
Linux on IBM zSystems and LinuxONE

Improving Transactional Database
Workloads in KVM Guests on IBM
zSystems using Huge Pages

About this publication
Before using this information and the product it supports, please read the information in section "7
Notices and disclaimer" on page 13.

This study describes how huge pages can improve a setup with KVM where the guest runs a
transactional database workload. It also gives advice on how to set up huge pages and what needs to
be considered.

Author: Dr. Juergen Doelle

© Copyright International Business Machines Corporation 2022. All rights reserved.

Table of Contents
1 Introduction...3
2 Summary..3
3 Environment..4

3.1 Host..4
3.2 KVM Guest Setup..4
3.3 DASD Setup..5
3.4 Database...5
3.5 Workload..5

4 How to set up huge pages..5
4.1 Host..6
4.2 Guest..7

5 Results...7
5.1 Performance Metrics..7

5.1.1 Throughput...8
5.1.2 CPU load on the host..9
5.1.3 Throughput per CPU..9

5.2 Improvements from huge pages to other system parameters...10
5.2.1 Size of page tables..11
5.2.2 Number of page faults..12

6 Conclusion...12
7 Notices and disclaimer...13

2

1 Introduction
Computer architectures structure the memory space in pages to manage it. Historically, the page
size is 4 KiB. Newer computer architectures meanwhile support much larger page sizes like 1 MiB
or even larger, these are called huge pages. Using huge pages reduces the number of pages needed
for the same memory size significantly because the single page is much larger than the default page
with 4KiB. This causes a severe reduction in effort for the operating system since the lists for
managing memory pages shrink significantly due to the lower number of pages to address. This can
be for example monitored with the size of the page tables.

Thus, it can be a preferable setup option as the operating system can manage huge pages in a more
efficient way, especially for larger systems. Huge pages can be easily configured and only need
support from the underlying hardware architecture. IBM zSystems® and LinuxONE have supported
huge pages for years.

This study on an IBM® z15® shows the impact of huge pages in our environment with one KVM
guest running a transactional database workload.

2 Summary
There are two possibilities where huge pages can be used in a KVM environment:

• Guest memory:
In the host, the guest memory can be backed with huge pages. This is transparent to the
guest as the guest only sees one address space without notifying the underlying structures.

• Application memory:
Inside the guest, applications using large buffers often support the usage of huge pages for
these buffers. In case multiple Linux processes sharing large buffers an additional effect
comes up, as each process needs to map each memory page accessed into its address space.
Thus, the space needed for page tables grow further.

All combinations of these two setup possibilities are considered in this study. Backing the guest
memory with huge pages results in a reduction of CPU cycle consumption and additionally
significantly reduces host memory needed for page tables. When using huge pages for the database
buffer, the CPU utilization decreases as well. Furthermore, significant reduction of page faults and
memory needed for page tables can be achieved in the guest.

Combining both setups in the test environment
• backing the guest memory with huge pages and
• using huge pages for database buffers,

results in a reduction in CPU utilization of more than one CPU without considerable impact on
throughput rates. These effects would scale with the number of guests and the size of the relevant
memory areas like guest size and buffer size. That means the larger the guests and the higher the
number of guests, the more the usage of huge pages can help to reduce the CPU utilization of such
an environment.

It should be mentioned that the usage of huge pages has some impacts needing to be considered:

3

• Huge pages cannot be swapped out. This part of the memory cannot be over-committed.

• It requires planning of the memory requirements. It is not possible to use a mix of huge and
4K pages for a specific buffer. For example, if not all required huge pages are available, the
guest will fail to start. Another issue which might happen here is, if a database cannot place
the whole buffers into huge pages, it might place them in the 4K memory causing an
unintended memory pressure there.
Therefore, it is good practice to reserve some more pages than intended and verify at the
beginning how many pages are allocated.

In case memory over-commitment in the host is needed, an option might be to use only huge pages
in the guest. The guest can still not swap out huge pages and needs to be sized appropriately. But
when the host backs the guest memory with 4 KiB pages, the guest memory can be swapped out to
the swap area in case of a memory shortage in the host. However, that will result in a performance
impact on the application waiting for pages to get swapped in again. This should be used carefully.

3 Environment
The setup of the test environment's individual components, like host, guest, disk, workloads, and
database, is described in this section.

3.1 Host
The test environment runs on an LPAR on IBM z15:

• Number of cores: 8
• Number of threads/CPUs: 16
• Memory: 200 GiB
• FICON Express16SA: 8x

Operating system:

• RHEL 8.6 - AV
• Kernel linux-4.18.0-372.9.1.el8.s390x
• qemu-kvm-6.2.0-11
• libvirt-8.0.0-5

To support guest configurations with huge page memory backing, the kvm module must be loaded
with the parameter hpage=1. This can be done by specifying kvm.hpage=1 on the kernel parameter
line. For more information see the Device Drivers, Features, and Commands book at
https://www.ibm.com/docs/en/linux-on-systems?topic=configuration-device-drivers-features-
commands.

3.2 KVM Guest Setup
The KVM guest is set up as follows:

• Number of virtual CPUs: 8
• Memory: 64 GiB

4

https://www.ibm.com/docs/en/linux-on-systems?topic=configuration-device-drivers-features-commands
https://www.ibm.com/docs/en/linux-on-systems?topic=configuration-device-drivers-features-commands

• Disk access via virtio, disk type="block" device="disk", cache="none" io="native"
• The default iothread setup was used

Operating system:

• RHEL 7.9
• Kernel linux-3.10.0-1160.el7.s390x

3.3 DASD Setup
ECKD devices from a storage server IBM DS8950F Model 996 were used:

• Disks from 4 LCUs
• Each LCU provides

- 1x data disk 256 GiB (mod335)
- 1x log disks 20.63 GiB (mod27)
- 11x HyperPAV alias devices

This results in a total of 1 TiB raw disk space for data and 82.5 GiB for database logs.

3.4 Database
A transactional database was used.

• The initially loaded database size was about 300 GiB data.
• The database buffer size was about 20 GiB.

3.5 Workload
The workload was a transactional database workload using warehouse-related transactions. The
number of users executing transactions was varied with 100, 250 and 500 to scale the workload
levels and memory requirements.

The workload generator runs the workload locally in the same guests to avoid network effects.

All combinations of two setup variations were tested:

• Backing the guest pages in the host with huge pages.
• Providing huge pages for the database buffers.

Each measurement point was executed three times. The values shown in this paper are averages
from these three runs.

4 How to set up huge pages
This section describes how to reserve huge pages via libhugetlbfs using sysctl.conf. The automated
application of this setting at boot time requires that the corresponding service systemd-sysctl.service
is enabled in host and guest. For the guest further settings are required in the domain.xml file and a
specific kernel parameter.

A huge page size of 1 MiB was used, because the utilized version of qemu does not support 2 GiB
huge pages.

5

4.1 Host
In the host, huge pages are reserved for the guest and the domain.xml was modified:

• For the guest with 64 GiB memory, huge pages are reserved using
vm.nr_hugepages=70000 in sysctl.conf. Another possibility could be to allocate the
appropriate number of huge pages via virsh allocpages 1M 70000 before starting the
guest.

• For backing guest memory in the host via huge pages define
 <memoryBacking>
 <hugepages/>
 </memoryBacking>

in the guest's domain.xml (see also https://libvirt.org/formatdomain.html#memory-backing).

To verify the usage of huge pages check /proc/meminfo in the host:

HugePages_Total: 70000
HugePages_Free: 70000
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 1024 kB

This output shows the state before the guest was started:
• The number of reserved huge pages: HugePages_Total

• The number of free huge pages: HugePages_Free
Here both values are identical, meaning the huge pages are reserved but not allocated.

After starting the KVM guest backed with huge pages, this changes to the following:

HugePages_Total: 70000
HugePages_Free: 4464
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 1024 kB

The difference between HugePages_Total and HugePages_Free shows the number of huge pages
allocated from the host for the guest memory. In the example above the number of reserved pages
might be reduced according to the relatively high number of free huge pages.

To support guest configurations with huge page memory backing, the kvm module must be loaded
with the parameter hpage=1. This can be done by specifying kvm.hpage=1 on the kernel parameter
line. For more information see the Device Drivers, Features, and Commands book at
https://www.ibm.com/docs/en/linux-on-systems?topic=configuration-device-drivers-features-
commands.

For KVM guests running in an OpenStack environment, more information can be found at
https://www.ibm.com/support/pages/backing-your-guests-hugepages.

6

https://www.ibm.com/support/pages/backing-your-guests-hugepages
https://www.ibm.com/docs/en/linux-on-systems?topic=configuration-device-drivers-features-commands
https://www.ibm.com/docs/en/linux-on-systems?topic=configuration-device-drivers-features-commands
https://libvirt.org/formatdomain.html#memory-backing

4.2 Guest
To provide huge pages in the guest for the database, reserve an appropriate number of the huge
pages via libhugetlbfs (for example via vm.nr_hugepages=21000 in sysctl.conf for a 20 GiB
buffer).

The reservation and usage of huge pages can be verified in the guest via /proc/meminfo, the same
way as in the host.

It is important that sufficient space is available in the huge page area. The buffer of interest must fit
completely, otherwise the application might fail or allocate the buffer in the 4K area, which might
cause unintended memory pressure there.

5 Results
All combinations of the setup variants were tested:

Host setup:
Backing guest memory

Guest setup:
Database uses

Abbreviation

4K pages 4K pages 4K Backing/4k Guest

huge pages 4K pages HP Backing/4k Guest

4K pages huge pages 4K Backing/HP Guest

huge pages huge pages HP Backing/HP Guest

There is no contention for CPU or memory usage in all scenarios.

5.1 Performance Metrics
The most important performance metrics are throughput and CPU load. This section describes how
the usage of huge pages impacts these parameters, especially how it influences the CPU cost of the
throughput.

7

5.1.1 Throughput

The following chart shows the transactional throughput in all four scenarios.

As Figure 1 shows, the throughput in our environment is similar in all scenarios.

8

Figure 1: Transactional throughput for scaling huge page setups

100 250 500
0

1

2

3

4

5

KVM: Huge Page Configs for transactional database setup

relative throughput

4K Backing/4k Guest

HP Backing/4k Guest

4K Backing/HP Guest

HP Backing/HP Guest

user

5.1.2 CPU load on the host

Figure 2 shows the total CPU load in the host in units of CPUs. This includes the load from the
guest.
Note: The guest has eight virtual CPUs, the host has 16 CPUs.

• Guest memory: Enabling huge pages for backing the guest memory reduces CPU
utilization.

• Application memory: Enabling huge pages in the guest for the database buffers reduces
CPU utilization.

The largest difference to 4K pages for guest backing and database buffers appears at the highest
load level with 500 users. Here, the usage of huge pages for both reduces the CPU load from more
than seven CPUs to less than six CPUs for the same workload, resulting in a reduction of 15%.

5.1.3 Throughput per CPU

This metric shows how 'expensive' the throughput is in terms of how many transactions can be
driven with a certain amount of CPU cycles. This mitigates effects from variations in CPU load due
to throughput variations.

9

Figure 2: CPU load in the host for scaling huge page setups

100 250 500
0

1

2

3

4

5

6

7

8

KVM: Huge Page Configs for transactional database setup

CPU load: Host

4K Backing/4k Guest

HP Backing/4k Guest

4K Backing/HP Guest

HP Backing/HP Guest

user

C
P

U
 lo

a
d

 [C
P

U
]

Figure 3 shows that both configurations, enabling huge pages for the guest memory and enabling
huge pages for the application, contribute to the total improvement.

5.2 Improvements from huge pages to other system
parameters
Using huge pages also has an impact on less obvious parameters related to Linux internal system
management. These indicate the source of the CPU savings.

10

Figure 3: Throughput driven per CPU for scaling huge page setups

100 250 500
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

KVM: Huge Page Configs for transactional database setup

relative throughput/CPU

4K Backing/4k Guest

HP Backing/4k Guest

4K Backing/HP Guest

HP Backing/HP Guest

user

5.2.1 Size of page tables

The amount of memory needed for managing the guest pages is an important parameter for memory
requirements in the host and effort for accessing the guest memory.

Figure 4 shows that the size of the page tables in the host shrink for a single guest with 64 GiByte
memory size from ca 260 MiB to 7 MiB. This saving would scale with the number of guests and the
size of the guest size. It also shows that this parameter is independent from the workload level. This
is expected because it just reflects the number of accessed pages but not how intensively they are
used.

This effect appears in larger dimensions in the guest. When using huge pages for the database
buffers, the test system needed only 1.5% of the page table memory as compared to a setup with 4K
pages. This effect scales with the buffer size and with the number of guests in such an environment.

11

Figure 4: Size of page tables in the host for scaling huge page setups

100 250 500
0

50,000

100,000

150,000

200,000

250,000

300,000

KVM: Huge Page Configs for transactional database setup

Page Tables: Host, single guest

4K Backing/4k Guest

HP Backing/4k Guest

4K Backing/HP Guest

HP Backing/HP Guest

user

P
a

g
e

 T
a

b
le

s:
 H

o
st

 [K
B

]

5.2.2 Number of page faults

The number of page faults is a parameter which influences the effort and time needed to access
pages. A high number indicates more CPU cycles and longer response times for accessing a page
than a lower number.

Figure 5 shows the impact of using huge pages for the database buffer in the guest.

The page faults in the guest can be drastically reduced when the database uses huge pages for its
buffers, which in turn leads to the reduction of CPU cycles needed to access the memory buffers.
This scales with the buffer size.

6 Conclusion
Combining both setups, backing the guest memory with huge pages and using huge pages for
database buffers, results in a reduction in CPU utilization of more than one CPU without
considerable impact on throughput rates in our test environment. The shrinking memory
requirements for page tables in host and guest and the reduced number of page faults in the guest
are the cause for these effects.
This scales with the number of guests and the size of the relevant memory areas, like guest size and
buffer size. That means the larger the guests and the higher the number of guests, the more the
usage of huge pages can help to reduce CPU utilization of such an environment.

12

Figure 5: Page faults in the guest when scaling huge page setups

100 250 500
0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

KVM: Huge Page Configs for transactional database setup

Page faults: Guest

4K Backing/4k Guest

HP Backing/4k Guest

4K Backing/HP Guest

HP Backing/HP Guest

user

P
a

g
e

 fa
u

lts

7 Notices and disclaimer
© 2022 International Business Machines Corporation. No part of this document may be reproduced
or transmitted in any form without written permission from IBM.

U.S. Government Users Restricted Rights – use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM.

Information in these presentations (including information relating to products that have not yet been
announced by IBM) has been reviewed for accuracy as of the date of initial publication and could
include unintentional technical or typographical errors. IBM shall have no responsibility to update
this information. This document is distributed "as is" without any warranty, either express or
implied. In no event, shall IBM be liable for any damage arising from the use of this
information, including but not limited to, loss of data, business interruption, loss of profit or
loss of opportunity. IBM products and services are warranted per the terms and conditions of the
agreements under which they are provided.

IBM products are manufactured from new parts or new and used parts. In some cases, a product
may not be new and may have been previously installed. Regardless, our warranty terms apply.

Any statements regarding IBM’s future direction, intent or product plans are subject to
change or withdrawal without notice.

Performance data contained herein was generally obtained in a controlled, isolated environment.
Customer examples are presented as illustrations of how those customers have used IBM products
and the results they may have achieved. Actual performance, cost, savings or other results in other
operating environments may vary.

References in this document to IBM products, programs, or services does not imply that IBM
intends to make such products, programs or services available in all countries in which IBM
operates or does business.

Workshops, sessions and associated materials may have been prepared by independent session
speakers, and do not necessarily reflect the views of IBM. All materials and discussions are
provided for informational purposes only, and are neither intended to, nor shall constitute legal or
other guidance or advice to any individual participant or their specific situation.

It is the customer’s responsibility to insure its own compliance with legal requirements and to
obtain advice of competent legal counsel as to the identification and interpretation of any relevant
laws and regulatory requirements that may affect the customer’s business and any actions the
customer may need to take to comply with such laws. IBM does not provide legal advice or
represent or warrant that its services or products will ensure that the customer follows any
law.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products
about this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products. Questions on the capabilities of non-IBM products should be

13

addressed to the suppliers of those products. IBM does not warrant the quality of any third-party
products, or the ability of any such third-party products to interoperate with IBM’s products.
IBM expressly disclaims all warranties, expressed or implied, including but not limited to, the
implied warranties of merchantability and fitness for a purpose.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks of International Business Machines Corporation,
registered in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright
and trademark information" at: www.ibm.com/legal/copytrade.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

The provision of the information contained herein is not intended to, and does not, grant any right
or license under any IBM patents, copyrights, trademarks or other intellectual property right. Refer
to www.ibm.com/legal for further legal information.

14

http://www.ibm.com/legal
http://www.ibm.com/legal/copytrade

	1 Introduction
	2 Summary
	3 Environment
	3.1 Host
	3.2 KVM Guest Setup
	3.3 DASD Setup
	3.4 Database
	3.5 Workload

	4 How to set up huge pages
	4.1 Host
	4.2 Guest

	5 Results
	5.1 Performance Metrics
	5.1.1 Throughput
	5.1.2 CPU load on the host
	5.1.3 Throughput per CPU

	5.2 Improvements from huge pages to other system parameters
	5.2.1 Size of page tables
	5.2.2 Number of page faults

	6 Conclusion
	7 Notices and disclaimer

