
Linux on Z and LinuxONE

Device Drivers, Features, and Commands
on SUSE Linux Enterprise Server 12 SP4

IBM

SC34-2745-06

Note

Before using this document, be sure to read the information in “Notices” on page 669.

This edition applies to SUSE Linux Enterprise Server 12 SP4 and to all subsequent releases and modifications until
otherwise indicated in new editions.
© Copyright International Business Machines Corporation 2000, 2019.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Summary of changes..vii

About this publication..x

Part 1. General concepts..1

Chapter 1. How devices are accessed by Linux.. 3

Chapter 2. Devices in sysfs.. 7

Chapter 3. Kernel and module parameters...19

Part 2. Booting and shutdown.. 25

Chapter 4. Console device drivers...27

Chapter 5. Booting Linux... 47

Chapter 6. Suspending and resuming Linux... 65

Chapter 7. Shutdown actions.. 71

Chapter 8. Remotely controlling virtual hardware - snipl...75

Part 3. Storage.. 93

Chapter 9. DASD device driver.. 95

Chapter 10. SCSI-over-Fibre Channel device driver...131

Chapter 11. Storage-class memory device driver.. 173

Chapter 12. Channel-attached tape device driver..177

Chapter 13. XPRAM device driver... 187

Part 4. Networking...191

Chapter 14. qeth device driver for OSA-Express (QDIO) and HiperSockets..193

Chapter 15. OSA-Express SNMP subagent support... 257

Chapter 16. LAN channel station device driver.. 267

Chapter 17. CTCM device driver..273

Chapter 18. NETIUCV device driver.. 285

Chapter 19. AF_IUCV address family support.. 293

Chapter 20. SMC protocol support..297

 iii

Chapter 21. RDMA over Converged Ethernet..301

Chapter 22. Internal shared memory device driver... 303

Part 5. System resources... 305

Chapter 23. Managing CPUs..307

Chapter 24. NUMA emulation... 313

Chapter 25. Managing hotplug memory... 315

Chapter 26. Large page support..321

Chapter 27. S/390 hypervisor file system.. 325

Chapter 28. ETR- and STP-based clock synchronization... 331

Chapter 29. Identifying the IBM Z hardware.. 335

Chapter 30. The diag288 watchdog device driver..337

Chapter 31. HMC media device driver.. 341

Chapter 32. Data compression with GenWQE and zEDC Express..345

Chapter 33. PCI Express support..353

Part 6. z/VM virtual server integration..357

Chapter 34. z/VM concepts... 359

Chapter 35. Writing kernel APPLDATA records...363

Chapter 36. Writing z/VM monitor records... 369

Chapter 37. Reading z/VM monitor records..373

Chapter 38. z/VM recording device driver...379

Chapter 39. z/VM unit record device driver.. 387

Chapter 40. z/VM DCSS device driver... 389

Chapter 41. z/VM CP interface device driver.. 399

Chapter 42. z/VM special messages uevent support... 401

Chapter 43. Cooperative memory management.. 405

Part 7. Security..407

Chapter 44. Generic cryptographic device driver... 409

Chapter 45. Pseudo-random number device driver... 423

iv

Chapter 46. True random-number generator device driver... 427

Chapter 47. Protected key device driver...429

Chapter 48. Hardware-accelerated in-kernel cryptography.. 431

Part 8. Performance measurement using hardware facilities...............................435

Chapter 49. Channel measurement facility.. 437

Chapter 50. Using the CPU-measurement counter facility.. 441

Part 9. Diagnostics and troubleshooting... 447

Chapter 51. Logging I/O subchannel status information... 449

Chapter 52. Control program identification.. 451

Chapter 53. Activating automatic problem reporting...455

Chapter 54. Displaying system information..457

Chapter 55. Avoiding common pitfalls..461

Chapter 56. Kernel messages... 465

Part 10. Reference...467

Chapter 57. Commands for Linux on Z..469

Chapter 58. Selected kernel parameters..643

Chapter 59. Linux diagnose code use... 663

Appendix A. Accessibility...665

Appendix B. Understanding syntax diagrams..667

Notices..669
Bibliography.. 671
Glossary.. 675
Index.. 685

 v

vi

Summary of changes

This revision includes maintenance and editorial changes. Technical changes or additions to the text and
illustrations are indicated by a vertical line to the left of the change.

SUSE Linux Enterprise Server 12 SP4 changes
This revision reflects changes for SUSE Linux Enterprise Server 12 Service Pack 4.

New information

• The DASD device driver supports a new mount option to free memory when data is deleted from z/VM®

VDISKs, see “Preparing an FBA-type DASD for use” on page 109.
• You can now configure MAC address flooding, learning, forwarding, and takeover behavior for

HiperSockets devices, see “Advanced packet-handling configuration” on page 238.
• You can now use the shared memory communications (SMC) protocol for communications on systems

with RDMA-capable network interface cards (RNICs). See Chapter 20, “SMC protocol support,” on page
297.

• You can now use internal shared memory devices for fast communication between LPARs within a
mainframe system, see Chapter 22, “Internal shared memory device driver,” on page 303.

• The CEX6 cryptographic adapters are now supported, see Chapter 44, “Generic cryptographic device
driver,” on page 409.

• The cryptographic device driver now supports multiple domains, see “Cryptographic domains” on page
411 and “Displaying information about cryptographic devices” on page 415.

• A new device driver provides true random numbers to applications in user space. See Chapter 46, “True
random-number generator device driver,” on page 427.

• With a new device driver, cryptographic applications can generate protected keys from secure keys or
from clear keys. Protected keys can be used by CPACF for accelerated encryption and decryption. See
Chapter 47, “Protected key device driver,” on page 429.

• The CPU-measurement counter facility now supports counters, including the MT-diagnostic counter set,
that were introduced with z13®. See Chapter 50, “Using the CPU-measurement counter facility,” on
page 441.

• STHYI data can now be retrieved from Linux in LPAR mode, see “Retrieving STHYI data” on page 458.
• There are new tools for working with SMC protocol connections. See “smc_pnet - Create network

mapping table” on page 602, “smc_run - Run a TCP socket program with the SMC protocol using a
preloaded library” on page 604, and “smcss - Display information about the AF_SMC sockets and link
groups” on page 605

• The kdump tool can now use NVMe, for more information, see the release notes at https://
www.suse.com/releasenotes/.

Changed Information

• The CPU topology information now includes drawers, see “Examining the CPU topology” on page 310

Deleted Information

• None.

© Copyright IBM Corp. 2000, 2019 vii

https://www.suse.com/releasenotes/
https://www.suse.com/releasenotes/

SUSE Linux Enterprise Server 12 SP3 changes
This editions contains changes related to SUSE Linux Enterprise Server 12 SP3.

New information

• Linux now supports UIDs as persistent identifiers for PCI functions, see Chapter 33, “PCI Express
support,” on page 353.

• Channel paths that are subject to frequent IFCC or CCC errors can now be taken offline automatically,
see “Setting defective channel paths offline automatically” on page 124.

• You can now use 2 GB large pages when Linux is running on an LPAR .
• The dasdfmt command now offers a quick format mode for DASD that have previously been formatted

with the cdl or ldl disk layout, see “dasdfmt - Format a DASD” on page 508.
• The dasdfmt command and the zdsfs commands now check whether a DASD volume is online to

another operating system instance, see “dasdfmt - Format a DASD” on page 508 and “zdsfs - Mount a
z/OS DASD” on page 635.

Changed Information

• The CPU topology information now includes drawers, see “Examining the CPU topology” on page 310

This revision also includes maintenance and editorial changes. Technical changes or additions to the text
and illustrations are indicated by a vertical line to the left of the change.

Deleted Information

• None.

SUSE Linux Enterprise Server 12 SP2 changes
This editions contains changes related to SUSE Linux Enterprise Server 12 SP2.

New information

• You can now read measurement data for PCIe devices, see “Reading statistics for a PCIe device” on
page 356.

• The snipl tool now supports IPv6 connections between the Linux instance where snipl runs and the
SE, HMC, or z/VM CP instance that controls the LPARs or guest virtual machines you want to work with,
see Chapter 8, “Remotely controlling virtual hardware - snipl,” on page 75.

• A HiperSockets port can be configured as a member of a Linux software bridge, see “Layer 2
promiscuous mode” on page 205.

• Priority queueing for QDIO devices now supports IPv6. There are also two new values that you can set,
prio_queueing_vlan for VLANs and prio_queueing_skb for other cases. See “Using priority queueing” on
page 213.

• NUMA emulation is now available for Linux on z Systems®. See Chapter 24, “NUMA emulation,” on page
313.

• A new device driver facilitates hardware-accelerated data compression and decompression through a
PCIe-attached Field Programmable Gate Array (FPGA) acceleration adapter, see Chapter 32, “Data
compression with GenWQE and zEDC Express,” on page 345.

• Information has been added about using hardware-acceleration for in-kernel cryptographic operations,
see Chapter 48, “Hardware-accelerated in-kernel cryptography,” on page 431.

• There is a new section about obtaining information about your system and its capabilities, Chapter 54,
“Displaying system information,” on page 457.

viii Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

• You can now view z Systems specific kernel messages through an app for mobile devices. See “Viewing
messages with the IBM Doc Buddy app” on page 466.

• A new command, cpacfstats, lets you monitor CPACF activity, see “cpacfstats - Monitor CPACF
cryptographic activity” on page 497.

• With new parameters for the vmur command, you can control the CLASS, DEST, FORM, and DIST
spooling options for virtual unit record devices. See “vmur - Work with z/VM spool file queues” on page
627.

• A new section describes the fips kernel parameter, which enables the FIPS mode of operation, “fips -
Run Linux in FIPS mode” on page 649.

Changed Information

• You can now IPL from subchannel sets other than 0, see “Booting from DASD” on page 54 and
“Attributes for ccw” on page 62 .

• The format of SCSI device nodes that are based on bus IDs has changed, see “SCSI device nodes” on
page 133.

• The storage-class memory device driver now supports submitting more concurrent I/O requests than
the current limit, see “Setting up the storage-class memory device driver” on page 174.

• The qeth device driver now supports offloading checksum operations in layer 2 as well as layer 3, see
“Configuring checksum offload operations” on page 221.

This revision also includes maintenance and editorial changes. Technical changes or additions to the text
and illustrations are indicated by a vertical line to the left of the change.

Deleted Information

• CLAW devices are no longer supported and the description of the CLAW device driver has been
removed.

Summary of changes ix

About this publication

This publication describes the device drivers, features, and commands available to SUSE Linux Enterprise
Server 12 SP4 for the control of IBM Z devices and attachments. Unless stated otherwise, in this
publication the terms device drivers and features are understood to refer to device drivers and features for
SUSE Linux Enterprise Server 12 SP4 for IBM Z.

For details about IBM tested and supported Linux environments, see www.ibm.com/systems/z/os/linux/
resources/testedplatforms.html.

Unless stated otherwise, all IBM z/VM related information in this document assumes a current z/VM
version, see www.vm.ibm.com/techinfo/lpmigr/vmleos.html.

For more specific information about the device driver structure, see the documents in the kernel source
tree at /usr/src/linux-<version>/Documentation/s390.

For what is new, known issues, prerequisites, restrictions, and frequently asked questions, see the SUSE
Linux Enterprise Server 12 SP4 release notes at
www.suse.com/releasenotes

You can find the latest version of this publication on the developerWorks® website at www.ibm.com/
developerworks/linux/linux390/documentation_suse.html

How this document is organized
The first part of this document contains general and overview information for the device drivers for SUSE
Linux Enterprise Server 12 SP4 for IBM Z.

Part two contains chapters about device drivers and features that are used in the context of booting and
shutting down Linux.

Part three contains chapters specific to individual storage device drivers.

Part four contains chapters specific to individual network device drivers.

Part five contains chapters about device drivers and features that help to manage the resources of the
real or virtual hardware.

Part six contains chapters that describe device drivers and features in support of z/VM virtual server
integration.

Part seven contains chapters about device drivers and features that support security aspects of SUSE
Linux Enterprise Server 12 SP4 for IBM Z.

Part eight contains chapters about assessing the performance of Linux on Z.

Part nine contains chapters about device drivers and features that are used in the context of diagnostics
and problem solving.

Part ten contains chapters with reference information about commands, kernel parameters, and Linux use
of z/VM DIAG calls.

Who should read this document
Most of the information in this document is intended for system administrators who want to configure
SUSE Linux Enterprise Server 12 SP4 for IBM Z.

The following general assumptions are made about your background knowledge:

• You have an understanding of basic computer architecture, operating systems, and programs.

x About this publication

http://www.ibm.com/systems/z/os/linux/resources/testedplatforms.html
http://www.ibm.com/systems/z/os/linux/resources/testedplatforms.html
http://www.vm.ibm.com/techinfo/lpmigr/vmleos.html
http://www.suse.com/releasenotes
http://www.ibm.com/developerworks/linux/linux390/documentation_suse.html
http://www.ibm.com/developerworks/linux/linux390/documentation_suse.html

• You have an understanding of Linux and IBM Z terminology.
• You are familiar with Linux device driver software.
• You are familiar with the IBM Z devices attached to your system.

Programmers: Some sections are of interest primarily to specialists who want to program extensions to
the Linux on Z device drivers and features.

Conventions and assumptions used in this publication
This section summarizes the styles, highlighting, and assumptions used throughout this publication.

Authority
Most of the tasks described in this document require a user with root authority. In particular, writing to
procfs, and writing to most of the described sysfs attributes requires root authority.

Throughout this document, it is assumed that you have root authority.

Using sysfs and YaST
This document describes how to change settings and options in sysfs. In most cases, changes in sysfs are
not persistent. To make your changes persistent, use YaST. If you use a tool other than YaST, ensure that
the tool makes persistent changes. See SUSE Linux Enterprise Server 12 SP4 Deployment Guide and SUSE
Linux Enterprise Server 12 SP4 Administration Guide for details.

Terminology
In this publication, the term booting is used for running boot loader code that loads the Linux operating
system. IPL is used for issuing an IPL command to load boot loader code or a stand-alone dump utility.
See also “IPL and booting” on page 47.

sysfs and procfs
In this publication, the mount point for the virtual Linux file system sysfs is assumed to be /sys.
Correspondingly, the mount point for procfs is assumed to be /proc.

debugfs
This document assumes that debugfs has been mounted at /sys/kernel/debug.

To mount debugfs, you can use this command:

mount none -t debugfs /sys/kernel/debug

Number prefixes
In this publication, KB means 1024 bytes, MB means 1,048,576 bytes, and GB means 1,073,741,824
bytes.

Hexadecimal numbers
Mainframe publications and Linux publications tend to use different styles for writing hexadecimal
numbers. Thirty-one, for example, would typically read X'1F' in a mainframe publication and 0x1f in a
Linux publication.

Because the Linux style is required in many commands and is also used in some code samples, the Linux
style is used throughout this publication.

About this publication xi

Highlighting
This publication uses the following highlighting styles:

• Paths and URLs are highlighted in monospace.
• Variables are highlighted in <italics within angled brackets>.
• Commands in text are highlighted in monospace bold.
• Input and output as normally seen on a computer screen is shown

within a screen frame.
Prompts are shown as hash signs:
#

xii About this publication

About this publication xiii

Part 1. General concepts
This information at an overview level describes concepts that apply across different device drivers and
kernel features.

Newest version

You can find the newest version of this publication on IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html

© Copyright IBM Corp. 2000, 2019 1

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html

2 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Chapter 1. How devices are accessed by Linux
Applications on Linux access character and block devices through device nodes, and network devices
through network interfaces.

Device names, device nodes, and major/minor numbers
The Linux kernel represents character and block devices as pairs of numbers <major>:<minor>.

Some major numbers are reserved for particular device drivers. Other device nodes are dynamically
assigned to a device driver when Linux boots. For example, major number 94 is always the major number
for DASD devices while the device driver for channel-attached tape devices has no fixed major number. A
major number can also be shared by multiple device drivers. See /proc/devices to find out how major
numbers are assigned on a running Linux instance.

The device driver uses the minor number <minor> to distinguish individual physical or logical devices. For
example, the DASD device driver assigns four minor numbers to each DASD: one to the DASD as a whole
and the other three for up to three partitions.

Device drivers assign device names to their devices, according to a device driver-specific naming scheme
(see, for example, “DASD naming scheme” on page 100). Each device name is associated with a minor
number (see Figure 1 on page 3).

Figure 1: Minor numbers and device names

User space programs access character and block devices through device nodes also referred to as device
special files. When a device node is created, it is associated with a major and minor number (see Figure 2
on page 3).

Figure 2: Device nodes

SUSE Linux Enterprise Server 12 SP4 uses udev to create device nodes for you. Standard device nodes
match the device name that is used by the kernel, but different or additional nodes might be created by
special udev rules. See SUSE Linux Enterprise Server 12 SP4 Administration Guide and the udev man page
for more details.

© Copyright IBM Corp. 2000, 2019 3

Network interfaces
The Linux kernel representation of a network device is an interface.

Figure 3: Interfaces

When a network device is defined, it is associated with a real or virtual network adapter (see Figure 3 on
page 4). You can configure the adapter properties for a particular network device through the device
representation in sysfs (see “Device directories” on page 9).

You activate or deactivate a connection by addressing the interface with ifconfig or an equivalent
command. All interfaces that are provided by the Z specific network device drivers are interfaces for the
Internet Protocol (IP).

Interface names
The interface names are assigned by the Linux network stack.

Interface names are of the form <base_name><n> where <base_name> is a base name that is used for a
particular interface type. <n> is an index number that identifies an individual interface of a particular type.

Table 1 on page 4 summarizes the base names that are used for the network device drivers for
interfaces that are associated with real hardware.

Table 1: Interface base names for real devices.

This table lists interface type and applicable device driver for the available base names. The last table
row contains a comment and spans all cells.

Base name Interface type Device driver module Hardware

eth Ethernet qeth, lcs OSA-Express features

eth Ethernet mlx4_en RoCE Express feature

eth Ethernet mlx5_core RoCE Express feature
(Connect X-4)

This table is intended as an overview only. For details about which version of a particular hardware is
supported by a device driver, see the applicable section about the device driver.

Table 2 on page 4 summarizes the base names that are used for the network device drivers for
interfaces that are associated with virtual hardware:

Table 2: Interface base names for virtual devices.

This table lists interface type and applicable device driver for the available base names.

Base name Interface type Device driver module Comment

hsi HiperSockets , virtual
NIC

qeth Real HiperSockets or
virtual NIC type
HiperSockets coupled to
a guest LAN

4 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Table 2: Interface base names for virtual devices.

This table lists interface type and applicable device driver for the available base names.

(continued)

Base name Interface type Device driver module Comment

eth virtual NIC qeth QDIO virtual NIC
coupled to a guest LAN
or virtual switch

When the first device for a particular interface name is set online, it is assigned the index number 0, the
second is assigned 1, the third 2, and so on. For example, the first HiperSockets interface is named hsi0,
the second hsi1, the third hsi2, and so on.

When a network device is set offline, it retains its interface name. When a device is removed, it surrenders
its interface name and the name can be reassigned as network devices are defined in the future. When an
interface is defined, the Linux kernel always assigns the interface name with the lowest free index number
for the particular type. For example, if the network device with an associated interface name hsi1 is
removed while the devices for hsi0 and hsi2 are retained, the next HiperSockets interface to be defined
becomes hsi1.

Matching devices with the corresponding interfaces
If you define multiple interfaces on a Linux instance, you must keep track of the interface names assigned
to your network devices.

SUSE Linux Enterprise Server 12 SP4 uses udev to track the network interface name and preserves the
mapping of interface names to network devices across IPLs.

How to keep track of the mapping differs depending on the network device driver. For qeth, you can use
the lsqeth command (see “lsqeth - List qeth-based network devices” on page 561) to obtain a mapping.

After setting a device online, read /var/log/messages or issue dmesg to find the associated interface
name in the messages that are issued in response to the device being set online.

For each network device that is online, there is a symbolic link of the form /sys/class/net/
<interface>/device where <interface> is the interface name. This link points to a sysfs directory that
represents the corresponding network device. You can read this symbolic link with readlink to confirm
that an interface name corresponds to a particular network device.

Main steps for setting up a network interface
The main steps apply to all Linux on Z network devices drivers that are based on ccwgroup devices (for
example, qeth and lcs devices). How to perform a particular step can be different for the different device
drivers.

The main steps are:

1. Create a network device by combining suitable subchannels into a group device. The device driver then
creates directories that represent the device in sysfs.

2. Configure the device through its attributes in sysfs. See “Device views in sysfs” on page 10. Some
devices have attributes that can or must be set later when the device is online or when the connection
is active.

3. Set the device online. This step associates the device with an interface name and thus makes the
device known to the Linux network stack. For devices that are associated with a physical network
adapter it also initializes the adapter for the network interface.

4. Configure and activate the interface. This step adds interface properties like IP addresses, netmasks,
and MTU to the network interface and moves the network interface into state "up". The interface is
then ready for user space (socket) programs to run connections and transfer data across it.

How devices are accessed by Linux 5

To configure a network device, use tools provided with SUSE Linux Enterprise Server 12 SP4. See SUSE
Linux Enterprise Server 12 SP4 Administration Guide.

6 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Chapter 2. Devices in sysfs
Most of the device drivers create structures in sysfs. These structures hold information about individual
devices and are also used to configure and control the devices.

Device categories
There are several Linux on Z specific device categories in the /sys/devices directory.

Figure 4 on page 7 illustrates a part of sysfs.

Figure 4: sysfs

/sys/bus and /sys/devices are common Linux directories. The directories following /sys/bus sort
the device drivers according to the categories of devices they control. There are several categories of
devices. The sysfs branch for a particular category might be missing if there is no device for that category.
AP devices

are adjunct processors used for cryptographic operations.
CCW devices

are devices that can be addressed with channel-command words (CCWs). These devices use a single
subchannel on the mainframe's channel subsystem.

CCW group devices
are devices that use multiple subchannels on the mainframe's channel subsystem.

IUCV devices
are devices for virtual connections between z/VM guest virtual machines within an IBM mainframe.
IUCV devices do not use the channel subsystem.

© Copyright IBM Corp. 2000, 2019 7

PCI devices
represent PCIe devices, for example, a 10GbE RoCE Express device. In sysfs, PCIe devices are listed
in the /pci directory rather than the /pcie directory.

Table 3 on page 8 lists the device drivers that have representation in sysfs:

Table 3: Device drivers with representation in sysfs

Device driver Category sysfs directories

3215 console CCW /sys/bus/ccw/drivers/3215

3270 console CCW /sys/bus/ccw/drivers/3270

DASD CCW /sys/bus/ccw/drivers/dasd-eckd
/sys/bus/ccw/drivers/dasd-fba

SCSI-over-Fibre Channel CCW /sys/bus/ccw/drivers/zfcp

Storage class memory supporting
Flash Express

SCM /sys/bus/scm/

Channel-attached tape CCW /sys/bus/ccw/drivers/tape_34xx
/sys/bus/ccw/drivers/tape_3590

Cryptographic AP /sys/bus/ap/drivers/cex5a
/sys/bus/ap/drivers/cex5c
/sys/bus/ap/drivers/cex5p
/sys/bus/ap/drivers/cex4a
/sys/bus/ap/drivers/cex4c
/sys/bus/ap/drivers/cex4p
/sys/bus/ap/drivers/cex3a
/sys/bus/ap/drivers/cex3c
/sys/bus/ap/drivers/pcixcc

DCSS n/a /sys/devices/dcssblk

XPRAM n/a /sys/devices/system/xpram

z/VM recording IUCV /sys/bus/iucv/drivers/vmlogrdr

qeth (OSA-Express features and
HiperSockets)

CCW group /sys/bus/ccwgroup/drivers/qeth

LCS CCW group /sys/bus/ccwgroup/drivers/lcs

CTCM CCW group /sys/bus/ccwgroup/drivers/ctcm

NETIUCV IUCV /sys/bus/iucv/drivers/netiucv

10GbE RoCE Express devices for
Mellanox ConnectX-3 EN (mlx4_en)

PCI sys/bus/pci/drivers/mlx4_core

10 GbE RoCE Express2 devices for
Mellanox ConnectX-4 EN (mlx5_core)

PCI sys/bus/pci/drivers/mlx5_core

Some device drivers do not relate to physical devices that are connected through the channel subsystem.
Their representation in sysfs differs from the CCW and CCW group devices, for example, the cryptographic
device drivers have their own category, AP.

The following sections provide more details about devices and their representation in sysfs.

8 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Device directories
Each device that is known to Linux is represented by a directory in sysfs.

For CCW and CCW group devices the name of the directory is a bus ID that identifies the device within the
scope of a Linux instance. For a CCW device, the bus ID is the device's device number with a leading
"0.<n>.", where <n> is the subchannel set ID. For example, 0.1.0ab1.

CCW group devices are associated with multiple device numbers. For CCW group devices, the bus ID is
the primary device number with a leading "0.<n>.", where <n> is the subchannel set ID.

“Device views in sysfs” on page 10 tells you where you can find the device directories with their
attributes in sysfs.

Device attributes
The device directories contain attributes. You control a device by writing values to its attributes.

Some attributes are common to all devices in a device category, other attributes are specific to a
particular device driver. The following attributes are common to all CCW devices:

online
You use this attribute to set the device online or offline. To set a device online, write the value 1 to its
online attribute. To set a device offline, write the value 0 to its online attribute.

cutype
specifies the control unit type and model, if applicable. This attribute is read-only.

cmb_enable
enables I/O data collection for the device. See “Enabling, resetting, and switching off data collection”
on page 438 for details.

devtype
specifies the device type and model, if applicable. This attribute is read-only.

availability
indicates whether the device can be used. The following values are possible:
good

This is the normal state. The device can be used.
boxed

The device is locked by another operating system instance and cannot be used until the lock is
surrendered or the DASD is accessed by force (see “Accessing DASD by force” on page 109).

no device
Applies to disconnected devices only. The device disappears after a machine check and the device
driver requests to keep the device online anyway. Changes back to "good" when the device returns
after another machine check and the device driver accepts the device back.

no path
Applies to disconnected devices only. After a machine check or a logical vary off, no path remains
to the device. However, the device driver keeps the device online. Changes back to "good" when
the path returns after another machine check or logical vary on and the device driver accepts the
device back.

modalias
contains the module alias for the device. It is of the format:

ccw:t<cu_type>m<cu_model>

or

ccw:t<cu_type>m<cu_model>dt<dev_type>dm<dev_model>

Devices in sysfs 9

Setting attributes
Directly write to attributes or, for CCW devices, use the chccwdev command to set attribute values.

Procedure

• You can set a writable attribute by writing the designated value to the corresponding attribute file.
• For CCW devices, you can also use the chccwdev command (see “chccwdev - Set CCW device

attributes” on page 470) to set attributes.

With a single chccwdev command you can:

– Set an attribute for multiple devices
– Set multiple attributes for a device, including setting the device online
– Set multiple attributes for multiple devices

Working with newly available devices
Errors can occur if you try to work with a device before its sysfs representation is completely initialized.

About this task

When new devices become available to a running Linux instance, some time elapses until the
corresponding device directories and their attributes are created in sysfs. Errors can occur if you attempt
to work with a device for which the sysfs structures are not present or are not complete. These errors are
most likely to occur and most difficult to handle when you are configuring devices with scripts.

Procedure

Use the following steps before you work with a newly available device to avoid such errors:
1. Attach the device, for example, with a z/VM CP ATTACH command.
2. Assure that the sysfs structures for the new device are complete:

echo 1 > /proc/cio_settle

This command returns control after all pending updates to sysfs are complete.

Tip: For CCW devices you can omit this step if you then use chccwdev (see “chccwdev - Set CCW
device attributes” on page 470) to work with the devices. chccwdev triggers cio_settle for you and
waits for cio_settle to complete.

Results

You can now work with the new device. For example, you can set the device online or set attributes for the
device.

Device views in sysfs
sysfs provides multiple views of device specific data.

The most important views are:

• “Device driver view” on page 11
• “Device category view” on page 11
• “Device view” on page 12
• “Channel subsystem view” on page 12

10 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Many paths in sysfs contain device bus-IDs to identify devices. Device bus-IDs of subchannel-attached
devices are of the form:

0.<n>.<devno>

where <n> is the subchannel set-ID and <devno> is the device number.

Device driver view
This view groups devices by the device drivers that control them.

The device driver view is of the form:
/sys/bus/<bus>/drivers/<driver>/<device_bus_id>

where:
<bus>

is the device category, for example, ccw or ccwgroup.
<driver>

is a name that specifies an individual device driver or the device driver component that controls the
device (see Table 3 on page 8).

<device_bus_id>
identifies an individual device (see “Device directories” on page 9).

Note: DCSSs and XPRAM are not represented in this view.

Examples

• This example shows the path for an ECKD type DASD device:
/sys/bus/ccw/drivers/dasd-eckd/0.0.b100

• This example shows the path for a qeth device:
/sys/bus/ccwgroup/drivers/qeth/0.0.a100

• This example shows the path for a cryptographic device (a CEX4A card):
/sys/bus/ap/drivers/cex4a/card3b

Device category view
This view groups devices by major categories that can span multiple device drivers.

The device category view does not sort the devices according to their device drivers. All devices of the
same category are contained in a single directory. The device category view is of the form:
/sys/bus/<bus>/devices/<device_bus_id>

where:
<bus>

is the device category, for example, ccw or ccwgroup.
<device_bus_id>

identifies an individual device (see “Device directories” on page 9).

Note: DCSSs and XPRAM are not represented in this view.

Examples

• This example shows the path for a CCW device.
/sys/bus/ccw/devices/0.0.b100

• This example shows the path for a CCW group device.
/sys/bus/ccwgroup/devices/0.0.a100

• This example shows the path for a cryptographic device:
/sys/bus/ap/devices/card3b

Devices in sysfs 11

Device view
This view sorts devices according to their device drivers, but independent from the device category. It also
includes logical devices that are not categorized.

The device view is of the form:
/sys/devices/<driver>/<device>

where:
<driver>

is a name that specifies an individual device driver or the device driver component that controls the
device.

<device>
identifies an individual device. The name of this directory can be a device bus-ID or the name of a
DCSS or IUCV device.

Examples

• This example shows the path for a qeth device.
/sys/devices/qeth/0.0.a100

• This example shows the path for a DCSS block device.
/sys/devices/dcssblk/mydcss

Channel subsystem view
The channel subsystem view shows the relationship between subchannels and devices.

The channel subsystem view is of the form:
/sys/devices/css0/<subchannel>

where:
<subchannel>

is a subchannel number with a leading "0.<n>.", where <n> is the subchannel set ID.

I/O subchannels show the devices in relation to their respective subchannel sets and subchannels. An I/O
subchannel is of the form:
/sys/devices/css0/<subchannel>/<device_bus_id>

where:
<subchannel>

is a subchannel number with a leading "0.<n>.", where <n> is the subchannel set ID.
<device_bus_id>

is a device number with a leading "0.<n>.", where <n> is the subchannel set ID (see “Device
directories” on page 9).

Examples

• This example shows a CCW device with device number 0xb100 that is associated with a subchannel
0x0001.

/sys/devices/css0/0.0.0001/0.0.b100

• This example shows a CCW device with device number 0xb200 that is associated with a subchannel
0x0001 in subchannel set 1.

/sys/devices/css0/0.1.0001/0.1.b200

12 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

• The entries for a group device show as separate subchannels. If a CCW group device uses three
subchannels 0x0002, 0x0003, and 0x0004 the subchannel information could be:

/sys/devices/css0/0.0.0002/0.0.a100
/sys/devices/css0/0.0.0003/0.0.a101
/sys/devices/css0/0.0.0004/0.0.a102

Each subchannel is associated with a device number. Only the primary device number is used for the
bus ID of the device in the device driver view and the device view.

• This example lists the information available for a non-I/O subchannel with which no device is
associated:

ls /sys/devices/css0/0.0.ff00/
bus driver modalias subsystem type uevent

Subchannel attributes
There are sysfs attributes that represent subchannel properties, including common attributes and
information specific to the subchannel type.

Subchannels have two common attributes:
type

The subchannel type, which is a numerical value, for example:

• 0 for an I/O subchannel
• 1 for a CHSC subchannel
• 3 for an EADM subchannel

modalias
The module alias for the device of the form css:t<n>, where <n> is the subchannel type (for example,
0 or 1).

These two attributes are the only ones that are always present. Some subchannels, like I/O subchannels,
might contain devices and further attributes.

Apart from the bus ID of the attached device, I/O subchannel directories typically contain these
attributes:
chpids

is a list of the channel-path identifiers (CHPIDs) through with the device is connected. See also
“Channel path ID information” on page 14.

pimpampom
provides the path installed, path available, and path operational masks. See z/Architecture Principles
of Operation, SA22-7832 for details about the masks.

Channel path measurement
A sysfs attribute controls the channel path measurement facility of the channel subsystem.

/sys/devices/css0/cm_enable

With the cm_enable attribute you can enable and disable the extended channel-path measurement
facility. It can take the following values:
0

Deactivates the measurement facility and remove the measurement-related attributes for the channel
paths. No action if measurements are not active.

1
Attempts to activate the measurement facility and create the measurement-related attributes for the
channel paths. No action if measurements are already active.

Devices in sysfs 13

If a machine does not support extended channel-path measurements the cm_enable attribute is not
created.

Two sysfs attributes are added for each channel path object:
cmg

Specifies the channel measurement group or unknown if no characteristics are available.
shared

Specifies whether the channel path is shared between LPARs or unknown if no characteristics are
available.

If measurements are active, two more sysfs attributes are created for each channel path object:
measurement

A binary sysfs attribute that contains the extended channel-path measurement data for the channel
path. It consists of eight 32-bit values and must always be read in its entirety, or 0 will be returned.

measurement_chars
A binary sysfs attribute that is either empty, or contains the channel measurement group dependent
characteristics for the channel path, if the channel measurement group is 2 or 3. If not empty, it
consists of five 32-bit values.

Examples

• To turn measurements on issue:

echo 1 > /sys/devices/css0/cm_enable

• To turn measurements off issue:

echo 0 > /sys/devices/css0/cm_enable

Channel path ID information
All CHPIDs that are known to Linux are shown alongside the subchannels in the /sys/devices/css0
directory.

The directories that represent the CHPIDs have the form:
/sys/devices/css0/chp0.<chpid>

where <chpid> is a two digit hexadecimal CHPID.

Example: /sys/devices/css0/chp0.4a

Setting a CHPID logically online or offline
Directories that represent CHPIDs contain a status attribute that you can use to set the CHPID logically
online or offline.

About this task

When a CHPID has been set logically offline from a particular Linux instance, the CHPID is, in effect,
offline for this Linux instance. A CHPID that is shared by multiple operating system instances can be
logically online to some instances and offline to others. A CHPID can also be logically online to Linux while
it has been varied off at the SE.

Procedure

Issue a command of this form:

echo <value> > /sys/devices/css0/chp0.<CHPID>/status

14 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

where:
<CHPID>

is a two digit hexadecimal CHPID.
<value>

is either on or off.

Examples

• To set a CHPID 0x4a logically offline issue:

echo off > /sys/devices/css0/chp0.4a/status

• To read the status attribute to confirm that the CHPID is logically offline issue:

cat /sys/devices/css0/chp0.4a/status
offline

• To set the same CHPID logically online issue:

echo on > /sys/devices/css0/chp0.4a/status

• To read the status attribute to confirm that the CHPID is logically online issue:

cat /sys/devices/css0/chp0.4a/status
online

Configuring a CHPID on LPAR
For Linux in LPAR mode, directories that represent CHPIDs contain a configure attribute that you can
use to query and change the configuration state of I/O channel-paths.

About this task

The following configuration changes are supported:

• From standby to configured ("configure")
• From configured to standby ("deconfigure")

Procedure

Issue a command of this form:

echo <value> > /sys/devices/css0/chp0.<CHPID>/configure

where:
<CHPID>

is a two digit hexadecimal CHPID.
<value>

is either 1 or 0.
To query and set the configure value using commands, see “chchp - Change channel path status” on page
472 and “lschp - List channel paths” on page 544.

Examples

• To set a channel path with the ID 0x40 to standby issue:

echo 0 > /sys/devices/css0/chp0.40/configure

Devices in sysfs 15

This operation is equivalent to performing a Configure Channel Path Off operation on the hardware
management console.

• To read the configure attribute to confirm that the channel path has been set to standby issue:

cat /sys/devices/css0/chp0.40/configure
0

• To set the same CHPID to configured issue:

echo 1 > /sys/devices/css0/chp0.40/configure

This operation is equivalent to performing a Configure Channel Path On operation on the hardware
management console.

• To read the status attribute to confirm that the CHPID has been set to configured issue:

cat /sys/devices/css0/chp0.40/configure
1

Finding the physical channel associated with a CHPID
Use the mapping of physical channel IDs (PCHID) to CHPIDs to find the hardware from the CHPID number
or the CHPID numbers from the PCHID.

About this task
A CHPID is associated with either a physical port or with an internal connection defined inside the
mainframe, such as HiperSockets. See Figure 5 on page 16. You can determine the PCHID or internal
channel ID number that is associated with a CHPID number.

Figure 5: Relationships between CHPIDs, PCHIDs, and internal channel ID numbers.

Knowing the PCHID number can be useful in the following situations:

• When Linux indicates that a CHPID is in an error state, you can use the PCHID number to identify the
associated hardware.

• When a hardware interface requires service action, the PCHID mapping can be used to determine which
CHPIDs and I/O devices will be affected.

The internal channel ID number can be useful to determine which CHPIDs are connected to the same
communication path, such as a HiperSockets link.

16 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Procedure

To find the physical channel ID corresponding to a CHPID, either:
• Display the mapping of all CHPIDs to PCHIDs. Issue the lschp command:

lschp

• Find the channel-ID related files for the CHPID.
These sysfs files are located under /sys/devices/css0/chp0.<num>, where <num> is the two-
digit, lowercase, hexadecimal CHPID number. There are two attribute files:
chid

The channel ID number.
chid_external

A flag that indicates whether this CHPID is associated with an internal channel ID (value 0) or a
physical channel ID (value 1).

The sysfs attribute files are created only when channel ID information is available to Linux. For Linux
on z/VM, the availability of this information depends on the z/VM version and configuration. For Linux
in LPAR mode, this information is always available.

Example
The lschp command shows channel ID information in a column labeled PCHID. Internal channel IDs are
enclosed in brackets. If no channel ID information is available, the column shows "-".

lschp
CHPID Vary Cfg. Type Cmg Shared PCHID
==
0.30 1 1 1b 2 1 0390
0.31 1 1 1b 2 1 0392
0.32 1 1 1b 2 1 0510
0.33 1 1 1b 2 1 0512
0.34 1 0 1b - - 0580
0.fc 1 1 24 3 1 (0702)
0.fd 1 1 24 3 1 (0703)
0.fe 1 1 24 3 1 (0704)

In this example, CHPID 30 is associated with PCHID 0390, and CHPID fe is associated with internal
channel ID 0704.

Alternatively, read the chid and chid_external sysfs attributes, for example for CHPID 30:

cat /sys/devices/css0/chp0.30/chid
0390
cat /sys/devices/css0/chp0.30/chid_external
1

CCW hotplug events
A hotplug event is generated when a CCW device appears or disappears with a machine check.

The hotplug events provide the following variables:
CU_TYPE

for the control unit type of the device that appeared or disappeared.
CU_MODEL

for the control unit model of the device that appeared or disappeared.
DEV_TYPE

for the type of the device that appeared or disappeared.
DEV_MODEL

for the model of the device that appeared or disappeared.

Devices in sysfs 17

MODALIAS
for the module alias of the device that appeared or disappeared. The module alias is the same value
that is contained in /sys/devices/css0/<subchannel_id>/<device_bus_id>/modalias and
is of the formatccw:t<cu_type>m<cu_model> or
ccw:t<cu_type>m<cu_model>dt<dev_type>dm<dev_model>

Hotplug events can be used, for example, for:

• Automatically setting devices online as they appear
• Automatically loading driver modules for which devices have appeared

18 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Chapter 3. Kernel and module parameters
Kernel and module parameters are used to configure the kernel and kernel modules.

Individual kernel parameters or module parameters are single keywords, or keyword-value pairs of the
form keyword=<value> with no blank. Blanks separate consecutive parameters.

Kernel parameters and module parameters are encoded as strings of ASCII characters.

Use kernel parameters to configure the base kernel and any optional kernel parts that have been compiled
into the kernel image. Use module parameters to configure separate kernel modules. Do not confuse
kernel and module parameters. Although a module parameter can have the same syntax as a related
kernel parameter, kernel and module parameters are specified and processed differently.

Kernel parameters
Use kernel parameters to configure the base kernel and all modules that have been compiled into the
kernel.

Where possible, this document describes kernel parameters with the device driver or feature to which
they apply. Kernel parameters that apply to the base kernel or cannot be attributed to a particular device
driver or feature are described in Chapter 58, “Selected kernel parameters,” on page 643. You can also
find descriptions for most of the kernel parameters in Documentation/kernel-parameters.txt in
the Linux source tree.

Specifying kernel parameters
You can use several interfaces to specify kernel parameters.

• Including kernel parameters in a boot configuration
• Adding kernel parameters when booting Linux
• z/VM reader only: Using a kernel parameter file

Avoid parameters that break GRUB 2

This section applies to all interfaces for specifying kernel parameters, except the kernel parameter file
that you can use when booting from the z/VM reader.

During the boot process, first the auxiliary kernel and GRUB 2 are started. GRUB 2 then proceeds to start
the target SUSE Linux Enterprise Server 12 SP4 kernel (see Figure 13 on page 47).

The auxiliary kernel and the target SUSE Linux Enterprise Server 12 SP4 kernel use the same set of kernel
parameters. Be cautious when making changes to the parameters in the boot configuration.

• New or changed parameters might adversely affect the auxiliary kernel.
• Replacing the entire kernel parameter line eliminates parameters that are required by the auxiliary

kernel.

Including kernel parameters in a boot configuration
Use GRUB 2 to create or modify boot configurations for SUSE Linux Enterprise Server 12 SP4 for IBM Z.

See SUSE Linux Enterprise Server 12 SP4 Administration Guide about how to specify kernel parameters
with GRUB 2.

© Copyright IBM Corp. 2000, 2019 19

Adding kernel parameters when booting Linux
Depending on your platform, boot medium, and boot configuration, you can provide kernel parameters
when you start the boot process.

Note:

• Kernel parameters that you add when booting Linux are not persistent. Such parameters enter the
default reboot configuration, but are omitted after a regular shutdown. To define a permanent set of
kernel parameters for a Linux instance, include these parameters in the boot configuration.

• Kernel parameters that you add when booting might interfere with parameters that SUSE Linux
Enterprise Server 12 SP4 sets for you. Read /proc/cmdline to find out which parameters were used
to start a running Linux instance.

If it is displayed, you can specify kernel parameters on the interactive GRUB 2 menu. See SUSE Linux
Enterprise Server 12 SP4 Administration Guide for more information.

Specifying kernel parameters before GRUB 2 takes control

Important: The preferred method for specifying kernel parameters when booting is through the GRUB 2
interactive boot menu.

You might be able to use one or more of these interfaces for specifying kernel parameters:
z/VM guest virtual machine with a CCW boot device

When booting Linux in a z/VM guest virtual machine from a CCW boot device, you can use the PARM
parameter of the IPL command to specify kernel parameters. CCW boot devices include DASD and the
z/VM reader.

For details, see the subsection of “Booting Linux in a z/VM guest virtual machine” on page 49 that
applies to your boot device.

z/VM guest virtual machine with a SCSI boot device
When booting Linux in a z/VM guest virtual machine from a SCSI boot device, you can use the SET
LOADDEV command with the SCPDATA option to specify kernel parameters. See “Booting from a SCSI
device” on page 51 for details.

LPAR mode with a SCSI boot device
When booting Linux in LPAR mode from a SCSI boot device, you can specify kernel parameters in the
Operating system specific load parameters field on the HMC Load panel. See Figure 17 on page 57.

Kernel parameters as entered from a CMS or CP session are interpreted as lowercase on Linux.

How kernel parameters from different sources are combined
If kernel parameters are specified in a combination of methods, they are concatenated in a specific order.

1. Kernel parameters that have been included in the boot configuration with GRUB 2.
2. Kernel parameters that are specified with the GRUB 2 interactive boot menu.

The combined parameters that are specified in the boot configuration and through the GRUB 2
interactive boot menu must not exceed 895 characters.

3. Kernel parameters that you specify through the HMC or through z/VM interfaces (see “Adding kernel
parameters when booting Linux” on page 20).

For DASD boot devices you can specify up to 64 characters (z/VM only); for SCSI boot devices you can
specify up to 3452 characters.

In total, the combined kernel parameter string that is passed to the Linux kernel for booting can be up to
4096 characters.

Multiple specifications for the same parameter

For some kernel parameters, multiple instances in the kernel parameter string are treated cumulatively.
For example, multiple specifications for cio_ignore= are all processed and combined.

20 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Conflicting kernel parameters

If the kernel parameter string contains kernel parameters with mutually exclusive settings, the last
specification in the string overrides preceding ones. Thus, you can specify a kernel parameter when
booting to override an unwanted setting in the boot configuration.

Examples:

• If the kernel parameters in your boot configuration include possible_cpus=8 but you specify
possible_cpus=2 when booting, Linux uses possible_cpus=2.

• If the kernel parameters in your boot configuration include resume=/dev/dasda2 to specify a disk
from which to resume the Linux instance when it has been suspended, you can circumvent the resume
process by specifying noresume when booting.

Parameters other than kernel parameters
Parameters on the kernel parameter string that the kernel does not recognize as kernel parameters are
ignored by the kernel and made available to user space programs. How multiple specifications and
conflicts are resolved for such parameters depends on the program that evaluates them.

Using a kernel parameter file with the z/VM reader.
You can use a kernel parameter file for booting Linux from the z/VM reader.

See “Booting from the z/VM reader” on page 52 about using a kernel parameter file in the z/VM reader.

Examples for kernel parameters
Typical parameters that are used for booting SUSE Linux Enterprise Server 12 SP4 configure the console,
kdump, and the suspend and resume function.

conmode=<mode>, condev=<cuu>, console=<name>
to set up the Linux console. See “Console kernel parameter syntax” on page 33 for details.

crashkernel=<area>
reserves a memory area for a kdump kernel and its initial RAM disk (initrd).

resume=<partition>, noresume, no_console_suspend
to configure suspend-and-resume support (see Chapter 6, “Suspending and resuming Linux,” on page
65).

See Chapter 58, “Selected kernel parameters,” on page 643 for more examples of kernel parameters.

Displaying the current kernel parameter line
Read /proc/cmdline to find out with which kernel parameters a running Linux instance was booted.

About this task

Apart from kernel parameters, which are evaluated by the Linux kernel, the kernel parameter line can
contain parameters that are evaluated by user space programs, for example, modprobe.

See also “Displaying current IPL parameters” on page 60 about displaying the parameters that were
used to IPL and boot the running Linux instance.

Example:

cat /proc/cmdline
root=UUID=93722c3c-85ed-4537-ac68-8528a5bdef0c hvc_iucv=8 TERM=dumb OsaMedium=eth crashkernel=204M-:102M

Kernel parameters for rebooting
When rebooting, you can use the current kernel parameters or an alternative set of kernel parameters. By
default, Linux uses the current kernel parameters for rebooting. See “Rebooting from an alternative
source” on page 62 about setting up Linux to use different kernel parameters for re-IPL and the
associated reboot.

Kernel and module parameters 21

Module parameters
Use module parameters to configure kernel modules that are compiled as separate modules that can be
loaded by the kernel.

Separate kernel modules must be loaded before they can be used. Many modules are loaded
automatically by SUSE Linux Enterprise Server 12 SP4 when they are needed and you use YaST to specify
the module parameters.

To keep the module parameters in the context of the device driver or feature module to which they apply,
this information describes module parameters as part of the syntax you would use to load the module
with modprobe.

To find the separate kernel modules for SUSE Linux Enterprise Server 12 SP4, list the contents of the
subdirectories of /lib/modules/<kernel-release> in the Linux file system. In the path, <kernel-
release> denotes the kernel level. You can query the value for <kernel-release> with uname -r.

Specifying module parameters
How to specify module parameters depends on how the module is loaded, for example, with YaST or from
the command line.

YaST is the preferred tool for specifying module parameters for SUSE Linux Enterprise Server 12 SP4. You
can use alternative means to specify module parameters, for example, if a particular setting is not
supported by YaST. Avoid specifying the same parameter through multiple means.

Specifying module parameters with modprobe
If you load a module explicitly with a modprobe command, you can specify the module parameters as
command arguments.

Module parameters that are specified as arguments to modprobe are effective only until the module is
unloaded.

Note: Parameters that you specify as command arguments might interfere with parameters that SUSE
Linux Enterprise Server 12 SP4 sets for you.

Module parameters on the kernel parameter line
Parameters that the kernel does not recognize as kernel parameters are ignored by the kernel and made
available to user space programs.

One of these programs is modprobe, which SUSE Linux Enterprise Server 12 SP4 uses to load modules for
you. modprobe interprets module parameters that are specified on the kernel parameter line if they are
qualified with a leading module prefix and a dot.

For example, you can include a specification with cmm.sender=TESTID on the kernel parameter line.
modprobe evaluates this specification as the sender= module parameter when it loads the cmm module.

Including module parameters in a boot configuration
Module parameters for modules that are required early during the boot process must be included in the
boot configuration.

About this task
SUSE Linux Enterprise Server 12 SP4 uses an initial RAM disk when booting.

Procedure

Perform these steps to provide module parameters for modules that are included in the initial RAM disk:
1. Make your configuration changes with YaST or an alternative method.
2. If YaST does not perform this task for you, run dracut -f to create an initial RAM disk that includes

the module parameters.

22 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Displaying information about module parameters
Loaded modules can export module parameter settings to sysfs.

The parameters for modules are available as sysfs attributes of the form:

/sys/module/<module_name>/parameters/<parameter_name>

Before you begin
You can display information about modules that fulfill these prerequisites:

• The module must be loaded.
• The module must export the parameters to sysfs.

Procedure

To find and display the parameters for a module, follow these steps:
1. Optional: Confirm that the module of interest is loaded by issuing a command of this form:

lsmod | grep <module_name>

where <module_name> is the name of the module.
2. Optional: Get an overview of the parameters for the module by issuing a command of this form:

modinfo <module_name>

3. To check if a module exports settings to sysfs, try listing the module parameters.
Issue a command of the form:

ls /sys/module/<module_name>/parameters

4. If the previous command listed parameters, you can display the value for the parameter you are
interested in.
Issue a command of the form:

cat /sys/module/<module_name>/parameters/<parameter_name>

Example

• To list the module parameters for the ap module, issue:

ls /sys/module/ap/parameters
 domain
 ...

• To display the value of the domain parameter, issue:

cat /sys/module/ap/parameters/domain
1

Kernel and module parameters 23

24 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Part 2. Booting and shutdown
These device drivers and features are useful for booting and shutting down SUSE Linux Enterprise Server
12 SP4.

Newest version

You can find the newest version of this publication on IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html

Restrictions
For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture specific information in
the SUSE Linux Enterprise Server 12 SP4 release notes at
www.suse.com/releasenotes

© Copyright IBM Corp. 2000, 2019 25

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html
http://www.suse.com/releasenotes

26 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Chapter 4. Console device drivers
The Linux on Z console device drivers support terminal devices for basic Linux control, for example, for
booting Linux, for troubleshooting, and for displaying Linux kernel messages.

The only interface to a Linux instance in an LPAR before the boot process is completed is the Hardware
Management Console (HMC), see Figure 6 on page 27. After the boot process has completed, you
typically use a network connection to access Linux through a user login, for example, in an ssh session.
The possible connections depend on the configuration of your particular Linux instance.

Selected

mainframe system

Selected LPAR

Operating System Messages

Integrated ASCII Console

Figure 6: Hardware Management Console

With Linux on z/VM, you typically use a 3270 terminal or terminal emulator to log in to z/VM first. From
the 3270 terminal, you IPL the Linux boot device. Again, after boot you typically use a network connection
to access Linux through a user login rather than a 3270 terminal.

Console features
The console device drivers support several types of terminal devices.

HMC applets
You can use two applets.

© Copyright IBM Corp. 2000, 2019 27

Operating System Messages
This applet provides a line-mode terminal. See Figure 7 on page 28 for an example.

Integrated ASCII Console
This applet provides a full-screen mode terminal.

These HMC applets are accessed through the service-call logical processor (SCLP) console interface.
3270 terminal

This terminal can be based on physical 3270 terminal hardware or a 3270 terminal emulation.

z/VM can use the 3270 terminal as a 3270 device or perform a protocol translation and use it as a
3215 device. As a 3215 device it is a line-mode terminal for the United States code page (037).

The iucvconn program
You can use the iucvconn program from Linux on z/VM to access terminal devices on other Linux
instances that run as guests of the same z/VM system.

See How to Set up a Terminal Server Environment on z/VM, SC34-2596 for information about the
iucvconn program.

The console device drivers support these terminals as output devices for Linux kernel messages.

Figure 7: Linux kernel messages on the HMC Operating System Messages applet

What you should know about the console device drivers
The console concepts, naming conventions, and terminology overview help you to understand the tasks
you might have to perform with console and terminal devices.

Console terminology
Terminal and console have special meanings in Linux.

Linux terminal
An input/output device through which users interact with Linux and Linux applications. Login
programs and shells typically run on Linux terminals and provide access to the Linux system.

28 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Linux console
An output-only device to which the Linux kernel can write kernel messages. Linux console devices can
be associated with Linux terminal devices. Thus, console output can be displayed on a Linux terminal.

Mainframe terminal
Any device that gives a user access to operating systems and applications that run on a mainframe. A
mainframe terminal can be a physical device such as a 3270 terminal hardware that is linked to the
mainframe through a controller. It can also be a terminal emulator on a workstation that is connected
through a network. For example, you access z/OS® through a mainframe terminal.

Hardware Management Console (HMC)
A device that gives a system programmer control over Z hardware resources, for example, LPARs. The
HMC is a web application on a web server that is connected to the support element (SE). The HMC can
be accessed from the SE but more commonly is accessed from a workstation within a secure network.

On the mainframe, the Linux console and Linux terminals can both be connected to a mainframe terminal.

Before you have a Linux terminal - boot menus
Do not confuse boot menus with a Linux terminal.

Depending on your setup, a zipl boot menu, a GRUB 2 boot menu, or both might be displayed when you
perform an IPL.
zipl boot menu

The zipl boot menu is part of the boot loader for the auxiliary kernel that provides GRUB 2 and is
displayed before a Linux terminal is set up.

GRUB 2 boot menu
GRUB 2 might display a menu for selecting the target kernel to be booted. For more information about
GRUB 2, see SUSE Linux Enterprise Server 12 SP4 Administration Guide.

Device and console names
Each terminal device driver can provide a single console device.

Table 4 on page 29 lists the terminal device drivers with the corresponding device names and console
names.

Table 4: Device and console names

Device driver Device name Console name

SCLP line-mode terminal device driver sclp_line0 ttyS0

SCLP VT220 terminal device driver ttysclp0 ttyS1

3215 line-mode terminal device driver ttyS0 ttyS0

3270 terminal device driver 3270/tty1 to 3270/
tty<N>

tty3270

z/VM IUCV HVC device driver hvc0 to hvc7 hvc0

As shown in Table 4 on page 29, the console with name ttyS0 can be provided either by the SCLP console
device driver or by the 3215 line-mode terminal device driver. The system environment and settings
determine which device driver provides ttyS0. For details, see the information about the conmode kernel
parameter in “Console kernel parameter syntax” on page 33.

Of the terminal devices that are provided by the z/VM IUCV HVC device driver only hvc0 is associated with
a console.

Of the 3270/tty<N> terminal devices only 3270/tty1 is associated with a console.

Console device drivers 29

Device nodes
Applications, for example, login programs, access terminal devices by device nodes.

For example, with the default conmode settings, udev creates the following device nodes:

Table 5: Device nodes created by udev

Device driver On LPAR On z/VM

SCLP line-mode terminal device driver /dev/sclp_line0 n/a

SCLP VT220 terminal device driver /dev/ttysclp0 /dev/ttysclp0

3215 line-mode terminal device driver n/a /dev/ttyS0

3270 terminal device driver /dev/3270/tty1
to /dev/3270/tty<N>

/dev/3270/tty1
to /dev/3270/tty<N>

z/VM IUCV HVC device driver n/a /dev/hvc0 to /dev/
hvc7

Terminal modes
The Linux terminals that are provided by the console device drivers include line-mode terminals, block-
mode terminals, and full-screen mode terminals.

On a full-screen mode terminal, pressing any key immediately results in data being sent to the terminal.
Also, terminal output can be positioned anywhere on the screen. This feature facilitates advanced
interactive capability for terminal-based applications like the vi editor.

On a line-mode terminal, the user first types a full line, and then presses Enter to indicate that the line is
complete. The device driver then issues a read to get the completed line, adds a new line, and hands over
the input to the generic TTY routines.

The terminal that is provided by the 3270 terminal device driver is a traditional IBM mainframe block-
mode terminal. Block-mode terminals provide full-screen output support and users can type input in
predefined fields on the screen. Other than on typical full-screen mode terminals, no input is passed on
until the user presses Enter. The terminal that is provided by the 3270 terminal device driver provides
limited support for full-screen applications. For example, the ned editor is supported, but not vi.

Table 6 on page 30 summarizes when to expect which terminal mode.

Table 6: Terminal modes

Accessed through Environment Device driver Mode

Operating System Messages
applet on the HMC

LPAR SCLP line-mode terminal
device driver

Line mode

z/VM emulation of the HMC
Operating System Messages
applet

z/VM SCLP line-mode terminal
device driver

Line mode

Integrated ASCII Console
applet on the HMC

z/VM or LPAR SCLP VT220 terminal device
driver

Full-screen mode

3270 terminal hardware or
emulation

z/VM with
CONMODE=3215

3215 line-mode terminal
device driver

Line mode

3270 terminal hardware or
emulation

z/VM with
CONMODE=3270

3270 terminal device driver Block mode

iucvconn program z/VM z/VM IUCV HVC device driver Full-screen mode

30 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

The 3270 terminal device driver provides three different views. See “Switching the views of the 3270
terminal device driver” on page 40 for details.

How console devices are accessed
How you can access console devices depends on your environment.

The diagrams in the following sections omit device drivers that are not relevant for the particular access
scenario.

Using the HMC for Linux in an LPAR
You can use two applets on the HMC to access terminal devices on Linux instances that run directly in an
LPAR.

Linux

ttyS1

ttyS0 SCLP line-mode
terminal device driver

SCLP VT220
terminal device driver

HMC

Operating System
Messages

Integrated
ASCII Console

Workstation

Browser

Network

Figure 8: Accessing terminal devices on Linux in an LPAR from the HMC

The Operating System Messages applet accesses the device that is provided by the SCLP line-mode
terminal device driver. The Integrated ASCII console applet accesses the device that is provided by the
SCLP VT220 terminal device driver.

Using the HMC for Linux on z/VM
You can use the HMC Integrated ASCII Console applet to access terminal devices on Linux instances
that run as z/VM guests.

While the ASCII system console is attached to the z/VM guest virtual machine where the Linux instance
runs, you can access the ttyS1 terminal device from the HMC Integrated ASCII Console applet.

HMC

Operating System
Messages

Integrated
ASCII Console

z/VM

ATTACH SYSASCII

Workstation

Browser

Network

Linux

ttyS1 SCLP VT220
terminal device driver

Figure 9: Accessing terminal devices from the HMC for Linux on z/VM

Use the CP ATTACH SYSASCII command to attach the ASCII system console to your z/VM guest virtual
machine.

Console device drivers 31

Using a 3270 terminal emulation
For Linux on z/VM, you can use 3270 terminal emulation to access a console device.

Figure 10 on page 32 illustrates how z/VM can handle the 3270 communication.

CONMODE=3270

CONMODE=3215

z/VM

Workstation

3270
terminal

emulation

3
2

70
pr

ot
oc

ol

3
2

15
pr

ot
oc

ol

Network Linux

3215 line-mode
terminal device driver

3270 terminal
device driver

SCLP line-mode
terminal device driver

tty3270

ttyS0

ttyS0VINPUT

Figure 10: Accessing terminal devices from a 3270 device

Note: Figure 10 on page 32 shows two console devices with the name ttyS0. Only one of these devices
can be present at any one time.

CONMODE=3215
translates between the 3270 protocol and the 3215 protocol and connects the 3270 terminal
emulation to the 3215 line-mode terminal device driver in the Linux kernel.

CONMODE=3270
connects the 3270 terminal emulation to the 3270 terminal device driver in the Linux kernel.

VINPUT
is a z/VM CP command that directs input to the ttyS0 device provided by the SCLP line-mode terminal
device driver. In a default z/VM environment, ttyS0 is provided by the 3215 line-mode terminal device
driver. You can use the conmode kernel parameter to make the SCLP line-mode terminal device driver
provide ttyS0 (see “Console kernel parameter syntax” on page 33).

The terminal device drivers continue to support 3270 terminal hardware, which, if available at your
installation, can be used instead of a 3270 terminal emulation.

Using iucvconn on Linux on z/VM
On Linux on z/VM, you can access the terminal devices that are provided by the z/VM IUCV Hypervisor
Console (HVC) device driver.

z/VM

Workstation

Terminal
session

Network

Linux

z/VM IUCV HVC device driver

Linux

shell

IUCV

iucvconn

hvc7

hvc1
hvc0

Figure 11: Accessing terminal devices from a peer Linux instance

As illustrated in Figure 11 on page 32, you access the devices with the iucvconn program from another
Linux instance. Both Linux instances are guests of the same z/VM system. IUCV provides the

32 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

communication between the two Linux instances. With this setup, you can access terminal devices on
Linux instances with no external network connection.

Note: Of the terminal devices that are provided by the z/VM IUCV HVC device driver only hvc0 can be
activated to receive Linux kernel messages.

Setting up the console device drivers
You configure the console device drivers through kernel parameters. You also might have to enable user
logins on terminals and ensure that the TERM environment variable has a suitable value.

Console kernel parameter syntax
Use the console kernel parameters to configure the console device drivers, line-mode terminals, and HVC
terminal devices.

The sclp_con_pages= and sclp_con_drop= parameters apply only to the SCLP line-mode terminal
device driver and to the SCLP VT220 terminal device driver.

The hvc_iucv= and hvc_iucv_allow= kernel parameters apply only to terminal devices that are
provided by the z/VM IUCV HVC device driver.

Console kernel parameter syntax

conmode= hwc

sclp

3215

3270

console= <console_name>

 sclp_con_drop=0

 sclp_con_drop=1

 sclp_con_pages=6

 sclp_con_pages= <n>

hvc_iucv=1

hvc_iucv= <number_of_devices>

hvc_iucv_allow=

,

<z/VM user ID>

Note: If you specify both the conmode= and the console= parameter, specify them in the sequence that is
shown, conmode= first.

where:
conmode

specifies which one of the line-mode or block-mode terminal devices is present and provided by
which device driver.

A Linux kernel might include multiple console device drivers that can provide a line-mode terminal:

• SCLP line-mode terminal device driver
• 3215 line-mode terminal device driver
• 3270 terminal device driver

Console device drivers 33

On a running Linux instance, only one of these device drivers can provide a device. Table 7 on page
34 shows how the device driver that is used by default depends on the environment.

Table 7: Default device driver for the line-mode terminal device

Mode Default

LPAR SCLP line-mode terminal device driver

z/VM 3215 line-mode terminal device driver or 3270 terminal device driver,
depending on the z/VM guest's console settings (the CONMODE field in the
output of #CP QUERY TERMINAL).

If the device driver you specify with the conmode= kernel parameter
contradicts the CONMODE z/VM setting, z/VM is reconfigured to match the
specification for the kernel parameter.

You can use the conmode parameter to override the default.

sclp or hwc
specifies the SCLP line-mode terminal device driver.

You need this specification if you want to use the z/VM CP VINPUT command (“Using a z/VM
emulation of the HMC Operating System Messages applet” on page 43).

3270
specifies the 3270 device driver.

3215
specifies the 3215 device driver.

console=<console_name>
specifies the console devices to be activated to receive Linux kernel messages. If present, ttyS0 is
always activated to receive Linux kernel messages and, by default, it is also the preferred console.

The preferred console is used as an initial terminal device, beginning at the stage of the boot process
when the initialization procedures run. Messages that are issued by programs that are run at this stage
are therefore only displayed on the preferred console. Multiple terminal devices can be activated to
receive Linux kernel messages but only one of the activated terminal devices can be the preferred
console.

If you specify conmode=3270, there is no console with name ttyS0.

If you want console devices other than ttyS0 to be activated to receive Linux kernel messages, specify
a console statement for each of these other devices. The last console statement designates the
preferred console.

If you specify one or more console parameters and you want to keep ttyS0 as the preferred console,
add a console parameter for ttyS0 as the last console parameter. Otherwise, you do not need a
console parameter for ttyS0.

<console_name> is the console name that is associated with the terminal device to be activated to
receive Linux kernel messages. Of the terminal devices that are provided by the z/VM IUCV HVC
device driver only hvc0 can be activated. Specify the console names as shown in Table 4 on page 29.

sclp_con_drop
governs the behavior of the SCLP line-mode and VT220 terminal device driver if either of them runs
out of output buffer pages. The trade-off is between slowing down Linux and losing console output.
Possible values are 0 (default) and 1.
0

assures complete console output by pausing until used output buffer pages are written to an
output device and can be reused without loss.

34 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

1
avoids system pauses by overwriting used output buffer pages, even if the content was never
written to an output device.

You can use the sclp_con_pages= parameter to set the number of output buffers.

sclp_con_pages=<n>
specifies the number of 4-KB memory pages to be used as the output buffer for the SCLP line-mode
and VT220 terminals. Depending on the line length, each output buffer can hold multiple lines. Use
many buffer pages for a kernel with frequent phases of producing console output faster than it can be
written to the output device.

Depending on the setting for the sclp_con_drop=, running out of pages can slow down Linux or
cause it to lose console output.

The value is a positive integer. The default is 6.

hvc_iucv=<number_of_devices>
specifies the number of terminal devices that are provided by the z/VM IUCV HVC device driver.
<number_of_devices> is an integer in the range 0 - 8. Specify 0 to switch off the z/VM IUCV HVC device
driver.

hvc_iucv_allow=<z/VM user ID>,<z/VM user ID>, ...
specifies an initial list of z/VM guest virtual machines that are allowed to connect to HVC terminal
devices. If this parameter is omitted, any z/VM guest virtual machine that is authorized to establish
the required IUCV connection is also allowed to connect. On the running system, you can change this
list with the chiucvallow command. See How to Set up a Terminal Server Environment on z/VM,
SC34-2596 for more information.

Examples

• To activate ttyS1 in addition to ttyS0, and to use ttyS1 as the preferred console, add the following
specification to the kernel command line:

 console=ttyS1

• To activate ttyS1 in addition to ttyS0, and to keep ttyS0 as the preferred console, add the following
specification to the kernel command line:

 console=ttyS1 console=ttyS0

• To use an emulated HMC Operating System Messages applet in a z/VM environment specify:

 conmode=sclp

• To activate hvc0 in addition to ttyS0, use hvc0 as the preferred console, configure the z/VM IUCV HVC
device driver to provide four devices, and limit the z/VM guest virtual machines that can connect to HVC
terminal devices to lxtserv1 and lxtserv2, add the following specification to the kernel command
line:

 console=hvc0 hvc_iucv=4 hvc_iucv_allow=lxtserv1,lxtserv2

• The following specification selects the SCLP line-mode terminal and configures 32 4-KB pages (128 KB)
for the output buffer. If buffer pages run out, the SCLP line-mode terminal device driver does not wait
for pages to be written to an output device. Instead of pausing, it reuses output buffer pages at the
expense of losing content.

 console=sclp sclp_con_pages=32 sclp_con_drop=1

Console device drivers 35

Setting up a z/VM guest virtual machine for iucvconn
Because the iucvconn program uses z/VM IUCV to access Linux, you must set up your z/VM guest virtual
machine for IUCV.

See “Setting up your z/VM guest virtual machine for IUCV” on page 294 for details about setting up the
z/VM guest virtual machine.

For information about accessing Linux through the iucvtty program rather than through the z/VM IUCV
HVC device driver, see How to Set up a Terminal Server Environment on z/VM, SC34-2596 or the man
pages for the iucvtty and iucvconn commands.

Setting up a line-mode terminal
The line-mode terminals are primarily intended for booting Linux.

The preferred user access to a running SUSE Linux Enterprise Server 12 SP4 instance is through a user
login that runs, for example, in an ssh session. See “Terminal modes” on page 30 for information about
the available line-mode terminals.

Tip: If the terminal does not provide the expected output, ensure that dumb is assigned to the TERM
environment variable. For example, enter the following command on the bash shell:

export TERM=dumb

Setting up a full-screen mode terminal
The full-screen terminal can be used for full-screen text editors, such as vi, and terminal-based full-
screen system administration tools.

See “Terminal modes” on page 30 for information about the available full-screen mode terminals.

Tip: If the terminal does not provide the expected output, ensure that linux is assigned to the TERM
environment variable. For example, enter the following command on the bash shell:

export TERM=linux

Setting up a terminal provided by the 3270 terminal device driver
The terminal that is provided by the 3270 terminal device driver is not a line-mode terminal, but it is also
not a typical full-screen mode terminal.

The terminal provides limited support for full-screen applications. For example, the ned editor is
supported, but not vi.

Tip: If the terminal does not provide the expected output, ensure that linux is assigned to the TERM
environment variable. For example, enter the following command on the bash shell:

export TERM=linux

Enabling user logins
Use systemd service units to enable terminals for user access.

About this task
You must explicitly enable user logins for the HVC terminals hvc1 to hvc7 and for any dynamically
attached virtual or real 3270 terminals. On other terminals that are, typically, available in your
environment, including hvc0 and 3270/tty1, systemd automatically enables user logins for you.

36 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Enabling user logins for 3270 terminals
Instantiate getty services for terminals to enable users access.

Procedure

Perform these steps to use a getty service for enabling user logins on any dynamically added real or
virtual 3270 terminals.
1. Enable the new getty service by issuing a command of this form:

systemctl enable serial-getty@<terminal>.service

where <terminal> specifies one of the terminals 3270-tty<N> and <N> is an integer greater than 1.

Note: You specify terminal 3270/tty<N> as 3270-tty<N>.
2. Optional: Start the new getty service by issuing a command of this form:

systemctl start serial-getty@<terminal>.service

Results
At the next system start, systemd automatically starts the getty service for you.

Example
For 3270/tty2, issue:

systemctl enable serial-getty@3270-tty2.service
systemctl start serial-getty@3270-tty2.service

Preventing respawns for non-operational HVC terminals
If you enable user logins on a HVC terminal that is not available or not operational, systemd keeps
respawning the getty program.

About this task

If user logins are enabled on unavailable HVC terminals hvc1 to hvc7, systemd might keep respawning
the getty program. To be free to change the conditions that affect the availability of these terminals, use
the ttyrun service to enable user logins for them. HVC terminals are operational only in a z/VM
environment, and they depend on the hvc_iucv= kernel parameter (see “Console kernel parameter
syntax” on page 33).

Any other unavailable terminals with enabled user login, including hvc0, do not cause problems with
systemd.

Procedure

Perform these steps to use a ttyrun service for enabling user logins on a terminal:
1. Enable the ttyrun service by issuing a command of this form:

systemctl enable ttyrun-getty@hvc<n>.service

where hvc<n> specifies one of the terminals hvc1 to hvc7.
2. Optional: Start the new service by issuing a command of this form:

systemctl start ttyrun-getty@hvc<n>.service

Console device drivers 37

Results
At the next system start, systemd starts the ttyrun service for hvc<n>. The ttyrun service starts a getty
only if this terminal is available.

Example
For hvc1, issue:

systemctl enable ttyrun-getty@hvc1.service
systemctl start ttyrun-getty@hvc1.service

Setting up the code page for an x3270 emulation on Linux
For accessing z/VM from Linux through the x3270 terminal emulation, you must add a number of settings
to the .Xdefaults file to get the correct code translation.

Add these settings:

 ! X3270 keymap and charset settings for Linux
 x3270.charset: us-intl
 x3270.keymap: circumfix
 x3270.keymap.circumfix: :<key>asciicircum: Key("^")\n

Working with Linux terminals
You might have to work with different types of Linux terminals, and use special functions on these
terminals.

• “Using the terminal applets on the HMC” on page 38
• “Accessing terminal devices over z/VM IUCV” on page 39
• “Switching the views of the 3270 terminal device driver” on page 40
• “Setting a CCW terminal device online or offline” on page 40
• “Entering control and special characters on line-mode terminals” on page 41
• “Using the magic sysrequest feature” on page 41
• “Using a z/VM emulation of the HMC Operating System Messages applet” on page 43
• “Using a 3270 terminal in 3215 mode” on page 45

Using the terminal applets on the HMC
You should be aware of some aspects of the line-mode and the full-screen mode terminal when working
with the corresponding applets on the HMC.

The following statements apply to both the line-mode terminal and the full-screen mode terminal on the
HMC:

• On an HMC, you can open each applet only once.
• Within an LPAR, there can be only one active terminal session for each applet, even if multiple HMCs are

used.
• A particular Linux instance supports only one active terminal session for each applet.
• Security hint: Always end a terminal session by explicitly logging off (for example, type "exit" and press

Enter). Simply closing the applet leaves the session active and the next user to open the applet resumes
the existing session without a logon.

• Slow performance of the HMC is often due to a busy console or increased network traffic.

The following statements apply to the full-screen mode terminal only:

38 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

• Output that is written by Linux while the terminal window is closed is not displayed. Therefore, a newly
opened terminal window is always blank. For most applications, like login or shell prompts, it is
sufficient to press Enter to obtain a new prompt.

• The terminal window shows only 24 lines and does not provide a scroll bar. To scroll up, press Shift
+PgUp; to scroll down, press Shift+PgDn.

Accessing terminal devices over z/VM IUCV
Use z/VM IUCV to access hypervisor console (HVC) terminal devices, which are provided by the z/VM
IUCV HVC device driver.

About this task

For information about accessing terminal devices that are provided by the iucvtty program see How to Set
up a Terminal Server Environment on z/VM, SC34-2596.

You access HVC terminal devices from a Linux instance where the iucvconn program is installed. The
Linux instance with the terminal device to be accessed and the Linux instance with the iucvconn program
must both run as guests of the same z/VM system. The two guest virtual machines must be configured
such that IUCV communication is permitted between them.

Procedure

Perform these steps to access an HVC terminal device over z/VM IUCV:
1. Open a terminal session on the Linux instance where the iucvconn program is installed.
2. Enter a command of this form:

iucvconn <guest_ID> <terminal_ID>

where:
<guest_ID>

specifies the z/VM guest virtual machine on which the Linux instance with the HVC terminal device
to be accessed runs.

<terminal_ID>
specifies an identifier for the terminal device to be accessed. HVC terminal device names are of the
form hvcn where n is an integer in the range 0-7. The corresponding terminal IDs are lnxhvcn.

Example: To access HVC terminal device hvc0 on a Linux instance that runs on a z/VM guest virtual
machine LXGUEST1, enter:

iucvconn LXGUEST1 lnxhvc0

For more details and further parameters of the iucvconn command, see the iucvconn man page or
How to Set up a Terminal Server Environment on z/VM, SC34-2596.

3. Press Enter to obtain a prompt.

Output that is written by Linux while the terminal window is closed, is not displayed. Therefore, a
newly opened terminal window is always blank. For most applications, like login or shell prompts, it is
sufficient to press Enter to obtain a new prompt.

Security hint
Always end terminal sessions by explicitly logging off (for example, type exit and press Enter). If logging
off results in a new login prompt, press Control and Underscore (Ctrl+_), then press D to close the login
window. Simply closing the terminal window for a hvc0 terminal device that was activated for Linux kernel
messages leaves the device active. The terminal session can then be reopened without a login.

Console device drivers 39

Switching the views of the 3270 terminal device driver
The 3270 terminal device driver provides three different views.

Use function key 3 (PF3) to switch between the views (see Figure 12 on page 40).

Linux kernel
messages

view

Terminal I/O
view

PF3
Full-screen
application

view

Figure 12: Switching views of the 3270 terminal device driver

The Linux kernel messages view is available only if the terminal device is activated for Linux kernel
messages. The full-screen application view is available only if there is an application that uses this view,
for example, the ned editor.

Be aware that the 3270 terminal provides only limited full-screen support. The full-screen application
view of the 3270 terminal is not intended for applications that require vt220 capabilities. The application
itself must create the 3270 data stream.

For the Linux kernel messages view and the terminal I/O view, you can use the PF7 key to scroll backward
and the PF8 key to scroll forward. The scroll buffers are fixed at four pages (16 KB) for the Linux kernel
messages view and five pages (20 KB) for the terminal I/O view. When the buffer is full and more terminal
data needs to be printed, the oldest lines are removed until there is enough room. The number of lines in
the history, therefore, vary. Scrolling in the full-screen application view depends on the application.

You cannot issue z/VM CP commands from any of the three views that are provided by the 3270 terminal
device driver. If you want to issue CP commands, use the PA1 key to switch to the CP READ mode.

Setting a CCW terminal device online or offline
The 3270 terminal device driver uses CCW devices and provides them as CCW terminal devices.

About this task

This section applies to Linux on z/VM. A CCW terminal device can be:

• The tty3270 terminal device that can be activated for receiving Linux kernel messages.

If this device exists, it comes online early during the Linux boot process. In a default z/VM environment,
the device number for this device is 0009. In sysfs, it is represented as /sys/bus/ccw/drivers/
3270/0.0.0009. You need not set this device online and you must not set it offline.

• CCW terminal devices through which users can log in to Linux with the CP DIAL command.

These devices are defined with the CP DEF GRAF command. They are represented in sysfs
as /sys/bus/ccw/drivers/3270/0.<n>.<devno> where <n> is the subchannel set ID and
<devno> is the virtual device number. By setting these devices online, you enable them for user logins.
If you set a device offline, it can no longer be used for user login.

See z/VM: CP Commands and Utilities Reference, SC24-6268 for more information about the DEF GRAF
and DIAL commands.

Procedure

You can use the chccwdev command (see “chccwdev - Set CCW device attributes” on page 470) to set a
CCW terminal device online or offline. Alternatively, you can write 1 to the device's online attribute to set it
online, or 0 to set it offline.

40 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Examples

• To set a CCW terminal device 0.0.7b01 online, issue:

chccwdev -e 0.0.7b01

Alternatively issue:

echo 1 > /sys/bus/ccw/drivers/3270/0.0.7b01/online

• To set a CCW terminal device 0.0.7b01 offline, issue:

chccwdev -d 0.0.7b01

Alternatively issue:

echo 0 > /sys/bus/ccw/drivers/3270/0.0.7b01/online

Entering control and special characters on line-mode terminals
Line-mode terminals do not have a control (Ctrl) key. Without a control key, you cannot enter control
characters directly.

Also, pressing the Enter key adds a newline character to your input string. Some applications do not
tolerate such trailing newline characters.

Table 8 on page 41 summarizes how to use the caret character (^) to enter some control characters and
to enter strings without appended newline characters.

Table 8: Control and special characters on line-mode terminals

For the key
combination

Enter Usage

Ctrl+C ^c Cancel the process that is running in the foreground of the terminal.

Ctrl+D ^d Generate an end of file (EOF) indication.

Ctrl+Z ^z Stop a process.

n/a ^n Suppresses the automatic generation of a new line. Thus, you can
enter single characters; for example, the characters that are needed
for yes/no answers in some utilities.

Note: For a 3215 line-mode terminal in 3215 mode, you must use United States code page (037).

Using the magic sysrequest feature
The Linux on Z terminal device drivers support the magic sysrequest functions.

• To call the magic sysrequest functions on the VT220 terminal or on hvc0, enter the single character Ctrl
+o followed by the character for the particular function.

You can call the magic sysrequest functions from the hvc0 terminal device if it is present and is
activated to receive Linux kernel messages.

• To call the magic sysrequest functions on a line-mode terminal, enter the 2 characters "^-" (caret and
hyphen) followed by a third character that specifies the particular function.

Table 9 on page 42 provides an overview of the commands for the magic sysrequest functions:

Console device drivers 41

Table 9: Magic sysrequest functions

On line-mode
terminals, enter

On hvc0 and the VT220
terminal, enter

To

^-b Ctrl+ob Re-IPL immediately (see “lsreipl - List IPL and re-
IPL settings” on page 562).

^-s Ctrl+os Emergency sync all file systems.

^-u Ctrl+ou Emergency remount all mounted file systems
read-only.

^-t Ctrl+ot Show task info.

^-m Ctrl+om Show memory.

^-
followed by a digit
(0 - 9)

Ctrl+o

followed by a digit
(0 - 9)

Set the console log level.

^-e Ctrl+oe Send the TERM signal to end all tasks except init.

^-i Ctrl+oi Send the KILL signal to end all tasks except init.

^-p Ctrl+op See “Obtaining debug information” on page 445.

Note: In Table 9 on page 42 Ctrl+o means pressing while holding down the control key.

Table 9 on page 42 lists the main magic sysrequest functions that are known to work on Linux on Z. For a
more comprehensive list of functions, see Documentation/sysrq.txt in the Linux source tree. Some
of the listed functions might not work on your system.

Activating and deactivating the magic sysrequest feature
Use the sysrq procfs attribute to activate or deactivate the magic sysrequest feature.

Procedure

Issue the following command to activate the magic sysrequest feature:

 echo 1 > /proc/sys/kernel/sysrq

Issue the following command to deactivate the magic sysrequest feature:

 echo 0 > /proc/sys/kernel/sysrq

Tip: You can use YaST to activate and deactivate the magic sysrequest function. Go to yast -> system ->
Kernel Settings, select or clear the enable SYSRQ option and leave YaST with OK.

Triggering magic sysrequest functions from procfs
If you are working from a terminal that does not support a key sequence or combination to call magic
sysrequest functions, you can trigger the functions through procfs.

Procedure

Write the character for the particular function to /proc/sysrq-trigger.

You can use this interface even if the magic sysrequest feature is not activated as described in “Activating
and deactivating the magic sysrequest feature” on page 42.

42 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Example
To set the console log level to 9, enter:

echo 9 > /proc/sysrq-trigger

Using a z/VM emulation of the HMC Operating System Messages applet
You can use the Operating System Messages applet emulation; for example, if the 3215 terminal is not
operational.

About this task

The preferred terminal devices for Linux instances that run as z/VM guests are provided by the 3215 or
3270 terminal device drivers.

The emulation requires a terminal device that is provided by the SCLP line-mode terminal device driver. To
use the emulation, you must override the default device driver for z/VM environments (see “Console
kernel parameter syntax” on page 33).

For the emulation, you use the z/VM CP VINPUT command instead of the graphical user interface at the
Support Element or HMC. Type any input to the operating system with a leading CP VINPUT.

The examples in the sections that follow show the input line of a 3270 terminal or terminal emulator (for
example, x3270). Omit the leading #CP if you are in CP read mode. For more information about VINPUT,
see z/VM: CP Commands and Utilities Reference, SC24-6268.

Priority and non-priority commands
VINPUT commands require a VMSG (non-priority) or PVMSG (priority) specification.

Operating systems that accept this specification, process priority commands with a higher priority than
non-priority commands.

The hardware console driver can accept both if supported by the hardware console within the specific
machine or virtual machine.

Linux does not distinguish between priority and non-priority commands.

Example

The specifications:

#CP VINPUT VMSG LS -L

and

#CP VINPUT PVMSG LS -L

are equivalent.

Case conversion
All lowercase characters are converted by z/VM to uppercase. To compensate for this effect, the console
device driver converts all input to lowercase.

For example, if you type VInput VMSG echo $PATH, the device driver gets ECHO $PATH and converts it
into echo $path.

Linux and bash are case-sensitive and require some specifications with uppercase characters. To include
uppercase characters in a command, use the percent sign (%) as a delimiter. The console device driver
interprets characters that are enclosed by percent signs as uppercase.

Console device drivers 43

Examples

In the following examples, the first line shows the user input. The second line shows what the device
driver receives after the case conversion by CP. The third line shows the command that is processed by
bash:

• #cp vinput vmsg ls -l
CP VINPUT VMSG LS -L
ls -l
...

• The following input would result in a bash command that contains a variable $path, which is not defined
in lowercase:

#cp vinput vmsg echo $PATH
CP VINPUT VMSG ECHO $PATH
echo $path
...

To obtain the correct bash command enclose the uppercase string with the conversion escape
character:

#cp vinput vmsg echo $%PATH%
CP VINPUT VMSG ECHO $%PATH%
echo $PATH
...

Using the escape character
The quotation mark (") is the standard CP escape character. To include the escape character in a
command that is passed to Linux, you must type it twice.

For example, the following command passes a string in double quotation marks to be echoed.

#cp vinput pvmsg echo ""here is ""$0
CP VINPUT PVMSG ECHO "HERE IS "$0
echo "here is "$0
here is -bash

In the example, $0 resolves to the name of the current process.

Using the end-of-line character
To include the end-of-line character in the command that is passed to Linux, you must specify it with a
leading escape character.

If you are using the standard settings according to “Using a 3270 terminal in 3215 mode” on page 45,
you must specify "# to pass # to Linux.

If you specify the end-of-line character without a leading escape character, z/VM CP interprets it as an
end-of-line character that ends the VINPUT command.

Example

In this example, a number sign is intended to mark the begin of a comment in the bash command. This
character is misinterpreted as the beginning of a second command.

#cp vinput pvmsg echo ""%N%umber signs start bash comments"" #like this one
CP VINPUT PVMSG ECHO "%N%UMBER SIGNS START BASH COMMENTS"
LIKE THIS ONE
HCPCMD001E Unknown CP command: LIKE
...

The escape character prevents the number sign from being interpreted as an end-of-line character.

44 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

#cp vinput pvmsg echo ""%N%umber signs start bash comments"" "#like this one
VINPUT PVMSG ECHO "%N%UMBER SIGNS START BASH COMMENTS" #LIKE THIS ONE
echo "Number signs start bash comments" #like this one
Number signs start bash comments

Simulating the Enter and Spacebar keys
You can use the CP VINPUT command to simulate the Enter and Spacebar keys.

Simulate the Enter key by entering a blank followed by \n:

#CP VINPUT VMSG \n

Simulate the Spacebar key by entering two blanks followed by \n:

#CP VINPUT VMSG \n

Using a 3270 terminal in 3215 mode
The z/VM control program (CP) defines five characters as line-editing symbols. Use the CP QUERY
TERMINAL command to see the current settings.

The default line-editing symbols depend on your terminal emulator. You can reassign the symbols by
changing the settings of LINEND, TABCHAR, CHARDEL, LINEDEL, or ESCAPE with the CP TERMINAL
command. Table 10 on page 45 shows the most commonly used settings:

Table 10: Line edit characters

Character Symbol Usage

LINEND The end of line character. With this character, you can enter several logical
lines at once.

| TABCHAR The logical tab character.

@ CHARDEL The character delete symbol deletes the preceding character.

[or ¢ LINEDEL The line delete symbol deletes everything back to and including the previous
LINEND symbol or the start of the input. "[" is common for ASCII terminals and
"¢" for EBCDIC terminals.

" ESCAPE The escape character. With this character, you can enter a line-edit symbol as a
normal character.

To enter a line-edit symbol, you must precede it with the escape character. In particular, to enter the
escape character, you must type it twice.

Examples

The following examples assume the settings of Table 10 on page 45 with the opening square bracket
character ([) as the "delete line" character.

• To specify a tab character, specify:

"|

• To specify a double quotation mark character, specify:

""

• If you type the character string:

#CP HALT#CP ZIPL 190[#CP IPL 1@290 PARM vmpoff=""MSG OP REBOOT"#IPL 290""

Console device drivers 45

the actual commands that are received by CP are:

CP HALT
CP IPL 290 PARM vmpoff="MSG OP REBOOT#IPL 290"

46 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Chapter 5. Booting Linux
The options and requirements you have for booting Linux depend on your platform, LPAR or z/VM, and on
your boot medium.

The boot loader for SUSE Linux Enterprise Server 12 SP4 is GRUB 2. Use GRUB 2 to prepare DASD and
SCSI devices as IPL devices for booting Linux. For details about GRUB 2, see SUSE Linux Enterprise Server
12 SP4 Administration Guide.

IPL and booting
On Z, you usually start booting Linux by performing an Initial Program Load (IPL).

Figure 13 on page 47 illustrates the main steps of booting SUSE Linux Enterprise Server 12 SP4.

(1) IPL:

firmware loads

zipl boot

loader code

memory

(2) Boot process 1:

zipl boot loader

loads a

kernel

uxiliary

IPL device

zipl
boot loader

code

Auxiliary
kernel image

GRUB 2

zipl
boot loader

code

memory

IPL device

zipl
boot loader

code

Auxiliary
kernel image

GRUB 2

Linux
target kernel

image

zipl
boot loader

code

Auxiliary
kernel image

GRUB 2

memory

IPL device

zipl
boot loader

code

Auxiliary
kernel image

GRUB 2

Auxiliary
kernel image

GRUB 2

memory

Linux
target kernel

image

Linux
target kernel

image

Linux
target kernel

image

Linux
target kernel

image

(3) Boot process 2:

GRUB 2 loads

target kernel

(4) Result:

target kernel

gets control

Figure 13: IPL and boot process

First step: IPL
The IPL process is controlled by the Z firmware. In this step, zipl boot loader code is loaded into
memory.

Second step: boot process for the auxiliary kernel
In this step, the zipl boot loader gets control. It loads a Linux auxiliary kernel into memory. This
auxiliary kernel includes GRUB 2. Depending on your configuration and boot device, a zipl boot menu
might be displayed during this step.

Third step: boot process for the target kernel
In this step, GRUB 2 gets control. It loads the target Linux kernel into memory.

© Copyright IBM Corp. 2000, 2019 47

Fourth step: the target kernel takes over
When the boot process for the target Linux kernel has completed, the target Linux kernel gets control.

If your Linux instance is to run in LPAR mode, you can also use the HMC or the service element (SE) to
copy the Linux kernel to the mainframe memory (see “Loading Linux from removable media or from an
FTP server” on page 58). Typically, this method applies to an initial installation of a Linux instance.

Apart from starting a boot process, an IPL can also start a dump process. See Using the Dump Tools on
SUSE Linux Enterprise Server 12 SP1, SC34-2746 for more information about dumps.

You can find the newest version of this publication on IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html

Control point and boot medium
The control point from where you can start the boot process depends on the environment where Linux is
to run.

If your Linux instance is to run in LPAR mode, the control point is the mainframe's Support Element (SE) or
an attached Hardware Management Console (HMC). For Linux on z/VM, the control point is the control
program (CP) of the hosting z/VM.

The media that can be used as boot devices also depend on where Linux is to run. Table 11 on page 48
provides an overview of the possibilities:

Table 11: Boot media

DASD SCSI z/VM reader CD-ROM/FTP

z/VM guest ✓ ✓ ✓

LPAR ✓ ✓ ✓

DASDs and SCSI devices that are attached through an FCP channel can be used for both LPAR and z/VM
guest virtual machines. A SCSI device can be a disk or an FC-attached CD-ROM or DVD drive. The z/VM
reader is available only in a z/VM environment.

For Linux in LPAR mode, you can also boot from a CD-ROM drive on the SE or HMC, or you can obtain the
boot data from a remote FTP server.

Typically, booting from removable media applies to initial installation of Linux. Booting from DASD or SCSI
disk devices usually applies to previously installed Linux instances.

Boot data
To boot Linux, you generally need a kernel image, boot loader code, kernel parameters, and an initial RAM
disk image.

For the z/VM reader, as a sequential I/O boot device, the order in which this data is provided is significant.
For random access devices there is no required order.

On SUSE Linux Enterprise Server 12 SP4, kernel images are installed into the /boot directory and are
named image-<version>. For information about where to find the images and how to start an
installation, see SUSE Linux Enterprise Server 12 SP4 Deployment Guide.

48 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html

Boot loader code
SUSE Linux Enterprise Server 12 SP4 kernel images are compiled to contain boot loader code for IPL from
z/VM reader devices.

If you want to boot a kernel image from a device that does not correspond to the included boot loader
code, you can provide alternate boot loader code separate from the kernel image.

Use GRUB 2 to prepare boot devices with separate DASD or SCSI boot loader code. You can then boot
from these devices, regardless of the boot loader code in the kernel image.

Kernel parameters
The kernel parameters are in form of an ASCII text string of up to 895 characters. If the boot device is the
z/VM reader, the string can also be encoded in EBCDIC.

Individual kernel parameters are single keywords or keyword/value pairs of the form keyword=<value>
with no blank. Blanks are used to separate consecutive parameters.

You specify kernel parameters when you create your boot configuration with GRUB 2. Depending on your
boot method, you can add kernel parameters when starting the boot process.

Important: Do not specify parameters that prevent SUSE Linux Enterprise Server 12 SP4 from booting.
See “Avoid parameters that break GRUB 2” on page 19.

Initial RAM disk image
An initial RAM disk holds files, programs, or modules that are not included in the kernel image but are
required for booting.

For example, booting from DASD requires the DASD device driver. If you want to boot from DASD but the
DASD device driver has not been compiled into your kernel, you need to provide the DASD device driver
module on an initial RAM disk.

SUSE Linux Enterprise Server 12 SP4 provides a ramdisk in /boot and named initrd-<kernel
version>.

Rebuilding the initial RAM disk image
Configuration changes might apply to components that are required in the boot process before the root
file system is mounted. For SUSE Linux Enterprise Server 12, such components and their configuration are
provided through an initial RAM disk.

Procedure

Perform these steps to make configuration changes for components in the initrd take effect:
1. Issue dracut -f to update the initial RAM disk of your target kernel.
2. Issue grub2-install to update the initial RAM disk of the auxiliary kernel and to rewrite the zipl

boot record.

Booting Linux in a z/VM guest virtual machine
You boot Linux in a z/VM guest virtual machine by issuing CP commands from a CMS or CP session.

For more general information about z/VM guest environments for Linux, see z/VM: Getting Started with
Linux on System z®, SC24-6287.

Booting from a DASD
Boot Linux by issuing the IPL command with a DASD boot device.

Before you begin
You need a DASD boot device that is prepared with GRUB 2.

Booting Linux 49

Procedure

Perform these steps to start the boot process:
1. Establish a CMS or CP session with the z/VM guest virtual machine where you want to boot Linux.
2. Ensure that the boot device is accessible to your z/VM guest virtual machine.
3. Issue a command of this form:

#cp i <devno> clear loadparm <n>g<grub_parameters> parm <kernel_parameters>

where:
<devno>

specifies the device number of the boot device as seen by the guest.
<n>

selects the kernel to be booted.
0 or 1

immediately starts GRUB 2 for booting the target SUSE Linux Enterprise Server 12 SP4 kernel.
2

boots a rescue kernel.
If you omit this specification, GRUB 2 is started after a timeout period has expired. Depending on
your configuration, a zipl boot menu might be displayed during the timeout period. From this menu,
you can choose between starting GRUB 2 or booting a rescue kernel.

<grub_parameters>
specifies parameters for GRUB 2. Typically, this specification selects a boot option from a GRUB 2
boot menu. For details, see “Specifying GRUB 2 parameters” on page 60.

<kernel_parameters>
is an optional 64-byte string of kernel parameters to be concatenated to the end of the existing
kernel parameters that are used by your boot configuration.

Important: Do not specify parameters that prevent SUSE Linux Enterprise Server 12 SP4 from
booting. See “Avoid parameters that break GRUB 2” on page 19.

Example for the zipl menu
This example illustrates how a zipl menu is displayed on the z/VM guest virtual machine console.

00: zIPL interactive boot menu
00:
00: 0. default (grub2)
00:
00: 1. grub2
00: 2. skip-grub
00:
00: Note: VM users please use '#cp vi vmsg <number> <kernel-parameters>'
00:
00: Please choose (default will boot in 30 seconds): #cp vi vmsg 1

Specify 0 or 1 to immediately start GRUB 2 to proceed with booting the target kernel. Specify 2 to start a
rescue kernel. If you do not select a menu item until the timeout expires, GRUB 2 is started.

Example: To start GRUB 2 specify:

#cp vi vmsg 1

50 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Booting from a SCSI device
Boot Linux by issuing the IPL command with an FCP channel as the IPL device. You must specify the
target port and LUN for the boot device in advance by setting the z/VM CP LOADDEV parameter.

Before you begin
You need a SCSI boot device that is prepared with GRUB 2.

Procedure

Perform these steps to start the boot process:
1. Establish a CMS or CP session with the z/VM guest virtual machine where you want to boot Linux.
2. Ensure that the FCP channel that provides access to the SCSI boot disk is accessible to your z/VM

guest virtual machine.
3. Specify the target port and LUN of the SCSI boot disk.

Enter a command of this form:

#cp set loaddev portname <wwpn> lun <lun>

where:
<wwpn>

specifies the world wide port name (WWPN) of the target port in hexadecimal format. A blank
separates the first eight digits from the final eight digits.

<lun>
specifies the LUN of the SCSI boot disk in hexadecimal format. A blank separating the first eight
digits from the final eight digits.

Example: To specify a WWPN 0x5005076300c20b8e and a LUN 0x5241000000000000:

#cp set loaddev portname 50050763 00c20b8e lun 52410000 00000000

4. Optional for menu configurations: Specify the boot configuration (boot program in z/VM terminology)
to be used. Enter a command of this form:

#cp set loaddev bootprog <n>

where <n> selects the kernel to be booted.
0 or 1

immediately starts GRUB 2 for booting the target SUSE Linux Enterprise Server 12 SP4 kernel.
2

boots a rescue kernel.
If you omit this specification, GRUB 2 is started after a timeout period has expired.

Example: To start GRUB 2 and proceed with booting the target kernel, issue this command:

#cp set loaddev bootprog 0

5. Optional: Add kernel parameters.

Issue a command of this form:

#cp set loaddev scpdata <APPEND|NEW> '<kernel_parameters>'

where:

Booting Linux 51

<kernel_parameters>
specifies a set of kernel parameters to be stored as system control program data (SCPDATA). When
booting Linux, these kernel parameters are concatenated to the end of the existing kernel
parameters that are used by your boot configuration.

<kernel_parameters> must contain ASCII characters only. If characters other than ASCII
characters are present, the boot process ignores the SCPDATA.

<kernel_parameters> as entered from a CMS or CP session is interpreted as lowercase on Linux. If
you require uppercase characters in the kernel parameters, run the SET LOADDEV command from
a REXX script instead. In the REXX script, use the "address command" statement. See z/VM:
REXX/VM Reference, SC24-6314 and z/VM: REXX/VM User's Guide, SC24-6315 for details.

Optional: APPEND
appends kernel parameters to existing SCPDATA. This is the default.

Optional: NEW
replaces existing SCPDATA.

Important: Do not specify parameters that prevent SUSE Linux Enterprise Server 12 SP4 from booting.
See “Avoid parameters that break GRUB 2” on page 19.

6. Start the IPL and boot process by entering a command of this form:

#cp i <devno> loadparm g<grub_parameters>

where
<devno>

is the device number of the FCP channel that provides access to the SCSI boot disk.
loadparm g<grub_parameters>

optionally specifies parameters for GRUB 2. Typically, this specification selects a boot option from
a GRUB 2 boot menu. For details, see “Specifying GRUB 2 parameters” on page 60.

Tip
You can specify the target port and LUN of the SCSI boot disk, a boot configuration, and SCPDATA all with
a single SET LOADDEV command. See z/VM: CP Commands and Utilities Reference, SC24-6268 for more
information about the SET LOADDEV command.

Booting from the z/VM reader
Boot Linux by issuing the IPL command with the z/VM reader as the IPL device. You first must transfer the
boot data to the reader.

Before you begin

You need the following files, all in record format fixed 80:

• Linux kernel image with built-in z/VM reader boot loader code. This is the case for the default SUSE
Linux Enterprise Server 12 SP4 kernel.

• Kernel parameters (optional)
• Initial RAM disk image (optional)

About this task

This information is a summary of how to boot Linux from a z/VM reader. For more details, see Redpaper
Building Linux Systems under IBM VM, REDP-0120.

Tip: On the SUSE Linux Enterprise Server 12 SP4 DVD under /boot/s390x there is a sample script
(SLES12 EXEC) for booting from the z/VM reader.

52 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Procedure

Proceed like this to boot Linux from a z/VM reader:
1. Establish a CMS session with the guest where you want to boot Linux.
2. Transfer the kernel image, kernel parameters, and the initial RAM disk image to your guest.

You can obtain the files from a shared minidisk or use:

• The z/VM sendfile facility.
• An FTP file transfer in binary mode.

Files that are sent to your reader contain a file header that you must remove before you can use them
for booting. Receive files that you obtain through your z/VM reader to a minidisk.

3. Set up the reader as a boot device.
a) Ensure that your reader is empty.
b) Direct the output of the punch device to the reader. Issue:

spool pun * rdr

c) Use the CMS PUNCH command to transfer each of the required files to the reader.
Be sure to use the "no header" option to omit the file headers.

First transfer the kernel image.
Second transfer the kernel parameters.
Third transfer the initial RAM disk image, if present.

For each file, issue a command of this form:

pun <file_name> <file_type> <file_mode> (noh

d) Optional: Ensure that the contents of the reader remain fixed.

change rdr all keep nohold

If you omit this step, all files are deleted from the reader during the IPL that follows.
4. Issue the IPL command:

ipl 000c clear parm <kernel_parameters>

where:
0x000c

is the device number of the reader.
parm <kernel_parameters>

is an optional 64-byte string of kernel parameters to be concatenated to the end of the existing
kernel parameters that are used by your boot configuration.

See also “Adding kernel parameters when booting Linux” on page 20.

Booting Linux in LPAR mode
You can boot Linux in LPAR mode from a Hardware Management Console (HMC) or Support Element (SE).

About this task

The following description refers to an HMC, but the same steps also apply to an SE.

Booting Linux 53

Booting from DASD
Use the SE or HMC to boot Linux in LPAR from a DASD boot device.

Before you begin
You need a boot device that is prepared with GRUB 2.

Procedure

Perform these steps to boot from a DASD:
1. In the navigation pane of the HMC, expand Systems Management and Servers and select the

mainframe system that you want to work with. A table of LPARs is displayed on the Images tab in the
content area.

2. Select the LPAR where you want to boot Linux.
3. In the Tasks area, expand Recovery and click Load (see Figure 14 on page 54).

1) Select mainframe system

2) Select

LPAR 3) Click Load

Figure 14: Load task on the HMC
4. Select load type Normal (see Figure 15 on page 55).

54 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

0g2

Figure 15: Load panel for booting from DASD
5. Enter the device number of the DASD boot device in the Load address field.
6. Enter a specification of the form <n>g<grub_parameters> in the Load parameter filed.

<n>
selects the kernel to be booted.
0 or 1

immediately starts GRUB 2 for booting the target SUSE Linux Enterprise Server 12 SP4 kernel.
2

boots a rescue kernel.

If you omit this specification, GRUB 2 is started after a timeout period has expired. Depending on
your configuration, a zipl boot menu might be displayed during the timeout period. From this menu,
you can choose between starting GRUB 2 or booting a rescue kernel.

<grub_parameters>
specifies parameters for GRUB 2. Typically, this specification selects a boot option from a GRUB 2
boot menu. For details, see “Specifying GRUB 2 parameters” on page 60.

7. Click OK to start the boot process.

Example for the zipl menu
This example illustrates how a zipl menu is displayed on the HMC or SE.

 zIPL interactive boot menu

 0. default (grub2)

 1. grub2
 2. skip-grub

 Note: VM users please use '#cp vi vmsg <number> <kernel-parameters>'

 Please choose (default will boot in 30 seconds): 1

Specify 0 or 1 to immediately start GRUB 2 and proceed with booting the target kernel. Specify 2 to start a
rescue kernel. If you do not select a menu item before the timeout expires, GRUB 2 is started.

Booting Linux 55

What to do next

Check the output on the preferred console (see “Console kernel parameter syntax” on page 33) to
monitor the boot progress.

Booting from SCSI
Use the SE or HMC to boot Linux in LPAR from a SCSI boot device.

Before you begin
You need a boot device that is prepared with GRUB 2.

Procedure

Perform these steps to boot from a SCSI boot device:
1. In the navigation pane of the HMC, expand Systems Management and Servers and select the

mainframe system that you want to work with. A table of LPARs is displayed on the Images tab in the
content area.

2. Select the LPAR where you want to boot Linux.
3. In the Tasks area, expand Recovery and click Load (see Figure 16 on page 56).

1) Select mainframe system

2) Select

LPAR 3) Click Load

Figure 16: Load task on the HMC
4. Select load type SCSI (see Figure 17 on page 57).

56 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

g2

Figure 17: Load panel with SCSI feature enabled - for booting from a SCSI device
5. Enter the device number of the FCP channel through which the SCSI device is accessed in the Load

address field.
6. Enter the WWPN of the SCSI device in the World wide port name field.
7. Enter the LUN of the SCSI device in the Logical unit number field.
8. Optional: In the Boot program selector field, enter 0, 1, or 2.

0 or 1
immediately starts GRUB 2 for booting the target SUSE Linux Enterprise Server 12 SP4 kernel.

2
boots a rescue kernel.

If you omit this specification, the target kernel is booted after a timeout period has expired.
9. In the Load parameter field specify g<grub_parameters> where <grub_parameters> are parameters

to be evaluated by GRUB 2.

Typically, this specification selects a boot option from a GRUB 2 boot menu. For details, see
“Specifying GRUB 2 parameters” on page 60.

10. Type kernel parameters in the Operating system specific load parameters field. These parameters
are concatenated to the end of the existing kernel parameters used by your boot configuration when
booting Linux.

Use ASCII characters only. If you enter characters other than ASCII characters, the boot process
ignores the data in the Operating system specific load parameters field.

Important: Do not specify parameters that prevent SUSE Linux Enterprise Server 12 SP4 from
booting. See “Avoid parameters that break GRUB 2” on page 19.

11. Accept the defaults for the remaining fields.
12. Click OK to start the boot process.

What to do next

Check the output on the preferred console (see “Console kernel parameter syntax” on page 33) to
monitor the boot progress.

Booting Linux 57

Loading Linux from removable media or from an FTP server
Instead of a boot loader, you can use SE functions to copy the Linux kernel image to your LPAR memory.
After the Linux kernel is loaded, Linux is started using restart PSW.

Before you begin
You need installation data that includes a special file with installation information (with extension "ins").
This file can be in different locations:

• On a disk that is inserted in the CD-ROM or DVD drive of the system where the HMC runs
• In the file system of an FTP server that you can access through FTP from your HMC system

The .ins file contains a mapping of the location of installation data on the disk or FTP server and the
memory locations where the data is to be copied.

For SUSE Linux Enterprise Server 12 SP4 this file is called suse.ins and located in the root directory of
the file system on the DVD 1.

Procedure

Perform these steps:
1. In the navigation pane of the HMC, expand Systems Management and Servers and select the

mainframe system you want to work with. A table of LPARs is displayed on the Images tab in the
content area.

2. Select the LPAR where you want to boot Linux.
3. In the Tasks area, expand Recovery and click Load from Removable Media or Server (see Figure 18

on page 58).

1) Select mainframe system

2) Select

LPAR
3) Click

Load from Removable Media or Server

Figure 18: Load from Removable Media or Server on the HMC
4. Specify the source of the code to be loaded.

58 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

• For loading from a CD-ROM drive:

a. Select Hardware Management Console CD-ROM/DVD (see Figure 19 on page 59).

Figure 19: Load from Removable Media or Server panel
b. Leave the File location field blank.

• For an initial installation from removable media at the HMC

a. Select Hardware Management Console CD / DVD and assign for operating system use (see
Figure 19 on page 59).

b. Enter the path for the directory where the "ins-file" is in the File location field. You can leave
this field blank if the "ins-file" is in the root directory of the file system on the removable media.

The installation CD or DVD must hold a distribution that supports an installation from the HMC.
• For loading from an FTP server

a. Select the FTP Source radio button.
b. Enter the IP address or host name of the FTP server with the installation code resides in the

Host computer entry field.
c. Enter your user ID for the FTP server in the User ID entry field.
d. Enter your password for the FTP server in the Password entry field.
e. If required by your FTP server, enter your account information in the Account entry field.
f. Enter the path for the directory where the suse.ins resides in the file location entry field. You

can leave this field blank if the file is in the FTP server's root directory.
5. Click Continue to display the Select Software to Install panel (Figure 20 on page 60).

Booting Linux 59

Load from Removable Media or Server - Select Software

to Install

Select the software to install.

Select Name Description

OK Cancel Help

SLES-12/DVD/suse.ins SUSE Linux Enterp

Figure 20: Select Software to Install panel
6. Select suse.ins.
7. Click OK to start loading Linux.

Results

The kernel has started and the SUSE Linux Enterprise Server 12 SP4 boot process continues.

Specifying GRUB 2 parameters
When you IPL from SCSI or DASD, you can use the loadparm parameter to, for example, select a boot
option from a GRUB 2 boot menu.

About this task
For DASD the syntax is <0|1|2>g<grub_parameters>, for SCSI it is g<grub_parameters>, where
<grub_parameters> specifies a boot configuration from a GRUB 2 boot menu.

Procedure

1. Optional: To select a GRUB 2 boot option, first use grub2-once --enum to list the GRUB 2 boot
entries, for example:

grub2-once --enum
0 SLES12
1>0 Advanced options for SLES12>SLES12, with Linux 3.12.49-3-default
1>1 Advanced options for SLES12>SLES12, with Linux 3.12.49-3-default (recovery mode)

2. To specify a GRUB 2 boot entry, replace the greater than (>) character with the full stop (.) character.
For example, specify loadparm g1.1 for the 1>1 boot entry.

Displaying current IPL parameters
To display the IPL parameters, use the lsreipl command with the -i option. Alternatively, a sysfs
interface is available.

For more information about the lsreipl command, see “lsreipl - List IPL and re-IPL settings” on page
562. In sysfs, information about IPL parameters is available in subdirectories of /sys/firmware/ipl.

/sys/firmware/ipl/ipl_type

The /sys/firmware/ipl/ipl_type attribute contains the device type from which the kernel was
booted. The following values are possible:
ccw

The IPL device is a CCW device, for example, a DASD or the z/VM reader.
fcp

The IPL device is an FCP device.

60 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

unknown
The IPL device is not known.

Depending on the IPL type, there might be more attributes in /sys/firmware/ipl/.

If the device is a CCW device, the additional attributes device and loadparm are present.

device
Contains the bus ID of the CCW device that is used for IPL, for example:

cat /sys/firmware/ipl/device
0.0.1234

loadparm
Contains up to 8 characters for the loadparm that is used for IPL, for example:

cat /sys/firmware/ipl/loadparm
0g2

parm

Contains additional kernel parameters that are specified with the PARM parameter when booting with
the z/VM CP IPL command. See also “Adding kernel parameters when booting Linux” on page 20.

If the device is FCP, a number of additional attributes are present (also see Chapter 10, “SCSI-over-Fibre
Channel device driver,” on page 131 for details):
device

Contains the bus ID of the FCP device that is used for IPL, for example:

cat /sys/firmware/ipl/device
0.0.50dc

wwpn
Contains the WWPN used for IPL, for example:

cat /sys/firmware/ipl/wwpn
0x5005076300c20b8e

lun
Contains the LUN used for IPL, for example:

cat /sys/firmware/ipl/lun
0x5010000000000000

br_lba
Contains the logical block address of the boot record on the boot device (usually 0).

bootprog
Contains the boot program number. For example:

cat /sys/firmware/ipl/bootprog
0

loadparm
Contains up to 8 characters as parameters for GRUB 2. Typically, this specification selects a boot
option from a GRUB 2 boot menu. For example:

cat /sys/firmware/ipl/loadparm
g2

Booting Linux 61

scp_data
Contains additional kernel parameters, if any, that are used when booting from a SCSI device. For
information about how SCPDATA can be set see the following sections:

• “Booting from a SCSI device” on page 51 for z/VM
• “Booting from SCSI” on page 56 for LPAR
• “chreipl - Modify the re-IPL configuration” on page 476

binary_parameter
Contains the information of the preceding attributes in binary format.

Rebooting from an alternative source
When you reboot Linux, the system conventionally boots from the last used location. However, you can
configure an alternative device to be used for re-IPL instead of the last used IPL device.

When the system is re-IPLed, the alternative device is used to boot the kernel.

To configure the re-IPL device, use the chreipl tool (see “chreipl - Modify the re-IPL configuration” on
page 476).

Alternatively, you can use the sysfs attributes in /sys/firmware/reipl. To configure, write strings into
the attributes. The following re-IPL types can be set with the /sys/firmware/reipl/reipl_type
attribute:

ccw
For ccw devices such as DASDs that are attached through ESCON or FICON®.

fcp
For FCP SCSI devices, including SCSI disks and CD or DVD drives (Hardware support is required.)

nss
For Named Saved Systems (z/VM only)

For each supported re-IPL type a sysfs directory is created under /sys/firmware/reipl that contains
the configuration attributes for the device. The directory name is the same as the name of the re-IPL type.

When Linux is booted, the re-IPL attributes are set by default to the values of the boot device, which can
be found under /sys/firmware/ipl.

Attributes for ccw
You can find the attributes for re-IPL type ccw in the /sys/firmware/reipl/ccw sysfs directory.

device
Device number of the re-IPL device. For example 0.0.7412 or 0.1.5119.

loadparm
Up to eight characters for the loadparm used to select the boot configuration in the zipl menu (if
available).

If the re-IPL target kernel is SUSE Linux Enterprise Server 12 or later, the specification must be of the
form <n>g<grub_parameters>, where
<n>

selects the kernel to be booted.

0 or 1
immediately starts GRUB 2 for booting the target kernel.

2
boots a rescue kernel.

If you omit this specification, GRUB 2 is started after a timeout period has expired.

62 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

<grub_parameters>
specifies parameters for GRUB 2. Typically, this specification selects a boot option from a GRUB 2
boot menu. For details, see “Specifying GRUB 2 parameters” on page 60.

parm
A 64-byte string of kernel parameters that is concatenated to the boot command line. The PARM
parameter can be set only for Linux on z/VM. See also “Adding kernel parameters when booting Linux”
on page 20.

A leading equal sign (=) means that the existing kernel parameter line in the boot configuration is
ignored and the boot process uses the kernel parameters in the scp_data attribute only.

Important:

• If the re-IPL kernel is SUSE Linux Enterprise Server 12 or later, be sure not to specify kernel
parameters that prevent the target kernel from booting.

• In particular, do not use a leading equal sign if the re-IPL kernel is SUSE Linux Enterprise Server or
later.

See “Avoid parameters that break GRUB 2” on page 19.

Attributes for fcp
You can find the attributes for re-IPL type fcp in the /sys/firmware/reipl/fcp sysfs directory.

device
Device number of the FCP device that is used for re-IPL. For example, 0.0.7412.

Note: IPL is possible only from subchannel set 0.

wwpn
World wide port number of the FCP re-IPL device.

lun
Logical unit number of the FCP re-IPL device.

loadparm

If the re-IPL target is a SUSE Linux Enterprise Server 12 SP4 kernel, up to eight characters to specify
parameters for GRUB 2. The specification must be of the form g<grub_parameters>. Typically,
<grub_parameters> is a specification that selects an entry in the GRUB 2 menu. For details, see
“Specifying GRUB 2 parameters” on page 60.

bootprog
Boot program selector to select the kernel to be booted.

0 or 1
immediately starts GRUB 2 for booting the target kernel.

2
boots a rescue kernel.

If you omit this specification, GRUB 2 is started after a timeout period has expired.

br_lba
Boot record logical block address. Master boot record. Is always 0 for Linux.

scp_data
Kernel parameters to be used for the next FCP re-IPL.

A leading equal sign (=) means that the existing kernel parameter line in the boot configuration is
ignored and the boot process uses the kernel parameters in the scp_data attribute only.

Important:

• If the re-IPL kernel is SUSE Linux Enterprise Server 12 or later, be sure not to specify kernel
parameters that prevent the target kernel from booting.

Booting Linux 63

• In particular, do not use a leading equal sign if the re-IPL kernel is SUSE Linux Enterprise Server or
later.

See “Avoid parameters that break GRUB 2” on page 19.

Attributes for nss
You can find the attributes for re-IPL type nss in the /sys/firmware/reipl/nss sysfs directory.

name
Name of the NSS. The NSS name can be 1-8 characters long and must consist of alphabetic or
numeric characters. The following examples are all valid NSS names: 73248734, NSSCSITE, or
NSS1234.

parm
A 56-byte string of parameters for the operating system in the NSS.

You cannot load SUSE Linux Enterprise Server 12 or later from an NSS. If the NSS contains a Linux
distribution that supports NSS, the value could be a string of kernel parameters.

Kernel panic settings
Set the attribute /sys/firmware/shutdown_actions/on_panic to reipl to make the system re-IPL
with the current re-IPL settings if a kernel panic occurs.

See also the description of the dumpconf tool in Using the Dump Tools on SUSE Linux Enterprise Server 12
SP1, SC34-2746 on the IBM Knowledge Center website at
www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.trouble.doc/serviceandsupport.html

Examples for configuring re-IPL
Typical examples include configuring re-IPL from an FCP device and specifying parameters for re-IPL.

• To configure an FCP re-IPL device 0.0.5711 with a LUN 0x1711000000000000 and a WWPN
0x5005076303004715 with an additional kernel parameter noresume:

echo 0.0.5711 > /sys/firmware/reipl/fcp/device
echo 0x5005076303004715 > /sys/firmware/reipl/fcp/wwpn
echo 0x1711000000000000 > /sys/firmware/reipl/fcp/lun
echo 0 > /sys/firmware/reipl/fcp/bootprog
echo 0 > /sys/firmware/reipl/fcp/br_lba
echo fcp > /sys/firmware/reipl/reipl_type

• To set up re-IPL from a CMS NSS:

1. Set the reipl_type to nss:

echo nss > /sys/firmware/reipl/reipl_type

2. Set up the attributes in the nss directory:

echo CMSNSS > /sys/firmware/reipl/reipl_type/nss/name
echo "AUTOCR" > /sys/firmware/reipl/reipl_type/nss/parm

64 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

http://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.trouble.doc/serviceandsupport.html

Chapter 6. Suspending and resuming Linux
With suspend and resume support, you can stop a running Linux on Z instance and later continue
operations.

When Linux is suspended, data is written to a swap partition. The resume process uses this data to make
Linux continue from where it left off when it was suspended. A suspended Linux instance does not require
memory or processor cycles.

Linux on Z suspend and resume support applies to both Linux on z/VM and Linux instances that run
directly in an LPAR.

While a Linux instance is suspended, you can run another Linux instance in the z/VM guest virtual machine
or in the LPAR where the suspended Linux instance was running.

What you should know about suspend and resume
Before suspending a Linux instance, you must be aware of the prerequisites and of activities that can
cause resume to fail.

Prerequisites for suspending a Linux instance
Suspend and resume support checks for conditions that might prevent resuming a suspended Linux
instance. You cannot suspend a Linux instance unless all prerequisites are fulfilled.

The following prerequisites must be fulfilled regardless of whether a Linux instance runs directly in an
LPAR or as a z/VM guest:

• All tape device nodes must be closed and online tape drives must be unloaded.
• The Linux instance must not have used any hotplug memory since it was last booted.
• No program must be in a prolonged uninterruptible sleep state.

Programs can assume this state while they are waiting for an outstanding I/O request to complete. Most
I/O requests complete in a very short time and do not compromise suspend processing. An example of
an I/O request that can take too long to complete is rewinding a tape.

For Linux on z/VM, the following additional prerequisites must be fulfilled:

• No discontiguous saved segment (DCSS) device must be accessed in exclusive-writable mode.

You must remove all DCSSs of segment types EW, SW, and EN by writing the DCSS name to the sysfs
remove attribute.

You must remove all DCSSs of segment types SR and ER that are accessed in exclusive-writable mode
or change their access mode to shared.

For more information, see “Removing a DCSS device” on page 396 and “Setting the access mode” on
page 394.

• All device nodes of the z/VM recording device driver must be closed.
• All device nodes of the z/VM unit record device driver must be closed.
• No watchdog timer must run and the watchdog device node must be closed.

Precautions while a Linux instance is suspended
There are conditions outside the control of the suspended Linux instance that can cause resume to fail.

• The CPU configuration must remain unchanged between suspend and resume.
• The data that is written to the swap partition when the Linux instance is suspended must not be

compromised.

© Copyright IBM Corp. 2000, 2019 65

In particular, be sure that the swap partition is not used if another operating system instance runs in the
LPAR or z/VM guest virtual machine while the initial Linux instance is suspended.

• If the Linux instance uses expanded storage (XPRAM), this expanded storage must remain unchanged
until the Linux instance is resumed.

If the size or content of the expanded memory is changed before the Linux instance is resumed or if the
expanded memory is unavailable when the Linux instance is resumed, resuming fails with a kernel
panic.

• If an instance of Linux on z/VM uses one or more DCSSs these DCSSs must remain unchanged until the
Linux instance is resumed.

If the size, location, or content of a DCSS is changed before the Linux instance is resumed, resuming
fails with a kernel panic.

• Take special care when replacing a DASD and, thus, making a different device available at a particular
device bus-ID.

You might intentionally replace a device with a backup device. Changing the device also changes its
UID-based device nodes. Expect problems if you run an application that depends on UID-based device
nodes and you exchange one of the DASD the application uses. In particular, you cannot use multipath
tools when the UID changes.

• Generally, avoid changes to the real or virtual hardware configuration between suspending and
resuming a Linux instance.

• Disks that hold swap partitions or the root file system must be present when resuming the Linux
instance.

Handling of devices that are unavailable when resuming
Devices that were available when the Linux instance was suspended might be unavailable when
resuming.

If such unavailable devices were offline when the Linux instance was suspended, they are de-registered
and the device name can be assigned to other devices.

If unavailable devices where online when the Linux instance was suspended, handling depends on the
respective device driver. DASD and FCP devices remain registered as disconnected devices. The device
name and the device configuration are preserved. Devices that are controlled by other device drivers are
de-registered.

Handling of devices that become available at a different subchannel
The mapping between subchannels and device bus-IDs can change if the real or virtual hardware is
restarted between suspending and resuming Linux.

If the subchannel changes for a DASD or FCP device, the device configuration is changed to reflect the
new subchannel. This change is accomplished without de-registration. Thus, device name and device
configuration are preserved.

If the subchannel changes for any other device, the device is de-registered and registered again as a new
device.

66 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Setting up Linux for suspend and resume
Configure suspend and resume support through kernel parameters, set up a suitable swap partition for
suspending and resuming a Linux instance, and update your boot configuration.

Kernel parameters
You configure the suspend and resume support by adding parameters to the kernel parameter line.

suspend and resume kernel parameter syntax
resume=<device_node>

no_console_suspend noresume

where:
resume=<device_node>

specifies the standard device node of the swap partition with the data that is required for resuming
the Linux instance.

This swap partition must be available during the boot process (see “Updating the boot configuration”
on page 68).

no_console_suspend
prevents Linux consoles from being suspended early in the suspend process. Without this parameter,
you cannot see the kernel messages that are issued by the suspend process.

noresume
boots the kernel without resuming a previously suspended Linux instance. Add this parameter to
circumvent the resume process, for example, if the data written by the previous suspend process is
damaged.

Example

To use a partition /dev/disk/by-path/ccw-0.0.b100-part2 as the swap partition and prevent Linux
consoles from being suspended early in the suspend process specify:

resume=/dev/disk/by-path/ccw-0.0.b100-part2 no_console_suspend

Setting up a swap partition
During the suspend process, Linux writes data to a swap partition. This data is required later to resume
Linux.

Set up a swap partition that is at least the size of the available LPAR memory or the memory of the z/VM
guest virtual machine.

Do not use this swap partition for any other operating system that might run in the LPAR or z/VM guest
virtual machine while the Linux instance is suspended.

You cannot suspend a Linux instance while most of the memory and most of the swap space are in use. If
there is not sufficient remaining swap space to hold the data for resuming the Linux instance, suspending
the Linux instance fails.

To assure sufficient swap space you might have to configure two swap partitions, one partition for regular
swapping and another for suspending the Linux instance. Configure the swap partition for suspending the
Linux instance with a lower priority than the regular swap partition.

Use the pri= parameter to specify the swap partitions in /etc/fstab with different priorities. See the
swapon man page for details.

The following example shows two swap partitions with different priorities:

Suspending and resuming Linux 67

cat /etc/fstab
...
/dev/disk/by-path/ccw-0.0.b101-part1 swap swap pri=-1 0 0
/dev/disk/by-path/ccw-0.0.b100-part2 swap swap pri=-2 0 0

In the example, the partition to be used for the resume data is /dev/disk/by-path/ccw-0.0.b100-
part2.

You can check your current swap configuration by reading /proc/swaps.

cat /proc/swaps
Filename Type Size Used Priority
/dev/disk/by-path/ccw-0.0.b101-part1 partition 7212136 71056 -1
/dev/disk/by-path/ccw-0.0.b100-part2 partition 7212136 0 -2

Updating the boot configuration
You have to update your boot configuration to include the kernel parameters that are required for
resuming Linux.

Procedure

Perform these steps to create a boot configuration that supports resuming your Linux instance:
1. Run dracut -f to create an initial RAM disk with the module parameter that identifies your device

with the swap partition and with the device driver required for this device.
2. Reboot your Linux instance.

Configuring for fast resume
The more devices are available to a Linux instance, the longer it takes to resume a suspended instance.

With a thousand or more available devices, the resume process can take longer than an IPL. If the
duration of the resume process is critical for a Linux instance with many devices, include unused devices
in the exclusion list (see “cio_ignore - List devices to be ignored” on page 644 and “cio_ignore - Manage
the I/O exclusion list” on page 490).

Suspending a Linux instance
Suspend a Linux instance by writing to the /sys/power/state sysfs attribute.

Before you begin

Attention: Only suspend a Linux instance for which you have specified the resume= kernel
parameter. Without this parameter, you cannot resume the suspended Linux instance.

Procedure

Enter the following command to suspend a Linux instance:

echo disk > /sys/power/state

Results

On the Linux console you might see progress indications until the console itself is suspended. Most of
these messages require log level 7 or higher to be printed. See “Using the magic sysrequest feature” on
page 41 about setting the log level. You cannot see such progress messages if you suspend the Linux
instance from an ssh session.

68 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Resuming a suspended Linux instance
Boot Linux to resume a suspended Linux instance.

About this task

Use the same kernel, initial RAM disk, and kernel parameters that you used to first boot the suspended
Linux instance.

You must reestablish any terminal session for HVC terminal devices and for terminals that are provided by
the iucvtty program. You also must reestablish all ssh sessions that have timed out while the Linux
instance was suspended.

If resuming the Linux instance fails, boot Linux again with the noresume kernel parameter. The boot
process then ignores the data that was written to the swap partition and starts Linux without resuming the
suspended instance.

Suspending and resuming Linux 69

70 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Chapter 7. Shutdown actions
Several triggers can cause Linux to shut down. For each shutdown trigger, you can configure a specific
shutdown action to be taken as a response.

Table 12: Shutdown triggers and default action overview

Trigger Command or condition
Default shutdown
action

halt Linux chshut command stop

poff Linux poweroff or chshut command stop

reboot Linux reboot or chshut command reipl

restart • PSW restart on the HMC for Linux in LPAR mode
• z/VM CP system restart command for Linux on z/VM

stop

panic Linux dumpconf command stop

The available shutdown actions are summarized in Table 13 on page 71.

Table 13: Shutdown actions

Action Explanation See also

stop For panic or restart, enters a disabled wait
state. For all other shutdown triggers, stops all
CPUs.

n/a

ipl Performs an IPL according to the specifications
in /sys/firmware/ipl.

“Displaying current IPL parameters”
on page 60

reipl Performs an IPL according to the specifications
in /sys/firmware/reipl.

“Rebooting from an alternative
source” on page 62

dump Creates a dump according to the specifications
in /sys/firmware/dump.

Using the Dump Tools on SUSE Linux
Enterprise Server 12 SP1,
SC34-2746

dump_reipl Performs the dump action followed by the reipl
action.

Using the Dump Tools on SUSE Linux
Enterprise Server 12 SP1,
SC34-2746

vmcmd For Linux on z/VM, issues one or more z/VM CP
commands according to the specifications
in /sys/firmware/vmcmd.

“Configuring z/VM CP commands as
a shutdown action” on page 73

Use lsshut to find out which shutdown action is configured for each shutdown trigger, see “lsshut - List
the current system shutdown actions” on page 565.

Use the applicable command for setting the actions to be taken on shutdown:

• For halt, power off, and reboot use chshut, see “chshut - Control the system shutdown actions”
on page 480.

• For panic use dumpconf, see Using the Dump Tools on SUSE Linux Enterprise Server 12 SP1,
SC34-2746

© Copyright IBM Corp. 2000, 2019 71

kdump for restart and panic
If kdump is set up for a Linux instance, kdump is started to create a dump, regardless of the shutdown
actions that are specified for restart and panic. With kdump, these settings act as a backup that is
used only if kdump fails.

Note: kdump is not a shutdown action that you can set as a sysfs attribute value for a shutdown trigger.
See Using the Dump Tools on SUSE Linux Enterprise Server 12 SP1, SC34-2746 about how to set up
kdump.

The shutdown configuration in sysfs
The configured shutdown action for each shutdown trigger is stored in a sysfs attribute /sys/firmware/
shutdown_actions/on_<trigger>.

/sys/firmware shutdown_actions

on_poff

on_halt

on_restart

on_reboot

on_panic

Figure 21: sysfs branch with shutdown action settings

The preferred way to read or change these settings is using the lsshut, chshut, and dumpconf
commands. Alternatively, you can read and write to the /sys/firmware/shutdown_actions/
on_<trigger> attributes.

Examples

• This command reads the shutdown setting for the poff shutdown trigger.

cat /sys/firmware/shutdown_actions/on_poff
stop

• This command changes the setting for the restart shutdown trigger to ipl:

echo ipl > /sys/firmware/shutdown_actions/on_restart

Details for the ipl, reipl, dump, and vmcmd shutdown actions are contained in the corresponding
subdirectories in /sys/firmware. For example, /sys/firmware/ipl contains specifications for an IPL
device and other IPL parameters.

72 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Configuring z/VM CP commands as a shutdown action
Use chshut and dumpconf to configure a CP command as a shutdown action, or directly write to the
relevant sysfs attributes.

Before you start: This information applies to Linux on z/VM only.

In sysfs, two attributes are required to set a z/VM CP command as a shutdown action for a trigger
<trigger>:

• /sys/firmware/shutdown_actions/on_<trigger> must be set to vmcmd.
• /sys/firmware/vmcmd/on_<trigger> specifies the z/VM CP command.

The values of the attributes in the /sys/firmware/vmcmd directory must conform to these rules:

• The value must be a valid z/VM CP command.
• The commands, including any z/VM user IDs or device numbers, must be specified with uppercase

characters.
• Commands that include blanks must be delimited by double quotation marks (").
• The value must not exceed 127 characters.

You can specify multiple z/VM CP commands that are separated by the newline character "\n". Each
newline is counted as one character. When writing values with multiple commands, use this syntax to
ensure that the newline character is processed correctly:

echo -e <cmd1>\n<cmd2>... | cat > /sys/firmware/vmcmd/on_<trigger>

where <cmd1>\n<cmd2>... are two or more z/VM CP commands and on_<trigger> is one of the
attributes in the vmcmd directory.

The -e echo option and redirect through cat are required because of the newline character.

Example for a single z/VM CP command

Issue the following command to configure the z/VM CP LOGOFF command as the shutdown action for the
poff shutdown trigger.

chshut poff vmcmd "LOGOFF"

Alternatively, you can issue the following commands to directly write the shutdown configuration to sysfs:

echo vmcmd > /sys/firmware/shutdown_actions/on_poff
echo LOGOFF > /sys/firmware/vmcmd/on_poff

Figure 22 on page 74 illustrates the relationship of the sysfs attributes for this example.

Shutdown actions 73

/sys/firmware

vmcmd

LOGOFF

devicesvmcmd

shutdown_actions

on_poff

on_halt

on_restart

on_reboot

on_panic

on_poff

on_halt

on_restart

on_reboot

on_panic

Figure 22: sysfs branch with shutdown action settings

Example for multiple z/VM CP commands

Issue the following command to configure two z/VM CP commands as the shutdown action for the poff
shutdown trigger. First a message is sent to user OPERATOR, and then the LOGOFF command is issued.

chshut poff vmcmd "MSG OPERATOR Going down" vmcmd "LOGOFF"

Alternatively, you can issue the following commands to directly write the shutdown configuration to sysfs:

echo vmcmd > /sys/firmware/shutdown_actions/on_poff
echo -e "MSG OPERATOR Going down\nLOGOFF" | cat > /sys/firmware/vmcmd/on_poff

74 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Chapter 8. Remotely controlling virtual hardware -
snipl

snipl is a command line tool for remotely controlling virtual mainframe hardware.

This information applies to simple network IPL (snipl) version 2.3.0. A snipl package is provided with
SUSE Linux Enterprise Server 12 SP4.

You can use snipl to activate and deactivate virtual mainframe hardware with Linux instances. You can
set up a Linux instance on a mainframe system or on a different hardware platform for running snipl.

snipl helps you to automate tasks that are typically performed by human operators, for example,
through the graphical interfaces of the HMC or SE. Automation is required, for example, for failover setups
within Linux clusters.

snipl can run in one of two modes, LPAR mode or z/VM mode.

Attention: snipl is intended for use by experienced system programmers and administrators.
Incautious use of snipl can result in unplanned downtime and loss of data.

LPAR mode
In LPAR mode, snipl provides basic Z support element (SE) functions.

With snipl in LPAR mode, you can perform the following tasks:

• Activate, reset, or deactivate an LPAR.
• Load (IPL) an LPAR from a disk device, for example, a DASD device or a SCSI device.
• Create a dump on a DASD or SCSI dump device.
• Send commands to the operating system and retrieve operating system messages.

Setting up snipl for LPAR mode
The Linux instance where snipl runs requires access to all SEs that control LPARs you want to work with.

snipl uses the "hwmcaapi" network management application programming interfaces (API) provided by
the SE. The API establishes an SNMP network connection and uses the SNMP protocol to send and
retrieve data. The libraries that implement the API are available from IBM Resource Link® at
www.ibm.com/servers/resourcelink.

Customize the API settings on the HMC or SE you want to connect to:

• Configure SNMP support.
• Add the IP address of the Linux instance where snipl runs and set the SNMP community.

If the communication is through IPv6, an IPv6 community string must be set.
• In the firewall settings, ensure that UDP port 161 and TCP port 3161 are enabled.

If snipl in LPAR mode repeatedly reports a timeout, the specified SE is most likely inaccessible or not
configured properly. For details about configuring the HMC or SE, see the following publications:

• The Support Element Operations Guide for your mainframe system.
• The applicable Hardware Management Console Operations Guide.
• System z Application Programming Interfaces, SB10-7030
• S/390 Application Programming Interfaces, SC28-8141

You can obtain these publications from IBM Resource Link at www.ibm.com/servers/resourcelink.

© Copyright IBM Corp. 2000, 2019 75

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Command line syntax (LPAR mode)
There is a generic syntax with main options. Each main option has a specific set of parameters.

“Overview for LPAR mode” on page 76 summarizes snipl command in LPAR mode. Details for each
option are provided in context in the sections that follow.

Overview for LPAR mode
On the command line, a snipl command in LPAR mode always requires a main option, access data, and ,
with one exception, specifications for one or more LPARs.

For command return codes, see the snipl man page.

LPAR mode: overview
snipl

 <image_name> lpar-access-data -a activate parameters

 -d

 -F

 -r

 -F

 -o

 -g

 -l load parameters

 -s

 -D

SCSI parameters

 <image_name>

lpar-access-data -x list parameters

 <image_name> lpar-access-data -i dialog parameters

Where:
<image_name>

specifies an LPAR. If snipl directly accesses the SE, this is the LPAR name as defined in the hardware
setup.

If snipl accesses the SE through an HMC, the specification has the format <mainframe_system>-
<lpar_name> where <mainframe_system> is the name that identifies the mainframe on the HMC. If
you are using a snipl configuration file that defines an alias for an LPAR, you can specify the alias.

SE Example: lpar204

HMC Example: z02-lpar204

A snipl command applies to one or more LPARs that are controlled by the same HMC or SE. If
multiple LPARs are specified, it is assumed that all LPARs are controlled by the same HMC or SE as the
first LPAR. Other LPARs are ignored.

|lpar-access-data|
is described in “Specifying access data for LPAR mode” on page 77.

-a, -d, -r, -o, -g
are described in “Activate, deactivate, reset, stop, or get status information” on page 78.

-l
is described in “Perform an IPL operation from a CCW device” on page 79.

76 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

-s, -D
are described in “Perform an IPL or dump operation from a SCSI device” on page 80.

-x
is described in “List LPARs” on page 82.

-i
is described in “Emulate the Operating Systems Messages applet” on page 82.

-F or --force
unconditionally forces the operation.

-v or --version
displays the version of snipl and exits.

-h or --help
displays a short usage description and exits. To view the man page enter man snipl.

Specifying access data for LPAR mode
The snipl command requires access data for the HMC or SE that controls a particular LPAR.

lpar-access-data

 -L <ip_address>
1

 -p public

 -p <community>

 -P

 -u <user>

 -e

 -f <defaultfile>

 -f <filename>

 --timeout 60000

 --timeout <timeout>

Notes:
1 -L can be omitted if the required information is specified through a configuration file.

-L <ip_address> or --lparserver <ip_address>
specifies the IP address or host name of the HMC or SE that controls the LPAR or LPARs you want to
work with. You can use IPv6 or IPv4 connections.

You can omit this parameter if the IP address or host name is specified through a configuration file.

-p <community> or --password <community>
specifies the password in the SNMP configuration settings on the SE that controls the LPAR or LPARs
you want to work with. This parameter can also be specified through a configuration file. The default
password is public.

Note: The default password feature is deprecated and will be removed in a subsequent release.

-P or --promptpassword
prompts for a password in protected entry mode.

-e or --noencryption
specifies that no encryption is used when connecting to the server. A user name is not allowed if
encryption is disabled. This parameter can also be specified through a configuration file.

-u <user> or --userid <user>
specifies an SNMPv3 user identifier that is authorized to access an HMC or SE. This parameter can be
omitted if it is specified in the configuration file.

-f <filename> or --configfilename <filename>
specifies the name of a configuration file that maps LPARs to the corresponding specifications for the
HMC or SE address and password (community).

Remotely controlling virtual hardware - snipl 77

If no configuration file is specified, the user-specific default file ~/.snipl.conf is used. If this file
does not exist, the system default file /etc/snipl.conf is used.

Be sure that the command-line parameters you provide uniquely identify the configuration-file section
you want to work with. If you specify multiple LPARs on the command line, only the first specification
is used to identify the section. If your specifications map to multiple sections, the first match is
processed.

If conflicting specifications are provided through the command line and the configuration file, the
command-line specification is used.

If a configuration file is neither specified nor available at the default locations, all required parameters
must be specified on the command line.

For more information about the configuration file, see “The snipl configuration file” on page 86.

--timeout <timeout>
specifies the timeout in milliseconds for general management API calls. The default is 60000 ms.

Activate, deactivate, reset, stop, or get status information
Several main options follow a simple command syntax that requires specifications for one or more LPARs
and the corresponding access data.

snipl <image_name> lpar-access-data

 -a

 -F

 --profilename <defaultprofile>
1

 --profilename <filename>

 -d

 -F

 -r

 -F

 -o

 -g

LPAR mode: -a, -d, -r, -o, -g options
Notes:

1 If not specified, the HMC or SE default profile for the specified LPAR is used.

Where:
<image_name>

see “Overview for LPAR mode” on page 76.
|lpar-access-data|

see “Specifying access data for LPAR mode” on page 77.
-a or --activate

activates the specified LPARs.
--profilename <filename>

specifies an activation profile. If omitted, the SE or an HMC default profile for the specified LPAR is
used.

-d or --deactivate
deactivates the specified LPARs.

78 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

-r or --reset
resets the specified LPARs.

-o or --stop
stops all CPUs for the specified LPARs.

-g or --getstatus
returns the status for the specified LPARs.

-F or --force
unconditionally forces the operation.

Examples

• The following command deactivates an LPAR SZ01LP02 with the force option:

snipl SZ01LP02 -L 192.0.2.4 -e -P -d -F
Enter password:
Warning : No default configuration file could be found/opened.
processing......
SZ01LP02: acknowledged.

• The following command retrieves the status for an LPAR SZ01LP03:

snipl SZ01LP03 -L 192.0.2.4 -e -P -g
Enter password:
Warning : No default configuration file could be found/opened.
status of sz01lp03: operating

• The following command retrieves the status for an LPAR SZ02LP03 on a mainframe system that is
identified as SZ02 on an HMC with an IP address 2001:0db8::11a0:

snipl SZ02-SZ02LP03 -L 2001:0db8::11a0 -e -P -g
Enter password:
Warning : No default configuration file could be found/opened.
status of SZ02-SZ02LP03: operating

Perform an IPL operation from a CCW device
To IPL an LPAR from a CCW device, snipl requires specifications for the LPAR, the corresponding access
data, and the IPL device. There are also several optional parameters.

For IPL from a SCSI device, see “Perform an IPL or dump operation from a SCSI device” on page 80.

LPAR mode: IPL from CCW

snipl <image_name> lpar-access-data -l

 -F

 -A <load_address> --parameters_load <string>

 --load_timeout 60

 --load_timeout <timeout> --noclear --storestatus

Where:
<image_name>

specifies the LPARs for which to perform the IPL. If multiple LPARs are specified, the same IPL device
and IPL parameters are used for all of them. See also “Overview for LPAR mode” on page 76.

Remotely controlling virtual hardware - snipl 79

|lpar-access-data|
see “Specifying access data for LPAR mode” on page 77.

-l or --load
performs an IPL for the specified LPARs.

-F or --force
unconditionally forces the IPL operation.

-A <loadaddress> or --address_load <loadaddress>
specifies the hexadecimal four-digit device number of the IPL device. To use a device from a
subchannel set other than 0, specify five digits: The subchannel set ID followed by the device number,
for example 15199. The default is subchannel set 0. If the - A parameter is omitted, the IPL device of
the most recent IPL of the LPAR is used.

--parameters_load <string>
specifies a parameter string for IPL. If this parameter is omitted, the string of the most recent IPL of
the LPAR is used.

--load_timeout <timeout>
specifies the maximum time for load completion in seconds. The timeout must be in the range of 60 -
600 seconds. The default timeout is 60 seconds.

If the timeout expires, control is returned without an indication about the success of the IPL
operation.

--noclear
prevents the memory from being cleared before loading.

--storestatus
stores status before performing the IPL. This option implies --noclear and also prevents the main
memory from being cleared before loading.

Examples:

• The following command performs an IPL from a CCW device with bus ID 0.0.5119 for an LPAR
SZ02LP03 on a mainframe system that is identified as SZ02 on an HMC with an IP address
2001:0db8::11a0:

snipl SZ02-SZ02LP03 -L 2001:0db8::11a0 -e -P -l -A 5119
Enter password:
Warning : No default configuration file could be found/opened.
processing......
SZ02-SZ02LP03: acknowledged.

• To perform an IPL from a CCW device in subchannel set 1 with the bus ID 0.1.5119 for an LPAR
SZ03LP00:

% snipl SZ03LP00 -L 192.0.2.4 -e -P -l -A 15119

Perform an IPL or dump operation from a SCSI device
To IPL an LPAR from a SCSI device, snipl requires specifications for the LPAR, the corresponding access
data, the IPL device, target WWPN, and LUN. There are also several optional parameters.

For IPL from a CCW device, see “Perform an IPL operation from a CCW device” on page 79.

80 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

LPAR mode: SCSI IPL or dump

snipl <image_name> lpar-access-data -s

 -D -F

 -A <load_address> --parameters_load <string>

 --wwpn_scsiload <portname> --lun_scsiload <unitnumber>

 --bps_scsiload <selector> --ossparms_scsiload <string>

 --bootrecord_scsiload <hexaddress>

Where:
<image_name>

specifies the LPARs for which to perform the IPL or dump operation. If multiple LPARs are specified,
the same command parameters apply to all of them. See also “Overview for LPAR mode” on page 76.

|lpar-access-data|
see “Specifying access data for LPAR mode” on page 77.

-s or --scsiload
performs an IPL from a SCSI device for the specified LPARs.

-D or --scsidump
creates a dump for the specified LPAR to a SCSI device.

-F or --force
unconditionally forces the operation.

-A <loadaddress> or --address_load <loadaddress>
specifies the hexadecimal four-digit device number of the IPL device. If this parameter is omitted, the
IPL device of the most recent SCSI IPL of the LPAR is used.

Note: The IPL device must be on subchannel set 0.

--parameters_load <string>
specifies a parameter string for IPL. If this parameter is omitted, the string of the most recent SCSI
IPL of the LPAR is used.

--wwpn_scsiload <portname>
specifies the worldwide port name (WWPN) for the SCSI IPL device. If fewer than 16 characters are
specified, the WWPN is padded with zeroes at the end. If this parameter is omitted, the WWPN of the
most recent SCSI IPL of the LPAR is used.

--lun_scsiload <unitnumber>
specifies the logical unit number (LUN) for the SCSI IPL device. If fewer than 16 characters are
specified, the LUN is padded with zeroes at the end. If this parameter is omitted, the LUN of the most
recent SCSI IPL of the LPAR is used.

--bps_scsiload <selector>
specifies the boot program that is required for the SCSI IPL device. Selector values are in the range 0 -
30. If this parameter is omitted, the boot program of the most recent SCSI IPL of the LPAR is used.

Remotely controlling virtual hardware - snipl 81

--ossparms_scsiload <string>
specifies an operating system-specific parameter string for IPL from a SCSI device. If this parameter
is omitted, the string of the most recent SCSI IPL of the LPAR is used. This parameter string is ignored
by the boot program and passed to the operating system or dump program to be loaded. For example,
you can specify additional kernel parameters for Linux (see “Adding kernel parameters when booting
Linux” on page 20).

--bootrecord_scsiload <hexaddress>
specifies the boot record logical block address for the SCSI IPL device. If fewer than 16 characters are
specified, the address is padded with zeroes at the end. If this parameter is omitted, the address of
the most recent SCSI IPL of the LPAR is used.

Example: The following command performs a SCSI IPL for an LPAR SZ01LP00:

snipl SZ01LP00 -L 192.0.2.4 -e -P -s -A 3d0f --wwpn_scsiload 500507630303c562 \
--lun_scsiload 4010404900000000
Enter password:
Warning : No default configuration file could be found/opened.
processing...
SZ01LP00: acknowledged.

Note: Instead of using the continuation sign (\) at the end of the first line, you can specify the complete
command on a single line.

List LPARs
To list all LPARs that are controlled by an HMC or SE, snipl requires specifications for the HMC or SE and
the corresponding access data.

Use the -x option to list all LPARs of a mainframe.

LPAR mode: list
snipl

 <image_name>

lpar-access-data -x

Where:
<image_name>

specifies an LPAR to identify a section in the snipl configuration file. Omit this parameter if an HMC
or SE is specified with the -L option (see “Overview for LPAR mode” on page 76).

|lpar-access-data|
see “Specifying access data for LPAR mode” on page 77.

-x or --listimages
retrieves a list of all LPARs from the specified HMC or SE. If an HMC is specified, all LPARs for all
managed mainframe systems are listed.

Example: The following command lists the LPARs for an SE with IP address 192.0.2.4:

snipl -L 192.0.2.4 -e -P -x
Enter password:
Warning : No default configuration file could be found/opened.

available images for server 192.0.2.4 :

 SZ01LP00 SZ01LP01 SZ01LP02 SZ01LP03

Emulate the Operating Systems Messages applet
To emulate the HMC or SE Operating Systems Messages applet, snipl requires specifications for the
LPAR and the corresponding access data. There are also optional parameters.

Use the -i option to start an emulation of the HMC or SE Operating Systems Messages applet for a
specified LPAR. End the emulation with CTRL+D.

82 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

LPAR mode: dialog

snipl <image_name> lpar-access-data -i

 --msgtimeout 5000

 --msgtimeout <interval>

 --msgfilename <name>

Where:
<image_name>

specifies the LPAR for which you want to emulate the HMC or SE Operating Systems Messages applet
(see also “Overview for LPAR mode” on page 76).

|lpar-access-data|
see “Specifying access data for LPAR mode” on page 77.

-i or --dialog
starts an emulation of the HMC or SE Operating System Message applet for the specified LPAR.

--msgtimeout <interval>
specifies the timeout for retrieving operating system messages in milliseconds. The default value is
5000 ms.

-M <name> or --msgfilename <name>
specifies a file to which the operating system messages are written in addition to stdout. If no file is
specified, the operating system messages are written to stdout only.

Example: The following command opens an emulation of the SE Operating Systems Messages applet with
the operating system instance that runs on LPAR SZ01LP02. During the emulation session, the operating
system messages are written to a file, SZ01LP02.transcript.

snipl SZ01LP02 -L 192.0.2.4 -e -P -i -M SZ01LP02.transcript
Enter password:
Warning : No default configuration file could be found/opened.
processing......
...

z/VM mode
With snipl in z/VM mode, you can log on, reset, or log off a z/VM guest virtual machine.

Setting up snipl for z/VM mode
The Linux instance where snipl runs requires access to the systems management API of all z/VM
systems that host z/VM guest virtual machines you want to work with.

snipl in z/VM mode uses the systems management application programming interfaces (APIs) of z/VM.
How snipl communicates with the API on the z/VM system depends on your z/VM system version and on
your system setup.

If snipl in z/VM mode repeatedly reports "RPC: Port mapper failure - RPC timed out", it is most likely
that the z/VM system is inaccessible, or not set up correctly. Although only one of the communication
methods uses RPC, this method is the fallback method that is tried if the other method fails.

Using a SMAPI request server

snipl can access the systems management API through a SMAPI request server. The following
configuration is required for the z/VM systems you want to work with:

• An AF_INET based SMAPI request server must be configured.

Remotely controlling virtual hardware - snipl 83

• A port on which the request server listens must be set up.
• A z/VM user ID to be specified with the snipl command must be set up. This user ID must be

authorized for the request server.

For more information, see z/VM: Systems Management Application Programming, SC24-6327.

Using a VSMSERVE service machine

snipl can access the systems management API through a VSMSERVE service machine on your z/VM
system. The following configuration is required for the z/VM systems you want to work with:

• The VSMSERVE service machine must be configured and authorized for the directory manager.
• The vsmapi service must be registered.
• A z/VM user ID to be specified with the snipl command must be set up. This user ID must be

authorized for VSMSERVE.

For more information, see z/VM Systems Management Application Programming, SC24-6122-02 or earlier.

Command line syntax (z/VM mode)
In z/VM mode, the snipl command requires specification for a guest virtual machine, credentials, and
other access data for the systems management API. There are also several optional parameters.

For command return codes, see the man page.

snipl <guest_id> zvm-access-data -a

 -d

 -X 300

 -X <maxperiod>

 -F

 -r

 -g

 -x

zvm-access-data
 -V <ip_address>

 -z <portnumber>
1

 -u <user_id>
 -e

 -p <password>

 -P

 -f <defaultfile>
2

 -f <filename>

 --timeout 60000

 --timeout <timeout>

snipl command syntax (z/VM mode)
Notes:

1 Required for connections through a SMAPI request server, unless the port is specified through a
configuration file.
2 -V, -u, and -p can be omitted if the required data is specified through a configuration file.

Where:

84 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

<guest_id>
specifies the z/VM guest virtual machine you want to work with. Specify multiple z/VM user IDs to
perform the same action for multiple z/VM guest virtual machines.

If you are using a snipl configuration file that defines an alias for a z/VM guest virtual machine, you
can specify the alias.

You can omit this parameter for the -x option if other specifications on the command line identify a
section in the configuration file.

-V <ip_address> or --vmserver <ip_address>
specifies the IP address or host name of the SMAPI request server or VSMSERVE service machine
through which the specified z/VM guest virtual machines are controlled. You can use IPv6 or IPv4
connections.

This option can be omitted if defined in the configuration file.

-z <portnumber> or --port <portnumber>
specifies the port at which the SMAPI request server listens.

-u <user_id> or --userid <user_id>
specifies a z/VM user ID that is authorized to access the SMAPI request server or VSMSERVE service
machine. This option can be omitted if defined in the configuration file.

-e or --noencryption
specifies that no encryption is used when connecting to the server. This parameter can also be
specified through a configuration file. To use encryption, you require a configuration file with an SSL
fingerprint defined.

-p <password> or --password <password>
specifies the password for the z/VM user ID specified with --userid. This option can be omitted if
defined in the configuration file.

-P or --promptpassword
prompts for a password in protected entry mode.

-f <filename> or --configfilename <filename>
specifies the name of a configuration file that maps z/VM guest virtual machines to the corresponding
specifications for the SMAPI request server or VSMSERVE service machine, the authorized z/VM user
ID, and the password.

If no configuration file is specified, the user-specific default file ~/.snipl.conf is used. If this file
does not exist, the system default file /etc/snipl.conf is used.

Be sure that the command line parameters you provide uniquely identify the configuration-file section
you want to work with. If you specify multiple z/VM guest virtual machines on the command line, only
the first specification is used to identify the section. If your specifications map to multiple sections,
the first match is processed.

If conflicting specifications are provided through the command line and the configuration file, the
command line specification is used. If no configuration file is used, all required parameters must be
specified on the command line.

For more information about the configuration file, see “The snipl configuration file” on page 86.

--timeout <timeout>
specifies the timeout in milliseconds for general management API calls. The default is 60000 ms.

-a or --activate
logs on the specified z/VM guest virtual machines.

-d or --deactivate
logs off the specified z/VM guest virtual machines.

-X <maxperiod> or --shutdowntime <maxperiod>
specifies the maximum period, in seconds, granted for graceful completion before CP FORCE
commands are issued against the specified z/VM guest virtual machines. By default, the maximum
period is 300 s.

Remotely controlling virtual hardware - snipl 85

-F or --force
immediately issues CP FORCE commands to log off the specified z/VM guest virtual machines. This
parameter is equivalent to -X 0.

-r or --reset
logs off the specified z/VM guest virtual machines and then logs them back on.

-g or --getstatus
returns the status for the specified z/VM guest virtual machines.

-x or --listimages
lists the z/VM guest virtual machines as specified in a configuration-file section (see “The snipl
configuration file” on page 86). You can identify the configuration file section with the -V parameter,
by specifying a z/VM guest virtual machine, or by specifying a z/VM guest virtual machine and the -u
parameter.

-v or --version
displays the version of snipl and exits.

-h or --help
displays a short usage description and exits. To view the man page enter man snipl.

Examples

• The following command logs on two z/VM guest virtual machines:

snipl sndlnx04 sndlnx05 -V sandbox.www.example.com -e \
 -z 44444 -u sndadm01 -p pw42play -a
Warning : No default configuration file could be found/opened.
* ImageActivate : Image sndlnx04 Request Successful
* ImageActivate : Image sndlnx05 Request Successful

• The following command logs off a z/VM guest virtual machine:

snipl vm04lnxd -V 2001:0db8::1a:0015 -e -z 77899 -u vm04main -p mainpw -d
Warning : No default configuration file could be found/opened.
processing......
* ImageDeactivate : Image vm04lnxd Request Successful

The snipl configuration file
Use the snipl configuration file to provide parameter values to snipl instead of specifying all values on
the command line.

See “Specifying access data for LPAR mode” on page 77 or “Command line syntax (z/VM mode)” on page
84 about how to include a configuration file when issuing a snipl command.

A snipl configuration file contains one or more sections. Each section consists of multiple lines with
specifications of the form <keyword>=<value> for either a z/VM system or an SE.

The following rules apply to the configuration file:

• Lines that begin with a number sign (#) are comment lines. A number sign in the middle of a line makes
the remaining line a comment.

• Empty lines are permitted.
• The specifications are not case-sensitive.
• The same configuration file can contain sections for snipl in both LPAR mode and z/VM mode.
• In a <keyword>=<value> pair, one or more blanks are allowed before or after the equal sign (=).

Table 14 on page 87 summarizes the keywords for the configuration file and the command -line
equivalents for LPAR mode and z/VM mode.

86 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Table 14: snipl configuration file keywords

Keyword Value for LPAR mode Value for z/VM mode

Command-
line
equivalent

server

(required)

Starts a configuration file section by
specifying the IP address or host
name of an HMC or SE.

You can use IPv6 or IPv4
connections.

Starts a configuration file section by
specifying the IP address or host name
of a SMAPI request server or VSMSERVE
service machine.

You can use IPv6 or IPv4 connections.

(See note “1”
on page 88)

type

(required)

LPAR VM (See note “1”
on page 88)

user

(See note “2”
on page 88)

n/a A z/VM user ID that is authorized for the
SMAPI request server or VSMSERVE
service machine.

-u or --user

password

(See note “3”
on page 88)

The value for community in the
SNMP settings of the SE.

If not specified through either the
configuration file or the command,
the default, public, is used.

The password for the z/VM user ID
specified with the user keyword.

(See note “2” on page 88)

-p or --
password

encryption "no" specifies an SNMPv2
unencrypted connection.

"yes" specifies an SNMPv3
encrypted connection.

"no" specifies unencrypted connection
to the SMAPI request server.

"yes" specifies use of the OpenSSL
protocol when connecting to the SMAPI
request server.

-e or --
noencryptio
n

sslfingerpr
int

n/a If encryption is enabled, the fingerprint
mechanism is used to detect man-in-
the-middle attacks. Specified in the
configuration file, the fingerprint value
must be equal to the server certificate
fingerprint for each new snIPL
connection. The sslfingerprint
connection parameter can be specified
only in a configuration file.

port n/a Required if the server keyword
specifies the IP address or host name of
a SMAPI request server.

-z or --port

Remotely controlling virtual hardware - snipl 87

Table 14: snipl configuration file keywords (continued)

Keyword Value for LPAR mode Value for z/VM mode

Command-
line
equivalent

image

A valid section
must have one
or more lines
with this
keyword.

An LPAR name as defined in the
mainframe hardware configuration.

If the server keyword specifies an
HMC, the specification begins with
the name that identifies the
mainframe on the HMC, followed by
a hyphen (-), followed by the LPAR
name.

You can define an alias name for the
LPAR by appending a forward slash
(/) to the LPAR name and specifying
the alias after the slash.

A z/VM user ID that specifies a target
z/VM guest virtual machine.

You can define an alias name for the
z/VM user ID by appending a forward
slash (/) to the ID and specifying the
alias after the slash.

A list of one or
more items
that are
separated by
blanks and
specified
without a
switch.

Note:

1. Jointly, the server and type keywords are equivalent to the command-line option -L for LPAR mode
or to -V for z/VM mode.

2. Can be omitted and specified on the command line instead.
3. Do not include passwords in the snipl configuration file unless the security policy at your installation

permits you to do so.

Figure 23 on page 89 shows a configuration file example with multiple sections, including sections for
LPAR mode and for z/VM mode.

88 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

z/VM system for Linux training sessions
server = sandbox.www.example.com
type = VM
password = pw42play
encryption = yes
sslfingerprint = a2:ea:81:ed:e9: ... 84:cf:87:98:fe:38:54:c7
port = 44444
user = sndadm01
image = sndlnx01
image = sndlnx02
image = sndlnx03/tutor
image = sndlnx04
image = sndlnx05
image = sndcms01/c1

SE for production SZ01
Server=192.0.2.4
type=LPAR
image=SZ01LP00
image=SZ01LP01
image=SZ01LP02
image=SZ01LP03

HMC for test SZ02
Server = 2001:0db8::11a0
type=LPAR
encryption = yes
user = sz01adm
image=Z02-SZ02LP00/Z0200
image=Z02-SZ02LP01
image=Z02-SZ02LP02
image=Z02-SZ02LP03

Production VM 04 - uses SMAPI
server = 2001:0db8::1a:0015
type = VM
encryption = no
port = 77899
user = VM04MAIN
image = VM04LNXA
image = VM04LNXC
image = VM04LNXD

Production VM 05 - uses VSMSERVE so no port
server = 192.0.2.20
type = VM
encryption = no
user = VM05MAIN
image = VM05G001
image = VM05G002
image = VM05G003
image = VM05G004

Figure 23: Example of a snipl configuration file

Examples

The examples that follow assume that the configuration file of Figure 23 on page 89 is used.

• The following command logs on two z/VM guest virtual machines, sndlnx01 and sndlnx03 (with alias
tutor). In the example, the command output shows that sndlnx03 is already logged on.

snipl sndlnx01 sndlnx03 -V sandbox.www.example.com -z 44444 -u sndadm01 -p pw42play -a
Warning : No default configuration file could be found/opened.
* ImageActivate : Image sndlnx01 Request Successful
* ImageActivate : Image sndlnx03 Image Already Active

Assuming that the configuration file of Figure 23 on page 89 is available at /etc/xcfg, an equivalent
command would be:

Remotely controlling virtual hardware - snipl 89

snipl sndlnx01 tutor -a -f /etc/xcfg
Server sandbox.www.example.com from config file /etc/xcfg is used
* ImageActivate : Image sndlnx01 Request Successful
* ImageActivate : Image sndlnx03 Image Already Active

Assuming that the configuration file of Figure 23 on page 89 is used by default, an equivalent command
would be:

snipl sndlnx01 tutor -a
Server sandbox.www.example.com from config file /etc/snipl.conf is used
* ImageActivate : Image sndlnx01 Request Successful
* ImageActivate : Image sndlnx03 Image Already Active

• The following command performs an IPL for an LPAR SZ01LP03:

snipl SZ01LP03 -L 192.0.2.4 -u sz01adm -l -P -A 5000
Enter password:
Warning : No default configuration file could be found/opened.
processing......
SZ01LP03: acknowledged.

Assuming that the configuration file of Figure 23 on page 89 is available at /etc/xcfg, an equivalent
command would be:

snipl SZ01LP03 -l -P -A 5000 -f /etc/xcfg
Enter password:
Server 192.0.2.4 from config file /etc/xcfg is used
SZ01LP03: acknowledged.

Assuming that the configuration file of Figure 23 on page 89 is used by default, an equivalent command
would be:

snipl SZ01LP03 -l -P -A 5000
Enter password:
Server 192.0.2.4 from config file /etc/snipl.conf is used
SZ01LP03: acknowledged.

• Assuming that the configuration file of Figure 23 on page 89 is available at /etc/xcfg, the following
command lists the z/VM guest virtual machines as specified in the section for
sandbox.www.example.com:

snipl -V sandbox.www.example.com -f /etc/xcfg -x
available images for server sandbox.www.example.com and userid SNDADM01 :

 sndlnx01 sndlnx02 sndlnx03 sndlnx04
 sndlnx05 sndcms01

• The following command logs off a z/VM guest virtual machine:

snipl vm04lnxd -V 2001:0db8::1a:0015 -z 77899 -u vm04main -p mainpw -d
Warning : No default configuration file could be found/opened.
processing......
* ImageDeactivate : Image vm04lnxd Request Successful

Assuming that the configuration file of Figure 23 on page 89 is used by default, an equivalent command
would be:

snipl vm04lnxd -d
Enter password:
Server 2001:0db8::1a:0015 from config file /etc/snipl.conf is used
processing......
* ImageDeactivate : Image vm04lnxd Request Successful

90 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

STONITH support (snipl for STONITH)
The STONITH implementation is part of the Heartbeat framework of the High Availability Project.

STONITH is usually used as part of this framework but can also be used independently. snipl provides a
plug-in to STONITH.

For a general description of the STONITH technology go to linux-ha.org.

Before you begin

• STONITH requires a configuration file that maps LPARs and z/VM guest virtual machines to the
specifications for the corresponding SE, HMC or z/VM system. The snipl for STONITH configuration file
has the same syntax as the snipl configuration file, see “The snipl configuration file” on page 86.

• The SEs, HMCs and z/VM systems you want to work with must be set up as described in “Setting up
snipl for LPAR mode” on page 75 and “Setting up snipl for z/VM mode” on page 83.

Using stonith

When using stonith commands for Linux on z/VM or for Linux in LPAR mode you must provide
<keyword>=<value> pairs as described in “The snipl configuration file” on page 86. There are two ways to
specify this information:

• On the command line with the stonith command, using the -p option and the snipl_parm keyword.
• Through a configuration file, using the -p option and the snipl_file keyword.

Unlike snipl, you must specify all parameters in the same way; all parameters on the command line or
all parameters in the configuration file.

On z/VM, you must use a configuration file containing a SSL fingerprint for an encrypted connection.

stonith syntax (simplified)
stonith -t lic_vps -p "snipl_param <parameters>"

 "snipl_file <file>"

 -T on

 off

reset

 <image>

Where:
-t lic_vps

specifies the "server type". For STONITH with snipl, the server type is always lic_vps.
-p

specifies parameters.
snipl_param <parameters>

specifies comma-separated <keyword>=<value> pairs with the same keywords as used in the
configuration file (see “The snipl configuration file” on page 86).

For LPAR mode the following keywords are required:

• server
• type
• user (or encryption=no)
• password
• image

For z/VM mode the following keywords are required:

• server

Remotely controlling virtual hardware - snipl 91

http://linux-ha.org

• port (required if the z/VM system is configured with a SMAPI request server rather than a VSMSERVE
service machine)

• type
• user
• password
• image

snipl_file <parameters>
specifies a configuration file (see “The snipl configuration file” on page 86). The configuration file
must contain all required keywords, including the password. The configuration file must always be
specified explicitly. No file is used by default.

-T
specifies the action to be performed.

-on
activates the specified LPAR or logs on the specified z/VM virtual machine.

-off
deactivates the specified LPAR or logs off the specified z/VM virtual machine.

-reset
resets the specified LPAR or z/VM virtual machine.

<image>
specifies the LPAR or z/VM virtual machine you want to work with. If you use the snipl_param
parameter, the contained image keyword must specify the same LPAR or z/VM virtual machine.

For more information, see the stonith man page.

Examples

• This example command resets the z/VM guest virtual machine sndlnx04:

stonith -t lic_vps -p "snipl_param server=sandbox.www.example.com,type=vm\
,user=sndadm01,password=pw42play,encryption=no,image=sndlnx04" -T reset sndlnx04

Note: Instead of using the continuation sign (\) at the end of the first line, you can specify the complete
command on a single line.

• With /etc/xcfg as shown in Figure 23 on page 89, the following command is equivalent:

stonith -t lic_vps -p "snipl_file /etc/xcfg" -T reset sndlnx04

92 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Part 3. Storage
SUSE Linux Enterprise Server 12 SP4 includes several storage device drivers that are specific to z/
Architecture®.

Newest version

You can find the newest version of this publication on IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html

Restrictions
For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture specific information in
the SUSE Linux Enterprise Server 12 SP4 release notes at
www.suse.com/releasenotes

© Copyright IBM Corp. 2000, 2019 93

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html
http://www.suse.com/releasenotes

94 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Chapter 9. DASD device driver
The DASD device driver provides access to all real or emulated direct access storage devices (DASD) that
can be attached to the channel subsystem of an IBM mainframe.

DASD devices include various physical media on which data is organized in blocks or records or both. The
blocks or records in a DASD can be accessed for read or write in random order.

Traditional DASD devices are attached to a control unit that is connected to a mainframe I/O channel.
Today, these real DASD have been largely replaced by emulated DASDs. For example, such emulated
DASDs can be the volumes of the IBM System Storage® DS8000® Turbo, or the volumes of the IBM System
Storage DS6000™. These emulated DASD are completely virtual and the identity of the physical device is
hidden.

SCSI disks that are attached through an FCP channel are not classified as DASD. They are handled by the
zfcp driver (see Chapter 10, “SCSI-over-Fibre Channel device driver,” on page 131).

Features
The DASD device driver supports a wide range of disk devices and disk functions.

• The DASD device driver has no dependencies on the adapter hardware that is used to physically connect
the DASDs to the Z hardware. You can use any adapter that is supported by the Z hardware (see
www.ibm.com/systems/z/connectivity for more information).

• The DASD device driver supports ESS virtual ECKD type disks
• The DASD device driver supports the control unit attached physical ECKD (Extended Count Key Data)

and FBA (Fixed Block Access) devices as summarized in Table 15 on page 95:

Table 15: Supported control unit attached DASD

Device format Control unit type Device type

ECKD 1750 3380 and 3390

ECKD 2107 3380 and 3390

ECKD 2105 3380 and 3390

ECKD 3990 3380 and 3390

ECKD 9343 9345

ECKD 3880 3390

FBA 6310 9336

FBA 3880 3370

All models of the specified control units and device types can be used with the DASD device driver. This
includes large devices with more than 65520 cylinders, for example, 3390 Model A. Check the storage
support statement to find out what works for SUSE Linux Enterprise Server 12 SP4.

• The DASD device driver provides a disk format with up to three partitions per disk. See “IBM Z
compatible disk layout” on page 97 for details.

• The DASD device driver provides an option for extended error reporting for ECKD devices. Extended
error reporting can support high availability setups.

• The DASD device driver supports parallel access volume (PAV) and HyperPAV on storage devices that
provide this feature. The DASD device driver handles dynamic PAV alias changes on storage devices. For
more information about PAV and HyperPAV, see How to Improve Performance with PAV, SC33-8414. Use

© Copyright IBM Corp. 2000, 2019 95

http://www.ibm.com/systems/z/connectivity

the dasdstat command to check whether a DASD uses PAV, see “Scenario: Verifying that PAV and HPF
are used” on page 119.

• The DASD device driver supports High Performance FICON, including multitrack requests, on storage
devices that provide this feature. Use the dasdstat command to check whether a DASD uses High
Performance FICON, see “Scenario: Verifying that PAV and HPF are used” on page 119.

What you should know about DASD
The DASD device driver supports various disk layouts with different partitioning capabilities. The DASD
device naming scheme helps you to keep track of your DASDs and DASD device nodes.

The IBM label partitioning scheme
Linux on Z supports the same standard DASD format that is also used by traditional mainframe operating
systems, but it also supports any other Linux partition table.

The DASD device driver is embedded into the Linux generic support for partitioned disks. As a result, you
can use any partition table format that is supported by Linux for your DASDs.

Traditional mainframe operating systems (such as, z/OS, z/VM, and z/VSE®) expect a standard DASD
format. In particular, the format of the first two tracks of a DASD is defined by this standard. These tracks
include the Z IPL record, the volume label, and for some layouts VTOC records. Partitioning schemes for
platforms other than Z generally do not preserve these mainframe specific records.

SUSE Linux Enterprise Server 12 SP4 for IBM Z includes the IBM label partitioning scheme that preserves
the Z IPL record, volume label, and VTOC records. With this partitioning scheme, Linux can share a disk
with other mainframe operating systems. For example, a traditional mainframe operating system can
handle backup and restore for a partition that is used by Linux.

The following sections describe the layouts that are supported by the IBM label partitioning scheme:

• “IBM Z compatible disk layout” on page 97
• “Linux disk layout” on page 99
• “CMS disk layout” on page 99

DASD partitions
Partitioning DASD has the same advantages as for other disk types, but there are some prerequisites and
a special tool, fdasd.

A DASD partition is a contiguous set of DASD blocks that is treated by Linux as an independent disk and by
the traditional mainframe operating systems as a data set.

With the Linux disk layout (LDL) and the CMS disk layout, you always have a single partition only. This
partition is defined by the LDL or CMS formatted area of the disk. With the compatible disk layout, you can
have up to three partitions.

There are several reasons why you might want to have multiple partitions on a DASD, for example:

Limit data growth
Runaway processes or undisciplined users can consume disk space to an extend that the operating
system runs short of space for essential operations. Partitions can help to isolate the space that is
available to particular processes.

Encapsulate your data
If a file system gets damaged, this damage is likely to be restricted to a single partition. Partitioning
can reduce the scope of data damage.

96 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

Recommendations

• Use fdasd to create or alter partitions on ECKD type DASD that are formatted with the compatible disk
layout. If you use another partition editor, it is your responsibility to ensure that partitions do not
overlap. If they do, data damage occurs.

• Leave no gaps between adjacent partitions to avoid wasting space. Gaps are not reported as errors, and
can be reclaimed only by deleting and re-creating one or more of the surrounding partitions and
rebuilding the file system on them.

A disk need not be partitioned completely. You can begin by creating only one or two partitions at the start
of your disk and convert the remaining space to a partition later.

There is no facility for moving, enlarging, or reducing partitions, because fdasd has no control over the
file system on the partition. You can only delete and re-create them. Changing the partition table results in
loss of data in all altered partitions. It is up to you to preserve the data by copying it to another medium.

IBM Z compatible disk layout
With the compatible disk layout, a DASD can have up to three partitions that can be accessed by
traditional mainframe operating systems.

You can format only ECKD type DASD with the compatible disk layout.

Figure 24 on page 97 illustrates a DASD with the compatible disk layout.

Figure 24: Compatible disk layout

The IPL records, volume label (VOL1), and VTOC of disks with the compatible disk layout are on the first
two tracks of the disks. These tracks are not intended for use by Linux applications. Using the tracks can
result in data loss.

Linux can address the device as a whole as /dev/dasd<x>, where <x> can be one to four letters that
identify the individual DASD (see “DASD naming scheme” on page 100). See “DASD device nodes” on
page 101 for alternative addressing possibilities.

Disks with the compatible disk layout can have one to three partitions. Linux addresses the first partition
as /dev/dasd<x>1, the second as /dev/dasd<x>2, and the third as /dev/dasd<x>3.

You use the dasdfmt command (see “dasdfmt - Format a DASD” on page 508) to format a disk with the
compatible disk layout. You use the fdasd command (see “fdasd – Partition a DASD” on page 524) to
create and modify partitions.

Volume label
The volume label includes information about the disk layout, the VOLSER, and a pointer to the VTOC.

The DASD volume label is located in the third block of the first track of the device (cylinder 0, track 0,
block 2). This block has a 4-byte key, and an 80-byte data area with the following content:

key
for disks with the compatible disk layout, contains the four EBCDIC characters "VOL1" to identify the
block as a volume label.

label identifier
is identical to the key field.

DASD device driver 97

VOLSER
is a name that you can use to identify the DASD device. A volume serial number (VOLSER) can be one
to six EBCDIC characters. If you want to use VOLSERs as identifiers for your DASD, be sure to assign
unique VOLSERs.

You can assign VOLSERs from Linux by using the dasdfmt or fdasd command. These commands
enforce that VOLSERs:

• Are alphanumeric
• Are uppercase (by uppercase conversion)
• Contain no embedded blanks
• Contain no special characters other than $, #, @, and %

Tip: Avoid special characters altogether.

Note: The VOLSER values SCRTCH, PRIVAT, MIGRAT, or Lnnnnn (An "L" followed by 5 digits) are
reserved for special purposes by other mainframe operating systems and should not be used by Linux.

These rules are more restrictive than the VOLSERs that are allowed by the traditional mainframe
operating systems. For compatibility, Linux tolerates existing VOLSERs with lowercase letters and
special characters other than $, #, @, and %. Enclose VOLSERs with special characters in single
quotation marks if you must specify it, for example, as a command parameter.

VTOC address
contains the address of a standard IBM format 4 data set control block (DSCB). The format is: cylinder
(2 bytes) track (2 bytes) block (1 byte).

All other fields of the volume label contain EBCDIC space characters (code 0x40).

VTOC
Instead of a regular Linux partition table, Linux on Z, like other mainframe operating systems, uses a
Volume Table Of Contents (VTOC).

The VTOC contains pointers to the location of every data set on the volume. These data sets form the
Linux partitions.

The VTOC is on the second track (cylinder 0, track 1). It contains a number of labels, each written in a
separate block:

• One format 4 DSCB that describes the VTOC itself
• One format 5 DSCB

The format 5 DSCB is required by other operating systems but is not used by Linux. fdasd sets it to
zeros.

• For volumes with more than 65636 tracks, 1 format 7 DSCB following the format 5 DSCB
• For volumes with more than 65520 cylinders (982800 tracks), 1 format 8 DSCB following the format 5

DSCB
• A format 1 DSCB for each partition

The key of the format 1 DSCB contains the data set name, which identifies the partition to z/OS, z/VM or
z/VSE.

The VTOC can be displayed with standard mainframe tools such as VM/DITTO. A Linux DASD with physical
device number 0x0193, volume label "LNX001", and three partitions might be displayed like this
example:

98 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4

 VM/DITTO DISPLAY VTOC LINE 1 OF 5
===> SCROLL ===> PAGE

CUU,193 ,VOLSER,LNX001 3390, WITH 100 CYLS, 15 TRKS/CYL, 58786 BYTES/TRK

--- FILE NAME --- (SORTED BY =,NAME ,) ---- EXT BEGIN-END RELTRK,
1...5...10...15...20...25...30...35...40.... SQ CYL-HD CYL-HD NUMTRKS
 *** VTOC EXTENT *** 0 0 1 0 1 1,1
LINUX.VLNX001.PART0001.NATIVE 0 0 2 46 11 2,700
LINUX.VLNX001.PART0002.NATIVE 0 46 12 66 11 702,300
LINUX.VLNX001.PART0003.NATIVE 0 66 12 99 14 1002,498
 *** THIS VOLUME IS CURRENTLY 100 PER CENT FULL WITH 0 TRACKS AVAILABLE

PF 1=HELP 2=TOP 3=END 4=BROWSE 5=BOTTOM 6=LOCATE
PF 7=UP 8=DOWN 9=PRINT 10=RGT/LEFT 11=UPDATE 12=RETRIEVE

The ls command on Linux might list this DASD and its partitions like this example:

ls -l /dev/dasda*
brw-rw---- 1 root disk 94, 0 Jan 27 09:04 /dev/dasda
brw-rw---- 1 root disk 94, 1 Jan 27 09:04 /dev/dasda1
brw-rw---- 1 root disk 94, 2 Jan 27 09:04 /dev/dasda2
brw-rw---- 1 root disk 94, 3 Jan 27 09:04 /dev/dasda3

where dasda represent the whole DASD and dasda1, dasda2, and dasda3 represent the individual
partitions.

Linux disk layout
The Linux disk layout does not have a VTOC, and DASD partitions that are formatted with this layout
cannot be accessed by traditional mainframe operating systems.

You can format only ECKD type DASD with the Linux disk layout. Apart from accessing the disks as ECKD
devices, you can also access them using the DASD DIAG access method. See “Enabling the DASD device
driver to use the DIAG access method” on page 110 for how to enable DIAG.

Figure 25 on page 99 illustrates a disk with the Linux disk layout.

Figure 25: Linux disk layout

DASDs with the Linux disk layout either have an LNX1 label or are not labeled. The first records of the
device are reserved for IPL records and the volume label, and are not intended for use by Linux
applications. All remaining records are grouped into a single partition. You cannot have more than a single
partition on a DASD that is formatted in the Linux disk layout.

Linux can address the device as a whole as /dev/dasd<x>, where <x> can be one to four letters that
identify the individual DASD (see “DASD naming scheme” on page 100). Linux can access the partition
as /dev/dasd<x>1.

You use the dasdfmt command (see “dasdfmt - Format a DASD” on page 508) to format a disk with the
Linux disk layout.

CMS disk layout
The CMS disk layout applies only to Linux on z/VM. The disks are formatted with z/VM tools.

Both ECKD or FBA type DASD can have the CMS disk layout. DASD partitions that are formatted with this
layout cannot be accessed by traditional mainframe operating systems. Apart from accessing the disks as
ECKD or FBA devices, you can also access them using the DASD DIAG access method.

DASD device driver 99

Figure 26 on page 100 illustrates two variants of the CMS disk layout.

Figure 26: CMS disk layout

The first variant contains IPL records, a volume label (CMS1), and a CMS data area. Linux treats DASD like
this equivalent to a DASD with the Linux disk layout, where the CMS data area serves as the Linux
partition.

The second variant is a CMS reserved volume. In this variant, the DASD was reserved by a CMS RESERVE
fn ft fm command. In addition to the IPL records and the volume label, DASD with the CMS disk layout
also have CMS metadata. The CMS reserved file serves as the Linux partition.

For both variants of the CMS disk layout, you can have only a single Linux partition. The IPL record,
volume label and (where applicable) the CMS metadata, are not intended for use by Linux applications.

Addressing the device and partition is the same for both variants. Linux can address the device as a whole
as /dev/dasd<x>, where <x> can be one to four letters that identify the individual DASD (see “DASD
naming scheme” on page 100). Linux can access the partition as /dev/dasd<x>1.

“Enabling the DASD device driver to use the DIAG access method” on page 110 describes how to enable
DIAG.

Disk layout summary
The available disk layouts differ in their support of device formats, the DASD DIAG access method, and
the maximum number of partitions.

Table 16: Disk layout summary

Disk layout ECKD device
format

FBA device
format

DIAG access
method
support (z/VM
only)

Maximum
number of
partitions

Formatting
tool

Compatible disk
layout

Yes No No 3 dasdfmt

Linux disk layout Yes No Yes 1 dasdfmt

CMS (z/VM only) Yes Yes Yes 1 z/VM tools

DASD naming scheme
The DASD naming scheme maps device names and minor numbers to whole DASDs and to partitions.

The DASD device driver uses the major number 94. For each configured device it uses four minor
numbers:

100 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

• The first minor number always represents the device as a whole, including IPL, VTOC, and label records.
• The remaining three minor numbers represent the up to three partitions.

With 1,048,576 (20-bit) available minor numbers, the DASD device driver can address 262,144 devices.

The DASD device driver uses a device name of the form dasd<x> for each DASD. In the name, <x> is one
to four lowercase letters. Table 17 on page 101 shows how the device names map to the available minor
numbers.

Table 17: Mapping of DASD names to minor numbers.

Name for device as a whole Minor number for device as a whole Number of devices

From To From To

dasda dasdz 0 100 26

dasdaa dasdzz 104 2804 676

dasdaaa dasdzzz 2808 73108 17,576

dasdaaaa dasdnwtl 73112 1048572 243,866

Total number of devices: 262,144

The DASD device driver also uses a device name for each partition. The name of the partition is the name
of the device as a whole with a 1, 2, or 3 appended to identify the first, second, or third partition. The
three minor numbers that follow the minor number of the device as a whole are the minor number for the
first, second, and third partition.

Examples

• "dasda" refers to the whole of the first disk in the system and "dasda1", "dasda2", and "dasda3" to the
three partitions. The minor number for the whole device is 0. The minor numbers of the partitions are 1,
2, and 3.

• "dasdz" refers to the whole of the 101st disk in the system and "dasdz1", "dasdz2", and "dasdz3" to the
three partitions. The minor number for the whole device is 100. The minor numbers of the partitions are
101, 102, and 103.

• "dasdaa" refers to the whole of the 102nd disk in the system and "dasdaa1", "dasdaa2", and "dasdaa3"
to the three partitions. The minor number for the whole device is 104. The minor numbers of the
partitions are 105, 106, and 107.

DASD device nodes
SUSE Linux Enterprise Server 12 SP4 uses udev to create multiple device nodes for each DASD that is
online.

Device nodes that are based on device names
udev creates device nodes that match the device names that are used by the kernel. These standard
device nodes have the form /dev/<name>.

The mapping between standard device nodes and the associated physical disk space can change, for
example, when you reboot Linux. To ensure that you access the intended physical disk space, you need
device nodes that are based on properties that identify a particular DASD.

udev creates additional devices nodes that are based on the following information:

• The bus ID of the disk
• The disk label (VOLSER)
• The universally unique identifier (UUID) of the file system on the disk
• If available: The label of the file system on the disk

DASD device driver 101

Device nodes that are based on bus IDs
udev creates device nodes of the form

/dev/disk/by-path/ccw-<device_bus_id>

for whole DASD and

/dev/disk/by-path/ccw-<device_bus_id>-part<n>

for the <n>th partition.
Device nodes that are based on VOLSERs

udev creates device nodes of the form

/dev/disk/by-id/ccw-<volser>

for whole DASD and

/dev/disk/by-id/ccw-<volser>-part<n>

for the <n>th partition.

If you want to use device nodes that are based on VOLSER, be sure that the VOLSERs in your
environment are unique (see “Volume label” on page 97).

If you assign the same VOLSER to multiple devices, Linux can still access each device through its
standard device node. However, only one of the devices can be accessed through the VOLSER-based
device node. Thus, the node is ambiguous and might lead to unintentional data access.

Furthermore, if the VOLSER on the device that is addressed by the node is changed, the previously
hidden device is not automatically addressed instead. To reassign the node, you must reboot Linux or
force the kernel to reread the partition tables from disks, for example, by issuing:

blockdev --rereadpt /dev/dasdzzz

You can assign VOLSERs to ECKD type devices with dasdfmt when formatting or later with fdasd
when creating partitions.

Device nodes that are based on file system information
udev creates device nodes of the form

/dev/disk/by-uuid/<uuid>

where <uuid> is the UUID for the file system in a partition.

If a file system label exists, udev also creates a node of the form:

/dev/disk/by-label/<label>

There are no device nodes for the whole DASD that are based on file system information.

If you want to use device nodes that are based on file system labels, be sure that the labels in your
environment are unique.

Additional device nodes
/dev/disk/by-id contains additional device nodes for the DASD and partitions, that are all based
on a device identifier as contained in the uid attribute of the DASD.

Note: If you want to use device nodes that are based on file system information and VOLSER, be sure that
they are unique for the scope of your Linux instance. This information can be changed by a user or it can
be copied, for example when backup disks are created. If two disks with the same VOLSER or UUID are
online to the same Linux instance, the matching device node can point to either of these disks.

102 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Example

For a DASD that is assigned the device name dasdzzz, has two partitions, a device bus-ID 0.0.b100
(device number 0xb100), VOLSER LNX001, and a UUID 6dd6c43d-a792-412f-a651-0031e631caed for
the first and f45e955d-741a-4cf3-86b1-380ee5177ac3 for the second partition, udev creates the
following device nodes:

For the whole DASD:

• /dev/dasdzzz (standard device node according to the DASD naming scheme)
• /dev/disk/by-path/ccw-0.0.b100
• /dev/disk/by-id/ccw-LNX001

For the first partition:

• /dev/dasdzzz1 (standard device node according to the DASD naming scheme)
• /dev/disk/by-path/ccw-0.0.b100-part1
• /dev/disk/by-id/ccw-LNX001-part1
• /dev/disk/by-uuid/6dd6c43d-a792-412f-a651-0031e631caed

For the second partition:

• /dev/dasdzzz2 (standard device node according to the DASD naming scheme)
• /dev/disk/by-path/ccw-0.0.b100-part2
• /dev/disk/by-id/ccw-LNX001-part2
• /dev/disk/by-uuid/f45e955d-741a-4cf3-86b1-380ee5177ac3

Accessing DASD by udev-created device nodes
Use udev-created device nodes to access a particular physical disk space, regardless of the device name
that is assigned to it.

Example

The following example is based on these assumptions:

• A DASD with bus ID 0.0.b100 has two partitions.
• The standard device node of the DASD is dasdzzz.
• udev creates the following device nodes for a DASD and its partitions:

/dev/disk/by-path/ccw-0.0.b100
/dev/disk/by-path/ccw-0.0.b100-part1
/dev/disk/by-path/ccw-0.0.b100-part2

Instead of issuing:

fdasd /dev/dasdzzz

issue:

fdasd /dev/disk/by-path/ccw-0.0.b100

In the file system information in /etc/fstab replace the following specifications:

/dev/dasdzzz1 /temp1 btrfs defaults 0 0
/dev/dasdzzz2 /temp2 btrfs defaults 0 0

with these specifications:

/dev/disk/by-path/ccw-0.0.b100-part1 /temp1 btrfs defaults 0 0
/dev/disk/by-path/ccw-0.0.b100-part2 /temp2 btrfs defaults 0 0

DASD device driver 103

You can make similar substitutions with other device nodes that udev provides for you (see “DASD device
nodes” on page 101).

Setting up the DASD device driver
Unless the DASD device driver modules are loaded for you during the boot process, load and configure
them with the modprobe command.

In most cases, SUSE Linux Enterprise Server 12 SP4 loads the DASD device driver for you during the boot
process. You can then use YaST to set the diag attribute. If the DASD device driver is loaded for you and
you must set attributes other than diag, see “Module parameters” on page 22.

modprobe

 dasd_mod

dasd=

,

device-spec

autodetect

probeonly

nopav

nofcx

 eer_pages=5

 eer_pages= <pages>

 dasd_eckd_mod

 dasd_fba_mod

 dasd_diag_mod

DASD module parameter syntax
device-spec

<device_bus_id>

<from_device_bus_id>-<to_device_bus_id>

(

:

ro

diag

erplog

failfast

)

Where:
dasd_mod

loads the device driver base module.

When you are loading the base module, you can specify the dasd= parameter.

You can use the eer_pages parameter to determine the number of pages that are used for internal
buffering of error records.

autodetect
causes the DASD device driver to allocate device names and the corresponding minor numbers to all
DASD devices and set them online during the boot process. See “DASD naming scheme” on page 100
for the naming scheme.

104 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

The device names are assigned in order of ascending subchannel numbers. Auto-detection can yield
confusing results if you change your I/O configuration and reboot, or if your Linux instance runs as a
z/VM guest because the devices might appear with different names and minor numbers after
rebooting.

probeonly
causes the DASD device driver to reject any "open" syscall with EPERM.

autodetect,probeonly
causes the DASD device driver to assign device names and minor numbers as for auto-detect. All
devices regardless of whether they are accessible as DASD return EPERM to any "open" requests.

nopav
suppresses parallel access volume (PAV and HyperPAV) enablement for Linux instances that run in
LPAR mode. The nopav keyword has no effect for Linux on z/VM.

nofcx
suppresses accessing the storage server with the I/O subsystem in transport mode (also known as
High Performance FICON).

<device_bus_id>
specifies a single DASD.

<from_device_bus_id>-<to_device_bus_id>
specifies the first and last DASD in a range. All DASD devices with bus IDs in the range are selected.
The device bus-IDs <from_device_bus_id> and <to_device_bus_id> need not correspond to actual
DASD.

(ro)
accesses the specified device or device range in read-only mode.

(diag)
forces the device driver to access the device (range) with the DIAG access method.

(erplog)
enables enhanced error recovery processing (ERP) related logging through syslogd. If erplog is
specified for a range of devices, the logging is switched on during device initialization.

(failfast)
immediately returns "failed" for an I/O operation when the last path to a DASD is lost.

Attention: Enable immediate failure of I/O requests only in setups where a failed I/O request
can be recovered outside the scope of a single DASD (see “Enabling and disabling immediate
failure of I/O requests” on page 114).

dasd_eckd_mod
loads the ECKD module.

dasd_fba_mod
loads the FBA module.

dasd_diag_mod
loads the DIAG module.

If you supply a DASD module parameter with device specifications dasd=<device-list1>,<device-
list2> ..., the device names and minor numbers are assigned in the order in which the devices are
specified. The names and corresponding minor numbers are always assigned, even if the device is not
present, or not accessible. For information about including device specifications in a boot configuration,
see “Including module parameters in a boot configuration” on page 22.

If you use autodetect in addition to explicit device specifications, device names are assigned to the
specified devices first and device-specific parameters, like ro, are honored. The remaining devices are
handled as described for autodetect.

The DASD base component is required by the other modules. Be sure that it is loaded first. modprobe
takes care of this dependency for you and ensures that the base module is loaded automatically, if
necessary.

DASD device driver 105

Hint: modprobe might return before udev has created all device nodes for the specified DASDs. If you
must assure that all nodes are present, for example in scripts, follow the modprobe command with:

udevadm settle

For command details see the modprobe man page.

Example

modprobe dasd_mod dasd=0.0.7000-0.0.7002,0.0.7005(ro),0.0.7006

Table 18 on page 106 shows the resulting allocation of device names:

Table 18: Example mapping of device names to devices

Name To access

dasda device 0.0.7000 as a whole

dasda1 the first partition on 0.0.7000

dasda2 the second partition on 0.0.7000

dasda3 the third partition on 0.0.7000

dasdb device 0.0.7001 as a whole

dasdb1 the first partition on 0.0.7001

dasdb2 the second partition on 0.0.7001

dasdb3 the third partition on 0.0.7001

dasdc device 0.0.7002 as a whole

dasdc1 the first partition on 0.0.7002

dasdc2 the second partition on 0.0.7002

dasdc3 the third partition on 0.0.7002

dasdd device 0.0.7005 as a whole

dasdd1 the first partition on 0.0.7005 (read-only)

dasdd2 the second partition on 0.0.7005 (read-only)

dasdd3 the third partition on 0.0.7005 (read-only)

dasde device 0.0.7006 as a whole

dasde1 the first partition on 0.0.7006

dasde2 the second partition on 0.0.7006

dasde3 the third partition on 0.0.7006

Including the nofcx parameter suppresses High Performance FICON for all DASD:

modprobe dasd_mod dasd=nofcx,0.0.7000-0.0.7002,0.0.7005(ro),0.0.7006

106 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Working with DASDs
You might have to prepare DASDs for use, configure troubleshooting functions, or configure special device
features for your DASDs.

See “Working with newly available devices” on page 10 to avoid errors when you are working with devices
that have become available to a running Linux instance.

• “Preparing an ECKD type DASD for use” on page 107
• “Preparing an FBA-type DASD for use” on page 109
• “Accessing DASD by force” on page 109
• “Enabling the DASD device driver to use the DIAG access method” on page 110
• “Using extended error reporting for ECKD type DASD” on page 111
• “Setting a DASD online or offline” on page 112
• “Enabling and disabling logging” on page 113
• “Enabling and disabling immediate failure of I/O requests” on page 114
• “Setting the timeout for I/O requests” on page 115
• “Working with DASD statistics in debugfs” on page 116
• “Accessing full ECKD tracks” on page 120
• “Handling lost device reservations” on page 122
• “Reading and resetting the reservation state” on page 123
• “Setting defective channel paths offline automatically” on page 124
• “Querying the HPF setting of a channel path” on page 125
• “Checking for access by other operating system instances” on page 126
• “Displaying DASD information” on page 127

Preparing an ECKD type DASD for use
Before you can use an ECKD type DASD as a Linux on Z disk, you must format it with a suitable disk layout
and create a file system or define a swap space.

Before you begin

• The modules for the base component and the ECKD component of the DASD device driver must have
been loaded.

• The DASD device driver must have recognized the device as an ECKD type device.
• You must know the device bus-ID for your DASD.

About this task

If you format the DASD with the compatible disk layout, you need to create one, two, or three partitions.
You can then use your partitions as swap areas or to create a Linux file system.

Procedure

Perform these steps to prepare the DASD:
1. Issue lsdasd (see “lsdasd - List DASD devices” on page 552) to find out if the device is online.

If necessary, set the device online using chccwdev (see “chccwdev - Set CCW device attributes” on
page 470).

Example:

DASD device driver 107

chccwdev -e 0.0.b100

2. Format the device with the dasdfmt command (see “dasdfmt - Format a DASD” on page 508 for
details). The formatting process can take hours for large DASDs.
If you want to use the CMS disk layout, and your DASD is already formatted with the CMS disk layout,
skip this step.

Tips:

• Use the largest possible block size, ideally 4096; the net capacity of an ECKD DASD decreases for
smaller block sizes. For example, a DASD formatted with a block size of 512 byte has only half of the
net capacity of the same DASD formatted with a block size of 4096 byte.

• For DASDs that have previously been formatted with the cdl or ldl disk layout, use the dasdfmt
quick format mode.

• Use the -p option to display a progress bar.

Example: Assuming that /dev/dasdzzz is a valid device node for 0.0.b100:

dasdfmt -b 4096 -p /dev/dasdzzz

3. Proceed according to your chosen disk layout:

• If you have formatted your DASD with the Linux disk layout or the CMS disk layout, skip this step and
continue with step “4” on page 108. You already have one partition and cannot add further partitions
on your DASD.

• If you have formatted your DASD with the compatible disk layout use the fdasd command to create
up to three partitions (see “fdasd – Partition a DASD” on page 524 for details).

Example: To start the partitioning tool in interactive mode for partitioning a device /dev/dasdzzz
issue:

fdasd /dev/dasdzzz

If you create three partitions for a DASD /dev/dasdzzz, the device nodes for the partitions
are /dev/dasdzzz1, /dev/dasdzzz2, and /dev/dasdzzz3.

Result: fdasd creates the partitions and updates the partition table (see “VTOC” on page 98).
4. Depending on the intended use of each partition, create a file system on the partition or define it as a

swap space.

• Either create a file system of your choice, for example, with the Linux mke2fs command (see the
man page for details).

Restriction: You must not make the block size of the file system smaller than the block size that
was used for formatting the disk with the dasdfmt command.

Tip: Use the same block size for the file system that was used for formatting.

Example:

mke2fs -j -b 4096 /dev/dasdzzz1

• Or define the partition as a swap space with the mkswap command (see the man page for details).

5. Mount each file system to the mount point of your choice in Linux and enable your swap partitions.

Example: To mount a file system in a partition /dev/dasdzzz1 to a mount point /mnt and to enable
a swap partition /dev/dasdzzz2 issue:

mount /dev/dasdzzz1 /mnt
swapon /dev/dasdzzz2

108 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

If a block device supports barrier requests, journaling file systems like ext3 or raiser-fs can use this
feature to achieve better performance and data integrity. Barrier requests are supported for the DASD
device driver and apply to ECKD, FBA, and the DIAG discipline.

Write barriers are used by file systems and are enabled as a file-system specific option. For example,
barrier support can be enabled for an ext3 file system by mounting it with the option -o barrier=1:

mount -o barrier=1 /dev/dasdzzz1 /mnt

Preparing an FBA-type DASD for use
Before you can use an FBA-type DASD as a Linux on Z disk, you must create a file system or define a swap
space.

Before you begin

• The modules for the base component and the FBA component of the DASD device driver must have
been loaded.

• The DASD device driver must have recognized the device as an FBA device.
• You need to know the device bus-ID or the device node through which the DASD can be addressed.

About this task

Note: To access FBA devices, use the DIAG access method (see “Enabling the DASD device driver to use
the DIAG access method” on page 110 for more information).

Perform these steps to prepare the DASD:

Procedure

1. Depending on the intended use of the partition, create a file system on it or define it as a swap space.

• Either create a file system, for example, with the Linux mke2fs command (see the man page for
details).

Example:

mke2fs -b 4096 /dev/dasdzzy1

• Or define the partition as a swap space with the mkswap command (see the man page for details).
2. Mount the file system to the mount point of your choice in Linux or enable your swap partition.

Tip: Mount file systems on FBA devices that are backed by z/VM VDISKs with the discard mount
option. This option frees memory when data is deleted from the device.

Examples:

• To mount a file system in a partition /dev/dasdzzy1, issue:

mount /dev/dasdzzy1 /mnt

• To mount a VDISK-backed file system in a partition /dev/dasdzzx1, and use the discard option to
free memory when data is deleted, issue:

mount -o discard /dev/dasdzzx1 /mnt

Accessing DASD by force
A Linux instance can encounter DASDs that are locked by another system. Such a DASD is referred to as
"externally locked" or "boxed". The Linux instance cannot analyze a DASD while it is externally locked.

DASD device driver 109

About this task

To check whether a DASD has been externally locked, read its availability attribute. This attribute should
be "good". If it is "boxed", the DASD has been externally locked. Because a boxed DASD might not be
recognized as DASD, it might not show up in the device driver view in sysfs. If necessary, use the device
category view instead (see “Device views in sysfs” on page 10).

CAUTION: Breaking an external lock can have unpredictable effects on the system that holds the
lock.

Procedure

1. Optional: To read the availability attribute of a DASD, issue a command of this form:

cat /sys/bus/ccw/devices/<device_bus_id>/availability

Example: This example shows that a DASD with device bus-ID 0.0.b110 (device number 0xb110) has
been externally locked.

cat /sys/bus/ccw/devices/0.0.b110/availability
boxed

If the DASD is an ECKD type DASD and if you know the device bus-ID, you can break the external lock
and set the device online. This means that the lock of the external system is broken with the
"unconditional reserve" channel command.

2. To force a boxed DASD online, write force to the online device attribute. Issue a command of this
form:

echo force > /sys/bus/ccw/devices/<device_bus_id>/online

Example: To force a DASD with device number 0xb110 online issue:

echo force > /sys/bus/ccw/devices/0.0.b110/online

Results
If the external lock is successfully broken or if the lock has been surrendered by the time the command is
processed, the device is analyzed and set online. If it is not possible to break the external lock (for
example, because of a timeout, or because it is an FBA-type DASD), the device remains in the boxed state.
This command might take some time to complete.

For information about breaking the look of a DASD that has already been analyzed see “tunedasd - Adjust
low-level DASD settings” on page 621.

Enabling the DASD device driver to use the DIAG access method
Linux on z/VM can use the DIAG access method to access DASDs with the help of z/VM functions.

Before you begin
This section only applies to Linux instances and DASD for which all of the following are true:

• The Linux instance runs as a z/VM guest.
• The device can be of type ECKD with either LDL or CMS disk layout, or it can be a device of type FBA.
• The module for the DIAG component must be loaded.
• The module for the component that corresponds to the DASD type (dasd_eckd_mod or dasd_fba_mod)

must be loaded.
• The DASD is offline.
• The DASD does not represent a parallel access volume alias device.

110 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

About this task

You can use the DIAG access method to access both ECKD and FBA-type DASD. You use the device's
use_diag sysfs attribute to enable or switch off the DIAG access method in a system that is online. Set
the use_diag attribute to 1 to enable the DIAG access method. Set the use_diag attribute to 0 to
switch off the DIAG access method (this is the default).

Alternatively, you can specify diag on the command line, for example during IPL, to force the device
driver to access the device (range) with the DIAG access method.

Procedure

Issue a command of this form:

echo <flag> > /sys/bus/ccw/devices/<device_bus_id>/use_diag

where <device_bus_id> identifies the DASD.

If the DIAG access method is not available and you set the use_diag attribute to 1, you cannot set the
device online (see “Setting a DASD online or offline” on page 112).

Note: When switching between an enabled and a disabled DIAG access method on FBA-type DASD, first
reinitialize the DASD, for example, with CMS format or by overwriting any previous content. Switching
without initialization might cause data-integrity problems.

For more details about DIAG see z/VM: CP Programming Services, SC24-6272.

Example

In this example, the DIAG access method is enabled for a DASD with device number 0xb100.

1. Ensure that the driver is loaded:

modprobe dasd_diag_mod

2. Identify the sysfs CCW-device directory for the device in question and change to that directory:

cd /sys/bus/ccw/devices/0.0.b100/

3. Ensure that the device is offline:

echo 0 > online

4. Enable the DIAG access method for this device by writing '1' to the use_diag sysfs attribute:

echo 1 > use_diag

5. Use the online attribute to set the device online:

echo 1 > online

Using extended error reporting for ECKD type DASD
Control the extended error reporting feature for individual ECKD type DASD through the eer_enabled
sysfs attribute. Use the character device of the extended error reporting module to obtain error records.

Before you begin

To use the extended error reporting feature, you need ECKD type DASD.

DASD device driver 111

About this task

The extended error reporting feature is turned off by default.

Procedure

To enable extended error reporting, issue a command of this form:

echo 1 > /sys/bus/ccw/devices/<device_bus_id>/eer_enabled

where /sys/bus/ccw/devices/<device_bus_id> represents the device in sysfs.

When it is enabled on a device, a specific set of errors generates records and might have further side
effects.

To disable extended error reporting, issue a command of this form:

echo 0 > /sys/bus/ccw/devices/<device_bus_id>/eer_enabled

What to do next

You can obtain error records for all DASD for which extended error reporting is enabled from the character
device of the extended error reporting module, /dev/dasd_eer. The device supports these file
operations:

open
Multiple processes can open the node concurrently. Each process that opens the node has access to
the records that are created from the time the node is opened. A process cannot access records that
were created before the process opened the node.

close
You can close the node as usual.

read
Blocking read and non-blocking read are supported. When a record is partially read and then purged,
the next read returns an I/O error -EIO.

poll
The poll operation is typically used with non-blocking read.

Setting a DASD online or offline
Use the chccwdev command or the online sysfs attribute of the device to set DASDs online or offline.

About this task

When Linux boots, it senses your DASD. Depending on your specification for the "dasd=" parameter, it
automatically sets devices online.

Procedure

Use the chccwdev command (“chccwdev - Set CCW device attributes” on page 470) to set a DASD online
or offline.

Alternatively, you can write 1 to the device's online attribute to set it online or 0 to set it offline. In
contrast to the sysfs attribute, the chccwdev command triggers a cio_settle for you and waits for the
cio_settle to complete.

Outstanding I/O requests are canceled when you set a device offline. To wait indefinitely for outstanding
I/O requests to complete before setting the device offline, use the chccwdev option --safeoffline or the
sysfs attribute safe_offline.

When you set a DASD offline, the deregistration process is synchronous, unless the device is
disconnected. For disconnected devices, the deregistration process is asynchronous.

112 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Examples

• To set a DASD with device bus-ID 0.0.b100 online, issue:

chccwdev -e 0.0.b100

or

echo 1 > /sys/bus/ccw/devices/0.0.b100/online

• To set a DASD with device bus-ID 0.0.b100 offline, issue:

chccwdev -d 0.0.b100

or

echo 0 > /sys/bus/ccw/devices/0.0.b100/online

• To complete outstanding I/O requests and then set a DASD with device bus-ID 0.0.4711 offline, issue:

chccwdev -s 0.0.4711

or

echo 1 > /sys/bus/ccw/devices/0.0.4711/safe_offline

If an outstanding I/O request is blocked, the command might wait forever. Reasons for blocked I/O
requests include reserved devices that can be released or disconnected devices that can be
reconnected.

1. Try to resolve the problem that blocks the I/O request and wait for the command to complete.
2. If you cannot resolve the problem, issue chccwdev -d to cancel the outstanding I/O requests. The

data is lost.

Dynamic attach and detach

You can dynamically attach devices to a running SUSE Linux Enterprise Server 12 SP4 for IBM Z instance,
for example, from z/VM.

When a DASD is attached, Linux attempts to initialize it according to the DASD device driver configuration.
You can then set the device online. You can automate setting dynamically attached devices online by
using CCW hotplug events (see “CCW hotplug events” on page 17).

Attention: Do not detach a device that is still being used by Linux. Detaching devices might cause
the system to hang or crash. Ensure that you unmount a device and set it offline before you detach
it.

See “Working with newly available devices” on page 10 to avoid errors when working with devices that
have become available to a running Linux instance.

Be careful to avoid errors when working with devices that have become available to a running Linux
instance.

Enabling and disabling logging
Use the dasd= module parameter or use the erplog sysfs attribute to enable or disable error recovery
processing (ERP) logging.

Procedure

You can enable and disable error recovery processing (ERP) logging on a running system. There are two
methods:

DASD device driver 113

• Use the dasd= parameter when you load the base module of the DASD device driver.

Example:

To define a device range (0.0.7000-0.0.7005) and enable logging, change the parameter line to
contain:

dasd=0.0.7000-0.0.7005(erplog)

• Use the sysfs attribute erplog to disable ERP-related logging.

Logging can be enabled for a specific device by writing 1 to the erplog attribute

Example:

echo 1 > /sys/bus/ccw/devices/<device_bus_id>/erplog

To disable logging, write 0 to the erplog attribute, for example:

Example:

echo 0 > /sys/bus/ccw/devices/<device_bus_id>/erplog

Enabling and disabling immediate failure of I/O requests
Prevent devices in mirror setups from being blocked while paths are unavailable by making I/O requests
fail immediately.

About this task

By default, a DASD that has lost all paths waits for one of the paths to recover. I/O requests are blocked
while the DASD is waiting.

If the DASD is part of a mirror setup, this blocking might cause the entire virtual device to be blocked. You
can use the failfast attribute to immediately return I/O requests as failed while no path to the device is
available.

Attention: Use this attribute with caution and only in setups where a failed I/O request can be
recovered outside the scope of a single DASD.

Procedure

Use one of these methods:

• You can enable immediate failure of I/O requests when you load the base module of the DASD device
driver.

Example:

To define a device range (0.0.7000-0.0.7005) and enable immediate failure of I/O requests specify:

dasd=0.0.7000-0.0.7005(failfast)

• You can use the sysfs attribute failfast of a DASD to enable or disable immediate failure of I/O
requests.

To enable immediate failure of I/O requests, write 1 to the failfast attribute.

Example:

echo 1 > /sys/bus/ccw/devices/<device_bus_id>/failfast

To disable immediate failure of I/O requests, write 0 to the failfast attribute.

Example:

114 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

echo 0 > /sys/bus/ccw/devices/<device_bus_id>/failfast

Setting the timeout for I/O requests
DASD I/O requests can time out at two levels in the software stack.

About this task
When the DASD device driver receives an I/O request from an application, it issues one or more low-level
I/O requests to the affected storage system. Both the initial I/O request from the application and the
resulting low-level requests to the storage system can time out. You set the timeout values through two
sysfs attributes of the DASD.
expires

specifies the maximum time, in seconds, that the DASD device driver waits for a response to a low-
level I/O request from a storage server.

The default for the maximum response time depends on the type of DASD:
ECKD

uses the default that is provided by the storage server.
FBA

300 s
DIAG

50 s

If the maximum response time is exceeded, the DASD device driver cancels the request. Depending
on your setup, the DASD device driver might then try the request again, possibly in combination with
other recovery actions.

timeout
specifies the time interval, in seconds, within which the DASD device driver must respond to an I/O
request from a software layer above it. If the specified time expires before the request is completed,
the DASD device driver cancels all related low-level I/O requests to storage systems and reports the
request as failed.

This setting is useful in setups where the software layer above the DASD device driver requires an
absolute upper limit for I/O requests.

A value of 0 means that there is no time limit. This value is the default.

Procedure

You can use the expires and timeout attributes of a DASD to change the timeout values for that DASD.
1. To find out the current timeout values, issue commands of this form:

cat /sys/bus/ccw/devices/<device_bus_id>/expires
cat /sys/bus/ccw/devices/<device_bus_id>/timeout

Example:

cat /sys/bus/ccw/devices/0.0.7008/expires
30
cat /sys/bus/ccw/devices/0.0.7008/timeout
0

In the example, a maximum response time of 30 seconds applies to the storage server for a DASD with
bus ID 0.0.7008. No total time limit is set for I/O requests to this DASD.

2. To set different timeout values, issue commands of this form:

echo <max_wait> > /sys/bus/ccw/devices/<device_bus_id>/expires
echo <total_max> > /sys/bus/ccw/devices/<device_bus_id>/timeout

DASD device driver 115

where:
<max_wait>

is the new maximum response time, in seconds, for the storage server. The value must be a
positive integer.

<total_max>
is the new maximum total time in seconds. The value must be a positive integer or 0. 0 disables
this timeout setting.

<device_bus_id>
is the device bus-ID of the DASD.

Example:

echo 60 > /sys/bus/ccw/devices/0.0.7008/expires
echo 120 > /sys/bus/ccw/devices/0.0.7008/timeout

This example sets timeout values for a DASD with bus ID 0.0.7008. The maximum response time for
the storage server is set to 60 seconds and the overall time limit for I/O requests is set to 120 seconds.

Working with DASD statistics in debugfs
Gather DASD statistics and display the data with the dasdstat command.

Before you begin

• debugfs is required, but is mounted by default. If you unmounted the file system, remount it before
continuing. See “debugfs” on page xi.

• Instead of accessing raw DASD performance data in debugfs, you can use the dasdstat command to
obtain more structured data (see “dasdstat - Display DASD performance statistics” on page 512).

About this task

The DASD performance data is contained in the following subdirectories of <mountpoint>/dasd, where
<mountpoint> is the mount point of debugfs:

• A directory global that represents all available DASDs taken together.
• For each DASD, one directory with the name of the DASD block device with which the DASD is known to

the DASD device driver (for example, dasda, dasdb, and dasdc).
• For each CCW device that corresponds to a DASD, a directory with the bus ID as the name.

Block devices that are not set up for PAV or HyperPAV map to exactly one CCW device and the
corresponding directories contain the same statistics.

With PAV or HyperPAV, a bus ID can represent a base device or an alias device. Each base device is
associated with a particular block device. The alias devices are not permanently associated with the
same block device. At any one time, a DASD block device is associated with one or more CCW devices.
Statistics that are based on bus ID, therefore, show more detail for PAV and HyperPAV setups.

Each of these directories contains a file statistics that you can use to perform these tasks:

• Start and stop data gathering.
• Reset statistics counters.
• Read statistics.

To control data gathering at the scope of a directory in <mountpoint>/dasd, issue a command of this
form:

echo <keyword> > <mountpoint>/dasd/<directory>/statistics

Where:

116 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

<directory>
is one of the directories in <mountpoint>/dasd.

<keyword>
specifies the action to be taken:
on

to start data gathering.
off

to stop data gathering.
reset

to reset the statistics counters.

To read performance data, issue a command of this form:

cat <mountpoint>/dasd/<directory>/statistics

Examples for gathering and reading DASD statistics in debugfs
Use the echo command to start and stop data gathering for individual devices or across all DASDs. Use
the cat command to access the raw performance data.

The following examples assume that debugfs is mounted at /sys/kernel/debug.

• To start data gathering for summary data across all available DASDs:

echo on > /sys/kernel/debug/dasd/global/statistics

• To stop data gathering for block device dasdb:

echo off > /sys/kernel/debug/dasd/dasdb/statistics

• To reset the counters for CCW device 0.0.b301:

echo reset > /sys/kernel/debug/dasd/0.0.b301/statistics

• To read performance data for dasda, assuming that the degbugfs mount point is /sys/kernel/
debug, issue:

cat /sys/kernel/debug/dasd/dasda/statistics
start_time 1283518578.085869197
total_requests 0
total_sectors 0
total_pav 0
total_hpf 0
histogram_sectors 0
histogram_io_times 0
histogram_io_times_weighted 0
histogram_time_build_to_ssch 0
histogram_time_ssch_to_irq 0
histogram_time_ssch_to_irq_weighted 0
0 0
histogram_time_irq_to_end 0
histogram_ccw_queue_length 0
total_read_requests 0
total_read_sectors 0
total_read_pav 0
total_read_hpf 0
histogram_read_sectors 0
histogram_read_times 0
histogram_read_time_build_to_ssch 0
0
histogram_read_time_ssch_to_irq 0
histogram_read_time_irq_to_end 0
histogram_read_ccw_queue_length 0

DASD device driver 117

Interpreting the data rows
The raw DASD performance data in the statistics directories in debugfs is organized into labeled data
rows.

This section explains the raw data in the individual data rows of the statistics. Use the dasdstat
command to obtain more structured data.

start_time
is the UNIX epoch time stamp when data gathering was started or when the counters were last reset.

Tip: Use the date tool to convert the time stamp to a more readily human-readable format. See the
date man page for details.

Single counters
have a single integer as the statistics data. All rows with labels that begin with total_ are of this data
type.

The following rows show data for the sum of all requests, read and write:
total_requests

is the number of requests that have been processed.
total_sectors

is the sum of the sizes of all requests, in units of 512-byte sectors.
total_pav

is the number of requests that were processed through a PAV alias device.
total_hpf

is the number of requests that used High Performance FICON.

The following rows show data for read requests only:
total_read_requests

is the number of read requests that have been processed.
total_read_sectors

is the sum of the sizes of all read requests, in units of 512-byte sectors.
total_read_pav

is the number of read requests that were processed through a PAV alias device.
total_read_hpf

is the number of read requests that used High Performance FICON.

Linear histograms
have a series of 32 integers as the statistics data. The integers represent a histogram, with a linear
scale, of the number of requests in the request queue each time a request has been queued. The first
integer shows how often the request queue contained zero requests, the second integer shows how
often the queue contained one request, and the n-th value shows how often the queue contained n-1
requests.
histogram_ccw_queue_length

is the histogram data for all requests, read and write.
histogram_read_ccw_queue_length

is the histogram data for read requests only.
Logarithmic histograms

have a series of 32 integers as the statistics data. The integers represent a histogram with a
logarithmic scale:

• The first integer always represents all measures of fewer than 4 units
• The second integer represents measures of 4 or more but less than 8 units
• The third integer represents measures of 8 or more but less than 16 units
• The n-th integer (1 < n < 32) represents measures of 2n or more but less than 2n+1 units
• The 32nd integer represents measures of 232 (= 4G = 4,294,967,296) units or more.

118 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

The following rows show data for the sum of all requests, read and write:
histogram_sectors

is the histogram data for request sizes. A unit is a 512-byte sector.
histogram_io_times

is the histogram data for the total time that is needed from creating the cqr to its completion in the
DASD device driver and return to the block layer. A unit is a microsecond.

histogram_io_times_weighted
is the histogram data of the total time, as measured for histogram_io_times, devided by the
requests size in sectors. A unit is a microsecond per sector.

This metric is deprecated and there is no corresponding histogram data for read requests.

histogram_time_build_to_ssch
is the histogram data of the time that is needed from creating the cqr to submitting the request to
the subchannel. A unit is a microsecond.

histogram_time_ssch_to_irq
is the histogram data of the time that is needed from submitting the request to the subchannel
until an interrupt indicates that the request has been completed. A unit is a microsecond.

histogram_time_ssch_to_irq_weighted
is the histogram data of the time that is needed from submitting the request to the subchannel
until an interrupt indicates that the request has been completed, divided by the request size in
512-byte sectors. A unit is a microsecond per sector.

This metric is deprecated and there is no corresponding histogram data for read requests.

histogram_time_irq_to_end
is the histogram data of the time that is needed from return of the request from the channel
subsystem, until the request is returned to the block layer. A unit is a microsecond.

The following rows show data for read requests only:
histogram_read_sectors

is the histogram data for read request sizes. A unit is a 512-byte sector.
histogram_read_io_times

is the histogram data, for read requests, for the total time that is needed from creating the cqr to
its completion in the DASD device driver and return to the block layer. A unit is a microsecond.

histogram_read_time_build_to_ssch
is the histogram data, for read requests, of the time that is needed from creating the cqr to
submitting the request to the subchannel. A unit is a microsecond.

histogram_read_time_ssch_to_irq
is the histogram data, for read requests, of the time that is needed from submitting the request to
the subchannel until an interrupt indicates that the request has been completed. A unit is a
microsecond.

histogram_read_time_irq_to_end
is the histogram data, for read requests, of the time that is needed from return of the request from
the channel subsystem, until the request is returned to the blocklayer. A unit is a microsecond.

Scenario: Verifying that PAV and HPF are used
Use the dasdstat command to display DASD performance statistics, including statistics about Parallel
Access Volume (PAV) and High Performance FICON (HPF).

Procedure

1. Enable DASD statistics for the device of interest.

Example:

DASD device driver 119

dasdstat -e dasdc
enable statistic "/sys/kernel/debug/dasd/dasdc/statistics"

2. Assure that I/O requests are directed to the device.

Hints:

• Access a partition, rather than the whole device, to avoid directing the I/O request towards the first 2
tracks of a CDL formatted DASD. Requests to the first 2 tracks of a CDL formatted DASD are
exceptional in that they never use High Performance FICON.

• Assure that a significant I/O load is applied to the device. PAV aliases are used only if multiple I/O
requests for the device are processed simultaneously.

Example:

dd if=/dev/dasdc1 of=/dev/null bs=4k count=256

3. Look for PAV and HPF in the statistics.

Example:

dasdstat dasdc
--
statistics data for statistic: dasdc
start time of data collection: Fri Dec 11 14:22:18 CET 2015

7 dasd I/O requests
with 4000 sectors(512B each)
3 requests used a PAV alias device
7 requests used HPF

In the example, dasdc uses both Parallel Access Volume and High Performance FICON.

Accessing full ECKD tracks
In raw-track access mode, the DASD device driver accesses full ECKD tracks, including record zero and
the count and key data fields.

Before you begin

• This section applies to ECKD type DASD only.
• The DASD has to be offline when you change the access mode.
• The DIAG access method must not be enabled for the device.

About this task

With this mode, Linux can access an ECKD device regardless of the track layout. In particular, the device
does not need to be formatted for Linux.

For example, with raw-track access mode Linux can create a backup copy of any ECKD device. Full-track
access can also enable a special program that runs on Linux to access and process data on an ECKD
device that is not formatted for Linux.

By default, the DASD device driver accesses only the data fields of ECKD devices. In default access mode,
you can work with partitions, file systems, and files in the file systems on the DASD.

When using a DASD in raw-track access mode be aware that:

• In memory, each track is represented by 64 KB of data, even if the track occupies less physical disk
space. Therefore, a disk in raw-track access mode appears bigger than in default mode.

• Programs must read or write data in multiples of complete 64 KB tracks. The minimum is a single track.
The maximum is eight tracks by default but can be extended to up to 16 tracks.

The maximum number of tracks depends on the maximum number of sectors as specified in the
max_sectors_kb sysfs attribute of the DASD. This attribute is located in the block device branch of

120 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

sysfs at /sys/block/dasd<x>/queue/max_sectors_kb. In the path, dasd<x> is the device name
that is assigned by the DASD device driver.

To extend the maximum beyond eight tracks, set the max_sectors_kb to the maximum amount of
data to be processed in a single read or write operation. For example, to extend the maximum to reading
or writing 16 tracks at a time, set max_sectors_kb to 1024 (16 x 64).

• Programs must write only valid ECKD tracks of 64 KB.
• Programs must use direct I/O to prevent the Linux block layer from splitting tracks into fragments. Open

the block device with option O_DIRECT or work with programs that use direct I/O.

For example, the options iflag=direct and oflag=direct cause dd to use direct I/O. When using
dd, also specify the block size with the bs= option. The block size determines the number of tracks that
are processed in a single I/O operation. The block size must be a multiple of 64 KB and can be up to
1024 KB. Specifying a larger block size often results in better performance. If you receive disk image
data from a pipe, also use the option iflag=fullblock to ensure that full blocks are written to the
DASD device.

Tools cannot directly work with partitions, file systems, or files within a file system. For example, fdasd
and dasdfmt cannot be used.

Procedure

To change the access mode, issue a command of this form:

echo <switch> > /sys/bus/ccw/devices/<device_bus_id>/raw_track_access

where:
<switch>

is 1 to activate raw data access and 0 to deactivate raw data access.
<device_bus_id>

identifies the DASD.

Example

The following example creates a backup of a DASD 0.0.7009 on a DASD 0.0.70a1.

The initial commands ensure that both devices are offline and that the DIAG access method is not
enabled for either of them. The subsequent commands activate the raw-track access mode for the two
devices and set them both online. The lsdasd command that follows shows the mapping between device
bus-IDs and device names.

The dd command for the copy operation specifies direct I/O for both the input and output device and the
block size of 1024 KB. After the copy operation is completed, both devices are set offline. The access
mode for the original device then is set back to the default and the device is set back online.

DASD device driver 121

#cat /sys/bus/ccw/devices/0.0.7009/online
1
chccwdev -d 0.0.7009
cat /sys/bus/ccw/devices/0.0.7009/use_diag
0
cat /sys/bus/ccw/devices/0.0.70a1/online
0
cat /sys/bus/ccw/devices/0.0.70a1/use_diag
0
echo 1 > /sys/bus/ccw/devices/0.0.7009/raw_track_access
echo 1 > /sys/bus/ccw/devices/0.0.70a1/raw_track_access
chccwdev -e 0.0.7009,0.0.70a1
lsdasd 0.0.7009 0.0.70a1
Bus-ID Status Name Device Type BlkSz Size Blocks
==
0.0.7009 active dasdf 94:20 ECKD 4096 7043MB 1803060
0.0.70a1 active dasdj 94:36 ECKD 4096 7043MB 1803060
echo 1024 > /sys/block/dasdf/queue/max_sectors_kb
echo 1024 > /sys/block/dasdj/queue/max_sectors_kb
dd if=/dev/dasdf of=/dev/dasdj bs=1024k iflag=direct oflag=direct
chccwdev -d 0.0.7009,0.0.70a1
echo 0 > /sys/bus/ccw/devices/0.0.7009/raw_track_access
chccwdev -e 0.0.7009

Handling lost device reservations
A DASD reservation by your Linux instance can be lost if another system unconditionally reserves this
DASD.

About this task

This other system then has exclusive I/O access to the DASD for the duration of the unconditional
reservation. Such unconditional reservations can be useful for handling error situations where:

• Your Linux instance cannot gracefully release the DASD.
• Another system requires access to the DASD, for example, to perform recovery actions.

After the DASD is released by the other system, your Linux instance might process pending I/O requests
and write faulty data to the DASD. How to prevent pending I/O requests from being processed depends on
the reservation policy. There are two reservation policies:
ignore

All I/O operations for the DASD are blocked until the DASD is released by the second system. When
using this policy, reboot your Linux instance before the other system releases the DASD. This policy is
the default.

fail
All I/O operations are returned as failed until the DASD is set offline or until the reservation state is
reset. When using this policy, set the DASD offline and back online after the problem has been
resolved. See “Reading and resetting the reservation state” on page 123 about resetting the
reservation state to resume operations.

Procedure

Set the reservation policy with a command of this form:

echo <policy> > /sys/bus/ccw/devices/<device_bus_id>/reservation_policy

where:
<device_bus_id>

specifies the DASD.
<policy>

is one of the available policies, ignore or fail.

122 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Examples

• The command of this example sets the reservation policy for a DASD with bus ID 0.0.7009 to fail.

echo fail > /sys/bus/ccw/devices/0.0.7009/reservation_policy

• This example shows a small scenario. The first two commands confirm that the reservation policy of the
DASD is fail and that the reservation has been lost to another system. Assuming that the error that
had occurred has already been resolved and that the other system has released the DASD, operations
with the DASD are resumed by setting it offline and back online.

cat /sys/bus/ccw/devices/0.0.7009/reservation_policy
fail
cat /sys/bus/ccw/devices/0.0.7009/last_known_reservation_state
lost
chccwdev -d 0.0.7009
chccwdev -e 0.0.7009

Reading and resetting the reservation state
How the DASD device driver handles I/O requests depends on the last_known_reservation_state
sysfs attribute of the DASD.

About this task

The last_known_reservation_state attribute reflects the reservation state as held by the DASD
device driver and can differ from the actual reservation state. Use the tunedasd -Q command to find out
the actual reservation state. The last_known_reservation_state sysfs attribute can have the
following values:

none
The DASD device driver has no information about the device reservation state. I/O requests are
processed as usual. If the DASD is reserved by another system, the I/O requests remain in the queue
until they time out, or until the reservation is released.

reserved
The DASD device driver holds a valid reservation for the DASD and I/O requests are processed as
usual. The DASD device driver changes this state if notified that the DASD is no longer reserved to this
system. The new state depends on the reservation policy (see “Handling lost device reservations” on
page 122).
ignore

The state is changed to none.
fail

The state is changed to lost.
lost

The DASD device driver had reserved the DASD, but subsequently another system has unconditionally
reserved the DASD (see “Handling lost device reservations” on page 122). The device driver
processes only requests that query the actual device reservation state. All other I/O requests for the
device are returned as failed.

When the error that led another system to unconditionally reserve the DASD is resolved and the DASD
has been released by this other system there are two methods for resuming operations:

• Setting the DASD offline and back online.
• Resetting the reservation state of the DASD.

Attention: Do not resume operations by resetting the reservation state unless your system
setup maintains data integrity on the DASD despite:

• The I/O errors that are caused by the unconditional reservation
• Any changes to the DASD through the other system

DASD device driver 123

You reset the reservation state by writing reset to the last_known_reservation_state sysfs
attribute of the DASD. Resetting is possible only for the fail reservation policy (see “Handling lost
device reservations” on page 122) and only while the value of the
last_known_reservation_state attribute is lost.

To find out the reservation state of a DASD issue a command of this form:

cat /sys/bus/ccw/devices/<device_bus_id>/last_known_reservation_state

where <device_bus_id> specifies the DASD.

Example

The command in this example queries the reservation state of a DASD with bus ID 0.0.7009.

cat /sys/bus/ccw/devices/0.0.7009/last_known_reservation_state
reserved

Setting defective channel paths offline automatically
Control the removal of a defective channel path through the path_threshold and path_interval
sysfs attributes. If a channel path does not work correctly, it is removed from normal operation if other
channel paths are available.

About this task

A channel control check (CCC) is caused by any machine malfunction that affects channel-subsystem
controls. An interface control check (IFCC) indicates that an incorrect signal occurred on the channel path.
Usually, these errors can be recovered automatically.

However, if IFCC or CCC errors occur frequently on a particular channel path, these errors indicate a
failure of this channel path. Such a failure leads to performance degradation due to error recovery
processing. If other channel paths are available, it might help the overall device performance to exclude
the malfunctioning channel path from I/O.

The channel-path error recovery feature applies to devices for which multiple channel paths are
operational. By default, the error threshold is 256 and the reset interval is 300 s (5 minutes). Accordingly,
a channel path is set offline when the error count has reached 256. If 300 seconds elapse without an
error the error count is reset to 0.

You can set different values through the path_threshold and path_interval sysfs attributes of the
device.

Procedure

To exclude a channel path from I/O after a certain number of IFCC or CCC errors within a certain time
frame, specify both path_threshold and path_interval.
• To specify the number of errors that must occur before the channel path is taken offline, issue a

command of this form:

echo <no_of_errors> > /sys/bus/ccw/devices/<device_bus_id>/path_threshold

where /sys/bus/ccw/devices/<device_bus_id> represents the device in sysfs and
<no_of_errors> is an integer that specifies the error threshold.

To disable detecting defective paths, and to suppress messages about IFCC or CCC errors, set
<no_of_errors> to 0.

• To specify the time that must elapse without errors for the counter to reset, issue a command of this
form:

124 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

echo <time> > /sys/bus/ccw/devices/<device_bus_id>/path_interval

where <time> is the reset interval in seconds.

Examples

Setting 512 for the error threshold and 6 minutes (360 s) for the reset interval:

echo 512 > /sys/bus/ccw/devices/0.0.4711/path_threshold
echo 360 > /sys/bus/ccw/devices/0.0.4711/path_interval

According to this example, a channel path is automatically removed if a count of 512 IFCCs or CCCs is
reached. Any 6-minute interval without a IFCCs or CCCs causes the counter to be reset to zero.

What to do next

After you repair the faulty channel path, set it online again by using the tunedasd command with the -p
option. See “tunedasd - Adjust low-level DASD settings” on page 621 for details.

Querying the HPF setting of a channel path
Query the High Performance FICON (HPF) state of a channel path through the hpf sysfs attribute. The
HPF function can be lost if the device cannot provide the function, or if the channel path is not able to do
HPF.

About this task

The HPF channel-path is deactivated if an HPF error occurs indicating that HPF is not available if there are
other channel paths available. If no other channel paths are available, the path remains operational with
HPF deactivated.

If the device loses HPF functionality, HPF is disabled for all channel paths defined for the device.

Procedure

To query the HPF function for a channel path, issue a command of this form:

lsdasd -l <device_bus_id>

Alternatively, you can query the sysfs attribute directly:

cat /sys/bus/ccw/devices/<device_bus_id>/hpf

where /sys/bus/ccw/devices/<device_bus_id> represents the device in sysfs.

Example
To query the availability of HPF for a device 0.0.4711, issue:

lsdasd -l 0.0.4711

0.0.4711/dasdc/94:8
 status: active
 type: ECKD

 hpf: 1

This example indicates that HPF is enabled for the device.

Alternatively, read from the hpf sysfs attribute:

DASD device driver 125

cat /sys/bus/ccw/devices/0.0.4712/hpf
0

This example indicates that HPF is disabled for device 0.0.4712.

What to do next

You can now reset the paths to the device. You can use the tunedasd command to reset all or one
channel path.

To re-validate all paths for one device and if possible reset HPF:

tunedasd --path_reset_all /dev/dasdc
Resetting all chpids for device </dev/dasdc>...
Done.

See “tunedasd - Adjust low-level DASD settings” on page 621 for details.

You can also use sysfs to reset a path. sysfs expects a path mask. For example to reset CHPID 44, you can
use tunedasd:

tunedasd -p 44 /dev/dasde

This would be the same as specifying the following in sysfs:

echo 08 > /sys/bus/ccw/devices/0.0.9330/path_reset

Both commands will reset CHPID 44 (path mask 08).

Checking for access by other operating system instances
Query if a DASD volume is online to another operating system instance by reading the
host_access_count attribute.

Before you begin

To query the number of operating system instances that use the DASD device, the DASD must be online.

About this task

Storage servers that support this feature know about the online status of the device on all attached
operating system instances in an LPAR (so called hosts). If a DASD device is set online it might potentially
be used on another operating system instance. This information can help to reduce the chance for
outages or possible data corruption due to concurrent access to DASD volumes from different operating
system instances.

Procedure

To check whether a DASD device is being used by other operating system instances, issue a command of
this form:

cat /sys/bus/ccw/devices/<device_bus_id>/host_access_count

where /sys/bus/ccw/devices/<device_bus_id> represents the device in sysfs.

For example, to query how many operating system instances have access to a device 0.0.bf45, issue:

cat /sys/bus/ccw/devices/0.0.bf45/host_access_count
13

126 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

In the example, 13 operating system instances have access to the device, including the current Linux
instance.

What to do next

To see details for each host connected to the DASD device, use the lsdasd command with the --host-
access-list option. For more information and an example, see “lsdasd - List DASD devices” on page 552.

Displaying DASD information
Use tools to display information about your DASDs, or read the attributes of the devices in sysfs.

About this task

There are several methods to display DASD information:

• Use lsdasd -l (see “lsdasd - List DASD devices” on page 552) to display summary information about
the device settings and the device geometry of multiple DASDs.

• Use dasdview (see “dasdview - Display DASD structure” on page 514) to display details about the
contents of a particular DASD.

• Read information about a particular DASD from sysfs, as described in this section.

The sysfs representation of a DASD is a directory of the form /sys/bus/ccw/devices/
<device_bus_id>, where <device_bus_id> is the bus ID of the DASD. This sysfs directory contains a
number of attributes with information about the DASD.

Table 19: Attributes with DASD information

Attribute Explanation

alias 1 if the DASD is a parallel access volume (PAV) alias device. 0 if the DASD is a
PAV base device or has not been set up as a PAV device.

For an example of how to use PAV see How to Improve Performance with PAV,
SC33-8414 on developerWorks at
www.ibm.com/developerworks/linux/linux390/documentation_suse.html

This attribute is read-only.

discipline Indicates the base discipline, ECKD or FBA, that is used to access the DASD. If
DIAG is enabled, this attribute might read DIAG instead of the base discipline.

This attribute is read-only.

eer_enabled 1 if the DASD is enabled for extended error reporting, 0 if it is not enabled (see
“Using extended error reporting for ECKD type DASD” on page 111).

erplog 1 if error recovery processing (ERP) logging is enabled, 0 if ERP logging is not
enabled (see “Enabling and disabling logging” on page 113).

expires Indicates the time, in seconds, that the DASD device driver waits for a
response to an I/O request from a storage server. If this time expires, the
device driver considers a request as failed and cancels it (see “Setting the
timeout for I/O requests” on page 115).

failfast 1 if I/O operations are returned as failed immediately when the last path to the
DASD is lost. 0 if a wait period for a path to return expires before an I/O
operation is returned as failed. (see “Enabling and disabling immediate failure
of I/O requests” on page 114).

host_access_count Shows how many operating system instances have access to the device. See
“Checking for access by other operating system instances” on page 126.

DASD device driver 127

http://www.ibm.com/developerworks/linux/linux390/documentation_suse.html

Table 19: Attributes with DASD information (continued)

Attribute Explanation

hpf 1 if High Performance FICON is available for the device. See “Querying the HPF
setting of a channel path” on page 125.

last_known_reservation_state The reservation state as held by the DASD device driver. Values can be:
none

The DASD device driver has no information about the device reservation
state.

reserved
The DASD device driver holds a valid reservation for the DASD.

lost
The DASD device driver had reserved the device, but this reservation has
been lost to another system.

See “Reading and resetting the reservation state” on page 123 for details.

online 1 if the DASD is online, 0 if it is offline (see “Setting a DASD online or offline” on
page 112).

path_autodisable
path_interval
path_threshold

Control the automatic removal of defective channel path (see “Setting
defective channel paths offline automatically” on page 124)

raw_track_access 1 if the DASD is in raw-track access mode, 0 if it is in default access mode (see
“Accessing full ECKD tracks” on page 120).

readonly 1 if the DASD is read-only, 0 if it can be written to. This attribute is a device
driver setting and does not reflect any restrictions that are imposed by the
device itself. This attribute is ignored for PAV alias devices.

reservation_policy Shows the reservation policy of the DASD. Possible values are ignore and
fail. See “Handling lost device reservations” on page 122 for details.

status Reflects the internal state of a DASD device. Values can be:
unknown

Device detection has not started yet.
new

Detection of basic device attributes is in progress.
detected

Detection of basic device attributes has finished.
basic

The device is ready for detecting the disk layout. Low-level tools can set a
device to this state when changing the disk layout, for example, when
formatting the device.

unformatted
The disk layout detection found no valid disk layout. The device is ready for
use with low-level tools like dasdfmt.

ready
The device is in an intermediate state.

online
The device is ready for use.

128 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Table 19: Attributes with DASD information (continued)

Attribute Explanation

timeout Indicates the time, in seconds, within which the DASD device driver must
respond to an I/O request from a software layer above it. If the specified time
expires before the request is completed, the DASD device driver cancels all
related low-level I/O requests to storage systems and reports the request as
failed (see “Setting the timeout for I/O requests” on page 115).

uid A device identifier of the form
<vendor>.<serial>.<subsystem_id>.<unit_address>.<minidisk_identifier>
where
<vendor>

is the specification from the vendor attribute.
<serial>

is the serial number of the storage system.
<subsystem_id>

is the ID of the logical subsystem to which the DASD belongs on the
storage system.

<unit_address>
is the address that is used within the storage system to identify the DASD.

<minidisk_identifier>
is an identifier that the z/VM system assigns to distinguish between
minidisks on the DASD. This part of the uid is only present for Linux on
z/VM and if the z/VM version and service level support this identifier.

This attribute is read-only.

use_diag 1 if the DIAG access method is enabled, 0 if the DIAG access method is not
enabled (see “Enabling the DASD device driver to use the DIAG access
method” on page 110). Do not enable the DIAG access method is for PAV alias
devices.

vendor Identifies the manufacturer of the storage system that contains the DASD.

This attribute is read-only.

There are some more attributes that are common to all CCW devices (see “Device attributes” on page 9).

Procedure

Issue a command of this form to read an attribute:

cat /sys/bus/ccw/devices/<device_bus_id>/<attribute>

where <attribute> is one of the attributes of Table 19 on page 127.

Example

The following sequence of commands reads the attributes for a DASD with a device bus-ID 0.0.b100:

DASD device driver 129

cat /sys/bus/ccw/devices/0.0.b100/alias
0
cat /sys/bus/ccw/devices/0.0.b100/discipline
ECKD
cat /sys/bus/ccw/devices/0.0.b100/eer_enabled
0
cat /sys/bus/ccw/devices/0.0.b100/erplog
0
cat /sys/bus/ccw/devices/0.0.b100/expires
30
cat /sys/bus/ccw/devices/0.0.b100/failfast
0
cat /sys/bus/ccw/devices/0.0.b100/host_access_count
1
cat /sys/bus/ccw/devices/0.0.b100/hpf
1
cat /sys/bus/ccw/devices/0.0.b100/last_known_reservation_state
reserved
cat /sys/bus/ccw/devices/0.0.b100/online
1
cat /sys/bus/ccw/devices/0.0.b100/path_autodisable
1
cat /sys/bus/ccw/devices/0.0.b100/path_interval
300
cat /sys/bus/ccw/devices/0.0.b100/path_threshold
256
cat /sys/bus/ccw/devices/0.0.b100/raw_track_access
0
cat /sys/bus/ccw/devices/0.0.b100/readonly
1
cat /sys/bus/ccw/devices/0.0.b100/reservation_policy
ignore
cat /sys/bus/ccw/devices/0.0.b100/status
online
cat /sys/bus/ccw/devices/0.0.b100/timeout
120
cat /sys/bus/ccw/devices/0.0.b100/uid
IBM.75000000092461.e900.8a
cat /sys/bus/ccw/devices/0.0.b100/use_diag
1
cat /sys/bus/ccw/devices/0.0.b100/vendor
IBM

130 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 10. SCSI-over-Fibre Channel device driver
The SCSI-over-Fibre Channel device driver for Linux on Z (zfcp device driver) supports virtual QDIO-based
SCSI-over-Fibre Channel adapters (FCP devices) and attached SCSI devices (LUNs).

IBM Z adapter hardware typically provides multiple channels, with one port each. You can configure a
channel to use the Fibre Channel Protocol (FCP). This FCP channel is then virtualized into multiple FCP
devices. Thus, an FCP device is a virtual QDIO-based SCSI-over-Fibre Channel adapter with a single port.

A single physical port supports multiple FCP devices. Using N_Port ID virtualization (NPIV) you can define
virtual ports and establish a one-to-one mapping between your FCP devices and virtual ports (see
“N_Port ID Virtualization for FCP channels” on page 135).

On Linux, an FCP device is represented by a CCW device that is listed under /sys/bus/ccw/drivers/
zfcp. Do not confuse FCP devices with SCSI devices. A SCSI device is identified by a LUN.

Features
The zfcp device driver supports a wide range of SCSI devices, various hardware adapters, specific
topologies, and specific features that depend on the Z hardware.

• Linux on Z can use various SAN-attached SCSI device types, including SCSI disks, tapes, CD-ROMs, and
DVDs. For a list of supported SCSI devices, see

www.ibm.com/systems/z/connectivity

• SAN access through the following hardware adapters:

– FICON Express16S+ (as of z14)
– FICON Express16S (as of z13)
– FICON Express8S
– FICON Express8
– FICON Express4

You can order hardware adapters as features for mainframe systems.

See Fibre Channel Protocol for Linux and z/VM on IBM System z, SG24-7266 for more details about using
FCP with Linux on Z.

• The zfcp device driver supports switched fabric and point-to-point topologies.
• As of zEnterprise®, the zfcp device driver supports end-to-end data consistency checking.
• As of FICON Express8S, the zfcp device driver supports the data router hardware feature to improve

performance by reducing the path length.

For information about SCSI-3, the Fibre Channel Protocol, and fiber channel related information, see
www.t10.org and www.t11.org

What you should know about zfcp
The zfcp device driver is a low-level driver or host-bus adapter driver that supplements the Linux SCSI
stack.

Figure 27 on page 132 illustrates how the device drivers work together.

© Copyright IBM Corp. 2000, 2019 131

http://www.ibm.com/systems/z/connectivity
http://www.t10.org
http://www.t11.org

Figure 27: Device drivers that support the FCP environment

sysfs structures for FCP devices and SCSI devices
FCP devices are CCW devices. In the sysfs device driver view, remote target ports with their LUNs are
nested below the FCP devices.

When Linux is booted, it senses the available FCP devices and creates directories of the form:

/sys/bus/ccw/drivers/zfcp/<device_bus_id>

where <device_bus_id> is the device bus-ID that corresponds to an FCP device. You use the attributes in
this directory to work with the FCP device.

Example: /sys/bus/ccw/drivers/zfcp/0.0.3d0c

The zfcp device driver automatically adds port information when the FCP device is set online and when
remote storage ports (target ports) are added. Each added target port extends this structure with a
directory of the form:

/sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>

where <wwpn> is the worldwide port name (WWPN) of the target port. You use the attributes of this
directory to work with the port.

Example: /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562

With NPIV-enabled FCP devices, SUSE Linux Enterprise Server 12 SP4 uses automatic LUN scanning by
default. The zfcp sysfs branch ends with the target port entries. For FCP devices that are not NPIV-
enabled, or if automatic LUN scanning is disabled, see “Configuring SCSI devices” on page 151.

Information about zfcp objects and their associated objects in the SCSI stack is distributed over the sysfs
tree. To ease the burden of collecting information about zfcp devices, ports, units, and their associated
SCSI stack objects, a command that is called lszfcp is provided with s390-tools. See “lszfcp - List zfcp
devices” on page 577 for more details about the command.

See also “Mapping the representations of a SCSI device in sysfs” on page 153.

132 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

SCSI device nodes
User space programs access SCSI devices through device nodes.

SCSI device names are assigned in the order in which the devices are detected. In a typical SAN
environment, this can mean a seemingly arbitrary mapping of names to actual devices that can change
between boots. Therefore, using standard device nodes of the form /dev/<device_name> where
<device_name> is the device name that the SCSI stack assigns to a device, can be a challenge.

SUSE Linux Enterprise Server 12 SP4 provides udev to create device nodes for you. Use the device nodes
to identify the corresponding actual device.

Device nodes that are based on device names
udev creates device nodes that match the device names that are used by the kernel. These standard
device nodes have the form /dev/<name>.

The examples in this section use standard device nodes as assigned by the SCSI stack. These nodes have
the form /dev/sd<x> for entire disks and /dev/sd<x><n> for partitions. In these node names <x>
represents one or more letters and <n> is an integer. See Documentation/devices.txt in the Linux
source tree for more information about the SCSI device naming scheme.

To help you identify a particular device, udev creates additional device nodes that are based on the
device's bus ID, the device label, and information about the file system on the device. The file system
information can be a universally unique identifier (UUID) and, if available, the file system label.

Device nodes that are based on bus IDs
udev creates device nodes of the form

/dev/disk/by-path/ccw-<device_bus_id>-fc-<wwpn>-lun-<lun>

for whole SCSI device and

/dev/disk/by-path/ccw-<device_bus_id>-fc-<wwpn>-lun-<lun>-part<n>

for the <n>th partition, where <wwpn> is the worldwide port number of the target port and <lun> is
the logical unit number that represents the target SCSI device.

Note: The format of these udev-created device nodes has changed and now matches the common
code format. Device nodes of the prior form, ccw-<device_bus_id>-zfcp-<wwpn>:<lun> or
ccw-<device_bus_id>-zfcp-<wwpn>:<lun>-part<n>, are also created for compatibility
reasons.

Device nodes that are based on file system information
udev creates device nodes of the form

/dev/disk/by-uuid/<uuid>

where <uuid> is a unique file-system identifier (UUID) for the file system in a partition.

If a file system label was assigned, udev also creates a node of the form:

/dev/disk/by-label/<label>

There are no device nodes for the whole SCSI device that are based on file system information.

Additional device nodes
/dev/disk/by-id contains additional device nodes for the SCSI device and partitions, that are all
based on a unique SCSI identifier generated by querying the device.

Example

For a SCSI device that is assigned the device name sda, has two partitions labeled boot and SWAP-sda2
respectively, a device bus-ID 0.0.3c1b (device number 0x3c1b), and a UUID
7eaf9c95-55ac-4e5e-8f18-065b313e63ca for the first and b4a818c8-747c-40a2-bfa2-acaa3ef70ead
for the second partition, udev creates the following device nodes:

SCSI-over-Fibre Channel device driver 133

For the whole SCSI device:

• /dev/sda (standard device node according to the SCSI device naming scheme)
• /dev/disk/by-path/ccw-0.0.3c1b-fc-0x500507630300c562-lun-0x401040ea00000000
• /dev/disk/by-id/scsi-36005076303ffc56200000000000010ea
• /dev/disk/by-id/wwn-0x6005076303ffc56200000000000010ea

For the first partition:

• /dev/sda1 (standard device node according to the SCSI device naming scheme)
• /dev/disk/by-path/ccw-0.0.3c1b-fc-0x500507630300c562-lun-0x401040ea00000000-
part1

• /dev/disk/by-uuid/7eaf9c95-55ac-4e5e-8f18-065b313e63ca
• /dev/disk/by-label/boot
• /dev/disk/by-id/scsi-36005076303ffc56200000000000010ea-part1
• /dev/disk/by-id/wwn-0x6005076303ffc56200000000000010ea-part1

For the second partition:

• /dev/sda2 (standard device node according to the SCSI device naming scheme)
• /dev/disk/by-path/ccw-0.0.3c1b-fc-0x500507630300c562-lun-0x401040ea00000000-
part2

• /dev/disk/by-uuid/b4a818c8-747c-40a2-bfa2-acaa3ef70ead
• /dev/disk/by-label/SWAP-sda2
• /dev/disk/by-id/scsi-36005076303ffc56200000000000010ea-part2
• /dev/disk/by-id/wwn-0x6005076303ffc56200000000000010ea-part2

Device nodes by-uuid use a unique file-system identifier that does not relate to the partition number.

Multipath

Users of SCSI-over-Fibre Channel attached devices should always consider setting up and using
redundant paths through their Fibre Channel storage area network.

Path redundancy improves the availability of the LUNs. In Linux, you can set up path redundancy with the
device-mapper multipath tool. For information about multipath devices and multipath partitions, see the
chapter about multipathing in How to use FC-attached SCSI devices with Linux on z Systems, SC33-8413.

Partitioning a SCSI device
You can partition SCSI devices that are attached through an FCP channel in the same way that you can
partition SCSI attached devices on other platforms.

About this task

Use the fdisk command to partition a SCSI disk, not fdasd.

udev creates device nodes for partitions automatically. For the SCSI disk /dev/sda, the partition device
nodes are called /dev/sda1, /dev/sda2, /dev/sda3, and so on.

Example

To partition a SCSI disk with a device node /dev/sda issue:

fdisk /dev/sda

134 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

zfcp HBA API (FC-HBA) support
The zfcp host bus adapter API (HBA API) provides an interface for HBA management clients that run on
IBM Z.

As shown in Figure 28 on page 135, the zfcp HBA API support includes a user space library.

Figure 28: zfcp HBA API support modules

The zFCP HBA API library is part of SUSE Linux Enterprise Server 12 SP4. It is available as software
package libzfcphbaapi0, see “Getting ready to run applications” on page 170.

The default method in SUSE Linux Enterprise Server 12 SP4 is for applications to use the zFCP HBA API
library. If you develop applications yourself, see “Developing applications” on page 169.

In a Linux on Z environment, HBAs are usually virtualized and are shown as FCP devices.

For information about setting up the HBA API support, see “zfcp HBA API support” on page 169.

N_Port ID Virtualization for FCP channels
Through N_Port ID Virtualization (NPIV), the sole port of an FCP channel appears as multiple, distinct
ports with separate port identification.

NPIV support can be configured on the SE per CHPID and LPAR for an FCP channel. The zfcp device driver
supports NPIV error messages and adapter attributes. See “Displaying FCP channel and device
information” on page 139 for the Fibre Channel adapter attributes.

For more information, see the connectivity page at www.ibm.com/systems/z/connectivity.

See also the chapter on NPIV in How to use FC-attached SCSI devices with Linux on z Systems,
SC33-8413.

Setting up the zfcp device driver
SUSE Linux Enterprise Server 12 SP4 loads the zfcp device driver for you when an FCP channel becomes
available. Use YaST to configure the zfcp device driver.

You have the following options for configuring FCP:

SCSI-over-Fibre Channel device driver 135

http://www.ibm.com/systems/z/connectivity

• Use the YaST GUI yast2 zfcp. If cio_ignore is enabled, you might need to free blacklisted FCP devices
beforehand by using yast2 cio.

• Use the text-based interface yast zfcp. If cio_ignore is enabled, you might need to free blacklisted
FCP devices beforehand by using yast cio

• Use the command line, use zfcp_host_configure. It transparently frees the FCP device specified on
the command line from cio_ignore. cio_ignore does not apply to zfcp_disk_configure.

See the section about hard disk configuration in the SUSE Linux Enterprise Server 12 SP4 Deployment
Guide, and the procedure about configuring a zFCP disk in SUSE Linux Enterprise Server 12 SP4
Administration Guide. The command-line tools described work not only inside the rescue environment but
also in a regularly installed Linux instance.

Important: Configuration changes can directly or indirectly affect information that is required to mount
the root file system. Such changes require an update of the initrd of both the auxiliary kernel and the
target kernel, followed by a re-write of the boot record (see “Rebuilding the initial RAM disk image” on
page 49).

The parameters are described in the context of the modprobe command. For details about specifying
kernel and module parameters, see Chapter 3, “Kernel and module parameters,” on page 19.

zfcp module parameter syntax

modprobe zfcp

 allow_lun_scan=1

 allow_lun_scan=<value>

 datarouter=1

 datarouter=0

 dbflevel=3

 dbflevel=<level>

 dbfsize=4

 dbfsize=<pages>

 dif=0

 dif=<value>

 port_scan_ratelimit=60000

 port_scan_ratelimit=<limit>

 port_scan_backoff=500

 port_scan_backoff=<delay>

 no_auto_port_rescan=0

 no_auto_port_rescan=1

 queue_depth=32

 queue_depth=<depth>

where:
allow_lun_scan=<value>

disables the automatic LUN scan for FCP devices that run in NPIV mode if set to 0, n, or N. To enable
the LUN scanning set the parameter to 1, y, or Y. When the LUN scan is disabled, all LUNs must be
configured through the unit_add zfcp attribute in sysfs. LUN scan is enabled by default.

datarouter=
enables (if set to 1, y, or Y) or disables (if set to 0, n, or N) support for the hardware data routing
feature. The default is 1.

Note: The hardware data routing feature becomes active only for FCP devices that are based on
adapter hardware with hardware data routing support.

136 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

dbflevel=<level>
sets the initial log level of the debug feature. The value is an integer in the range 0 - 6, where greater
numbers generate more detailed information. The default is 3.

dbfsize=<pages>
specifies the number of pages to be used for the debug feature.

The debug feature is available for each FCP device and the following areas:

hba
FCP device

san
Storage Area Network

rec
Error Recovery Process

scsi
SCSI

pay
Payloads for entries in the hba, san, rec, or scsi areas. The default is 8 pages.

The value that is given is used for all areas. The default for hba, san, rec, and scsi is 4, that is, four
pages are used for each area and FCP device. In the following example the dbsfsize is increased to 6
pages:

zfcp.dbfsize=6

This results in six pages being used for each area and FCP device. The payload is doubled to use 12
pages.

dif=<value>
turns on end-to-end data consistency checking if set to 1, y, or Y and off if set to 0, n, or N. The default
is 0.

port_scan_ratelimit=<limit>
sets the minimum delay, in milliseconds, between automatic port scans of your Linux instance. The
default value is 60000 milliseconds. To turn off the rate limit, specify 0. Use this parameter to avoid
frequent scans, while you still ensure that a scan is conducted eventually.

port_scan_backoff=<delay>
sets additional random delay, in milliseconds, in which the port scans of your Linux instance are
spread. The default value is 500 milliseconds. To turn off the random delay, specify 0. In an
installation with multiple Linux instances, use this attribute for every Linux instance to spread scans to
avoid potential multiple simultaneous scans.

no_auto_port_rescan=
turns the automatic port rescan feature off (if set to 1, y, or Y) or on (if set to 0, n, or N). The default is
0. Automatic rescan is always run when an adapter is set online and when user-triggered writes to the
sysfs attribute port_rescan occur.

queue_depth=<depth>
specifies the number of commands that can be issued simultaneously to a SCSI device. The default is
32. The value that you set here is used as the default queue depth for new SCSI devices. You can
change the queue depth for each SCSI device with the queue_depth sysfs attribute, see “Setting the
queue depth” on page 161.

device=<device_bus_id>, <wwpn>, <fcp_lun>

Attention: The device= module parameter is reserved for internal use. Do not use.

<device_bus_id>
specifies the FCP device through which the SCSI device is attached.

SCSI-over-Fibre Channel device driver 137

<wwpn>
specifies the target port through which the SCSI device is attached.

<fcp_lun>
specifies the LUN of the SCSI device.

Working with FCP devices
Set an FCP device online before you attempt to perform any other tasks.

Working with FCP devices comprises the following tasks:

• “Setting an FCP device online or offline” on page 138
• “Displaying FCP channel and device information” on page 139
• “Recovering a failed FCP device” on page 143
• “Finding out whether NPIV is in use” on page 144
• “Logging I/O subchannel status information” on page 145

Setting an FCP device online or offline
By default, FCP devices are offline. Set an FCP device online before you perform any other tasks.

About this task

Attention: Use the procedure described here for dynamic testing of configuration settings. For
persistent configuration in a production system, use one of the following options:

• Use the YaST GUI yast2 zfcp. If cio_ignore is enabled, you might need to free blacklisted FCP
devices before by using yast2 cio.

• Use the text-based interface yast zfcp. If cio_ignore is enabled, you might need to free
blacklisted FCP devices before by using yast cio.

• Use the command line, use zfcp_host_configure. It transparently frees the FCP device given
on the command line from cio_ignore.

See the section about IBM Z hard disk configuration in the SUSE Linux Enterprise Server 12 SP4
Deployment Guide, and the procedure about configuring a zFCP disk in SUSE Linux Enterprise Server 12
SP4 Administration Guide. The command line tools described work not only inside the rescue environment
but also in a regularly installed Linux instance.

Important: Configuration changes can directly or indirectly affect information that is required to mount
the root file system. Such changes require an update of the initrd of both the auxiliary kernel and the
target kernel, followed by a re-write of the boot record (see “Rebuilding the initial RAM disk image” on
page 49).

See “Working with newly available devices” on page 10 to avoid errors when you work with devices that
have become available to a running Linux instance.

Setting an FCP device online registers it with the Linux SCSI stack and updates the symbolic port name for
the device on the FC name server. For FCP setups that use NPIV mode, the device bus-ID and the host
name of the Linux instance are added to the symbolic port name.

Setting an FCP device online also automatically runs the scan for ports in the SAN and waits for this port
scan to complete.

To check if setting the FCP device online was successful, you can use a script that first sets the FCP device
online and after this operation completes checks if the WWPN of a target port has appeared in sysfs.

When you set an FCP device offline, the port and LUN subdirectories are preserved. Setting an FCP device
offline in sysfs interrupts the communication between Linux and the FCP channel. After a timeout has
expired, the port and LUN attributes indicate that the ports and LUNs are no longer accessible. The
transition of the FCP device to the offline state is synchronous, unless the device is disconnected.

138 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

For disconnected devices, writing 0 to the online sysfs attribute triggers an asynchronous deregistration
process. When this process is completed, the device with its ports and LUNs is no longer represented in
sysfs.

When the FCP device is set back online, the SCSI device names and minor numbers are freshly assigned.
The mapping of devices to names and numbers might be different from what they were before the FCP
device was set offline.

Procedure

There are two methods for setting an FCP device online or offline:

• Use the chccwdev command (see “chccwdev - Set CCW device attributes” on page 470). This is the
preferred method.

• Alternatively, you can write 1 to an FCP device's online attribute to set it online, or 0 to set it offline.

Examples

• To set an FCP device with bus ID 0.0.3d0c online issue:

chccwdev -e 0.0.3d0c

or

echo 1 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/online

• To set an FCP device with bus ID 0.0.3d0c offline issue:

chccwdev -d 0.0.3d0c

or

echo 0 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/online

Displaying FCP channel and device information
For each online FCP device, there is a number of read-only attributes in sysfs that provide information
about the corresponding FCP channel and FCP device.

Before you begin
The FCP device must be online for the FCP channel information to be valid.

About this task

The following tables summarize the relevant attributes.

Table 20: Attributes with FCP channel information

Attribute Explanation

card_version Version number that identifies a particular hardware feature.

hardware_version Number that identifies a hardware version for a particular feature.
The initial hardware version of a feature is zero. This version indicator
is increased only for hardware modifications of the same feature.
Appending hardware_version to card_version results in a hierarchical
version indication for a physical adapter.

lic_version Microcode level.

SCSI-over-Fibre Channel device driver 139

Table 20: Attributes with FCP channel information (continued)

Attribute Explanation

peer_wwnn WWNN of peer for a point-to-point connection.

peer_wwpn WWPN of peer for a point-to-point connection.

peer_d_id Destination ID of the peer for a point-to-point connection.

Table 21: Attributes with FCP device information

Attribute Explanation

in_recovery Shows if the FCP channel is in recovery (0 or 1).

For the attributes availability, cmb_enable, and cutype, see “Device attributes” on page 9. The status
attribute is reserved.

Table 22: Relevant transport class attributes, fc_host attributes

Attribute Explanation

maxframe_size Maximum frame size of adapter.

node_name Worldwide node name (WWNN) of adapter.

permanent_port_name WWPN associated with the physical port of the FCP channel.

port_id A unique ID (N_Port_ID) assigned by the fabric. In an NPIV setup,
each virtual port is assigned a different port_id.

port_name WWPN associated with the FCP device. If N_Port ID Virtualization is
not available, the WWPN of the physical port (see
permanent_port_name).

port_type The port type indicates the topology of the port.

serial_number The 32-byte serial number of the adapter hardware that provides the
FCP channel.

speed Speed of FC link.

supported_classes Supported FC service class.

symbolic_name The symbolic port name that is registered with the FC name server.

supported_speeds Supported speeds.

tgid_bind_type Target binding type.

Table 23: Relevant transport class attributes, fc_host statistics

Attribute Explanation

reset_statistics Writeable attribute to reset statistic counters.

seconds_since_last_reset Seconds since last reset of statistic counters.

tx_frames Transmitted FC frames.

tx_words Transmitted FC words.

140 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Table 23: Relevant transport class attributes, fc_host statistics (continued)

Attribute Explanation

rx_frames Received FC frames.

rx_words Received FC words.

lip_count Number of LIP sequences.

nos_count Number of NOS sequences.

error_frames Number of frames that are received in error.

dumped_frames Number of frames that are lost because of lack of host resources.

link_failure_count Link failure count.

loss_of_sync_count Loss of synchronization count.

loss_of_signal_count Loss of signal count.

prim_seq_protocol_err_count Primitive sequence protocol error count.

invalid_tx_word_count Invalid transmission word count.

invalid_crc_count Invalid CRC count.

fcp_input_requests Number of FCP operations with data input.

fcp_output_requests Number of FCP operations with data output.

fcp_control_requests Number of FCP operations without data movement.

fcp_input_megabytes Megabytes of FCP data input.

fcp_output_megabytes Megabytes of FCP data output.

Procedure

Use the cat command to read an attribute.

• Issue a command of this form to read an attribute:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<attribute>

where:
<device_bus_id>

specifies an FCP device that corresponds to the FCP channel.
<attribute>

is one of the attributes in Table 20 on page 139 or Table 21 on page 140.
• To read attributes of the associated Fibre Channel host use:

cat /sys/class/fc_host/<host_name>/<attribute>

where:
<host_name>

is the ID of the Fibre Channel host.
<attribute>

is one of the attributes in Table 22 on page 140.
• To read statistics attributes of the FCP channel associated with this Fibre Channel host, use:

SCSI-over-Fibre Channel device driver 141

cat /sys/class/fc_host/<host_name>/statistics/<attribute>

where:
<host_name>

is the ID of the Fibre Channel host.
<attribute>

is one of the attributes in Table 23 on page 140.

Examples

• In this example, information is displayed about an FCP channel that corresponds to an FCP device with
bus ID 0.0.3d0c:

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/hardware_version
0x00000000
cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/lic_version
0x00009111

• Alternatively you can use lszfcp (see “lszfcp - List zfcp devices” on page 577) to display attributes of
an FCP channel:

142 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

lszfcp -b 0.0.3d0c -a
0.0.3d0c host0
Bus = "ccw"
 availability = "good"
 card_version = "0x0005"
 cmb_enable = "0"
 cutype = "1731/03"
 devtype = "1732/03"
 failed = "0"
 hardware_version = "0x00000000"
 in_recovery = "0"
 lic_version = "0x00009111"
 modalias = "ccw:t1731m03dt1732dm03"
 online = "1"
 peer_d_id = "0x000000"
 peer_wwnn = "0x0000000000000000"
 peer_wwpn = "0x0000000000000000"
 status = "0x5400000a"
 uevent = "DRIVER=zfcp"
Class = "fc_host"
 active_fc4s = "0x00 0x00 ... 0x00"
 dev_loss_tmo = "60"
maxframe_size = "2112 bytes"
 node_name = "0x5005076400c89f25"
 permanent_port_name = "0xc05076ffe5005611"
 port_id = "0x656e00"
 port_name = "0xc05076ffe5005611"
 port_state = "Online"
 port_type = "NPort (fabric via point-to-point)"
 serial_number = "IBM02000000089F25"
 speed = "8 Gbit"
 supported_classes = "Class 2, Class 3"
 supported_fc4s = "0x00 0x00 ... 0x00"
 supported_speeds = "1 Gbit, 4 Gbit"
 symbolic_name = "IBM 2817 020000000EAA14 PCHID: 0391"
 tgtid_bind_type = "wwpn (World Wide Port Name)"
Class = "scsi_host"
 active_mode = "Initiator"
 can_queue = "4096"
 cmd_per_lun = "1"
 host_busy = "0"
 megabytes = "28 0"
 proc_name = "zfcp"
 prot_capabilities = "0"
 prot_guard_type = "0"
 queue_full = "0 33333510"
 requests = "184085 4 302"
 seconds_active = "143"
 sg_tablesize = "0"
 state = "running"
 supported_mode = "Initiator"
 unchecked_isa_dma = "0"
 unique_id = "5906"
 utilization = "6 0 0"

Recovering a failed FCP device
Failed FCP devices are automatically recovered by the zfcp device driver. You can read the in_recovery
attribute to check whether recovery is under way.

Before you begin
The FCP device must be online.

Procedure

Perform these steps to find out the recovery status of an FCP device and, if needed, start or restart
recovery:
1. Issue a command of this form:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/in_recovery

SCSI-over-Fibre Channel device driver 143

The value is 1 if recovery is under way and 0 otherwise. If the value is 0 for a non-operational FCP
device, recovery might have failed. Alternatively, the device driver might have failed to detect that the
FCP device is malfunctioning.

2. To find out whether recovery failed, read the failed attribute. Issue a command of this form:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/failed

The value is 1 if recovery failed and 0 otherwise.
3. You can start or restart the recovery process for the FCP device by writing 0 to the failed attribute.

Issue a command of this form:

echo 0 > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/failed

Example

In the following example, an FCP device with a device bus-ID 0.0.3d0c is malfunctioning. The first
command reveals that recovery is not already under way. The second command manually starts recovery
for the FCP device:

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/in_recovery
0
echo 0 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/failed

Finding out whether NPIV is in use
An FCP device runs in NPIV mode if the port_type attribute of the FCP device attribute contains the
string "NPIV". Alternatively, if the applicable permanent_port_name and port_name are not the same
and are not NULL.

Procedure

Read the port_type attribute of the FCP device.

For example:

cat /sys/bus/ccw/drivers/zfcp/0.0.1940/host0/fc_host/host0/port_type
NPIV VPORT

Alternatively, compare the values of the permanent_port_name attribute and the port_name.

Tip: You can use lszfcp (see “lszfcp - List zfcp devices” on page 577) to list the FCP device attributes.

Example

lszfcp -b 0.0.1940 -a
0.0.1940 host0
Bus = "ccw"
 availability = "good"
 ...
Class = "fc_host"
 active_fc4s = "0x00 0x00 ... 0x00"
 dev_loss_tmo = "60"
 maxframe_size = "2112 bytes"
 node_name = "0x5005076400c1ebae"
 permanent_port_name = "0x50050764016219a0"
 port_id = "0x65ee01"
 port_name = "0xc05076ffef805388"
 port_state = "Online"
 port_type = "NPIV VPORT"
 ...
 symbolic_name = "DEVNO: 0.0.1940 NAME: mylinux"
 ...

144 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

The port_type attribute directly indicates that NPIV is used. The example also shows that
permanent_port_name is different from port_name and neither is NULL. The example also shows the
symbolic_name attribute that shows the symbolic port name that was registered on the FC name server.

Logging I/O subchannel status information
When severe errors occur for an FCP device, the FCP device driver triggers a set of log entries with I/O
subchannel status information.

The log entries are available through the SE Console Actions Work Area with the View Console Logs
function. In the list of logs, these entries have the prefix 1F00. The content of the entries is intended for
support specialists.

Working with target ports
You can scan for ports, display port information, recover a port, or remove a port.

Working with target ports comprises the following tasks:

• “Scanning for ports” on page 145
• “Controlling automatic port scanning” on page 146
• “Displaying port information” on page 148
• “Recovering a failed port” on page 149
• “Removing ports” on page 150

Scanning for ports
Newly available target ports are discovered. However, you might want to trigger a port scan to re-create
accidentally removed port information or to assure that all ports are present.

Before you begin
The FCP device must be online.

About this task

The zfcp device driver automatically adds port information to sysfs when:

• The FCP device is set online
• Target ports are added to the Fibre Channel fabric, unless the module parameter
no_auto_port_rescan is set to 1. See “Setting up the zfcp device driver” on page 135.

Scanning for ports might take some time to complete. Commands that you issue against ports or LUNs
while scanning is in progress are delayed and processed when port scanning is completed.

Use the port_rescan attribute if a remote storage port was accidentally deleted from the adapter
configuration or if you are unsure whether all ports were added to sysfs.

Procedure

Issue a command of this form:

echo 1 > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/port_rescan

where <device_bus_id> specifies the FCP device through which the target ports are attached.

Tip: List the contents of /sys/bus/ccw/drivers/zfcp/<device_bus_id> to find out which ports
are currently configured for the FCP device.

SCSI-over-Fibre Channel device driver 145

Example

In this example, a port with WWPN 0x500507630303c562 is already configured for an FCP device with
bus ID 0.0.3d0c. An additional target port with WWPN 0x500507630300c562 is automatically configured
by triggering a port scan.

ls /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x*
0x500507630303c562
echo 1 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/port_rescan
ls /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x*
0x500507630303c562
0x500507630300c562

Controlling automatic port scanning
Automatic port scanning includes two zfcp parameters that improve the behaviour of Linux instances in
SANs. These zfcp parameters are set to default values that work well for most installations. If needed, you
can fine-tune the frequency and timing of automatic port scans with the zfcp parameters
port_scan_backoff and port_scan_ratelimit. You can enable automatic port scanning with the
zfcp parameter no_auto_port_rescan=0. This value is the default.

About this task

In a large installation, where many Linux instances receive the same notifications of SAN changes,
multiple instances might trigger scans simultaneously and too frequently. See Figure 29 on page 146

Figure 29: Numerous port scans in a Linux installation

These scans might put unnecessary load on the name server function of fabric switches and potentially
result in late or inconclusive results.

You can avoid excessive scanning, yet still ensure that a port scan is eventually conducted. You can
control port scanning with the zfcp parameters:
port_scan_ratelimit

sets the minimum delay, in milliseconds, between automatic port scans of your Linux instance. The
default value is 60000 milliseconds. To turn off the rate limit, specify 0.

port_scan_backoff
sets an additional random delay, in milliseconds, in which the port scans of your Linux instance are
spread. In an installation with multiple Linux instances, use this zfcp parameter for every Linux
instance to spread scans to avoid potential multiple simultaneous scans. The default value is 500
milliseconds. To turn off the random delay, specify 0.

Use module parameters to set values for port scanning. See “Setting up the zfcp device driver” on page
135 for zfcp attributes. On a running Linux system, you can also query or set these values by using the
sysfs attributes with the same names.

Using port_scan_ratelimit reduces the number of scans, as shown in Figure 30 on page 147

146 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Figure 30: Port scan behavior with scan rate limit.

However, if the rate limit is set to the same value, the scans can still occur almost simultaneously, as for
FCP device A and B in Linux 1.

Using port_scan_backoff and port_scan_ratelimit together delays port scans even further and
avoids simultaneous scans, as shown in Figure 31 on page 147. In the figure, FCP devices A and B in Linux
1 have the same rate limit and the same backoff values. The random element in the backoff value causes
the scans to occur at slightly different times.

Figure 31: Port scan behavior with backoff and scan rate limit.

Procedure

Use port_scan_backoff and port_scan_ratelimit together or separately to tune the behavior of
port scanning:
• To avoid too frequent scanning, set a minimum wait time between two consecutive scans for the same

Linux instance. Use the port_scan_ratelimit sysfs attribute.
By default, port_scan_ratelimit is turned on and has a value of 60000 milliseconds.
For example, to specify an attribute value of 12 seconds, issue:

echo 12000 > /sys/module/zfcp/parameters/port_scan_ratelimit

• To further spread scans over a certain time and thus avoid multiple simultaneous scans, set the
port_scan_backoff sysfs attribute.
By default, port_scan_backoff is turned on and has a value of 500 milliseconds.
For example, to query the setting, issue a command of this form:

cat /sys/module/zfcp/parameters/port_scan_backoff
500

To set the attribute to 1 second, issue:

echo 1000 > /sys/module/zfcp/parameters/port_scan_backoff

SCSI-over-Fibre Channel device driver 147

Results
The automatic port scans are delayed by the values specified. If a SAN notification is received during the
rate limit time, a port scan is conducted immediately after the delay time passed.

Depending on the port event, one or more of the three zfcp parameters are evaluated to schedule a port
scan. For example, port scans that are triggered manually through sysfs are not delayed. Table 24 on page
148 shows which events evaluate which zfcp parameters.

Table 24: Port events and their use of port scanning zfcp parameters.

zfcp parameter no_auto_port_rescan port_scan_backoff port_scan_ratelimit

Event

FCP device resume Yes Yes No

User sets FCP device
online

No Yes No

User initiates a port scan No No No

User starts FCP device
recovery

Yes Yes Yes

Automatic FCP device
recovery

Yes Yes Yes

SAN change notification Yes Yes Yes

Displaying port information
For each target port, there is a number of read-only sysfs attributes with port information.

About this task

Table 25 on page 148 and Table 26 on page 148 summarize the relevant attributes.

Table 25: zfcp-specific attributes with port information within the FCP device sysfs tree

Attribute Explanation

access_denied This attribute is obsolete. The value is always 0.

in_recovery Shows if port is in recovery (0 or 1)

Table 26: Transport class attributes with port information

Attribute Explanation

node_name WWNN of the remote port.

port_name WWPN of remote port.

port_id Destination ID of remote port

port_state State of remote port.

roles Role of remote port (usually FCP target).

scsi_target_id Linux SCSI ID of remote port.

supported_classes Supported classes of service.

148 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Procedure

Use the cat command to read an attribute.

• Issue a command of this form to read a zfcp-specific attribute:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/<attribute>

where:
<device_bus_id>

specifies the FCP device.
<wwpn>

is the WWPN of the target port.
<attribute>

is one of the attributes in Table 25 on page 148.
• To read transport class attributes of the associated target port, use a command of this form:

cat /sys/class/fc_remote_port/<rport_name>/<attribute>

where:
<rport_name>

is the name of the target port.
<attribute>

is one of the attributes in Table 26 on page 148.

Tip: With the HBA API package installed, you can also use the zfcp_ping and zfcp_show commands to
find out more about your ports. See “Tools for investigating your SAN configuration” on page 171.

Examples

• In this example, information is displayed for a target port 0x500507630300c562 that is attached
through an FCP device with bus ID 0.0.3d0c:

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/in_recovery
0

• To display transport class attributes of a target port you can use lszfcp:

lszfcp -p 0x500507630300c562 -a
0.0.3d0c/0x500507630300c562 rport-0:0-0
...
Class = "fc_remote_ports"
 active_fc4s = "0x00 0x00 0x01 ...
 dev_loss_tmo = "60"
 fast_io_fail_tmo = "off"
 maxframe_size = "2048 bytes"
 node_name = "0x5005076303ffc562"
 port_id = "0x652113"
 port_name = "0x500507630300c562"
 port_state = "Online"
 roles = "FCP Target"
 scsi_target_id = "0"
 supported_classes = "Class 2, Class 3"
...

Recovering a failed port
Failed target ports are automatically recovered by the zfcp device driver. You can read the in_recovery
attribute to check whether recovery is under way.

Before you begin
The FCP device must be online.

SCSI-over-Fibre Channel device driver 149

Procedure

Perform these steps to find out the recovery status of a port and, if needed, start or restart recovery:
1. Issue a command of this form:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/in_recovery

where:
<device_bus_id>

specifies the FCP device.
<wwpn>

is the WWPN of the target port.

The value is 1 if recovery is under way, and 0 otherwise. If the value is 0 for a non-operational port,
recovery might have failed, or the device driver might have failed to detect that the port is
malfunctioning.

2. To find out whether recovery failed, read the failed attribute. Issue a command of this form:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/failed

The value is 1 if recovery failed, and 0 otherwise.
3. You can start or restart the recovery process for the port by writing 0 to the failed attribute. Issue a

command of this form:

echo 0 > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/failed

Example

In the following example, a port with WWPN 0x500507630300c562 that is attached through an FCP
device with bus ID 0.0.3d0c is malfunctioning. The first command reveals that recovery is not already
under way. The second command manually starts recovery for the port:

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/in_recovery
0
echo 0 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/failed

Removing ports
Removing unused ports can save FCP channel resources. Additionally setting the
no_auto_port_rescan attribute avoids unnecessary attempts to recover unused remote ports.

Before you begin
The FCP device must be online.

About this task

List the contents of /sys/bus/ccw/drivers/zfcp/<device_bus_id> to find out which ports are
currently configured for the FCP device.

You cannot remove a port while SCSI devices are configured for it (see “Configuring SCSI devices” on
page 151) or if the port is in use, for example, by error recovery.

Note: The next port scan will attach all available ports, including any previously removed ports. To prevent
removed ports from being reattached automatically, use zoning or the no_auto_port_rescan module
parameter, see “Setting up the zfcp device driver” on page 135.

Procedure

Issue a command of this form:

150 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

echo <wwpn> > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/port_remove

where:
<device_bus_id>

specifies the FCP device.
<wwpn>

is the WWPN of the port to be removed.

Example

In this example, two ports with WWPN 0x500507630303c562 and 0x500507630300c562 are
configured for an FCP device with bus ID 0.0.3d0c. The port with WWPN 0x500507630303c562 is then
removed.

ls /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x*
0x500507630303c562
0x500507630300c562
echo 0x500507630303c562 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/port_remove
ls /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x*
0x500507630300c562

Working with SCSI devices
In an NPIV setup with automatic LUN scanning, the SCSI devices are configured automatically. Otherwise,
you must configure FCP LUNs to obtain SCSI devices. In both cases, you can configure SCSI devices,
display information, and remove SCSI devices.

Working with SCSI devices comprises the following tasks:

• “Configuring SCSI devices” on page 151
• “Mapping the representations of a SCSI device in sysfs” on page 153
• “Displaying information about SCSI devices” on page 158
• “Setting the queue depth” on page 161
• “Recovering failed SCSI devices” on page 162
• “Updating the information about SCSI devices” on page 163
• “Setting the SCSI command timeout” on page 163
• “Controlling the SCSI device state” on page 164
• “Removing SCSI devices” on page 165

Configuring SCSI devices
FCP devices that use NPIV mode detect the LUNs automatically and no configuring is necessary. If
needed, configure the LUN manually.
For each FCP device that uses NPIV mode and if you did not disable automatic LUN scanning (see “Setting
up the zfcp device driver” on page 135), the LUNs are configured for you. In this case, no FCP LUN entries
are created under /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>.

To find out whether an FCP device is using NPIV mode, check the port_type attribute, for example:

cat /sys/bus/ccw/drivers/zfcp/0.0.1901/host*/fc_host/host*/port_type
NPIV VPORT

To find out whether automatic LUN scanning is enabled, check the current setting of the module
parameter zfcp.allow_lun_scan. The example below shows automatic LUN scanning as turned on.

SCSI-over-Fibre Channel device driver 151

cat /sys/module/zfcp/parameters/allow_lun_scan
Y

Important: Configuration changes can directly or indirectly affect information that is required to mount
the root file system. Such changes require an update of the initrd of both the auxiliary kernel and the
target kernel, followed by a re-write of the boot record (see “Rebuilding the initial RAM disk image” on
page 49).

Automatically attached SCSI devices
FCP devices that use NPIV mode detect the LUNs automatically and no configuring is necessary. In this
case, no FCP LUN entries are created under /sys/bus/ccw/drivers/zfcp/<device_bus_id>/
<wwpn>.

What to do next
To check whether a SCSI device is registered, check for a directory with the name of the LUN
in /sys/bus/scsi/devices. If there is no SCSI device for this LUN, the LUN is not valid in the storage
system, or the FCP device is offline in Linux.

Manually configured FCP LUNs and their SCSI devices
For FCP devices that do not use NPIV mode, or if automatic LUN scanning is disabled, FCP LUNs must be
configured manually to obtain SCSI devices.

Before you begin

Attention: Use this procedure only to dynamically test configuration settings.

To configure persistent setting in a production system, use one of the following options:

• The YaST GUI yast2 zfcp. If cio_ignore is enabled, you might need to free blacklisted FCP devices
beforehand by using yast2 cio. If cio_ignore is enabled, you might need to free blacklisted FCP
devices beforehand by using yast cio

• The text-based interface yast zfcp
• The command line, use zfcp_disk_configure. Cio_ignore does not apply here.

See the section about IBM Z hard disk configuration in the SUSE Linux Enterprise Server 12 SP4
Deployment Guide, and the procedure about configuring a zFCP disk in SUSE Linux Enterprise Server 12
SP4 Administration Guide. The command-line tools described work not only inside the rescue
environment but also in a regularly installed Linux instance.

You can always specify additional zfcp module parameters as explained in Chapter 3, “Kernel and module
parameters,” on page 19

Procedure

To configure a SCSI device for a target port, write the device's LUN to the port's unit_add attribute. Issue
a command of this form:

echo <fcp_lun> > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/unit_add

where:
<fcp_lun>

is the LUN of the SCSI device to be configured. The LUN is a 16 digit hexadecimal value padded with
zeros, for example 0x4010403300000000.

<device_bus_id>
specifies the FCP device.

<wwpn>
is the WWPN of the target port.

152 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

This command starts a process with multiple steps:

a. It creates a directory in /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn> with the LUN
as the directory name. The directory is part of the list of all LUNs to configure. Without NPIV or with
auto LUN scanning disabled, zfcp registers only FCP LUNs contained in this list with the Linux SCSI
stack in the next step.

b. It initiates the registration of the SCSI device with the Linux SCSI stack. The FCP device must be online
for this step.

c. It waits until the Linux SCSI stack registration completes successfully or returns an error. It then
returns control to the shell. A successful registration creates a sysfs entry in the SCSI branch (see
“Mapping the representations of a SCSI device in sysfs” on page 153).

Example

In this example, a target port with WWPN 0x500507630300c562 is attached through an FCP device with
bus ID 0.0.3d0c. A SCSI device with LUN 0x4010403200000000 is already configured for the port. An
additional SCSI device with LUN 0x4010403300000000 is added to the port.

ls /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/0x*
0x4010403200000000
echo 0x4010403300000000 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/unit_add
ls /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/0x*
0x4010403200000000
0x4010403300000000

What to do next

To check whether a SCSI device is registered for the configured LUN, check for a directory with the name
of the LUN in /sys/bus/scsi/devices. If there is no SCSI device for this LUN, the LUN is not valid in
the storage system, or the FCP device is offline in Linux.

To see which LUNs are currently configured for the port, list the contents of /sys/bus/ccw/drivers/
zfcp/<device_bus_id>/<wwpn>.

Mapping the representations of a SCSI device in sysfs
Each SCSI device that is configured is represented by multiple directories in sysfs, in particular, within the
SCSI branch. Only manually configured LUNs are also represented within the zfcp branch.
You can find the FCP device bus-ID, the target WWPN, and the FCP LUN triplet that corresponds to a SCSI
device in two ways: By traversing the sysfs directory tree or by using commands.

Note: The zfcp-specific sysfs attributes hba_id, wwpn, and fcp_lun are deprecated. Use the methods
described here instead to find the addressing of a SCSI device.

About this task

The directory in the sysfs SCSI branch has the following form:

/sys/bus/scsi/devices/<scsi_host_no>:0:<scsi_id>:<scsi_lun>

where:
<scsi_host_no>

is the SCSI host number that corresponds to the FCP device.
<scsi_id>

is the SCSI ID of the target port.
<scsi_lun>

is the LUN of the SCSI device.

The value for <scsi_lun> depends on the storage device. Often, it is a single-digit number, but for some
storage devices it has numerous digits.

SCSI-over-Fibre Channel device driver 153

For manually configured FCP LUNs, see “Manually configured FCP LUNs and their SCSI devices” on page
152 for details about the directory in the zfcp branch.

Before you begin

You must identify the SCSI device in sysfs. For example, use readlink to find the path in sysfs with all
symbolic links resolved:

readlink -e /sys/bus/scsi/devices/2:0:1:1074741413
/sys/devices/css0/0.0.000a/0.0.1800/host2/rport-2:0-1/target2:0:1/2:0:1:1074741413

Using sysfs

Note: Do not assume a stable sysfs structure. The following procedure accommodates changes in sysfs.

This example shows how you can traverse the directory tree to find the FCP device bus-ID, the target
WWPN, and the FCP LUN that correspond to a SCSI device name. The example assumes:
SCSI device

2:0:1:1074741413
FCP LUN

0x40a5400f00000000
target WWPN

0x50050763030bd327
FCP device bus-ID

0.0.1800

1. Obtain the hexadecimal FCP LUN.

a. Start at the SCSI device directory or anywhere in the subtree below the SCSI device. Ascend the
sysfs tree until you find the SCSI device. To do this, test every subdirectory for a symbolic link
named "subsystem" that points to a relative directory path whose last entry is scsi. Search for the
symbolic link named "subsystem":

ls -dl subsystem
lrwxrwxrwx 1 root root 0 Oct 19 16:08 subsystem -> ../../../../../../../../bus/scsi

The subsystem symbolic link points to a directory tree where the last subdirectory is scsi.
b. Confirm that this is a SCSI device by reading the DEVTYPE line within the uevent attribute. The

value must be "scsi_device".

grep "^DEVTYPE=" uevent
DEVTYPE=scsi_device

The last part of the current directory name is then the decimal SCSI LUN, for example, assuming
you have found this directory:

pwd
/sys/devices/css0/0.0.000a/0.0.1800/host2/rport-2:0-1/target2:0:1/2:0:1:1074741413

Here, the SCSI LUN is 1074741413.
c. Transform the SCSI LUN to the FCP LUN as follows:

Step Example

Take decimal LUN in decimal notation: 1074741413

Convert to hexadecimal notation: 0x400f40a5

Pad with 0 from the left to obtain a 64-bit value: 0x00000000400f40a5

154 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Step Example

Divide into 16-bit blocks (LUN levels): 0x0000|0000|400f|40a5

Reverse the order of the blocks: 0x40a5|400f|0000|0000

The resulting hexadecimal number is the FCP LUN: 0x40a5400f00000000

The Linux kernel function int_to_scsilun() in drivers/scsi/scsi_common.c converts a
decimal SCSI LUN to obtain the hexadecimal FCP LUN according to this algorithm. The conversion
works in both directions.

d. Confirm that the path includes a directory "rport-<no>". For example, assuming you have found this
directory:

pwd
/sys/devices/css0/0.0.000a/0.0.1800/host2/rport-2:0-1/target2:0:1/2:0:1:1074741413

If there is no rport directory, the transport is not fibre channel and thus not zfcp-related. Abandon
the search.

Table 27 on page 155 lists the libudev functions that you can use instead of manually traversing the
sysfs.

Table 27: Useful udev functions

Name Task

udev_device_get_parent() Ascend the sysfs tree.

udev_device_get_subsystem() Retrieve subsystem name.

udev_device_get_devtype() Retrieve device type.

udev_device_get_syspath() Check if rport is a subdirectory.

2. Obtain the target WWPN.

a. Continue ascending the sysfs tree the same way until you find the SCSI target. To do this, test every
subdirectory for a symbolic link named "subsystem" that points to a relative directory path whose
last entry is scsi. Search for the symbolic link named "subsystem":

ls -dl subsystem
lrwxrwxrwx 1 root root 0 Oct 19 16:08 subsystem -> ../../../../../../../bus/scsi

b. Confirm that this is a SCSI target by reading the DEVTYPE line within the uevent attribute. The value
must be "scsi_target".

grep "^DEVTYPE=" uevent
DEVTYPE=scsi_target

For example, assuming you have found this directory:

pwd
/sys/devices/css0/0.0.000a/0.0.1800/host2/rport-2:0-1/target2:0:1

c. The SCSI target has a subdirectory fc_transport. Descend this subtree until you find a
subdirectory that matches the SCSI target name. In this example, you would descend to
fc_transport/target2:0:1.

d. In the found target, read the port_name attribute:

SCSI-over-Fibre Channel device driver 155

cat port_name
0x50050763030bd327

The value of the port_name is the target WWPN.

Table 28: Useful udev functions

Name Task

udev_device_get_parent_with_subsystem_devtype(dev, "scsi",
"scsi_target")

Find the SCSI target.

udev_device_new_from_subsystem_sysname
(udev_device_get_udev(scsidev), "fc_transport",
udev_device_get_sysname(targetdev))

Find a matching target in the
fc_transport branch.

udev_device_get_sysattr_value() Read the port_name attribute.

3. Obtain the FCP device-bus ID. Keep ascending the sysfs tree. Search for the symbolic link "subsystem"
that points to a relative path where the last subdirectory is ccw.

For example:

ls -dl subsystem
lrwxrwxrwx 1 root root 0 Oct 19 16:08 subsystem -> ../../../../bus/ccw

Then the name of the last directory in the current path is the FCP device-bus ID, for example:

pwd
/sys/devices/css0/0.0.000a/0.0.1800

Here, 0.0.1800 is the FCP device-bus ID.

Using commands

To map a SCSI device name to its corresponding FCP device bus-ID, target WWPN, and LUN, you can use
one of the following commands. The example assumes:
SCSI device

2:0:1:1074741413
FCP LUN

0x40a5400f00000000
target WWPN

0x50050763030bd327
FCP device bus-ID

0.0.1800

• Use the lszfcp with the -D option to list the FCP device-bus ID, the target WWPN, and the FCP LUN for
all SCSI devices. For example:

lszfcp -D
....
0.0.1800/0x50050763030bd327/0x40a5400f00000000 2:0:1:1074741413
....

For details about the lszfcp command, see “lszfcp - List zfcp devices” on page 577.
• Use the lszdev command on device type zfcp-lun devices, and display the ID and ATTR:scsi_dev

columns. For example:

156 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

lszdev zfcp-lun -a -c ID,ATTR:scsi_dev
ID ATTR:scsi_dev
...
0.0.1800:0x50050763030bd327:0x40a5400f00000000 2:0:1:1074741413
...

For details about the lszdev command, see “lszdev - Display IBM Z device configurations” on page
572.

• Use the lsscsi command with the --transport and --lunhex options in verbose mode to get information
about a SCSI device:

lsscsi -xxtv
[2:0:1:0x40a5400f00000000] disk fc:0x50050763030bd327,0x249900 /dev/sda
 dir: /sys/bus/scsi/devices/2:0:1:1074741413 [/sys/devices/css0/0.0.000a/0.0.1800/host2
 /rport-2:0-1/target2:0:1/2:0:1:1074741413]
...

For details about the lsscsi command, see the man page.

Note: The details of the command output is subject to change. Do not rely on the output always being
exactly as shown.

Figure 32 on page 158 illustrates the sysfs structure of a SCSI device and how it corresponds to the
lszfcp command output.

Warning: Do not rely on the sysfs structure in the example. The sysfs structure changes without
notice.

SCSI-over-Fibre Channel device driver 157

Figure 32: Example SCSI device in sysfs and command output

Displaying information about SCSI devices
For each SCSI device, there is a number of read-only attributes in sysfs that provide information for the
device.

About this task

Table 29 on page 159 summarizes the read-only attributes for manually configured FCP LUNs, including
those attributes that indicate whether the device access is restricted by access control software on the
FCP channel. These attributes can be found in the zfcp branch of sysfs. The path has the form:

/sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/<fcp_lun>/<attribute>

158 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Table 29: Attributes of manually configured FCP LUNs with device access information

Attribute Explanation

access_denied Flag that indicates whether access to the device is restricted by the FCP
channel.

The value is 1 if access is denied and 0 if access is permitted.

If access is denied to your Linux instance, confirm that your SCSI devices are
configured as intended. Also, be sure that you really want to share a SCSI
device. For shared access to a SCSI device, preferably use NPIV (see “N_Port ID
Virtualization for FCP channels” on page 135). You might also use different FCP
channels or target ports.

access_shared This attribute is obsolete. The value is always 0.

access_readonly This attribute is obsolete. The value is always 0.

in_recovery Shows if unit is in recovery (0 or 1)

Table 30 on page 159 lists further read-only attributes with information about the SCSI device. These
attributes can be found in the SCSI branch of sysfs. The path has the form:

/sys/class/scsi_device/<device_name>/device/<attribute>

Table 30: SCSI device class attributes

Attribute Explanation

device_blocked Flag that indicates whether the device is in blocked state (0 or 1).

iocounterbits The number of bits used for I/O counters.

iodone_cnt The number of completed or rejected SCSI commands.

ioerr_cnt The number of SCSI commands that completed with an error.

iorequest_cnt The number of issued SCSI commands.

queue_type The type of queue for the SCSI device. The value can be one of the following
types:

• none
• simple
• ordered

model The model of the SCSI device, received from inquiry data.

rev The revision of the SCSI device, received from inquiry data.

scsi_level The SCSI revision level, received from inquiry data.

type The type of the SCSI device, received from inquiry data.

vendor The vendor of the SCSI device, received from inquiry data.

fcp_lun The LUN of the SCSI device in 64-bit format.

hba_id The bus ID of the SCSI device.

wwpn The WWPN of the remote port.

SCSI-over-Fibre Channel device driver 159

Table 30: SCSI device class attributes (continued)

Attribute Explanation

zfcp_access_denied Flag that indicates whether access to the device is restricted by the FCP
channel.

The value is 1 if access is denied and 0 if access is permitted.

If access is denied to your Linux instance, confirm that your SCSI devices are
configured as intended. Also, be sure that you really want to share a SCSI
device. For shared access to a SCSI device, preferably use NPIV (see “N_Port ID
Virtualization for FCP channels” on page 135). You might also use different FCP
channels or target ports.

zfcp_in_recovery Shows if unit is in recovery (0 or 1).

Procedure

Issue a command of this form to read an attribute of a manually configured FCP LUN:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/<fcp_lun>/<attribute>

where:
<device_bus_id>

specifies the FCP device.
<wwpn>

is the WWPN of the target port.
<fcp_lun>

is the FCP LUN of the SCSI device.
<attribute>

is one of the attributes in Table 29 on page 159.

Use the lszfcp command (see “lszfcp - List zfcp devices” on page 577) to display information about the
associated SCSI device.

Alternatively, you can use sysfs to read the information. To read attributes of the associated SCSI device,
use a command of this form:

cat /sys/class/scsi_device/<device_name>/device/<attribute>

where:
<device_name>

is the name of the associated SCSI device.
<attribute>

is one of the attributes in Table 30 on page 159.

Tip: For SCSI tape devices, you can display a summary of this information by using the lstape command
(see “lstape - List tape devices” on page 566).

Examples

• In this example, information is displayed for a manually configured FCP LUN with LUN
0x4010403200000000 that is accessed through a target port with WWPN 0x500507630300c562 and
is attached through an FCP device 0.0.3d0c. For the device, access is permitted.

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/0x4010403200000000/access_denied
0

160 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

For the device to be accessible, the access_denied attribute of the target port, 0x500507630300c562,
must also be 0 (see “Displaying port information” on page 148).

• You can use lszfcp to display attributes of a SCSI device:

lszfcp -l 0x4010403200000000 -a
0.0.3d0c/0x500507630300c562/0x4010403200000000 0:0:0:0
Class = "scsi_device"
 ...
 device_blocked = "0"
 ...
 fcp_lun = "0x4010403200000000"
 hba_id = "0.0.3d0c"
 iocounterbits = "32"
 iodone_cnt = "0xbe"
 ioerr_cnt = "0x2"
 iorequest_cnt = "0xbe"
 ...
 model = "2107900"
 queue_depth = "32"
 queue_ramp_up_period = "120000"
 queue_type = "simple"
 ...
 rev = ".166"
 scsi_level = "6"
 state = "running"
 timeout = "30"
 type = "0"
 uevent = "DEVTYPE=scsi_device"
 vendor = "IBM"
 ...
 wwpn = "0x500507630300c562"
 zfcp_access_denied = "0"
 zfcp_failed = "0"
 zfcp_in_recovery = "0"
 zfcp_status = "0x54000000"

Setting the queue depth
The Linux SCSI code automatically adjusts the queue depth as necessary. Changing the queue depth is
usually a storage server requirement.

Before you begin
Check the documentation of the storage server used or contact your storage server support group to
establish if there is a need to change this setting.

About this task

The value of the queue_depth kernel parameter (see “Setting up the zfcp device driver” on page 135) is
used as the default queue depth of new SCSI devices. You can query the queue depth by issuing a
command of this form:

cat /sys/bus/scsi/devices/<SCSI device>/queue_depth

Example:

cat /sys/bus/scsi/devices/0:0:19:1086537744/queue_depth
16

You can change the queue depth of each SCSI device by writing to the queue_depth attribute, for
example:

echo 8 > /sys/bus/scsi/devices/0:0:19:1086537744/queue_depth
cat /sys/bus/scsi/devices/0:0:19:1086537744/queue_depth
8

This method is useful on a running system where you want to make dynamic changes. If you want to make
the changes persistent across IPLs, you can:

SCSI-over-Fibre Channel device driver 161

• Use the kernel or module parameter.
• Write a udev rule to change the setting for each new SCSI device.

Linux forwards SCSI commands to the storage server until the number of pending commands exceeds the
queue depth. If the server lacks the resources to process a SCSI command, Linux queues the command
for a later retry and decreases the queue depth counter. Linux then waits for a defined ramp-up period. If
no indications of resource problems occur within this period, Linux increases the queue depth counter
until reaching the previously set maximum value. To query the current value for the queue ramp-up period
in milliseconds:

cat /sys/bus/scsi/devices/0:0:13:1086537744/queue_ramp_up_period
120000

To set a new value for the queue ramp-up period in milliseconds:

echo 1000 > /sys/bus/scsi/devices/0:0:13:1086537744/queue_ramp_up_period

Recovering failed SCSI devices
Failed SCSI devices are automatically recovered by the zfcp device driver. You can read the
zfcp_in_recovery attribute to check whether recovery is under way.

Before you begin
The FCP device must be online.

Procedure

Perform the following steps to check the recovery status of a failed SCSI device:
1. Check the value of the zfcp_in_recovery attribute. Issue the lszfcp command:

lszfcp -l <LUN> -a

where <LUN> is the LUN of the associated SCSI device.

Alternatively, you can issue a command of this form:

cat /sys/class/scsi_device/<device_name>/device/zfcp_in_recovery

The value is 1 if recovery is under way and 0 otherwise. If the value is 0 for a non-operational SCSI
device, recovery might have failed. Alternatively, the device driver might have failed to detect that the
SCSI device is malfunctioning.

2. To find out whether recovery failed, read the zfcp_failed attribute. Either use the lszfcp
command again, or issue a command of this form:

cat /sys/class/scsi_device/<device_name>/device/zfcp_failed

The value is 1 if recovery failed, and 0 otherwise.
3. You can start or restart the recovery process for the SCSI device by writing 0 to the zfcp_failed

attribute. Issue a command of this form:

echo 0 > /sys/class/scsi_device/<device_name>/device/zfcp_failed

Example

In the following example, SCSI device 0:0:0:0 is malfunctioning. The first command reveals that recovery
is not already under way. The second command manually starts recovery for the SCSI device:

162 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

cat /sys/class/scsi_device/0:0:0:0/device/zfcp_in_recovery
0
echo 0 > /sys/class/scsi_device/0:0:0:0/device/zfcp_failed

What to do next
If you manually configured an FCP LUN (see “Manually configured FCP LUNs and their SCSI devices” on
page 152), but did not get a corresponding SCSI device, you can also use the corresponding FCP LUN
sysfs attributes, in_recovery and failed, to check on recovery. See Table 29 on page 159.

Updating the information about SCSI devices
Use the rescan attribute of the SCSI device to detect changes to a storage device on the storage server
that are made after the device was discovered.

Before you begin
The FCP device must be online.

About this task

The initial information about the available SCSI devices is discovered automatically when LUNs first
become available.

Procedure

To update the information about a SCSI device issue a command of this form:

echo <string> > /sys/bus/scsi/devices/<scsi_host_no>:0:<scsi_id>:<scsi_lun>/rescan

where <string> is any alphanumeric string and the other variables have the same meaning as in “Mapping
the representations of a SCSI device in sysfs” on page 153.

Example

In the following example, the information about a SCSI device 1:0:18:1086537744 is updated:

echo 1 > /sys/bus/scsi/devices/1:0:18:1086537744/rescan

Setting the SCSI command timeout
You can change the timeout if the default is not suitable for your storage system.

Before you begin
The FCP device must be online.

About this task

There is a timeout for SCSI commands. If the timeout expires before a SCSI command completes, error
recovery starts. The default timeout is 30 seconds.

To find out the current timeout, read the timeout attribute of the SCSI device:

cat /sys/bus/scsi/devices/<scsi_host_no>:0:<scsi_id>:<scsi_lun>/timeout

where the variables have the same meaning as in “Mapping the representations of a SCSI device in sysfs”
on page 153.

The attribute value specifies the timeout in seconds.

SCSI-over-Fibre Channel device driver 163

Procedure

To set a different timeout, enter a command of this form:

echo <timeout> > /sys/bus/scsi/devices/<scsi_host_no>:0:<scsi_id>:<scsi_lun>/timeout

where <timeout> is the new timeout in seconds.

Example

In the following example, the timeout of a SCSI device 1:0:18:1086537744 is first read and then set to 45
seconds:

cat /sys/bus/scsi/devices/1:0:18:1086537744/timeout
30
echo 45 > /sys/bus/scsi/devices/1:0:18:1086537744/timeout

Controlling the SCSI device state
You can use the state attribute of the SCSI device to set a SCSI device back online if it was set offline by
error recovery.

Before you begin
The FCP device must be online.

About this task

If the connection to a storage system is working but the storage system has a problem, the error recovery
might set the SCSI device offline. This condition is indicated by a message like "Device offlined - not ready
after error recovery".

To find out the current state of the device, read the state attribute:

cat /sys/bus/scsi/devices/<scsi_host_no>:0:<scsi_id>:<scsi_lun>/state

where the variables have the same meaning as in “Mapping the representations of a SCSI device in sysfs”
on page 153. The state can be:

running
The SCSI device can be used for running regular I/O requests.

cancel
The data structure for the device is being removed.

deleted
Follows the cancel state when the data structure for the device is being removed.

quiesce
No I/O requests are sent to the device, only special requests for managing the device. This state is
used when the system is suspended.

offline
Error recovery for the SCSI device has failed.

blocked
Error recovery is in progress and the device cannot be used until the recovery process is completed.

Procedure

Issue a command of this form:

echo running > /sys/bus/scsi/devices/<scsi_host_no>:0:<scsi_id>:<scsi_lun>/state

164 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Example

In the following example, SCSI device 1:0:18:1086537744 is offline and is then set online again:

cat /sys/bus/scsi/devices/1:0:18:1086537744/state
offline
echo running > /sys/bus/scsi/devices/1:0:18:1086537744/state

Removing SCSI devices
How to remove a SCSI device depends on whether your environment is set up to use NPIV.

Important: Configuration changes can directly or indirectly affect information that is required to mount
the root file system. Such changes require an update of the initrd of both the auxiliary kernel and the
target kernel, followed by a re-write of the boot record (see “Rebuilding the initial RAM disk image” on
page 49).

Removing automatically attached SCSI devices
When running with NPIV and the automatic LUN scan, you can temporarily delete a SCSI device by writing
1 to the delete attribute of the directory that represents the device in the sysfs SCSI branch.

About this task

See “Mapping the representations of a SCSI device in sysfs” on page 153 about how to find this directory.

Note: These steps delete the SCSI device only temporarily, until the next automatic or user triggered
Linux SCSI target scan. The scan automatically adds the SCSI devices again, unless the LUNs were
deconfigured on the storage target. To permanently delete SCSI devices, you must disable automatic LUN
scannning and configure all LUNs manually, see “Manually configured FCP LUNs and their SCSI devices”
on page 152.

Procedure

Issue a command of this form:

echo 1 > /sys/bus/scsi/devices/<device>/delete

Example
In this example, a SCSI device with LUN 0x4010403700000000 is to be removed. Before the device is
deleted, the corresponding device in the sysfs SCSI branch is found with an lszfcp command.

lszfcp -l 0x4010403700000000
0.0.3d0f/0x500507630300c567/0x4010403700000000 0:0:3:1
echo 1 > /sys/bus/scsi/devices/0:0:3:1/delete

Removing manually configured FCP LUNs and their SCSI device
Use the unit_remove attribute of the appropriate target port to remove a SCSI device if your
environment is not set up to use NPIV or if you disabled automatic LUN scan. For details about disabling
automatic LUN scan, see “Setting up the zfcp device driver” on page 135.

Before you begin

Attention: Use this procedure only to dynamically test configuration settings.

To configure persistent setting in a production system, use one of the following options:

• The YaST GUI yast2 zfcp
• The text-based interface yast zfcp
• The command line, use zfcp_disk_configure

SCSI-over-Fibre Channel device driver 165

See the section about IBM Z hard disk configuration in the SUSE Linux Enterprise Server 12 SP4
Deployment Guide, and the procedure about configuring a zFCP disk in SUSE Linux Enterprise Server 12
SP4 Administration Guide. The command-line tools described work not only inside the rescue
environment but also in a regularly installed Linux instance.

Procedure

Follow these steps to remove a manually configured FCP LUN and its SCSI device:
1. To manually unregister the SCSI device, write 1 to the delete attribute of the directory that

represents the device in the sysfs SCSI branch.
See “Mapping the representations of a SCSI device in sysfs” on page 153 for information about how to
find this directory. Issue a command of this form:

echo 1 > /sys/bus/scsi/devices/<device>/delete

2. Remove the SCSI device from the target port by writing the LUN of the device to the unit_remove
attribute of the port. Issue a command of this form:

echo <fcp_lun> > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/unit_remove

where:
<fcp_lun>

is the LUN of the SCSI device to be configured. The LUN is a 16 digit hexadecimal value padded
with zeros, for example 0x4010403300000000.

<device_bus_id>
specifies the FCP device.

<wwpn>
is the WWPN of the target port.

Removing a LUN with unit_remove automatically unregisters the SCSI device first.

Example

The following example removes a SCSI device with LUN 0x4010403200000000, accessed through a
target port with WWPN 0x500507630300c562 and is attached through an FCP device with bus ID
0.0.3d0c. The corresponding directory in the sysfs SCSI branch is assumed to be /sys/bus/scsi/
devices/0:0:1:1.

1. Optionally, unregister the device:

echo 1 > /sys/bus/scsi/devices/0:0:1:1/delete

2. Remove the device (if not done in previous step) and the LUN:

echo 0x4010403200000000 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/unit_remove

Confirming end-to-end data consistency checking
There are different types of end-to-end data consistency checking, with dependencies on hardware and
software.

About this task

End-to-end data consistency checking is based on a data integrity field (DIF) that is added to transferred
data blocks. DIF data is used to confirm that a data block originates from the expected source and was
not modified during the transfer between the storage system and the FCP device. The SCSI Block

166 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Commands (T10 SBC) standard defines several types of DIF. Linux data integrity extension (DIX) builds on
DIF to extend consistency checking, for example, to the operating system, middleware, or an application.

You enable the zfcp device driver for end-to-end data consistency checking with the zfcp.dif= kernel or
dif= module parameter (see “Setting up the zfcp device driver” on page 135). With end-to-end data
consistency checking for SCSI disks enabled, Linux automatically discovers which FCP devices and which
SCSI disks support end-to-end data consistency checking. No further setup is required.

Note: SCSI devices for which end-to-end data consistency checking is enabled must be accessed with
direct I/O. Direct I/O requires direct access through the block device or through a file system that fully
supports end-to-end data consistency checking. For example, XFS provides this support. Expect error
messages about invalid checksums when you use other access methods.

The zfcp device driver supports the following modes:

• The FCP device calculates and checks a DIF checksum (DIF type 1)
• The Linux block integrity layer calculates and checks a TCP/IP checksum, which the FCP device then

translates to a DIF checksum (DIX type 1 with DIF type 1)

For SCSI devices for which end-to-end data consistency checking is used, there is a sysfs directory

/sys/block/sd<x>/integrity

In the path, sd<x> is the standard name of the SCSI device.

End-to-end data consistency checking is used only if all of the following components support end-to-end
data consistency checking:
SCSI disk

Check your storage server documentation about T10 DIF support and any restrictions.
IBM Z hardware

IBM Z FCP adapter hardware supports end-to-end data consistency checking as of FICON Express8.
Hypervisor

For Linux on z/VM, you require a z/VM version with guest support for end-to-end data consistency
checking.

FCP device
Check your FCP adapter hardware documentation about the support and any restrictions. For
example, end-to-end data consistency checking might be supported only for disks with 512-byte
block size.

Read the prot_capabilities sysfs attribute of the SCSI host that is associated with an FCP device to
find out about its end-to-end data consistency checking support. The following values are possible:
0

The FCP device does not support end-to-end data consistency checking.
1

The FCP device supports DIF type 1.
16

The FCP device supports DIX type 1.
17

The FCP device supports DIX type 1 with DIF type 1.

Procedure

Issue a command of this form:

cat /sys/bus/ccw/devices/<device_bus_id>/host<n>/scsi_host/host<n>/prot_capabilities

where <device_bus_id> identifies the FCP device and <n> is an integer that identifies the corresponding
SCSI host.

SCSI-over-Fibre Channel device driver 167

Example

cat /sys/bus/ccw/devices/0.0.1940/host0/scsi_host/host0/prot_capabilities
17

Scenario for finding available LUNs
There are several steps from setting an FCP device online to listing the available LUNs.

Before you begin
Alternatively to this procedure, you can use one of the following options to discover FCP devices, remote
ports, and available LUNs:

• The YaST GUI yast2 zfcp
• The text-based interface yast zfcp
• The command-line tool zfcp_san_disc (does not list FCP devices)

See the section about IBM Z hard disk configuration in the SUSE Linux Enterprise Server 12 SP4
Deployment Guide.

Procedure

1. Check for available FCP devices of type 1732/03:

lscss -t 1732/03
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.3c02 0.0.0015 1732/03 1731/03 80 80 ff 36000000 00000000

Another possible type would be, for example, 1732/04.
2. Set the FCP device online:

chccwdev 0.0.3c02 --online

A port scan is performed automatically when the FCP device is set online.
3. Optional: Confirm that the FCP device is available and online:

lszfcp -b 0.0.3c02 -a
0.0.3c02 host0
Bus = "ccw"
 availability = "good"
...
 failed = "0"
...
 in_recovery = "0"
...
 online = "1"
...

4. Optional: List the available ports:

lszfcp -P
0.0.3c02/0x50050763030bc562 rport-0:0-0
0.0.3c02/0x500507630310c562 rport-0:0-1
0.0.3c02/0x500507630040727b rport-0:0-10
0.0.3c02/0x500507630e060521 rport-0:0-11
...

5. Scan for available LUNs on FCP device 0.0.3c02, port 0x50050763030bc562:

168 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

lsluns -c 0.0.3c02 -p 0x50050763030bc562
Scanning for LUNs on adapter 0.0.3c02
 at port 0x50050763030bc562:
 0x4010400000000000
 0x4010400100000000
 0x4010400200000000
 0x4010400300000000
 0x4010400400000000
 0x4010400500000000
 0x4010400600000000
 ...

zfcp HBA API support
You require different libraries for developing and running HBA management client applications. To
develop applications, you need the development version of the SNIA HBA API library. To run applications,
you need the zFCP HBA API library.

Developing applications
To develop applications, you must install the development version of the SNIA HBA API provided by the
libHBAAPI2-devel RPM, link your application against the library, and load the library.

Procedure

1. Install the development RPM for the SNIA HBA API.
Use, for example, zypper:

zypper install libHBAAPI2-devel

The development RPM libHBAAPI2-devel provides the necessary header files and .so symbolic
links needed to program against the SNIA HBA API.

2. Add the command-line option -lHBAAPI during the linker step of the build process to link your
application against the SNIA HBA API library.

3. In the application, issue the HBA_LoadLibrary() call as the first call to load the library. The vendor-
specific library libzfcphbaapi0, in turn, supplies the function HBA_RegisterLibrary that returns
all function pointers to the common library and thus makes them available to the application.

Functions provided
The zfcp HBA API implements Fibre Channel - HBA API (FC-HBA) functions as defined in the FC-HBA
specification.

You can find the FC-HBA specification at www.t11.org. The following functions are available:

• HBA_CloseAdapter()
• HBA_FreeLibrary()
• HBA_GetAdapterAttributes()
• HBA_GetAdapterName()
• HBA_GetAdapterPortAttributes()
• HBA_GetDiscoveredPortAttributes()
• HBA_GetEventBuffer()
• HBA_GetFcpTargetMapping()
• HBA_GetFcpTargetMappingV2()
• HBA_GetNumberOfAdapters()
• HBA_GetRNIDMgmtInfo()
• HBA_GetVersion()

SCSI-over-Fibre Channel device driver 169

http://www.t11.org

• HBA_LoadLibrary()
• HBA_OpenAdapter()
• HBA_RefreshAdapterConfiguration()
• HBA_RefreshInformation()
• HBA_RegisterForAdapterAddEvents()
• HBA_RegisterForAdapterEvents()
• HBA_RegisterForAdapterPortEvents()
• HBA_RegisterForAdapterPortStatEvents()
• HBA_RegisterForLinkEvents()
• HBA_RegisterForTargetEvents()
• HBA_RegisterLibrary()
• HBA_RegisterLibraryV2()
• HBA_RemoveCallback()
• HBA_SendCTPassThru()
• HBA_SendCTPassThruV2()
• HBA_SendLIRR()
• HBA_SendReadCapacity()
• HBA_SendReportLUNs()
• HBA_SendReportLUNsV2()
• HBA_SendRNID()
• HBA_SendRNIDV()
• HBA_SendRPL()
• HBA_SendRPS()
• HBA_SendScsiInquiry()
• HBA_SendSRL()
• HBA_SetRNIDMgmtInfo()

All other FC-HBA functions return status code HBA_STATUS_ERROR_NOT_SUPPORTED where possible.

Note: zFCP HBA API for Linux 3.12 can access only FCP devices, ports, and units that are configured in
the operating system.

Getting ready to run applications
To run an application, you must install the zFCP HBA API library that is provided by the libzfcphbaapi0
RPM. You can set environment variables to log any errors in the library, and use tools to investigate the
SAN configuration.

Before you begin
To use the HBA API support, you need the following packages:

• The zFCP HBA API library RPM, libzfcphbaapi0
• The SNIA HBA API library RPM, libHBAAPI2

Installing libzfcphbaapi0 automatically installs libHBAAPI2 as a dependency.

The application must be developed to use the SNIA HBA API library, see “Developing applications” on
page 169.

Procedure

Follow these steps to access the library from a client application:

170 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

1. Install the libzfcphbaapi0 RPM with zypper. Zypper automatically installs all dependent packages.
For example:

zypper install libzfcphbaapi0

2. Ensure that the /etc/hba.conf file exists and contains a line of the form:

<library name> <library pathname>

For example:

com.ibm.libzfcphbaapi /usr/lib64/libzfcphbaapi.so.0

The SNIA library requires a configuration file called /etc/hba.conf that contains the path to the
vendor-specific library libzfcphbaapi.so.

3. Optional: Set the environment variables for logging errors.
The zfcp HBA API support uses the following environment variables to log errors in the zfcp HBA API
library:
LIB_ZFCP_HBAAPI_LOG_LEVEL

specifies the log level. If not set or set to zero, there is no logging (default). If set to an integer
value greater than 1, logging is enabled.

LIB_ZFCP_HBAAPI_LOG_FILE
specifies a file for the logging output. If not specified, stderr is used.

What to do next
You can use the zfcp_ping and zfcp_show commands to investigate your SAN configuration.

Tools for investigating your SAN configuration
As of version 2.1, the HBA API package includes the following tools that can help you to investigate your
SAN configuration and to solve configuration problems.

zfcp_ping
to probe a port in the SAN.

zfcp_show
to retrieve information about the SAN topology and details about the SAN components.

See How to use FC-attached SCSI devices with Linux on z Systems, SC33-8413 for details.

SCSI-over-Fibre Channel device driver 171

172 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 11. Storage-class memory device driver
Storage-class memory (SCM) is a class of data storage devices that combines properties of both storage
and memory.

SCM can be implemented as Flash Express or as Virtual Flash Memory.

What you should know about storage-class memory
Storage-class memory (SCM) is accessed, in chunks called increments, through extended asynchronous
data mover (EADM) subchannels.

The LPAR on which your Linux instance runs must be configured to provide SCM.

• At least one EADM subchannel must be available to the LPAR. Because SCM supports multiple
concurrent I/O requests, it is advantageous to configure multiple EADM subchannels. A typical number
of EADM subchannels is 64.

• One or more SCM increments must be added to the I/O configuration of the LPAR.

In Linux, each increment is represented as a block device. You can use the block device with standard
Linux tools as you would use any other block device. Commonly used tools that work with block devices
include: fdisk, mkfs, and mount.

Storage-class memory is useful for workloads with large write operations, that is, with a block size of 256
KB or more of data. Write operations with a block size of less than 256 KB of data might not perform
optimally. Read operations can be of any size.

Storage-class memory device nodes
Applications access storage-class memory devices by device nodes. SUSE Linux Enterprise Server creates
a device node for each storage increment. Alternatively, use the mknod command to create one.

The device driver uses a device name of the form /dev/scm<x> for an entire block device. In the name,
<x> is one or two lowercase letters.

You can partition a block device into up to seven partitions. If you use partitions, the device driver
numbers them from 1 - 7. The partitions then have device nodes of the form /dev/scm<x><n>, where
<n> is a number in the range 1 - 7, for example /dev/scma1.

The following example shows two block devices, scma and scmb, where scma has one partition, scma1.

lsblk
NAME MAJ:MIN RM SIZE RO MOUNTPOINT
scma 252:0 0 16G 0
`-scma1 252:1 0 16G 0
scmb 252:8 0 16G 0

Be sure to load the scm_block before you check for the device node.

To check whether there already is a node, use, for example, lsblk to list all block devices and look for
"scm" entries.

To create storage-class memory device nodes, issue commands of the form:

mknod /dev/scma1 b <major> 1
mknod /dev/scma2 b <major> 2
mknod /dev/scma3 b <major> 3
...

© Copyright IBM Corp. 2000, 2019 173

Setting up the storage-class memory device driver
Configure the storage-class memory device driver by using the module parameters.

Storage-class memory module parameter syntax

modprobe scm_block

 nr_requests=64

 nr_requests=<num>

 write_cluster_size=64

 write_cluster_size=<num>

 nr_request_per_io=8

 nr_request_per_io=<num>

where
nr_requests

specifies the number of parallel I/O requests. Set this number to the number of EADM subchannels.
The default is 64.

write_cluster_size
specifies the number of pages that are used by the read-modify-write algorithm. The default is 64,
resulting in that all write requests smaller than 256 KiB are translated to 256 KiB writes. 1 KiB is 1024
bytes.

nr_request_per_io
submits more concurrent I/O requests than the current limit, which is based on the number of
available EADM subchannels (64). Valid values are in the range 1 to 64. Increasing the requests
increases the number of I/O requests per second, especially for requests with a small block size. The
default number of requests is 8. Depending on the workload, this setting might improve the
throughput of the scm_block driver.

Working with storage-class memory increments
You can list storage-class memory increments and EADM subchannels.

• “Show EADM subchannels” on page 174
• “Listing storage-class memory increments” on page 175
• “Combining SCM devices with LVM” on page 175

Show EADM subchannels
Use the lscss command to list EADM subchannels.

About this task

The extended asynchronous data mover (EADM) subchannels are used to transfer data to and from the
storage-class memory. At least one EADM subchannel must be available to the LPAR.

Procedure

To list EADM subchannels, issue:

174 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

lscss --eadm
Device Subchan.

n/a 0.0.ff00
n/a 0.0.ff01
n/a 0.0.ff02
n/a 0.0.ff03
n/a 0.0.ff04
n/a 0.0.ff05
n/a 0.0.ff06
n/a 0.0.ff07

For more information about the lscss command, see “lscss - List subchannels” on page 549.

Listing storage-class memory increments
Use the lsscm command to see the status and attributes of storage-class memory increments.

About this task

Each storage-class memory increment can be accessed as a block device through a device
node /dev/scm<x>. Optionally, you can partition a storage-class memory increment in up to seven
partitions.

You can also use the lsblk command to list all block devices.

Procedure

To list all storage-class memory increments, their status, and attributes, issue:

lsscm
SCM Increment Size Name Rank D_state O_state Pers ResID
--
0000000000000000 16384MB scma 1 2 1 2 1
0000000400000000 16384MB scmb 1 2 1 2 1

See “lsscm - List storage-class memory increments” on page 563 for details about the lsscm command.

Combining SCM devices with LVM
You can use LVM to combine multiple SCM block devices into an arbitrary sized LVM device.

Example
Configure SCM as any other block devices in LVM. If your version of LVM does not accept SCM devices as
valid LVM device types and issues an error message, add the SCM devices to the LVM configuration
file /etc/lvm/lvm.conf. Add the following line to the section labeled "devices":

types = ["scm", 8]

Storage-class memory device driver 175

176 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 12. Channel-attached tape device driver
The tape device driver supports channel-attached tape devices on SUSE Linux Enterprise Server 12 SP4
for IBM Z.

SCSI tape devices that are attached through an FCP channel are handled by the zfcp device driver (see
Chapter 10, “SCSI-over-Fibre Channel device driver,” on page 131).

Features
The tape device driver supports a range of channel-attached tape devices and functions of these devices.

• The tape device driver supports channel-attached tape drives that are compatible with IBM 3480,
3490, 3590, and 3592 magnetic tape subsystems. Various models of these device types are handled
(for example, the 3490/10).

3592 devices that emulate 3590 devices are recognized and treated as 3590 devices.
• Logical character devices for non-rewinding and rewinding modes of operation (see “Tape device modes

and logical devices” on page 177).
• Control operations through mt (see “Using the mt command” on page 179)
• Message display support (see “tape390_display - display messages on tape devices and load tapes” on

page 619)
• Encryption support (see “tape390_crypt - Manage tape encryption” on page 615)
• Up to 128 physical tape devices

What you should know about channel-attached tape devices
A naming scheme helps you to keep track of your tape devices, their modes of operation, and the
corresponding device nodes.

Tape device modes and logical devices
The tape device driver supports up to 128 physical tape devices. Each physical tape device can be used as
a character device in non-rewinding or in rewinding mode.

In non-rewinding mode, the tape remains at the current position when the device is closed. In rewinding
mode, the tape is rewound when the device is closed. The tape device driver treats each mode as a
separate logical device.

Both modes provide sequential (traditional) tape access without any caching done in the kernel.

You can use a channel-attached tape device in the same way as any other Linux tape device. You can write
to it and read from it using standard Linux facilities such as GNU tar. You can perform control operations
(such as rewinding the tape or skipping a file) with the standard tool mt.

Tape naming scheme
The tape device driver assigns minor numbers along with an index number when a physical tape device
comes online.

The naming scheme for tape devices is summarized in Table 31 on page 177.

Table 31: Tape device names and minor numbers

Device Names Minor numbers

Non-rewinding character devices ntibm<n> 2×<n>

© Copyright IBM Corp. 2000, 2019 177

Table 31: Tape device names and minor numbers (continued)

Device Names Minor numbers

Rewinding character devices rtibm<n> 2×<n>+1

where <n> is the index number that is assigned by the device driver. The index starts from 0 for the first
physical tape device, 1 for the second, and so on. The name space is restricted to 128 physical tape
devices, so the maximum index number is 127 for the 128th physical tape device.

The index number and corresponding minor numbers and device names are not permanently associated
with a specific physical tape device. When a tape device goes offline, it surrenders its index number. The
device driver assigns the lowest free index number when a physical tape device comes online. An index
number with its corresponding device names and minor numbers can be reassigned to different physical
tape devices as devices go offline and come online.

Tip: Use the lstape command (see “lstape - List tape devices” on page 566) to determine the current
mapping of index numbers to physical tape devices.

When the tape device driver is loaded, it dynamically allocates a major number to channel-attached
character tape devices. A different major number might be used when the device driver is reloaded, for
example when Linux is rebooted.

For online tape devices, directories provide information about the major/minor assignments. The
directories have the form:

• /sys/class/tape390/ntibm<n>
• /sys/class/tape390/rtibm<n>

Each of these directories has a dev attribute. The value of the dev attribute has the form
<major>:<minor>, where <major> is the major number for the device and <minor> is the minor number
specific to the logical device.

Example

In this example, four physical tape devices are present, with three of them online. The TapeNo column
shows the index number and the BusID column indicates the associated physical tape device. In the
example, no index number is allocated to the tape device in the last row. The device is offline and,
currently, no names and minor numbers are assigned to it.

lstape --ccw-only
TapeNo BusID CuType/Model DevType/DevMod BlkSize State Op MedState
0 0.0.01a1 3490/10 3490/40 auto UNUSED --- UNLOADED
1 0.0.01a0 3480/01 3480/04 auto UNUSED --- UNLOADED
2 0.0.0172 3590/50 3590/11 auto IN_USE --- LOADED
N/A 0.0.01ac 3490/10 3490/40 N/A OFFLINE --- N/A

Table 32 on page 178 summarizes the resulting names and minor numbers.

Table 32: Example names and minor numbers.

Bus ID Index (TapeNo) Device Device name Minor number

0.0.01a1 0 non-rewind ntibm0 0

rewind rtibm0 1

0.0.01a0 1 non-rewind ntibm1 2

rewind rtibm1 3

0.0.0172 2 non-rewind ntibm2 4

rewind rtibm2 5

178 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Table 32: Example names and minor numbers. (continued)

Bus ID Index (TapeNo) Device Device name Minor number

0.0.01ac not assigned n/a n/a not assigned

For the online devices, the major/minor assignments can be read from their respective representations
in /sys/class:

cat /sys/class/tape390/ntibm0/dev
254:0
cat /sys/class/tape390/rtibm0/dev
254:1
cat /sys/class/tape390/ntibm1/dev
254:2
cat /sys/class/tape390/rtibm1/dev
254:3
cat /sys/class/tape390/ntibm2/dev
254:4
cat /sys/class/tape390/rtibm2/dev
254:5

In the example, the major number is 254. The minor numbers are as expected for the respective device
names.

Tape device nodes
Applications access tape devices by device nodes. SUSE Linux Enterprise Server 12 SP4 uses udev to
create two device nodes for each tape device.

The device nodes have the form /dev/<name>, where <name> is the device name according to “Tape
naming scheme” on page 177.

For example, if you have two tape devices, udev creates the device nodes that are shown in Table 33 on
page 179:

Table 33: Tape device nodes

Node for non-rewind device rewind device

First tape device /dev/ntibm0 /dev/rtibm0

Second tape device /dev/ntibm1 /dev/rtibm1

Using the mt command
There are differences between the MTIO interface for channel-attached tapes and other tape drives.
Correspondingly, some operations of the mt command are different for channel-attached tapes.

The mt command handles basic tape control in Linux. See the man page for general information about mt.

setdensity
has no effect because the recording density is automatically detected on channel-attached tape
hardware.

drvbuffer
has no effect because channel-attached tape hardware automatically switches to unbuffered mode if
buffering is unavailable.

lock and unlock
have no effect because channel-attached tape hardware does not support media locking.

setpartition and mkpartition
have no effect because channel-attached tape hardware does not support partitioning.

status
returns a structure that, aside from the block number, contains mostly SCSI-related data that does not
apply to the tape device driver.

Channel-attached tape device driver 179

load
does not automatically load a tape but waits for a tape to be loaded manually.

offline and rewoffl and eject
all include expelling the currently loaded tape. Depending on the stacker mode, it might attempt to
load the next tape (see “Loading and unloading tapes” on page 184 for details).

Loading the tape device driver
There are no module parameters for the tape device driver. SUSE Linux Enterprise Server 12 SP4 loads
the required device driver module for you when a device becomes available.

You can also load the modules with the modprobe command.

Tape module syntax
modprobe tape_34xx

 tape_3590

See the modprobe man page for details on modprobe.

Working with tape devices
Typical tasks for working with tape devices include displaying tape information, controlling compression,
and loading and unloading tapes.

For information about working with the channel measurement facility, see Chapter 49, “Channel
measurement facility,” on page 437.

For information about displaying messages on a tape device's display unit, see “tape390_display - display
messages on tape devices and load tapes” on page 619.

See “Working with newly available devices” on page 10 to avoid errors when working with devices that
have become available to a running Linux instance.

• “Setting a tape device online or offline” on page 180
• “Displaying tape information” on page 182
• “Enabling compression” on page 183
• “Loading and unloading tapes” on page 184

Setting a tape device online or offline
Set a tape device online or offline with the chccwdev command or through the online sysfs attribute of
the device.

About this task

Setting a physical tape device online makes both corresponding logical devices accessible:

• The non-rewind character device
• The rewind character device

At any time, the device can be online to a single Linux instance only. You must set the tape device offline
to make it accessible to other Linux instances in a shared environment.

180 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Procedure

Use the chccwdev command (see “chccwdev - Set CCW device attributes” on page 470) to set a tape
online or offline.

Alternatively, you can write 1 to the online attribute of the device to set it online; or write 0 to set it offline.

Results

When a physical tape device is set online, the device driver assigns an index number to it. This index
number is used in the standard device nodes (see “Tape device nodes” on page 179) to identify the
corresponding logical devices. The index number is in the range 0 - 127. A maximum of 128 physical tape
devices can be online concurrently.

If you are using the standard device nodes, you must find out the index number that the tape device driver
assigned to your tape device. This index number, and consequently the associated standard device node,
can change after a tape device was set offline and back online.

If you need to know the index number, issue a command of this form:

lstape --ccw-only <device_bus_id>

where <device_bus_id> is the device bus-ID that corresponds to the physical tape device. The index
number is the value in the TapeNo column of the command output. For more information about the
lstape command, see “lstape - List tape devices” on page 566.

Examples

• To set a physical tape device with device bus-ID 0.0.015f online, issue:

chccwdev -e 0.0.015f

or

echo 1 > /sys/bus/ccw/devices/0.0.015f/online

To find the index number that the tape device driver assigned to the device, issue:

lstape 0.0.015f --ccw-only
TapeNo BusID CuType/Model DevType/Model BlkSize State Op MedState
2 0.0.015f 3480/01 3480/04 auto UNUSED --- LOADED

In the example, the assigned index number is 2. The standard device nodes for working with the device
until it is set offline are then:

– /dev/ntibm2 for the non-rewinding device
– /dev/rtibm2 for the rewinding device

• To set a physical tape device with device bus-ID 0.0.015f offline, issue:

chccwdev -d 0.0.015f

or

echo 0 > /sys/bus/ccw/devices/0.0.015f/online

Channel-attached tape device driver 181

Displaying tape information
Use the lstape command to display summary information about your tape devices, or read tape
information from sysfs.

Alternatively, you can read tape information from sysfs. Each physical tape device is represented in a sysfs
directory of the form
/sys/bus/ccw/devices/<device_bus_id>

where <device_bus_id> is the device bus-ID that corresponds to the physical tape device. This directory
contains a number of attributes with information about the physical device. The attributes: blocksize,
state, operation, and medium_state, might not show the current values if the device is offline.

Table 34: Tape device attributes

Attribute Explanation

online 1 if the device is online or 0 if it is offline (see “Setting a tape device online
or offline” on page 180)

cmb_enable 1 if channel measurement block is enabled for the physical device or 0 if it
is not enabled (see Chapter 49, “Channel measurement facility,” on page
437)

cutype Type and model of the control unit

devtype Type and model of the physical tape device

blocksize Currently used block size in bytes or 0 for auto

state State of the physical tape device, either of:
UNUSED

Device is not in use and is available to any operating system image in a
shared environment

IN_USE
Device is being used as a character device by a process on this Linux
image

OFFLINE
The device is offline.

NOT_OP
Device is not operational

operation The current tape operation, for example:

No operation
WRI

Write operation
RFO

Read operation
MSN

Medium sense
Several other operation codes exist, for example, for rewind and seek.

182 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Table 34: Tape device attributes (continued)

Attribute Explanation

medium_state The current state of the tape cartridge:
1

Cartridge is loaded into the tape device
2

No cartridge is loaded
0

The tape device driver does not have information about the current
cartridge state

Procedure

Issue a command of this form to read an attribute:

cat /sys/bus/ccw/devices/<device_bus_id>/<attribute>

where <attribute> is one of the attributes of Table 34 on page 182.

Example

The following lstape command displays information about a tape device with bus ID 0.0.015f:

lstape 0.0.015f --ccw-only
TapeNo BusID CuType/Model DevType/Model BlkSize State Op MedState
2 0.0.015f 3480/01 3480/04 auto UNUSED --- LOADED

This sequence of commands reads the same information from sysfs:

cat /sys/bus/ccw/devices/0.0.015f/online
1
cat /sys/bus/ccw/devices/0.0.015f/cmb_enable
0
cat /sys/bus/ccw/devices/0.0.015f/cutype
3480/01
cat /sys/bus/ccw/devices/0.0.015f/devtype
3480/04
cat /sys/bus/ccw/devices/0.0.015f/blocksize
0
cat /sys/bus/ccw/devices/0.0.015f/state
UNUSED
cat /sys/bus/ccw/devices/0.0.015f/operation

cat /sys/bus/ccw/devices/0.0.015f/medium_state
1

Enabling compression
Control Improved Data Recording Capability (IDRC) compression with the mt command provided by the
RPM mt_st.

About this task

Compression is off after the tape device driver is loaded.

Procedure

To enable compression, issue:

mt -f <node> compression

Channel-attached tape device driver 183

or

mt -f <node> compression 1

where <node> is the device node for a character device, for example, /dev/ntibm0.

To disable compression, issue:

mt -f <tape> compression 0

Any other numeric value has no effect, and any other argument disables compression.

Example

To enable compression for a tape device with a device node /dev/ntibm0 issue:

mt -f /dev/ntibm0 compression 1

Loading and unloading tapes
Unload tapes with the mt command. How to load tapes depends on the stacker mode of your tape
hardware.

Procedure

Unload tapes by issuing a command of this form:

mt -f <node> unload

where <node> is one of the character device nodes.

Whether you can load tapes from your Linux instance depends on the stacker mode of your tape
hardware. There are three possible modes:
manual

Tapes must always be loaded manually by an operator. You can use the tape390_display command
(see “tape390_display - display messages on tape devices and load tapes” on page 619) to display a
short message on the tape device's display unit when a new tape is required.

automatic
If there is another tape present in the stacker, the tape device automatically loads a new tape when
the current tape is expelled. You can load a new tape from Linux by expelling the current tape with the
mt command.

system
The tape device loads a tape when instructed from the operating system. From Linux, you can load a
tape with the tape390_display command (see “tape390_display - display messages on tape
devices and load tapes” on page 619). You cannot use the mt command to load a tape.

Example

To expel a tape from a tape device that can be accessed through a device node /dev/ntibm0, issue:

mt -f /dev/ntibm0 unload

Assuming that the stacker mode of the tape device is system and that a tape is present in the stacker,
you can load a new tape by issuing:

tape390_display -l "NEW TAPE" /dev/ntibm0

184 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

"NEW TAPE" is a message that is displayed on the tape devices display unit until the tape device receives
the next tape movement command.

Channel-attached tape device driver 185

186 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 13. XPRAM device driver
With the XPRAM block device driver SUSE Linux Enterprise Server 12 SP4 for IBM Z can access expanded
storage. XPRAM can be used as a basis for fast swap devices or for fast file systems.

Expanded storage can be swapped in or out of the main storage in 4 KB blocks. All XPRAM devices
provide a block size of 4096 bytes.

XPRAM features
The XPRAM device driver automatically detects expanded storage and supports expanded storage
partitions.

• If expanded storage is not available, XPRAM fails gracefully with a log message that reports the absence
of expanded storage.

• The expanded storage can be divided into up to 32 partitions.

What you should know about XPRAM
There is a device node for each XPRAM partition. Expanded storage persists across reboots and, with
suitable boot parameters, the stored data can be accessed by the rebooted Linux instance.

XPRAM partitions and device nodes
The XPRAM device driver uses major number 35. The standard device names are of the form slram<n>,
where <n> is the corresponding minor number.

You can use the entire available expanded storage as a single XPRAM device or divide it into up to 32
partitions. Each partition is treated as a separate XPRAM device.

If the entire expanded storage is used a single device, the device name is slram0. For partitioned
expanded storage, the <n> in the device name denotes the (n+1)th partition. For example, the first
partition is called slram0, the second slram1, and the 32nd partition is called slram31.

Table 35: XPRAM device names, minor numbers, and partitions

Minor Name To access

0 slram0 the first partition or the entire expanded storage if there are no partitions

1 slram1 the second partition

2 slram2 the third partition

...
<n>
...

...
slram<n>
...

...
the (<n>+1)th partition
...

31 slram31 the 32nd partition

The device nodes that you need to access these partitions are created by udev when you load the XPRAM
device driver module. The nodes are of the form /dev/slram<n>, where <n> is the index number of the
partition. In addition, to the device nodes udev creates a symbolic link of the form /dev/xpram<n> that
points to the respective device node.

© Copyright IBM Corp. 2000, 2019 187

XPRAM use for diagnosis
Expanded storage persists across reboots, which makes it suitable for storing diagnostic information.

Issuing an IPL command to reboot Linux does not reset expanded storage. Expanded storage is persistent
across IPLs and can be used, for example, to store diagnostic information. The expanded storage is reset
when the z/VM guest virtual machine is logged off or when the LPAR is deactivated.

Reusing XPRAM partitions
You might be able to reuse existing file systems or swap devices on an XPRAM device or partition after
reloading the XPRAM device driver (for example, after rebooting Linux).

For file systems or swap devices to be reusable, the XPRAM kernel or module parameters for the new
device or partition must match the parameters of the previous use of XPRAM.

If you change the XPRAM parameters, you must create a new file system or a new swap device for each
changed partition. A device or partition is considered changed if its size has changed. All partitions that
follow a changed partition are also considered changed even if their sizes are unchanged.

Setting up the XPRAM device driver
The XPRAM device driver is loaded automatically after extended memory has been configured with YaST.
You can also configure extended memory and load the XPRAM device driver independently of YaST.

You can optionally partition the available expanded storage by using the devs and sizes module
parameters when you load the xpram module.

XPRAM module parameter syntax
modprobe xpram

devs=<number_of_partitions>

sizes=

,

<partition_size>

where:
<number_of_partitions>

is an integer in the range 1 - 32 that defines how many partitions the expanded storage is split into.
<partition_size>

specifies the size of a partition. The i-th value defines the size of the i-th partition.

Each size is a non-negative integer that defines the size of the partition in KB or a blank. Only decimal
values are allowed and no magnitudes are accepted.

You can specify up to <number_of_partitions> values. If you specify fewer values than
<number_of_partitions>, the missing values are interpreted as blanks. Blanks are treated like zeros.

Any partition that is defined with a non-zero size is allocated the amount of memory that is specified by its
size parameter.

Any remaining memory is divided as equally as possible among any partitions with a zero or blank size
parameter. Dividing the remaining memory is subject to the following constraints:

• Blocks must be allocated in multiples of 4 K.
• Addressing constraints might leave un-allocated areas of memory between partitions.

See the modprobe man page for details about modprobe.

188 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Examples

• The following specification allocates the extended storage into four partitions. Partition 1 has 2 GB
(2097152 KB), partition 4 has 4 GB (4194304 KB), and partitions 2 and 3 use equal parts of the
remaining storage. If the total amount of extended storage was 16 GB, then partitions 3 and 4 would
each have approximately 5 GB.

modprobe xpram devs=4 sizes=2097152,0,0,4194304

• The following specification allocates the extended storage into three partitions. The partition 2 has 512
KB and the partitions 1 and 3 use equal parts of the remaining extended storage.

modprobe xpram devs=3 sizes=,512

• The following specification allocates the extended storage into two partitions of equal size.

modprobe xpram devs=2

XPRAM device driver 189

190 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Part 4. Networking
SUSE Linux Enterprise Server 12 SP4 includes several network device drivers that are specific to z/
Architecture.

Newest version

You can find the newest version of this publication on IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html

Restrictions
For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture specific information in
the SUSE Linux Enterprise Server 12 SP4 release notes at
www.suse.com/releasenotes

Example

An example network setup that uses some available network setup types is shown in Figure 33 on page
191.

Figure 33: Networking example

In the example there are three Linux instances; two of them run as z/VM guests in one LPAR and a third
Linux instance runs in another LPAR. Within z/VM, Linux instances can be connected through a guest LAN
or VSWITCH. Within and between LPARs, you can connect Linux instances through HiperSockets. OSA-
Express cards running in either non-QDIO mode (called LCS here) or in QDIO mode can connect the
mainframe to an external network.

© Copyright IBM Corp. 2000, 2019 191

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html
http://www.suse.com/releasenotes

Table 36 on page 192 lists which control units and device type combinations are supported by the
network device drivers.

Table 36: Supported device types, control units, and corresponding device drivers

Device
type Control unit Device driver Comment

1732/01 1731/01 qeth OSA configured as OSD

1732/02 1731/02 qeth OSA configured as OSX

1732/03 1731/02 qeth OSA configured as OSM

1732/05 1731/05 qeth HiperSockets

0000/00 3088/01 lcs P/390

0000/00 3088/08 ctcm Virtual CTC under z/VM

0000/00 3088/1e ctcm FICON channel

0000/00 3088/1f lcs 2216 Nways Multiaccess Connector

0000/00 3088/1f ctcm ESCON channel

0000/00 3088/60 lcs OSA configured as OSE (non-QDIO)

192 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 14. qeth device driver for OSA-Express
(QDIO) and HiperSockets

The qeth device driver supports a multitude of network connections, for example, connections through
Open Systems Adapters (OSA), HiperSockets, guest LANs, and virtual switches.

Real connections that use OSA-Express features
An IBM mainframe uses OSA-Express features, which are real LAN-adapter hardware, see Figure 34
on page 193. These adapters provide connections to the outside world, but can also connect virtual
systems (between LPARs or between z/VM guest virtual machines) within the mainframe. The qeth
driver supports these adapters if they are defined to run in queued direct I/O (QDIO) mode (defined as
OSD, OSM, or OSX in the hardware configuration). OSD-devices are the standard IBM Z LAN-adapters.
For details about OSA-Express in QDIO mode, see Open Systems Adapter-Express Customer's Guide
and Reference, SA22-7935.

Figure 34: OSA-Express adapters are real LAN-adapter hardware

The qeth device driver supports OSA-Express features for the Z mainframes that are relevant to SUSE
Linux Enterprise Server 12 SP4 as shown in Table 37 on page 193.:

Table 37: The qeth device driver support for OSA-Express features

Feature z14 and z14 ZR1 z13 and z13s® zEC12 and zBC12 z196 and z114

OSA-Express6S Gigabit Ethernet
10 Gigabit Ethernet
1000Base-T
Ethernet

Not supported Not supported Not supported

© Copyright IBM Corp. 2000, 2019 193

Table 37: The qeth device driver support for OSA-Express features (continued)

Feature z14 and z14 ZR1 z13 and z13s® zEC12 and zBC12 z196 and z114

OSA-Express5S Gigabit Ethernet
10 Gigabit Ethernet
1000Base-T
Ethernet

Gigabit Ethernet
10 Gigabit Ethernet
1000Base-T
Ethernet

Gigabit Ethernet
10 Gigabit Ethernet
1000Base-T
Ethernet

Not supported

OSA-Express4S 1000Base-T
Ethernet

Gigabit Ethernet
10 Gigabit Ethernet
1000Base-T
Ethernet

Gigabit Ethernet
10 Gigabit Ethernet
1000Base-T
Ethernet

Gigabit Ethernet
10 Gigabit Ethernet

OSA-Express3 Not supported Not supported Gigabit Ethernet
10 Gigabit Ethernet
1000Base-T
Ethernet

Gigabit Ethernet
10 Gigabit Ethernet
1000Base-T
Ethernet

OSA-Express2 Not supported Not supported Not supported Gigabit Ethernet
1000Base-T
Ethernet

Note: Unless otherwise indicated, OSA-Express refers to the OSA-express features as shown in Table
37 on page 193.

The qeth device driver supports CHPIDs of type OSM and OSX:
OSM

provides connectivity to the intranode management network (INMN) from Unified Resource
Manager functions to a zEnterprise CPC.

OSX
provides connectivity to and access control for the intraensemble data network (IEDN), which is
managed by Unified Resource Manager functions. A zEnterprise CPC and zBX within an ensemble
are connected through the IEDN. See zEnterprise System Introduction to Ensembles, GC27-2609
and zEnterprise System Ensemble Planning and Configuring Guide, GC27-2608 for more details.

HiperSockets
An IBM mainframe uses internal connections that are called HiperSockets. These simulate QDIO
network adapters and provide high-speed TCP/IP communication for operating system instances
within and across LPARs. For details about HiperSockets, see HiperSockets Implementation Guide,
SG24-6816.

The qeth device driver supports HiperSockets for all Z mainframes on which you can run SUSE Linux
Enterprise Server 12 SP4.

Virtual connections for Linux on z/VM
z/VM offers virtualized LAN-adapters that enable connections between z/VM guest virtual machines
and the outside world. It allows definitions of simulated network interface cards (NICs) attached to
certain z/VM guest virtual machines. The NICs can be connected to a simulated LAN segment called
guest LAN for z/VM internal communication between z/VM guest virtual machines, or they can be
connected to a virtual switch called VSWITCH for external LAN connectivity.
Guest LAN

Guest LANs represent a simulated LAN segment that can be connected to simulated network
interface cards. There are three types of guest LANs:

• Simulated OSA-Express in layer 3 mode
• Simulated HiperSockets(layer 3) mode

194 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

• Simulated Ethernet in layer 2 mode

Each guest LAN is isolated from other guest LANs on the same system (unless some member of
one LAN group acts as a router to other groups). See Figure 35 on page 195.

Figure 35: Guest LAN

Virtual switch
A virtual switch (VSWITCH) is a special-purpose guest LAN that provides external LAN
connectivity through an additional OSA-Express device served by z/VM without the need for a
routing virtual machine, see Figure 36 on page 195.

Figure 36: Virtual switch

A dedicated OSA adapter can be an option, but is not required for a VSWITCH.

qeth device driver for OSA-Express (QDIO) and HiperSockets 195

The qeth device driver distinguishes between virtual NICs in QDIO mode or HiperSockets mode. It
cannot detect whether the virtual network is a guest LAN or a VSWITCH.

For information about guest LANs, virtual switches, and virtual HiperSockets, see z/VM: Connectivity,
SC24-6267.

Device driver functions
The qeth device driver supports many networking transport protocol functions, as well as offload
functions and problem determination functions.

The qeth device driver supports functions listed in Table 38 on page 196 and Table 39 on page 197.

Table 38: Real connections.

Function OSA Layer 2 OSA Layer 3
HiperSockets
Layer 2

HiperSockets
Layer 3

Basic device or protocol functions

IPv4/multicast/broadcast Yes/Yes/Yes Yes/Yes/Yes Yes/Yes/Yes Yes/Yes/Yes

IPv6/multicast Yes/Yes Yes/Yes Yes/Yes Yes/Yes

Non-IP traffic Yes Yes Yes No

VLAN IPv4/IPv6/non IP sw/sw/sw hw/sw/sw sw/sw/sw hw/hw/No

Linux ARP Yes No (hw ARP) Yes No

Linux neighbor solicitation Yes Yes Yes No

Unique MAC address Yes (random for
LPAR)

No Yes Yes

Change MAC address Yes No Yes No

Promiscuous mode No No No • Yes (for
sniffer=1)

• No (for
sniffer=0)

MAC headers send/receive Yes/Yes faked/faked Yes/Yes faked/faked

ethtool support Yes Yes Yes Yes

Bonding Yes No Yes No

Priority queueing Yes Yes Yes Yes

Bridge port No No Yes No

Offload features

TCP segmentation offload
(TSO)

No Yes No No

Inbound (rx) checksum Yes Yes No No

Outbound (tx) checksum Yes Yes No No

OSA/QETH specific features

196 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Table 38: Real connections. (continued)

Function OSA Layer 2 OSA Layer 3
HiperSockets
Layer 2

HiperSockets
Layer 3

Special device driver setup for
VIPA

No required No Yes

Special device driver setup for
proxy ARP

No required No Yes

Special device driver setup for
IP takeover

No required No Yes

Special device driver setup for
routing IPv4/IPv6

No/No required/
required

No/No Yes/Yes

Receive buffer count Yes Yes Yes Yes

Direct connectivity to z/OS Yes by HW Yes No Yes

SNMP support Yes Yes No No

Multiport support Yes Yes No No

Data connection isolation Yes Yes No No

Problem determination

Hardware trace No Yes No No

Legend:

No - Function not supported or not required.
Yes - Function supported.
hw - Function performed by hardware.
sw - Function performed by software.
faked - Function will be simulated.
required - Function requires special setup.

Table 39: z/VM VSWITCH or Guest LAN connections.

Function
Emulated OSA
Layer 2

Emulated OSA
Layer 3

Emulated
HiperSockets Layer
3

Basic device or protocol features

IPv4/multicast/broadcast Yes/Yes/Yes Yes/Yes/Yes Yes/Yes/Yes

IPv6/multicast Yes/Yes Yes/Yes No/No

Non-IP traffic Yes No No

VLAN IPv4/IPv6/non IP sw/sw/sw hw/sw/No hw/No/No

Linux ARP Yes No (hw ARP) No

Linux neighbor solicitation Yes Yes No

Unique MAC address Yes Yes Yes

Change MAC address Yes No No

Promiscuous mode Yes Yes No

qeth device driver for OSA-Express (QDIO) and HiperSockets 197

Table 39: z/VM VSWITCH or Guest LAN connections. (continued)

Function
Emulated OSA
Layer 2

Emulated OSA
Layer 3

Emulated
HiperSockets Layer
3

MAC headers send/receive Yes/Yes faked/faked faked/faked

ethtool support Yes Yes Yes

Bonding Yes No No

Priority queueing Yes Yes Yes

Offload features

TSO No No No

rx HW checksum No No No

OSA/QETH specific features

Special device driver setup for VIPA No required required

Special device driver setup for proxy
ARP

No required required

Special device driver setup for IP
takeover

No required required

Special device driver setup for
routing IPv4/IPv6

No/No required/required required/required

Receive buffer count Yes Yes Yes

Direct connectivity to z/OS No Yes Yes

SNMP support No No No

Multiport support No No No

Data connection isolation No No No

Problem determination

Hardware trace No No No

Legend:

No - Function not supported or not required.
Yes - Function supported.
hw - Function performed by hardware.
sw - Function performed by software.
faked - Function will be simulated.
required - Function requires special setup.

198 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

What you should know about the qeth device driver
Interface names are assigned to qeth group devices, which map to subchannels and their corresponding
device numbers and device bus-IDs. An OSA-Express adapter can handle both IPv4 and IPv6 packets.

Layer 2 and layer 3
The qeth device driver consists of a common core and two device disciplines: layer 2 and layer 3.

In layer 2 mode, OSA routing to the destination is based on MAC addresses. A local MAC address is
assigned to each interface of a Linux instance and registered in the OSA Address Table. These MAC
addresses are unique and different from the MAC address of the OSA adapter. See “MAC headers in layer
2 mode” on page 201 for details.

In layer 3 mode, all interfaces of all Linux instances share the MAC address of the OSA adapter. OSA
routing to the destination Linux instance is based on IP addresses. See “MAC headers in layer 3 mode” on
page 202 for details.

The layer 2 discipline (qeth_l2)
The layer 2 discipline supports:

• OSA devices and z/VM virtual NICs that couple to VSWITCHes or QDIO guest LANs running in layer 2
mode

• OSA devices for NCP
• HiperSockets devices
• OSM (OSA-Express for Unified Resource Manager) devices
• OSX (OSA-Express for zBX) devices for IEDN

The layer 2 discipline is the default setup for OSA. On HiperSockets the default continues to be layer
3. OSA guest LANs are layer 2 by default, while HiperSockets guest LANs are always layer 3. See
“Setting the layer2 attribute” on page 212 for details.

The layer 3 discipline (qeth_l3)
The layer 3 discipline supports:

• OSA devices and z/VM virtual NICs that couple to VSWITCHes or QDIO guest LANs that are running
in layer 3 mode (with faked link layer headers)

• HiperSockets and HiperSockets guest LAN devices that are running in layer 3 mode (with faked link
layer headers)

• OSX (OSA-Express for zBX) devices for IEDN

This discipline supports those devices that are not capable of running in layer 2 mode. Not all Linux
networking features are supported and others need special setup or configuration. See Table 45 on
page 210. Some performance-critical applications might benefit from being layer 3.

Layer 2 and layer 3 interfaces cannot communicate within a HiperSockets LAN or within a VSWITCH or
guest LAN. However, a shared OSA adapter can convert traffic between layer 2 and layer 3 networks.

qeth group devices
The qeth device driver requires three I/O subchannels for each HiperSockets CHPID or OSA-Express
CHPID in QDIO mode. One subchannel is for control reads, one for control writes, and the third is for data.

The qeth device driver uses the QDIO protocol to communicate with the HiperSockets and OSA-Express
adapter.

qeth device driver for OSA-Express (QDIO) and HiperSockets 199

Figure 37: I/O subchannel interface

The three device bus-IDs that correspond to the subchannel triplet are grouped as one qeth group device.
The following rules apply for the device bus-IDs:
read

no specific rules.
write

must be the device bus-ID of the read subchannel plus one.
data

can be any free device bus-ID on the same CHPID.

You can configure different triplets of device bus-IDs on the same CHPID differently. For example, if you
have two triplets on the same CHPID they can have different attribute values for priority queueing.

Overview of the steps for setting up a qeth group device
You need to perform several steps before user-space applications on your Linux instance can use a qeth
group device.

Before you begin
Find out how the hardware is configured and which qeth device bus-IDs are on which CHPID, for example
by looking at the IOCDS. Identify the device bus-IDs that you want to group into a qeth group device. The
three device bus-IDs must be on the same CHPID.

Procedure

Perform these steps to allow user-space applications on your Linux instance to use a qeth group device:
1. Create the qeth group device.

After booting Linux, each qeth device bus-ID is represented by a subdirectory in /sys/bus/ccw/
devices/. These subdirectories are then named with the bus IDs of the devices. For example, a qeth
device with bus IDs 0.0.fc00, 0.0.fc01, and 0.0.fc02 is represented as /sys/bus/ccw/drivers/
qeth/0.0.fc00

2. Configure the device.
3. Set the device online.
4. Activate the device and assign an IP address to it.

What to do next

These tasks and the configuration options are described in detail in “Working with qeth devices” on page
207.

qeth interface names and device directories
The qeth device driver automatically assigns interface names to the qeth group devices and creates the
corresponding sysfs structures.

According to the type of CHPID and feature used, the naming scheme uses the following base names:

200 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

eth<n>
for Ethernet features.

hsi<n>
for HiperSockets devices.

where <n> is an integer that uniquely identifies the device. When the first device for a base name is set
online it is assigned 0, the second is assigned 1, the third 2, and so on. Each base name is counted
separately.

For example, the interface name of the first Ethernet feature that is set online is "eth0", the second
"eth1". When the first HiperSockets device is set online, it is assigned the interface name "hsi0".

While an interface is online, it is represented in sysfs as:
/sys/class/net/<interface>

The qeth device driver shares the name space for Ethernet interfaces with other network device drivers.
Each driver uses the name with the lowest free identifier <n>, regardless of which device driver occupies
the other names. For example, assume that the first qeth Ethernet feature is set online and there already
is one LCS Ethernet feature online. Then the LCS feature is named "eth0" and the qeth feature is named
"eth1". See also “LCS interface names” on page 268.

The mapping between interface names and the device bus-ID that represents the qeth group device in
sysfs is preserved when a device is set offline and back online. However, it can change when rebooting,
when devices are ungrouped, or when devices appear or disappear with a machine check.

“Finding out the interface name of a qeth group device” on page 218 and “Finding out the bus ID of a qeth
interface” on page 218 provide information about mapping device bus-IDs and interface names.

Support for IP Version 6 (IPv6)
The qeth device driver supports IPv6 in many network setups.

IPv6 is supported on:

• Ethernet interfaces of the OSA-Express adapter that runs in QDIO mode.
• HiperSockets layer 2 and layer 3 interfaces.
• z/VM guest LAN interfaces running in QDIO or HiperSockets layer 3 mode.
• z/VM guest LAN and VSWITCH interfaces in layer 2.

There are noticeable differences between the IP stacks for versions 4 and 6. Some concepts in IPv6 are
different from IPv4, such as neighbor discovery, broadcast, and Internet Protocol security (IPsec). IPv6
uses a 16-byte address field, while the addresses under IPv4 are 4 bytes in length.

Stateless autoconfiguration generates unique IP addresses for all Linux instances, even if they share an
OSA-Express adapter with other operating systems.

Be aware of the IP version when you specify IP addresses and when you use commands that return IP-
version specific output (such as qetharp).

MAC headers in layer 2 mode
In LAN environments, data packets find their destination through Media Access Control (MAC) addresses
in their MAC header.

qeth device driver for OSA-Express (QDIO) and HiperSockets 201

} MAC header

} IP header

Hardware

Datagram

IP addr.

MAC addr.

LAN

device

driver

Linux

Network

stack

App.

Datagram

IP addr.

MAC addr.

Datagram

IP addr.

LAN

adapter

MAC addr.

Figure 38: Standard IPv4 processing

MAC address handling as shown in Figure 38 on page 202) applies to non-mainframe environments and a
mainframe environment with an OSA-Express adapter where the layer2 option is enabled.

The layer2 option keeps the MAC addresses on incoming packets. Incoming and outgoing packets are
complete with a MAC header at all stages between the Linux network stack and the LAN as shown in
Figure 38 on page 202. This layer2-based forwarding requires unique MAC addresses for all concerned
Linux instances.

In layer 2 mode, the Linux TCP/IP stack has full control over the MAC headers and the neighbor lookup.
The Linux TCP/IP stack does not configure IPv4 or IPv6 addresses into the hardware, but requires a
unique MAC address for the card.

For Linux as a z/VM guest, the qeth device driver obtains a MAC address for each L2 device from the z/VM
host. No configuration is necessary.

For Linux in LPAR mode with a directly attached OSA adapter in QDIO mode, assign a unique MAC
address.

You can add a line LLADDR='<MAC address>' to the configuration file /etc/sysconfig/network/
ifcfg-<if-name>. Alternatively, you can change the MAC address by issuing the command:

ip link set addr <MAC address> dev <interface>

Note: Be sure not to assign the MAC address of the OSA-Express adapter to your Linux instance.

For OSX and OSM CHPIDs, you cannot set your own MAC addresses. Linux uses the MAC addresses
defined by the Unified Resource Manager.

For HiperSockets connections, a MAC address is generated.

MAC headers in layer 3 mode
A qeth layer 3 mode device driver is an Ethernet offload engine for IPv4 and a partial Ethernet offload
engine for IPv6. Hence, there are some special things to understand about the layer 3 mode.

To support IPv6 and protocols other than IPv4, the device driver registers a layer 3 card as an Ethernet
device to the Linux TCP/IP stack.

In layer 3 mode, the OSA-Express adapter in QDIO mode removes the MAC header with the MAC address
from incoming IPv4 packets. It uses the registered IP addresses to forward a packet to the recipient
TCP/IP stack. See Figure 39 on page 203. Thus the OSA-Express adapter is able to deliver IPv4 packets to
the correct Linux images. Apart from broadcast packets, a Linux image can get packets only for IP
addresses it configured in the stack and registered with the OSA-Express adapter.

202 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

} MAC header

} IP header

Hardware

Datagram

IP addr.

MAC addr.

LAN

device

driver

Linux

Network

stack

App.

Datagram

IP addr.

Datagram

IP addr.

LAN

adapter

(faked)

MAC addr.

Figure 39: MAC address handling in layer3 mode

The OSA-Express QDIO microcode builds MAC headers for outgoing IPv4 packets and removes them from
incoming IPv4 packets. Hence, the operating systems' network stacks send and receive only IPv4 packets
without MAC headers.

This lack of MAC headers can be a problem for applications that expect MAC headers. For examples of
how such problems can be resolved, see “Setting up for DHCP with IPv4” on page 253.

Outgoing frames
The qeth device driver registers the layer 3 card as an Ethernet device. Therefore, the Linux TCP/IP stack
will provide complete Ethernet frames to the device driver.

If the hardware does not require the Ethernet frame (for example, for IPv4) the driver removes the
Ethernet header prior to sending the frame to the hardware. If necessary information like the Ethernet
target address is not available (because of the offload functionality) the value is filled with the hardcoded
address FAKELL.

Table 40: Ethernet addresses of outgoing frames

Frame Destination address Source address

IPv4 FAKELL Real device address

IPv6 Real destination address Real device address

Other packets Real destination address Real device address

Incoming frames
The device driver provides Ethernet headers for all incoming frames.

If necessary information like the Ethernet source address is not available (because of the offload
functionality) the value is filled with the hardcoded address FAKELL.

Table 41: Ethernet addresses of incoming frames

Frame Destination address Source address

IPv4 Real device address FAKELL

IPv6 Real device address FAKELL

Other packets Real device address Real source address

Note that if a source or destination address is a multicast or broadcast address the device driver can
provide the corresponding (real) Ethernet multicast or broadcast address even when the packet was

qeth device driver for OSA-Express (QDIO) and HiperSockets 203

delivered or sent through the offload engine. Always providing the link layer headers enables packet
socket applications like tcpdump to work properly on a qeth layer 3 device without any changes in the
application itself (the patch for libpcap is no longer required).

While the faked headers are syntactically correct, the addresses are not authentic, and hence applications
requiring authentic addresses will not work. Some examples are given in Table 42 on page 204.

Table 42: Applications that react differently to faked headers

Application Support Reason

tcpdump Yes Displays only frames, fake Ethernet information is displayed.

iptables Partially As long as the rule does not deal with Ethernet information of an
IPv4 frame.

dhcp Yes Is non-IPv4 traffic.

IP addresses
The network stack of each operating system that shares an OSA-Express adapter in QDIO mode registers
all its IP addresses with the adapter.

Whenever IP addresses are deleted from or added to a network stack, the device drivers download the
resulting IP address list changes to the OSA-Express adapter.

For the registered IP addresses, the OSA-Express adapter off-loads various functions, in particular also:

• Handling MAC addresses and MAC headers
• ARP processing

ARP
The OSA-Express adapter in QDIO mode responds to Address Resolution Protocol (ARP) requests for all
registered IPv4 addresses.

ARP is a TCP/IP protocol that translates 32-bit IPv4 addresses into the corresponding hardware
addresses. For example, for an Ethernet device, the hardware addresses are 48-bit Ethernet Media
Access Control (MAC) addresses. The mapping of IPv4 addresses to the corresponding hardware
addresses is defined in the ARP cache. When it needs to send a packet, a host consults the ARP cache of
its network adapter to find the MAC address of the target host.

If there is an entry for the destination IPv4 address, the corresponding MAC address is copied into the
MAC header and the packet is added to the appropriate interface's output queue. If the entry is not found,
the ARP functions retain the IPv4 packet, and broadcast an ARP request asking the destination host for its
MAC address. When a reply is received, the packet is sent to its destination.

Note:

1. On an OSA-Express adapter in QDIO mode, do not set the NO_ARP flag on the Linux Ethernet device.
The device driver disables the ARP resolution for IPv4. Because the hardware requires no neighbor
lookup for IPv4, but neighbor solicitation for IPv6, the NO_ARP flag is not allowed on the Linux
Ethernet device.

2. On HiperSockets, which is a full Ethernet offload engine for IPv4 and IPv6 and supports no other
traffic, the device driver sets the NO_ARP flag on the Linux Ethernet interface. Do not remove this flag
from the interface.

204 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Layer 2 promiscuous mode
OSA and HiperSockets ports that operate in layer 2 mode can be set up to receive all frames that are
addressed to unknown MAC addresses.

On most architectures, traffic between operating systems and networks is handled by Ethernet Network
Interface Controllers (NICs). NICs usually filter incoming traffic to admit only frames with destination MAC
addresses that are registered with the NIC.

However, a NIC can also be configured to receive and pass to the operating system all Ethernet frames
that reach it, regardless of the destination MAC address. This mode of operation is known as
"promiscuous mode". For example, promiscuous mode is a prerequisite for configuring a NIC as a
member of a Linux software bridge.

For more information about how to set up a software bridge, see the SUSE Linux Enterprise Server
documentation, or the bridging how-to available at http://www.tldp.org/HOWTO/BRIDGE-STP-HOWTO

On IBM Z, you can realize a promiscuous mode for Ethernet traffic through a bridge port configuration or
through Virtual Network Interface Controller (VNIC) characteristics. OSA devices can be configured as
bridge ports. HiperSockets Devices can be configured either as bridge ports or with VNIC characteristics,
but not both simultaneously.

VNIC characteristics

With (VNIC) characteristics, you can set and fine-tune a promiscuous mode for HiperSockets
devices, (see “Advanced packet-handling configuration” on page 238).

Bridge ports

Linux can assign a bridge port role to a logical port, and the adapter assigns an active state to one of the
logical ports to which a role was assigned. A local port in active bridge port state receives all Ethernet
frames with unknown destination MAC addresses.

Figure 40 on page 205 shows a setup with a HiperSockets bridge port and an OSA bridge port.

Figure 40: HiperSockets and OSA bridge port in Linux

qeth device driver for OSA-Express (QDIO) and HiperSockets 205

http://www.tldp.org/HOWTO/BRIDGE-STP-HOWTO

HiperSockets only: Permission to configure ports as bridge ports must be granted in IBM zEnterprise
Unified Resource Manager (zManager).

Differences between promiscuous mode and bridge-port roles

Making a logical port of an OSA or HiperSockets adapter an active bridge port is similar to enabling
promiscuous mode on a non-mainframe NIC that is connected to a real Ethernet switch. However, there
are important differences:

Number of ports in promiscuous mode

• Real switches: Any number of interfaces that are connected to a real switch can be turned to
promiscuous mode, and all of them then receive frames with unknown destination addresses.

• Bridge ports on Z: Although you can assign the bridge-port role to multiple ports of a single OSA or
HiperSockets adapter, only one port is active and receives traffic to unknown destinations.

Interception of traffic to other systems

• Real switches: A port of a real switch can be configured to receive frames with both known and
unknown destinations. If a NIC in promiscuous mode is connected to the port, the corresponding
host receives a copy of all traffic that passes through the switch. This includes traffic that is destined
to other hosts connected to this switch.

• Bridge ports on Z: Only frames with unknown destinations are passed to the operating system. It is
not possible to intercept traffic addressed to systems connected to other ports of the same OSA or
HiperSockets adapter.

Limitation by the source of traffic (OSA bridge port only)

• Real switches and HiperSockets bridge-port LAN: Frames with unknown destination MAC addresses
are delivered to the promiscuous interfaces regardless of the port through which the frames enter
the switch or HiperSockets adapter.

• OSA bridge port only: An active bridge port learns which MAC addresses need to be routed to the
owning system by analyzing ARP and other traffic. Incoming frames are routed to the active bridge
port if their destination MAC address:

– Matches an address that is learned or registered with the bridge port
– Is not learned or registered with any of the local ports of the OSA adapter, but arrived from the

physical Ethernet port

Bridge port roles

Linux can assign a primary or secondary role to a logical port of an OSA or a HiperSockets adapter. Only
one logical port of such an adapter can be assigned the primary role, but multiple other logical ports can
be assigned secondary role. When one or more logical ports of an adapter are assigned primary or
secondary role, the hardware ensures that exactly one of these ports is active. The active port receives
frames with unknown destination. When a port with primary role is present, it always becomes active.
When only ports with secondary role are present, the hardware decides which one becomes active.
Changes in the ports' state are reported to Linux user space through udev events.

You can set a bridge port role either directly by using the bridge_role attribute or indirectly by using the
bridge_reflect_promisc attribute. See “Configuring a network device as a member of a Linux bridge” on
page 236.

206 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Setting up the qeth device driver
No module parameters exist for the qeth device driver. qeth devices are set up using sysfs.

Loading the qeth device driver modules
There are no module parameters for the qeth device driver. SUSE Linux Enterprise Server 12 SP4 loads
the required device driver modules for you when a device becomes available.

You can also load the module with the modprobe command:

qeth module syntax
modprobe qeth

 qeth_l2

 qeth_l3

where:
qeth

is the core module that contains common functions that are used for both the layer 2 and layer 3
disciplines.

qeth_l2
is the module that contains layer 2 discipline-specific code.

qeth_l3
is the module that contains layer 3 discipline-specific code.

When a qeth device is configured for a particular discipline, the driver tries to automatically load the
corresponding discipline module.

Switching the discipline of a qeth device
To switch the discipline of a device the network interface must be shut down and the device must be
offline.

Some devices can only run in one discipline, see “Layer 2 and layer 3” on page 199. The device driver
rejects any request to switch the discipline of these devices.

If the new discipline is accepted by the device driver the old network interface will be deleted. When the
new discipline is set online the first time the new network interface is created.

Removing the modules
Removing a module is not possible if there are cross dependencies between the discipline modules and
the core module.

To release the dependencies from the core module to the discipline module, all devices of this discipline
must be ungrouped. Now the discipline module can be removed. If all discipline modules are removed,
the core module can be removed.

Working with qeth devices
Typical tasks that you need to perform when working with qeth devices include creating group devices,
finding out the type of a network adapter, and setting a device online or offline.

About this task

Attention: Use the procedures described here for dynamic testing of configuration settings. For
persistent configuration in a production system, use one of the SUSE-provided tools YaST, yast2,

qeth device driver for OSA-Express (QDIO) and HiperSockets 207

or the qeth_configure command. For more details about the qeth_configure command, see
the man page.

YaST creates a udev configuration file called /etc/udev/rules.d/xx-qeth-0.0.xxxx.rules.
Additionally, cross-platform network configuration parameters are defined in /etc/sysconfig/
network/ifcfg-<if_name>

Table 43 on page 208 and Table 45 on page 210 serve as both a task overview and a summary of the
attributes and the possible values you can write to them. Underlined values are defaults.

Not all attributes are applicable to each device. Some attributes apply only to HiperSockets or only to
OSA-Express CHPIDs in QDIO mode, other attributes are applicable to IPv4 interfaces only. See the task
descriptions for the applicability of each attribute.

OSA for NCP handles NCP-related packets. Most of the attributes do not apply to OSA for NCP devices.
The attributes that apply are:

• if_name
• card_type
• buffer_count
• recover

Table 43: qeth tasks and attributes common to layer2 and layer3.

Task Corresponding
attributes

Possible attribute
values

“Creating a qeth group device” on page 211 group n/a

“Removing a qeth group device” on page 212 ungroup 0 or 1

“Setting the layer2 attribute” on page 212 layer2 0 or 1, see “Layer 2 and
layer 3” on page 199¹

“Using priority queueing” on page 213 priority_queueing prio_queueing_vlan
prio_queueing_skb
prio_queueing_prec
prio_queueing_tos
no_prio_queueing
no_prio_queueing:0
no_prio_queueing:1
no_prio_queueing:2
no_prio_queueing:3

“Specifying the number of inbound buffers” on page 215 buffer_count integer in the range 8
-128. The default is 64
for OSA devices and 128
for HiperSockets
devices

“Specifying the relative port number” on page 216 portno integer, either 0 or 1, the
default is 0

“Finding out the type of your network adapter” on page
216

card_type n/a, read-only

“Setting a device online or offline” on page 217 online 0 or 1

“Finding out the interface name of a qeth group device” on
page 218

if_name n/a, read-only

“Finding out the bus ID of a qeth interface” on page 218 none n/a

208 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Table 43: qeth tasks and attributes common to layer2 and layer3. (continued)

Task Corresponding
attributes

Possible attribute
values

“Activating an interface” on page 218 none n/a

“Deactivating an interface” on page 220 none n/a

“Recovering a device” on page 220 recover 1

“Turning inbound checksum calculations on and off” on
page 221

none n/a

“Turning outbound checksum calculations on and off” on
page 222

none n/a

“Isolating data connections” on page 222 isolation none, drop, forward

“Starting and stopping collection of QETH performance
statistics” on page 224

performance_stats 0 or 1

“Capturing a hardware trace” on page 226 hw_trap arm
disarm

¹A value of -1 means that the layer has not been set and that the default layer setting is used when the device is
set online.

Table 44: qeth functions and attributes in layer 2 mode

Function
Corresponding
attributes

Possible attribute
values

“Configuring a network device as a member of a Linux
bridge” on page 236

bridge_role
bridge_state
bridge_hostnotify

primary, secondary,
none
active, standby, inactive
0 or 1

“Advanced packet-handling configuration” on page 238 vnicc/bridge_invisible
vnicc/flooding
vnicc/learning
vnicc/mcast_flooding
vnicc/rx_bcast
vnicc/takeover_learning
vnicc/takeover_setvmac
vnicc/learning_timeout

0 or 1
0 or 1
0 or 1
0 or 1
0 or 1
0 or 1
0 or 1
integer in the range
60 - 86400
the default is 600

qeth device driver for OSA-Express (QDIO) and HiperSockets 209

Table 45: qeth tasks and attributes in layer 3 mode.

Task Corresponding
attributes

Possible attribute
values

“Setting up a Linux router” on page 227 route4
route6

primary_router
secondary_router
primary_connector
secondary_connector
multicast_router
no_router

“Enabling and disabling TCP segmentation offload” on
page 229

none n/a

“Faking broadcast capability” on page 230 fake_broadcast ¹ 0 or 1

“Taking over IP addresses” on page 231 ipa_takeover/enable 0 or 1 or toggle

ipa_takeover/add4
ipa_takeover/add6
ipa_takeover/del4
ipa_takeover/del6

IPv4 or IPv6 IP address
and mask bits

ipa_takeover/invert4
ipa_takeover/invert6

0 or 1 or toggle

“Configuring a device for proxy ARP” on page 234 rxip/add4
rxip/add6
rxip/del4
rxip/del6

IPv4 or IPv6 IP address

“Configuring a device for virtual IP address (VIPA)” on
page 235

vipa/add4
vipa/add6
vipa/del4
vipa/del6

IPv4 or IPv6 IP address

“Configuring a HiperSockets device for AF_IUCV
addressing” on page 235

hsuid 1 to 8 characters

“Setting up a HiperSockets network traffic analyzer” on
page 254

sniffer 0 or 1

¹ not valid for HiperSockets

Tip: Use the qethconf command instead of using the attributes for IPA, proxy ARP, and VIPA directly
(see “qethconf - Configure qeth devices” on page 593). In YaST, you can use "IPA Takeover".

sysfs provides multiple paths through which you can access the qeth group device attributes. For
example, if a device with bus ID 0.0.a100 corresponds to interface eth0:

/sys/bus/ccwgroup/drivers/qeth/0.0.a100
/sys/bus/ccwgroup/devices/0.0.a100
/sys/devices/qeth/0.0.a100
/sys/class/net/eth0/device

all lead to the attributes for the same device. For example, the following commands are all equivalent and
return the same value:

210 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

cat /sys/bus/ccwgroup/drivers/qeth/0.0.a100/if_name
eth0
cat /sys/bus/ccwgroup/devices/0.0.a100/if_name
eth0
cat /sys/devices/qeth/0.0.a100/if_name
eth0
cat /sys/class/net/eth0/device/if_name
eth0

However, the path through /sys/class/net is available only while the device is online. Furthermore, it
might lead to a different device if the assignment of interface names changes after rebooting or when
devices are ungrouped and new group devices created.

Tips:

• Work through one of the paths that are based on the device bus-ID.
• Using SUSE Linux Enterprise Server 12 SP4, you set qeth attributes in YaST. YaST, in turn, creates a

udev configuration file called /etc/udev/rules.d/xx-qeth-0.0.xxxx.rules. Additionally, cross-
platform network configuration parameters are defined in /etc/sysconfig/network/ifcfg-
<if_name>.

The following sections describe the tasks in detail.

Creating a qeth group device
Use the znetconf command to configure network devices. Alternatively, you can use sysfs.

Before you begin
You need to know the device bus-IDs that correspond to the read, write, and data subchannel of your
OSA-Express CHPID in QDIO mode or HiperSockets CHPID as defined in the IOCDS of your mainframe.

Procedure

To create a qeth group device, either:
• Issue the znetconf command to create and configure a group device. The command groups the

correct bus-IDs for you and sets the device online.
For information about the znetconf command, see “znetconf - List and configure network devices”
on page 640.

• Write the device numbers of the subchannel triplet to the sysfs group attribute to only define a group
device.
Issue a command of the form:

echo <read_device_bus_id>,<write_device_bus_id>,<data_device_bus_id> > /sys/bus/ccwgroup/drivers/qeth/group

Results
The qeth device driver uses the device bus-ID of the read subchannel to create a directory for a group
device:

/sys/bus/ccwgroup/drivers/qeth/<read_device_bus_id>

This directory contains a number of attributes that determine the settings of the qeth group device. The
following sections describe how to use these attributes to configure a qeth group device.

Example

In this example (see Figure 41 on page 212), a single OSA-Express CHPID in QDIO mode is used to
connect a Linux instance to a network.

Mainframe configuration:

qeth device driver for OSA-Express (QDIO) and HiperSockets 211

Figure 41: Mainframe configuration

Linux configuration:

Assuming that 0.0.aa00 is the device bus-ID that corresponds to the read subchannel:

echo 0.0.aa00,0.0.aa01,0.0.aa02 > /sys/bus/ccwgroup/drivers/qeth/group

This command results in the creation of the following directories in sysfs:

• /sys/bus/ccwgroup/drivers/qeth/0.0.aa00
• /sys/bus/ccwgroup/devices/0.0.aa00
• /sys/devices/qeth/0.0.aa00

Both the command and the resulting directories would be the same for a HiperSockets CHPID.

Removing a qeth group device
Use the ungroup sysfs attribute to remove a qeth group device.

Before you begin
The device must be set offline before you can remove it.

Procedure

To remove a qeth group device, write 1 to the ungroup attribute.
Issue a command of the form:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/ungroup

Example

This command removes device 0.0.aa00:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.aa00/ungroup

Setting the layer2 attribute
If the detected hardware always runs in a specific discipline, the corresponding discipline module is
automatically requested.

Before you begin

• To change a configured layer2 attribute, the network interface must be shut down and the device must
be set offline.

212 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

• If you are using the layer2 option within a QDIO-based guest LAN environment, you cannot define a
VLAN with ID 1, because ID 1 is reserved for z/VM use.

About this task
The qeth device driver attempts to load the layer 3 discipline for HiperSockets devices and layer 2 for
non-HiperSockets devices.

You can use the layer 2 mode for almost all device types. However, note the following about layer 2 to
layer 3 conversion:
real OSA-Express

Hardware is able to convert layer 2 to layer 3 traffic and vice versa and thus there are no restrictions.
HiperSockets

There is no support for layer 2 to layer 3 conversion and, thus, no communication is possible between
HiperSockets layer 2 interfaces and HiperSockets layer 3 interfaces. Do not include HiperSockets
layer 2 interfaces and HiperSockets layer 3 interfaces in the same LAN.

z/VM guest LAN
Linux has to configure the same mode as the underlying z/VM virtual LAN definition. The z/VM
definition "Ethernet mode" is available for VSWITCHes and for guest LANs of type QDIO.

Procedure

The qeth device driver separates the configuration options in sysfs according to the device discipline.
Hence the first configuration action after you group the device must be the configuration of the discipline.
To set the discipline, issue a command of the form:

echo <integer> > /sys/devices/qeth/<device_bus_id>/layer2

where <integer> is

• 0 to turn off the layer2 attribute; this results in the layer 3 discipline.
• 1 to turn on the layer2 attribute; this results in the layer 2 discipline (default).

If the layer2 attribute has a value of -1, the layer was not set. The default layer setting is used when the
device is set online.

Results
If you configured the discipline successfully, more configuration attributes are shown (for example route4
for the layer 3 discipline) and can be configured. If an OSA device is not configured for a discipline but is
set online, the device driver assumes that it is a layer 2 device. It then tries to load the layer 2 discipline.

For information about layer2, see:

• Open Systems Adapter-Express Customer's Guide and Reference, SA22-7935
• OSA-Express Implementation Guide, SG24-5948
• Networking Overview for Linux on zSeries, REDP-3901
• z/VM: Connectivity, SC24-6267

Using priority queueing
An OSA-Express CHPID in QDIO mode has up to four output queues (queues 0 - 3) in central storage. The
priority queueing feature gives these queues different priorities (queue 0 having the highest priority). The
four output queues are available only if multiple priority is enabled for queues on the OSA-Express CHPID
in QDIO mode.

Before you begin

• Priority queueing applies to OSA-Express CHPIDs in QDIO mode only.

qeth device driver for OSA-Express (QDIO) and HiperSockets 213

• If more than 160 TCP/IP stacks per OSA-Express CHPID are defined in the IOCDS, priority queueing is
disabled.

• The device must be offline while you set the queueing options.

About this task

Queueing is relevant mainly to high-traffic situations. When there is little traffic, queueing has no impact
on processing. The qeth device driver can put data on one or more of the queues. By default, the driver
uses queue 2 for all data.

Procedure

You can determine how outgoing IP packages are assigned to queues by setting a value for the
priority_queueing attribute of your qeth device.

Issue a command of the form:

echo <method> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/priority_queueing

where <method> can be any of these values:

prio_queueing_vlan
to base the queue assignment on the two most significant bits in the priority code point in the IEEE
802.1Q header as used in VLANs. This value affects only traffic with VLAN headers, and hence works
only with qeth devices in layer 2 mode.

You can set the priority code point in the IEEE 802.1Q headers of the traffic based on skb-
>priority by using a command of the form:

ip link add link <link> name <name> type vlan id <vlan-id> egress-qos-map <mapping>

Note: Enabling this option makes all traffic default to queue 3.

prio_queueing_skb
to base the queue assignment on the priority flag of the skbs. An skb, or socket buffer, is a Linux
kernel-internal structure that represents network data. The mapping to the priority queues is as
follows:

Table 46: Mapping of flag value to priority queues

Priority flag of the skb Priority queue

0-1 3

2-3 2

4-5 1

≥6 0

You can use prio_queueing_skb for any network setups, including conventional LANs.

Use either sockopt SO_PRIORITY or an appropriate iptables command to adjust the priority flag
of the skb (skb->priority).

Note: The priority flag of the skbs defaults to 0, hence enabling this option makes all traffic default to
queue 3.

prio_queueing_prec
to base the queue assignment on the two most significant bits of each packet's IP header precedence
field. To set the precedence field, use sockopt IP_TOS (for IPv4) or IPV6_TCLASS (for IPv6).

Note: Enabling this option makes all traffic default to queue 3.

214 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

prio_queueing_tos
Deprecated; do not use for new setups.

no_prio_queueing
causes the qeth device driver to use queue 2 for all packets. This value is the default.

no_prio_queueing:0
causes the qeth device driver to use queue 0 for all packets.

no_prio_queueing:1
causes the qeth device driver to use queue 1 for all packets.

no_prio_queueing:2
causes the qeth device driver to use queue 2 for all packets. This value is equivalent to the default.

no_prio_queueing:3
causes the qeth device driver to use queue 3 for all packets.

Example

To read the current value of priority queueing for device 0.0.a110, issue:

cat /sys/bus/ccwgroup/drivers/qeth/0.0.a110/priority_queueing

Possible results are:
by VLAN headers

if prio_queueing_vlan is set.
by skb-priority

if prio_queueing_skb is set.
by precedence

if prio_queueing_prec is set.
by type of service

if prio_queuing_tos is set.
always queue <x>

otherwise.

To configure queueing by skb->priority setting for device 0.0.a110 issue:

echo prio_queueing_skb > /sys/bus/ccwgroup/drivers/qeth/0.0.a110/priority_queueing

Specifying the number of inbound buffers
Depending on the amount of available storage and the amount of traffic, you can assign 8 - 128 inbound
buffers for each qeth group device.

Before you begin
The device must be offline while you specify the number of buffers for inbound traffic.

About this task

By default, the qeth device driver assigns 64 inbound buffers to OSA devices and 128 to HiperSockets
devices.

The Linux memory usage for inbound data buffers for the devices is (number of buffers) ×
(buffer size).

The buffer size is equivalent to the frame size, which depends on the type of CHPID:

• For an OSA-Express CHPID in QDIO mode: 64 KB
• For HiperSockets: depending on the HiperSockets CHPID definition, 16 KB, 24 KB, 40 KB, or 64 KB

qeth device driver for OSA-Express (QDIO) and HiperSockets 215

Procedure

Set the buffer_count attribute to the number of inbound buffers you want to assign.
Issue a command of the form:

echo <number> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/buffer_count

Example

In this example, 64 inbound buffers are assigned to device 0.0.a000.

echo 64 > /sys/bus/ccwgroup/drivers/qeth/0.0.a000/buffer_count

Specifying the relative port number
Use the portno sysfs attribute to specify the relative port number.

Before you begin

• This description applies to adapters that, per CHPID, show more than one port to Linux.
• The device must be offline while you specify the relative port number.

Procedure

By default, the qeth group device uses port 0.
To use a different port, issue a command of the form:

echo <integer> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/portno

Where <integer> is either 0 or 1.

Example
In this example, port 1 is assigned to the qeth group device.

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a000/portno

Finding out the type of your network adapter
Use the card_type attribute to find out the type of the network adapter through which your device is
connected.

Procedure

You can find out the type of the network adapter through which your device is connected. To find out the
type, read the card_type attribute of the device.
Issue a command of the form:

cat /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/card_type

The card_type attribute gives information about both the type of network adapter and the type of network
link (if applicable) available at the card's ports. See Table 47 on page 217 for details.

216 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Table 47: Possible values of card_type and what they mean.

Value of card_type Adapter type Link type

OSD_10GIG OSA card in OSD mode 10 Gigabit Ethernet

OSD_1000 Gigabit Ethernet, 1000BASE-T

OSD_GbE_LANE Gigabit Ethernet, LAN Emulation

OSD_FE_LANE LAN Emulation

OSD_Express Unknown

OSA for NCP ESCON/CDLC bridge or N/A

OSM OSA-Express for Unified Resource
Manager

1000BASE-T

OSX OSA-Express for zBX 10 Gigabit Ethernet

HiperSockets HiperSockets, CHPID type IQD N/A

Virtual NIC QDIO VSWITCH or guest LAN based on OSA N/A

Virtual NIC Hiper Guest LAN based on HiperSockets N/A

Unknown Other

Example
To find the card_type of a device 0.0.a100 issue:

cat /sys/bus/ccwgroup/drivers/qeth/0.0.a100/card_type
OSD_100

Setting a device online or offline
Use the online device group attribute to set a device online or offline.

Procedure

To set a qeth group device online, set the online device group attribute to 1. To set a qeth group device
offline, set the online device group attribute to 0.
Issue a command of the form:

echo <flag> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/online

Setting a device online associates it with an interface name (see “Finding out the interface name of a qeth
group device” on page 218).

Setting a device offline closes this network device. If IPv6 is active, you lose any IPv6 addresses set for
this device. After you set the device online, you can restore lost IPv6 addresses only by issuing the ip or
ifconfig commands again.

Example
To set a qeth device with bus ID 0.0.a100 online issue:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a100/online

To set the same device offline issue:

qeth device driver for OSA-Express (QDIO) and HiperSockets 217

echo 0 > /sys/bus/ccwgroup/drivers/qeth/0.0.a100/online

Finding out the interface name of a qeth group device
When a qeth group device is set online, an interface name is assigned to it.

Procedure

To find the interface name of a qeth group device, either:
• Obtain a mapping for all qeth interfaces and devices by issuing the lsqeth -p command.
• Find out the interface name of a qeth group device for which you know the device bus-ID by reading

the group device's if_name attribute.
Issue a command of the form:

cat /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/if_name

Example

cat /sys/bus/ccwgroup/drivers/qeth/0.0.a100/if_name
eth0

Finding out the bus ID of a qeth interface
Use the lsqeth -p command to obtain a mapping for all qeth interfaces and devices. Alternatively, you
can use sysfs.

Procedure

To find the device bus-ID that corresponds to an interface, either:
• Use the lsqeth -p command.
• Use the readlink command.

For each network interface, there is a directory in sysfs under /sys/class/net/, for example, /sys/
class/net/eth0 for interface eth0. This directory contains a symbolic link "device" to the
corresponding device in /sys/devices. Read this link to find the device bus-ID of the device that
corresponds to the interface.

Example

To find out which device bus-ID corresponds to an interface eth0 issue, for example:

readlink /sys/class/net/eth0/device
../../../0.0.a100

In this example, eth0 corresponds to the device bus-ID 0.0.a100.

Activating an interface
Use the ip command or equivalent to activate an interface.

Before you begin

• You must know the interface name of the qeth group device (see “Finding out the interface name of a
qeth group device” on page 218).

• You must know the IP address that you want to assign to the device.

218 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

About this task

The MTU size defaults to the correct settings for HiperSockets devices. For OSA-Express CHPIDs in QDIO
mode, the default MTU size depends on the device mode, layer 2 or layer 3.

• For layer 2, the default MTU is 1500 bytes.
• For layer 3, the default MTU is 1492 bytes.

In most cases, the default MTU sizes are well suited for OSA-Express CHPIDs in QDIO mode. If your
network is laid out for jumbo frames, increase the MTU size to a maximum of 9000 bytes for layer 2, or to
8992 bytes for layer 3. Exceeding the defaults for regular frames or the maximum frame sizes for jumbo
frames might cause performance degradation. See Open Systems Adapter-Express Customer's Guide and
Reference, SA22-7935 for more details about MTU size.

For HiperSockets, the maximum MTU size is restricted by the maximum frame size as announced by the
Licensed Internal Code (LIC). The maximum MTU is equal to the frame size minus 8 KB. Hence, the
possible frame sizes of 16 KB, 24 KB, 40 KB, or 64 KB result in maximum corresponding MTU sizes of
8 KB, 16 KB, 32 KB, or 56 KB.

The MTU size defaults to the correct settings for both HiperSockets and OSA-Express CHPIDs in QDIO
mode. As a result, you do not need to specify the MTU size when you activate the interface.

On heavily loaded systems, MTU sizes that exceed 8 KB can lead to memory allocation failures for packets
due to memory fragmentation. A symptom of this problem are messages of the form "order-N allocation
failed" in the system log. In addition, network connections drop packets, possibly so frequently as to
make the network interface unusable.

As a workaround, use MTU sizes at most of 8 KB (minus header size), even if the network hardware allows
larger sizes. For example, HiperSockets or 10 Gigabit Ethernet allow larger sizes.

Procedure

You activate or deactivate network devices with ip or an equivalent command. For details of the ip
command, see the ip man page.

Examples

• This example activates a HiperSockets CHPID with broadcast address 192.168.100.255:

ip addr add 192.168.100.10/24 dev hsi0
ip link set dev hsi0 up

• This example activates an OSA-Express CHPID in QDIO mode with broadcast address
192.168.100.255:

ip addr add 192.168.100.11/24 dev eth0
ip link set dev eth0 up

• This example reactivates an interface that was already activated and subsequently deactivated:

ip link set dev eth0 up

Confirming that an IP address has been set under layer 3
There may be circumstances that prevent an IP address from being set, most commonly if another system
in the network has set that IP address already.

About this task

The Linux network stack design does not allow feedback about IP address changes. If ip or an equivalent
command fails to set an IP address on an OSA-Express network CHPID, a query with ip shows the
address as being set on the interface although the address is not actually set on the CHPID.

qeth device driver for OSA-Express (QDIO) and HiperSockets 219

There are usually failure messages about not being able to set the IP address or duplicate IP addresses in
the kernel messages. You can find these messages in the output of the dmesg command. In SUSE Linux
Enterprise Server 12 SP4, you can also find the messages in /var/log/messages.

If you are not sure whether an IP address was set properly or experience a networking problem, check
the messages or logs to see if an error was encountered when setting the address. This also applies in the
context of HiperSockets and to both IPv4 and IPv6 addresses. It also applies to whether an IP address
has been set for IP takeover, for VIPA, or for proxy ARP.

Duplicate IP addresses
The OSA-Express adapter in QDIO mode recognizes duplicate IP addresses on the same OSA-Express
adapter or in the network using ARP and prevents duplicates.

About this task

Several setups require duplicate addresses:

• To perform IP takeover you need to be able to set the IP address to be taken over. This address exists
prior to the takeover. See “Taking over IP addresses” on page 231 for details.

• For proxy ARP you need to register an IP address for ARP that belongs to another Linux instance. See
“Configuring a device for proxy ARP” on page 234 for details.

• For VIPA you need to assign the same virtual IP address to multiple devices. See “Configuring a device
for virtual IP address (VIPA)” on page 235 for details.

You can use the qethconf command (see “qethconf - Configure qeth devices” on page 593) to maintain
a list of IP addresses that your device can take over, a list of IP addresses for which your device can
handle ARP, and a list of IP addresses that can be used as virtual IP addresses, regardless of any
duplicates on the same OSA-Express adapter or in the LAN.

Deactivating an interface
You can deactivate an interface with ip or an equivalent command or by setting the network device
offline.

About this task
Setting a device offline involves actions on the attached device, but deactivating a device only stops the
interface logically within Linux.

Procedure

To deactivate an interface with ip. Issue a command of the form:

ip link set dev <interface_name> down

Example
To deactivate eth0 issue:

ip link set dev eth0 down

Recovering a device
You can use the recover attribute of a qeth group device to recover it in case of failure.

About this task
For example, error messages in /var/log/messages from the qeth, qdio, or cio kernel modules might
inform you of a malfunctioning device.

220 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Procedure

Issue a command of the form:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/recover

Example

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a100/recover

Configuring checksum offload operations
Some operations can be offloaded to the OSA adapter, thus relieving the burden on the host CPU. The
qeth device driver supports checksum offloading for TCP and UDP network packets.

The qeth device driver supports offloading the following checksum operations on both layer 2 and layer 3:

• Inbound (receive) checksum calculations
• Outbound (send) checksum calculations

The qeth device driver also supports offloading TSO segmentation, see “Enabling and disabling TCP
segmentation offload” on page 229.

VLAN interfaces inherit offload settings from their base interface.

You can set the offload operations with the Linux ethtool command. See the ethtool man page for
details. The following abbreviated example shows some offload settings:

ethtool -k eth0
Features for eth0:
rx-checksumming: on
tx-checksumming: on
 tx-checksum-ipv4: on
 tx-checksum-ip-generic: off [fixed]
 tx-checksum-ipv6: off [fixed]
 tx-checksum-fcoe-crc: off [fixed]
 tx-checksum-sctp: off [fixed]
scatter-gather: on
 tx-scatter-gather: on
 tx-scatter-gather-fraglist: off [fixed]
tcp-segmentation-offload: on
 tx-tcp-segmentation: on
 tx-tcp-ecn-segmentation: off [fixed]
 tx-tcp6-segmentation: off [fixed]
udp-fragmentation-offload: off [fixed]
generic-segmentation-offload: off [requested on]
generic-receive-offload: on
large-receive-offload: off [fixed]
...

Turning inbound checksum calculations on and off
A checksum calculation is a form of redundancy check to protect the integrity of data. In general,
checksum calculations are used for network data.

Procedure

To enable or disable checksum calculations by the OSA feature, issue a command of this form:

ethtool -K <interface_name> rx <value>

where <value> is on or off.

Examples

• To let the OSA feature calculate the inbound checksum for network device eth0, issue

qeth device driver for OSA-Express (QDIO) and HiperSockets 221

ethtool -K eth0 rx on

• To let the host CPU calculate the inbound checksum for network device eth0, issue

ethtool -K eth0 rx off

Turning outbound checksum calculations on and off
The qeth device driver supports offloading outbound (send) checksum calculations to the OSA feature.

About this task
You can enable or disable the OSA feature calculating the outbound checksums by using the ethtool
command.

Attention: For OSA-Express3 and earlier: When outbound checksum calculations are offloaded,
the OSA feature performs the checksum calculations. Offloaded checksum calculations only
applies to packets that go out to the LAN. Linux instances that share an OSA port exchange
packets directly. The packets are forwarded by the OSA adapter but do not go out on the LAN and
no checksum offload is performed. The qeth device driver cannot detect this, and so cannot issue
any warning about it.

Procedure

Issue a command of the form:

ethtool -K <interface_name> tx <value>

where <value> is on or off.

Example

• To let the OSA feature calculate the outbound checksum for network device eth0, issue

ethtool -K eth0 tx on

• To let the host CPU calculate the outbound checksum for network device eth0, issue

ethtool -K eth0 tx off

Isolating data connections
You can restrict communications between operating system instances that share an OSA port on an OSA
adapter.

About this task

A Linux instance can configure the OSA adapter to prevent any direct package exchange between itself
and other operating system instances that share an OSA adapter. This configuration ensures a higher
degree of isolation than VLANs.

QDIO data connection isolation is configured as a policy. The policy is implemented as a sysfs attribute
called isolation. Note that the attribute appears in sysfs regardless of whether the hardware supports the
feature. The policy can take the following values:

none
No isolation. This is the default.

drop
Specifies the ISOLATION_DROP policy. All packets from guests that share an OSA adapter to the
guest that has this policy configured are dropped automatically. The same holds for all packets that
are sent by the guest that has this policy configured to guests on the same OSA card. All packets to or

222 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

from the isolated guest must have a target that is not hosted on the OSA card. You can accomplish this
by a router hosted on a separate machine or a separate OSA adapter.

For example, assume that three Linux instances share an OSA adapter, but only one instance (Linux A)
must be isolated. Then Linux A declares its OSA adapter (QDIO Data Connection to the OSA adapter)
to be isolated. Any packet being sent to or from Linux A must pass at least the physical switch to
which the shared OSA adapter is connected. Linux A cannot communicate with other instances that
share the OSA adapter, here B or C. The two other instances could still communicate directly through
the OSA adapter without the external switch in the network path (see Figure 42 on page 223).

Figure 42: Linux instance A is isolated from instances B and C

forward
Specifies the ISOLATION_FORWARD policy. All packets are passed through a switch. The
ISOLATION_FORWARD policy requires a network adapter in Virtual Ethernet Port Aggregator (VEPA)
mode with an adjacent switch port configured for reflective relay mode.

To check whether the switch of the adapter is in reflective relay mode, read the sysfs attribute
switch_attrs. The attribute lists all supported forwarding modes, with the currently active mode
enclosed in square brackets. For example:

cat /sys/devices/qeth/0.0.f5f0/switch_attrs
802.1 [rr]

The example indicates that the adapter supports both 802.1 forwarding mode and reflective relay
mode, and reflective relay mode (rr) is active.

Using a network adapter in VEPA mode achieves further isolation. VEPA mode forces traffic from the
Linux guests to be handled by the external switch. For example, Figure 43 on page 224 shows
instances A and B with ISOLATION_FORWARD specified for the policy. All traffic between A and B
goes through the external switch. The rule set of the switch now determines which connections are
possible. The graphic assumes that A can communicate with B, but not with C.

qeth device driver for OSA-Express (QDIO) and HiperSockets 223

Figure 43: Traffic from Linux instance A and B is forced through an external switch

If the ISOLATION_FORWARD policy was enforced successfully, but the switch port later loses the
reflective-relay capability, the device is set offline to prevent damage.

You can configure the policy regardless of whether the device is online. If the device is online, the policy is
configured immediately. If the device is offline, the policy is configured when the device comes online.

Examples

• To check the current isolation policy:

cat /sys/devices/qeth/0.0.f5f0/isolation

• To set the isolation policy to ISOLATION_DROP:

echo drop > /sys/devices/qeth/0.0.f5f0/isolation

• To set the isolation policy to ISOLATION_FORWARD:

echo "forward" > /sys/devices/qeth/0.0.f5f0/isolation

If the switch is not capable of VEPA support, or VEPA support is not configured on the switch, then you
cannot set the isolation attribute value to 'forward' while the device is online. If the switch does not
support VEPA and you set the isolation value 'forward' while the device is offline, then the device cannot
be set online until the isolation value is set back to 'drop' or 'none'.

• To set the isolation policy to none:

echo "none" > /sys/devices/qeth/0.0.f5f0/isolation

When you use vNICs, VEPA mode must be enabled on the respective VSWITCH. See z/VM: Connectivity,
SC24-6267 for information about setting up data connection isolation on a VSWITCH.

Starting and stopping collection of QETH performance statistics
Use the performance_stats attribute to start and stop collection of QETH performance statistics.

About this task

For QETH performance statistics, there is a device group attribute called /sys/bus/ccwgroup/
drivers/qeth/<device_bus_id>/performance_stats.

224 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

This attribute is initially set to 0, that is, QETH performance data is not collected.

Procedure

To start collection for a specific QETH device, write 1 to the attribute.
For example:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/performance_stats

To stop collection write 0 to the attribute, for example:

echo 0 > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/performance_stats

Stopping QETH performance data collection for a specific QETH device is accompanied by a reset of
current statistic values to zero.

To display QETH performance statistics, use the ethtool command. See the ethtool man page for
details.

Example
The following example shows statistic and device driver information:

qeth device driver for OSA-Express (QDIO) and HiperSockets 225

ethtool -S eth0
NIC statistics:
 rx skbs: 25
 rx buffers: 25
 tx skbs: 14
 tx buffers: 12
 tx skbs no packing: 11
 tx buffers no packing: 11
 tx skbs packing: 3
 tx buffers packing: 1
 tx sg skbs: 0
 tx sg frags: 0
 rx sg skbs: 0
 rx sg frags: 0
 rx sg page allocs: 0
 tx large kbytes: 0
 tx large count: 0
 tx pk state ch n->p: 1
 tx pk state ch p->n: 1
 tx pk watermark low: 2
 tx pk watermark high: 5
 queue 0 buffer usage: 0
 queue 1 buffer usage: 0
 queue 2 buffer usage: 0
 queue 3 buffer usage: 0
 rx poll time: 1047
 rx poll count: 22
 rx do_QDIO time: 0
 rx do_QDIO count: 0
 tx handler time: 89
 tx handler count: 7
 tx time: 283
 tx count: 14
 tx do_QDIO time: 65
 tx do_QDIO count: 12
 tx csum: 11
 tx lin: 0
 tx linfail: 0
 cq handler count: 0
 cq handler time: 0
ethtool -i eth0
driver: qeth_l3
version: 1.0
firmware-version: 087a
bus-info: 0.0.f5f0/0.0.f5f1/0.0.f5f2
supports-statistics: yes
supports-test: no
supports-eeprom-access: no
supports-register-dump: no
supports-priv-flags: no

Capturing a hardware trace
Hardware traces are intended for use by the IBM service organization. Hardware tracing is turned off by
default. Turn on the hardware-tracing feature only when instructed to do so by IBM service.

Before you begin

• The OSA-Express adapter must support the hardware-tracing feature.
• The qeth device must be online to return valid values of the hw_trap attribute.

About this task
When errors occur on an OSA-Express adapter, both software and hardware traces must be collected. The
hardware-tracing feature requests a hardware trace if an error is detected. This feature makes it possible
to correlate the hardware trace with the device driver trace. If the hardware-tracing feature is activated,
traces are captured automatically, but you can also start the capturing yourself.

Procedure

To activate or deactivate the hardware-tracing feature, issue a command of the form:

226 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

echo <value> > /sys/devices/qeth/<device_bus_id>/hw_trap

Where <value> can be:
arm

If the hardware-tracing feature is supported, write arm to the hw_trap sysfs attribute to activate it. If
the hardware-tracing feature is present and activated, the hw_trap sysfs attribute has the value arm.

disarm
Write disarm to the hw_trap sysfs attribute to turn off the hardware-tracing feature. If the
hardware-tracing feature is not present or is turned off, the hw_trap sysfs attribute has the value
disarm. This setting is the default.

trap
(Write only) Capture a hardware trace. Hardware traces are captured automatically, but if asked to do
so by IBM service, you can start the capturing yourself by writing trap to the hw_trap sysfs attribute.
The hardware trap function must be set to arm.

Examples

In this example the hardware-tracing feature is activated for qeth device 0.0.a000:

echo arm > /sys/devices/qeth/0.0.a000/hw_trap

In this example a trace capture is started on qeth device 0.0.a000:

1. Check that the hw_trap sysfs attribute is set to arm:

cat /sys/devices/qeth/0.0.a000/hw_trap
arm

2. Start the capture:

echo trap > /sys/devices/qeth/0.0.a000/hw_trap

Working with qeth devices in layer 3 mode
Tasks you can perform on qeth devices in layer 3 mode include setting up a router, configuring offload
operations, and taking over IP addresses. Use the layer 2 attribute to set the mode. See “Setting the
layer2 attribute” on page 212 about setting the mode. See “Layer 2 and layer 3” on page 199 for general
information about the layer 2 and layer 3 disciplines.

Setting up a Linux router
By default, your Linux instance is not a router. Depending on your IP version, IPv4 or IPv6 you can use the
route4 or route6 attribute of your qeth device to define it as a router.

Before you begin

• A suitable hardware setup must be in place that enables your Linux instance to act as a router.
• The Linux instance is set up as a router. To configure Linux running as a z/VM guest or in an LPAR as a

router, IP forwarding must be enabled in addition to setting the route4 or route6 attribute.

For IPv4, enable IP forwarding by issuing:

sysctl -w net.ipv4.conf.all.forwarding=1

For IPv6, enable IP forwarding by issuing:

qeth device driver for OSA-Express (QDIO) and HiperSockets 227

sysctl -w net.ipv6.conf.all.forwarding=1

About this task

You can set the route4 or route6 attribute dynamically, while the qeth device is online.

The same values are possible for route4 and route6 but depend on the type of CHPID, as shown in Table
48 on page 228.

Table 48: Summary of router setup values

Router specification OSA-Express CHPID in QDIO
mode

HiperSockets CHPID

primary_router Yes No

secondary_router Yes No

primary_connector No Yes

secondary_connector No Yes

multicast_router Yes Yes

no_router Yes Yes

Both types of CHPIDs accept:
multicast_router

causes the qeth driver to receive all multicast packets of the CHPID. For a unicast function for
HiperSockets see “HiperSockets Network Concentrator” on page 249.

no_router
is the default. You can use this value to reset a router setting to the default.

An OSA-Express CHPID in QDIO mode accepts the following values:
primary_router

to make your Linux instance the principal connection between two networks.
secondary_router

to make your Linux instance a backup connection between two networks.

A HiperSockets CHPID accepts the following values, provided the microcode level supports the feature:
primary_connector

to make your Linux instance the principal connection between a HiperSockets network and an
external network (see “HiperSockets Network Concentrator” on page 249).

secondary_connector
to make your Linux instance a backup connection between a HiperSockets network and an external
network (see “HiperSockets Network Concentrator” on page 249).

Example

In this example, two Linux instances, "Linux P" and "Linux S", running on an IBM mainframe use OSA-
Express to act as primary and secondary routers between two networks. IP forwarding must be enabled
for Linux in an LPAR or as a z/VM guest to act as a router. In SUSE Linux Enterprise Server 12 SP4 you can
set IP forwarding permanently in /etc/sysctl.conf or dynamically with the sysctl command.

Mainframe configuration:

228 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Figure 44: Mainframe configuration

It is assumed that both Linux instances are configured as routers in the LPARs or in z/VM.

Linux P configuration:

To create the qeth group devices:

echo 0.0.0400,0.0.0401,0.0.0402 > /sys/bus/ccwgroup/drivers/qeth/group
echo 0.0.0200,0.0.0201,0.0.0202 > /sys/bus/ccwgroup/drivers/qeth/group

To make Linux P a primary router for IPv4:

echo primary_router > /sys/bus/ccwgroup/drivers/qeth/0.0.0400/route4
echo primary_router > /sys/bus/ccwgroup/drivers/qeth/0.0.0200/route4

Linux S configuration:

To create the qeth group devices:

echo 0.0.0404,0.0.0405,0.0.0406 > /sys/bus/ccwgroup/drivers/qeth/group
echo 0.0.0204,0.0.0205,0.0.0206 > /sys/bus/ccwgroup/drivers/qeth/group

To make Linux S a secondary router for IPv4:

echo secondary_router > /sys/bus/ccwgroup/drivers/qeth/0.0.0404/route4
echo secondary_router > /sys/bus/ccwgroup/drivers/qeth/0.0.0204/route4

In this example, qeth device 0.0.1510 is defined as a primary router for IPv6:

/sys/bus/ccwgroup/drivers/qeth # cd 0.0.1510
echo 1 > online
echo primary_router > route6
cat route6
primary router

See “HiperSockets Network Concentrator” on page 249 for further examples.

Enabling and disabling TCP segmentation offload
Offloading the TCP segmentation operation from the Linux network stack to the adapter can lead to
enhanced performance for interfaces with predominately large outgoing packets. TCP segmentation
offload is supported for OSA connections on layer 3 only. VLAN interfaces inherit offload settings from
their base interface.

qeth device driver for OSA-Express (QDIO) and HiperSockets 229

Procedure

Outbound (TX) checksumming and scatter gather are prerequisites for TCP segmentation offload (TSO).
You must turn on scatter gather and outbound checksumming before configuring TSO.
All three options can be turned on or off with a single ethtool command of the form:

ethtool -K <interface_name> tx <value> sg <value> tso <value>

where <value> is either on or off.

For more information about TX checksumming, see “Turning outbound checksum calculations on and off”
on page 222.

Attention: When TCP segmentation is offloaded, the OSA feature performs the calculations. Offloaded
calculations apply only to packets that go out to the LAN or come in from the LAN. Linux instances that
share an OSA port exchange packages directly. The packages are forwarded by the OSA adapter but do
not go out on the LAN and no TCP segmentation calculation is performed. The qeth device driver cannot
detect this, and so cannot issue any warning about it.

Examples

• To enable TSO for a network device eth0 issue:

ethtool -K eth0 tx on sg on tso on

• To disable TSO for a network device eth0 issue:

ethtool -K eth0 tx off sg off tso off

Faking broadcast capability
It is possible to fake the broadcast capability for devices that do not support broadcasting.

Before you begin

• You can fake the broadcast capability only on devices that do not support broadcast.
• The device must be offline while you enable faking broadcasts.

About this task

For devices that support broadcast, the broadcast capability is enabled automatically.

To find out whether a device supports broadcasting, use the ip command. If the resulting list shows the
BROADCAST flag, the device supports broadcast. This example shows that the device eth0 supports
broadcast:

ip -s link show dev eth0
3: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1492 qdisc pfifo_fast qlen 1000
 link/ether 00:11:25:bd:da:66 brd ff:ff:ff:ff:ff:ff
 RX: bytes packets errors dropped overrun mcast
 236350 2974 0 0 0 9
 TX: bytes packets errors dropped carrier collsns
 374443 1791 0 0 0 0

Some processes, for example, the gated routing daemon, require the devices' broadcast capable flag to
be set in the Linux network stack.

Procedure

To set the broadcast capable flag for devices that do not support broadcast, set the fake_broadcast
attribute of the qeth group device to 1. To reset the flag, set it to 0.

230 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Issue a command of the form:

echo <flag> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/fake_broadcast

Example

In this example, a device 0.0.a100 is instructed to pretend that it can broadcast.

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a100/fake_broadcast

Taking over IP addresses
You can configure IP takeover if the layer2 option is not enabled. If you enabled the layer2 option, you can
configure for IP takeover as you would in a distributed server environment.

About this task

For information about the layer2 option, see “MAC headers in layer 2 mode” on page 201.

Taking over an IP address overrides any previous allocation of this address to another LPAR. If another
LPAR on the same CHPID already registered for that IP address, this association is removed.

An OSA-Express CHPID in QDIO mode can take over IP addresses from any Z operating system. IP
takeover for HiperSockets CHPIDs is restricted to taking over addresses from other Linux instances in the
same Central Electronics Complex (CEC).

IP address takeover between multiple CHPIDs requires ARP for IPv4 and Neighbor Discovery for IPv6.
OSA-Express handles ARP transparently, but not Neighbor Discovery.

There are three stages to taking over an IP address:

Stage 1: Ensure that your qeth group device is enabled for IP takeover
Stage 2: Activate the address to be taken over for IP takeover
Stage 3: Issue a command to take over the address

Stage 1: Enabling a qeth group device for IP takeover
For OSA-Express and HiperSockets CHPIDs, both the qeth group device that is to take over an IP address
and the device that surrenders the address must be enabled for IP takeover.

Procedure

By default, qeth devices are not enabled for IP takeover. To enable a qeth group device for IP address
takeover set the enable device group attribute to 1. To switch off the takeover capability set the enable
device group attribute to 0.
In sysfs, the enable attribute is located in a subdirectory ipa_takeover. Issue a command of the form:

echo <flag> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/ipa_takeover/enable

Example

In this example, a device 0.0.a500 is enabled for IP takeover:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a500/ipa_takeover/enable

qeth device driver for OSA-Express (QDIO) and HiperSockets 231

Stage 2: Activating and deactivating IP addresses for takeover
The qeth device driver maintains a list of IP addresses that qeth group devices can take over or surrender.
To enable Linux to take over an IP-address or to surrender an address, the address must be added to this
list.

Procedure

Use the qethconf command to add IP addresses to the list.
• To display the list of IP addresses that are activated for IP takeover issue:

qethconf ipa list

• To activate an IP address for IP takeover, add it to the list.
Issue a command of the form:

qethconf ipa add <ip_address>/<mask_bits> <interface_name>

• To deactivate an IP address delete it from the list.
Issue a command of the form:

qethconf ipa del <ip_address>/<mask_bits> <interface_name>

In these commands, <ip_address>/<mask_bits> is the range of IP addresses to be activated or
deactivated. See “qethconf - Configure qeth devices” on page 593 for more details about the
qethconf command.

IPv4 example
In this example, there is only one range of IP addresses (192.168.10.0 to 192.168.10.255) that can be
taken over by device hsi0.

List the range of IP addresses (192.168.10.0 to 192.168.10.255) that can be taken over by device hsi0.

qethconf ipa list
ipa add 192.168.10.0/24 hsi0

The following command adds a range of IP addresses that can be taken over by device eth0.

qethconf ipa add 192.168.11.0/24 eth0
qethconf: Added 192.168.11.0/24 to /sys/class/net/eth0/device/ipa_takeover/add4.
qethconf: Use "qethconf ipa list" to check for the result

Listing the activated IP addresses now shows both ranges of addresses.

qethconf ipa list
ipa add 192.168.10.0/24 hsi0
ipa add 192.168.11.0/24 eth0

The following command deletes the range of IP addresses that can be taken over by device eth0.

qethconf ipa del 192.168.11.0/24 eth0
qethconf: Deleted 192.168.11.0/24 from /sys/class/net/eth0/device/ipa_takeover/del4.
qethconf: Use "qethconf ipa list" to check for the result

IPv6 example
The following command adds one range of IPv6 addresses,
fec0:0000:0000:0000:0000:0000:0000:0000 to fec0:0000:0000:0000:FFFF:FFFF:FFFF:FFFF, that can
be taken over by device eth2.

Add a range of IP addresses:

232 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

qethconf ipa add fec0::/64 eth2
qethconf: Added fec0:0000:0000:0000:0000:0000:0000:0000/64 to
 sysfs entry /sys/class/net/eth2/device/ipa_takeover/add6.
qethconf: For verification please use "qethconf ipa list"

Listing the activated IP addresses now shows the range of addresses:

qethconf ipa list
...
ipa add fec0:0000:0000:0000:0000:0000:0000:0000/64 eth2

The following command deletes the IPv6 address range that can be taken over by eth2:

qethconf ipa del fec0:0000:0000:0000:0000:0000:0000:0000/64 eth2:
qethconf: Deleted fec0:0000:0000:0000:0000:0000:0000:0000/64 from
 sysfs entry /sys/class/net/eth2/device/ipa_takeover/del6.
qethconf: For verification please use "qethconf ipa list"

Stage 3: Issuing a command to take over the address
To complete taking over a specific IP address and remove it from the CHPID or LPAR that previously held
it, issue an ip addr or equivalent command.

Before you begin

• Both the device that is to take over the IP address and the device that is to surrender the IP address
must be enabled for IP takeover. This rule applies to the devices on both OSA-Express and HiperSockets
CHPIDs. (See “Stage 1: Enabling a qeth group device for IP takeover” on page 231).

• The IP address to be taken over must have been activated for IP takeover (see “Stage 2: Activating and
deactivating IP addresses for takeover” on page 232).

About this task

Be aware of the information in “Confirming that an IP address has been set under layer 3” on page 219
when using IP takeover.

Examples

IPv4 example:

To make a device hsi0 take over IP address 192.168.10.22 issue:

ip addr add 192.168.10.22/24 dev hsi0

For IPv4, the IP address you are taking over must be different from the one that is already set for your
device. If your device already has the IP address it is to take over, you must issue two commands: First
remove the address to be taken over if it is already there. Then add the IP address to be taken over.

For example, to make a device hsi0 take over IP address 192.168.10.22 if hsi0 is already configured to
have IP address 192.168.10.22 issue:

ip addr del 192.168.10.22/24 dev hsi0
ip addr add 192.168.10.22/24 dev hsi0

IPv6 example:

To make a device eth2 take over fec0::111:25ff:febd:d9da/64 issue:

ip addr add fec0::111:25ff:febd:d9da/64 nodad dev eth2

qeth device driver for OSA-Express (QDIO) and HiperSockets 233

For IPv6, setting the nodad (no duplicate address detection) option ensures that the eth2 interface uses
the IP address fec0::111:25ff:febd:d9da/64. Without the nodad option, the previous owner of the IP
address might prevent the takeover by responding to a duplicate address detection test.

The IP address you are taking over must be different from the one that is already set for your device. If
your device already has the IP address it is to take over you must issue two commands: First remove the
address to be taken over if it is already there. Then add the IP address to be taken over.

For example, to make a device eth2 take over IP address fec0::111:25ff:febd:d9da/64 when eth2 is
already configured to have that particular IP address issue:

ip addr del fec0::111:25ff:febd:d9da/64 nodad dev eth2
ip addr add fec0::111:25ff:febd:d9da/64 nodad dev eth2

Configuring a device for proxy ARP
You can configure a device for proxy ARP if the layer2 option is not enabled. If you have enabled the
layer2 option, you can configure for proxy ARP as you would in a distributed server environment.

Before you begin
Configure only qeth group devices that are set up as routers for proxy ARP.

About this task

For information about the layer2 option, see “MAC headers in layer 2 mode” on page 201.

The qeth device driver maintains a list of IP addresses for which a qeth group device handles ARP and
issues gratuitous ARP packets. For more information about proxy ARP, see

http://www.cisco.com/c/en/us/support/docs/ip/dynamic-address-allocation-resolution/13718-5.html

Use the qethconf command to display this list or to change the list by adding and removing IP addresses
(see “qethconf - Configure qeth devices” on page 593).

Be aware of the information in “Confirming that an IP address has been set under layer 3” on page 219
when working with proxy ARP.

Example

Figure 45 on page 234 shows an environment where proxy ARP is used.

Figure 45: Example of proxy ARP usage

G1, G2, and G3 are instances of Linux on z/VM (connected, for example, through a guest LAN to a Linux
router R), reached from GW (or the outside world) via R. R is the ARP proxy for G1, G2, and G3. That is, R
agrees to take care of packets destined for G1, G2, and G3. The advantage of using proxy ARP is that GW
does not need to know that G1, G2, and G3 are behind a router.

234 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

http://www.cisco.com/c/en/us/support/docs/ip/dynamic-address-allocation-resolution/13718-5.html

To receive packets for 1.2.3.4, so that it can forward them to G1 1.2.3.4, R would add 1.2.3.4 to its list of
IP addresses for proxy ARP for the interface that connects it to the OSA adapter.

qethconf parp add 1.2.3.4 eth0
qethconf: Added 1.2.3.4 to /sys/class/net/eth0/device/rxip/add4.
qethconf: Use "qethconf parp list" to check for the result

After issuing similar commands for the IP addresses 1.2.3.5 and 1.2.3.6 the proxy ARP configuration of R
would be:

qethconf parp list
parp add 1.2.3.4 eth0
parp add 1.2.3.5 eth0
parp add 1.2.3.6 eth0

Configuring a device for virtual IP address (VIPA)
You can configure a device for VIPA if the layer2 option is not enabled. If you enabled the layer2 option,
you can configure for VIPA as you would in a distributed server environment.

About this task

For information about the layer2 option, see “MAC headers in layer 2 mode” on page 201.

IBM Z uses VIPAs to protect against certain types of hardware connection failure. You can assign VIPAs
that are independent from a particular adapter. VIPAs can be built under Linux using dummy devices (for
example, "dummy0" or "dummy1").

The qeth device driver maintains a list of VIPAs that the OSA-Express adapter accepts for each qeth group
device. Use the qethconf utility to add or remove VIPAs (see “qethconf - Configure qeth devices” on
page 593).

For an example of how to use VIPA, see “Scenario: VIPA – minimize outage due to adapter failure” on
page 240.

Be aware of “Confirming that an IP address has been set under layer 3” on page 219 when you work with
VIPAs.

Configuring a HiperSockets device for AF_IUCV addressing
Use the hsuid attribute of a HiperSockets device in layer 3 mode to identify it to the AF_IUCV addressing
family support.

Before you begin

• Support for AF_IUCV based connections through real HiperSockets requires Completion Queue Support.
• The device must be set up for AF_IUCV addressing (see “Setting up HiperSockets devices for AF_IUCV

addressing” on page 294).

Procedure

To set an identifier, issue a command of this form:

echo <value> > /sys/bus/ccwgroup/drivers/qeth/0.0.a007/hsuid

The identifier is case-sensitive and must adhere to these rules:

• It must be 1 - 8 characters.
• It must be unique across your environment.
• It must not match any z/VM user ID in your environment. The AF_IUCV addressing family support also

supports z/VM IUCV connections.

qeth device driver for OSA-Express (QDIO) and HiperSockets 235

Example
In this example, MYHOST01 is set as the identifier for a HiperSockets device with bus ID 0.0.a007.

echo MYHOST01 > /sys/bus/ccwgroup/drivers/qeth/0.0.a007/hsuid

Working with qeth devices in layer 2 mode
Tasks that you can perform on qeth devices in layer 2 mode include setting up a OSA or HiperSockets
bridge port and tuning packet handling for a HiperSockets device with VNIC characteristics..

VNIC characteristics and the bridge port role are mutually exclusive.

Use the layer2 attribute to set the mode. See “Setting the layer2 attribute” on page 212 about setting the
mode. See “Layer 2 and layer 3” on page 199 for general information about the layer 2 and layer 3
disciplines.

Configuring a network device as a member of a Linux bridge
You can define an OSA or HiperSockets device to be a bridge port, which allows it to act as a member of a
Linux software bridge. Use the bridge_role attribute of a network device in layer 2 to make it receive all
traffic with unknown destination MAC addresses.

Alternatively, use VNIC characteristics to configure a layer 2 network device to receive all unknown traffic
(see “Advanced packet-handling configuration” on page 238).

Before you begin

To use the bridging support, you need OSA or HiperSockets hardware that supports layer 2
SETBRIDGEPORT functionality.

You can have one active bridge port per Internal Queued Direct Communication (IQD) channel. You can
have either only secondary bridge ports, or one primary and several secondary bridge ports.

Devices for which VNIC characteristics are configured cannot also be configured as bridge ports.

A HiperSockets bridge port requires that Linux runs as a z/VM guest.

For more information about the bridge port concept, see “Layer 2 promiscuous mode” on page 205.

About this task

The following sysfs attributes control the bridge port functions. The attributes can be found in
the /sys/bus/ccwgroup/drivers/qeth/<device_bus_id> directory.

bridge_role
Read-write attribute that controls the role of the port. Valid values are:
primary

Assigns the port the primary bridge port role.
secondary

Assigns the port a secondary bridge port role.
none

Revokes existing bridge port roles and indicates that no role is assigned.

Assigning a role directly to a port prevents use of the bridge_reflect_promisc attribute.

bridge_state
Read-only attribute that shows the state of the port. Valid values are:
active

The port is assigned a bridge port role and is switched into active state by the adapter. The device
receives frames that are addressed to unknown MAC addresses.

236 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

standby
The port is assigned a bridge port role, but is not currently switched into active state by the
adapter. The device does not receive frames that are destined to unknown MAC addresses.

inactive
The port is not assigned a bridge port role.

bridge_hostnotify
HiperSockets only: Read-write attribute that controls the sending of notifications for the port. When
you enable notifications (even if notifications were already enabled), udev events are emitted for all
currently connected communication peers in quick succession. After that, a udev event is emitted
every time a communication peer is connected, or a previously connected peer is disconnected. Any
user space program that monitors these events must repopulate its list of registered peers every time
the status of the bridge port device changes to enable notifications.

Valid values are:
1

The port is set to send notifications.
0

Notifications are turned off.

Notifications about the change of the state of bridge ports, and (if enabled) about registration and
deregistration of communication peers on the LAN are delivered as udev events. The events are
described in the file Documentation/s390/qeth.txt in the Linux kernel source tree.

bridge_reflect_promisc
Read-write attribute that, when set, makes the bridge-port role of the port follow ("reflect") the
promiscuity flag (IFF_PROMISC) of the corresponding Linux network interface. You can specify the
following values:
none

Setting and resetting the promiscuous mode on the network interface has no effect on the bridge-
port role of the underlying port.

primary
Setting or resetting the promiscuous mode on the network interface that is served by this device
causes the driver to attempt assigning (or resetting) the primary role to the port. If a port with the
primary role exists, assignment fails.

secondary
Setting or resetting the promiscuous mode on the network interface that is served by this device
causes the driver to attempt assigning (or resetting) the secondary role to the port.

Setting bridge_reflect_promisc to anything but none causes the bridge_role attribute to become read-
only. The role of a port changes as a result of setting or unsetting the promiscuity flag (IFF_PROMISC)
of the corresponding network interface. You can check the currently assigned role by reading the
bridge_role attribute.

Procedure

1. To configure a network device as a bridge, issue a command of this form:

echo <value> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/bridge_role

Setting the bridge_role attribute requires the bridge_reflect_promisc attribute to be none.
Alternatively, to make the bridge-port role of the port follow the promiscuity flag (IFF_PROMISC) of the
corresponding Linux network interface, issue a command of the following form:

echo <value> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/bridge_reflect_promisc

where valid values are:

• primary

qeth device driver for OSA-Express (QDIO) and HiperSockets 237

• secondary
• none

2. Check the state of the bridge port by reading the bridge_state attribute. Issue a command of this
form:

cat /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/bridge_state

where displayed values could be:

• active
• standby
• inactive

Example
In this example, a network device with bus ID 0.0.a007 is defined as a primary bridge port.

echo primary > /sys/bus/ccwgroup/drivers/qeth/0.0.a007/bridge_role
cat /sys/bus/ccwgroup/drivers/qeth/0.0.a007/bridge_state
active

What to do next
You can specify up to four secondary bridge ports together with one primary bridge port. If the primary
bridge port fails, one of these bridge ports takes over. For each secondary bridge port, set bridge_role
to secondary.

Advanced packet-handling configuration
Use VNIC characteristics to control how HiperSockets devices in layer 2 mode handle packets with
unknown MAC addresses.

Before you begin

• VNIC characteristics are supported for HiperSockets devices only.
• VNIC characteristics are supported for layer 2 mode only.
• VNIC characteristics cannot be configured on devices that are configured as bridge ports.

About this task

You can configure and fine-tune a promiscuous mode for incoming packets. You can configure the device
to receive all packets regardless of the MAC address, or you can reject incoming multicast packets, or
broadcast packets, or both.

For Linux instances that host multiple guest operating systems with different MAC addresses, you can
configure the device to learn and handle these MAC addresses. The device then provides functions similar
to a switch or to a software bridge.

The VNIC characteristics also include settings that can protect the MAC address of the device from being
taken over by another device. You can deny takeover, or you can explicitly permit takeover to configure
redundancy.

The VNIC characteristics of a HiperSockets device are represented by sysfs attributes in /sys/devices/
qeth/<device_bus_id>/vnicc:
flooding

With flooding enabled, the device receives packets to any unknown destination MAC addresses. Valid
values are 0 for disabled and 1 for enabled. By default, flooding is disabled.

238 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

mcast_flooding
With multicast flooding enabled, the device receives packets to multicast MAC addresses. Valid values
are 0 for disabled and 1 for enabled. By default, multicast flooding is disabled.

rx_bcast
With broadcast receiving enabled, the device receives packets with the broadcast destination MAC
address. Valid values are 0 for disabled and 1 for enabled. By default, the device is enabled to receive
broadcast packets.

learning
With learning enabled, the device assembles a list of MAC addresses of outgoing packets. An entry is
added to the list if a MAC address is unknown and has not already been learned by another device.
The device then receives incoming packets to any listed MAC addresses. Valid values are 0 for
disabled and 1 for enabled. By default, learning is disabled.

A learned MAC address is dropped from the list of learned MAC addresses unless packets with this
MAC address are received or sent within a specific timeout period. The default timeout period is 600
s. You can specify a different timeout period with the learning_timeout attribute.

takeover_setvmac
With this option enabled, the device's MAC address can be configured on a different device. Valid
values are 0 for disabled and 1 for enabled. By default, this option is disabled and the MAC address
cannot be configured on a different device.

takeover_learning
With takeover by learning enabled, the MAC address of this device can be learned on a different
device and, thus, taken over by this other device. Valid values are 0 for disabled and 1 for enabled. By
default, takeover by learning is disabled.

bridge_invisible
With bridge-port invisible enabled, packets are not transferred between the device and any other
device that is configured as a bridge port. Valid values are 0 for disabled and 1 for enabled. By default,
this option is disabled and, thus, traffic to and from bridge ports is permitted.

learning_timeout
With learning enabled, this attribute specifies a timeout period, in seconds. A MAC address is dropped
from the list of learned MAC addresses if this timeout period expires without any packets with this
MAC address being received or sent.

You can set this timeout period by writing a value in the range 60 - 86400 to the attribute. The default
is 600. The timeout must be set before learning is enabled on the device.

Procedure

1. Optional: To read a VNIC characteristic setting from sysfs, issue a command of this form:

cat /sys/devices/qeth/<device_bus_id>/vnicc/<attribute>

where <device_bus_id> is the device-bus ID of the HiperSockets device and <attribute> is one of the
attributes that represent the VNIC characteristics.

Example:

cat /sys/devices/qeth/0.0.a016/vnicc/learning
0

Tip: For an overview of all VNIC characteristics of the device, find the interface name of the device,
then use the lsqeth command.

Example:

qeth device driver for OSA-Express (QDIO) and HiperSockets 239

cat /sys/devices/qeth/0.0.a016/if_name
eth0
lsqeth eth0 | grep vnicc
 vnicc/bridge_invisible : 0
 vnicc/flooding : 0
 vnicc/learning : 0
 vnicc/learning_timeout : 600
 vnicc/mcast_flooding : 1
 vnicc/rx_bcast : 1
 vnicc/takeover_learning : 0
 vnicc/takeover_setvmac : 0

2. To set a VNIC characteristic issue a command of this form:

chzdev <device_bus_id> vnicc/<attribute>=<value>

where <device_bus_id> is the device-bus ID of the HiperSockets device, <attribute> is one of the
attributes that represent the VNIC characteristics, and <value> is the value to be set.

This setting persists across re-boots. To apply this setting to the running system only, use the chzdev
command with the -a option or use the corresponding sysfs attribute.

Example: In this example, learning is enabled for a device with bus-ID 0.0.a016.

chzdev 0.0.a016 vnicc/learning=1

or, using sysfs:

echo 1 > /sys/devices/qeth/0.0.a016/vnicc/learning

Example
This example shows a typical configuration for a bridge-like behavior of the device.

lsqeth eth0 | grep vnicc
 vnicc/bridge_invisible : 0
 vnicc/flooding : 1
 vnicc/learning : 1
 vnicc/learning_timeout : 600
 vnicc/mcast_flooding : 1
 vnicc/rx_bcast : 1
 vnicc/takeover_learning : 1
 vnicc/takeover_setvmac : 1

Scenario: VIPA – minimize outage due to adapter failure
Using VIPA you can assign IP addresses that are not associated with a particular adapter. VIPA thus
minimizes outage that is caused by adapter failure.

For VIPA you can use:

Standard VIPA
Standard VIPA is sufficient for applications, such as web servers, that do not open connections to
other nodes.

Source VIPA (version 2.0.0 and later)
Source VIPA is used for applications that open connections to other nodes. Use Source VIPA
Extensions to work with multiple VIPAs per destination in order to achieve multipath load balancing.

Note:

1. See the information in “Confirming that an IP address has been set under layer 3” on page 219
concerning possible failure when you set IP addresses for OSA-Express features in QDIO mode (qeth
driver).

240 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

2. The configuration file layout for Source VIPA changed since the 1.x versions. In the 2.0.0 version a
policy is included. For details, see the readme file and the man pages that are provided with the
package.

Standard VIPA
VIPA is a facility for assigning an IP address to a system, instead of to individual adapters. It is supported
by the Linux kernel. The addresses can be in IPv4 or IPv6 format.

Setting up standard VIPA
To set up VIPA you must create a dummy device, ensure that your service listens to the IP address, and
set up routing to it.

Procedure

Follow these main steps to set up VIPA in Linux:
1. Create a dummy device with a virtual IP address.
2. Ensure that your service (for example, the Apache web server) listens to the virtual IP address

assigned in step “1” on page 241.
3. Set up routes to the virtual IP address, on clients or gateways. To do so, you can use either:

• Static routing (shown in the example of Figure 46 on page 242).
• Dynamic routing. For details of how to configure routes, you must see the documentation that is

delivered with your routing daemon (for example, zebra or gated).

Adapter outage
If outage of an adapter occurs, you must switch adapters.

Procedure

• Under static routing:
a) Delete the route that was set previously.
b) Create an alternative route to the virtual IP address.

• Under dynamic routing, see the documentation that is delivered with your routing daemon for details.

Example of how to set up standard VIPA
This example shows you how to configure VIPA under static routing, and how to switch adapters when an
adapter outage occurs.

About this task
Figure 46 on page 242 shows the network adapter configuration that is used in the example.

qeth device driver for OSA-Express (QDIO) and HiperSockets 241

IBM mainframe

Router

Linux LPAR or VM guest server

Networketh0

10.1.0.2

255.255.0.0

eth1

10.2.0.2

255.255.0.0

OSA 2OSA 1

dummy0

VIPA=198.51.100.100

netmask=255.255.255.0

Figure 46: Example of using Virtual IP Address (VIPA)

Procedure

1. Define the real interfaces.

[server]# ip addr add 10.1.0.2/16 dev eth0
[server]# ip link set dev eth0 up
[server]# ip addr add 10.2.0.2/16 dev eth1
[server]# ip link set dev eth1 up

2. Ensure that the dummy module was loaded.
If necessary, load it by issuing:

[server]# modprobe dummy

3. Create a dummy interface with a virtual IP address 198.51.100.100 and a netmask 255.255.255.0:

 [server]# ip addr add 198.51.100.100/24 dev dummy0
 [server]# ip link set dev dummy0 up

4. Enable the network devices for this VIPA so that it accepts packets for this IP address.

• IPv4 example:

 [server]# qethconf vipa add 198.51.100.100 eth0
qethconf: Added 198.51.100.100 to /sys/class/net/eth0/device/vipa/add4.
qethconf: Use "qethconf vipa list" to check for the result
 [server]# qethconf vipa add 198.51.100.100 eth1
qethconf: Added 198.51.100.100 to /sys/class/net/eth1/device/vipa/add4.
qethconf: Use "qethconf vipa list" to check for the result

• For IPv6, the address is specified in IPv6 format:

[server]# qethconf vipa add 2002::1234:5678 eth0
qethconf: Added 2002:0000:0000:0000:0000:0000:1235:5678 to /sys/class/net/eth0/device/vipa/
add6.
qethconf: Use "qethconf vipa list" to check for the result
[server]# qethconf vipa add 2002::1235:5678 eth1
qethconf: Added 2002:0000:0000:0000:0000:0000:1235:5678 to /sys/class/net/eth1/device/vipa/
add6.
qethconf: Use "qethconf vipa list" to check for the result

5. Ensure that the addresses are set:

242 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

[server]# qethconf vipa list
vipa add 198.51.100.100 eth0
vipa add 198.51.100.100 eth1

6. Ensure that your service (such as the Apache web server) listens to the virtual IP address.
7. Set up a route to the virtual IP address (static routing) so that VIPA can be reached through the

gateway with address 10.1.0.2.

 [router]# ip route add 198.51.100.100 via 10.1.0.2

What to do next
Now assume that an adapter outage occurs. You must then:

1. Delete the previously created route.

 [router]# ip route del 198.51.100.100

2. Create the alternative route to the virtual IP address.

[router]# ip route add 198.51.100.100 via 10.2.0.2

Source VIPA
Source VIPA is particularly suitable for high-performance environments. It selects one source address out
of a range of source addresses when it replaces the source address of a socket.

Some operating system kernels cannot do load balancing among several connections with the same
source and destination address over several interfaces. The solution is to use several source addresses.

To achieve load balancing, a policy must be selected in the policy section of the configuration file of
Source VIPA (/etc/src_vipa.conf). In this policy section you can also specify several source
addresses that are used for one destination. Source VIPA then applies the source address selection
according to the rules of the policy that is selected in the configuration file.

This Source VIPA solution does not affect kernel stability. Source VIPA is controlled by a configuration file
that contains flexible rules for when to use Source VIPA based on destination IP address ranges.

You can use IPv6 or IPv4 addresses for Source VIPA.

Setting up source VIPA
To set up source VIPA, define your address ranges in the configuration file.

Usage

To install:

An RPM is available for Source VIPA. The RPM is called src_vipa-<version>.s390x.rpm. Install the
RPM as usual.

Configuration

With Source VIPA version 2.0.0 the configuration file changed: the policy section was added. The default
configuration file is /etc/src_vipa.conf.

/etc/src_vipa.conf or the file pointed to by the environment variable SRC_VIPA_CONFIG_FILE,
contains lines such as the following:

comment
D1.D2.D3.D4/MASK POLICY S1.S2.S3.S4 [T1.T2.T3.T4 [...]]
.INADDR_ANY P1-P2 POLICY S1.S2.S3.S4 [T1.T2.T3.T4 [...]]
.INADDR_ANY P POLICY S1.S2.S3.S4 [T1.T2.T3.T4 [...]]

qeth device driver for OSA-Express (QDIO) and HiperSockets 243

D1.D2.D3.D4/MASK specifies a range of destination addresses and the number of bits set in the subnet
mask (MASK). As soon as a socket is opened and connected to these destination addresses and the
application does not do an explicit bind to a source address, Source VIPA does a bind to one of the source
addresses specified (S, T, [...]). It uses the policy that is selected in the configuration file to distribute the
source addresses. See “Policies” on page 244 for available load distribution policies. Instead of IP
addresses in dotted notation, host names can also be used and are resolved using DNS.

You can use IPv6 or IPv4 IP addresses, but not both within a single rule in the configuration file. The
following is an example of an IPv6 configuration file with a random policy:

IPv6
2221:11c3:0123:d9d8:05d5:5a44:724c:783b/64 random ed27:120:da42:: 1112::33cc

.INADDR_ANY P1-P2 POLICY S1.S2.S3.S4 or .INADDR_ANY P POLICY S1.S2.S3.S4 causes
bind calls with .INADDR_ANY as a local address to be intercepted if the port the socket is bound to is
between P1 and P2 (inclusive). In this case, .INADDR_ANY is replaced by one of the source addresses
specified (S, T, [...]), which can be 0.0.0.0.

All .INADDR_ANY statements are read and evaluated in order of appearance. This method means that
multiple .INADDR_ANY statements can be used to have bind calls intercepted for every port outside a
certain range. This is useful, for example, for rlogin, which uses the bind command to bind to a local
port, but with .INADDR_ANY as a source address to use automatic source address selection. See
“Policies” on page 244 for available load distribution policies.

The default behavior for all ports is that the kind of bind calls is not modified.

Policies

With Source VIPA Extensions, you provide a range of dummy source addresses for replacing the source
addresses of a socket. The policy that is selected determines which method is used for selecting the
source addresses from the range of dummy addresses.
onevipa

Only the first address of all source addresses specified is used as source address.
random

The source address that is used is selected randomly from all the specified source addresses.
lrr (local round robin)

The source address that is used is selected in a round robin manner from all the specified source
addresses. The round robin takes place on a per-invocation base: each process is assigned the source
addresses round robin independently from other processes.

rr:ABC
Stands for round robin and implements a global round robin over all Source VIPA instances that share
a configuration file. All processes that use Source VIPA access an IPC shared memory segment to
fulfil a global round robin algorithm. This shared memory segment is destroyed when the last running
Source VIPA ends. However, if this process does not end gracefully (for example, is ended by a kill
command), the shared memory segment (size: 4 bytes) can stay in the memory until it is removed by
ipcrm. The tool ipcs can be used to display all IPC resources and to get the key or id used for ipcrm.
ABC are UNIX permissions in octal writing (for example, 700) that are used to create the shared
memory segment. Make this permission mask as restrictive as possible. A process that has access to
this mask can cause an imbalance of the round robin distribution in the worst case.

lc
Attempts to balance the number of connections per source address. This policy always associates the
socket with the VIPA that is least in use. If the policy cannot be parsed correctly, the policy is set to
round robin per default.

244 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Enabling an application

The command:

src_vipa.sh <application and parameters>

enables the Source VIPA function for the application. The configuration file is read when the application is
started. It is also possible to change the starter script and run multiple applications with different Source
VIPA settings in separate files. To do this, define and export a SRC_VIPA_CONFIG_FILE environment
variable that points to the separate file before you start an application.

Note:

1. LD_PRELOAD security prevents setuid executable files to be run under Source VIPA; programs of this
kind can be run only when the real UID is 0. The ping utility is usually installed with setuid
permissions.

2. The maximum number of VIPAs per destination is 8.

Example of how to set up source VIPA
This is an example of how to set up source VIPA.

Figure 47 on page 245 shows a configuration where two applications with VIPA 198.51.100.100 and
198.51.100.200 are to be set up for Source VIPA with a local round robin policy.

IBM mainframe

Linux application server ‘appservd’

eth0

10.1.0.2

eth1

10.2.0.2

OSA 2OSA 1

dummy0

VIPA=

198.51.100.100

Database server

Interface 2

Adapter 2

Interface 1

Adapter 1Switch 2

Switch 1

dummy1

VIPA=

198.51.100.200

Figure 47: Example of using source VIPA

The required entry in the Source VIPA configuration file is:

9.0.0.0/8 lrr 198.51.100.100 198.51.100.200

Scenario: Virtual LAN (VLAN) support
VLAN technology works according to IEEE Standard 802.1Q by logically segmenting the network into
different broadcast domains. Thus packets are switched only between ports that are designated for the
same VLAN.

By containing traffic that originates on a particular LAN to other LANs within the same VLAN, switched
virtual networks avoid wasting bandwidth. Wasted bandwidth is a drawback inherent in traditional
bridged/switched networks where packets are often forwarded to LANs that do not require them.

qeth device driver for OSA-Express (QDIO) and HiperSockets 245

The qeth device driver for OSA-Express (QDIO) and HiperSockets supports priority tags as specified by
IEEE Standard 802.1Q for both layer2 and layer3.

Introduction to VLANs
Use VLANs to increase traffic flow and reduce latency. With VLANs, you can organize your network by
traffic patterns rather than by physical location.

In a conventional network topology, such as that shown in the following figure, devices communicate
across LAN segments in different broadcast domains by using routers. Although routers add latency by
delaying transmission of data while they are using more of the data packet to determine destinations,
they are preferable to building a single broadcast domain. A single domain can easily be flooded with
traffic.

Figure 48: Conventional routed network

By organizing the network into VLANs by using Ethernet switches, distinct broadcast domains can be
maintained without the latency that is introduced by multiple routers. As the following figure shows, a
single router can provide the interfaces for all VLANs that appeared as separate LAN segments in the
previous figure.

Figure 49: Switched VLAN network

The following figure shows how VLANs can be organized logically, according to traffic flow, rather than
being restricted by physical location. If workstations 1-3 communicate mainly with the small server,
VLANs can be used to organize only these devices in a single broadcast domain that keeps broadcast

246 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

traffic within the group. This setup reduces traffic both inside the domain and outside, on the rest of the
network.

Figure 50: VLAN network organized for traffic flow

Configuring VLAN devices
Configure VLANs with the ip link add command. See the ip-link man page for details.

About this task

Information on the current VLAN configuration is available by listing the files in

/proc/net/vlan/*

with cat or more. For example:

bash-2.04# cat /proc/net/vlan/config
VLAN Dev name | VLAN ID
Name-Type: VLAN_NAME_TYPE_RAW_PLUS_VID_NO_PAD bad_proto_recvd: 0
eth2.100 | 100 | eth2
eth2.200 | 200 | eth2
eth2.300 | 300 | eth2
bash-2.04# cat /proc/net/vlan/eth2.300
eth2.300 VID: 300 REORDER_HDR: 1 dev->priv_flags: 1
 total frames received: 10914061
 total bytes received: 1291041929
 Broadcast/Multicast Rcvd: 6

 total frames transmitted: 10471684
 total bytes transmitted: 4170258240
 total headroom inc: 0
 total encap on xmit: 10471684
Device: eth2
INGRESS priority mappings: 0:0 1:0 2:0 3:0 4:0 5:0 6:0 7:0
EGRESS priority Mappings:
bash-2.04#

Example: Creating two VLANs
VLANs are allocated in an existing interface that represents a physical Ethernet LAN.

The following example creates two VLANs, one with ID 3 and one with ID 5.

 ip addr add 198.51.160.23/19 dev eth1
 ip link set dev eth1 up
 ip link add dev eth1.3 link eth1 type vlan id 3
 ip link add dev eth1.5 link eth1 type vlan id 5

The ip link add commands added interfaces "eth1.3" and "eth1.5", which you can then configure:

qeth device driver for OSA-Express (QDIO) and HiperSockets 247

 ip addr add 1.2.3.4/24 dev eth1.3
 ip link set dev eth1.3 up
 ip addr add 10.100.2.3/16 dev eth1.5
 ip link set dev eth1.5 up

The traffic that flows out of eth1.3 is in the VLAN with ID=3. This traffic is not received by other stacks
that listen to VLANs with ID=4.

The internal routing table ensures that every packet to 1.2.3.x goes out through eth1.3 and everything to
10.100.x.x through eth1.5. Traffic to 198.51.1xx.x flows through eth1 (without a VLAN tag).

To remove one of the VLAN interfaces:

 ip link set dev eth1.3 down
 ip link delete eth1.3 type vlan

Example: Creating a VLAN with five Linux instances
An example of how to set up a VLAN with five Linux instances.

The following example illustrates the definition and connectivity test for a VLAN comprising five different
Linux systems (two LPARs, two z/VM guest virtual machines, and one x86 system), each connected to a
physical Ethernet LAN through eth1:

• LINUX1: LPAR

 ip link add dev eth1.5 link eth1 type vlan id 5
 ip addr add 10.100.100.1/24 dev eth1.5
 ip link set dev eth1.5 up

• LINUX2: LPAR

 ip link add dev eth1.5 link eth1 type vlan id 5
 ip addr add 10.100.100.2/24 dev eth1.5
 ip link set dev eth1.5 up

• LINUX3: z/VM guest

 ip link add dev eth1.5 link eth1 type vlan id 5
 ip addr add 10.100.100.3/24 dev eth1.5
 ip link set dev eth1.5 up

• LINUX4: z/VM guest

 ip link add dev eth1.5 link eth1 type vlan id 5
 ip addr add 10.100.100.4/24 dev eth1.5
 ip link set dev eth1.5 up

• LINUX5: x86

 ip link add dev eth1.5 link eth1 type vlan id 5
 ip addr add 10.100.100.5/24 dev eth1.5
 ip link set dev eth1.5 up

Test the connections:

 ping 10.100.100.1 // Unicast-PING
 ...
 ping 10.100.100.5
 ping -I eth1.5 224.0.0.1 // Multicast-PING
 ping -b 10.100.100.255 // Broadcast-PING

248 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

HiperSockets Network Concentrator
You can configure a HiperSockets Network Concentrator on a QETH device in layer 3 mode.

Before you begin: The instructions that are given apply to IPv4 only. The HiperSockets Network
Concentrator connector settings are available in layer 3 mode only.

The HiperSockets Network Concentrator connects systems to an external LAN within one IP subnet that
uses HiperSockets. HiperSockets Network Concentrator connected systems look as if they were directly
connected to the LAN. This simplification helps to reduce the complexity of network topologies that result
from server consolidation.

Without changing the network setup, you can use HiperSockets Network Concentrator to port systems:

• From the LAN into a Z server environment
• From systems that are connected by a different HiperSockets Network Concentrator into a Z server

environment

Thus, HiperSockets Network Concentrator helps to simplify network configuration and administration.

Design

A connector Linux system forwards traffic between the external OSA interface and one or more internal
HiperSockets interfaces. The forwarding is done via IPv4 forwarding for unicast traffic and via a particular
bridging code (xcec_bridge) for multicast traffic.

A script named ip_watcher.pl observes all IP addresses registered in the HiperSockets network and
configures them as proxy ARP entries (see “Configuring a device for proxy ARP” on page 234) on the OSA
interfaces. The script also establishes routes for all internal systems to enable IP forwarding between the
interfaces.

All unicast packets that cannot be delivered in the HiperSockets network are handed over to the
connector by HiperSockets. The connector also receives all multicast packets to bridge them.

Setup

The setup principles for configuring the HiperSockets Network Concentrator are as follows:

leaf nodes
The leaf nodes do not require a special setup. To attach them to the HiperSockets network, their setup
should be as if they were directly attached to the LAN. They do not have to be Linux systems.

connector systems
In the following, HiperSockets Network Concentrator IP refers to the subnet of the LAN that is
extended into the HiperSockets net.

• If you want to support forwarding of all packet types, define the OSA interface for traffic into the
LAN as a multicast router (see “Setting up a Linux router” on page 227) and set
operating_mode=full in /etc/sysconfig/hsnc.

• All HiperSockets interfaces that are involved must be set up as connectors: set the route4 attributes
of the corresponding devices to "primary_connector" or to "secondary_connector". Alternatively, you
can add the OSA interface name to the start script as a parameter. This option results in
HiperSockets Network Concentrator ignoring multicast packets, which are then not forwarded to the
HiperSockets interfaces.

• IP forwarding must be enabled for the connector partition. Enable the forwarding either manually
with the command

sysctl -w net.ipv4.ip_forward=1

Alternatively, you can enable IP forwarding in the /etc/sysctl.conf configuration file to activate
IP forwarding for the connector partition automatically after booting. For HiperSockets Network

qeth device driver for OSA-Express (QDIO) and HiperSockets 249

Concentrator on SUSE Linux Enterprise Server 12 SP4 an additional config file exists: /etc/
sysconfig/hsnc.

• The network routes for the HiperSockets interface must be removed. Anetwork route for the
HiperSockets Network Concentrator IP subnet must be established through the OSA interface. To
establish a route, assign the IP address 0.0.0.0 to the HiperSockets interface. At the same time,
assign an address that is used in the HiperSockets Network Concentrator IP subnet to the OSA
interface. These assignments set up the network routes correctly for HiperSockets Network
Concentrator.

• To start HiperSockets Network Concentrator, issue:

service hsnc start

In /etc/sysconfig/hsnc you can specify an interface name as optional parameter. The interface
name makes HiperSockets Network Concentrator use the specified interface to access the LAN.
There is no multicast forwarding in that case.

• To stop HiperSockets Network Concentrator, issue

service hsnc stop

Availability setups

If a connector system fails during operation, it can simply be restarted. If all the startup commands are
run automatically, it will instantaneously be operational again after booting. Two common availability
setups are mentioned here:

One connector partition and one monitoring system
As soon as the monitoring system cannot reach the connector for a specific timeout (for example, 5
seconds), it restarts the connector. The connector itself monitors the monitoring system. If it detects
(with a longer timeout than the monitoring system, for example, 15 seconds) a monitor system failure,
it restarts the monitoring system.

Two connector systems monitoring each other
In this setup, there is an active and a passive system. As soon as the passive system detects a failure
of the active connector, it takes over operation. To take over operation, it must reset the other system
to release all OSA resources for the multicast_router operation. The failed system can then be
restarted manually or automatically, depending on the configuration. The passive backup
HiperSockets interface can either switch into primary_connector mode during the failover, or it can be
set up as secondary_connector. A secondary_connector takes over the connecting function, as soon as
there is no active primary_connector. This setup has a faster failover time than the first one.

Hints

• The MTU of the OSA and HiperSockets link should be of the same size. Otherwise, multicast packets
that do not fit in the link's MTU are discarded as there is no IP fragmentation for multicast bridging.
Warnings are printed to /var/log/messages or a corresponding syslog destination.

• The script ip_watcher.pl prints error messages to the standard error descriptor of the process.
• xcec-bridge logs messages and errors to syslog. On SUSE Linux Enterprise Server 12 SP4, you can
find these messages in /var/log/messages.

• Registering all internal addresses with the OSA adapter can take several seconds for each address.
• To shut down the HiperSockets Network Concentrator function, issue killall ip_watcher.pl. This

script removes all routing table and Proxy ARP entries added during the use of HiperSockets Network
Concentrator.

Note:

1. Broadcast bridging is active only on OSA or HiperSockets hardware that can handle broadcast traffic
without causing a bridge loop. If you see the message "Setting up broadcast echo filtering

250 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

for ... failed" in the message log when you set the qeth device online, broadcast bridging is not
available.

2. Unicast packets are routed by the common Linux IPv4 forwarding mechanisms. As bridging and
forwarding are done at the IP Level, the IEEE 802.1q VLAN and the IPv6 protocol are not supported.

Examples for setting up a network concentrator
An example of a network environment with a network concentrator.

Figure 51 on page 251 shows a network environment where a Linux instance C acts as a network
concentrator that connects other operating system instances on a HiperSockets LAN to an external LAN.

Figure 51: HiperSockets network concentrator setup

Setup for the network concentrator C:
The HiperSockets interface hsi0 (device bus-ID 0.0.a1c0) has IP address 10.20.30.51, and the
netmask is 255.255.255.0. The default gateway is 10.20.30.1.

Issue:

echo primary_connector > /sys/bus/ccwgroup/drivers/qeth/0.0.a1c0/route4

The OSA-Express CHPID in QDIO mode interface eth0 (with device bus-ID 0.0.a1c4) has IP address
10.20.30.11, and the netmask is 255.255.255.0. The default gateway is 10.20.30.1.

Issue:

echo multicast_router > /sys/bus/ccwgroup/drivers/qeth/0.0.a1c4/route4

To enable IP forwarding issue:

sysctl -w net.ipv4.ip_forward=1

Tip: See SUSE Linux Enterprise Server 12 SP4 Administration Guide for information about using
configuration files to automatically enable IP forwarding when Linux boots.

To remove the network routes for the HiperSockets interface issue:

ip route del 10.20.30/24

To start the HiperSockets network concentrator issue:

service hsnc start

qeth device driver for OSA-Express (QDIO) and HiperSockets 251

Setup for G:
No special setup required. The HiperSockets interface has IP address 10.20.30.54, and the netmask
is 255.255.255.0. The default gateway is 10.20.30.1.

Setup for workstation:
No special setup required. The network interface IP address is 10.20.30.120, and the netmask is
255.255.255.0. The default gateway is 10.20.30.1.

Figure 52 on page 252 shows the example of Figure 51 on page 251 with an additional mainframe. On the
second mainframe a Linux instance D acts as a HiperSockets network concentrator.

Figure 52: Expanded HiperSockets network concentrator setup

The configuration of C, G, and the workstation remain the same as for Figure 51 on page 251.

Setup for the network concentrator D:
The HiperSockets interface hsi0 has IP address 0.0.0.0.

Assuming that the device bus-ID of the HiperSockets interface is 0.0.a1d0, issue:

echo primary_connector > /sys/bus/ccwgroup/drivers/qeth/0.0.a1d0/route4

The OSA-Express CHPID in QDIO mode interface eth0 has IP address 10.20.30.50, and the netmask
is 255.255.255.0. The default gateway is 10.20.30.1.

D is not configured as a multicast router, it therefore only forwards unicast packets.

To enable IP forwarding issue:

sysctl -w net.ipv4.ip_forward=1

Tip: See SUSE Linux Enterprise Server 12 SP4 Administration Guide for information about using
configuration files to automatically enable IP forwarding when Linux boots.

To start the HiperSockets network concentrator issue:

service hsnc start

252 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Setup for H:
No special setup required. The HiperSockets interface has IP address 10.20.30.55, and the netmask
is 255.255.255.0. The default gateway is 10.20.30.1.

Setting up for DHCP with IPv4
For connections through an OSA-Express adapter in QDIO mode, the OSA-Express adapter offloads ARP,
MAC header, and MAC address handling.

For information about MAC headers, see “MAC headers in layer 3 mode” on page 202.

Because a HiperSockets connection does not go out on a physical network, there are no ARP, MAC
headers, and MAC addresses for packets in a HiperSockets LAN. The resulting problems for DHCP are the
same in both cases and the fixes for connections through the OSA-Express adapter also apply to
HiperSockets.

Dynamic Host Configuration Protocol (DHCP) is a TCP/IP protocol that allows clients to obtain IP network
configuration information (including an IP address) from a central DHCP server. The DHCP server controls
whether the address it provides to a client is allocated permanently or is leased temporarily. DHCP
specifications are described by RFC 2131"Dynamic Host Configuration Protocol" and RFC 2132 "DHCP
options and BOOTP Vendor Extensions", which are available on the Internet at

www.ietf.org

Two types of DHCP environments have to be taken into account:

• DHCP through OSA-Express adapters in QDIO mode
• DHCP in a z/VM VSWITCH or guest LAN

For information about setting up DHCP for a SUSE Linux Enterprise Server 12 SP4 for IBM Z instance in a
z/VM guest LAN environment, see Redpaper Linux on IBM eServer™ zSeries and S/390: TCP/IP Broadcast
on z/VM Guest LAN, REDP-3596 at

www.ibm.com/redbooks

Required options for using dhcpcd with layer3
You must configure the DHCP client program dhcpcd to use it on SUSE Linux Enterprise Server 12 SP4
with layer3.

• Run the DHCP client with an option that instructs the DHCP server to broadcast its response to the
client.

Because the OSA-Express adapter in QDIO mode forwards packets to Linux based on IP addresses, a
DHCP client that requests an IP address cannot receive the response from the DHCP server without this
option.

• Run the DHCP client with an option that specifies the client identifier string.

By default, the client uses the MAC address of the network interface. Hence, without this option, all
Linux instances that share the OSA-Express adapter in QDIO mode would also have the same client
identifier.

See the documentation for dhcpcd about selecting these options.

You need no special options for the DHCP server program, dhcp.

qeth device driver for OSA-Express (QDIO) and HiperSockets 253

http://www.ietf.org
http://www.ibm.com/redbooks

Setting up Linux as a LAN sniffer
You can set up a Linux instance to act as a LAN sniffer, for example, to make data on LAN traffic available
to tools like tcpdump or Wireshark.

The LAN sniffer can be:

• A HiperSockets Network Traffic Analyzer for LAN traffic between LPARs
• A LAN sniffer for LAN traffic between z/VM guest virtual machines, for example, through a z/VM virtual

switch (VSWITCH)

Setting up a HiperSockets network traffic analyzer
A HiperSockets network traffic analyzer (NTA) runs in an LPAR and monitors LAN traffic between LPARs.

Before you begin

• Your Linux instance must not be a z/VM guest.
• On the SE, the LPARs must be authorized for analyzing and being analyzed.

Tip: Do any authorization changes before configuring the NTA device. Should you need to activate the
NTA after SE authorization changes, set the qeth device offline, set the sniffer attribute to 1, and set the
device online again.

• You need a traffic dumping tool such as tcpdump.

About this task

HiperSockets NTA is available to trace both layer 3 and layer 2 network traffic, but the analyzing device
itself must be configured as a layer 3 device. The analyzing device is a dedicated NTA device and cannot
be used as a regular network interface.

Procedure

Perform the following steps:
• Linux setup:

a) Ensure that the qeth device driver module has been loaded.
b) Configure a HiperSockets interface dedicated to analyzing with the layer2 sysfs attribute set to 0

and the sniffer sysfs attribute set to 1.

For example, assuming the HiperSockets interface is hsi0 with device bus-ID 0.0.a1c0:

znetconf -a a1c0 -o layer2=0 -o sniffer=1

The znetconf command also sets the device online. For more information about znetconf, see
“znetconf - List and configure network devices” on page 640. The qeth device driver automatically
sets the buffer_count attribute to 128 for the analyzing device.

c) Activate the device (no IP address is needed):

ip link set hsi0 up

d) Switch the interface into promiscuous mode:

tcpdump -i hsi0

Results
The device is now set up as a HiperSockets network traffic analyzer.

254 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Hint: A HiperSockets network traffic analyzer with no free empty inbound buffers might have to drop
packets. Dropped packets are reflected in the "dropped counter" of the HiperSockets network traffic
analyzer interface and reported by tcpdump.

Example

ip -s link show dev hsi0
...
 RX: bytes packets errors dropped overrun mcast
 223242 6789 0 5 0 176
...
tcpdump -i hsi0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on hsi1, link-type EN10MB (Ethernet), capture size 96 bytes
...
5 packets dropped by kernel

Setting up a z/VM guest LAN sniffer
You can set up a guest LAN sniffer on a virtual NIC that is coupled to a z/VM VSWITCH or guest LAN.

Before you begin

• You need class B authorization on z/VM.
• The Linux instance to be set up as a guest LAN sniffer must run as a guest of the same z/VM system as

the guest LAN you want to investigate.

About this task

If a virtual switch connects to a VLAN that includes nodes outside the z/VM system, these external nodes
are beyond the scope of the sniffer.

For information about VLANs and z/VM virtual switches, see z/VM: Connectivity, SC24-6267.

Procedure

• Set up Linux.

Ensure that the qeth device driver is compiled into the Linux kernel or that the qeth device driver is
loaded as a module.

• Set up z/VM.

Ensure that the z/VM guest virtual machine on which you want to set up the guest LAN sniffer is
authorized for the switch or guest LAN and for promiscuous mode.

For example, if your virtual NIC is coupled to a z/VM virtual switch, perform the following steps on your
z/VM system:
a) Check whether the z/VM guest virtual machine already has the requisite authorizations. Enter a CP

command of this form:

q vswitch <switchname> promisc

where <switchname> is the name of the virtual switch. If the output lists the z/VM guest virtual
machine as authorized for promiscuous mode, no further setup is needed.

b) If the output from step “1” on page 255 does not list the guest virtual machine, check if the guest is
authorized for the virtual switch. Enter a CP command of this form:

q vswitch <switchname> acc

where <switchname> is the name of the virtual switch.

qeth device driver for OSA-Express (QDIO) and HiperSockets 255

If the output lists the z/VM guest virtual machine as authorized, you must temporarily revoke the
authorization for the switch before you can grant authorization for promiscuous mode. Enter a CP
command of this form:

set vswitch <switchname> revoke <userid>

where <switchname> is the name of the virtual switch and <userid> identifies the z/VM guest virtual
machine.

c) Authorize the Linux instance for the switch and for promiscuous mode. Enter a CP command of this
form:

set vswitch <switchname> grant <userid> promisc

where <switchname> is the name of the virtual switch and <userid> identifies the z/VM guest virtual
machine.

For details about the CP commands that are used here and for commands you can use to check and
assign authorizations for other types of guest LANs, see z/VM: CP Commands and Utilities Reference,
SC24-6268.

256 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 15. OSA-Express SNMP subagent support
The OSA-Express Simple Network Management Protocol (SNMP) subagent (osasnmpd) supports
management information bases (MIBs) for OSA-Express features.

The subagent supports OSA-Express features as shown in Table 37 on page 193.

This subagent capability through the OSA-Express features is also called Direct SNMP to distinguish it
from another method of accessing OSA SNMP data through OSA/SF, a package for monitoring and
managing OSA features that does not run on Linux.

To use the osasnmpd subagent, you need:

• An OSA-Express feature that runs in QDIO mode with the latest textual MIB file for the appropriate LIC
level (recommended)

• The qeth device driver for OSA-Express (QDIO)
• The osasnmpd subagent from the osasnmpd package
• The net-snmp package delivered with SUSE Linux Enterprise Server 12 SP4

What you should know about osasnmpd
The osasnmpd subagent requires a master agent to be installed on a Linux system.

You get the master agent from either the net-snmp package. The subagent uses the Agent eXtensibility
(AgentX) protocol to communicate with the master agent.

net-snmp is an open source project that is owned by the Open Source Development Network, Inc.
(OSDN). For more information on net-snmp visit:

net-snmp.sourceforge.net

When the master agent (snmpd) is started on a Linux system, it binds to a port (default 161) and awaits
requests from SNMP management software. Subagents can connect to the master agent to support MIBs
of special interest (for example, OSA-Express MIB). When the osasnmpd subagent is started, it retrieves
the MIB objects of the OSA-Express features currently present on the Linux system. It then registers with
the master agent the object IDs (OIDs) for which it can provide information.

An OID is a unique sequence of dot-separated numbers (for example, .1.3.6.1.4.1.2) that represents a
particular information. OIDs form a hierarchical structure. The longer the OID, that is the more numbers it
is made up of, the more specific is the information that is represented by the OID. For
example, .1.3.6.1.4.1.2 represents all IBM-related network information while ..1.3.6.1.4.1.2.6.188
represents all OSA-Express-related information.

A MIB corresponds to a number of OIDs. MIBs provide information on their OIDs including textual
representations the OIDs. For example, the textual representation of .1.3.6.1.4.1.2
is .iso.org.dod.internet.private.enterprises.ibm.

The structure of the MIBs might change when updating the OSA-Express licensed internal code (LIC) to a
newer level. If MIB changes are introduced by a new LIC level, you must download the appropriate MIB
file for the LIC level (see “Downloading the IBM OSA-Express MIB” on page 258). You do not need to
update the subagent. Place the updated MIB file in a directory that is searched by the master agent.

© Copyright IBM Corp. 2000, 2019 257

http://net-snmp.sourceforge.net

Figure 53: OSA-Express SNMP agent flow

Figure 53 on page 258 illustrates the interaction between the snmpd master agent and the osasnmpd
subagent.

Example: This example shows the processes that run after the snmpd master agent and the osasnmpd
subagent are started. In the example, PID 687 is the SNMP master agent and PID 729 is the OSA-Express
SNMP subagent process:

ps -ef | grep snmp

USER PID
root 687 1 0 11:57 pts/1 00:00:00 snmpd
root 729 659 0 13:22 pts/1 00:00:00 osasnmpd

When the master agent receives an SNMP request for an OID that is registered by a subagent, the master
agent uses the subagent to collect any requested information and to perform any requested operations.
The subagent returns any requested information to the master agent. Finally, the master agent returns the
information to the originator of the request.

Setting up osasnmpd
You can set up osasnmpd with YaST; this topic describes how to set up osasnmpd using the command
line.

In YaST, go to /etc/sysconfig Editor, then select Network –> SNMP –> OSA Express SNMP agent –>
OSASNMPD_PARAMETERS.

You must perform the following setup tasks if you want to use the osasnmpd subagent:

• “Downloading the IBM OSA-Express MIB” on page 258
• “Configuring access control” on page 259

Downloading the IBM OSA-Express MIB
Keep your MIB file up to date by downloading the latest version.

About this task
Perform the following steps to download the IBM OSA-Express MIB. The MIB file is valid only for
hardware that supports the OSA-Express adapter.

Procedure

1. Go to www.ibm.com/servers/resourcelink

258 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

http://www.ibm.com/servers/resourcelink

A user ID and password are required. If you do not yet have one, you can apply for a user ID.
2. Sign in.
3. Select Library from the navigation area.
4. Under Library shortcuts, select Open Systems Adapter (OSA) Library.
5. Follow the link for OSA-Express Direct SNMP MIB module.
6. Select and download the MIB for your LIC level.
7. Rename the MIB file to the name specified in the MIBs definition line and use the extension .txt.

Example: If the definition line in the MIB looks like this:

==>IBM-OSA-MIB DEFINITIONS ::= BEGIN

Rename the MIB to IBM-OSA-MIB.txt.
8. Place the MIB into /usr/share/snmp/mibs.

If you want to use a different directory, be sure to specify the directory in the snmp.conf
configuration file (see step “10” on page 261).

Results
You can now make the OID information from the MIB file available to the master agent. You can then use
textual OIDs instead of numeric OIDs when using master agent commands.

See also the FAQ (How do I add a MIB to the tools?) for the master agent package at

net-snmp.sourceforge.net/FAQ.html

Configuring access control
To start successfully, the subagent requires at least read access to the standard MIB-II on the local node.

About this task

During subagent startup or when network interfaces are added or removed, the subagent has to query
OIDs from the interfaces group of the standard MIB-II.

Given here is an example of how to use the snmpd.conf and snmp.conf configuration files to assign
access rights using the View-Based Access Control Mechanism (VACM). The following access rights are
assigned on the local node:

• General read access for the scope of the standard MIB-II
• Write access for the scope of the OSA-Express MIB
• Public local read access for the scope of the interfaces MIB

The example is intended for illustration purposes only. Depending on the security requirements of your
installation, you might need to define your access differently. See the snmpd man page for a more
information about assigning access rights to snmpd.

Procedure

1. See the SUSE Linux Enterprise Server 12 SP4 documentation to find out where you need to place the
snmpd.conf file. Some of the possible locations are:

• /etc
• /etc/snmp

2. Open snmpd.conf with your preferred text editor. There might be a sample in usr/share/doc/
packages/net-snmp/EXAMPLE.conf

OSA-Express SNMP subagent support 259

http://net-snmp.sourceforge.net/FAQ.html

3. Find the security name section and include a line of this form to map a community name to a security
name:

com2sec <security-name> <source> <community-name>

where:
<security-name>

is given access rights through further specifications within snmpd.conf.
<source>

is the IP-address or DNS-name of the accessing system, typically a Network Management
Station.

<community-name>
is the community string used for basic SNMP password protection.

Example:

sec.name source community
com2sec osasec default osacom
com2sec pubsec localhost public

4. Find the group section.

Use the security name to define a group with different versions of the master agent for which you
want to grant access rights. Include a line of this form for each master agent version:

group <group-name> <security-model> <security-name>

where:
<group-name>

is a group name of your choice.
<security-model>

is the security model of the SNMP version.
<security-name>

is the same as in step “3” on page 260.

Example:

groupName securityModel securityName
group osagroup v1 osasec
group osagroup v2c osasec
group osagroup usm osasec
group osasnmpd v2c pubsec

Group "osasnmpd" with community "public" is required by osasnmpd to determine the number of
network interfaces.

5. Find the view section and define your views. A view is a subset of all OIDs. Include lines of this form:

view <view-name> <included|excluded> <scope>

where:
<view-name>

is a view name of your choice.
<included|excluded>

indicates whether the following scope is an inclusion or an exclusion statement.
<scope>

specifies a subtree in the OID tree.

Example:

name incl/excl subtree mask(optional)
view allview included .1

260 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

view osaview included .1.3.6.1.4.1.2
view ifmibview included interfaces
view ifmibview included system

View "allview" encompasses all OIDs while "osaview" is limited to IBM OIDs. The numeric OID
provided for the subtree is equivalent to the textual OID
".iso.org.dod.internet.private.enterprises.ibm" View "ifmibview" is required by osasnmpd to
determine the number of network interfaces.

Tip: Specifying the subtree with a numeric OID leads to better performance than using the
corresponding textual OID.

6. Find the access section and define access rights. Include lines of this form:

access <group-name> "" any noauth exact <read-view> <write-view> none

where:
<group-name>

is the group you defined in step “4” on page 260.
<read-view>

is a view for which you want to assign read-only rights.
<write-view>

is a view for which you want to assign read-write rights.

Example:

group context sec.model sec.level prefix read write notif
access osagroup "" any noauth exact allview osaview none
access osasnmpd "" v2c noauth exact ifmibview none none

The access line of the example gives read access to the "allview" view and write access to the
"osaview". The second access line gives read access to the "ifmibview".

7. Also include the following line to enable the AgentX support:

master agentx

AgentX support is compiled into the net-snmp master agent.
8. Save and close snmpd.conf.

Example of an snmpd.conf file:

sec.name source community
com2sec osasec default osacom
com2sec pubsec localhost public
groupName securityModel securityName
group osagroup v1 osasec
group osagroup v2c osasec
group osagroup usm osasec
group osasnmpd v2c pubsec
name incl/excl subtree mask(optional)
view allview included .1
view osaview included .1.3.6.1.4.1.2
view ifmibview included interfaces
view ifmibview included system
group context sec.model sec.level prefix read write notif
access osagroup "" any noauth exact allview osaview none
access osasnmpd "" v2c noauth exact ifmibview none none
master agentx

9. Open ~/.snmp/snmp.conf with your preferred text editor.

Tip: See man snmp.conf for possible locations of snmp.conf.
10. Include a line of this form to specify the directory to be searched for MIBs:

mibdirs +<mib-path>

OSA-Express SNMP subagent support 261

Example:

mibdirs +/usr/share/snmp/mibs

11. Include a line of this form to make the OSA-Express MIB available to the master agent:

mibs +<mib-name>

where <mib-name> is the stem of the MIB file name you assigned in “Downloading the IBM OSA-
Express MIB” on page 258.

Example: mibs +IBM-OSA-MIB
12. Define defaults for the version and community to be used by the snmp commands. Add lines of this

form:

defVersion <version>
defCommunity <community-name>

where <version> is the SNMP protocol version and <community-name> is the community you defined
in step “3” on page 260.

Example:

defVersion 2c
defCommunity osacom

These default specifications simplify issuing master agent commands.
13. Save and close ~/.snmp/snmp.conf.

Working with the osasnmpd subagent
Working with the osasnmpd subagent includes starting it, checking the log file, issuing queries, and
stopping the subagent.

Working with osasnmpd comprises the following tasks:

• “Starting the osasnmpd subagent” on page 262
• “Checking the log file” on page 263
• “Issuing queries” on page 264
• “Stopping osasnmpd” on page 265

Starting the osasnmpd subagent
Use a systemctl command or the service start command to start the osasnmpd subagent.

Procedure

1. In SUSE Linux Enterprise Server 12 SP4 you can start the osasnmpd subagent by:

• Using the command

systemctl start snmpd.service

• Using the start script:

rcsnmpd start

The osasnmpd subagent, in turn, starts a daemon that is called osasnmpd.
2. Define osasnmpd parameters in YaST.

You can specify the following parameters:

262 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

-l or --logfile <logfile>
specifies a file for logging all subagent messages and warnings, including stdout and stderr. If no
path is specified, the log file is created in the current directory. The default log file is /var/log/
osasnmpd.log.

-L or --stderrlog
print messages and warnings to stdout or stderr.

-A or --append
appends to an existing log file rather than replacing it.

-f or --nofork
prevents forking from the calling shell.

-P or --pidfile <pidfile>
saves the process ID of the subagent in a file <pidfile>. If a path is not specified, the current
directory is used.

-x or --sockaddr <agentx_socket>
specifies the socket to be used for the AgentX connection. The default socket is /var/agentx/
master.

The socket can either be a UNIX domain socket path, or the address of a network interface. If a
network address of the form inet-addr:port is specified, the subagent uses the specified port.
If a net address of the form inet-addr is specified, the subagent uses the default AgentX port,
705. The AgentX sockets of the snmpd daemon and osasnmpd must match.

Results
YaST creates a configuration file that is called /etc/sysconfig/osasnmpd, for example:

Path: Network/SNMP/OSA Express SNMP agent
Description: OSA Express SNMP agent parameters
Type: string
Default: ""
ServiceRestart: snmpd
#
OSA Express SNMP agent command-line parameters
#
Enter the parameters you want to be passed on to the OSA Express SNMP
agent.
#
Example: OSASNMPD_PARAMETERS="-l /var/log/my_private_logfile"
#
OSASNMPD_PARAMETERS="-A"

Checking the log file
Warnings and messages are written to the log file of either the master agent or the OSA-Express
subagent. It is good practice to check these files at regular intervals.

Example
This example assumes that the default subagent log file is used. The lines in the log file show the
messages after a successful OSA-Express subagent initialization.

cat /var/log/osasnmpd.log
IBM OSA-E NET-SNMP 5.1.x subagent version 1.3.0
Jul 14 09:28:41 registered Toplevel OID .1.3.6.1.2.1.10.7.2.
Jul 14 09:28:41 registered Toplevel OID .1.3.6.1.4.1.2.6.188.1.1.
Jul 14 09:28:41 registered Toplevel OID .1.3.6.1.4.1.2.6.188.1.3.
Jul 14 09:28:41 registered Toplevel OID .1.3.6.1.4.1.2.6.188.1.4.
Jul 14 09:28:41 registered Toplevel OID .1.3.6.1.4.1.2.6.188.1.8.
OSA-E microcode level is 611 for interface eth0
Initialization of OSA-E subagent successful...

OSA-Express SNMP subagent support 263

Issuing queries
You can issue queries against your SNMP setup.

About this task
Examples of what SNMP queries might look like are given here. For more comprehensive information
about the master agent commands see the snmpcmd man page.

The commands can use either numeric or textual OIDs. While the numeric OIDs might provide better
performance, the textual OIDs are more meaningful and give a hint on which information is requested.

Examples
The query examples assume an interface, eth0, for which the CHPID is 6B. You can use the lsqeth
command to find the mapping of interface names to CHPIDs.

• To list the ifIndex and interface description relation (on one line):

snmpget -v 2c -c osacom localhost interfaces.ifTable.ifEntry.ifDescr.6
interfaces.ifTable.ifEntry.ifDescr.6 = eth0

Using this GET request you can see that eth0 has the ifIndex 6 assigned.
• To find the CHPID numbers for your OSA devices:

snmpwalk -OS -v 2c -c osacom localhost .1.3.6.1.4.1.2.6.188.1.1.1.1
IBM-OSA-MIB::ibmOSAExpChannelNumber.6 = Hex-STRING: 00 6B
IBM-OSA-MIB::ibmOSAExpChannelNumber.7 = Hex-STRING: 00 7A
IBM-OSA-MIB::ibmOSAExpChannelNumber.8 = Hex-STRING: 00 7D

The first line of the command output, with index number 6, corresponds to CHPID 0x6B of the eth0
example. The example assumes that the community osacom is authorized as described in “Configuring
access control” on page 259.

If you provided defaults for the SNMP version and the community (see step “12” on page 262), you can
omit the -v and -c options:

snmpwalk -OS localhost .1.3.6.1.4.1.2.6.188.1.1.1.1
IBM-OSA-MIB::ibmOSAExpChannelNumber.6 = Hex-STRING: 00 6B
IBM-OSA-MIB::ibmOSAExpChannelNumber.7 = Hex-STRING: 00 7A
IBM-OSA-MIB::ibmOSAExpChannelNumber.8 = Hex-STRING: 00 7D

You can obtain the same output by substituting the numeric OID .1.3.6.1.4.1.2.6.188.1.1.1.1 with its
textual equivalent:
.iso.org.dod.internet.private.enterprises.ibm.ibmProd.ibmOSAMib.ibmOSAMibObjects.ibmOSAExpChannelTable.ibmOSAExpChannelEntry.ibmOSAExpChannelNumber

You can shorten this unwieldy OID to the last element, ibmOsaExpChannelNumber:

snmpwalk -OS localhost ibmOsaExpChannelNumber
IBM-OSA-MIB::ibmOSAExpChannelNumber.6 = Hex-STRING: 00 6B
IBM-OSA-MIB::ibmOSAExpChannelNumber.7 = Hex-STRING: 00 7A
IBM-OSA-MIB::ibmOSAExpChannelNumber.8 = Hex-STRING: 00 7D

• To find the port type for the interface with index number 6:

snmpwalk -OS localhost .1.3.6.1.4.1.2.6.188.1.4.1.2.6
IBM-OSA-MIB::ibmOsaExpEthPortType.6 = INTEGER: fastEthernet(81)

fastEthernet(81) corresponds to card type OSD_100.

Using the short form of the textual OID:

snmpwalk -OS localhost ibmOsaExpEthPortType.6
IBM-OSA-MIB::ibmOsaExpEthPortType.6 = INTEGER: fastEthernet(81)

264 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Specifying the index, 6 in the example, limits the output to the interface of interest.

Stopping osasnmpd
Use a systemctl command or the service stop command to stop the osasnmpd subagent.

Procedure

To stop both snmpd and the osasnmpd subagent:

• Issue the command:

systemctl stop snmpd.service

• Alternatively, issue the command:

rcsnmpd stop

OSA-Express SNMP subagent support 265

266 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 16. LAN channel station device driver
The LAN channel station device driver (LCS device driver) supports Open Systems Adapters (OSA)
features in non-QDIO mode up to OSA-Express4S.

The LCS device driver supports OSA-Express features for the Z mainframes that are relevant to SUSE
Linux Enterprise Server 12 SP4 as shown in Table 49 on page 267.

Table 49: The LCS device driver supported OSA-Express features.

Feature z14 and z14 ZR1 z13 and z13s zEC12 and zBC12 z196 and z114

OSA-Express6S 1000Base-T
Ethernet

Not supported Not supported Not supported

OSA-Express5S 1000Base-T
Ethernet

1000Base-T
Ethernet

Not supported Not supported

OSA-Express4 1000Base-T
Ethernet

1000Base-T
Ethernet

1000Base-T
Ethernet

Not supported

OSA-Express3 Not supported Not supported 1000Base-T
Ethernet

1000Base-T
Ethernet

OSA-Express2 Not supported Not supported Not supported 1000Base-T
Ethernet

The LCS device driver supports automatic detection of Ethernet connections. The LCS device driver can be
used for Internet Protocol, version 4 (IPv4) only.

What you should know about LCS
Interface names are assigned to LCS group devices, which map to subchannels and their corresponding
device numbers and device bus-IDs.

LCS group devices
The LCS device driver requires two I/O subchannels for each LCS interface, a read subchannel and a write
subchannel. The corresponding bus IDs must be configured for control unit type 3088.

Figure 54: I/O subchannel interface

The device bus-IDs that correspond to the subchannel pair are grouped as one LCS group device. The
following rules apply for the device bus-IDs:

read
must be even.

© Copyright IBM Corp. 2000, 2019 267

write
must be the device bus-ID of the read subchannel plus one.

LCS interface names
When an LCS group device is set online, the LCS device driver automatically assigns an Ethernet interface
name to it.

The naming scheme uses the base name eth<n>, where <n> is an integer that uniquely identifies the
device. When the first device for a base name is set online it is assigned 0, the second is assigned 1, the
third 2, and so on. For example, the interface name of the first Ethernet feature that is set online is "eth0",
and the second "eth1".

The LCS device driver shares the name space for Ethernet interfaces other network device drivers. Each
driver uses the name with the lowest free identifier <n>, regardless of which device driver occupies the
other names. For example, if at the time the first LCS Ethernet feature is set online, there is already one
qeth Ethernet feature online, the qeth feature is named "eth0" and the LCS feature is named "eth1". See
also “qeth interface names and device directories” on page 200.

Setting up the LCS device driver
There are no module parameters for the LCS device driver. SUSE Linux Enterprise Server 12 SP4 loads the
device driver module for you when a device becomes available.

You can also load the module with the modprobe command:

modprobe lcs

Working with LCS devices
Working with LCS devices includes tasks such as creating an LCS group device, specifying a timeout, or
activating an interface.

• “Creating an LCS group device” on page 268
• “Removing an LCS group device” on page 269
• “Specifying a timeout for LCS LAN commands” on page 270
• “Setting a device online or offline” on page 270
• “Activating and deactivating an interface” on page 271
• “Recovering an LCS group device” on page 271

Creating an LCS group device
Use the group attribute to create an LCS group device.

Before you begin
You must know the device bus-IDs that correspond to the read and write subchannel of your OSA card.
The subchannel is defined in the IOCDS of your mainframe.

Procedure

To define an LCS group device, write the device bus-IDs of the subchannel pair to /sys/bus/ccwgroup/
drivers/lcs/group.
Issue a command of this form:

echo <read_device_bus_id>,<write_device_bus_id> > /sys/bus/ccwgroup/drivers/lcs/group

268 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Results
The lcs device driver uses the device bus-ID of the read subchannel to create a directory for a group
device:

/sys/bus/ccwgroup/drivers/lcs/<read_device_bus_id>

This directory contains a number of attributes that determine the settings of the LCS group device. The
following sections describe how to use these attributes to configure an LCS group device.

Example

Assuming that 0.0.d000 is the device bus-ID that corresponds to a read subchannel:

echo 0.0.d000,0.0.d001 > /sys/bus/ccwgroup/drivers/lcs/group

This command results in the creation of the following directories in sysfs:

• /sys/bus/ccwgroup/drivers/lcs/0.0.d000
• /sys/bus/ccwgroup/devices/0.0.d000
• /sys/devices/lcs/0.0.d000

Note: When the device subchannels are added, device types 3088/08 and 3088/1f can be assigned to
either the CTCM or the LCS device driver.

To check which devices are assigned to which device driver, issue the following commands:

ls -l /sys/bus/ccw/drivers/ctcm
ls -l /sys/bus/ccw/drivers/lcs

To change a faulty assignment, use the unbind and bind attributes of the device. For example, to change
the assignment for device bus-IDs 0.0.2000 and 0.0.2001 issue the following commands:

echo 0.0.2000 > /sys/bus/ccw/drivers/ctcm/unbind
echo 0.0.2000 > /sys/bus/ccw/drivers/lcs/bind
echo 0.0.2001 > /sys/bus/ccw/drivers/ctcm/unbind
echo 0.0.2001 > /sys/bus/ccw/drivers/lcs/bind

Removing an LCS group device
Use the ungroup attribute to remove an LCS group device.

Before you begin
The device must be set offline before you can remove it.

Procedure

To remove an LCS group device, write 1 to the ungroup attribute.
Issue a command of the form:

echo 1 > /sys/bus/ccwgroup/drivers/lcs/<device_bus_id>/ungroup

Example
This command removes device 0.0.d000:

echo 1 > /sys/bus/ccwgroup/drivers/lcs/0.0.d000/ungroup

LAN channel station device driver 269

Specifying a timeout for LCS LAN commands
Use the lancmd_timeout attribute to set a timeout for an LCS LAN command.

About this task
You can specify a timeout for the interval that the LCS device driver waits for a reply after issuing a LAN
command to the LAN adapter. For older hardware, the replies can take a longer time. The default is 5 s.

Procedure

To set a timeout, issue a command of this form:

echo <timeout> > /sys/bus/ccwgroup/drivers/lcs/<device_bus_id>/lancmd_timeout

where <timeout> is the timeout interval in seconds in the range 1 - 60.

Example
In this example, the timeout for a device 0.0.d000 is set to 10 s.

echo 10 > /sys/bus/ccwgroup/drivers/lcs/0.0.d000/lancmd_timeout

Setting a device online or offline
Use the online device group attribute to set an LCS device online or offline.

About this task
Setting a device online associates it with an interface name. Setting the device offline preserves the
interface name.

Read /var/log/messages or issue dmesg to determine the assigned interface name. You need to know
the interface name to activate the network interface.

For each online interface, there is a symbolic link of the form /sys/class/net/<interface_name>/
device in sysfs. You can confirm that you found the correct interface name by reading the link.

Procedure

To set an LCS group device online, set the online device group attribute to 1. To set an LCS group device
offline, set the online device group attribute to 0.
Issue a command of this form:

echo <flag> > /sys/bus/ccwgroup/drivers/lcs/<device_bus_id>/online

Example
To set an LCS device with bus ID 0.0.d000 online issue:

echo 1 > /sys/bus/ccwgroup/drivers/lcs/0.0.d000/online
dmesg
...
 lcs: LCS device eth0 without IPv6 support
 lcs: LCS device eth0 with Multicast support
...

The interface name that was assigned to the LCS group device in the example is eth0. To confirm that this
name is the correct one for the group device issue:

readlink /sys/class/net/eth0/device
../../../devices/lcs/0.0.d000

270 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

To set the device offline issue:

echo 0 > /sys/bus/ccwgroup/drivers/lcs/0.0.d000/online

Activating and deactivating an interface
Use the ip command or equivalent to activate or deactivate an interface.

About this task

Before you can activate an interface, you must set the group device online and find out the interface name
that is assigned by the LCS device driver. See “Setting a device online or offline” on page 270.

You activate or deactivate network devices with ip or an equivalent command. For details of the ip
command, see the ip man page.

Examples

• This example activates an Ethernet interface:

ip addr add 192.168.100.10/24 dev eth0
ip link set dev eth0 up

• This example deactivates the Ethernet interface:

ip link set dev eth0 down

• This example reactivates an interface that was already activated and subsequently deactivated:

ip link set dev eth0 up

Recovering an LCS group device
You can use the recover attribute of an LCS group device to recover it in case of failure. For example, error
messages in /var/log/messages might inform you of a malfunctioning device.

Procedure

Issue a command of the form:

echo 1 > /sys/bus/ccwgroup/drivers/lcs/<device_bus_id>/recover

Example

echo 1 > /sys/bus/ccwgroup/drivers/lcs/0.0.d100/recover

LAN channel station device driver 271

272 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 17. CTCM device driver
The CTCM device driver provides Channel-to-Channel (CTC) connections and CTC-based Multi-Path
Channel (MPC) connections. The CTCM device driver is required by Communications Server for Linux.

Deprecated connection type: CTC connections are deprecated. Do not use for new network setups.

This does not apply to MPC connections to VTAM®, which are not deprecated.

CTC connections are high-speed point-to-point connections between two mainframe operating system
instances.

Communications Server for Linux uses MPC connections to connect SUSE Linux Enterprise Server 12 SP4
to VTAM on traditional mainframe operating systems.

Features
The CTCM device driver provides different kinds of CTC connections between mainframes, z/VM guests,
and LPARs.

The CTCM device driver provides:

• MPC connections to VTAM on traditional mainframe operating systems.
• ESCON or FICON CTC connections (standard CTC and basic CTC) between mainframes in basic mode,

LPARs or z/VM guests.

For more information about FICON, see Redpaper FICON CTC Implementation, REDP-0158.
• Virtual CTCA connections between guests of the same z/VM system.
• CTC connections to other Linux instances or other mainframe operating systems.

What you should know about CTCM
The CTCM device driver assigns network interface names to CTCM group devices.

CTCM group devices
The CTCM device driver requires two I/O subchannels for each interface, a read subchannel and a write
subchannel.

Figure 55 on page 274 illustrates the I/O subchannel interface. The device bus-IDs that correspond to the
two subchannels must be configured for control unit type 3088.

© Copyright IBM Corp. 2000, 2019 273

Linux
CTCM device driver

write

read
CTCM group device

ESCON, real CTC,

or virtual CTCA
Peer system

read

write

CTC
interface

Peer interface

Communications
Server

for Linux

MPC
interface

Figure 55: I/O subchannel interface

The device bus-IDs that correspond to the subchannel pair are grouped as one CTCM group device. There
are no constraints on the device bus-IDs of read subchannel and write subchannel. In particular, it is
possible to group non-consecutive device bus-IDs.

On the communication-peer operating system instance, read and write subchannels are reversed. That is,
the write subchannel of the local interface is connected to the read subchannel of the remote interface
and vice versa.

Depending on the protocol, the interfaces can be CTC interfaces or MPC interfaces. MPC interfaces are
used by Communications Server for Linux and connect to peer interfaces that run under VTAM. For more
information about Communications Server for Linux and on using MPC connections, go to www.ibm.com/
software/network/commserver/linux.

Interface names assigned by the CTCM device driver
When a CTCM group device is set online, the CTCM device driver automatically assigns an interface name
to it. The interface name depends on the protocol.

If the protocol is set to 4, you get an MPC connection and the interface names are of the form mpc<n>.

If the protocol is set to 0, 1, or 3, you get a CTC connection and the interface name is of the form ctc<n>.

<n> is an integer that identifies the device. When the first device is set online it is assigned 0, the second
is assigned 1, the third 2, and so on. The devices are counted separately for CTC and MPC.

Network connections
If your CTC connection is to a router or z/VM TCP/IP service machine, you can connect CTC interfaces to
an external network.

Figure 56 on page 274 shows a CTC interface that is connected to a network.

Figure 56: Network connection

274 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

http://www.ibm.com/software/network/commserver/linux
http://www.ibm.com/software/network/commserver/linux

Setting up the CTCM device driver
There are no module parameters for the CTCM device driver. SUSE Linux Enterprise Server 12 SP4 loads
the device driver module for you when a device becomes available.

You can also load the module with the modprobe command:

modprobe ctcm

Working with CTCM devices
When you work with CTCM devices you might create a CTCM group device, set the protocol, and activate
an interface.

The following sections describe typical tasks that you need when you work with CTCM devices.

• “Creating a CTCM group device” on page 275
• “Removing a CTCM group device” on page 276
• “Displaying the channel type” on page 276
• “Setting the protocol” on page 277
• “Setting a device online or offline” on page 277
• “Setting the maximum buffer size” on page 278 (CTC only)
• “Activating and deactivating a CTC interface” on page 279 (CTC only)
• “Recovering a lost CTC connection” on page 280 (CTC only)

See the Communications Server for Linux documentation for information about configuring and activating
MPC interfaces.

Creating a CTCM group device
Use the group attribute to create a CTCM group device.

Before you begin

You must know the device bus-IDs that correspond to the local read and write subchannel of your CTCM
connection as defined in your IOCDS.

Procedure

To define a CTCM group device, write the device bus-IDs of the subchannel pair to /sys/bus/
ccwgroup/drivers/ctcm/group.
Issue a command of this form:

echo <read_device_bus_id>,<write_device_bus_id> > /sys/bus/ccwgroup/drivers/ctcm/group

Results

The CTCM device driver uses the device bus-ID of the read subchannel to create a directory for a group
device:

/sys/bus/ccwgroup/drivers/ctcm/<read_device_bus_id>

This directory contains a number of attributes that determine the settings of the CTCM group device.

CTCM device driver 275

Example

Assuming that device bus-ID 0.0.2000 corresponds to a read subchannel:

echo 0.0.2000,0.0.2001 > /sys/bus/ccwgroup/drivers/ctcm/group

This command results in the creation of the following directories in sysfs:

• /sys/bus/ccwgroup/drivers/ctcm/0.0.2000
• /sys/bus/ccwgroup/devices/0.0.2000
• /sys/devices/ctcm/0.0.2000

Note: When the device subchannels are added, device types 3088/08 and 3088/1f can be assigned to
either the CTCM or the LCS device driver.

To check which devices are assigned to which device driver, issue the following commands:

ls -l /sys/bus/ccw/drivers/ctcm
ls -l /sys/bus/ccw/drivers/lcs

To change a faulty assignment, use the unbind and bind attributes of the device. For example, to change
the assignment for device bus-IDs 0.0.2000 and 0.0.2001 issue the following commands:

echo 0.0.2000 > /sys/bus/ccw/drivers/lcs/unbind
echo 0.0.2000 > /sys/bus/ccw/drivers/ctcm/bind
echo 0.0.2001 > /sys/bus/ccw/drivers/lcs/unbind
echo 0.0.2001 > /sys/bus/ccw/drivers/ctcm/bind

Removing a CTCM group device
Use the ungroup attribute to remove a CTCM group device.

Before you begin
The device must be set offline before you can remove it.

Procedure

To remove a CTCM group device, write 1 to the ungroup attribute.
Issue a command of the form:

echo 1 > /sys/bus/ccwgroup/drivers/ctcm/<device_bus_id>/ungroup

Example
This command removes device 0.0.2000:

echo 1 > /sys/bus/ccwgroup/drivers/ctcm/0.0.2000/ungroup

Displaying the channel type
Use the type attribute to display the channel type of a CTCM group device.

Procedure

Issue a command of this form to display the channel type of a CTCM group device:

cat /sys/bus/ccwgroup/drivers/ctcm/<device_bus_id>/type

where <device_bus_id> is the device bus-ID that corresponds to the CTCM read channel. Possible values
are: CTC/A, ESCON, and FICON.

276 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Example
In this example, the channel type is displayed for a CTCM group device with device bus-ID 0.0.f000:

cat /sys/bus/ccwgroup/drivers/ctcm/0.0.f000/type
ESCON

Setting the protocol
Use the protocol attribute to set the protocol.

Before you begin
The device must be offline while you set the protocol.

About this task
The type of interface depends on the protocol. Protocol 4 results in MPC interfaces with interface names
mpc<n>. Protocols 0, 1, or 3 result in CTC interfaces with interface names of the form ctc<n>.

To choose a protocol, set the protocol attribute to one of the following values:

0
This protocol provides compatibility with peers other than z/OS, for example, a z/VM TCP service
machine. This value is the default.

1
This protocol provides enhanced package checking for Linux peers.

3
This protocol provides for compatibility with z/OS peers.

4
This protocol provides for MPC connections to VTAM on traditional mainframe operating systems.

Procedure

Issue a command of this form:

echo <value> > /sys/bus/ccwgroup/drivers/ctcm/<device_bus_id>/protocol

Example
In this example, the protocol is set for a CTCM group device 0.0.2000:

echo 4 > /sys/bus/ccwgroup/drivers/ctcm/0.0.2000/protocol

Setting a device online or offline
Use the online device group attribute to set a CTCM device online or offline.

About this task
Setting a group device online associates it with an interface name. Setting the group device offline and
back online with the same protocol preserves the association with the interface name. If you change the
protocol before you set the group device back online, the interface name can change as described in
“Interface names assigned by the CTCM device driver” on page 274.

You must know the interface name to access the CTCM group device. Read /var/log/messages or
issue dmesg to determine the assigned interface name for the group device.

For each online interface, there is a symbolic link of the form /sys/class/net/<interface_name>/
device in sysfs. You can confirm that you found the correct interface name by reading the link.

CTCM device driver 277

Procedure

To set a CTCM group device online, set the online device group attribute to 1. To set a CTCM group device
offline, set the online device group attribute to 0.
Issue a command of this form:

echo <flag> > /sys/bus/ccwgroup/drivers/ctcm/<device_bus_id>/online

Example
To set a CTCM device with bus ID 0.0.2000 online issue:

echo 1 > /sys/bus/ccwgroup/drivers/ctcm/0.0.2000/online
dmesg | grep -F "ch-0.0.2000"
mpc0: read: ch-0.0.2000, write: ch-0.0.2001, proto: 4

The interface name that was assigned to the CTCM group device in the example is mpc0. To confirm that
this name is the correct one for the group device issue:

readlink /sys/class/net/mpc0/device
../../../0.0.2000

To set group device 0.0.2000 offline issue:

echo 0 > /sys/bus/ccwgroup/drivers/ctcm/0.0.2000/online

Setting the maximum buffer size
Use the buffer device group attribute to set a maximum buffer size for a CTCM group device.

Before you begin

• Set the maximum buffer size for CTC interfaces only. MPC interfaces automatically use the highest
possible maximum buffer size.

• The device must be online when you set the buffer size.

About this task
You can set the maximum buffer size for a CTC interface. The permissible range of values depends on the
MTU settings. It must be in the range <minimum MTU + header size> to <maximum MTU + header size>.
The header space is typically 8 byte. The default for the maximum buffer size is 32768 byte (32 KB).

Changing the buffer size is accompanied by an MTU size change to the value <buffer size - header size>.

Procedure

To set the maximum buffer size, issue a command of this form:

echo <value> > /sys/bus/ccwgroup/drivers/ctcm/<device_bus_id>/buffer

where <value> is the number of bytes you want to set. If you specify a value outside the valid range, the
command is ignored.

Example
In this example, the maximum buffer size of a CTCM group device 0.0.f000 is set to 16384 byte.

echo 16384 > /sys/bus/ccwgroup/drivers/ctcm/0.0.f000/buffer

278 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Activating and deactivating a CTC interface
Use ip or an equivalent command to activate or deactivate an interface.

Before you begin

• Activate and deactivate a CTC interface only. For information about activating MPC interfaces, see the
Communications Server for Linux documentation.

• You must know the interface name. See “Setting a device online or offline” on page 277.

About this task

Syntax for setting an IP address for a CTC interface with the ip command
ip address add <ip_address> dev <interface>

 peer <peer_ip_address

Syntax for activating a CTC interface with the ip command

ip link set dev <interface> up

 mtu 32760

 mtu <max_transfer_unit>

Where:
<interface>

is the interface name that was assigned when the CTCM group device was set online.
<ip_address>

is the IP address that you want to assign to the interface.
<peer_ip_address>

is the IP address of the remote side.
<max_transfer_unit>

is the size of the largest IP packet that might be transmitted. Be sure to use the same MTU size on
both sides of the connection. The MTU must be in the range of 576 byte to 65,536 byte (64 KB).

Syntax for deactivating a CTC interface with the ip command
ip link set dev <interface> down

Where:
<interface>

is the interface name that was assigned when the CTCM group device was set online.

Procedure

• Use ip or an equivalent command to activate the interface.
• To deactivate an interface, issue a command of this form:

ip link set dev <interface> down

Examples

• This example activates a CTC interface ctc0 with an IP address 10.0.51.3 for a peer with address
10.0.50.1 and an MTU of 32760.

CTCM device driver 279

ip addr add 10.0.51.3 dev ctc0 peer 10.0.50.1
ip link set dev ctc0 up mtu 32760

• This example deactivates ctc0:

ip link set dev ctc0 down

Recovering a lost CTC connection
If one side of a CTC connection crashes, you cannot simply reconnect after a reboot. You must also
deactivate the interface of the peer of the crashed side.

Before you begin
These instructions apply to CTC interfaces only.

Procedure

Proceed as follows to recover a lost CTC connection:
1. Reboot the crashed side.
2. Deactivate the interface on the peer. See “Activating and deactivating a CTC interface” on page 279.
3. Activate the interface on the crashed side and on the peer.

For details, see “Activating and deactivating a CTC interface” on page 279.

If the connection is between a Linux instance and a non-Linux instance, activate the interface on the
Linux instance first. Otherwise, you can activate the interfaces in any order.

Results
If the CTC connection is uncoupled, you must couple it again and reconfigure the interface of both peers
with the ip command. See “Activating and deactivating a CTC interface” on page 279.

Scenarios
Typical use cases of CTC connections include connecting to a peer in a different LPAR and connecting
Linux instances that run as z/VM guests to each other.

• “Connecting to a peer in a different LPAR” on page 280
• “Connecting Linux on z/VM to another guest of the same z/VM system ” on page 282

Connecting to a peer in a different LPAR
A Linux instance and a peer both run in LPAR mode on the same or on different mainframes. They are to
be connected with a CTC FICON or CTC ESCON network interface.

Assumptions:

• Locally, the read and write channels are configured for type 3088 and use device bus-IDs 0.0.f008 and
0.0.f009.

• IP address 10.0.50.4 is to be used locally and 10.0.50.5 for the peer.

Figure 57 on page 281 illustrates a CTC setup with a peer in a different LPAR.

280 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Figure 57: CTC scenario with peer in a different LPAR

Procedure

1. Create a CTCM group device.
Issue:

echo 0.0.f008,0.0.f009 > /sys/bus/ccwgroup/drivers/ctcm/group

2. Confirm that the device uses CTC FICON or CTC ESCON:

cat /sys/bus/ccwgroup/drivers/ctcm/0.0.f008/type
ESCON

In this example, ESCON is used. You would proceed the same for FICON.
3. Select a protocol.

The choice depends on the peer.

If the peer is ... Choose ...

Linux 1

z/OS or OS/390® 3

Any other operating system 0

Assuming that the peer is Linux:

echo 1 > /sys/bus/ccwgroup/drivers/ctcm/0.0.f008/protocol

4. Set the CTCM group device online and find out the assigned interface name:

echo 1 > /sys/bus/ccwgroup/drivers/ctcm/0.0.f008/online
ls /sys/devices/ctcm/0.0.f008/net/
ctc0

In the example, the interface name is ctc0.
5. Assure that the peer interface is configured.
6. Activate the interface locally and on the peer.

If you are connecting two Linux instances, either instance can be activated first. If the peer is not
Linux, activate the interface on Linux first. To activate the local interface:

CTCM device driver 281

ip addr add 10.0.50.4 dev ctc0 peer 10.0.50.5
ip link set dev ctc0 up

Connecting Linux on z/VM to another guest of the same z/VM system
A virtual CTCA connection is to be set up between an instance of Linux on z/VM and another guest of the
same z/VM system.

Assumptions:

• The guest ID of the peer is "guestp".
• A separate subnet was obtained from the TCP/IP network administrator. The Linux instance uses IP

address 10.0.100.100 and the peer uses IP address 10.0.100.101.

Figure 58 on page 282 illustrates a CTC setup with a peer in the same z/VM.

z/VM

Peer guest

‘guestp’

Virtual CTCA

10.0.100.101

0xf004 (read)

0xf005 (write)

0xf011 (write)

0xf010 (read)

Interface

CTCM device driver
Device

10.0.100.100

Linux

Figure 58: CTC scenario with peer in the same z/VM

Procedure

1. Define two virtual channels to your user ID.
The channels can be defined in the z/VM user directory with directory control SPECIAL statements, for
example:

special f004 ctca
special f005 ctca

Alternatively, you can use the CP commands:

define ctca as f004
define ctca as f005

2. Assure that the peer interface is configured.
3. Connect the virtual channels.

Assuming that the read channel on the peer corresponds to device number 0xf010 and the write
channel to 0xf011 issue:

couple f004 to guestp f011
couple f005 to guestp f010

Be sure that you couple the read channel to the peers write channel and vice versa.
4. From your booted Linux instance, create a CTCM group device. Issue:

echo 0.0.f004,0.0.f005 > /sys/bus/ccwgroup/drivers/ctcm/group

282 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

5. Confirm that the group device is a virtual CTCA device:

cat /sys/bus/ccwgroup/drivers/ctcm/0.0.f004/type
CTC/A

6. Select a protocol.
The choice depends on the peer.

If the peer is ... Choose ...

Linux 1

z/OS or OS/390 3

Any other operating system 0

Assuming that the peer is Linux:

echo 1 > /sys/bus/ccwgroup/drivers/ctcm/0.0.f004/protocol

7. Set the CTCM group device online and find out the assigned interface name:

echo 1 > /sys/bus/ccwgroup/drivers/ctcm/0.0.f004/online
ls /sys/devices/ctcm/0.0.f004/net/
ctc1

In the example, the interface name is ctc1.
8. Activate the interface locally and on the peer.

If you are connecting two Linux instances, either can be activated first. If the peer is not Linux, activate
the local interface first. To activate the local interface:

ip addr add 10.0.100.100 dev ctc1 peer 10.0.100.101
ip link set dev ctc1 up

Be sure that the MTU on both sides of the connection is the same. If necessary, change the default
MTU (see “Activating and deactivating a CTC interface” on page 279).

9. Ensure that the buffer size on both sides of the connection is the same. For the Linux side, see “Setting
the maximum buffer size” on page 278 if the peer is not Linux, see the operating system
documentation of the peer.

CTCM device driver 283

284 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 18. NETIUCV device driver
The Inter-User Communication Vehicle (IUCV) is a z/VM communication facility that enables a program
running in one z/VM guest to communicate with another z/VM guest, or with a control program, or even
with itself.

Deprecated device driver

NETIUCV connections are only supported for compatibility with earlier versions. Do not use for new
network setups.

The NETIUCV device driver is a network device driver, that uses IUCV to connect instances of Linux on
z/VM, or to connect an instance of Linux on z/VM to another z/VM guest such as a TCP/IP service machine.

Features

The NETIUCV device driver supports the following functions:

• Multiple output paths from Linux on z/VM
• Multiple input paths to Linux on z/VM
• Simultaneous transmission and reception of multiple messages on the same or different paths
• Network connections via a TCP/IP service machine gateway
• Internet Protocol, version 4 (IPv4) only

What you should know about IUCV
The NETIUCV device driver assigns IUCV interface names and creates IUCV devices in sysfs.

IUCV direct and routed connections
The NETIUCV device driver uses TCP/IP over z/VM virtual communications.

The communication peer is a guest of the same z/VM or the z/VM control program. No subchannels are
involved, see Figure 59 on page 285.

Peer

z/VM

Linux

device

IUCV device driver

Interface

Figure 59: Direct IUCV connection

If your IUCV connection is to a router, the peer can be remote and connected through an external
network, see Figure 60 on page 286.

© Copyright IBM Corp. 2000, 2019 285

Figure 60: Routed IUCV connection

The standard definitions in the z/VM TCP/IP configuration files apply.

For more information of the z/VM TCP/IP configuration see: z/VM: TCP/IP Planning and Customization,
SC24-6331.

IUCV interfaces and devices
The NETIUCV device driver assigns names to its devices.

The NETIUCV device driver uses the base name iucv<n> for its interfaces. When the first IUCV interface is
created (see “Creating an IUCV device” on page 287) it is assigned the name iucv0, the second is
assigned iucv1, the third iucv2, and so on.

For each interface, a corresponding IUCV device is created in sysfs at /sys/bus/iucv/devices/
netiucv<n> where <n> is the same index number that also identifies the corresponding interface.

For example, interface iucv0 corresponds to device name netiucv0, iucv1 corresponds to netiucv1, iucv2
corresponds to netiucv2, and so on.

Setting up the NETIUCV device driver
There are no module parameters for the NETIUCV device driver, but you need to load the netiucv module.
You also need to enable a z/VM guest virtual machine for IUCV.

Loading the IUCV modules

The NETIUCV device driver has been compiled as a separate module that you need to load before you can
work with IUCV devices. Use modprobe to load the module to ensure that any other required modules are
also loaded.

modprobe netiucv

Enabling your z/VM guest for IUCV

To enable your z/VM guest for IUCV add the following statements to your z/VM USER DIRECT entry:

IUCV ALLOW
IUCV ANY

286 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Working with IUCV devices
Typical tasks that you need to perform when working with IUCV devices include creating an IUCV device,
setting the mazimum buffer size, and activating an interface.

About this task

This section describes typical tasks that you need to perform when working with IUCV devices.

• “Creating an IUCV device” on page 287
• “Changing the peer” on page 288
• “Setting the maximum buffer size” on page 288
• “Activating an interface” on page 289
• “Deactivating and removing an interface” on page 290

Creating an IUCV device
Use the connection attribute to create an IUCV device.

About this task

To define an IUCV device write the user ID of the peer z/VM guest to /sys/bus/iucv/drivers/
netiucv/connection.

Procedure

Issue a command of this form:

echo <peer_id>.<path_name> > /sys/bus/iucv/drivers/netiucv/connection

Where:
<peer_id>

is the user ID of the z/VM guest you want to connect to.
.<path_name>

identifies an individual path to a peer z/VM guest. This specification is required for setting up multiple
paths to the same peer z/VM guest. For setting up a single path to a particular peer z/VM guest, this
specification is optional and can be omitted. The path name can be up to 16 characters long. The peer
must use the same path name when setting up the peer interface.

The NETIUCV device driver interprets the specification as uppercase.

Results

An interface iucv<n> is created and the following corresponding sysfs directories:

• /sys/bus/iucv/devices/netiucv<n>
• /sys/devices/iucv/netiucv<n>
• /sys/class/net/iucv<n>

<n> is an index number that identifies an individual IUCV device and its corresponding interface. You can
use the attributes of the sysfs entry to configure the device.

To find the index numbers that corresponds to a given user ID, scan the name attributes of all NETIUCV
devices. Issue a command of this form:

grep <peer_id> /sys/bus/iucv/drivers/netiucv/*/user

NETIUCV device driver 287

Example

To create an IUCV device to connect to a z/VM guest with a guest user ID "LINUXP" issue:

echo linuxp > /sys/bus/iucv/drivers/netiucv/connection

To find the device and interface that connect to "LINUXP" issue:

grep -Hxi linuxp /sys/bus/iucv/devices/*/user
/sys/bus/iucv/devices/netiucv0/user:LINUXP

In the sample output, the device is netiucv0 and, therefore, the interface is iucv0.

Changing the peer
You can change the z/VM guest that an interface connects to.

Before you begin
The interface must not be active when changing the name of the peer z/VM guest.

About this task

To change the peer z/VM guest, issue a command of this form:

echo <peer_ID> > /sys/bus/iucv/drivers/netiucv/netiucv<n>/user

where:
<peer_ID>

is the z/VM guest ID of the new communication peer. The value must be a valid guest ID. The
NETIUCV device driver interprets the ID as uppercase.

<n>
is an index that identifies the IUCV device and the corresponding interface.

Example

In this example, "LINUX22" is set as the new peer z/VM guest.

echo linux22 > /sys/bus/iucv/drivers/netiucv/netiucv0/user

Setting the maximum buffer size
Use the buffer attribute to set the maximum buffer size of an IUCV device.

About this task

The upper limit for the maximum buffer size is 32768 bytes (32 KB). The lower limit is 580 bytes in
general and in addition, if the interface is up and running <current MTU + header size>. The header space
is typically 4 bytes.

Changing the buffer size is accompanied by an MTU size change to the value <buffer size - header size>.

To set the maximum buffer size, issue a command of this form:

echo <value> > /sys/bus/iucv/drivers/netiucv/netiucv<n>/buffer

where:
<value>

is the number of bytes you want to set. If you specify a value outside the valid range, the command is
ignored.

288 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

<n>
is an index that identifies the IUCV device and the corresponding interface.

Note: If IUCV performance deteriorates and IUCV issues out-of-memory messages on the console,
consider using a buffer size less than 4K.

Example

In this example, the maximum buffer size of an IUCV device netiucv0 is set to 16384 byte.

echo 16384 > /sys/bus/iucv/drivers/netiucv/netiucv0/buffer

Activating an interface
Use ip or an equivalent command to activate an interface.

About this task

ip syntax for setting an IP address for an IUCV connection
ip address add <ip_address> dev <interface>

 peer <peer_ip_address

ip syntax for activating an IUCV interface

ip link set dev <interface> up

 mtu 9216

 mtu <max_transfer_unit>

where:
<interface>

is the interface name.
<ip_address>

is the IP address of your Linux instance.
<peer_ip_address>

for direct connections this is the IP address of the communication peer; for routed connections this is
the IP address of the TCP/IP service machine or Linux router to connect to.

<max_transfer_unit>
is the size in byte of the largest IP packets which may be transmitted. The default is 9216. The valid
range is 576 through 32764.

Note: An increase in buffer size is accompanied by an increased risk of running into memory
problems. Thus a large buffer size increases speed of data transfer only if no out-of-memory-
conditions occur.

For more details, see the ip man page.

Example

This example activates a connection to a TCP/IP service machine with IP address 1.2.3.200 using a
maximum transfer unit of 32764 bytes.

ip addr add 1.2.3.100 dev iucv1 peer 1.2.3.200
ip link set dev iucv1 up mtu 32764

NETIUCV device driver 289

Deactivating and removing an interface
Use ip or an equivalent command to deactivate an interface.

About this task

Issue a command of this form:

ip link set dev <interface> down

where <interface> is the name of the interface to be deactivated.

You can remove the interface and its corresponding IUCV device by writing the interface name to the
NETIUCV device driver's remove attribute. Issue a command of this form:

echo <interface> > /sys/bus/iucv/drivers/netiucv/remove

where <interface> is the name of the interface to be removed. The interface name is of the form iucv<n>.

After the interface has been removed the interface name can be assigned again as interfaces are
activated.

Example

This example deactivates and removes an interface iucv0 and its corresponding IUCV device:

ip link set dev iucv0 down
echo iucv0 > /sys/bus/iucv/drivers/netiucv/remove

Scenario: Setting up an IUCV connection to a TCP/IP service machine
Two Linux instances with guest IDs LNX1 and LNX2 are to be connected through a TCP/IP service
machine with guest ID VMTCPIP.

About this task

Both Linux instances and the service machine run as guests of the same z/VM system. A separate IP
subnet (different from the subnet used on the LAN) has been obtained from the network administrator. IP
address 1.2.3.4 is assigned to guest LNX1, 1.2.3.5 is assigned to guest LNX2, and 1.2.3.10 is assigned to
the service machine, see Figure 61 on page 290.

Service

machine

VMTCPIP

1.2.3.10

VM

Linux LNX1

netiucv0

IUCV device driver

Linux LNX2

netiucv0

IUCV device driver

iucv0

1.2.3.4

iucv0

1.2.3.5

Figure 61: IUCV connection scenario

290 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Setting up the service machine
Setting up the service machine entails editing the PROFILE TCPIP file of the service machine.

Procedure

Proceed like this to set up the service machine:
1. For each guest that is to have an IUCV connection to the service machine add a home entry, device,

link, and start statement to the service machine's PROFILE TCPIP file.
The statements have the form:

 Home
 <ip_address1> <link_name1>
 <ip_address2> <link_name2>
 ...

 Device <device_name1> IUCV 0 0 <guest_ID1> A
 Link <link_name1> IUCV 0 <device_name1>

 Device <device_name2> IUCV 0 0 <guest_ID2> A
 Link <link_name2> IUCV 0 <device_name2>

 ...

 Start <device_name1>
 Start <device_name2>
 ...

where
<ip_address1>, <ip_address2>

are the IP address the Linux instances.
<link_name1>, <link_name2>, ...

are variables that associate the link statements with the respective home statements.
<device_name1>, <device_name2>, ...

are variables that associate the device statements with the respective link statements and start
commands.

<guest_ID1>, <guest_ID1>, ...
identify the z/VM guest virtual machines on which the connected Linux instances run.

In our example, the PROFILE TCPIP entries for our example might look of this form:

 Home
 1.2.3.4 LNK1
 1.2.3.5 LNK2

 Device DEV1 IUCV 0 0 LNX1 A
 Link LNK1 IUCV 0 DEV1

 Device DEV2 IUCV 0 0 LNX2 A
 Link LNK2 IUCV 0 DEV2

 Start DEV1
 Start DEV2
 ...

2. Add the necessary z/VM TCP/IP routing statements (BsdRoutingParms or Gateway). Use an MTU size
of 9216 and a point-to-point host route (subnet mask 255.255.255.255). If you use dynamic routing,
but do not wish to run routed or gated on Linux, update the z/VM ETC GATEWAYS file to include
permanent host entries for each Linux instance.

3. Bring these updates online by using OBEYFILE or by recycling TCPIP and/or ROUTED as needed.

NETIUCV device driver 291

Setting up Linux instance LNX1
Setting up the Linux instance entails setting up the NETIUCV device driver and creating an IUCV interface.

Procedure

Proceed like this to set up the IUCV connection on the Linux instance:
1. Set up the NETIUCV device driver as described in “Setting up the NETIUCV device driver” on page 286.
2. Create an IUCV interface for connecting to the service machine:

echo VMTCPIP /sys/bus/iucv/drivers/netiucv/connection

This creates an interface, for example, iucv0, with a corresponding IUCV device and a device entry in
sysfs /sys/bus/iucv/devices/netiucv0.

3. The peer, LNX2 is set up accordingly.
When both interfaces are ready to be connected to, activate the connection.

ip addr add 1.2.3.4 dev iucv0 peer 1.2.3.10
ip link set dev iucv1 up mtu 32764

292 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 19. AF_IUCV address family support
The AF_IUCV address family provides an addressing mode for communications between applications that
run on Linux on Z mainframes.

This addressing mode can be used for connections through real HiperSockets and through the z/VM Inter-
User Communication Vehicle (IUCV).

Support for AF_IUCV based connections through real HiperSockets requires Completion Queue Support.

HiperSockets devices facilitate connections between applications across LPARs within a mainframe. In
particular, an application that runs on an instance of Linux on Z can communicate with:

• Itself
• Other applications that run on the same Linux instance
• An application on an instance of Linux on Z in another LPAR

IUCV facilitates connections between applications across z/VM guest virtual machines within a z/VM
system. In particular, an application that runs on Linux on z/VM can communicate with:

• Itself
• Other applications that run on the same Linux instance
• Applications running on other instances of Linux on z/VM, within the same z/VM system
• Applications running on a z/VM guest other than Linux, within the same z/VM system
• The z/VM control program (CP)

The AF_IUCV address family supports stream-oriented sockets (SOCK_STREAM) and connection-oriented
datagram sockets (SOCK_SEQPACKET). Stream-oriented sockets can fragment data over several packets.
Sockets of type SOCK_SEQPACKET always map a particular socket write or read operation to a single
packet.

Features
The AF_IUCV address family provides socket connections for HiperSockets and IUCV.

For all instances of Linux on z Systems, the AF_IUCV address family provides the following features:

• Multiple outgoing socket connections for real HiperSockets
• Multiple incoming socket connections for real HiperSockets

For instances of Linux on z/VM, the AF_IUCV address family also provides the following features:

• Multiple outgoing socket connections for IUCV
• Multiple incoming socket connections for IUCV
• Socket communication with applications that use the CMS AF_IUCV support

Setting up the AF_IUCV address family support
You must authorize your z/VM guest virtual machine and load those components that were compiled as
separate modules.

There are no module parameters for the AF_IUCV address family support.

© Copyright IBM Corp. 2000, 2019 293

Setting up HiperSockets devices for AF_IUCV addressing
In AF_IUCV addressing mode, HiperSockets devices in layer 3 mode are identified through their hsuid
sysfs attribute.

You set up a HiperSockets device for AF_IUCV by assigning a value to this attribute (see “Configuring a
HiperSockets device for AF_IUCV addressing” on page 235).

Setting up your z/VM guest virtual machine for IUCV
You must specify suitable IUCV statements for your z/VM guest virtual machine.

For details and for general IUCV setup information for z/VM guest virtual machines, see z/VM: CP
Programming Services, SC24-6272 and z/VM: CP Planning and Administration, SC24-6271.

Granting IUCV authorizations

Use the IUCV statement to grant the necessary authorizations.
IUCV ALLOW

allows any other z/VM virtual machine to establish a communication path with this z/VM virtual
machine. With this statement, no further authorization is required in the z/VM virtual machine that
initiates the communication.

IUCV ANY
allows this z/VM guest virtual machine to establish a communication path with any other z/VM guest
virtual machine.

IUCV <user ID>
allows this z/VM guest virtual machine to establish a communication path to the z/VM guest virtual
machine with the z/VM user ID <user ID>.

You can specify multiple IUCV statements. To any of these IUCV statements you can append the
MSGLIMIT <limit> parameter. <limit> specifies the maximum number of outstanding messages that are
allowed for each connection that is authorized by the statement. If no value is specified for MSGLIMIT,
AF_IUCV requests 65 535, which is the maximum that is supported by IUCV.

Setting a connection limit

Use the OPTION statement to limit the number of concurrent connections.
OPTION MAXCONN <maxno>

<maxno> specifies the maximum number of IUCV connections that are allowed for this virtual
machine. The default is 64. The maximum is 65 535.

Example

These sample statements allow any z/VM guest virtual machine to connect to your z/VM guest virtual
machine with a maximum of 10 000 outstanding messages for each incoming connection. Your z/VM
guest virtual machine is permitted to connect to all other z/VM guest virtual machines. The total number
of connections for your z/VM guest virtual machine cannot exceed 100.

IUCV ALLOW MSGLIMIT 10000
IUCV ANY
OPTION MAXCONN 100

294 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Loading the IUCV modules
SUSE Linux Enterprise Server 12 SP4 loads the af_iucv module when an application requests a socket
with the AF_IUCV addressing mode. You can also use the modprobe command to load the AF_IUCV
address family support module.

modprobe af_iucv

Addressing AF_IUCV sockets in applications
To use AF_IUCV sockets in applications, you must code a special AF_IUCV sockaddr structure.

Application programmers: This information is intended for programmers who want to use connections
that are based on AF_IUCV addressing in their applications.

The primary difference between AF_IUCV sockets and TCP/IP sockets is how communication partners are
identified (for example, how they are named). To use the AF_IUCV support in an application, code a
sockaddr structure with AF_IUCV as the socket address family and with AF_IUCV address information.

struct sockaddr_iucv {
 sa_family_t siucv_family; /* AF_IUCV */
 unsigned short siucv_port; /* reserved */
 unsigned int siucv_addr; /* reserved */
 char siucv_nodeid[8]; /* reserved */
 char siucv_userid[8]; /* guest user id */
 char siucv_name[8]; /* application name */
};

Where:
siucv_family

is set to AF_IUCV (= 32).
siucv_port, siucv_addr, and siucv_nodeid

are reserved for future use. The siucv_port and siucv_addr fields must be zero. The
siucv_nodeid field must be set to exactly eight blanks.

siucv_userid
specifies a HiperSockets device or a z/VM guest virtual machine. This specification implicitly sets the
connection type for the socket to a HiperSockets connection or to a z/VM IUCV connection.

This field must be 8 characters long and, if necessary, padded at the end with blanks.

For HiperSockets connections, the siucv_userid field specifies the identifier that is set with the
hsuid sysfs attribute of the HiperSockets device. For bind this is the identifier of a local device, and
for connect this is the identifier of the HiperSockets device of the communication peer.

For IUCV connections, the siucv_userid field specifies a z/VM user ID. For bind this is the
identifier of the local z/VM guest virtual machine, and for connect this is the identifier of the z/VM
guest virtual machine for the communication peer.

Tip: For bind, you can also specify 8 blanks. The AF_IUCV address family support then automatically
substitutes the local z/VM user ID for you.

siucv_name
is set to the application name by which the socket is known. Servers advertise application names and
clients use these application names to connect to servers. This field must be 8 characters long and, if
necessary, padded with blanks at the end.

Similar to TCP or UDP ports, application names distinguish distinct applications on the same operating
system instance. Do not call bind for names that begin with lnxhvc. These names are reserved for
the z/VM IUCV HVC device driver.

For details, see the af_iucv man page.

AF_IUCV address family support 295

296 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 20. SMC protocol support
The shared memory communication (SMC) protocol is an addition to TCP/IP and can be used
transparently for shared memory communications.

The SMC protocol can be used for connections through:

• Shared Memory Communications through RDMA (SMC-R) with RoCE devices.
• Shared Memory Communications Direct (SMC-D) with ISM devices

If both variants are available for a connection, SMC-D is used.

For more information about the SMC protocol, see https://ibm.biz/BdYAWW and https://ibm.biz/BdYucc.

Prerequisites

SMC connections are initiated through TCP/IP. Hence, the communication partners must be able to reach
each other through TCP/IP. Also, SMC is not routable and thus both communication partners must be in
the same IP subnet.

An SMC connection requires both communication partners to support SMC. Unless both partners support
SMC, the connection falls back to TCP/IP.

The SMC-R protocol requires:

• A system with a network adapter with RDMA-over-Converged-Ethernet (RoCE) capability, for example a
Mellanox Connect HCA. See Chapter 21, “RDMA over Converged Ethernet,” on page 301.

The SMC-D protocol requires:

• A system with an Internal Shared Memory (ISM) device. For more information about ISM devices, see
Chapter 22, “Internal shared memory device driver,” on page 303.

• The communication partners must be running on the same CPC.

To use SMC on Linux, a socket application must use the AF_SMC address family. For AF_SMC support in
existing applications without code changes, the SMC-Tools package provides a preload library and the
smc_run command. For more information about these tools and how to convert socket applications from
AF_INET or AF_INET6 to AF_SMC, see “Setting up the SMC support” on page 297.

Features

The AF_SMC address family provides DMA communication through remote or internal shared memory.
Benefits include:

• Transparency to existing TCP/IP applications with the preload library and smc_run.
• Low latency
• Lower CPU usage compared to native TCP/IP

Setting up the SMC support
SMC traffic requires a mapping of the OSA or HiperSockets network interfaces to the RoCE adapters or
ISM devices.

Physical network (PNET) IDs provide this mapping. If a network interface and an RoCE or ISM device have
the same PNET ID, they are connected to the same physical network and can be used together for SMC.
Assign PNET IDs to OSA, HiperSockets, RoCE, and ISM devices through the IOCDS. For more information
about IOCDS, see z/OS HCD User's Guide, SC34-2669.

© Copyright IBM Corp. 2000, 2019 297

https://ibm.biz/BdYAWW
https://ibm.biz/BdYucc

Figure 62 on page 298 illustrates how the IOCDS assigns the PNETID NET1 to an ISM device and a
network interface for an Ethernet device. In Linux, the matching PNETID associates the ISM device with
an Ethernet device.

Figure 62: PNET ID and ISM device association

As a fallback solution, SMC-R supports a software PNET table that maps network interfaces to RoCE
adapters. Use the smc_pnet command to create a physical network (PNET) table with this mapping. See
“smc_pnet - Create network mapping table” on page 602. SMC-D does not support such a software table.

Note: z/OS does not support the Mellanox card as an Ethernet device, and therefore uses OSA adapters
for the initial handshake for SMC-R connections. Linux has no such constraint.

Network device settings

On the network device that is associated with the RoCE device you want to use for SMC traffic, check the
settings with the ethtool command and ensure that pause settings are turned on.

For example, if enP2s13 is the network device that is associated with the wanted device port:

ethtool -a enP2s13
Pause parameters for enP2s13:
Autonegotiate: off
RX: on
TX: on

Sysctl settings

SMC requires contiguous memory. The minimum is 16 KB, and the maximum is 512 MB. The SMC
implementation selects a value as follows:

• Some socket applications define the socket send- and receive buffer sizes with a setsockopt call,
whose upper limits are defined in net.core.wmem_max and net.core.rmem_max.

• If setsockopt SO_SNDBUF is not used, the socket send buffer size is taken from the value of
net.ipv4.tcp_wmem.

• If setsockopt SO_RCVBUF is not used, the socket receive buffer is taken from the value of
net.ipv4.tcp_rmem, rounded to the next higher power of 2.

Make an existing application use SMC

Use the preload library to make the unmodified socket application use SMC. Existing TCP/IP applications
can benefit from the SMC protocol without recompiling, if they are invoked with the SMC preload library
ld_pre_smc.so. See the smc-tools package for the smc_run script (see “smc_run - Run a TCP socket

298 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

program with the SMC protocol using a preloaded library” on page 604), which makes an existing TCP/IP
socket program use SMC.

Converting an application to use SMC

Alternatively, if you need to, you can convert an application. To convert an application from TCP/IP to SMC
sockets, change the socket() function call from AF_INET to AF_SMC with protocol "0" and from
AF_INET6 to AF_SMC with protocol "1". For example, change:

sd = socket(AF_INET, SOCK_STREAM, 0);

to:

sd = socket(AF_SMC, SOCK_STREAM, 0);

and

sd = socket(AF_INET6,SOCK_STREAM, 0);

to:

sd = socket(AF_SMC, SOCK_STREAM, 1);

Use the sockets.h header file from the glibc-header package. For more programming information, see
the af_smc(7) man page.

Investigating PNET IDs
You can find the PNET IDs for PCIe devices and for CCW group devices in sysfs.

PCIe devices

The PNET ID of PCI devices can be read, in EBCDIC format, as the value of the util_string attribute of
the device in sysfs. You can use a command of the following form to read a PNET ID and convert it to
ASCII:

cat /sys/devices/pci<function_name>/<function_address>/util_string | iconv -f IBM-1047 -t ASCII

In the command, /sys/devices/pci<function_name>/<function_address> represents the PCI
device in sysfs.

Example:

cat /sys/devices/pci0000:00/0000:00:00.0/util_string | iconv -f IBM-1047 -t ASCII
NET1

The PNET ID of the example is NET1. If there is no command output or if the output is blank, no PNET ID
is assigned to the device.

CCW group devices
The PNET ID of CCW group devices can be read, in EBCDIC format, as the value of the util_string of
the corresponding channel path ID in sysfs. To find the channel path ID of a CCW group device, read its
chpid attribute in sysfs.

Example:

cat cat /sys/bus/ccwgroup/devices/0.0.b1f0/chpid
4a

To find the PNET ID issue a command of this form:

SMC protocol support 299

cat /sys/devices/css0/chp0.<chpid>/util_string | iconv -f IBM-1047 -t ASCII

where <chpid> is the channel path ID.

Example:

cat /sys/devices/css0/chp0.4a/util_string | iconv -f IBM-1047 -t ASCII
NET1

The PNET ID of the example is NET1. If there is no command output or if the output is blank, no PNET ID
is assigned to the device.

Tips

• The output of the iconv command does not have a trailing line break, so displayed PNET IDs are
followed by a command prompt. Pipe the output to a suitable sed command, for example sed 's/$/
\n/', to display the PNET IDs on a separate line .

• Use the following command to display a list of all CCW devices and their PNET IDs:

for device in `ls -1 /sys/bus/ccwgroup/devices`; do
chpid=`cat /sys/bus/ccwgroup/devices/$device/chpid | tr [A-F] [a-f]`;
pnetid="`cat /sys/devices/css0/chp0.$chpid/util_string | iconv -f IBM-1047 -t ASCII | sed 's/^/ /'`";
echo " device: $device chpid: $chpid pnetID: $pnetid";
done

300 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 21. RDMA over Converged Ethernet
Linux on Z supports RDMA over Converged Ethernet (RoCE) in the form of 10GbE RoCE Express features.

A 10GbE RoCE Express feature physically consists of a Mellanox ConnectX-3 EN or Mellanox ConnectX-4
adapter. The adapters are two-port Ethernet adapters. On a mainframe, the mapping of ports to function
keys depend on the adapter hardware:

• The two Mellanox ConnectX-3 EN adapter ports belong to the same function ID.
• The two Mellanox ConnectX-4 adapter ports belong to different function IDs.

The RoCE support requires PCI Express support, see Chapter 33, “PCI Express support,” on page 353.

Using a RoCE device for SMC-R

SMC-R requires RoCE devices that are associated with network devices of TCP networks through a PNET
ID, for example through statements in the IOCDS.

The following figure illustrates how a RoCE device and a Ethernet device are associated by a matching
PNET ID. A communication peer has a similarly associated pair of an RoCE device and Ethernet device.
With this setup, the TCP connection can switch over to an SMC-R connection over the SMC protocol. The
communication peer can but need not be on the same CPC.

Figure 63: A matching PNET ID associates RoCE devices and Ethernet device

For more information about PNET IDs, see “Setting up the SMC support” on page 297.

Working with the RoCE support
Because the 10 GBE RoCE Express feature hardware physically consists of a Mellanox adapter, you must
ensure that the following prerequisites are fulfilled before you can work with it.

Procedure

1. Ensure that PCIe support is enabled and the PCI card is active on your system. See “Setting up the
PCIe support” on page 353 and “Using PCIe hotplug” on page 354.

2. Use the appropriate Mellanox device driver:

• To use TCP/IP, you need the mlx4_core and mlx4_en or mlx5_core module.

© Copyright IBM Corp. 2000, 2019 301

• To also use RDMA with InfiniBand, you further need the mlx4_ib or mlx5_ib module. You can use
SMC sockets or reliable datagram sockets (RDS).

• For SMC, the SMC protocol support must be in place, see Chapter 20, “SMC protocol support,” on
page 297.

• For RDS, you need the rds module and the rds_rdma module, see Documentation/
networking/rds.txt in the Linux source tree and the rds and rds-rdma man pages.

Load any modules that are not compiled into the kernel or already loaded, for example, with
modprobe.

3. Activate the network interface.
You need to know the network interface name, which you can find under:

• /sys/bus/pci/drivers/mlx4_core/<pci_slot>/net/<interface> for Mellanox
ConnectX-3.

• /sys/bus/pci/drivers/mlx5_core/<pci_slot>/net/<interface> for Mellanox
ConnectX-4.

Use the ip command or equivalent to activate the interface. See the dev_port sysfs attribute of the
interface name to ensure that you are working with the correct port. Note that the numbering of
network device ports start with 0, but the numbering of InfiniBand device ports start with 1. For
example:

cat /sys/class/infiniband/mlx4_0/ports/
1/ 2/

What to do next
For further information about Mellanox, see:

• http://www.mellanox.com/page/products_dyn?product_family=27&mtag=linux_driver
• http://www.mellanox.com/page/products_dyn?product_family=79&mtag=roce

Enabling debugging
The Mellanox mlx4 device driver can be configured with a kernel configuration option for debugging.

About this task

Debugging for the Mellanox mlx4 device driver is only available if the device driver is compiled with the
kernel-configuration menu option CONFIG_MLX4_DEBUG.

Procedure

1. Check that the device driver has the CONFIG_MLX4_DEBUG option enabled.

2. Load the mlx4 modules with the sysfs parameter debug_level=1 to write debug messages to the
syslog.
Check the value of the debug_level parameter . If the parameter is set to 0, you can set it to 1 with
the following command:

echo 1 > /sys/module/mlx4_core/parameters/debug_level

302 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

http://www.mellanox.com/page/products_dyn?product_family=27&mtag=linux_driver
http://www.mellanox.com/page/products_dyn?product_family=79&mtag=roce

Chapter 22. Internal shared memory device driver
The internal shared memory (ISM) device driver provides virtual PCI devices for shared memory
communications direct (SMC-D).

ISM devices are defined in the IOCDS. Each ISM definition includes a physical network ID (PNET ID) to
associate the ISM device with Ethernet devices.

The following figure illustrates how an ISM device and a HiperSockets device are associated by a
matching PNET ID. A communication peer on the same CPC has a similarly associated pair of an ISM
device and HiperSockets device. With this setup, the TCP connection can switch over to an SMC-D
connection over the SMC protocol.

Figure 64: A matching PNET ID associates ISM devices and Ethernet devices

For information about how to find the PNET ID of PCI devices from your Linux instance, see “Investigating
PNET IDs” on page 299.

For more information on SMC and SMC-D, see Chapter 20, “SMC protocol support,” on page 297.

Loading the ISM device driver
If the ISM device driver is compiled as a separate module, you must load it before you can use ISM
devices.

Load the ism module with the modprobe command. The ism module has no module parameters.

modprobe ism

© Copyright IBM Corp. 2000, 2019 303

Listing ISM devices
Because ISM devices are PCI devices, you can list them with the lspci command.

Example

lspci -v
0001:00:00.0 Non-VGA unclassified device: IBM Internal Shared Memory (ISM) virtual PCI device
 Physical Slot: 000002e1
 Flags: bus master, fast devsel, latency 0, IRQ 8
 Memory at 8001000000000000 (64-bit, prefetchable) [size=256T]
 Memory at 8002000000000000 (64-bit, prefetchable) [size=256]
 Capabilities: [40] MSI: Enable+ Count=1/32 Maskable- 64bit+
 Kernel driver in use: ism
 Kernel modules: ism

304 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Part 5. System resources
These device drivers and features help you to manage the resources of your real or virtual hardware.

Newest version

You can find the newest version of this publication on IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html

Restrictions
For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture specific information in
the SUSE Linux Enterprise Server 12 SP4 release notes at
www.suse.com/releasenotes

© Copyright IBM Corp. 2000, 2019 305

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html
http://www.suse.com/releasenotes

306 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 23. Managing CPUs
You can read CPU capability, activate standby CPUs, and examine the CPU topology.

Use the lscpu and chcpu commands to manage CPUs. These commands are part of the util-linux
package. For details, see the man pages. Alternatively, you can manage CPUs through the attributes of
their entries in sysfs.

Some attributes that govern CPUs are available in sysfs under:

/sys/devices/system/cpu/cpu<N>

where <N> is the number of the logical CPU. Both the sysfs interface and the lscpu and chcpu
commands manage CPUs through their logical representation in Linux.

You can obtain a mapping of logical CPU numbers to physical CPU addresses by issuing the lscpu
command with the -e option.

Example:

lscpu -e
CPU NODE DRAWER BOOK SOCKET CORE L1d:L1i:L2d:L2i ONLINE CONFIGURED POLARIZATION ADDRESS
0 1 0 0 0 0 0:0:0:0 yes yes horizontal 0
1 1 0 0 0 0 1:1:1:1 yes yes horizontal 1
2 1 0 0 0 1 2:2:2:2 yes yes horizontal 2
3 1 0 0 0 1 3:3:3:3 yes yes horizontal 3
4 1 0 0 0 2 4:4:4:4 yes yes horizontal 4
5 1 0 0 0 2 5:5:5:5 yes yes horizontal 5
6 1 0 0 0 3 6:6:6:6 yes yes horizontal 6
7 1 0 0 0 3 7:7:7:7 yes yes horizontal 7
8 0 1 1 1 4 8:8:8:8 yes yes horizontal 8
...

The logical CPU numbers are shown in the CPU column and the physical address in the ADDRESS column
of the output table.

Alternatively, you can find the physical address of a CPU in the sysfs address attribute of a logical CPU.

Example:

cat /sys/devices/system/cpu/cpu0/address
0

Simultaneous multithreading
Linux in LPAR mode can use the simultaneous multithreading technology on mainframes.

IBM z13 introduced the simultaneous multithreading technology to the mainframe. In Linux terminology,
simultaneous multithreading is also known as SMT or Hyper-Threading.

With multithreading enabled, a single core on the hardware is mapped to multiple logical CPUs on Linux.
Thus, multiple threads can issue instructions to a core simultaneously during each cycle.

To find out whether multithreading is enabled for a particular Linux instance, compare the number of
cores with the number of threads that are available in the LPAR. You can use the hyptop command to
obtain this information.

Simultaneous multithreading is designed to enhance performance. Whether this goal is achieved strongly
depends on the available resources, the workload, and the applications that run on a particular Linux
instance. Depending on these conditions, it might be advantageous to not make full use of mutithreading
or to disable it completely. Use the hyptop command to obtain utilization data for threads while Linux
runs with multithreading enabled.

© Copyright IBM Corp. 2000, 2019 307

You can use the smt= and nosmt kernel parameters to control multithreading. By default, Linux in LPAR
mode uses multithreading if it is provided by the hardware.

CPU capability change
When the CPUs of a mainframe heat or cool, the Linux kernel generates a uevent for all affected online
CPUs.

You can read the CPU capability from the Capability and, if present, Secondary Capability fields in /proc/
sysinfo.

The capability value is an unsigned integer as defined in the system information block (SYSIB) 1.2.2 (see
z/Architecture Principles of Operation, SA22-7832). A smaller value indicates a proportionally greater CPU
capacity. Beyond that, there is no formal description of the algorithm that is used to generate this value.
The value is used as an indication of the capability of the CPU relative to the capability of other CPU
models.

Changing the configuration state of CPUs
A CPU on an LPAR can be in configuration state configured, standby, or reserved. You can change
the state of standby CPUs to configured state and vice versa.

Before you begin

• You can change the configuration state of CPUs for Linux in LPAR mode only. For Linux on z/VM, CPUs
are always in a configured state.

• Daemon processes like cpuplugd can change the state of any CPU at any time. Such changes can
interfere with manual changes.

About this task
When Linux is booted, only CPUs that are in a configured state are brought online and used. The kernel
does not detect CPUs in reserved state.

Procedure

Issue a command of this form to change the configuration state of a CPU:

chcpu -c|-g <N>

where
<N>

is the number of the logical CPU.
-c

changes the configuration state of a CPU from standby to configured.
-g

changes the configuration state of a CPU from configured to standby. Only offline CPUs can be
changed to the standby state.

Alternatively, you can write 1 to the configure sysfs attribute of a CPU to set its configuration state to
configured, or 0 to change its configuration state to standby.

Examples:

• The following chcpu command changes the state of the logical CPU with number 2 from standby to
configured:

chcpu -c 2

308 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

The following command achieves the same results by writing 1 to the configure sysfs attribute of the
CPU.

echo 1 > /sys/devices/system/cpu/cpu2/configure

• The following chcpu command changes the state of the logical CPU with number 2 from configured
to standby:

chcpu -g 2

The following command achieves the same results by writing 0 to the configure sysfs attribute of the
CPU.

echo 0 > /sys/devices/system/cpu/cpu2/configure

Setting CPUs online or offline
Use the chcpu command or the online sysfs attribute of a logical CPU to set a CPU online or offline.

Before you begin

• Daemon processes like cpuplugd can change the state of any CPU at any time. Such changes can
interfere with manual changes.

Procedure

1. Optional: Rescan the CPUs to ensure that Linux has a current list of configured CPUs.

To initiate a rescan, issue the chcpu command with the -r option.

chcpu -r

Alternatively, you can write 1 to /sys/devices/system/cpu/rescan.

You might need a rescan for Linux on z/VM after one or more CPUs have been added to the z/VM guest
virtual machine by the z/VM hypervisor. Linux in LPAR mode automatically detects newly available
CPUs.

2. Change the online state of a CPU by issuing a command of this form:

chcpu -e|-d <N>

where
<N>

is the number of the logical CPU.
-e

sets an offline CPU online. Only CPUs that are in the configuration state configured can be set
online. For Linux on z/VM, all CPUs are in the configured state.

-d
sets an online CPU offline.

Alternatively, you can write 1 to the online sysfs attribute of a CPU to set it online, or 0 to set it
offline.

Examples:

Managing CPUs 309

• The following chcpu commands force a CPU rescan, and then set the logical CPU with number 2
online.

chcpu -r
chcpu -e 2

The following commands achieve the same results by writing 1 to the online sysfs attribute of the
CPU.

echo 1 > /sys/devices/system/cpu/rescan
echo 1 > /sys/devices/system/cpu/cpu2/online

• The following chcpu command sets the logical CPU with number 2 offline.

chcpu -d 2

The following command achieves the same results by writing 0 to the online sysfs attribute of the
CPU.

echo 0 > /sys/devices/system/cpu/cpu2/online

Examining the CPU topology
If supported by your hardware, a sysfs interface provides information about the CPU topology of an LPAR.

Before you begin
Meaningful CPU topology information is available only to Linux in LPAR mode.

About this task

Use the topology information, for example, to optimize the Linux scheduler, which bases its decisions on
which process gets scheduled to which CPU. Depending on the workload, this optimization might increase
cache hits and therefore overall performance.

Note: By default, CPU topology support is enabled in the Linux kernel. If it is not suitable for your
workload, disable the support by specifying the kernel parameter topology=off in your GRUB 2
configuration.

The following sysfs attributes provide information about the CPU topology:

/sys/devices/system/cpu/cpu<N>/topology/thread_siblings
/sys/devices/system/cpu/cpu<N>/topology/core_siblings
/sys/devices/system/cpu/cpu<N>/topology/book_siblings
/sys/devices/system/cpu/cpu<N>/topology/drawer_siblings

where <N> specifies a particular logical CPU number. These attributes contain masks that specify sets of
CPUs.

Because the mainframe hardware is evolving over time, the terms drawer, book, core, and thread do not
necessarily correspond to fixed hardware entities. What matters for the Linux scheduler is the levels of
relatedness that these terms signify, not the physical embodiment of the levels. In this context, more
closely related means sharing more resources, like caches.

The thread_siblings, core_siblings, book_siblings, and drawer_siblings attribute each
contain a mask that specifies the CPU and its peers at a particular level of relatedness.

1. The thread_siblings attribute covers the CPU and its closely related peers.
2. The core_siblings attribute covers all CPUs of the thread_siblings attribute and peers related

at the core level.

310 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

3. The book_siblings attribute covers all CPUs of the core_siblings attribute and peers related at
the book level.

4. The drawer_siblings attribute covers all CPUs of the book_siblings attribute and peers related
at the drawer level.

If a machine reconfiguration causes the CPU topology to change, change uevents are created for each
online CPU.

Tip: You can obtain some of the topology information by issuing the lscpu command with the -e option.

CPU polarization
You can optimize the operation of a vertical SMP environment by adjusting the SMP factor based on the
workload demands.

Before you begin
CPU polarization is relevant only to Linux in LPAR mode.

About this task

Horizontal CPU polarization means that the PR/SM hypervisor dispatches each virtual CPU of an LPAR for
the same amount of time.

With vertical CPU polarization, the PR/SM hypervisor dispatches certain CPUs for a longer time than
others. For example, if an LPAR has three virtual CPUs, each of them with a share of 33%, then in case of
vertical CPU polarization, all of the processing time would be combined to a single CPU. This CPU would
run most of the time while the other two CPUs would get nearly no time.

There are three types of vertical CPUs: high, medium, and low. Low CPUs hardly get any real CPU time,
while high CPUs get a full real CPU. Medium CPUs get something in between.

Note: Switching to vertical CPU polarization usually results in a system with different types of vertical
CPUs. Running a system with different types of vertical CPUs can result in significant performance
regressions. If possible, use only one type of vertical CPUs. Set all other CPUs offline and deconfigure
them.

Procedure

To change the polarization, issue a command of this form:

chcpu -p horizontal|vertical

Alternatively, you can write a 0 for horizontal polarization (the default) or a 1 for vertical polarization
to /sys/devices/system/cpu/dispatching.

Example: The following chcpu command sets the polarization to vertical.

chcpu -p vertical

You can achieve the same results by issuing the following command:

echo 1 > /sys/devices/system/cpu/dispatching

What to do next
You can issue the lscpu command with the -e option to find out the polarization of your CPUs. For more
detailed information for a particular CPU, read the polarization attribute of the CPU in sysfs.

cat /sys/devices/system/cpu/cpu<N>/polarization

Managing CPUs 311

The polarization can have one of the following values:

• horizontal - each of the guests' virtual CPUs is dispatched for the same amount of time.
• vertical:high - full CPU time is allocated.
• vertical:medium - medium CPU time is allocated.
• vertical:low - very little CPU time is allocated.
• unknown - temporary value following a polarization change until the change is completed and the

kernel has established the new polarization of each CPU.

312 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 24. NUMA emulation
The NUMA emulation on Linux on Z distributes the available memory to logical NUMA nodes without using
topology information about the physical memory.

Linux maintains separate memory management structures for each node. Especially on large systems,
this separation can improve the overall system performance, or latency, or both.

What you should know about NUMA emulation
The NUMA emulation distributes memory and CPU resources among NUMA nodes.

Memory distribution and stripe size
The NUMA emulation splits the usable system memory into stripes of a fixed size.

These memory stripes are then distributed, in round-robin mode, among the NUMA nodes. You can
configure the number of NUMA nodes and the stripe size through kernel parameters (see “Configuring
NUMA emulation” on page 314).

The difference between nodes in assigned memory cannot exceed the stripe size, so configuring small
stripes leads to a balanced distribution. Howerer, the stripes must not be too small, otherwise failing
memory allocations prevent the kernel from booting. The minimum stripe size depends on the maximum
number of CPUs (CONFIG_NR_CPUS) for which the kernel is compiled. For example, 2 CPUs require a
minimum size of about 4 MB and 256 CPUs require about 512 MB.

Another approach to achieving a balanced memory distribution is to configure large stripes, such that
exactly one stripe is assigned to each NUMA node.

CPU assignment to NUMA nodes
The Linux scheduler requires a stable mapping of CPUs to NUMA nodes. Therefore, cores are pinned to
NUMA nodes when one of their CPUs is set online for the first time.

As a consequence, a CPU that is set offline is always assigned to its previous NUMA node when it is set
back online. With multithreading enabled, a CPU is equivalent to a thread (see “Simultaneous
multithreading” on page 307).

Pinned cores are distributed evenly across the NUMA nodes. You can distort this initial balance by setting
a disproportionate number of CPUs from a particular NUMA node offline. New CPUs are assigned
according to the number of pinned cores, not according to the number of online CPUs.

For example, assume a node A that has two cores and with one of four CPUs (threads) online. Further,
assume a node B that has one core but two CPUs online. Because node B has fewer cores than node A, a
newly configured CPU that is set online is assigned to node B, and the corresponding core is pinned to
node B.

Note: Do not use NUMA emulation with cpuplugd. The cpuplugd daemon can distort the balance of
CPU assignment to NUMA nodes. Issue the following command to find out if cpuplugd is running:

service cpuplugd status

See also “cpuplugd - Control CPUs and memory” on page 499.

© Copyright IBM Corp. 2000, 2019 313

Configuring NUMA emulation
You configure NUMA emulation through kernel parameters.

numa=emu

 emu_nodes=1

 emu_nodes=<number>

 emu_size=256M

 emu_size=<stripe_size>

 numa_balancing=disable
1

 numa_balancing=enable numa_debug sched_debug

NUMA emulation kernel parameter syntax
Notes:

1 Do not enable NUMA balancing.

where:
numa=emu

Sets the NUMA emulation mode and enables NUMA for the Linux instance.
emu_nodes=<number>

Specifies the number of NUMA nodes to be emulated. The default is 1. Emulating only one NUMA
node, in effect, disables NUMA.

emu_size=<stripe_size>
Specifies the memory stripe size in byte. You can use the k, M, G, and T suffixes. The default size is
256 MB.

The memory stripe size must be a multiple of the memory block size (see “Finding out the memory
block size” on page 317).

For other considerations about setting the stripe size see “Memory distribution and stripe size” on
page 313.

numa_balancing
Do not enable NUMA balancing.

numa_debug
Enables kernel debug messages for the NUMA emulation on Z.

sched_debug
Enables scheduler kernel debug messages.

Example

numa=emu emu_nodes=4 emu_size=1G

314 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 25. Managing hotplug memory
You can dynamically increase or decrease the memory for your running Linux instance.

To make memory available as hotplug memory, you must define it to your LPAR or z/VM. Hotplug memory
is supported by z/VM 5.4 with the PTF for APAR VM64524 and by later z/VM versions.

For more information about memory hotplug, see Documentation/memory-hotplug.txt in the Linux
source tree.

What you should know about memory hotplug
Hotplug memory is represented in sysfs. After rebooting Linux, all hotplug memory is offline.

Hotplug memory management overhead
Linux requires 64 bytes of memory to manage a 4-KB page of hotplug memory.

Use the following formula to calculate the total amount of initial memory that is consumed to manage
your hotplug memory:

<hotplug memory> / 64

Example: 4.5 TB of hotplug memory consume 4.5 TB / 64 = 72 GB.

For large amounts of hotplug memory, you might have to increase the initial memory that is available to
your Linux instance. Otherwise, booting Linux might fail with a kernel panic and a message that there is
not enough free memory.

How memory is represented in sysfs
Both the core memory of a Linux instance and the available hotplug memory are represented by
directories in sysfs.

The memory with which Linux is started is the core memory. On the running Linux system, additional
memory can be added as hotplug memory. The Linux kernel requires core memory to allocate its own data
structures.

In sysfs, both the core memory of a Linux instance and the available hotplug memory are represented in
form of memory blocks of equal size. Each block is represented as a directory of the form /sys/
devices/system/memory/memory<n>, where <n> is an integer. You can find out the block size by
reading the /sys/devices/system/memory/block_size_bytes attribute.

In the naming scheme, the memory blocks with the lowest address ranges are assigned the lowest
integer numbers. The core memory always begins with memory0. The hotplug memory blocks follow the
core memory blocks.

You can calculate where the hotplug memory begins. To find the number of core memory blocks, divide
the base memory by the block size.

Example:

• With a core memory of 512 MB and a block size of 128 MB, the core memory is represented by four
blocks, memory0 through memory3. Therefore, first hotplug memory block on this Linux instance is
memory4.

• Another Linux instance with a core memory of 1024 MB and access to the same hotplug memory,
represents this first hotplug memory block as memory8.

The hotplug memory is available to all operating system instances within the z/VM system or LPAR to
which it was defined. The state sysfs attribute of a memory block indicates whether the block is in use

© Copyright IBM Corp. 2000, 2019 315

by your own Linux system. The state attribute does not indicate whether a block is in use by another
operating system instance. Attempts to add memory blocks that are already in use fail.

Hotplug memory and reboot
The original core memory is preserved as core memory and hotplug memory is freed when rebooting a
Linux instance.

When you perform an IPL after shutting down Linux, always use ipl clear to preserve the original
memory configuration.

Memory zones
The Linux kernel divides memory into memory zones. On a mainframe, three zones are used: DMA,
Normal, and Movable.

• Memory in the DMA zone is below 2 GB, and some I/O operations require that memory buffers are
located in this zone.

• Memory in the Normal zone is above 2 GB, and it can be used for all memory allocations that do not
require zone DMA.

• Memory in the Movable zone cannot be used for arbitrary kernel allocations, but only for memory
buffers that can easily be moved by the kernel, such as user memory allocations and page cache
memory. Memory in the Movable zone can more easily be taken offline than memory in other zones.

The zones that are available to a memory block are listed in the valid_zones sysfs attribute. For more
information, see “Adding memory” on page 318.

Setting up hotplug memory
Before you can use hotplug memory on your Linux instance, you must define this memory as hotplug
memory on your physical or virtual hardware.

Defining hotplug memory to an LPAR
You use the Hardware Management Console (HMC) to define hotplug memory as reserved storage on an
LPAR.

For information about defining reserved storage for your LPAR, see the Processor Resource/Systems
Manager Planning Guide, SB10-7041 for your mainframe.

Defining hotplug memory to z/VM
In z/VM, you define hotplug memory as standby storage.

There is also reserved storage in z/VM, but other than reserved memory defined for an LPAR, reserved
storage that is defined in z/VM is not available as hotplug memory.

Always align the z/VM guest storage with the Linux memory block size. Otherwise, memory blocks might
be missing or impossible to set offline in Linux.

For information about defining standby memory for z/VM guests see the "DEFINE STORAGE" section in
z/VM: CP Commands and Utilities Reference, SC24-6268.

Performing memory management tasks
Typical memory management tasks include finding out the memory block size, adding memory, and
removing memory.

• “Finding out the memory block size” on page 317
• “Listing the available memory blocks” on page 317
• “Adding memory” on page 318

316 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

• “Removing memory” on page 319

Finding out the memory block size
On a mainframe, memory is provided to Linux as memory blocks of equal size.

Procedure

• Use the lsmem command to find out the size of your memory blocks (see “lsmem - Show online status
information about memory blocks” on page 559).

Example:

lsmem
Address range Size (MB) State Removable Device
===
0x0000000000000000-0x000000000fffffff 256 online no 0
0x0000000010000000-0x000000002fffffff 512 online yes 1-2
0x0000000030000000-0x000000003fffffff 256 online no 3
0x0000000040000000-0x000000006fffffff 768 online yes 4-6
0x0000000070000000-0x00000000ffffffff 2304 offline - 7-15

Memory device size : 256 MB
Memory block size : 256 MB
Total online memory : 1792 MB
Total offline memory: 2304 MB

In the example, the block size is 256 MB.
• Alternatively, you can read /sys/devices/system/memory/block_size_bytes. This sysfs

attribute contains the block size in byte in hexadecimal notation.

Example:

cat /sys/devices/system/memory/block_size_bytes
10000000

This hexadecimal value corresponds to 256 MB.

Listing the available memory blocks
List the available memory to find out how much memory is available and which memory blocks are online.

Procedure

• Use the lsmem command to list your memory blocks.

Example:

lsmem -a
Address range Size (MB) State Removable Device
===
0x0000000000000000-0x000000000fffffff 256 online no 0
0x0000000010000000-0x000000001fffffff 256 online no 1
0x0000000020000000-0x000000002fffffff 256 online no 2
0x0000000030000000-0x000000003fffffff 256 online yes 3
0x0000000040000000-0x000000004fffffff 256 online yes 4
0x0000000050000000-0x000000005fffffff 256 offline - 5
0x0000000060000000-0x000000006fffffff 256 offline - 6
0x0000000070000000-0x000000007fffffff 256 offline - 7

Memory device size : 256 MB
Memory block size : 256 MB
Total online memory : 1280 MB
Total offline memory: 786 MB

For more information about the lsmem command, see “lsmem - Show online status information about
memory blocks” on page 559.

Managing hotplug memory 317

• Alternatively, you can list the available memory blocks by listing the contents of /sys/devices/
system/memory. Read the state attributes of each memory block to find out whether it is online or
offline.

Example: The following command results in an overview for all available memory blocks.

grep -r --include="state" "line" /sys/devices/system/memory/
/sys/devices/system/memory/memory0/state:online
/sys/devices/system/memory/memory1/state:online
/sys/devices/system/memory/memory2/state:online
/sys/devices/system/memory/memory3/state:online
/sys/devices/system/memory/memory4/state:online
/sys/devices/system/memory/memory5/state:offline
/sys/devices/system/memory/memory6/state:offline
/sys/devices/system/memory/memory7/state:offline

Note

Online blocks are in use by your Linux instance. An offline block can be free to be added to your Linux
instance but it might also be in use by another Linux instance.

Adding memory
You can add memory to your Linux instance by setting unused memory blocks online. You can chose a
memory zone for certain memory blocks.

Suspend and resume:

Do not add hotplug memory if you intend to suspend the Linux instance before the next IPL. Any changes
to the original memory configuration prevent suspension, even if you restore the original memory
configuration by removing memory blocks that were added. See Chapter 6, “Suspending and resuming
Linux,” on page 65 for more information about suspending and resuming Linux.

About this task

The valid zones for each memory block can be read from the valid_zones sysfs attribute:

cat /sys/devices/system/memory/memory<n>/valid_zones
Normal Movable

If you intend to take the memory offline again (for example, memory ballooning), preferably add hotplug
memory to the Movable zone.

For more information about memory zones, see “Memory zones” on page 316.

Procedure

To add hotplug memory:
• Use the state sysfs attribute of an unused memory block.

Issue a command of the form:

echo online_value > /sys/devices/system/memory/memory<n>/state

where online_value is one of:
online

sets the memory block online to the default zone. The default zone is the first zone listed in the
valid_zones sysfs attribute.

online_movable
sets the memory block online to the Movable zone. Setting the block online fails if the Movable
zone is not listed in the valid_zones sysfs attribute.

318 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

online_kernel
sets the memory block online to the first non-Movable zone listed in the valid_zones directory.
Setting the block online fails if the Movable zone is the only zone listed in the valid_zones sysfs
attribute.

<n> is an integer that identifies the memory unit.
• Use the chmem command with the -e parameter to set memory online.

You can specify the amount of memory you want to add with the command without specifying
particular memory blocks. If there are enough eligible memory blocks to satisfy your request, the tool
finds them for you and sets the most suitable blocks online. The chmem command in SLES 12 SP3
always tries to set memory online to the zone Movable, if this zone is available as a valid zone.
For information about the chmem command, see “chmem - Set memory online or offline” on page 475.

Results

Adding the memory block fails if the memory block is already in use. The state attribute changes to
online when the memory block has been added successfully.

Removing memory
You can remove memory from your Linux instance by setting memory blocks offline.

About this task

Avoid removing core memory. The Linux kernel requires core memory to allocate its own data structures.

Procedure

• Use the chmem command with the -d parameter to set memory offline.
You can specify the amount of memory you want to remove with the command without specifying
particular memory blocks. The tool finds eligible memory blocks for you and sets the most suitable
blocks offline.
For information about the chmem command, see “chmem - Set memory online or offline” on page 475.

• Alternatively, you can write offline to the sysfs state attribute of an unused memory block.
Issue a command of the form:

echo offline > /sys/devices/system/memory/memory<n>/state

where <n> is an integer that identifies the memory unit.

Results

The hotplug memory functions first relocate memory pages to free the memory block and then remove it.
The state attribute changes to offline when the memory block has been removed successfully.

The memory block is not removed if it cannot be freed completely.

Managing hotplug memory 319

320 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 26. Large page support
Large page support entails support for the Linux hugetlbfs file system.

The large page support virtual file system is backed by larger memory pages than the usual 4 K pages; for
IBM Z, the hardware page size is 1 MB.

To check whether 1 MB large pages are supported in your environment, issue the command:

grep edat /proc/cpuinfo
features : esan3 zarch stfle msa ldisp eimm dfp edat etf3eh highgprs te

An output line that lists edat as a feature indicates 1 MB large page support.

Applications that use large page memory save a considerable amount of page table memory. Another
benefit from the support might be an acceleration in the address translation and overall memory access
speed.

SUSE Linux Enterprise Server 12 SP4 supports libhugetlbfs linking. For more information, see the
libhugetlbfs package and the how-to document that is included in the package.

SUSE Linux Enterprise Server 12 SP4 also supports transparent hugepages. For more information, see
Documentation/vm/transhuge.txt in the Linux source tree.

As of zEC12, you can also configure 2 GB large pages if Linux is running on an LPAR. There is no flag that
indicates 2 GB support; the support is always there as of zEC12. See “Pre-allocating 2 GB large pages” on
page 322.

Setting up hugetlbfs large page support
You configure hugetlbfs large page support by adding parameters to the kernel parameter line.

Large page support kernel parameter syntax

default_hugepagesz =1M

default_hugepagesz=<size>

hugepagesz=<size> hugepages=<number>

where:
default_hugepagesz=<size>

specifies the default page size in byte. You can use suffixes K, M, and G to specify KB, MB, and GB. The
default value is 1 MB. The hugetlbfs file system uses the default large page size when mounted
without options. The large page statistics in /proc/meminfo and the sysctl in /proc/sys/vm/
nr_hugepages consider only the default-sized large page pool, if there is more than one large page
pool.

hugepages=<number>
is the number of large pages to be allocated at boot time.

hugepagesz=<size>
specifies the page size in byte. You can use suffixes K, M, and G to specify KB, MB, and GB.

Note: If you specify more pages than available, Linux reserves as many as possible. As a likely result, too
few general pages remain for the boot process, and your system stops with an out-of-memory error.

© Copyright IBM Corp. 2000, 2019 321

Pre-allocating 2 GB large pages

Before you can use 2 GB large pages, you must pre-allocate them to the kernel page pool. To pre-allocate
2 GB pages, precede the hugepages= parameter with the page size selection parameter, hugepagesz=2G.

Tip: Memory quickly becomes fragmented after booting, and new 2 GB large pages cannot be allocated.
Use kernel boot parameters to allocate 2 GB large pages to avoid the memory fragmentation problem.

To pre-allocate a number of pages of 2 GB size and also set the default size to 2 GB:

default_hugepagesz=2G hugepagesz=2G hugepages=<number>

Setting up multiple large page pools
You can allocate multiple large page pools and use them simultaneously. To allocate multiple large page
pools, specify the hugepagesz= parameter several times, each time followed by a corresponding
hugepages= parameter.

For example, to specify two pools, one with 1 MB pages and one with 2 GB pages, specify:

hugepagesz=1M hugepages=8 hugepagesz=2G hugepages=2

This creates a sysfs directory for each pool, /sys/kernel/mm/hugepages/hugepages-<size>kB,
where <size> is the page size in KB. The sysfs directories contain attributes for the statistics and runtime
allocation for each large page pool. For the example given, the following attributes are created:

/sys/kernel/mm/hugepages/hugepages-1024kB
/sys/kernel/mm/hugepages/hugepages-2097152kB

Large pages and hotplug memory

Hotplug memory that is added to a running Linux instance is movable and can be allocated to movable
resources only.

By default, large pages are not movable and cannot be allocated from movable memory. You can enable
allocation from movable memory with the sysctl setting hugepages_treat_as_movable.

To enable allocation of large pages from movable hotplug memory, issue:

echo 1 > /proc/sys/vm/hugepages_treat_as_movable

Although this setting makes large pages eligible for allocation through movable memory, it does not make
large pages movable. As a result, the allocated hotplug memory cannot be set offline until all large pages
are released from that memory.

To disable allocation of large pages from movable hotplug memory, issue:

echo 0 > /proc/sys/vm/hugepages_treat_as_movable

Working with hugetlbfs large page support
Typical tasks for working with hugetlbfs large page support include reading the current number of large
pages, changing the number of large pages, and display information about available large pages.

About this task
The large page memory can be used through mmap() or SysV shared memory system calls. More detailed
information can be found in the Linux kernel source tree under Documentation/vm/
hugetlbpage.txt, including implementation examples.

322 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Your database product might support large page memory. See your database documentation to find out if
and how it can be configured to use large page memory.

Depending on your version of Java, you might require specific options to make a Java™ program use the
large page feature. For IBM SDK, Java Technology Edition 7, specify the -Xlp option. If you use the SysV
shared memory interface, which includes java -Xlp, you must adjust the shared memory allocation
limits to match the workload requirements. Use the following sysctl attributes:
/proc/sys/kernel/shmall

Defines the global maximum amount of shared memory for all processes, specified in number of 4 KB
pages.

/proc/sys/kernel/shmmax
Defines the maximum amount of shared memory per process, specified in number of Bytes.

For example, the following commands would set both limits to 20 GB:

echo 5242880 > /proc/sys/kernel/shmall
echo 21474836480 > /proc/sys/kernel/shmmax

Procedure

• Specify the hugepages= kernel parameter with the number of large pages to be allocated at boot
time. To read the current number of default-sized large pages, issue:

cat /proc/sys/vm/nr_hugepages

• To change the number of default-sized large pages dynamically during runtime, write to procfs:

echo 12 > /proc/sys/vm/nr_hugepages

If there is not enough contiguous memory available to fulfill the request, the maximum possible
number of large pages are reserved.

• To obtain information about the number of default-sized large pages currently available and the default
large page size, issue:

cat /proc/meminfo

...
HugePages_Total: 20
HugePages_Free: 14
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 1024 KB
...

• To adjust characteristics of a large-page pool, when more than one pool exists, use the sysfs attributes
of the pool.
These can be found under

/sys/kernel/mm/hugepages/hugepages-<size>/nr_hugepages

Where <size> is the page size in KB.

Example
To allocate 2 GB large pages:

1. Specify 2 GB large pages and pre-allocate them to the page pool at boot time. Use the following kernel
boot parameters:

default_hugepagesz=2G hugepagesz=2G hugepages=4

Large page support 323

2. After booting, read /proc/meminfo to see information about the amount of large pages currently
available and the large page size:

cat /proc/meminfo
...
HugePages_Total: 4
HugePages_Free: 4
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2097152 kB
...

324 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 27. S/390 hypervisor file system
The S/390® hypervisor file system (hypfs) provides a mechanism to access LPAR and z/VM hypervisor
data.

Directory structure
When the hypfs file system is mounted, the accounting information is retrieved and a file system tree is
created. The tree contains a full set of attribute files with the hypervisor information.

By convention, the mount point for the hypervisor file system is /sys/hypervisor/s390.

LPAR directories and attributes
There are hypfs directories and attributes with hypervisor information for Linux in LPAR mode.

Figure 65 on page 325 illustrates the file system tree that is created for LPAR.

Figure 65: The hypervisor file system for LPAR

update
Write-only file to trigger an update of all attributes.

cpus/
Directory for all physical cores.

cpus/<core ID>
Directory for one physical core. <core_ ID> is the logical (decimal) core number.

© Copyright IBM Corp. 2000, 2019 325

type
Type name of physical core, such as CP or IFL.

mgmtime
Physical-LPAR-management time in microseconds (LPAR overhead).

hyp/
Directory for hypervisor information.

hyp/type
Type of hypervisor (LPAR hypervisor).

systems/
Directory for all LPARs.

systems/<lpar name>/
Directory for one LPAR.

systems/<lpar name>/cpus/<core_ID>/
Directory for the virtual cores for one LPAR. The <core_ID> is the logical (decimal) core number.
type

Type of the logical core, such as CP or IFL.
mgmtime

LPAR-management time. Accumulated number of microseconds during which a physical core was
assigned to the logical core and the core time was consumed by the hypervisor and was not
provided to the LPAR (LPAR overhead).

cputime
Accumulated number of microseconds during which a physical core was assigned to the logical
core and the core time was consumed by the LPAR.

onlinetime
Accumulated number of microseconds during which the logical core has been online.

Note: For LPARs with multithreading enabled, the entities in the cpus directories represent hardware
cores, not threads.

Note: For older machines, the onlinetime attribute might be missing. Generally, it is advantageous for
applications to tolerate missing attributes or new attributes that are added to the file system. To check
the content of the files, you can use tools such as cat or less.

z/VM directories and attributes
There are hypfs directories and attributes with hypervisor information for Linux on z/VM.

update
Write-only file to trigger an update of all attributes.

cpus/
Directory for all physical CPUs.

cpus/count
Total current CPUs.

hyp/
Directory for hypervisor information.

hyp/type
Type of hypervisor (z/VM hypervisor).

systems/
Directory for all z/VM guest virtual machines.

systems/<guest name>/
Directory for one guest virtual machine.

systems/<guest name>/onlinetime_us
Time in microseconds that the guest virtual machine has been logged on.

326 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

systems/<guest name>/cpus/
Directory for the virtual CPUs for one guest virtual machine.
capped

Flag that shows whether CPU capping is on for the guest virtual machine (0 = off, 1 = soft, 2 =
hard).

count
Total current virtual CPUs in the guest virtual machine.

cputime_us
Number of microseconds where the guest virtual machine CPU was running on a physical CPU.

dedicated
Flag that shows if the guest virtual machine has at least one dedicated CPU (0 = no, 1 = yes).

weight_cur
Current share of guest virtual machine (1-10000); 0 for ABSOLUTE SHARE guests.

weight_max
Maximum share of guest virtual machine (1-10000); 0 for ABSOLUTE SHARE guests.

weight_min
Number of operating CPUs. Do not be confused by the attribute name, which suggests a different
meaning.

systems/<guest name>/samples/
Directory for sample information for one guest virtual machine.
cpu_delay

Number of CPU delay samples that are attributed to the guest virtual machine.
cpu_using

Number of CPU using samples attributed to the guest virtual machine.
idle

Number of idle samples attributed to the guest virtual machine.
mem_delay

Number of memory delay samples that are attributed to the guest virtual machine.
other

Number of other samples attributed to the guest virtual machine.
total

Number of total samples attributed to the guest virtual machine.
systems/<guest name>/mem/

Directory for memory information for one guest virtual machine.
max_KiB

Maximum memory in KiB (1024 bytes).
min_KiB

Minimum memory in KiB (1024 bytes).
share_KiB

Guest estimated core working set size in KiB (1024 bytes).
used_KiB

Resident memory in KiB (1024 bytes).

To check the content of the files, you can use tools such as cat or less.

Setting up the S/390 hypervisor file system
To use the file system, it must be mounted. You can mount the file system with the mount command or
with an entry in /etc/fstab.

To mount the file system manually, issue the following command:

S/390 hypervisor file system 327

mount none -t s390_hypfs <mount point>

where <mount point> is where you want the file system mounted. Preferably, use /sys/hypervisor/
s390.

To mount hypfs by using /etc/fstab, add the following line:

none <mount point> s390_hypfs defaults 0 0

If your z/VM system does not support DIAG 2fc, the s390_hypfs is not activated and it is not possible to
mount the file system. Instead, an error message like this is issued:

mount: unknown filesystem type ’s390_hypfs’

To get data for all z/VM guests, privilege class B is required for the guest, where hypfs is mounted. For
non-class B guests, data is provided only for the local guest.

To get data for all LPARs, select the Global performance data control check box in the HMC or SE
security menu of the LPAR activation profile. Otherwise, data is provided only for the local LPAR.

Working with the S/390 hypervisor file system
Typical tasks that you must perform when working with the S/390 hypervisor file system include defining
access permissions and updating hypfs information.

• “Defining access permissions” on page 328
• “Updating hypfs information” on page 329

Defining access permissions
The root user usually has access to the hypfs file system. It is possible to explicitly define access
permissions.

About this task

If no mount options are specified, the files and directories of the file system get the uid and gid of the user
who mounted the file system (usually root). You can explicitly define uid and gid by using the mount
options uid=<number> and gid=<number>.

Example
You can define uid=1000 and gid=2000 with the following mount command:

mount none -t s390_hypfs -o "uid=1000,gid=2000" <mount point>

Alternatively, you can add the following line to the /etc/fstab file:

none <mount point> s390_hypfs uid=1000,gid=2000 0 0

The first mount defines uid and gid. Subsequent mounts automatically have the same uid and gid setting
as the first one.

The permissions for directories and files are as follows:

• Update file: 0220 (--w--w----)
• Regular files: 0440 (-r--r-----)
• Directories: 0550 (dr-xr-x---)

328 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Updating hypfs information
You trigger the update process by writing something into the update file at the top-level hypfs directory.

Procedure

With hypfs mounted at /sys/hypervisor/s390, you can trigger the update process by issuing the
following command:

echo 1 > /sys/hypervisor/s390/update

During the update, the entire directory structure is deleted and rebuilt. If a file was open before the
update, subsequent reads return the old data until the file is opened again. Within 1 second only one
update can be done. If multiple updates are triggered within a second, only the first update is performed
and subsequent write system calls return -1 and errno is set to EBUSY.

Applications can use the following procedure to ensure consistent data:
1. Read modification time through stat(2) from the update attribute.
2. If data is too old, write to the update attribute start again with step 1.
3. Read data from file system.
4. Read modification time of the update attribute again and compare it with first timestamp. If the

timestamps do not match, return to step 2.

S/390 hypervisor file system 329

330 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 28. ETR- and STP-based clock
synchronization

Your Linux instance might be part of an extended remote copy (XRC) setup that requires synchronization
of the Linux time-of-day (TOD) clock with a timing network.

SUSE Linux Enterprise Server 12 SP4 for IBM Z supports external time reference (ETR) and system time
protocol (STP) based TOD synchronization. ETR and STP work independently of one another. If both ETR
and STP are enabled, Linux might use either to synchronize the clock.

For information about STP, see

www.ibm.com/systems/z/advantages/pso/stp.html

ETR requires at least one ETR unit that is connected to an external time source. For availability reasons,
many installations use a second ETR unit. The ETR units correspond to two ETR ports on Linux. Always set
both ports online if two ETR units are available.

Attention: Be sure that a reliable timing signal is available before enabling clock synchronization.
With enabled clock synchronization, Linux expects regular timing signals and might stop
indefinitely to wait for such signals if it does not receive them.

Enabling clock synchronization when booting
Use kernel parameters to enable clock synchronization when booting.

You can use kernel parameters to set up synchronization for your Linux TOD clock. These kernel
parameters specify the initial synchronization settings. On a running Linux instance, you can change these
settings through attributes in sysfs (see “Enabling and disabling clock synchronization” on page 333).

© Copyright IBM Corp. 2000, 2019 331

http://www.ibm.com/systems/z/advantages/pso/stp.html

Enabling ETR-based clock synchronization
Use the etr= kernel parameter to set ETR ports online when Linux is booted.

ETR-based clock synchronization is enabled if at least one ETR port is online.

etr syntax
etr=off

etr=on

etr=port0

etr=port1

The values have the following effect:

on
sets both ports online.

port0
sets port0 online and port1 offline.

port1
sets port1 online and port0 offline.

off
sets both ports offline. With both ports offline, ETR-based clock synchronization is not enabled. This is
the default.

Example
To enable ETR-based clock synchronization with both ETR ports online, specify:

 etr=on

332 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Enabling STP-based clock synchronization
Use the stp= kernel parameter to enable STP-based clock synchronization when Linux is booted.

stp syntax
stp=off

stp=on

By default, STP-based clock synchronization is not enabled.

Example
To enable STP-based clock synchronization, specify:

 stp=on

Enabling and disabling clock synchronization
You can use the sysfs interfaces of ETR and STP to enable and disable clock synchronization on a running
Linux instance.

Enabling and disabling ETR-based clock synchronization
Use the ETR sysfs attribute online to set an ETR port online or offline.

About this task
ETR-based clock synchronization is enabled if at least one of the two ETR ports is online. ETR-based clock
synchronization is switched off if both ETR ports are offline.

Procedure

To set an ETR port online, set its sysfs online attribute to 1. To set an ETR port offline, set its sysfs
online attribute to 0.
Enter a command of this form:

echo <flag> > /sys/devices/system/etr/etr<n>/online

where <n> identifies the port and is either 0 or 1.

Example
To set ETR port etr1 offline, enter:

echo 0 > /sys/devices/system/etr/etr1/online

Enabling and disabling STP-based clock synchronization
Use the STP sysfs attribute online to enable or disable STP-based clock synchronization.

Procedure

To enable STP-based clock synchronization, set /sys/devices/system/stp/online to 1. To disable
STP-based clock synchronization, set this attribute to 0.

ETR- and STP-based clock synchronization 333

Example
To disable STP-based clock synchronization, enter:

echo 0 > /sys/devices/system/stp/online

334 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 29. Identifying the IBM Z hardware
In installations with several IBM Z mainframes, you might need to identify the particular hardware system
on which a Linux instance is running.

Two attributes in /sys/firmware/ocf can help you to identify the hardware.
cpc_name

contains the name that is assigned to the central processor complex (CPC). This name identifies the
mainframe system on a Hardware Management Console (HMC).

hmc_network
contains the name of the HMC network to which the mainframe system is connected.

The two attributes contain the empty string if the Linux instance runs as a guest of a hypervisor that does
not support the operations command facility (OCF) communication parameters interface.

Use the cat command to read these attributes.

Example:

cat /sys/firmware/ocf/cpc_name
Z05
cat /sys/firmware/ocf/hmc_network
SNA00

© Copyright IBM Corp. 2000, 2019 335

336 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 30. The diag288 watchdog device driver
The watchdog device driver provides Linux watchdog applications with access to the z/VM watchdog
timer.

You can use the diag288 watchdog in these environments:

• Linux on z/VM
• Linux in LPAR mode as of z13s and z13 with the enhancements of February 2016.
• Linux as a KVM guest (see Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12

SP4 as a KVM Guest, SC34-2756)

The diag288 watchdog device driver provides the following features:

• Access to the watchdog timer on Z.
• An API for watchdog applications (see “External programming interfaces ” on page 339).

Watchdog applications can be used to set up automated restart mechanisms. Watchdog-based restart
mechanisms are an alternative to a networked heartbeat with STONITH.

Watchdog applications that communicate directly with the Z firmware or with the z/VM control program
(CP) do not require a third operating system to monitor a heartbeat.

What you should know about the diag288 watchdog device driver
The watchdog function comprises two components: a watchdog application that runs on the Linux
instance being controlled and a watchdog timer outside the Linux instance.

While the Linux instance operates satisfactorily, the watchdog application reports a positive status to the
watchdog timer at regular intervals. The watchdog application uses a device node to pass these status
reports to the timer (Figure 66 on page 337).

Figure 66: Watchdog application and timer

The watchdog application typically derives its status by monitoring critical network connections, file
systems, and processes on the Linux instance. If a specified time elapses without a positive report being
received by the watchdog timer, the watchdog timer assumes that the Linux instance is in an error state.
The watchdog timer then triggers a predefined action from CP against the Linux instance. For example,
Linux might be shut down or rebooted, or a system dump might be initiated. For information about setting
the default timer and performing other actions, see “External programming interfaces ” on page 339.

Linux on z/VM only: Loading or saving a DCSS can take a long time during which the virtual machine does
not respond, depending on the size of the DCSS. As a result, a watchdog might time out and restart the
guest. You are advised not to use the watchdog in combination with loading or saving DCSSs.

© Copyright IBM Corp. 2000, 2019 337

See also the generic watchdog documentation in the Linux kernel source tree under Documentation/
watchdog.

Loading and configuring the diag288 watchdog device driver
You configure the diag288 watchdog device driver when you load the module.

modprobe diag288_wdt

 cmd="SYSTEM RESTART"

 cmd=<command> conceal=1

 nowayout=<nowayout_flag>

1

watchdog module parameter syntax
Notes:

1 cmd= and conceal= apply only to Linux on z/VM and are ignored for Linux in LPAR mode.

where:
<command>

configures the shutdown action to be taken if Linux on z/VM fails. The default, "SYSTEM RESTART",
configures the shutdown action that is specified for the restart shutdown trigger (see Chapter 7,
“Shutdown actions,” on page 71).

Any other specification dissociates the timeout action from the restart shutdown trigger. Instead,
the specification is issued by CP and must adhere to these rules:

• It must be a single valid CP command
• It must not exceed 230 characters
• It must be enclosed by quotation marks if it contains any blanks or newline characters

The specification is converted from ASCII to uppercase EBCDIC.

For details about CP commands see z/VM: CP Commands and Utilities Reference, SC24-6268.

On an running instance of Linux on z/VM, you can write to /sys/module/diag288_wdt/
parameters/cmd to replace the command you specify when loading the module. Through this sysfs
interface, you can also specify multiple commands to be issued, see “Examples for Linux on z/VM” on
page 339 for more details.

The preferred method for configuring a timeout action other than a system restart is to configure a
different shutdown action for the restart shutdown trigger.

conceal=1
enables the protected application environment where the guest is protected from unexpectedly
entering CP READ. Do not enable the protected environment for guests with multiprocessor
configurations. The protected application facility supports only virtual uniprocessor systems.

For details, see the "SET CONCEAL" section of z/VM: CP Commands and Utilities Reference,
SC24-6268.

<nowayout_flag>
determines what happens when the watchdog device node is closed by the watchdog application.

If the flag is set to 1 (default), the watchdog timer keeps running and triggers an action if no positive
status report is received within the specified time interval. If the character "V" is written to the device
and the flag is set to 0, the z/VM watchdog timer is stopped and the Linux instance continues without
the watchdog support.

338 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Examples for Linux on z/VM

The following command loads the watchdog module and determines that, on failure, the Linux instance is
to be IPLed from a device with devno 0xb1a0. The protected application environment is not enabled. The
watchdog application can close the watchdog device node after writing "V" to it. As a result the watchdog
timer becomes ineffective and does not IPL the guest.

modprobe diag288_wdt cmd="ipl b1a0" nowayout=0

The following example shows how to specify multiple commands to be issued.

/usr/bin/printf "<cmd1>\n<cmd2>\n<cmd3>" > /sys/module/diag288_wdt/parameters/cmd

where <cmd1>, <cmd2>, and <cmd3>are z/VM commands.

Use the printf version at /usr/bin/printf. The built-in printf command from bash might not
process the newline characters as intended.

To verify that your commands have been accepted, issue: To verify that your commands have been
accepted, issue:

cat /sys/module/diag288_wdt/parameters/cmd
<cmd1>
<cmd2>
<cmd3>

Note: You cannot specify multiple commands as module parameters while loading the module.

Setting the timeout action
The timeout action for the diag288 watchdog device driver is defined by the restart shutdown trigger.

The default action is a PSW restart for Linux in LPAR mode and the CP system restart command for
Linux on z/VM. You can change how Linux reacts to a PSW restart by changing the shutdown action for
the restart shutdown trigger (see Chapter 7, “Shutdown actions,” on page 71).

For Linux on z/VM, you can use the diag288.cmd= kernel parameter or the cmd= module parameter to
directly specify a z/VM CP command to be issued, independent of the restart shutdown trigger.

External programming interfaces
There is an API for applications that work with the watchdog device driver.

Application programmers: This information is intended for programmers who want to write watchdog
applications that work with the watchdog device driver.

For information about the API and the supported IOCTLs, see the Documentation/watchdog/
watchdog-api.txt file in the Linux source tree.

The default watchdog timeout is 30 seconds, the minimum timeout that can be set through the IOCTL
WDIOC_SETTIMEOUT is 15 seconds.

The diag288 watchdog device driver 339

340 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 31. HMC media device driver
You use the HMC media device driver to access files on removable media at a system that runs the
Hardware Management Console (HMC).

Before you begin: You must log in to the HMC on the system with the removable media and assign the
media to the LPAR.

As of System z10®, the HMC media device driver supports the following removable media:

• A DVD in the DVD drive of the HMC system
• A CD in the DVD drive of the HMC system
• USB-attached storage that is plugged into the HMC system

The most commonly used removable media at the HMC is a DVD.

The HMC media device driver uses the /dev/hmcdrv device node to support these capabilities:

• List the media contents with the lshmc command (see “lshmc - List media contents in the HMC media
drive” on page 555).

• Mount the media contents as a file system with the hmcdrvfs command (see “hmcdrvfs - Mount a
FUSE file system for remote access to media in the HMC media drive” on page 531).

Module parameters
You can set the cache size for the HMC media device driver.

Before you can work with the HMC media device driver and with the dependent lshmc and hmcdrvfs
commands, you must load the hmcdrv kernel module.

hmcdrv module parameter syntax

modprobe hmcdrv

 cachesize=534288

 cachesize= <size>

where <size> is the cache size in bytes. The specification must be a multiple of 2048. You can use the
suffixes K for kilobytes, M for megabytes, or G for gigabytes. Specify 0 to not cache any media content. By
default, the cache size is 534288 bytes (0.5 MB).

Loading the hmcdrv module creates a device node at /dev/hmcdrv.

Example
The following specifications are equivalent:

modprobe hmcdrv cachesize=153600

modprobe hmcdrv cachesize=150K

Working with the HMC media
You can list files on media that are inserted into the HMC system and you can mount the media content on
the Linux file system.

• “Assigning the removable media of the HMC to an LPAR” on page 342

© Copyright IBM Corp. 2000, 2019 341

• “Listing files on the removable media at the HMC” on page 342
• “Mounting the content of the removable media at the HMC” on page 343

Assigning the removable media of the HMC to an LPAR
Use the HMC to assign the removable media to the LPAR where your Linux instance runs.

Before you begin

• You need access to the HMC, and you must be authorized to use the Access Removable Media task for
the LPAR to which you want to assign the media.

• For Linux on z/VM, the z/VM guest virtual machine must have at least privilege class B.
• For Linux in LPAR mode, the LPAR activation profile must allow issuing SCLP requests.

About this task
You can list files on the removable media at the HMC without having to first mount the contents on the
Linux file system.

Procedure

1. Insert the removable media into the HMC system.
2. Use the Access Removable Media task on your HMC to assign the removable media to the LPAR

where your Linux instance runs.

For Linux on z/VM, this is the LPAR where the z/VM hypervisor runs that provides the guest virtual
machine to your Linux instance.

For details, see the HMC documentation for the HMC at your installation.

Results
You can now access the removable media from your Linux instance.

Listing files on the removable media at the HMC
Use the lshmc command to list files on the removable media at the HMC.

Before you begin
Your Linux instance must have access to the removable media at the HMC (see “Assigning the removable
media of the HMC to an LPAR” on page 342).

About this task
You can list files on the removable media at the HMC without having to first mount the contents on the
Linux file system.

Procedure

Issue a command of this form:

lshmc <filepath>

where <filepath> is an optional specification for a particular path and file. Path specifications are
interpreted as relative to the root directory of the removable media. You can use the asterisk (*) and
question mark (?) as wildcards. If you omit <filepath>, all files in the root directory of the media are listed.

Example: The following command lists all .html files in the www subdirectory of the media.

lshmc www/*.html

342 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

For more information about the lshmc command, see “lshmc - List media contents in the HMC media
drive” on page 555.

Mounting the content of the removable media at the HMC
Use the hmcdrvfs command to mount the content of the removable media at the HMC.

Before you begin
Your Linux instance must have access to the removable media of the HMC (see “Assigning the removable
media of the HMC to an LPAR” on page 342).

About this task
You can mount the content of the removable media at the HMC in read-only mode on the Linux file
system.

Procedure

1. Optional: Confirm that your are accessing the intended content by issuing the lshmc command.
2. Mount the media content by issuing a command of this form:

hmcdrvfs <mountpoint>

where <mountpoint> is the mount point on the Linux file system.

Example: The following command mounts the media content at /mnt/hmc:

hmcdrvfs /mnt/hmc

Results
You can now access the files on the media in read-only mode through the Linux file system.

What to do next
When you no longer need access to the media content, unmount the media with the fusermount
command.

HMC media device driver 343

344 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 32. Data compression with GenWQE and
zEDC Express

Generic Work Queue Engine (GenWQE) supports hardware-accelerated data compression and
decompression through zEDC Express, a PCIe-attached Field Programmable Gate Array (FPGA)
acceleration adapter.

zEDC Express is available for zEC12 and later IBM mainframes.

zEDC hardware-acceleration is available for both Linux and z/OS. For more information about zEDC on
z/OS and about setting up zEDC Express, see Reduce Storage Occupancy and Increase Operations
Efficiency with IBM zEnterprise Data Compression, SG24-8259. You can obtain this publication from the
IBM Redbooks® website at www.redbooks.ibm.com/abstracts/sg248259.html.

Features
GenWQE supports hardware-accelerated data compression and decompression with common standards.

• GenWQE implements the zlib API.
• GenWQE adheres to the following RFCs:

– RFC 1950 (zlib)
– RFC 1951 (deflate)
– RFC 1952 (gzip)

These standards ensure compatibility among different zlib implementations.

– Data that is compressed with GenWQE can be decompressed through a zlib software library.
– Data that is compressed through a software zlib software library can be decompressed with

GenWQE.
• GenWQE supports the following PCIe FPGA acceleration hardware:

– zEDC Express

What you should know about GenWQE
Learn about the GenWQE components, how to enable GenWQE accelerated zlib for user applications, and
device representation in Linux.

The GenWQE accelerated zlib
The GenWQE accelerated zlib can replace a zlib software library.

For data compression and decompression tasks, SUSE Linux Enterprise Server 12 SP4 includes software
libraries. The zlib library, which provides the zlib API, is one of the most commonly used libraries for
data compression and decompression. For information about zlib, see www.zlib.net.

Because the GenWQE accelerated zlib offers the zlib API, applications can use it instead of the default
zlib software library. The GenWQE hardware-accelerated zlib is designed to enhance performance by
offloading tasks to a hardware accelerator.

© Copyright IBM Corp. 2000, 2019 345

http://www.redbooks.ibm.com/abstracts/sg248259.html
http://www.zlib.net

Linux user space

Linux kernel space

IBM mainframezEDC Express

Java Application

IBM Java

Software

library

(libz)

zlib API

GenWQE device driver

Application

Card library

Hardware-accelerated zlibzlib API

Hardware library

(libzHW)

Data buffers

zlib API

Card library

zlib APIHardware library

(libzHW)

/dev/genwqe2_card
/dev/genwqe1_card

/dev/genwqe0_card

Figure 67: GenWQE accelerated zlib

Applications
You can make the user space components of the GenWQE hardware-accelerated zlib available to
applications that request data compression functions through the zlib API. SUSE Linux Enterprise Server
12 SP4 provides these user space components with the genwqe-zlib RPM.

A second RPM, genwqe-tools, provides tools that use the GenWQE hardware-accelerated zlib.

IBM Java version 7.1 or later includes components of the GenWQE hardware-accelerated zlib. Through
these components, it can directly address the GenWQE device nodes. With the required environment
variables in place, it uses hardware-acceleration if it is available (see “GenWQE hardware-acceleration for
IBM Java” on page 350).

Hardware-accelerated zlib
The hardware-accelerated zlib is a zlib implementation that acts as a wrapper for two included libraries:
libzHW

a hardware library that prepares requests for processing by the hardware accelerator. The hardware
library is intended to handle the bulk of the requests.

This library also manages data buffers for optimized hardware compression.

libz
a software implementation of the zlib interface. Because it provides the same interface as its
wrapper library, it can handle any requests unmodified.

The hardware-accelerated zlib arbitrates between the two included libraries. It uses the software library
as a backup if no hardware accelerator is available. It also evaluates the expected performance gain
against the extra processing for channeling requests to the accelerator. For small or fragmented data,
software processing might be advantageous, especially for decompression. The evaluation takes available
resources, such as buffer space, into account.

346 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Card library
The card library, libcard, mediates between the hardware-accelerated zlib library and the GenWQE
device driver. It provides recovery features and can move jobs between available accelerators.

Device driver
The GenWQE device driver is the kernel part of GenWQE. It serializes requests to an accelerator in form of
device driver control blocks (DDCBs), and it enables multi-process and multi-thread usage.

GenWQE device nodes
GenWQE user space components use device nodes to exchange data with the GenWQE device driver.

SUSE Linux Enterprise Server 12 SP4 automatically loads the GenWQE device driver module when it is
required. It also creates a device node of the form /dev/genwqe<n>_card for each available virtual
acceleration card. <n> is an index number that identifies an individual virtual card. Node /dev/
genwqe0_card is assigned to the first card that is detected, /dev/genwqe1_card to the second card,
and so on.

Do not directly use these device nodes. The nodes are intended to be used by the user space components
of the GenWQE hardware-accelerated zlib and by IBM Java.

Virtual accelerators
Each physical accelerator card can provide up to 15 virtual cards. In PCIe terminology, these virtual cards
are called virtual functions.

GenWQE accelerator cards, as detected by Linux on Z, are virtual cards. Which and how many cards are
available to a particular Linux instance depends on the mainframe configuration and, if applicable, the
hypervisor configuration.

As for most mainframe devices, availability can be enhanced by assigning virtual accelerator cards from
different physical cards.

A degree of load distribution can be achieved by unevenly distributing accelerator cards among different
Linux instances.

Tradeoff between best compression and speed
A minimum size of compressed data and fast compression are conflicting goals.

For hardware-accelerated compression with GenWQE, the compression ratio is roughly equivalent to
gzip --fast.

Data that was compressed with GenWQE hardware-acceleration might have a different size from data that
was compressed in software. The data compression standards are not violated by this difference. Despite
possible differences in size of the compressed data, data that is compressed with GenWQE hardware-
acceleration can be decompressed in software and vice versa.

Setting up GenWQE hardware acceleration
Install the GenWQE components and understand how environment variables can override default
settings.

Installing the GenWQE hardware-accelerated zlib
Install the genwqe-zlib and genwqe-tools RPMs that are included in SUSE Linux Enterprise Server
12 SP4.

The genwqe-zlib RPM includes the user space components of the GenWQE hardware-accelerated zlib.

The genwqe-tools RPM provides the following tools:

• genwqe_gzip and genwqe_gunzip, which are GenWQE versions of gzip and gunzip (see “Examples
for using GenWQE” on page 349).

Data compression with GenWQE and zEDC Express 347

These tools can be used for most purposes, but they do not implement all of the more unusual options
of their common code counterparts. See the man pages to find out which options are supported.

• genwqe_echo, a tool to confirm the availability of accelerator hardware through the GenWQE
accelerated zlib. See “Confirming that the accelerator hardware can be reached” on page 351 for
details.

Environment variables
You can set environment variables to control the GenWQE hardware-accelerated zlib.

The GenWQE hardware-accelerated zlib uses defaults that correspond to the following environment
variable settings:

ZLIB_ACCELERATOR=GENWQE
ZLIB_CARD=-1
ZLIB_TRACE=0x0
ZLIB_DEFLATE_IMPL=0x41
ZLIB_INFLATE_IMPL=0x41

You can override these defaults by setting the following environment variables:
ZLIB_ACCELERATOR

Sets the accelerator type. For zEDC Express, the type is GENWQE.
ZLIB_CARD

-1, uses all accelerators that are available to the Linux instance. Failed requests are retried on
alternative accelerators.

You can specify the ID of a particular virtual accelerator card to be used. The ID is the index number
that makes the nodes unique. All other cards are ignored, and no retry on alternative cards is
performed if the specified card fails. Specify an ID only if you want to test a particular card.

0 uses the first card that is found by the device driver. As for specifying an individual card, all other
cards are ignored.

ZLIB_TRACE
Sets tracing bits:
0x1

General trace.
0x2

Hardware trace.
0x4

Software trace.
0x8

Trace summary at the end of a process.
Tracing requires extra processing and incurs a performance penalty. The least performance impact is
to be expected from the trace summary. By default, tracing is off.

ZLIB_DEFLATE_IMPL
0x01 and 0x41 enable hardware compression, where 0x41 adds an optimization setting. 0x00 forces
software compression and is intended for experimentation, for example, for gathering performance
data with and without hardware acceleration.

ZLIB_INFLATE_IMPL
0x01 and 0x41 enable hardware decompression, where 0x41 adds an optimization setting. 0x00
forces software decompression and is intended for experimentation, for example, for gathering
performance data with and without hardware acceleration.

You can find more details about the environment variables in the GenWQE wiki on GitHub at github.com/
ibm-genwqe/genwqe-user/wiki/Environment Variables.

348 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

http://github.com/ibm-genwqe/genwqe-user/wiki/Environment%20Variables
http://github.com/ibm-genwqe/genwqe-user/wiki/Environment%20Variables

Examples for using GenWQE
You can use the GenWQE hardware-accelerated zlib through GenWQE tools.

Activating the GenWQE hardware-accelerated zlib for an application
Whether and how you can make an application use the GenWQE hardware-accelerated zlib depends on
how the application links to libz.so.

Examine the application for links to libz.so, for example with the ldd tool.

• If the application does not link to libz.so or if it statically links to libz.so, it would require
recompilation, and possibly code changes, to make acceleration through GenWQE possible.

• If an application dynamically links to libz.so, you might be able to redirect the library calls from the
default implementation to the GenWQE hardware-accelerated zlib.

Some applications require zlib features that are not available from the GenWQE hardware-accelerated
zlib. Such applications fail if a global redirect is put in place. The following technique redirects calls for the
scope of a particular application.

Specify the LD_PRELOAD environment variable to load the GenWQE hardware-accelerated zlib. Set the
variable with the start command for your application.

Example:

LD_PRELOAD=/lib/s390x-linux-gnu/genwqe/libz.so.1 <application_start_cmd>

Compressing data with genwqe_gzip
GenWQE provides two tools, genwqe_gzip and genwqe_gunzip that can be used in place of the
common code gzip and gunzip tools. The GenWQE versions of the tools use hardware acceleration if it
is available.

Procedure

Run the genwqe_gzip command with the -AGENWQE parameter to compress a file.

genwqe_gzip -AGENWQE <file>

The -AGENWQE parameter ensures that the correct, PCIe-attached, accelerator card is used. Also use this
option when decompressing data with the genwqe_gunzip command. See the man pages for other
options.

Running tar with GenWQE hardware-acceleration
You can make tar use genwqe_gzip in place of the common code gzip.

About this task

If called with the z option, the tar utility uses the first gzip tool in the search path, which is usually the
common code version. By inserting the path to the GenWQE gzip tool at the beginning of the PATH
variable, you can make the tar utility use hardware acceleration.

The path points to /usr/lib64/genwqe/gzip and /usr/lib64/genwqe/gunzip, which are symbolic
links to genwqe_gzip and genwqe_gunzip.

The acceleration is most marked for a single large text file. The example that follows compresses a
directory with the Linux source code.

Data compression with GenWQE and zEDC Express 349

Procedure

1. Run the tar command as usual to use software compression. To obtain performance data, specify the
tar command as an argument to the time command.

time tar cfz linux-src.sw.tar.gz linux-src
real 0m22.329s
user 0m22.147s
sys 0m0.849s

2. Run the tar command with an adjusted PATH variable to use GenWQE hardware acceleration. Again,
use the time command to obtain performance data.

time PATH=/usr/lib64/genwqe:$PATH \
tar cfz linux-src.hw.tar.gz linux-src
real 0m1.323s
user 0m0.242s
sys 0m1.023s

Results
In the example, the accelerated operation is significantly faster. The hardware-compressed data is slightly
larger than the software-compressed version of the same data

GenWQE hardware-acceleration for IBM Java
IBM Java version 7.1 or later can use the GenWQE hardware-accelerated zlib.

To activate the GenWQE hardware-accelerated zlib for IBM Java, you must set environment parameters.
See the documentation for your Java version to find out which settings are required.

Note: Any values that you set for the environment variables override the default settings for the GenWQE
user space components (see “Environment variables” on page 348).

Exploring the GenWQE setup
You might want to ensure that your GenWQE setup works as intended.

• “Listing your GenWQE accelerator cards” on page 350
• “Checking the GenWQE device driver setup” on page 351
• “Confirming that the accelerator hardware can be reached” on page 351

Listing your GenWQE accelerator cards
Use the lspci command to list the available GenWQE accelerator cards.

Procedure

1. Issue the lspci command and look for GenWQE.

Example:

lspci |grep GenWQE
0002:00:00.0 Processing accelerators: IBM GenWQE Accelerator Adapter

2. Issue the lspci command with the verbose option to display details about a particular card.

Example:

350 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

lspci -vs 0002:00:00.0
0002:00:00.0 Processing accelerators: IBM GenWQE Accelerator Adapter
 Subsystem: IBM GenWQE Accelerator Adapter
 Physical Slot: 000000ff
 Flags: bus master, fast devsel, latency 0, IRQ 3
 Memory at 8002000000000000 (64-bit, prefetchable) [disabled] [size=128M]
 Capabilities: [50] MSI: Enable+ Count=1/1 Maskable- 64bit+
 Capabilities: [80] Express Endpoint, MSI 00
 Capabilities: [100] Alternative Routing-ID Interpretation (ARI)
 Kernel driver in use: genwqe
 Kernel modules: genwqe_card

Checking the GenWQE device driver setup
Perform these tasks if GenWQE does not work as expected.

Procedure

1. Confirm that the device driver is loaded.

lsmod | grep genwqe
genwqe_card 88997 0
crc_itu_t 1910 1 genwqe_card

If the genwqe_card module is not listed in the command output, load it with modprobe.

modprobe genwqe_card

The genwqe_card module does not have module parameters.
2. Confirm that GenWQE device nodes exist and that the nodes have the required permissions.

The nodes must grant read and write permissions to all users, for example:

ls -l /dev/genwqe*
crwrwrw 1 root root 249, 0 Jun 30 10:01 /dev/genwqe0_card
crwrwrw 1 root root 248, 0 Jun 30 10:01 /dev/genwqe1_card

If the permissions are not crwrwrw, create a file /etc/udev/rules.d/52-genwqedevices.rules
with this rule as its content:

KERNEL=="genwqe*", MODE="0666"

The new rule takes effect next time the GenWQE device driver is loaded.

Tip: Use the chmod command to temporarily set the permissions.

What to do next
You can find debug information in the Linux source tree at /sys/kernel/debug/genwqe and at /sys/
class/genwqe.

Confirming that the accelerator hardware can be reached
The genwqe_echo command is similar to a ping command.

Before you begin
The genwqe_echo command is included in the genwqe-tools RPM (see “Installing the GenWQE
hardware-accelerated zlib” on page 347).

Procedure

Issue a command of this form to confirm that you can reach the accelerator hardware.

genwqe_echo -AGENWQE -C <n> -c <m>

Data compression with GenWQE and zEDC Express 351

In the command, <n> is the index number of the card and <m> is a positive integer that specifies how
many requests are sent to the card. The -AGENWQE parameter ensures that the correct, PCIe-attached,
accelerator card is used.

Example: The following command sends four requests to the card with device node /dev/
genwqe1_card:

genwqe_echo -AGENWQE -C 1 -c 4
1 x 33 bytes from UNIT #1: echo_req time=37.0 usec
1 x 33 bytes from UNIT #1: echo_req time=19.0 usec
1 x 33 bytes from UNIT #1: echo_req time=23.0 usec
1 x 33 bytes from UNIT #1: echo_req time=18.0 usec
--- UNIT #1 echo statistics ---
4 packets transmitted, 4 received, 0 lost, 0% packet loss

See the genwqe_echo man page for other command options.

External programming interfaces
The GenWQE hardware-accelerated zlib implements a large subset of the original software zlib.

For information about programming against the GenWQE hardware-accelerated zlib, see the section
about implemented zlib functions in Accelerated Data Compressing using the GenWQE Linux Driver and
Corsa FPGA PCIe card.

To obtain this document, go to the developerWorks website at www.ibm.com/developerworks/
community/files/app and search for "genwqe".

352 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

https://www.ibm.com/developerworks/community/files/app
https://www.ibm.com/developerworks/community/files/app

Chapter 33. PCI Express support
The Peripheral Component Interconnect Express (PCIe) device driver supports various PCI devices,
including but not limited to devices that implement the SMC network protocol.

For more information about RoCE, see Chapter 21, “RDMA over Converged Ethernet,” on page 301.For
more information about ISM, see Chapter 22, “Internal shared memory device driver,” on page 303.

PCIe functions are seen by Linux as devices, hence devices is used here synonymously. You can assign
PCIe devices to LPARs in the IOCDS.

Linux supports UIDs as persistent identifiers for PCI functions. Provide UIDs for required PCI functions in
the hardware configuration (IOCDS). The LPAR needs to be enabled for UID checking. UIDs are unique
hexadecimal values in the range 1 - FFFF. For example, with a UID of 0x318, the function address would
be: 0318:00:00.0.

Setting up the PCIe support
Configure the PCIe support through the pci= kernel parameter.

PCIe devices are automatically configured during the system boot process. In contrast to most IBM Z
devices, all PCIe devices that are in a configured state are automatically set online. PCIe devices that are
in stand-by state are not automatically enabled.

Scanning of PCIe devices is enabled by default. To disable use of PCI devices, set the kernel command
line parameter pci=off.

PCI kernel parameter syntax
pci=on

pci=off

where:
off

disables automatic scanning of PCIe devices.
on

enables automatic scanning of PCIe devices (default).

Example

The following kernel parameter enables automatic scanning of PCIe devices.

pci=on

© Copyright IBM Corp. 2000, 2019 353

Using PCIe hotplug
Use PCIe hotplug to change the availability of a shared PCIe device.

About this task

Only one LPAR can access a PCIe device. Other LPARs can be candidates for access. Use the HMC or SE to
define which LPAR is connected and which LPARs are on the candidate list. A PCIe device that is defined,
but not yet used, is shown as a PCIe slot in Linux.

On Linux, you use the power sysfs attribute of a PCIe slot to connect the device to the LPAR where Linux
runs. While a PCIe device is connected to one LPAR, it is in the reserved state for all other LPARs that are
in the candidates list. A reserved PCIe device is invisible to the operating system. The slot is removed
from sysfs.

Procedure

The power attribute of a slot contains 0 if a PCIe device is in stand-by state, or 1 if the device is
configured and usable.
1. Locate the slot for the card you want to work with.

To locate the slot, read the function_id attribute of the PCIe device from sysfs.
For example, to read the /sys/bus/pci/devices/0000:00:00.0/function_id issue:

cat /sys/bus/pci/devices/0000:00:00.0/function_id
0x00000011

where 00000011 is the slot. Alternatively, you can use the lspci -v command to find the slot.
2. Write the value that you want to the power attribute:

• Write 1 to power to connect the PCIe device to the LPAR in which your Linux instance is running.
Linux automatically scans the device, registers it, and brings it online. For example:

echo 1 > /sys/bus/pci/slots/00000011/power

• Write 0 to power to stop using the PCIe device. The device state changes to stand-by. The PCIe
device is set offline automatically. For example:

echo 0 > /sys/bus/pci/slots/00000011/power

A PCIe device in standby is also in the standby state to all other LPARs in the candidates list. A
standby PCIe device appears as a slot, but without a PCIe device.

Recovering a PCIe device
Use the recover sysfs attribute to recover a PCIe device.

About this task

A message is displayed when a PCIe device enters the error state. It is not possible to automatically
relieve the PCIe device from this state.

Procedure

1. Find the PCIe device directory in sysfs.
PCIe device directories are of the form /sys/devices/pci<dev> where <dev> is the device ID.
For example: /sys/devices/pci0000:00/0000:00:00.0/.

2. Write 1 to the recover attribute of the PCIe device.

354 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

For example:

echo 1 > /sys/devices/pci0000:00/0000:00:00.0/recover

After a successful recovery, the PCI device is de-registered and reprobed.

Displaying PCIe information
For each online PCIe device, there is a number of read-only attributes in sysfs that provide information
about the device.

About this task

The sysfs representation of a PCIe device or slot is a directory of the form /sys/devices/
pci<function_name>/<function_address>, where <function_name> and <function_address>
identify the PCIe device. This sysfs directory contains a number of attributes with information about the
PCIe device.

Table 50: Attributes with PCIe device information

Attribute Explanation

function_handle Eight-character, hexadecimal PCI-function (device) handle.

This attribute is read-only.

function_id Eight-character, hexadecimal PCI-function (device) ID. The ID identifies
the PCIe device within the processor configuration.

This attribute is read-only.

pchid Four-character, hexadecimal, physical channel ID. Specifies the slot of the
PCIe adapter in the I/O drawer. Thus identifies the adapter that provides
the device.

This attribute is read-only.

pfgid Two-character, hexadecimal, physical function group ID.

This attribute is read-only.

pfip/segment0
/segment1
/segment2
/segment3

Two-character, hexadecimal, PCI-function internal path. Provides an
abstract indication of the path that is used to access the PCI function. This
can be used to compare the paths used by two or more PCI functions, to
give an indication of the degree of isolation between them.

uid Up to eight-character, hexadecimal, user-defined identifier.

vfn Four-character, hexadecimal, virtual function number. If an adapter,
identified by its PCHID, supports more than one PCI function, the VFN
uniquely identifies the instance of that function within the adapter.

util_string Type-specific information about the device. For RoCE devices and ISM
devices, it contains the PNET ID if a PNET ID has been assigned in the I/O
configuration.

Procedure

Issue a command of this form to read an attribute:

PCI Express support 355

cat /sys/devices/pci<function_name>/<function_address>/<attribute>

where <attribute> is one of the attributes of Table 50 on page 355.

Reading statistics for a PCIe device
Use the statistics attribute file to see measurement data for a PCIe device.

About this task

All PCIe devices collect measurement data by default. You can read the data in a sysfs attribute file in the
debug file system, by default mounted at /sys/kernel/debug.

You can turn data collection on and off. To switch off measurement data collecting for the current session,
write "0" to the statistics attribute. To enable data collection again, write "1" to the statistics
attribute.

Example
To read measurement data for a (RoCE) function named 0000:00:00.0 use:

cat /sys/kernel/debug/pci/0000:00:00.0/statistics

The statistics attribute file might look similar to this example:

FMB @ 0000000078cd8000
Update interval: 4000 ms
Samples: 14373
Last update TOD: cefa44fa50006378
 Load operations: 1002780
 Store operations: 1950622
 Store block operations: 0
 Refresh operations: 0
 Received bytes: 0
 Received packets: 0
 Transmitted bytes: 0
 Transmitted packets: 0
 Allocated pages: 9104
 Mapped pages: 16633
 Unmapped pages: 2337

356 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Part 6. z/VM virtual server integration
These device drivers and features help you to effectively run and manage a z/VM-based virtual Linux
server farm.

Newest version

You can find the newest version of this publication on IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html

Restrictions
For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture specific information in
the SUSE Linux Enterprise Server 12 SP4 release notes at
www.suse.com/releasenotes

© Copyright IBM Corp. 2000, 2019 357

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html
http://www.suse.com/releasenotes

358 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 34. z/VM concepts
The z/VM performance monitoring and cooperative memory management concepts help you to
understand how the different components interact with Linux.

Performance monitoring for z/VM guest virtual machines
You can monitor the performance of z/VM guest virtual machines and their guest operating systems with
performance monitoring tools on z/VM or on Linux.

These tools can be your own, IBM tools such as the Performance Toolkit for VM, or third-party tools. The
guests being monitored require agents that write monitor data.

Monitoring on z/VM
z/VM monitoring tools must read performance data. For monitoring Linux instances, this data is
APPLDATA monitor records.

Linux instances must write these records for the tool to read, as shown in Figure 68 on page 359.

Figure 68: Linux instances write APPLDATA records for performance monitoring tools

Both user space applications and the Linux kernel can write performance data to APPLDATA records.
Applications use the monwriter device driver to write APPLDATA records. The Linux kernel can be
configured to collect system level data such as memory, CPU usage, and network-related data, and write
it to data records.

For file system size, data there is a command, mon_fsstatd. This user space tool uses the monwriter
device driver to write file system size information as defined records.

For process data, there is a command, mon_procd. This user space tool uses the monwriter device driver
to write system information as defined records.

In summary, SUSE Linux Enterprise Server 12 SP4 for IBM Z supports writing and collecting performance
data as follows:

• The Linux kernel can write z/VM monitor data for Linux instances, see Chapter 35, “Writing kernel
APPLDATA records,” on page 363.

• Linux applications that run on z/VM guests can write z/VM monitor data, see Chapter 36, “Writing z/VM
monitor records,” on page 369.

© Copyright IBM Corp. 2000, 2019 359

• You can collect monitor file system size information, see “mon_fsstatd – Monitor z/VM guest file system
size” on page 579.

• You can collect system information about up to 100 concurrently running processes, see “mon_procd –
Monitor Linux on z/VM” on page 584.

Monitoring on Linux
A Linux instance can read the monitor data by using the monreader device driver.

Figure 69 on page 360 illustrates a Linux instance that is set up to read the monitor data. You can use an
existing monitoring tool or write your own software.

Figure 69: Performance monitoring using monitor DCSS data

In summary, Linux on Z supports reading performance data in the form of read access to z/VM monitor
data for Linux instances. See Chapter 37, “Reading z/VM monitor records,” on page 373 for more details.

Further information
Several z/VM publications include information about monitoring.

• See z/VM: Getting Started with Linux on System z, SC24-6287, the chapter on monitoring performance
for information about using the CP Monitor and the Performance Toolkit for VM.

• See z/VM: Saved Segments Planning and Administration, SC24-6322 for general information about
DCSSs (z/VM keeps monitor records in a DCSS).

• See z/VM: Performance, SC24-6301 for information about creating a monitor DCSS.
• See z/VM: CP Commands and Utilities Reference, SC24-6268 for information on the CP commands that

are used in the context of DCSSs and for controlling the z/VM monitor system service.
• For the layout of the monitor records, visit

www.ibm.com/vm/pubs/ctlblk.html

and see Chapter 35, “Writing kernel APPLDATA records,” on page 363.
• For more information about performance monitoring on z/VM, visit

www.ibm.com/vm/perf

360 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

http://www.ibm.com/vm/pubs/ctlblk.html
http://www.ibm.com/vm/perf

Cooperative memory management background
Cooperative memory management (CMM, or "cmm1") dynamically adjusts the memory available to Linux.

For information about setting up CMM, see Chapter 43, “Cooperative memory management,” on page
405.

In a virtualized environment it is common practice to give the virtual machines more memory than is
actually available to the hypervisor. Linux tends to use all of its available memory. As a result, the
hypervisor (z/VM) might start swapping.

To avoid excessive z/VM swapping, the memory available to Linux can be reduced. CMM allocates pages
to page pools that make the pages unusable to Linux. There are two such page pools as shown in Figure
70 on page 361.

Figure 70: Page pools

There are two page pools:
A static page pool

The page pool is controlled by a resource manager that changes the pool size at intervals according to
guest activity and overall memory usage on z/VM (see Figure 71 on page 361).

Figure 71: Static page pool

A timed page pool
Pages are released from this pool at a speed that is set in the release rate (see Figure 72 on page
362). According to guest activity and overall memory usage on z/VM, a resource manager adds pages
at intervals. If no pages are added and the release rate is not zero, the pool empties.

z/VM concepts 361

Figure 72: Timed page pool

The external resource manager that controls the pools can be the z/VM resource monitor (VMRM) or a
third party systems management tool.

VMRM controls the pools over a message interface. Setting up the external resource manager is beyond
the scope of this information. For more details, see the chapter on VMRM in z/VM: Performance,
SC24-6301.

Third party tools can provide a Linux deamon that receives commands for the memory allocation through
TCP/IP. The deamon, in turn, uses the procfs-based interface. You can use the procfs interface to read the
pool sizes. These values are useful diagnostic data.

Linux guest relocation
Information about guest relocations is stored in the s390 debug feature (s390dbf).

You can access this information in a kernel dump or from a running Linux instance. For more information,
see Troubleshooting, SC34-2612.

362 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 35. Writing kernel APPLDATA records
z/VM is a convenient point for collecting z/VM guest performance data and statistics for an entire server
farm. Linux instances can export such data to z/VM by using APPLDATA monitor records.

z/VM regularly collects these records. The records are then available to z/VM performance monitoring
tools.

A virtual CPU timer on the Linux instance to be monitored controls when data is collected. The timer
accounts for only busy time to avoid unnecessarily waking up an idle guest. The APPLDATA record support
comprises several modules. A base module provides an intra-kernel interface and the timer function. The
intra-kernel interface is used by data gathering modules that collect actual data and determine the layout
of a corresponding APPLDATA monitor record (see “APPLDATA monitor record layout” on page 365).

For an overview of performance monitoring support, see “Performance monitoring for z/VM guest virtual
machines” on page 359.

Setting up the APPLDATA record support
You must enable your z/VM guest virtual machine for data gathering and load the APPLDATA record
support modules.

Procedure

1. On z/VM, ensure that the user directory of the guest virtual machine includes the option APPLMON.
2. On Linux, use the modprobe command to load any required modules.

APPLDATA record support module parameter syntax
modprobe appldata_mem

 appldata_os

 appldata_net_sum

where appldata_mem, appldata_os, and appldata_net_sum are the modules for gathering memory-
related data, operating system-related data, and network-related data.

See the modprobe man page for command details.

Generating APPLDATA monitor records
You can set the timer interval and enable or disable data collection.

APPLDATA monitor records are produced if both a particular data-gathering module and the monitoring
support in general are enabled. You control the monitor stream support through the procfs.

Enabling or disabling the support
Use the procfs timer attribute to enable or disable the monitoring support.

Procedure

To read the current setting, issue:

cat /proc/sys/appldata/timer

© Copyright IBM Corp. 2000, 2019 363

To enable the monitoring support, issue:

echo 1 > /proc/sys/appldata/timer

To disable the monitoring support, issue:

echo 0 > /proc/sys/appldata/timer

Activating or deactivating individual data-gathering modules
Each data-gathering module has a procfs entry that contains a value 1 if the module is active and 0 if the
module is inactive.

About this task

The following procfs entries control the data-gathering modules:

/proc/sys/appldata/mem for the memory data-gathering module
/proc/sys/appldata/os for the CPU data-gathering module
/proc/sys/appldata/net_sum for the net data-gathering module

To check whether a module is active look at the content of the corresponding procfs entry.

Procedure

Issue a command of this form:

echo <flag> > /proc/sys/appldata/<data_type>

where <data_type> is one of mem, os, or net_sum.

Note: An active data-gathering module produces APPLDATA monitor records only if the monitoring
support is enabled (see “Enabling or disabling the support” on page 363).

Example

To find out whether memory data-gathering is active, issue:

cat /proc/sys/appldata/mem
0

In the example, memory data-gathering is off. To activate memory data-gathering, issue:

echo 1 > /proc/sys/appldata/mem

To deactivate the memory data-gathering module, issue:

echo 0 > /proc/sys/appldata/mem

Setting the sampling interval
You can set the time that lapses between consecutive data samples.

About this task

The time that you set is measured by the virtual CPU timer. Because the virtual timer slows down as the
guest idles, the sampling interval in real time can be considerably longer than the value you set.

The value in /proc/sys/appldata/interval is the sample interval in milliseconds. The default
sample interval is 10 000 ms.

364 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Procedure

To read the current value, issue:

cat /proc/sys/appldata/interval

To set the sample interval to a different value, write the new value (in milliseconds) to /proc/sys/
appldata/interval. Issue a command of this form:

echo <interval> > /proc/sys/appldata/interval

where <interval> is the new sample interval in milliseconds. The specification must be in the range 1 -
2147483647, where 2,147,483,647 = 2³¹ - 1.

Example

To set the sampling interval to 20 s (20000 ms), issue:

echo 20000 > /proc/sys/appldata/interval

APPLDATA monitor record layout
Each of the data gathering modules writes a different type of record.

• Memory data (see Table 51 on page 365)
• Processor data (see Table 52 on page 366)
• Networking (see Table 53 on page 367)

z/VM can identify the records by their unique product ID. The product ID is an EBCDIC string of this form:
"LINUXKRNL<record ID>260100". The <record ID> is treated as a byte value, not a string.

The records contain data of the following types:
u32

unsigned 4 byte integer.
u64

unsigned 8 byte integer.

Table 51: APPLDATA_MEM_DATA record (Record ID 0x01)

Offset
(Decimal)

Offset
(Hex)

Type Name Description

0 0x0 u64 timestamp TOD time stamp that is generated on the Linux
side after record update

8 0x8 u32 sync_count_1 After z/VM collected the record data,
sync_count_1 and sync_count_2 must be the
same. Otherwise, the record was updated on
the Linux side while z/VM was collecting the
data. As a result, the data might be
inconsistent.

12 0xC u32 sync_count_2 See sync_count_1.

16 0x10 u64 pgpgin Data that was read from disk (in KB)

24 0x18 u64 pgpgout Data that was written to disk (in KB)

Writing kernel APPLDATA records 365

Table 51: APPLDATA_MEM_DATA record (Record ID 0x01) (continued)

Offset
(Decimal)

Offset
(Hex)

Type Name Description

32 0x20 u64 pswpin Pages that were swapped in

40 0x28 u64 pswpout Pages that were swapped out

48 0x30 u64 sharedram Shared RAM in KB, set to 0

56 0x38 u64 totalram Total usable main memory size in KB

64 0x40 u64 freeram Available memory size in KB

72 0x48 u64 totalhigh Total high memory size in KB

80 0x50 u64 freehigh Available high memory size in KB

88 0x58 u64 bufferram Memory that was reserved for buffers, free
cache in KB

96 0x60 u64 cached Size of used cache, without buffers in KB

104 0x68 u64 totalswap Total swap space size in KB

112 0x70 u64 freeswap Free swap space in KB

120 0x78 u64 pgalloc Page allocations

128 0x80 u64 pgfault Page faults (major+minor)

136 0x88 u64 pgmajfault Page faults (major only)

Table 52: APPLDATA_OS_DATA record (Record ID 0x02).

Offset
(Decimal)

Offset
(Hex)

Type
(size)

Name Description

0 0x0 u64 timestamp TOD time stamp that is generated on the Linux
side after record update

8 0x8 u32 sync_count_1 After z/VM collected the record data,
sync_count_1 and sync_count_2 must be the
same. Otherwise, the record was updated on
the Linux side while z/VM was collecting the
data. As a result, the data might be
inconsistent.

12 0xC u32 sync_count_2 See sync_count_1.

16 0x10 u32 nr_cpus Number of virtual CPUs.

20 0x14 u32 per_cpu_size Size of the per_cpu_data for each CPU (= 36).

24 0x18 u32 cpu_offset Offset of the first per_cpu_data (= 52).

28 0x1C u32 nr_running Number of runnable threads.

32 0x20 u32 nr_threads Number of threads.

366 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Table 52: APPLDATA_OS_DATA record (Record ID 0x02). (continued)

Offset
(Decimal)

Offset
(Hex)

Type
(size)

Name Description

36 0x24 3 ×
u32

avenrun[3] Average number of running processes during
the last 1 (1st value), 5 (2nd value) and 15 (3rd
value) minutes. These values are "fake fix-
point", each value is composed of a 10-bit
integer and an 11-bit fractional part. See note
“1” on page 367 at the end of this table.

48 0x30 u32 nr_iowait Number of blocked threads (waiting for I/O).

52 0x34 See
note

“2” on
page
367.

per_cpu_data Time spent in user, kernel, idle, nice, etc for
every CPU. See note “3” on page 367 at the
end of this table.

52 0x34 u32 per_cpu_user Timer ticks that were spent in user mode.

56 0x38 u32 per_cpu_nice Timer ticks that were spent with modified
priority.

60 0x3C u32 per_cpu_system Timer ticks that were spent in kernel mode.

64 0x40 u32 per_cpu_idle Timer ticks that were spent in idle mode.

68 0x44 u32 per_cpu_irq Timer ticks that were spent in interrupts.

72 0x48 u32 per_cpu_softirq Timer ticks that were spent in softirqs.

76 0x4C u32 per_cpu_iowait Timer ticks that were spent while waiting for
I/O.

80 0x50 u32 per_cpu_steal Timer ticks "stolen" by the hypervisor.

84 0x54 u32 cpu_id The number of this CPU.

Note:

1. The following C-Macros are used inside Linux to transform these into values with two decimal places:

#define LOAD_INT(x) ((x) >> 11)
#define LOAD_FRAC(x) LOAD_INT(((x) & ((1 << 11) - 1)) * 100)

2. nr_cpus * per_cpu_size
3. per_cpu_user through cpu_id are repeated for each CPU

Table 53: APPLDATA_NET_SUM_DATA record (Record ID 0x03)

Offset
(Decimal)

Offset
(Hex)

Type Name Description

0 0x0 u64 timestamp TOD time stamp that is generated on the Linux side
after record update

8 0x8 u32 sync_count_1 After z/VM collected the record data, sync_count_1
and sync_count_2 must be the same. Otherwise, the
record was updated on the Linux side while z/VM
was collecting the data. As a result, the data might
be inconsistent.

Writing kernel APPLDATA records 367

Table 53: APPLDATA_NET_SUM_DATA record (Record ID 0x03) (continued)

Offset
(Decimal)

Offset
(Hex)

Type Name Description

12 0xC u32 sync_count_2 See sync_count_1

16 0x10 u32 nr_interfaces Number of interfaces being monitored

20 0x14 u32 padding Unused. The next value is 64-bit aligned, so these 4
byte would be padded out by compiler

24 0x18 u64 rx_packets Total packets that were received

32 0x20 u64 tx_packets Total packets that were transmitted

40 0x28 u64 rx_bytes Total bytes that were received

48 0x30 u64 tx_bytes Total bytes that were transmitted

56 0x38 u64 rx_errors Number of bad packets that were received

64 0x40 u64 tx_errors Number of packet transmit problems

72 0x48 u64 rx_dropped Number of incoming packets that were dropped
because of insufficient space in Linux buffers

80 0x50 u64 tx_dropped Number of outgoing packets that were dropped
because of insufficient space in Linux buffers

88 0x58 u64 collisions Number of collisions while transmitting

Programming interfaces
The monitor stream support base module exports two functions.

• appldata_register_ops() to register data-gathering modules
• appldata_unregister_ops() to undo the registration of data-gathering modules

Both functions receive a pointer to a struct appldata_ops as parameter. Additional data-gathering
modules that want to plug into the base module must provide this data structure. You can find the
definition of the structure and the functions in arch/s390/appldata/appldata.h in the Linux source
tree.

See “APPLDATA monitor record layout” on page 365 for an example of APPLDATA data records that are to
be sent to z/VM.

Tip: Include the timestamp, sync_count_1, and sync_count_2 fields at the beginning of the record as
shown for the existing APPLDATA record formats.

368 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 36. Writing z/VM monitor records
Applications can use the monitor stream application device driver to write z/VM monitor APPLDATA
records to the z/VM *MONITOR stream.

For an overview of performance monitoring support, see “Performance monitoring for z/VM guest virtual
machines” on page 359.

The monitor stream application device driver interacts with the z/VM monitor APPLDATA facilities for
performance monitoring. A better understanding of these z/VM facilities might help when you are using
this device driver. See z/VM: Performance, SC24-6301 for information about monitor APPLDATA.

The monitor stream application device driver provides the following functions:

• An interface to the z/VM monitor stream.
• A means of writing z/VM monitor APPLDATA records.

Setting up the z/VM *MONITOR record writer device driver
You must load the monwriter module on Linux and set up your guest virtual machine for monitor records
on z/VM.

Loading the module
You can configure the monitor stream application device driver when you are loading the device driver
module, monwriter.

Monitor stream application device driver module parameter syntax

modprobe monwriter

 max_bufs=255

 max_bufs=<numbufs>

where <numbufs> is the maximum number of monitor sample and configuration data buffers that can
exist in the Linux instance at one time. The default is 255.

Example

To load the monwriter module and set the maximum number of buffers to 400, use the following
command:

modprobe monwriter max_bufs=400

Setting up the z/VM guest virtual machine
You must enable your z/VM guest virtual machine to write monitor records and configure the z/VM system
to collect these records.

Procedure

Perform these steps:
1. Set this option in the z/VM user directory entry of the virtual machine in which the application that

uses this device driver is to run:

• OPTION APPLMON
2. Issue the following CP commands to have CP collect the respective types of monitor data:

© Copyright IBM Corp. 2000, 2019 369

• MONITOR SAMPLE ENABLE APPLDATA ALL
• MONITOR EVENT ENABLE APPLDATA ALL

You can log in to the z/VM console to issue the CP commands. These commands must be preceded
with #CP. Alternatively, you can use the vmcp command for issuing CP commands from your Linux
instance.

See z/VM: CP Commands and Utilities Reference, SC24-6268 for information about the CP MONITOR
command.

Working with the z/VM *MONITOR record writer
The monitor stream application device driver uses the z/VM CP instruction DIAG X'DC' to write to the z/VM
monitor stream. Monitor data must be preceded by a data structure, monwrite_hdr.

See z/VM: CP Programming Services, SC24-6272 for more information about the DIAG X'DC' instruction
and the different monitor record types (sample, config, event).

The application writes monitor data by passing a monwrite_hdr structure that is followed by monitor data.
The only exception is the STOP function, which requires no monitor data. The monwrite_hdr structure, as
described in monwriter.h, is filled in by the application. The structure includes the DIAG X'DC' function to
be performed, the product identifier, the header length, and the data length.

All records that are written to the z/VM monitor stream begin with a product identifier. This device driver
uses the product ID. The product ID is a 16-byte structure of the form pppppppffnvvrrmm, where:
ppppppp

is a fixed ASCII string, for example, LNXAPPL.
ff

is the application number (hexadecimal number). This number can be chosen by the application. You
can reduce the chance of conflicts with other applications, by requesting an application number from
the IBM z/VM Performance team at

www.ibm.com/vm/perf

n
is the record number as specified by the application

vv, rr, and mm
can also be specified by the application. A possible use is to specify version, release, and modification
level information, allowing changes to a certain record number when the layout is changed, without
changing the record number itself.

The first 7 bytes of the structure (LNXAPPL) are filled in by the device driver when it writes the monitor
data record to the CP buffer. The last 9 bytes contain information that is supplied by the application on the
write() call when writing the data.

The monwrite_hdr structure that must be written before any monitor record data is defined as follows:

/* the header the app uses in its write() data */
struct monwrite_hdr {
 unsigned char mon_function;
 unsigned short applid;
 unsigned char record_num;
 unsigned short version;
 unsigned short release;
 unsigned short mod_level;
 unsigned short datalen;
 unsigned char hdrlen;
}__attribute__((packed));

The following function code values are defined:

/* mon_function values */
#define MONWRITE_START_INTERVAL 0x00 /* start interval recording */

370 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

http://www.ibm.com/vm/perf

#define MONWRITE_STOP_INTERVAL 0x01 /* stop interval or config recording */
#define MONWRITE_GEN_EVENT 0x02 /* generate event record */
#define MONWRITE_START_CONFIG 0x03 /* start configuration recording */

Writing data and stopping data writing
Applications use the open(), write(), and close() calls to work with the z/VM monitor stream.

Before an application can write monitor records, it must issue open() to open the device driver. Then, the
application must issue write() calls to start or stop the collection of monitor data and to write any
monitor records to buffers that CP can access.

When the application has finished writing monitor data, it must issue close() to close the device driver.

Using the monwrite_hdr structure
The structure monwrite_hdr is used to pass DIAG x'DC' functions and the application-defined product
information to the device driver on write() calls.

When the application calls write(), the data it is writing consists of one or more monwrite_hdr
structures. Each structure is followed by monitor data. The only exception is the STOP function, which is
not followed by data.

The application can write to one or more monitor buffers. A new buffer is created by the device driver for
each record with a unique product identifier. To write new data to an existing buffer, an identical
monwrite_hdr structure must precede the new data on the write() call.

The monwrite_hdr structure also includes a field for the header length, which is useful for calculating the
data offset from the beginning of the header. There is also a field for the data length, which is the length of
any monitor data that follows. See /usr/include/asm-s390/monwriter.h for the definition of the
monwrite_hdr structure.

Writing z/VM monitor records 371

372 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 37. Reading z/VM monitor records
Monitoring software on Linux can access z/VM guest data through the z/VM *MONITOR record reader
device driver.

z/VM uses the z/VM monitor system service (*MONITOR) to collect monitor records from agents on its
guests. z/VM writes the records to a discontiguous saved segment (DCSS). The z/VM *MONITOR record
reader device driver uses IUCV to connect to *MONITOR and accesses the DCSS as a character device.

For an overview of performance monitoring support, see “Performance monitoring for z/VM guest virtual
machines” on page 359.

The z/VM *MONITOR record reader device driver supports the following devices and functions:

• Read access to the z/VM *MONITOR DCSS.
• Reading *MONITOR records for z/VM.
• Access to *MONITOR records as described on

www.ibm.com/vm/pubs/ctlblk.html

• Access to the kernel APPLDATA records from the Linux monitor stream (see Chapter 35, “Writing kernel
APPLDATA records,” on page 363).

What you should know about the z/VM *MONITOR record reader device
driver

The data that is collected by *MONITOR depends on the setup of the monitor stream service.

The z/VM *MONITOR record reader device driver only reads data from the monitor DCSS; it does not
control the system service.

z/VM supports only one monitor DCSS. All monitoring software that requires monitor records from z/VM
uses the same DCSS to read *MONITOR data. Usually, a DCSS called "MONDCSS" is already defined and
used by existing monitoring software.

If a monitor DCSS is already defined, you must use it. To find out whether a monitor DCSS exists, issue the
following CP command from a z/VM guest virtual machine with privilege class E:

q monitor

The command output also shows the name of the DCSS.

Device node

SUSE Linux Enterprise Server 12 SP4 creates a device node, /dev/monreader, that you can use to
access the monitor DCSS.

Further information

• See z/VM: Saved Segments Planning and Administration, SC24-6322 for general information about
DCSSs.

• See z/VM: Performance, SC24-6301 for information about creating a monitor DCSS.
• See z/VM: CP Commands and Utilities Reference, SC24-6268 for information about the CP commands

that are used in the context of DCSSs and for controlling the z/VM monitor system service.

© Copyright IBM Corp. 2000, 2019 373

http://www.ibm.com/vm/pubs/ctlblk.html

• For the layout of the monitor records, go to www.ibm.com/vm/pubs/ctlblk.html and click the link to the
monitor record format for your z/VM version. Also, see Chapter 35, “Writing kernel APPLDATA records,”
on page 363.

Setting up the z/VM *MONITOR record reader device driver
You must set up Linux and the z/VM guest virtual machine for accessing an existing monitor DCSS with the
z/VM *MONITOR record reader device driver.

Before you begin
Some of the CP commands you use for setting up the z/VM *MONITOR record reader device driver require
class E authorization.

Setting up the monitor system service and the monitor DCSS on z/VM is beyond the scope of this
information. See “What you should know about the z/VM *MONITOR record reader device driver” on page
373 for documentation about the monitor system service, DCSS, and related CP commands.

Providing the required user directory statements
The z/VM guest virtual machine where your Linux instance is to run must be permitted to establish an
IUCV connection to the z/VM *MONITOR system service.

Procedure

Ensure that the guest entry in the user directory includes the following statement:

IUCV *MONITOR

If the DCSS is restricted, you also need this statement:

NAMESAVE <dcss>

where <dcss> is the name of the DCSS that is used for the monitor records. You can find out the name of
an existing monitor DCSS by issuing the following CP command from a z/VM guest virtual machine with
privilege class E:

q monitor

Assuring that the DCSS is addressable for your Linux instance
The DCSS address range must not overlap with the storage of you z/VM guest virtual machine.

Procedure

To find out the start and end address of the DCSS, issue the following CP command from a z/VM guest
virtual machine with privilege class E:

q nss map

The output gives you the start and end addresses of all defined DCSSs in units of 4-kilobyte pages. For
example:

00: FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS VMGROUP
...
00: 0011 MONDCSS CPDCSS N/A 09000 097FF SC R 00003 N/A N/A
...

374 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

http://www.ibm.com/vm/pubs/ctlblk.html

What to do next
If the DCSS overlaps with the guest storage, follow the procedure in “Avoiding overlaps with your guest
storage” on page 391.

Specifying the monitor DCSS name
Specify the DCSS name as a module parameter when you load the device driver module.

About this task

By default, the z/VM *MONITOR record reader device driver assumes that the monitor DCSS on z/VM is
called MONDCSS. If you want to use a different DCSS name, you must specify it.

Load the monitor read support module with modprobe to assure that any other required modules are also
loaded. You need IUCV support if you want to use the monitor read support.

monitor stream support module parameter syntax

modprobe monreader

mondcss=MONDCSS

mondcss=<dcss>

where <dcss> is the name of the DCSS that z/VM uses for the monitor records. The value is automatically
converted to uppercase.

Example

To load the monitor read support module and specify MYDCSS as the DCSS issue:

modprobe monreader mondcss=mydcss

Working with the z/VM *MONITOR record reader support
You can open the z/VM *MONITOR record character device to read records from it.

This section describes how to work with the monitor read support.

• “Opening and closing the character device” on page 375
• “Reading monitor records” on page 376

Opening and closing the character device
Only one user can open the character device at any one time. Once you have opened the device, you must
close it to make it accessible to other users.

About this task

The open function can fail (return a negative value) with one of the following values for errno:
EBUSY

The device has already been opened by another user.
EIO

No IUCV connection to the z/VM MONITOR system service could be established. An error message
with an IPUSER SEVER code is printed into syslog. See z/VM: Performance, SC24-6301 for details
about the codes.

Once the device is opened, incoming messages are accepted and account for the message limit. If you
keep the device open indefinitely, expect to eventually reach the message limit (with error code
EOVERFLOW).

Reading z/VM monitor records 375

Reading monitor records
You can either read in non-blocking mode with polling, or you can read in blocking mode without polling.

About this task

Reading from the device provides a 12-byte monitor control element (MCE), followed by a set of one or
more contiguous monitor records (similar to the output of the CMS utility MONWRITE without the 4 K
control blocks). The MCE contains information about:

• The type of the following record set (sample/event data)
• The monitor domains contained within it
• The start and end address of the record set in the monitor DCSS

The start and end address can be used to determine the size of the record set. The end address is the
address of the last byte of data. The start address is needed to handle "end-of-frame" records correctly
(domain 1, record 13), that is, it can be used to determine the record start offset relative to a 4 K page
(frame) boundary.

See "Appendix A: *MONITOR" in z/VM: Performance, SC24-6301 for a description of the monitor control
element layout. The layout of the monitor records can be found on

www.ibm.com/vm/pubs/ctlblk.html

The layout of the data stream that is provided by the monreader device is as follows:

...
<0 byte read>
<first MCE> \
<first set of records> |...
... |- data set
<last MCE> |
<last set of records> /
<0 byte read>
...

There may be more than one combination of MCE and a corresponding record set within one data set. The
end of each data set is indicated by a successful read with a return value of 0 (0 byte read). Received data
is not to be considered valid unless a complete record set is read successfully, including the closing 0-
Byte read. You are advised to always read the complete set into a user space buffer before processing the
data.

When designing a buffer, allow for record sizes up to the size of the entire monitor DCSS, or use dynamic
memory allocation. The size of the monitor DCSS will be printed into syslog after loading the module. You
can also use the (Class E privileged) CP command Q NSS MAP to list all available segments and
information about them (see “Assuring that the DCSS is addressable for your Linux instance” on page
374).

Error conditions are indicated by returning a negative value for the number of bytes read. For an error
condition, the errno variable can be:

EIO
Reply failed. All data that was read since the last successful read with 0 size is not valid. Data is
missing. The application must decide whether to continue reading subsequent data or to exit.

EFAULT
Copy to user failed. All data that was read since the last successful read with 0 size is not valid. Data is
missing. The application must decide whether to continue reading subsequent data or to exit.

EAGAIN
Occurs on a non-blocking read if there is no data available at the moment. No data is missing or
damaged, retry or use polling for non-blocking reads.

376 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

http://www.ibm.com/vm/pubs/ctlblk.html

EOVERFLOW
The message limit is reached. The data that was read since the last successful read with 0 size is
valid, but subsequent records might be missing. The application must decide whether to continue
reading subsequent data or to exit.

Reading z/VM monitor records 377

378 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 38. z/VM recording device driver
The z/VM recording device driver enables Linux on z/VM to read from the CP recording services and, thus,
act as a z/VM wide control point.

The z/VM recording device driver uses the z/VM CP RECORDING command to collect records and IUCV to
transmit them to the Linux instance.

For general information about CP recording system services, see z/VM: CP Programming Services,
SC24-6272.

Features
With the z/VM recording device driver, you can read from several CP services and collect records.

In particular, the z/VM recording device driver supports:

• Reading records from the CP error logging service, *LOGREC.
• Reading records from the CP accounting service, *ACCOUNT.
• Reading records from the CP diagnostic service, *SYMPTOM.
• Automatic and explicit record collection (see “Starting and stopping record collection” on page 381).

What you should know about the z/VM recording device driver
You can read records from different recording services, one record at a time.

The z/VM recording device driver is a character device driver that is grouped under the IUCV category of
device drivers (see “Device categories” on page 7). There is one device for each recording service. The
devices are created for you when the z/VM recording device driver module is loaded.

z/VM recording device nodes
Each recording service has a device with a name that corresponds to the name of the service.

Table 54 on page 379 summarizes the names:

Table 54: z/VM recording device names

z/VM recording service Standard device name

*LOGREC logrec

*ACCOUNT account

*SYMPTOM symptom

About records
Records for different services are different in details, but follow the same overall structure.

The read function returns one record at a time. If there is no record, the read function waits until a record
becomes available.

Each record begins with a 4-byte field that contains the length of the remaining record. The remaining
record contains the binary z/VM data followed by the four bytes X'454f5200' to mark the end of the
record. These bytes build the zero-terminated ASCII string "EOR", which is useful as an eye catcher.

© Copyright IBM Corp. 2000, 2019 379

Figure 73: Record structure

Figure 73 on page 380 illustrates the structure of a complete record as returned by the device. If the
buffer assigned to the read function is smaller than the overall record size, multiple reads are required to
obtain the complete record.

The format of the z/VM data (*LOGREC) depends on the record type that is described in the common
header for error records HDRREC.

For more information about the z/VM record layout, see the CMS and CP Data Areas and Control Blocks
documentation at

www.ibm.com/vm/pubs/ctlblk.html

Setting up the z/VM recording device driver
Before you can collect records, you must authorize your z/VM guest virtual machine and load the device
driver module.

Procedure

1. Authorize the z/VM guest virtual machine on which your Linux instance runs to:

• Use the z/VM CP RECORDING command.
• Connect to the IUCV services to be used: one or more of *LOGREC, *ACCOUNT, and *SYMPTOM.

2. Load the z/VM recording device driver.

You need to load the z/VM recording device driver module before you can work with z/VM recording
devices. Load the vmlogrdr module with the modprobe command to ensure that any other required
modules are loaded in the correct order:

modprobe vmlogrdr

There are no module parameters for the z/VM recording device driver.

Working with z/VM recording devices
Typical tasks that you perform with z/VM recording devices include starting and stopping record
collection, purging records, and opening and closing devices.

• “Starting and stopping record collection” on page 381
• “Purging existing records” on page 382
• “Querying the z/VM recording status” on page 382
• “Opening and closing devices” on page 383

380 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

http://www.ibm.com/vm/pubs/ctlblk.html

Starting and stopping record collection
By default, record collection for a particular z/VM recording service begins when the corresponding device
is opened and stops when the device is closed.

About this task

You can use a device's autorecording attribute to be able to open and close a device without also
starting or stopping record collection. You can use a device's recording attribute to start and stop
record collection regardless of whether the device is opened or not.

You cannot start record collection if a device is open records already exist. Before you can start record
collection for an open device, you must read or purge any existing records for this device (see “Purging
existing records” on page 382).

Procedure

To be able to open a device without starting record collection and to close a device without stopping
record collection write 0 to the device’s autorecording attribute. To restore the automatic starting and
stopping of record collection write 1 to the device’s autorecording attribute. Issue a command of this
form:

echo <flag> > /sys/bus/iucv/drivers/vmlogrdr/<device>/autorecording

where <flag> is either 0 or 1, and <device> is one of: logrec, symptom, or account.

To explicitly turn on record collection write 1 to the device’s recording attribute. To explicitly turn off
record collection write 0 to the device’s recording attribute. Issue a command of this form:

echo <flag> > /sys/bus/iucv/drivers/vmlogrdr/<device>/recording

where <flag> is either 0 or 1, and <device> is one of: logrec, symptom, or account.

You can read both the autorecording and the recording attribute to find the current settings.

Examples

• In this example, first the current setting of the autorecording attribute of the logrec device is
checked, then automatic recording is turned off:

cat /sys/bus/iucv/drivers/vmlogrdr/logrec/autorecording
1
echo 0 > /sys/bus/iucv/drivers/vmlogrdr/logrec/autorecording

• In this example record collection is started explicitly and later stopped for the account device:

echo 1 > /sys/bus/iucv/drivers/vmlogrdr/account/recording
...
echo 0 > /sys/bus/iucv/drivers/vmlogrdr/account/recording

To confirm whether recording is on or off, read the recording_status attribute as described in
“Querying the z/VM recording status” on page 382.

z/VM recording device driver 381

Purging existing records
By default, existing records for a particular z/VM recording service are purged automatically when the
corresponding device is opened or closed.

About this task

You can use a device's autopurge attribute to prevent records from being purged when a device is
opened or closed. You can use a device's purge attribute to purge records for a particular device at any
time without having to open or close the device.

Procedure

To be able to open or close a device without purging existing records write 0 to the device’s autopurge
attribute. To restore automatic purging of existing records, write 1 to the device’s autopurge attribute.
You can read the autopurge attribute to find the current setting. Issue a command of this form:

echo <flag> > /sys/bus/iucv/drivers/vmlogrdr/<device>/autopurge

where <flag> is either 0 or 1, and <device> is one of: logrec, symptom, or account.

To purge existing records for a particular device without opening or closing the device, write 1 to the
device’s purge attribute. Issue a command of this form:

echo 1 > /sys/bus/iucv/drivers/vmlogrdr/<device>/purge

where <device> is one of: logrec, symptom, or account.

Examples

• In this example, the setting of the autopurge attribute for the logrec device is checked first, then
automatic purging is switched off:

cat /sys/bus/iucv/drivers/vmlogrdr/logrec/autopurge
1
echo 0 > /sys/bus/iucv/drivers/vmlogrdr/logrec/autopurge

• In this example, the existing records for the symptom device are purged:

echo 1 > /sys/bus/iucv/drivers/vmlogrdr/symptom/purge

Querying the z/VM recording status
Use the recording_status attribute to query the z/VM recording status.

Example

This example runs the z/VM CP command QUERY RECORDING and returns the complete output of that
command. This list does not necessarily have an entry for all three services and there might also be
entries for other guests.

cat /sys/bus/iucv/drivers/vmlogrdr/recording_status

This command results in output similar to the following example:

RECORDING COUNT LMT USERID COMMUNICATION
EREP ON 00000000 002 EREP ACTIVE
ACCOUNT ON 00001774 020 DISKACNT INACTIVE
SYMPTOM ON 00000000 002 OPERSYMP ACTIVE
ACCOUNT OFF 00000000 020 LINUX31 INACTIVE

where the lines represent:

382 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

• The service
• The recording status
• The number of queued records
• The number of records that result in a message to the operator
• The guest that is or was connected to that service and the status of that connection

A detailed description of the QUERY RECORDING command can be found in the z/VM: CP Commands and
Utilities Reference, SC24-6268.

Opening and closing devices
You can open, read, and release the device. You cannot open the device multiple times. Each time the
device is opened it must be released before it can be opened again.

About this task

You can use a device's autorecord attribute (see “Starting and stopping record collection” on page 381)
to enable automatic record collection while a device is open.

You can use a device's autopurge attribute (see “Purging existing records” on page 382) to enable
automatic purging of existing records when a device is opened and closed.

Scenario: Connecting to the *ACCOUNT service
A typical sequence of tasks is autorecording, turning autorecording off, purging records, and starting
recording.

Procedure

1. Query the status of z/VM recording. As root, issue the following command:

 # cat /sys/bus/iucv/drivers/vmlogrdr/recording_status

The results depend on the system, and look similar to the following example:

RECORDING COUNT LMT USERID COMMUNICATION
EREP ON 00000000 002 EREP ACTIVE
ACCOUNT ON 00001812 020 DISKACNT INACTIVE
SYMPTOM ON 00000000 002 OPERSYMP ACTIVE
ACCOUNT OFF 00000000 020 LINUX31 INACTIVE

2. Open /dev/account with an appropriate application.
This action connects the guest to the *ACCOUNT service and starts recording. The entry for *ACCOUNT
on guest LINUX31 changes to ACTIVE and ON:

 # cat /sys/bus/iucv/drivers/vmlogrdr/recording_status

RECORDING COUNT LMT USERID COMMUNICATION
EREP ON 00000000 002 EREP ACTIVE
ACCOUNT ON 00001812 020 DISKACNT INACTIVE
SYMPTOM ON 00000000 002 OPERSYMP ACTIVE
ACCOUNT ON 00000000 020 LINUX31 ACTIVE

3. Switch autopurge and autorecord off:

 # echo 0 > /sys/bus/iucv/drivers/vmlogrdr/account/autopurge

 # echo 0 > /sys/bus/iucv/drivers/vmlogrdr/account/autorecording

4. Close the device by ending the application that reads from it and check the recording status.

z/VM recording device driver 383

While the connection is INACTIVE, RECORDING is still ON:

cat /sys/bus/iucv/drivers/vmlogrdr/recording_status
RECORDING COUNT LMT USERID COMMUNICATION
EREP ON 00000000 002 EREP ACTIVE
ACCOUNT ON 00001812 020 DISKACNT INACTIVE
SYMPTOM ON 00000000 002 OPERSYMP ACTIVE
ACCOUNT ON 00000000 020 LINUX31 INACTIVE

5. The next status check shows that some event created records on the *ACCOUNT queue:

cat /sys/bus/iucv/drivers/vmlogrdr/recording_status
RECORDING COUNT LMT USERID COMMUNICATION
EREP ON 00000000 002 EREP ACTIVE
ACCOUNT ON 00001821 020 DISKACNT INACTIVE
SYMPTOM ON 00000000 002 OPERSYMP ACTIVE
ACCOUNT ON 00000009 020 LINUX31 INACTIVE

6. Switch recording off:

echo 0 > /sys/bus/iucv/drivers/vmlogrdr/account/recording

cat /sys/bus/iucv/drivers/vmlogrdr/recording_status
RECORDING COUNT LMT USERID COMMUNICATION
EREP ON 000000000 002 EREP ACTIVE
ACCOUNT ON 00001821 020 DISKACNT INACTIVE
SYMPTOM ON 00000000 002 OPERSYMP ACTIVE
ACCOUNT OFF 00000009 020 LINUX31 INACTIVE

7. Try to switch it on again, and check whether it worked by checking the recording status:

echo 1 > /sys/bus/iucv/drivers/vmlogrdr/account/recording

cat /sys/bus/iucv/drivers/vmlogrdr/recording_status
RECORDING COUNT LMT USERID COMMUNICATION
EREP ON 000000000 002 EREP ACTIVE
ACCOUNT ON 00001821 020 DISKACNT INACTIVE
SYMPTOM ON 00000000 002 OPERSYMP ACTIVE
ACCOUNT OFF 00000009 020 LINUX31 INACTIVE

Recording did not start, in the message logs you might find a message:

 vmlogrdr: recording response: HCPCRC8087I Records are queued for user LINUX31 on the
*ACCOUNT recording queue and must be purged or retrieved before recording can be turned on.

This kernel message has priority 'debug' so it might not be written to any of your log files.
8. Now remove all the records on your *ACCOUNT queue either by starting an application that reads them

from /dev/account or by explicitly purging them:

echo 1 > /sys/bus/iucv/drivers/vmlogrdr/account/purge

cat /sys/bus/iucv/drivers/vmlogrdr/recording_status
RECORDING COUNT LMT USERID COMMUNICATION
EREP ON 00000000 002 EREP ACTIVE
ACCOUNT ON 00001821 020 DISKACNT INACTIVE
SYMPTOM ON 00000000 002 OPERSYMP ACTIVE
ACCOUNT OFF 00000000 020 LINUX31 INACTIVE

9. Now start recording and check status again:

echo 1 > /sys/bus/iucv/drivers/vmlogrdr/account/recording

384 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

cat /sys/bus/iucv/drivers/vmlogrdr/recording_status
RECORDING COUNT LMT USERID COMMUNICATION
EREP ON 00000000 002 EREP ACTIVE
ACCOUNT ON 00001821 020 DISKACNT INACTIVE
SYMPTOM ON 00000000 002 OPERSYMP ACTIVE
ACCOUNT ON 00000000 020 LINUX31 INACTIVE

z/VM recording device driver 385

386 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 39. z/VM unit record device driver
The z/VM unit record device driver provides Linux on z/VM with access to virtual unit record devices. Unit
record devices comprise punch card readers, card punches, and line printers.

Linux access is limited to virtual unit record devices with default device types (2540 for reader and punch,
1403 for printer).

To write Linux files to the virtual punch or printer (that is, to the corresponding spool file queues) or to
receive z/VM reader files (for example CONSOLE files) to Linux files, use the vmur command that is part of
the s390-tools package (see “vmur - Work with z/VM spool file queues” on page 627).

What you should know about the z/VM unit record device driver
The z/VM unit record device driver is compiled as a separate module, vmur. When the vmur module is
loaded, it registers a character device.

When a unit record device is set online, a device node is created for it.

• Reader: /dev/vmrdr-0.0.<device_number>
• Punch: /dev/vmpun-0.0.<device_number>
• Printer: /dev/vmprt-0.0.<device_number>

Working with z/VM unit record devices
After loading the vmur module, the required virtual unit record devices must be set online.

Procedure

Set the virtual unit record devices online.

For example, to set the devices with device bus-IDs 0.0.000c, 0.0.000d, and 0.0.000e online, issue the
following command:

chccwdev -e 0.0.000c-0.0.000e

What to do next

You can now use the vmur command to work with the devices (“vmur - Work with z/VM spool file queues”
on page 627).

If you want to unload the vmur module, close all unit record device nodes. Attempting to unload the
module while a device node is open results in error message Module vmur is in use. You can unload
the vmur module, for example, by issuing modprobe -r.

Serialization is implemented per device; only one process can open a particular device node at any one
time.

© Copyright IBM Corp. 2000, 2019 387

388 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 40. z/VM DCSS device driver
The z/VM discontiguous saved segments (DCSS) device driver provides disk-like fixed block access to
z/VM discontiguous saved segments.

A DCSS can hold a read-write RAM disk that can be shared among multiple Linux instances that run as
guests of the same z/VM system. For example, such a RAM disk can provide a shared file system.

For information about DCSS, see z/VM: Saved Segments Planning and Administration, SC24-6322.

What you should know about DCSS
The DCSS device names and nodes adhere to a naming scheme. There are different modes and options
for mounting a DCSS.

Important: DCSSs occupy spool space. Be sure that you have enough spool space available (multiple
times the DCSS size).

DCSS naming scheme
The standard device names are of the form dcssblk<n>, where <n> is the corresponding minor number.

The first DCSS device that is added is assigned the name dcssblk0, the second dcssblk1, and so on. When
a DCSS device is removed, its device name and corresponding minor number are free and can be
reassigned. A DCSS device that is added always receives the lowest free minor number.

DCSS device nodes
User space programs access DCSS devices by device nodes. SUSE Linux Enterprise Server 12 SP4 creates
standard DCSS device nodes for you.

Standard DCSS device nodes have the form /dev/<device_name>, for example:

 /dev/dcssblk0
 /dev/dcssblk1
...

Accessing a DCSS in exclusive-writable mode
You must access a DCSS in exclusive-writable mode, for example, to create or update the DCSS.

To access a DCSS in exclusive-writable mode at least one of the following conditions must apply:

• The DCSS fits below the maximum definable address space size of the z/VM guest virtual machine.

For large read-only DCSS, you can use suitable guest sizes to restrict exclusive-writable access to a
specific z/VM guest virtual machine with a sufficient maximum definable address space size.

• The z/VM user directory entry for the z/VM guest virtual machine includes a NAMESAVE statement for
the DCSS. See z/VM: CP Planning and Administration, SC24-6271 for more information about the
NAMESAVE statement.

• The DCSS was defined with the LOADNSHR operand.

See z/VM: CP Commands and Utilities Reference, SC24-6268 for information about the LOADNSHR
operand.

See “DCSS options” on page 390 about saving DCSSs with the LOADNSHR operand or with other
optional properties.

© Copyright IBM Corp. 2000, 2019 389

DCSS options
The z/VM DCSS device driver always saves DCSSs with default properties. Any previously defined options
are removed.

For example, a DCSS that was defined with the LOADNSHR operand loses this property when it is saved
with the z/VM DCSS device driver.

To save a DCSS with optional properties, you must unmount the DCSS device, then use the CP DEFSEG
and SAVESEG commands to save the DCSS. See “Workaround for saving DCSSs with optional properties”
on page 395 for an example.

See z/VM: CP Commands and Utilities Reference, SC24-6268 for information about DCSS options.

Setting up the DCSS device driver
Before you can load and use DCSSs, you must load the DCSS block device driver. Use the segments
module parameter to load one or more DCSSs when the DCSS device driver is loaded.

DCSS module parameter syntax

modprobe dcssblk segments=

,

:

<dcss>

(local)

<dcss>
specifies the name of a DCSS as defined on the z/VM hypervisor. The specification for <dcss> is
converted from ASCII to uppercase EBCDIC.

:
the colon (:) separates DCSSs within a set of DCSSs to be mapped to a single DCSS device. You can
map a set of DCSSs to a single DCSS device if the DCSSs in the set form a contiguous memory space.

You can specify the DCSSs in any order. The name of the first DCSS you specify is used to represent
the device under /sys/devices/dcssblk.

(local)
sets the access mode to exclusive-writable after the DCSS or set of DCSSs are loaded.

,
the comma (,) separates DCSS devices.

Examples

The following command loads the DCSS device driver and three DCSSs: DCSS1, DCSS2, and DCSS3.
DCSS2 is accessed in exclusive-writable mode.

modprobe dcssblk segments="dcss1,dcss2(local),dcss3"

The following command loads the DCSS device driver and four DCSSs: DCSS4, DCSS5, DCSS6, and DCSS7.
The device driver creates two DCSS devices. One device maps to DCSS4 and the other maps to the
combined storage space of DCSS5, DCSS6, and DCSS7 as a single device.

modprobe dcssblk segments="dcss4,dcss5:dcss6:dcss7"

390 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Avoiding overlaps with your guest storage
Ensure that your DCSSs do not overlap with the memory of your z/VM guest virtual machine (guest
storage).

About this task

To find the start and end addresses of the DCSSs, enter the following CP command; this command
requires privilege class E:

#cp q nss map

the output gives you the start and end addresses of all defined DCSSs in units of 4-kilobyte pages:

00: FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS VMGROUP
...
00: 0011 MONDCSS CPDCSS N/A 09000 097FF SC R 00003 N/A N/A
...

If all DCSSs that you intend to access are located above the guest storage, you do not need to take any
action.

Procedure

If any DCSS that you intend to access with your guest machine overlaps with the guest storage, redefine
the guest storage. Define two or more discontiguous storage extents such that the storage gap with the
lowest address range covers the address ranges of all your DCSSs.

Note:

• You cannot place a DCSS into a storage gap other than the storage gap with the lowest address range.
• A z/VM guest that was defined with one or more storage gaps cannot access a DCSS above the guest

storage.

From a CMS session, use the DEF STORE command to define your guest storage as discontiguous storage
extents. Ensure that the storage gap between the extents covers all your DCSSs' address ranges. Issue a
command of this form:

DEF STOR CONFIG 0.<storage_gap_begin> <storage_gap_end>.<storage above gap>

where:
<storage_gap_begin>

is the lower limit of the storage gap. This limit must be at or below the lowest address of the DCSS
with the lowest address range.

Because the lower address ranges are needed for memory management functions, make the lower
limit at least 128 MB. The lower limit for the DCSS increases with the total memory size. Although 128
MB is not an exact value, it is an approximation that is sufficient for most cases.

<storage_gap_end>
is the upper limit of the storage gap. The upper limit must be above the upper limit of the DCSS with
the highest address range.

<storage above gap>
is the amount of storage above the storage gap. The total guest storage is <storage_gap_begin> +
<storage above gap>.

All values can be suffixed with M to provide the values in megabyte. See z/VM: CP Commands and Utilities
Reference, SC24-6268 for more information about the DEF STORE command.

z/VM DCSS device driver 391

Example

To make a DCSS that starts at 144 MB and ends at 152 MB accessible to a z/VM guest with 512 MB guest
storage:

DEF STORE CONFIG 0.140M 160M.372M

This specification is one example of how a suitable storage gap can be defined. In this example, the
storage gap covers 140 - 160 MB and, thus, the entire DCSS range. The total guest storage is 140 MB +
372 MB = 512 MB.

Working with DCSS devices
Typical tasks for working with DCSS devices include mapping DCSS representations in z/VM and Linux,
adding and removing DCSSs, and accessing and updating DCSS contents.

• “Adding a DCSS device” on page 392
• “Listing the DCSSs that map to a particular device” on page 393
• “Finding the minor number for a DCSS device” on page 393
• “Setting the access mode” on page 394
• “Saving updates to a DCSS or set of DCSSs” on page 395
• “Workaround for saving DCSSs with optional properties” on page 395
• “Removing a DCSS device” on page 396

Adding a DCSS device
Storage gaps or overlapping storage ranges can prevent you from adding a DCSS.

Before you begin

• You must have set up one or more DCSSs on z/VM and know their names on z/VM.
• If you use the watchdog device driver, turn off the watchdog before adding a DCSS device. Adding a

DCSS device can result in a watchdog timeout if the watchdog is active.
• You cannot concurrently access overlapping DCSSs.
• You cannot access a DCSS that overlaps with your z/VM guest virtual storage (see “Avoiding overlaps

with your guest storage” on page 391).
• On z/VM guest virtual machines with one or more storage gaps, you cannot add a DCSS that is above the

guest storage.
• On z/VM guest virtual machines with multiple storage gaps, you cannot add a DCSS unless it fits in the

storage gap with the lowest address range.

Procedure

To add a DCSS device enter a command of this form:

echo <dcss-list> > /sys/devices/dcssblk/add

<dcss-list>
the name, as defined on z/VM, of a single DCSS or a colon (:) separated list of names of DCSSs to be
mapped to a single DCSS device. You can map a set of DCSSs to a single DCSS device if the DCSSs in
the set form a contiguous memory space. You can specify the DCSSs in any order. The name of the
first DCSS you specify is used to represent the device under /sys/devices/dcssblk.

392 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Examples

To add a DCSS called "MYDCSS" enter:

echo MYDCSS > /sys/devices/dcssblk/add

To add three contiguous DCSSs "MYDCSS1", "MYDCSS2", and "MYDCSS3" as a single device enter:

echo MYDCSS2:MYDCSS1:MYDCSS3 > /sys/devices/dcssblk/add

In sysfs, the resulting device is represented as /sys/devices/dcssblk/MYDCSS2.

Listing the DCSSs that map to a particular device
Read the seglist sysfs attribute to find out how DCSS devices in Linux map to DCSSs as defined in z/VM.

Procedure

To list the DCSSs that map to a DCSS device, issue a command of this form:

cat /sys/devices/dcssblk/<dcss-name>/seglist

where <dcss-name> is the DCSS name that represents the DCSS device.

Examples

In this example, DCSS device MYDCSS maps to a single DCSS, "MYDCSS".

cat /sys/devices/dcssblk/MYDCSS/seglist
MYDCSS

In this example, DCSS device MYDCSS2 maps to three contiguous DCSSs, "MYDCSS1", "MYDCSS2", and
"MYDCSS3".

cat /sys/devices/dcssblk/MYDCSS2/seglist
MYDCSS2
MYDCSS1
MYDCSS3

Finding the minor number for a DCSS device
When you add a DCSS device, a minor number is assigned to it.

About this task

Unless you use dynamically created device nodes as provided by udev, you might need to know the minor
device number that has been assigned to the DCSS (see “DCSS naming scheme” on page 389).

When you add a DCSS device, a directory of this form is created in sysfs:

/sys/devices/dcssblk/<dcss-name>

where <dcss-name> is the DCSS name that represents the DCSS device.

This directory contains a symbolic link, block, that helps you to find out the device name and minor
number. The link is of the form ../../../block/dcssblk<n>, where dcssblk<n> is the device name
and <n> is the minor number.

Example

To find out the minor number that is assigned to a DCSS device that is represented by the directory /sys/
devices/dcssblk/MYDCSS issue:

z/VM DCSS device driver 393

readlink /sys/devices/dcssblk/MYDCSS/block
../../../block/dcssblk0

In the example, the assigned minor number is 0.

Setting the access mode
You might want to access the DCSS device with write access to change the content of the DCSS or set of
DCSSs that map to the device.

About this task

There are two possible write access modes to the DCSS device:
shared

In the shared mode, changes to DCSSs are immediately visible to all z/VM guests that access them.
Shared is the default.

Note: Writing to a shared DCSS device bears the same risks as writing to a shared disk.

exclusive-writable
In the exclusive-writable mode you write to private copies of DCSSs. A private copy is writable, even if
the original DCSS is read-only. Changes that you make to a private copy are invisible to other guests
until you save the changes (see “Saving updates to a DCSS or set of DCSSs” on page 395).

After saving the changes to a DCSS, all guests that open the DCSS access the changed copy. z/VM
retains a copy of the original DCSS for those guests that continue accessing it, until the last guest
stops using it.

To access a DCSS in the exclusive-writable mode, the maximum definable storage size of your z/VM
virtual machine must be above the upper limit of the DCSS. Alternatively, suitable authorizations must
be in place (see “Accessing a DCSS in exclusive-writable mode” on page 389).

For either access mode the changes are volatile until they are saved (see “Saving updates to a DCSS or set
of DCSSs” on page 395).

Procedure

Issue a command of this form:

echo <flag> > /sys/devices/dcssblk/<dcss-name>/shared

where <dcss-name> is the DCSS name that represents the DCSS device.

You can read the shared attribute to find out the current access mode.

Example

To find out the current access mode of a DCSS device represented by the DCSS name "MYDCSS":

cat /sys/devices/dcssblk/MYDCSS/shared
1

1 means that the current access mode is shared. To set the access mode to exclusive-writable issue:

echo 0 > /sys/devices/dcssblk/MYDCSS/shared

394 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Saving updates to a DCSS or set of DCSSs
Use the save sysfs attribute to save DCSSs that were defined without optional properties.

Before you begin

• Saving a DCSS as described in this section results in a default DCSS, without optional properties. For
DCSSs that are defined with options (see “DCSS options” on page 390), see “Workaround for saving
DCSSs with optional properties” on page 395.

• If you use the watchdog device driver, turn off the watchdog before saving updates to DCSSs. Saving
updates to DCSSs can result in a watchdog timeout if the watchdog is active.

• Do not place save requests before you have accessed the DCSS device.

Procedure

Issue a command of this form:

echo 1 > /sys/devices/dcssblk/<dcss-name>/save

where <dcss-name> is the DCSS name that represents the DCSS device.

Saving is delayed until you close the device.

You can check if a save request is waiting to be performed by reading the contents of the save attribute.

You can cancel a save request by writing 0 to the save attribute.

Example

To check whether a save request exists for a DCSS device that is represented by the DCSS name
"MYDCSS":

cat /sys/devices/dcssblk/MYDCSS/save
0

The 0 means that no save request exists. To place a save request issue:

echo 1 > /sys/devices/dcssblk/MYDCSS/save

To purge an existing save request issue:

echo 0 > /sys/devices/dcssblk/MYDCSS/save

Workaround for saving DCSSs with optional properties
If you need a DCSS that is defined with special options, you must use a workaround to save the DCSSs.

Before you begin

Important: This section applies to DCSSs with special options only. The workaround in this section is
error-prone and requires utmost care. Erroneous parameter values for the described CP commands can
render a DCSS unusable. Use this workaround only if you really need a DCSS with special options.

Procedure

Perform the following steps to save a DCSS with optional properties:
1. Unmount the DCSS.

Example: Enter this command to unmount a DCSS with the device node /dev/dcssblk0:

z/VM DCSS device driver 395

umount /dev/dcssblk0

2. Use the CP DEFSEG command to newly define the DCSS with the required properties.

Example: Enter this command to newly define a DCSS, mydcss, with the range 80000-9ffff,
segment type sr, and the loadnshr operand:

vmcp defseg mydcss 80000-9ffff sr loadnshr

Note: If your DCSS device maps to multiple DCSSs as defined to z/VM, you must perform this step for
each DCSS. Be sure to specify the command correctly with the correct address ranges and segment
types. Incorrect specifications can render the DCSS unusable.

3. Use the CP SAVESEG command to save the DCSS.

Example: Enter this command to save a DCSS mydcss:

vmcp saveseg mydcss

Note: If your DCSS device maps to multiple DCSSs as defined to z/VM, you must perform this step for
each DCSS. Omitting this step for individual DCSSs can render the DCSS device unusable.

Reference

See z/VM: CP Commands and Utilities Reference, SC24-6268 for details about the DEFSEG and SAVESEG
CP commands.

Removing a DCSS device
Use the remove sysfs attribute to remove a DCSS from Linux.

Before you begin
A DCSS device can be removed only when it is not in use.

Procedure

You can remove the DCSS or set of DCSSs that are represented by a DCSS device from your Linux system
by issuing a command of this form:

echo <dcss-name> > /sys/devices/dcssblk/remove

where <dcss-name> is the DCSS name that represents the DCSS device.

Example

To remove a DCSS device that is represented by the DCSS name "MYDCSS" issue:

echo MYDCSS > /sys/devices/dcssblk/remove

What to do next
If you have created your own device nodes, you can keep the nodes for reuse. Be aware that the major
number of the device might change when you unload and reload the DCSS device driver. When the major
number of your device has changed, existing nodes become unusable.

396 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Scenario: Changing the contents of a DCSS
Before you can change the contents of a DCSS, you must add the DCSS to Linux, access it in a writable
mode, and mount the file system on it.

About this task
The scenario that follows is based on these assumptions:

• The Linux instance runs as a z/VM guest with class E user privileges.
• A DCSS is set up and can be accessed in exclusive-writable mode by the Linux instance.
• The DCSS does not overlap with the guest's main storage.
• There is only a single DCSS named "MYDCSS".
• The DCSS block device driver is set up and ready to be used.

The description in this scenario can readily be extended to changing the content of a set of DCSSs that
form a contiguous memory space. The only change to the procedure would be mapping the DCSSs in the
set to a single DCSS device in step “1” on page 397. The assumptions about the set of DCSSs would be:

• The contiguous memory space that is formed by the set does not overlap with the guest storage.
• Only the DCSSs in the set are added to the Linux instance.

Procedure

Perform the following steps to change the contents of a DCSS:
1. Add the DCSS to the block device driver.

echo MYDCSS > /sys/devices/dcssblk/add

2. Ensure that there is a device node for the DCSS block device.
If it is not created for you, for example by udev, create it yourself.
a) Find out the major number that is used for DCSS block devices. Read /proc/devices:

cat /proc/devices
...
Block devices
...
254 dcssblk
...

The major number in the example is 254.
b) Find out the minor number that is used for MYDCSS.

If MYDCSS is the first DCSS that to be added, the minor number is 0. To be sure, you can read a
symbolic link that is created when the DCSS is added.

readlink /sys/devices/dcssblk/MYDCSS/block
../../../block/dcssblk0

The trailing 0 in the standard device name dcssblk0 indicates that the minor number is, indeed, 0.
c) Create the node with the mknod command:

mknod /dev/dcssblk0 b 254 0

3. Set the access mode to exclusive-write.

echo 0 > /sys/devices/dcssblk/MYDCSS/shared

4. Mount the file system in the DCSS on a spare mount point.

z/VM DCSS device driver 397

mount /dev/dcssblk0 /mnt

5. Update the data in the DCSS.
6. Create a save request to save the changes.

echo 1 > /sys/devices/dcssblk/MYDCSS/save

7. Unmount the file system.

umount /mnt

The changes to the DCSS are now saved. When the last z/VM guest stops accessing the old version of
the DCSS, the old version is discarded. Each guest that opens the DCSS accesses the updated copy.

8. Remove the device.

echo MYDCSS > /sys/devices/dcssblk/remove

9. Optional: If you have created your own device node, you can clean it up.

rm -f /dev/dcssblk0

398 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 41. z/VM CP interface device driver
Using the z/VM CP interface device driver (vmcp), you can send control program (CP) commands to the
z/VM hypervisor and display the response.

The vmcp device driver works only for Linux on z/VM.

What you should know about the z/VM CP interface
The z/VM CP interface device driver (vmcp) uses the CP diagnose X'08' to send commands to CP and to
receive responses. The behavior is similar but not identical to #CP on a 3270 or 3215 console.

Using the z/VM CP interface

There are two ways of using the z/VM CP interface driver:

• Through the /dev/vmcp device node
• Through a user space tool (see “vmcp - Send CP commands to the z/VM hypervisor” on page 625)

Differences between vmcp and a 3270 or 3215 console

Most CP commands behave identically with vmcp and on a 3270 or 3215 console. However, some
commands show a different behavior:

• Diagnose X'08' (see z/VM: CP Programming Services, SC24-6272) requires you to specify a response
buffer with the command. Because the response size is not known in advance, the default response
buffer of vmcp might be too small and the response truncated.

• On a 3270 or 3215 console, the CP command is executed on virtual CPU 0. The vmcp device driver uses
the CPU that is scheduled by the Linux kernel. For CP commands that depend on the CPU number (like
trace) you should specify the CPU, for example: cpu 3 trace count.

• Some CP commands do not return specific error or status messages through diagnose X'08'. These
messages are only returned on a 3270 or 3215 console. For example, the command vmcp link
user1 1234 123 mw might return the message DASD 123 LINKED R/W in a 3270 or 3215 console.
This message is not displayed if the CP command is issued with vmcp. For details, see the z/VM help
system or z/VM: CP Commands and Utilities Reference, SC24-6268.

Using the device node
You can send a command to z/VM CP by writing to the vmcp device node.

Observe the following rules for writing to the device node:

• Omit the newline character at the end of the command string. For example, use echo -n if you are
writing directly from a terminal session.

• Write the command in the same case as required on z/VM.
• Escape characters that need escaping in the environment where you issue the command.

Example

The following command attaches a device to your z/VM guest virtual machine. The asterisk (*) is escaped
to prevent the command shell from interpreting it.

echo -n ATTACH 1234 * > /dev/vmcp

© Copyright IBM Corp. 2000, 2019 399

Application programmers

You can also use the vmcp device node directly from an application by using open, write (to issue the
command), read (to get the response), ioctl (to get and set status), and close. The following ioctls are
supported:

Table 55: The vmcp ioctls

Name Code definition Description

VMCP_GETCODE _IOR (0x10, 1, int) Queries the return code of z/VM.

VMCP_SETBUF _IOW(0x10, 2, int) Sets the buffer size (the device driver has a default of
4 KB; vmcp calls this ioctl to set it to 8 KB instead).

VMCP_GETSIZE _IOR(0x10, 3, int) Queries the size of the response.

400 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 42. z/VM special messages uevent support
The smsgiucv_app kernel device driver receives z/VM CP special messages (SMSG) and delivers these
messages to user space as udev events (uevents).

The device driver receives only messages that start with APP. The generated uevents contain the message
sender and content as environment variables (see Figure 74 on page 401).

Figure 74: CP special messages as uevents in user space

You can restrict the received special messages to a particular z/VM user ID. CP special messages are
discarded if the specified sender does not match the sender of the CP special message.

Setting up the CP special message device driver
Configure the CP special message device driver when you load the device driver module.

The z/VM user ID does not require special authorizations to receive CP special messages. CP special
messages can be issued from the local z/VM guest virtual machine or from other guest virtual machines.
You can issue special messages from Linux or from a CMS or CP session.

Load the device driver module with the modprobe command.

smsgiucv_app syntax
modprobe smsgiucv_app

 sender=<user_ID>

Where:

© Copyright IBM Corp. 2000, 2019 401

sender=<user_ID>
permits CP special messages from the specified z/VM user ID only. CP special messages are
discarded if the specified sender does not match the sender of the CP special message. If the sender=
option is empty or not set, CP special messages are accepted from any z/VM user ID.

Lowercase characters are converted to uppercase.

To receive messages from several user IDs leave the sender= parameter empty, or do not specify it, and
then filter with udev rules (see “Example udev rule” on page 403).

Working with CP special messages
You might have to send, access, or respond to CP special messages.

• “Sending CP special messages” on page 402
• “Accessing CP special messages through uevent environment variables” on page 402
• “Writing udev rules for handling CP special messages” on page 402

Sending CP special messages
Issue a CP SMSG command from a CP or CMS session or from Linux to send a CP special message.

Procedure

To send a CP special message to LXGUEST1 from Linux, enter a command of the following form:

vmcp SMSG LXGUEST1 APP "<message text>"

To send a CP special message to LXGUEST1, enter the following command from a CP or CMS session:

#CP SMSG LXGUEST1 APP <message text>

The special messages cause uevents to be generated. See “Writing udev rules for handling CP special
messages” on page 402 for information about handling the uevents.

Accessing CP special messages through uevent environment variables
A uevent for a CP special message contains environment variables that you can use to access the
message.

SMSG_ID
Specifies the message prefix. The SMSG_ID environment variable is always set to APP, which is the
prefix that is assigned to the smsgiucv_app device driver.

SMSG_SENDER
Specifies the z/VM user ID that sent the CP special message.

Use SMSG_SENDER in udev rules for filtering the z/VM user ID if you want to accept CP special
messages from different senders. All alphabetic characters in the z/VM user ID are uppercase
characters.

SMSG_TEXT
Contains the message text of the CP special message. The APP prefix and leading white spaces are
removed.

Writing udev rules for handling CP special messages
When using the CP special messages device driver, CP special messages trigger uevents.

change events
The smsgiucv_app device driver generates change uevents for each CP special message that is
received.

402 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

For example, the special message:

#CP SMSG LXGUEST1 APP THIS IS A TEST MESSAGE

might trigger the following uevent:

UEVENT[1263487666.708881] change /devices/iucv/smsgiucv_app (iucv)
ACTION=change
DEVPATH=/devices/iucv/smsgiucv_app
SUBSYSTEM=iucv
SMSG_SENDER=MAINT
SMSG_ID=APP
SMSG_TEXT=THIS IS A TEST MESSAGE
DRIVER=SMSGIUCV
SEQNUM=1493

add and remove events
In addition to the change event for received CP special messages, generic add and remove events
are generated when the module is loaded or unloaded, for example:

UEVENT[1263487583.511146] add /module/smsgiucv_app (module)
ACTION=add
DEVPATH=/module/smsgiucv_app
SUBSYSTEM=module
SEQNUM=1487

UEVENT[1263487583.514622] add /devices/iucv/smsgiucv_app (iucv)
ACTION=add
DEVPATH=/devices/iucv/smsgiucv_app
SUBSYSTEM=iucv
DRIVER=SMSGIUCV
SEQNUM=1488

UEVENT[1263487628.955149] remove /devices/iucv/smsgiucv_app (iucv)
ACTION=remove
DEVPATH=/devices/iucv/smsgiucv_app
SUBSYSTEM=iucv
SEQNUM=1489

UEVENT[1263487628.957082] remove /module/smsgiucv_app (module)
ACTION=remove
DEVPATH=/module/smsgiucv_app
SUBSYSTEM=module
SEQNUM=1490

With the information from the uevents, you can create custom udev rules to trigger actions that depend
on the settings of the SMSG_* environment variables (see “Accessing CP special messages through
uevent environment variables” on page 402).

For your udev rules, use the add and remove uevents to initialize and clean up resources. To handle CP
special messages, write udev rules that match change uevents. For more information about writing udev
rules, see the udev man page.

Example udev rule
The udev rules that process CP special messages identify particular messages and define one or more
specific actions as a response.

The following example shows how to process CP special messages by using udev rules. The example
contains rules for actions, one for all senders and one for the MAINT, OPERATOR, and LNXADM senders
only.

z/VM special messages uevent support 403

The rules are contained in a block that matches uevents from the smsgiucv_app device driver. If there is
no match, processing ends:

#
Sample udev rules for processing CP special messages.
#
#
DEVPATH!="*/smsgiucv_app", GOTO="smsgiucv_app_end"

---------- Rules for CP messages go here --------

LABEL="smsgiucv_app_end"

The example uses the vmur command. If the vmur kernel module has been compiled as a separate
module, this module must be loaded first. Then, the z/VM virtual punch device is activated.

--- Initialization ---

load vmur and set the virtual punch device online
SUBSYSTEM=="module", ACTION=="add", RUN+="/sbin/modprobe --quiet vmur"
SUBSYSTEM=="module", ACTION=="add", RUN+="/sbin/chccwdev -e d"

The following rule accepts messages from all senders. The message text must match the string UNAME. If
it does, the output of the uname command (the node name and kernel version of the Linux instance) is
sent back to the sender.

--- Rules for all senders ----

UNAME: tell the sender which kernel is running
ACTION=="change", ENV{SMSG_TEXT}=="UNAME", \
 PROGRAM=="/bin/uname -n -r", \
 RUN+="/sbin/vmcp msg $env{SMSG_SENDER} '$result'"

In the following example block rules are defined to accept messages from certain senders only. If no
sender matches, processing ends. The message text must match the string DMESG. If it does, the
environment variable PATH is set and the output of the dmesg command is sent into the z/VM reader of
the sender. The name of the spool file is LINUX DMESG.

--- Special rules available for particular z/VM user IDs ---

ENV{SMSG_SENDER}!="MAINT|OPERATOR|LNXADM", GOTO="smsgiucv_app_end"

DMESG: punch dmesg output to sender
ACTION=="change", ENV{SMSG_TEXT}=="DMESG", \
 ENV{PATH}="/bin:/sbin:/usr/bin:/usr/sbin", \
 RUN+="/bin/sh -c 'dmesg |fold -s -w 74 |vmur punch -r -t -N LINUX.DMESG -u $env{SMSG_SENDER}'"

404 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 43. Cooperative memory management
Cooperative memory management (CMM, or "cmm1") can reduce the memory that is available to an
instance of Linux on z/VM.

To make pages unusable by Linux, CMM allocates them to special page pools. A diagnose code indicates
to z/VM that the pages in these page pools are out of use. z/VM can then immediately reuse these pages
for other z/VM guests.

To set up CMM, you must perform these tasks:

1. Load the cmm module.
2. Set up a resource management tool that controls the page pool. This tool can be the z/VM resource

monitor (VMRM) or a third-party systems management tool.

This chapter describes how to set up CMM. For background information about CMM, see “Cooperative
memory management background” on page 361.

You can also use the cpuplugd command to define rules for cmm behavior, see “cpuplugd - Control CPUs
and memory” on page 499.

For information about setting up the external resource manager, see the chapter on VMRM in z/VM:
Performance, SC24-6301.

Setting up cooperative memory management
Set up Linux on z/VM to participate in the cooperative memory management by loading the cooperative
memory management support module, cmm.

You can load the cmm module with the modprobe command.

cooperative memory management module parameter syntax

modprobe cmm

 sender=VMRMSVM

 sender=<user_ID>

where <user_ID> specifies the z/VM guest virtual machine that is permitted to send messages to the
module through the special messages interface. The default z/VM user ID is VMRMSVM, which is the
default for the VMRM service machine.

Lowercase characters are converted to uppercase.

Example

To load the cooperative memory management module and allow the z/VM guest virtual machine TESTID
to send messages:

modprobe cmm sender=TESTID

© Copyright IBM Corp. 2000, 2019 405

Working with cooperative memory management
After it has been set up, CMM works through the resource manager. No further actions are necessary. You
might want to read the sizes of the page pools for diagnostic purposes.

To reduce the Linux memory size, CMM allocates pages to page pools that make the pages unusable to
Linux. There are two such page pools, a static pool and a timed pool. You can use the procfs interface to
read the sizes of the page pools.

Reading the size of the static page pool
You can read the current size of the static page pool from procfs.

Procedure

Issue this command:

cat /proc/sys/vm/cmm_pages

Reading the size of the timed page pool
You can read the current size of the timed page pool from procfs.

Procedure

Issue this command:

cat /proc/sys/vm/cmm_timed_pages

406 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Part 7. Security
These device drivers and features support security aspects of SUSE Linux Enterprise Server 12 SP4 for
IBM Z.

Newest version

You can find the newest version of this publication on IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html

Restrictions
For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture specific information in
the SUSE Linux Enterprise Server 12 SP4 release notes at
www.suse.com/releasenotes

© Copyright IBM Corp. 2000, 2019 407

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html
http://www.suse.com/releasenotes

408 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 44. Generic cryptographic device driver
The generic cryptographic device driver supports cryptographic coprocessor and accelerator hardware.
Cryptographic coprocessors provide secure key cryptographic operations for the IBM Common
Cryptographic Architecture (CCA) and the Enterprise PKCS#11 feature (EP11). Cryptographic accelerators
support clear key cryptographic algorithms.

Some cryptographic processing in Linux can be offloaded from the processor and performed by dedicated
CCA or EP11 coprocessors or accelerators. Several of these CCA or EP11 coprocessors and accelerators
are available offering a range of features. The generic cryptographic device driver is required to use any
available cryptographic hardware for processor offload.

Features
The cryptographic device driver supports a range of hardware and software functions.

Supported cryptographic adapters
The cryptographic hardware feature might contain one or two cryptographic adapters. Each adapter can
be configured either as a coprocessor or as an accelerator. The CEX6, CEX5 and CEX4 cryptographic
adapters can also be configured as EP11 coprocessors.

• Crypto Express6S (EP11) Coprocessor (CEX6P)
• Crypto Express6S (CCA) Coprocessor (CEX6C)
• Crypto Express6S Accelerator (CEX6A)
• Crypto Express5S Accelerator (CEX5A)
• Crypto Express5S (CCA) Coprocessor (CEX5C)
• Crypto Express5S (EP11) Coprocessor (CEX5P)
• Crypto Express4S Accelerator (CEX4A)
• Crypto Express4S (CCA) Coprocessor (CEX4C)
• Crypto Express4S (EP11) Coprocessor (CEX4P)
• Crypto Express3 Accelerator (CEX3A)
• Crypto Express3 Coprocessor (CEX3C)

For information about setting up your cryptographic environment on Linux under z/VM, see z/VM: Secure
Configuration Guide, SG24-6323 and Security for Linux on System z, SG24-7728.

Supported facilities
The cryptographic device driver supports several cryptographic accelerators as well as CCA and EP11
coprocessors.

Cryptographic accelerators support clear key cryptographic algorithms. In particular, they provide fast
RSA encryption and decryption for key sizes 1024-bit, 2048-bit, and 4096-bit (CEX5A, CEX4A and CEX3A
only).

Cryptographic coprocessors act as a hardware security module (HSM) and provide secure key
cryptographic operations for the IBM Common Cryptographic Architecture (CCA) and the Enterprise
PKCS#11 feature (EP11).

For more information about CCA, see Secure Key Solution with the Common Cryptographic Architecture
Application Programmer's Guide, SC33-8294. You can obtain this book at www.ibm.com/support/
knowledgecenter/linuxonibm/liaaf/lnz_r_cca.html .

© Copyright IBM Corp. 2000, 2019 409

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_cca.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_cca.html

For more information about EP11, see Exploiting Enterprise PKCS #11 using openCryptoki, SC34-2713.
You can obtain this publication at www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/
sec_hw_supp.html.

Cryptographic coprocessors also provide clear key RSA operations for 1024-bit, 2048-bit, and 4096-bit
keys, and a true random number generator for /dev/hwrng. The EP11 coprocessor supports only secure
key operations.

Hardware and software prerequisites
Support for the Crypto Express6S, Crypto Express5S, Crypto Express4S, Crypto Express3, and Crypto
Express2 features depends on the IBM Z hardware model.

Table 56 on page 410 lists the support for the cryptographic adapters.

Table 56: Support for cryptographic adapters by mainframe model.

Cryptographic adapters Mainframe support

CEX6A, CEX6C, and CEX6P z14 and z14 ZR1

CEX5A, CEX5C, and CEX5P z14, z13 and z13s

CEX4A, CEX4C, and CEX4P zEC12 and zBC12

CEX3A and CEX3C zEC12, zBC12, z196, and z114

Table 57 on page 410 lists the required software by function.

Table 57: Required software.

Software required Function that is supported by the software

The CCA library For the secure key cryptographic functions on CCA coprocessors.

For information about cryptographic CCA coprocessors, coexistence of
adapter versions, and how to use CCA functions, see Secure Key Solution with
the Common Cryptographic Architecture Application Programmer's Guide,
SC33-8294. You can obtain this publication at www.ibm.com/support/
knowledgecenter/linuxonibm/liaaf/lnz_r_cca.html .

The EP11 library For the secure key cryptographic functions on EP11 coprocessors. See
Exploiting Enterprise PKCS #11 using openCryptoki, SC34-2713. You can
obtain this publication at www.ibm.com/developerworks/linux/linux390/
documentation_dev.html.

The libica library For the clear key cryptographic functions. See libica Programmer's Reference,
SC34-2602. You can obtain this publication at www.ibm.com/
developerworks/linux/linux390/documentation_dev.html.

APAR VM65942 To support z14 hardware and the CEX6S adapter for Linux on z/VM.

The CEX3C feature is supported as of version 4.0. You can download the CCA library from the IBM
cryptographic coprocessor web page at

www.ibm.com/security/cryptocards

Note: The CCA library works with 64-bit applications only.

410 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/sec_hw_supp.html
http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/sec_hw_supp.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_cca.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_cca.html
http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html
http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html
http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html
http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html
http://www.ibm.com/security/cryptocards

What you should know about the cryptographic device driver
Your use of the cryptographic device driver and the cryptographic hardware might need additional
software. There are special considerations for Linux on z/VM, for performance, and for specific
cryptographic operations.

Functions provided by the cryptographic device driver
The functions that are provided by the cryptographic device driver depend on whether it finds an
accelerator or coprocessor.

For both accelerators and CCA coprocessors, it provides Rivest-Shamir-Adleman (RSA) encryption and
RSA decryption functions using clear keys. RSA operations are supported in both the modulus-exponent
and the Chinese-Remainder Theorem (CRT) variants for any key size in the range 57 - 4096 bit.

For CCA coprocessors, it also provides a function to pass CCA requests to the cryptographic coprocessor
and an access to the true random number generator of the CCA coprocessor.

For EP11 coprocessors, the device driver provides functionality to pass EP11 requests to the
cryptographic coprocessor.

Adapter discovery
Cryptographic adapters are detected automatically when the module is loaded. They are reprobed
periodically, and following any hardware problem.

Depending on what adapters were detected, the cryptographic device driver might provide two misc
device nodes, one for cryptographic requests, and one for a device from which random numbers can be
read.

Upon detection of a cryptographic adapter, the device driver presents a Linux misc device, z90crypt, to
user space. A user space process can open the misc device to submit cryptographic requests to the
adapter through IOCTLs.

If at least one of the detected cryptographic adapters is a coprocessor, an additional misc device, hwrng,
is created from which random numbers can be read.

You can set cryptographic adapters online or offline in the device driver. The cryptographic device driver
ignores adapters that are configured offline even if the hardware is detected. The online or offline
configuration is independent of the hardware configuration.

Request processing
Cryptographic adapters process requests asynchronously.

The device driver detects request completion either by standard polling, a special high-frequency polling
thread, or by hardware interrupts. Hardware interrupt support is only available for Linux instances that run
in an LPAR. If hardware interrupt support is available, the device driver does not use polling to detect
request completion.

All requests to either of the two misc devices are routed to a cryptographic adapter using a crypto request
scheduling function that, for each adapter, takes into account:

• The supported functions
• The number of pending requests
• A speed rating

Cryptographic domains
Crypto Express hardware adapters, coprocessors or accelerators, are divided into multiple domains, also
called cryptographic domains or AP domains.

Each domain acts as an independent cryptographic device with its own state, including its own master
key. Two domains in the same Crypto Express adapter are completely isolated and cannot access each

Generic cryptographic device driver 411

other's states. The maximum number of domains depends on the mainframe model and is the same for
all Crypto Express adapters in that mainframe. For example, a z13 supports up to 85 domains (with
hexadecimal domain IDs 0000 to 0054).

The device driver uses at least one domain for all adapters. If none is given, the kernel selects a default
domain. Alternatively, you can select the default domain using a module parameter (see “Kernel
parameters” on page 414).

Cryptographic devices on LPARs

When you assign adapters and domains to an LPAR on the HMC or SE, you indirectly assign virtual
cryptographic devices.

For example, assigning adapter ID 00 and 02 as well as domains 0002, 0003, and 0005 to an LPAR
implicitly assigns six virtual cryptographic devices to the LPAR: (00,0002), (00,0003), (00,0005),
(02,0002), (02,0003), and (02,0005).

You can choose between two types of access to a cryptographic domain:

To use cryptographic functions.
A domain that is assigned to an LPAR for usage access is called a usage domain of that LPAR on the
HMC or SE.

To manage or control the domain, including the management of the master keys.
A domain that is assigned to an LPAR for management (control) access is called a control domain of
that LPAR on the HMC or SE.

Every usage domain of an LPAR must also be a control domain of that LPAR.

The list of usage domains and the list of adapter IDs define the list of virtual cryptographic devices that
are assigned to an LPAR. For example, if 00 is an adapter ID and 0002 is a usage domain ID, then the
virtual cryptographic device (00,0002) is assigned to the LPAR.

Cryptographic devices on z/VM

In z/VM, the virtual cryptographic devices available to a guest are defined by using the CRYPTO directory
statement:

• The CRYPTO APDEDICATE statement assigns domain IDs and adapter IDs to the guest. This
assignment implicitly defines a list of dedicated virtual cryptographic devices. All virtual cryptographic

412 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

devices that are determined by an ID from the adapter list of that guest and an ID from the domain list
of that guest are assigned to the guest.

• The CRYPTO APVIRT statement assigns one virtual cryptographic device that can be shared among
multiple guests with a guest-specific virtualized adapter ID and a virtualized domain ID.

Virtual cryptographic devices in z/VM can be either shared or dedicated, but not both.

Linux on z/VM with access to a shared cryptographic accelerator can either observe an accelerator or a
CCA coprocessor.

For shared cryptographic CCA coprocessors, the following functions are available to the Linux instance:

• Random number functions
• Clear-key RSA functions
• If APAR VM65942 has been installed: Clear-key ECC functions

Other requests are rejected by z/VM. For more information about supported functions, see the z/VM
publications.

Cryptographic devices on Linux

In Linux, virtual cryptographic devices are called AP queues. The name of an AP queue consists of two
parts, the adapter ID and the domain ID, both in hexadecimal notation. For example, if cryptographic
adapters with the IDs 00 and 02 are selected, and the domains IDs 0002, 0003 and 0005 have been
configured on the cryptographic adapter, then the following AP queues are defined to Linux:

/sys/devices/ap/card00/00.0002
/sys/devices/ap/card00/00.0003
/sys/devices/ap/card00/00.0005
/sys/devices/ap/card02/02.0002
/sys/devices/ap/card02/02.0003
/sys/devices/ap/card02/02.0005

Setting up the cryptographic device driver
Configure the cryptographic device driver through the ap.domain= and the ap.poll_thread= kernel
parameters. You might also have to set up libraries.

The cryptographic device driver consists of multiple, separate modules:
zcrypt

Cryptographic Coprocessor interface, Cryptographic Coprocessor message type 6, Cryptographic
Coprocessor message type 50. Support for message type 6 includes secure key and RNG requests.
Support for message type 50 includes RSA requests for both modulus-exponent and Chinese-
Remainder Theorem variants.

zcrypt_cex4
device driver for CEX6, CEX5, and CEX4 adapters.

zcrypt_cex2a
device driver for CEX3A adapters.

zcrypt_pcixcc
device driver for CEX3C adapters.

For information about setting up cryptographic hardware on your mainframe system, see zSeries Crypto
Guide Update, SG24-6870.

Generic cryptographic device driver 413

Kernel parameters
You can configure the cryptographic device driver by adding parameters to the kernel parameter line.

zcrypt kernel parameter syntax
ap.domain=autoselect

 ap.domain=<domain>

ap.poll_thread=0

ap.poll_thread=1

where
<domain>

is an integer that identifies the default cryptographic domain for the Linux instance. You define
cryptographic domains in the LPAR activation profile on the HMC or SE.

The default value (ap.domain=autoselect) causes the device driver to choose one of the available
domains automatically.

Important: Be sure to enter an existing domain. The Trusted Key Entry (TKE) workstation does not
find the cryptographic adapters if a non-existing domain is entered here. All CCA applications use the
default domain, and do not work correctly if the specified domain does not exist.

<poll_thread>
is an integer argument and enables a polling thread to tune cryptographic performance. Valid values
are 1 (enabled) or 0 (disabled, this value is the default). For details, see “Setting the polling thread” on
page 417.

Note: If you are running Linux in an LPAR, AP interrupts are used instead of the polling thread. The
polling thread is disabled when AP interrupts are available. See “Using AP adapter interrupts” on page
418.

Examples

The following kernel parameter line specification makes the zcrypt device driver operate within the
default cryptographic domain "7" with poll_thread enabled:

ap.domain=7 ap.poll_thread=1

Accessing cryptographic devices
Programs in user space access cryptographic devices through a single device node.

In SUSE Linux Enterprise Server 12 SP4 udev creates the device node /dev/z90crypt for you. The
device node z90crypt is assigned to the miscellaneous devices.

Working with cryptographic devices
Typically, cryptographic devices are not directly accessed by users but through user programs. Some
tasks can be performed through the sysfs interface.

• “Displaying information about cryptographic devices” on page 415
• “Setting devices online or offline” on page 417
• “Setting the polling thread” on page 417
• “Using AP adapter interrupts” on page 418
• “Setting the polling interval” on page 418
• “Dynamically adding and removing cryptographic adapters” on page 419
• “Displaying information about the AP bus” on page 420

414 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Displaying information about cryptographic devices
Use the lszcrypt command to display status information about your cryptographic devices;
alternatively, you can use sysfs.

About this task

For information about lszcrypt, see “lszcrypt - Display cryptographic devices” on page 569.

Each cryptographic adapter is represented in sysfs directory of the form

/sys/bus/ap/devices/card<XX>

where <XX> is the two-digit device index for each device. For example, device 0x1a can be found
under /sys/bus/ap/devices/card1a. The sysfs directory contains a number of attributes with
information about the cryptographic adapter.

Table 58: Cryptographic adapter attributes

Attribute Explanation

ap_functions Read-only attribute that represents the function facilities that are installed
on this device.

depth Read-only attribute that represents the input queue length for this device.

hwtype Read-only attribute that represents the numeric hardware type for this
device. The following values are defined:
8

CEX3A adapters.
9

CEX3C adapters.

10
CEX4A, CEX4C, or CEX4P adapters.

11
CEX5A, CEX5C, or CEX5P adapters.

12
CEX6A, CEX6C, or CEX6P adapters.

The hwtype attribute shows the hardware type as interpreted by the device
driver. For example, any cryptographic adapter later than CEX6 might be
shown as a CEX6 adapter (type 12). See also the raw_hwtype attribute.

raw_hwtype Read-only attribute that represents the original hardware type of the
cryptographic adapter.

modalias Read-only attribute that represents an internally used device bus-ID.

online Read-write attribute that shows whether the device is online (1) or offline (0).

pendingq_count Read-only attribute that represents the number of requests in the hardware
queue.

request_count Read-only attribute that represents the number of requests that are already
processed by this device.

requestq_count Read-only attribute that represents the number of outstanding requests (not
including the requests in the hardware queue).

Generic cryptographic device driver 415

Table 58: Cryptographic adapter attributes (continued)

Attribute Explanation

type Read-only attribute with a name for the device type. The following types are
defined:

• CEX3A, CEX3C
• CEX4A, CEX4C, CEX4P
• CEX5A, CEX5C, CEX5P
• CEX6A, CEX6C, CEX6P

Each AP queue is independently configurable and represented in a subdirectory of the cryptographic
device it belongs to:

/sys/bus/ap/devices/card<XX>/<XX>.<YYYY>

where <XX> is the adapter ID of the cryptographic device and <YYYY> is the domain. For example, a
cryptographic device with adapter ID 1a might have domains 5 (0005), 31 (001f), and 77 (004d)
configured. The cryptographic device together with its AP queues would be represented in sysfs as:

/sys/devices/ap/card1a
/sys/devices/ap/card1a/1a.0005
/sys/devices/ap/card1a/1a.001f
/sys/devices/ap/card1a/1a.004d

Actions that you take on the cryptographic device also apply to its associated AP queues. Attributes like
type and hwtype are inherited by the AP queues. The sysfs directory contains a number of attributes with
information about the AP queues.

Table 59: Attributes of the AP queues

Attribute Explanation

online Read-write attribute that shows whether the AP queue is online (1) or offline
(0).

interrupt Read-only attribute that represents the interrupt state (enabled or disabled)
of the AP queue, and hence the request queue.

reset Read-only attribute that indicate the state of pending resets of the AP
queues, and hence the request queue.

pendingq_count Read-only attribute that represents the number of requests in the hardware
queue.

request_count Read-only attribute that represents the number of requests that are already
processed by this AP queue.

requestq_count Read-only attribute that represents the number of outstanding requests (not
including the requests in the hardware queue).

To display status information about your cryptographic devices, you can also use the lszcrypt
command (see “lszcrypt - Display cryptographic devices” on page 569).

416 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Setting devices online or offline
Use the chzcrypt command to set cryptographic devices online or offline.

Procedure

• Preferably, use the chzcrypt command with the -e option to set cryptographic devices online, or use
the -d option to set devices offline.

Examples:

– To set cryptographic devices (in decimal notation) 0, 1, 4, 5, and 12 online issue:

chzcrypt -e 0 1 4 5 12

– To set all available cryptographic devices offline issue:

chzcrypt -d -a

For more information about chzcrypt, see “chzcrypt - Modify the cryptographic configuration” on
page 482.

• Alternatively, write 1 to the online sysfs attribute of a cryptographic device to set the device online,
or write 0 to set the device offline.

Examples:

– To set a cryptographic device with device ID 0x3e online issue:

echo 1 > /sys/bus/ap/devices/card3e/online

– To set a cryptographic device with device ID 0x3e offline issue:

echo 0 > /sys/bus/ap/devices/card3e/online

– To check the online status of the cryptographic device with device ID 0x3e issue:

cat /sys/bus/ap/devices/card3e/online

The value is 1 if the device is online or 0 otherwise.

Setting the polling thread
For Linux on z/VM, enabling the polling thread can improve cryptographic performance.

About this task

Linux in LPAR mode supports interrupts that indicate the completion of cryptographic requests. See
“Using AP adapter interrupts” on page 418. If AP interrupts are available, it is not possible to activate the
polling thread.

Depending on the workload, enabling the polling thread can increase cryptographic performance. For
Linux on z/VM, the polling thread is deactivated by default.

The cryptographic device driver can run with or without the polling thread. When it runs with the polling
thread, one processor constantly polls the cryptographic cards for finished cryptographic requests while
requests are being processed. The polling thread sleeps when no cryptographic requests are being
processed. This mode uses the cryptographic cards as much as possible, at the cost of blocking one
processor during cryptographic operations.

Without the polling thread, the cryptographic cards are polled at a much lower rate. The lower rate results
in higher latency, and reduced throughput for cryptographic requests, but without a noticeable processor
load.

Generic cryptographic device driver 417

Procedure

• Use the chzcrypt command to set the polling thread.

Examples:

– To activate the polling thread issue:

chzcrypt -p

– To deactivate the polling thread issue:

chzcrypt -n

For more information about chzcrypt, see “chzcrypt - Modify the cryptographic configuration” on
page 482.

• Alternatively, you can set the polling thread through the poll_thread sysfs attribute.
This read-write attribute can be found at the AP bus level.

Examples:

– To activate a polling thread for a device 0x3e issue:

echo 1 > /sys/bus/ap/devices/card3e/poll_thread

– To deactivate a polling thread for a cryptographic device with bus device-ID 0x3e issue:

echo 0 > /sys/bus/ap/devices/card3e/poll_thread

Using AP adapter interrupts
To improve cryptographic performance for Linux instances that run in LPAR mode, use AP interrupts.

About this task

Using AP interrupts instead of the polling thread frees one processor while cryptographic requests are
processed.

During module initialization, the cryptographic device driver checks whether AP adapter interrupts are
supported by the hardware. If so, polling is disabled and the interrupt mechanism is automatically used.

To query whether AP adapter interrupts are used, read the sysfs attribute interrupt of the device.
Another interrupt attribute at the AP bus level, /sys/bus/ap/ap_interrupts, indicates that the AP
bus is able to handle interrupts.

Example

To read the interrupt attribute for a device 0x3e issue:

cat /sys/bus/ap/devices/card3e/interrupt

If interrupts are used, the attribute shows "interrupts enabled", otherwise "interrupts disabled".

Setting the polling interval
Request polling is supported at nanosecond intervals.

Procedure

• Use the lszcrypt and chzcrypt commands to read and set the polling time.

Examples:

418 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

– To find out the current polling time, issue:

lszcrypt -b
...
poll_timeout=250000 (nanoseconds)

– To set the polling time to one microsecond, issue:

chzcrypt -t 1000

For more information about lszcrypt and chzcrypt see “lszcrypt - Display cryptographic devices”
on page 569 and “chzcrypt - Modify the cryptographic configuration” on page 482.

• Alternatively, you can set the polling time through the poll_timeout sysfs attribute. This read-write
attribute can be found at the AP bus level.

Examples:

– To read the poll_timeout attribute for the ap bus issue:

cat /sys/bus/ap/poll_timeout

– To set the poll_timeout attribute for the ap bus to poll, for example, every microsecond, issue:

echo 1000 > /sys/bus/ap/poll_timeout

Dynamically adding and removing cryptographic adapters
On an LPAR, you can add or remove cryptographic adapters without the need to reactivate the LPAR after
a configuration change.

About this task

z/VM does not support dynamically adding or removing cryptographic adapters.

Linux attempts to detect new cryptographic adapters and set them online every time a configuration timer
expires. Read or modify the expiration time with the lszcrypt and chzcrypt commands.

For more information about lszcrypt and chzcrypt, see “lszcrypt - Display cryptographic devices” on
page 569 and “chzcrypt - Modify the cryptographic configuration” on page 482.

Adding or removing of cryptographic adapters to or from an LPAR is transparent to applications that use
clear key functions. If a cryptographic adapter is removed while cryptographic requests are being
processed, the device driver automatically resubmits lost requests to the remaining adapters. Special
handling is required for secure key.

Secure key requests are submitted to a dedicated cryptographic coprocessor. If this coprocessor is
removed or lost, new requests cannot be submitted to a different coprocessor. Therefore, dynamically
adding and removing adapters with a secure key application requires support within the application. For
more information about secure key cryptography, see Secure Key Solution with the Common Cryptographic
Architecture Application Programmer's Guide, SC33-8294. You can obtain this publication at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_cca.html .

Alternatively, you can read or set the polling time through the config_time sysfs attribute. This read-
write attribute can be found at the AP bus level. Valid values for the config_time sysfs attribute are in
the range 5 - 120 seconds.

For the secure key cryptographic functions on EP11 coprocessors, see Exploiting Enterprise PKCS #11
using openCryptoki, SC34-2713. You can obtain this publication at www.ibm.com/developerworks/linux/
linux390/documentation_suse.html

Procedure

You can work with cryptographic adapters in the following ways:

Generic cryptographic device driver 419

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_cca.html
http://www.ibm.com/developerworks/linux/linux390/documentation_suse.html
http://www.ibm.com/developerworks/linux/linux390/documentation_suse.html

• Add or remove cryptographic adapters by using the SE or HMC.
After the configuration timer expires, the cryptographic adapter is added to or removed from Linux,
and the corresponding sysfs entries are created or deleted.

• Enable or disable a cryptographic adapter by using the chzcrypt command.
The cryptographic adapter is only set online or offline in sysfs. The sysfs entries for the cryptographic
adapter are retained. Use the lszcrypt command to check the results of the chzcrypt command.

Examples

• To use the lszcrypt and chzcrypt commands to find out the current configuration timer setting,
issue:

lszcrypt -b
...
config_time=30 (seconds)
...

In the example, the timer is set to 30 seconds.
• To set the configuration timer to 60 seconds, issue:

chzcrypt -c 60

To use sysfs to find out the current configuration timer setting, issue:

• To read the configuration timer setting, issue:

cat /sys/bus/ap/config_time

• To set the configuration timer to 60 seconds, issue:

echo 60 > /sys/bus/ap/config_time

Displaying information about the AP bus
Use the lszcrypt -b command to display status information about the AP bus; alternatively, you can
use sysfs.

About this task

For information about lszcrypt -b, see “lszcrypt - Display cryptographic devices” on page 569.

The AP bus is represented in sysfs as a directory of the form

/sys/bus/ap

The sysfs directory contains a number of attributes with information about the AP bus.

Table 60: AP bus attributes

Attribute Explanation

ap_domain Read-write attribute that represents the default domain selected by the
kernel. Alternatively, you can select the default domain by specifying
the ap.domain= kernel parameter. See “Kernel parameters” on page
414.

ap_max_domain_id Read-only attribute that represents the largest possible domain ID.
Domain IDs can range from 0 to this number, which depends on the
mainframe model.

420 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Table 60: AP bus attributes (continued)

Attribute Explanation

ap_control_domain_mask Read-only attribute that represents the installed control domain
facilities as a 32-byte field in hexadecimal notation. A maximum
number of 256 domains can be addressed. Each bit position represents
a dedicated control domain.

ap_usage_domain_mask Read-only attribute that represents the installed usage domain facilities
as a 32-byte field in hexadecimal notation. A maximum number of 256
domains can be addressed. Each bit position represents a usage
domain.

ap_interrupts Read-only attribute that indicates whether interrupt handling for the AP
bus is enabled.

config_time Read-write attribute that represents a time interval in seconds used to
detect new crypto devices.

poll_thread Read-write attribute that indicates whether polling for the AP bus is
enabled.

poll_timeout Read-write attribute that represents the time interval of the poll thread
in nanoseconds.

Example

lszcrypt -b
ap_domain=0x6
ap_max_domain_id=0x54
ap_interrupts are enabled
config_time=30 (seconds)
poll_thread is disabled
poll_timeout=250000 (nanoseconds)

External programming interfaces
Applications can directly access the cryptographic device driver through an API.

Programmers: This information is intended for those who want to program against the cryptographic
device driver or against the available cryptographic libraries.

If you want to circumvent libica and directly access the cryptographic device driver, see the cryptographic
device driver header file in the Linux source tree:
/usr/include/asm-s390/zcrypt.h

For information about the library APIs, see the following files in the Linux source tree:

• The libica library /usr/include/ica_api.h
• The openCryptoki library /usr/include/opencryptoki/pkcs11.h
• The CCA library /opt/IBM/<prod>/include/csulincl.h, where <prod> is specific to the particular

hardware product.
• The EP11 library /usr/include/ep11-host-devel/ep11.h and ep11adm.h.

ep11.h, ica_api.h, and pkcs11.h require the devel packages to be installed. csulincl.h is present
after the CCA library is installed.

Clear key cryptographic functions

The libica library provides a C API to clear-key cryptographic functions that are supported by Z hardware.
You can configure both openCryptoki (using the icatoken) and openssl (using the ibmca engine) to use

Generic cryptographic device driver 421

clear-key cryptographic hardware support through libica. See libica Programmer's Reference, SC34-2602
for details about the libica functions.

If you must circumvent libica and access the cryptographic device driver directly, your user space
program must open the z90crypt device node and submit the cryptographic request using an IOCTL. The
IOCTL subfunction ICARSAMODEXPO performs RSA modular exponent encryption and decryption. The
IOCTL ICARSACRT performs RSA CRT decryption. See the cryptographic device driver header file in the
Linux source tree:
/usr/include/asm-s390/zcrypt.h

Secure key cryptographic functions

To use secure key cryptographic functions in your user space program, see Secure Key Solution with the
Common Cryptographic Architecture Application Programmer's Guide, SC33-8294. You can obtain this
publication at www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_cca.html .

To use secure key cryptographic functions in your user space program by accessing an EP11 coprocessor
adapter, see Exploiting Enterprise PKCS #11 using openCryptoki, SC34-2713. You can obtain it at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/sec_hw_supp.html

Reading true random numbers
To read true random numbers, a user space program must open the hwrng device and read as many
bytes as needed from the device.

Tip: Using the output of the hwrng device to periodically reseed a pseudo-random number generator
might be an efficient use of the random numbers.

422 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_cca.html
http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/sec_hw_supp.html

Chapter 45. Pseudo-random number device driver
The pseudo-random number device driver provides user-space applications with pseudo-random
numbers generated by the CP Assist for Cryptographic Function (CPACF).

The PRNG device driver supports the Deterministic Random Bit Generator (DRBG) requirements that are
defined in NIST Special Publication 800-90/90A. The device driver uses the SHA-512 based DRBG
mechanism.

To use the SHA-512 based DRBG, the device driver requires version 5 of the Message Security Assist
(MSA), which is available as of the zEC12 and zBC12 with the latest firmware level. During initialization of
the prng kernel module the device driver checks for the prerequisite.

If the prerequisites for the SHA-512 based DRBG are not fulfilled, the device driver uses the Triple Data
Encryption Standard (TDES) algorithm instead. In TDES mode, the PRNG device driver uses a DRBG in
compliance with ANSI X9.17 based on the TDES cipher algorithm. You can force the fallback to TDES
mode by using the mode= module parameter.

Terminology hint: Various abbreviations are commonly used for Triple Data Encryption Standard, for
example: TDES, triple DES, 3DES, and TDEA.

User-space programs access the pseudo-random-number device through a device node, /dev/prandom.
SUSE Linux Enterprise Server 12 SP4 provides udev to create it for you.

Setting up the pseudo-random number device driver
In SUSE Linux Enterprise Server, the pseudo-random number device driver is compiled as a module. To
use it, load the device driver module.

Module parameters
You can load and configure the PRNG device driver module.

Module parameter syntax

modprobe prng

mode=0

mode= 1

2

chunksize=256

chunksize=<sizeparam>

reseed_limit=100000

reseed_limit=<reseedparam>

where:
mode=

specifies the mode in which the device driver runs:
0

Default. In this mode, the device driver automatically detects the MSA extension level and feature
enablement. The device driver runs in SHA512 mode if the requirements are fulfilled, otherwise it
falls back to TDES mode.

1
forces the device driver to run in TDES mode. The device driver starts only if the requirements for
TDES mode are fulfilled.

© Copyright IBM Corp. 2000, 2019 423

2
forces the device driver to run in SHA512 mode. The device driver starts only if the requirements
for SHA512 mode are fulfilled. The device driver does not fall back to TDES mode.

<sizeparam>
adjusts the random-buffer block size that the device driver uses to generate new random bytes. In
TDES mode, this value can be in the range 8 - 65536, for SHA512 mode, the range is 64 - 65536. The
default is 256 bytes.

<reseedparam>
adjusts the reseed limit in SHA512 mode. Multiply this value with the chunksize to obtain the reseed
boundary in bytes. The value can be in the range 10000 - 100000. The default is 100000. In TDES
mode, the reseed limit is a constant value of 4096 bytes.

Controlling access to the device node
SUSE Linux Enterprise Server by default assigns access mode 0644 to /dev/prandom.

To restrict access to the device node to root users, add the following udev rule. It prevents non-root users
from reading random numbers from /dev/prandom.

 KERNEL=="prandom", MODE="0400", OPTIONS="last_rule"

If access to the device is restricted to root, add the following udev rule. It automatically extends access to
the device to other users.

 KERNEL=="prandom", MODE="0444", OPTIONS="last_rule"

Working with the PRNG device driver
Read random numbers and control the settings of the PRNG device driver.

Tasks include:

• “Reading pseudo-random numbers” on page 424
• “Displaying PRNG information” on page 424
• “Reseeding the PRNG” on page 426
• “Setting the reseed limit” on page 425

Reading pseudo-random numbers
The pseudo-random number device is read-only. Use the read function, cat program, or dd program to
obtain random numbers.

Example

In this example bs specifies the block size in bytes for transfer, and count specifies the number of
records with block size. The bytes are written to the output file.

dd if=/dev/prandom of=<output file name> bs=<xxxx> count=<nnnn>

Displaying PRNG information
Read the attributes of the prandom device in sysfs.

About this task

The sysfs representation of a PRNG device is a directory: /sys/devices/virtual/misc/prandom.
This sysfs directory contains a number of attributes with information about the device.

424 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Table 61: Attributes with PRNG information

Attribute Explanation

chunksize The size, in bytes, of the random-data bytes buffer that is used to generate new random
numbers. The value can be in the range 64 bytes - 64 KB. The default is 256 bytes. It is
rounded up to the next 64-byte boundary and can be adjusted as a module parameter
when you start the module.

byte_counter The number of random bytes generated since the PRNG device driver was started. You
can reset this value only by removing and reloading the kernel module, or rebooting
Linux (if PRNG was compiled into the kernel). This attribute is read-only.

errorflag SHA512 mode only: 0 if the PRNG device driver is instantiated and running well. Any
other value indicates a problem. If there is an error indication other than 0:

• The DRBG does not provide random data bytes to user space
• The read() function fails
• The error code errno is set to EPIPE (broken pipe)

This attribute is read-only.

mode SHA512 if the PRNG device driver runs in SHA512 mode, TDES if the PRNG device driver
runs in TDES mode. This attribute is read-only.

reseed SHA512 mode only: An integer, writable only by root. Write any integer to this attribute
to trigger an immediate reseed of the PRNG. See “Reseeding the PRNG” on page 426.

reseed_limit SHA512 mode only: An integer, writable only by root to query or set the reseed counter
limit. Valid values are in the range 10000 - 100000. The default is 100000. See “Setting
the reseed limit” on page 425.

strength SHA512 mode only: A read-only integer that shows the security strength according to
NIST SP800-57. Returns the integer value of 256 in SHA512 mode.

Procedure

Issue a command of this form to read an attribute:

cat /sys/devices/virtual/misc/prandom/<attribute>

where <attribute> is one of the attributes of Table 61 on page 425.

Example

This example shows a prandom device that is running in SHA512 mode, set to reseed after 2.56 MB:

cat /sys/devices/virtual/misc/prandom/chunksize
256
cat /sys/devices/virtual/misc/prandom/mode
SHA512
cat /sys/devices/virtual/misc/prandom/reseed_limit
10000

Setting the reseed limit
The PRNG reseeds after chunksize × reseed_limit bytes are read. By default, the reseed limit in
bytes is 100000 × 256 ≈ 25.6 MB.

Procedure

To set the number of times a chunksize amount of random data can be read from the PRNG before
reseeding, write the number to the reseed_limit attribute.

Pseudo-random number device driver 425

For example:

echo 10000 > /sys/devices/virtual/misc/prandom/reseed_limit

The reseed_limit value must be in the range 10000 - 100000.

Reseeding the PRNG
You can force a reseed by writing to the reseed attribute.

Procedure

To reseed the PRNG, write an integer to its reseed attribute:

echo 1 > /sys/devices/virtual/misc/prandom/reseed

Writing any integer value to this attribute triggers an immediate reseed of the PRNG instance.

426 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 46. True random-number generator device
driver

The true random number generator (TRNG) device driver provides user-space applications with random
data generated from the IBM Z hardware CPACF true random source.

Setting up the TRNG device driver
The true random-number generator is compiled as a separate module. To use it, load the module.

The true random-number generator requires Message-Security-Assist Extension 7 (MSA 7), which is
available as of the IBM z14. During initialization of the TRNG kernel module the device driver checks for
the prerequisite. If the prerequisite is not fulfilled, the device driver silently exits.

The TRNG device driver module registers itself to the CPU feature MSA. The device driver is then loaded
automatically. However, you can activate the TRNG device driver manually with the command:

modprobe s390-trng

There are no module parameters for the TRNG device driver.

Device nodes for random data

The true random-number generator device driver provides two interfaces to user space applications: the
device node /dev/trng for direct access, and the generic device node /dev/hwrng.

The /dev/hwrng node appears when the TRNG or another source of random data registers with the
hwrng device driver. If both the TRNG and a CCA coprocessor are registered, the TRNG takes precedence.

As of the z14, the kernel random device driver also uses the CPACF TRNG true random source through the
arch_get_random_seed_* functions. The kernel random device provides two device nodes, /dev/
random and /dev/urandom. The arch_get_random_seed_* functions require the CPACF TRNG.

Working with the TRNG device driver
Read random numbers and retrieve the counters of the TRNG device driver.

Tasks include:

• “Reading random numbers” on page 427
• “Displaying TRNG information” on page 428

Reading random numbers
The TRNG device is read-only. Use the read function, cat program, or dd program to obtain random
numbers.

Example
In this example bs specifies the block size in bytes for transfer, and count specifies the number of
records with block size. The bytes are written to the output file.

dd if=/dev/trng of=<output file name> bs=<xxxx> count=<nnnn>

© Copyright IBM Corp. 2000, 2019 427

Displaying TRNG information
Read the byte_counter attribute of the TRNG device in sysfs.

About this task

The sysfs representation of a TRNG device is a directory: /sys/devices/virtual/misc/trng. This
sysfs directory contains an attribute, byte_counter, with statistical data.

Procedure

Issue this command to read the byte_counter attribute:

cat /sys/devices/virtual/misc/trng/byte_counter

Example
To see statistics of a TRNG device, issue:

cat /sys/devices/virtual/misc/trng/byte_counter
trng: 6187
hwrng: 528
arch: 1319696
total: 1326411

Where:

trng
shows the number of bytes delivered through the /dev/trng device node.

hwrng
shows the bytes retrieved from the generic hw_rng device driver and contributed to /dev/hwrng.

arch
shows the amount of data that is supplied by the arch random implementation and delivered to the
random device driver device nodes /dev/random and /dev/urandom.

total
shows the sum of all bytes.

428 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 47. Protected key device driver
The protected key device driver provides functions for generating and verifying protected keys.

Protected keys are encrypted with wrapping keys that, for Linux in LPAR mode, are specific to the LPAR.
For guests of z/VM or KVM, the wrapping key is specific to the guest. Both the wrapping keys and the clear
key values of protected keys are invisible to the operating system. Protected keys are designed for
accelerated encryption and decryption with CPACF. For more information, see the chapter about
protected keys in z/Architecture Principles of Operation, SA22-7832.

Functions

The device driver provides the following functions to cryptographic applications:

• Generate a random secure key, then generate a protected key from the secure key.

The secure key must be available to create a new version of the protected key whenever the current
protected key is invalidated.

• Generate a secure key from a clear key, then generate a protected key from the secure key.

The clear key must be in memory when the protected key is generated. Thereafter, the clear key can be
deleted.

The secure key must be available to create a new version of the protected key whenever the current
protected key is invalidated.

• Generate a protected key from a clear key. The clear key must be in memory when the protected key is
generated.

The clear key must also be available to create a new protected key if the existing protected key is
invalidated.

The device driver also provides an in-kernel interface to generate protected keys. This interface is used,
for example, by the paes_s390 module.

Prerequisites

The protected key device driver requires the message-security-assist-extension 3 facility (MSA level 3),
which was introduced with z196.

The protected key device driver requires permission for the AES key import functions. To grant this
permission, go to the security settings within the profile of the applicable LPAR on the HMC. In the CPACF
Key Management Operations section, select the Permit AES Key import functions option. For z/VM and
KVM guests, the LPAR in which the hypervisor runs requires this option.

Secure keys are encoded with a master key that is held in Crypto Express adapters. Functions that involve
secure keys require an IBM Crypto Express adapter in CCA coprocessor mode with a valid master key. For
Linux on z/VM, the adapter must be dedicated to the z/VM guest virtual machine.

Loading the device driver module
The protected key device driver is compiled as a separate module. You must load the module before you
can generate protected keys.

Load the pkey module with the modprobe command. The pkey module has no module parameters.

modprobe pkey

© Copyright IBM Corp. 2000, 2019 429

External programming interfaces
Applications can use the protected key device driver through ioctls or corresponding kernel APIs.

Programmers: This information is intended for programmers of cryptographic applications who want to
use protected keys for accelerated cryptographic operations with CPACF.

Issue ioctls on the misc character device /dev/pkey to generate and handle protected keys. The ioctl
interface, including the required defines and structure definitions, is described in arch/s390/include/
uapi/asm/pkey.h. Each ioctl has a matching kernel API that is also described in this file.

Table 62: ioctls of the protected key device driver.

Name Structure passed Description

PKEY_GENSECK struct pkey_genseck Obtain a random secure key from an AP queue.
The secure key is encrypted with the master
key of the AP queue.

PKEY_CLR2SECK struct pkey_clr2seck Obtain a secure key from an AP queue. The
secure key is generated from an specified clear
key and encrypted with the master key of the
AP queue.

PKEY_SEC2PROTK struct pkey_sec2protk Obtain a protected key from an AP queue. The
protected key is generated from a specified
secure key.

PKEY_CLR2PROTK struct pkey_clr2protk Obtain a protected key from an AP queue. The
protected key is generated from a specified
clear key.

PKEY_FINDCARD struct pkey_findcard Find an AP queue that holds the applicable
master key for a specified secure key.

PKEY_SKEY2PKEY struct pkey_skey2pkey Find an AP queue that holds the applicable
master key for a specified secure key. Then use
the AP queue to obtain a protected key that is
generated from the secure key. This ioctl call
combines PKEY_FINDCARD and
PKEY_SEC2PROTK.

430 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 48. Hardware-accelerated in-kernel
cryptography

The Linux kernel implements cryptographic operations for kernel subsystems like dm-crypt and IPSec.
Applications can use these operations through the kernel cryptographic API.

In-kernel cryptographic operations can be performed by platform-specific implementations instead of the
generic implementations within the Linux kernel.
On Z, hardware-accelerated processing is available for some of these operations.

Hardware dependencies and restrictions
The cryptographic operations that can be accelerated by hardware implementations depend on your
mainframe hardware features and mode of operating SUSE Linux Enterprise Server 12 SP4.

z196 and later mainframe hardware supports hardware-acceleration for operations that cover the
following standards:

• SHA-1
• SHA-256
• SHA-512
• DES and TDES (ECB, CBC, and CTR modes)
• AES (ECB, CBC, and CTR modes for all AES key sizes; XTS for 256-bit and 512-bit keys)
• GHASH

CPACF dependencies

Hardware-acceleration for DES, TDES, AES, and GHASH requires the Central Processor Assist for
Cryptographic Function (CPACF). Read the features line from /proc/cpuinfo to find out whether the
CPACF feature is enabled on your hardware.

Example:

grep features /proc/cpuinfo
features : esan3 zarch stfle msa ldisp eimm dfp edat etf3eh highgprs te vx sie

In the output line, msa indicates that the CPACF feature is enabled. For information about enabling CPACF,
see the documentation for your Z hardware.

FIPS restrictions of the hardware capabilities

If the kernel runs in Federal Information Processing Standard (FIPS) mode, only FIPS 140-2 approved
algorithms are available. DES, for example, is not approved by FIPS 140-2.

Read /proc/sys/crypto/fips_enabled to find out whether your kernel runs in FIPS mode.

Example:

cat /proc/sys/crypto/fips_enabled
0

The kernel of the example does not run in FIPS mode. For kernels that run in FIPS mode, the output of the
command is 1.

© Copyright IBM Corp. 2000, 2019 431

You control the FIPS mode with the fips kernel parameter, see “fips - Run Linux in FIPS mode” on page
649.

For more information about FIPS, go to csrc.nist.gov/publications/detail/fips/140/2/final.

Support modules
SUSE Linux Enterprise Server 12 SP4 automatically loads the modules that support the available
hardware-acceleration.

sha1_s390
enables hardware-acceleration for SHA-1 operations. sha1_s390 requires the sha_common module.

sha_256
enables hardware-acceleration for SHA-224 and SHA-256 operations. sha_256 requires the
sha_common module.

sha_512
enables hardware-acceleration for SHA-384 and SHA-512 operations. sha_512 requires the
sha_common module.

ghash_s390
enables hardware-acceleration for Galois hashes.

aes_s390
enables hardware-acceleration for AES encryption and decryption for the following modes of
operation:

• ECB, CBC, and CTR for key lengths 128, 192, and 256 bits
• XTS for key lengths 128 and 256 bits
• GCM for key lengths 128, 192, and 256 bits

des_s390
enables hardware-acceleration for DES and TDES for the following modes of operation: ECB, CBC, and
CTR.

paes_s390
enables protected key AES encryption and decryption for the following modes of operation:

• ECB, CBC, and CTR for key lengths 128, 192, and 256 bits
• XTS for key lengths 128 and 256 bits

The paes_s390 module requires the pkey device driver, see Chapter 47, “Protected key device
driver,” on page 429. The module also requires a cryptographic adapter in CCA coprocessor mode for
the creation and handling of protected keys.

The cipher in the paes_s390 module uses 64-byte CCA secure keys, for example, keys that are
generated by the pkey device driver. XTS requires two secure keys.

Before the paes_s390 module uses secure keys in a cypher, it transforms them into protected keys.
If a protected key becomes invalid, the paes_s390 module generates a new protected key from the
master key.

Mainframe hardware prior to z14: To use CPACF for AES-GCM operations, you must load both the
aes_s390 and ghash_s390 module.

Tip: Load the modules with modprobe. modprobe handles dependencies on other modules for you.

Example:

modprobe sha_512

432 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

https://csrc.nist.gov/publications/detail/fips/140/2/final

Confirming hardware support for cryptographic operations
Read /proc/crypto to confirm that cryptographic operations are performed with hardware support.

Procedure

Read the driver lines from the content of /proc/crypto.

Example:

cat /proc/crypto | grep driver
driver : sha512-s390
driver : sha224-s390
driver : sha256-s390
driver : sha1-s390
driver : ghash-s390
...

Each line that ends in -s390 indicates hardware-acceleration for a corresponding algorithm or mode.

Hardware-accelerated in-kernel cryptography 433

434 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Part 8. Performance measurement using hardware
facilities

The IBM Z hardware provides performance data that can be accessed by Linux on Z.

Gathering performance data constitutes an additional load on the Linux instance on which the application
to be analyzed runs. Hardware support for data gathering can reduce the extra load and can yield more
accurate data.

For the performance measurement facilities of z/VM, see “Performance monitoring for z/VM guest virtual
machines” on page 359.

Other performance relevant information is provided in the context of the respective device driver or
feature. For example, see “Working with DASD statistics in debugfs” on page 116 for DASD performance
and “Starting and stopping collection of QETH performance statistics” on page 224 for qeth group
devices.

Newest version

You can find the newest version of this publication on IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html

Restrictions
For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture specific information in
the SUSE Linux Enterprise Server 12 SP4 release notes at
www.suse.com/releasenotes

© Copyright IBM Corp. 2000, 2019 435

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html
http://www.suse.com/releasenotes

436 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 49. Channel measurement facility
The Z architecture provides a channel measurement facility to collect statistical data about I/O on the
channel subsystem.

Data collection can be enabled for all CCW devices. User space applications can access this data through
the sysfs.

The channel measurement facility provides the following features:

• Basic channel measurement format for concurrently collecting data on up to 4096 devices. (Specifying
4096 or more channels causes high memory consumption, and enabling data collection might not
succeed.)

• Extended channel measurement format for concurrently collecting data on an unlimited number of
devices.

• Data collection for all channel-attached devices, except those using QDIO (that is, except qeth and
SCSI-over-Fibre channel attached devices)

Setting up the channel measurement facility
Configure the channel measurement facility by adding parameters to the kernel parameter file.

cmf.format=-1

cmf.format= 0

1

cmf.maxchannels=1024

cmf.maxchannels=<no_channels>

1

Channel measurement facility kernel parameters
Notes:

1 If you specify both parameter=value pairs, separate them with a blank.

where:
cmf.format

defines the format, 0 for basic and 1 for extended, of the channel measurement blocks. The default,
-1, assigns a format depending on the hardware, the extended format for zEnterprise mainframes.

cmf.maxchannels=<no_channels>
limits the number of devices for which data measurement can be enabled concurrently with the basic
format. The maximum for <no_channels> is 4096. A warning will be printed if more than 4096
channels are specified. The channel measurement facility might still work; however, specifying more
than 4096 channels causes a high memory consumption.

For the extended format there is no limit and any value you specify is ignored.

© Copyright IBM Corp. 2000, 2019 437

Working with the channel measurement facility
Typical tasks that you need to perform when you work with the channel measurement facility is
controlling data collection and reading data.

Enabling, resetting, and switching off data collection
Control data collection through the cmb_enable sysfs attribute of the device.

Procedure

Use a device's cmb_enable attribute to enable, reset, or switch off data collection.
• To enable data collection, write 1 to the cmb_enable attribute. If data collection was already enabled,

writing 1 to the attribute resets all collected data to zero.
Issue a command of this form:

echo 1 > /sys/bus/ccw/devices/<device_bus_id>/cmb_enable

where /sys/bus/ccw/devices/<device_bus_id> represents the device in sysfs.

When data collection is enabled for a device, a subdirectory /sys/bus/ccw/devices/
<device_bus_id>/cmf is created that contains several attributes. These attributes contain the
collected data (see “Reading data” on page 438).

• To switch off data collection issue a command of this form:

echo 0 > /sys/bus/ccw/devices/<device_bus_id>/cmb_enable

When data collection for a device is switched off, the subdirectory /sys/bus/ccw/devices/
<device_bus_id>/cmf and its content are deleted.

Example
In this example, data collection for a device /sys/bus/ccw/devices/0.0.b100 is already active and
reset:

cat /sys/bus/ccw/devices/0.0.b100/cmb_enable
1
echo 1 > /sys/bus/ccw/devices/0.0.b100/cmb_enable

Reading data
Read the sysfs attributes with collected I/O data, for example with the cat command.

Procedure

To read one of the attributes issue a command of this form:

cat /sys/bus/ccw/devices/<device_bus_id>/cmf/<attribute>

where /sys/bus/ccw/devices/<device_bus_id> is the directory that represents the device, and
<attribute> the attribute to be read. Table 63 on page 438 summarizes the available attributes.

Table 63: Attributes with collected I/O data

Attribute Value

ssch_rsch_count An integer that represents the ssch rsch count
value.

438 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Table 63: Attributes with collected I/O data (continued)

Attribute Value

sample_count An integer that represents the sample count value.

avg_device_connect_time An integer that represents the average device
connect time, in nanoseconds, per sample.

avg_function_pending_time An integer that represents the average function
pending time, in nanoseconds, per sample.

avg_device_disconnect_time An integer that represents the average device
disconnect time, in nanoseconds, per sample.

avg_control_unit_queuing_time An integer that represents the average control unit
queuing time, in nanoseconds, per sample.

avg_initial_command_response_time An integer that represents the average initial
command response time, in nanoseconds, per
sample.

avg_device_active_only_time An integer that represents the average device
active only time, in nanoseconds, per sample.

avg_device_busy_time An integer representing the average value device
busy time, in nanoseconds, per sample.

avg_utilization A percent value that represents the fraction of time
that has been spent in device connect time plus
function pending time plus device disconnect time
during the measurement period.

avg_sample_interval An integer that represents the average time, in
nanoseconds, between two samples during the
measurement period. Can be "-1" if no
measurement data has been collected.

avg_initial_command_response_time An integer that represents the average time in
nanoseconds between the first command of a
channel program being sent to the device and the
command being accepted. Available in extended
format only.

avg_device_busy_time An integer that represents the average time in
nanoseconds of the subchannel being in the
"device busy" state when initiating a start or
resume function. Available in extended format only.

Example

To read the avg_device_busy_time attribute for a device /sys/bus/ccw/devices/0.0.b100:

cat /sys/bus/ccw/devices/0.0.b100/cmf/avg_device_busy_time
21

Channel measurement facility 439

440 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 50. Using the CPU-measurement counter
facility

Use the CPU-measurement counter facility to obtain performance data for Linux instances in LPAR mode.
The z/Architecture CPU-measurement facilities were introduced for System z10 in October 2008.

Counter facility
The hardware counters are grouped into the following counter sets:

• Basic counter set
• Problem-state counter set
• Crypto-activity counter set
• Extended counter set
• MT-diagnostic counter set

A further common counter set, the Coprocessor group counter set, cannot be accessed from
Linux on Z.

Sampling facility
The sampling facility includes the following sampling modes:

• Basic-sampling mode
• Diagnostic-sampling mode

The diagnostic-sampling mode is intended for use by IBM support only.

The number and type of individual counters and the details of the sampling facility depend on your Z
hardware model. Use the lscpumf command to find out what is available for your hardware (see
“lscpumf - Display information about the CPU-measurement facilities” on page 546). For details, see IBM
The CPU-Measurement Facility Extended Counters Definition for z10, z196/z114, zEC12/zBC12, and z13,
SA23-2261.

A further common counter set, Coprocessor group counter set, cannot be accessed from Linux on Z.

You can use the perf tool on Linux to access the hardware counters and sample data of the CPU-
measurement counter facility.

To use the perf tool, you need to install the perf tool package provided with SUSE Linux Enterprise Server.

If you want to write your own application for analyzing counter or sample data, you can use the libpfm4
library. This library is available on sourceforge at perfmon2.sourceforge.net.

Working with the CPU-measurement counter facility
You can use the perf tool to work with the CPU-measurement counter facility for authorized LPARs.

• “Authorizing an LPAR for CPU-measurement counter sets” on page 442
• “Reading CPU-measurement counters for an application” on page 442
• “Collecting CPU-measurement sample data” on page 443
• “Setting limits for the sampling facility buffer” on page 443
• “Obtaining debug information” on page 445

© Copyright IBM Corp. 2000, 2019 441

http://perfmon2.sourceforge.net

Authorizing an LPAR for CPU-measurement counter sets
The LPAR within which the Linux instance runs must be authorized to use the CPU-measurement counter
sets. Use the HMC or SE to authorize the LPAR for the counter sets you need.

Procedure

Perform these steps on the HMC or SE to grant authorization:
1. Navigate to the LPAR for which you want to grant authorization for the counter sets.
2. Within the LPAR profile, select the Security page.
3. Within the counter facility options, select each counter set you want to use. The coprocessor group

counter set is not supported by Linux on Z.
4. Click Save.

What to do next
Deactivate, activate, and IPL the LPAR to make the authorization take effect. For more information, see
the Support Element Operations Guide for your mainframe system.

Reading CPU-measurement counters for an application
Use the perf tool to read CPU-measurement counters with the scope of an application.

Before you begin

You must know the hexadecimal value of the counter number. You can find the decimal values in z/
Architecture The Load-Program-Parameter and the CPU-Measurement Facilities, SA23-2260 and in IBM
The CPU-Measurement Facility Extended Counters Definition for z10, z196/z114, zEC12/zBC12, z13/z13s,
and z14, SA23-2261.

Procedure

Issue a command of this form to read a counter:

perf stat -e r<hex_counter_number> –- <path_to_app>

Where:
-e r<hex_counter_number>

specifies the hexadecimal value for the counter number as a raw event.

Tip: You can read multiple counters by specifying a comma-separated list of raw events, for example,
-e r20,r21.

<path_to_app>
specifies the path to the application to be evaluated. The counters are incremented for all threads that
belong to the specified application.

For more information about the perf command, see the perf or perf-stat man page.

Example
To read the counters with hexadecimal values 20 (problem-state cycle count) and 21 (problem-state
instruction count) for an application /bin/df:

442 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

perf stat -e r20,r21 -- /bin/df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/dasda1 7188660 2521760 4306296 37% /
none 923428 88 923340 1% /dev/shm
/dev/dasdb1 7098728 2631972 4106152 40% /root

 Performance counter stats for ’/bin/df’:

 1185753 raw 0x20
 257509 raw 0x21

 0.002507687 seconds time elapsed

Collecting CPU-measurement sample data
Use the perf tool to read CPU-measurement sample data.

Procedure

Issue a command of this form to read sample data:

perf record -e cpum_sf/event=SF_CYCLES_BASIC/ -- <path_to_app>

Where <path_to_app> is the path to the application for which you want to collect sample data. If you
specify -a instead of the double hyphen and path, system-wide sample data is collected.
Instead of the symbolic name, you can also specify the raw event name rB0000.

Example

perf record -e cpum_sf/event=SF_CYCLES_BASIC/ -- /bin/df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/dasda1 6967656 3360508 3230160 51% /
none 942956 88 942868 1% /dev/shm
/dev/dasdb1 6967656 4132924 2474128 63% /root
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.001 MB perf.data (~29 samples)]

What to do next
You can now display the sample data by issuing the following command:

perf report

For more information about collecting and displaying sample data with the perf command, see the
perf-record and the perf-report man pages.

Hint: You can use the perf record -F option to collect sample data at a high frequency or the perf
record -c option to collect sample data for corresponding short sampling intervals. Specified values
must be supported by both the CPU-measurement sampling facility and perf. Issue lscpumf -i to find
out the maximum and minimum values for the CPU-measurement sampling facility. If perf fails at a high
sampling frequency, you might have to adjust the kernel.perf_event_max_sample_rate system
control to override default perf limitations.

Setting limits for the sampling facility buffer
Use the chcpumf command to set the minimum and maximum buffer size for the CPU-measurement
sampling facility. See “chcpumf - Set limits for the CPU measurement sampling facility buffer” on page
474.

Before you begin

For each CPU, the CPU-measurement sampling facility has a buffer for writing sample data. The required
buffer size depends on the sampling function and the sampling interval that is used by the perf tool. The
sampling facility starts with an initial buffer size that depends on the expected requirements, your Z

Using the CPU-measurement counter facility 443

hardware, and the available hardware resources. During the sampling process, the sampling facility
increases the buffer size if required.

The sampling facility is designed for autonomous buffer management, and you do not usually need to
intervene. You might want to change the minimum or maximum buffer size, for example, for one of the
following reasons:

• There are considerable resource constraints on your system that cause perf sampling to malfunction
and sample data to be lost.

• As an expert user of perf and the sampling facility, you want to explore results with particular buffer
settings.

Procedure

Use the chcpumf command to set the minimum and maximum buffer sizes.
1. Optional: Specify the lscpumf command with the -i parameter to display the current limits for the

buffer size (see “lscpumf - Display information about the CPU-measurement facilities” on page 546).
2. Optional: Specify the chcpumf command with the -m parameter to set the minimum buffer size.

Example:

chcpumf -m 500

The value that you specify with -m is the minimum buffer size in multiples of sample-data-blocks. A
sample-data-block occupies approximately 4 KB. The specified minimum value is compared with the
initial buffer size that is calculated by the sampling facility. The greater value is then used as the initial
size when the sampling facility is started.

3. Optional: Specify the chcpumf command with the -x parameter to set the maximum buffer size.

Example:

chcpumf -x 1000

The value that you specify with -x is the maximum buffer size in multiples of sample-data-blocks. A
sample-data-block occupies approximately 4 KB. The specified maximum is the upper limit to which
the sampling facility can adjust the buffer.

Example

Tips:

• You can specify both, the minimum and the maximum buffer size with a single command.
• Use the -V parameter to display the minimum and maximum buffer settings that apply as a result of the

command.

Example: To change the minimum buffer size to 500 times the size of a sample-data-block and the
maximum buffer size to 1000 times the size of a sample-data-block, issue:

chcpumf -V -m 500 -x 1000
Sampling buffer sizes:
 Minimum: 500 sample-data-blocks
 Maximum: 1000 sample-data-blocks

444 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Obtaining debug information
You can obtain version information for the CPU-measurement counter facility and check which counter
sets are authorized on your LPAR.

Before you begin
If you call magic sysrequest functions with a method other than through the procfs, you might need to
activate them first. For more information about the magic sysrequest functions, see “Using the magic
sysrequest feature” on page 41.

Procedure

Perform these steps to obtain debug information:
1. Use the magic sysrequest function with character p to trigger a kernel message with information about

the CPU-measurement counter facility.

For example, trigger the message from procfs:

echo p > /proc/sysrq-trigger

2. Find the message by issuing the dmesg command and looking for output lines that include CPUM_CF.

Tip: Look for message number perf.ee05c5.

Example:

perf.ee05c5: CPU[0] CPUM_CF: ver=1.2 A=000c E=0008 C=0000

Note: The message is specific to the particular processor that processed the magic sysrequest.
However, the scope of the version (ver=) and authorization (A=) information is the LPAR and can be
read from the message for any processor in the LPAR. The values for E= (enabled) and C= (activated)
can differ among processors.

3. Obtain the version of the CPU-measurement counter facility by reading the value of the ver=
parameter in the message.

4. Check whether counter sets are authorized for the LPAR by interpreting the value of the A= parameter
in the message.

The value is a 4-digit hexadecimal number that represent the sums of these values for the individual
counter sets:
0001

Extended counter set.
0002

Basic counter set.
0004

Problem-state counter set.
0008

Crypto-activity counter set.

Examples:

A=0000 means that none of the counter set are authorized.
A=000c means that the Problem-state counter set and the Crypto-activity counter set are
authorized.
A=000f means that all four counter sets are authorized.

More information: For more details, see z/Architecture The Load-Program-Parameter and the CPU-
Measurement Facilities, SA23-2260.

Using the CPU-measurement counter facility 445

Example

This example shows how to trigger the message from procfs:

echo p > /proc/sysrq-trigger
dmesg | grep perf.ee05c5
perf.ee05c5: CPU[0] CPUM_CF: ver=1.2 A=000c E=0008 C=0000

In the message, ver=1.2 means version 1.2 of the Z CPU-measurement counter facility.

Because 0x000c = 0x0004 + 0x0008, the A=000c of the example means that the Problem-state
counter set and the Crypto-activity counter set are authorized for the LPAR.

cpu0 only: E=0008 means that only the Crypto-activity counter set is enabled, and the C=0000 means
that neither of the counter sets are activated.

446 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Part 9. Diagnostics and troubleshooting
These resources are useful when diagnosing and solving problems for SUSE Linux Enterprise Server 12
SP4.

Newest version

You can find the newest version of this publication on IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html

Restrictions
For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture specific information in
the SUSE Linux Enterprise Server 12 SP4 release notes at
www.suse.com/releasenotes

When reporting a problem to IBM support, you might be asked to supply a kernel dump. See Using the
Dump Tools on SUSE Linux Enterprise Server 12 SP1, SC34-2746 for information about how to create
dumps.

© Copyright IBM Corp. 2000, 2019 447

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html
http://www.suse.com/releasenotes

448 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 51. Logging I/O subchannel status
information

When investigating I/O subchannels, support specialists might request operation status information for
the subchannel.

About this task

The channel subsystem offers a logging facility that creates a set of log entries with such information.
From Linux, you can trigger this logging facility through sysfs.

The log entries are available through the SE Console Actions Work Area with the View Console Logs
function. The entries differ dependent on the device and model that is connected to the subchannel. On
the SE, the entries are listed with a prefix that identifies the model. The content of the entries is intended
for support specialists.

Procedure

To create a log entry, issue a command of this form:

echo 1 > /sys/devices/css0/<subhannel-bus-id>/logging

where <subchannel-bus-id> is the bus ID of the I/O subchannel that corresponds to the I/O device for
which you want to create a log entry.

To find out how your I/O devices map to subchannels you can use, for example, the lscss command.

Example

In this example, first the subchannel for an I/O device with bus ID 0.0.3d07 is identified, then logging is
initiated.

lscss -d 0.0.3d07
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.3d07 0.0.000c 1732/01 1731/01 80 80 ff 05000000 00000000
echo 1 > /sys/devices/css0/0.0.000c/logging

© Copyright IBM Corp. 2000, 2019 449

450 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 52. Control program identification
For Linux in LPAR mode, you can provide data about the Linux instance to the control program
identification (CPI) feature.

The names are used, for example, to identify the Linux instance or the sysplex on the HMC.

You provide data to the CPI feature in two steps:

1. Write values for one or more of the following items to specific sysfs attributes in /sys/firmware/
cpi:

• The name of the Linux instance
• The sysplex name (if applicable)
• The operating system type
• The operating system level

2. Transfer the data to the SE, see “Sending system data to the SE” on page 453.

SUSE Linux Enterprise Server 12 SP4 sets the system level and the system type for you.

Specifying a system name
Use the system_name attribute in the /sys/firmware/cpi directory in sysfs to specify a system name
for your Linux instance.

About this task
The system name is a string that consists of up to eight characters of the following set: A-Z, 0-9, $, @, #,
and blank.

Example

echo LPAR12 > /sys/firmware/cpi/system_name

What to do next
To make the setting take effect, transfer the data to the SE (see “Sending system data to the SE” on page
453).

Specifying a sysplex name
Use the sysplex_name attribute in the /sys/firmware/cpi directory in sysfs to specify a sysplex
name.

About this task
The sysplex name is a string that consists of up to eight characters of the following set: A-Z, 0-9, $, @, #,
and blank.

Example

echo SYSPLEX1 > /sys/firmware/cpi/sysplex_name

© Copyright IBM Corp. 2000, 2019 451

What to do next
To make the setting take effect, transfer the data to the SE (see “Sending system data to the SE” on page
453).

Specifying a system type
Linux uses the /sys/firmware/cpi/system_type sysfs attribute to identify itself as a Linux instance.

About this task
Unless your distribution sets this value for you, write LINUX to the attribute.

Example

cat /sys/firmware/cpi/system_type
""
echo LINUX > /sys/firmware/cpi/system_type

What to do next
To make the setting take effect, transfer the data to the SE (see “Sending system data to the SE” on page
453).

Specifying the system level
Linux uses the /sys/firmware/cpi/system_level sysfs attribute for the kernel version.

About this task

The value has this format:

0x<hh>0000000000<aa><bb><cc>

where:

<hh>
are two hexadecimal digits. A value of 80 indicates that the Linux instance acts as a hypervisor. The SE
ignores this value.

<aa>
are two digits for the major version of the kernel.

<bb>
are two digits for the minor version of the kernel.

<cc>
are two digits for the stable version of the kernel.

Example

Linux kernel 4.12 displays as

cat /sys/firmware/cpi/system_level
0x0000000000040f00

What to do next
To make the setting take effect, transfer the data to the SE (see “Sending system data to the SE” on page
453).

452 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Sending system data to the SE
Use the set attribute in the /sys/firmware/cpi directory in sysfs to send data to the Support Element
(SE).

About this task

To send the data in attributes sysplex_name, system_level, system_name, and, system_type to
the SE, write an arbitrary string to the set attribute.

Example

echo 1 > /sys/firmware/cpi/set

Control program identification 453

454 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 53. Activating automatic problem reporting
You can activate automatic problem reporting for situations where Linux experiences a kernel panic.

Before you begin

• The Linux instance must run in an LPAR.
• You need a hardware support agreement with IBM to report problems to RETAIN.

About this task

Linux uses the Call Home function to send automatically collected problem data to the IBM service
organization through the Support Element. Hence a system crash automatically leads to a new Problem
Management Record (PMR) which can be processed by IBM service.

Setting up the Call Home support
To set up the Call Home support, load the sclp_async module with the modprobe command.

About this task
There are no module parameters for sclp_async.

Procedure

Load the sclp_async module with the modprobe command to ensure that any other required modules are
loaded in the correct order:

modprobe sclp_async

Activating the Call Home support
When the sclp_async module is loaded, you can control it through the sysctl interface or through procfs.

Procedure

To activate the support, set the callhome attribute to 1. To deactivate the support, set the callhome
attribute to 0. Issue a command of this form:

echo <flag> > /proc/sys/kernel/callhome

This command is equivalent to the following:

sysctl -w kernel.callhome=<flag>

Linux cannot check whether the Call Home function is supported by the hardware.

Examples

• To activate the Call Home support, issue:

echo 1 > /proc/sys/kernel/callhome

• To deactivate the Call Home support, issue:

© Copyright IBM Corp. 2000, 2019 455

echo 0 > /proc/sys/kernel/callhome

456 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 54. Displaying system information
You can display information about the resources, and capabilities of your Linux instance and about the
hardware and hypervisor on which your Linux instance runs.

Displaying hardware and hypervisor information
You can display information about the physical and virtual hardware on which your Linux instance runs.

Procedure

Issue the following command:

cat /proc/sysinfo

The output of the command is divided into several blocks.

• The first two blocks provide information about the mainframe hardware.
• The third block provides information about the LPAR on which the Linux instance runs, either in LPAR

mode or as a guest of a hypervisor.
• Further blocks are present only if the Linux instance runs as a guest of a hypervisor. The field names in

these sections have a prefix, VM<nn>, where <nn> is the hypervisor level.

If the hypervisor runs in LPAR mode, there is only one such block, with prefix VM00. If the hypervisor
runs as a guest of another hypervisor, there are multiple such blocks with prefixes VM00, VM01, and so
on. The highest prefix number describes the hypervisor that is closest to the Linux instance.

You can use the information from /proc/sysinfo, for example, to verify that a guest relocation has
taken place.

Example:

cat /proc/sysinfo
Manufacturer: IBM
...

CPUs Total: 45
...

LPAR Number: 31
...
LPAR Name: LP000031
...
LPAR Extended Name: Partition 31 Test System
LPAR UUID: 93724168-fda3-429b-8b28-a5d245dcb3ff
...

VM00 Name: VM310012
VM00 Control Program: z/VM 6.4.0
VM00 Adjustment: 83
VM00 CPUs Total: 2
VM00 CPUs Configured: 2
VM00 CPUs Standby: 0
VM00 CPUs Reserved: 0

The following example shows the command output for an instance of Linux on z/VM. For an example for
Linux as a KVM guest, see Device Drivers, Features, and Commands for Linux as a KVM Guest, SC34-2754.
The fields with prefix VM<nn> show the following information:
Name

shows the name of the z/VM guest virtual machine according to the z/VM directory.

© Copyright IBM Corp. 2000, 2019 457

Control Program
shows hypervisor information.

Adjustment
does not show useful information for Linux on z/VM.

CPUs Total
shows the number of virtual CPUs that z/VM provides to Linux.

CPUs Configured
shows the number of virtual CPUs that are online to Linux.

CPUs Standby
shows the number of virtual CPUs that are available to Linux but offline.

CPUs Reserved
shows the number of extra virtual CPUs that z/VM could make available to Linux. This is the difference
between the maximum number of CPUs in the z/VM directory entry for the guest virtual machine and
the number of CPUs that are currently available to Linux.

Retrieving STHYI data
Store Hypervisor Information (STHYI) includes information about the IBM Z hardware, LPAR and, if
applicable, the hypervisor host system on which your Linux instance runs.

STHYI includes, but is not limited to, the following information:

• The CPU count, by type (CP or IFL)
• Limitations for shared CPUs
• CEC and LPAR identifiers

The methods that you can use to retrieve this information differ between Linux in LPAR mode and Linux as
a guest operating system of z/VM or of KVM.

Table 64: Available methods by environment

Method Linux in LPAR mode Linux as a z/VM or KVM guest

STHYI instruction with the GCC
inline assembly

For an example, see arch/
s390/kernel/sthyi.c in the
Linux source tree.

No Yes

qclib

See the readme file of the qclib
package for details.

Yes Yes

s390_sthyi() system call

See the man page for details.

Yes No

The return data for both the STHYI instruction and the s390_sthyi() system call matches the content of
the STHYI response buffer as described in z/VM: CP Programming Services, SC24-6272. The qclib library
provides an API for querying the information. See the readme file of the qclib package about obtaining
the API description.

You can find the qclib package and more information about qclib on developerWorks at
www.ibm.com/developerworks/linux/linux390/qclib.html.

458 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

https://www.ibm.com/developerworks/linux/linux390/qclib.html

Check whether the Linux instance can be a hypervisor
An instance of Linux on Z must have the SIE (Start Interpretive Execution) capability to be able to act as a
hypervisor, such as a KVM host.

Procedure

1. Issue the following command to find out whether you can operate your Linux instance as a hypervisor.

cat /proc/cpuinfo
vendor_id : IBM/S390
processors : 1
bogomips per cpu: 14367.00
features : esan3 zarch stfle msa ldisp eimm dfp edat etf3eh
highgprs sie
cache0 : level=1 type=Data scope=Private size=128K
...

2. Examine the features line in the command output. If the list of features includes sie, the Linux
instance can be a hypervisor.
The Linux instance of the example can be a hypervisor.

Displaying system information 459

460 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 55. Avoiding common pitfalls
Common problems and how to avoid them.

Ensuring correct channel path status
Ensure that you varied the channel path offline before you perform a planned task on it.

Tasks that require the channel path to be offline include:

• Pulling out or plugging in a cable on a path.
• Configuring a path off or on at the SE.

To vary the path offline, issue a command of the form:

chchp -v 0 <chpid>

where <chpid> is the channel path ID.

After the operation completed and the path is available again, vary the path online by using a command of
the form:

chchp -v 1 <chpid>

Alternatively, you can write on or off to the channel path status attribute in sysfs to vary the path
online or offline.

echo on|off > /sys/devices/css0/chp0.<chpid>/status

An unplanned change in path availability can occur due to, for example, unplanned cable pulls or a
temporary path malfunction. Then, the PIM/PAM/POM values (as obtained through lscss) might not be
as expected. To update the PIM/PAM/POM values, vary one of the paths that lead to the affected devices.

Example:

chchp -v 0 0.12
chchp -v 1 0.12

Rationale: Linux does not always receive a notification (machine check) when the status of a path
changes (especially for a path that comes online again). To make sure Linux has up-to-date information
about the usable paths, path verification is triggered through the Linux vary operation.

Determining channel path usage
To determine the usage of a specific channel path on LPAR, for example, to check whether traffic is
distributed evenly over all channel paths, use the channel path measurement facility.

See “Channel path measurement” on page 13 for details.

Configuring LPAR I/O devices
A Linux LPAR should contain only those I/O devices that it uses.

Limit the I/O devices by:

• Adding only the needed devices to the IOCDS

© Copyright IBM Corp. 2000, 2019 461

• Using the cio_ignore kernel parameter to ignore all devices that are not currently in use by this LPAR.

If more devices are needed later, they can be dynamically removed from the list of devices to be
ignored. Use the cio_ignore kernel parameter or the /proc/cio_ignore dynamic control to remove
devices, see “cio_ignore - List devices to be ignored” on page 644 and “Changing the exclusion list” on
page 645.

Rationale: Numerous unused devices can cause:

• Unnecessary high memory usage due to allocation of device structure.
• Unnecessary high load on status changes because hot-plug handling must be done for every device

found.

Using cio_ignore
With cio_ignore, essential devices might be hidden.

For example, if Linux does not boot under z/VM and does not show any message except:

HCPGIR450W CP entered; disabled wait PSW 00020001 80000000 00000000 00144D7A

Check if cio_ignore is used and verify that the console device, which is typically device number 0.0.0009,
is not ignored.

Excessive guest swapping
Avoid excessive guest swapping by using the timed page pool size and the static page pool size attributes.

An instance of Linux on z/VM might be swapping and stalling. Setting the timed page pool size and the
static page pool size to zero might solve the problem.

echo 0 > /proc/sys/vm/cmm_timed_pages
echo 0 > /proc/sys/vm/cmm_pages

If you see a temporary relief, the guest does not have enough memory. Try increasing the guest memory.

If the problem persists, z/VM might be out of memory.

If you are using cooperative memory management (CMM), unload the cooperative memory management
module:

modprobe -r cmm

See Chapter 43, “Cooperative memory management,” on page 405 for more details about CMM.

Including service levels of the hardware and the hypervisor
The service levels of the different hardware cards, the LPAR level, and the z/VM service level are valuable
information for problem analysis.

If possible, include this information with any problem you report to IBM service.

A /proc interface that provides a list of service levels is available. To see the service levels issue:

cat /proc/service_levels

Example for a z/VM system with a QETH adapter:

462 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

cat /proc/service_levels
VM: z/VM Version 5 Release 2.0, service level 0801 (64-bit)
qeth: 0.0.f5f0 firmware level 087d

Booting stops with disabled wait state
An automatic processor type check might stop the boot process with a disabled wait PSW.

On SUSE Linux Enterprise Server 12 SP4, a processor type check is automatically run at every kernel
startup. If the check determines that SUSE Linux Enterprise Server 12 SP4 is not compatible with the
hardware, it stops the boot process with a disabled wait PSW 0x000a0000/0x8badcccc.

If this problem occurs, ensure that you are running SUSE Linux Enterprise Server 12 SP4 on supported
hardware. See the SUSE Linux Enterprise Server 12 SP4 release notes at www.suse.com/releasenotes.

Preparing for dump-on-panic
You might want to consider setting up your system to automatically create a memory dump after a kernel
panic.

Configuring and using dump-on-panic has the following advantages:

• You have a memory dump disk that is prepared ahead of time.
• You do not have to reproduce the problem since a memory dump will be triggered automatically

immediately after the failure.

See Chapter 7, “Shutdown actions,” on page 71 for details.

Avoiding common pitfalls 463

http://www.suse.com/releasenotes

464 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 56. Kernel messages
Linux on Z specific kernel modules issue messages on the console and write them to the syslog. SUSE
Linux Enterprise Server 12 SP4 issues these messages with message numbers.

Based on these message numbers, you can display man pages to obtain message details.

The message numbers consist of a module identifier, a dot, and six hexadecimal digits. For example,
xpram.ab9aa4 is a message number.

Kernel Messages on SUSE Linux Enterprise Server 12 SP4, SC34-2747 summarizes the messages that are
issued by Z specific kernel modules on SUSE Linux Enterprise Server 12 SP4. You can find this
documentation on developerWorks at
www.ibm.com/developerworks/linux/linux390/documentation_suse.html

A summary of messages that are issued by Z specific kernel modules is available on the IBM Knowledge
Center at

www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.l0kmsg.doc/l0km_plugin_top.html

Note: Some messages are issued with message numbers although there is no message explanation.
These messages are considered self-explanatory and they are not included in this documentation. If you
find an undocumented message with a message text that needs further explanation, complete a Readers’
Comment Form or send a request to eservdoc@de.ibm.com.

Displaying a message man page
Man page names for Z specific kernel messages match the corresponding message numbers.

Before you begin
Ensure that the RPM with the message man pages is installed on your Linux system. This RPM is called
kernel-default-man-<kernel-version>.s390x.rpm and shipped on DVD1.

Procedure

For example, the following message has the message number xpram.ab9aa4:

xpram.ab9aa4: 50 is not a valid number of XPRAM devices

Enter a command of this form to display a message man page:

man <message_number>

Example
Enter the following command to display the man page for message xpram.ab9aa4:

man xpram.ab9aa4

The corresponding man page looks like this example:

© Copyright IBM Corp. 2000, 2019 465

http://www.ibm.com/developerworks/linux/linux390/documentation_suse.html
http://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.l0kmsg.doc/l0km_plugin_top.html

xpram.ab9aa4(9) xpram.ab9aa4(9)

Message
 xpram.ab9aa4: %d is not a valid number of XPRAM devices

Severity
 Error

Parameters
 @1: number of partitions

Description
 The number of XPRAM partitions specified for the 'devs' module parame-
 ter or with the 'xpram.parts' kernel parameter must be an integer in
 the range 1 to 32. The XPRAM device driver created a maximum of 32 par-
 titions that are probably not configured as intended.

User action
 If the XPRAM device driver has been complied as a separate module,
 unload the module and load it again with a correct value for the
 'devs' module parameter. If the XPRAM device driver has been compiled
 into the kernel, correct the 'xpram.parts' parameter in the kernel
 parameter line and restart Linux.

LINUX Linux Messages xpram.ab9aa4(9)

Viewing messages with the IBM Doc Buddy app
You can view documentation for IBM Z specific Linux kernel messages through IBM Doc Buddy, an app for
mobile devices.

IBM Doc Buddy is helpful in environments from where the message documentation on the internet is not
directly accessible.

Before you begin
Obtain IBM Doc Buddy from Apple App Store or from Google Play. While your device is online, you can
display message documentation by entering the IDs for messages of interest in the main search field of
the app.

Procedure

Perform the following steps to enable IBM Doc Buddy in offline mode:
1. While your mobile device is online, start IBM Doc Buddy and tap My Account in the lower right corner

of the main pane.
2. Under Messages and codes, tap Components to list the available components in alphabetical order.
3. Scroll down to "Linux on Z and LinuxONE" and download the component.
4. Return to the main pane.

Results
You can now display message documentation for Linux on Z and LinuxONE while your mobile device is
offline.
Related information
ibmdocbuddy.mybluemix.net

466 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

https://geo.itunes.apple.com/us/app/ibm-doc-buddy/id1121244571?mt=8
https://play.google.com/store/apps/details?id=com.ibm.systems.supportassistant&utm_source=global_co&utm_medium=prtnr&utm_content=Mar2515&utm_campaign=PartBadge&pcampaignid=MKT-Other-global-all-co-prtnr-py-PartBadge-Mar2515-1
http://ibmdocbuddy.mybluemix.net

Part 10. Reference
Use these commands, kernel parameters, kernel options to configure Linux on Z. Be aware of the z/VM
DIAG calls required by SUSE Linux Enterprise Server 12 SP4.

Newest version

You can find the newest version of this publication on IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html

Restrictions
For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture specific information in
the SUSE Linux Enterprise Server 12 SP4 release notes at
www.suse.com/releasenotes

© Copyright IBM Corp. 2000, 2019 467

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html
http://www.suse.com/releasenotes

468 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 57. Commands for Linux on Z
You can use z/Architecture specific commands to configure and work with the SUSE Linux Enterprise
Server 12 SP4 device drivers and features.

Most of these commands are included in the s390-tools RPM.

Some commands come with an init script or a configuration file or both. It is assumed that init scripts are
installed in /etc/init.d/. You can extract any missing files from the etc subdirectory in the s390-tools
RPM.

Commands described elsewhere

• For the snipl command, see Chapter 8, “Remotely controlling virtual hardware - snipl,” on page 75.
snipl is provided as a separate package snipl-<version>.s390x.rpm.

• For commands and tools that are related to creating and analyzing system dumps, including the zipl
command, see Using the Dump Tools on SUSE Linux Enterprise Server 12 SP1, SC34-2746.

• For commands related to terminal access over IUCV connections, see How to Set up a Terminal Server
Environment on z/VM, SC34-2596.

• The icainfo and icastats commands are provided with the libica package and described in libica
Programmer's Reference, SC34-2602.

Generic command options
For simplicity, common command options are omitted from some of the syntax diagrams.

-h or --help
to display help information for the command.

--version
to display version information for the command.

The syntax for these options is:

Common command options
<command> Other command options

-h

--help

--version

where <command> can be any of the Linux on Z commands.

See Appendix B, “Understanding syntax diagrams,” on page 667 for general information about reading
syntax diagrams.

© Copyright IBM Corp. 2000, 2019 469

chccwdev - Set CCW device attributes
Use the chccwdev command to set attributes for CCW devices and to set CCW devices online or offline.

Use “znetconf - List and configure network devices” on page 640 to work with CCW_GROUP devices. For
more information about CCW devices and CCW group devices, see “Device categories” on page 7.

The chccwdev command uses cio_settle before it changes anything to ensure that sysfs reflects the
latest device status information, and includes newly available devices.

chccwdev syntax

chccwdev
-e

-d

-s

-f

-a<name>=<value>

,

<device_bus_id>

<from_device_bus_id>-<to_device_bus_id>

Where:

-e or --online
sets the device online.

-d or --offline
sets the device offline.

-s or --safeoffline
waits until all outstanding I/O requests complete, and then tries to set the device offline. Valid for
DASDs only.

-f or --forceonline
forces a boxed device online, if this action is supported by the device driver.

-a or --attribute <name>=<value>
sets the <name> attribute to <value>.

The available attributes depend on the device type. See the chapter for your device for details about
the applicable attributes and values.

Setting the online attribute has the same effect as using the -e or -d options.

<device_bus_id>
identifies a device. Device bus-IDs are of the form 0.<n>.<devno>, where <n> is a subchannel set ID
and <devno> is a device number. Input is converted to lowercase.

<from_device_bus_id>-<to_device_bus_id>
identifies a range of devices. If not all devices in the given range exist, the command is limited to the
existing ones. If you specify a range with no existing devices, you get an error message.

-h or --help
displays help information for the command. To view the man page, enter man chccwdev.

-v or --version
displays version information for the command.

chccwdev

470 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Examples

• To set a CCW device 0.0.b100 online issue:

chccwdev -e 0.0.b100

• Alternatively, use -a to set a CCW device 0.0.b100 online. Issue:

chccwdev -a online=1 0.0.b100

• To set all CCW devices in the range 0.0.b200 through 0.0.b2ff online, issue:

chccwdev -e 0.0.b200-0.0.b2ff

• To set a CCW device 0.0.b100 and all CCW devices in the range 0.0.b200 through 0.0.b2ff offline, issue:

chccwdev -d 0.0.b100,0.0.b200-0.0.b2ff

• To set several CCW devices in different ranges and different subchannel sets offline, issue:

chccwdev -d 0.0.1000-0.0.1100,0.1.7000-0.1.7010,0.0.1234,0.1.4321

• To set devices with bus ID 0.0.0192, and 0.0.0195 through 0.0.0198 offline after completing all
outstanding I/O requests:

chccwdev -s 0.0.0192,0.0.0195-0.0.0198

If an outstanding I/O request is blocked, the command might wait forever. Reasons for blocked I/O
requests include reserved devices that can be released or disconnected devices that can be
reconnected.

1. Try to resolve the problem that blocks the I/O request and wait for the command to complete.
2. If you cannot resolve the problem, issue chccwdev -d to cancel the outstanding I/O requests. The

data will be lost.
• To set an ECKD DASD 0.0.b100 online and to enable extended error reporting and logging issue:

chccwdev -e -a eer_enabled=1 -a erplog=1 0.0.b100

chccwdev

Commands for Linux on Z 471

chchp - Change channel path status

Purpose

Use the chchp command to set channel paths online or offline.

The actions are equivalent to performing a Configure Channel Path Off or Configure Channel Path On
operation on the Hardware Management Console.

The channel path status that results from a configure operation is persistent across IPLs.

Note: Changing the configuration state of an I/O channel path might affect the availability of I/O devices.
It can also trigger associated functions (such as channel-path verification or device scanning), which in
turn can result in a temporary increase in processor, memory, and I/O load.

chchp syntax

chchp -c 0

1

-v 0

1

-a<key>=<value>

,

0.<id>

0.<id> -0.<id>

Where:

-c or --configure <value>
sets the device to configured (1) or standby (0).

Note: Setting the configured state to standby can stop running I/O operations.

-v or --vary <value>
changes the logical channel-path state to online (1) or offline (0).

Note: Setting the logical state to offline can stop running I/O operations.

-a or --attribute <key> = <value>
changes the channel-path sysfs attribute <key> to <value>. The <key> can be the name of any
available channel-path sysfs attribute (that is, configure or status), while <value> can take any
valid value that can be written to the attribute (for example, 0 or offline). Using -a is a generic way
of writing to the corresponding sysfs attribute. It is intended for cases where sysfs attributes or
attribute values are available in the kernel but not in chchp.

0.<id> and 0.<id> - 0.<id>
where <id> is a hexadecimal, two-digit, lowercase identifier for the channel path. An operation can be
performed on more than one channel path by specifying multiple identifiers as a comma-separated
list, or a range, or a combination of both.

--version
displays the version number of chchp and exits.

-h or --help
displays a short help text, then exits. To view the man page, enter man chchp.

Examples

• To set channel path 0.19 into standby state issue:

chchp

472 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

chchp -a configure=0 0.19

• To set the channel path with the channel path ID 0.40 to the standby state, write 0 to the configure file
with the chchp command:

chchp --configure 0 0.40
Configure standby 0.40... done.

• To set a channel-path to the configured state, write 1 to the configure file with the chchp command:

chchp --configure 1 0.40
Configure online 0.40... done.

• To set channel-paths 0.65 to 0.6f to the configured state issue:

chchp -c 1 0.65-0.6f

• To set channel-paths 0.12, 0.7f and 0.17 to 0.20 to the logical offline state issue:

chchp -v 0 0.12,0.7f,0.17-0.20

chchp

Commands for Linux on Z 473

chcpumf - Set limits for the CPU measurement sampling facility buffer
Use the chcpumf command to set limits for the CPU measurement sampling facility buffer.

The sampling facility is designed for autonomous buffer management, and you do not usually need to
intervene. However, you might want to change the minimum or maximum size, for example, for one of the
following reasons:

• There are considerable resource constraints on your system, and the sampling facility stops because it
tries to allocate more buffer space than is available.

• As an expert user of perf and the sampling facility, you want to explore results with particular buffer
settings.

chcpumf syntax

chcpumf

-V

-m <min_sdb>

-x <max_sdb>

where:
-m <min_sdb> or --min <min_sdb>

specifies the minimum sampling facility buffer size in sample-data-blocks. A sample-data-block
occupies approximately 4 KB. The sampling facility starts with this buffer size if it exceeds the initial
buffer size that is calculated by the sampling facility.

-x <max_sdb> or --max <max_sdb>
specifies the maximum sampling facility buffer size in sample-data-blocks. A sample-data-block
occupies approximately 4 KB. While it is running, the sampling facility dynamically adjusts the buffer
size to a suitable value, but cannot exceed this limit.

-V or --verbose
displays the buffer size settings after the changes.

-v or --version
displays the version number of chcpumf and exits.

-h or --help
displays out a short help text, then exits. To view the man page, enter man chcpumf.

Example
To change the minimum buffer size to 500 times the size of a sample-data-block and the maximum buffer
size to 1000 times the size of a sample-data-block, issue:

chcpumf -V -m 500 -x 1000
Sampling buffer sizes:
 Minimum: 500 sample-data-blocks
 Maximum: 1000 sample-data-blocks

chcpumf

474 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

chmem - Set memory online or offline
Use the chmem command to set a particular size or range of memory online or offline.

Setting memory online can fail if the hypervisor does not have enough memory left, for example because
memory was overcommitted. Setting memory offline can fail if Linux cannot free the memory. If only part
of the requested memory can be set online or offline, a message informs you how much memory was set
online or offline instead of the requested amount.

chmem syntax

chmem -e

-d

<size>

<start>-<end>

Where:

-e or --enable
sets the specified memory online.

-d or --disable
sets the specified memory offline.

<size>
specifies an amount of memory to be set online or offline. A numeric value without a unit or a numeric
value immediately followed by m or M is interpreted as MB (1024 x 1024 bytes). A numeric value
immediately followed by g or G is interpreted as GB (1024 x 1024 x 1024 bytes).

The size must be aligned to the memory block size, as shown in the output of the lsmem command.

<start>-<end>
specifies a memory range to be set online or offline. <start> is the hexadecimal address of the first
byte and <end> is the hexadecimal address of the last byte in the memory range.

The range must be aligned to the memory block size, as shown in the output of the lsmem command.

-v or --version
displays the version number of chmem, then exits.

-h or --help
displays a short help text, then exits. To view the man page, enter man chmem.

Examples

• This command requests 1024 MB of memory to be set online.

chmem --enable 1024

• This command requests 2 GB of memory to be set online.

chmem --enable 2g

• This command requests the memory range that starts with 0x00000000e4000000 and ends with
0x00000000f3ffffff to be set offline.

chmem --disable 0x00000000e4000000-0x00000000f3ffffff

chmem

Commands for Linux on Z 475

chreipl - Modify the re-IPL configuration
Use the chreipl tool to modify the re-IPL configuration for Linux on z Systems. You can configure a
particular device as the reboot device.

chreipl syntax

chreipl

 ccw

 <device_bus_id>

 -L <parm>

 fcp
1

 <device_bus_id> <wwpn> <lun>

 -L <parm> -b <n>

 node

 <node>

 <dir> -L <parm> -b <n>
2

 nss <name>

 -p <parms> -f

Notes:
1 You can specify the <device_bus_id>, <wwpn>, and <lun> in any order if you use the
corresponding command options.
2 For device nodes or directories that map to a SCSI disk.

Where:
<device_bus_id> or -d <device_bus_id> or --device <device_bus_id>

specifies the device bus-ID of a CCW re-IPL device or of the FCP device through with a SCSI re-IPL
device is attached.

<wwpn> or -w <wwpn> or --wwpn <wwpn>
specifies the worldwide port name (WWPN) of a SCSI re-IPL device.

<lun> or -l <lun> or --lun <lun>
specifies the logical unit number (LUN) of a SCSI re-IPL device.

<node>
specifies a device node of a DASD, SCSI, or logical device mapper re-IPL device.

<dir>
specifies a directory in the Linux file system on the re-IPL device.

nss
declares that the following parameters refer to a z/VM named saved system (NSS).

Note: You cannot load SUSE Linux Enterprise Server 12 or later from an NSS. The NSS could contain a
Linux distribution with NSS support or another mainframe operating system, for example, CMS.

<name> or -n <name> or --name <name>
specifies the name of an NSS as defined on the z/VM system.

Note: You cannot load SUSE Linux Enterprise Server 12 SP4 from an NSS. The NSS could contain a
Linux distribution with NSS support or another mainframe operating system, for example, CMS.

chreipl

476 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

-L or --loadparm <parameter>

For SUSE Linux Enterprise Server 12 SP4 with a DASD or SCSI boot device, you can specify
parameters for GRUB 2 with the syntax g<grub_parameters>. Typically, <grub_parameters> is a
specification that selects an item from the GRUB 2 boot menu. For details, see “Specifying GRUB 2
parameters” on page 60.

For DASD, you can also specify a leading 0, 1, or 2.

0 or 1
immediately starts GRUB 2 for booting the target SUSE Linux Enterprise Server 12 SP4 kernel.

2
boots a rescue kernel.

If you omit this specification, GRUB 2 is started after a timeout period has expired.

-b or --bootprog <n>
For SUSE Linux Enterprise Server 12 SP4 with a SCSI boot device, you can specify 0, 1, or 2
0 or 1

immediately starts GRUB 2 for booting the target SUSE Linux Enterprise Server 12 SP4 kernel.
2

boots a rescue kernel.

If you omit this specification, GRUB 2 is started after a timeout period has expired.

-p or --bootparms
specifies boot parameters for the next reboot. The boot parameters, which typically are kernel
parameters, are appended to the kernel parameter line in the boot configuration. The boot
configuration can include up to 895 characters of kernel parameters. The number of characters you
can specify in addition for rebooting depends on your environment and re-IPL device as shown in
Table 65 on page 477.

Table 65: Maximum characters for additional kernel parameters

Virtual hardware where Linux
runs DASD re-IPL device SCSI re-IPL device NSS re-IPL device

z/VM guest virtual machine 64 3452 56

LPAR none 3452 n/a

Notes:

• The kernel parameters that you specify for a DASD or NSS re-IPL device are stored with the z/VM
PARM parameter.

• The kernel parameters that you specify for a SCSI re-IPL device are stored as SCPDATA.

If you omit this parameter, the existing boot parameters in the next boot configuration are used
without any changes.

Important: If the re-IPL kernel is SUSE Linux Enterprise Server 12 or later, be sure not to specify
kernel parameters that prevent the target kernel from booting. See “Avoid parameters that break
GRUB 2” on page 19.

-f or --force
With this option, you can force the re-IPL from a target device even if the target cannot be verified by
the system. This is the case, for example, if the device is on the cio_ignore exclusion list (blacklist).

Note: Use this option with great care. Specifying a non-existing device causes the re-IPL to fail.

-h or --help
displays help information for the command. To view the man page, enter man chreipl.

-v or --version
displays version information.

chreipl

Commands for Linux on Z 477

For disk-type re-IPL devices, the command accepts but does not require an initial statement:
ccw

declares that the following parameters refer to a DASD re-IPL device.
fcp

declares that the following parameters refer to a SCSI re-IPL device.
node

declares that the following parameters refer to a disk re-IPL device that is identified by a device node
or by a directory in the Linux file system on that device. The disk device can be a DASD or a SCSI disk.

Examples

These examples illustrate common uses for chreipl.

• The following commands all configure the same DASD as the re-IPL device, assuming that the device
bus-ID of the DASD is 0.0.7e78, that the standard device node is /dev/dasdc, that udev created an
alternative device node /dev/disk/by-path/ccw-0.0.7e78, that /mnt/boot is located on the
Linux file system in a partition of the DASD.

– Using the bus ID:

chreipl 0.0.7e78

– Using the bus ID and the optional ccw statement:

chreipl ccw 0.0.7e78

– Using the bus ID, the optional statement and the optional --device keyword:

chreipl ccw --device 0.0.7e78

– Using the standard device node:

chreipl /dev/dasdc

– Using the udev-created device node:

chreipl /dev/disk/by-path/ccw-0.0.7e78

– Using a directory within the file system on the DASD:

chreipl /mnt/boot

• The following commands all configure the same SCSI disk as the re-IPL device, assuming that the
device bus-ID of the FCP device through which the device is attached is 0.0.1700, the WWPN of the
storage server is 0x500507630300c562, and the LUN is 0x401040b300000000. Further it is assumed
that the standard device node is /dev/sdb, that udev created an alternative device node /dev/
disk/by-id/scsi-36005076303ffc56200000000000010b4, and that /mnt/fcpboot is located
on the Linux file system in a partition of the SCSI disk.

– Using bus ID, WWPN, and LUN:

chreipl 0.0.1700 0x500507630300c562 0x401040b300000000

– Using bus ID, WWPN, and LUN with the optional fcp statement:

chreipl fcp 0.0.1700 0x500507630300c562 0x401040b300000000

– Using bus ID, WWPN, LUN, the optional statement, and keywords for the parameters. When you use
the keywords, the parameters can be specified in any order:

chreipl

478 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

chreipl fcp --wwpn 0x500507630300c562 -d 0.0.1700 --lun 0x401040b300000000

– Using the standard device node:

chreipl /dev/sdb

– Using the udev-created device node:

chreipl /dev/disk/by-id/scsi-36005076303ffc56200000000000010b4

– Using a directory within the file system on the SCSI disk:

chreipl /mnt/fcpboot

• To configure a DASD with bus ID 0.0.7e78 as the re-IPL device, using 2 to select a boot option from
the GRUB 2 boot menu:

chreipl 0.0.7e78 -L 0g2
Re-IPL type: ccw
Device: 0.0.7e78
Loadparm: "0g2"
Bootparms: ""

chreipl

Commands for Linux on Z 479

chshut - Control the system shutdown actions
Use the chshut command to change the shutdown actions for specific shutdown triggers.

The shutdown triggers are:

• Halt
• Power off
• Reboot

The shutdown trigger panic is handled by the dumpconf service script, see Using the Dump Tools on
SUSE Linux Enterprise Server 12 SP1, SC34-2746 for details.

Linux on Z performs shutdown actions according to sysfs attribute settings within the /sys/firmware
directory structure. The chshut command sets a shutdown action for a shutdown trigger by changing the
corresponding sysfs attribute setting. For more information about the sysfs attributes and the shutdown
actions, see Chapter 7, “Shutdown actions,” on page 71.

chshut syntax

chshut halt

 poff

 reboot

 ipl

 reipl

 stop

 vmcmd "<cp_command>"

Where:
halt

sets an action for the halt shutdown trigger.
poff

sets an action for the poff shutdown trigger.
reboot

sets an action for the reboot shutdown trigger.
ipl

sets IPL as the action to be taken.
reipl

sets re-IPL as the action to be taken.
stop

sets "stop" as the action to be taken.
vmcmd "<cp_command>"

sets the action to be taken to issuing a z/VM CP command. The command must be specified in
uppercase characters and enclosed in quotation marks. To issue multiple commands, repeat the
vmcmd attribute with each command.

-h or --help
displays help information for the command. To view the man page, enter man chshut.

-v or --version
displays version information.

Examples

These examples illustrate common uses for chshut.

chshut

480 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

• To make the system start again after a power off:

chshut poff ipl

• To log off the z/VM guest virtual machine if the Linux poweroff command was run successfully:

chshut poff vmcmd LOGOFF

• To send a message to z/VM user ID OPERATOR and automatically log off the z/VM guest virtual machine
if the Linux poweroff command is run:

chshut poff vmcmd "MSG OPERATOR Going down" vmcmd "LOGOFF"

chshut

Commands for Linux on Z 481

chzcrypt - Modify the cryptographic configuration
Use the chzcrypt command to configure cryptographic adapters that are managed by the cryptographic
device driver and modify the AP bus attributes.

To display the attributes, use “lszcrypt - Display cryptographic devices” on page 569.

chzcrypt syntax

chzcrypt -e

-d

-a

<device ID>

-p

-n -c<timeout> -t<time>

-q<domain>

-V

Where:
-e or --enable

sets the given cryptographic devices and AP queues online.
-d or --disable

sets the given cryptographic devices and AP queues offline.
-a or --all

sets all available cryptographic adapters online or offline.
<device ID>

specifies a cryptographic adapter that is to be set online or offline. A cryptographic adapter can be
specified either in decimal notation or hexadecimal notation with a '0x' prefix.

-p or --poll-thread-enable
enables the poll thread of the cryptographic device driver.

-n or --poll-thread-disable
disables the poll thread of the cryptographic device driver.

-c <timeout> or --config-time <timeout>
sets configuration timer for rescanning the AP bus to <timeout> seconds.

-t <time>or --poll-timeout=<time>
sets the high-resolution polling timer to <time> nanoseconds. To display the value, use lszcrypt -
b.

-q <domain> or --default-domain <domain>
changes the default domain. Specify the domain as either a hexadecimal or decimal value.

Important: Be sure to enter an existing domain. The Trusted Key Entry (TKE) workstation does not
find the cryptographic adapters if a non-existing domain is entered here. All CCA applications use the
default domain, and do not work correctly if the specified domain does not exist.

-V or --verbose
displays verbose messages.

-v or --version
displays version information.

-h or --help
displays help information for the command. To view the man page, enter man chzcrypt.

chzcrypt

482 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Examples

These examples illustrate common uses for chzcrypt.

• To set the cryptographic devices with the adapter IDs 0, 1, 4, 5, and 12 and their associated AP queues
online (in decimal notation):

chzcrypt -e 0 1 4 5 12

Or, in hexadecimal notation:

chzcrypt -e 0x00 0x01 0x04 0x05 0x0C

• To set all available cryptographic devices, including all AP queues, offline:

chzcrypt -d -a

• To set the AP queue defined by adapter ID 00 and domain 77 (0x4d) offline:

chzcrypt -d 00.004d

• To set the configuration timer for rescanning the AP bus to 60 seconds and disable the poll thread of the
cryptographic device driver:

chzcrypt -c 60
chzcrypt -n

• To change the default domain to 77 (0x4d):

chzcrypt -q 0x4d

or

chzcrypt -q 77

chzcrypt

Commands for Linux on Z 483

chzdev - Configure IBM Z devices
Use the chzdev command to configure devices and device drivers on IBM Z. Supported devices include
storage devices (DASD and zFCP) and networking devices (QETH and LCS).

Note: For persistent configuration in a production system, use tools provided by SUSE. Changes made
with the chzdev command might not take effect and can interfere with settings made through SUSE
tools.

You can apply configuration changes to the active configuration of the currently running system, or to the
persistent configuration stored in configuration files:

• Changes to the active configuration are effective immediately. They are lost on reboot, when a device
driver is unloaded, or when a device becomes unavailable.

• Changes to the persistent configuration are applied when the system boots, when a device driver is
loaded, or when a device becomes available.

By default, chzdev applies changes to both the active and the persistent configuration.

chzdev supports enabling and disabling devices, exporting and importing configuration data to and from
a file, and displaying a list of available device types and attributes.

chzdev Attribute settings

 --export <filename> | -

 --import <filename> | -

 --apply

Device selection

Device type selection

 --enableAttribute settings

 --disable

Device selection

 --persistent --active

 --active

 --persistent

 --dry-run --base <path>| <key=value>

 --force --no-root-update --yes --quiet

 --verbose

Device selection

chzdev

484 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

 <type>

,

<device>

<from_dev>-<to_dev>

 --by-attrib <key=value>| <key!=value>

 --by-interface <interface>

 --by-node <device_node>

 --by-path <path>

 --all

 --configured

 --existing --online

 --offline

Device type selection
 <type> --type

Attribute settings

1

 --remove <attrib>

 --remove-all

 <attribute=value>

chzdev actions and options
Notes:

1 Specify at least one of the options

chzdev help functions
chzdev

--list-attributes <type>

,

 <attribute>

--list-types

--help-attribute <type>

,

 <attribute>

 --help

 --version

where:

chzdev

Commands for Linux on Z 485

<type>
restricts the scope of an action to the specified device type:

• Specify a device type and optionally a device ID to work on devices with matching type and ID only.
• Specify a device type together with the --type option to manage the configuration of the device type

itself.

Note:

As a precaution, use the most specific device type when you configure a device by ID. Otherwise, the
same device ID might accidentally match other devices of a different subtype. To get a list of
supported device types, use the --list-types option.

<device>
selects a single device or a range of devices by device ID. Separate multiple IDs or ranges with a
comma (,). To select a range of devices, specify the ID of the first and the last device in the range
separated by a hyphen (-).

-t or --type <device_type>
selects a device type as target for a configuration or query action. For example: dasd-eckd, zfcp, or
qeth.

<attribute=value>
specifies a device attribute and its value. To specify multiple attributes, separate attribute-value pairs
with a blank.

You can use the --list-attributes option to display a list of available attributes and the --help-attribute
to get more detailed information about a specific attribute.

Tip: To specify an attribute that is not known to chzdev, use the --force option.

-r or --remove <attrib>
removes the setting for attribute <attrib>.
Active configuration

For attributes that maintain a list of values, clears all values for that list.
Persistent configuration

Removes any setting for the specified attribute. When the device or device driver is configured
again, the attribute is set to its default value.

Some attributes cannot be removed.
-R or --remove-all

removes the settings for all attributes of the selected device or device driver.
Active configuration

For attributes that maintain a list of values, clears all values for that list.
Persistent configuration

Removes all attribute settings that can be removed. When the device or device driver is configured
again, the attribute is set to its default value.

Some attributes cannot be removed.
--by-attrib <attrib=value> | <attrib!=value>

selects devices with a specific attribute, <attrib> that has a value of <value>. When specified as
<attrib>!=<value>, selects all devices that do not provide an attribute named <attrib> with a value of
<value>.

Tip: You can use the --list-attributes option to display a list of available attributes and the --help-
attribute to get more detailed information about a specific attribute.

--by-interface <interface>
selects devices by network interface, for example, eth0. <interface> must be the name of an existing
networking interface.

chzdev

486 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

--by-node <device_node>
selects devices by device node, for example, /dev/sda. <device_node> must be the path to the
device node for a block device or character device.

Note: If <device_node> is the device node for a logical device (such as a device mapper device),
lszdev tries to resolve the corresponding physical device nodes. The lsblk tool must be available
for this resolution to work.

--by-path <path>
selects devices by file-system path, for example, /usr. The <path> parameter can be the mount point
of a mounted file system, or a path on that file system.

Note: If the file system that provides <path> is stored on multiple physical devices (such as supported
by btrfs), lszdev tries to resolve the corresponding physical device nodes. The lsblk tool must be
available and the file system must provide a valid UUID for this resolution to work.

--all
selects all existing and configured devices.

--configured
narrows the selection to those devices for which a persistent configuration exists.

--existing
narrows the selection to all devices that are present in the active configuration.

--configured --existing
specifying both --configured and --existing narrows the selection to devices that are present in both
configurations, persistent and active.

--online
narrows the selection to devices that are enabled in the active configuration.

--offline
narrows the selection to devices that are disabled in the active configuration.

-a or --active
applies changes to the active configuration only. The persistent configuration is not changed unless
you also specify --persistent.

Note: Changes to the active configuration are effective immediately. They are lost on reboot, when a
device driver is unloaded, or when a device becomes unavailable.

-p or --persistent
applies changes to the persistent configuration only. The persistent configuration takes effect when
the system boots, when a device driver is loaded, or when a device becomes available.

--export <filename>|-
writes configuration data to a text file called <filename>. If a single hyphen (-) is specified instead of a
file name, data is written to the standard output stream. The output format of this option can be used
with the --import option. To reduce the scope of exported configuration data, you can select specific
devices, a device type, or define whether to export only data for the active or persistent configuration.

--import <filename>|-
reads configuration data from <filename> and applies it. If a single hyphen (-) is specified instead of a
file name, data is read from the standard input stream. The input format must be the same as the
format produced by the --export option.

By default, all configuration data that is read is also applied. To reduce the scope of imported
configuration data, you can select specific devices, a device type, or define whether to import only
data for the active or persistent configuration.

-a or --apply
applies the persistent configuration of all selected devices and device types to the active
configuration.

-e or --enable
enables the selected devices. Any steps necessary for the devices to function are taken, for example:
create a CCW group device, remove a device from the CIO exclusion list, or set a CCW device online.

chzdev

Commands for Linux on Z 487

Active configuration
Performs all setup steps required for a device to become operational, for example, as a block
device or as a network interface.

Persistent configuration
Creates configuration files and settings associated with the selected devices.

-d or --disable
disables the selected devices.
Active configuration

Disables the selected devices by reverting the configuration steps necessary to enable them.
Persistent configuration

Removes configuration files and settings associated with the selected devices.
--dry-run

processes the actions and displays command output without changing the configuration of any
devices or device types. Combine with --verbose to display details about skipped configuration steps.

--base <path> | <key=value>
changes file system paths that are used to access files. If <path> is specified without an equal sign
(=), it is used as base path for accessing files in the active and persistent configuration. If the specified
parameter is in <key=value> format, only those paths that begin with <key> are modified. For these
paths, the initial <key> portion is replaced with <value>.

Example: lszdev --persistent --base /etc=/mnt/etc

-f or --force
overrides safety checks and confirmation questions, including:

• More than 256 devices selected
• Configuring unknown attributes
• Combining apparently inconsistent settings

--no-root-update
skips any additional steps that are required to change the root device configuration persistently.
Typically such steps include rebuilding the initial RAM disk, or modifying the kernel command line.

-y or --yes
answers all confirmation questions with "yes".

-q or --quiet
prints only minimal run-time information.

-l or --list-attributes
lists all supported device or device type attributes, including a short description. Use the --help-
attribute option to get more detailed information about an attribute.

-L or --list-types
lists the name and a short description for all device types supported by chzdev.

-V or --verbose
prints additional run-time information.

-v or --version
displays the version number of chzdev, then exits.

-h or --help
displays help information for the command.

-H or --help-attribute
displays help information for the command.

Examples

• To enable an FCP device with device number 0.0.198d, WWPN 0x50050763070bc5e3, and LUN
0x4006404600000000, and create a persistent configuration, issue:

chzdev

488 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

chzdev --enable zfcp-lun 0.0.198d:0x50050763070bc5e3:0x4006404600000000

• To enable the same FCP device without creating a persistent configuration, issue:

chzdev --enable --active zfcp-lun 0.0.198d:0x50050763070bc5e3:0x4006404600000000

• To export configuration data for all FCP devices to a file called config.txt, issue:

chzdev zfcp-lun --all --export config.txt

• To enable a QETH device and create a persistent configuration, issue:

chzdev --enable qeth 0.0.a000:0.0.a001:0.0.a002

• To enable a QETH device without creating a persistent configuration, issue:

chzdev --enable --active qeth 0.0.a000:0.0.a001:0.0.a002

• To enable a device that provides networking interface eth0, issue:

chzdev --by-interface eth0 --active

• To get help for the QETH-device attribute layer2, issue:

chzdev qeth --help-attribute layer2

• To enable DASD 0.0.8000 and create a persistent configuration, issue:

chzdev -e dasd 8000

• To enable DASDs 0.0.1000 and 0.0.2000 through 0.0.2010, issue:

chzdev dasd 1000,200-2010 -e

• To change the dasd device type parameter eer_pages to 14, issue:

chzdev dasd --type eer_pages=14

• To remove the persistent use_diag setting of DASD 0.0.8000, issue:

chzdev dasd 8000 --remove use_diag --persistent

• To persistently configure the root device, issue:

chzdev --by-path / --persistent

See the man page for information about the command exit codes.

Files used
The chzdev command uses these files:
/etc/udev/rules.d/

chzdev creates udev rules to store the persistent configuration of devices. File names start with 41-.
/etc/modprobe.d/

chzdev creates modprobe configuration files to store the persistent configuration of certain device
types. File names start with s390x-.

chzdev

Commands for Linux on Z 489

cio_ignore - Manage the I/O exclusion list
Use the cio_ignore command to specify I/O devices that are to be ignored by Linux.

When a Linux on Z instance boots, it senses and analyzes all available I/O devices. You can use the
cio_ignore kernel parameter (see “cio_ignore - List devices to be ignored” on page 644) to specify devices
that are to be ignored. This exclusion list can cover all possible devices, even devices that do not actually
exist.

The cio_ignore command manages this exclusion list on a running Linux instance. You can change the
exclusion list and display it in different formats.

cio_ignore syntax

cio_ignore -a

 -r

,

<device_bus_id>

<from_device_bus_id>-<to_device_bus_id>

 -A

 -R

 -l

 -i <device_bus_id>

 -L

 -k

 -u

 -p

 -h

 -v

Where:
-a or --add

adds one or more device specifications to the exclusion list.

When you add specifications for a device that is already sensed and analyzed, there is no immediate
effect of adding it to the exclusion list. For example, the device still appears in the output of the lscss
command and can be set online. However, if the device subsequently becomes unavailable, it is
ignored when it reappears. For example, if the device is detached in z/VM, it is ignored when it is
attached again.

See the “-p or --purge” on page 491 about making devices that are already sensed and analyzed
unavailable to Linux.

-r or --remove
removes one or more device specifications from the exclusion list.

When you remove device specifications from the exclusion list, the corresponding devices are sensed
and analyzed if they exist. Where possible, the corresponding device driver is informed, and the
devices become available to Linux.

<device_bus_id>
identifies a single device.

cio_ignore

490 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Device bus-IDs are of the form 0.<n>.<devno>, where <n> is a subchannel set ID and <devno> is a
device number. If the subchannel set ID is 0, you can abbreviate the specification to the device
number, with or without a leading 0x.

Example: The specifications 0.0.0190, 190, 0190, and 0x190 are all equivalent. There is no short
form of 0.1.0190.

<from_device_bus_id>-<to_device_bus_id>
identifies a range of devices. <from_device_bus_id> and <to_device_bus_id> have the same format as
<device_bus_id>.

-A or --add-all
adds the entire range of possible devices to the exclusion list.

When you add specifications for a device that is already sensed and analyzed, there is no immediate
effect of adding it to the exclusion list. For example, the device still appears in the output of the lscss
command and can be set online. However, if the device subsequently becomes unavailable, it is
ignored when it reappears. For example, if the device is detached in z/VM, it is ignored when it is
attached again.

See the “-p or --purge” on page 491 about making devices that are already sensed and analyzed
unavailable to Linux.

-R or --remove-all
removes all devices from the exclusion list.

When you remove device specifications from the exclusion list, the corresponding devices are sensed
and analyzed if they exist. Where possible, the corresponding device driver is informed, and the
devices become available to Linux.

-l or --list
displays the current exclusion list.

-i or --is-ignored
checks if the specified device is on the exclusion list. The command prints an information message
and completes with exit code 0 if the device is on the exclusion list. The command completes with exit
code 2 if the device is not on the exclusion list.

-L or --list-not-blacklisted
displays specifications for all devices that are not in the current exclusion list.

-k or --kernel-param
returns the current exclusion list in kernel parameter format.

You can make the current exclusion list persistent across rebooting Linux by using the output of the
cio_ignore command with the -k option as part of the Linux kernel parameter. See Chapter 3,
“Kernel and module parameters,” on page 19.

-u or --unused
discards the current exclusion list and replaces it with a specification for all devices that are not
online. This includes specification for possible devices that do not actually exist.

-p or --purge
makes all devices that are in the exclusion list and that are currently offline unavailable to Linux. This
option does not make devices unavailable if they are online.

-h or --help
displays help information for the command. To view the man page, enter man cio_ignore.

-v or --version
displays version information.

Examples

These examples illustrate common uses for cio_ignore.

• The following command shows the current exclusion list:

cio_ignore

Commands for Linux on Z 491

cio_ignore -l
Ignored devices:
=================
0.0.0000-0.0.7e8e
0.0.7e94-0.0.f4ff
0.0.f503-0.0.ffff
0.1.0000-0.1.ffff
0.2.0000-0.2.ffff
0.3.0000-0.3.ffff

• The following command shows specifications for the devices that are not on the exclusion list:

cio_ignore -L
Accessible devices:
===================
0.0.7e8f-0.0.7e93
0.0.f500-0.0.f502

The following command checks if 0.0.7e8f is on the exclusion list:

cio_ignore -i 0.0.7e8f
Device 0.0.7e8f is not ignored.

• The following command adds, 0.0.7e8f, to the exclusion list:

cio_ignore -a 0.0.7e8f

The previous example then becomes:

cio_ignore -L
Accessible devices:
===================
0.0.7e90-0.0.7e93
0.0.f500-0.0.f502

And for 0.0.7e8f in particular:

cio_ignore -i 0.0.7e8f
Device 0.0.7e8f is ignored.

• The following command shows the current exclusion list in kernel parameter format:

cio_ignore -k
cio_ignore=all,!7e90-7e93,!f500-f502

cio_ignore

492 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

cmsfs-fuse - Mount a z/VM CMS file system
Use the cmsfs-fuse command to mount the enhanced disk format (EDF) file system on a z/VM minidisk.

In Linux, the minidisk is represented as a DASD and the file system is mounted as a cmsfs-fuse file
system. The cmsfs-fuse file system translates the record-based file system on the minidisk into Linux
semantics.

Through the cmsfs-fuse file system, the files on the minidisk become available to applications on Linux.
Applications can read from and write to files on minidisks. Optionally, the cmsfs-fuse file system converts
text files between EBCDIC on the minidisk and ASCII within Linux.

Attention: You can inadvertently damage files and lose data when directly writing to files within
the cmsfs-fuse file system. To avoid problems when you write, multiple restrictions must be
observed, especially regarding linefeeds (see restrictions for write).

Tip: If you are unsure about how to safely write to a file on the cmsfs-fuse file system, copy the file to a
location outside the cmsfs-fuse file system, edit the file, and then copy it back to its original location.

Use fusermount to unmount file systems that you mounted with cmsfs-fuse. See the fusermount
man page for details.

Before you begin:

• cmsfs-fuse requires the FUSE library.
• The DASD must be online.
• Depending whether you intend to read, write, or both, you must have the appropriate permissions for

the device node.

cmsfs-fuse syntax

cmsfs-fuse

-a

-t
--from

 CP1047

<code-page>

--to

 ISO8859-1

<code-page>

<mount-options> <fuse-options>

<node> <mount-point>

Where:
-a or --ascii

treats all files on the minidisk as text files and converts them from EBCDIC to ASCII.
-t or --filetype

treats files with extensions as listed in the cmsfs-fuse configuration file as text files and converts
them from EBCDIC to ASCII.

By default, the cmsfs-fuse command uses /etc/cmsfs-fuse/filetypes.conf as the
configuration file. You can replace the list in this default file by creating a file .cmsfs-fuse/
filetypes.conf in your home directory.

The filetypes.conf file lists one file type per line. Lines that start with a number sign (#) followed
by a space are treated as comments and are ignored.

cmsfs-fuse

Commands for Linux on Z 493

--from <code-page>
specifies the encoding of the files on the z/VM minidisk. If this option is not specified, code page
CP1047 is used. Enter iconv --list to display a list of all available code pages.

--to <code-page>
specifies the encoding to which the files on the z/VM minidisk are converted in Linux. If this option is
not specified, code page ISO-8859-1 is used. Enter iconv --list to display a list of all available
code pages.

<mount-options>
options as available for the mount command. See the mount man page for details.

<fuse-options>
options for FUSE. The following options are supported by the cmsfs-fuse command. To use an
option, it must also be supported by the version of FUSE that you have.
-d or -o debug

enables debug output (implies -f).
-f

runs the command as a foreground operation.
-o allow_other

allows access to other users.
-o allow_root

allows access to root.
-o nonempty

allows mounts over files and non-empty directories.
-o default_permissions

enables permission checking by the kernel.
-o max_read=<n>

sets maximum size of read requests.
-o kernel_cache

caches files in the kernel.
-o [no]auto_cache

enables or disables off caching based on modification times.
-o umask=<mask>

sets file permissions (octal).
-o uid=<n>

sets the file owner.
-o gid=<n>

sets the file group.
-o max_write=<n>

sets the maximum size of write requests.
-o max_readahead=<n>

sets the maximum readahead value.
-o async_read

performs reads asynchronously (default).
-o sync_read

performs reads synchronously.
-o big_writes

enables write operations with more than 4 KB.
<node>

the device node for the DASD that represents the minidisk in Linux.
<mount-point>

the mount point in the Linux file system where you want to mount the CMS file system.

cmsfs-fuse

494 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

-h or --help
displays help information for the command. To view the man page, enter man cmsfs-fuse.

-v or --version
displays version information for the command.

Extended attributes

You can use the following extended attributes to handle the CMS characteristics of a file:
user.record_format

specifies the format of the file. The format is F for fixed record length files and V for variable record
length files. This attribute can be set only for empty files. The default file format for new files is V.

user.record_lrecl
specifies the record length of the file. This attribute can be set only for an empty fixed record length
file. A valid record length is an integer in the range 1-65535.

user.file_mode
specifies the CMS file mode of the file. The file mode consists of a mode letter from A-Z and mode
number from 0 - 6. The default file mode for new files is A1.

You can use the following system calls to work with extended attributes:
listxattr

to list the current values of all extended attributes.
getxattr

to read the current value of a particular extended attribute.
setxattr

to set a particular extended attribute.

You can use these system calls through the getfattr and setfattr commands. For more information,
see the man pages of these commands and of the listxattr, getxattr, and setxattr system calls.

Restrictions

When you work with files in the cmsfs-fuse file system, restrictions apply for the following system calls:
write

Be aware of the following restrictions when you write to a file on the cmsfs-fuse file system:
Write location

Writing is supported only at the end of a file.
Padding

For fixed-length record files, the last record is padded to make up a full record length. The padding
character is zero in binary mode and the space character in ASCII mode.

Sparse files
Sparse files are not supported. To prevent the cp tool from writing in sparse mode specify -
sparse=never.

Records and linefeeds with ASCII conversion (-a and -t)

In the ASCII representation of an EBCDIC file, a linefeed character determines the end of a record.
Follow these rules about linefeed characters requirements when you write to EBCDIC files in
ASCII mode:
For fixed-record length files

Use linefeed characters to separate character strings of the fixed record length.
For variable-record length files

Use linefeed characters to separate character strings. The character strings must not exceed
the maximum record length.

The CMS file system does not support empty records. cmsfs-fuse adds a space to records that
consist of a linefeed character only.

cmsfs-fuse

Commands for Linux on Z 495

rename and creat
Uppercase file names are enforced.

truncate
Only shrinking of a file is supported. For fixed-length record files, the new file size must be a multiple
of the record length.

Examples

• To mount the CMS file system on the minidisk represented by the file node /dev/dasde at /mnt:

cmsfs-fuse /dev/dasde /mnt

• To mount the CMS file system on the minidisk represented by the file node /dev/dasde at /mnt and
enable EBCDIC to ASCII conversion for text files with extensions as specified in ~/.cmsfs-fuse/
filetypes.conf or /etc/cmsfs-fuse/filetypes.conf if the former does not exist:

cmsfs-fuse -t /dev/dasde /mnt

• To mount the CMS file system on the minidisk represented by the file node /dev/dasde at /mnt and
allow root to access the mounted file system:

cmsfs-fuse -o allow_root /dev/dasde /mnt

• To unmount the CMS file system that was mounted at /mnt:

fusermount -u /mnt

• To show the record format of a file, PROFILE.EXEC, on a z/VM minidisk that is mounted on /mnt:

getfattr -n user.record_format /mnt/PROFILE.EXEC
F

• To set record length 80 for an empty fixed record format file, PROFILE.EXEC, on a z/VM minidisk that is
mounted on /mnt:

setfattr -n user.record_lrecl -v 80 /mnt/PROFILE.EXEC

cmsfs-fuse

496 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

cpacfstats - Monitor CPACF cryptographic activity
Use the cpacfstats command to display the number of cryptographic operations that are performed by
the Central Processor Assist for Cryptographic Function (CPACF). You can display and enable, disable, or
reset specific hardware counters for AES, DES, TDES, SHA, and pseudo random functions.

CPACF performance counters are available on LPARs only.

All counters are initially disabled and must be enabled in the LPAR activation profile on the SE or HMC to
measure CPACF activities. There is a slight performance penalty with CPACF counters enabled.

Prerequisites

• libpfm version 4 or later of is required. SUSE Linux Enterprise Server provides the libpfm package.
• On the HMC or SE, authorize the LPAR for each counter set you want to use. Customize the LPAR

activation profile and modify the Counter Facility Security Options. You need to activate the "Crypto
activity counter set authorization control" checkbox.

• The cpacfstatsd daemon must be running. Check the syslog for the message: cpacfstatsd:
Running. To start the daemon, issue:

cpacfstatd

The daemon requires root privileges to open and work with the perf kernel API functions. Issue man
cpacfstatd for more information about the daemon.

Note: The counter value is increased once per API call and also for every additional 4096 bytes of data.

Setting up the cpacfstats group

Only root and members of the group cpacfstats are allowed to communicate with the daemon process.
You must create the group and add users to it.

1. Create the group cpacfstats:

groupadd cpacfstats

2. Add all users who are allowed to run the cpacfstats client application to the group:

usermod -a -G cpacfstats <user>

All users in the cpacfstats group are also able to modify the CPACF counter states (enable, disable, reset).

cpacfstats syntax

cpacfstats

 -p all

 -e <counter>

 -d <counter>

 -r <counter>

 -p <counter>

Where:
-e or --enable <counter>

enables one or all CPACF performance counters. The optional counter argument can be one of:

cpacfstats

Commands for Linux on Z 497

des
counts all DES- and 3DES-related cipher message CPACF instructions.

aes
counts all AES-related cipher message CPACF instructions.

sha
counts all message digest (that is, SHA-1 through SHA-512) related CPACF instructions.

rng
counts all pseudo-random related CPACF instructions.

all
counts all CPACF instructions.

If you omit the counter, all performance counters are enabled. Enabling a counter does not reset it.
New events are added to the current counter value.

-d or --disable <counter>
disables one or all CPACF performance counters. If you omit the counter, all performance counters are
disabled. Disabling a counter does not reset it. The counter value is preserved when a counter is
disabled, and counting resumes with the preserved value when the counter is re-enabled.

-r or --reset <counter>
resets one or all CPACF performance counters. If you omit the counter, all performance counters are
reset to 0.

-p or --print <counter>
displays the value of one or all CPACF performance counters. If you omit the counter, all performance
counters are displayed.

-h or --help
displays help information for the command. To view the command man page, enter
man cpacfstats.

-v or --version
displays version information for cpacfstats.

If no option is specified, the command prints out all the counters (as if --print all were specified).

Examples

• To print status and values of all CPACF performance counters:

cpacfstats
des counter: disabled
aes counter: disabled
sha counter: disabled
rng counter: disabled

• To enable the AES CPACF performance counter:

cpacfstats --enable aes
aes counter: 0

• To enable all CPACF performance counters:

cpacfstats -e
des counter: 0
aes counter: 192
sha counter: 0
rng counter: 0

For the already enabled aes counter, the value is not reset.

cpacfstats

498 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

cpuplugd - Control CPUs and memory
Use the cpuplugd command and a set of rules in a configuration file to dynamically enable or disable
CPUs. For Linux on z/VM, you can also dynamically add or remove memory.

Rules that are tailored to a particular system environment and the associated workload can increase
performance. The rules can include various system load variables.

Note: Do not use cpuplugd with NUMA emulation. cpuplugd can distort the balance of CPU
assignments to NUMA nodes. See Chapter 24, “NUMA emulation,” on page 313.

You can start cpuplugd from the command line in two ways:

• With the service utility
• From a command line

Note: Do not run multiple instances of cpuplugd simultaneously.

cpuplugd service utility syntax
If you run the cpuplugd daemon through the service utility, you configure the daemon through
specifications in the /etc/cpuplugd configuration file.

service cpuplugd start

 stop

 status

 restart

Where:
start

starts the cpuplugd daemon with the configuration in /etc/cpuplugd. Do not run multiple instances
of cpuplugd simultaneously. Check the cpuplugd status before starting a new instance.

stop
stops the cpuplugd daemon.

status
shows current status of cpuplugd.

restart
stops and restarts the cpuplugd daemon. Useful to re-read the configuration file when it was changed.

Examples

• To stop a running instance of cpuplugd:

service cpuplugd stop

• To display the status:

service cpuplugd status
...
 Active: active (running) ...

cpuplugd

Commands for Linux on Z 499

cpuplugd command-line syntax
You can start cpuplugd through a command interface.

Before you begin: Do not run multiple instances of cpuplugd simultaneously. Check the cpuplugd status
through the service utility before you issue the cpuplugd command (see “cpuplugd service utility syntax”
on page 499).

cpuplugd syntax

cpuplugd

 -f -V

 -c <config file>

Where:
-c or --config <config file>

specifies the path to the configuration file with the rules (see “Configuration file structure” on page
500).

After you install cpuplugd for the first time, you can find a sample configuration file at /etc/
cpuplugd.conf. If you are upgrading from a prior version of cpuplugd, see “Migrating old
configuration files” on page 501.

-f or --foreground
runs cpuplugd in the foreground and not as a daemon. If this option is omitted, cpuplugd runs as a
daemon in the background.

-V or --verbose
displays verbose messages to stdout when cpuplugd is running in the foreground or to syslog when
cpuplugd is running as a daemon in the background. This option can be useful for debugging.

-h or --help
displays help information for the command. To view the command man page, enter man cpuplugd.
To view the man page for the configuration file, enter man cpuplugd.conf.

-v or --version
displays version information for cpuplugd.

Examples

• To start cpuplugd in daemon mode with a configuration file /etc/cpuplugd:

cpuplugd -c /etc/cpuplugd

• To run cpuplugd in the foreground with verbose messages and with a configuration file /etc/
cpuplugd:

cpuplugd -V -f -c /etc/cpuplugd

Configuration file structure
The cpuplugd configuration file can specify rules for controlling the number of active CPUs and for
controlling the amount of memory.

The configuration file contains:

• <variable>="<value>" pairs

These pairs must be specified within one line. The maximum valid line length is 2048 characters. The
values can be decimal numbers or algebraic or Boolean expressions.

• Comments

cpuplugd

500 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Any part of a line that follows a number sign (#) is treated as a comment. There can be full comment
lines with the number sign at the beginning of the line or comments can begin in mid-line.

• Empty lines

Attention: These configuration file samples illustrate the syntax of the configuration file. Do not
use the sample rules on production systems. Useful rules differ considerably, depending on the
workload, resources, and requirements of the system for which they are designed.

Migrating old configuration files
With SUSE Linux Enterprise Server 11 SP2, an enhanced version of cpuplugd has been introduced.

This enhanced version includes extensions to the configuration file and a new sample configuration
file, /etc/sysconfig/cpuplugd.

If a configuration file from a prior version of cpuplugd already exists at /etc/sysconfig/cpuplugd,
this file is not replaced but complemented with new variables. The new sample configuration file is then
copied to /var/adm/fillup-templates/sysconfig.cpuplugd.

The new sample file contains comments that describe the enhanced file layout. View the file to see this
information.

Basic configuration file for CPU control
A configuration file for dynamically enabling or disabling CPUs has several required specifications.

The following configuration file sample includes only the required specifications for dynamically enabling
or disabling CPUs.

UPDATE="10"
CPU_MIN="2"
CPU_MAX="10"

HOTPLUG = "idle < 10.0"
HOTUNPLUG = "idle > 100"

Figure 75: Simplified configuration file with CPU hotplug rules

In the configuration file:
UPDATE

specifies the time interval, in seconds, at which cpuplugd evaluates the rules and, if a rule is met,
enables or disables CPUs. This variable is also required for controlling memory (see “Basic
configuration file for memory control” on page 502).

In the example, the rules are evaluated every 10 seconds.

CPU_MIN
specifies the minimum number of CPUs. Even if the rule for disabling CPUs is met, cpuplugd does not
reduce the number of CPUs to less than this number.

In the example, the number of CPUs cannot become less than 2.

CPU_MAX
specifies the maximum number of CPUs. Even if the rule for enabling CPUs is met, cpuplugd does not
increase the number of CPUs to more than this number. If 0 is specified, the maximum number of
CPUs is the number of CPUs available on the system.

In the example, the number of CPUs cannot become more than 10.

HOTPLUG
specifies the rule for dynamically enabling CPUs. The rule resolves to a boolean true or false. Each
time this rule is true, cpuplugd enables one CPU, unless the number of CPUs has already reached the
maximum specified with CPU_MAX.

Setting HOTPLUG to 0 disables dynamically adding CPUs.

cpuplugd

Commands for Linux on Z 501

In the example, a CPU is enabled when the idle times of all active CPUs sum up to less than 10.0%.
See “Keywords for CPU hotplug rules” on page 503 for information about available keywords.

HOTUNPLUG
specifies the rule for dynamically disabling CPUs. The rule resolves to a boolean true or false. Each
time this rule is true, cpuplugd disables one CPU, unless the number of CPUs has already reached the
minimum specified with CPU_MIN.

Setting HOTUNPLUG to 0 disables dynamically removing CPUs.

In the example, a CPU is disabled when the idle times of all active CPUs sum up to more than 100%.
See “Keywords for CPU hotplug rules” on page 503 for information about available keywords.

If one of these variables is set more than once, only the last occurrence is used. These variables are not
case sensitive.

If both the HOTPLUG and HOTUNPLUG rule are met simultaneously, HOTUNPLUG is ignored.

Basic configuration file for memory control
For Linux on z/VM, you can also use cpuplugd to dynamically add or take away memory. There are several
required specifications for memory control.

The following configuration file sample includes only the required specifications for dynamic memory
control.

UPDATE="10"
CMM_MIN="0"
CMM_MAX="131072" # 512 MB
CMM_INC="10240" # 40 MB

MEMPLUG = "swaprate > 250"
MEMUNPLUG = "swaprate < 10"

Figure 76: Simplified configuration file with memory hotplug rules

In the configuration file:
UPDATE

specifies the time interval, in seconds, at which cpuplugd evaluates the rules and, if a rule is met,
adds or removes memory. This variable is also required for controlling CPUs (see “Basic configuration
file for CPU control” on page 501).

In the example, the rules are evaluated every 10 seconds.

CMM_MIN
specifies the minimum amount of memory, in 4 KB pages, that Linux surrenders to the CMM static
page pool (see “Cooperative memory management background” on page 361). Even if the MEMPLUG
rule for taking memory from the CMM static page pool and adding it to Linux is met, cpuplugd does not
decrease this amount.

In the example, the amount of memory that is surrendered to the static page pool can be reduced to
0.

CMM_MAX
specifies the maximum amount of memory, in 4 KB pages, that Linux surrenders to the CMM static
page pool (see “Cooperative memory management background” on page 361). Even if the
MEMUNPLUG rule for removing memory from Linux and adding it to the CMM static page pool is met,
cpuplugd does not increase this amount.

In the example, the amount of memory that is surrendered to the static page pool cannot become
more than 131072 pages of 4 KB (512 MB).

cpuplugd

502 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

CMM_INC
specifies the amount of memory, in 4 KB pages, that is removed from Linux when the MEMUNPLUG
rule is met. Removing memory from Linux increases the amount that is surrendered to the CMM static
page pool.

In the example, the amount of memory that is removed from Linux is 10240 pages of 4 KB (40 MB) at
a time.

CMM_DEC
Optional: specifies the amount of memory, in 4 KB pages, that is added to Linux when the MEMPLUG
rule is met. Adding memory to Linux decreases the amount that is surrendered to the CMM static page
pool.

If this variable is omitted, the amount of memory that is specified for CMM_INC is used.

In the example, CMM_DEC is omitted and the amount of memory added to Linux is 10240 pages of
4 KB (40 MB) at a time, as specified with CMM_INC.

MEMPLUG
specifies the rule for dynamically adding memory to Linux. The rule resolves to a boolean true or false.
Each time this rule is true, cpuplugd adds the number of pages that are specified by CMM_DEC, unless
the CMM static page pool already reached the minimum that is specified with CMM_MIN.

Setting MEMPLUG to 0 disables dynamically adding memory to Linux.

In the example, memory is added to Linux if there are more than 250 swap operations per second.
See “Keywords for memory hotplug rules” on page 504 for information about available keywords.

MEMUNPLUG
specifies the rule for dynamically removing memory from Linux. The rule resolves to a boolean true or
false. Each time this rule is true, cpuplugd removes the number of pages that are specified by
CMM_INC, unless the CMM static page pool already reached the maximum that is specified with
CMM_MAX.

Setting MEMUNPLUG to 0 disables dynamically removing memory from Linux.

In the example, memory is removed from Linux when there are less than 10 swap operations per
second. See “Keywords for memory hotplug rules” on page 504 for information about available
keywords.

If any of these variables are set more than once, only the last occurrence is used. These variables are not
case-sensitive.

If both the MEMPLUG and MEMUNPLUG rule are met simultaneously, MEMUNPLUG is ignored.

CMM_DEC and CMM_INC can be set to a decimal number or to a mathematical expression that uses the
same algebraic operators and variables as the MEMPLUG and MEMUNPLUG hotplug rules (see “Keywords
for memory hotplug rules” on page 504 and “Writing more complex rules” on page 505).

Predefined keywords
There is a set of predefined keywords that you can use for CPU hotplug rules and a set of keywords that
you can use for memory hotplug rules.

All predefined keywords are case sensitive.

Keywords for CPU hotplug rules
There are predefined keywords for use in the CPU hotplug rules, HOTPLUG and HOTUNPLUG.

loadavg
is the current load average.

onumcpus
is the current number of online CPUs.

runnable_proc
is the current number of runnable processes.

cpuplugd

Commands for Linux on Z 503

user
is the current CPU user percentage.

nice
is the current CPU nice percentage.

system
is the current CPU system percentage.

idle
is the current CPU idle percentage.

iowait
is the current CPU iowait percentage.

irq
is the current CPU irq percentage.

softirq
is the current CPU softirq percentage.

steal
is the current CPU steal percentage.

guest
is the current CPU guest percentage.

guest_nice
is the current CPU guest_nice percentage.

cpustat.<name>
is data from /proc/stat and /proc/loadavg. In the keyword, <name> can be any of the previously
listed keywords, for example, cpustat.idle. See the proc man page for more details about the data
that is represented by these keywords.

With this notation, the keywords resolve to raw timer ticks since system start, not to current
percentages. For example, idle resolves to the current idle percentage and cpustat.idle resolves
to the total timer ticks spent idle. See “Using historical data” on page 505 about how to obtain
average and percentage values.

loadavg, onumcpus, and runnable_proc are not percentages and resolve to the same values as
cpustat.loadavg, cpustat.onumcpus, and cpustat.runnable_proc.

cpustat.total_ticks
is the total number of timer ticks since system start.

time
is the UNIX epoch time in the format "seconds.microseconds".

Percentage values are accumulated for all online CPUs. Hence, the values for the percentages range from
0 to 100 × (number of online CPUs). To get the average percentage per CPU device, divide the
accumulated value by the number of CPUs. For example, idle / onumcpus yields the average idle
percentage per CPU.

Keywords for memory hotplug rules
There are predefined keywords for use in the memory hotplug rules, MEMPLUG and MEMUNPLUG.

The following keywords are available:
apcr

is the number of page cache operations, pgpin + pgpout, from /proc/vmstat in 512-byte blocks per
second.

freemem
is the amount of free memory in MB.

swaprate
is the number of swap operations, pswpin + pswpout, from /proc/vmstat in 4 KB pages per second.

cpuplugd

504 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

meminfo.<name>
is the value for the symbol <name> as shown in the output of cat /proc/meminfo. The values are
plain numbers but refer to the same units as those used in /proc/meminfo.

vmstat.<name>
is the value for the symbol <name> as shown in the output of cat /proc/vmstat.

Using historical data
Historical data is available for the keyword time and the sets of keywords cpustat.<name>,
meminfo.<name>, and vmstat.<name>.

See “Keywords for CPU hotplug rules” on page 503 and “Keywords for memory hotplug rules” on page
504 for details about these keywords.

Use the suffixes [<n>] to retrieve the data of <n> intervals in the past, where <n> can be in the range 0 -
100.

Examples
cpustat.idle

yields the current value for the counted idle ticks.
cpustat.idle[1]

yields the idle ticks as counted one interval ago.
cpustat.idle[5]

yields the idle ticks as counted five intervals ago.
cpustat.idle - cpustat.idle[5]

yields the idle ticks during the past five intervals.
time - time[1]

yields the length of an update interval in seconds.
cpustat.total_ticks - cpustat.total_ticks[5]

yields the total number of ticks during the past five intervals.
(cpustat.idle - cpustat.idle[5]) / (cpustat.total_ticks - cpustat.total_ticks[5])

yields the average ratio of idle ticks to total ticks during the past five intervals.

Multiplying this ratio with 100 yields the percentage of idle ticks during the last five intervals.

Multiplying this ratio with 100 * onumcpus yields the accumulated percentage of idle ticks for all
processors during the last five intervals.

Writing more complex rules
In addition to numbers and keywords, you can use mathematical and Boolean operators, and you can use
user-defined variables to specify rules.

• The predefined keywords (see “Predefined keywords” on page 503)
• Decimal numbers
• The mathematical operators

+
addition

-
subtraction

*
multiplication

/
division

<
less than

cpuplugd

Commands for Linux on Z 505

>
greater than

• Parentheses (and) to group mathematical expressions
• The Boolean operators

&
and

|
or

!
not

• User-defined variables

You can specify complex calculations as user-defined variables, which can then be used in expressions.
User-defined variables are case-sensitive and must not match a pre-defined variable or keyword. In the
configuration file, definitions for user-defined variables must precede their use in expressions.

Variable names consist of alphanumeric characters and the underscore (_) character. An individual
variable name must not exceed 128 characters. All user-defined variable names and values, in total,
must not exceed 4096 characters.

Examples

• HOTPLUG = "loadavg > onumcpus + 0.75"
• HOTPLUG = "(loadavg > onumcpus + 0.75) & (idle < 10.0)"

• my_idle_rate = "(cpustat.idle - cpustat.idle[5]) / (cpustat.total_ticks -
cpustat.total_ticks[5])"
my_idle_percent_total = "my_idle_rate * 100 * onumcpus"
...
HOTPLUG = "(loadavg > onumcpus + 0.75) & (my_idle_percent_total < 10.0)"

cpuplugd

506 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Sample configuration file
A typical configuration file includes multiple user-defined variables and values from procfs, for example,
to calculate the page scan rate or the cache size.

Required static variables

CPU_MIN="1"
CPU_MAX="0"
UPDATE="1"
CMM_MIN="0"
CMM_MAX="131072" # 512 MB

User-defined variables

pgscan_d="vmstat.pgscan_direct_dma[0] + vmstat.pgscan_direct_normal[0] +
vmstat.pgscan_direct_movable[0]"
pgscan_d1="vmstat.pgscan_direct_dma[1] + vmstat.pgscan_direct_normal[1] +
vmstat.pgscan_direct_movable[1]"
page scan rate in pages / timer tick
pgscanrate="(pgscan_d - pgscan_d1) / (cpustat.total_ticks[0] - cpustat.total_ticks[1])"
cache usage in kilobytes
avail_cache="meminfo.Cached - meminfo.Shmem"

user_0="(cpustat.user[0] - cpustat.user[1])"
nice_0="(cpustat.nice[0] - cpustat.nice[1])"
system_0="(cpustat.system[0] - cpustat.system[1])"
user_2="(cpustat.user[2] - cpustat.user[3])"
nice_2="(cpustat.nice[2] - cpustat.nice[3])"
system_2="(cpustat.system[2] - cpustat.system[3])"
CP_Active0="(user_0 + nice_0 + system_0) / (cpustat.total_ticks[0] - cpustat.total_ticks[1])"
CP_Active2="(user_2 + nice_2 + system_2) / (cpustat.total_ticks[2] - cpustat.total_ticks[3])"
CP_ActiveAVG="(CP_Active0+CP_Active2) / 2"

idle_0="(cpustat.idle[0] - cpustat.idle[1])"
iowait_0="(cpustat.iowait[0] - cpustat.iowait[1])"
idle_2="(cpustat.idle[2] - cpustat.idle[3])"
iowait_2="(cpustat.iowait[2] - cpustat.iowait[3])"
CP_idle0="(idle_0 + iowait_0) / (cpustat.total_ticks[0] - cpustat.total_ticks[1])"
CP_idle2="(idle_2 + iowait_2) / (cpustat.total_ticks[2] - cpustat.total_ticks[3])"
CP_idleAVG="(CP_idle0 + CP_idle2) / 2"

More required variables

cmm_inc: 10% of free memory, in 4K pages
CMM_INC="meminfo.MemFree / 40"
cmm_dec: 10% of total memory, in 4K pages
CMM_DEC="meminfo.MemTotal / 40"

Hotplug rules
HOTPLUG="((1 - CP_ActiveAVG) * onumcpus) < 0.08"
HOTUNPLUG="(CP_idleAVG * onumcpus) > 1.15"
MEMPLUG="pgscanrate > 20"
MEMUNPLUG="(meminfo.MemFree + avail_cache) > (meminfo.MemTotal / 10)"

Figure 77: Sample configuration file for CPU and memory hotplug

Attention: The sample file of Figure 77 on page 507 illustrates the syntax of the configuration file.
Useful rules might differ considerably, depending on the workload, resources, and requirements of
the system for which they are designed.

After you install cpuplugd with the s390-tools RPM, a commented sample configuration file is available
at /etc/cpuplugd. This file is used by the cpuplugd service.

cpuplugd

Commands for Linux on Z 507

dasdfmt - Format a DASD

Purpose

Use the dasdfmt command to low-level format ECKD-type direct access storage devices (DASD).

dasdfmt uses an ioctl call to the DASD driver to format tracks. A block size (hard sector size) can be
specified. The formatting process can take quite a long time (hours for large DASD).

Tips:

• For DASDs that have previously been formatted with dasdfmt, use the dasdfmt quick format mode.
• Use the -p option to monitor the progress.

CAUTION: As on any platform, formatting irreversibly destroys data on the target disk. Be sure not
to format a disk with vital data unintentionally.

dasdfmt syntax

dasdfmt

-r 10

-r <cylinders>

-b <blocksize>
1

-d cdl

-d ldl

-L

-l (default)
2

-l <volser>

-k

-Mfull

-M quick

expand

-p

-m

10

<hashstep>

-Q --check -y -F -v -t

-C --norecordzero

 <node>

Notes:
1 You are prompted for the block size if you omit it for an option that requires this specification.
2 If neither the -l option nor the -k option are specified, a VOLSER is generated from the device
number through which the volume is accessed.

Where:
-r <cylinders> or --requestsize=<cylinders>

specifies the number of cylinders to be processed in one formatting step. The value must be an
integer in the range 1 - 255. The default is 10 cylinders. Use this parameter to use any available PAV
devices. Ideally, the number of cylinders matches the number of associated devices, counting the
base device and all alias devices.

-b <block_size> or --blocksize=<block_size>
specifies one of the following block sizes in bytes: 512, 1024, 2048, or 4096.

dasdfmt

508 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

For the quick and expand modes and for the --check option, you can omit the block size. Otherwise,
you are prompted if you do not specify a value for the block size. You can then press Enter to accept
4096 or specify a different value.

Tip: Set <block_size> as large as possible (ideally 4096); the net capacity of an ECKD DASD decreases
for smaller block sizes. For example, a DASD formatted with a block size of 512 byte has only half of
the net capacity of the same DASD formatted with a block size of 4096 byte.

<node>
specifies the device node of the device to be formatted, for example, /dev/dasdzzz. See “DASD
naming scheme” on page 100 for more details about device nodes).

-d <disklayout> or --disk_layout=<disklayout>
formats the device with the compatible disk layout (cdl) or the Linux disk layout (ldl). If the parameter
is not specified, the default (cdl) is used.

-L or --no_label
valid for -d ldl only, where it suppresses the default LNX1 label.

-l <volser> or --label=<volser>
specifies the volume serial number (see “VOLSER” on page 98) to be written to the disk. If the
VOLSER contains special characters, it must be enclosed in single quotation marks. In addition, any '$'
character in the VOLSER must be preceded by a backslash ('\').

-k or --keep_volser
keeps the volume serial number when writing the volume label (see “VOLSER” on page 98). Keeping
the volume serial number is useful if the volume already has a serial number that should not be
overwritten.

-M or --mode=<mode>
specifies the mode to be used for formatting the device. Valid modes are:
full

Format the entire disk with the specified block size. This is the default mode.
quick

formats the first two tracks and writes label and partition information. Only use this option if you
are sure that the target DASD already contains a regular format with the specified block size.

expand
format all unformatted tracks at the end of the target DASD. This mode assumes that tracks at the
beginning of the DASD volume have already been correctly formatted, while a consecutive set of
tracks at the end are unformatted. You can use this mode to make added space available for Linux
use after dynamically increasing the size of a DASD volume.

For the quick and expand modes, omit the block size specification (-b option) to use the existing block
size. If you specify a block size, dasdfmt checks that the specification matches the existing block size
before formatting.

-p or --progressbar
displays a progress bar. Do not use this option if you are using a line-mode terminal console driver. For
example, if you are using a 3215 terminal device driver or a line-mode hardware console device driver.

-Q or --percentage
displays one line for each formatted cylinder. The line shows the number of the cylinder and
percentage of formatting process. Intended for use by higher level interfaces.

-m <hashstep> or --hashmarks=<hashstep>
displays a number sign (#) after every <hashstep> cylinders are formatted. <hashstep> must be in the
range 1 - 1000. The default is 10.

The -m option is useful where the console device driver is not suitable for the progress bar (-p option).

--check
performs a complete format check on a DASD volume.

dasdfmt

Commands for Linux on Z 509

Omit the block size specification (-b option) to check for a consistent format for any valid block size.
Specify a block size to confirm that the DASD has been formatted consistently with that particular
block size.

-y
starts formatting immediately without prompting for confirmation.

-F or --force
formats the device without checking whether it is mounted.

-v
displays extra information messages (verbose).

-t or --test
runs the command in test mode. Analyzes parameters and displays what would happen, but does not
modify the disk.

-C or --check_host_count
checks the host-access open count to ensure that the device is not online to another operating system
instance. Use this option to ensure that the operation is safe, and cancel it if other operating system
instances are accessing the volume.

-- norecordzero
prevents a format write of record zero. This option is intended for experts: Subsystems in DASD
drivers are by default granted permission to modify or add a standard record zero to each track when
needed. Before you revoke the permission with this option, you must ensure that the device contains
standard record zeros on all tracks.

-V or --version
displays the version number of dasdfmt and exits.

-h or --help
displays an overview of the syntax. Any other parameters are ignored. To view the man page, enter
man dasdfmt.

Examples

• To format a 100 cylinder z/VM minidisk with the standard Linux disk layout and a 4 KB blocksize with
device node /dev/dasdc:

dasdfmt -b 4096 -d ldl -p /dev/dasdc
Drive Geometry: 100 Cylinders * 15 Heads = 1500 Tracks

I am going to format the device /dev/dasdc in the following way:
 Device number of device : 0x192
 Labelling device : yes
 Disk label : LNX1
 Disk identifier : 0X0192
 Extent start (trk no) : 0
 Extent end (trk no) : 1499
 Compatible Disk Layout : no
 Blocksize : 4096
 Mode : Full

--->> ATTENTION! <<---
All data of that device will be lost.
Type yes to continue, no will leave the disk untouched: yes
Formatting the device. This may take a while (get yourself a coffee).

cyl 100 of 100 |#################################|100% [1s]

Finished formatting the device.
Rereading the partition table... ok
#

• To format the same disk with the compatible disk layout (accepting the default value of the -d option).

dasdfmt

510 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

dasdfmt -b 4096 -p /dev/dasdc
Drive Geometry: 100 Cylinders * 15 Heads = 1500 Tracks

I am going to format the device /dev/dasdc in the following way:
 Device number of device : 0x192
 Labelling device : yes
 Disk label : VOL1
 Disk identifier : 0X0192
 Extent start (trk no) : 0
 Extent end (trk no) : 1499
 Compatible Disk Layout : yes
 Blocksize : 4096
 Mode : Full

--->> ATTENTION! <<---
All data of that device will be lost.
Type yes to continue, no will leave the disk untouched: yes
Formatting the device. This may take a while (get yourself a coffee).

cyl 100 of 100 |#################################|100% [1s]

Finished formatting the device.
Rereading the partition table... ok
#

• To make best use of PAV when formatting a DASD that has one base device and four alias devices,
specify five cylinders:

dasdfmt /dev/dasdd -y -b 4096 -d cdl -r 5
Finished formatting the device.
Rereading the partition table... ok

• To format a previously formatted DASD in quick format mode.

dasdfmt -b 4096 -p --mode=quick /dev/dasdf

• To format tracks that have been added at the end of an already formatted DASD.

dasdfmt -b 4096 -p --mode=expand /dev/dasdg

• To check whether a DASD has been correctly formatted with a block size of 4096 bytes.

dasdfmt -b 4096 -p --check /dev/dasdg
Checking format of the entire disk...
cyl 1113 of 1113 |#################################|100% [19s]
Done. Disk is fine.

• To ensure that the DASD is not online to an operating system instance in a different LPAR when you start
formatting the DASD:

dasdfmt -b 4096 -p -C /dev/dasdh

dasdfmt always checks the host-access open count. If the count indicates access by another operating
system instance, the response depends on the -C option. With this option, the command is canceled.
Otherwise, a warning is displayed before you are prompted to confirm that you want to proceed.

dasdfmt

Commands for Linux on Z 511

dasdstat - Display DASD performance statistics
Use the dasdstat command to display DASD performance statistics, including statistics about Parallel
Access Volume (PAV) and High Performance Ficon.

This command includes and extends the performance statistics that is also available through the
tunedasd command.

dasdstat syntax

dasdstat

-e
1

-d

-r

-l -V -c<colnum> -w<width>

-i<directory> <item>

Notes:
1 Omit the -e, -d, and -r options to read statistics.

Where:

-e or --enable
starts statistics data collection.

-d or --disable
stops statistics data collection.

-r or --reset
sets the statistics counters to zero.

-l or --long
displays more detailed statistics information, for example, differentiates between read and write
requests.

-V or --verbose
displays more verbose command information.

-c <colnum> or --columns <colnum>
formats the command output in a table with the specified number of columns. The default is 16. Each
row gets wrapped after the specified number of lines.

-w <width> or --column-width <width>
sets the minimum width, in characters, of a column in the output table.

-i <directory> or --directory <directory>
specifies the directory that contains the statistics. The default is <mountpoint>/dasd, where
<mountpoint> is the mount point of debugfs. You need to specify this parameter if the dasdstat
command cannot determine this mount point or if the statistics are copied to another location.

<item>
limits the command to the specified items. For <item> you can specify:

• global for summary statistics for all available DASDs.
• The block device name by which a DASD is known to the DASD device driver.

dasdstat

512 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

• The bus ID by which a DASD is known as a CCW device. DASDs that are set up for PAV or HyperPAV
have a CCW base device and, at any one time, can have one or more CCW alias devices for the same
block device. Alias devices are not permanently associated with the same block device. Statistics
that are based on bus ID, therefore, show additional detail for PAV and HyperPAV setups.

If you do not specify any individual item, the command applies to all DASD block devices, CCW
devices, and to the summary.

-v or --version
displays the version number of dasdstat, then exits.

-h or --help
displays help information for the command.

Examples

• This command starts data collection for dasda, 0.0.b301, and for a summary of all available DASDs.

dasdstat -e dasda 0.0.b301 0.0.b302 global

• This command resets the statistics counters for dasda.

dasdstat -r dasda

• This command reads the summary statistics:

statistics data for statistic: global
start time of data collection: Wed Aug 17 09:52:47 CEST 2011

3508 dasd I/O requests
with 67616 sectors(512B each)
0 requests used a PAV alias device
3458 requests used HPF
 __<4 ___8 __16 __32 __64 _128 _256 _512 __1k __2k __4k __8k _16k _32k _64k 128k
 _256 _512 __1M __2M __4M __8M _16M _32M _64M 128M 256M 512M __1G __2G __4G _>4G
Histogram of sizes (512B secs)
 0 0 2456 603 304 107 18 9 3 8 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O times (microseconds)
 0 0 0 0 0 0 100 1738 813 725 30 39 47 15 1 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time till ssch
 0 0 901 558 765 25 28 288 748 161 17 16 1 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time between ssch and irq
 0 0 0 0 0 0 316 2798 283 13 19 22 41 15 1 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time between irq and end
 0 3023 460 8 4 9 4 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
of req in chanq at enqueuing (0..31)
 ___0 ___1 ___2 ___3 ___4 ___5 ___6 ___7 ___8 ___9 __10 __11 __12 __13 __14 __15
 __16 __17 __18 __19 __20 __21 __22 __23 __24 __25 __26 __27 __28 __29 __30 __31
 0 2295 319 247 647 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

For details about the data items, see “Interpreting the data rows” on page 118.

dasdstat

Commands for Linux on Z 513

dasdview - Display DASD structure
Use the dasdview command to display DASD information. dasdview displays:

• The volume label.
• VTOC details (general information, and the DSCBs of format 1, format 3, format 4, format 5, format 7,

format 8, and format 9).
• The content of the DASD, by specifying:

– Starting point
– Size

You can display these values in hexadecimal, EBCDIC, and ASCII format.
• Device characteristics, such as:

– Whether the data on the DASD is encrypted.
– Whether the disk is a solid-state device.

If you specify a start point and size, you can also display the contents of a disk dump.

For more information about partitioning, see “The IBM label partitioning scheme” on page 96.

dasdview syntax

dasdview

-b 0

-b<begin>

-s 128

-s<size>

-1

-2

-i

-x

-j

-l

-c

-t<spec>

<node>

Where:
-b <begin> or --begin=<begin>

displays disk content on the console, starting from <begin>. The contents of the disk are displayed as
hexadecimal numbers, ASCII text, and EBCDIC text. If <size> is not specified, dasdview takes the
default size (128 bytes). You can specify the variable <begin> as:

<begin>[k|m|b|t|c]

If the disk is in raw-track access mode, you can specify only track (t) or cylinder (c) entities.

The default for <begin> is 0.

dasdview displays a disk dump on the console by using the DASD driver. The DASD driver might
suppress parts of the disk, or add information that is not relevant. This discrepancy might occur, for
example, when dasdview displays the first two tracks of a disk that was formatted with the
compatible disk layout option (-d cdl). In this situation, the DASD driver pads shorter blocks with
zeros to maintain a constant blocksize. All Linux applications (including dasdview) process according
to this rule.

dasdview

514 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Here are some examples of how this option can be used:

 -b 32 (start printing at Byte 32)
 -b 32k (start printing at kByte 32)
 -b 32m (start printing at MByte 32)
 -b 32b (start printing at block 32)
 -b 32t (start printing at track 32)
 -b 32c (start printing at cylinder 32)

-s <size> or --size=<size>
displays a disk dump on the console, starting at <begin>, and continuing for size=<size>. The
contents of the dump are displayed as hexadecimal numbers, ASCII text, and EBCDIC text. If a start
value, <begin>, is not specified, dasdview takes the default. You can specify the variable <size> as:

size[k|m|b|t|c]

If the disk is in raw-track access mode, you can specify only track (t) or cylinder (c) entities.

The default for <size> is 128 bytes.

Here are some examples of how this option can be used:

 -s 16 (use a 16 Byte size)
 -s 16k (use a 16 kByte size)
 -s 16m (use a 16 MByte size)
 -s 16b (use a 16 block size)
 -s 16t (use a 16 track size)
 -s 16c (use a 16 cylinder size)

-1
displays the disk dump with format 1 (as 16 Bytes per line in hexadecimal, ASCII and EBCDIC). A line
number is not displayed. You can use option -1 only together with -b or -s.

Option -1 is the default.

-2
displays the disk dump with format 2 (as 8 Bytes per line in hexadecimal, ASCII and EBCDIC). A
decimal and hexadecimal byte count are also displayed. You can use option -2 only together with -b or
-s.

-i or --info
displays basic information such as device node, device bus-ID, device type, or geometry data.

-x or --extended
displays the information that is obtained by using the -i option, but also open count, subchannel
identifier, and so on.

-j or --volser
prints volume serial number (volume identifier).

-l or --label
displays the volume label.

-c or --characteristics
displays model-dependent device characteristics, for example disk encryption status or whether the
disk is a solid-state device.

-t <spec> or --vtoc=<spec>
displays the VTOC's table-of-contents, or a single VTOC entry, on the console. The variable <spec>
can take these values:
info

displays overview information about the VTOC, such as a list of the data set names and their sizes.
f1

displays the contents of all format 1 data set control blocks (DSCBs).
f3

displays the contents of all (z/OS-specific) format 3 DSCBs.

dasdview

Commands for Linux on Z 515

f4
displays the contents of all format 4 DSCBs.

f5
displays the contents of all format 5 DSCBs.

f7
displays the contents of all format 7 DSCBs.

f8
displays the contents of all format 8 DSCBs.

f9
displays the contents of all format 9 DSCBs.

all
displays the contents of all DSCBs.

<node>
specifies the device node of the device for which you want to display information, for example, /dev/
dasdzzz. See “DASD naming scheme” on page 100 for more details about device nodes.

-v or --version
displays version number on console, and exit.

-h or --help
displays short usage text on console. To view the man page, enter man dasdview.

Examples

• To display basic information about a DASD:

dasdview -i /dev/dasdzzz

This example displays:

--- general DASD information --
device node : /dev/dasdzzz
busid : 0.0.0193
type : ECKD
device type : hex 3390 dec 13200

--- DASD geometry ---
number of cylinders : hex 64 dec 100
tracks per cylinder : hex f dec 15
blocks per track : hex c dec 12
blocksize : hex 1000 dec 4096
#

• To display device characteristics:

dasdview -c /dev/dasda

This example displays:

encrypted disk : no

• To include extended information:

dasdview -x /dev/dasdzzz

This example displays:

dasdview

516 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

--- general DASD information --
device node : /dev/dasdzzz
busid : 0.0.0193
type : ECKD
device type : hex 3390 dec 13200

--- DASD geometry ---
number of cylinders : hex 64 dec 100
tracks per cylinder : hex f dec 15
blocks per track : hex c dec 12
blocksize : hex 1000 dec 4096

--- extended DASD information ---
real device number : hex 452bc08 dec 72530952
subchannel identifier : hex e dec 14
CU type (SenseID) : hex 3990 dec 14736
CU model (SenseID) : hex e9 dec 233
device type (SenseID) : hex 3390 dec 13200
device model (SenseID) : hex a dec 10
open count : hex 1 dec 1
req_queue_len : hex 0 dec 0
chanq_len : hex 0 dec 0
status : hex 5 dec 5
label_block : hex 2 dec 2
FBA_layout : hex 0 dec 0
characteristics_size : hex 40 dec 64
confdata_size : hex 100 dec 256

characteristics : 3990e933 900a5f80 dff72024 0064000f
 e000e5a2 05940222 13090674 00000000
 00000000 00000000 24241502 dfee0001
 0677080f 007f4a00 1b350000 00000000

configuration_data : dc010100 4040f2f1 f0f54040 40c9c2d4
 f1f3f0f0 f0f0f0f0 f0c6c3f1 f1f30509
 dc000000 4040f2f1 f0f54040 40c9c2d4
 f1f3f0f0 f0f0f0f0 f0c6c3f1 f1f30500
 d4020000 4040f2f1 f0f5c5f2 f0c9c2d4
 f1f3f0f0 f0f0f0f0 f0c6c3f1 f1f3050a
 f0000001 4040f2f1 f0f54040 40c9c2d4
 f1f3f0f0 f0f0f0f0 f0c6c3f1 f1f30500
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 800000a1 00001e00 51400009 0909a188
 0140c009 7cb7efb7 00000000 00000800
#

• To display volume label information:

dasdview -l /dev/dasdzzz

This example displays:

dasdview

Commands for Linux on Z 517

--- volume label --
volume label key : ascii 'åÖÖñ'
 : ebcdic 'VOL1'
 : hex e5d6d3f1

volume label identifier : ascii 'åÖÖñ'
 : ebcdic 'VOL1'
 : hex e5d6d3f1

volume identifier : ascii 'ðçðñùó'
 : ebcdic '0X0193'
 : hex f0e7f0f1f9f3

security byte : hex 40

VTOC pointer : hex 0000000101
 (cyl 0, trk 1, blk 1)

reserved : ascii '@@@@@'
 : ebcdic ' '
 : hex 4040404040

CI size for FBA : ascii '@@@@'
 : ebcdic ' '
 : hex 40404040

blocks per CI (FBA) : ascii '@@@@'
 : ebcdic ' '
 : hex 40404040

labels per CI (FBA) : ascii '@@@@'
 : ebcdic ' '
 : hex 40404040

reserved : ascii '@@@@'
 : ebcdic ' '
 : hex 40404040

owner code for VTOC : ascii '@@@@@@@@@@@@@@'
 ebcdic ' '
 hex 40404040 40404040 40404040 4040

reserved : ascii '@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@'
 ebcdic ' '
 hex 40404040 40404040 40404040 40404040
 40404040 40404040 40404040 40
#

• To display partition information:

dasdview -t info /dev/dasdzzz

This example displays:

dasdview

518 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

--- VTOC info ---
The VTOC contains:
 3 format 1 label(s)
 1 format 4 label(s)
 1 format 5 label(s)
 0 format 7 label(s)
 0 format 8 label(s)
 0 format 9 label(s)
Other S/390 and zSeries operating systems would see the following data sets:
 +--+--------------+--------------+
 | data set | start | end |
 +--+--------------+--------------+
LINUX.V0X0193.PART0001.NATIVE	trk	trk
data set serial number : '0X0193'	2	500
system code : 'IBM LINUX '	cyl/trk	cyl/trk
creation date : year 2001, day 317	0/ 2	33/ 5
+--+--------------+--------------+		
LINUX.V0X0193.PART0002.NATIVE	trk	trk
data set serial number : '0X0193'	501	900
system code : 'IBM LINUX '	cyl/trk	cyl/trk
creation date : year 2001, day 317	33/ 6	60/ 0
+--+--------------+--------------+		
LINUX.V0X0193.PART0003.NATIVE	trk	trk
data set serial number : '0X0193'	901	1499
system code : 'IBM LINUX '	cyl/trk	cyl/trk
creation date : year 2001, day 317	60/ 1	99/ 14
 +--+--------------+--------------+
#

• To display VTOC information:

dasdview -t f4 /dev/dasdzzz

This example displays:

--- VTOC format 4 label ---
DS4KEYCD : 04...
DS4IDFMT : dec 244, hex f4
DS4HPCHR : 0000000105 (cyl 0, trk 1, blk 5)
DS4DSREC : dec 7, hex 0007
DS4HCCHH : 00000000 (cyl 0, trk 0)
DS4NOATK : dec 0, hex 0000
DS4VTOCI : dec 0, hex 00
DS4NOEXT : dec 1, hex 01
DS4SMSFG : dec 0, hex 00
DS4DEVAC : dec 0, hex 00
DS4DSCYL : dec 100, hex 0064
DS4DSTRK : dec 15, hex 000f
DS4DEVTK : dec 58786, hex e5a2
DS4DEVI : dec 0, hex 00
DS4DEVL : dec 0, hex 00
DS4DEVK : dec 0, hex 00
DS4DEVFG : dec 48, hex 30
DS4DEVTL : dec 0, hex 0000
DS4DEVDT : dec 12, hex 0c
DS4DEVDB : dec 0, hex 00
DS4AMTIM : hex 0000000000000000
DS4AMCAT : hex 000000
DS4R2TIM : hex 0000000000000000
res1 : hex 0000000000
DS4F6PTR : hex 0000000000
DS4VTOCE : hex 01000000000100000001
 typeind : dec 1, hex 01
 seqno : dec 0, hex 00
 llimit : hex 00000001 (cyl 0, trk 1)
 ulimit : hex 00000001 (cyl 0, trk 1)
res2 : hex 00000000000000000000
DS4EFLVL : dec 0, hex 00
DS4EFPTR : hex 0000000000 (cyl 0, trk 0, blk 0)
res3 : hex 000000000000000000
#

• To print the contents of a disk to the console starting at block 2 (volume label):

dasdview -b 2b -s 128 /dev/dasdzzz

dasdview

Commands for Linux on Z 519

This example displays:

+--+------------------+------------------+
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
E5D6D3F1 E5D6D3F1 F0E7F0F1 F9F34000	VOL1VOL10X0193?.	??????????????@.
00000101 40404040 40404040 40404040
40404040 40404040 40404040 40404040	????????????????	@@@@@@@@@@@@@@@@
40404040 40404040 40404040 40404040	????????????????	@@@@@@@@@@@@@@@@
40404040 40404040 40404040 40404040	????????????????	@@@@@@@@@@@@@@@@
40404040 88001000 10000000 00808000	????h...........	@@@@?...........
00000000 00000000 00010000 00000200
21000500 00000000 00000000 00000000	?...............	!...............
+--+------------------+------------------+
#

• To display the contents of a disk on the console starting at block 14 (first FMT1 DSCB) with format 2:

dasdview -b 14b -s 128 -2 /dev/dasdzzz

This example displays:

 +---------------+---------------+----------------------+----------+----------+
 | BYTE | BYTE | HEXADECIMAL | EBCDIC | ASCII |
 | DECIMAL | HEXADECIMAL | 1 2 3 4 5 6 7 8 | 12345678 | 12345678 |
 +---------------+---------------+----------------------+----------+----------+
57344	E000	D3C9D5E4 E74BE5F0	LINUX.V0	?????K??
57352	E008	E7F0F1F9 F34BD7C1	X0193.PA	?????K??
57360	E010	D9E3F0F0 F0F14BD5	RT0001.N	??????K?
57368	E018	C1E3C9E5 C5404040	ATIVE???	?????@@@
57376	E020	40404040 40404040	????????	@@@@@@@@
57384	E028	40404040 F1F0E7F0	????10X0	@@@@????
57392	E030	F1F9F300 0165013D	193.????	???.?e?=
57400	E038	63016D01 0000C9C2	??_?..IB	c?m?..??
57408	E040	D440D3C9 D5E4E740	M?LINUX?	?@?????@
57416	E048	40404065 013D0000	??????..	@@@e?=..
57424	E050	00000000 88001000h.?.?.?.
57432	E058	10000000 00808000	?....??.	?....??.
57440	E060	00000000 00000000
57448	E068	00010000 00000200	.?....?.	.?....?.
57456	E070	21000500 00000000	?.?.....	!.?.....
57464	E078	00000000 00000000
 +---------------+---------------+----------------------+----------+----------+
#

• To see what is at block 1234 (in this example there is nothing there):

dasdview -b 1234b -s 128 /dev/dasdzzz

This example displays:

+--+------------------+------------------+
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
+--+------------------+------------------+
#

• To try byte 0 instead:

dasdview -b 0 -s 64 /dev/dasdzzz

This example displays:

dasdview

520 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

+--+------------------+------------------+
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
C9D7D3F1 000A0000 0000000F 03000000	IPL1............	????............
00000001 00000000 00000000 40404040
40404040 40404040 40404040 40404040	????????????????	@@@@@@@@@@@@@@@@
40404040 40404040 40404040 40404040	????????????????	@@@@@@@@@@@@@@@@
+--+------------------+------------------+
#

• To display the contents of a disk on the console starting at cylinder 2 and printing one track of data:

dasdview -b 2c -s 1t /dev/dasdk

This example displays:

+--+------------------+------------------+
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
| 52B7DBEE D6B9530B 0179F420 CB6EA95E | ????O?????4??>z; | R?????S??y???n?^ |
| EF49C03C 513542E7 D8F17D9D 06DC44F7 | ??{????XQ1'????7 | ?I?<Q5B???}???D? |

...
| 92963D5B 0200B0FA 53745C12 C3B45125 | ko?$?........... | ??=[?........... |
| 0D6040C2 F933381E 7A4C4797 F40FEDAB | ?-?B9???:<?p4??? | ??@??38?zLG????? |
...

• To display the full record information of the same disk when it in raw-track access mode:

dasdview -b 2c -s 1t /dev/dasdk

This example displays:

dasdview

Commands for Linux on Z 521

cylinder 2, head 0, record 0
+--+
| count area: |
| hex: 0002000000000008 |
| cylinder: 2 |
| head: 0 |
| record: 0 |
| key length: 0 |
| data length: 8 |
+--+
| key area: |
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
+--+------------------+------------------+
| data area: |
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
| 00000000 00000000 | | |
+--+------------------+------------------+

cylinder 2, head 0, record 1
+--+
| count area: |
| hex: 0002000001000200 |
| cylinder: 2 |
| head: 0 |
| record: 1 |
| key length: 0 |
| data length: 512 |
+--+
| key area: |
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
+--+------------------+------------------+
| data area: |
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
| 52B7DBEE D6B9530B 0179F420 CB6EA95E | ????O?????4??>z; | R?????S??y???n?^ |
| EF49C03C 513542E7 D8F17D9D 06DC44F7 | ??{????XQ1'????7 | ?I?<Q5B???}???D? |
...
+--+------------------+------------------+

cylinder 2, head 0, record 2
+--+
| count area: |
| hex: 0002000002000200 |
| cylinder: 2 |
| head: 0 |
| record: 2 |
| key length: 0 |
| data length: 512 |
+--+
| key area: |
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
+--+------------------+------------------+
| data area: |
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
| 92963D5B 0200B0FA 53745C12 C3B45125 | ko?$?.^???*?C??? | ??=[?.??St\???Q% |
| 0D6040C2 F933381E 7A4C4797 F40FEDAB | ?-?B9???:<?p4??? | ??@??38?zLG????? |
...

• To display the contents of a disk, which is in raw-access mode, printing one track of data from the start
of the disk:

dasdview -s 1t /dev/dasdk

This example displays:

dasdview

522 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

cylinder 0, head 0, record 0
+--+
| count area: |
| hex: 0000000000000008 |
| cylinder: 0 |
| head: 0 |
| record: 0 |
| key length: 0 |
| data length: 8 |
+--+
| key area: |
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
+--+------------------+------------------+
| data area: |
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
| 00000000 00000000 | | |
+--+------------------+------------------+

cylinder 0, head 0, record 1
+--+
| count area: |
| hex: 0000000001040018 |
| cylinder: 0 |
| head: 0 |
| record: 1 |
| key length: 4 |
| data length: 24 |
+--+
| key area: |
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
| C9D7D3F1 | IPL1............ | ????............ |
+--+------------------+------------------+
| data area: |
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
| 000A0000 0000000F 03000000 00000001 | .?.....??......? | .?.....??......? |
| 00000000 00000000 | | |
+--+------------------+------------------+
...

dasdview

Commands for Linux on Z 523

fdasd – Partition a DASD
Use the fdasd command to manage partitions on ECKD-type DASD that were formatted with the
compatible disk layout.

See “dasdfmt - Format a DASD” on page 508 for information about formatting a DASD. With fdasd you
can create, change and delete partitions, and also change the volume serial number.

fdasd checks that the volume has a valid volume label and VTOC. If either is missing or incorrect, fdasd
re-creates it. See “IBM Z compatible disk layout” on page 97 for details about the volume label and VTOC.

Calling fdasd with a node, but without options, enters interactive mode. In interactive mode, you are
given a menu through which you can display DASD information, add or remove partitions, or change the
volume identifier. Your changes are not written to disk until you type the "write" option on the menu. You
can quit without altering the disk at any time before this.

For more information about partitions, see “The IBM label partitioning scheme” on page 96.

Before you begin:

• To partition a SCSI disk, use fdisk rather than fdasd.
• The disk must be formatted with dasdfmt, using the compatible disk layout.

Attention: Careless use of fdasd can result in loss of data.

fdasd syntax

fdasd
-s

-r
 -C -a

-k

-l<volser>
1

-c <conf_file>

-i

-p

<node>

Notes:
1 If neither the -l option nor the -k option is specified, a VOLSER is generated from the device
number through which the volume is accessed.

Where:
-s or --silent

suppresses messages.
-r or --verbose

displays additional messages that are normally suppressed.
-a or --auto

auto-creates one partition using the whole disk in non-interactive mode.
-k or --keep_volser

keeps the volume serial number when writing the volume label (see “Volume label” on page 97).
Keeping the volume serial number is useful if the volume already has a serial number that should not
be overwritten.

-l <volser> or --label <volser>
specifies the volume serial number (see “VOLSER” on page 98).

fdasd

524 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

A volume serial consists of one through six alphanumeric characters or the following special
characters:

$ # @ %

All other characters are ignored. Avoid using special characters in the volume serial. Special
characters can cause problems accessing a disk by VOLSER. If you must use special characters,
enclose the VOLSER in single quotation marks. In addition, any '$' character in the VOLSER must be
preceded by a backslash ('\').

For example, specify:

-l 'a@b\$c#'

to get:

A@B$C#

VOLSER is interpreted as an ASCII string and is automatically converted to uppercase, padded with
blanks and finally converted to EBCDIC before it is written to disk.

Do not use the following reserved volume serials:

• SCRTCH
• PRIVAT
• MIGRAT
• Lnnnnn (L followed by a five-digit number)

The reserved volume serials are used as keywords by other operating systems, such as z/OS.

Omitting this parameter causes fdasd to prompt for it, if it is needed.

-c <conf_file> or --config <conf_file>
creates partitions, in non-interactive mode, according to specifications in the configuration file
<conf_file>.

For each partition you want to create, add one line of the following format to <conf_file>:

[<first_track>,<last_track>,<type>]

<first_track> and <last_track> are required and specify the first and last track of the partition. You can
use the keyword first for the first possible track on the disk and the keyword last for the last
possible track on the disk.

<type> describes the partition type and is one of:
native

for partitions to be used for Linux file systems.
gpfs

for partitions to be used as part of an Elastic Storage file system setup.
swap

for partitions to be used as swap devices.
raid

for partitions to be used as part of a RAID setup.
lvm

for partitions to be used as part of a logical volume group.

The type specification is optional. If the type is omitted, native is used.

The type describes the intended use of a partition to tools or other operating systems. For example,
swap partitions could be skipped by backup programs. How Linux actually uses the partition depends

fdasd

Commands for Linux on Z 525

on how the partition is formatted and set up. For example, a partition of type native can still be used
in an LVM logical volume or in a RAID configuration.

Example: With the following sample configuration file you can create three partitions:

[first,1000,raid]
[1001,2000,swap]
[2001,last]

-i or --volser
displays the volume serial number and exits.

-p or --table
displays the partition table and exits.

<node>
specifies the device node of the DASD you want to partition, for example, /dev/dasdzzz. See “DASD
naming scheme” on page 100 for more details about device nodes.

-C or --check_host_count
checks the host-access open count to ensure that the device is not online to another operating system
instance. The operation is canceled if another operating system instance is accessing the device.

-v or --version
displays the version of fdasd.

-h or --help
displays a short help text, then exits. To view the man page, enter man fdasd.

fdasd menu
If you call fdasd in the interactive mode (that is, with just a node), a menu is displayed.

Command action
 m print this menu
 p print the partition table
 n add a new partition
 d delete a partition
 v change volume serial
 t change partition type
 r re-create VTOC and delete all partitions
 u re-create VTOC re-using existing partition sizes
 s show mapping (partition number - data set name)
 q quit without saving changes
 w write table to disk and exit

Command (m for help):

fdasd menu commands

Use the fdasd menu commands to modify or view information about DASDs.

m
redisplays the fdasd command menu.

p
displays information about the DASD and any partitions on the DASD.
DASD information:

• Number of cylinders
• Number of tracks per cylinder
• Number of blocks per track
• Block size
• Volume label
• Volume identifier

fdasd

526 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

• Number of partitions defined

Partition information:

• Linux node
• Start track
• End track
• Number of tracks
• Partition ID
• Partition type

There is also information about the free disk space that is not used for a partition.
n

adds a partition to the DASD. You are asked to give the start track and the length or end track of the
new partition.

d
deletes a partition from the DASD. You are asked which partition to delete.

v
changes the volume identifier. You are asked to enter a new volume identifier. See VOLSER for the
format.

t
changes the partition type. You are prompted for the partition to be changed and for the new partition
type.

Changing the type changes the disk description but does not change the disk itself. How Linux uses
the partition depends on how the partition is formatted and set up. For example, as an LVM logical
volume or in a RAID configuration.

The partition type describes the partition to other operating systems so that; for example, swap
partitions can be skipped by backup programs.

r
re-creates the VTOC and deletes all partitions.

u
re-creates all VTOC labels without removing all partitions. Existing partition sizes are reused. This
option is useful to repair damaged labels or migrate partitions that are created with older versions of
fdasd.

s
displays the mapping of partition numbers to data set names. For example:

Command (m for help): s

device: /dev/dasdzzz
volume label ...: VOL1
volume serial ..: 0X0193

WARNING: This mapping may be NOT up-to-date,
 if you have NOT saved your last changes!

/dev/dasdzzz1 - LINUX.V0X0193.PART0001.NATIVE
/dev/dasdzzz2 - LINUX.V0X0193.PART0002.NATIVE
/dev/dasdzzz3 - LINUX.V0X0193.PART0003.NATIVE

q
quits fdasd without updating the disk. Any changes that you have made (in this session) are
discarded.

w
writes your changes to disk and exits. After the data is written, Linux rereads the partition table.

fdasd

Commands for Linux on Z 527

Example using the menu
This example shows how to use fdasd to create two partitions on a z/VM minidisk, change the type of
one of the partitions, save the changes, and check the results.

This example shows you how to format a z/VM minidisk with the compatible disk layout. The minidisk has
device number 193.

1. Call fdasd, specifying the minidisk:

fdasd /dev/dasdzzz

fdasd reads the existing data and displays the menu:

reading volume label: VOL1
reading vtoc : ok

Command action
 m print this menu
 p print the partition table
 n add a new partition
 d delete a partition
 v change volume serial
 t change partition type
 r re-create VTOC and delete all partitions
 u re-create VTOC re-using existing partition sizes
 s show mapping (partition number - data set name)
 q quit without saving changes
 w write table to disk and exit
Command (m for help):

2. Use the p option to verify that no partitions are created yet on this DASD:

Command (m for help): p

Disk /dev/dasdzzz:
 cylinders: 100
 tracks per cylinder ..: 15
 blocks per track: 12
 bytes per block: 4096
 volume label: VOL1
 volume serial: 0X0193
 max partitions: 3

 ------------------------------- tracks -------------------------------
 Device start end length Id System
 2 1499 1498 unused

3. Define two partitions, one by specifying an end track and the other by specifying a length. (In both
cases the default start tracks are used):

Command (m for help): n
First track (1 track = 48 KByte) ([2]-1499):
Using default value 2
Last track or +size[c|k|M] (2-[1499]): 700
You have selected track 700

Command (m for help): n
First track (1 track = 48 KByte) ([701]-1499):
Using default value 701
Last track or +size[c|k|M] (701-[1499]): +400
You have selected track 1100

4. Check the results by using the p option:

fdasd

528 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Command (m for help): p

Disk /dev/dasdzzz:
 cylinders: 100
 tracks per cylinder ..: 15
 blocks per track: 12
 bytes per block: 4096
 volume label: VOL1
 volume serial: 0X0193
 max partitions: 3

 ------------------------------- tracks -------------------------------
 Device start end length Id System
 /dev/dasdzzz1 2 700 699 1 Linux native
 /dev/dasdzzz2 701 1100 400 2 Linux native
 1101 1499 399 unused

5. Change the type of a partition:

Command (m for help): t

Disk /dev/dasdzzz:
 cylinders: 100
 tracks per cylinder ..: 15
 blocks per track: 12
 bytes per block: 4096
 volume label: VOL1
 volume serial: 0X0193
 max partitions: 3

 ------------------------------- tracks -------------------------------
 Device start end length Id System
 /dev/dasdzzz1 2 700 699 1 Linux native
 /dev/dasdzzz2 701 1100 400 2 Linux native
 1101 1499 399 unused

change partition type
partition id (use 0 to exit):

Enter the ID of the partition you want to change; in this example partition 2:

partition id (use 0 to exit): 2

6. Enter the new partition type; in this example type 2 for swap:

current partition type is: Linux native

 1 Linux native
 2 Linux swap
 3 Linux raid
 4 Linux lvm

new partition type: 2

7. Check the result:

Command (m for help): p

Disk /dev/dasdzzz:
 cylinders: 100
 tracks per cylinder ..: 15
 blocks per track: 12
 bytes per block: 4096
 volume label: VOL1
 volume serial: 0X0193
 max partitions: 3

 ------------------------------- tracks -------------------------------
 Device start end length Id System
 /dev/dasdzzz1 2 700 699 1 Linux native
 /dev/dasdzzz2 701 1100 400 2 Linux swap
 1101 1499 399 unused

fdasd

Commands for Linux on Z 529

8. Write the results to disk with the w option:

Command (m for help): w
writing VTOC...
rereading partition table...
#

Example using options
You can partition a DASD by using the -a or -c option without entering the menu mode.

This method is useful for partitioning with scripts, for example, if you need to partition several hundred
DASDs.

With the -a option you can create one large partition on a DASD:

fdasd -a /dev/dasdzzz
auto-creating one partition for the whole disk...
writing volume label...
writing VTOC...
rereading partition table...
#

This command creates a partition as follows:

 Device start end length Id System
 /dev/dasdzzz1 2 1499 1498 1 Linux native

Using a configuration file, you can create several partitions. For example, the following configuration file,
config, creates three partitions:

[first,500]
[501,1100,swap]
[1101,last]

Submitting the command with the -c option creates the partitions:

fdasd -c config /dev/dasdzzz
parsing config file 'config'...
writing volume label...
writing VTOC...
rereading partition table...
#

This command creates partitions as follows:

 Device start end length Id System
 /dev/dasdzzz1 2 500 499 1 Linux native
 /dev/dasdzzz2 501 1100 600 2 Linux native
 /dev/dasdzzz3 1101 1499 399 3 Linux native

fdasd

530 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

hmcdrvfs - Mount a FUSE file system for remote access to media in the HMC
media drive

Use the hmcdrvfs command for read-only access to contents in a DVD, CD, or USB-attached storage in
the media drive of an HMC.

Before you begin:

• The fuse.hmcdrvfs file system needs access to device node /dev/hmcdrv. This node is created
automatically when the hmcdrv kernel module is loaded, see Chapter 31, “HMC media device driver,” on
page 341.

• On the HMC, the media must be assigned to the associated system image (use menu Access Removable
Media).

• In a z/VM environment, the z/VM guest virtual machine must have at least privilege class B. The media
must be assigned to the LPAR where the z/VM hypervisor runs.

• For Linux in LPAR mode, the LPAR activation profile must allow issuing SCLP requests.

With the media assigned to your Linux instance, this command creates a fuse.hmcdrvfs file system
with the media content at the specified mount point.

To unmount file systems that you mounted with hmcdrvfs, you can use fusermount, whether root or
non-root user. See the fusermount man page for details.

hmcdrvfs syntax

hmcdrvfs <mount-point>

 <fuse.hmcdrvfs-options> <mount-options> <fuse-options>

Where:

-o or --opt
FUSE or mount command options; for the FUSE options see the following lists, for mount options see
the mount man page.

<fuse.hmcdrvfs-options>
options specific to the fuse.hmcdrvfs file system:
-o hmclang=<language>

specifies the language setting on the HMC; for valid values, see the locale man page.
-o hmctz=<time zone>

specifies the time zone setting on the HMC; for valid values, see the tzset man page.
<mount-options>

options as available for the mount command. See the mount man page for details.
<fuse-options>

options for FUSE. The following options are supported by the cmsfs-fuse command. To use an
option, it must also be supported by the version of FUSE that you have.
-d or -o debug

enables debug output (implies -f).
-f

runs the command as a foreground operation.
-s

disables multi-threaded operation.

hmcdrvfs

Commands for Linux on Z 531

-o allow_other
allows access to the file system by other users.

-o allow_root
allows access to the file system by root.

-o nonempty
allows mounts over files and non-empty directories.

-o default_permissions
enables permission checking by the kernel.

-o fsname=<name>
sets the file system name.

-o subtype=<type>
sets the file system type.

-o max_read=<n>
sets maximum size of read requests.

-o direct_io
uses direct I/O.

-o kernel_cache
caches files in the kernel.

-o [no]auto_cache
enables or disables caching based on modification times.

-o umask=<mask>
sets file permissions (octal).

-o uid=<n>
sets the file owner.

-o gid=<n>
sets the file group.

-o entry_timeout=<secs>
sets the cache timeout for names. The default is 1.0 second.

-o attr_timeout=<secs>
sets the cache timeout for attributes. The default is 1.0 second.

-o ac_attr_timeout=<secs>
sets the auto cache timeout for attributes. The default is the attr_timeout value.

-o max_readahead=<n>
sets the maximum read ahead value.

-o async_read
performs reads asynchronously (default).

-o sync_read
performs reads synchronously.

-o no_remote_lock
disables remote file locking.

-o intr
allows requests to be interrupted

-o intr_signal=<num>
specifies the signal to send on interrupt.

-v or --version
displays version information for the command.

-h or --help
displays a short help text, then exits. To view the man page, enter man hmcdrvfs.

The following options for mount policy can be set in the file /etc/ fuse.conf file:

hmcdrvfs

532 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

mount_max=<number>
sets the maximum number of FUSE mounts allowed for non-root users. The default is 1000.

user_allow_other
allows non-root users to specify the allow_other or allow_root mount options.

Examples

• To mount the contents of the HMC media drive at /mnt/hmc without any special options, use:

hmcdrvfs /mnt/hmc

• If the hmcdrv kernel module is not loaded, load it before you issue the hmcdrvfs command:

modprobe hmcdrv
hmcdrvfs /mnt/hmc

• To translate the UID and GID of files on the HMC media drive to your system users and groups along
with overriding the permissions, issue, for example:

hmcdrvfs /mnt/hmc -o uid=500 -o gid=1000 -o umask=0337

• To speed up transfer rates to frequently accessed directories, use the cache timeout option:

hmcdrvfs /mnt/hmc -o entry_timeout=60

• If the HMC is in a different timezone and is configured for a different language use, for example:

hmcdrvfs /mnt/hmc -o hmclang=de_DE -o hmctz=Europe/Berlin

• To also disregard any Daylight Saving Time, specifying hours west of the Prime Meridian (Coordinated
Universal Time):

hmcdrvfs /mnt/hmc -o hmclang=de_DE -o hmctz="GMT-1"

• To unmount the HMC media drive contents mounted on /mnt/hmc, issue:

fusermount -u /mnt/hmc

hmcdrvfs

Commands for Linux on Z 533

hyptop - Display hypervisor performance data
Use the hyptop command to obtain a dynamic real-time view of a hypervisor environment on IBM Z.

It works with both the z/VM hypervisor and the LPAR hypervisor, Processor Resource/Systems Manager
(PR/SM). Depending on the available data, it shows, for example, CPU and memory information about
LPARs or z/VM guest virtual machines.

System names provided by hyptop are either LPAR names as shown on the SE or HMC, or z/VM guest IDs
that identify z/VM guest virtual machines.

The hyptop command provides two main windows:

• A list of systems that the hypervisor is currently running (sys_list).
• One system in more detail (sys).

You can run hyptop in interactive mode (default) or in batch mode with the -b option.

Before you begin:

• The debugfs file system must be mounted, see “debugfs” on page xi.
• The Linux kernel must have the required support to provide the performance data. Check that /sys/
kernel/debug/s390_hypfs is available after you mount debugfs.

• The hyptop user must have read permission for the required debugfs files:

– z/VM: /sys/kernel/debug/s390_hypfs/diag_2fc
– z/VM: <debugfs mount point>/s390_hypfs/diag_0c (Required only for management time

data, identifiers m and M. See “z/VM fields” on page 538)
– LPAR: /sys/kernel/debug/s390_hypfs/diag_204

• You can always monitor the guest operating system where hyptop is running. To monitor any other
operating system instances running on the same hypervisor as hyptop, you will need additional
permissions:

– For z/VM: The guest virtual machine must be assigned privilege class B.
– For LPAR: On the HMC or SE security menu of the LPAR activation profile, select the Global

performance data control check box.

hyptop

534 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

hyptop syntax

hyptop

-wsys_list

-wsys

-s

,

<system>

-f

,

<field>

:<unit>

-S<field>

-t

,

CP

IFL

UN

-b -d<seconds> -n<iterations>

Where:
-w <window name> or --window=<window name>

selects the window to display, either sys or sys_list. Use the options --sys, --fields, and --sort to
modify the current window. The last window that is specified with the --window option is used as the
start window. The default window is sys_list.

-s <system> or --sys=<system>
selects systems for the current window. If you specify this option, only the selected systems are
shown in the window. For the sys window, you can specify only one system. <system> can be an LPAR
name as shown on the SE or HMC, or it can be a z/VM guest ID that identifies a z/VM guest virtual
machine. Enter hyptop without any options to display the names of all available systems.

-f <field>[:<unit>] or --fields=<field>[:<unit>]
selects fields and units in the current window. The <field> variable is a one letter unique identifier for
a field (for example "c" for CPU time). The <unit> variable specifies the unit that is used for the field
(for example "us" for microseconds). See“Available fields and units” on page 537 for definitions. If
the --fields option is specified, only the selected fields are shown.

Note: If your field specification includes the number sign (#), enclose the specification in double
quotation marks. Otherwise, the command shell might interpret the number sign and all characters
that follow as a comment.

-S <field> or --sort=<field>
selects the field that is used to sort the data in the current window. To reverse the sort order, specify
the option twice. See “Available fields and units” on page 537 for definitions.

-t <type> or --cpu_types=<type>
selects CPU types that are used for dispatch time calculations. See “CPU types” on page 539 for
definitions.

-b or --batch_mode
uses batch mode. Batch mode can be useful for sending output from hyptop to another program, a
file, or a line mode terminal. In this mode no user input is accepted.

-d <seconds> or --delay=<seconds>
specifies the delay between screen updates.

-n <iterations> or --iterations=<iterations>
specifies the maximum number of screen updates before the program ends.

hyptop

Commands for Linux on Z 535

-h or --help
prints usage information, then exits. To view the man page, enter man hyptop.

-v or --version
displays the version of hyptop, then exits.

Navigating between windows
Use letter or arrow keys to navigate between the windows.

When you start the hyptop command, the sys_list window opens in normal mode. Data is updated at
regular intervals, and sorted by dispatch time. You can navigate between the windows as shown in Figure
78 on page 536.

Figure 78: hyptop window navigation overview

To navigate between the windows, use the and arrow keys. The windows have two modes, normal
mode and select mode.

You can get online help for every window by pressing the key. Press in the sys_list window to exit
hyptop.

Instead of using the arrow keys, you can use letter keys (equivalent to the vi editor navigation) in all
windows as listed in Table 66 on page 536.

Table 66: Using letter keys instead of arrow keys

Arrow key Letter key equivalent

Selecting data
You can scroll windows and select data rows.

To enter select mode, press the key. The display is frozen so that you can select rows. Select rows by
pressing the and keys and mark the rows with the Spacebar. Marked rows are displayed in bold
font. Leave the select mode by pressing the key.

To see the details of one system, enter select mode in the sys_list window, then navigate to the row for
the system you want to look at, and press the key. The sys window for the system opens. The key
always returns you to the previous window.

To scroll any window, press the and keys or the Page Up and Page Down keys. Jump to the end of a
window by pressing the keys and to the beginning by pressing the key.

hyptop

536 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Sorting data
You can sort data according to column.

The sys window or sys_list window table is sorted according to the values in the selected column. Select a
column by pressing the hot key of the column. This key is underlined in the heading. If you press the hot
key again, the sort order is reversed. Alternatively, you can select columns with the and keys.

Filtering data
You can filter the displayed data by CPU types and by data fields.

From the sys or sys_list window you can access the fields selection window and the CPU-type selection
window as shown in Figure 79 on page 537.

Figure 79: Accessing the fields and CPU-type selection windows

Use the key to toggle between the CPU-type selection window and the main window. Use the key to
toggle between the fields selection window and the main window. You can also use the key to return to
the main window from the CPU types and fields windows.

In the fields and CPU-type selection windows, press the field or CPU type identifier key (see “LPAR fields”
on page 537, “z/VM fields” on page 538, and “CPU types” on page 539) to select or de-select.
Selected rows are bold and de-selected rows are grey. When you return to the main window, the data is
filtered according to your field and CPU type selections.

Available fields and units
Different fields are supported depending whether your hypervisor is LPAR PR/SM or z/VM.

The fields might also be different depending on machine type, z/VM version, and kernel version. Each field
has a unique one-letter identifier that can be used in interactive mode to enable the field in the field
selection window. Also, use it to select the sort field in the sys or sys_list window. You can also select
fields and sort data using the --fields and --sort command line options.

LPAR fields
Some fields for Linux in LPAR mode are available in both the sys_list and sys windows others are available
only in the sys_list window or only in the sys window.

The following fields are available under LPAR in both the sys_list and sys windows:

Identifier Column label Explanation

c core Core dispatch time per second

e the Thread time per second

m mgm Management time per second

C Core+ Total core dispatch time

E thE+ Total thread time

M Mgm+ Total management time

o online Online time

hyptop

Commands for Linux on Z 537

If multithreading is not available or not enabled, the values for core and for thread are identical.

In the sys_list window only:

Identifier Column label Explanation

y system Name of the LPAR (always shown)

#core Number of cores

T #The Number of threads (sum of initial and reserved)

In the sys window only:

Identifier Column label Explanation

i coreid Core identifier (always shown)

p type CPU type. See “CPU types” on page 539

v visual Visualization of core dispatch time per second

z/VM fields
Some fields for Linux on z/VM are available in both the sys_list and sys windows. Others are available only
in the sys_list window or only in the sys window.

In the sys_list and sys windows:

Identifier Column label Explanation

c cpu CPU time per second

m mgm Management time per second

C Cpu+ Total CPU time

M Mgm+ Total management time

o online Online time

Note: Data for the management time, identifiers m and M, is available only for the z/VM guest virtual
machine on which hyptop runs.

In the sys_list window only:

Identifier Column label Explanation

y system Name of the z/VM guest virtual machine (always shown)

#cpu Number of CPUs

O #cpuop Number of operating CPUs

u memuse Used memory

a memmax Maximum memory

r wcur Current weight

x wmax Maximum weight

In the sys window only:

Identifier Column label Explanation

i cpuid CPU identifier (always shown)

v visual Visualization of CPU time per second

hyptop

538 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Units
Depending on the field type, the values can be displayed in different units.

In the sys_list and sys windows, the units are displayed under the column headings in parenthesis. Each
unit can be specified through the --fields command line option. Units can also be selected
interactively. To change a unit, enter select mode in the fields window. Then, select the field where you
want to change the unit, and press the "+" or "-" keys to go through the available units. The following units
are supported:

Units of time:

Unit Explanation

us Microseconds (10-6 seconds)

ms Milliseconds (10-3 seconds)

% Hundreds of a second (10-2 seconds) or percent

s Seconds

m Minutes

hm Hours and minutes

dhm Days, hours, and minutes

Units of memory:

Unit Explanation

KiB Kibibytes (1 024 bytes)

MiB Mebibytes (1 048 576 bytes)

GiB Gibibytes (1 073 741 824 bytes)

Other units:

Unit Explanation

str String

Count or number

vis Visualization

CPU types
Enable or disable CPU types in interactive mode in the cpu_types window.

The CPU types can also be specified with the --cpu_types command line option.

The calculation of the CPU data uses CPUs of the specified types only. For example, if you want to see how
much CPU time is consumed by your Linux systems, enable CPU type IFL.

On z/VM the processor type is always UN and you cannot select the type.

In an LPAR the following CPU types can be selected either interactively or with the --cpu_types command
line option:

Identifier Column label Explanation

i IFL Integrated Facility for Linux. On older machines IFLs might be
shown as CPs.

p CP CP processor type.

hyptop

Commands for Linux on Z 539

Identifier Column label Explanation

u UN Unspecified processor type (other than CP or IFL).

Examples
These examples show typical uses of hyptop.

• To start hyptop with the sys_list window in interactive mode, enter:

hyptop

– If your Linux instance is running in an LPAR that has permission to see the other LPARs, the output
looks like the following:

12:30:48 | cpu-t: IFL(18) CP(3) UN(3) ?=help
system #core core mgm Core+ Mgm+ online
(str) (#) (%) (%) (hm) (hm) (dhm)
S05LP30 10 461.14 10.18 1547:41 8:15 11:05:59
S05LP33 4 133.73 7.57 220:53 6:12 11:05:54
S05LP50 4 99.26 0.01 146:24 0:12 10:04:24
S05LP02 1 99.09 0.00 269:57 0:00 11:05:58
TRX2CFA 1 2.14 0.03 3:24 0:04 11:06:01
S05LP13 6 1.36 0.34 4:23 0:54 11:05:56
TRX1 19 1.22 0.14 13:57 0:22 11:06:01
TRX2 20 1.16 0.11 26:05 0:25 11:06:00
S05LP55 2 0.00 0.00 0:22 0:00 11:05:52
S05LP56 3 0.00 0.00 0:00 0:00 11:05:52
 413 823.39 23.86 3159:57 38:08 11:06:01

– If your Linux instance runs in a z/VM guest virtual machine that has permission to see the other z/VM
guest virtual machines, the output looks like the following:

12:32:21 | CPU-T: UN(16) ?=help
system #cpu cpu Cpu+ online memuse memmax wcur
(str) (#) (%) (hm) (dhm) (GiB) (GiB) (#)
T6360004 6 100.31 959:47 53:05:20 1.56 2.00 100
DTCVSW1 1 0.00 0:00 53:16:42 0.01 0.03 100
T6360002 6 0.00 166:26 40:19:18 1.87 2.00 100
OPERATOR 1 0.00 0:00 53:16:42 0.00 0.03 100
T6360008 2 0.00 0:37 30:22:55 0.32 0.75 100
T6360003 6 0.00 3700:57 53:03:09 4.00 4.00 100
NSLCF1 1 0.00 0:02 53:16:41 0.03 0.25 500
PERFSVM 1 0.00 0:53 2:21:12 0.04 0.06 0
TCPIP 1 0.00 0:01 53:16:42 0.01 0.12 3000
DIRMAINT 1 0.00 0:04 53:16:42 0.01 0.03 100
DTCVSW2 1 0.00 0:00 53:16:42 0.01 0.03 100
RACFVM 1 0.00 0:00 53:16:42 0.01 0.02 100
 75 101.57 5239:47 53:16:42 15.46 22.50 3000

At the top, the sys and sys_list windows show a list of the CPU types that are used for the current CPU
and core dispatch time calculation.

• To start hyptop with the sys window showing performance data for LPAR MYLPAR, enter:

hyptop -w sys -s mylpar

The result looks like the following:

hyptop

540 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

11:18:50 MYLPAR CPU-T: IFL(0) CP(24) UN(2) ?=help
coreid type core mgm visual
(#) (str) (%) (%) (vis)
0 CP 50.78 0.28 |####################### |
1 CP 62.76 0.17 |############################ |
2 CP 71.11 0.48 |################################ |
3 CP 32.38 0.24 |############### |
4 CP 64.35 0.32 |############################# |
5 CP 67.61 0.40 |############################## |
6 CP 70.95 0.35 |################################ |
7 CP 62.16 0.41 |############################ |
8 CP 70.48 0.25 |################################ |
9 CP 56.43 0.20 |######################### |
10 CP 0.00 0.00 | |
11 CP 0.00 0.00 | |
12 CP 0.00 0.00 | |
13 CP 0.00 0.00 | |
=:V:N 609.02 3.10

• To start hyptop with the sys_list window in batch mode, enter:

hyptop -b

• To start hyptop with the sys_list window in interactive mode, with the fields dispatch time (in
milliseconds), and online time (unit default), and sort the output according to online time, enter:

hyptop -f c:ms,o -S o

• To start hyptop with the sys_list window in batch mode with update delay 5 seconds and 10 iterations,
enter:

hyptop -b -d 5 -n 10

• To start hyptop with the sys_list window and use only CPU types IFL and CP for dispatch time
calculation, enter:

hyptop -t ifl,cp

• To start hyptop on Linux in LPAR mode with the sys_list window and display all LPAR fields, including
the thread information, enter:

hyptop -f "#,T,c,e,m,C,E,M,o"

The result looks like the following example:

13:47:42 cpu-t: IFL(0) CP(38) UN(0) ?=help
system #core #The core the mgm Core+ thE+ Mgm+ online
(str) (#) (#) (%) (%) (%) (hm) (hm) (hm) (dhm)
S35LP41 12 24 101.28 170.28 0.28 1056:10 1756:11 8:45 158:04:04
S35LP42 16 32 35.07 40.07 0.44 5194:52 6193:52 12:45 158:04:04
S35LP64 3 3 1.20 1.20 0.00 0:31 0:31 0:00 12:03:54
...

In the example, the Linux instances in LPARs S35LP41 and S35LP43 run with 2 threads per core. The
thread time, as the sum of the two threads, exceeds the core dispatch time.

The Linux instance in LPAR S35LP64 does not use simultaneous multithreading.
• To start hyptop on Linux on z/VM with the sys_list window and display a selection of z/VM fields,

including the management time, enter:

hyptop -f "#,c,m,C,M,o"

The result looks like the following example:

hyptop

Commands for Linux on Z 541

17:52:56 cpu-t: IFL(0) UN(2) ?=help
system #cpu cpu mgm Cpu+ Mgm+ online
(str) (#) (%) (%) (hm) (hm) (dhm)
G3545010 3 0.55 0.05 0:05 0:02 0:03:14
G3545021 3 0.04 - 0:00 - 0:02:43
G3545025 2 0.01 - 0:00 - 0:04:08
...

G3545099 1 0.00 - 0:00 - 0:09:06
 52 0.61 0.05 0:27 0:02 0:09:06

In the example, hyptop runs on a Linux instance in z/VM guest virtual machine G3545010. In the
sys_list window, this is the only guest virtual machine for which management data is displayed.

Scenario
Perform the steps described in this scenario to start hyptop with the sys window with system MYLPAR
with the fields dispatch time (unit milliseconds) and total dispatch time (unit default), sort the output
according to the total dispatch time, and then reverse the sort order.

Procedure

1. Start hyptop.

hyptop

2. Go to select mode by pressing the key. The display will freeze.

3. Navigate to the row for the system you want to look (in the example MYLPAR) at using the and
keys.

12:15:00 | CPU-T: IFL(18) CP(3) UN(3) ?=help
system #core core mgm Core+ Mgm+ online
(str) (#) (%) (%) (hm) (hm) (dhm)
 MYLPAR____4___199.69___0.04___547:41_8:15_11:05:59
S05LP33 4 133.73 7.57 220:53 6:12 11:05:54
S05LP50 4 99.26 0.01 146:24 0:12 10:04:24
S05LP02 1 99.09 0.00 269:57 0:00 11:05:58
...
S05LP56 3 0.00 0.00 0:00 0:00 11:05:52
 413 823.39 23.86 3159:57 38:08 11:06:01

4. Open the sys window for MYLPAR by pressing the key.

12:15:51 MYLPAR cpu-t: IFL(18) CP(3) UN(2) ?=help
coreid type core mgm visual
(#) (str) (%) (%) (vis)
0 IFL 99.84 0.02 |##
1 IFL 99.85 0.02 |##
2 IFL 0.00 0.00 |
3 IFL 0.00 0.00 |
=:V:N 199.69 0.04

5. Press the key to go to the fields selection window:

Select Fields and Units ?=help
K S ID UNIT AGG DESCRIPTION
p * type str none CPU type
c * core % sum CPU time per second
m * mgm % sum Management time per second
C core+ hm sum Total CPU time
E thE+ % sum Total thread time
M mgm+ hm sum Total management time
o online dhm max Online time
v * visual vis none Visualization of CPU time per second

hyptop

542 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Ensure that dispatch time per second and total dispatch time are selected and for dispatch time
microseconds are used as unit:

a. Press the P key, the M key, and the V key to disable CPU type, Management time per
second, and Visualization.

b. Press the key to enable Total core dispatch time.

c. Then select the Core dispatch time per second row by pressing the and keys.
d. Press the minus key (-) to switch from the percentage (%) unit to the microseconds (ms) unit.

Select Fields and Units ?=help
K S ID UNIT AGG DESCRIPTION
p type str none CPU type
c * core ms sum CPU time per second
m mgm % sum Management time per second
C * core+ hm sum Total CPU time
E thE+ % sum Total thread time
M mgm+ hm sum Total management time
o online dhm max Online time
v visual vis none Visualization of CPU time per second

Press the key twice to return to the sys window.

6. To sort by Total core dispatch time and list the values from low to high, press the Shift + C

keys twice:

13:44:41 MYLPAR CPU-T: IFL(18) CP(3) UN(2) ?=help
cpuid core Core+
(#) (ms) (hm)
2 0.00 0:00
3 0.00 0:00
1 37.48 492:55
0 23.84 548:52
=:^:N 61.33 1041:47

Results

You can do all of these steps in one by entering the command:

hyptop -w sys -s mylpar -f c:ms,C -S C -S C

hyptop

Commands for Linux on Z 543

lschp - List channel paths
Use the lschp command to display information about channel paths.

lschp syntax

lschp

--help

--version

Where:

Output column description:

CHPID
Channel-path identifier.

Vary
Logical channel-path state:

• 0 = channel-path is not used for I/O.
• 1 = channel-path is used for I/O.

Cfg.
Channel-path configure state:

• 0 = stand-by
• 1 = configured
• 2 = reserved
• 3 = not recognized

Type
Channel-path type identifier.

Cmg
Channel measurement group identifier.

Shared
Indicates whether a channel-path is shared between LPARs:

• 0 = channel-path is not shared
• 1 = channel-path is shared

PCHID
Physical channel path identifier, or, if enclosed in brackets, internal channel identifier. The mapping
might not be available to Linux when it is running as a z/VM guest. If so, use the CP command:

QUERY CHPID <num> PCHID

A column value of '-' indicates that a facility associated with the corresponding channel-path attribute
is not available.

-v or --version
displays the version number of lschp and exits.

-h or --help
displays a short help text, then exits. To view the man page enter man lschp.

lschp

544 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Examples

• To query the configuration status of channel path ID 0.40 issue:

lschp

CHPID Vary Cfg. Type Cmg Shared PCHID
======================================
...
...
0.40 1 1 1b 2 1 0580
...
...

The value under Cfg. shows that the channel path is configured (1).

lschp

Commands for Linux on Z 545

lscpumf - Display information about the CPU-measurement facilities
Use the lscpumf command to display information about information about the CPU-measurement
facilities.

lscpumf syntax

lscpumf

-i

-c

-C

-s

-h

-v

where:
-i or --info

displays detailed information about available and supported CPU measurement facilities.
-c or --list-counters

lists counters that are provided by the CPU-measurement facility, omitting counters for which the
LPAR is not authorized. For counter measurements with the perf program, the raw event identifier and
symbolic counter name are displayed.

-C or --list-all-counters
lists all counters that are provided by the CPU-measurement counter facility, regardless of LPAR
authorization. To list only those counters for which the LPAR is authorized, use the -c option. For
counter measurements with the perf program, the raw event identifier and symbolic counter name are
displayed.

-s or --list-sampling-events
lists perf raw events that activate the sampling facility.

-v or --version
displays the version number of lscpumf and exits.

-h or --help
displays out a short help text, then exits. To view the man page, enter man lscpumf.

Examples

• To display the supported facilities, issue:

lscpumf
CPU-measurement Counter Facility
CPU-measurement Sampling Facility

• To display details about the facilities, issue:

lscpumf

546 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

lscpumf -i
CPU-measurement counter facility
--
Version: 1.2

Authorized counter sets:
 Basic counter set
 Problem-State counter set

Linux perf event support: Yes (PMU: cpum_cf)

CPU-measurement sampling facility
--
Sampling Interval:
 Minimum: 18228 cycles (approx. 285714 Hz)
 Maximum: 170650536 cycles (approx. 30 Hz)

Authorized sampling modes:
 basic (sample size: 32 bytes)

Linux perf event support: Yes (PMU: cpum_sf)

Current sampling buffer settings for cpum_sf:
 Basic-sampling mode
 Minimum: 15 sample-data-blocks (64KB)
 Maximum: 8176 sample-data-blocks (32MB)

• To display perf event information for authorized sampling functions, issue:

lscpumf -s
Perf events for activating the sampling facility
==

Raw
event Name Description
--
rb0000 SF_CYCLES_BASIC

 Sample CPU cycles using basic-sampling mode.
 This event is not associated with a counter set.

• To list all counters that are provided by your Z hardware, issue:

lscpumf

Commands for Linux on Z 547

lscpumf -C
Perf event counter list for z13
==

Raw
event Name Description
--
r0 CPU_CYCLES

 Cycle Count.
 Counter 0 / Basic Counter Set.

r1 INSTRUCTIONS

 Instruction Count.
 Counter 1 / Basic Counter Set.

r2 L1I_DIR_WRITES

 Level-1 I-Cache Directory Write Count.
 Counter 2 / Basic Counter Set.

r3 L1I_PENALTY_CYCLES

 Level-1 I-Cache Penalty Cycle Count.
 Counter 3 / Basic Counter Set.

r4 L1D_DIR_WRITES

 Level-1 D-Cache Directory Write Count.
 Counter 4 / Basic Counter Set.

r5 L1D_PENALTY_CYCLES

 Level-1 D-Cache Penalty Cycle Count.
 Counter 5 / Basic Counter Set.

r20 PROBLEM_STATE_CPU_CYCLES

 Problem-State Cycle Count.
 Counter 32 / Problem-State Counter Set.

r21 PROBLEM_STATE_INSTRUCTIONS

 Problem-State Instruction Count.
 Counter 33 / Problem-State Counter Set.
 ...

lscpumf

548 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

lscss - List subchannels
Use the lscss command to gather subchannel information from sysfs and display it in a summary format.

lscss syntax

lscss
-s -u --avail --vpm

--io

--chsc

 --eadm

-a

 -t

,

<devicetype>

/ <model>

-d

,

<bus_id>

<from_bus_id>-<to_bus_id>

Where:

-s or --short
strips the 0.0. from the device bus-IDs in the command output.

Note: This option limits the output to bus IDs that begin with 0.0.

-u or --uppercase
displays the output with uppercase letters. The default is lowercase.

Changed default: Earlier versions of lscss printed the command output in uppercase. Specify this
option to obtain the former output style.

--avail
includes the availability attribute of I/O devices.

--vpm
shows verified paths in a mask. Channel paths that are listed in this mask are available to Linux device
drivers for I/O. Reasons for a channel path to be unavailable include:

• The corresponding bit is not set in at least one of the PIM, PAM, or POM masks.
• The channel path is varied offline.
• Linux received no interrupt to I/O when using this channel path.

--io
limits the output to I/O subchannels and corresponding devices. This option is the default.

--chsc
limits the output to CHSC subchannels.

--eadm
limits the output to EADM subchannels.

-a or --all
does not limit the output.

lscss

Commands for Linux on Z 549

-t or --devtype
limits the output to subchannels that correspond to devices of the specified device types and, if
provided, the specified model.

<devicetype>
specifies a device type.

<model>
is a specific model of the specified device type.

-d or --devrange
interprets bus IDs as specifications of devices. By default, bus IDs are interpreted as specifications of
subchannels.

<bus_id>
specifies an individual subchannel; if used with -d specifies an individual device. If you omit the
leading 0.<subchannel set ID>., 0.0. is assumed.

If you specify subchannels or devices, the command output is limited to these subchannels or
devices.

<from_bus_id>-<to_bus_id>
specifies a range of subchannels; if used with -d specifies a range of devices. If you omit the leading
0.<subchannel set ID>., 0.0. is assumed.

If you specify subchannels or devices, the command output is limited to these subchannels or
devices.

-v or --version
displays the version number of lscss and exits.

-h or --help
displays a short help text, then exits. To view the man page enter man lscss.

Examples

• This command lists all subchannels that correspond to I/O devices, including subchannels that do not
correspond to I/O devices: :

lscss -a
IO Subchannels and Devices:
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.f500 0.0.05cf 1732/01 1731/01 yes 80 80 ff 76000000 00000000
0.0.f501 0.0.05d0 1732/01 1731/01 yes 80 80 ff 76000000 00000000
0.0.f502 0.0.05d1 1732/01 1731/01 yes 80 80 ff 76000000 00000000
0.0.6194 0.0.36e0 3390/0c 3990/e9 yes fc fc ff 32333435 40410000
0.0.6195 0.0.36e1 3390/0c 3990/e9 yes fc fc ff 32333435 40410000
0.0.6196 0.0.36e2 3390/0c 3990/e9 yes fc fc ff 32333435 40410000

CHSC Subchannels:
Device Subchan.

n/a 0.0.ff40

EADM Subchannels:
Device Subchan.

n/a 0.0.ff00
n/a 0.0.ff01
n/a 0.0.ff02
n/a 0.0.ff03
n/a 0.0.ff04
n/a 0.0.ff05
n/a 0.0.ff06
n/a 0.0.ff07

• This command limits the output to subchannels with attached DASD model 3390 type 0a:

lscss

550 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

lscss -t 3390/0a
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.2f08 0.0.0a78 3390/0a 3990/e9 yes c0 c0 ff 34400000 00000000
0.0.2fe5 0.0.0b55 3390/0a 3990/e9 c0 c0 bf 34400000 00000000
0.0.2fe6 0.0.0b56 3390/0a 3990/e9 c0 c0 bf 34400000 00000000
0.0.2fe7 0.0.0b57 3390/0a 3990/e9 yes c0 c0 ff 34400000 00000000

• This command limits the output to the subchannel range 0.0.0b00-0.0.0bff:

lscss 0.0.0b00-0.0.0bff
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.2fe5 0.0.0b55 3390/0a 3990/e9 c0 c0 bf 34400000 00000000
0.0.2fe6 0.0.0b56 3390/0a 3990/e9 c0 c0 bf 34400000 00000000
0.0.2fe7 0.0.0b57 3390/0a 3990/e9 yes c0 c0 ff 34400000 00000000

• This command limits the output to subchannels 0.0.0a78 and 0.0.0b57 and shows the availability:

lscss --avail 0a78,0b57
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs Avail.

0.0.2f08 0.0.0a78 3390/0a 3990/e9 yes c0 c0 ff 34400000 00000000 good
0.0.2fe7 0.0.0b57 3390/0a 3990/e9 yes c0 c0 ff 34400000 00000000 good

• This command limits the output to subchannel 0.0.0a78 and displays uppercase output:

lscss -u 0a78
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.2F08 0.0.0A78 3390/0A 3990/E9 YES C0 C0 FF 34400000 00000000

• This command limits the output to subchannels that correspond to I/O device 0.0.7e10 and the device
range 0.0.2f00-0.0.2fff:

lscss -d 2f00-2fff,0.0.7e10
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.2f08 0.0.0a78 3390/0a 3990/e9 yes c0 c0 ff 34400000 00000000
0.0.2fe5 0.0.0b55 3390/0a 3990/e9 c0 c0 bf 34400000 00000000
0.0.2fe6 0.0.0b56 3390/0a 3990/e9 c0 c0 bf 34400000 00000000
0.0.2fe7 0.0.0b57 3390/0a 3990/e9 yes c0 c0 ff 34400000 00000000
0.0.7e10 0.0.1828 3390/0c 3990/e9 yes f0 f0 ef 34403541 00000000

• This example shows a CHPID with PIM, PAM, and POM masks that are OK. However, the entry in the
vpm column indicates that one of the paths, 0x41, is not usable for I/O.

lscss --vpm
Device Subchan. DevType CU Type Use PIM PAM POM VPM CHPIDs

0.0.f500 0.0.05cf 1732/01 1731/01 yes 80 80 ff 80 76000000 00000000
0.0.f501 0.0.05d0 1732/01 1731/01 yes 80 80 ff 80 76000000 00000000
0.0.f502 0.0.05d1 1732/01 1731/01 yes 80 80 ff 80 76000000 00000000
0.0.6194 0.0.3700 3390/0c 3990/e9 yes fc fc ff f8 32333435 40410000
0.0.6195 0.0.3701 3390/0c 3990/e9 yes fc fc ff f8 32333435 40410000
0.0.6196 0.0.3702 3390/0c 3990/e9 yes fc fc ff f8 32333435 40410000
0.0.6197 0.0.3703 3390/0c 3990/e9 fc fc ff 00 32333435 40410000
0.2.5600 0.2.0040 1732/03 1731/03 80 80 ff 00 5d000000 00000000

lscss

Commands for Linux on Z 551

lsdasd - List DASD devices
Use the lsdasd command to gather information about DASD devices from sysfs and display it in a
summary format.

lsdasd syntax

lsdasd
 -a -b -s -v -l -c

-u -H <device_bus_id>

Where:

-a or --offline
includes devices that are currently offline.

-b or --base
omits PAV alias devices. Lists only base devices.

-s or --short
strips the bus ID in the command output down to the four-digit device number.

-v or --verbose
Obsolete. This option has no effect on the output.

-l or --long
extends the output to include attributes, the UID and path information.

-c or --compat
creates output of this command as with versions earlier than 1.7.0.

-u or --uid
includes and sorts output by UID.

-H or --host_access_list
shows information about all operating system instances that use this device.

<device_bus_id>
limits the output to information about the specified devices only.

--version
displays the version of the command.

-h or --help
displays a short help text, then exits. To view the man page, enter man lsdasd.

Examples

• The following command lists all DASD (including offline DASDS):

lsdasd

552 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

lsdasd -a
Bus-ID Status Name Device Type BlkSz Size Blocks
==
0.0.0190 offline
0.0.0191 offline
0.0.019d offline
0.0.019e offline
0.0.0592 offline
0.0.4711 offline
0.0.4712 offline
0.0.4f2c offline
0.0.4d80 active dasda 94:0 ECKD 4096 4695MB 1202040
0.0.4f19 active dasdb 94:4 ECKD 4096 23034MB 5896800
0.0.4d81 active dasdc 94:8 ECKD 4096 4695MB 1202040
0.0.4d82 active dasdd 94:12 ECKD 4096 4695MB 1202040
0.0.4d83 active dasde 94:16 ECKD 4096 4695MB 1202040

• The following command shows information only for the DASD with device number 0x4d80 and strips the
bus ID in the command output down to the device number:

lsdasd -s 0.0.4d80
Bus-ID Status Name Device Type BlkSz Size Blocks
==
4d80 active dasda 94:0 ECKD 4096 4695MB 1202040

• The following command shows only online DASDs in the format of lsdasd versions earlier than 1.7.0:

lsdasd -c
0.0.4d80(ECKD) at (94: 0) is dasda : active at blocksize 4096, 1202040 blocks, 4695 MB
0.0.4f19(ECKD) at (94: 4) is dasdb : active at blocksize 4096, 5896800 blocks, 23034 MB
0.0.4d81(ECKD) at (94: 8) is dasdc : active at blocksize 4096, 1202040 blocks, 4695 MB
0.0.4d82(ECKD) at (94: 12) is dasdd : active at blocksize 4096, 1202040 blocks, 4695 MB
0.0.4d83(ECKD) at (94: 16) is dasde : active at blocksize 4096, 1202040 blocks, 4695 MB

• The following command shows the device geometry, UID, path information, and some of the settings for
the DASD with device bus-ID 0.0.4d82:

lsdasd -l 0.0.4d82
0.0.4d82/dasdd/94:12
 status: active
 type: ECKD
 blksz: 4096
 size: 4695MB
 blocks: 1202040
 use_diag: 0
 readonly: 0
 eer_enabled: 0
 erplog: 0
 hpf: 1
 uid: IBM.75000000010671.4d82.16
 paths_installed: 30 31 32 33 3c 3d
 paths_in_use: 31 32 33
 paths_non_preferred:
 paths_invalid_cabling: 3c
 paths_cuir_quiesced: 30
 paths_invalid_hpf_characteristics: 3d
 paths_error_threshold_exceeded:

In the example, three of the installed paths are unused for different reasons:

– The path with CHPID 3c is not used because of a cabling error to the storage system. This channel
path does not connect to the same physical disk space as the other channel path for this device.

– The path with CHPID 30 is not used because of a control-unit initiated reconfiguration (CUIR).
– The path with CHPID 3d is not used because its High Performance FICON characteristics do not

match with the paths currently in use.
• The following command shows whether other operating system instances access device 0.0.bf45:

lsdasd

Commands for Linux on Z 553

lsdasd -H bf45
Host information for 0.0.bf45
Path-Group-ID LPAR CPU FL Status Sysplex Max_Cyls Time
==
88000d29e72964ce8570b8 0d 29e7 50 ON TRX1LNX1 268434453 0
88000e29e72964ce8570c3 0e 29e7 50 ON 268434453 0
88000f29e72964ce8570d1 0f 29e7 50 ON 268434453 0
88011d29e72964ce8570d4 1d 29e7 50 ON 268434453 0
88011e29e72964ce8570d9 1e 29e7 50 ON 268434453 0
88011f29e72964ce8570e3 1f 29e7 50 ON 268434453 0
88022d29e72964ce8570e6 2d 29e7 50 ON 268434453 0
88022e29e72964ce8570ea 2e 29e7 50 ON 268434453 0
88022f29e72964ce8570f1 2f 29e7 50 ON 268434453 0
88033d29e72964ce8570f7 3d 29e7 50 ON 268434453 0
88033e29e72964ce8570fe 3e 29e7 50 ON 268434453 0
88033f29e72964ce85710e 3f 29e7 50 ON 268434453 0
80004229e72964ce7dce74 42 29e7 00 OFF 65520 0
80004a29e72964ce7db60d 4a 29e7 00 OFF 65520 0
80003c29e72964ce8481a6 3c 29e7 00 OFF 65520 0
80004629e72964ce7f1c13 46 29e7 70 ON-RSV 65520 1424174863

Status values are:
ON

The device is online.
OFF

The device is offline.
ON-RSV

The device is online and reserved.
OFF-RSV

The device is offline and reserved by an operating system instance in another LPAR.
The meaning of the columns is as follows:
Path-group-ID

A 22-digit hexadecimal number assigned by the operating system when setting the DASD online.
This ID uniquely identifies the operating system to the storage server.

LPAR
A 2 digit LPAR ID.

CPU
A 4 digit CPU ID, as it is defined in the HMC or can be read from /proc/cpuinfo.

FL
A 2 digit hexadecimal flag. 0x20 means reserved, 0x50 means online.

Sysplex
The 8-character EBCDIC name of the SYSPLEX.

MAX_CYLS
The maximum number of cylinders per volume that are supported by the host.

TIME
Time the device has been reserved in seconds since July 1, 1970.

lsdasd

554 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

lshmc - List media contents in the HMC media drive
Use the lshmc command to display the contents of the media in the HMC media drive.

Before you begin: To be able to use this command, you need the hmcdrv module (see Chapter 31, “HMC
media device driver,” on page 341).

lshmc syntax

lshmc

<filepath> -s

Where:

<filepath>
specifies a directory or path to a file to be listed. Path specifications are relative to the root of the file
system on the media. You can use the asterisk (*) and question mark (?) as wildcards. If this
specification is omitted, the contents of the root directory are listed.

-s or --short
limits the output to regular files in a short listing format. Omits directories, symbolic links, and device
nodes and other special files.

-v or --version
displays version information for the command.

-h or --help
displays a short help text, then exits. To view the man page, enter man lshmc.

Examples

• To list the files in the root directory of the media in the HMC's media drive, issue:

lshmc

• If the hmcdrv kernel module is not loaded, load it before you issue the lshmc command:

modprobe hmcdrv
lshmc

• To list all HTML files in subdirectory www, issue:

lshmc /www/*.html

lshmc

Commands for Linux on Z 555

lsluns - Discover LUNs, or show encryption state of attached LUNs
Use the lsluns command to list logical unit numbers (LUNs) discovered in the Fibre Channel storage
area networks (SAN), or to show the encryption state of zfcp-attached LUNs.

lsluns is designed for environments where all SCSI devices are attached through the zfcp device driver.

lsluns lists all LUNs discovered in the Fibre Channel SAN. See “Discover LUNs in the Fibre Channel
storage area network (SAN)” on page 556.

lsluns -a shows the encryption state of the attached LUNs. See “Show the encryption state of zfcp-
attached LUNs” on page 557.

For all other uses, such as listing attached LUNs or properties other than encryption, use other tools such
as:

• lszfcp −D See “lszfcp - List zfcp devices” on page 577
• lszdev zfcp-lun −ii See “lszdev - Display IBM Z device configurations” on page 572
• lsscsi −tv See the man page for more details.

Discover LUNs in the Fibre Channel storage area network (SAN)
Discovering LUNs only makes sense for NPIV-enabled FCP devices without zfcp automatic LUN scan. zfcp
automatic LUN scan is available as of kernel version 2.6.37, if not disabled with
zfcp.allow_lun_scan=0. See “Setting up the zfcp device driver” on page 135.

Note: Discovering LUNs causes extra SAN traffic for each target port WWPN.

With available and enabled zfcp automatic LUN scan, the kernel performs LUN discovery.

Temporary LUN Attachment
If not attached already, lsluns temporarily attaches LUN 0 (or if this fails, the WLUN
0xc101000000000000) during runtime. Do not terminate lsluns with a signal. Signals interfere with
the removal of temporarily attached LUNs.

Storage Products
Some storage products return a peripheral device type of 31==0x1f with peripheral qualifier 0 in a
SCSI standard INQUIRY command for an unmapped FCP LUN 0. Examples are: IBM Storwize®

products, including IBM V7000, IBM V840, IBM V9000, and IBM SAN Volume Controller. For lsluns
to work with such storage products, you must have a host mapping on the storage side, which maps
some volume to exported FCP LUN 0x0000000000000000 (Storwize host map property "SCSI ID" 0)
for each used FCP-device initiator WWPN. The volume can be a minimum-sized thin-provisioned
shared stand-in volume.

Filter the listing by specifying one or more FCP device bus-IDs, target port WWPNs, or both.

lsluns syntax

lsluns

-c <device_bus_id> -p <wwpn>

Where:

-c <device_bus_id> or --ccw=<device_bus_id>
filters LUNs by one or more adapters with the specified FCP device-bus IDs. When used in conjunction
with −p, only those LUNs are listed that also satisfy at least one of the −p constraints.

lsluns

556 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

-p <wwpn> or --port=<wwpn>
filters LUNs by one or more target ports with the specified WWPNs. When used in conjunction with −c,
only those LUNs are listed that also satisfy at least one of the −c constraints.

-v or --version
displays version information and exits.

-h or --help
displays an overview of the syntax. To view the man page, enter man lsluns.

Examples

• This example lists all LUNs discovered in the FC SAN on adapter 0.0.3922:

lsluns -c 0.0.3922

• This example shows all LUNs discovered in the FC SAN on target port 0x500507630300c562:

lsluns -p 0x500507630300c562
Scanning for LUNs on adapter 0.0.5922
 at port 0x500507630300c562:
 0x4010400000000000
 0x4010400100000000
 0x4010400200000000
 0x4010400300000000
 0x4010400400000000
 0x4010400500000000

• This example shows all LUNs discovered in the FC SAN on:

– Adapter 0.0.3922 and port 0x5005123456789000
– Adapter 0.0.3922 and port 0x5005abcdefabc000
– Adapter 0.0.fc00 and port 0x5005123456789000
– Adapter 0.0.fc00 and port 0x5005abcdefabc000

lsluns -c 0.0.3922 −c 0.0.fc00 −p 0x5005123456789000 −p 0x5005abcdefabc000

Show the encryption state of zfcp-attached LUNs
lsluns -a shows the encryption state of the attached LUNs.

Note: Running lsluns -a causes extra SAN traffic for each attached LUN.

Filter the listing by specifying one or more FCP device bus-IDs, target port WWPNs, or both.

lsluns syntax

lsluns -a

-c <device_bus_id> -p <wwpn>

Where:

-a or --active
shows the encryption state of the attached LUNs. Encrypted devices are indicated with a bracketed X
immediately after the LUN number.

-c <device_bus_id> or --ccw=<device_bus_id>
filters LUNs by one or more adapters with the specified FCP device-bus IDs. When used in conjunction
with −p, only those LUNs are listed that also satisfy at least one of the −p constraints.

lsluns

Commands for Linux on Z 557

-p <wwpn> or --port=<wwpn>
filters LUNs by one or more target ports with the specified WWPNs. When used in conjunction with −c,
only those LUNs are listed that also satisfy at least one of the −c constraints.

-v or --version
displays version information and exits.

-h or --help
displays an overview of the syntax. To view the man page, enter man lsluns.

Examples

• This example shows the encryption status of attached LUNs:

lsluns -a
adapter = 0.0.3c02
 port = 0x500507630300c562
 lun = 0x401040a200000000(X) /dev/sg0 Disk IBM:2107900
 lun = 0x401040a300000000 /dev/sg1 Disk IBM:2107900
 ...
 port = 0x500507630303c562
 ...
adapter = 0.0.593a
 ...

The (X) after the LUN number indicates that the device is encrypted.

lsluns

558 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

lsmem - Show online status information about memory blocks
Use the lsmem command to list the ranges of available memory with their online status.

The listed memory blocks correspond to the memory block representation in sysfs. The command also
shows the memory block size, the device size, and the amount of memory in online and offline state.

lsmem syntax

lsmem
-a

Where:
-a or --all

lists each individual memory block, instead of combining memory blocks with similar attributes.
-v or --version

displays the version number of lsmem, then exits.
-h or --help

displays a short help text, then exits. To view the man page, enter man lsmem.

The columns in the command output have this meaning:
Address range

Start and end address of the memory range.
Size

Size of the memory range in MB (1024 x 1024 bytes).
State

Indication of the online status of the memory range. State on->off means that the address range is
in transition from online to offline.

Removable
yes if the memory range can be set offline, no if it cannot be set offline. A dash (-) means that the
range is already offline. The kernel method that identifies removable memory ranges is heuristic and
not exact. Occasionally, memory ranges are falsely reported as removable or falsely reported as not
removable.

Device
Device number or numbers that correspond to the memory range.

A device represents a unit of memory for the hypervisor in control of the memory. The hypervisor
cannot reuse a device unless the entire corresponding memory range is offline.

The memory units that you can set online or offline from Linux are memory blocks. In most memory
configurations, there is a one-to-one mapping of devices and memory blocks or a mapping of multiple
devices to a single memory block. In other configurations, multiple memory blocks might map to a
single device. Memory might be used inefficiently if a device includes both online and offline memory
blocks.

The chmem command with the size parameter automatically chooses the best suited device or devices
for setting memory online or offline. The device size depends on the hypervisor and on the amount of
total online and offline memory.

Examples

• The output of this command, shows ranges of adjacent memory blocks with similar attributes.

lsmem

Commands for Linux on Z 559

lsmem
Address range Size (MB) State Removable Device
===
0x0000000000000000-0x000000000fffffff 256 online no 0
0x0000000010000000-0x000000002fffffff 512 online yes 1-2
0x0000000030000000-0x000000003fffffff 256 online no 3
0x0000000040000000-0x000000006fffffff 768 online yes 4-6
0x0000000070000000-0x00000000ffffffff 2304 offline - 7-15

Memory device size : 256 MB
Memory block size : 256 MB
Total online memory : 1792 MB
Total offline memory: 2304 MB

• The output of this command, shows each memory block as a separate range.

lsmem -a
Address range Size (MB) State Removable Device
===
0x0000000000000000-0x000000000fffffff 256 online no 0
0x0000000010000000-0x000000001fffffff 256 online yes 1
0x0000000020000000-0x000000002fffffff 256 online yes 2
0x0000000030000000-0x000000003fffffff 256 online no 3
0x0000000040000000-0x000000004fffffff 256 online yes 4
0x0000000050000000-0x000000005fffffff 256 online yes 5
0x0000000060000000-0x000000006fffffff 256 online yes 6
0x0000000070000000-0x000000007fffffff 256 offline - 7
0x0000000080000000-0x000000008fffffff 256 offline - 8
0x0000000090000000-0x000000009fffffff 256 offline - 9
0x00000000a0000000-0x00000000afffffff 256 offline - 10
0x00000000b0000000-0x00000000bfffffff 256 offline - 11
0x00000000c0000000-0x00000000cfffffff 256 offline - 12
0x00000000d0000000-0x00000000dfffffff 256 offline - 13
0x00000000e0000000-0x00000000efffffff 256 offline - 14
0x00000000f0000000-0x00000000ffffffff 256 offline - 15

Memory device size : 256 MB
Memory block size : 256 MB
Total online memory : 1792 MB
Total offline memory: 2304 MB

lsmem

560 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

lsqeth - List qeth-based network devices
Use the lsqeth command to display a summary of information about qeth-based network devices.

Before you begin: To be able to use this command, you must also install qethconf (see “qethconf -
Configure qeth devices” on page 593). You install both qethconf and lsqeth with the s390-tools RPM.

lsqeth syntax

lsqeth
-p <interface>

Where:
-p or --proc

displays the interface information in the former /proc/qeth format. This option can generate input
to tools that expect this particular format.

<interface>
limits the output to information about the specified interface only.

-v or --version
displays the version number of lsqeth and exits.

-h or --help
displays a short help text, then exits. To view the man page, enter man lsqeth.

Examples

• The following command lists information about interface eth0 in the default format:

lsqeth eth0
Device name : eth0

 card_type : OSD_100
 cdev0 : 0.0.f5a2
 cdev1 : 0.0.f5a3
 cdev2 : 0.0.f5a4
 chpid : B5
 online : 1
 portname : no portname required
 portno : 0
 route4 : no
 route6 : no
 state : UP (LAN ONLINE)
 priority_queueing : always queue 2
 fake_broadcast : 0
 buffer_count : 64
 large_send : no
 isolation : none
 sniffer : 0

• The following command lists information about all qeth-based interfaces in the former /proc/qeth
format:

lsqeth -p
devices CHPID interface cardtype port chksum prio-q'ing rtr4 rtr6 lay'2 cnt
-------------------------- ----- ---------- -------------- ---- ------ ---------- ---- ---- ----- -----
0.0.833f/0.0.8340/0.0.8341 xFE hsi0 HiperSockets 0 sw always_q_2 no no 0 128
0.0.f5a2/0.0.f5a3/0.0.f5a4 xB5 eth0 OSD_1000 0 sw always_q_2 no no 1 64
0.0.fba2/0.0.fba3/0.0.fba4 xB0 eth1 OSD_1000 0 sw always_q_2 no no 0 64

lsqeth

Commands for Linux on Z 561

lsreipl - List IPL and re-IPL settings
Use the lsreipl command to find out which boot device and which options are used if you issue the
reboot command.

You can also display information about the current boot device.

lsreipl syntax

lsreipl

-i

Where:
-i or --ipl

displays the IPL setting.
-v or --version

displays the version number of lsreipl and exits.
-h or --help

displays a short help text, then exits. To view the man page, enter man lsreipl.
By default the re-IPL device is set to the current IPL device. Use the chreipl command to change the re-
IPL settings.

Examples

• This example shows the current re-IPL settings:

lsreipl
Re-IPL type: fcp
WWPN: 0x500507630300c562
LUN: 0x401040b300000000
Device: 0.0.1700
bootprog: 0
br_lba: 0
Loadparm: "g2"
Bootparms: ""

lsreipl

562 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

lsscm - List storage-class memory increments
Use the lsscm command to list status and other information about available storage-class memory
increments.

lsscm syntax

lsscm

-h

-v

Where:
-h or --help

displays help information for the command. To view the man page, enter man lsscm.
-v or --version

displays version information for the command.
In the output table, the columns have the following meaning:

SCM Increment
Starting address of the storage-class memory increment.

Size
Size of the block device that represents the storage-class memory increment.

Name
Name of the block device that represents the storage-class memory increment.

Rank
A quality ranking in the form of a number in the range 1 - 15 where a lower number means better
ranking.

D_state
Data state of the storage-class memory increment. A number that indicates whether there is data on
the increment. The data state can be:
1

The increment contains zeros only.
2

Data was written to the increment.
3

No data was written to the increment since the increment was attached.
O_state

Operation state of the storage-class memory increment.
Pers

Persistence attribute.
ResID

Resource identifier.

Examples

• This command lists all increments:

lsscm

Commands for Linux on Z 563

 # lsscm
 SCM Increment Size Name Rank D_state O_state Pers ResID
--
0000000000000000 16384MB scma 1 2 1 2 1
0000000400000000 16384MB scmb 1 2 1 2 1

lsscm

564 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

lsshut - List the current system shutdown actions
Use the lsshut command to see how the Linux instance is configured for the halt, poff, reboot, and
panic system shutdown triggers.

For more information about the shutdown triggers and possible shutdown actions, see Chapter 7,
“Shutdown actions,” on page 71.

lsshut syntax

lsshut

-h

-v

Where:
-v or --version

displays the version number of lsshut and exits.
-h or --help

displays a short help text, then exits. To view the man page, enter man lsshut.

Examples

• To query the configuration issue:

lsshut
Trigger Action
========================
Halt stop
Panic stop
Power off vmcmd (LOGOFF)
Reboot reipl

lsshut

Commands for Linux on Z 565

lstape - List tape devices
Use the lstape command to gather information about tape devices and display it in a summary format.

It gathers information about CCW-attached tape devices and tape devices that are attached to the SCSI
bus from sysfs (see “Displaying tape information” on page 182).

For information about SCSI tape devices, the command uses the following sources for the information
displayed:

• The IBMtape or the open source lin_tape driver.
• The sg_inq command from the scsi/sg3_utils package.
• The st (SCSI tape) device driver in the Linux kernel.

If you use the IBMtape or lin_tape driver, the sg_inq utility is required. If sg_inq is missing, certain
information about the IBMtape or lin_tape driver cannot be displayed.

lstape syntax

lstape
-s

-t

,

<devicetype>

--online

--offline

,

<device_bus_id>
1 --ccw-only

--scsi-only

--verbose

Notes:
1 specify the first device bus-ID with a leading blank.

Where:
-s or --shortid

strips the "0.<n>." from the device bus-IDs in the command output. For CCW-attached devices only.
-t or --type

limits the output to information about the specified type or types of CCW-attached devices only.
--ccw-only

limits the output to information about CCW-attached devices only.
--scsi-only

limits the output to information about tape devices that are attached to the SCSI bus.
--online | --offline

limits the output to information about online or offline CCW-attached tape devices only.
<device_bus_id>

limits the output to information about the specified tape device or devices only.
-V or --verbose

For tape devices attached to the SCSI bus only. Prints the serial of the tape and information about the
FCP connection as an additional text line after each SCSI tape in the list.

-v or --version
displays the version of the command.

lstape

566 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

-h or --help
displays a short help text, then exits. To view the man page, enter man lstape.

Examples

• This command displays information about all tapes that are found, here one CCW-attached tape and
one tape and changer device that is configured for zFCP:

#> lstape
FICON/ESCON tapes (found 1):
TapeNo BusID CuType/Model DevType/Model BlkSize State Op MedState
0 0.0.0480 3480/01 3480/04 auto UNUSED --- UNLOADED

SCSI tape devices (found 2):
Generic Device Target Vendor Model Type State
sg4 IBMchanger0 0:0:0:0 IBM 03590H11 changer running
sg5 IBMtape0 0:0:0:1 IBM 03590H11 tapedrv running

If only the st tape device driver and the ch changer device driver are loaded, the output lists those
names in the device section:

#> lstape
FICON/ESCON tapes (found 1):
TapeNo BusID CuType/Model DevType/Model BlkSize State Op MedState
0 0.0.0480 3480/01 3480/04 auto UNUSED --- UNLOADED

SCSI tape devices (found 2):
Generic Device Target Vendor Model Type State
sg0 sch0 0:0:0:0 IBM 03590H11 changer running
sg1 st0 0:0:0:1 IBM 03590H11 tapedrv running

• This command displays information about all available CCW-attached tapes.

lstape –-ccw-only
TapeNo BusID CuType/Model DevType/DevMod BlkSize State Op MedState
0 0.0.0132 3590/50 3590/11 auto IN_USE --- LOADED
1 0.0.0110 3490/10 3490/40 auto UNUSED --- UNLOADED
2 0.0.0133 3590/50 3590/11 auto IN_USE --- LOADED
3 0.0.012a 3480/01 3480/04 auto UNUSED --- UNLOADED
N/A 0.0.01f8 3480/01 3480/04 N/A OFFLINE --- N/A

• This command limits the output to tapes of type 3480 and 3490.

lstape -t 3480,3490
TapeNo BusID CuType/Model DevType/DevMod BlkSize State Op MedState
1 0.0.0110 3490/10 3490/40 auto UNUSED --- UNLOADED
3 0.0.012a 3480/01 3480/04 auto UNUSED --- UNLOADED
N/A 0.0.01f8 3480/01 3480/04 N/A OFFLINE --- N/A

• This command limits the output to those tapes of type 3480 and 3490 that are currently online.

lstape -t 3480,3490 --online
TapeNo BusID CuType/Model DevType/DevMod BlkSize State Op MedState
1 0.0.0110 3490/10 3490/40 auto UNUSED --- UNLOADED
3 0.0.012a 3480/01 3480/04 auto UNUSED --- UNLOADED

• This command limits the output to the tape with device bus-ID 0.0.012a and strips the "0.<n>." from
the device bus-ID in the output.

lstape -s 0.0.012a
TapeNo BusID CuType/Model DevType/DevMod BlkSize State Op MedState
3 012a 3480/01 3480/04 auto UNUSED --- UNLOADED

• This command limits the output to SCSI devices but gives more details. The serial numbers are only
displayed if the sg_inq command is found on the system.

lstape

Commands for Linux on Z 567

#> lstape --scsi-only --verbose
Generic Device Target Vendor Model Type State
 HBA WWPN Serial
sg0 st0 0:0:0:1 IBM 03590H11 tapedrv running
 0.0.1708 0x500507630040727b NO/INQ
sg1 sch0 0:0:0:2 IBM 03590H11 changer running
 0.0.1708 0x500507630040727b NO/INQ

Data fields for SCSI tape devices
There are specific data fields for SCSI tape devices.

Table 67: lstape data fields for SCSI tape devices

Attribute Description

Generic SCSI generic device file for the tape drive (for example, /dev/sg0). This attribute is
empty if the sg_inq command is not available.

Device Main device file for accessing the tape drive, for example:

• /dev/st0 for a tape drive that is attached through the Linux st device driver
• /dev/sch0 for a medium changer device that is attached through the Linux

changer device driver
• /dev/IBMchanger0 for a medium changer that is attached through the IBMtape

or lin_tape device driver
• /dev/IBMtape0 for a tape drive that is attached through the IBMtape or

lin_tape device driver

Target The ID in Linux used to identify the SCSI device.

Vendor The vendor field from the tape drive.

Model The model field from the tape drive.

Type "Tapedrv" for a tape driver or "changer" for a medium changer.

State The state of the SCSI device in Linux. This state is an internal state of the Linux
kernel, any state other than "running" can indicate problems.

HBA The FCP device to which the tape drive is attached.

WWPN The WWPN (worldwide port name) of the tape drive in the SAN.

Serial The serial number field from the tape drive.

lstape

568 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

lszcrypt - Display cryptographic devices
Use the lszcrypt command to display information about cryptographic adapters that are managed by
the cryptographic device driver and its AP bus attributes.

To set the attributes, use “chzcrypt - Modify the cryptographic configuration” on page 482. The following
information can be displayed for each cryptographic adapter:

• The card type
• The online status
• The hardware card type
• The card capability
• The hardware queue depth
• The request count

The following AP bus attributes can be displayed:

• The default AP domain
• The configuration timer
• The poll thread status
• The poll timeout
• The AP interrupt status

lszcrypt syntax

lszcrypt

-b

-c <device_ID>

-d

-V

<device_ID>

Where:
<device ID>

specifies a cryptographic adapter to display. A cryptographic device can be either an adapter ID or an
AP queue device. If no devices are specified, information about all available devices is displayed. Both
the adapter ID representation and the AP queue device representation are hexadecimal.

-b or --bus
displays the AP bus attributes.

-c or --capability
shows the capabilities of a cryptographic adapter of hardware type 6 or higher. The capabilities of a
cryptographic adapter depend on the card type and the installed function facilities. A cryptographic
adapter can provide one or more of the following capabilities:

• RSA 2K Clear Key
• RSA 4K Clear Key
• CCA Secure Key (full function set)
• CCA Secure Key (restricted function set)

lszcrypt

Commands for Linux on Z 569

• EP11 Secure Key
• Long RNG

The restricted function set for CCA Secure Key applies to shared adapters for z/VM guests.
-d or --domains

shows the usage and control domains of the cryptographic device. The displayed domains of the
cryptographic device depends on the initial cryptographic configuration.

• "C" indicates a control domain
• "U" indicates a usage domain
• "B" indicates both (control and usage domain)

-V or --verbose
enables the verbose level for cryptographic device information. It displays card type, online status,
hardware card type, hardware queue depth, request count, pending request queue count, outstanding
request queue count, and installed function facilities.

-v or --version
displays version information.

-h or --help
displays a short help text, then exits. To view the man page, enter man lszcrypt.

Examples

These examples illustrate common uses for lszcrypt.

• To display information about all available cryptographic devices and AP queues:

lszcrypt

This command lists all devices grouped by cryptographic device, similar to the following example. The
domain IDs are hexadecimal values.

CARD.DOMAIN TYPE MODE STATUS REQUEST_CNT

00 CEX5A Accelerator online 0
00.0005 CEX5A Accelerator online 0
00.001f CEX5A Accelerator online 0
00.004d CEX5A Accelerator online 0
01 CEX5C CCA-Coproc online 26
01.0005 CEX5C CCA-Coproc online 10
01.001f CEX5C CCA-Coproc online 7
01.004d CEX5C CCA-Coproc online 9
05 CEX5P EP11-Coproc online 0
05.0005 CEX5P EP11-Coproc online 0
05.001f CEX5P EP11-Coproc online 0
05.004d CEX5P EP11-Coproc online 0

• To display AP bus information:

lszcrypt -b

This command displays output similar to the following example:

ap_domain=0x6
ap_max_domain_id=0x54
ap_interrupts are enabled
config_time=30 (seconds)
poll_thread is disabled
poll_timeout=250000 (nanoseconds)

• To display the capabilities for the cryptographic device with adapter ID 0x0b:

lszcrypt

570 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

lszcrypt -c 0x0b

This command displays output similar to the following example:

Coprocessor card0b provides capability for:
CCA Secure Key
RSA 4K Clear Key
Long RNG

• To list the usage and control domains of the cryptographic devices:

lszcrypt -d

This command displays a table that lists all domains (in hex notation) similar to the following example:

DOMAIN 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
--
 00 B
 10
 20
 30
 40
 50 . B
 60
 70
 80
 90
 a0
 b0
 c0
 d0
 e0
 f0
--
C: Control domain
U: Usage domain
B: Both (Control + Usage domain)

• To display detailed information of all available cryptographic devices:

lszcrypt -V

This example shows CEX5S cryptographic devices in accelerator mode, CCA and EP11 in coprocessor
mode (IDs 0x00, 0x01 and 0x05) with domains 5 (0x05), 31 (0x1f) and 77 (0x4d) configured. Adapter
IDs and domain IDs are hexadecimal values.

lszcrypt

Commands for Linux on Z 571

CARD.DOMAIN TYPE MODE STATUS REQUEST_CNT PENDINGQ_CNT REQUESTQ_CNT HW_TYPE Q_DEPTH FUNCTIONS
--
00 CEX5A Accelerator online 0 0 0 11 08
0x6a000000
00.0005 CEX5A Accelerator online 0 0 0 11 08
0x6a000000
00.001f CEX5A Accelerator online 0 0 0 11 08
0x6a000000
00.004d CEX5A Accelerator online 0 0 0 11 08
0x6a000000
01 CEX5C CCA-Coproc online 26 0 0 11 08
0x92000000
01.0005 CEX5C CCA-Coproc online 10 0 0 11 08
0x92000000
01.001f CEX5C CCA-Coproc online 7 0 0 11 08
0x92000000
01.004d CEX5C CCA-Coproc online 9 0 0 11 08
0x92000000
05 CEX5P EP11-Coproc online 0 0 0 11 08
0x06000000
05.0005 CEX5P EP11-Coproc online 0 0 0 11 08
0x06000000
05.001f CEX5P EP11-Coproc online 0 0 0 11 08
0x06000000
05.004d CEX5P EP11-Coproc online 0 0 0 11 08
0x06000000

• To display the device ID and the installed function facility in hexadecimal notation as well as card type,
online status, hardware card type, hardware queue depth, request count, pending request queue count,
outstanding request queue count, and installed function facilities:

lszcrypt -V 0x00 0x03 0x0b

This command displays output similar to the following example:

CARD.DOMAIN TYPE MODE STATUS REQUEST_CNT PENDINGQ_CNT REQUESTQ_CNT HW_TYPE Q_DEPTH FUNCTIONS
--
00 CEX5A Accelerator online 2 0 0 11 08 0x6a000000
00.0041 CEX5A Accelerator online 2 0 0 11 08 0x6a000000
03 CEX5C CCA-Coproc online 1631 0 0 11 08 0x92000000
03.0041 CEX5C CCA-Coproc online 1631 0 0 11 08 0x92000000
0b CEX5P EP11-Coproc online 3088 0 0 11 08 0x06000000
0b.0041 CEX5P EP11-Coproc online 3088 0 0 11 08 0x06000000

Tip: In the device specification you can also use one-digit hexadecimal or decimal notation. The
following specifications are all equivalent:

– 0x0 0x2 0xb
– 0x00 0x02 0x0b
– 0 2 11

lszdev - Display IBM Z device configurations
Use the lszdev command to display the configuration of devices and device drivers that are specific to
IBM Z. Supported device types include storage devices (DASD and zFCP) and networking devices (QETH
and LCS).

Note: The lszdev command does not display persistent configuration settings made with tools provided
by SUSE, for example YaST.

Configuration information is taken from two sources: the active configuration of the currently running
system, and the persistent configuration stored in configuration files. By default lszdev displays
information from both the active and the persistent configuration. lszdev displays the configuration
information in either list format (the default) or detailed format.

The lszdev command supports two different views:

lszdev

572 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

• The list view provides overview information for selected devices in list form with configurable columns
• The details view provides detailed per-device information

lszdev

Device selection

Device type selection

--persistent --active

--active

--persistent

--info

--columns

,

<column_name>

--no-headings

--pairs

--base<path> | <key=value> --quiet

--verbose

Device selection

<type>

,

<device>

<from_dev>-<to_dev>

--all

--by-attrib<key=value>| <key!=value>

--by-interface<interface>

--by-node<device_node>

--by-path<path>

--configured

--existing --online

--offline

lszdev main syntax
Device type selection

<type> --type

lszdev

Commands for Linux on Z 573

lszdev help functions
lszdev --list-types

--list-columns

--help

--version

Where:

<type>
restricts the output to the specified device type. A device type typically corresponds to a device driver.
Multiple device types are sometimes provided for the same driver, for example, both "dasd-eckd" and
"dasd-fba" are related to the DASD device driver. You can work with types in the following ways:

• To display data for devices with matching type and ID only, specify a device type and a device ID, for
example:

lszdev dasd 0.0.8000

• To display the configuration of the device type itself, specify a device type together with the --type
option, for example:

lszdev dasd --type

To get a list of supported device types, use the --list-types option.
<device>

limits the output to information about a single device or a range of devices by device ID. To select a
range of devices, specify the ID of the first and the last device in the range separated by a hyphen (-).
Specify multiple IDs or ID ranges by separating IDs with a comma (,).

--all
lists all existing and configured devices. This option is the default.

--by-attrib <key=value> | <key!=value>
selects devices with a specified attribute, <key> that has a value of <value>. When specified as <key!
=value>, lists all devices that do not provide an attribute named <key> with a value of <value>.

Tip: You can use the --list-attributes option to display a list of available attributes and the --help-
attribute to get more detailed information about a specific attribute.

--by-interface <interface>
selects devices by network interface, for example, eth0. The <interface> parameter must be the name
of an existing networking interface.

--by-node <node>
selects devices by device node, for example, /dev/sda. The <node> must be the path to a block
device or character device special file.

Note: If <node> is the device node for a logical device (such as a device mapper device), lszdev tries
to resolve the corresponding physical device nodes. The lsblk tool must be available for this
resolution to work.

--by-path <path>
selects devices by file-system path, for example, /usr. The <path> parameter can be the mount point
of a mounted file system, or a path on that file system.

Note: If the file system that provides <path> is stored on multiple physical devices (such as supported
by btrfs), lszdev tries to resolve the corresponding physical device nodes. The lsblk tool must be
available and the file system must provide a valid UUID for this resolution to work.

lszdev

574 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

--configured
narrows the selection to those devices for which a persistent configuration exists.

--existing
narrows the selection to devices that are present in the active configuration.

--online
narrows the selection to devices that are enabled in the active configuration.

--offline
narrows the selection to devices that are disabled in the active configuration.

-a or --active
lists information from the active configuration only. Restricts output to information obtained from the
active configuration, that is, information from the running system.

-p or --persistent
restricts output to information from the persistent configuration.

-i or --info
displays detailed information about the configuration of the selected device or device type.

-c or --columns <columns>
specifies a comma-separated list of columns to display.

Example:

lszdev --columns TYPE,ID

Tip: To get a list of supported column names, use the --list-columns option.

-n or --no-headings
suppresses column headings for list output.

--pairs
produces output in <key="value"> format. Use this option to generate output in a format more suitable
for processing by other programs. In this format, column values are prefixed with the name of the
corresponding column. Values are enclosed in double quotation marks. The lszdev command
automatically escapes quotation marks and slashes that are part of the value string.

--base <path> | <key=value>
changes file system paths that are used to access files. If <path> is specified without an equal sign
(=), it is used as base path for accessing files in the active and persistent configuration. If the specified
parameter is in <key=value> format, only those paths that begin with <key> are modified. For these
paths, the initial <key> portion is replaced with <value>.

Example:

lszdev --persistent --base /etc=/mnt/etc

-t or --type <device_type>
lists information about a device type. Use this option to display configuration information of a device
type instead of a device.

-q or --quiet
prints only minimal run-time information.

-V or --verbose
prints additional run-time information.

-L or --list-types
lists all available device types that you can use with the --type option.

-l or --list-columns
lists all available columns that you can use with the --columns option.

-h or --help
displays help information for the command.

lszdev

Commands for Linux on Z 575

-v or --version
displays the version number of lszdev, then exits.

Input files
The lszdev command uses these input files:
/etc/udev/rules.d/

lszdev reads udev rules that represent the persistent configuration of devices from this directory.
The udev rules are named 41-<device subtype>-<id>.rules.

/etc/modprobe.d/
lszdev reads modprobe configuration files that represent the persistent configuration of certain
device types from this directory. File names start with s390x-.

Examples

• To display a list of all devices:

lszdev

• To return type and ID of root device in machine-readable format:

lszdev --columns TYPE,ID --by-path /

• To display DASD driver settings:

lszdev --type dasd

lszdev

576 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

lszfcp - List zfcp devices
Use the lszfcp command to gather information about zfcp devices, ports, units, and their associated
class devices from sysfs and to display it in a summary format.

lszfcp syntax

lszfcp

-H -P -D -a -V

-b<device_bus_id>

--busid=<device_bus_id>

-p<port_name>

--wwpn=<port_name>

-l<lun>

--lun=<lun>

-s/sys

-s <mount_point>

--sysfs=<mount_point>

Where:
-H or --hosts

shows information about hosts.
-P or --ports

shows information about ports.
-D or --devices

shows information about SCSI devices.
-a or --attributes

shows all attributes (implies -V).
-V or --verbose

shows sysfs paths of associated class and bus devices.
-b or --busid <device_bus_id>

limits the output to information about the specified device.
-p or --wwpn <port_name>

limits the output to information about the specified port name.
-l or --lun <lun>

limits the output to information about the specified LUN.
-s or --sysfs <mount_point>

specifies the mount point for sysfs.
-v or --version

displays version information.
-h or --help

displays a short help text, then exits. To view the man page, enter man lszfcp.

Examples

• This command displays information about all available hosts, ports, and SCSI devices.

lszfcp

Commands for Linux on Z 577

lszfcp -H -D -P
0.0.3d0c host0
0.0.500c host1
...
0.0.3c0c host5
0.0.3d0c/0x500507630300c562 rport-0:0-0
0.0.3d0c/0x50050763030bc562 rport-0:0-1
0.0.3d0c/0x500507630303c562 rport-0:0-2
0.0.500c/0x50050763030bc562 rport-1:0-0
...
0.0.3c0c/0x500507630303c562 rport-5:0-2
0.0.3d0c/0x500507630300c562/0x4010403200000000 0:0:0:0
0.0.3d0c/0x500507630300c562/0x4010403300000000 0:0:0:1
0.0.3d0c/0x50050763030bc562/0x4010403200000000 0:0:1:0
0.0.3d0c/0x500507630303c562/0x4010403200000000 0:0:2:0
0.0.500c/0x50050763030bc562/0x4010403200000000 1:0:0:0
...
0.0.3c0c/0x500507630303c562/0x4010403200000000 5:0:2:0

• This command shows SCSI devices and limits the output to the devices that are attached through the
FCP device with bus ID 0.0.3d0c:

lszfcp -D -b 0.0.3d0c
0.0.3d0c/0x500507630300c562/0x4010403200000000 0:0:0:0
0.0.3d0c/0x500507630300c562/0x4010403300000000 0:0:0:1
0.0.3d0c/0x50050763030bc562/0x4010403200000000 0:0:1:0
0.0.3d0c/0x500507630303c562/0x4010403200000000 0:0:2:0

lszfcp

578 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

mon_fsstatd – Monitor z/VM guest file system size
The mon_fsstatd command is a user space daemon that collects physical file system size data from
Linux on z/VM.

The daemon periodically writes the data as defined records to the z/VM monitor stream using the
monwriter character device driver.

You can start the daemon with a service script /etc/init.d/mon_statd or call it manually. When it is
called with the service utility, it reads the configuration file /etc/sysconfig/mon_statd.

Before you begin:

• Install the monwriter device driver and set up z/VM to start the collection of monitor sample data. See
Chapter 36, “Writing z/VM monitor records,” on page 369 for information about the setup for and usage
of the monwriter device driver.

• Customize the configuration file /etc/sysconfig/mon_statd if you plan to call it with the service
utility.

The following publications provide general information about DCSSs, DIAG x'DC', CP commands, and
APPLDATA:

• See z/VM: Saved Segments Planning and Administration, SC24-6322 for general information about
DCSSs.

• See z/VM: CP Programming Services, SC24-6272 for information about the DIAG x'DC' instruction.
• See z/VM: CP Commands and Utilities Reference, SC24-6268 for information about the CP commands.
• See z/VM: Performance, SC24-6301 for information about monitor APPLDATA.

You can run the mon_fsstatd command in two ways:

• Calling mon_statd with the service utility. This method reads the configuration file /etc/sysconfig/
mon_statd. The mon_statd service script also controls other daemons, such as mon_procd.

• Calling mon_fsstatd from a command line.

mon_statd service utility syntax
If you run the mon_fsstatd daemon through the service utility, you configure the daemon through
specifications in a configuration file.

service mon_statd

/etc/init_d/mon_statd

 start

 stop

 status

 restart

Where:
start

enables monitoring of guest file system size, by using the configuration in /etc/sysconfig/
mon_statd.

stop
disables monitoring of guest file system size.

status
shows current status of guest file system size monitoring.

restart
stops and restarts monitoring. Useful to re-read the configuration file when it was changed.

mon_fsstatd

Commands for Linux on Z 579

Configuration file keywords
FSSTAT_INTERVAL="<n>"

specifies the wanted sampling interval in seconds.
FSSTAT="yes | no"

specifies whether to enable the mon_fsstatd daemon. Set to "yes" to enable the daemon. Anything
other than "yes" is interpreted as "no".

Examples of service utility use

• This example sets the sampling interval to 30 seconds and enables the mon_fsstatd daemon:

FSSTAT_INTERVAL="30"
FSSTAT="yes"

Example of mon_statd use. Note that your output can look different and include messages for other
daemons, such as mon_procd:

• To enable guest file system size monitoring:

> service mon_statd start
...
Starting mon_fsstatd:[OK]
...

• To display the status:

> service mon_statd status
...
mon_fsstatd (pid 1075, interval: 30) is running.
...

• To disable guest file system size monitoring:

> service mon_statd stop
...
Stopping mon_fsstatd:[OK]
...

• To display the status again and check that monitoring is now disabled:

> service mon_statd status
...
mon_fsstatd is not running
...

• To restart the daemon and re-read the configuration file:

> service mon_statd restart
...
stopping mon_fsstatd:[OK]
starting mon_fsstatd:[OK]
...

mon_fsstatd command-line syntax
If you call the mon_fsstatd daemon from the command line, you configure the daemon through
command parameters.

mon_fsstatd

 -i 60

 -i <seconds> -a

mon_fsstatd

580 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Where:
-i or --interval <seconds>

specifies the wanted sampling interval in seconds.
-a or --attach

runs the daemon in the foreground.
-v or --version

displays version information for the command.
-h or --help

displays a short help text, then exits. To view the man page, enter man mon_fsstatd.

Examples of command-line use

• To start mon_fsstatd with default setting:

> mon_fsstatd

• To start mon_fsstatd with a sampling interval of 30 seconds:

> mon_fsstatd -i 30

• To start mon_fsstatd and have it run in the foreground:

> mon_fsstatd -a

• To start mon_fsstatd with a sampling interval of 45 seconds and have it run in the foreground:

> mon_fsstatd -a -i 45

Processing monitor data
The mon_fsstatd daemon writes physical file system size data for Linux on z/VM to the z/VM monitor
stream.

The following is the format of the file system size data that is passed to the z/VM monitor stream. One
sample monitor record is written for each physical file system that is mounted at the time of the sample
interval. The monitor data in each record contains a header consisting of a time stamp, the length of the
data, and an offset. The header is followed by the file system data (as obtained from statvfs). The file
system data fields begin with "fs_".

Table 68: File system size data format

Type Name Description

__u64 time_stamp Time at which the file system data was sampled.

__u16 data_len Length of data that follows the header.

__u16 data_offset Offset from start of the header to the start of the file
system data (that is, to the fields that begin with fs_).

__u16 fs_name_len Length of the file system name. The file system name can
be too long to fit in the monitor record. If so, this length is
the portion of the name that is contained in the monitor
record.

char [fs_name_len] fs_name The file system name. If the name is too long to fit in the
monitor record, the name is truncated to the length in the
fs_name_len field.

mon_fsstatd

Commands for Linux on Z 581

Table 68: File system size data format (continued)

Type Name Description

__u16 fs_dir_len Length of the mount directory name. The mount directory
name can be too long to fit in the monitor record. If so, this
length is the portion of the name that is contained in the
monitor record.

char[fs_dir_len] fs_dir The mount directory name. If the name is too long to fit in
the monitor record, the name is truncated to the length in
the fs_dir_len field.

__u16 fs_type_len Length of the mount type. The mount type can be too long
to fit in the monitor record. If so, this length is the portion
that is contained in the monitor record.

char[fs_type_len] fs_type The mount type (as returned by getmntent). If the type is
too long to fit in the monitor record, the type is truncated to
the length in the fs_type_len field.

__u64 fs_bsize File system block size.

__u64 fs_frsize Fragment size.

__u64 fs_blocks Total data blocks in file system.

__u64 fs_bfree Free blocks in fs.

__u64 fs_bavail Free blocks avail to non-superuser.

__u64 fs_files Total file nodes in file system.

__u64 fs_ffree Free file nodes in fs.

__u64 fs_favail Free file nodes available to non-superuser.

__u64 fs_flag Mount flags.

Use the time_stamp to correlate all file systems that were sampled in a given interval.

Reading the monitor data
All records that are written to the z/VM monitor stream begin with a product identifier.

The product ID is a 16-byte structure of the form pppppppffnvvrrmm, where for records that are written
by mon_fsstatd, these values are:
ppppppp

is a fixed ASCII string LNXAPPL.
ff

is the application number for mon_fsstatd = x'0001'.
n

is the record number = x'00'.
vv

is the version number = x'0000'.
rr

is reserved for future use and should be ignored.
mm

is reserved for mon_fsstatd and should be ignored.

mon_fsstatd

582 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Note: Though the mod_level field (mm) of the product ID varies, there is no relationship between any
particular mod_level and file system. The mod_level field should be ignored by the reader of this monitor
data.

There are many tools available to read z/VM monitor data. One such tool is the Linux monreader character
device driver. For more information about monreader, see Chapter 37, “Reading z/VM monitor records,”
on page 373.

mon_fsstatd

Commands for Linux on Z 583

mon_procd – Monitor Linux on z/VM
The mon_procd command is a user space daemon that gathers system summary information and
information about up to 100 concurrent processes on Linux on z/VM.

The daemon writes this data to the z/VM monitor stream by using the monwriter character device driver.
You can start the daemon with a service script /etc/init.d/mon_statd or call it manually. When it is
called with the service utility, it reads the configuration file /etc/sysconfig/mon_statd.

Before you begin:

• Install the monwriter device driver and set up z/VM to start the collection of monitor sample data. See
Chapter 36, “Writing z/VM monitor records,” on page 369 for information about the setup for and usage
of the monwriter device driver.

• Customize the configuration file /etc/sysconfig/mon_statd if you plan to call it with the service
utility.

• The Linux instance on which the proc_mond deamon runs requires a z/VM guest virtual machine with
the OPTION APPLMON statement in the CP directory entry.

The following publications provide general information about DCSSs, CP commands, and APPLDATA:

• See z/VM: Saved Segments Planning and Administration, SC24-6322 for general information about
DCSSs.

• See z/VM: CP Commands and Utilities Reference, SC24-6268 for information about the CP commands.
• See z/VM: Performance, SC24-6301 for information about monitor APPLDATA.

You can run the mon_procd command in two ways.

• Calling mon_procd with the service utility. Use this method when the mon_statd service script is
installed in /etc/init.d. This method reads the configuration file /etc/sysconfig/mon_statd.
The mon_statd service script also controls other daemons, such as mon_fsstatd.

• Calling mon_procd manually from a command line.

mon_statd service utility syntax
If you run the mon_procd daemon through the service utility, you configure the daemon through
specifications in a configuration file.

service mon_statd

/etc/init_d/mon_statd

 start

 stop

 status

 restart

Where:
start

enables monitoring of guest process data, using the configuration in /etc/sysconfig/mon_statd.
stop

disables monitoring of guest process data.
status

shows current status of guest process data monitoring.
restart

stops and restarts guest process data monitoring. Useful in order to re-read the configuration file
when it has changed.

mon_procd

584 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Configuration file keywords
PROC_INTERVAL="<n>"

specifies the desired sampling interval in seconds.
PROC="yes | no"

specifies whether to enable the mon_procd daemon. Set to "yes" to enable the daemon. Anything
other than "yes" will be interpreted as "no".

Examples of service utility use

• This example sets the sampling interval to 30 seconds and enables the mon_procd:

PROC_INTERVAL="30"
PROC="yes"

Example of mon_statd use (note that your output might look different and include messages for other
daemons, such as mon_fsstatd):

• To enable guest process data monitoring:

> service mon_statd start
...
Starting mon_procd:[OK]
...

• To display the status:

> service mon_statd status
...
mon_procd (pid 1075, interval: 30) is running.
...

• To disable guest process data monitoring:

> service mon_statd stop
...
Stopping mon_procd:[OK]
...

• To display the status again and check that monitoring is now disabled:

> service mon_statd status
...
mon_procd is not running
...

• To restart the daemon and re-read the configuration file:

> service mon_statd restart
...
stopping mon_procd:[OK]
starting mon_procd:[OK]
...

mon_procd command-line syntax
If you call the mon_procd daemon from the command line, you configure the daemon through command
parameters.

mon_procd

 -i 60

 -i <seconds> -a

mon_procd

Commands for Linux on Z 585

Where:
-i or --interval <seconds>

specifies the wanted sampling interval in seconds.
-a or --attach

runs the daemon in the foreground.
-v or --version

displays version information for the command.
-h or --help

displays a short help text, then exits. To view the man page, enter man mon_procd.

Examples of command-line use

• To start mon_procd with default setting:

> mon_procd

• To start mon_procd with a sampling interval of 30 seconds:

> mon_procd -i 30

• To start mon_procd and have it run in the foreground:

> mon_procd -a

• To start mon_procd with a sampling interval of 45 seconds and have it run in the foreground:

> mon_procd -a -i 45

Processing monitor data
The mon_procd daemon writes process data to the z/VM monitor stream.

The data includes summary information and information of each process for up to 100 processes
currently being managed by an instance of Linux on z/VM to the z/VM monitor stream.

At the time of the sample interval, one sample monitor record is written for system summary data, then
one sample monitor record is written for each process for up to 100 processes currently being managed
by the Linux instance. If more than 100 processes exist in a Linux instance at a given time, processes are
sorted by the sum of CPU and memory usage percentage values and only the top 100 processes' data is
written to the z/VM monitor stream.

The monitor data in each record begins with a header (a time stamp, the length of the data, and the
offset). The data after the header depends on the field "record number" of the 16-bit product ID and can
be summary data or process data. See “Reading the monitor data” on page 589 for details. The following
is the format of system summary data passed to the z/VM monitor stream.

Table 69: System summary data format

Type Name Description

__u64 time_stamp Time at which the process data was sampled.

__u16 data_len Length of data following the header.

__u16 data_offset Offset from start of the header to the start of the process
data.

__u64 uptime Uptime of the Linux instance.

mon_procd

586 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Table 69: System summary data format (continued)

Type Name Description

__u32 users Number of users on the Linux instance.

char[6] loadavg_1 Load average over the last one minute.

char[6] loadavg_5 Load average over the last five minutes.

char[6] loadavg_15 Load average over the last 15 minutes.

__u32 task_total total number of tasks on the Linux instance.

__u32 task_running Number of running tasks.

__u32 task_sleeping Number of sleeping tasks.

__u32 task_stopped Number of stopped tasks.

__u32 task_zombie Number of zombie tasks.

__u32 num_cpus Number of CPUs.

__u16 puser A number representing (100 * percentage of total CPU time
used for normal processes executing in user mode).

__u16 pnice A number representing (100 * percentage of total CPU time
used for niced processes executing in user mode).

__u16 psystem A number representing (100 * percentage of total CPU time
used for processes executing in kernel mode).

__u16 pidle A number representing (100 * percentage of total CPU idle
time).

__u16 piowait A number representing (100 * percentage of total CPU time
used for I/O wait).

__u16 pirq A number representing (100 * percentage of total CPU time
used for interrupts).

__u16 psoftirq A number representing (100 * percentage of total CPU time
used for softirqs).

__u16 psteal A number representing (100 * percentage of total CPU time
spent in stealing).

__u64 mem_total Total memory in KB.

__u64 mem_used Used memory in KB.

__u64 mem_free Free memory in KB.

__u64 mem_buffers Memory in buffer cache in KB.

__u64 mem_pgpgin Data read from disk in KB.

__u64 mem_pgpgout Data written to disk in KB

__u64 swap_total Total swap memory in KB.

__u64 swap_used Used swap memory in KB.

__u64 swap_free Free swap memory in KB.

__u64 swap_cached Cached swap memory in KB.

__u64 swap_pswpin Pages swapped in.

mon_procd

Commands for Linux on Z 587

Table 69: System summary data format (continued)

Type Name Description

__u64 swap_pswpout Pages swapped out.

The following is the format of a process information data passed to the z/VM monitor stream.

Table 70: Process data format

Type Name Description

__u64 time_stamp Time at which the process data was sampled.

__u16 data_len Length of data following the header.

__u16 data_offset Offset from start of the header to the start of the process data.

__u32 pid ID of the process.

__u32 ppid ID of the process parent.

__u32 euid Effective user ID of the process owner.

__u16 tty Device number of the controlling terminal or 0.

__s16 priority Priority of the process

__s16 nice Nice value of the process.

__u32 processor Last used processor.

__u16 pcpu A number representing (100 * percentage of the elapsed cpu time
used by the process since last sampling).

__u16 pmem A number representing (100 * percentage of physical memory
used by the process).

__u64 total_time Total cpu time the process has used.

__u64 ctotal_time Total cpu time the process and its dead children has used.

__u64 size Total virtual memory used by the task in KB.

__u64 swap Swapped out portion of the virtual memory in KB.

__u64 resident Non-swapped physical memory used by the task in KB.

__u64 trs Physical memory devoted to executable code in KB.

__u64 drs Physical memory devoted to other than executable code in KB.

__u64 share Shared memory used by the task in KB.

__u64 dt Dirty page count.

__u64 maj_flt Number of major page faults occurred for the process.

char state Status of the process.

__u32 flags The process current scheduling flags.

__u16 ruser_len Length of real user name of the process owner and should not be
larger than 64.

char[ruser_len] ruser Real user name of the process owner. If the name is longer than
64, the name is truncated to the length 64.

__u16 euser_len Length of effective user name of the process owner and should not
be larger than 64.

mon_procd

588 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Table 70: Process data format (continued)

Type Name Description

char[euser_len] euser Effective user name of the process owner. If the name is longer
than 64, the name is truncated to the length 64.

__u16 egroup_len Length of effective group name of the process owner and should
not be larger than 64.

char [egroup_len] egroup Effective group name of the process owner. If the name is longer
than 64, the name is truncated to the length 64.

__u16 wchan_len Length of sleeping in function's name and should not be larger than
64.

char[wchan_len] wchan_name Name of sleeping in function or '-'. If the name is longer than 64,
the name is truncated to the length 64.

__u16 cmd_len Length of command name or program name used to start the
process and should not be larger than 64.

char[cmd_len] cmd Command or program name used to start the process. If the name
is longer than 64, the name is truncated to the length 64.

__u16 cmd_line_len Length of command line used to start the process and should not
be larger than 1024.

char
[cmd_line_len]

cmd_line Command line used to start the process. If the name is longer than
1024, the name is truncated to the length 1024.

Use the time_stamp to correlate all process information that were sampled in a given interval.

Reading the monitor data
All records written to the z/VM monitor stream begin with a product identifier.

The product ID is a 16-byte structure of the form pppppppffnvvrrmm, where for records written by
mon_procd, these values will be:
ppppppp

is a fixed ASCII string LNXAPPL.
ff

is the application number for mon_procd = x'0002'.
n

is the record number as follows:

• x'00' indicates summary data.
• x'01' indicates task data.

vv
is the version number = x'0000'.

rr
is the release number, which can be used to mark different versions of process APPLDATA records.

mm
is reserved for mon_procd and should be ignored.

Note: Though the mod_level field (mm) of the product ID will vary, there is no relationship between any
particular mod_level and process. The mod_level field should be ignored by the reader of this monitor
data.

mon_procd

Commands for Linux on Z 589

This item uses at most 101 monitor buffer records from the monwriter device driver. Since a maximum
number of buffers is set when a monwriter module is loaded, the maximum number of buffers must not
be less than the sum of buffer records used by all monwriter applications.

There are many tools available to read z/VM monitor data. One such tool is the Linux monreader character
device driver. See Chapter 37, “Reading z/VM monitor records,” on page 373 for more information about
monreader.

mon_procd

590 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

qetharp - Query and purge OSA and HiperSockets ARP data
Use the qetharp command to query and purge address data such as MAC and IP addresses from the ARP
cache of the OSA and HiperSockets hardware.

For OSA hardware, qetharp can also modify the cache.

Before you begin:

• The qetharp command applies only to devices in layer 3 mode (see “Layer 2 and layer 3” on page
199).

• The qetharp command supports IPv6 only for real HiperSockets and z/VM guest LAN HiperSockets.
• For HiperSockets, z/VM guest LAN and VSWITCH interfaces, the qetharp command supports only the
--query option.

qetharp syntax

qetharp
-n

-c
 -6

-q<interface>

-a<interface> -i<ip_address> -m<mac_address>

-d<interface> -i<ip_address>

-p<interface>

Where:
-q or --query

shows the address resolution protocol (ARP) information about the specified network interface.
Depending on the device that the interface was assigned to, this information is obtained from an OSA
feature's ARP cache or a HiperSockets ARP cache.

The default command output shows symbolic host names and includes only numerical addresses for
host names that cannot be resolved. Use the -n option to show numerical addresses instead of host
names.

By default, qetharp omits IPv6 related information. Use the -6 option to include IPv6 information for
HiperSockets.

<interface>
specifies the qeth interface to which the command applies.

-n or --numeric
shows numeric addresses instead of trying to determine symbolic host names. This option can be
used only with the -q option.

-c or --compact
limits the output to numeric addresses only. This option can be used only with the -q option.

-6 or --ipv6
includes IPv6 information for HiperSockets. For real HiperSockets, shows the IPv6 addresses. For
guest LAN HiperSockets, shows the IPv6 to MAC address mappings. This option can be used only with
the -q option.

-a or --add
adds a static ARP entry to the OSA adapter. Static entries can be deleted with -d.

-d or --delete
deletes a static ARP entry from the OSA adapter. Static entries are created with -a.

qetharp

Commands for Linux on Z 591

-p or --purge
flushes the ARP cache of the OSA. The cache contains dynamic ARP entries, which the OSA adapter
creates through ARP queries. After flushing the cache, the OSA adapter creates new dynamic entries.
This option works only with OSA devices. qetharp returns immediately.

-i <ip_address> or --ip <ip_address>
specifies the IP address to be added to or removed from the OSA adapter.

-m <mac_address> or --mac <mac_address>
specifies the MAC address to be added to the OSA adapter.

-v or --version
shows version information and exits

-h or --help
displays a short help text, then exits. To view the man page, enter man qetharp.

Examples

• Show all ARP entries of the OSA defined as eth0:

qetharp -q eth0

• Show all ARP entries of the HiperSockets interface that is defined as hsi0 including IPv6 entries:

qetharp -6q hsi0

• Show all ARP entries of the OSA defined as eth0, without resolving host names:

qetharp -nq eth0

• Show all ARP entries, including IPv6 entries, of the HiperSockets interface that is defined as hsi0
without resolving host names:

qetharp -n6q hsi0

• Flush the OSA ARP cache for eth0:

qetharp -p eth0

• Add a static entry for eth0 and IP address 1.2.3.4 to the OSA ARP cache, with MAC address
aa:bb:cc:dd:ee:ff:

qetharp -a eth0 -i 1.2.3.4 -m aa:bb:cc:dd:ee:ff

• Delete the static entry for eth0 and IP address 1.2.3.4 from the OSA ARP cache.

qetharp -d eth0 -i 1.2.3.4

qetharp

592 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

qethconf - Configure qeth devices
Use the qethconf command to configure IP address takeover, virtual IP address (VIPA), and proxy ARP
for layer3 qeth devices.

See Chapter 14, “qeth device driver for OSA-Express (QDIO) and HiperSockets,” on page 193 for details
about the following concepts:

• IP address takeover
• VIPA (virtual IP address)
• Proxy ARP

You cannot use this command with the layer2 option.

From the arguments that are specified, qethconf assembles the function command and redirects it to
the corresponding sysfs attributes. You can also use qethconf to list the already defined entries.

qethconf syntax

qethconf ipa add

 del

 <ip_addr>/<mask_bits>

 inv4

 inv6

 <interface>

 list

 vipa

 parp

 add

 del

 <ip_addr> <interface>

 list

 list_all

 list_msg

The qethconf command has these function keywords:
ipa

configures qeth for IP address takeover (IPA).
vipa

configures qeth for virtual IP address (VIPA).
parp or rxip

configures qeth for proxy ARP.

The qethconf command has these action keywords:
add

adds an IP address or address range.
del

deletes an IP address or address range.
inv4

inverts the selection of address ranges for IPv4 address takeover. This inversion makes the list of IP
addresses that was specified with qethconf add and qethconf del an exclusion list.

inv6
inverts the selection of address ranges for IPv6 address takeover. This inversion makes the list of IP
addresses that was specified with qethconf add and qethconf del an exclusion list.

qethconf

Commands for Linux on Z 593

list
lists existing definitions for specified qeth function.

list_all
lists existing definitions for IPA, VIPA, and proxy ARP.

<ip_addr>
IP address. Can be specified in one of these formats:

• IP version 4 format, for example, 192.168.10.38
• IP version 6 format, for example, FE80::1:800:23e7:f5db
• 8- or 32-character hexadecimals prefixed with -x, for example, -xc0a80a26

<mask_bits>
specifies the number of bits that are set in the network mask. Enables you to specify an address
range.

Example: A <mask_bits> of 24 corresponds to a network mask of 255.255.255.0.

<interface>
specifies the name of the interface that is associated with the specified address or address range.

list_msg
lists qethconf messages and explanations.

-v or --version
displays version information.

-h or --help
displays a short help text, then exits. To view the man page, enter man qethconf.

Examples

• List existing proxy ARP definitions:

qethconf parp list
parp add 1.2.3.4 eth0

• Assume responsibility for packages that are destined for 1.2.3.5:

qethconf parp add 1.2.3.5 eth0
qethconf: Added 1.2.3.5 to /sys/class/net/eth0/device/rxip/add4.
qethconf: Use "qethconf parp list" to check for the result

Confirm the new proxy ARP definitions:

qethconf parp list
parp add 1.2.3.4 eth0
parp add 1.2.3.5 eth0

• Configure eth0 for IP address takeover for all addresses that start with 192.168.10:

qethconf ipa add 192.168.10.0/24 eth0
qethconf: Added 192.168.10.0/24 to /sys/class/net/eth0/device/ipa_takeover/add4.
qethconf: Use "qethconf ipa list" to check for the result

Display the new IP address takeover definitions:

qethconf ipa list
ipa add 192.168.10.0/24 eth0

• Configure VIPA for eth1:

qethconf

594 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

qethconf vipa add 10.99.3.3 eth1
qethconf: Added 10.99.3.3 to /sys/class/net/eth1/device/vipa/add4.
qethconf: Use "qethconf vipa list" to check for the result

Display the new VIPA definitions:

qethconf vipa list
vipa add 10.99.3.3 eth1

• List all existing IPA, VIPA, and proxy ARP definitions.

qethconf list_all
parp add 1.2.3.4 eth0
parp add 1.2.3.5 eth0
ipa add 192.168.10.0/24 eth0
vipa add 10.99.3.3 eth1

qethconf

Commands for Linux on Z 595

qethqoat - Query OSA address table
Use the qethqoat command to query the OSA address table and display physical and logical device
information.

qethqoat syntax

qethqoat
-r

-s
1

0

-h

-v

where:

-r or --raw
writes raw data to stdout.

-s or --scope
defines the scope of the query. The following values are valid:
0

queries the level of the OSA address table.
1

interface (this option is the default).
-h or --help

displays help information. To view the man page, enter man qethqoat.
-v or --version

displays version information.

Examples

To display physical and logical device information for interface enccw0.0.f400, issue:

qethqoat

596 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

qethqoat enccw0.0.f400
PCHID: 0x0310
CHPID: 0xa9
Manufacturer MAC address: 6c:ae:8b:48:0b:68
Configured MAC address: 00:00:00:00:00:00
Data device sub-channel address: 0xf402
CULA: 0x00
Unit address: 0x02
Physical port number: 0
Number of output queues: 1
Number of input queues: 1
Number of active input queues: 0
CHPID Type: OSD
Interface flags: 0x0a000000
OSA Generation: OSA-Express5S
Port speed/mode: 10 Gb/s / full duplex
Port media type: single mode (LR/LX)
Jumbo frames: yes
Firmware: 0x00000c9a

IPv4 router: no
IPv6 router: no
IPv4 vmac router: no
IPv6 vmac router: no
Connection isolation: not active
Connection isolation VEPA: no
IPv4 assists enabled: 0x00111c77
IPv6 assists enabled: 0x00f15c60
IPv4 outbound checksum enabled: 0x0000003a
IPv6 outbound checksum enabled: 0x00000000
IPv4 inbound checksum enabled: 0x0000003a
IPv6 inbound checksum enabled: 0x00000000

IPv4 Multicast Address: MAC Address:
----------------------- ------------
224.0.0.1 01:00:5e:00:00:01

IPv6 Address: IPA Flags:
------------- ----------
fe80::6cae:8b00:748:b68 0x00000000

IPv6 Multicast Address: MAC Address:
----------------------- ------------
ff01::1 33:33:00:00:00:01
ff02::1 33:33:00:00:00:01
ff02::1:ff48:b68 33:33:ff:48:0b:68
ff02::1:3 33:33:00:01:00:03

This example uses scope 0 to query the supported OAT level and descriptor header types.

qethqoat -s 0 enccw0.0.f400
Supported Scope mask: 0x00000001
Supported Descriptor hdr types: 0x0001070f

This example shows how the binary output from qethqoat can be processed in another tool. Here it is
displayed in a hexdump viewer:

qethqoat

Commands for Linux on Z 597

qethqoat -r enccw0.0.f400 | hexdump
0000000 0158 0000 0008 0000 0000 0101 0000 0000
0000010 0000 0001 0000 0000 0000 0000 0000 0000
0000020 0004 0050 0001 0000 0000 0000 d7c8 4040
0000030 0120 0094 001a 643b 8a22 0000 0000 0000
0000040 e102 0002 0000 0004 0001 0000 0800 0000
0000050 0100 0480 0000 0766 0000 0000 0000 0000
0000060 0000 0000 0000 0000 0000 0000 0000 0000
0000070 0008 0060 0001 0000 0000 0000 d3c8 4040
0000080 0000 0000 0000 0000 0000 0000 0000 0000
0000090 0000 0000 0000 0000 0000 0000 0011 1c77
00000a0 0021 5c60 0000 001a 0000 0000 0000 001a
00000b0 0000 0000 0000 0000 0000 0000 0000 0000
00000c0 0002 0000 0000 0000 0000 0000 0000 0000
00000d0 0010 0030 0001 0000 0000 0000 c4c8 f4d4
00000e0 0000 0002 0000 0000 0000 0001 0000 0010
00000f0 0001 0001 0000 0000 0000 0000 0000 0000
0000100 e000 0001 0100 5e00 0001 0000 0000 0000
0000110 0010 0030 0001 0000 0000 0000 c4c8 f6d4
0000120 0000 0008 0000 0000 0000 0001 0000 0018
0000130 0001 0001 0000 0000 0000 0000 0000 0000
0000140 ff02 0000 0000 0000 0000 0000 0000 0001
0000150 3333 0000 0001 0000
0000158

qethqoat

598 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

scsi_logging_level - Set and get the SCSI logging level
Use the scsi_logging_level command to create, set, or get the SCSI logging level.

The SCSI logging feature is controlled by a 32-bit value – the SCSI logging level. This value is divided into
3-bit fields that describe the log level of a specific log area. Due to the 3-bit subdivision, setting levels or
interpreting the meaning of current levels of the SCSI logging feature is not trivial. The scsi_logging_level
script helps with both tasks.

scsi_logging_level syntax

scsi_logging_level

-a <level>

-E <level>

-T <level>

-S <level>

-M <level>

--mlqueue <level>

--mlcomplete <level>

-L <level>

--llqueue <level>

--llcomplete <level>

-H <level>

--hlqueue <level>

--hlcomplete <level>

-I <level>

-s

-g

-c

Where:
-a or --all <level>

specifies value for all SCSI_LOG fields.
-E or --error <level>

specifies SCSI_LOG_ERROR.
-T or --timeout <level>

specifies SCSI_LOG_TIMEOUT.
-S or --scan <level>

specifies SCSI_LOG_SCAN.
-M or --midlevel <level>

specifies SCSI_LOG_MLQUEUE and SCSI_LOG_MLCOMPLETE.
--mlqueue <level>

specifies SCSI_LOG_MLQUEUE.
--mlcomplete <level>

specifies SCSI_LOG_MLCOMPLETE.
-L or --lowlevel <level>

specifies SCSI_LOG_LLQUEUE and SCSI_LOG_LLCOMPLETE.

scsi_logging_level

Commands for Linux on Z 599

--llqueue <level>
specifies SCSI_LOG_LLQUEUE.

--llcomplete <level>
specifies SCSI_LOG_LLCOMPLETE.

-H or --highlevel <level>
specifies SCSI_LOG_HLQUEUE and SCSI_LOG_HLCOMPLETE.

--hlqueue <level>
specifies SCSI_LOG_HLQUEUE.

--hlcomplete <level>
specifies SCSI_LOG_HLCOMPLETE.

-I or --ioctl <level>
specifies SCSI_LOG_IOCTL.

-s or --set
creates and sets the logging level as specified on the command line.

-g or --get
gets the current logging level.

-c or --create
creates the logging level as specified on the command line.

-v or --version
displays version information.

-h or --help
displays help text.

You can specify several SCSI_LOG fields by using several options. When multiple options specify the
same SCSI_LOG field, the most specific option has precedence.

Examples

• This command prints the logging word of the SCSI logging feature and each logging level.

#> scsi_logging_level -g
Current scsi logging level:
dev.scsi.logging_level = 0
SCSI_LOG_ERROR=0
SCSI_LOG_TIMEOUT=0
SCSI_LOG_SCAN=0
SCSI_LOG_MLQUEUE=0
SCSI_LOG_MLCOMPLETE=0
SCSI_LOG_LLQUEUE=0
SCSI_LOG_LLCOMPLETE=0
SCSI_LOG_HLQUEUE=0
SCSI_LOG_HLCOMPLETE=0
SCSI_LOG_IOCTL=0

• This command sets all logging levels to 3:

#> scsi_logging_level -s -a 3
New scsi logging level:
dev.scsi.logging_level = 460175067
SCSI_LOG_ERROR=3
SCSI_LOG_TIMEOUT=3
SCSI_LOG_SCAN=3
SCSI_LOG_MLQUEUE=3
SCSI_LOG_MLCOMPLETE=3
SCSI_LOG_LLQUEUE=3
SCSI_LOG_LLCOMPLETE=3
SCSI_LOG_HLQUEUE=3
SCSI_LOG_HLCOMPLETE=3
SCSI_LOG_IOCTL=3

• This command sets SCSI_LOG_HLQUEUE=3, SCSI_LOG_HLCOMPLETE=2 and assigns all other
SCSI_LOG fields the value 1.

scsi_logging_level

600 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

scsi_logging_level --hlqueue 3 --highlevel 2 --all 1 -s
New scsi logging level:
dev.scsi.logging_level = 174363209
SCSI_LOG_ERROR=1
SCSI_LOG_TIMEOUT=1
SCSI_LOG_SCAN=1
SCSI_LOG_MLQUEUE=1
SCSI_LOG_MLCOMPLETE=1
SCSI_LOG_LLQUEUE=1
SCSI_LOG_LLCOMPLETE=1
SCSI_LOG_HLQUEUE=3
SCSI_LOG_HLCOMPLETE=2
SCSI_LOG_IOCTL=1

scsi_logging_level

Commands for Linux on Z 601

smc_pnet - Create network mapping table
Use the smc_pnet command to map a RoCE adapter port to an Ethernet interface.

The SMC-R protocol requires grouping of standard Ethernet and RoCE networks. Such groups are called
physical networks (PNETs). Within the same Converged Ethernet fabric, any available Ethernet interface
can be combined with an available RDMA-capable network interface card.

Note: The mapping of a RoCE adapter port to a standard Ethernet interface can be defined in the IOCDS
or it can be defined as an entry in a PNET table. Only use the smc_pnet command if the IOCDS does not
contain the required PNET IDs. IOCDS specifications override PNET table entries that are created with
smc_pnet.

smc_pnet syntax
smc_pnet

-a<PNET_ID> -I<Ethernet_IF> -D<RoCE_device>
-P 1

-P<RoCE_port>

-d

-s

<PNET_ID>

-f

Enter smc_pnet without parameters to display all entries in the PNET table.

-a <PNET_ID> or --add <PNET_ID>
creates a new entry in the PNET table and allocates the specified ID, if it does not already exist. Only
one entry can be defined for a specific Ethernet interface and a specific Infiniband device port. A PNET
ID consists of up to 16 alphanumeric uppercase characters without blanks.

-I <Ethernet_IF> or --interface <Ethernet_IF>
specifies the name of the Ethernet interface for a new PNET.

-D <RoCE_device> or --ibdevice <RoCE_device>
specifies the name of the RoCE device for a new PNET.

-P <RoCE_port> or --ibport <RoCE_port>
Optional: specifies the port number of the RoCE device port. Valid values are 1 or 2. The default value
is 1.

-s <PNET_ID> or --show <PNET_ID>
displays the PNET table entry with the specified ID.

-d <PNET_ID> or --delete <PNET_ID>
deletes the PNET table entry with the specified ID.

-f or --flush
removes all entries from the PNET table.

-h or --help
displays help information for the command.

-v or --version
displays the version number of smc_pnet.

smc_pnet

602 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Examples

• To create a PNET with ID ABC, Ethernet interface name encf500, Infiniband device name mlx4_0, and
port number 2:

smc_pnet -a ABC -I eth0 -D mlx4_0 -P 2

• To delete a PNET table entry with PNET ID ABC:

smc_pnet -d ABC

• To show the mapping of Ethernet interface name and Infiniband device port for PNET ID ABC:

smc_pnet -s ABC
ABC eth0 mlx4_0 2

• To delete all entries in the PNET table:

smc_pnet -f

For command return codes, see the man page.

smc_pnet

Commands for Linux on Z 603

smc_run - Run a TCP socket program with the SMC protocol using a
preloaded library

Use the smc_run command to start a TCP socket program that uses SMC as the networking protocol.

smc_run syntax
smc_run

 -d

<program> <program parameters>

Where:

smc_run <program> <program_parameters>
Starts the specified TCP socket program with the specified parameters, using the SMC protocol.

-d
Optional: Display diagnostic messages while the program is running.

Examples

• To start a program called iperf3 with parameters "-s -p 12345":

smc_run iperf3 -s -p 12345

Server listening on 12345

...

• To start a program called iperf3 with parameters "-s -p 12345" and diagnostic messages:

smc_run -d iperf3 -s -p 12345

For command return codes, see the man page.

smc_run

604 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

smcss - Display information about the AF_SMC sockets and link groups
Use the smcss command to display information about the AF_SMC sockets and link groups.

smcss syntax
smcss

 -a -e -L -l

Entering smcss without any parameters displays a list of connecting, closing, or connected SMC sockets.

-a or --all
lists all SMC sockets: listening, opening, closing, and connected.

-d or --debug
displays debug information, such as the shutdown state.

-D or --smcd
lists SMC-D sockets only. Displays additional SMC-D specific information.

-R or --smcr
lists SMC-R sockets only. Displays additional SMC-R specific information.

-l or --listening
lists listening sockets only. These are omitted in the default listing.

-w or --wide
prevents truncation of IP addresses.

-h or --help
displays help information for the command.

-v or --version
displays the version number of smcss.

Meaning of the output fields

Entry Values and meaning

State INIT
The SMC socket is being initialized. It is not connected nor listening yet.

CLOSED
The SMC socket is closed. It is not connected nor listening anymore.

LISTEN
The SMC socket is a listening socket, waiting for incoming connection
requests.

ACTIVE
The SMC socket has an established connection. In this state, the TCP
connection is fully established, rendezvous processing has been completed,
and SMC peers can exchange data via RDMA.

PEERCLW1
No further data will be sent to the peer.

PEERCLW2
No further data will be sent to or received from the peer.

APPLCLW1
No further data will be received from the peer.

smcss

Commands for Linux on Z 605

Entry Values and meaning

APPLCLW2
No further data will be received from or sent to the peer.

APPLFINCLW
The peer has closed the socket.

PEERFINCLW
The socket is closed locally.

PEERABORTW
The socket was abnormally closed locally.

PROCESSABORT
The peer has closed the socket abnormally.

Inode denotes the inode of the SMC socket.

UID denotes the unique ID of the SMC socket.

Local Address denotes address and port number of the local end of the SMC socket.Trailing
dots indicate a truncated address. Use the -w option to display full addresses.

Peer Address denotes address and port number of the remote end of the socket.

Intf denotes that if the socket is explicitly bound with setsockopt option
SO_BINDTODEVICE, "Intf" shows the interface number of the Ethernet device to
which the socket is bound.

Mode can have the following values:
SMCD

The SMC socket uses SMC-D for data exchange.
SMCR

The SMC socket uses SMC-R for data exchange.
TCP

An SMC connection could not be established. The SMC socket uses the TCP
protocol for data exchange.

ShutD (shutdown) can take the following values:
<->

The SMC socket has not been shut down.
R->

The SMC socket is shut down one-way and cannot receive data.
<-W

The SMC socket is shut down one-way and cannot send data.
R-W

The SMC socket is shut down and cannot receive or send data.

Token is a unique ID of the SMC socket connection.

Sndbuf denotes the size of the to-be-sent window of the SMC socket connection.

Rcvbuf denotes the size of the receiving window of the SMC socket connection (filled by
peer).

Peerbuf denotes the size of the peer receiving window of the SMC socket connection (to
fill during data-transfer).

rxprod-Cursor Describes the current cursor location of the Rcvbuf for data to be received from
the peer.

smcss

606 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Entry Values and meaning

rxcons-Cursor Describes the current cursor location of the Peerbuf for data sent to peer and
confirmed by the peer.

rxFlags SMC socket connection flags set by and received from the peer.

txprod-Cursor Describes the current cursor location of the Peerbuf for data sent to peer.

txcons-Cursor Describes the current cursor location of the Rcvbuf for data received from the
peer and confirmed to the peer.

txFlags SMC socket connection flags set locally and sent to the peer.

txprep-Cursor Describes the current cursor location of the Sndbuf for data to be sent. The data
is to be moved to the Peerbuf.

txsent-Cursor Describes the current cursor location of the Sndbuf for data sent. The data was
moved to the Peerbuf.

txfin-Cursor Describes the current cursor location of the Sndbuf for data sent and send
completion confirmed. The data was moved to the Peerbuf and completion was
confirmed.

Role "Role" can take the following values:
CLNT

The link group of the SMC socket is used for client connections.
SERV

The link group of the SMC socket is used for server connections.

IB-Device Name of the RoCE device used by the link group to which the SMC socket
belongs.

Port Port of the RoCE device used by the link group to which the SMC socket belongs.

Linkid unique link ID of the link within the link group to which the SMC socket belongs.

GID Group identifier of the RoCE port used by the link group to which the SMC socket
belongs.

Peer-GID GID of the foreign RoCE port used by the link group to which the SMC socket
belongs.

Examples

• To display information about all SMC sockets on the server:

[root@myserver]# smcss -a
State UID Inode Local Address Peer Address Intf Mode
INIT 00000 0000000
ACTIVE 00000 0060177 ::ffff:10.100.80..:6668 ::ffff:10.100.8..:40812 0000 SMCD
ACTIVE 00000 0060173 ::ffff:10.100.80..:6668 ::ffff:10.100.8..:40804 0000 SMCD
LISTEN 00000 0059058 :::6668

• To list listening sockets on the server:

root@myserver># smcss -l
State UID Inode Local Address Peer Address Intf Mode
LISTEN 00000 0059058 :::6668

• To display debug information about all SMC sockets on the server:

smcss

Commands for Linux on Z 607

[root@myserver]# smcss -d
State UID Inode Local Address Peer Address Intf Mode Shutd Token ...
ACTIVE 00000 0060177 ::ffff:10.100.80..:6668 ::ffff:10.100.8..:40812 0000 SMCD <-> 00...
ACTIVE 00000 0060173 ::ffff:10.100.80..:6668 ::ffff:10.100.8..:40804 0000 SMCD <-> 00...
...

For command return codes, see the man page.

smcss

608 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

sncap - Manage CPU capacity
Use the simple network CPU capacity management (sncap) command to specify a temporary capacity
record activation or deactivation and operation parameters for a CPC. This command can control the
Capacity BackUp (CBU), Capacity for Planned Events, and On/Off Capacity On-Demand (OOCOD)
temporary capacity records.

For command return codes, see the man page.

The sncap command is included in the snipl package that is provided with SUSE Linux Enterprise Server
12 SP4.

Before you begin:

• sncap requires the Support Element (SE) and Hardware Management Console (HMC) software version
2.10.0 or later. The command can operate only with the records that are installed on the SE.

• sncap uses the management application programming interfaces (APIs) provided by the SE or HMC
(HWMCAAPI API servers). For information about the management APIs of the SE and the HMC, see
System z Application Programming Interfaces, SB10-7030, available from IBM Resource Link at
www.ibm.com/servers/resourcelink.

To communicate with the server, sncap establishes a network connection and uses the SNMP protocol
to send and retrieve data by using HWMCAAPI API calls. The server must be configured to allow the
initiating host system to access the API.

Note:

• A temporary capacity record activation or deactivation command might cancel due to a timeout. The
timeout is indicated by return code 12 - "Timeout occurred, the command is canceled" or 18 - "An error
was received from the HWMCAAPI API", with the short message about the timeout. If a timeout occurs,
the requested operation can still continue to run on the CPC support element and potentially complete
successfully. Use -q to investigate the state of the record before you issue the next command for that
CPC.

• The sncap command processes cannot be run in parallel for the same CPC for temporary capacity
record activation or deactivation. Also, a sncap process that is started for a temporary capacity record
activation or deactivation cannot run in parallel with a snipl process for the same CPC.

• For CPCs with simultaneous multithreading, sncap acts on entire hardware cores, not at the level of
individual threads.

sncap syntax

sncap <CPCID> -a<RECID>

-t

-d<RECID>

-n
PROCINFO

-q<RECID>

-l

-c

-x

-V access-data

where:

sncap

Commands for Linux on Z 609

http://www.ibm.com/servers/resourcelink

<CPCID>
identifies the Central Processing Complex that is specified in the SE network settings configuration.
This parameter also identifies the configuration file section where the server connection parameter
can be specified (see “access-data” on page 611). Find the <CPCID> value either in the SE
user interface in the Customize Network Settings window under the Identification tab, or by using
sncap with the -x option. This parameter is mandatory for the activation, deactivation, and query
operations. Specify it as a command-line argument.

<RECID>
identifies a temporary capacity record that is installed on the SE that you want to work with.

-a or --activate
activates the temporary capacity record with the record identifier <RECID> and processor parameters
PROCINFO. The PROCINFO parameters must be specified for the record activation.

-t or --test
specifies the temporary capacity record activation in the test mode for up to 10 days. The test mode
allows temporary record activation the number of times that are specified in the record definition.
Real activation is possible only while no test is active. This option can be used only with the -a option.

-d or --deactivate
deactivates the temporary capacity record with the record identifier <RECID> and processor
parameters PROCINFO on the CPC <CPCID>. If the PROCINFO data is specified, -d deactivates only
the specified processors in the CPC configuration. If the PROCINFO parameters are not specified, -d
deactivates the entire record.

-n or --no_record_changes
skips any actions that would change the records. This mode can be used for debugging purposes.
When specified, sncap does not change the temporary capacity record state during the record
activation or deactivation. It assumes that the activation or deactivation request is always successful.
The querying functions run as in the regular mode.

-x or --list_cpcs
Sends the output of the list of CPCs that are defined on an SE or HMC to standard out. The list contains
the CPC identifiers and its support element version numbers. When the -x option is specified, the -S
specification of the server IP address or DNS name is required as part of the access data.

-q or --query
displays detailed information about the temporary capacity record <RECID>, installed on the specified
CPC. The information includes the data for the available CPU capacity models that are defined in the
record and the current CPC processor capacity parameters.

• If the temporary capacity record activation parameters have a value of -1, the parameter value is
unlimited.

• The negative value of PU or CLI in the Available Model Capacity Identifiers table designates the
number of PU or CLI to be deactivated to achieve the listed model capacity.

• If the maximum quantity of CP type PUs shows an asterisk (*), all the PUs defined in the temporary
capacity record can be activated as the CP type PUs.

-l or --list_records
displays the list of temporary capacity records that are installed on the specified CPC. A value of -1 in
the Real Act. and Test Act. report fields means that there is an unlimited number of available record
activation attempts.

-c or --pu_configuration
displays the information about the current CPC processing unit configuration, including the number of
active processors, the processors available for temporary activation, model capacity identifier, and
current MSUs available on the CPC. A minus sign (-) in the report fields means that the value is not
applicable for temporary or permanent configuration.

-V or --verbose
displays information useful for debugging.

-v or --version
displays the version number of sncap, then exits.

sncap

610 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

-h or --help
displays a short usage description and exits. To view the man page, issue man sncap.

PROCINFO

 -zaap <number> -ziip <number> -icf <number> -ifl <number>

 -sap <number> -m <ID>

Specifies the processor types and quantities to be activated or deactivated on the CPC <CPCID> to change
the record activation level. The temporary capacity record activation operation requires the PROCINFO
parameters. The PROCINFO parameters can be omitted for the record deactivation. If no specific
processor type is specified, all the processors from the temporary capacity record are deactivated in the
CPC. The model capacity identifier is set to the minimal available model capacity value. Each processor
type can be specified only once. If more processors are specified for activation or deactivation than are
defined in the record, the command returns with return code 17. No processors are activated or
deactivated.
--zaap <number>

specifies the number of zAAP processors to be activated or deactivated.
--ziip <number>

specifies the number of zIIP processors to be activated or deactivated.
--icf <number>

specifies the number of ICF processors to be activated or deactivated.
--ifl <number>

specifies the number of IFL processors to be activated or deactivated.
--sap <number>

specifies the number of SAP processors in the PROCINFO parameters to be activated or deactivated.
-m or --model-capacity <ID>

specifies the model capacity identifier <ID> to be activated by the command. The model capacity
identifiers are supplied in the temporary capacity record. They can be found either by using the
support element user interface, or the --query <RECID> option of the sncap application. Use the
model capacity identifier to control the number of CP processors and the Capacity Level Indicator
value to be activated or deactivated to achieve the target CPU capacity model. Also, the model
capacity identifier influenced the Target MSU Value and MSU Cost parameters. If the -m option is
specified without the processor types and quantities, it activates or deactivates only the specified
capacity model. It then leaves the active auxiliary processor quantities unchanged.

access-data

 -S <ip_address> -p <password>

 -P

 -u <username>

 -e

 -f ~/.snipl.conf

 -f <filename>

 --timeout 60000

 --timeout <ms>

-S or --se <ip_address>
Specifies the IP address or DNS name for the SE or HMC that controls the CPC you want to work with.
You can omit this parameter if the SE or HMC IP address or DNS name and community are specified in
the sncap configuration file. The IP address of SE or HMC is identified in the configuration file with the
cpcid attribute.

sncap

Commands for Linux on Z 611

-p or --password <password>
Specifies the password (community) from the SNMP configuration settings on the SE or HMC that
controls the CPC you want to work with. This parameter is required. It must be specified either in the
command line or in the configuration file. Alternatively, use the -P option to prompt the user for the
password.

The password depends on whether the connection is encrypted:

• When encryption is disabled, the password specifies the password (community) from the SNMP
configuration settings on the SE or HMC that controls the CPC you want to work with.

• When encryption is enabled, the password parameter specifies the password for the SNMPv3
username from the -u command line parameter or user keyword value in the sncap configuration
file.

-P or --promptpassword
Prompts for a password (community) in protected entry mode.

-u <username> or --userid <username>
Specifies the user name from the SNMP configuration settings of an SE or HMC that controls the CPC
you want to work with. This parameter is required if encryption is active, and can be specified on the
command line or in the sncap configuration file.

-e or --noencryption
Disables SE or HMC connection encryption. By default, connection encryption is enabled. A user name
is not allowed if encryption is disabled.

-f or --configfilename <filename>
Specifies the name of the sncap configuration file that maps CPC identifiers to the corresponding
specifications for the SE or HMC addresses and passwords. If no configuration file is specified, the
user-specific default file ~/.snipl.conf is used. If this file does not exist, the system default
file /etc/snipl.conf is used. A connection to server requires specification of the CPC ID, the SE or
HMC IP address or DNS name, and the password (community). If only the <CPCID> parameter is
specified on the command line, it identifies the section of the configuration file that contains the
credentials values. If the CPC ID and the server IP address are specified, sncap looks for the
password in the configuration file using the server IP address for the configuration file section
identification. If your specification maps to multiple sections, the first match is processed. If
conflicting specifications of credentials are provided through the command line and the configuration
file, the command-line specification is used. If no configuration file is specified or available at the
default locations, all required parameters must be specified on the command line.

--timeout <ms>
Specifies the timeout in milliseconds for general management API calls. The default is 60000 ms.

Configuration file structure

Any required connection parameters that are not provided on the command line must be specified
through the configuration file. The command-line specifications override specifications in the
configuration file. The sncap command uses the CPC identifier to select the configuration file sections to
retrieve the relevant connection parameters. You must specify the CPC identifier on the command line for
all sncap operations except the -x option. The -x option is used to retrieve the CPC identifier list that is
defined on a server.

The structure of the sncap configuration file is similar to the snipl configuration file structure. You can use
the snipl configuration file with sncap if you add the CPC identifiers to the snipl server definition sections
by using the cpcid keyword. The cpcid keywords can be added only to the support element HWMCAAPI
API server definitions (LPAR type sections). They cannot be added to the configuration file sections of the
VM type. VM type sections define connections to z/VM systems in the snipl configuration file and sncap
can connect only to SEs or HMCs.

An sncap configuration file contains one or more sections. Each section consists of multiple lines with
specifications of the form <keyword>=<value> for an SE or HMC. The sncap command identifies the
sections by using the CPC identifier. To retrieve the connection parameters from the configuration file, at
least the CPC identifier must be specified on the command line. If both the server IP address (or DNS

sncap

612 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

name) and the CPC identifier are specified on the command line, the password is selected in the
configuration file by using the server IP address (or DNS name). When you use the -x command-line
option to get the list of defined CPCs on a server, specify only the server IP address (or DNS name) on the
command line.

The following rules apply to the configuration file:

• Lines that begin with a number sign (#) are comment lines.
• A number sign in the middle of a line makes the remaining line a comment.
• Empty lines are allowed.
• The specifications are not case-sensitive.
• In a <keyword>=<value> pair, one or more blanks are allowed before or after the equal sign (=).

The following list maps the configuration file keywords to command line equivalents:

server
(required, once per section) starts a configuration file section by specifying the IP address or DNS
name of an SE or HMC. This attribute is equivalent to the --se command-line argument.

user
(optional, at most once per section) specifies the username from the SNMP settings of the HMC or SE.
When omitted, you must specify the user name in the sncap command line arguments. The user
parameter applies to encrypted connections only, and is not allowed for unencrypted connections.

password
(optional, at most once per section) specifies the password (community) from the SNMP settings of
the SE or HMC. If omitted, you must specify the password in the sncap command-line arguments.
Alternatively, use -P option to prompt the user for the password. This attribute specifies the --
password command-line argument.

encryption
(optional, at most once per section) specifies whether the server connection is encrypted. Valid values
are: yes or no. If not specified, encryption is enabled by default. Specifying "encryption = no" is
equivalent to the -e command-line argument.

cpcid
(required, at least once per section) specifies the Central Processing Complex name that is defined in
the hardware. This server attribute is used to map the CPC identifier to the server IP address (DNS
name) and password. There can be more than one cpcid entry in a section if the server is an HMC.

type
(optional, at most once per section) specifies the server type. This parameter is used to provide
compatibility with the snipl configuration file. If it is specified, it must have the value "LPAR".

Sample configuration file

Comment line (ignored).
#
A section that defines a support element connection.
#
Server = 192.0.2.4
type = LPAR

encryption = yes
user = hugo
cpcid = SZ01CP00
password = pw42play
#
A section that defines a hardware management console
connection.
#
Server = 192.0.2.2
type = LPAR
encryption = no
cpcid = SZ02CP00
cpcid = SZ02CP01
cpcid = SZ02CP03

sncap

Commands for Linux on Z 613

cpcid = SZ02CP04
password= pw42play
<EOF>
--

Examples

• To activate a CBU temporary capacity record CB7KHB38 on CPC SCZP201 to temporarily upgrade it to
model capacity identifier 741:

sncap SCZP201 -S 192.0.2.4 -e -P -a CB7KHB38 -m 741

• To activate only a subset of processors defined in temporary capacity record CB7KHB38 on the CPC
SCZP201:

sncap SCZP201 -S 192.0.2.4 -e -P -a CB7KHB38 --zaap 2 --ziip 2

• To deactivate a CBU temporary capacity record CB7KH38 on the CPC SCZP201:

sncap SCZP201 -S 192.0.2.4 -e -P -d CB7KHB38

• To deactivate only a subset of processors defined in temporary capacity record CB7KHB38 on the CPC
SCZP201:

sncap SCZP201 -S 192.0.2.4 -e -P -d CB7KHB38 --zaap 2 --ziip 2

With a suitable configuration file at /etc/xcfg the previous command can be shortened to:

sncap SCZP201 -f /etc/xcfg -d CB7KHB38 --zaap 2 --ziip 2

With a suitable default configuration file the command can be further shortened to:

sncap SCZP201 -d CB7KHB38 --zaap 2 --ziip 2

For information about the sncap report fields and sample workflows for the temporary capacity record
installation, activation and deactivation, see the Redbooks publication z Systems Capacity on Demand
User's Guide, SC28-6943 or any updates of this publication that applies to your mainframe system.

sncap

614 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

tape390_crypt - Manage tape encryption
Use the tape390_crypt command to enable and disable tape encryption for a channel attached tape
device. You can also specify key encrypting keys (KEK) by using labels or hashes.

For 3592 tape devices, it is possible to write data in an encrypted format. The encryption keys are stored
on an encryption key manager (EKM) server, which can run on any machine with TCP/IP and Java support.
The EKM communicates with the tape drive over the tape control unit by using TCP/IP. The control unit
acts as a proxy and forwards the traffic between the tape drive and the EKM. This type of setup is called
out-of-band control-unit based encryption.

The EKM creates a data key that encrypts data. The data key itself is encrypted with KEKs and is stored in
so called external encrypted data keys (EEDKs) on the tape medium.

You can store up to two EEDKs on the tape medium. With two EEDKs, one can contain a locally available
KEK and the other can contain the public KEK of the location or company to where the tape is to be
transferred. Then, the tape medium can be read in both locations.

When the tape device is mounted, the tape drive sends the EEDKs to the EKM. The EKM tries to unwrap
one of the two EEDKs and sends back the extracted data key to the tape drive.

Linux can address KEKs by specifying either hashes or labels. Hashes and labels are stored in the EEDKs.

Note: If a tape is encrypted, it cannot be used for IPL.

Before you begin:

To use tape encryption, you need:

• A 3592 crypto-enabled tape device and control unit that is configured as system-managed encryption.
• A crypto-enabled 3590 channel-attached tape device driver. See Chapter 12, “Channel-attached tape

device driver,” on page 177.
• A key manager. See Encryption Key Manager Component for the Java(TM) Platform Introduction,

Planning, and User's Guide, GA76-0418 for more information.

tape390_crypt syntax

tape390_crypt -q

-e on

off

Keys

<node>

Keys

1
-k<value>

<char>label

<char>hash

-d :

-d <char> -f

Notes:
1 The -k or --key operand can be specified maximally twice.

Where:
-q or --query

displays information about the tape's encryption status. If encryption is active and the medium is
encrypted, additional information about the encryption keys is displayed.

tape390_crypt

Commands for Linux on Z 615

-e or --encryption
sets tape encryption on or off.

-k or --key
sets tape encryption keys. You can specify the -k option only if the tape medium is loaded and
rewound. While processing the -k option, the tape medium is initialized and all previous data
contained on the tape medium is lost.

You can specify the -k option twice, because the tape medium can store two EEDKs. If you specify the
-k option once, two identical EEDKs are stored.

<value>
specifies the key encrypting key (KEK), which can be up to 64 characters long. The keywords
label or hash specify how the KEK in <value> is to be stored on the tape medium. The default
store type is label.

-d or --delimiter
specifies the character that separates the KEK in <value> from the store type (label or hash). The
default delimiter is ":" (colon).
<char>

is a character that separates the KEK in <value> from the store type (label or hash).
-f or --force

specifies that no prompt message is to be issued before writing the KEK information and initializing
the tape medium.

<node>
specifies the device node of the tape device.

-v or --version
displays information about the version.

-h or --help
displays help text. For more information, enter the command man tape390_crypt.

Examples

The following scenarios illustrate the most common use of tape encryption. In all examples /dev/
ntibm0 is used as the tape device.

Querying a tape device before and after encryption is turned on

This example shows a query of tape device /dev/ntibm0. Initially, encryption for this device is off.
Encryption is then turned on, and the status is queried again.

tape390_crypt -q /dev/ntibm0
ENCRYPTION: OFF
MEDIUM: NOT ENCRYPTED

tape390_crypt -e on /dev/ntibm0

tape390_crypt -q /dev/ntibm0
ENCRYPTION: ON
MEDIUM: NOT ENCRYPTED

Then, two keys are set, one in label format and one in hash format. The status is queried and there is now
additional output for the keys.

tape390_crypt

616 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

tape390_crypt -k my_first_key:label -k my_second_key:hash /dev/ntibm0
--->> ATTENTION! <<---
All data on tape /dev/ntibm0 will be lost.
Type "yes" to continue: yes
SUCCESS: key information set.

tape390_crypt -q /dev/ntibm0
ENCRYPTION: ON
MEDIUM: ENCRYPTED
KEY1:
 value: my_first_key
 type: label
 ontape: label
KEY2:
 value: my_second_key
 type: label
 ontape: hash

Using default keys for encryption

1. Load the cartridge. If the cartridge is already loaded:

• Switch off encryption:

tape390_crypt -e off /dev/ntibm0

• Rewind:

mt -f /dev/ntibm0 rewind

2. Switch encryption on:

tape390_crypt -e on /dev/ntibm0

3. Write data.

Using specific keys for encryption

1. Load the cartridge. If the cartridge is already loaded, rewind:

mt -f /dev/ntibm0 rewind

2. Switch encryption on:

tape390_crypt -e on /dev/ntibm0

3. Set new keys:

tape390_crpyt -k key1 -k key2 /dev/ntibm0

4. Write data.

Writing unencrypted data

1. Load the cartridge. If the cartridge is already loaded, rewind:

mt -f /dev/ntibm0 rewind

2. If encryption is on, switch off encryption:

tape390_crypt -e off /dev/ntibm0

3. Write data.

Appending new files to an encrypted cartridge

1. Load the cartridge

tape390_crypt

Commands for Linux on Z 617

2. Switch encryption on:

tape390_crypt -e on /dev/ntibm0

3. Position the tape.
4. Write data.

Reading an encrypted tape

1. Load the cartridge
2. Switch encryption on:

tape390_crypt -e on /dev/ntibm0

3. Read data.

tape390_crypt

618 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

tape390_display - display messages on tape devices and load tapes
Use the tape390_display command to show messages on the display unit of a physical tape device,
optionally in conjunction with loading a tape.

tape390_display syntax

tape390_display

-l -q

-t standard

-t load

unload

noop

-b

<message1>

<message1> <message2>

-t reload <message1> <message2>

<node>

Where:
-l or --load

instructs the tape unit to load the next indexed tape from the automatic tape loader (if installed).
Ignored if no loader is installed or if the loader is not in "system" mode. The loader "system" mode
allows the operating system to handle tape loads.

-t or --type
The possible values have the following meanings:
standard

displays the message or messages until the physical tape device processes the next tape
movement command.

load
displays the message or messages until a tape is loaded; if a tape is already loaded, the message
is ignored.

unload
displays the message or messages while a tape is loaded; if no tape is loaded, the message is
ignored.

reload
displays the first message while a tape is loaded and the second message when the tape is
removed. If no tape is loaded, the first message is ignored and the second message is displayed
immediately. The second message is displayed until the next tape is loaded.

noop
is intended for test purposes only. It accesses the tape device but does not display the message or
messages.

-b or --blink
causes <message1> to be displayed repeatedly for 2 seconds with a half-second pause in between.

<message1>
is the first or only message to be displayed. The message can be up to 8 byte.

<message2>
is a second message to be displayed alternately with the first, at 2-second intervals. The message can
be up to 8 byte.

<node>
is a device node of the target tape device.

tape390_display

Commands for Linux on Z 619

-q or --quiet
suppresses all error messages.

-v or --version
displays information about the version.

-h or --help
displays help text. For more information, enter the command man tape390_display.

Note:

1. Symbols that can be displayed include:
Alphabetic characters:

A through Z (uppercase only) and spaces. Lowercase letters are converted to uppercase.
Numeric characters:

0 1 2 3 4 5 6 7 8 9
Special characters:

@ $ # , . / ' () * & + - = % : _ < > ? ;

The following are included in the 3490 hardware reference but might not display on all devices: | ¢
2. If only one message is defined, it remains displayed until the tape device driver next starts to move or

the message is updated.
3. If the messages contain spaces or shell-sensitive characters, they must be enclosed in quotation

marks.

Examples

The following examples assume that you are using standard devices nodes and not device nodes that are
created by udev:

• Alternately display "BACKUP" and "COMPLETE" at 2-second intervals until device /dev/ntibm0
processes the next tape movement command:

tape390_display BACKUP COMPLETE /dev/ntibm0

• Display the message "REM TAPE" while a tape is in the physical tape device followed by the
message"NEW TAPE" until a new tape is loaded:

tape390_display --type reload "REM TAPE" "NEW TAPE" /dev/ntibm0

• Attempts to unload the tape and load a new tape automatically, the messages are the same as in the
previous example:

tape390_display -l -t reload "REM TAPE" "NEW TAPE" /dev/ntibm0

tape390_display

620 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

tunedasd - Adjust low-level DASD settings
Use the tunedasd command to adjust performance relevant settings and other low-level DASD device
settings.

In particular, you can perform these tasks:

• Query and set a DASD's cache mode
• Display and reset DASD performance statistics

Tip: Use the dasdstat command to display performance statistics. This command includes and
extends the statistics that are available through the tunedasd command.

• Reserve and release DASD
• Break the lock of an online DASD (to learn how to access a boxed DASD that is not yet online, see

“Accessing DASD by force” on page 109)

Before you begin: For the performance statistics, data gathering must be turned on by writing "on" to /
proc/dasd/statistics.

tunedasd syntax

tunedasd

 -g

 -c <mode>

 -n <cylinders>

 -Q

 -S

 -L

 -O

 -R

 -P

 -I <row>

 -p <chpid> --path_reset_all

 <node>

Where:
<node>

specifies a device node for the DASD to which the command is to be applied.
-g or --get_cache

gets the current caching mode of the storage controller. This option applies to ECKD only.
-c <mode> or --cache <mode>

sets the caching mode on the storage controller to <mode>. This option applies to ECKD only.

Today's ECKD devices support the following behaviors:
normal

for normal cache replacement.
bypass

to bypass cache.
inhibit

to inhibit cache.

tunedasd

Commands for Linux on Z 621

sequential
for sequential access.

prestage
for sequential prestage.

record
for record access.

For details, see IBM TotalStorage Enterprise Storage Server® System/390® Command Reference 2105
Models E10, E20, F10, and F20, SC26-7295.

-n <cylinders> or --no_cyl <cylinders>
specifies the number of cylinders to be cached. This option applies to ECKD only.

-Q or --query_reserve
queries the reserve status of the device. The status can be:
none

the device is not reserved.
implicit

the device is not reserved, but there is a contingent or implicit allegiance to this Linux instance.
other

the device is reserved to another operating system instance.
reserved

the device is reserved to this Linux instance.
For details, see the Storage Control Reference of the attached storage server.

This option applies to ECKD only.

-S or --reserve
reserves the device. This option applies to ECKD only.

-L or --release
releases the device. This option applies to ECKD only.

-O or --slock
reserves the device unconditionally. This option applies to ECKD only.

Note: This option is to be used with care as it breaks any existing reserve by another operating
system.

-R or --reset_prof
resets the profile information of the device.

-P or --profile
displays a usage profile of the device.

-I <row> or --prof_item <row>
prints the usage profile item that is specified by <row>. <row> can be one of:
reqs

number of DASD I/O requests.
sects

number of 512-byte sectors.
sizes

histogram of sizes.
total

histogram of I/O times.
totsect

histogram of I/O times per sector.
start

histogram of I/O time until ssch.

tunedasd

622 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

irq
histogram of I/O time between ssch and irq.

irqsect
histogram of I/O time between ssch and irq per sector.

end
histogram of I/O time between irq and end.

queue
number of requests in the DASD internal request queue at enqueueing.

-p or --path_reset <chpid>
resets a channel path <chpid> of a selected device. A channel path might be suspended due to high
IFCC error rates or a High Performance FICON failure. Use this option to resume considering the
channel path for I/O.

--path_reset_all
resets all channel paths of a selected device. The channel paths might be suspended due to high IFCC
error rates or a High Performance FICON failure. Use this option to resume considering all defined
channel paths for I/O.

-v or --version
displays version information.

-h or --help
displays help text. For more information, enter the command man tunedasd.

Examples

• The following sequence of commands first checks the reservation status of a DASD and then reserves it:

tunedasd -Q /dev/dasdzzz
none
tunedasd -S /dev/dasdzzz
Reserving device </dev/dasdzzz>...
Done.
tunedasd -Q /dev/dasdzzz
reserved

• This example first queries the current setting for the cache mode of a DASD with device node /dev/
dasdzzz and then sets it to one cylinder "prestage".

tunedasd -g /dev/dasdzzz
normal (0 cyl)
tunedasd -c prestage -n 2 /dev/dasdzzz
Setting cache mode for device </devdasdzzz>...
Done.
tunedasd -g /dev/dasdzzz
prestage (2 cyl)

• In this example two device nodes are specified. The output is printed for each node in the order in
which the nodes where specified.

tunedasd -g /dev/dasdzzz /dev/dasdzzy
prestage (2 cyl)
normal (0 cyl)

• The following command prints the usage profile of a DASD.

tunedasd

Commands for Linux on Z 623

tunedasd -P /dev/dasdzzz

19617 dasd I/O requests
with 4841336 sectors(512B each)

 __<4 ___8 __16 __32 __64 _128 _256 _512 __1k __2k __4k __8k _16k _32k _64k 128k
 _256 _512 __1M __2M __4M __8M _16M _32M _64M 128M 256M 512M __1G __2G __4G _>4G
Histogram of sizes (512B secs)
 0 0 441 77 78 87 188 18746 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O times (microseconds)
 0 0 0 0 0 0 0 0 235 150 297 18683 241 3 4 4
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O times per sector
 0 0 0 18736 333 278 94 78 97 1 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time till ssch
 19234 40 32 0 2 0 0 3 40 53 128 85 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time between ssch and irq
 0 0 0 0 0 0 0 0 387 208 250 18538 223 3 4 4
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time between ssch and irq per sector
 0 0 0 18803 326 398 70 19 1 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time between irq and end
 18520 735 246 68 43 4 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
of req in chanq at enqueuing (1..32)
 0 19308 123 30 25 130 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

• The following command prints a row of the usage profile of a DASD. The output is on a single line as
indicated by the (cont...) (... cont) in the illustration:

tunedasd -P -I irq /dev/dasdzzz
 0| 0| 0| 0| 0| 0| 0| 0| 503| 271|(cont...)
 (... cont) 267| 18544| 224| 3| 4| 4| 0| 0| 0|(cont...)
 (... cont) 0| 0| 0| 0| 0| 0| 0| 0| 0|(cont...)
 (... cont) 0| 0| 0| 0|

• The following command resets a failed channel path with CHPID 45:

tunedasd -p 45 /dev/dasdc

tunedasd

624 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

vmcp - Send CP commands to the z/VM hypervisor
Use the vmcp command to send control program (CP) commands to the z/VM hypervisor and display the
response from z/VM.

The vmcp command expects the command line as a parameter and returns the response to stdout. Error
messages are written to stderr.

You can issue vmcp commands using the /dev/vmcp device node (see Chapter 41, “z/VM CP interface
device driver,” on page 399) or from a command prompt in a terminal session.

vmcp syntax

vmcp

-k

-b 8k

-b<size>

<command>

Where:
-k or --keepcase

preserves the case of the characters in the specified command string. By default, the command string
is converted to uppercase characters.

-b <size> or --buffer=<size>
specifies the buffer size in bytes for the response from z/VM CP. Valid values are from 4096 (or 4k) up
to 1048756 (or 1M). By default, vmcp allocates an 8192 byte (8k) buffer. You can use k and M to
specify kilo- and megabytes. The suffixes are not case sensitive, so k is equivalent to K and m is
equivalent to M.

<command>
specifies the command that you want to send to CP.

-h or --help
displays help text. For more information, enter the command man vmcp.

-v or --version
displays version information.

If the command completes successfully, vmcp returns 0. Otherwise, vmcp returns one of the following
values:

1. CP returned a non-zero response code.
2. The specified buffer was not large enough to hold CP's response. The command was run, but the

response was truncated. You can use the --buffer option to increase the response buffer.
3. Linux reported an error to vmcp. See the error message for details.
4. The options that are passed to vmcp were erroneous. See the error messages for details.

Examples

• To get your user ID issue:

vmcp query userid

• To attach the device 1234 to your guest, issue:

vmcp attach 1234 *

• If you add the following line to /etc/sudoers:

vmcp

Commands for Linux on Z 625

ALL ALL=NOPASSWD:/sbin/vmcp indicate

every user on the system can run the indicate command by using:

sudo vmcp indicate

• If you need a larger response buffer, use the --buffer option:

vmcp --buffer=128k q 1-ffff

vmcp

626 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

vmur - Work with z/VM spool file queues
Use the vmur command to work with z/VM spool file queues.

The vmur command provides these main functions:
Receive

Read data from the z/VM reader file queue. The command performs the following steps:

• Places the reader queue file to be received at the top of the queue.
• Changes the reader queue file attribute to NOHOLD.
• Closes the z/VM reader after the file is received.

The vmur command detects z/VM reader queue files in:

• VMDUMP format as created by CP VMDUMP.
• NETDATA format as created by CMS SENDFILE or TSO XMIT.

Punch or print
Write data to the z/VM punch or printer file queue and transfer it to another user's virtual reader,
optionally on a remote z/VM node. The data is sliced up into 80-byte or 132-byte chunks (called
records) and written to the punch or printer device. If the data length is not an integer multiple of 80
or 132, the last record is padded.

List
Display detailed information about one or all files on the specified spool file queue.

Purge
Remove one or all files on a spool file queue.

Order
Position a file at the top of a spool file queue.

Before you begin: To use the receive, punch, and print functions, the vmur device driver must be loaded
and the corresponding unit record devices must be set online.

Serialization

The vmur command provides strict serialization of all its functions other than list, which does not affect a
file queue's contents or sequence. Thus concurrent access to spool file queues is blocked to prevent
unpredictable results or destructive conflicts.

For example, this serialization prevents a process from issuing vmur purge -f while another process is
running vmur receive 1234. However, vmur is not serialized against concurrent CP commands that are
issued through vmcp: if one process is running vmur receive 1234 and another process issues vmcp
purge rdr 1234, then the received file might be incomplete. To avoid such unwanted effects, always
use vmur to work with z/VM spool file queues.

Spooling options
With the vmur command, you can temporarily override the z/VM settings for the CLASS, DEST, FORM, and
DIST spooling options for virtual unit record devices. The vmur command restores the original settings
before it returns control.

For details about the spooling options, see the z/VM product information. In particular, see the sections
about the z/VM CP SPOOL, QUERY VIRTUAL RDR, QUERY VIRTUAL PUN, and QUERY VIRTUAL PRT
commands in z/VM: CP Commands and Utilities Reference, SC24-6268.

vmur

Commands for Linux on Z 627

vmur syntax

vmur

receive

-d/dev/vmrdr-0.0.000c

-d<device_node>

<spoolid>Receive options

punch

-d/dev/vmpun-0.0.000d

-d<device_node>

print

-d/dev/vmprt-0.0.000e

-d<device_node>

Punch and print options

list

purge

-C <class> --form<form_name>

--formOFF

-f

-q rdr

-q pun

-q prt

<spoolid>

order

 -q rdr

 -q pun

 -q prt

 <spoolid>

Receive options

 -H -O

<outfile>

 -f -t

 -b <sep>,<pad>

 -c

 -C *

 -C <class>

Punch and print options

 -C <class> --dist *

 --dist OFF

 --dist <dist_code>

 --form <form_name>

 --form OFF

 --dest <device>

 --dest ANY

 --dest OFF

 <file> -N<name>

.<type>

 -f

 -t

 -b <sep>,<pad>

-r
-u<user>

 -n<node>

Where these are the main command options:
re or receive

receives a file from the z/VM reader queue.

vmur

628 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

pun or punch
writes to the z/VM punch queue.

pr or print
writes to the z/VM printer queue.

li or list
lists information about one or all files on a z/VM spool file queue.

pur or purge
purges one or all files from a z/VM spool file queue.

or or order
places a file on a z/VM spool file queue at the top of the queue.

Note: The short forms that are given for receive, punch, print, list, purge, and order are the shortest
possible abbreviations. In keeping with z/VM style, you can abbreviate commands by dropping any
number of letters from the end of the full keywords until you reach the short form. For example, vmur re,
vmur rec, or vmur rece are all equivalent.

The remaining specifications are listed alphabetically by switch. Variable specifications that do not require
a switch are listed first.
<file>

specifies a file, in the Linux file system, with data to be punched or printed. If this specification is
omitted, the data is read from standard input.

<outfile>
specifies a file, in the Linux file system, to receive data from the reader spool file. If neither a file name
nor --stdout are specified, the name and type of the spool file to be received (see the NAME and TYPE
columns in vmur list output) are used to build an output file name of the form <name>.<type>. If
the spool file to be received is an unnamed file, an error message is issued.

Use the --force option to overwrite existing files without a confirmation prompt.

<spoolid>
specifies the spool ID of a file on the z/VM reader, punch, or printer queue. Spool IDs are decimal
numbers in the range 0-9999.

For the list or purge function: omitting the spool ID lists or purges all files in the queue.

-b <sep>,<pad> or --blocked <sep>,<pad>
receives or writes a file in blocked mode, where <sep> specifies the separator and <pad> specifies the
padding character in hexadecimal notation. Example: <sep>

--blocked 0xSS,0xPP

Use this option to use character sets other than IBM037 and ISO-8859-1 for conversion.

• For the receive function: All trailing padding characters are removed from the end of each record
that is read from the virtual reader and the separator character is inserted afterward. The receive
function's output can be piped to iconv by using the appropriate character sets. Example:

vmur rec 7 -b 0x25,0x40 -O | iconv -f EBCDIC-US -t ISO-8859-1 > myfile

• For the punch or print function: The separator is used to identify the line end character of the file to
punch or print. If a line has fewer characters than the record length of the used unit record device,
the residual of the record is filled up with the specified padding byte. If a line exceeds the record
size, an error is printed. Example:

 # iconv test.txt -f ISO-8859-1 -t EBCDIC-US | vmur pun -b 0x25,0x40 -N test

-c or --convert
converts a VMDUMP spool file into a format appropriate for further analysis with crash.

vmur

Commands for Linux on Z 629

-C <class> or --class <class>
specifies a spool class.

• For the receive function: The file is received only if it matches the specified class.
• For the purge function: Only files with the specified class are purged.
• For the punch or printer function: Sets the spool class for the virtual reader or virtual punch device.

Output files inherit the spool class of the device.

The class is designated by a single alphanumeric character. For receive, it can also be an asterisk (*) to
match all classes. Lowercase alphabetic characters are converted to uppercase.

See also “Spooling options” on page 627.

--dest <device>
sets the destination device for spool files that are created on the virtual punch or printer device. The
value can be ANY, OFF, or it must be a valid device as defined on z/VM.

See also “Spooling options” on page 627.

-d or --device
specifies the device node of the virtual unit record device.

• If omitted in the receive function, /dev/vmrdr-0.0.000c is assumed.
• If omitted in the punch function, /dev/vmpun-0.0.000d is assumed.
• If omitted in the print function, /dev/vmprt-0.0.000e is assumed.

--dist <distcode>
sets the distribution code for spool files that are created on the virtual punch or printer device. The
value can be an asterisk (*), OFF, or it must be a valid distribution code as defined on z/VM.

OFF and * are equivalent. Both specifications reset the distribution code to the value that is set in the
user directory.

See also “Spooling options” on page 627.

-f or --force
suppresses confirmation messages.

• For the receive function: overwrites an existing output file without prompting for a confirmation.
• For the punch or print option: automatically converts the Linux input file name to a valid spool file

name without any error message.
• For the purge function: purges the specified spool files without prompting for a confirmation.

--form <form_name>
sets the form name for spool files that are created on the virtual punch or printer device. The value
can be OFF, to use the system default, or it must be a valid z/VM form name.

See also “Spooling options” on page 627.

-h or --help
displays help information for the command. To view the man page, enter man vmur.

-H or --hold
keeps the spool file to be received in the reader queue. If omitted, the spool file is purged after it is
received.

-n <node> or --node <node>
specifies the node name of the z/VM system to which the data is to be transferred. Remote Spooling
Communications Subsystem (RSCS) must be installed on the z/VM systems and the specified node
must be defined in the RSCS machine's configuration file.

The default node is the local z/VM system. The node option is valid only with the -u option.

vmur

630 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

-N <name>.<type> or --name <name>.<type>
specifies a name and, optionally, a type for the z/VM spool file to be created by the punch or print
option. To specify a type after the file name, enter a period followed by the type. For example:

vmur pun -r /boot/parmfile -N myname.mytype

Both the name and the type must comply with z/VM file name rules, for example, they must be 1 - 8
characters long.

If omitted, a spool file name is generated from the Linux input file name, if applicable.

Use the --force option to suppress warning messages about automatically generated file names or
about specified file names that do not adhere to the z/VM file naming rules.

-O or --stdout
writes the reader file content to standard output.

-q or --queue
specifies the z/VM spool file queue to be listed, purged, or ordered. If omitted, the reader file queue is
assumed.

-r or --rdr
transferres a punch or print file to a reader.

-t or --text
converts the encoding between EBCDIC and ASCII according to character sets IBM037 and
ISO-8859-1.

• For the receive function: receives the reader file as text file. That is, it converts EBCDIC to ASCII and
inserts an ASCII line feed character (0x0a) for each input record that is read from the z/VM reader.
Trailing EBCDIC blanks (0x40) in the input records are stripped.

• For the punch or print function: punches or prints the input file as text file. That is, converts ASCII to
EBCDIC and pads each input line with trailing blanks to fill up the record. The record length is 80 for
a punch and 132 for a printer. If an input line length exceeds 80 for punch or 132 for print, an error
message is issued.

The --text and the --blocked attributes are mutually exclusive.
-u <user> or --user <user>

specifies the z/VM user ID to whose reader the data is to be transferred. If omitted, the data is
transferred to your own machine’s reader. The user option is valid only with the -r option.

-v or --version
displays version information.

Examples
These examples illustrate common scenarios for unit record devices.

In all examples the following device nodes are used:

• /dev/vmrdr-0.0.000c as virtual reader.
• /dev/vmpun-0.0.000d as virtual punch.

The vmur commands access the reader device, which has to be online. To set it online, it needs to be
freed from cio_ignore. Example:

cio_ignore -r c
chccwdev -e c
Setting device 0.0.000c online
Done

Besides the vmur device driver and the vmur command, these scenarios require that:

• The vmcp module is loaded.
• The vmcp and vmconvert commands from the s390-tools package are available.

vmur

Commands for Linux on Z 631

Creating and reading a guest memory dump
You can use the vmur command to read a guest memory dump that was created; for example, with the
vmcp command.

Procedure

1. Produce a memory dump of the z/VM guest virtual machine memory:

vmcp vmdump

Depending on the memory size this command might take some time to complete.
2. List the spool files for the reader to find the spool ID of the dump file, VMDUMP.

In the example, the spool ID of VMDUMP is 463.

vmur li

ORIGINID FILE CLASS RECORDS CPY HOLD DATE TIME NAME TYPE DIST
T6360025 0463 V DMP 00020222 001 NONE 06/11 15:07:42 VMDUMP FILE T6360025

3. Read and convert the VMDUMP spool file to a file in the current working directory of the Linux file
system:

vmur rec 463 -c linux_dump

Using FTP to receive and convert a dump file
Use the --convert option together with the --stdout option to receive a VMDUMP spool file straight from
the z/VM reader queue, convert it, and send it to another host with FTP.

Procedure

1. Establish an FTP session with the target host and log in.
2. Enter the FTP command binary.
3. Enter the FTP command:

put |"vmur re <spoolid> -c -O" <filename_on_target_host>

Logging and reading the z/VM guest virtual machine console
You can use the vmur command to read a console transcript that was spooled, for example, with the vmcp
command.

Procedure

1. Begin console spooling:

vmcp sp cons start

2. Produce output to the z/VM console.
Use, for example, CP TRACE.

3. Stop console spooling, close the file with the console output, and transfer the file to the reader queue.
In the resulting CP message, the spool ID follows the FILE keyword. In the example, the spool ID is
398:

vmcp sp cons stop close * rdr

RDR FILE 0398 SENT FROM T6360025 CON WAS 0398 RECS 1872 CPY 001 T NOHOLD NOKEEP

4. Read the file with the console output into a file in the current working directory on the Linux file
system:

vmur

632 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

vmur re -t 398 linux_cons

Preparing the z/VM reader as an IPL device for Linux
You can use the vmur command to transfer all files for booting Linux to the z/VM reader. You can also
arrange the files such that the reader can be used as an IPL device.

Procedure

1. Send the kernel parameter file, parmfile, to the z/VM punch device and transfer the file to the reader
queue.
The resulting message shows the spool ID of the parameter file.

vmur pun -r /boot/parmfile

Reader file with spoolid 0465 created.

2. Send the kernel image file to the z/VM punch device and transfer the file to the reader queue.
The resulting message shows the spool ID of the kernel image file.

vmur pun -r /boot/vmlinuz -N image

Reader file with spoolid 0466 created.

3. Optional: Check the spool IDs of image and parmfile in the reader queue. In this example, the spool
ID of parmfile is 465 and the spool ID of image is 466.

vmur li

ORIGINID FILE CLASS RECORDS CPY HOLD DATE TIME NAME TYPE DIST
T6360025 0463 V DMP 00020222 001 NONE 06/11 15:07:42 VMDUMP FILE T6360025
T6360025 0465 A PUN 00000002 001 NONE 06/11 15:30:31 parmfile T6360025
T6360025 0466 A PUN 00065200 001 NONE 06/11 15:30:52 image T6360025

4. Move image to the first and parmfile to the second position in the reader queue:

vmur or 465
vmur or 466

5. Configure the z/VM reader as the re-IPL device:

echo 0.0.000c > /sys/firmware/reipl/ccw/device

6. Boot Linux from the z/VM reader:

reboot

Sending a file to different z/VM guest virtual machines
You can use the vmur command to send files to other z/VM guest virtual machines.

About this task

This scenario describes how to send a file called lnxprofile.exec from the file system of an instance
of Linux on z/VM to other z/VM guest virtual machines.

For example, lnxprofile.exec could contain the content of a PROFILE EXEC file with CP and CMS
commands to customize z/VM guest virtual machines for running Linux.

Procedure

1. Send lnxprofile.exec to two z/VM guest virtual machines: z/VM user ID t2930020 at node
boet2930 and z/VM user ID t6360025 at node boet6360.

vmur

Commands for Linux on Z 633

vmur pun lnxprofile.exec -t -r -u t2930020 -n boet2930 -N PROFILE
vmur pun lnxprofile.exec -t -r -u t6360025 -n boet6360 -N PROFILE

2. Log on to t2930020 at boet2930, IPL CMS, and issue the CP command:

QUERY RDR ALL

The command output shows the spool ID of PROFILE in the FILE column.
3. Issue the CMS command:

RECEIVE <spoolid> PROFILE EXEC A (REPL

In the command, <spoolid> is the spool ID of PROFILE found in step “2” on page 634.
4. Repeat steps “2” on page 634 and “3” on page 634 for t6360025 at boet6360.

Sending a file to a z/VSE instance
You can use the vmur command to send files to a z/VSE instance.

Procedure

To send lserv.job to user ID vseuser at node vse01sys, issue:

vmur pun lserv.job -t -r -u vseuser -n vse01sys -N LSERV

vmur

634 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

zdsfs - Mount a z/OS DASD
Use the zdsfs command to mount z/OS DASDs as a Linux file system.

The zdsfs file system translates the z/OS data sets, which are stored on the DASDs in records of arbitrary
or even variable size, into Linux semantics.

Through the zdsfs file system, applications on Linux can read z/OS physical sequential data sets (PS) and
partitioned data sets (PDS) on the DASD. In the Linux file system, physical sequential data sets are
represented as files. Partitioned data sets are represented as directories that contain the PDS members
as files. Other z/OS data set formats, such as extended format data sets or VSAM data sets, are not
supported. zdsfs is optimized for sequential read access.

zdsfs requires the FUSE library. SUSE Linux Enterprise Server 12 SP4 automatically installs this library.

Attention:

• To avoid data inconsistencies, set the DASDs offline in z/OS before you mount them in Linux.
• Through the zdsfs file system, the whole DASDs are accessible to Linux, but the access is not

controlled by z/OS auditing mechanisms.

To avoid security problems, you might want to dedicate the z/OS DASDs only for providing data
for Linux.

Per default, only the Linux user who mounts the zdsfs file system has access to it.

Tip: If you want to grant a user group access to the zdsfs file system, mount it with the fuse options
default_permissions, allow_other, and gid.

To unmount file systems that you mounted with zdsfs, you can use fusermount, whether root or non-
root user. See the fusermount man page for details.

See z/OS DFSMS Using Data Sets, SC26-7410 for more information about z/OS data sets.

Before you begin:

• The raw-track access mode of the DASD must be enabled.

Make sure that the DASD is set offline when you enable the raw-track access mode.

See “Accessing full ECKD tracks” on page 120 for details.
• The DASD must be online.

Tip: You can use the chccwdev command to enable the raw-track access mode and set the device
online afterward in one step.

Set the DASD offline in z/OS before you set it online in Linux.
• You must have the appropriate read permissions for the device node.

zdsfs syntax

zdsfs

<zdsfs-options> <fuse-options>

-l <file-name>

<node-list>

<mount-point>

where:
<zdsfs-options>

zdsfs-specific options.

zdsfs

Commands for Linux on Z 635

-o ignore_incomplete
represents all complete data sets in the file system, even if there are incomplete data sets.
Incomplete data sets are not represented.

In z/OS, data sets might be distributed over different DASDs. For each incomplete data set, a
warning message is issued to the standard error stream. If there are incomplete data sets and this
option is not specified, the zdsfs command returns with an error.

-o rdw
keeps record descriptor words (RDWs) of data sets that are stored by using the z/OS concept of
variable record lengths.

-o tracks=<n>
specifies the track buffer size in tracks. The default is 128 tracks.

zdsfs allocates a track buffer of <n>*120 KB for each open file to store and extract the user data.
Increasing the track buffer size might improve your system performance.

-o seekbuffer=<s>
sets the maximum seek history buffer size in bytes. The default is 1,048,576 B.

zdsfs saves offset information about a data set in the seek history buffer to speed up the
performance of a seek operation.

-o check_host_count
checks the host-access open count to ensure that the device is not online to another operating
system instance. The operation is canceled if another operating system instance is accessing the
volume.

<fuse-options>
options for FUSE. The following options are supported by the zdsfs command. To use an option, it
must also be supported by the version of FUSE that is installed.
-d or -o debug

enables debug output (implies -f).
-f

runs the command as a foreground operation.
-o allow_other

allows access to other users.
-o allow_root

allows access to root.
-o nonempty

allows mounts over files and non-empty directories.
-o default_permissions

enables permission checking by the kernel.
-o max_read=<n>

sets maximum size of read requests.
-o kernel_cache

caches files in the kernel.
-o [no]auto_cache

enables or disables caching based on modification times.
-o umask=<mask>

sets file permissions (octal).
-o uid=<n>

sets the file owner.
-o gid=<n>

sets the file group.

zdsfs

636 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

-o max_write=<n>
sets the maximum size of write requests.

-o max_readahead=<n>
sets the maximum readahead value.

-o async_read
performs reads asynchronously (default).

-o sync_read
performs reads synchronously.

<node-list>
one or more device nodes for the DASDs, separated by blanks.

<file-name>
a file that contains a node list.

<mount-point>
the mount point in the Linux file system where you want to mount the z/OS data sets.

-h or --help
displays help information for the command. To view the man page, enter man zdsfs.

-v or --version
displays version information for the command.

File characteristics

There are two ways to handle the z/OS characteristics of a file:

• The file metadata.txt:

The metadata.txt file is in the root directory of the mount point. It contains one row for each file or
directory, where:
dsn

specifies

– the name of the file in the form <file-name> for z/OS physical sequential data sets.
– the name of the directory in the form <directory-name>, and the name of a file in that directory in

the form <directory-name>(<file-name>) for z/OS partitioned data sets.

dsorg
specifies the organization of the file. The organization is PO for a directory, and PS for a file.

lrecl
specifies the record length of the file.

recfm
specifies the z/OS record format of the file. Supported record formats are: V, F, U, B, S, A, and M.

Example:

dsn=FOOBAR.TESTF.TXT,recfm=FB,lrecl=80,dsorg=PS
dsn=FOOBAR.TESTVB.TXT,recfm=VB,lrecl=100,dsorg=PS
dsn=FOOBAR.PDSF.DAT,recfm=F,lrecl=80,dsorg=PO
dsn=FOOBAR.PDSF.DAT(TEST1),recfm=F,lrecl=80,dsorg=PS
dsn=FOOBAR.PDSF.DAT(TEST2),recfm=F,lrecl=80,dsorg=PS
dsn=FOOBAR.PDSF.DAT(TEXT3),recfm=F,lrecl=80,dsorg=PS

• Extended attributes:
user.dsorg

specifies the organization of the file.
user.lrecl

specifies the record length of the file.
user.recfm

specifies the z/OS record format of the file.

zdsfs

Commands for Linux on Z 637

You can use the following system calls to work with extended attributes:
listxattr

to list the current values of all extended attributes.
getxattr

to read the current value of a particular extended attribute.

You can use these system calls through the getfattr command. For more information, see the man
pages of these commands and of the listxattr and getxattr system calls.

Examples

• Enable the raw-track access mode of DASD device 0.0.7000 and set the device online afterward:

chccwdev -a raw_track_access=1 -e 0.0.7000

• Mount the partitioned data set on the DASDs represented by the file nodes /dev/dasde and /dev/
dasdf at /mnt:

zdsfs /dev/dasde /dev/dasdf /mnt

• As user "myuser", mount the partitioned data set on the DASD represented by the file node /dev/
dasde at /home/myuser/mntzos:

– Access the mounted file system exclusively:

zdsfs /dev/dasde /home/myuser/mntzos

– Allow the root user to access the mounted file system:

zdsfs -o allow_root /dev/dasde /home/myuser/mntzos

The ls command does not reflect these permissions. In both cases, it shows:

ls -al /home/myuser/mntzos
total 121284
dr-xr-x--- 2 root root 0 Dec 3 15:54 .
drwx------ 3 myuser myuser 4096 Dec 3 15:51 ..
-r--r----- 1 root root 2833200 Jun 27 2012 EXPORT.BIN1.DAT
-r--r----- 1 root root 2833200 Jun 27 2012 EXPORT.BIN2.DAT
-r--r----- 1 root root 2833200 Jun 27 2012 EXPORT.BIN3.DAT
-r--r----- 1 root root 2833200 Feb 14 2013 EXPORT.BIN4.DAT
dr-xr-x--- 2 root root 13599360 Aug 9 2012 EXPORT.PDS1.DAT
dr-xr-x--- 2 root root 13599360 Aug 9 2012 EXPORT.PDS2.DAT
dr-xr-x--- 2 root root 13599360 Aug 9 2012 EXPORT.PDS3.DAT
dr-xr-x--- 2 root root 55247400 Aug 9 2012 EXPORT.PDS4.DAT
-r--r----- 1 root root 981 Dec 3 15:54 metadata.txt

$ ls -al /dev/dasde
brw-rw---- 1 root disk 94, 16 Dec 3 13:58 /dev/dasde

• As root user, mount the partitioned data set on the DASD represented by the file node /dev/dasde
at /mnt on behalf of the user ID "myuser" (UID=1002), and permit the members of the group ID
"zosimport" (GID=1002) file access:

zdsfs /dev/dasde /mnt -o uid=1002,gid=1002,allow_other,default_permissions

The ls command indicates the owner "myuser" and the access right for group "zosimport":

zdsfs

638 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

$ ls -al /mnt
total 121284
dr-xr-x--- 2 myuser zosimport 0 Dec 3 14:22 .
drwxr-xr-x 23 root root 4096 Dec 3 13:59 ..
-r--r----- 1 myuser zosimport 981 Dec 3 14:22 metadata.txt
-r--r----- 1 myuser zosimport 2833200 Jun 27 2012 EXPORT.BIN1.DAT
-r--r----- 1 myuser zosimport 2833200 Jun 27 2012 EXPORT.BIN2.DAT
-r--r----- 1 myuser zosimport 2833200 Feb 14 2013 EXPORT.BIN3.DAT
-r--r----- 1 myuser zosimport 2833200 Jun 27 2012 EXPORT.BIN4.DAT
dr-xr-x--- 2 myuser zosimport 13599360 Aug 9 2012 EXPORT.PDS1.DAT
dr-xr-x--- 2 myuser zosimport 13599360 Aug 9 2012 EXPORT.PDS2.DAT
dr-xr-x--- 2 myuser zosimport 55247400 Aug 9 2012 EXPORT.PDS3.DAT
dr-xr-x--- 2 myuser zosimport 13599360 Aug 9 2012 EXPORT.PDS4.DAT

• Unmount the partitioned data set that is mounted at /mnt:

fusermount -u /mnt

• Show the extended attributes of a file, FB.XMP.TXT, on a z/OS DASD that is mounted on /mnt:

getfattr -d /mnt/FB.XMP.TXT

• Show the extended attributes of all files on a z/OS DASD that is mounted on /mnt:

cat /mnt/metadata.txt

zdsfs

Commands for Linux on Z 639

znetconf - List and configure network devices
Use the znetconf command to list, configure, add, and remove network devices.

The znetconf command:

• Lists potential network devices.
• Lists configured network devices.
• Automatically configures and adds network devices.
• Removes network devices.

For automatic configuration, znetconf first builds a channel command word (CCW) group device from
sensed CCW devices. It then configures any specified option through the sensed network device driver
and sets the new network device online.

During automatic removal, znetconf sets the device offline and removes it.

Attention: Removing all network devices might lead to complete loss of network connectivity.
Unless you can access your Linux instance from a terminal server on z/VM (see How to Set up a
Terminal Server Environment on z/VM, SC34-2596), you might require the HMC or a 3270 terminal
session to restore the connectivity.

Before you begin: The qeth, ctcm, or lcs device drivers must be loaded. If needed, the znetconf
command attempts to load the particular device driver.

znetconf syntax

znetconf

-a

,

<device_bus_id>

-A

-e<device_bus_id>

-o<attribute>=<value>

-d<driver>

-r

,

<device_bus_id>

-R

-e<device_bus_id>

-n

-u

-c

Where:
-a or --add

configures the network device with the specified device bus-ID. If you specify only one bus ID, the
command automatically identifies the remaining bus IDs of the group device. You can enter a list of
device bus-IDs that are separated by commas. The znetconf command does not check the validity
of the combination of device bus-IDs.

znetconf

640 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

<device_bus_id>
specifies the device bus-ID of the CCW devices that constitute the network device. If a device bus-ID
begins with "0.0.", you can abbreviate it to the final hexadecimal digits. For example, you can
abbreviate 0.0.f503 to f503.

-A or --add-all
configures all potential network devices. After you run znetconf -A, enter znetconf -c to see
which devices were configured. You can also enter znetconf -u to display devices that were not
configured.

-e or --except
omits the specified devices when configuring all potential network devices or removing all configured
network devices.

-o or --option <attribute>=<value>
configures devices with the specified sysfs option.

-d or --driver <driver name>
configures devices with the specified device driver. Valid values are qeth, lcs, ctc, or ctcm.

-n or --non-interactive
answers all confirmation questions with "Yes".

-r or --remove
removes the network device with the specified device bus-ID. You can enter a list of device bus-IDs
that are separated by a comma. You can remove only configured devices as listed by znetconf -c.

-R or --remove-all
removes all configured network devices. After successfully running this command, all devices that are
listed by znetconf -c become potential devices that are listed by znetconf -u.

-u or --unconfigured
lists all network devices that are not yet configured.

-c or --configured
lists all configured network devices.

-h or --help
displays help information for the command. To view the man page, enter man znetconf.

-v or --version
displays version information.

If the command completes successfully, znetconf returns 0. Otherwise, 1 is returned.

Examples

• To list all potential network devices:

znetconf -u
Device IDs Type Card Type CHPID Drv.
--
0.0.f500,0.0.f501,0.0.f502 1731/01 OSA (QDIO) 00 qeth
0.0.f503,0.0.f504,0.0.f505 1731/01 OSA (QDIO) 01 qeth

• To configure device 0.0.f503:

znetconf -a 0.0.f503

or

znetconf -a f503

• To configure the potential network device 0.0.f500 with the layer2 option with the value 0:

znetconf -a f500 -o layer2=0

znetconf

Commands for Linux on Z 641

• To list configured network devices:

znetconf -c
Device IDs Type Card Type CHPID Drv. Name State

0.0.f500,0.0.f501,0.0.f502 1731/01 Virt.NIC QDIO 00 qeth eth2 online
0.0.f503,0.0.f504,0.0.f505 1731/01 Virt.NIC QDIO 01 qeth eth1 online
0.0.f5f0,0.0.f5f1,0.0.f5f2 1731/01 OSD_1000 76 qeth eth0 online

• To remove network device 0.0.f503:

znetconf -r 0.0.f503

or

znetconf -r f503

• To remove all configured network devices except the devices with bus IDs 0.0.f500 and 0.0.f5f0:

znetconf -R -e 0.0.f500 -e 0.0.f5f0

• To configure all potential network devices except the device with bus ID 0.0.f503:

znetconf -A -e 0.0.f503

znetconf

642 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 58. Selected kernel parameters
You can use kernel parameters that are beyond the scope of an individual device driver or feature to
configure Linux in general.

Device driver-specific kernel parameters are described in the setting up section of the respective device
driver.

See Chapter 3, “Kernel and module parameters,” on page 19 for information about specifying kernel
parameters.

© Copyright IBM Corp. 2000, 2019 643

cio_ignore - List devices to be ignored
Use the cio_ignore= kernel parameter to list specifications for I/O devices that are to be ignored.

When a Linux on Z instance boots, it senses and analyzes all available I/O devices. The following applies
to ignored devices:

• Ignored devices are not sensed and analyzed. The device cannot be used until it is analyzed.
• Ignored devices are not represented in sysfs.
• Ignored devices do not occupy storage in the kernel.
• The subchannel to which an ignored device is attached is treated as if no device were attached.
• For Linux on z/VM, cio_ignore might hide essential devices such as the console. The console is typically

device number 0.0.0009.

See also “Changing the exclusion list” on page 645.

Format

cio_ignore= all

<device_spec>

,

,

!

<device_spec>

cio_ignore syntax
<device_spec>

<device_bus_id>

<from_device_bus_id>-<to_device_bus_id>

ipldev

condev

Where:
all

states that all devices are to be ignored.
<device_bus_id>

specifies a device. Device bus-IDs are of the form 0.<n>.<devno>, where <n> is a subchannel set ID
and <devno> is a device number.

<from_device_bus_id>-<to_device_bus_id>
are two device bus-IDs that specify the first and the last device in a range of devices.

ipldev
specifies the IPL device. Use this keyword with the ! operator to avoid ignoring the IPL device.

condev
specifies the CCW console. Use this keyword with the ! operator to avoid ignoring the console device.

!
makes the following term an exclusion statement. This operator is used to exclude individual devices
or ranges of devices from a preceding more general specification of devices.

cio_ignore

644 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Examples

• This example specifies that all devices in the range 0.0.b100 through 0.0.b1ff, and the device 0.0.a100
are to be ignored.

cio_ignore=0.0.b100-0.0.b1ff,0.0.a100

• This example specifies that all devices are to be ignored.

cio_ignore=all

• This example specifies that all devices except the console are to be ignored.

cio_ignore=all,!condev

• This example specifies that all devices but the range 0.0.b100 through 0.0.b1ff, and the device
0.0.a100 are to be ignored.

 cio_ignore=all,!0.0.b100-0.0.b1ff,!0.0.a100

• This example specifies that all devices in the range 0.0.1000 through 0.0.1500 are to be ignored, except
for devices in the range 0.0.1100 through 0.0.1120.

cio_ignore=0.0.1000-0.0.1500,!0.0.1100-0.0.1120

This is equivalent to the following specification:

cio_ignore=0.0.1000-0.0.10ff,0.0.1121-0.0.1500

• This example specifies that all devices in range 0.0.1000 through 0.0.1100 and all devices in range
0.1.7000 through 0.1.7010, plus device 0.0.1234 and device 0.1.4321 are to be ignored.

cio_ignore=0.0.1000-0.0.1100, 0.1.7000-0.1.7010, 0.0.1234, 0.1.4321

Changing the exclusion list
Use the cio_ignore command or the procfs interface to view or change the list of I/O device
specifications that are ignored.

When a Linux on Z instance boots, it senses and analyzes all available I/O devices. You can use the
cio_ignore kernel parameter to list specifications for devices that are to be ignored.

On a running Linux instance, you can view and change the exclusion list through a procfs interface or with
the cio_ignore command (see “cio_ignore - Manage the I/O exclusion list” on page 490). This
information describes the procfs interface.

After booting Linux you can display the exclusion list by issuing:

cat /proc/cio_ignore

To add device specifications to the exclusion list issue a command of this form:

echo add <device_list> > /proc/cio_ignore

When you add specifications for a device that is already sensed and analyzed, there is no immediate
effect of adding it to the exclusion list. For example, the device still appears in the output of the lscss
command and can be set online. However, if the device later becomes unavailable, it is ignored when it
reappears. For example, if the device is detached in z/VM it is ignored when it is attached again.

To make all devices that are in the exclusion list and that are currently offline unavailable to Linux issue a
command of this form:

echo purge > /proc/cio_ignore

cio_ignore

Selected kernel parameters 645

This command does not make devices unavailable if they are online.

To remove device specifications from the exclusion list issue a command of this form:

echo free <device_list> > /proc/cio_ignore

When you remove device specifications from the exclusion list, the corresponding devices are sensed and
analyzed if they exist. Where possible, the respective device driver is informed, and the devices become
available to Linux.

In these commands, <device_list> follows this syntax:

<device_list>
all

<device_spec>

,

,

!

<device_spec>

<device_spec>
<device_bus_id>

<from_device_bus_id>-<to_device_bus_id>

Where the keywords and variables have the same meaning as in “Format” on page 644.

Ensure device availability

After the echo command completes successfully, some time might elapse until the freed device becomes
available to Linux. Issue the following command to ensure that the device is ready to be used:

echo 1 > /proc/cio_settle

This command returns after all required sysfs structures for the newly available device are completed.

The cio_ignore command (see “cio_ignore - Manage the I/O exclusion list” on page 490) also returns
after any new sysfs structures are completed so you do not need a separate echo command when using
cio_ignore to remove devices from the exclusion list.

Results

The dynamically changed exclusion list is only taken into account when a device in this list is newly made
available to the system, for example after it is defined to the system. It does not have any effect on setting
devices online or offline within Linux.

Examples

• This command removes all devices from the exclusion list.

echo free all > /proc/cio_ignore

• This command adds all devices in the range 0.0.b100 through 0.0.b1ff and device 0.0.a100 to the
exclusion list.

echo add 0.0.b100-0.0.b1ff,0.0.a100 > /proc/cio_ignore

• This command lists the ranges of devices that are ignored by common I/O.

cio_ignore

646 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

cat /proc/cio_ignore
0.0.0000-0.0.a0ff
0.0.a101-0.0.b0ff
0.0.b200-0.0.ffff

• This command removes all devices in the range 0.0.b100 through 0.0.b1ff and device 0.0.a100 from the
exclusion list.

echo free 0.0.b100-0.0.b1ff,0.0.a100 > /proc/cio_ignore

• This command removes the device with bus ID 0.0.c104 from the exclusion list.

echo free 0.0.c104 > /proc/cio_ignore

• This command adds the device with bus ID 0.0.c104 to the exclusion list.

echo add 0.0.c104 > /proc/cio_ignore

• This command makes all devices that are in the exclusion list and that are currently offline unavailable
to Linux.

echo purge > /proc/cio_ignore

cio_ignore

Selected kernel parameters 647

cmma - Reduce hypervisor paging I/O overhead
Use the cmma= kernel parameter to reduce hypervisor paging I/O overhead.

With Collaborative Memory Management Assist (CMMA, or "cmm2") support, the z/VM control program
and guest virtual machines can communicate attributes for specific 4K-byte blocks of guest memory. This
exchange of information helps both the z/VM host and the guest virtual machines to optimize their use
and management of memory.

Format

cmma syntax
cmma= yes

on

cmma= no

off

Examples

This specification disables the CMMA support:

 cmma=off

Alternatively, you can use the following specification to disable the CMMA support:

 cmma=no

cmma

648 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

fips - Run Linux in FIPS mode
In Federal Information Processing Standard (FIPS) mode, the kernel enforces FIPS 140-2 security
standards. For example, in FIPS mode only FIPS 140-2 approved encryption algorithms can be used (see
“FIPS restrictions of the hardware capabilities” on page 431).

Note: Enabling FIPS mode is not sufficient to make your kernel certified according to FIPS 140-2.

FIPS 140-2 certification is specific to a particular hardware platform and kernel build. Typically, running in
FIPS mode is required, but not sufficient to be FIPS 140-2 certified. Check with your distributor to find out
whether your kernel is certified according to FIPS 140-2.

For more information about FIPS 140-2, go to csrc.nist.gov/publications/detail/fips/140/2/final.

Format

fips syntax
fips=0

fips=1

1 enables the FIPS mode. 0, the default, disables the FIPS mode.

Example

 fips=1

fips

Selected kernel parameters 649

https://csrc.nist.gov/publications/detail/fips/140/2/final

maxcpus - Limit the number of CPUs Linux can use at IPL
Use the maxcpus= kernel parameter to limit the number of CPUs that Linux can use at IPL and that are
online after IPL.

If the real or virtual hardware provides more than the specified number of CPUs, these surplus CPUs are
initially offline. For example, if five CPUs are available, maxcpus=2 results in two online CPUs and three
offline CPUs after IPL.

Offline CPUs can be set online dynamically unless the possible_cpus= parameter is set and specifies a
maximum number of online CPUs that is already reached. The possible_cpus= parameter sets an
absolute limit for the number of CPUs that can be online at any one time (see “possible_cpus - Limit the
number of CPUs Linux can use” on page 652). If both maxcpus= and possible_cpus= are set, a lower
value for possible_cpus= overrides maxcpus= and makes it ineffective.

Format

maxcpus syntax
maxcpus=<number>

Examples

 maxcpus=2

maxcpus

650 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

nosmt - Disable simultaneous multithreading
By default, Linux in LPAR mode uses simultaneous multithreading if it is supported by the hardware.
Specify the nosmt kernel parameter to disable simultaneous multithreading. See also “smt - Reduce the
number of threads per core” on page 656.

For more information about simultaneous multithreading, see “Simultaneous multithreading” on page
307 .

Format

nosmt syntax
nosmt

nosmt

Selected kernel parameters 651

possible_cpus - Limit the number of CPUs Linux can use
Use the possible_cpus= parameter to set an absolute limit for the number of CPUs that can be online
at any one time. If the real or virtual hardware provides more than the specified maximum, the surplus
number of CPUs must be offline. Alternatively, you can use the common code kernel parameter nr_cpus.

Use the maxcpus= parameter to limit the number of CPUs that are online initially after IPL (see “maxcpus
- Limit the number of CPUs Linux can use at IPL” on page 650).

Format

possible_cpus syntax
possible_cpus=<number>

Examples

 possible_cpus=8

possible_cpus

652 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

ramdisk_size - Specify the ramdisk size

Use the ramdisk_size= kernel parameter to specify the size of the ramdisk in kilobytes.

Format

ramdisk_size syntax
ramdisk_size=<size>

Examples

 ramdisk_size=32000

ramdisk_size

Selected kernel parameters 653

ro - Mount the root file system read-only
Use the ro kernel parameter to mount the root file system read-only.

Format

ro syntax
ro

ro

654 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

root - Specify the root device
Use the root= kernel parameter to tell Linux what to use as the root when mounting the root file system.

Format

root syntax
root=<rootdevice>

Examples

This example makes Linux use /dev/dasda1 when mounting the root file system:

 root=/dev/dasda1

root

Selected kernel parameters 655

smt - Reduce the number of threads per core
By default, Linux in LPAR mode uses the maximum number of threads per core that is supported by the
hardware. Use the smt= kernel parameter to use fewer threads. The value can be any integer in the range
1 to the maximum number of threads that is supported by the hardware.

Specifying smt=1 effectively disables simultaneous multithreading. See also “nosmt - Disable
simultaneous multithreading” on page 651.

For more information about simultaneous multithreading, see “Simultaneous multithreading” on page
307 .

Format

smt syntax
smt=<hwmax>

smt=<number>

where <hwmax> is the maximum number of threads per core that is supported by the hardware, and
<number> is an integer in the range 1 - <hwmax>.

Examples

 smt=1

smt

656 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

vdso - Optimize system call performance
Use the vdso= kernel parameter to control the vdso support for the gettimeofday, clock_getres,
and clock_gettime system calls.

The virtual dynamic shared object (vdso) support is a shared library that the kernel maps to all
dynamically linked programs. The glibc detects the presence of the vdso and uses the functions that are
provided in the library.

Because the vdso library is mapped to all user-space processes, this change is visible in user space. In
the unlikely event that a user-space program does not work with the vdso support, you can disable the
support.

The default, which is to use vdso support, works well for most installations. Do not override this default,
unless you observe problems.

The vdso support is included in the Linux kernel.

Format

vdso syntax
vdso= 1

on

vdso= 0

off

Examples

This example disables the vdso support:

 vdso=0

vdso

Selected kernel parameters 657

vmhalt - Specify CP command to run after a system halt
Use the vmhalt= kernel parameter to specify a command to be issued to CP after a system halt.

This command applies only to Linux on z/VM.

Format

vmhalt syntax
vmhalt=<COMMAND>

Examples

This example specifies that an initial program load of CMS is to follow the Linux halt command:

 vmhalt="CPU 00 CMD I CMS"

Note: The command must be entered in uppercase.

vmhalt

658 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

vmpanic - Specify CP command to run after a kernel panic
Use the vmpanic= kernel parameter to specify a command to be issued to CP after a kernel panic.

This command applies only to Linux on z/VM.

Note: Ensure that the dumpconf service is disabled when you use this kernel parameter. Otherwise,
dumpconf will override the setting.

Format

vmpanic syntax
vmpanic=<COMMAND>

Examples

This example specifies that a VMDUMP is to follow a kernel panic:

 vmpanic="VMDUMP"

Note: The command must be entered in uppercase.

vmpanic

Selected kernel parameters 659

vmpoff - Specify CP command to run after a power off
Use the vmpoff= kernel parameter to specify a command to be issued to CP after a system power off.

This command applies only to Linux on z/VM.

Format

vmpoff syntax
vmpoff=<COMMAND>

Examples

This example specifies that CP is to clear the guest virtual machine after the Linux power off or halt -
p command:

 vmpoff="SYSTEM CLEAR"

Note: The command must be entered in uppercase.

vmpoff

660 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

vmreboot - Specify CP command to run on reboot
Use the vmreboot= kernel parameter to specify a command to be issued to CP on reboot.

This command applies only to Linux on z/VM.

Format

vmreboot syntax
vmreboot=<COMMAND>

Examples

This example specifies a message to be sent to the z/VM guest virtual machine OPERATOR if a reboot
occurs:

 vmreboot="MSG OPERATOR Reboot system"

Note: The command must be entered in uppercase.

vmreboot

Selected kernel parameters 661

vmreboot

662 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Chapter 59. Linux diagnose code use
SUSE Linux Enterprise Server 12 SP4 for IBM Z issues several diagnose instructions to the hypervisor
(LPAR or z/VM).

Table 71 on page 663 lists all diagnoses that are used by the Linux kernel or a kernel module.

Linux can fail if you change the privilege class of the diagnoses marked as required by using the MODIFY
diag command in z/VM.

Table 71: Linux diagnoses

Number Description Linux use
Required/
Optional

0x008 z/VM CP command console
interface

• The vmcp command
• The 3215 and 3270 console drivers
• The z/VM recording device driver

(vmlogrdr)
• smsgiucv

Required

0x010 Release pages CMM Required

0x014 Input spool file manipulation The vmur device driver Required

0x044 Voluntary time-slice end In the kernel for spinlock and udelay Required

0x064 Allows Linux to attach a
DCSS

The DCSS block device driver (dcssblk),
and the MONITOR record device driver
(monreader).

Required

0x09c Voluntary time slice yield Spinlock. Optional

0x0dc Monitor stream The APPLDATA monitor record and the
MONITOR stream application support
(monwriter).

Required

0x204 LPAR Hypervisor data The hypervisor file system (hypfs). Required

0x210 Retrieve device information • The common I/O layer
• The DASD driver DIAG access method
• DASD read-only query
• The vmur device driver

Required

0x224 CPU type name table The hypervisor file system (hypfs). Required

0x250 Block I/O The DASD driver DIAG access method. Required

0x258 Page-reference services In the kernel, for pfault. Optional

0x288 Virtual machine time bomb The watchdog device driver. Required

0x2fc Hypervisor cpu and memory
accounting data

The hypervisor file system (hypfs). Required

0x308 Re-ipl Re-ipl and dump code. Required

0x500 Virtio functions Operate virtio-ccw devices Required

© Copyright IBM Corp. 2000, 2019 663

Required means that a function is not available without the diagnose; optional means that the function is
available but there might be a performance impact.

664 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Appendix A. Accessibility
Accessibility features help users who have a disability, such as restricted mobility or limited vision, to use
information technology products successfully.

Documentation accessibility

The Linux on Z and LinuxONE publications are in Adobe Portable Document Format (PDF) and should be
compliant with accessibility standards. If you experience difficulties when you use the PDF file and want
to request a Web-based format for this publication, use the Readers' Comments form in the back of this
publication, send an email to eservdoc@de.ibm.com, or write to:

IBM Deutschland Research & Development GmbH
Information Development
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about the commitment that IBM
has to accessibility at

www.ibm.com/able

© Copyright IBM Corp. 2000, 2019 665

http://www.ibm.com/able

666 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Appendix B. Understanding syntax diagrams

This section describes how to read the syntax diagrams in this manual.

To read a syntax diagram follow the path of the line. Read from left to right and top to bottom.

• The ►►─── symbol indicates the beginning of a syntax diagram.
• The ───► symbol, at the end of a line, indicates that the syntax diagram continues on the next line.
• The ►─── symbol, at the beginning of a line, indicates that a syntax diagram continues from the

previous line.
• The ───►◄ symbol indicates the end of a syntax diagram.

Syntax items (for example, a keyword or variable) may be:

• Directly on the line (required)
• Above the line (default)
• Below the line (optional)

If defaults are determined by your system status or settings, they are not shown in the diagram. Instead
the rule is described together with the option, keyword, or variable in the list following the diagram.

Case sensitivity
Unless otherwise noted, entries are case sensitive.

Symbols
You must code these symbols exactly as they appear in the syntax diagram
*

Asterisk
:

Colon
,

Comma
=

Equal sign
-

Hyphen
//

Double slash
()

Parentheses
.

Period
+

Add
$

Dollar sign

For example:

dasd=0.0.7000-0.0.7fff

Variables
An <italicized> lowercase word enclosed in angled brackets indicates a variable that you must
substitute with specific information. For example:

© Copyright IBM Corp. 2000, 2019 667

 -p <interface>

Here you must code -p as shown and supply a value for <interface>.

An italicized uppercase word in angled brackets indicates a variable that must appear in uppercase:
vmhalt = <COMMAND>

Repetition
An arrow returning to the left means that the item can be repeated.

<repeat>

A character within the arrow means you must separate repeated items with that character.

,

<repeat>

Defaults
Defaults are above the line. The system uses the default unless you override it. You can override the
default by coding an option from the stack below the line. For example:

A

B

C

In this example, A is the default. You can override A by choosing B or C.
Required Choices

When two or more items are in a stack and one of them is on the line, you must specify one item. For
example:

A

B

C

Here you must enter either A or B or C.
Optional Choice

When an item is below the line, the item is optional. Only one item may be chosen. For example:

A

B

C

Here you may enter either A or B or C, or you may omit the field.

668 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at
www.ibm.com/legal/copytrade.shtml

© Copyright IBM Corp. 2000, 2019 669

http://www.ibm.com/legal/copytrade.shtml

Adobe is either a registered trademark or trademark of Adobe Systems Incorporated in the United States,
and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

670 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Bibliography

The publications listed in this chapter are considered useful for a more detailed study of the topics
contained in this publication.

Linux on Z and LinuxONE publications
The Linux on Z and LinuxONE publications can be found on the developerWorks website.

You can find the latest versions of these publications
on IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html
or on developerWorks at
www.ibm.com/developerworks/linux/linux390/documentation_suse.html

• Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP4 as a KVM Guest,
SC34-2756

• Using the Dump Tools on SUSE Linux Enterprise Server 12 SP1, SC34-2746
• Kernel Messages on SUSE Linux Enterprise Server 12 SP4, SC34-2747

For each of the following publications, you can find the version that most closely reflects SUSE Linux
Enterprise Server 12 SP4:

• How to use FC-attached SCSI devices with Linux on z Systems, SC33-8413
• libica Programmer's Reference, SC34-2602
• Exploiting Enterprise PKCS #11 using openCryptoki, SC34-2713
• Secure Key Solution with the Common Cryptographic Architecture Application Programmer's Guide,

SC33-8294
• Getting started with pervasive disk encryption, SC34-2783
• Troubleshooting, SC34-2612
• Linux Health Checker User's Guide, SC34-2609
• How to Improve Performance with PAV, SC33-8414
• How to Set up a Terminal Server Environment on z/VM, SC34-2596

SUSE Linux Enterprise Server 12 SP4 publications
The documentation for SUSE Linux Enterprise Server 12 SP4 can be found on the SUSE website.

Go to www.suse.com/documentation for the following publications:

• SUSE Linux Enterprise Server 12 SP4 Deployment Guide
• SUSE Linux Enterprise Server 12 SP4 Administration Guide
• SUSE Linux Enterprise Server 12 SP4 Storage Administration Guide

Go to www.suse.com/documentation/sle_ha for the following publication:

• SUSE Linux Enterprise High Availability Extension High Availability Guide

© Copyright IBM Corp. 2000, 2019 671

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html
http://www.ibm.com/developerworks/linux/linux390/documentation_suse.html
http://www.suse.com/documentation
http://www.suse.com/documentation/sle_ha

z/VM publications
The publication numbers listed are for z/VM version 7.

For the complete library including other versions, see

www.ibm.com/vm/library

• z/VM: Connectivity, SC24-6267
• z/VM: CP Commands and Utilities Reference, SC24-6268
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: CP Programming Services, SC24-6272
• z/VM: Getting Started with Linux on System z, SC24-6287
• z/VM: Performance, SC24-6301
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315

IBM Redbooks publications
You can search for, view, or download Redbooks publications, Redpapers, Hints and Tips, draft
publications and additional materials on the Redbooks website.

You can also order hardcopy Redbooks or CD-ROMs, at

www.ibm.com/redbooks

• IBM zEnterprise Unified Resource Manager, SG24-7921
• Building Linux Systems under IBM VM, REDP-0120
• FICON CTC Implementation, REDP-0158
• Networking Overview for Linux on zSeries, REDP-3901
• Linux on IBM eServer zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN, REDP-3596
• Linux on IBM eServer zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4, REDP-3719
• z/VM: Secure Configuration Guide, SG24-6323
• IBM Communication Controller Migration Guide, SG24-6298
• Problem Determination for Linux on System z, SG24-7599
• Linux for IBM System z9® and IBM zSeries, SG24-6694

Other IBM Z publications
General IBM Z publications that might be of interest in the context of Linux on Z.

• zEnterprise System Introduction to Ensembles, GC27-2609
• zEnterprise System Ensemble Planning and Configuring Guide, GC27-2608
• System z Application Programming Interfaces, SB10-7030

672 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

http://www.ibm.com/vm/library
http://www.ibm.com/redbooks

• IBM TotalStorage Enterprise Storage Server System/390 Command Reference 2105 Models E10, E20,
F10, and F20, SC26-7295

• Processor Resource/Systems Manager Planning Guide, SB10-7041
• z/Architecture Principles of Operation, SA22-7832
• z/Architecture The Load-Program-Parameter and the CPU-Measurement Facilities, SA23-2260
• IBM The CPU-Measurement Facility Extended Counters Definition for z10, z196/z114, zEC12/zBC12, z13/

z13s, and z14, SA23-2261

Networking publications

• HiperSockets Implementation Guide, SG24-6816
• Open Systems Adapter-Express Customer's Guide and Reference, SA22-7935
• OSA-Express Implementation Guide, SG24-5948

Security related publications

• zSeries Crypto Guide Update, SG24-6870
• Secure Key Solution with the Common Cryptographic Architecture Application Programmer's Guide,

SC33-8294

ibm.com resources
On the ibm.com® website you can find information about many aspects of Linux on Z including z/VM, I/O
connectivity, and cryptography.

• For CMS and CP Data Areas, Control Block information, and the layout of the z/VM monitor records see

www.ibm.com/vm/pubs/ctlblk.html

• For I/O connectivity on IBM Z information, see

www.ibm.com/systems/z/connectivity

• For Communications server for Linux information, see

www.ibm.com/software/network/commserver/linux

• For information about performance monitoring on z/VM, see

www.ibm.com/vm/perf

• For cryptographic coprocessor information, see

www.ibm.com/security/cryptocards

• (Requires registration.) For information for planning, installing, and maintaining IBM systems, see

www.ibm.com/servers/resourcelink

• For information about STP, see

www.ibm.com/systems/z/advantages/pso/stp.html

Bibliography 673

http://www.ibm.com/vm/pubs/ctlblk.html
http://www.ibm.com/systems/z/connectivity
http://www.ibm.com/software/network/commserver/linux
http://www.ibm.com/vm/perf
http://www.ibm.com/security/cryptocards
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/systems/z/advantages/pso/stp.html

674 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Glossary

This glossary includes IBM product terminology as well as selected other terms and definitions.

Additional information can be obtained in:

• The American National Standard Dictionary for Information Systems , ANSI X3.172-1990, copyright
1990 by the American National Standards Institute (ANSI). Copies may be purchased from the
American National Standards Institute, 11 West 42nd Street, New York, New York 10036.

• The ANSI/EIA Standard–440-A, Fiber Optic Terminology. Copies may be purchased from the Electronic
Industries Association, 2001 Pennsylvania Avenue, N.W., Washington, DC 20006.

• The Information Technology Vocabulary developed by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1).

• The IBM Dictionary of Computing , New York: McGraw-Hill, 1994.
• Internet Request for Comments: 1208, Glossary of Networking Terms
• Internet Request for Comments: 1392, Internet Users' Glossary
• The Object-Oriented Interface Design: IBM Common User Access Guidelines , Carmel, Indiana: Que,

1992.

Numerics

10 Gigabit Ethernet
An Ethernet network with a bandwidth of 10000-Mbps.

3215
IBM console printer-keyboard.

3270
IBM information display system.

3370, 3380 or 3390
IBM direct access storage device (disk).

3480, 3490, 3590
IBM magnetic tape subsystem.

3DES
See Triple Data Encryption Standard.

9336 or 9345
IBM direct access storage device (disk).

A

address space
The range of addresses available to a computer program or process. Address space can see physical
storage, virtual storage, or both.

© Copyright IBM Corp. 2000, 2019 675

auto-detection
Listing the addresses of devices attached to a card by issuing a query command to the card.

C

CCL
The Communication Controller for Linux on Z (CCL) replaces the 3745/6 Communication Controller so that
the Network Control Program (NCP) software can continue to provide business critical functions like SNI,
XRF, BNN, INN, and SSCP takeover. This allows you to leverage your existing NCP functions on a
"virtualized" communication controller within the Linux on Z environment.

CEC
(Central Electronics Complex). A synonym for CPC.

channel subsystem
The programmable input/output processors of the IBM Z, which operate in parallel with the cpu.

checksum
An error detection method using a check byte appended to message data

CHPID
channel path identifier. In a channel subsystem, a value assigned to each installed channel path of the
system that uniquely identifies that path to the system.

compatible disk layout
A disk structure for Linux on Z which allows access from other mainframe operating systems. This
replaces the older Linux disk layout.

Console
In Linux, an output device for kernel messages.

CPC
(Central Processor Complex). A physical collection of hardware that includes main storage, one or more
central processors, timers, and channels. Also referred to as a CEC.

CRC
cyclic redundancy check. A system of error checking performed at both the sending and receiving station
after a block-check character has been accumulated.

CSMA/CD
carrier sense multiple access with collision detection

CTC
channel to channel. A method of connecting two computing devices.

CUU
control unit and unit address. A form of addressing for Z devices using device numbers.

676 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

D

DASD
direct access storage device. A mass storage medium on which a computer stores data.

device driver
• A file that contains the code needed to use an attached device.
• A program that enables a computer to communicate with a specific peripheral device; for example, a

printer, a videodisc player, or a CD-ROM drive.
• A collection of subroutines that control the interface between I/O device adapters and the processor.

DIAGNOSE
In z/VM, a set of instructions that programs running on z/VM guest virtual machines can call to request CP
services.

disconnected device
In Linux on Z, a device that is online, but to which Linux can no longer find a connection. Reasons include:

• The device was physically removed
• The device was logically removed, for example, with a CP DETACH command in z/VM
• The device was varied offline

E

ECKD
extended count-key-data device. A disk storage device that has a data transfer rate faster than some
processors can utilize and that is connected to the processor through use of a speed matching buffer. A
specialized channel program is needed to communicate with such a device.

ESCON
enterprise systems connection. A set of IBM products and services that provide a dynamically connected
environment within an enterprise.

Ethernet
A 10-Mbps baseband local area network that allows multiple stations to access the transmission medium
at will without prior coordination, avoids contention by using carrier sense and deference, and resolves
contention by using collision detection and delayed retransmission. Ethernet uses CSMA/CD.

F

FBA
fixed block architecture. An architecture for a virtual device that specifies the format of and access
mechanisms for the virtual data units on the device. The virtual data unit is a block. All blocks on the
device are the same size (fixed size). The system can access them independently.

FDDI
fiber distributed data interface. An American National Standards Institute (ANSI) standard for a 100-
Mbps LAN using optical fiber cables.

Glossary 677

fibre channel
A technology for transmitting data between computer devices. It is especially suited for attaching
computer servers to shared storage devices and for interconnecting storage controllers and drives.

FTP
file transfer protocol. In the Internet suite of protocols, an application layer protocol that uses TCP and
Telnet services to transfer bulk-data files between machines or hosts.

G

Gigabit Ethernet (GbE)
An Ethernet network with a bandwidth of 1000-Mbps

H

hardware console
A service-call logical processor that is the communication feature between the main processor and the
service processor.

Host Bus Adapter (HBA)
An I/O controller that connects an external bus, such as a Fibre Channel, to the internal bus (channel
subsystem).

In a Linux environment HBAs are normally virtual and are shown as an FCP device.

HMC
hardware management console. A console used to monitor and control hardware such as the Z
microprocessors.

HFS
hierarchical file system. A system of arranging files into a tree structure of directories.

I

intraensemble data network (IEDN)
A private 10 Gigabit Ethernet network for application data communications within an ensemble. Data
communications for workloads can flow over the IEDN within and between nodes of an ensemble. All of
the physical and logical resources of the IEDN are configured, provisioned, and managed by the Unified
Resource Manager.

intranode management network (INMN)
A private 1000BASE-T Ethernet network operating at 1 Gbps that is required for the Unified Resource
Manager to manage the resources within a single zEnterprise node. The INMN connects the Support
Element (SE) to the zEnterprise 196 (z196) or zEnterprise 114 (z114) and to any attached zEnterprise
BladeCenter Extension (zBX).

ioctl system call
Performs low-level input- and output-control operations and retrieves device status information. Typical
operations include buffer manipulation and query of device mode or status.

678 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

IOCS
input / output channel subsystem. See channel subsystem.

IP
internet protocol. In the Internet suite of protocols, a connectionless protocol that routes data through a
network or interconnected networks and acts as an intermediary between the higher protocol layers and
the physical network.

IP address
The unique 32-bit address that specifies the location of each device or workstation on the Internet. For
example, 9.67.97.103 is an IP address.

IPIP
IPv4 in IPv4 tunnel, used to transport IPv4 packets in other IPv4 packets.

IPL
initial program load (or boot).

• The initialization procedure that causes an operating system to commence operation.
• The process by which a configuration image is loaded into storage at the beginning of a work day or after

a system malfunction.
• The process of loading system programs and preparing a system to run jobs.

IPv6
IP version 6. The next generation of the Internet Protocol.

IUCV
inter-user communication vehicle. A z/VM facility for passing data between virtual machines and z/VM
components.

K

kernel
The part of an operating system that performs basic functions such as allocating hardware resources.

kernel module
A dynamically loadable part of the kernel, such as a device driver or a file system.

kernel image
The kernel when loaded into memory.

L

LCS
LAN channel station. A protocol used by OSA.

Glossary 679

LDP
Linux Documentation Project. An attempt to provide a centralized location containing the source material
for all open source Linux documentation. Includes user and reference guides, HOW TOs, and FAQs. The
homepage of the Linux Documentation Project is

www.linuxdocs.org

Linux
a variant of UNIX which runs on a wide range of machines from wristwatches through personal and small
business machines to enterprise systems.

Linux disk layout
A basic disk structure for Linux on Z. Now replaced by compatible disk layout.

Linux on Z
the port of Linux to the IBM Z architecture.

LPAR
logical partition of IBM Z.

LVS (Linux virtual server)
Network sprayer software used to dispatch, for example, http requests to a set of web servers to balance
system load.

M

MAC
medium access control. In a LAN this is the sub-layer of the data link control layer that supports medium-
dependent functions and uses the services of the physical layer to provide services to the logical link
control (LLC) sub-layer. The MAC sub-layer includes the method of determining when a device has access
to the transmission medium.

Mbps
million bits per second.

MIB (Management Information Base)
• A collection of objects that can be accessed by means of a network management protocol.
• A definition for management information that specifies the information available from a host or gateway

and the operations allowed.

MTU
maximum transmission unit. The largest block which may be transmitted as a single unit.

Multicast
A protocol for the simultaneous distribution of data to a number of recipients, for example live video
transmissions.

680 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

http://www.linuxdocs.org

N

NIC
network interface card. The physical interface between the IBM mainframe and the network.

O

OSA-Express
Abbreviation for Open Systems Adapter-Express networking features. These include 10 Gigabit Ethernet,
and Gigabit Ethernet.

OSM
OSA-Express for Unified Resource Manager. A CHPID type that provides connectivity to the intranode
management network (INMN) from z196 or z114 to Unified Resource Manager functions. Uses OSA-
Express3 1000BASE-T Ethernet exclusively operating at 1 Gbps.

OSPF
open shortest path first. A function used in route optimization in networks.

OSX
OSA-Express for zBX. A CHPID type that provides connectivity and access control to the intraensemble
data network (IEDN) from z196 or z114 to zBX.

P

POR
power-on reset

POSIX
Portable Operating System Interface for Computer Environments. An IEEE operating system standard
closely related to the UNIX system.

R

router
A device or process which allows messages to pass between different networks.

S

SE
support element.

• An internal control element of a processor that assists in many of the processor operational functions.
• A hardware unit that provides communications, monitoring, and diagnostic functions to a central

processor complex.

Glossary 681

SNA
systems network architecture. The IBM architecture that defines the logical structure, formats, protocols,
and operational sequences for transmitting information units through, and controlling the configuration
and operation of, networks. The layered structure of SNA allows the ultimate origins and destinations of
information (the users) to be independent of and unaffected by the specific SNA network services and
facilities that are used for information exchange.

SNMP (Simple Network Management Protocol)
In the Internet suite of protocols, a network management protocol that is used to monitor routers and
attached networks. SNMP is an application layer protocol. Information on devices managed is defined and
stored in the application's Management Information Base (MIB).

Sysctl
system control programming manual control (frame). A means of dynamically changing certain Linux
kernel parameters during operation.

T

TDEA
See Triple Data Encryption Standard.

TDES
See Triple Data Encryption Standard.

Telnet
A member of the Internet suite of protocols which provides a remote terminal connection service. It
allows users of one host to log on to a remote host and interact as if they were using a terminal directly
attached to that host.

Terminal
A physical or emulated device, associated with a keyboard and display device, capable of sending and
receiving information.

Triple Data Encryption Standard
A block cipher algorithm that can be used to encrypt data transmitted between managed systems and the
management server. Triple DES is a security enhancement of DES that employs three successive DES
block operations.

U

UNIX
An operating system developed by Bell Laboratories that features multiprogramming in a multiuser
environment. The UNIX operating system was originally developed for use on minicomputers but has
been adapted for mainframes and microcomputers.

682 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

V

V=R
In z/VM, a guest whose real memory (virtual from a z/VM perspective) corresponds to the real memory of
z/VM.

V=V
In z/VM, a guest whose real memory (virtual from a z/VM perspective) corresponds to virtual memory of
z/VM.

Virtual LAN (VLAN)
A group of devices on one ore more LANs that are configured (using management software) so that they
can communicate as if they were attached to the same wire, when in fact they are located on a number of
different LAN segments. Because VLANs are based on logical rather than physical connections, they are
extremely flexible.

volume
A data carrier that is usually mounted and demounted as a unit, for example a tape cartridge or a disk
pack. If a storage unit has no demountable packs the volume is the portion available to a single read/write
mechanism.

Z

z114
IBM zEnterprise 114

z13
IBM z13

z13s
IBM z13s.

z14
IBM z14.

z196
IBM zEnterprise 196

zBC12
IBM zEnterprise BC12.

zBX
IBM zEnterprise BladeCenter Extension

zEnterprise
IBM zEnterprise System. A heterogeneous hardware infrastructure that can consist of an IBM zEnterprise
BC12, a zEnterprise EC12 (zEC12), a zEnterprise 114 (z114) or a zEnterprise 196 (z196) and an attached
IBM zEnterprise BladeCenter Extension (zBX), managed as a single logical virtualized system by the
Unified Resource Manager.

Glossary 683

684 Linux on Z and LinuxONE: Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12
SP4

Index

Special Characters
*ACCOUNT, z/VM record 379
*LOGREC, z/VM record 379
*SYMPTOM, z/VM record 379
/debug, mount point xi
/proc, mount point xi
/proc, sysinfo 457
/sys, mount point xi
/sys/kernel/debug, mount point xi

Numerics
10 Gigabit Ethernet

SNMP 257
1000Base-T Ethernet

LAN channel station 267
SNMP 257

1000Base-T, Ethernet 193
1750, control unit 95
2105, control unit 95
2107, control unit 95
3088, control unit 267, 273
3270 emulation 38
3270 terminal device driver

switching the views of 40
3270 terminals

login 37
3370, DASD 95
3380, DASD 95
3390, DASD 95
3480 tape drive 177
3490 tape drive 177
3590 tape drive 177
3592 tape drive 177
3880, control unit 95
3990, control unit 95
3DES 423
6310, control unit 95
9336, DASD 95
9343, control unit 95
9345, DASD 95

A
acceleration, in-kernel cryptography 431
access control

osasnmpd 259
access_denied

zfcp attribute (port) 148
zfcp attribute (SCSI device) 158

access_shared
zfcp attribute 158

accessibility 665
ACCOUNT, z/VM record 379
actions, shutdown 71
adapter outage 241

adapter virtualization 411
add, DCSS attribute 392
adding and removing cryptographic adapters 419
Address Resolution Protocol, See ARP
AES 431
aes_s390, kernel module 432
AF_IUCV

addressing sockets in applications 295
set up devices for addressing 294

AF_IUCV address family
features 293
set up support for 293

af_iucv, kernel module 295
AgentX protocol 257
alias

DASD attribute 127
allow_lun_scan=, kernel parameters 135
AP

devices 7
AP bus

attributes 420
AP queue 413
ap_functions

cryptographic adapter attribute 415
ap_interrupt

cryptographic adapter attribute 418
ap.domain=

kernel parameter 414
ap.poll_thread=

kernel parameter 414
API

cryptographic 421
FC-HBA 135
GenWQE zlib 352
zfcp HBA 169

app, messages 466
APPLDATA monitor records

monitoring Linux instances 359
APPLDATA, monitor stream 363
applet

emulation of the HMC Operating System Messages 43
applications

addressing AF_IUCV sockets in 295
arch

trng counter 428
ARP

proxy ARP 234
query/purge OSA-Express ARP cache 591

attributes
device 9
for CCW devices 9
for subchannels 13
qeth 208–210
setting 10

authorization
CPU-measurement counter facility 442

auto-detection

 685

auto-detection (continued)
DASD 104

autoconfiguration, IPv6 201
automatic problem reporting

activating 455
autopurge, z/VM recording attribute 382
autorecording, z/VM recording attribute 381
auxiliary kernel 19
availability

common CCW attribute 9
DASD attribute 109

avg_*, cmf attributes 438, 439
avg_control_unit_queuing_time, cmf attribute 439
avg_device_active_only_time, cmf attribute 439
avg_device_busy_time 439
avg_device_busy_time, cmf attribute 439
avg_device_connect_time, cmf attribute 439
avg_device_disconnect_time, cmf attribute 439
avg_function_pending_time, cmf attribute 439
avg_initial_command_response_time, cmf attribute 439
avg_sample_interval, cmf attribute 439
avg_utilization, cmf attribute 439

B
base name

network interfaces 4
block_size_bytes, memory attribute 317
blocksize, tape attribute 182
book_siblings

CPU sysfs attribute 310
boot configuration

module parameters 22
boot devices 48
boot loader 47
boot loader code 49
boot menu

DASD, HMC example 49
booting Linux

troubleshooting 463
bridge_hostnotify, qeth attribute 205
bridge_invisible, qeth attribute 238
bridge_role, qeth attribute 205, 236
bridge_state, qeth attribute 205
broadcast forwarding 238
buffer_count, qeth attribute 215
buffer, CPU-measurement sampling facility 443
buffer, CTCM attribute 278
buffer, IUCV attribute 288
bus ID 9
byte_counter

prandom attribute 424
trng attribute 428

C
cachesize=, module parameters 341
Call Home

callhome attribute 455
callhome

Call Home attribute 455
capability change, CPU 308
card_type, qeth attribute 216

card_version, zfcp attribute 139
case conversion 43
CBC 431
CCA coprocessor 409
CCW

channel measurement facility 437
common attributes 9
devices 7
group devices 7
hotplug events 17
setting attributes 470
setting devices online/offline 470

CCW terminal device
switching on- or offline 40

CD-ROM, loading Linux 58
Central Processor Assist for Cryptographic Function, See
CPACF
CEX3A (Crypto Express3) 409
CEX3C (Crypto Express3) 409
CEX4A (Crypto Express4S) 409
CEX4C (Crypto Express4S) 409
CEX4P (Crypto Express4S) 409
CEX5A (Crypto Express5S) 409
CEX5C (Crypto Express5S) 409
CEX5P (Crypto Express5S) 409
CEX6A (Crypto Express6S) 409
CEX6C (Crypto Express6S) 409
CEX6P (Crypto Express6S) 409
change, CPU capability 308
channel measurement facility

cmb_enable attribute 438
features 437
kernel parameters 437
read-only attributes 438

channel path
changing status 472
determining usage 461
ensuring correct status 461
list 544

channel path availability
planned changes 461
unplanned changes 461

channel path ID 14
channel path measurement 13
channel subsystem view 12
channel-attached tape 177
chccwdev 10
chccwdev, Linux command 470
chchp, Linux command 472
chcpu, Linux command 307
chcpumf, Linux command 474
checksum

inbound 221
outbound 222

CHID
mapping physical to virtual 16

Chinese-Remainder Theorem 409
chiucvallow, Linux command 35
chmem, Linux command 475
CHPID

in sysfs 14
map to PCHID 16
online attribute 14, 15

chpids, subchannel attribute 13

686

chreipl, Linux command 476
chshut, Linux command 480
chunksize

prandom attribute 424
chunksize=, module parameters 423
chzcrypt, Linux command 482
chzdev, Linux command 484
cio_ignore

disabled wait 462
cio_ignore, Linux command 490
cio_ignore, procfs interface 645
cio_ignore=, kernel parameter 644
clock synchronization

enabling and disabling 333
switching on and off 333

cm_enable
channel subsystem sysfs attribute 13

cmb_enable
cmf attribute 438
common CCW attribute 9
tape attribute 182

cmd=, module parameters 338
cmf.format=, kernel parameter 437
cmf.maxchannels=, kernel parameter 437
cmm

avoid swapping with 361
background information 361

CMM
unload module 462

cmm, kernel module 405
CMMA 648
cmma=, kernel parameter 648
CMS disk layout 99
CMS1 labeled disk 99
cmsfs-fuse, Linux command 493
code page

for x3270 38
Collaborative Memory Management Assist 648
collecting QETH performance statistics 224
command

qetharp 591
commands, Linux

chccwdev 470
chchp 472
chcpu 307
chcpumf 474
chiucvallow 35
chmem 475
chreipl 476
chshut 480
chzcrypt 482
cio_ignore 490
cmsfs-fuse 493
cpacfstats 497
cpuplugd 499, 500
dasdfmt 508
dasdstat 512
dasdview 514
dmesg 5
dumpconf 71
fdasd 524
genwqe_echo 347
genwqe_gunzip 347
genwqe_gzip 347

commands, Linux (continued)
gunzip 349
gzip 349
hmcdrvfs 531
hyptop 534
icainfo 469
icastats 469
ifconfig 4
iucvconn 36
iucvtty 36
lschp 544
lscpu 307
lscpumf 546
lscss 549
lsdasd 552
lshmc 555
lsluns 556
lsmem 559
lsqeth 561
lsreipl 562
lsscm 563
lsshut 565
lstape 566
lszcrypt 569
lszfcp 577
mon_fsstatd 579
mon_procd 584
qetharp 591
qethconf 593
qethqoat 596
readlink 5
scsi_logging_level 599
sg_inq 566
sncap 609
snipl 75
stonith 91
tape390_crypt 615
tape390_display 619
tar 349
time 349
tunedasd 621
vmconvert 631
vmcp 625
vmur 627
yast xi
zdsfs 635
zfcp_disk_configure 135
zfcp_host_configure 135
zfcp_ping 171
zfcp_show 171
znetconf 640

commands, z/VM
sending from Linux 625

communication facility
Inter-User Communication Vehicle 293

compatible disk layout 97
compression

GenWQE 345
compression, tape 183
conceal=, module parameters 338
CONFIG_FUSE_FS 635
configuration file

CPU control 501
cpuplugd 507

 687

configuration file (continued)
memory control 502

configure LPAR I/O devices 461
configuring standby CPU 308
conmode=, kernel parameter 33
connection, IUCV attribute 287
ConnectX-3 EN 301
ConnectX-4 301
console

definition 28
device names 29
device nodes 30
mainframe versus Linux 28

console device driver
kernel parameter 34
overriding default driver 33
restricting access to HVC terminal devices 35
SCLP line-mode buffer page reuse 34
SCLP line-mode buffer pages 35
specifying preferred console 34
specifying the number of HVC terminal devices 35

console device drivers
device and console names 29
features 27
terminal modes 30

console=, kernel parameter 34
control characters 41
control program identification 451
control unit

1750 95
2105 95
2107 95
3880 95
3990 95
6310 95
9343 95

controlling automatic port scans 146
cooperative memory management

set up 405
coprocessor, cryptographic 409
core 307
core_siblings

CPU sysfs attribute 310
CP Assist for Cryptographic Function 423
CP commands

send to z/VM hypervisor 625
VINPUT 45

CP Error Logging System Service 379
CP VINPUT 45
CP1047 493
CPACF

in-kernel cryptography 431
protected key 429
support modules, in-kernel cryptography 432

cpacfstats, Linux command 497
cpc_name attribute 335
CPI

set attribute 453
sysplex_name attribute 451
system_level attribute 452
system_name attribute 451
system_type attribute 452

CPI (control program identification) 451
CPU

CPU (continued)
managing 307

CPU capability change 308
CPU capacity

manage 609
CPU configuration 497, 499
CPU control

complex rules 505
configuration file 501

CPU hotplug
sample configuration file 507

CPU hotplug rules 503
CPU sysfs attribute

book_siblings 310
core_siblings 310
dispatching 311
drawer_siblings 310
online 309
polarization 311
thread_siblings 310

CPU sysfs attributes
location of 307

CPU-measurement counter facility 441, 445
CPU-measurement facilities

chcpumf command 474
lscpumf command 546

CPU-measurement sampling facility
buffer limits 443

CPU, configuring standby 308
CPU, state 308
cpuplugd

complex rules 505
configuration file 507
service utility syntax 499

cpuplugd, Linux command 499, 500
cpustat

cpuplugd keywords
use with historical data 505

CRT 409
Crypto Express3 409
Crypto Express4 409
Crypto Express4S 409
Crypto Express5 409
Crypto Express6S 409
cryptographic

request processing 411
cryptographic adapter

attributes 415
cryptographic adapters

adding and removing dynamically 419
detection 411

cryptographic configuration 482, 569
cryptographic coprocessor 409
cryptographic device

Linux 413
LPAR 412
z/VM 412

cryptographic device driver
API 421
features 409
hardware and software prerequisites 410
setup 413
See also z90crypt

cryptographic device nodes 411

688

cryptographic domain
control 412
usage 412

cryptographic sysfs attribute
depth 415
modalias 415
poll_thread 417
request_count 415
type 415

csulincl.h 421
CTC

activating an interface 279
CTC interface

recovery 280
CTC network connections 274
CTCM

buffer attribute 278
device driver 273
group attribute 275
online attribute 277
protocol attribute 277
subchannels 273
type attribute 276
ungroup attribute 276

CTR 431
cutype

common CCW attribute 9
tape attribute 182

D
DASD

access by bus-ID 103
access by VOLSER 102
alias attribute 127
availability attribute 109
boot menu, HMC example 49
booting from 49, 54, 56
boxed 109
CMS disk layout 99
compatible disk layout 97
control unit attached devices 95
device driver 95
device names 100
discipline attribute 127
disk layout summary 100
displaying information 514
displaying overview 552
eer_enabled attribute 111
erplog attribute 113
expires attribute 115
extended error reporting 95
failfast attribute 114
features 95
forcing online 109
formatting ECKD 508
High Performance FICON 119
host_access_count attribute 126
hpf attribute 125
last_known_reservation_state attribute 123
Linux disk layout 99
module parameter 104
online attribute 112, 113
partitioning 524, 534

DASD (continued)
partitions on 96
path_interval attribute 124
path_threshold attribute 124
PAV 119
performance statistics 512
performance tuning 621
raw_track_access attribute 120
readonly attribute 128
reservation_policy attribute 122
safe_offline attribute 112
statistics 116
status attribute 128
timeout attribute 115, 129
uid attribute 129
use_diag attribute 110, 129
vendor attribute 129
virtual 95
volume label 97

dasd=
module parameter 104

dasdfmt, Linux command 508
dasdstat, Linux command 512
dasdview, Linux command 514
data

compression 345
data consistency checking, SCSI 166
data integrity extension 166
data integrity field 166
dbfsize=, module parameters 135
DCSS

access mode 394
add attribute 392
adding 392
device driver 389
device names 389
device nodes 389
exclusive-writable mode 389
minor number 393
performance monitoring using 360
remove attribute 396
save attribute 395
saving with properties 395
seglist attribute 393
shared attribute
with options 390

dcssblk.segments=, module parameter 390
deactivating a qeth interface 220
debug feature 362
decompression, GenWQE 345
decryption 409
default_hugepagesz=, kernel parameters 321
delete

zfcp sysfs attribute 165
delete, zfcp attribute 165
depth

cryptographic adapter attribute 415
des_s390, kernel module 432
determine channel path usage 461
developerWorks 1, 25, 93, 191, 305, 357, 407, 447, 467
device bus-ID

of a qeth interface 218
device driver

crypto 409

 689

device driver (continued)
CTCM 273
DASD 95
DCSS 389
Generic Work Queue Engine 345
HiperSockets 193
HMC media 341
internal shared memory 303
LCS 267
mlx4_en 301
monitor stream application 369
NETIUCV 285
OSA-Express (QDIO) 193
overview 8
PCIe 353
protected key 429
pseudo-random number 423
qeth 193
SCLP_ASYNC 455
SCSI-over-Fibre Channel, See zfcp
smsgiucv_app 401
storage-class memory 173
tape 177
true random number 427
vmcp 399
vmur 387
watchdog 337
XPRAM 187
z/VM *MONITOR record reader 373
z/VM recording 379
z90crypt 409

device drivers
support of the FCP environment 131

device names
console 29
DASD 100
DCSS 389
random number 423
storage-class memory 173
tape 177, 178
vmur 387
XPRAM 187
z/VM *MONITOR record 373
z/VM recording 379

device node
prandom, non-root users 424

device nodes
console 30
DASD 101
DCSS 389
GenWQE 347
random number 423
SCSI 133
storage-class memory 173
tape 179
vmcp 399
vmur 387
watchdog 337
z/VM *MONITOR record 373
z/VM recording 379
z90crypt 414
zfcp 133

device numbers 3
device special file, See device nodes

device view
by category 11
by device drivers 11

device_blocked
zfcp attribute (SCSI device) 159

devices
alias 127
attributes 9
base 127
corresponding interfaces 5
ignoring 644
in sysfs 9
initialization errors 10
working with newly available 10

devs=, module parameter 188
devtype

common CCW attribute 9
tape attribute 182

dhcp 253
DHCP

required options 253
dhcpcd 253
DIAG

access method 110
DIAG access method

for ECKD 100
for FBA 100

DIAG call 663
diag288 watchdog

device driver 337
diagnose call 663
diagnosis

using XPRAM 188
DIF 166
dif=, kernel parameters 135
Direct Access Storage Device, See DASD
Direct SNMP 257
disabled wait

booting stops with 463
cio_ignore 462

discipline
DASD attribute 127

discontiguous saved segments, See DCSS
disk layout

CMS 99
LDL 99
s Systems compatible 97
summary 100

dispatching
CPU sysfs attribute 311

displaying information
FCP channel and device 139

DIX 166
dmesg 5
Doc Buddy 466
domain, cryptographic 411
drawer_siblings

CPU sysfs attribute 310
drivers, See device driver
dsn

metadata file attribute 635
dsorg

metadata file attribute 635
dump

690

dump (continued)
creating automatically after kernel panic 463

dump file
receive and convert 632

dumpconf, Linux command 71
dumped_frames, zfcp attribute 141
DVD drive, HMC 341
DVD, loading Linux 58
Dynamic Host Configuration Protocol, See DHCP
dynamic routing, and VIPA 241

E
EADM subchannels

list 174
working with 174

EBCDIC
conversion through cmsfs-fuse 493
kernel parameters 49

ECB 431
ECKD

devices 95
disk layout summary 100
raw_track_access attribute 120

ECKD type DASD
preparing for use 107

edit characters, z/VM console 45
EEDK 615
eer_enabled

DASD attribute 111
EKM 615
emu_nodes=, kernel parameters 314
emu_size=, kernel parameters 314
emulation of the HMC Operating System Messages applet 43
enable, qeth IP takeover attribute 231
encoding 493
encryption

RSA exponentiation 409
encryption key manager 615
end-of-line character 44
end-to-end data consistency, SCSI 166
Enterprise PKCS#11 409
Enterprise Storage Server 95
environment variable 402
environment variables

for CP special messages 402
TERM 36
ZLIB_CARD 348
ZLIB_DEFLATE_IMPL 348
ZLIB_INFLATE_IMPL 348
ZLIB_TRACE 348

EP11 409
EP11 coprocessor 409
erplog, DASD attribute 113
Error Logging System Service 379
error_frames, zfcp attribute 141
errorflag

prandom attribute 424
escape character

for terminals 44
ESS 95
Ethernet

interface name 200
interface name for LCS 268

Ethernet (continued)
LAN channel station 267

etr
online attribute 333

ETR 331, 333
etr=

kernel parameter 332
etr=, kernel parameter 332
exclusive-writable mode

DCSS access 389
expanded memory 187
expires, DASD attribute 115
extended error reporting

DASD 111
extended error reporting, DASD 95
extended remote copy 331
external encrypted data key 615
external time reference 331

F
failed

zfcp attribute (channel) 143
zfcp attribute (port) 149

failfast, DASD attribute 114
fake_broadcast, qeth attribute 230
Fast Ethernet

LAN channel station 267
FBA

disk layout summary 100
FBA devices 95
FBA type DASD

preparing for use 109
FC-HBA 135
FC-HBA API functions 169
FCP

channel 131
debugging 135
device 131
traces 135

FCP channel
displaying information 139

FCP device
displaying information 139

FCP devices
listing 168
status information 145
sysfs structure 132

FCP environment 131
fcp_control_requests zfcp attribute 141
fcp_input_megabytes zfcp attribute 141
fcp_input_requests zfcp attribute 141
fcp_lun

zfcp attribute (SCSI device) 159
fcp_output_megabytes zfcp attribute 141
fcp_output_requests zfcp attribute 141
fdasd

menu commands 526
menu example 528
options, example 530

fdasd menu 526
fdasd, Linux command 524
fdisk command 134
Federal Information Processing Standard 431, 649

 691

Fibre Channel 131
Field Programmable Gate Array 345
file system

hugetlbfs 321
file systems

cmsfs-fuse for z/VM minidisk 493
sysfs 7
XFS 167
zdsfs for z/OS DASD 635

FIPS 431
fips=, kernel parameter 649
Flash Express memory 173
flooding, qeth attribute 238
for performance measuring 435
formatting 107
FPGA 345
FTP server, loading Linux 58
full ECKD tracks 120
full-screen mode terminal 36
function_handle

PCIe attribute 355
function_id

PCIe attribute 355

G
GB xi
Generic Work Queue Engine, See GenWQE
GenWQE

environment variables 348
Java acceleration 345
load distribution 347

genwqe_echo, command 347
genwqe_gunzip, command 347
genwqe_gzip, command 347
genwqe-zlib, RPM 347
genwqe, RPM 347
getxattr 493, 635
GHASH 431
ghash_s390, kernel module 432
giga xi
Gigabit Ethernet

SNMP 257
group

CTCM attribute 275
LCS attribute 268
qeth attribute 211

group devices
CTCM 273
LCS 267
qeth 199

GRUB 2 19, 47, 60
guest console transcript

vmur command 632
guest LAN sniffer 255
guest memory dump

vmur command 632
guest swapping 462
gunzip, command 349
gzip, command 349

H
hardware

random number 427
service level 462

hardware counter
reading with perf tool 442

hardware facilities 435
hardware information 457, 458
Hardware Management Console, See HMC
hardware status, z90crypt 417
hardware_version, zfcp attribute 139
hardware-acceleration, in-kernel cryptography 431
HBA API

developing applications that use 169
functions 169
running applications that use 170

HBA API support
zfcp 169

hba_id
zfcp attribute (SCSI device) 159

high availability project 91
High Performance FICON 119
High Performance FICON, suppressing 105
high resolution polling timer 482
HiperSockets

bridge port 205
device driver 193
interface name 200
network traffic analyzer 254

HiperSockets Network Concentrator 249
historical data

cpuplugd keywords 505
HMC

as terminal 38
definition 29
for booting Linux 48
Integrated ASCII console applet 31
Operating System Messages applet 31
using in LPAR 31
using on z/VM 31

HMC DVD drive 342, 343
HMC media

list media contents 555
mount media 531

HMC media, device driver 341
HMC Operating System Messages applet

emulation of the 43
HMC removable media

assign to LPAR 342
hmc_network attribute 335
hmcdrvfs, kernel module 341
hmcdrvfs, Linux command 531
host_access_count

DASD attribute 126
hotplug

adding memory 318
CCW devices 17
memory 315

hotplug memory
defining to LPAR 316
defining to z/VM 316
in sysfs 315
large pages 322

692

hotplug memory (continued)
reboot 316

hotplug rules
CPU 503
memory 504

hpf
DASD attribute 125

hsuid, qeth attribute 235
hugepages=, kernel parameters 321
hugetlbfs

virtual file system 321
HVC device driver 32
hvc_iucv_allow=, kernel parameter 35
hvc_iucv=, kernel parameter 35
hw_trap, qeth attribute 226
hwrng

trng counter 428
hwtype

cryptographic adapter attribute 415
Hyper-Threading 307
HyperPAV 119
hypervisor

service level 462
hypervisor capability 459
hypervisor information 458
hypfs 325
hyptop

select data 536
sort data 537
units 539

hyptop command
z/VM fields 538

hyptop, Linux command 534

I
IBM compatible disk layout 97
IBM Doc Buddy 466
IBM Java 350
IBM label partitioning scheme 96
IBM TotalStorage Enterprise Storage Server 95
ica_api.h 421
icainfo, Linux command 469
icastats, Linux command 469
IDRC compression 183
if_name

qeth attribute 218
IFCC 124
ifconfig 4
Improved Data Recording Capability compression 183
in_recovery

zfcp attribute (channel) 143
zfcp attribute (port) 148, 149
zfcp attribute (SCSI device) 158

in_recovery, zfcp attribute 140
in-kernel cryptography 431
inbound checksum

offload operation 221
inbound checksum, qeth 221
Initial Program Load, See IPL
initial RAM disk 49
initrd

module parameters 22
Integrated ASCII console applet

Integrated ASCII console applet (continued)
on HMC 31

Inter-User Communication Vehicle 285
interface

MTIO 179
network 4

interface control check 124
interface names

ctc 274
IUCV 287
LCS 268
mpc 274
overview 4
qeth 200, 218
storage-class memory 173
versus devices 5
vmur 387

interfaces
CTC 274
FC-HBA 135

internal shared memory
device driver 303

interrupt
cryptographic device attribute 418

invalid_crc_count zfcp attribute 141
invalid_tx_word_count zfcp attribute 141
iocounterbits

zfcp attribute 159
ioctl

protected key device driver 430
iodone_cnt

zfcp attribute (SCSI device) 159
ioerr_cnt

zfcp attribute (SCSI device) 159
iorequest_cnt

zfcp attribute (SCSI device) 159
IP address

confirming 219
duplicate 220
takeover 231
virtual 235

IP address takeover, activating and deactivating 232
ip-link

command 247
ipa_takeover, qeth attributes 231
IPL

displaying current settings 562
IPL devices

for booting 48
IPv6

stateless autoconfiguration 201
support for 201

ISM
device driver 303

ISO-8859-1 493
isolation, qeth attribute 222
IUCV

accessing terminal devices over 39
activating an interface 289
authorizations 294
buffer attribute 288
connection attribute 287
devices 286
direct and routed connections 285

 693

IUCV (continued)
enablement 294
maximum number of connections 294
OPTION MAXCONN 294
remove attribute 290
user attribute 288
z/VM enablement 286

iucvconn
set up a z/VM guest virtual machine for 36
using on z/VM 32

iucvtty 36
iucvtty, Linux command 36

J
Java, GenWQE 345
Java, GenWQE acceleration 350
journaling file systems

write barrier 109

K
KB xi
KEK 615
kernel cryptographic API 431
kernel messages

z Systems specific 465
kernel module

aes_s390 432
af_iucv 295
appldata_mem 363
appldata_net_sum 363
appldata_os 363
cmm 405
ctcm 275
dasd_diag_mod 105
dasd_eckd_mod 105
dasd_fba_mod 105
dasd_mod 104
dcssblk 390
des_s390 432
ghash_s390 432
hmcdrvfs 341
lcs 268
monreader 375
monwriter 369
pkey 429
qeth 207
qeth_l2 207
qeth_l3 207
sclp_async 455
sha_256 432
sha_512 432
sha1_s390 432
tape_34xx 180
tape_3590 180
vmlogrdr 380
vmur 387
watchdog 338
xpram 188
zfcp 135

kernel panic
creating dump automatically after 463

kernel parameter
etr= 332

kernel parameter file
for z/VM reader 21

kernel parameter line
length limit for booting 20
module parameters 22

kernel parameters
allow_lun_scan= 135
ap.domain= 414
ap.poll_thread= 414
channel measurement facility 437
cio_ignore= 644
cmf.format= 437
cmf.maxchannels= 437
cmma= 648
conmode= 33
console= 34
default_hugepagesz= 321
dif= 135
emu_nodes= 314
emu_size= 314
fips= 649
general 643
hugepages= 321
hvc_iucv_allow= 35
hvc_iucv= 35
maxcpus= 650
no_console_suspend 67
noresume 67
nosmt 651
numa_balancing= 314
numa_debug 314
numa= 314
pci= 353
possible_cpus= 652
ramdisk_size= 653
reboot 21
resume= 67
ro 654
root= 655
sched_debug 314
sclp_con_drop= 34
sclp_con_pages= 35
smt= 656
specifying 19
stp= 333
vdso= 657
vmhalt= 658
vmpanic= 659
vmpoff= 660
vmreboot= 661

kernel source tree x
kernel-default-man 465
key encrypting key 615
kilo xi

L
LAN

sniffer 254
z/VM guest LAN sniffer 255

LAN channel station, See LCS
LAN, virtual 245

694

lancmd_timeout, LCS attribute 270
large page support

change number of 322
display information about 322
read current number of 322

large pages
hotplug memory 322

last_known_reservation_state, DASD attribute 123
layer 2

qeth discipline 199
layer 3

qeth discipline 199
layer2

qeth attribute 212
layer2, qeth attribute 202
lcs

recover attribute 271
LCS

activating an interface 271
device driver 267
group attribute 268
interface names 268
lancmd_timeout attribute 270
online attribute 270
subchannels 267
ungroup attribute 269

LCS device driver
setup 268

LDL disk layout 99
learning_timeout, qeth attribute 238
learning, qeth attribute 238
LGR 362
libcard, GenWQE 345
libfuse

package 493, 635
libHBAAPI2-devel 169
libica 410
libzfcphbaapi0 170
libzfcphbaapi0, package 170
libzHW 345
lic_version, zfcp attribute 139
line edit characters, z/VM console 45
line-mode terminal

control characters 41
special characters 41

link_failure_count, zfcp attribute 141
Linux

as LAN sniffer 254
Linux commands

generic options 469
Linux device special file, See device nodes
Linux guest relocation 362
Linux in LPAR mode, booting 53
Linux on z/VM

booting 49
reducing memory of 361

lip_count, zfcp attribute 141
list media contents 342
listxattr 493, 635
LNX1 labeled disk 99
load balancing and VIPA 243
LOADDEV 51
LOADNSHR operand

DCSS 389

log file, osasnmpd 263
log information

FCP devices 145
logging

I/O subchannel status 449
LOGREC, z/VM record 379
loss_of_signal_count, zfcp attribute 141
loss_of_sync_count, zfcp attribute 141
lost DASD reservation 122
LPAR

configuration
storage-class memory 173

hardware counters 442
I/O devices, configuring 461

LPAR configuration 173
LPAR Linux, booting 53
LPARs

list using snipl 82
lrecl

metadata file attribute 635
lschp, Linux command 544
lscpu, Linux command 307
lscpumf, Linux command 546
lscss, Linux command 174, 549
lsdasd, Linux command 552
lshmc, Linux command 555
lsluns, Linux command 556
lsmem, Linux command 559
lsqeth

command 218
lsqeth, Linux command 561
lsreipl, Linux command 562
lsscm, Linux command 175, 563
lsshut, Linux command 565
lstape, Linux command 566
lszcrypt, Linux command 569
lszdev, Linux command 572
lszfcp, Linux command 577
LUNs

finding available 168
LVM 175

M
MAC

address learning 238
MAC addresses 201
MAC header

layer2 for qeth 202
magic sysrequest functions

procfs 42
major number

DASD devices 100
tape devices 178
XPRAM 187

man pages, messages 465
manage

CPU capacity 609
management information base 257
max_bufs=, module parameters 369
maxcpus=, kernel parameter 650
maxframe_size

zfcp attribute 140
MB xi

 695

mcast_flooding, qeth attribute 238
measurement

channel path 13
measurements

PCIe attribute 356
Media Access Control (MAC) addresses 201
Medium Access Control (MAC) header 202
medium_state, tape attribute 183
mega xi
Mellanox

ConnectX-3 EN 301
ConnectX-4 301

memory
adding hotplug 318
block_size_bytes attribute 317
displaying 559
Flash Express 173
guest, reducing 361
hotplug 315
setting online and offline 475
state attribute 317
storage-class 173

memory blocks
in sysfs 315

memory control
complex rules 505
configuration file 502

memory hotplug
sample configuration file 507

memory hotplug rules 504
memory, expanded 187
menu configuration

z/VM example 49
messages

z Systems specific kernel 465
messages app 466
metadata file for z/OS DASD 635
MIB (management information base) 257
minor number

DASD devices 100
DCSS devices 393
tape devices 177, 178
XPRAM 187

mlc4_core 301
mlx4

debugging 302
mlx4_en

device driver 301
mlx4, debug 302
mlx5_core 301
modalias

cryptographic adapter attribute 415
mode

prandom attribute 424
mode terminal

full-screen 36
model

zfcp attribute (SCSI device) 159
modprobe 22
module

mlx4_core 301
mlx4_en 301
mlx5_core 301
mlx5_ib 301

module (continued)
parameters 23
rds_rdma 301

module parameters
boot configuration 22
cachesize= 341
chunksize= 423
cmd= 338
conceal= 338
dasd= 104
dbfsize= 135
dcssblk.segments= 390
devs= 188
kernel parameter line 22
max_bufs= 369
mode=

module parameters 423
mondcss= 375
nowayout= 338
queue_depth= 135
reseed_limit= 423
scm_block= 174
sender= 401
sizes= 188
XPRAM 188

modules
qeth, removing 207

modulus-exponent 409
mon_fsstatd

command-line syntax 580
monitor data, processing 581
monitor data, reading 582

mon_fsstatd, command 579
mon_procd

command-line syntax 585
mon_procd, command 584
mon_statd

service utility syntax 579
mondcss=, module parameters 375
monitor data

read 360
monitor stream

module activation 364
on/off 363
sampling interval 364

monitor stream application
device driver 369

monitoring
z/VM performance 359

monitoring Linux instances 359
mount media contents 343
mount point

debugfs xi
procfs xi
sysfs xi

mt_st, package 183
MTIO interface 179
MTU

IUCV 288
qeth 218

multicast forwarding 238
multicast_router, value for qeth router attribute 228
multiple subchannel set 11
multithreading 307

696

N
name

devices, See device names
network interface, See base name

names
DASD 100

net-snmp
package 257

NETIUCV
device driver 285

network
interface names 4

network concentrator
examples 251

Network Concentrator 249
network interfaces 4
network traffic analyzer

HiperSockets 254
no_console_suspend, kernel parameters 67
no_prio_queueing 213
no_router, value for qeth router attribute 228
node_name

zfcp attribute 140
zfcp attribute (port) 148

node, device, See device nodes
non-operational terminals

preventing re-spawns for 37
non-priority commands 43
non-rewinding tape device 177
noresume, kernel parameters 67
nos_count, zfcp attribute 141
nosmt, kernel parameter 651
nowayout=, module parameters 338
NPIV

example 144
FCP channel mode 144
for FCP channels 135
removing SCSI devices 165

NUMA emulation 313
numa_balancing=, kernel parameters 314
numa_debug, kernel parameters 314
numa=, kernel parameters 314

O
object ID 257
offline

CHPID 14, 15
devices 9

offload operations
inbound checksum 221
outbound checksum 221

OID (object ID) 257
online

CHPID 14, 15
common CCW attribute 9
CPU attribute 309
cryptographic adapter attribute 417
CTCM attribute 277
DASD attribute 112, 113
etr attribute 333
LCS attribute 270
qeth attribute 217

online (continued)
stp attribute 333
tape attribute 181, 182
TTY attribute 40
zfcp attribute 138

Open Source Development Network, Inc. 257
openCryptoki, library 421
Operating System Messages applet

emulation of the HMC 43
on HMC 31

operation, tape attribute 182
OPTION MAXCONN 294
optional properties

DCSS 390
OSA-Express

device driver 193
LAN channel station 267
SNMP subagent support 257

OSA-Express MIB file 258
osasnmpd

access control 259
checking the log file 263
master agent 257
package 257
setup 258
starting the subagent 262
stopping 265
subagent 257

osasnmpd, OSA-Express SNMP subagent 257
OSDN (Open Source Development Network, Inc.) 257
outbound checksum

offload operation 221
outbound checksum, qeth 222
overlap with guest storage 374

P
page pool

static 361
timed 361

parallel access volume (PAV) 127
parameter

kernel and module 19
parameters, GRUB 2 60
partition

on DASD 96
schemes for DASD 96
table 98
XPRAM 187

partitioning
SCSI devices 134

path_interval
DASD attribute 124

path_threshold
DASD attribute 124

PAV (parallel access volume) 127
PAV enablement, suppression 105
pchid

PCIe attribute 355
PCHID

map to CHPID 16
pci=, kernel parameter 353
PCIe

device driver 353

 697

PCIe (continued)
function_handle attribute 355
function_id attribute 355
pchid attribute 355
pfgid attribute 355
pfip attribute 355
power attribute 354
recover attribute 354
set up 353
statistics attribute 356
uid attribute 355
util_string attribute 355
vfn attribute 355

peer_d_id, zfcp attribute 140
peer_wwnn, zfcp attribute 140
peer_wwpn, zfcp attribute 140
pendingq_count

cryptographic adapter attribute 416
perf tool

reading a hardware counter 442
reading sample data 443

performance
CPU-measurement counter facility 441
DASD 116, 512

performance measuring
with hardware facilities 435

performance monitoring
z/VM 359

performance statistics, QETH 224
Peripheral Component Interconnect 353
permanent_port_name, zfcp attribute 140, 144
permissions

S/390 hypervisor file system 328
pfgid

PCIe attribute 355
pfip

PCIe attribute 355
physical channel ID

for CHPID 16
physical_s_id, zfcp attribute 144
pimpampom, subchannel attribute 13
PKCS #11 409
pkey, kernel module 429
PNET ID 303
polarization

CPU sysfs attribute 311
poll thread

enable using chcrypt 482
poll_thread

AP bus 420
cryptographic adapter attribute 417

poll_timeout
cryptographic adapter attribute 418
set using chcrypt 482

port scan
controlling 146

port_id
zfcp attribute (port) 148

port_id, zfcp attribute 140
port_name

zfcp attribute (port) 148
port_name, zfcp attribute 140
port_remove, zfcp attribute 150
port_rescan, zfcp attribute 145

port_scan_backoff 146
port_scan_ratelimit 146
port_state

zfcp attribute (port) 148
port_type, NPIV 151
port_type, zfcp attribute 140
portno, qeth attribute 216
ports

listing 168
possible_cpus=, kernel parameter 652
power attribute

PCIe 354
power/state attribute 68
prandom

access to 424
byte_counter attribute 424
chunksize attribute 424
errorflag attribute 424
mode attribute 424

preferred console 34
preparing ECKD 107
preparing FBA 109
prerequisites 1, 25, 93, 191, 305, 357, 407, 447, 467
pri=, fstab parameter 67
prim_seq_protocol_err_count, zfcp attribute 141
primary_connector, value for qeth router attribute 228
primary_router, value for qeth router attribute 228
prio_queueing_prec 213
prio_queueing_skb 213
prio_queueing_tos (deprecated) 213
prio_queueing_vlan 213
prio_queueing, value for qeth priority_queueing attribute 214
priority command 43
priority_queueing, qeth attribute 213
prng

reseed 426
reseed_limit 425

processors
cryptographic 7

procfs
appldata 363
cio_ignore 645
magic sysrequest function 42
VLAN 247

programming interfaces
protected key device driver 430

promiscuous mode 205
protected key 429
protected key device driver

programming interfaces 430
protocol, CTCM attribute 277
proxy ARP 234
proxy ARP attributes 210
pseudo-random number

device driver 423
device names 423
device nodes 423

pseudorandom number device driver
setup 423

PSW
disabled wait 463

purge, z/VM recording attribute 382
PVMSG 43

698

Q
qclib 458
QDIO 199
qeth

activating an interface 218
activating and deactivating IP addresses for takeover
232
auto-detection 200
bridge_hostnotify attribute 205
bridge_invisible attribute 238
bridge_role attribute 205, 236
bridge_state attribute 205
buffer_count attribute 215
card_type attribute 216
configuration tool 593
deactivating an interface 220
device driver 193
displaying device overview 561
enable attribute for IP takeover 231
fake_broadcast attribute 230
flooding attribute 238
group attribute 211
group devices, names of 199
hsuid attribute 235
hw_trap attribute 226
if_name attribute 218
ipa_takeover attributes 231
isolation attribute 222
layer 2 199
layer 3 199
layer2 attribute 202, 212
learning attribute 238
learning_timeout attribute 238
mcast_flooding attribute 238
MTU 218
online attribute 217
portno attribute 216
priority_queueing attribute 213
problem determination attribute 209
proxy ARP attributes 210
recover attribute 220
removing modules 207
route4 attribute 228
route6 attribute 228
rx_bcast attribute 238
sniffer attributes 210
subchannels 199
summary of attributes 208–210
takeover_learning attribute 238
takeover_setvmac attribute 238
TCP segmentation offload 229
ungroup attribute 212
VIPA attributes 210
vnicc attributes 238

qeth interfaces, mapping 5
QETH performance statistics 224
qetharp, Linux command 591
qethconf, Linux command 593
qethqoat, Linux command 596
query host access

DASD 126
query HPF

DASD 125

queue_depth, zfcp attribute 161
queue_depth=, module parameters 135
queue_ramp_up_period, zfcp attribute 161
queue_type

zfcp attribute (SCSI device) 159
queueing, priority 213

R
RAM disk, initial 49
ramdisk_size=, kernel parameter 653
random number

device driver 423, 427
device names 423
device nodes 423

random numbers
reading 424, 427

raw_track_access, DASD attribute 120
raw-track access mode 635
RDMA 353
rds_rdma module 301
re-IPL, examples 64
read monitor data 360
readlink, Linux command 5
readonly

DASD attribute 128
reboot

kernel parameters 21
rebuild initial RAM 49
recfm

metadata file attribute 635
record layout

z/VM 379
recording, z/VM recording attribute 381
recover

PCIe attribute 354
recover, lcs attribute 271
recover, qeth attribute 220
recovery, CTC interfaces 280
reflective relay mode 222
relative port number

qeth 216
Remote Direct Memory Access (RDMA) 353
Remote Spooling Communications Subsystem 627
Removable media, loading Linux 58
remove channel path

DASD 124
remove, DCSS attribute 396
remove, IUCV attribute 290
request processing

cryptographic 411
request_count

cryptographic adapter attribute 415
requestq_count

cryptographic adapter attribute 416
rescan

zfcp attribute (SCSI device) 163
reseed

prandom attribute 424
prng 426

reseed_limit
prandom attribute 424
prng 425

reseed_limit=, module parameters 423

 699

reservation state
DASD 123

reservation_policy, DASD attribute 122
reset_statistics

zfcp attribute 140
respawn prevention 37
restrictions 1, 25, 93, 191, 305, 357, 407, 447, 467
resume 65
resume=, kernel parameters 67
retrieving hardware information 458
reuse 188
rev

zfcp attribute (SCSI device) 159
rewinding tape device 177
RFC

1950 (zlib) 345
1951 (deflate) 345
1952 (gzip) 345

Rivest-Shamir-Adleman 409
ro, kernel parameter 654
RoCE 353
roles

zfcp attribute (port) 148
root=, kernel parameter 655
route4, qeth attribute 228
route6, qeth attribute 228
router

IPv4 router settings 227
IPv6 router settings 227

RPM
genwqe-tools 347
genwqe-zlib 347
kernel-default-man 465
libfuse 493, 635
libHBAAPI2-devel 169
libhugetlbfs 321
libica 410
libzfcphbaapi0 170
mt_st 183
net-snmp 257
openCryptoki 421
osasnmpd 257
s390-tools 469
sg3_utils 566
snipl 75, 609
src_vipa 243
util-linux 307

RSA 409
RSCS 627
rx_bcast, qeth attribute 238
rx_frames, zfcp attribute 141
rx_words, zfcp attribute 141

S
s_id, zfcp attribute 144
S/390 hypervisor file system

defining access rights 328
directory structure 325
LPAR directory structure 325
updating hypfs information 329
z/VM directory structure 326

s390_sthyi() 458
s390-tools, package 469

s390dbf 362
safe_offline

DASD attribute 112
sample_count, cmf attribute 439
sampling facility

reading data 443
save, DCSS attribute 395
sched_debug, kernel parameters 314
SCLP_ASYNC 455
SCLP_ASYNC device driver 455
sclp_con_drop=, kernel parameter 34
sclp_con_pages=, kernel parameter 35
SCM 175
scm_block=, module parameters 174
SCSI

data consistency checking 166
device nodes 133
multipath devices 134

SCSI device
automatically attached, configuring 152
configuring manually 152

SCSI devices
information in sysfs 158
partitioning 134
removing 165
sysfs structure 132

SCSI tape
lstape data 568

scsi_host_no, zfcp attribute 153
scsi_id, zfcp attribute 153
scsi_level

zfcp attribute (SCSI device) 159
scsi_logging_level, Linux command 599
scsi_lun, zfcp attribute 153
scsi_target_id

zfcp attribute (port) 148
SCSI-over-Fibre Channel 131
SCSI-over-Fibre Channel device driver 131
SCSI, booting from 54, 56
SE (Support Element) 48
secondary_connector, value for qeth router attribute 228
secondary_router, value for qeth router attribute 228
seconds_since_last_reset

zfcp attribute 140
seglist, DCSS attribute 393
segmentation offload, TCP 229
send files

vmur command 633
send files to z/VSE

vmur command 634
sender=, module parameter 401
serial_number, zfcp attribute 140
service levels

reporting to IBM Support 462
service utility

cpuplugd 499
set, CPI attribute 453
setup

LCS device driver 268
source VIPA 243
standard VIPA 241

setxattr 493
sg_inq, Linux command 566
sg3_utils, package 566

700

sha_256, kernel module 432
sha_512, kernel module 432
SHA-1 431
SHA-256 431
SHA-512

in-kernel cryptography 431
sha1_s390, kernel module 432
shared, DCSS attribute
Shoot The Other Node In The Head 91
shutdown actions 71
SIE capability 459
simple network IPL 75
Simple Network Management Protocol 257
simultaneous multithreading 307
sizes=, module parameter 188
smc_pnet, Linux command 602
smc_run, Linux command 604
smcss, Linux command 605
SMSG_ID 402
SMSG_SENDER 402
smsgiucv_app

device driver 401
SMT 307
smt=, kernel parameter 656
sncap, Linux command 609
sniffer

attributes 210
sniffer, guest LAN 255
snipl

list LPARs 82
package 75, 609

snipl, Linux command 75
SNMP 91, 257
SNMP queries 264
snmpcmd command 264
source VIPA

example 245
setup 243

special characters
line-mode terminals 41
z/VM console 45

special file
DASD 101
See also device nodes

speed, zfcp attribute 140
ssch_rsch_count, cmf attribute 438
standard VIPA

adapter outage 241
setup 241

standby CPU, configuring 308
state

sysfs attribute 317
zfcp attribute (SCSI device) 164

state attribute, power management 68
state, tape attribute 182
stateless autoconfiguration, IPv6 201
static page pool

reading the size of the 406
static page pool size

setting to avoid guest swapping 462
static routing, and VIPA 241
statistics

DASD 116, 512
PCIe attribute 356

status
DASD attribute 128

status information
FCP devices 145

status, CHPID attribute 14, 15
STHYI instruction 458
STONITH 91
stonith, Linux command 91
storage

memory hotplug 315
storage-class memory

device driver 173
device names 173
device nodes 173
displaying overview 563
working with increments 174

Store Hypervisor Information instruction 458
stp

online attribute 333
STP

sysfs interface 333
stp=, kernel parameter 333
strength

prandom attribute 424
stripe size, NUMA emulation 313
subchannel

multiple set 11
status logging 449

subchannel set ID 11
subchannels

attributes in sysfs 13
CCW and CCW group devices 7
CTCM 273
displaying overview 549
EADM 173
in sysfs 12
LCS 267
qeth 199

support
AF_IUCV address family 293

Support Element 48
supported_classes

zfcp attribute (port) 148
supported_classes, zfcp attribute 140
supported_speeds, zfcp attribute 140
suspend 65
swap partition

for suspend resume 67
priority 67

swapping
avoiding 361

symbolic_name, zfcp attribute 140
SYMPTOM, z/VM record 379
syntax diagrams 667
sysfs

channel subsystem view 12
device view 12
device view by category 11
device view by drivers 11
FCP devices 132
information about SCSI devices 158
SCSI devices 132

sysfs attribute
cm_enable 13

 701

sysfs attribute (continued)
state 317

sysinfo 457
sysplex_name, CPI attribute 451
system states

displaying current settings 565
system time 331
system time protocol 331
system_level, CPI attribute 452
system_name, CPI attribute 451
system_type, CPI attribute 452
systemd 36

T
T10 DIF 167
takeover_learning, qeth attribute 238
takeover_setvmac, qeth attribute 238
tape

blocksize attribute 182
cmb_enable attribute 182
cutype attribute 182
device names 177, 178
device nodes 179
devtype attribute 182
display support 619
displaying overview 566
encryption support 615
IDRC compression 183
loading and unloading 184
medium_state attribute 183
MTIO interface 179
online attribute 181, 182
operation attribute 182
state attribute 182
uid attribute 355

tape device driver 177
tape devices

typical tasks 180
tape390_crypt, Linux command 615
tape390_display, Linux command 619
tar command, acceleration 349
TCP segmentation offload 229
TCP/IP

ARP 204
DHCP 253
IUCV 285
point-to-point 273
service machine 274, 290, 301, 303

TDEA 423
TDES

in-kernel cryptography 431
TERM, environment variable 36
terminal

3270, switching the views of 40
accessing over IUCV 39
CCW, switching device on- or offline 40
line-mode 36
mainframe versus Linux 28
non-operational, preventing re-spawns for 37
provided by the 3270 terminal device driver 36

terminals
escape character 44

tgid_bind_type, zfcp attribute 140

thread_siblings
CPU sysfs attribute 310

time
command 349
cpuplugd keyword

use with historical data 505
time-of-day clock 331
time, command 349
timed page pool

reading the size of the 406
timed page pool size

setting to avoid guest swapping 462
timeout

DASD attribute 129
DASD I/O requests 115
zfcp attribute (SCSI device) 163

timeout for LCS LAN commands 270
timeout, DASD attribute 115
TOD clock 331
Triple Data Encryption Standard 423
triple DES 423
trng

byte_counter attribute 428
TRNG device driver

setup 427
troubleshooting 461
true random numbers

reading 427
true random-number device driver

setup 427
TTY

console devices 29
online attribute 40

ttyrun
systemd 37

tunedasd, Linux command 621
tuning automatic port scans 146
tx_frames, zfcp attribute 140
tx_words, zfcp attribute 140
type

cryptographic adapter attribute 415
zfcp attribute (SCSI device) 159

type, CTCM attribute 276

U
udev

DASD device nodes 101
handling CP special messages 402

uevent 402
uid

DASD attribute 129
PCIe attribute 355

ungroup
CTCM attribute 276
LCS attribute 269
qeth attribute 212

unit_add, zfcp attribute 152
unit_remove, zfcp attribute 165
updating information

S/390 hypervisor file system 329
USB storage, HMC 341
USB-attached storage, loading Linux 58
use_diag

702

use_diag (continued)
DASD attribute 129

use_diag, DASD attribute 110
user terminal login 36
user, IUCV attribute 288
user.dsorg

extended attribute for z/OS data set 635
user.lrecl

extended attribute for z/OS data set 635
user.recfm

extended attribute for z/OS data set 635
using SCM devices with 175
util_string

PCIe attribute 355

V
VACM (View-Based Access Control Mechanism) 259
vdso=, kernel parameter 657
vendor

DASD attribute 129
zfcp attribute (SCSI device) 159

VEPA mode 222
vfn

PCIe attribute 355
view

channel subsystem 12
device 12
device by category 11
device by drivers 11

View-Based Access Control Mechanism (VACM) 259
VINPUT

CP command 44
VIPA (virtual IP address)

attributes 210
description 235, 240
example 241
high-performance environments 243
source 243
static routing 241
usage 241

VIPA, source
setup 243

VIPA, standard
adapter outage 241
setup 241

virtual
DASD 95
IP address 235
LAN 245

virtual dynamic shared object 657
Virtual Ethernet Port Aggregator mode 222
Virtual Flash Memory 173
VLAN

configure 247
introduction to 246

VLAN (virtual LAN) 245
VLAN example

five Linux instances 248
vmconvert, Linux command 631
vmcp

device driver 399
device nodes 399

vmcp, Linux command 625

vmhalt=, kernel parameter 658
vmpanic=, kernel parameter 659
vmpoff=, kernel parameter 660
vmreboot=, kernel parameter 661
VMRM 362
VMSG 43
vmur

device driver 387
device names 387
device nodes 387

vmur command
FTP 632
guest memory dump 632
log console transcript 632
read console transcript 632
send files 633
send files to z/VSE 634
z/VM reader as IPL device 633

vmur, kernel module 387
vmur, Linux command 627
VNIC characteristics 238
vnicc, qeth attributes 238
VOL1 labeled disk 97
VOLSER 97
VOLSER, DASD device access by 102
volume label 97
Volume Table Of Contents 98
VTOC 97, 98

W
watchdog

device driver 337
device node 337
when adding DCSS 392

write barrier 109
wwpn

zfcp attribute (SCSI device) 159
wwpn, zfcp attribute 144

X
x3270 code page 38
XFS 167
XPRAM

device driver 187
diagnosis 188
features 187
module parameter 188
partitions 187

XRC, extended remote copy 331
XTS 431

Y
yast, Linux command xi

Z
z/VM

guest LAN sniffer 255
monitor stream 363
performance monitoring 359

 703

z/VM *MONITOR record
device name 373
device node 373

z/VM *MONITOR record reader
device driver 373

z/VM console, line edit characters 45
z/VM discontiguous saved segments, See DCSS
z/VM reader

booting from 52
z/VM reader as IPL device

vmur command 633
z/VM record layout 379
z/VM recording

device names 379
device nodes 379

z/VM recording device driver
autopurge attribute 382
autorecording attribute 381
purge attribute 382
recording attribute 381

z/VM spool file queues 627
z90crypt

device driver 409
device nodes 414
hardware status 417

zcrypt
kernel parameter 414

zcrypt sysfs attribute
hwtype 415

zdsfs, Linux command 635
zEDC Express 345
zfcp

access_denied attribute (port) 148
access_denied attribute (SCSI device) 158
access_shared attribute 158
card_version attribute 139
delete attribute 165
device driver 131
device nodes 133
device_blocked attribute (SCSI device) 159
dumped_frames attribute 141
error_frames attribute 141
failed attribute (channel) 143
failed attribute (port) 149
fcp_control_requests attribute 141
fcp_input_megabytes attribute 141
fcp_input_requests attribute 141
fcp_lun attribute (SCSI device) 159
fcp_output_megabytes attribute 141
fcp_output_requests attribute 141
features 131
hardware_version attribute 139
HBA API support 169
hba_id attribute (SCSI device) 159
in_recovery attribute 140
in_recovery attribute (channel) 143
in_recovery attribute (port) 148, 149
in_recovery attribute (SCSI device) 158
invalid_crc_count attribute 141
invalid_tx_word_count attribute 141
iocounterbits attribute 159
iodone_cnt attribute (SCSI device) 159
ioerr_cnt attribute (SCSI device) 159
iorequest_cnt attribute (SCSI device) 159

zfcp (continued)
lic_version attribute 139
link_failure_count attribute 141
lip_count attribute 141
loss_of_signal_count attribute 141
loss_of_sync_count attribute 141
maxframe_siz attribute 140
model attribute (SCSI device) 159
node_name attribute 140
node_name attribute (port) 148
nos_count attribute 141
online attribute 138
peer_d_id attribute 140
peer_wwnn attribute 140
peer_wwpn attribute 140
permanent_port_name attribute 140, 144
physical_s_id attribute 144
port_id attribute 140
port_id attribute (port) 148
port_name attribute 140
port_name attribute (port) 148
port_remove attribute 150
port_rescan attribute 145
port_state attribute (port) 148
port_type attribute 140
prim_seq_protocol_err_count attribute 141
queue_depth attribute 161
queue_ramp_up_period attribute 161
queue_type attribute (SCSI device) 159
rescan attribute (SCSI device) 163
reset_statistics attribute 140
rev attribute (SCSI device) 159
roles attribute (port) 148
rx_frames attribute 141
rx_words attribute 141
s_id attribute 144
scsi_host_no attribute 153
scsi_id attribute 153
scsi_level attribute (SCSI device) 159
scsi_lun attribute 153
scsi_target_id attribute (port) 148
seconds_since_last_reset attribute 140
serial_number attribute 140
speed attribute 140
state attribute (SCSI device) 164
supported_classes attribute 140
supported_classes attribute (port) 148
supported_speeds attribute 140
symbolic_name attribute 140
tgid_bind_type attribute 140
timeout attribute (SCSI device) 163
tx_frames attribute 140
tx_words attribute 140
type attribute (SCSI device) 159
unit_add attribute 152
unit_remove attribute 165
vendor attribute (SCSI device) 159
wwpn attribute 144
wwpn attribute (SCSI device) 159
zfcp_access_denied attribute (SCSI device) 160
zfcp_failed attribute (SCSI device) 162
zfcp_in_recovery attribute (SCSI device) 160, 162

zfcp HBA API 135
zfcp HBA API library 170

704

zfcp traces 135
zfcp_access_denied

zfcp attribute (SCSI device) 160
zfcp_disk_configure 165
zfcp_disk_configure, Linux command 135
zfcp_failed

zfcp attribute (SCSI device) 162
zfcp_host_configure, Linux command 135
zfcp_in_recovery

zfcp attribute (SCSI device) 160, 162
zfcp_ping 171
zfcp_show 171
zipl 47, 469
zipl boot menu 29
ZLIB_CARD, environment variable 348
ZLIB_DEFLATE_IMPL, environment variable 348
ZLIB_INFLATE_IMPL, environment variable 348
ZLIB_TRACE, environment variable 348
zlib, GenWQE 345
zlib, RFC 1950 345
znetconf, Linux command 640

 705

706

IBM®

SC34-2745-06

	Contents
	Summary of changes
	SUSE Linux Enterprise Server 12 SP4 changes
	SUSE Linux Enterprise Server 12 SP3 changes
	SUSE Linux Enterprise Server 12 SP2 changes

	About this publication
	How this document is organized
	Who should read this document
	Conventions and assumptions used in this publication
	Authority
	Using sysfs and YaST
	Terminology
	sysfs and procfs
	debugfs
	Number prefixes
	Hexadecimal numbers
	Highlighting

	Part 1. General concepts
	Chapter 1. How devices are accessed by Linux
	Device names, device nodes, and major/minor numbers
	Network interfaces
	Interface names
	Matching devices with the corresponding interfaces
	Main steps for setting up a network interface

	Chapter 2. Devices in sysfs
	Device categories
	Device directories
	Device attributes
	Setting attributes
	Working with newly available devices

	Device views in sysfs
	Device driver view
	Device category view
	Device view
	Channel subsystem view
	Subchannel attributes

	Channel path measurement
	Channel path ID information
	Setting a CHPID logically online or offline
	Configuring a CHPID on LPAR
	Finding the physical channel associated with a CHPID

	CCW hotplug events

	Chapter 3. Kernel and module parameters
	Kernel parameters
	Specifying kernel parameters
	Including kernel parameters in a boot configuration
	Adding kernel parameters when booting Linux
	How kernel parameters from different sources are combined
	Using a kernel parameter file with the z/VM reader.

	Examples for kernel parameters
	Displaying the current kernel parameter line
	Kernel parameters for rebooting

	Module parameters
	Specifying module parameters
	Specifying module parameters with modprobe
	Module parameters on the kernel parameter line

	Including module parameters in a boot configuration
	Displaying information about module parameters

	Part 2. Booting and shutdown
	Chapter 4. Console device drivers
	Console features
	What you should know about the console device drivers
	Console terminology
	Before you have a Linux terminal - boot menus
	Device and console names
	Device nodes
	Terminal modes
	How console devices are accessed
	Using the HMC for Linux in an LPAR
	Using the HMC for Linux on z/VM
	Using a 3270 terminal emulation
	Using iucvconn on Linux on z/VM

	Setting up the console device drivers
	Console kernel parameter syntax
	Setting up a z/VM guest virtual machine for iucvconn
	Setting up a line-mode terminal
	Setting up a full-screen mode terminal
	Setting up a terminal provided by the 3270 terminal device driver
	Enabling user logins
	Enabling user logins for 3270 terminals
	Preventing respawns for non-operational HVC terminals

	Setting up the code page for an x3270 emulation on Linux

	Working with Linux terminals
	Using the terminal applets on the HMC
	Accessing terminal devices over z/VM IUCV
	Switching the views of the 3270 terminal device driver
	Setting a CCW terminal device online or offline
	Entering control and special characters on line-mode terminals
	Using the magic sysrequest feature
	Activating and deactivating the magic sysrequest feature
	Triggering magic sysrequest functions from procfs

	Using a z/VM emulation of the HMC Operating System Messages applet
	Priority and non-priority commands
	Case conversion
	Using the escape character
	Using the end-of-line character
	Simulating the Enter and Spacebar keys

	Using a 3270 terminal in 3215 mode

	Chapter 5. Booting Linux
	IPL and booting
	Control point and boot medium
	Boot data
	Boot loader code
	Kernel parameters
	Initial RAM disk image
	Rebuilding the initial RAM disk image

	Booting Linux in a z/VM guest virtual machine
	Booting from a DASD
	Booting from a SCSI device
	Booting from the z/VM reader

	Booting Linux in LPAR mode
	Booting from DASD
	Booting from SCSI
	Loading Linux from removable media or from an FTP server

	Specifying GRUB 2 parameters
	Displaying current IPL parameters
	Rebooting from an alternative source
	Attributes for ccw
	Attributes for fcp
	Attributes for nss
	Kernel panic settings
	Examples for configuring re-IPL

	Chapter 6. Suspending and resuming Linux
	What you should know about suspend and resume
	Prerequisites for suspending a Linux instance
	Precautions while a Linux instance is suspended
	Handling of devices that are unavailable when resuming
	Handling of devices that become available at a different subchannel

	Setting up Linux for suspend and resume
	Kernel parameters
	Setting up a swap partition
	Updating the boot configuration
	Configuring for fast resume

	Suspending a Linux instance
	Resuming a suspended Linux instance

	Chapter 7. Shutdown actions
	The shutdown configuration in sysfs
	Configuring z/VM CP commands as a shutdown action

	Chapter 8. Remotely controlling virtual hardware - snipl
	LPAR mode
	Setting up snipl for LPAR mode
	Command line syntax (LPAR mode)
	Overview for LPAR mode
	Specifying access data for LPAR mode
	Activate, deactivate, reset, stop, or get status information
	Perform an IPL operation from a CCW device
	Perform an IPL or dump operation from a SCSI device
	List LPARs
	Emulate the Operating Systems Messages applet

	z/VM mode
	Setting up snipl for z/VM mode
	Command line syntax (z/VM mode)

	The snipl configuration file
	STONITH support (snipl for STONITH)

	Part 3. Storage
	Chapter 9. DASD device driver
	Features
	What you should know about DASD
	The IBM label partitioning scheme
	DASD partitions
	IBM Z compatible disk layout
	Volume label
	VTOC

	Linux disk layout
	CMS disk layout
	Disk layout summary
	DASD naming scheme
	DASD device nodes
	Accessing DASD by udev-created device nodes

	Setting up the DASD device driver
	Working with DASDs
	Preparing an ECKD type DASD for use
	Preparing an FBA-type DASD for use
	Accessing DASD by force
	Enabling the DASD device driver to use the DIAG access method
	Using extended error reporting for ECKD type DASD
	Setting a DASD online or offline
	Dynamic attach and detach

	Enabling and disabling logging
	Enabling and disabling immediate failure of I/O requests
	Setting the timeout for I/O requests
	Working with DASD statistics in debugfs
	Examples for gathering and reading DASD statistics in debugfs
	Interpreting the data rows
	Scenario: Verifying that PAV and HPF are used

	Accessing full ECKD tracks
	Handling lost device reservations
	Reading and resetting the reservation state
	Setting defective channel paths offline automatically
	Querying the HPF setting of a channel path
	Checking for access by other operating system instances
	Displaying DASD information

	Chapter 10. SCSI-over-Fibre Channel device driver
	Features
	What you should know about zfcp
	sysfs structures for FCP devices and SCSI devices
	SCSI device nodes
	Partitioning a SCSI device
	zfcp HBA API (FC-HBA) support
	N_Port ID Virtualization for FCP channels

	Setting up the zfcp device driver
	Working with FCP devices
	Setting an FCP device online or offline
	Displaying FCP channel and device information
	Recovering a failed FCP device
	Finding out whether NPIV is in use
	Logging I/O subchannel status information

	Working with target ports
	Scanning for ports
	Controlling automatic port scanning
	Displaying port information
	Recovering a failed port
	Removing ports

	Working with SCSI devices
	Configuring SCSI devices
	Automatically attached SCSI devices
	Manually configured FCP LUNs and their SCSI devices

	Mapping the representations of a SCSI device in sysfs
	Displaying information about SCSI devices
	Setting the queue depth
	Recovering failed SCSI devices
	Updating the information about SCSI devices
	Setting the SCSI command timeout
	Controlling the SCSI device state
	Removing SCSI devices
	Removing automatically attached SCSI devices
	Removing manually configured FCP LUNs and their SCSI device

	Confirming end-to-end data consistency checking
	Scenario for finding available LUNs
	zfcp HBA API support
	Developing applications
	Functions provided

	Getting ready to run applications
	Tools for investigating your SAN configuration

	Chapter 11. Storage-class memory device driver
	What you should know about storage-class memory
	Storage-class memory device nodes

	Setting up the storage-class memory device driver
	Working with storage-class memory increments
	Show EADM subchannels
	Listing storage-class memory increments
	Combining SCM devices with LVM

	Chapter 12. Channel-attached tape device driver
	Features
	What you should know about channel-attached tape devices
	Tape device modes and logical devices
	Tape naming scheme
	Tape device nodes
	Using the mt command

	Loading the tape device driver
	Working with tape devices
	Setting a tape device online or offline
	Displaying tape information
	Enabling compression
	Loading and unloading tapes

	Chapter 13. XPRAM device driver
	XPRAM features
	What you should know about XPRAM
	XPRAM partitions and device nodes
	XPRAM use for diagnosis
	Reusing XPRAM partitions

	Setting up the XPRAM device driver

	Part 4. Networking
	Chapter 14. qeth device driver for OSA-Express (QDIO) and HiperSockets
	Device driver functions
	What you should know about the qeth device driver
	Layer 2 and layer 3
	qeth group devices
	Overview of the steps for setting up a qeth group device
	qeth interface names and device directories
	Support for IP Version 6 (IPv6)
	MAC headers in layer 2 mode
	MAC headers in layer 3 mode
	Outgoing frames
	Incoming frames
	IP addresses
	ARP

	Layer 2 promiscuous mode

	Setting up the qeth device driver
	Loading the qeth device driver modules
	Switching the discipline of a qeth device
	Removing the modules

	Working with qeth devices
	Creating a qeth group device
	Removing a qeth group device
	Setting the layer2 attribute
	Using priority queueing
	Specifying the number of inbound buffers
	Specifying the relative port number
	Finding out the type of your network adapter
	Setting a device online or offline
	Finding out the interface name of a qeth group device
	Finding out the bus ID of a qeth interface
	Activating an interface
	Confirming that an IP address has been set under layer 3
	Duplicate IP addresses

	Deactivating an interface
	Recovering a device
	Configuring checksum offload operations
	Turning inbound checksum calculations on and off
	Turning outbound checksum calculations on and off

	Isolating data connections
	Starting and stopping collection of QETH performance statistics
	Capturing a hardware trace

	Working with qeth devices in layer 3 mode
	Setting up a Linux router
	Enabling and disabling TCP segmentation offload
	Faking broadcast capability
	Taking over IP addresses
	Stage 1: Enabling a qeth group device for IP takeover
	Stage 2: Activating and deactivating IP addresses for takeover
	IPv4 example
	IPv6 example

	Stage 3: Issuing a command to take over the address

	Configuring a device for proxy ARP
	Configuring a device for virtual IP address (VIPA)
	Configuring a HiperSockets device for AF_IUCV addressing

	Working with qeth devices in layer 2 mode
	Configuring a network device as a member of a Linux bridge
	Advanced packet-handling configuration

	Scenario: VIPA – minimize outage due to adapter failure
	Standard VIPA
	Setting up standard VIPA
	Adapter outage
	Example of how to set up standard VIPA

	Source VIPA
	Setting up source VIPA
	Example of how to set up source VIPA

	Scenario: Virtual LAN (VLAN) support
	Introduction to VLANs
	Configuring VLAN devices
	Example: Creating two VLANs
	Example: Creating a VLAN with five Linux instances

	HiperSockets Network Concentrator
	Examples for setting up a network concentrator

	Setting up for DHCP with IPv4
	Required options for using dhcpcd with layer3

	Setting up Linux as a LAN sniffer
	Setting up a HiperSockets network traffic analyzer
	Setting up a z/VM guest LAN sniffer

	Chapter 15. OSA-Express SNMP subagent support
	What you should know about osasnmpd
	Setting up osasnmpd
	Downloading the IBM OSA-Express MIB
	Configuring access control

	Working with the osasnmpd subagent
	Starting the osasnmpd subagent
	Checking the log file
	Issuing queries
	Stopping osasnmpd

	Chapter 16. LAN channel station device driver
	What you should know about LCS
	LCS group devices
	LCS interface names

	Setting up the LCS device driver
	Working with LCS devices
	Creating an LCS group device
	Removing an LCS group device
	Specifying a timeout for LCS LAN commands
	Setting a device online or offline
	Activating and deactivating an interface
	Recovering an LCS group device

	Chapter 17. CTCM device driver
	Features
	What you should know about CTCM
	CTCM group devices
	Interface names assigned by the CTCM device driver
	Network connections

	Setting up the CTCM device driver
	Working with CTCM devices
	Creating a CTCM group device
	Removing a CTCM group device
	Displaying the channel type
	Setting the protocol
	Setting a device online or offline
	Setting the maximum buffer size
	Activating and deactivating a CTC interface
	Recovering a lost CTC connection

	Scenarios
	Connecting to a peer in a different LPAR
	Connecting Linux on z/VM to another guest of the same z/VM system

	Chapter 18. NETIUCV device driver
	What you should know about IUCV
	IUCV direct and routed connections
	IUCV interfaces and devices

	Setting up the NETIUCV device driver
	Working with IUCV devices
	Creating an IUCV device
	Changing the peer
	Setting the maximum buffer size
	Activating an interface
	Deactivating and removing an interface

	Scenario: Setting up an IUCV connection to a TCP/IP service machine
	Setting up the service machine
	Setting up Linux instance LNX1

	Chapter 19. AF_IUCV address family support
	Features
	Setting up the AF_IUCV address family support
	Setting up HiperSockets devices for AF_IUCV addressing
	Setting up your z/VM guest virtual machine for IUCV
	Loading the IUCV modules

	Addressing AF_IUCV sockets in applications

	Chapter 20. SMC protocol support
	Setting up the SMC support
	Investigating PNET IDs

	Chapter 21. RDMA over Converged Ethernet
	Working with the RoCE support
	Enabling debugging

	Chapter 22. Internal shared memory device driver
	Loading the ISM device driver
	Listing ISM devices

	Part 5. System resources
	Chapter 23. Managing CPUs
	Simultaneous multithreading
	CPU capability change
	Changing the configuration state of CPUs
	Setting CPUs online or offline
	Examining the CPU topology
	CPU polarization

	Chapter 24. NUMA emulation
	What you should know about NUMA emulation
	Memory distribution and stripe size
	CPU assignment to NUMA nodes

	Configuring NUMA emulation

	Chapter 25. Managing hotplug memory
	What you should know about memory hotplug
	Hotplug memory management overhead
	How memory is represented in sysfs
	Hotplug memory and reboot
	Memory zones

	Setting up hotplug memory
	Performing memory management tasks
	Finding out the memory block size
	Listing the available memory blocks
	Adding memory
	Removing memory

	Chapter 26. Large page support
	Setting up hugetlbfs large page support
	Working with hugetlbfs large page support

	Chapter 27. S/390 hypervisor file system
	Directory structure
	LPAR directories and attributes
	z/VM directories and attributes

	Setting up the S/390 hypervisor file system
	Working with the S/390 hypervisor file system
	Defining access permissions
	Updating hypfs information

	Chapter 28. ETR- and STP-based clock synchronization
	Enabling clock synchronization when booting
	Enabling ETR-based clock synchronization
	Enabling STP-based clock synchronization

	Enabling and disabling clock synchronization
	Enabling and disabling ETR-based clock synchronization
	Enabling and disabling STP-based clock synchronization

	Chapter 29. Identifying the IBM Z hardware
	Chapter 30. The diag288 watchdog device driver
	What you should know about the diag288 watchdog device driver
	Loading and configuring the diag288 watchdog device driver
	Setting the timeout action

	External programming interfaces

	Chapter 31. HMC media device driver
	Module parameters
	Working with the HMC media
	Assigning the removable media of the HMC to an LPAR
	Listing files on the removable media at the HMC
	Mounting the content of the removable media at the HMC

	Chapter 32. Data compression with GenWQE and zEDC Express
	Features
	What you should know about GenWQE
	The GenWQE accelerated zlib
	GenWQE device nodes
	Virtual accelerators
	Tradeoff between best compression and speed

	Setting up GenWQE hardware acceleration
	Installing the GenWQE hardware-accelerated zlib
	Environment variables

	Examples for using GenWQE
	Activating the GenWQE hardware-accelerated zlib for an application
	Compressing data with genwqe_gzip
	Running tar with GenWQE hardware-acceleration

	GenWQE hardware-acceleration for IBM Java
	Exploring the GenWQE setup
	Listing your GenWQE accelerator cards
	Checking the GenWQE device driver setup
	Confirming that the accelerator hardware can be reached

	External programming interfaces

	Chapter 33. PCI Express support
	Setting up the PCIe support
	Using PCIe hotplug
	Recovering a PCIe device
	Displaying PCIe information
	Reading statistics for a PCIe device

	Part 6. z/VM virtual server integration
	Chapter 34. z/VM concepts
	Performance monitoring for z/VM guest virtual machines
	Monitoring on z/VM
	Monitoring on Linux
	Further information

	Cooperative memory management background
	Linux guest relocation

	Chapter 35. Writing kernel APPLDATA records
	Setting up the APPLDATA record support
	Generating APPLDATA monitor records
	Enabling or disabling the support
	Activating or deactivating individual data-gathering modules
	Setting the sampling interval

	APPLDATA monitor record layout
	Programming interfaces

	Chapter 36. Writing z/VM monitor records
	Setting up the z/VM *MONITOR record writer device driver
	Loading the module
	Setting up the z/VM guest virtual machine

	Working with the z/VM *MONITOR record writer
	Writing data and stopping data writing
	Using the monwrite_hdr structure

	Chapter 37. Reading z/VM monitor records
	What you should know about the z/VM *MONITOR record reader device driver
	Setting up the z/VM *MONITOR record reader device driver
	Providing the required user directory statements
	Assuring that the DCSS is addressable for your Linux instance
	Specifying the monitor DCSS name

	Working with the z/VM *MONITOR record reader support
	Opening and closing the character device
	Reading monitor records

	Chapter 38. z/VM recording device driver
	Features
	What you should know about the z/VM recording device driver
	z/VM recording device nodes
	About records

	Setting up the z/VM recording device driver
	Working with z/VM recording devices
	Starting and stopping record collection
	Purging existing records
	Querying the z/VM recording status
	Opening and closing devices

	Scenario: Connecting to the *ACCOUNT service

	Chapter 39. z/VM unit record device driver
	What you should know about the z/VM unit record device driver
	Working with z/VM unit record devices

	Chapter 40. z/VM DCSS device driver
	What you should know about DCSS
	DCSS naming scheme
	DCSS device nodes
	Accessing a DCSS in exclusive-writable mode
	DCSS options

	Setting up the DCSS device driver
	Avoiding overlaps with your guest storage
	Working with DCSS devices
	Adding a DCSS device
	Listing the DCSSs that map to a particular device
	Finding the minor number for a DCSS device
	Setting the access mode
	Saving updates to a DCSS or set of DCSSs
	Workaround for saving DCSSs with optional properties
	Removing a DCSS device

	Scenario: Changing the contents of a DCSS

	Chapter 41. z/VM CP interface device driver
	What you should know about the z/VM CP interface
	Using the device node

	Chapter 42. z/VM special messages uevent support
	Setting up the CP special message device driver
	Working with CP special messages
	Sending CP special messages
	Accessing CP special messages through uevent environment variables
	Writing udev rules for handling CP special messages
	Example udev rule

	Chapter 43. Cooperative memory management
	Setting up cooperative memory management
	Working with cooperative memory management
	Reading the size of the static page pool
	Reading the size of the timed page pool

	Part 7. Security
	Chapter 44. Generic cryptographic device driver
	Features
	Supported cryptographic adapters
	Supported facilities
	Hardware and software prerequisites

	What you should know about the cryptographic device driver
	Functions provided by the cryptographic device driver
	Adapter discovery
	Request processing
	Cryptographic domains

	Setting up the cryptographic device driver
	Kernel parameters
	Accessing cryptographic devices

	Working with cryptographic devices
	Displaying information about cryptographic devices
	Setting devices online or offline
	Setting the polling thread
	Using AP adapter interrupts
	Setting the polling interval
	Dynamically adding and removing cryptographic adapters
	Displaying information about the AP bus

	External programming interfaces

	Chapter 45. Pseudo-random number device driver
	Setting up the pseudo-random number device driver
	Module parameters
	Controlling access to the device node

	Working with the PRNG device driver
	Reading pseudo-random numbers
	Displaying PRNG information
	Setting the reseed limit
	Reseeding the PRNG

	Chapter 46. True random-number generator device driver
	Setting up the TRNG device driver
	Working with the TRNG device driver
	Reading random numbers
	Displaying TRNG information

	Chapter 47. Protected key device driver
	Loading the device driver module
	External programming interfaces

	Chapter 48. Hardware-accelerated in-kernel cryptography
	Hardware dependencies and restrictions
	Support modules
	Confirming hardware support for cryptographic operations

	Part 8. Performance measurement using hardware facilities
	Chapter 49. Channel measurement facility
	Setting up the channel measurement facility
	Working with the channel measurement facility
	Enabling, resetting, and switching off data collection
	Reading data

	Chapter 50. Using the CPU-measurement counter facility
	Working with the CPU-measurement counter facility
	Authorizing an LPAR for CPU-measurement counter sets
	Reading CPU-measurement counters for an application
	Collecting CPU-measurement sample data
	Setting limits for the sampling facility buffer
	Obtaining debug information

	Part 9. Diagnostics and troubleshooting
	Chapter 51. Logging I/O subchannel status information
	Chapter 52. Control program identification
	Specifying a system name
	Specifying a sysplex name
	Specifying a system type
	Specifying the system level
	Sending system data to the SE

	Chapter 53. Activating automatic problem reporting
	Setting up the Call Home support
	Activating the Call Home support

	Chapter 54. Displaying system information
	Displaying hardware and hypervisor information
	Retrieving STHYI data
	Check whether the Linux instance can be a hypervisor

	Chapter 55. Avoiding common pitfalls
	Ensuring correct channel path status
	Determining channel path usage
	Configuring LPAR I/O devices
	Using cio_ignore
	Excessive guest swapping
	Including service levels of the hardware and the hypervisor
	Booting stops with disabled wait state
	Preparing for dump-on-panic

	Chapter 56. Kernel messages
	Displaying a message man page
	Viewing messages with the IBM Doc Buddy app

	Part 10. Reference
	Chapter 57. Commands for Linux on Z
	Generic command options
	chccwdev - Set CCW device attributes
	chchp - Change channel path status
	chcpumf - Set limits for the CPU measurement sampling facility buffer
	chmem - Set memory online or offline
	chreipl - Modify the re-IPL configuration
	chshut - Control the system shutdown actions
	chzcrypt - Modify the cryptographic configuration
	chzdev - Configure IBM Z devices
	cio_ignore - Manage the I/O exclusion list
	cmsfs-fuse - Mount a z/VM CMS file system
	cpacfstats - Monitor CPACF cryptographic activity
	cpuplugd - Control CPUs and memory
	cpuplugd service utility syntax
	cpuplugd command-line syntax
	Configuration file structure
	Migrating old configuration files
	Basic configuration file for CPU control
	Basic configuration file for memory control
	Predefined keywords
	Keywords for CPU hotplug rules
	Keywords for memory hotplug rules
	Using historical data

	Writing more complex rules

	Sample configuration file

	dasdfmt - Format a DASD
	dasdstat - Display DASD performance statistics
	dasdview - Display DASD structure
	fdasd – Partition a DASD
	fdasd menu
	Example using the menu
	Example using options

	hmcdrvfs - Mount a FUSE file system for remote access to media in the HMC media drive
	hyptop - Display hypervisor performance data
	Navigating between windows
	Selecting data
	Sorting data
	Filtering data
	Available fields and units
	LPAR fields
	z/VM fields
	Units

	CPU types
	Examples
	Scenario

	lschp - List channel paths
	lscpumf - Display information about the CPU-measurement facilities
	lscss - List subchannels
	lsdasd - List DASD devices
	lshmc - List media contents in the HMC media drive
	lsluns - Discover LUNs, or show encryption state of attached LUNs
	Discover LUNs in the Fibre Channel storage area network (SAN)
	Show the encryption state of zfcp-attached LUNs

	lsmem - Show online status information about memory blocks
	lsqeth - List qeth-based network devices
	lsreipl - List IPL and re-IPL settings
	lsscm - List storage-class memory increments
	lsshut - List the current system shutdown actions
	lstape - List tape devices
	Data fields for SCSI tape devices

	lszcrypt - Display cryptographic devices
	lszdev - Display IBM Z device configurations
	lszfcp - List zfcp devices
	mon_fsstatd – Monitor z/VM guest file system size
	mon_statd service utility syntax
	mon_fsstatd command-line syntax
	Processing monitor data
	Reading the monitor data

	mon_procd – Monitor Linux on z/VM
	mon_statd service utility syntax
	mon_procd command-line syntax
	Processing monitor data
	Reading the monitor data

	qetharp - Query and purge OSA and HiperSockets ARP data
	qethconf - Configure qeth devices
	qethqoat - Query OSA address table
	scsi_logging_level - Set and get the SCSI logging level
	smc_pnet - Create network mapping table
	smc_run - Run a TCP socket program with the SMC protocol using a preloaded library
	smcss - Display information about the AF_SMC sockets and link groups
	sncap - Manage CPU capacity
	tape390_crypt - Manage tape encryption
	tape390_display - display messages on tape devices and load tapes
	tunedasd - Adjust low-level DASD settings
	vmcp - Send CP commands to the z/VM hypervisor
	vmur - Work with z/VM spool file queues
	Examples
	Creating and reading a guest memory dump
	Using FTP to receive and convert a dump file

	Logging and reading the z/VM guest virtual machine console
	Preparing the z/VM reader as an IPL device for Linux
	Sending a file to different z/VM guest virtual machines
	Sending a file to a z/VSE instance

	zdsfs - Mount a z/OS DASD
	znetconf - List and configure network devices

	Chapter 58. Selected kernel parameters
	cio_ignore - List devices to be ignored
	Changing the exclusion list

	cmma - Reduce hypervisor paging I/O overhead
	fips - Run Linux in FIPS mode
	maxcpus - Limit the number of CPUs Linux can use at IPL
	nosmt - Disable simultaneous multithreading
	possible_cpus - Limit the number of CPUs Linux can use
	ramdisk_size - Specify the ramdisk size
	ro - Mount the root file system read-only
	root - Specify the root device
	smt - Reduce the number of threads per core
	vdso - Optimize system call performance
	vmhalt - Specify CP command to run after a system halt
	vmpanic - Specify CP command to run after a kernel panic
	vmpoff - Specify CP command to run after a power off
	vmreboot - Specify CP command to run on reboot

	Chapter 59. Linux diagnose code use

	Appendix A. Accessibility
	Appendix B. Understanding syntax diagrams
	Notices
	Trademarks

	Bibliography
	Linux on Z and LinuxONE publications
	SUSE Linux Enterprise Server 12 SP4 publications
	z/VM publications
	IBM Redbooks publications
	Other IBM Z publications
	ibm.com resources

	Glossary
	Numerics
	A
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	Z

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

