEV(*SAVF) SAVF(QGPL/SAVFQSYS2)

2. Save the base table and view:
SAVOBJ OBJ(MYDOCS MYDOCIX) LIB(QGPL) DEV(*SAVF) SAVF(QGPL/SAVFMYFILE)

3. Using SQL, get the path name of the text server. In this example, serverid = 2:
SELECT SERVERPATH FROM systxtsrvr WHERE serverid=2

The SERVERPATH value returned is /QOpenSys/QIBM/ProdData/TextSearch/server1/bin/.

Note: Verify that you are querying for the correct server.
4. Substitute config for bin/ and save the text indexes:

SAV DEV(’/QSYS.LIB/QGPL.LIB/SAVIFS.FILE’) OBJ((’/QOpenSys/QIBM/ProdData/TextSearch/server1/
config’))

The text indexes are now saved in save files QGPL/SAVFMYFILE, QGPL/SAVFQSYS2, and
QGPL/SAVIFS.

The text index restore must be done in the same order as the save. The QSYS2 catalogs MUST be restored
first.
Related reference:
“SYSPROC.SYSTS_UPDATE” on page 32
You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.
Related information:
Save Object (SAVOBJ)
Save Library (SAVLIB)

Problem determination
You can use the system and trace messages logged to determine the source of problems that might occur.

The OmniFind Text Search Server for DB2 for iserver logs are located in the <INSTALL_HOME>/log
directory. The default server log created at installation is located in the /QOpenSys/QIBM/ProdData/
TextSearch/server1/log directory.

OmniFind Text Search Server 63

|
|

|
|

|
|
|

|

|

|

|
|
|

|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|

|

|
|
|

|

|

|

By default, the trace log is turned off, and the system log level is set to informational. You can use the
configuration tool to change the trace and log level options.

The server logs are rotated by size. The five most recent copies of server logs that are no more than 8 MB
are stored. You can view and save the server logs by using the script that is provided.

On IBM i or a Linux server, the script is logformatter.sh. On a Windows server, the script is
logformatter.bat.

Options

The script has the following options.

-f logfile
Specifies the server log file that you want to format.

-l locale
Specifies the locale to use when writing the reformatted messages. For example, specify en_US for
English, or ja_JP for Japanese. This value is optional. The default value is en_US.

-o outputfile
Specifies the output file where the reformatted log messages are to be written by using UTF-8
encoding. This value is optional. If you do not specify this option, a standard output file is used.

-? Prints the help message. This value is optional.

-v Specifies the mode for displaying debugging messages. This value is optional.

View and save server logs
You can use the provided scripts to view and save the server logs. These logs can help you determine the
source of problems.

To view and save a server log:
1. To view the server log, run one of the following commands:

Option Description

On IBM i (within the QSH environment) bin/logformatter.sh -f
log/System.0.log

On a Linux server bin/logformatter.sh -f
log/System.0.log

On a Windows server bin/logformatter.bat -f
log/System.0.log

2. To save the server log to a file so that you can read the log in a file editor, run one of the following
commands:

Option Description

On IBM i (within the QSH environment) bin/logformatter.sh
-f log/System.0.log
–o <output filename>

On a Linux server bin/logformatter.sh
-f log/System.0.log
–o <output filename>

On a Windows server bin/logformatter.bat
-f log/System.0.log
–o <output filename>

64 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

Administration tools

OMNIFIND provides tools that you can use for common tasks. These tasks include configuring and
administering an additional text search server, and adding a synonym dictionary to a collection.

These tools are shell scripts rather than CL commands. They can be called within the script environment
that is started through either the Start QSH (STRQSH) or QSH (QSH) CL commands.

These tools do not authenticate user IDs. However, these tools can be run only by a user with valid
access to the text search server.
Related information:
Start QSH (STRQSH)
Start QSH (QSH)

Configuration tool
Use the configuration tool to customize configuration settings after you install OmniFind Text Search
Server for DB2 for i.

To customize most of the configuration settings, you must stop the text search server before running the
configuration tool.

However, when the server is running, you can display the following options:
v the current authentication token
v the server port
v the current properties of the system

The configServerAndDB2 tool

The configServerAndDB2 (configServerAndDB2.sh) tool is located in integrated-file-system directory
/QOpenSys/QIBM/ProdData/TextSearch. This tool can be used to create or modify entries in the DB2
catalog file SYSTEXTSERVERS.

It can also be used to configure the authentication token or the port number associated with the specific
server. The tool modifies or sets the values for SERVERAUTHTOKEN and SERVERPORT in the DB2
catalog file SYSTEXTSERVERS.

If you want to create an additional server that runs locally to your system, use the “ServerInstance tool”
on page 75 instead.

The configServerAndDB2 (configServerAndDB2.sh) tool is called with five parameters:
1. The first parameter is either generateToken or configureHTTPListener.
2. The second parameter is -serverPath.
3. The third parameter is the path to the root node in the integrated file system where the information

related to the server is stored. Example: /QOpenSys/QIBM/ProdData/TextSearch/server2.
4. The fourth and fifth parameters vary depending on the value of the first parameter.
v If the first parameter is generateToken, then the fourth parameter is -seed followed by an integer

(for example, 1) as the fifth parameter
v If the first parameter is configureHTTPListener, then the fourth parameter is -adminHTTPPort. The

fifth parameter is an integer value that is used as the socket port for the server.

Here are two examples:

OmniFind Text Search Server 65

|
|

|

|

|

|

|
|

v STRQSH
cd /QOpenSys/QIBM/ProdData/TextSearch
configServerAndDB2.sh generateToken -serverPath /QOpenSys/QIBM/ProdData/TextSearch/server2 -seed 1

v STRQSH
cd /QOpenSys/QIBM/ProdData/TextSearch
configServerAndDB2.sh configureHTTPListener -serverPath /QOpenSys/QIBM/ProdData/TextSearch/server2

-adminHTTPPort 9997

The configTool script

The configTool.sh script is available for each local server. It is not recommended to use it in modifying
server entries. You can use it to print the server information (such as printAll and printToken).

Table 28. Commands to run the configuration tool

On IBM i:

configTool.sh
<mandatory_command_option>
<mandatory_global_arguments>
<optional_global_arguments>
<optional_command_options>

On a Linux server

configTool.sh
<mandatory_command_option>
<mandatory_global_arguments>
<optional_global_arguments>
<optional_command_options>

On a Windows server

configTool.bat
<mandatory_command_option>
<mandatory_global_arguments>
<optional_global_arguments>
<optional_command_options>

Command options

The configuration tool supports the following command options:

configureParams
Specifies the system parameters that you can configure. You can configure the following parameters:

-configPath
Specifies the absolute path to the configuration folder that contains the config.xml file.

-adminHTTPPort
Specifies the administration HTTP port number. If an error occurs, an error code of -3 is returned.

-logPath
Specifies the absolute path to the log directory.

-temDirPath
Specifies the absolute path to the temporary directory.

-numberOfIndexers
Specifies the number of concurrent text search indexing subsystems.

-numberOfTokenizers
Specifies the number of concurrent subsystems that are used for parsing input into tokens.

66 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

-maxDocumentSize
Specifies the maximum number of characters that are to be indexed for a document. If an error
occurs, an error code of -3 is returned.

-logLevel
Specifies the log level for system messages in the log file. The default level is informational.
Additional options are warning and severe.

-maxHeapSize
Starts and ends the heap size in a format that is accepted by the Java Virtual Machine. If an error
occurs, an error code of -5 is returned.

printToken
Prints the current authentication token and encryption key.

printAll
Prints all the current values for the options that you can configure with this tool.

printAdminHTTPPort
Prints the current value for the administration HTTP port.

generateToken
Generates the authentication token.

Global arguments

-configPath
Specifies the absolute path to the configuration folder that contains the config.xml file. This global
argument is mandatory.

-locale
Specifies the five-character locale setting for writing messages to the trace file. If you do not specify
this setting, the default value, -en_US, is used.

Example

On a Linux server, use the following command to print the current authentication token:
configTool.sh printToken -configPath <path> <optional_global_arguments>

Related information:
Start QSH (QSH)

SYSPROC.SYSTS_REMOVE
You can remove orphaned indexes with the SYSPROC.SYSTS_REMOVE SQL stored procedure.

Authorization

The collection-name of the possible orphaned indexes can be identified by using the QDBTS_LISTINXSTS
User Defined Table Function (UDTF).

The privileges held by the authorization ID of the statement must include at least one of these privileges:
v *JOBCTL authority
v QIBM_DB_SQLADM security special function usage

Syntax

>>-SYSPROC.SYSTS_REMOVE (collection-name) -><

OmniFind Text Search Server 67

Parameter

collection-name
Specifies a string literal that identifies the name of the collection to be removed.

Note: This procedure uses the adminTool.sh shell script to remove the collection directory. To use this
shell script, the server must be in the working state. If the server is not started, this procedure
returns an error message.

SQL for SYSTS_REMOVE
CREATE PROCEDURE SYSPROC.SYSTS_REMOVE(

IN COLLECTIONNAME VARCHAR(255) CCSID 1208)
EXTERNAL NAME QDBTSLIB.DSN5RMCOLL
DYNAMIC RESULT SETS 0
LANGUAGE C++
PARAMETER STYLE SQL
PROGRAM TYPE MAIN
COMMIT ON RETURN NO
INHERIT SPECIAL REGISTERS;

Examples
v To remove an orphaned index with a collection name of 0_65_2815_2008_06_02_11_58_22_901726 from

the ASP group *SYSBASE , enter the following command from any SQL interface:
CALL SYSPROC.SYSTS_REMOVE(’0_65_2815_2008_06_02_11_58_22_901726’)

The SYSTS_REMOVE stored procedure checks whether the index information is in catalog table
QSYS2.SYSTEXTINDEXES. If it is true, error message DSX_INDEX_EXIST is returned; if not, the
procedure searches under the config/collections directory of server 65.
If the collection does not exist, error message DSX_COLLECTION_NOT_FOUND is returned; if the
collection exists, the procedure calls adminTool.sh to remove the collection.
Then the procedure checks the directory again to see whether the collection has been removed. If the
collection is not removed, error message DSX_REMOVE_COLLECTION_FAILED is returned to the
user.

Note: When the collection on the text search server is in an independent ASP group, the thread that
calls the SYSTS_REMOVE stored procedure must run in the namespace of the independent ASP.
Use the Set Auxiliary Storage Pool Group (SETASPGRP) command.

v To remove an orphaned index with a collection name of 33_7_26_2008_06_18_21_28_39_407824 from an
independent ASP iaspXXX, you can use the following commands:
CL:
SETASPGRP(isapXXX)

SQL:
CALL SYSPROC.SYSTS_REMOVE(’ 33_7_26_2008_06_18_21_28_39_407824’)

Note: If you use System i® Navigator, right-click the database name for the independent ASP, and run
your SQL scripts.

Related reference:
“QSYS2.SYSTEXTINDEXES administration table” on page 97
You can see information about each text search index in the QSYS2.SYSTEXTINDEXES administration
table. Each text search index has a name, schema name, and an associated collection name on the text
search server.
“Find orphaned and missing indexes” on page 72
You can find orphaned and missing indexes using an SQL User Defined Table Function (UDTF) named
QDBTS_LISTINXSTS.

68 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

SYSPROC.SYSTS_REPRIMEINDEX
You can reprime the index and start an initial update using the SYSPROC.SYSTS_REPRIMEINDEX stored
procedure. Use this stored procedure when you want to restore data from the base table.

If the data from the base table is restored, the updated content of the base table cannot be indexed while
the SYSTS_UPDATE stored procedure is called. In this case, the SYSPROC.SYSTS_REPRIMEINDEX stored
procedure can be called to reprime the index.

Note: If a synonym dictionary has been created for the text search index, this process removes the
dictionary.

Syntax
>>-SYSPROC.SYSTS_REPRIMEINDEX(indexSchema, indexName, options) -><

The schema qualifier is SYSPROC.

Parameters

indexSchema
Identifies the schema of the text search index. If this parameter is null, the value of the CURRENT
SCHEMA special register for the invoker is used.

The data type of this parameter is VARCHAR(128).

indexName
Identifies the name of the text search index. The name of the text search index with the index schema
uniquely identifies the full-text index in the DB2 subsystem. You must specify a value that is not null
for this parameter.

The data type for this parameter is VARCHAR(128).

options
A character string that specifies options that can be added in the future for this stored procedure.

Important: You must specify a null value for the options parameter. Otherwise, errors can be
generated. Read the following Example for how to specify the options parameter.

SQL for SYSTS_REPRIMEINDEX
CREATE PROCEDURE SYSPROC.SYSTS_REPRIMEINDEX(

IN INDEXSCHEMA VARCHAR(128) CCSID 1208,
IN INDEXNAME VARCHAR(128) CCSID 1208,
IN OPTIONS VARCHAR(32000) CCSID 1208)

EXTERNAL NAME QDBTSLIB.DSN5RPMIDX
DYNAMIC RESULT SETS 0
LANGUAGE C
PARAMETER STYLE SQL
MODIFIES SQL DATA
PROGRAM TYPE MAIN
COMMIT ON RETURN NO
INHERIT SPECIAL REGISTERS

Example
v To reprime an index from any SQL interface, type the following command from any SQL interface:

CALL SYSPROC.SYSTS_REPRIMEINDEX('indexSchema1’,’indexName1’,’’)

Related reference:
“SYSPROC.SYSTS_UPDATE” on page 32
You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.

OmniFind Text Search Server 69

SYSPROC.SYSTS_VALIDITYCHECK
You can check for valid index items using the SYSPROC.SYSTS_VALIDITYCHECK SQL stored procedure.

Syntax

This stored procedure can fix some items that are not valid if the autoFix parameter is specified.

>>-SYSPROC.SYSTS_VALIDITYCHECK (indexSchema, indexName, autoFix) -><

The schema qualifier is SYSPROC.

Parameters

indexSchema
Identifies the schema of the text search index. If this parameter is null, the value of the CURRENT
SCHEMA special register for the invoker is used.

The data type of this parameter is VARCHAR(128).

indexName
Identifies the name of the text search index. The name of the text search index with the index schema
uniquely identifies the full-text index in the DB2 subsystem. You must specify a value that is not null
for this parameter.

The data type for this parameter is VARCHAR(128).

autoFix
Identifies whether automatic fix is required. The value for this parameter can only be 0 or 1. The
meanings of these values are described as follows:

0 Only the index validity is checked.

1 Index validity is checked and items that are not valid are fixed.

Note:

If values other than 0 or 1 are specified, they are considered as 0.

The data type for this parameter is INTEGER.

Restrictions: If indexSchema and indexName are both specified as *NONE, then the stored procedure
checks only the validity for common parts of the product.

SQL for SYSTS_VALIDITYCHECK
CREATE PROCEDURE SYSPROC.SYSTS_VALIDITYCHECK

(IN INDEXSCHEMA VARCHAR(128) CCSID 1208,
IN INDEXNAME VARCHAR(128) CCSID 1208,
IN AUTOFIX INTEGER)

EXTERNAL NAME QDBTSLIB.DSN5VALCHK
DYNAMIC RESULT SETS 0
LANGUAGE C
PARAMETER STYLE SQL
MODIFIES SQL DATA
PROGRAM TYPE MAIN
COMMIT ON RETURN NO
INHERIT SPECIAL REGISTERS

Examples
v To check the validity for an index, type the following command from any SQL interface:

CALL SYSPROC.SYSTS_VALIDITYCHECK('indexSchema1’,’indexName1’,0)

v To check and fix an index automatically:

70 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

CALL SYSPROC.SYSTS_VALIDITYCHECK('indexSchema1’,’indexName1’,1)

Synonym dictionaries
A synonym dictionary can improve the quality of search results.

You can add a synonym dictionary to a collection at any time.

A synonym dictionary consists of synonym groups that you define in an XML file. For example:
<?xml version="1.0" encoding="UTF-8"?>
<synonymgroups version="1.0">
<synonymgroup>

<synonym>Paixão</synonym>
<synonym>amor</synonym>
<synonym>flor</synonym>
<synonym>linda</synonym>

</synonymgroup>
<synonymgroup>

<synonym>worldwide patent tracking system</synonym>
<synonym>wpts</synonym>

</synonymgroup>
</synonymgroups>

Add a synonym dictionary to a collection:

Specifying the synonym groups in a synonym dictionary improves the quality of text search results. The
OMNIFIND administrator has the correct authority and privileges to run the synonym tool and IBM
Navigator for i.
v To add a synonym dictionary to a collection with the synonym tool , follow these steps:

1. Create a synonym XML file by specifying the synonym groups, as shown in the following example:
<?xml version="1.0" encoding="UTF-8"?>
<synonymgroups version="1.0">
<synonymgroup>

<synonym>Paixão</synonym>
<synonym>amor</synonym>
<synonym>flor</synonym>
<synonym>linda</synonym>

</synonymgroup>
<synonymgroup>

<synonym>worldwide patent tracking system</synonym>
<synonym>wpts</synonym>

</synonymgroup>
</synonymgroups>

2. Copy the synonym XML file to any directory on the text search server.
3. Use the synonym tool to add the synonym dictionary to a collection.

You can add a synonym dictionary in append mode or replace mode. If you add a synonym
dictionary in append mode, the new synonyms are added to the existing synonym dictionary. If you
add a synonym dictionary in replace mode, the existing synonyms are replaced by the new
synonyms that you defined for the text search index.

Option Description

On IBM i, enter the following command (within the
QSH interface):

synonymTool.sh importSynonym
-synonymFile <absolute path to synonym
XML file>
-collectionName <collection name>
-replace <[true|false]>
-configPath <absolute path to
configuration folder>

OmniFind Text Search Server 71

Option Description

On a Linux server, enter the following command: synonymTool.sh importSynonym
-synonymFile <absolute path to synonym
XML file>
-collectionName <collection name>
-replace <[true|false]>
-configPath <absolute path to
configuration folder>

On a Windows server, enter the following command: synonymTool.bat importSynonym
-synonymFile <absolute path to synonym
XML file>
-collectionName <collection name>
-replace <[true|false]>
-configPath <absolute path to
configuration folder>

If the format of the XML file is not valid, or if the XML file is empty, an error code is returned.
v To import synonym dictionary to a collection from IBM Navigator for i, follow these steps.

1. From IBM Navigator for i, expand IBM i Management > System > All Tasks.
2. On the right panel, select System > OmniFind > Collection List.
3. Right click the collection and select Import Synonym Dictionary.

Remove a synonym dictionary from a collection:

Use the script that is provided to remove a synonym dictionary from a collection.

The OMNIFIND administrator needs to retrieve the name of the collection from which you want the
synonym dictionary to be removed.

Run the script to remove the synonym dictionary from a collection.

Option Description

On IBM i, enter the following command (within the
QSH interface):

removeSynonym.sh
-collectionName <collection name>
-configPath <absolute path to
configuration folder>

On a Linux server, enter the following command: removeSynonym.sh
-collectionName <collection name>
-configPath <absolute path to
configuration folder>

On a Windows server, enter the following command: removeSynonym.bat
-collectionName <collection name>
-configPath <absolute path to
configuration folder>

If a database has several text search indexes, you must complete this task for each of the corresponding
collections.

Find orphaned and missing indexes

You can find orphaned and missing indexes using an SQL User Defined Table Function (UDTF) named
QDBTS_LISTINXSTS.

An index can be orphaned if a SYSTS_DROP stored procedure is called and the server is stopped at the
time the procedure is running.

72 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|

The QDBTS_LISTINXSTS function combines all the integrated-file-system collections and catalog indexes
in the current namespace into one table. The function decides which independent auxiliary storage pool
(ASP) or *SYSBASE is set. It then scans the collection directory of each server in the independent ASP or
*SYSBASE.

For *SYSBASE, each server directory under /QOpenSys/QIBM/ProdData/TextSearch is checked. For
independent ASPs, each server directory under /the ASP number/QOpenSys/QIBM/ProdData/TextSearch is
checked. For example, if the independent ASP number is 67, each server directory under
/67/QOpenSys/QIBM/ProdData/TextSearch is checked.

For catalog index information, data is obtained from catalog table QSYS2.SYSTEXTINDEXES. If you want
to check servers on an independent ASP, issue the Set Auxiliary Storage Pool Group (SETASPGRP)
command before this function is called.

If you want to remove possible orphaned indexes from the integrated file system after they are identified,
use the SYSPROC.SYSTS_REMOVE stored procedure or the “Advanced administration” on page 74
(adminTool.sh).

Terms

Orphaned index
A collection (an index) exists in the integrated file system directory of the server, but no
corresponding index is recorded in catalog QSYS2.SYSTEXTINDEXES.

Missing index
Index records exist in catalog QSYS2.SYSTEXTINDEXES, but the corresponding collection
directory does not exist.

Syntax

>>-QDBTS_LISTINXSTS(--null--)---><

Return format

The QDBTS_LISTINXSTS function returns information of detected indexes in a table. See the following
SQL command that is used to create the UDTF.

SQL for LISTINXSTS UDTF
CREATE FUNCTION QDBTSLIB.QDBTS_LISTINXSTS()

RETURNS TABLE(COLLECTIONNAME VARCHAR(255),
INDEXID INTEGER,
INDEXSCHEMA VARCHAR(128),
INDEXNAME VARCHAR(128),
SERVERID INTEGER)

SPECIFIC qdbts_listinxsts
SCRATCHPAD
NO FINAL CALL
LANGUAGE C++
PARAMETER STYLE DB2SQL
EXTERNAL NAME ’QDBTSLIB/QDBTSSP(checkIndex)’;

Examples
v Detect all orphaned indexes:

SELECT COLLECTIONNAME, SERVERID
FROM TABLE(QDBTSLIB.QDBTS_LISTINXSTS()) AS T
WHERE T.INDEXSCHEMA IS NULL AND T.INDEXNAME IS NULL

v Detect all missing indexes:

OmniFind Text Search Server 73

SELECT INDEXSCHEMA, INDEXNAME
FROM TABLE(QDBTSLIB. QDBTS_LISTINXSTS()) AS T
WHERE T.COLLECTIONNAME is NULL

v Detect orphaned indexes in serverid = 2 on the independent ASP iaspXXX:
CONNECT TO iaspXXX
SQL:
SELECT T.COLLECTIONNAME, S.SERVERPATH

FROM TABLE(QDBTSLIB.QDBTS_LISTINXSTS())
AS T LEFT OUTER JOIN QSYS2.SYSTEXTSERVERS S ON (T.SERVERID = S.SERVERID)

WHERE T.INDEXSCHMEA IS NULL AND T.INDEXNAME IS NULL AND T.SERVERID = 2

Related reference:
“SYSPROC.SYSTS_DROP” on page 31
You can call the SYSPROC.SYSTS_DROP stored procedure to drop a text search index that was defined
by using the SYSPROC.SYSTS_CREATE stored procedure.
“SYSPROC.SYSTS_REMOVE” on page 67
You can remove orphaned indexes with the SYSPROC.SYSTS_REMOVE SQL stored procedure.
“QSYS2.SYSTEXTINDEXES administration table” on page 97
You can see information about each text search index in the QSYS2.SYSTEXTINDEXES administration
table. Each text search index has a name, schema name, and an associated collection name on the text
search server.

Advanced administration
You can use the administration tool for advanced administration.

The OmniFind Text Search Server for DB2 for i can be running when you use the administration tool.

You can use the administration tool to do the following tasks:
v Check the status of collections, such as finding out how many documents are present
v Delete orphan collections
v Report the version of the server
v Report all the collections that are on the text search server

Commands

The command that you issue to run the administration tool depends on what operating system the text
search server is installed on. The command also depends on the task that you want to do.

Table 29. Commands to check the status of collections and to delete orphaned collections

On IBM i (within the QSH
interface) On a Linux server On a Windows server

adminTool.sh -[delete|status]
–collectionName <collection name>
-configPath <absolute path to
configuration folder>

adminTool.sh -[delete|status]
–collectionName <collection name>
-configPath <absolute path to
configuration folder>

adminTool.bat -[delete|status]
–collectionName <collection name>
-configPath <absolute path to
configuration folder>

Table 30. Commands to display the version of the server and to report all the collections

On IBM i (within the QSH
interface) On a Linux server On a Windows server

adminTool.sh -[version]
-configPath <absolute path to
configuration folder>

adminTool.sh -[version|reportAll]
-configPath <absolute path to
configuration folder>

adminTool.bat -[version|reportAll]
-configPath <absolute path to
configuration folder>

74 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

Options

status
Checks the status of the collection.

delete
Specifies that you want to delete the orphaned collection.

version
Displays the version of the server.

reportAll
Reports all the collections that are on the text search server.

Example

To find out the version of the server, enter the following command on a Linux server:
adminTool.sh –version -s <absolute path to server config.xml>

When you use a Windows server, a corresponding .bat script is provided.

ServerInstance tool
You can use the ServerInstance tool to create or delete servers on *SYSBASE or an independent auxiliary
storage pool (ASP). You can also use the ServerInstance tool to link files from a server to the server where
OmniFind Text Search Server for DB2 for i is installed.

By default, OmniFind Text Search Server for DB2 for i is installed under directory /QOpenSys/QIBM/
ProdData/TextSearch/server1.

You can use the ServerInstance tool to complete the following tasks before you use it to stop server1 on
*SYSBASE:
v Create a server on *SYSBASE or independent ASPs
v Delete a server on *SYSBASE or independent ASPs
v Link files from a server to server1

Syntax
ServerInstance.sh –[create|delete|relink]
–servernum <server number>
(-port <port>)
(-device <device name>)

Command options

create
Creates a server.

delete
Deletes a server.

relink
Links files from a server to server1.

Note: You do not need this option after you have program temporary fix (PTF) SI31548 installed on
your system. The system automatically processes the linking operation if you have this PTF
installed.

OmniFind Text Search Server 75

Parameters

servernum
Specifies the server number. For example, when a server with server number 3 is created, the
directory of the server is /QOpenSys/QIBM/ProdData/TextSearch/server3.

port
Specifies the port of the server. This parameter is needed only when you create a server.

device
Specifies the name of the independent ASP. This parameter is needed only when the operation is
completed on the independent ASP.

Examples
v To create a server with server number 2 and port number 50000 on *SYSBASE:

ServerInstance.sh -create -servernum 2 -port 50000

v To create a server with server number 3 and port number 50001 on independent ASP iasp1:
ServerInstance.sh -create -servernum 3 -port 50001 -device iasp1

v To delete a server with server number 2 on *SYSBASE:
ServerInstance.sh -delete -servernum 2

v To delete a server with server number 3 on independent ASP iasp1:
ServerInstance.sh -delete -servernum 3 -device iasp1

v To link files from a server to server number 2 on *SYSBASE:
ServerInstance.sh -relink -servernum 2

v To link files from a server to server number 3 on independent ASP iasp1:
ServerInstance.sh -relink -servernum 3 -device iasp1

Health Checker
Health checker is an environment verification tool that can be used to diagnose any OmniFind Text
Search Server for DB2 for i configuration problems. It can be used to verify that the OmniFind Text
Search Server for DB2 for i text servers and indexes are correctly functioning, and will generate a report
with warnings or errors for any potential issues found.

Prerequisites

The OmniFind Text Search Server for DB2 for i health checker is based on ARE (Application Runtime
Expert for i, product 5770-ARE). Therefore, ARE must be installed for this tool to run.

Health Checker Procedures

Health checker is invoked through a series of DB2 SQL stored procedures. The procedures can be
invoked through any SQL interface, including from a high level language such as RPG and COBOL. All
information, including warnings or errors, is returned through a corresponding result set.

SYSPROC.SYSTS_HC_GENERAL()

This stored procedure is used to check the general health of the OmniFind Text Search Server for DB2 for
i product. The procedure checks the configuration of the product. This is an example to return all
warning and error messages related to general OmniFind Text Search Server for DB2 for i configuration
information:
> CALL SYSPROC.SYSTS_HC_GENERAL();

76 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

SYSPROC.SYSTS_HC_USR_AUTH()

This stored procedure is used to identify any authority issues for the invoking user that would prevent
them from using the OmniFind Text Search Server for DB2 for i for searches. This is an example to return
any warnings or errors regarding the invoking user’s authorities:
> CALL SYSPROC.SYSTS_HC_USR_AUTH();

SYSPROC.SYSTS_HC_IDX()

This stored procedure is used to check all OmniFind Text Search Server for DB2 for i text indexes to
ensure they are in a valid state. Note: If using an IASP (Independent Auxiliary Storage Pool) group, this
only applies to the IASP group currently active in the job.

SYSSTS.HC_SVR()

This stored procedure is used to check the health of all local OmniFind Text Search Server for DB2 for i
text servers that have been defined.

Additional Information

More information about the OmniFind Text Search Server for DB2 for i health checker, including
numerous additional stored procedures options as well as a QShell interface, is available on
developerWorks OmniFind Text Search Server for DB2 for i under the article ’Health Checker’.

Independent ASP considerations for OmniFind Text Search Server for
DB2 for i

You can administer a text search index on an independent auxiliary storage pool (ASP). The ASP can be
switched between multiple systems, so there are additional considerations.

A local text search server is created during the installation of OMNIFIND. For independent ASPs, a local
text server is created by an administrator using the ServerInstance tool (ServerInstance.sh) after the
independent ASP group is created.

After you create a local text search server on the independent ASP, the index data exists on the
independent ASP file system. The data is available if the independent ASP is switched to a different
system. The administrator needs to create a local text search server only once for each independent ASP
group.

Text search indexes that are on the independent ASP must be contained in text search servers that have
been defined in the independent ASP. You cannot view a text search server defined in a different
independent ASP group or in the system ASP when the job is connected to the independent ASP.

To create a text search server on an independent ASP named myiasp, follow these steps:
1. Vary on the independent ASP with the Work with Configuration Status (WRKCFGSTS) CL command

or by using System i Navigator.
2. Connect to the namespace of the independent ASP group by using the Set Auxiliary Pool Group

(SETASPGRP) CL command.
3. Use the ServerInstance.sh script to create a text search server.

Here is an example QSH command to use:
/QOpenSys/QIBM/ProdData/TextSearch/ServerInstance.sh -create
-servernum 2 -port nnnnn -device myiasp

OmniFind Text Search Server 77

|
|

|
|
|

https://www.ibm.com/developerworks/ibmi/techupdates/db2/omf

In the command, nnnnn is an available port number for the server to use. This port number must be
available for use on all systems that the independent ASP group can be switched to.

After a text search server is defined for the independent ASP group, the administrative stored procedures
can be used to start and stop the text search server. The stored procedures can also be used to create,
drop, and update text search indexes.

Note: Job scheduler entries are added when the independent ASP is varied on for any indexes with
scheduled updates that exist in the independent ASP. The job scheduler entries allow scheduled
updates to continue, even when the independent ASP is switched between systems.

Restrictions of using text search indexes and independent ASPs
v All systems that the independent ASP can be switched between must have OmniFind Text Search

Server for DB2 for i installed, and must be at the same program temporary fix (PTF) levels.
v Do not create text search indexes on an ASP other than the one that the table index is built over.
v The system catalogs SYSTEXTSERVERS, SYSTEXTINDEXES, SYSTEXTDEFAULTS,

SYSTEXTCOLUMNS, and SYSTEXTCONFIGURATION do not contain records for indexes and servers
that are defined in a different ASP group, including the system ASP. The catalogs contain rows only for
indexes and servers that are defined for the independent ASP group that the job is connected to.

v The administrative stored procedures can be used to perform functions only on text search servers and
indexes that are defined in the independent ASP group that the job is connected to.

Note: You can use the CONTAINS and SCORE SQL statements when a job is connected to an
independent ASP group, even if the column is based on a table that exists on the system ASP.

High Availability
You can implement a high availability solution that includes text search indexes using existing APIs and
commands. DB2 for IBM i now recognizes text search indexes and takes special actions during DB2
operations that affect these indexes.

Special considerations for text search indexes, high availability, and database administration

v A delete file (DLTF CL command) or DROP VIEW SQL statement against the view representing the
text search index results in a drop of the text search index. The drop fails if the drop is executed under
commitment control.

v Restoring a table or physical file that was saved with a text search index over a column does not
enable the triggers that were created for the text search index before the save. If the text search index is
later restored or created, triggers are added as part of the index creation. This method enables
applications to work, even if the text search index originally built over the table is not restored or
created.

Replaying journal entries for OmniFind Administrative stored procedures

v A replay of the journal entry (QDBRPLAY API) for the creation of the view that represents the text
search index results in creating the text search index.

v The addition and removal of the triggers on the based-on table during SYSTS_CREATE or
SYSTS_DROP procedure calls does not cause journal entries to be logged.

v A call to the SYSTS_UPDATE or SYSTS_REPRIMEINDEX stored procedure results in a journal entry
being logged against the view of the text search index. A replay of this journal entry using the
QDBRPLAY API results in the correct procedure call being replayed.

v Automatically scheduled updates do NOT result in journal entries for the index and cannot be
replayed.

v A call to SYSTS_ALTER results in a change journal entry against the view. A replay of the journal entry
using the QDBRPLAY API causes the SYSTS_ALTER call to be replayed.

78 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|
|

|
|
|

|

|
|
|

|

|
|
|

|
|
|
|
|

|

|
|

|
|

|
|
|

|
|

|
|

High Availability recommendations

If you want to implement a high availability solution, consider the following recommendations:
v After Creating the text search index on the primary system, the QDBRPLAY API can be used to replay

the create on the backup system.
v The backup system now contains a duplicate index, with scheduled updates that occur at the same

frequency as the primary system.
v As record changes are replayed into the backup systems based on table, they are logged in the staging

table of the backup system.
v Calls to SYSTS_UPDATE, SYSTS_REPRIMEINDEX, and SYSTS_ALTER on the primary system results

in journal entries that can be replayed on the backup system.
v It is NOT necessary for customers to journal and replicate the IFS files for the Text Search indexes.
v It is necessary to ensure that the triggers that have been added as part of SYSTS_CREATE are enabled

to record changes to the based on table. These triggers can be identified by using the special "QDBTS"
prefix on the name of the trigger.

Apply Journal Changes CL command (APYJRNCHG)

The Apply Journal Changes (APYJRNCHG) CL command can be used to replay OmniFind events. Users
wanting to use this command must carefully consider the order in which journal entries are replayed.
The staging table in QSYS2 must be exactly synchronized with the based-on table at the time a
SYSTS_UPDATE is replayed or invoked.

Record changes that are applied to the based-on table are NOT logged in the staging table during the
APYJRNCHG process. In some cases, it might be necessary to call the SYSTS_REPRIMEINDEX stored
procedure to rebuild the index after using this command.
Related reference:
“SYSPROC.SYSTS_REPRIMEINDEX” on page 69
You can reprime the index and start an initial update using the SYSPROC.SYSTS_REPRIMEINDEX stored
procedure. Use this stored procedure when you want to restore data from the base table.

Performance analysis
OMNIFIND performance analysis includes choosing the correct index definition, handling documents
efficiently, and specifying a selective search.

Background

OmniFind processing is a combination of work on a front end ‘client' job and work on a backend ‘server'
job, with communication occurring between these jobs. Communication is performed using standard
socket connections.

The client job reads records from the appropriate database table during index builds and maintenance. It
processes the log of table changes, sends documents for ingestion, and handles any text search requests
using the CONTAINS or SCORE SQL functions. The client job is the one in which the procedure, for
example, SYSTS_CREATE or SYSTS_UPDATE, or the query with CONTAINS or SCORE, is run. Client job
performance is dependent on processing database actions quickly, and retrieving and transporting text
documents efficiently to the server job.

The server job parses documents sent from the client job, maintains the associated text index with inserts
and deletions, and handles search requests within the index. The performance of the server job is
dependent on its ability to communicate efficiently with the client jobs and to handle documents
efficiently. There is normally a single server job serving multiple client jobs. Consequently, the server job
is a multi-threaded job so that it can handle multiple clients.

OmniFind Text Search Server 79

|

|

|
|

|
|

|
|

|
|

|

|
|
|

|

|
|
|
|

|
|
|

|

|
|
|

|

|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

A text index is not updated immediately with any changes to the underlying database table. Instead, any
record changes to the table are logged using a combination of a database trigger and a staging table. The
staging table records the update type (insert, update, or delete) along with an indication of which record
in the base table was changed. The changed text is not captured in the log; only information to identify
the record that was changed.

Table record changes are not reflected in the text index, and consequently not in searches with
CONTAINS or SCORE, until the next successful SYSTS_UPDATE.

Subsequent updates to a text index after the initial update are called incremental updates. These updates
add or delete documents to the text index based on any record changes made to the underlying table
since the last update.

Any changes made to the base table are registered in a staging table. On an incremental update, the
staging table is used to determine which records in the base table have changed. Those records are later
read from the base table and their updated contents are reflected in the index.

The initial update is a more efficient process, per row, than an incremental update. The base table is
processed without needing to also process the staging table. Therefore, a good performance technique is
to do the initial update on the text index after the underlying table has been initially populated. This
technique minimizes the time to populate the documents into the index.

An important performance-related configuration option is UPDATEAUTOCOMMIT. This value defines
how frequently the database client job interrupts document processing. The client waits for the server job
to confirm that it has processed all documents currently sent to it. UPDATEAUTOCOMMIT is used as a
checkpoint method to allow the database to set boundaries of completed work.

If the index update is interrupted and continued later, the process restarts at the checkpoint boundary. As
with any interruption, a checkpoint boundary forces the flow of documents to be suspended and the
pipeline between the client and server to be cleared of documents, or in other words, emptied of
documents. This start and stop process can have considerable negative effect on performance.

The default value for UPDATEAUTOCOMMIT is 100, which provides frequent checkpoints. Setting the
value higher usually results in better response time performance for SYSTS_UPDATE calls. However, the
higher value does mean a longer recovery time if the update is canceled and restarted.

Setting UPDATEAUTOCOMMIT to a large number (or zero, which means no checkpoint occurs) provides
the best response time performance. However, if the initial update is canceled, OmniFind must start over
from the beginning of the index build because there was no checkpoint.

For some customers, setting the value 5000 - 20000 appears to provide a reasonable balance between
performance and checkpoint recoverability.

Choose the correct index definition

A text index can be specified with one of four FORMAT configuration types: TEXT, HTML, XML, and
INSO.
1. TEXT is usually the most efficient format. The text is read from the database record and sent to the

text server and the server processes it directly.
2. HTML is used when the documents are known to be in the form of HyperText Markup Language.

The text is processed with consideration of ignoring markup control values within the document.
3. XML is used when the documents are known to be in the form of eXtensible Markup Language.

Special consideration of the structural nature of the document contents is done, with tracking of

80 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|

|

|
|

|
|

|
|

|
|

elements, attributes, and the hierarchy within the document. Marking an index as XML provides the
ability to do XML searches using the xmlxp (xpath) search language on the CONTAINS and SCORE
functions.

4. INSO is used when the document needs to be processed INSide Out. In this form, the contents of
each document is assumed to be more than simple text. Each document is pre-analyzed to determine
which type of document it is, then converted to plain text. INSO documents are usually rich text
word-processing documents generated by word-processing programs.

From a performance perspective, the work to index a document increases as you move from format TEXT
to format INSO. While format INSO handles simple text, it is more overhead than format TEXT, as
interpretation takes place. Use TEXT when the document is simple text in the database column.

The LANGUAGE configuration option is not strictly required, as OmniFind determines the language of
the document based on examination. However, if the language of the documents is known, specifying it
on the LANGUAGE option can speed up performance. It limits the amount of interpretation that needs
to be done.

Handle documents efficiently

The client and server jobs communicate the document information using UTF (Unicode Transformation
Format). To get the document into this format, the client reads the document from the database,
converting the resulting data into UTF-8, also known as CCSID 1208. All text is converted to UTF-8
before being sent to the server.

To improve performance, set the text column being indexed to CCSID 1208 to avoid this conversion,
improving the efficiency of the document handling process.

Use SYSTS_REPRIMEINDEX instead of SYSTS_UPDATE for a possible
performance improvement

SYSTS_REPRIMEINDEX and SYSTS_UPDATE are used to update the text search index.
SYSTS_REPRIMEINDEX is used to recreate the index. SYSTS_UPDATE is used to update the index with
the incremental changes used after last successful update. In some instances, SYSTS_REPRIMEINDEX
may perform better than the SYSTS_UPDATE.

To determine if the SYSTS_REPRIMEINDEX will perform better than the SYSTS_UPDATE, check the
column, PENDINGCOUNT of Text Search Index view. The PENDINGCOUNT column will indicate how
many rows will need to be changed for the next update process. If the user updated the same record in
base table 10 times, the PENDINGCOUNT column will be increased by 10. Therefore, if the user is
updating the base table frequently, the PENDINGCOUNT column will be increased. In most cases, if the
PENDINGCOUNT column is larger than the total count of the base table, then the
SYSTS_REPRIMEINDEX procedure will be the better choice to use rather than the SYSTS_UPDATE.

Specify a selective search

Text searches are done using the CONTAINS or SCORE functions within an SQL query statement. These
searches compare the function search criteria to the documents associated with the column being
searched. Matching records are identified and selected. The client job sends the search request to the
server and receives the answer on whether a match is found.

As with all search criteria, the more selective the search, the more efficient the search is. Looking for
common phrases, such as ‘the' in the English language, results in numerous matches and can negatively
affect performance. Practically speaking, such a search is unlikely to provide meaningful information.
Specifying more selective search phrases results in fewer, more meaningful matches.

OmniFind Text Search Server 81

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|

|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

When using CONTAINS in the WHERE clause of an SQL statement, it usually performs best to have it
ANDed to other criteria. For example:
SELECT bn, pubdate, description
FROM myBooks
WHERE CONTAINS(description,’Alladin’) = 1
AND Pubdate > '2004-01-01’

Using CONTAINS and SCORE

The optimizer can improve the performance of the CONTAINS and SCORE functions by internally
combining and replacing these built-in functions with a user-defined table function (UDTF). The UDTF
returns a list of matching documents in one result. This UDTF processing in many cases performs better
than the alternative process of invoking the bult-in function for each record to determine a match.

To enable the optimizer to perform the UDTF rewrite, the CONTAINS function must:
v reside in the WHERE clause of the SQL statement
v be connected by "AND" to every additional predicate in the WHERE clause
v be a comparison with the value 1.

For example, the clause:
WHERE CONTAINS(MyDocuments, ’java performance’) = 1

could be rewritten by the optimizer in the UDTF form. However, the clause:
WHERE CONTAINS(MyDocuments, ’java performance’) = 1 OR price >100

could not be rewritten due to the CONTAINS being ORed to other predicates.

Note: when a UDTF rewrite is enabled, the optimizer still uses cost comparison to choose the optimal
plan.

Related reference:
“CONTAINS” on page 35
You can use the CONTAINS function to search a text search index using criteria you specify in a search
argument. The function returns a result indicating whether a match was found.
“SCORE” on page 37
You can use the SCORE function to search a text search index using criteria that you specify in a search
argument. The function returns a relevance score that measures how well a document matches the query.

“SYSPROC.SYSTS_UPDATE” on page 32
You can call the SYSPROC.SYSTS_UPDATE stored procedure to update the text search index to reflect the
current contents of the text column.
“SYSPROC.SYSTS_CREATE” on page 17
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.

Transaction considerations
Consider your environment when deciding how often to update your text indexes from the underlying
data in the database tables.

A large consideration for traditional database users is the concept of transaction boundaries and
transaction processing. A classic example is a bank transaction where money is transferred from one
account to another. The transfer is considered to be a single transaction; either the transfer occurs or it
does not. The customer would not appreciate having the money removed from one account but not show

82 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|

|
|
|
|

|

|
|
|
|

|

|

|

|

|

|

|

|

|

|
|

|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|

|
|

|
|
|
|

up in the other account until some time later. Conversely, the bank would not want the money to show
up in both accounts for some amount of time until the transaction was finally completed. The idea is that
if a change is made, it is reflected immediately.

There are many examples in information management where delays are more acceptable and even
expected. In a traditional data warehouse design, the contents of the data warehouse often lag the
operational data by hours or more. This acceptance of delay is based on a combination of realistic
expectations of a data warehouse and a desire for predictable, coherent data.

Unstructured text searches lie somewhere between these two boundaries. Practically speaking, indexing
text documents is an intensive process to analyze and break down the underlying meaning of the words
in the document. Text searches allow a search for ‘mice' to find documents with ‘mouse'. This search
result happens due to the ability of the indexing technique to break down words into their underlying
meanings. This analysis is done at the time when a document is indexed in order to make subsequent
searches as fast as possible.

Users of a traditional database index expect the index to reflect the state of the data in the database table.
This same expectation does not hold for a text index. The contents of the text index reflect the state of the
table based on the time when the last update (SYSTS_UPDATE) was performed.

In a highly changing environment, it is unlikely that the text index would reflect the current state of the
table at any given time. However, in a more predictable environment where the database table is updated
less frequently or in batch mode, the text index updates can be timed to perform after the table update,
accurately reflecting the state of the table.

It is important to have the appropriate expectation for a text index. Use the UPDATE FREQUENCY
option on the text index “SYSPROC.SYSTS_CREATE” on page 17 or “SYSPROC.SYSTS_UPDATE” on
page 32, or explicitly call the SYSTS_UPDATE procedure to update the contents of the text index
appropriately.

For more static environments such as bulk data loads, it makes sense to time the text index update to
take place after the bulk load is completed. For more transaction-oriented environments, the UPDATE
FREQUENCY value can be set to a short duration or the SYSTS_UPDATE procedure can be invoked
frequently. It is normally true that the more frequent the update, the more workload is placed on the
machine.
Related reference:
“QSYS2.SYSTEXTINDEXES administration table” on page 97
You can see information about each text search index in the QSYS2.SYSTEXTINDEXES administration
table. Each text search index has a name, schema name, and an associated collection name on the text
search server.

Using IBM Navigator for i
You can administer your OmniFind text search servers and text search indexes using IBM Navigator for i.
1. In theIBM Navigator for i window, expand the system you want to use.
2. Expand Databases.
3. Expand the database that you want to work with.
4. Select OmniFind Text Search.

OmniFind Text Search Server 83

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|
|

|

|

|

|

|

|

Work with text search servers
You can start and stop your OmniFind text search servers and create a text search index using IBM
Systems Director Navigator for i.

Viewing the status of your OmniFind Text Servers:

1. Select the Text Servers folder in the right pane.
2. View the status of the currently configured text search servers on the system in the right pane.
3. Select Refresh to refresh the list of servers.

84 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|

|

|
|
|

|

|

|

|

Starting and stopping your OmniFind Text Servers:

1. Select the box in front of your selected Server ID in the right pane.
2. Select from the Actions menu:
v Start server
v Stop server
v Create a text search index

Creating a text search index:

OmniFind Text Search Server 85

|

|

|

|

|

|

|

|

|

Work with text search indexes
You can perform operations on any text search index on a system using IBM Systems Director Navigator
for i.

Viewing the OmniFind text indexes for a text server:

1. In the IBM Systems Director Navigator window, expand the system you want to use.
2. Expand Databases.
3. Expand the database that you want to work with.
4. Select OmniFind Text Search.
5. Select Text Servers.
6. Select the text server that you want to work with. The indexes for that server are displayed in the

right pane.

86 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|

|

|
|
|

|

|

|

|

|

|

|
|

Viewing the OmniFind text indexes for this system:

1. Select OmniFind Text Search.
2. Select Text Indexes. These indexes are all the text search indexes for this system in the current

partition.

Perform operations on a text index:

OmniFind Text Search Server 87

|

|

|

|

|
|

|

|

|

1. Select the box for the index in the right pane that you want to work with.
2. Select Action from the box at the top of the panel.
v Definition
v Update
v Reprime
v Delete
v Description

Viewing the OmniFind text indexes for a schema:

1. In the IBM Systems Director Navigator window, expand the system you want to use.
2. Expand Databases.
3. Expand the database that you want to work with.
4. Expand Schemas.
5. Expand the schema that you want to work with.
6. Select OmniFind Text Indexes. These indexes are all the text search indexes for this schema.

View text search index builds:

You can view text indexes that are being built by the database using IBM Systems Director Navigator.
This view is helpful in determining when text search indexes become available to your applications.

To display text search indexes that are being built, follow these steps:
1. In the IBM Systems Director Navigator window, expand the system you want to use.
2. Expand Databases.
3. Expand the database that you want to work with.

88 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

4. Select Database Maintenance.
5. Select Text Index Builds.

This panel shows only text search index updates in progress. It is empty if there are no updates or
repriming currently running on the system.

Using System i Navigator
You can administer your OmniFind text search servers and text search indexes using System i Navigator.
1. In the System i Navigator window, expand the system you want to use.
2. Expand Databases.
3. Expand the database that you want to work with.
4. Select OmniFind Text Search.

OmniFind Text Search Server 89

|

|

|
|

|

|

|

|

|

|

|

|

Work with text search servers
You can start and stop your OmniFind text search servers and create a text search index using System i
Navigator.

Viewing the status of your OmniFind Text Servers:

1. Select the Text Servers folder in the right pane.
2. View the status of the currently configured text search servers on the system in the right pane.
3. Select F5 to refresh the list of servers.

90 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|

|

|
|
|

|

|

|

|

Starting and stopping your OmniFind Text Servers:

1. Select your selected Server ID in the right pane.
2. Right-click to view options:
v Start server
v Stop server
v Create a text search index

Creating a text search index:

OmniFind Text Search Server 91

|

|

|

|

|

|

|

|

|

Work with text search indexes
You can perform operations on any text search index on a system using System i Navigator.

Viewing the OmniFind text indexes for a text server:

1. In the System i Navigator window, expand the system you want to use.
2. Expand Databases.
3. Expand the database that you want to work with.
4. Select OmniFind Text Search.
5. Select Text Servers.
6. Select the text server that you want to work with. The indexes for that server are displayed in the

right pane.

92 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|

|

|
|

|

|

|

|

|

|

|
|

Viewing the OmniFind text indexes for this system:

1. Select OmniFind Text Search.
2. Select Text Indexes. The indexes shown are all the text search indexes for this system in the current

partition.

OmniFind Text Search Server 93

|

|

|

|

|
|

Perform operations on a text index:

1. Select an index in the right pane that you want to work with.
2. Right-click on the index.
3. Select an operation:
v update
v reprime
v delete
v view description
v view definition
v alter definition

Viewing the OmniFind text indexes for a schema:

1. In the System i Navigator window, expand the system you want to use.
2. Expand Databases.
3. Expand the database that you want to work with.
4. Expand Schemas.
5. Expand the schema that you want to work with.
6. Select OmniFind Text Indexes. These indexes are all the text search indexes for this schema.

94 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

View text search index builds:

You can view text indexes that are being built by the database with System i Navigator. This view is
helpful in determining when text search indexes become available to your applications.

To display text search indexes that are being built, follow these steps:
1. In the System i Navigator window, expand the system you want to use.
2. Expand Databases.
3. Expand the database that you want to work with.
4. Expand Database Maintenance.
5. Select Text Index Builds.

This panel shows only text search index updates in progress. It is empty if there are no updates or
repriming currently running on the system.

OmniFind Text Search Server 95

|

|

|

|
|

|

|

|

|

|

|

|
|

Text search administration tables
You can support your text search servers and indexes using the administration tables in QSYS2.

QSYS2.SYSTEXTDEFAULTS administration table

You can see the default parameters and values in the QSYS2.SYSTEXTDEFAULTS administration table.
This table is created when you install OmniFind Text Search for DB2 for i.

The following table shows the contents of the QSYS2.SYSTEXTDEFAULTS administration table.

Table 31. Contents of the QSYS2.SYSTEXTDEFAULTS administration table

Column name Data type Nullable? Description

NAME VARCHAR(30) No Name of a default parameter for the
database for text search.

VALUE VARCHAR(512) No Value for the default parameter for
text search.

TYPE INTEGER No Reserved.

96 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|

|

|

|
|

QSYS2.SYSTEXTINDEXES administration table

You can see information about each text search index in the QSYS2.SYSTEXTINDEXES administration
table. Each text search index has a name, schema name, and an associated collection name on the text
search server.

The following table shows the contents of the QSYS2.SYSTEXTINDEXES administration table. The unique
key for this table is the INDEXSCHEMA column with the INDEXNAME column. The primary key is the
INDEXID column.

Table 32. Contents of the QSYS2.SYSTEXTINDEXES administration table

Column name Data type Nullable? Description

INDEXID INTEGER No Uniquely generated index ID for the
text search index.

INDEXSCHEMA VARCHAR(128) No Schema name for the text search index.

INDEXNAME VARCHAR(128) No Unqualified name of the text search
index.

TABLESCHEMA VARCHAR(128) No Schema name of the base table.

TABLENAME VARCHAR(128) No Unqualified name of the base table.

TABLEIASP SMALLINT No Independent ASP of the base table.

COLLECTIONNAME VARCHAR(255) No Name of the associated collection on
the text search server.

SERVERID INTEGER No The server ID for the text search index.

TAKEOVERSERVERID INTEGER Yes Reserved for future use.

TAKEOVERSERVERPULSE TIMESTAMP Yes Reserved for future use.

SEARCHARGS VARBINARY(1024) Yes Reserved for future use.

ALIASSCHEMA VARCHAR(128) No The alias for the schema of the base
table that was used in the
SYSPROC.SYSTS_CREATE stored
procedure. If no alias is used, this value
is identical to TABLESCHEMA.

ALIASNAME VARCHAR(128) No The alias for the name of the base table
that was used in the
SYSPROC.SYSTS_CREATE stored
procedure. If no alias is used, this value
is identical to TABLENAME.

STAGINGTABLENAME VARCHAR(128) Yes The name of the log table for the text
search index.

EVENTTABLENAME VARCHAR(128) No The name of the event table for the text
search index.

OFINDEXTABLENAME VARCHAR(128) No The name of the table for the text
search index on the OmniFind Text
Search Server for DB2 for i.

UPDATEMINIMUM INTEGER No Minimum number of entries in the log
table before an incremental update of
the text search index is performed.

UPDATEFREQUENCY VARCHAR(512) No The update frequency for the text
search index as specified by the
SYSPROC.SYSTS_CREATE stored
procedure.

OmniFind Text Search Server 97

|
|
|

Table 32. Contents of the QSYS2.SYSTEXTINDEXES administration table (continued)

Column name Data type Nullable? Description

UPDATEMODE INTEGER No Indicates the update mode of the text
search index. The integer 0 (zero)
indicates the initial update of the text
search index. A value of 1 indicates
subsequent, incremental updates.

REORGANIZATIONMODE INTEGER No Indicates the reorganization mode of
the text search index.

CREATETIME TIMESTAMP No The time that the text search index was
created.

LASTUPDATETIME TIMESTAMP Yes The time that the text search index was
last updated.

LASTUPDATESTATUS CHAR Yes Indicates the internal status for
optimizing the cleanup process after an
initial or incremental update of the text
search index. Typical values include:

v (Null) indicates that the index has
never been updated.

v 'C' indicates that an initial update
was initiated. If the update mode is
not incremental, then the initial
update is either still in progress or
did not complete.

v 'N' indicates that an incremental
update has successfully completed.

Other codes are used internally during
update processing. The update process
uses these codes to determine specific
recovery actions that can be taken if the
update fails to complete.

SCHEDULERTASKID INTEGER Yes Reserved for future use.

EXPRESSIONLISTS CLOB (32 K) Yes Reserved for future use.

EXPRESSIONNUMBERS VARBINARY(32) Yes Reserved for future use.

USEREXITFUNCTION VARCHAR(18) Yes Reserved for future use.

REMARKS VARCHAR(2000) Yes Remarks made in the COMMENTS option
of the index-configuration-options
parameter of the
SYSPROC.SYSTS_CREATE stored
procedure.

TABLEMBR VARCHAR(10) Yes The table member over which the text
index is built. Used to track the specific
member being indexed if the file is a
multi-member file. If the value is null,
the member is the first and only
member of the table.

Related concepts:
“Server alias name” on page 10
You can use a server alias name to assign a meaningful name to a server.

98 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

||||
|
|
|
|
|

QSYS2.SYSTEXTCOLUMNS administration table

You can see information about the text columns for a text search index in the QSYS2.SYSTEXTCOLUMNS
administration table. Each text search index has an index ID, text column names, and the schema name of
the base table.

The following table shows the contents of the QSYS2.SYSTEXTCOLUMNS administration table. The
primary key for this table is the INDEXID column with the COLUMNNAME column. The foreign key is
the INDEXID column.

Table 33. Contents of the QSYS2.SYSTEXTCOLUMNS administration table

Column name Data type Nullable? Description

INDEXID INTEGER No Uniquely generated index ID for the
text search index.

COLUMNNAME VARCHAR(128) No Unqualified name of the text column.

TABLESCHEMA VARCHAR(128) No Schema name of the base table.

TABLENAME VARCHAR(128) No Unqualified name of the base table.

LANGUAGE VARCHAR(5) No The language that the text search server
uses for the linguistic processing of text
documents. The default value is en_US
(English).

FUNCTIONSCHEMA VARCHAR(128) Yes The schema of a user-defined function
used by OMNIFIND to access text
documents that are in a column that is
not of a supported data type, or that
are stored elsewhere.

FUNCTIONNAME VARCHAR(18) Yes The name of a user-defined function
used by OMNIFIND to access text
documents that are in a column that is
not of a supported data type, or that
are stored elsewhere.

CCSID INTEGER No The coded character set identifier that
is used for a text search index on a
column with a binary data type.

FORMAT VARCHAR(30) No The format of text documents in the
column. The supported format values
are TEXT, HTML, XML, and INSO.

KEYCOLUMNCOUNT INTEGER No The count of key columns for the text
search index.

KEYCOLUMNNAMES VARCHAR(1200) No The key column names for the text
search index.

QSYS2.SYSTEXTSERVERS administration table
You can see where the text search servers are installed using the QSYS2.SYSTEXTSERVERS administration
table.

The following table shows the contents of the QSYS2.SYSTEXTSERVERS administration table. The unique
key for this table is the SERVERNAME column with the SERVERPORT column. The primary key is the
SERVERID column.

OmniFind Text Search Server 99

|
|
|

||

||||

||||
|

||||

||||

||||

||||
|
|
|

||||
|
|
|
|

||||
|
|
|
|

||||
|
|

||||
|
|

||||
|

||||
|
|

Table 34. Contents of the QSYS2.SYSTEXTSERVERS administration table

Column name Data type Nullable? Description

SERVERID INTEGER No Uniquely generated ID for the text search
server.

SERVERNAME VARCHAR(128) No The host name or IP address of the text
search server.

SERVERADRINFO VARBINARY(3000) Yes The internal representation of the
SERVERNAME and SERVERPORT as
determined by the
SYSPROC.SYSTS_START stored procedure.

SERVERPORT INTEGER No The port number for the text search server.

SERVERPATH VARCHAR(512) No The server path for the text search server.

SERVERTYPE INTEGER No The server type for the text search server.
The value 0 (zero) indicates an IBM i text
search server. The value 1 indicates a
Linux text search server. The value 2
indicates a Windows text search server.

SERVERAUTHTOKEN VARCHAR(256) No The authentication token for the text search
server.

SERVERMASTERKEY VARCHAR(36) No The server key for the text search server.

SERVERCLASS INTEGER No The server class for the text search server.
The value 0 (zero) indicates a production
server, available for automatic selection.
the value 9 indicates a test server, never
allocated automatically.

SERVERSTATUS INTEGER No Indicates whether the server can be used
as a text search server to create new text
search indexes. The default value is 0
(zero), which means that the server can be
used.

ALIASNAME VARCHAR(128) Yes Alias name is unique when not null and is
case sensitive.

Related concepts:
“Server alias name” on page 10
You can use a server alias name to assign a meaningful name to a server.

QSYS2.SYSTEXTCONFIGURATION administration table

You can see the configuration parameters for the text search index, as passed by the
SYSPROC.SYSTS_CREATE stored procedure, in the QSYS2.SYSTEXTCONFIGURATION administration
table.

The following table shows the contents of the QSYS2.SYSTEXTCONFIGURATION administration table.
The primary key is the INDEXID column with the PARAMETER column. The foreign key is the
INDEXID column.

Table 35. Contents of the QSYS2.SYSTEXTCONFIGURATION administration table

Column name Data type Nullable? Description

INDEXID INTEGER No Uniquely generated index ID for the text
search index.

100 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

||

||||

||||
|

||||
|

||||
|
|
|

||||

||||

||||
|
|
|
|

||||
|

||||

||||
|
|
|
|

||||
|
|
|
|

||||
|
|

|
|
|

Table 35. Contents of the QSYS2.SYSTEXTCONFIGURATION administration table (continued)

Column name Data type Nullable? Description

PARAMETER VARCHAR(30) No Parameters that are specified for the text
search index in the
SYSPROC.SYSTS_CREATE stored
procedure.

VALUE VARCHAR(512) No Values for the specified parameters.

Related reference:
“SYSPROC.SYSTS_CREATE” on page 17
You can call the SYSPROC.SYSTS_CREATE stored procedure to create a text search index. This stored
procedure enables a text column for text search indexing. The text search index can then be used in SQL
queries that contain the CONTAINS or SCORE functions.

QSYS2.SYSTEXTSERVERHISTORY administration table

You can see the history of servers used for the SYSPROC.SYSTS_DROP stored procedure by viewing the
auxiliary table QSYS2.SYSTEXTSERVERHISTORY.

The following table shows the contents of the QSYS2.SYSTEXTSERVERHISTORY administration table.
The unique key for this table is the INDEXID column with the SERVERID column. The foreign key is the
INDEXID column.

Table 36. Contents of the QSYS2.SYSTEXTSERVERHISTORY administration table

Column name Data type Nullable? Description

INDEXID INTEGER No The index ID for a created text search
index.

SERVERID INTEGER No The server ID where a text search
index needs to be dropped on
SYSPROC.SYSTS_DROP.

Related reference:
“SYSPROC.SYSTS_DROP” on page 31
You can call the SYSPROC.SYSTS_DROP stored procedure to drop a text search index that was defined
by using the SYSPROC.SYSTS_CREATE stored procedure.

Text Search Index view

When a text search index is created with SYSTS_CREATE, a view representing the index will be created.
Querying the text search index’s view can help the user obtain the status of the index. The text search
index view’s name is same name as the text search index’s name that was specified while creating the
index with SYSTS_CREATE.

The following table shows the content of text search index’s view.

Table 37. Contents of the view created by SYSTS_CREATE

Column name Data type CCSID Nullable? Description

TABLESCHEMA VARCHAR(128) 1208 No Schema name of the base table.

TABLENAME VARCHAR(128) 1208 No Unqualified name of the base
table.

COLUMNNAME VARCHAR(128) 1208 No Unqualified name of the text
column from the base table.

OmniFind Text Search Server 101

|
|

|
|
|
|

||

|||||

|||||

|||||
|

|||||
|

Table 37. Contents of the view created by SYSTS_CREATE (continued)

Column name Data type CCSID Nullable? Description

SERVERID INTEGER No Unique server ID from
SYSTEXTSERVERS.

SERVERNAME VARCHAR(128) 1208 No Unqualified name of the text
search server.

SERVERSTATUS VARCHAR(32) 1208 No v ‘STARTED’ – Server is
running.

v ‘STOPPED’ – Server is
stopped.

STAGINGTABLENAME VARCHAR(128) 1208 No Unqualified name of the log
table for the text search index.

LASTUPDATETIME TIMESTAMP Yes The time that the text search
index was last updated.

LASTUPDATESTATUS VARCHAR(30) 1208 Yes v ’NEVER UPDATED’ – The
index was not updated
before.

v ‘UP TO DATE’ – Last update
succeed and there is no
pending changes to do.

v ‘CHANGES PENDING’ –
Last update succeed, but
there are still new changes to
be updated.

v ‘FAILED’ – Last update
failed.

UPDATEMINIMUM INTEGER No Minimum number of entries in
the log table before an
incremental update of the text
search index is performed.

UPDATEFREQUENCY VARCHAR(512) 1208 No The update frequency for the
text search index as specified
by the
SYSPROC.SYSTS_CREATE
stored procedure.

PENDINGCOUNT INTEGER No Indicate how many rows to be
indexed in next update process.

Extensions to Index and Search Non-DB2 Data
The OmniFind Text Search for DB2 for i provides an additional set of stored procedures to create,
administer, and search text search collections.

Extensions Overview
OmniFind Text Search Server for DB2 for i provides an additional set of stored procedures to create,
administer, and search text search collections. A text search collection is used to index data associated
with system objects such as spool files in an output queue, or stream file data in the integrated file
system.

102 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|

|||||

|||||
|

|||||
|

|||||
|

|
|

|||||
|

|||||
|

|||||
|
|

|
|
|

|
|
|
|

|
|

|||||
|
|
|

|||||
|
|
|
|

|||||
|

|||||
|

A text search collection describes one or more sets of system objects that will have their associated text
data indexed and searched. For example, a collection may contain an object set of all spool files in output
queue QUSRSYS/QEZJOBLOG, and/or an object set for all stream files in directory '/home/alice/
text_data'.

The text search collection referred to in this documentation should not be confused with a DB2 schema
(sometimes also referred to as a collection), or a Lucene collection (Part of the internal structure of a DB2
text search index).

When a text search collection is created, several DB2 objects are created on the system in an SQL schema.
The following objects will be created in the schema:
v Catalogs for tracking the collection's configuration.
v Catalogs for tracking the objects that have been indexed.
v SQL Stored procedures to administer and search the collection.
v A DB2 text search index for indexing the associated text.

Administration of the collection is provided with stored procedures, most of which are created in the
schema.

An explanation of other OmniFind Text Search Server for DB2 for i enhancements can be found at:
OmniFind Text Search Server for DB2 for i enhancements.

Creating a Text Search Collection
This procedure creates an empty search collection. An SQL schema will be created on the system to
contain information about the collection. The schema will contain DB2 objects necessary to track and
index objects.

SYSPROC.SYSTS_CRTCOL and SYSPROC.SYSTS_CREATE_COLLECTION

Authorization

SYSTS_CRTCOL and SYSTS_CREATE_COLLECTION will be shipped with *EXECUTE authority granted
to public.

These procedures will not adopt any additional authority and will run under the invoking profile.

In order to create a text search collection the invoker must have:
v Authority to create a DB2 schema
v Authority/ability to create a text search index

The DB2 Objects created as part of the collection, including the administrative stored procedures are
created with public authority *EXCLUDE

The user profile creating the collection owns all objects in the collection. A user may grant authority to
specific procedure to other users in order to allow another user to administer and search the text search
collection.

Syntax

►► SYSTS_CRTCOL (collection_name
, options

, asp_device_name

) ►◄

OmniFind Text Search Server 103

https://www.ibm.com/developerworks/ibmi/techupdates/db2/omf

Syntax

►► SYSTS_CREATE_COLLECTION (collection_name
, options

, asp_device_name

) ►◄

The schema qualifier is SYSPROC.

Parameters

collection_name
Name of Collection. This name uniquely identifies the collection and must be a non null string. A
schema of the name specified for collection name will be created to hold the associated DB2 objects.

Note: Enclose names in double quotation marks if the names conflict with SQL keywords or
OmniFind keywords that can be used.

The collection name parameter will follow the SQL rules for schema names.

The collection name must not match the name of an existing user profile.

The data type of this parameter is VARCHAR(128).

options
A character string that specifies the various options that are available for this stored procedure.

The data type for this parameter is VARCHAR(32000).

options:

text-default-information update-characteristics index-configuration-options

text-default-information:

LANGUAGE language FORMAT format

text-default-information
Specifies the language that is used when processing documents, and the format of text documents
in the column.

LANGUAGE language
Specifies the language that OmniFind Text Search Server for DB2 for i uses for the linguistic
processing of text documents. The default value is en_US (English). If you specify the value
for this parameter as AUTO, OmniFind Text Search Server for DB2 for i tries to determine the
language.

Important: If the language of the documents is not English, do not use the default value of
en_US. Change the value to the language of the documents; otherwise, linguistic
processing does not work as expected.

FORMAT format
Identifies the format of text documents to be indexes, such as TEXT or INSO. The OmniFind
Text Search Server for DB2 for i needs to know the format, or content type, of the text
documents that you intend to index and search. If you do not specify the format parameter,
the default is TEXT.

104 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

The format value INSO allows OmniFind Text Search Server for DB2 for i to determine the
format. If the OmniFind Text Search Server for DB2 for i cannot determine the document
format, then a document error is logged in the job log during processing by the UPDATE
stored procedure.

update-characteristics:

NONE
UPDATE FREQUENCY < update-frequency >

update-characteristics
Specifies the frequency of automatic updates to the text search collection. The update process for
a text search collection involves both indexing the text data, and crawling system objects to detect
new or changed data.

UPDATE FREQUENCY update-frequency
Specifies when to make automatic updates to the text search collection. The default value is
NONE.

update-frequency (Format 1):

▼ ▼ ▼

NONE
D (*) H (*) M (*)

, , ,

0..6 0..23 0..59
0..6 0..23 0..59

NONE
If NONE is specified, then no further index updates are made. The update must be
started manually.

D Specifies the day or days of the week when the index is updated. An asterisk (*)
specifies all days. 0 specifies Sunday.

H Specifies the hour or hours when the index is updated. An asterisk (*) specifies all
hours.

M Specifies the minute or minutes when the index is updated. An asterisk (*) cannot be
specified. The minimum update frequency is 5 minutes.

Example: This example specifies that the index update is to run every 30 minutes.
UPDATE FREQUENCY D(*) H(*) M(0,30)

update-frequency (Format 2, chronological):

< minute> < hour> <dayOfMonth> <monthOfYear> <dayOfWeek>

The format of the update-frequency (chronological) option is a list of the five values separated by
a blank space. The five values represent the minutes, hours, days of the month, months of the
year, and days of the week beginning with Sunday.

If you specify an interval of values or an asterisk (*), you can specify a step value by using a
forward slash (/) at the end of the defined interval.

Example: This example specifies that the index update is to run every quarter hour
(0,15,30,45) on the even hours between 8 a.m. and 6:45 p.m. (8-18/2 is equivalent to
8,10,12,14,16,18), from Monday to Friday every month of the year (* * 1-5).
0,15,30,45 8-18/2 * * 1-5

OmniFind Text Search Server 105

|
|

minute
Specifies the minutes of the hour when the text search index is to be updated. You
can specify an asterisk (*) for an interval of every 5 minutes, or you can specify an
integer 0 - 59. You cannot repeat values. The minimum update frequency is 5
minutes. A value of 1,4,8 is not valid.

update-frequency (minute):

▼

*
/ 0...59

,

0...59 - 0...59
/ 0...59

0...59

hour Specifies the hours of the day when the text search index is to be updated. You can
specify an asterisk (*) for every hour, or you can specify an integer 0 - 23. You cannot
repeat values.

update-frequency (hour):

▼

*
/ 0...23

,

0...23 - 0...23
/ 0...23

0...23

dayOfMonth
Specifies the days of the month when the text search index is to be updated. You can
specify an asterisk (*) for every day, or you can specify an integer 1 - 31. You cannot
repeat values.

update-frequency (dayOfMonth):

▼

*
/ 1...31

,

1...31 - 1...31
/ 1...31

1...31

monthOfYear
Specifies the months of the year when the text search index is to be updated. You can
specify an asterisk (*) for every month, or you can specify an integer 1 - 12. You
cannot repeat values.

106 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|
|

|

|||||||||||||||||||||||||||||||||||||

|

|
|
|
|

|

|||||||||||||||||||||||||||||||||||||

|

|
|
|
|

update-frequency (monthOfYear):

▼

*
/ 1...12

,

1...12 - 1...12
/ 1...12

1...12

dayOfWeek
Specifies the days of the week when the text search index is to be updated. You can
specify an asterisk (*) for every day, or you can specify an integer 0 - 7. Both 0 and 7
are valid values for Sunday. You cannot repeat values.

update-frequency (dayOfWeek):

▼

*
/ 0...7

,

0...7 - 0...7
/ 0...7

0...7

index-configuration-options:

INDEX CONFIGURATION (▼

,

option value)

index-configuration-options
Specifies additional index-specific values as option value pairs. You must enclose string values in
single quotation marks. A single quotation mark within a string value must be represented by
two consecutive single quotation marks.

CJKSEGMENTATION
Specifies the segmentation method to use when you index documents for CJK (Chinese,
Japanese, Korean) languages. The supported values are MORPHOLOGICAL and NGRAM. If
the CJKSEGMENTATION value is not specified, the default value is used. The default value
is specified by the DEFAULTNAME value in the QSYS2.SYSTEXTDEFAULTS table.

SERVER
Specifies the ID or alias name of the server to be used to store the text search index. If an ID
is used, the value is an integer that must exist in the SERVERID column of the
QSYS2.SYSTEXTSERVERS catalog. If an alias name is used, the value is a string that must
exist in the ALIASNAME column of the QSYS2.SYSTEXTSERVERS catalog. If SERVER is not
specified, the default is to select the server with the fewest text search indexes from the
servers in the QSYS2.SYSTEXTSERVERS table where parameter SERVERSTATUS is set to 0
(zero), which means that the server is available.

UPDATEAUTOCOMMIT
Specifies how often a commit operation is performed when fetching documents during an
index update. A value of 0 (zero) means that a commit operation occurs only at the end of
processing.

The value must be an integer between 0 (zero) and 2147483647. The default value is 100.

OmniFind Text Search Server 107

|

|||||||||||||||||||||||||||||||||||||

|

|
|
|
|

|

|||||||||||||||||||||||||||||||||||||

|

|

Performance tip: The value of UPDATEAUTOCOMMIT can have a substantial impact on the
performance of index updates. The commit operation that takes place at the specified interval
ensures a consistent checkpoint from which to restart the index update, if it is interrupted.
However, the commit also temporarily suspends the update process. Increasing the
UPDATEAUTOCOMMIT value (or setting it to 0) can substantially improve the update
performance, especially the initial update. The value you specify must balance the need for
performance with the need for recoverability, based on the frequency of the index updates.

asp_device_name
This parameter, if specified and not null, determines which Auxiliary storage pool the collection is
created into. This parameter is optionally available to match the CREATE SCHEMA capability to
create the DB2 objects on a specific ASP device.

If a value is supplied for this parameter, the value must name a disk pool in the primary asp group
of the current namespace, or a basic ASP unit if the namespace is the system ASP only.

The data type for this parameter is VARCHAR(10).

Examples
1. CALL SYSTS_CRTCOL(‘mycollection');

A collection MYCOLLECTION is created.
2. CALL SYSTS_CRTCOL(‘”mycollection”', “UPDATE FREQUENCY D(*) H(*) M(0)”)

A collection mycollection (lower case not including the delimiters) is created.
The text search collection will have an update frequency of every day, at the top of every hour.

3. CALL SYSTS_CRTCOL(‘ur_collection',‘UPDATE FREQUENCY NONE ‘ || ‘ LANGUAGE zh_CN
INDEX CONFIGURATION(‘ || ‘ CJKSEGMENTATION MORPHOLOGICAL) ‘, ‘23')
A collection UR_COLLECTION is created.
The collection has no update frequency.
The collection's language is simplified Chinese, using dictionary linguistic analysis (morphological).
The SQL schema is created in basic ASP #23.
When the text search collection is created, procedures are created in the DB2 schema to administer the
collection.

To create a collection from IBM Navigator for i, follow these steps.
1. From IBM Navigator for i, expand IBM i Management > System > All Tasks.
2. On the right panel, select System > Omnifind > Create Collection.

Adding an Object Set for Spool File Data
The stored procedure is in the DB2 schema to add an object set for spool file data.

Note: only SNA Character String (SCS) data is supported. Spool files that contain other types of data
cannot be indexed and will result in a document level error when encountered. The error will be
logged in the job log, and indexing will continue with the next spool file. The
GET_OBJECTS_NOT_INDEXED procedure can be used to determine which spool files were not
included in the indexing process.

ADD_SPLF_OBJECT_SET

Authorization

This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection. will be shipped with *EXECUTE authority granted to public.

108 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax

Add a Spool File Object Set:

►► ADD_SPLF_OBJECT_SET (output_queue_lib
null

, output_queue_name
null

, user_name
null

, qual_job_name
null

►

► , qual_job_user
null

, qual_job_number
null

, user_data
null

, begin_timestamp
null

, ending_timestamp
null

►

►
, output_set_id

) ►◄

The following simplified versions of the add spool file object set procedure may be used for convenience.

Select spool files by output queue only:

►► ADD_SPLF_OBJECT_SET (output_queue_lib
null

, output_queue_name
null

) ►◄

Select spool files by output queue, and user name only:

►► ADD_SPLF_OBJECT_SET (output_queue_lib
null

, output_queue_name
null

, user_name
null

) ►◄

The schema qualifier is the name of the text search collection.

Parameters

output_queue_lib
A system name for the output queue library.

A NULL value or empty string indicates that output queues in all libraries will be included in the
index.

The data type for this parameter is VARCHAR(10)

[See system name conventions]

[See additional restrictions]

output_queue_name
A system name for the output queue name.

A NULL value or empty string indicates that any output queue will be included in the index.

The data type for this parameter is VARCHAR(10)

[See system name conventions]

[See additional restrictions]

user_name
A system name for the user that owns the spool file.

A NULL value or empty string indicates that no filtering on the user name will be performed.

The data type for this parameter is VARCHAR(10)

OmniFind Text Search Server 109

[See system name conventions]

[See additional restrictions]

qual_job_name
A system name for the output queue library.

A NULL value or empty string indicates that no filtering on the job name will occur.

The data type for this parameter is VARCHAR(10)

[See system name conventions]

qual_job_user
System name for the user profile name of the job associated with the spool file.

A NULL value or empty string will indicate that no filtering on the job user will occur.

The data type for this parameter is VARCHAR(10)

A non-null, non-empty value for this parameter is required if QUALIFIED_JOB_NAME is specified.

If QUALIFIED_JOB_NAME is empty string or NULL, this parameter must also be NULL or empty
string.

[See system name conventions]

[See additional restrictions]

qual_job_number
A six character string representing the job number. (Must be digits 0-9)

A NULL value or empty string will indicate that no filtering on the job number will occur.

The data type for this parameter is VARCHAR(6)

A non-null, non-empty value for this parameter is required if QUALIFIED_JOB_NAME is specified.

If QUALIFIED_JOB_NAME is empty string or NULL, this parameter must also be NULL or empty
string.

[See system name conventions]

[See additional restrictions]

user_data
A ten character string that the user associates with a spool file.

This string is not converted to uppercase, and must exactly match the user data associated with a
spool file in order to be considered a match.

Note: A value of 'abc' is different than 'ABC'

A NULL value, or empty string will indicate that no filtering on the user data will occur.

The data type for this parameter is VARCHAR(10)

begin_timestamp
Timestamp value indicating the earliest creation time that will be included in the collection. Spool
files created earlier than this timestamp will not be indexed.

A value of NULL can be provided to indicate that any spool file created before the ending creation
timestamp value should be indexed. If END_TIMESTAMP is also NULL, then no filtering on the
creation timestamp will occur.

The data type for this parameter is TIMESTAMP

110 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

end_timestamp
Timestamp value indicating the latest creation time that will be included in the collection. Spool files
created after this timestamp will not be indexed.

A value of NULL can be provided to indicate that any spool file created after the
BEGIN_TIMESTAMP will be indexed. If BEGIN_TIMESTAMP is also NULL, then no filtering on the
creation timestamp will occur.

The data type for this parameter is TIMESTAMP

output_set_id
Output Integer value that returns the set id for the object set that was added.

This value can be used to remove the object set at a later time.

This parameter is optional.

The data type for this parameter is INTEGER

System Naming Conventions

Parameters that require system names as input must be valid system names or an error will occur. This
parameters will be processed the same way the command analyzer processes names for CL commands.
See Object naming rules for more information on system names

call nick12345.add_splf_object_set('ntl', 'justtext', 'ntl', '', '', '', '', NULL, NULL);

The filter information passed to the procedure will be an output queue NTL/JUSTTEXT for user NTL
(converted to uppercase)

Unlike SQL names, for a system name the delimiters will remain on the name, but only if necessary. call
nick12345.add_splf_object_set('"ntl"', '"justtext"', '"NTL"', '', '', '', '', NULL, NULL);

The filter information passed to the api will be output queue "ntl"/"justtext" for user NTL (no quotes
around user NTL)

Note: The stored procedure has a ten character limit on the interface and does not support unnecessary
double quotes that cause this limit to be exceeded.

Invalid system names will cause an error.

Additional Restrictions
v Generic names are not supported. In other words it is not possible to index all output queues that start

with MYOUT by adding an object set for MYOUT*
v The output queue library name and output queue name must either be both null (or empty string)...or

both have valid system names. It is not possible filter on all output queues in library xyz, or to filter on
all output queues named 'abc' in any library.

v If a specific output queue name and library are specified, that output queue must exist at the time the
object set is added. There is no logic to prevent the deletion of the output queue at some later time, but
the object set will effectively become 'empty'.

v If both USER_NAME and QUALIFIED_JOB_USER are non-null, non-empty values, then they must be
equal. A spool file owner will always match the qualified job user, and therefore these values can never
be different when both are used as a filter.

Authorities to Indexed Objects

When adding a spool file object set, consider the authority requirements needed to retrieve the text from
the spool files carefully. These authorities will be a factor when the UPDATE stored procedure is invoked.

OmniFind Text Search Server 111

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_71/rbam6/rbam6names.htm

See the update stored procedure documentation for information on the authority requirements to indexed
objects.

Examples

Add an object set to collection nick789 for all spool files in output queue NTL/MYOUTQ.
> call nick789.add_splf_object_set(’NTL’, ’MYOUTQ’);

Add an object set to collection nick123 to index all spool files owned by user NTL.
> call nick123.add_splf_object_set(’’, ’’, ’NTL’);

Add an object set to collection default_search_col to index all spool files created in 2010
> call default_search_col.add_splf_object_set(’’, ’’, ’’, ’’, ’’, ’’, ’’, ’2010-01-01T00:00:00’, ’2011-01-01T00:00:00’);

Add an object set to collection default_search_col to index all spool files created in 2010 with user data
'MYAPP':
> call default_search_col.add_splf_object_set(’’, ’’, ’’, ’’, ’’, ’’, ’MYAPP’, ’2010-01-01T00:00:00’, ’2011-01-01T00:00:00’);

To add spool file object set to a collection from IBM Navigator for i, follow these steps.
1. From IBM Navigator for i, expand IBM i Management > System > All Tasks.
2. On the right panel, select System > OmniFind > Collection List.
3. Right click the collection and select Properties. On the Object tab, press Add Output Queues or Add

Spooled Files button.

Adding an Object Set for Stream File Data
The stored procedure is in the DB2 schema to add an object set for stream file data.

ADD_IFS_STMF_OBJECT_SET

Authorization

This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax

This procedure allows a user to add an object set of stream files (STMF) in the Integrated File System
(IFS).

Add an object set for stream file data (stream files in IFS):

►► ADD_IFS_STMF_OBJECT_SET (stmf_expression_string
, output_set_id

) ►◄

The schema qualifier is the name of the text search collection.

Parameters

stmf_expression_string
This parameter contains an absolute path to a directory containing the files that will be indexed.

112 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

This must be a valid directory (type *DIR) on a file system that is accessible. Stream file objects (type
*STMF) within this directory will be indexed. The path name should be absolute and should not
contain any regular expressions.

The data type for this parameter is VARCHAR(32000)

Stream files contained within the specified directory are indexed.
v Symbolic links are NOT followed
v Sub-directories are NOT processed
v Path names must not be delimited, characters such as '*', '?', etc do not have any special meaning

and should not be escaped.
v Path names may or may not be case sensitive, depending on the attribute of the file system.

A check will be performed when adding the object set to verify that a duplicate set does not already
exist in the text search collection. This check does not consider equivalent paths to be duplicate.

In other words the following paths could all represent the same directory, but will be considered
unique object sets, furthermore, the objects in those sets will be indexed multiple times as unique
objects.
/dir1/DIR2
/dir1//DIR2//
/DIR1/DIR2/ (if file system is case insensitive)
/dir1/DIR2/../DIR2
etc.

output_set_id
Output Integer value that returns the set id for the object set that was added. This value can be used
to remove the object set at a later time.

This parameter is optional.

The data type for this parameter is INTEGER.

Special Considerations for Update Processing

Non-existent file systems:

If a directory cannot be located during an update operation, the files associated with that directory will
not be removed from the index. This avoids unnecessary re-indexing of documents when a files system is
unmounted and later remounted.

If these files need to be removed from the index, several options exist:
v Issue the remove object set stored procedure against the IFS Stream file object set. This will remove any

documents associated with the object set.⌂
v Issue the REPRIME stored procedure against the collection. All data will be removed from the index,

and only files that can be located will be reindexed.
v Create the directory as an empty directory and issue the update

CCSID Conversion

If the collection's FORMAT is TEXT:
v The CCSID attribute of the file is used to convert the file's extracted data to UTF-8 for indexing. The

CCSID attribute of the file must be correct in order for the file to be correctly indexed.

If the collection's FORMAT is INSO:
v The data from the file will be extracted from the file and sent to the text search server for processing.

No character set conversion will occur, and the CCSID attribute of the file will be ignored. The text
search server will use its rich text processing to determine the format and encoding of the document.

OmniFind Text Search Server 113

This can be used to index rich text (such as PDF) files, or ordinary text files. For some plain text
documents, it may not be possible for the text search server to determine encoding of the document
with enough confidence to index the data. This is more likely for very small documents, but can occur
for larger documents that use a wide range of characters as well. If the format and encoding of the file
cannot be determined, the file will not be indexed and a document error will be logged.

Authorities to Indexed Objects

When adding an IFS stream file object set, consider the authority requirements to read the stream files
carefully. Adopted authorities are not honored when accessing the stream file's data. In addition,
scheduled updates run under the user profile that owns the index. See the update stored procedure
documentation for information on the authority requirements to indexed objects.

Example

Add an object set to MYCOLLECTION to index all stream files in an IFS directory '/home/ntl/stmf':
> CALL MYCOLLECTION.ADD_IFS_STMF_OBJECT_SET(’/home/ntl/stmf’);

To add IFS path to a collection from IBM Navigator for i, follow these steps.
1. From IBM Navigator for i, expand IBM i Management > System > All Tasks.
2. On the right panel, select System > OmniFind > Collection List.
3. Right click the collection and select Properties. On the Object tab, press Add IFS Path button.

Removing an Object Set
This stored procedure will remove an object set from a text search collection.

REMOVE_OBJECT_SET

Authorization

This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax

►► REMOVE_OBJECT_SET (setid) ►◄

The schema qualifier is the name of the text search collection.

Parameters

setid
The set id which was obtained when adding object set.

The object set ID can also be obtained using the QUERY_OBJECT_SET stored procedure after the
object set has been added.

The data type for this parameter is INTEGER.

114 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

Examples

Remove object set #1 from collection MYCOLLECTION.
> CALL MYCOLLECTION.remove_object_set(1)

To remove an object set from a collection from IBM Navigator for i, follow these steps.
1. From IBM Navigator for i, expand IBM i Management > System > All Tasks.
2. On the right panel, select System > OmniFind > Collection List.
3. Right click the collection and select Properties. On the Object tab, press Remove button.

Update the Collection
This stored procedure updates the collection. When called initially, all objects included in the object sets
for the collection are indexed. When this stored procedure is called after a successful initial update has
completed, all changed objects are updated in the index. The procedure will not return control to the
caller until after the update has completed.

UPDATE

Authorization

This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax

►► UPDATE ►◄

The schema qualifier is the name of the text search collection.

Parameters

None

Authority Requirements on Indexed Objects

Scheduled updates run under the profile that owns the text search collection.

Calls to the UPDATE stored procedures run under the profile invoking the procedure.

It is recommended that both the owner of the index, and the profile administering the index have
authority to read the text data from all objects indexed in the collection. Failure to have sufficient
authority can cause unpredictable results.

Adopted authority will not necessarily be honored for crawling objects and extracting text from those
objects.

Authority problems during the update process may cause the update to fail, or individual documents not
to be indexed.

OmniFind Text Search Server 115

Examples
CALL MYCOLLECTION.UPDATE;

To update the collection index from IBM Navigator for i, follow these steps.
1. From IBM Navigator for i, expand IBM i Management > System > All Tasks.
2. On the right panel, select System > OmniFind > Collection List.
3. Right click the collection and select Update.

Repopulate the Text Search Collection
The REPRIME stored procedure clears the collection, and then performs an initial update. The procedure
will not return control to the caller until after the update has completed.

REPRIME

Authorization

This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax

►► REPRIME ►◄

The schema qualifier is the name of the text search collection.

Parameters

None

Reprime Authority Considerations to Indexed Objects

Scheduled updates run under the profile that owns the text search collection.

Calls to the REPRIME stored procedures run under the profile invoking the procedure.

It is recommended that both the owner of the index, and the profile administering the index have
authority to read the text data from all objects indexed in the collection. Failure to have sufficient
authority can cause unpredictable results.

Adopted authority will not necessarily be honored for crawling objects and extracting text from those
objects.

Authority problems during the update process may cause the update to fail, or individual documents not
to be indexed.

Examples
CALL MYCOLLECTION.REPRIME;

To repopulate the text search collection from IBM Navigator for i, follow these steps.
1. From IBM Navigator for i, expand IBM i Management > System > All Tasks.

116 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

2. On the right panel, select System > OmniFind > Collection List.
3. Right click the collection and select Reprime.

Search the Collection
This procedure allows a user to search a text search collection for objects that match a search.

SEARCH

Authorization

This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax

►► SEARCH (search_string
, search_options

, number_of_results

) ►◄

The schema qualifier is the name of the text search collection.

Parameters

search_string
A string parameter that contains the search expression.

Note: This expression must not be all blanks or empty string.

See the Search Argument Syntax of the OmniFind Reference for details.

The data type of this parameter is VARCHAR(32700).

search_options
Identifies a string constant that specifies the search argument options that are in effect for the
function.

The data type of this parameter is VARCHAR(32700).

search_options:

, QUERYLANGUAGE = value , RESULTLIMIT = value , SYNONYM = OFF
ON

QUERYLANGUAGE
Specifies the query language. The value can be any of the supported language codes. If the
QUERYLANGUAGE option is not specified, the default is the language value of the text search
index that is used when this function is invoked. If the language value of the text search index is
AUTO, the default value for QUERYLANGUAGE is en_US.

RESULTLIMIT
This provides a clue to the DB2 optimizer for how many rows of the result set are expected to be
used. The optimizer may choose a different plan to return fewer rows from the SEARCH
procedure. The optimizer may also ignore this option if a performance benefit during the search
will not be obtained.

OmniFind Text Search Server 117

SYNONYM
Specifies whether to use a synonym dictionary that is associated with the text search index. You
can add a synonym dictionary to a collection by using the synonym tool. OFF is the default
value.

number_of_results
Output Integer value that returns the number of documents for the search result.

The data type of this parameter is VARCHAR(32700).

RESULT SET RETURNED

The search procedure returns a result set with matches for the search expression.

The result set contains following columns:
OBJTYPE CHAR(10) CCSID 1208
OBJATTR CHAR(10) CCSID 1208
CONTAINING_OBJECT_LIB CHAR(10) CCSID 1208
CONTAINING_OBJECT_NAME CHAR(10) CCSID 1208
OBJECTINFOR XML
MODIFY_TIME TIMESTAMP
SCORE DOUBLE

OBJTYPE - The type of system object for this result (*STMF, *OUTQ, etc).

OBJATR - The attribute of the system object that matched the search expression (*SPLF, *DATA, etc).

CONTAINING_OBJECT_LIB - The library for the matched system object.

CONTAINING_OBJECT_NAME - The name of the matching system object.

OBJECTINFOR - An XML value that describes the location information of the indexed data that matched
the search_string expression. An example spool file location will look like:
<Spool_File xmlns=”http://www.ibm.com/xmlns/prod/db2textsearch/obj1”>

<job_name>QPADEV000Cjob_name>QPADEV000C>
<job_user_name>USERAjob_user_name>USERA>
<spool_file_name>DSXSVRALSspool_file_name>DSXSVRALS>
<spool_file_number>1spool_file_number>1>
<job_system_name>ZD21BP1job_system_name>ZD21BP1>
<create_date>1081027create_date>1081027>
<create_time>035554create_time>035554>

</Spool_File>

An example IFS stream file location might look like:
<Stream_File xmlns=”http://www.ibm.com/xmlns/prod/db2textsearch/obj1”>

<file_path>/home/usera/a.xmlfile_path>/home/usera/a.xml>
</Spool_File>

DB2 provides a number of ways to convert an XML value into other formats so that applications can
access the data. One possibility is to create an xsl-stylesheet and use the XSLTRANSFORM function.
Another possibility is to create an annotated schema for the XML values and use the XDBDECOMPXML
procedure to populate relational tables with the values. The SQL Reference in the infocenter contains
details on both of these functions.

MODIFY_TIME - A timestamp indicating the last modification time of the object that is in the collection.
This timestamp will never be more recent than the last update process.

118 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

hhttps://www.ibm.com/support/knowledgecenter/ssw_ibm_i_71/db2/rbafzscaxsltransform.htm
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_71/db2/rbafzprocxdbdecomp.htm

SCORE - The result is greater than 0 but less than 1 if the indexed text data contains a match for the
search criteria that the search argument specifies. The more frequently a match is found, the larger the
result value. If the column does not contain a match, the result is 0.

The result set is ordered by score descending.

Examples
1. call MYCOLLECTION.search('big bad wolf');
2. call MYCOLLECTION.search('big bad wolf', 'QUERYLANGUAGE=en_US');

To search the collection from IBM Navigator for i, follow these steps.
1. From IBM Navigator for i, expand IBM i Management > System > Search.
2. Select Search.

Query Object Set Information
This procedure allows a user to see the list of object sets that are contained within the collection.

QUERY_OBJECT_SET

Authorization

This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax

►► QUERY_OBJECT_SET ►◄

The schema qualifier is the name of the text search collection.

Parameters

None

RESULT SET RETURNED

The procedure returns a result set that has one row for each object set:
SETID INTEGER
SETSTATE CHAR(10) CCSID 1208
LASTREFRESHTIME TIMESTAMP
ADDOBJSETSQL VARCHAR(2000) CCSID 1208

SETID - A unique identifier assigned to each object set. This identifier may be used on the
remove_object_set stored procedure to remove the object set from the collection.

SETSTATE - The state of the object set. This is reserved for future expansion and is always 'ACTIVE'.

LASTREFRESHTIME - The last time the object set has been refreshed to reflect objects actually on the
system.

ADDOBJSETSQL - The SQL stored procedure call that was used to add this object set.

OmniFind Text Search Server 119

Examples
Call MYCOLLECTION.QUERY_OBJECT_SET;

To query object set information from a collection from IBM Navigator for i, follow these steps.
1. From IBM Navigator for i, expand IBM i Management > System > All Tasks.
2. On the right panel, select System > OmniFind > Collection List.
3. Right click the collection and select Properties. Click the Object tab.

Retrieve Status of Indexes Objects
This procedure returns the status of all objects in the text search collection.

GET_OBJECT_STATUS

Authorization

This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax

►► GET_OBJECT_STATUS ►◄

The schema qualifier is the name of the text search collection.

Parameters

None

RESULT SET RETURNED

The procedure returns a result set that has one row for each object set:
OBJECT XML
STATUS_TIMESTAMP TIMESTAMP
STATUS_CODE INTEGER
TEXT_STATUS VARCHAR(100)

OBJECT - The location information for the object in the index, this matches the format returned by search
for the OBJECTINFOR column.

STATUS_TIMESTAMP - If the object is in the INDEXED state, then this is the modification timestamp of
the object in the index. In other words changes made to the object prior to this time are reflected in the
text search index. For all other state values, this timestamp is the time the state was recorded in the
index. For example: If the object's state is ERROR, this is the time that the error was recorded.

STATUS_CODE - A numeric value representing the state of this object:
0 = The object has been indexed and no changes were detected to the object.
10 = The object is currently in the process of being indexed.
20 = Changes to the object have been detected.
30 = The object was indexed, but a warning occurred during the indexing process.
40 = An error prevented the object from being indexed.

120 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

These values allow more complex selection criteria. i.e. retrieve all objects not current in the index could
be expressed as STATUS_CODE > 0.

Note: the state of objects that are in the process of being updated, or were in the process of being
updated when an update was canceled, could differ from reality. It is possible for an object to
report there are changes pending, when in fact the text to be indexed has already been sent to the
server. It is also possible to a document's status to be 'INDEXED', but the object may not be
search-able until a future commit point in the update process. The STATUS_CODE will reflect
reality when the update stored procedure has completed.

The result set is sorted (descending) by status code.

TEXT_STATUS - The Text Version of the status code:
0 = INDEXED
10 = INDEXING
20 = CHANGES PENDING
30 = WARNING
40 = ERROR

Examples
Call MYCOLLECTION.GET_OBJECT_STATUS;

Get Objects Not Indexed
This procedure returns the objects which are not indexed in the text search collection.

GET_OBJECTS_NOT_INDEXED

Authorization

This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax

►► GET_OBJECTS_NOT_INDEXED ►◄

The schema qualifier is the name of the text search collection.

Parameters

None

RESULT SET RETURNED

The procedure returns a result set that has one row for each object set:
OBJECT XML
STATUS_TIMESTAMP TIMESTAMP
STATUS_CODE INTEGER
TEXT_STATUS VARCHAR(100)

OBJECT - The location information for the object in the index, this matches the format returned by search
for the OBJECTINFOR column.

OmniFind Text Search Server 121

STATUS_TIMESTAMP - If the object is in the INDEXED state, then this is the modification timestamp of
the object in the index. In other words changes made to the object prior to this time are reflected in the
text search index. For all other state values, this timestamp is the time the state was recorded in the
index. For example: If the object's state is ERROR, this is the time that the error was recorded.

STATUS_CODE - A numeric value representing the state of this object:
0 = The object has been indexed and no changes were detected to the object.
10 = The object is currently in the process of being indexed.
20 = Changes to the object have been detected.
30 = The object was indexed, but a warning occurred during the indexing process.
40 = An error prevented the object from being indexed.

These values allow more complex selection criteria. i.e. retrieve all objects not current in the index could
be expressed as STATUS_CODE > 0.

Note: the state of objects that are in the process of being updated, or were in the process of being
updated when an update was canceled, could differ from reality. It is possible for an object to
report there are changes pending, when in fact the text to be indexed has already been sent to the
server. It is also possible to a document's status to be 'INDEXED', but the object may not be
search-able until a future commit point in the update process. The STATUS_CODE will reflect
reality when the update stored procedure has completed.

The result set is sorted (descending) by status code.

TEXT_STATUS - The Text Version of the status code:
0 = INDEXED
10 = INDEXING
20 = CHANGES PENDING
30 = WARNING and ERROR
40 = WARNING and ERROR

Examples
Call MYCOLLECTION.GET_OBJECTS_NOT_INDEXED;

Retrieve Status of Collection
This procedure returns the status of the text search collection.

STATUS

Authorization

This stored procedure is created with public authority *EXCLUDE and is owned by the creator of the text
search collection.

The procedure will adopt the authority of the text search collection owner's profile. Authority can be
granted to other users to allow them to execute the procedure.

Syntax

►► STATUS ►◄

The schema qualifier is the name of the text search collection.

Parameters

None

122 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

RESULT SET RETURNED

The procedure returns a result set that has one row for each object set:
SERVERID INTEGER
SERVERNAME VARCHAR(128)
SERVERSTATUS VARCHAR(32)
LASTUPDATETIME TIMESTAMP
LASTUPDATESTATUS VARCHAR(30)
UPDATEFREQUENCY VARCHAR(512)

SERVERID - The server ID for the text search index.

SERVERNAME - The host name or IP address of the text search server.

SERVERSTATUS - Indicates whether the server can be used as a text search server to create new text
search indexes. The default value is 0 (zero), which means that the server can be used.

LASTUPDATETIME - The time that the text search index was last updated.

LASTUPDATESTATUS - Indicate last update status for the text search index.
NEVER UPDATED - The text search index is never updated before.
UP TO DATE - The text search index is up to date.
CHANGES PENDING - There are changes pending. User need update the index to make the text search index up to date.
FAILED - The text search index was updated failed last time.

UPDATEFREQUENCY - When to make automatic updates to the text search index.

Examples
Call MYCOLLECTION.STATUS;

To retrieve status of collection from IBM Navigator for i, follow these steps.
1. From IBM Navigator for i, expand IBM i Management > System > All Tasks.
2. On the right panel, select System > OmniFind > Collection List.

Dropping a Text Search Collection
This procedure removes a text search collection from the system.

SYSPROC.SYSTS_DRPCOL and SYSPROC.SYSTS_DROP_COLLECTION

Authorization

The SYSPROC.SYSTS_DRPCOL and SYSPROC.SYSTS_DROP_COLLECTION stored procedures are
shipped with public authority *EXECUTE.

No authority is adopted and the procedure runs under the user's profile.

The user must have authority to drop the SQL schema (including all objects within) in order to
successfully drop the collection.

Syntax

►► SYSTS_DRPCOL (collection_name) ►◄

OmniFind Text Search Server 123

Syntax

►► SYSTS_DROP_COLLECTION (collection_name) ►◄

The schema qualifier is SYSPROC.

Parameters

collection_name
The name of the collection as supplied on the SYSTS_CREATE_COLLECTION stored procedure.

The data type for this parameter is VARCHARE(128).

Examples

CALL SYSPROC.SYTS_DRPCOL(‘”MYCOLLECTION”')

Other examples using text search collection procedures
> CALL SYSPROC.SYSTS_CREATE_COLLECTION(’MYCOLLECTION’, ’FORMAT TEXT’);

By default, always called the stored procedures associated with the new collection
> SET SCHEMA MYCOLLECTION
> SET PATH MYCOLLECTION

Add an object set for all spool files owned by user ZOOKEEPER
> CALL.ADD_SPLF_OBJECT_SET(’’, ’’, ’ZOOKEEPER’);

Add an object set for all spool files created on 06/14/2010
> CALL ADD_SPLF_OBJECT_SET(’’, ’’, ’’, ’’, ’’, ’’, ’’, ’2010-06-14T00:00:00’, ’2010-06-15T00:00:00’);

Add an object set for all stream files in the IFS directory ’/home/zookeeper’
> CALL ADD_IFS_STMF_OBJECT_SET(’/home/zookeeper’);

Update the collection
> CALL UPDATE;

Search for ’Lions AND tigers AND bears’
> CALL SEARCH(’lions AND tigers AND bears’);

Grant authority to another user (SEARCHER)
> GRANT EXECUTE ON SPECIFIC PROCEDURE SEARCH1 TO SEARCHER

Drop the collection
> CALL SYSPROC.SYSTS_DROP_COLLECTION(’MYCOLLECTION’)

To drop a text search collection from IBM Navigator for i, follow these steps.
1. From IBM Navigator for i, expand IBM i Management > System > All Tasks.
2. On the right panel, select System > OmniFind > Collection List.
3. Right click the collection and select Delete.

Independent ASP Considerations for Text Search Collections
IASP considerations for a text search collection.

Text Search Collections may be created in an Independent Auxiliary Storage Pool (ASP) environment with
the following restrictions:
1. If an Independent ASP Group is associated with the current thread, then the collection must reside on

an ASP in the independent ASP Group. It is not possible to administer a text search collection in the
system ASP or a basic user ASP while the thread is set to an Independent ASP group. It is possible to

124 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

search a collection that exists in the system ASP or basic user ASP, however because that index cannot
include data on the Independent ASP group, only objects that are accessible when the ASP Group is
*NONE will be included.

2. A text search collection can index any objects visible from the ASP Group Namespace of the
collection.

3. If an object set includes objects that exist within the namespace of the ASP group, but not on the
group itself, significant indexing time can occur if the Independent ASP Group is moved to another
system. For example: If a collection is created on Independent ASP 33 to index all spool files on the
system, and the ASP group is switched to a different machine, then all spool files from the old
machine not in the ASP group will be removed from the index, and all spool files on the new
machine not in the index will be added.

Backup and Restore Considerations for Text Search Collections
Saving and restoring a text search collection.

A text search collection may be backed up and restored by saving and restoring the library of the schema
created for the collection. During the restore, an update will be initiated asynchronously. The update will
crawl the objects on the system, and repopulate the index.

It is necessary to be able to restore the text search index contained within the collection in order for the
collection to be usable. These considerations for restoring a text search index must be considered:
v All required products must be installed.
v The text search server should be available.

Messages and codes
You can see the messages and SQL return codes for OmniFind Text Search for DB2 for i. The messages
are listed in numeric sequence.

OmniFind messages
You can see the OmniFind messages for OmniFind Text Search for DB2 for i. The messages are listed in
numeric sequence.

Messages are added to the OmniFind message file (QDBTSLIB/QOMFMSGF) for the following errors.

Table 38. OmniFind messages

Number Type Message

OMF0011 Information Text search index restored with different configuration options.

OMF0012 Warning The FORMAT type for the index being created is not XML. XML searches are not
supported.

OMF0334 Error The object ''{0}''.''{1}'' you specified is not supported. A Text Search index can only
be built over an SQL table, an SQL alias, or a single member of a physical file.

OMF0358 Error The current user does not have enough authority to perform the requested
operation.

OMF0359 Error Restore failed. The text server for the text index is not available.

SQLCODE -0196 Column &3 in &1 in &2 cannot be
dropped.

Explanation: An attempt was made to drop column
&3. The column cannot be dropped because a view, a
constraint, a trigger, or an index is dependent on the

column and RESTRICT was specified, or the column is
part of the partition key.

User response: Specify CASCADE on the ALTER
TABLE statement to drop the column and the views,
constraints, triggers, and indexes that are dependent on
it. If the column is part of the partition key, specify

SQLCODE -0196

OmniFind Text Search Server 125

|

|
|

|

||

|||

|||

|||
|

|||
|

|||
|

|||
|

|
|
|

|
|
|

|
|

|
|
|
|

DROP PARTITIONING on the ALTER TABLE statement
to remove the partitioning for the table. Try the request
again.

SQLSTATE: 42817

SQLCODE -5003 Cannot perform operation under
commitment control.

Explanation: The following operations cannot be
performed under commitment control with
COMMIT(*CHG), COMMIT(*CS), or COMMIT(*ALL)
specified:

v DROP SCHEMA statement.

v GRANT or REVOKE statement to an object that has
an authority holder.

v CREATE statement in SQL naming mode of an object
that has an authority holder.

v DROP of a text search index.

These operations cannot be committed or rolled back.

User response: Specify COMMIT(*NONE), and try the
statement again.

SQLSTATE: 42922

SQLCODE -20423 Error occurred during text search
processing.

Explanation: An error occurred during the text search
processing of a CONTAINS or SCORE function. The
error happened on server server using text search index
index-name for reason code reason-code. Text describing
the problem is:text.

server: The host name or IP address and port of the text
search server where the error was encountered.

index-name: The name of the index used in the text
search processing.

Note: Include the schema and a period with the index
name in a single token.

reason-code: The reason code returned from the
OmniFind Text Search Server for DB2 for i.

text: The text returned from the OmniFind Text Search
Server for DB2 for i.

System action: The statement cannot be processed.

User response: Contact your system administrator to
check that the OmniFind Text Search Server for DB2 for
i is successfully installed.

SQLSTATE: 38H10

Related reference:

“CONTAINS” on page 35
You can use the CONTAINS function to search a text
search index using criteria you specify in a search
argument. The function returns a result indicating

whether a match was found.

“SCORE” on page 37
You can use the SCORE function to search a text search
index using criteria that you specify in a search
argument. The function returns a relevance score that
measures how well a document matches the query.

SQLCODE -20424 Text search support is not
available for reason reason-code.

Explanation: A problem with one of the text search
administrative tables was detected. The reason code is
reason-code.

1 One of the text search administration tables
was not found (QSYS2.SYSTEXTINDEXES,
QSYS2.SYSTEXTCOLUMNS, or
QSYS2.SYSTEXTSERVERS).

3 The Text Search support is not started.

4 The STATUS column in
QSYS2.SYSTEXTSERVERS table has a value of
1, indicating that the support for the text
search is stopped.

7 No OmniFind Text Search Server for DB2 for
is have been defined.

System action: The statement cannot be processed.

User response: Contact your system administrator to
make sure that support for text searching is
successfully set up on your system.

SQLSTATE: 38H11

Related reference:

“QSYS2.SYSTEXTSERVERS administration table” on
page 99
You can see where the text search servers are installed
using the QSYS2.SYSTEXTSERVERS administration
table.

“QSYS2.SYSTEXTINDEXES administration table” on
page 97
You can see information about each text search index in
the QSYS2.SYSTEXTINDEXES administration table.
Each text search index has a name, schema name, and
an associated collection name on the text search server.

“QSYS2.SYSTEXTCOLUMNS administration table” on
page 99
You can see information about the text columns for a
text search index in the QSYS2.SYSTEXTCOLUMNS
administration table. Each text search index has an
index ID, text column names, and the schema name of
the base table.

SQLCODE -5003 • SQLCODE -20424

126 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|
|

|

|
|

|
|
|
|

|

|
|

|
|

|

|

|
|

|

SQLCODE -20425 Text search not allowed for
column column-name.

Explanation: A CONTAINS or SCORE text search
function specified column column-name in table
table-name in table-schema. A text index does not exist
for this column so text search processing cannot be
performed.

System action: The statement cannot be processed.

User response: Verify that the column and table are
registered to the OmniFind Text Search Server for DB2
for i.

SQLSTATE: 38H12

Related reference:

“CONTAINS” on page 35
You can use the CONTAINS function to search a text
search index using criteria you specify in a search
argument. The function returns a result indicating
whether a match was found.

“SCORE” on page 37
You can use the SCORE function to search a text search
index using criteria that you specify in a search
argument. The function returns a relevance score that
measures how well a document matches the query.

SQLCODE -20426 Conflicting text search
administration procedure is already
running.

Explanation: A conflicting text search administrative
procedure such as update is already running on this
index.

System action: The statement cannot be processed.

User response: Invoke the administration stored
procedure again after the currently running stored
procedure completes.

SQLSTATE: 38H13

SQLCODE -20427 Error occurred during text search
administrative procedure.

Explanation: An error occurred during a text search
administrative procedure. The reason code is
reason-code. The text returned is: text. The error text
describes the problem.

System action: The CALL statement fails with this
SQLCODE.

User response: Fix the problem that is indicated by
error and invoke the administrative stored procedure
again.

SQLSTATE: 38H14

CPF32fa Operation not allowed on text search
index &2 in &1.

Explanation: An operation was attempted that is not
supported for a text search index. Text search indexes
do not allow some operations that are allowed for
traditional DB2 indexes and views.

If this was an attempt to delete the index, the operation
may have failed because commitment control was
active.

User response: Perform text search administrative
operations using the administrative SQL stored
procedures that are included with OmniFind Text
Search Server for DB2 for i.

For more information on text search indexes, and what
restrictions apply to them, refer to the documentation
in the Information Center: http://www.ibm.com/systems/i/
infocenter/

CPF32fb Operation on text search index &2 in &1
could not be completed.

Explanation: An operation was attempted against text
search index &2 in &1. The requested operation is not
currently valid for reason code &3 reason codes and
their meanings are:

1. A required product is not installed

2. The requested text search server &4 is not available
or is not defined.

3. A restore of the index was attempted but the index
already exists. The existing index could not be
modified to match the saved index.

4. A dependent object &5 in &6 type &7 did not exist.

5. An object &5 in &6 type &7 was not available.

6. The auxiliary storage pool (ASP) for the current
thread does not match the ASP of the text search
index.

7. A text search index already exists for column &8,
table &5 in library &6.

User response: Correct the problem and retry the
operation.

For more information on text search indexes, refer to
the documentation in the Information Center:
http://www.ibm.com/systems/i/infocenter

CPI321E File &1 in library &2 deferred.

Explanation: File &1 in library &2 was deferred
during this restore request with specified Defer ID of
&4. The file was deferred because of reason code &3.
The reason codes are:

1. Based-on file &5 in library &6 did not exist when
&1 was being created for the restore.

2. File &1 failed to create for some other reason than a
missing based-on file. See previous message(s) to
determine why the create of the file failed.

SQLCODE -20425 • CPI321E

OmniFind Text Search Server 127

||
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

||
|

|
|
|
|

|

|
|

|
|
|

|

|

|
|
|

|
|

|
|

|
|
|

||

|
|
|
|

|
|

|
|
|

3. One or more of the members for file &1 failed to
create. See previous message(s) to determine why
the create of the member(s) failed.

4. The file represents a Text Search Index, and the
required licensed program objects do not exist on
the system.

5. The File represents a Text Search Index, and the
index could not be recreated.

User response: For reason code 1: Either restore the
missing based-on file, or use the Restore Deferred
Objects (RSTDFROBJ) command specifying the same
Defer ID (DFRID parameter) &4 on either of the
commands used.

For reason codes 2 and 3: Correct the reasons for the
failed create, and then use the Restore Deferred Objects
(RSTDFROBJ) command specifying the same Defer ID
(DFRID parameter) &4 on the command.

For reason code 5: See the previous messages in the job
log, correct any errors, and then use the Restore
Deferred Objects (RSTDFROBJ) command, specifying
the same Defer ID (DFRID parameter) &4 on the
command.

Related information:

Restore Deferred Objects (RSTDFROBJ)

Code license and disclaimer information
IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS
PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR
ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:
1. LOSS OF, OR DAMAGE TO, DATA;
2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR
3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS
OR EXCLUSIONS MAY NOT APPLY TO YOU.

128 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 2002, 2010 129

Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,
IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. _enter the year or years_.

130 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
This OmniFind Text Search Server for DB2 for i publication documents intended Programming Interfaces
that allow the customer to write programs to obtain the services of OmniFind Text Search Server for DB2
for i.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks
of Adobe Systems Incorporated in the United States, and/or other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Windows, is a trademark of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Terms and conditions
Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE
PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

Appendix. Notices 131

http://www.ibm.com/legal/copytrade.shtml

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

132 IBM i: e-business and Web serving OmniFind Text Search Server for DB2 for i

Appendix. Notices 133

IBM®

Printed in USA

	Contents
	OmniFind Text Search Server for DB2 for i
	What's new for IBM i 7.1
	PDF file for OmniFind Text Search Server for DB2 for i
	Introduction to the OmniFind Text Search Server for DB2 for i
	Overview of the OmniFind Text Search Server for DB2 for i
	System requirements for installing the OmniFind Text Search Server for DB2 for i

	Key concepts
	Create and update a text search index
	Asynchronous indexing and triggers
	Supported document formats
	Supported data types
	Text score and synonym support
	Linguistic processing
	Supported languages
	Linguistic processing for Chinese, Japanese, and Korean documents

	Server alias name

	Install and configure text search functions
	Install OmniFind Text Search Server for DB2 for i
	Start text search functions
	Create a text search index
	Update a text search index
	Search a text search index
	Document truncation

	Administration stored procedures for text search
	SYSPROC.SYSTS_START
	SYSPROC.SYSTS_STOP
	SYSPROC.SYSTS_CREATE
	SYSPROC.SYSTS_ALTER
	SYSPROC.SYSTS_DROP
	SYSPROC.SYSTS_UPDATE

	Search with a text search index
	CONTAINS
	SCORE
	Search argument syntax
	Simple query examples
	Advanced search operators
	Example using CONTAINS and SCORE functions

	XML search
	XML Search Namespace Support
	Using namespaces in search
	XML search example
	XML search query grammar

	Administer an OmniFind(r) Text Search Server for DB2(r) for i
	Start the OmniFind Text Search Server for DB2 for i
	Stop the OmniFind Text Search Server for DB2 for i
	Save and restore text search indexes
	Save and restore a text search index without data
	Save and restore a text search index with data

	Problem determination
	View and save server logs
	Administration tools
	Configuration tool
	SYSPROC.SYSTS_REMOVE
	SYSPROC.SYSTS_REPRIMEINDEX
	SYSPROC.SYSTS_VALIDITYCHECK
	Synonym dictionaries
	Find orphaned and missing indexes
	Advanced administration

	ServerInstance tool
	Health Checker
	Independent ASP considerations for OmniFind Text Search Server for DB2 for i
	High Availability
	Performance analysis
	Transaction considerations
	Using IBM Navigator for i
	Work with text search servers
	Work with text search indexes

	Using System i Navigator
	Work with text search servers
	Work with text search indexes

	Text search administration tables
	QSYS2.SYSTEXTDEFAULTS administration table
	QSYS2.SYSTEXTINDEXES administration table
	QSYS2.SYSTEXTCOLUMNS administration table
	QSYS2.SYSTEXTSERVERS administration table
	QSYS2.SYSTEXTCONFIGURATION administration table
	QSYS2.SYSTEXTSERVERHISTORY administration table
	Text Search Index view

	Extensions to Index and Search Non-DB2 Data
	Extensions Overview
	Creating a Text Search Collection
	Adding an Object Set for Spool File Data
	Adding an Object Set for Stream File Data
	Removing an Object Set
	Update the Collection
	Repopulate the Text Search Collection
	Search the Collection
	Query Object Set Information
	Retrieve Status of Indexes Objects
	Get Objects Not Indexed
	Retrieve Status of Collection
	Dropping a Text Search Collection
	Independent ASP Considerations for Text Search Collections
	Backup and Restore Considerations for Text Search Collections

	Messages and codes
	OmniFind messages

	Appendix. Notices
	Programming interface information
	Trademarks
	Terms and conditions

