
Red Hat OpenShift Container Platform on IBM Z & LinuxONE

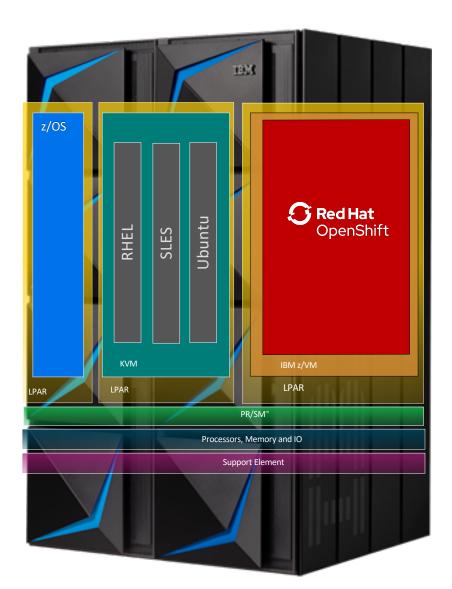
Capacity Planning: Five Checkmarks You Don't Want to Miss

Danijel Soldo Performance Chapter Lead - OpenShift on Z

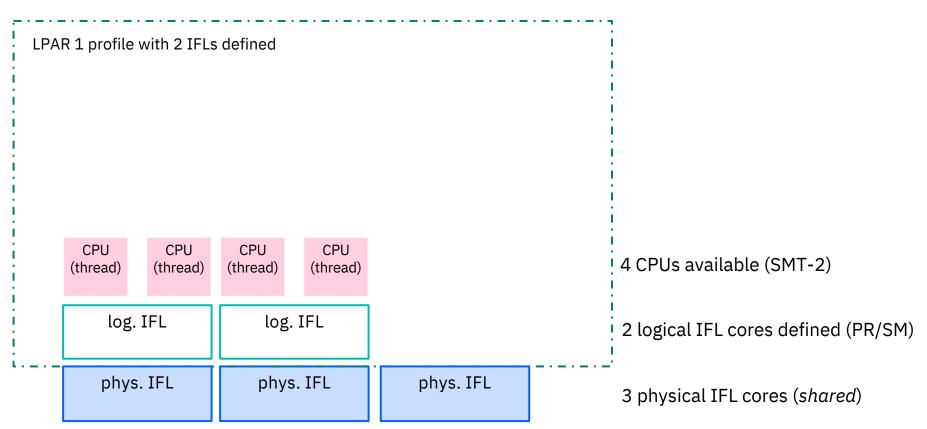
danijel.soldo@de.ibm.com

Content

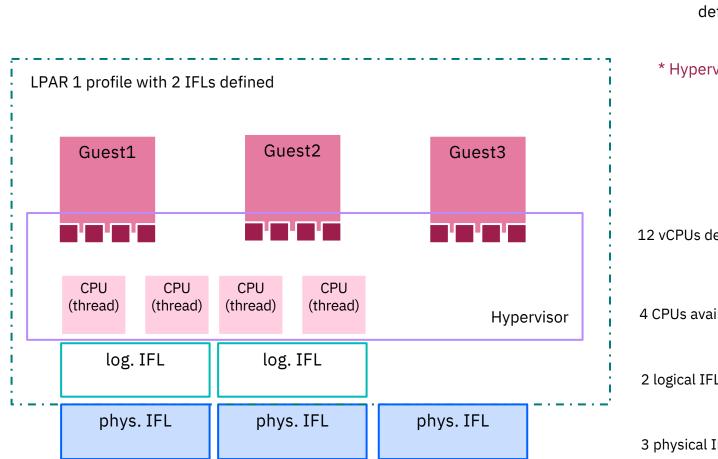
CPU Virtualization and Overcommitment Levels on IBM Z


LPAR Weigths & Entitlements

CPU Polarization


Level Up – A hypervisor's perspective

The Five Checkmarks



- PR/SM grants the highest isolation level via logical partitions (LPAR)
- LPARs are as close to bare-metal as it gets
- Each virtualization layer adds a performance overhead
- Cores can be dedicated or shared
- OpenShift will co-exist and potentially share resources with other LPARs and workloads

* IFL = Integrated Facility for Linux = Z phys. core

Resource overcommitment: LPAR shared cores (PR/SM, ratio logical to physical: 4:3) Good practice - No LPAR can have more IFLs defined than physically available. It is recommended to evaluate the necessary capacity and avoid oversizing LPARs. LPAR 1 profile with 2 IFLs defined LPAR 2 profile with 2 IFLs defined CPU CPU CPU CPU CPU CPU CPU CPU (thread) (thread) (thread) (thread) (thread) (thread) (thread) (thread) 4 CPUs available (SMT-2) log. IFL log. IFL log. IFL log. IFL 2 logical IFL cores defined (PR/SM) phys. IFL phys. IFL phys. IFL 3 physical IFL cores (shared)

Resource overcommitment:

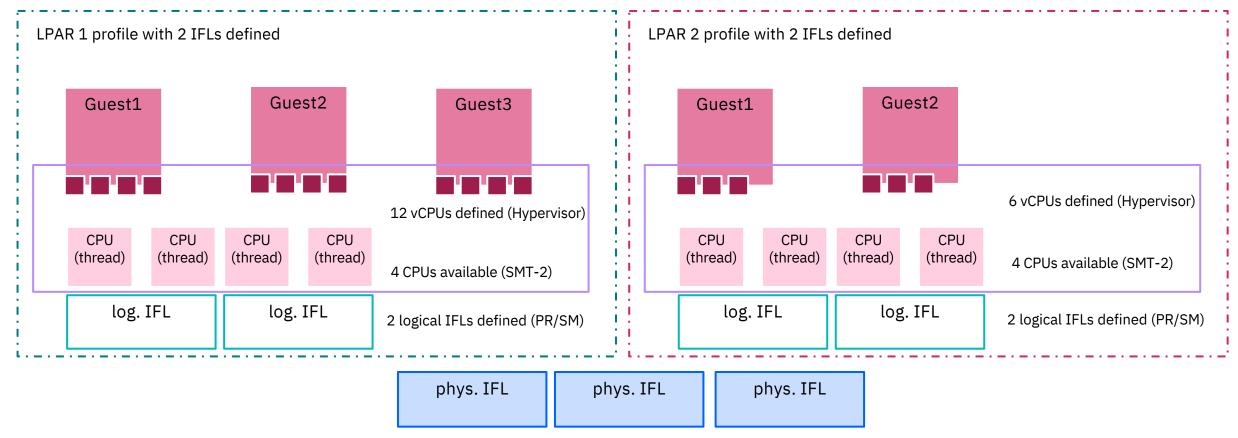
Hypervisor CPU overcommitment (ratio virtual to CPU: 12:4)

Good practice – no virtual machine should have more vCPUs defined than total CPUs available.

* Hypervisor = z/VM or KVM

12 vCPUs defined (Hypervisor)

4 CPUs available (SMT-2)


2 logical IFL cores defined (PR/SM)

3 physical IFL cores (shared)

Total resource **overcommitment**:

Level 1 - LPAR shared cores (PR/SM, ratio logical to physical: 4:3) Level 2 - Hypervisor CPU overcommitment (ratio virtual to CPU: 12:4 in LPAR1; 6:4 in LPAR2)

Total: 18 vCPU (5 guests) on 3 physical IFLs

Total resource **overcommitment**:

Level 1 - LPAR shared cores (PR/SM, ratio logical to physical: 4:3) Level 2 - Hypervisor CPU overcommitment (ratio virtual to CPU: 12:4; 6:4)

Total: 18 vCPU (5 guests) on 3 physical IFLs


Can this even work?

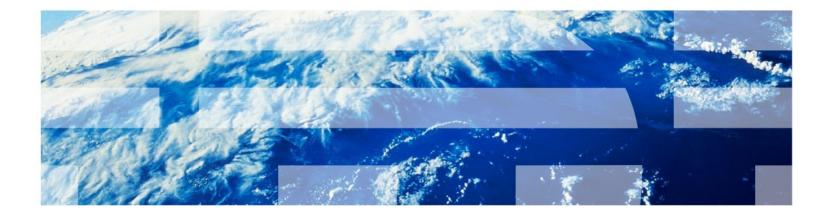
Not if all vCPUs are constantly fully utilized, or if spikes happen in the exact same timeframe.

Usually a workload type which is suited for some overcommitment:

- no constant pressure on CPU
- spikes are distributed in time
- average utilization not high

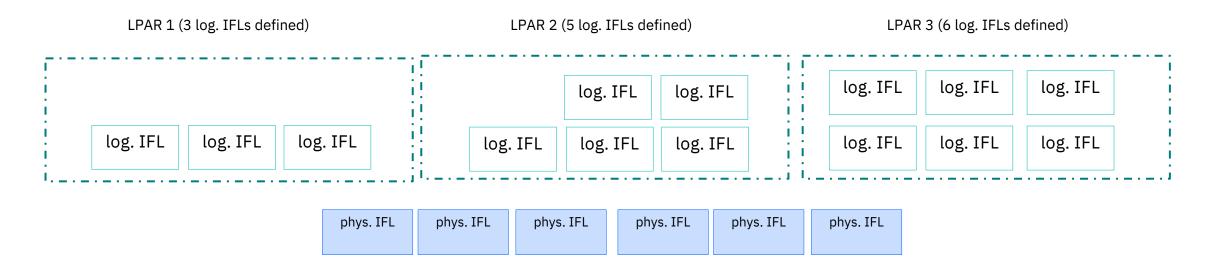
Evaluate your workload – always a good idea.

Measure


Thanks to B. Wade from the z/VM performance team for putting this together:

https://www.vm.ibm.com/library/presentations/lparperf.pdf

Topics in LPAR Performance Revision 2020-02-27.1


Brian K. Wade, Ph.D. IBM z/VM Development, Endicott, NY bkw@us.ibm.com

Let's start with a simple example of 3 logical partitions (LPARs) defined, and a total of 6 physical cores (IFLs) available.

Each LPAR has a certain **amount of cores defined** (logical IFLs), and a **weight value** which expresses the relative importance in distribution of CPU power.

Example: 3 LPARs defined, a total of 6 shared physical IFLs, 14 logical IFLs defined in total.

A logical core is not a source of capacity. It is a consumer of capacity.

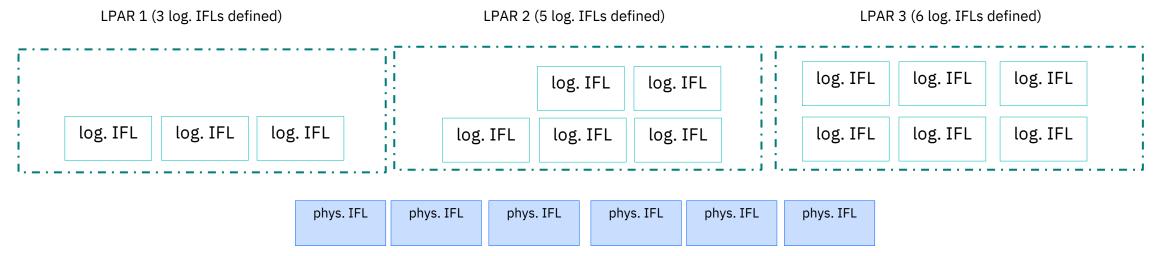
By increasing the LPAR size (defined IFL count), we don't guarantee more power.

LPAR Entitlement is the minimum power an LPAR can expect to get whenever needed. Entitlements come into play only when there is not enough power to satisfy all partitions' demands.

Resource s

Ensure to meet the minimum **physical core** requirements for the cluster setup – 6 IFL cores (SMT-2 enabled) per cluster.

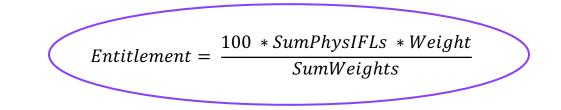
OpenShift and other Kubernetes deployments bring a lot of automation and monitoring capabilities which might be CPU-intensive. Therefore, it is essential to have enough physical core capacity to back the virtualization stack.


 $Source: https://docs.openshift.com/container-platform/4.9/ installing/installing_ibm_z/installing-ibm-z.html \\ \# minimum-resource-requirements_installing-ibm-z.html \\ \# minimum-resource-requiremen$

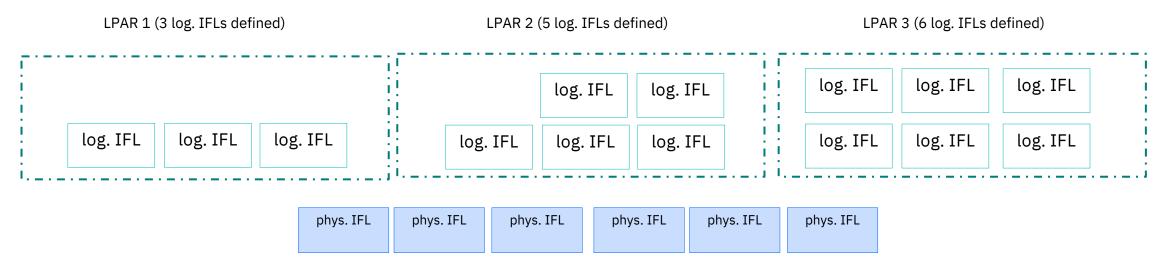
PR/SM calculates a table like this:

LPAR	Logical IFLs	Weight	Entitlement
LP1	3	10	200
LP2	5	10	200
LP3	6	10	200
SUM	14	30	600
Sum Phys. IFLs	6		

 $Entitlement = \frac{100 * SumPhysIFLs * Weight}{SumWeights}$


Initial weight of 10 leads to an entitlement of 200 for each LPAR. Meaning: **Each LPAR has a guaranteed capacity of 2 physical IFLs.**

Shared IFL cores (Weights are not applicable if using dedicated IFL cores)

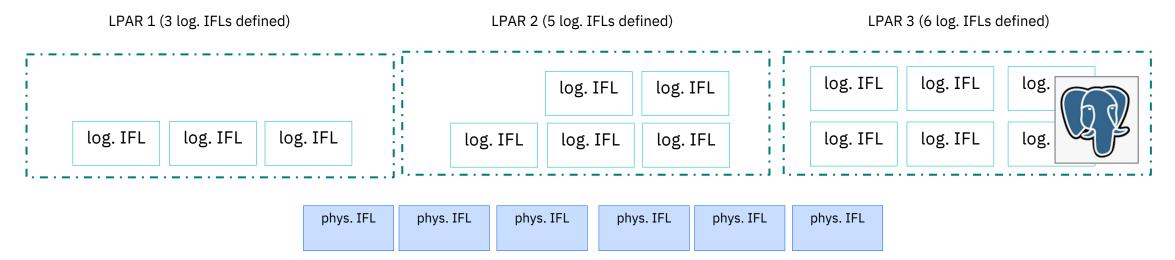

PR/SM calculates a table like this:

LPAR	Logical IFLs	Weight	Entitlement
LP1	3	10	200
LP2	5	10	200
LP3	6	10	200
SUM	14	30	600
Sum Phys. IFLs	6		

Wait, If I give more logical IFLs to an LPAR – it doesn't make any difference to the entitlement?

It seems so.

Shared IFL cores (Weights are not applicable if using dedicated IFL cores)


PR/SM calculates a table like this:

LPAR	Logical IFLs	Weight	Entitlement
LP1	3	10	200
LP2	5	10	200
LP3	6	10	200
SUM	14	30	600
Sum Phys. IFLs	6		

 $Entitlement = \frac{100 * SumPhysIFLs * Weight}{SumWeights}$

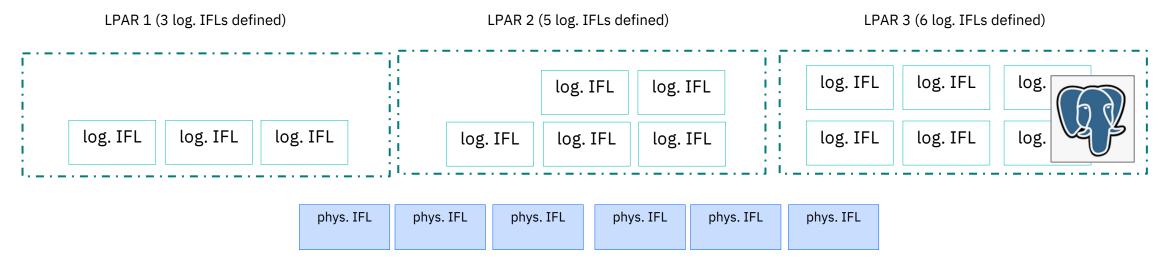
Initial weight of 10 leads to an entitlement of 200 for each LPAR. Meaning: Each LPAR has a guaranteed capacity of 2 physical IFLs.

What if LPAR 3 is running my database and I want it to have 3 IFLs guaranteed?

Shared IFL cores (Weights are not applicable if using dedicated IFL cores)

PR/SM calculates a table like this:

LPAR	Logical IFLs	Weight	Entitlement
LP1	3	10	100
LP2	5	20	200
LP3	6	30	300
SUM	14	60	600
Sum Phys. IFLs	6		


We have 3 options:

- 1. Add more physical IFLs
- 2. Dedicate 3 IFLs
- 3. Give more weight to the higher priority

Best practices:

Use weights that sum up to this: (10 x number of shared physical cores)

Now, LPAR 3 is entitled to 3 physical IFLs.

Shared IFL cores (Weights are not applicable if using dedicated IFL cores)

LPAR Weights & Entitlements How to check your current entitlements?

z/VM Perfkit

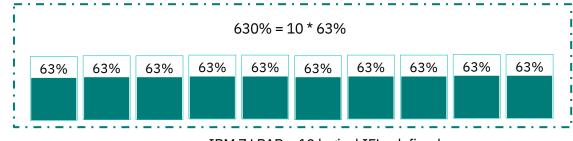
FCX306 - Logical Partition Share Screen – LSHARACT

FCX3	06 Dat	a for	yyyy/mr	n∕dd I⊓	nterval HI	H:MM	:SS - HH:	MM:SS	Monitor	Scan		
LPAR	Data, Coll	lected	in Par	tition	-CFT							
С	ore counts:	: CP	ZAAP :	IFL IC	= ZIIP							
	Dedicated	1 8	Θ	0 (9 O							
Shar	ed physical	L 10	2	16 :	1 3							
Sha	red logical	L 79	Θ	35 (9 0 Uni	used	physical	core(s)	detecte	d		
Proc	Partition	Core	Load	LPAR						<coreto< td=""><td>otal,%></td><td>Core</td></coreto<>	otal,%>	Core
Туре	Name	Count	Max	Weight	Entlment	Cap	ТуреСар	GrpCapNm	GrpCap	Busy	Excess	Conf
	PLB1			Θ								
СР	ECPX3	3	300	10	31.3	No		SAMPLE	1200.0	5.8	.0	
СР	EEXT1	4	400	10	31.3	No		SAMPLE	1200.0	1.2	.0	
СР	EPAT	10	1000	10	31.3	No		SAMPLE	1200.0	5.5	.0	
СР	EPLX1	6	600	60	187.5	No				326.3	138.8	
СР	EPLX2	8	800	45	140.6					256.0	115.4	
СР	EPLX3	6	600	45	140.6	No				233.3	92.7	
СР	EPRF1	4	400	DED	400.0					399.8	.0	
СР	EPRF2	4	400	DED	400.0					.0	.0	
СР	ESTL1	7	700	50	156.3					1.5	.0	
СР	EST1	8	800	10	31.3					8.7		
CP	EST2	6	600	10	31.3					1.3	.0	
СР	EVIC	2	200	10	31.3					.0		
СР	FCFT	8	800	40	125.0					117.4	.0	
CP	K4	6	600	10	31.3					5.4	.0	
CP	PHOS	5	500	10	31.3					.7		
IFL	EEXT2	16	1600	10	200.0					1.1		
IFL	EPLX1	3		60	1200.0					2.5	.0	
IFL	EST3	16	1600	10	200.0	No				.0	.0	

HMC

Select machine -> Operational Customization -> Change LPAR Controls

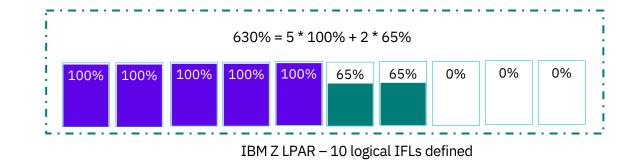
Home	Chan	ge LPAR Contro	ale -									
Home	Chang	ge LPAR Contro	JIS		8							
🛄 Chang	e Logio	al Partition	Contro	ls - T311								
ast reset pro												
		ation data set		S):A0 32	8AT311							
	Proces	sor										
CPs IFLs	Runnin	g										
	itions wi	th Integrated F	acility fo	r Linux Pr	ocessors							
Logical Partition	Active	Defined Capacity	WLM	Current Weight		Min Weight	Max Weight	Current Capping	Initial Capping	Absolute Capping	Number of Dedicated Processors	Number of Not dedicate Processors
		oupdony										
T311LP01	Yes	0		10	10			No		None	0	32
				10 10	10 10			No No		None None		
T311LP01	Yes	0									0	32
T311LP01 T311LP02	Yes Yes	0		10	10			No		None	0 0	32 4
T311LP01 T311LP02 T311LP03	Yes Yes No	0 0 0		10 10	10 10			No No		None None	0 0 0	32 4 4
T311LP01 T311LP02 T311LP03 T311LP04	Yes Yes No No	0 0 0 0		10 10 0	10 10 10			No No No		None None None	0 0 0 0	32 4 4 4


- 1. Only active LPARs count.
- 2. Weights do not apply to dedicated IFLs.
- 3. Separated by processor type (IFL, CP, SAP ...)
- 4. Entitlements not visible (need to calculate them on your own)

CPU Polarization Vertical vs Horizontal

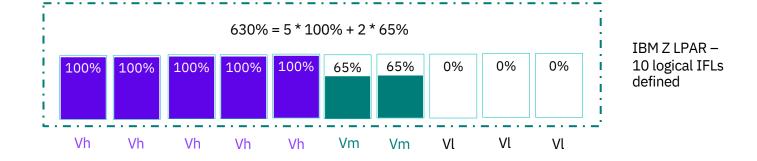
LPAR entitlement: 630%

Horizontal polarization


- equal distribution over log. cores
- 63% guaranteed per core
- up to 100% possible
- * disables SMT-2 capabilities under z/VM

IBM Z LPAR – 10 logical IFLs defined

Vertical polarization


- unequal distribution over log. cores
- optimal for performance reasons

CPU Polarization **Vertical vs Horizontal**

Vertical polarization

- unequal distribution over log. cores recommended and used by default -
- -

Vh – Vertical High	logical core with 100% entitlement, used exclusively
Vm – Vertical Medium	logical core with < 100% entitlement, used shared
Vl – Vertical Low	logical core with 0% entitlement, used shared

Good to know:

- The goal is to have as much Vh cores as possible

- PR/SM avoids having Vm below 50% (630 could have been 6 * Vh + 1 * Vm@30)

CPU Polarization How to check it quickly – z/VM

FCX298 Logical Core Organization Log Screen – PUORGLOG

FCX298	з срі	J nnnr	n SEI	Rnni	nnn :	Interval	HH:MM:S	SS - H	H : MM :	SS	Perf.	Mon:
Logica	al Core on	rganiz	zatio	n fo:	r Par	tition F(CFT	(GDLF	CFT)			
Date	Time	Core	Туре	PPD	Ent.	Locatio						
04/11	14:53:55	00	СР	Vh		4:2						
04/11	14:53:55	01	СР	Vh		4:2						
04/11	14:53:55	02	СР	Vh		4:2						
04/11	14:53:55	03	СР	Vh		4:2						
04/11	14:53:55	04	СР	Vh		4:2						
04/11	14:53:55	05	СР	Vm		4:1						
04/11	14:53:55	06	СР	Vm		4:1						
04/11	14:53:55	07	СР	Vl		4:5						
04/11	14:53:55	08	СР	Vl		4:5						
04/11	14:53:55	09	СР	Vl		4:6						
04/11	14:53:55	ΘA	СР	Vl		4:6						
04/11	14:53:55	0B	СР	Vl		4:6						
04/11	14:53:55	0C	ZAAP	Vm		3:1						
04/11	14:53:55	0D	ZIIP	Vm		3:1						
04/11	14:53:55	0E	IFL	Vm		4:5						
04/11	14:53:55	0F	IFL	Vl		4:5						
04/11	14:53:55	10	IFL	Vl		4:6						
04/11	14:53:55	11	IFL	Vl		4:6						

FCX304 Processor Log Screen – PRCLOG

1FCX304 Ru	n 2019/03/2	0 13:15:32			CLOG DCessor	Activ	ity, b	y Time
	03/11 06:52 03/11 07:12							• 10 N. 19 18 19
	Secs 00:20			Res	sult of	2U0C0	21D Ru	n
				51 2.58 8328 M				
					< P	ercent	Busy	>
7	C		Pct					
Interval	Р		Park					
End Time	U Type PPD	Ent. DVID	Time	%Susp	Total	User	Syst	Emul
>>Mean>>	0 IFL Vh	100 0000	0	1.6	94.6	82.7	11.9	73.3
>>Mean>>	1 IFL Vh	100 0001	0	1.0	96.0	87.0	9.0	79.7
>>Mean>>	2 IFL Vh	100 0002	0	.9	96.7	88.0	8.7	82.2
>>Mean>>	3 IFL Vh	100 0003	0	.9	96.5	87.8	8.7	81.6

CPU Polarization How to check it quickly - KVM

Default: Horizontal

lscpu -e

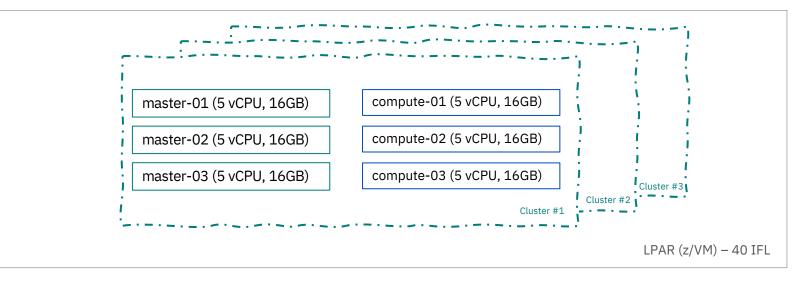
CPU	NODE	DRAWER	BOOK	SOCKET	CORE	L1d:L1i:L2d:L2i	ONLINE	CONFIGURED	POLARIZATION	ADDRESS
0	0	0	0	0	0	0:0:0:0	yes	yes	horizontal	0
1	0	0	0	0	0	1:1:1:1	yes	yes	horizontal	1
Z	0	0	0	0	1	2:2:2:2	yes	yes	horizontal	2
3	0	0	0	0	1	3:3:3:3	yes	yes	horizontal	3
4	0	0	1	1	2	4:4:4:4	yes	yes	horizontal	4
5	0	0	1	1	2	5:5:5:5	yes	yes	horizontal	5
6	0	0	1	2	3	6:6:6:6	yes	yes	horizontal	6
7	0	0	1	2	3	7:7:7:7	yes	yes	horizontal	7
8	0	0	1	2	4	8:8:8:8	yes	yes	horizontal	8
9	0	0	1	2	4	9:9:9:9	yes	yes	horizontal	9
10	0	0	1	2	5	10:10:10:10	yes	yes	horizontal	10
11	0	0	1	2	5	11:11:11:11	yes	yes	horizontal	11
12	0	0	1	2	6	12:12:12:12	yes	yes	horizontal	12
13	0	0	1	2	6	13:13:13:13	yes	yes	horizontal	13
14	0	0	1	2	7	14:14:14:14	yes	yes	horizontal	14
15	0	0	1	2	7	15:15:15:15	yes	yes	horizontal	15
16	0	0	1	2	8	16:16:16:16	yes	yes	horizontal	16
17	0	0	1	2	8	17:17:17:17	yes	yes	horizontal	17
18	0	0	1	1	9	18:18:18:18	yes	yes	horizontal	18
19	0	0	1	1	9	19:19:19:19	yes	yes	horizontal	19
20	0	0	1	1	10	20:20:20:20	yes	yes	horizontal	20
21	0	0	1	1	10	21:21:21:21	yes	yes	horizontal	21
22	0	0	1	1	11	22:22:22:22	yes	yes	horizontal	22
23	0	0	1	1	11	23:23:23:23	yes	yes	horizontal	23
24	0	0	1	1	12	24:24:24:24	yes	yes	horizontal	24
25	0	0	1	1	12	25:25:25:25	yes	yes	horizontal	25
26	0	0	1	1	13	26:26:26:26	yes	yes	horizontal	26
27	0	0	1	1	13	27:27:27:27	yes	yes	horizontal	27
28	0	0	1	1	14	28:28:28:28	yes	yes	horizontal	28
29	0	0	1	1	14	29:29:29:29	yes	yes	horizontal	29
30	0	0	1	2	15	30:30:30:30	yes	yes	horizontal	30
31	0	0	1	2	15	31:31:31:31	yes	yes	horizontal	31

Switching to vertical with:

Not recommended on s390x. Might cause severe performance degradations.

chcpu -p vertical

However, shortly switching over gives a good impression on the current entitlement.


CPU	NODE	DRAWER	BOOK	SOCKET	CORE	L1d:L1i:L2d:L2i	ONLINE	CONFIGURED	POLARIZATION	ADDRESS
Ø	Ø	0	0	0	0	0:0:0:0	yes	yes	vert-medium	0
1	0	0	0	0	0	1:1:1:1	yes	yes	vert-medium	1
2	0	0	0	0	1	2:2:2:2	yes	yes	vert-low	2
3	0	0	0	0	1	3:3:3:3	yes	yes	vert-low	3
4	0	0	1	1	2	4:4:4:4	yes	yes	vert-low	4
5	0	0	1	1	Z	5:5:5:5	yes	yes	vert-low	5
6	0	0	1	1	3	6:6:6:6	yes	yes	vert-low	6
7	0	0	1	1	3	7:7:7:7	yes	yes	vert-low	7
8	0	0	1	1	4	8:8:8:8	yes	yes	vert-low	8
9	0	0	1	1	4	9:9:9:9	yes	yes	vert-low	9
10	0	0	1	1	5	10:10:10:10	yes	yes	vert-low	10
11	0	0	1	1	5	11:11:11:11	yes	yes	vert-low	11
12	0	0	1	1	6	12:12:12:12	yes	yes	vert-low	12
13	0	0	1	1	6	13:13:13:13	yes	yes	vert-low	13
14	0	0	1	1	7	14:14:14:14	yes	yes	vert-low	14
15	~				•				vert-low	15
16	On	ly 2 v	ert	-med	ium	ns – clearly	not a	1	vert-low	16
17	~~~	- d av							vert-low	17
18	gou									1
	0		am	ple.					vert-low	18
19	v		am _	2	9	19:19:19:19	yes	yes		18 19
20	-			2 2	9 10	20:20:20:20	yes yes	yes yes	vert-low	18 19 20
20 21	Ø	Ø	1	2 2 2					vert-low vert-low vert-low vert-low	18 19 20 21
20 21 22	0 0 0	0 0 0	1 1	2 2 2 2	10	20:20:20:20 21:21:21:21 22:22:22:22	yes	yes	vert-low vert-low vert-low	18 19 20 21 22
20 21	0 0	0 0	1 1 1	2 2 2 2 2	10 10	20:20:20:20 21:21:21:21	yes yes	yes yes	vert-low vert-low vert-low vert-low	18 19 20 21
20 21 22	0 0 0	0 0 0	1 1 1 1	2 2 2 2 2 2	10 10 11	20:20:20:20 21:21:21:21 22:22:22:22	yes yes yes	yes yes yes	vert-low vert-low vert-low vert-low vert-low	18 19 20 21 22
20 21 22 23	0 0 0 0	0 0 0 0	1 1 1 1	2 2 2 2 2	10 10 11 11	20:20:20:20 21:21:21:21 22:22:22:22 23:23:23:23	yes yes yes yes	yes yes yes yes	vert-low vert-low vert-low vert-low vert-low vert-low	18 19 20 21 22 23
20 21 22 23 24	0 0 0 0 0 0	0 0 0 0 0	1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2	10 10 11 11 12	20:20:20:20 21:21:21:21 22:22:22:22 23:23:23:23 24:24:24:24	yes yes yes yes yes	yes yes yes yes yes	vert-low vert-low vert-low vert-low vert-low vert-low	18 19 20 21 22 23 24
20 21 22 23 24 25	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	1 1 1 1 1 1	2 2 2 2 2 2 2 2 2	10 10 11 11 12 12	20:20:20:20 21:21:21:21 22:22:22:22 23:23:23:23 24:24:24:24 25:25:25:25	yes yes yes yes yes yes	yes yes yes yes yes yes	vert-low vert-low vert-low vert-low vert-low vert-low vert-low	18 19 20 21 22 23 24 25
20 21 22 23 24 25 26	000000000000000000000000000000000000000	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2	10 10 11 11 12 12 13	20:20:20:20 21:21:21:21 22:22:22:22 23:23:23:23 24:24:24:24 25:25:25:25 26:26:26:26	yes yes yes yes yes yes yes	yes yes yes yes yes yes yes yes	vert-low vert-low vert-low vert-low vert-low vert-low vert-low vert-low	18 19 20 21 22 23 24 25 26
20 21 22 23 24 25 26 27	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 10 11 11 12 12 13 13	20:20:20:20 21:21:21:21 22:22:22:22 23:23:23:23 24:24:24:24 25:25:25:25 26:26:26:26 27:27:27:27	yes yes yes yes yes yes yes yes	yes yes yes yes yes yes yes yes	vert-low vert-low vert-low vert-low vert-low vert-low vert-low vert-low vert-low	18 19 20 21 22 23 24 25 26 27
20 21 22 23 24 25 26 27 28	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 10 11 12 12 13 13 14	20:20:20:20 21:21:21:21 22:22:22:22 23:23:23:23 24:24:24:24 25:25:25:25 26:26:26:26 27:27:27:27 28:28:28:28	yes yes yes yes yes yes yes yes yes	yes yes yes yes yes yes yes yes yes yes	vert-low vert-low vert-low vert-low vert-low vert-low vert-low vert-low vert-low vert-low	18 19 20 21 22 23 24 25 26 27 28

LPAR Weigths, Entitlements & CPU Polarization

How can this become a **problem** for OpenShift on Z?

Environment: 3 x OCP Cluster (6 nodes each); 40 logical IFLs defined (shared), z14

Symptoms: very slow response at the console, pods crashing (CRI-O, monitoring), high steal CPU% in the nodes

Before - Cluster #1

[root@bastion ~]# oc adm top node
NAME

master-01.ocp-cluster.example.tmp
master-02.ocp-cluster.example.tmp
compute-01.ocp-cluster.example.tmp
compute-02.ocp-cluster.example.tmp
compute-03.ocp-cluster.example.tmp

CPU(cores) 4789m 3495m 3527m 3343m 821m	CPU% 106% 77% 78% 74% 18%	MEMORY(bytes) 12768Mi 10609Mi 9969Mi 11078Mi 3412Mi	MEMORY% 85% 70% 66% 46%
821m	18%	3412Mi	14%
2890m	64%	7397Mi	30%

No workload deployed.

Consuming almost 12 vCPUs just for the Control Plane?

Logging into the master nodes shows up to ~70% steal CPU%. (OCP Monitoring adds steal% to the CPU (cores) consumption of nodes.)

Ok, but who/what is *stealing* the CPU?

- Cluster #2 and #3 do not run any workload and show a very similar consumption pattern
- The whole LPAR consumes little less than 10 IFLs (cluster logging stack installed)
- There is 40 IFLs defined for the LPAR, should be enough for everyone

Maybe other LPARs?

CEC Setup:

Total physical IFLs: 141 (shared) Total logical IFLs: 1116 (8x more)

Checking the z/VM Perfkit to get an overview of all LPAR weigths and understand what entitlement does my LPAR have:

FCX306	Logical Pa	artition Sh	are (<mark>ZV</mark>	MHOSTLP))			
Туре	Name	Count	Max	Weight	Entlment	Сар	TypeCap	GrpCapNm
IFL	TESTLP	40	4000	10	184.2	No		

Date	Т	ime C ore	Туре	PPD	Ent.	Location
Aug	25	16:58:18	OIFL	Vh		05:0
Aug	25	16:58:18	1 IFL	Vm		05:0
Aug	25	16:58:18	2 IFL	VI		05:0
Aug	25	16:58:18	3 IFL	VI		05:0
Aug	25	16:58:18	4 IFL	VI		05:0
Aug	25	16:58:18	5 IFL	VI		05:0
Aug	25	16:58:18	6 IFL	VI		05:0
Aug	25	16:58:18	7 IFL	VI		05:0
Aug	25	16:58:18	8 IFL	VI		05:0
Aug	25	16:58:18	9 IFL	VI		05:0
Aug	25	16:58:180A	IFL	VI		05:0
Aug	25	16:58:180B	IFL	VI		05:0
Aug	25	16:58:180C	IFL	VI		05:0
Aug	25	16:58:180D	IFL	VI		05:0
Aug	25	16:58:180E	IFL	VI		05:0
Aug	25	16:58:180F	IFL	VI		05:0
Aug	25	16:58:18	10 IFL	VI		05:0
Aug	25	16:58:18	11 IFL	VI		05:0
Aug	25	16:58:18	12 IFL	VI		05:0
Aug	25	16:58:18	13 IFL	VI		05:0
Aug	25	16:58:18	14 IFL	VI		05:0
Aug	25	16:58:18	15 IFL	VI		05:0
Aug	25	16:58:18	16 IFL	VI		05:0
Aug	25	16:58:18	17 IFL	VI		05:0
Aug	25	16:58:18	18 IFL	VI		06:0
Aug	25	16:58:18	19 IFL	VI		06:0
Aug	25	16:58:181A	IFL	VI		06:0
Aug	25	16:58:181B	IFL	VI		06:0
Aug	25	16:58:181C	IFL	VI		06:0
Aug	25	16:58:181D	IFL	VI		06:0
Aug	25	16:58:181E	IFL	VI		06:0
Aug	25	16:58:181F	IFL	VI		06:0
Aug	25	16:58:18	20 IFL	VI		06:0
Aug	25	16:58:18	21 IFL	VI		06:0
Aug	25	16:58:18	22 IFL	VI		06:0
Aug		16:58:18	23 IFL	VI		06:0
Aug		16:58:18	24 IFL	VI		01:0
Aug		16:58:18	25 IFL	VI		01:0
Aug		16:58:18	26 IFL	VI		02:0
Aug		16:58:18	27 IFL	VI		02:0

Checking the z/VM Perfkit to get an overview of all LPAR weigths and understand what entitlement does my LPAR have:

FCX306	Logical Pa	artition Sh	are (<mark>ZV</mark>	MHOSTLP)			
Туре	Name	Count	Max	Weight	Entlment	Сар	TypeCap	GrpCapNm
IFL	TESTLP	40	4000	10	184.2	No		

The whole LPAR is guaranteed to get **1.84 IFLs**! If it wants more, it needs to compete against other LPARs on the machine.

Running 3 OCP clusters, it would be necessary to see at least 6 IFLs guaranteed (entitlement > 600).

FCX298 Lo	ogical Core orga	anization log			
Date	Time C ore	Туре	PPD	Ent.	Location
Aug 25	16:58:18	0 IFL	Vh		05:01
Aug 25	16:58:18	1 IFL	Vm		05:01
Aug 25	16:58:18	2 IFL	VI		05:01
Aug 25	16:58:18	3 IFL	VI		05:01
Aug 25	16:58:18	4 IFL	VI		05:01
Aug 25	16:58:18	5 IFL	VI		05:01
Aug 25	16:58:18	6 IFL	VI		05:01
Aug 25	16:58:18	7 IFL	VI		05:03
Aug 25	16:58:18	8 IFL	VI		05:02
Aug 25	16:58:18	9 IFL	VI		05:02
* Vh @	100	38 3	* VI @ C)	
* Vm @	984				
Aug 25	16:58:18	15 IFL	VI		05:03
Aug 25	16:58:18	16 IFL	VI		05:03
Aug 25	16:58:18	17 IFL	VI		05:03
Aug 25	16:58:18	18 IFL	VI		06:01
Aug 25	16:58:18	19 IFL	VI		06:01

-					
Aug	25	16:58:18	17 IFL	VI	 05:03
Aug	25	16:58:18	18 IFL	VI	 06:01
Aug	25	16:58:18	19 IFL	VI	 06:01
Aug	25	16:58:18 1A	IFL	VI	 06:01
Aug	25	16:58:181B	IFL	VI	 06:01
Aug	25	16:58:181C	IFL	VI	 06:01
Aug	25	16:58:181D	IFL	VI	 06:01
Aug	25	16:58:18 1E	IFL	VI	 06:02
Aug	25	16:58:181F	IFL	VI	 06:02
Aug	25	16:58:18	20 IFL	VI	 06:02
Aug	25	16:58:18	21 IFL	VI	 06:02
Aug	25	16:58:18	22 IFL	VI	 06:02
Aug	25	16:58:18	23 IFL	VI	 06:02
Aug	25	16:58:18	24 IFL	VI	 01:01
Aug	25	16:58:18	25 IFL	VI	 01:01
Aug	25	16:58:18	26 IFL	VI	 02:01
Aug	25	16:58:18	27 IFL	VI	 02:01

Let's quickly increase the weight to 100.

LPAR Entitlement jumped to **1489 -> almost 15 IFLs guaranteed.** Checking the cluster now:

Before

[root@bastion ~]# oc adm top node
NAME

master-01.ocp-cluster.example.tmp
master-02.ocp-cluster.example.tmp
compute-01.ocp-cluster.example.tmp
compute-02.ocp-cluster.example.tmp
compute-03.ocp-cluster.example.tmp

CPU(cores)	CPU%	MEMORY(bytes)	MEMORY%
4789m	106%	12768Mi	85%
3495m	77%	10609Mi	70%
3527m	78%	9969Mi	66%
3343m	74%	11078Mi	46%
821m	18%	3412Mi	14%
2890m	64%	7397Mi	30%

After

[root@bastion ~]# oc adm top node
NAME
master-01.ocp-cluster.example.tmp
master-03.ocp-cluster.example.tmp
compute-01.ocp-cluster.example.tmp
compute-02.ocp-cluster.example.tmp
compute-03.ocp-cluster.example.tmp

	0.01/0/		MEMORY
CPU(cores)	CPU%	MEMORY(bytes)	MEMORY%
1520 m	33%	8677Mi	57%
1079 m	23%	7773Mi	51%
736m	16%	6484Mi	43%
1425m	31%	13945Mi	58%
1237m	27%	11438Mi	47%
954m	21%	11257Mi	46%

Result:

- 10x less steal CPU%
- 4x reduced control plane consumption
- no pods crashing, smooth response times

However, this is still not optimal. The difference between logical IFLs and entitlement should not be this big (40 vs 15). We need to evaluate the workload and discuss the sizing.

For OpenShift on Z, it is essential to understand the minimum required resources for vital cluster operations: at least 2 IFL of capacity should be guaranteed per cluster.

For a single-LPAR cluster we should ensure an entitlement of **at least 200**. For multi-LPAR clusters, entitlements per LPAR should be **at least 100**.

> What is consuming resources if no workload is deployed? **Replay available externally:** <u>OpenShift on Z - CPU Consumption Demystified</u>

Make sure your cluster survives

Real exan Checkmark However, th We need to For OpenSh Ensure each cluster is entitled to get sufficient capacity for system operations – at least 2 IF at least 2 IFL cores per LPAR in a single-LPAR cluster, or at least 1 IFL core per LPAR in a multi-LPAR deployment. For a single Resource sharing is one of the key strengths of the platform – make sure to understand the principles of LPAR weights, For multi-LF entitlements and CPU polarization. If the LPAR is not able to get enough computing resources because of low entitlement no tuning on higher levels will help.

Level Up – A Hypervisor's Perspective

There's never enough virtualization.

With z/VM, a virtual machine receives its proportion of processor time according to its SHARE setting.

When demand for CPU resources is larger than available resources, virtual machines will have to wait to get their share of the CPU. There are two types of shares:

- Absolute Share
- Relative Share

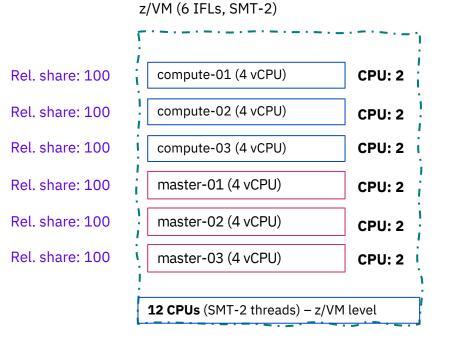
With relative shares, we express the importance of a virtual machine in relation to the others. The idea is very similar to the concept of LPAR weights.

To display a virtual machine's current share setting, enter: # query share userid

To assign a normal relative share of 300 to the virtual machine of user USER1, enter: # set share user1 relative 300

Level Up – z/VM perspective How to check it quickly – relative shares z/VM

User Configuration Screen (FCX226) shows virtual machine configuration information for each user


	•	-			No	Atta-	•	•	•		•		•			·	•
		Mach				ched		Reserved								>	
Jserid	SVM					XSTOR	Size			Aff	Def. D	ed.	Stop		Limit	MaxSh.	Pool
CFT2ND	No	ESA	Off	0ff	No	0	256M	0	CP	Off	3	0	0	100			
CFT2NDA	No	EME	Off	0ff	No	0	1024M	0	CP	On	1	0	0	100			GROUP2ND
DTCVSW1	Yes	ESA	Off	0n	No	0	32M	0	CP	On	1	0	0	100			GROUP2ND
GCS	No	ESA	Off	0ff	No	0	16M	0	CP	On	1	0	0	100			
MISCSERV	No	ESA	Off	Off	No	0	64M	0	CP	On	1	0	0	100			
MONWRITE	No	ESA	Off	0n	No	0	4M	512	CP	0n	1 1	0	0	3.0%	Hard	6.0%	
RSTL3	No	ESA	Off	On	No	0	512M	0	CP	On	1	0	0	3.0%	Soft	6.0%	
RXAGENT1	Yes		Off	On	No	0	32M		CP	On	1 1	0	0	100			
SFSFCFT	Yes	XC	Off	0n	Yes	0	64M	8192		0n	1	0	0	1500			
VMNFS	Yes	ESA	Off	On	No	0	64M	0	CP	On		0	0	100			
MSERVP	Yes		Off	On	Yes	0	64M		CP	On	1 1 1	0	0	1500			SFSGROUP
VMSERVR		ESA	Off	On	No	0	32M	0	CP	0n	1	0	0	1500			SFSGROUP
VMSERVS	Yes	XC	Off	On	Yes	0	64M		CP	On		0	0	1500			SFSGROUP
VMSERVU	Yes		Off		Yes	Ō	32M		CP	On	1 1 1	0	0	1500			SFSGROUP
VETTE	No	ESA	Off		No	0	17M		CP	On	1	0	0	100			
2AXTEST	No	ESA	Off	Off	No	0	128M	0	CP	On	1	0	0	100			

source: Performance Toolkit Reference

What does it mean for OpenShift on Z?

Default SHARE settings are:

- 100 per guest (normal share)
- nolimit (max share)

All nodes are of the same size, the defaults are pretty fine. Each guest is considered to be able to get 2 vCPUs mapped to the existing SMT-2 threads.

What does it mean for OpenShift on Z?

Default SHARE settings are:

- 100 per guest (normal share)
- nolimit (max share)

compute-01 (4 vCPU)	
compute-01 (4 vCPU)	
	CPU: 2
compute-02 (4 vCPU)	CPU: 2
compute-03 (4 vCPU)	CPU: 2
master-01 (4 vCPU)	CPU: 2
master-02 (4 vCPU)	CPU: 2
master-03 (4 vCPU)	CPU: 2
1	1
12 CPUs (SMT-2 threads) – z/VN	1 level
	compute-03 (4 vCPU) master-01 (4 vCPU) master-02 (4 vCPU) master-03 (4 vCPU)

=/1/M (6 TEL c CMT 2)

z/VM (6 IFLs, SMT-2)

	·····	
Rel. share: 100	compute-01 (16 vCPU)	CPU: 2
Rel. share: 100	compute-02 (8 vCPU)	CPU: 2
Rel. share: 100	compute-03 (8 vCPU)	CPU: 2
Rel. share: 100	master-01 (4 vCPU)	CPU: 2
Rel. share: 100	master-02 (4 vCPU)	CPU: 2
Rel. share: 100	master-03 (4 vCPU)	CPU: 2
	12 CPUs (SMT-2 threads) – z/VM	l level

All nodes are of the same size, the defaults are pretty fine.

Each guest is considered to be able to get 2 vCPUs mapped to the existing SMT-2 threads.

If we resize the guests, but forget to update the shares – **the VM entitlement doesn't follow**.

What does it mean for OpenShift on Z?

Default SHARE settings are:

- 100 per guest (normal share)
- nolimit (max share)

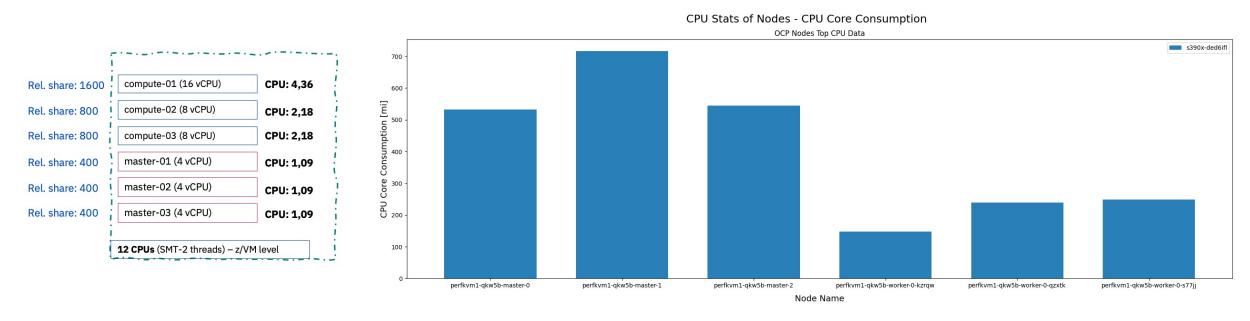
2/ 111 (0 11 LS, 3111-2)	
	-·-·j
compute-01 (4 vCPU)	CPU: 2
compute-02 (4 vCPU)	CPU: 2
compute-03 (4 vCPU)	CPU: 2
master-01 (4 vCPU)	CPU: 2
master-02 (4 vCPU)	CPU: 2
master-03 (4 vCPU)	CPU: 2
1	1
12 CPUs (SMT-2 threads) – z/V	'M level
	compute-01 (4 vCPU) compute-02 (4 vCPU) compute-03 (4 vCPU) master-01 (4 vCPU) master-02 (4 vCPU)

z/VM (6 IFLs, SMT-2)

z/VM (6 IFLs, SMT-2)

compute-01 (16 vCPU)	CPU: 4,36
compute-02 (8 vCPU)	CPU: 2,18
compute-03 (8 vCPU)	CPU: 2,18
master-01 (4 vCPU)	CPU: 1,09
master-02 (4 vCPU)	CPU: 1,09
master-03 (4 vCPU)	CPU: 1,09
12 CPUs (SMT-2 threads) – z/V	/M level
	compute-02 (8 vCPU) compute-03 (8 vCPU) master-01 (4 vCPU) master-02 (4 vCPU)

All nodes are of the same size, the defaults are pretty fine.


Each guest is considered to be able to get 2 vCPUs mapped to the existing SMT-2 threads.

If we resize the guests, but forget to update the shares – the VM entitlement doesn't follow.

Best practice: Rel. SHARE = vCPU Count * 100

Is it enough to have 1,09 / 4 vCPU guaranteed for the control plane nodes?

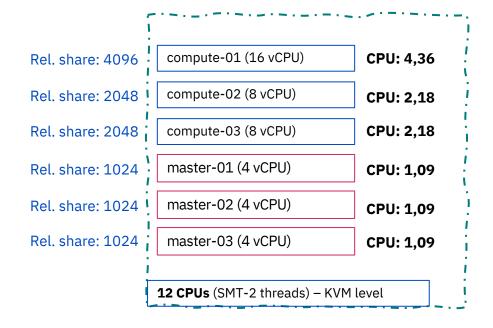
Let's check the average vCPU consumption of the control plane nodes for a cluster in steady state.

0.5 – 0.7 vCPU in average per control plane node (OCP v4.9 on KVM, 6 nodes in total)

Recommendation: By setting the z/VM (or KVM) Shares, make sure that the vCPU entitlement of the control plane nodes guarantees at least **1 vCPU per node** for a small cluster*.

* Be aware that the minimum value may vary with cluster size

Level Up – KVM perspective


KVM CPU shares - Implemented by the Linux Scheduler and cgroups

Optionally specifies the initial CPU weight. The default is 1024. Can be modified by changing the Domain XML:

<cputune> <shares>2048</shares> </cputune>

Valid values are in the natural numbers between 2 and 262144.

KVM (RHEL, 6 IFLs, SMT-2)

Recommendation: By setting the KVM Shares, make sure that the vCPU entitlement of the master nodes guarantees at least **1 vCPU per node**.

Read more: KVM Virtual Server Management

Level Up – KVM perspective

KVM CPU sha

Optionally spe Can be modifi

<cputune>

<shares: </cputune>

Valid values

Ensure the control plane nodes are entitled to get a sufficient share of vCPU capacity – at least 1 vCPU per node for a small cluster*.

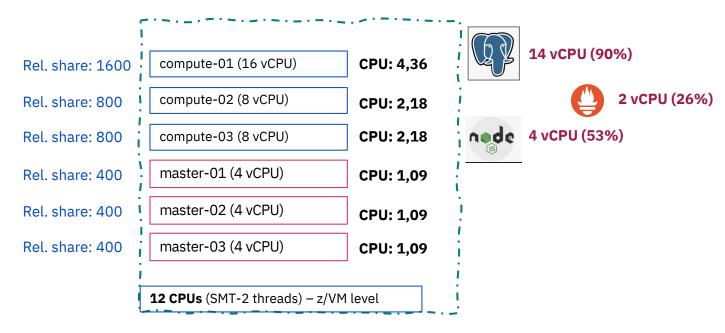
The control plane is the most critical part of the cluster. Make sure it doesn't starve due to high resource sharing.

* Be aware that the minimum value may vary with cluster size

Rec

Read more: KVM Virtual Server Management

the compute plane starts to take off!


Is my control plane in danger?

	ووجاوي والمروح والمروح والمراجع			
Rel. share: 1600	compute-01 (16 vCPU)	CPU: 4,36		
Rel. share: 800	compute-02 (8 vCPU)	CPU: 2,18		
Rel. share: 800	compute-03 (8 vCPU)	CPU: 2,18		
Rel. share: 400	master-01 (4 vCPU)	CPU: 1,09		
Rel. share: 400	master-02 (4 vCPU)	CPU: 1,09		
Rel. share: 400	master-03 (4 vCPU)	CPU: 1,09		
į				
	12 CPUs (SMT-2 threads) – z/VM level			

z/VM (6 IFLs, SMT-2)

the compute plane starts to take off!

Is my control plane in danger?

z/VM (6 IFLs, SMT-2)

Let's put some load on the cluster.

the control plane doesn't get enough capacity for critical operations?

OpenShift as a Kubernetes platform has mechanisms implemented to prevent it:

- The OpenShift scheduler always leaves 0.5 vCPU unallocatable on each node, for system operations. E.g. for a worker node of 4 vCPUs, only 3.5 vCPU worth of pod CPU requests is schedulable.
- User workload is not schedulable on the control plane it is necessary to give it enough capacity to operate.
- Check the sizing recommendations for Control plane and infrastructure nodes it scales with the cluster size.
- Resource starvation of the control plane will impact the overall cluster performance.

But, there are things which are out of control for the cluster:

- oversized nodes & CPU overcommitment
- lack of physical resources
- too low entitlement in shared environments
- noisy neighbours: VMs or LPARs

the contro	An "obvious" enemy: oversized guests				
OpenShift a					
- The Ope		Rel. share: 1200	compute-01 (12 vCPU)	CPU: 3	
worker r		Rel. share: 1200	compute-02 (12 vCPU)	CPU: 3	
- User wo		Rel. share: 1200	compute-03 (12 vCPU)	CPU: 3	
 Check th Resourc 		Rel. share: 400	master-01 (4 vCPU)	CPU: 1	
Resourc		Rel. share: 400	master-02 (4 vCPU)	CPU: 1	
But, there a	Low amount of guaranteed vCPU share for the control plane.	Rel. share: 400	master-03 (4 vCPU)	CPU: 1	
 oversize lack of p 	Expected ()('P symptoms'	[12 CPUs (SMT-2 threads) – z/	VM level	
- too low - noisy ne	increased response times	z/VM (6 IFLs, SMT-2)			

the contro

OpenShift a

- The Ope worker r
- User wo
- Check th
- Resourc

But, there a

- oversize
- lack of p
- too low
- noisy ne

Monitor the workload and keep the size of VMs reasonable – **there is no benefit of having oversized guests**, only additional overhead and costs.

Virtual CPUs which are not utilized will still trigger the hypervisor signalling that they are available.

the contro	Most common enemy: the Noisy Neighbour	Rel. share: 5000	prod-01 (8 vCPU)	CPU: 4,16	"Big turbo important		
OpenShift a		Rel. share: 5000	prod-02 (8 vCPU)	CPU: 4,16	production server"		
- The Ope		Rel. share: 1600	compute-01 (16 vCPU)	CPU: 1,33	14 vCPU (90%)		
worker r		Rel. share: 800	compute-02 (8 vCPU)	CPU: 0,67	2 vCPU (26%)		
- User wo		Rel. share: 800	compute-03 (8 vCPU)	CPU: 0,67	nede 4 vCPU (53%)		
- Check th		Rel. share: 400	master-01 (4 vCPU)	CPU: 0,33			
- Resourc		Rel. share: 400	master-02 (4 vCPU)	CPU: 0,33			
But, there a		Rel. share: 400	master-03 (4 vCPU)	CPU: 0,33			
- oversize	Expected OCP symptoms:						
 oversize lack of p 	 high response times 	12 CPUs (SMT-2 threads) – z/VM level					
- too low (- noisy ne	 high response times high steal CPU% ETCD leader changes pods crashing/not deploying 	F	z/VM (6 IFLs, SMT-2)				

the contro

OpenShift a

- The Ope worker r

User wo

checkmark #5

.. . .

-

Check thResourc

But, there a

- oversize
- lack of p
- too low e
- noisy ne

Understand the overall environment – keep the full picture in mind.

Neighbouring VMs and LPARs **do impact** the OpenShift environment if using shared IFL cores.

The Five Checkmarks You Don't Want to Miss

- Ensure to meet the minimum physical core requirements for the cluster setup 6 IFL cores (SMT-2 enabled) per cluster.
- 2. Ensure each cluster is **entitled to get sufficient capacity** for system operations at least 2 IFL cores per LPAR in a single-LPAR cluster, or at least 1 IFL core per LPAR in a multi-LPAR deployment.
- 3. Ensure the control plane nodes are entitled to get a **sufficient share of vCPU capacity** at least 1 vCPU per node for a small cluster.
- 4. Monitor the workload and **keep the size of VMs reasonable** there is no benefit of having oversized guests, only additional overhead and costs.
- 5. Understand the overall environment keep the full picture in mind. **Neighbouring VMs and LPARs do impact** the OpenShift environment if using shared IFL cores.

Resources

ibm.com/docs – OCP on Z Performance

docs.openshift.com – IBM Z & LinuxONE Host Recommendations

z/VM Performance education LPAR Topics

Thank You

Danijel Soldo Performance Lead – OpenShift on Z & LinuxONE IBM R&D Germany

danijel.soldo@de.ibm.com

Notices and disclaimers

- © 2021 International Business Machines Corporation. No part of this document may be reproduced or transmitted in any form without written permission from IBM.
- U.S. Government Users Restricted Rights use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM.
- Information in these presentations (including information relating to products that have not yet been announced by IBM) has been reviewed for accuracy as of the date of initial publication and could include unintentional technical or typographical errors. IBM shall have no responsibility to update this information. This document is distributed "as is" without any warranty, either express or implied. In no event, shall IBM be liable for any damage arising from the use of this information, including but not limited to, loss of data, business interruption, loss of profit or loss of opportunity.

IBM products and services are warranted per the terms and conditions of the agreements under which they are provided.

IBM products are manufactured from new parts or new and used parts.

In some cases, a product may not be new and may have been previously installed. Regardless, our warranty terms apply."

 Any statements regarding IBM's future direction, intent or product plans are subject to change or withdrawal without notice.

- Performance data contained herein was generally obtained in a controlled, isolated environments. Customer examples are presented as illustrations of how those
- customers have used IBM products and the results they may have achieved. Actual performance, cost, savings or other results in other operating environments may vary.
- References in this document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business.
- Workshops, sessions and associated materials may have been prepared by independent session speakers, and do not necessarily reflect the views of IBM. All materials and discussions are provided for informational purposes only, and are neither intended to, nor shall constitute legal or other guidance or advice to any individual participant or their specific situation.
- It is the customer's responsibility to insure its own compliance with legal requirements and to obtain advice of competent legal counsel as to the identification and interpretation of any relevant laws and regulatory requirements that may affect the customer's business and any actions the customer may need to take to comply with such laws. IBM does not provide legal advice or represent or warrant that its services or products will ensure that the customer follows any law.

Notices and disclaimers continued

- Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products about this publication and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products. IBM does not warrant the quality of any third-party products, or the ability of any such third-party products to interoperate with IBM's products. IBM expressly disclaims all warranties, expressed or implied, including but not limited to, the implied warranties of merchantability and fitness for a purpose.
- The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents, copyrights, trademarks or other intellectual property right.

 IBM, the IBM logo, ibm.com and [names of other referenced IBM products and services used in the presentation] are trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at: www.ibm.com/legal/copytrade.shtml

Pictures references

Postgres logo: https://upload.wikimedia.org/wikipedia/commons/2/29/Postgresql_elephant.svg NodeJS logo: https://www.subpng.com/png-uf1mgi/download.html Prometheus logo: https://upload.wikimedia.org/wikipedia/commons/3/38/Prometheus_software_logo.svg

Vocabulary

The machine is equipped with *physical cores*.

- They come in different *types:* a physical IFL core, a physical CP core ... (What your specific machine has depends upon what you bought)
- Each physical core contains two *processors* or *CPUs*.

The difference between core and processor is absolutely vital in the SMT world

A logical partition that has opted-in for SMT is equipped with *logical cores*.

– In an SMT-1 LPAR, each logical core contains one logical processor (or logical CPU)

- In an SMT-2 LPAR, the logical IFL cores have two processors each and the rest have one processor each
- PR/SM dispatches the LPAR's logical cores on physical cores

Source: <u>https://www.vm.ibm.com/library/presentations/lparperf.pdf</u>