
Linux on z Systems and LinuxONE

Device Drivers, Features, and Commands
on SUSE Linux Enterprise Server 12 SP2
as a KVM Guest

SC34-2756-01

IBM

Linux on z Systems and LinuxONE

Device Drivers, Features, and Commands
on SUSE Linux Enterprise Server 12 SP2
as a KVM Guest

SC34-2756-01

IBM

Note
Before using this document, be sure to read the information in “Notices” on page 123.

This edition applies to SUSE Linux Enterprise Server 12 SP2 and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright IBM Corporation 2000, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Summary of changes . vii
SUSE Linux Enterprise Server 12 SP2 changes . vii

About this publication . ix
Other publications that apply to SUSE Linux Enterprise Server 12 SP2 on IBM z Systems ix

Part 1. The guest environment. 1

Chapter 1. KVM virtualization on z Systems . 3
Linux on KVM versus Linux on z/VM or Linux in LPAR mode 4
Linux as a KVM guest on z Systems versus distributed systems 5
Live guest migration. 6

Chapter 2. The virtual channel subsystem . 7
Listing devices with lscss . 7
Types of CCW devices . 8
Listing channel paths with lschp. 9

Chapter 3. Devices in sysfs . 11
Device categories . 11
Device directories . 11

Device attributes . 12
Setting attributes . 13
Working with hotplugged devices . 13

Device views in sysfs . 14
Device view . 14
Channel subsystem view . 14

CCW hotplug events . 15

Part 2. Device drivers . 17

Chapter 4. The virtio CCW transport device driver 19
Setting CCW devices offline or online . 19
Virtual block devices . 20

Block device naming-scheme . 20
Mapping block devices to CCW devices . 21
Partitioning block devices . 22

Virtual network devices . 22
Interface names . 22
Mapping interfaces to CCW devices . 22
Activating an interface. 23

Virtual SCSI-attached tape devices . 23
Virtual SCSI-attached CD/DVD drives . 24

Chapter 5. Console device driver . 27
Console features . 27
Consoles versus terminals . 28
Setting up the console device drivers . 28

Console kernel parameter syntax . 28
Indicating the terminal capabilities . 30

Entering control and special characters on the line-mode terminal 30
Using the magic sysrequest feature . 31

Activating and deactivating the magic sysrequest feature 31

© Copyright IBM Corp. 2000, 2016 iii

||
||

Triggering magic sysrequest functions from procfs . 32

Chapter 6. Pseudo-random number device driver 33
Setting up the pseudo-random number device driver . 33

Module parameters . 33
Controlling access to the device node. 34

Working with the PRNG device driver . 34
Reading pseudo-random numbers . 34
Displaying PRNG information . 35
Setting the reseed limit . 36
Reseeding the PRNG . 36

Chapter 7. The diag288 watchdog device driver 37
What you should know about the diag288 watchdog device driver 37
Loading and configuring the diag288 watchdog device driver 38
External programming interfaces . 38

Part 3. System resources . 39

Chapter 8. Displaying system information . 41
Displaying hardware and hypervisor information . 41
Checking whether the Linux instance can be a hypervisor . 42

Chapter 9. Managing CPUs . 43
CPU capability change. 43
Setting CPUs offline or online . 44

Chapter 10. cpuplugd - Control CPUs . 45
cpuplugd service utility syntax . 45
cpuplugd command-line syntax . 46
Configuration file structure . 47

Basic configuration file for CPU control . 47
Keywords for CPU hotplug rules . 48
Using historical data . 49
Writing more complex rules . 50

Sample configuration file . 51

Chapter 11. Hardware-accelerated in-kernel cryptography 53
Hardware dependencies and restrictions. 53
Support modules . 54
Confirming hardware support for cryptographic operations 54

Part 4. Booting and shutdown . 57

Chapter 12. IPL, booting, and starting the virtual server 59

Chapter 13. Shutdown actions . 61
Displaying current IPL parameters. 62
Rebooting from an alternative source . 63

Part 5. Diagnostics and troubleshooting 65

Chapter 14. Creating a kernel dump . 67

Chapter 15. Known issues . 69
Do not set your channel path offline . 69
Ignore unnecessary I/O devices . 69

iv Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

||

||

||
||
||

||
||
||
||

Assure that essential devices are not ignored . 69
Booting stops with disabled wait state . 69

Chapter 16. Kernel messages . 71
Displaying a message man page . 71
Viewing messages with the IBM Doc Buddy app . 72

Part 6. Reference . 75

Chapter 17. Commands for Linux as a KVM guest on z Systems 77
Generic command options . 77
chccwdev - Set CCW device attributes . 78
chreipl - Modify the re-IPL configuration . 80
chshut - Control the system shutdown actions . 82
cio_ignore - Manage the I/O exclusion list . 83
lscss - List subchannels . 86
lsreipl - List IPL and re-IPL settings . 88
lsshut - List the current system shutdown actions . 89
scsi_logging_level - Set and get the SCSI logging level . 90

Chapter 18. Selected kernel parameters . 93
cio_ignore - List devices to be ignored . 94

Managing the exclusion list through procfs . 95
cmma - Reduce hypervisor paging I/O overhead . 98
fips - Run Linux in FIPS mode . 99
maxcpus - Limit the number of CPUs that Linux can use at IPL 100
possible_cpus - Limit the number of CPUs Linux can use 101
ramdisk_size - Specify the ramdisk size . 102
ro - Mount the root file system read-only . 103
root - Specify the root device . 104
vdso - Optimize system call performance . 105

Chapter 19. Features described elsewhere . 107
NUMA emulation . 107
snipl . 107

Chapter 20. Diagnose code use . 109

Part 7. Appendixes . 111

How devices are accessed by Linux . 113
Device names, device nodes, and major/minor numbers . 113
Network interfaces . 114

Kernel and module parameters . 115
Kernel parameters . 115

Specifying kernel parameters . 115
How kernel parameters from different sources are combined 115
Examples for kernel parameters . 116
Displaying the current kernel parameter line . 116

Module parameters . 117
Specifying module parameters. 117
Including module parameters in a boot configuration . 117
Displaying information about module parameters . 118

Contents v

||

||

||

Accessibility . 121

Notices . 123
Trademarks . 124

Index . 125

vi Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Summary of changes

This revision reflects changes for SUSE Linux Enterprise Server 12 Service Pack 2.

SUSE Linux Enterprise Server 12 SP2 changes
This edition contains changes related to SUSE Linux Enterprise Server 12 SP2.

New information
v You can now use the magic sysrequest functions from the VT220 terminal. See

“Using the magic sysrequest feature” on page 31.
v A new section describes CPU management. See Chapter 9, “Managing CPUs,”

on page 43.
v A new section describes z Systems™ specific acceleration for in-kernel

cryptographic operations. See Chapter 11, “Hardware-accelerated in-kernel
cryptography,” on page 53.

v You can now view z Systems specific kernel messages through an app for
mobile devices. See “Viewing messages with the IBM Doc Buddy app” on page
72.

v NUMA emulation is now available. See “NUMA emulation” on page 107

Changed Information
v None.

This revision also includes maintenance and editorial changes. Technical changes
or additions to the text and illustrations are indicated by a vertical line to the left
of the change.

Deleted Information
v None.

© Copyright IBM Corp. 2000, 2016 vii

viii Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

About this publication

This publication describes the device drivers and features available to SUSE Linux
Enterprise Server 12 SP2 for the control of z Systems devices and attachments as
virtualized by the KVM hypervisor.

This publication also describes a subset of the commands from the s390-tools
package. Commands and command options that are not relevant to the KVM
context have been omitted.

This publication assumes a current version of a KVM host that supports SUSE
Linux Enterprise Server 12 SP2 as a guest.

You can find the newest version of this publication on IBM® Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html

For a description of SUSE Linux Enterprise Server 12 SP2 in LPAR mode or as a
z/VM® guest, see Device Drivers, Features, and Commands on SUSE Linux Enterprise
Server 12 SP2, SC34-2745.

Other publications that apply to SUSE Linux Enterprise Server 12 SP2
on IBM z Systems

Go to IBM Knowledge Center or to developerWorks® for Linux on IBM z Systems
publications about SUSE Linux Enterprise Server 12 SP2.

You can find the latest versions of these publications
on IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html
or on developerWorks at
www.ibm.com/developerworks/linux/linux390/documentation_suse.html
v Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2,

SC34-2745
v Using the Dump Tools on SUSE Linux Enterprise Server 12 SP1, SC34-2746
v Kernel Messages on SUSE Linux Enterprise Server 12 SP2, SC34-2747

For each of the following publications, you can find the version that most closely
reflects SUSE Linux Enterprise Server 12 SP2:
v How to use FC-attached SCSI devices with Linux on z Systems, SC33-8413
v libica Programmer's Reference, SC34-2602
v Exploiting Enterprise PKCS #11 using openCryptoki, SC34-2713
v Secure Key Solution with the Common Cryptographic Architecture Application

Programmer's Guide, SC33-8294
v Linux on z Systems Troubleshooting, SC34-2612
v Linux Health Checker User's Guide, SC34-2609
v How to Improve Performance with PAV, SC33-8414
v How to Set up a Terminal Server Environment on z/VM, SC34-2596

© Copyright IBM Corp. 2000, 2016 ix

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html
http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html
http://www.ibm.com/developerworks/linux/linux390/documentation_suse.html

x Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Part 1. The guest environment

Chapter 1. KVM virtualization on z Systems . . . 3
Linux on KVM versus Linux on z/VM or Linux in
LPAR mode 4
Linux as a KVM guest on z Systems versus
distributed systems 5
Live guest migration. 6

Chapter 2. The virtual channel subsystem . . . 7
Listing devices with lscss 7
Types of CCW devices 8
Listing channel paths with lschp. 9

Chapter 3. Devices in sysfs 11
Device categories 11
Device directories 11

Device attributes 12
Setting attributes 13
Working with hotplugged devices 13

Device views in sysfs 14
Device view 14
Channel subsystem view 14

CCW hotplug events 15

Linux on z Systems uses virtual z Systems resources, including a virtual z Systems
channel subsystem.

Newest version

You can find the newest version of this publication on IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html

Restrictions

For prerequisites and restrictions see the z Systems architecture specific
information in the SUSE Linux Enterprise Server 12 SP2 release notes at
www.suse.com/releasenotes

© Copyright IBM Corp. 2000, 2016 1

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html
http://www.suse.com/releasenotes

2 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Chapter 1. KVM virtualization on z Systems

SUSE Linux Enterprise Server 12 SP2 can run on the mainframe environment as
virtualized by the KVM hypervisor.

The KVM hypervisor defines the CPUs, memory, and virtual devices that are
available to an instance of Linux on KVM when it is booted. It also defines the
physical hardware upon which these resources are based.

The hypervisor can dynamically add or remove devices. These changes result in
hotplug events on the guest.

The device virtualization hides most of the physical device aspects from the guest.
For example, all disk devices on the guest are represented as virtio-blk devices and
all network devices are represented as virtio-net devices.

Both virtio-blk and virtio-net devices use the virtio framework. The virtio CCW
transport device driver provides the interface to this framework and uses channel
command words (CCW) to establish the virtio infrastructure.

z Systems

hardware

Network

OSA

adapter FCP channel

CPACF

LUN

LUN

CPU

Storage controller

CPU

CPU

CPU CPUmemory

memory

KVM host

Virtual

hardware blk blkblk

Linux

eth

SAN Fabric

LUN

LUN

LUN

LUN

LUN

LUN

FICON

adapter

LUN DASDDASD

DASD DASD

Figure 1. KVM virtualization

© Copyright IBM Corp. 2000, 2016 3

Figure 2 illustrates the virtio stack for Linux as a KVM guest on z Systems.

For more information about the virtio framework, see ibm.com/developerworks/
linux/library/l-virtio.

Linux on KVM versus Linux on z/VM or Linux in LPAR mode
If you are familiar with Linux on z/VM or with Linux in LPAR mode, you will
observe some differences when working with Linux on z Systems as a KVM guest.

Starting and stopping Linux

The KVM hypervisor is the control point for IPLing and for suspending and
resuming Linux on KVM. You can initiate a reIPL from a running instance of Linux
on KVM.

System dump

As for Linux in LPAR mode and for Linux on z/VM, you can use kdump as a
dump tool.

Alternatively, you can initiate a dump on the host. These hypervisor-driven dumps
are analogous to using VMDUMP for Linux on z/VM.

You cannot use the stand-alone dump tools to create a dump for Linux on KVM.

Responsibilities

Some of the administrative powers and responsibilities for the hardware that backs
devices or provides access to devices is offloaded from the guest to the host.

Virtual hardware

blk blk blkblkblk

Linux

eth

v
ir

t
io

_
n
e
t

v
ir

t
io

_
b
lk

virtio_ccw

virtio framework

other

device-specific

device drivers

Figure 2. virtio stack

4 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

http://www.ibm.com/developerworks/linux/library/l-virtio
http://www.ibm.com/developerworks/linux/library/l-virtio

Virtual channel subsystem

There is a virtual channel subsystem with only a single, virtual channel path that is
shared by all CCW devices. See Chapter 2, “The virtual channel subsystem,” on
page 7.

Storage devices

Instead of DASDs and SCSI LUNs, there are generic block devices.

You cannot configure any adapter hardware or physical disk devices. This
preparation is done for you by the host.

There are no storage-class memory increments, and there is no XPRAM. There are
also no channel-attached tape devices, but you can have SCSI-attached tape
devices.

Network devices

Instead of groups of subchannels for different types of network devices, there are
CCW devices for Ethernet interfaces.

You cannot group subchannels into CCW group devices, configure network
devices, or configure any adapter hardware. This setup is done for you by the host.

Console devices

As for Linux in LPAR mode, Linux on KVM supports the following SCLP-based
terminal devices:
v The VT220 device, which corresponds to the Integrated ASCII Console on the

HMC.
v The line-mode device, which corresponds to the Operating System Messages

applet on the HMC.

The virtio-serial device is supported but deprecated.

Cryptographic hardware

Because Linux on KVM does not support the ap bus, it does not support
cryptographic coprocessor and accelerator hardware. The CP Assist for
Cryptographic Function (CPACF), which does not depend on the ap bus, is
supported.

Linux as a KVM guest on z Systems versus distributed systems
If you are familiar with KVM guests on a workstation, you will observe some
differences when working with Linux as a KVM guest on z Systems.

Device drivers and the channel subsystem

All I/O to storage and network devices is handled by a virtual z Systems channel
subsystem and the virtio CCW transport device driver. You will not find USB
devices.

Chapter 1. KVM on z Systems 5

Absence of typical peripheral devices

Because z Systems hardware is designed for remote access from workstations,
Linux as a KVM guest on z Systems does not provide devices for a keyboard,
mouse, or graphical display.

Cryptographic support

Linux as a KVM guest on z Systems can use hardware-support for cryptographic
operations, for example, the CP Assist for Cryptographic Function (CPACF).
v See Chapter 11, “Hardware-accelerated in-kernel cryptography,” on page 53

about hardware-accelerated in-kernel cryptography.
v See Chapter 6, “Pseudo-random number device driver,” on page 33 about

CPACF supported pseudo-random number generation.
v See libica Programmer's Reference, SC34-2602 for other CPACF calls and for

general information about CPACF.

Live guest migration
In a live guest migration, the system programmer relocates a KVM virtual server
with a running Linux instance from one KVM host to another without disrupting
operations.

Live guest migrations can help, for example, to avoid downtime during
maintenance activities. A live guest migration can succeed only if both KVM hosts
have access to the same or equivalent resources. The hosts can but need not run on
the same mainframe. The system programmer, who also initiates the migration,
ensures that all preconditions are met.

If live migration is used at your installation, be sure not to block the migration. In
particular:
v All tape device nodes must be closed and online tape drives must be unloaded.
v No program must be in a prolonged uninterruptible sleep state. Programs can

assume this state while waiting for an outstanding I/O request to complete.
Most I/O requests complete fast and do not compromise live guest migration.
An example of an I/O request that can take too long to complete is rewinding a
tape.

6 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

|
|

|
|

Chapter 2. The virtual channel subsystem

The KVM hypervisor provides a virtual channel subsystem with a content that is
characteristic for Linux as a KVM guest on z Systems.

In this virtual channel subsystem:
v All CCW devices have control unit type 3832/<nn>, where <nn> is a two-digit

hexadecimal number that indicates the device type.
v All CCW devices use a single virtual channel path with CHPID 00. The

availability of all CCW devices depends on this channel path being operational.

For general information about the channel subsystem, see z/Architecture® Principles
of Operation, SA22-7832.

Listing devices with lscss
The particulars of the channel subsystem view of a guest become visible when you
list devices with lscss.

Example
lscss
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.0042 0.0.0000 0000/00 3832/01 yes 80 80 ff 00000000 00000000
0.0.0815 0.0.0001 0000/00 3832/02 yes 80 80 ff 00000000 00000000
0.0.9999 0.0.0002 0000/00 3832/03 yes 80 80 ff 00000000 00000000
0.1.abcd 0.1.0000 0000/00 3832/05 yes 80 80 ff 00000000 00000000
...

As illustrated in the example, the output columns DevType, PIM, PAM, POM, and
CHPIDs show identical values for all devices. These values result from the
virtualization and carry no information that is characteristic for a particular device.

The following columns contain meaningful device information:

Device is the device bus-ID that uniquely identifies a device to the guest and to
the KVM hypervisor.

Use device bus-IDs to identify devices to the KVM hypervisor
administrator. The KVM hypervisor defines these bus-IDs with prefix fe
instead of 0. For example, 0.0.0042 on the guest is specified as fe.0.0042
in the guest definition on the KVM hypervisor.

Device bus-IDs are persistent across reboots and change only if the device
definitions are changed in the KVM hypervisor.

Subchan.
shows the current assignment of a subchannel to the device.

In contrast to the persistent device bus-IDs, subchannel assignments to
devices might change across reboots or as a result of hotplug events.

CU Type
has a two-digit suffix that identifies the device type.

© Copyright IBM Corp. 2000, 2016 7

For example, 01 in 3832/01 identifies a network device and 02 in 3832/02
identifies a block device. For more information, see “Types of CCW
devices.”

Use indicates whether the device is online.

Types of CCW devices
For Linux as a KVM guest on z Systems, CCW devices include block devices,
network devices, and devices that are attached through a virtual SCSI HBA.

Table 1 explains the values that are shown in the CU Type column of the lscss
command. Which of these devices are present on a particular KVM guest depends
on the guest definition on the KVM hypervisor.

Table 1. Types of CCW devices

CU Type/Model Explanation

3832/01 Network device

The corresponding device bus-ID represents an already configured
CCW group device on the KVM hypervisor.

Network devices are handled by the virtio_net device driver module.
See “Virtual network devices” on page 22 for details.

3832/02 Block device

The corresponding device bus-ID represents a persistent storage space
to the guest. The details of the block device are hidden by the KVM
hypervisor. To the KVM hypervisor, this storage space might be a SCSI
LUN or a DASD, but it might also be a file in the file system of the
host or any other block device.

Block devices are handled by the virtio_blk device driver module.
See “Virtual block devices” on page 20 for details.

3832/03 Character device for console output (deprecated).

3832/04 Random number generator device

Depending on the configuration of your virtual server by the KVM
hypervisor, this device might be backed by z Systems cryptographic
hardware.

This device provides sufficient random numbers of good quality only
if the random device of KVM host does so. In particular, this devices
provides true random numbers only if it is backed by a true random
number generator on the KVM host.

3832/05 Balloon device for memory management.

The preferred memory management technology is Collaborative
Memory Management Assist (CMMA). See “cmma - Reduce
hypervisor paging I/O overhead” on page 98.

8 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Table 1. Types of CCW devices (continued)

CU Type/Model Explanation

3832/08 Virtual SCSI HBA

SCSI devices can be attached through a virtual SCSI host bus adapter
(HBA) and are then handled by the virtio_scsi device driver
module. For example, the following devices are attached through a
virtual SCSI HBA:

v SCSI tapes (see “Virtual SCSI-attached tape devices” on page 23)

v Virtual CD/DVD drives (see “Virtual SCSI-attached CD/DVD
drives” on page 24)

SCSI devices need not necessarily be attached through a virtual SCSI
HBA. For example, SCSI-attached disks are usually virtualized as
block devices and handled by the virtio_blk device driver module.

Listing channel paths with lschp
Linux as a KVM guest on z Systems has only a single channel path, with CHPID
00.

Because the virtual channel subsystem always provides the same single channel
path to the guest, lschp always has this output:

lschp
CHPID Vary Cfg. Type Cmg Shared PCHID
==
0.00 1 - 32 - 0 -

Attention: Setting the only available channel path logically offline would make
all CCW devices, including all block and network devices, inaccessible to the
guest. As a consequence, the system is likely to crash.

Chapter 2. The virtual CSS 9

10 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Chapter 3. Devices in sysfs

Most of the Linux on z Systems device drivers create structures in sysfs. These
structures hold information about individual devices and are also used to
configure and control the devices.

Device categories
For Linux as a KVM guest on z Systems, sysfs includes a branch for CCW devices.

Figure 3 illustrates a part of sysfs.

/sys/bus and /sys/devices are common Linux directories. The directories that
follow /sys/bus sort the device drivers according to the categories of devices they
control. /sys/bus/ccw presents a CCW view of the devices identified by device
bus-IDs, whereas /sys/bus/virtio presents a virtio view with the devices named
as virtio<n>. virtio-ccw devices can be reached through either path.

The mainframe devices are in category ccw. These devices can be addressed with
channel command words (CCWs). Other than for Linux in LPAR mode, all CCW
devices are handled by a single device driver, the virtio CCW transport device
driver. You can find all CCW devices at /sys/bus/ccw/drivers/virtio_ccw.

Device directories
Each device that is known to Linux is represented by a directory in sysfs.

The name of the directory is a bus ID that identifies the device within the scope of
a Linux instance. For a CCW device, the bus ID is the device number with a
leading “0.<n>.”, where <n> is the subchannel set ID. For example, 0.1.0ab1.

“Device views in sysfs” on page 14 explains how to find the device directories
with their attributes in sysfs.

/sys

devices

ccw

css0

bus

devices

drivers

subtree for all channel subsytem

attached devices and CHPIDs

directories

with virtualized

channel subsystem devices

devices

virtio_ccw

virtio
devices

drivers

virtio view of the devices

subdirectories with devices sorted by

virtio device drivers

Figure 3. virtio devices in sysfs

© Copyright IBM Corp. 2000, 2016 11

Device attributes
The device directories contain attributes.

Within the limitations you have for handling virtio devices, you can control
devices by setting device attributes and obtain information about devices by
reading device attributes.

Some attributes are common to all devices in a device category. Other attributes are
specific to a particular device driver. The following attributes are common to all
CCW devices:

online
You use this attribute to set the device online or offline. To set a device online,
write the value 1 to its online attribute. To set a device offline, write the value
0 to its online attribute.

cutype
Specifies the control unit type and model, if applicable. This attribute is
read-only.

For CCW devices on Linux as a KVM guest on z Systems, the control unit type
is always 3832. See Table 1 on page 8 about the possible models.

cmb_enable
Not applicable to Linux as a KVM guest on z Systems

devtype
Specifies the device type and model, if applicable. This attribute is read-only.

For CCW devices on Linux as a KVM guest on z Systems, the device type and
model is always 0000/00.

availability
Indicates whether the device can be used. The following values are possible:

good
This is the normal state, the device can be used.

no device
Applies to disconnected devices only. The device is unavailable after a
machine check and the device driver has requested to keep the (online)
device anyway. Changes back to “good” when the device returns after
another machine check and the device driver has accepted the device back.

no path
Applies to disconnected devices only. The device has no path left after a
machine check or a logical vary off and the device driver has requested to
keep the (online) device anyway. Changes back to “good” when the path
returns after another machine check or logical vary on and the device
driver has accepted the device back.

Running instances of Linux as a KVM guest on z Systems always have a
path.

modalias
Contains the module alias for the device. It is of the format:
ccw:t3832m<cu_model>

See Table 1 on page 8 about the possible models.

12 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Setting attributes
Directly write to attributes or, for CCW devices, use the chccwdev command to set
attribute values.

About this task

You can set a writable attribute by writing the designated value to the
corresponding attribute file.

For CCW devices, you can also use the chccwdev command to set attributes. With a
single chccwdev command you can perform these tasks:
v Set an attribute for multiple devices
v Set multiple attributes for a device, including setting the device online
v Set multiple attributes for multiple devices

Because the KVM hypervisor hides many aspects of the physical devices that back
virtio devices, the scope for setting device attributes is limited for virtio devices.

Working with hotplugged devices
Errors can occur if you try to work with a device before its sysfs representation is
completely initialized.

About this task

New devices become available to a running instance of Linux on KVM when they
are dynamically attached to the KVM virtual server by the KVM hypervisor. On
Linux, this action results in a hotplug event.

Some time elapses until the corresponding device directories and their attributes
are created in sysfs. Errors can occur if you attempt to work with a device for
which the sysfs structures are not present or are not complete. These errors are
most likely to occur and most difficult to handle for scripts that configure devices.

Procedure

Use one of these methods to assure that the sysfs structures for the new device are
completed:
v Issue the following command:

echo 1 > /proc/cio_settle

This command returns control after all pending updates to sysfs are completed.
v Use chccwdev to work with the device. chccwdev triggers cio_settle for you and

waits for cio_settle to complete.

Results

You can now work with the new device. For example, you can set the device
online or set attributes for the device.

Chapter 3. Devices in sysfs 13

Device views in sysfs
sysfs provides multiple views of device-specific data.

The following views are particularly useful:
v “Device view”
v “Channel subsystem view”

Many paths in sysfs contain device bus-IDs to identify devices. Device bus-IDs of
subchannel-attached devices are of the form:
0.<n>.<devno>

where <n> is the subchannel set-ID and <devno> is the device number.

Device view
Several views of sysfs show devices. For Linux as a KVM guest on z Systems, they
all provide the same information and you can use any one of them.

The main paths you can use are:

/sys/bus/ccw/drivers/virtio_ccw/<device_bus_id>
/sys/bus/ccw/devices/<device_bus_id>

In these paths, <device_bus_id> identifies an individual device. You can use either
one of these paths to work with the devices. For consistency with Device Drivers,
Features, and Commands on SUSE Linux Enterprise Server 12 SP2, SC34-2745, this
publication mostly uses the first path.

Example: These sysfs directories represent the same device.

/sys/bus/ccw/drivers/virtio_ccw/0.0.b100
/sys/bus/ccw/devices/0.0.b100

Channel subsystem view
The channel subsystem view shows the relationship between subchannels and
devices.

The channel subsystem (CSS) view has this form:

/sys/devices/css0/<subchannel>

where:

<subchannel>
is a subchannel number with a leading “0.<n>.”, where <n> is the
subchannel set ID.

I/O subchannels show the devices in relation to their respective subchannel sets
and subchannels. An I/O subchannel is of the form:

/sys/devices/css0/<subchannel>/<device_bus_id>

In these paths:

14 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

<subchannel>
is a subchannel number with a leading “0.<n>.”, where <n> is the
subchannel set ID.

<device_bus_id>
is a device number with a leading “0.<n>.”, where <n> is the subchannel
set ID (see “Device directories” on page 11).

Examples
v This example shows a CCW device with device number 0xb100 that is associated

with a subchannel 0x0001.
/sys/devices/css0/0.0.0001/0.0.b100

v This example shows a CCW device with device number 0xb200 that is associated
with a subchannel 0x0001 in subchannel set 1.
/sys/devices/css0/0.1.0001/0.1.b200

CCW hotplug events
A hotplug event is generated when a CCW device appears or disappears with a
machine check.

The hotplug events provide the following variables:

CU_TYPE
for the control unit type of the device that appeared or disappeared. All CCW
devices on Linux on KVM have control unit type 3832.

CU_MODEL
for the control unit model of the device that appeared or disappeared.

DEV_TYPE
for the type of the device that appeared or disappeared. All CCW devices on
Linux on KVM have device type 0.

DEV_MODEL
for the model of the device that appeared or disappeared. All CCW devices on
Linux on KVM have a device model 0.

MODALIAS
for the module alias of the device that appeared or disappeared. The module
alias is the same value that is contained in /sys/devices/css0/
<subchannel_id>/<device_bus_id>/modalias and is of the format
ccw:t3832m<cu_model>

All CCW devices on Linux on KVM are of type 3832. See Table 1 on page 8
about the possible model specifications.

Hotplug events can be used, for example, for:
v Automatically setting devices online as they appear
v Automatically loading driver modules for which devices have appeared

For information about the device driver modules, see /lib/modules/
<kernel_version>/modules.ccwmap. This file is generated when you install the
Linux kernel (version <kernel_version>).

Chapter 3. Devices in sysfs 15

16 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Part 2. Device drivers

Chapter 4. The virtio CCW transport device
driver 19
Setting CCW devices offline or online 19
Virtual block devices 20

Block device naming-scheme 20
Mapping block devices to CCW devices 21
Partitioning block devices 22

Virtual network devices 22
Interface names 22
Mapping interfaces to CCW devices 22
Activating an interface. 23

Virtual SCSI-attached tape devices 23
Virtual SCSI-attached CD/DVD drives 24

Chapter 5. Console device driver 27
Console features 27
Consoles versus terminals 28
Setting up the console device drivers 28

Console kernel parameter syntax 28
Indicating the terminal capabilities 30

Entering control and special characters on the
line-mode terminal 30
Using the magic sysrequest feature 31

Activating and deactivating the magic sysrequest
feature 31
Triggering magic sysrequest functions from
procfs 32

Chapter 6. Pseudo-random number device driver 33
Setting up the pseudo-random number device
driver 33

Module parameters 33
Controlling access to the device node. 34

Working with the PRNG device driver 34
Reading pseudo-random numbers 34
Displaying PRNG information 35
Setting the reseed limit 36
Reseeding the PRNG 36

Chapter 7. The diag288 watchdog device driver 37
What you should know about the diag288 watchdog
device driver 37
Loading and configuring the diag288 watchdog
device driver 38
External programming interfaces 38

There are device drivers for the console, for virtio devices, and for a
pseudo-random number generator.

Newest version

You can find the newest version of this publication on IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html

Restrictions

For prerequisites and restrictions see the z Systems architecture specific
information in the SUSE Linux Enterprise Server 12 SP2 release notes at
www.suse.com/releasenotes

© Copyright IBM Corp. 2000, 2016 17

||

|
||
|
||

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html
http://www.suse.com/releasenotes

18 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Chapter 4. The virtio CCW transport device driver

The virtio CCW transport device driver handles the virtual channel command
word (CCW) devices that are provided by the KVM hypervisor.

Virtual CCW devices are accessed through a virtual channel subsystem, see
Chapter 2, “The virtual channel subsystem,” on page 7.

The virtio CCW transport device driver consists of a base module and several
separate supporting modules for particular device types.

If a separate module is not loaded automatically, you must load it before you can
work with the corresponding devices.

Virtio devices

The KVM hypervisor hides some of the specifics of the CCW devices it virtualizes.
For example, the hypervisor can virtualize both disk devices and plain files in the
host file system as block devices. The KVM guest cannot differentiate block devices
according to their nature on the host.

As a user of Linux on KVM, you must work with the virtual devices at the
abstraction level with which they are presented. Do not attempt to perform
operations against the presumed underlying real devices. For example, you must
not attempt to apply a low-level formatting action against a block device that
might or might not be backed by a disk.

Setting CCW devices offline or online
By default, all virtio CCW devices are online after an instance of SUSE Linux
Enterprise Server 12 SP2 is booted as a KVM guest on z Systems.

About this task

If the KVM hypervisor defines unnecessary devices to your Linux instance, you
can set them offline.

Tip: You can also use the cio_ignore= kernel parameter to prevent unnecessary
devices from being sensed in the first place (see “cio_ignore - List devices to be
ignored” on page 94).

Procedure

Use the chccwdev command to set block devices offline or online.
For example, to set a block device with bus ID 0.0.0815 offline, issue:

chccwdev -d 0.0.0815

To set this device back online, issue:

chccwdev -e 0.0.0815

© Copyright IBM Corp. 2000, 2016 19

Alternatively, you can write 0 (offline) or 1 (online) to the online sysfs attribute of
the device.

Example: To set the device offline, issue:

echo 0 > /sys/bus/ccw/drivers/virtio_ccw/0.0.0815/online

Virtual block devices
On Linux as a KVM guest on z Systems, you use generic, virtual block devices
instead of specific devices, like DASDs or SCSI LUNs.

These virtual block devices are handled by the virtio_blk device driver module.
SUSE Linux Enterprise Server 12 SP2 loads this module automatically during the
boot process.

A virtual block device might be backed by a disk device, but it might also be
backed by a file on the hypervisor. Do not perform operations that require
knowledge of the specific hardware that backs a virtual block device. For example,
do not attempt to run a low-level formatting operation on a virtual block device.

Block device naming-scheme
Applications access block devices through device nodes. The virtio-blk device
driver uses 16 device nodes for each block device: one for the block device itself
and 15 for partitions.

The standard device nodes are of the form:
v /dev/vd<x> for the block device
v /dev/vd<x><n> for partitions

where

<x> represents one or more alphabetic characters; vd<x> matches the device
name that is used by the virtio-blk device driver.

<n> is an integer in the range 1-15.

All of these nodes use the same major number. You can find the major number by
issuing the following command:

cat /proc/devices | grep virtblk

Table 2. Naming scheme for virtio block devices

Name that is used
by the device driver

Standard device
node Minor number Description

vda
vda1
vda2
...
vda15

/dev/vda
/dev/vda1
/dev/vda2
...
/dev/vda15

0
1
2
...
15

First block device and
up to 15 partitions

vdb
vdb1
vdb2
...
vdb15

/dev/vdb
/dev/vdb1
/dev/vdb2
...
/dev/vdb15

16
17
18
...
31

Second block device
and up to 15
partitions

20 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Table 2. Naming scheme for virtio block devices (continued)

Name that is used
by the device driver

Standard device
node Minor number Description

vd<x>
vd<x>1
vd<x>2
...
vd<x>15

/dev/vd<x>
/dev/vd<x>1
/dev/vd<x>2
...
/dev/vd<x>15

(<m>-1)×16
(<m>-1)×16+1
(<m>-1)×16+2
...
(<m>-1)×16+15

<m>-th block device
with up to 15
partitions

With 1,048,576 (20-bit) available minor numbers, the virtio-blk device driver can
address 65,536 block devices and their partitions. For the first 26 devices, <x> is
one alphabetic character (vda-vdz). The next devices use first two (vdaa-vdzz) and
then more alphabetic characters.

The mapping of standard device nodes to bus-IDs can change when Linux is
rebooted or when hotplug events occur.

Mapping block devices to CCW devices
For each virtual block device, there is a corresponding online CCW device.

To list the device nodes for your block devices, issue:

ls /sys/block

The command output is a list of symbolic links that match the device names of the
block devices.

Example:

ls /sys/block
vda vdb vdc

These links contain several attributes, including another symbolic link, device. To
find the bus ID for a particular block device, issue a command according to the
following example:

Example:

ls -1 /sys/block/vdb/device/../.. | head -1
0.0.1111

Tip: For an overview of the mapping, issue this command:

ls -d /sys/devices/css0/*/*/virtio*/block/*

Example:

ls -d /sys/devices/css0/*/*/virtio*/block/*
/sys/devices/css0/0.0.0000/0.0.10b1/virtio3/block/vda
/sys/devices/css0/0.0.0001/0.0.1111/virtio4/block/vdb
/sys/devices/css0/0.0.0002/0.0.11ab/virtio5/block/vdc

You can pipe the output to awk to obtain a more compact view:

Chapter 4. virtio CCW 21

ls -d /sys/devices/css0/*/*/virtio*/block/* | awk -F "/" ’{print $9 "\t" $6}’
vda 0.0.10b1
vdb 0.0.1111
vdc 0.0.11ab

Partitioning block devices
How to partition a block device depends on how the device is backed on the host,
DASD or other.

Before you begin: From your guest, you cannot find out whether a block device is
backed by a DASD. Obtain this information from the host administrator.

DASD backed block devices
Use the fdasd command to create up to 3 partitions. See the fdasd man
page about how to use this command.

All other block devices
Use the common code fdisk command to create up to 15 partitions. See
the fdisk man page about how to use this command.

The partitions of a block device are represented as subdirectories of the device
representation in /sys/block. For example, you can list the existing partitions of a
block device /sys/block/vda by issuing:

ls /sys/block/vda

Virtual network devices
On Linux as a KVM guest on z Systems, you use generic network devices for
Ethernet interfaces.

Interface names
SUSE Linux Enterprise Server 12 SP2 uses interface names of the form eth<n>,
where <n> is an index number that identifies an individual interface.

Tip: Use ip link to display a summary of your interfaces.

Mapping interfaces to CCW devices
If you define multiple interfaces on a Linux instance, you need to keep track of the
interface names assigned to your CCW network devices.

After setting a device online, read /var/log/messages or issue dmesg to find the
associated interface name in the messages that are issued in response to the device
being set online.

To list the network interfaces, issue:

ls /sys/class/net

The command output is a list of symbolic links that match the interface names.
There is an interface for each network device that is online.

Example:

22 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

ls /sys/class/net
eth0 eth1

For each network device that is online, there is a symbolic link of the form
/sys/class/net/<interface>/device where <interface> is the interface name. To
find the device bus-ID for a particular interface, issue a command according to the
following example:

Example:

ls -1 /sys/class/net/eth0/device/../.. | head -1
0.0.f500

Tip: Issue the following command to obtain a mapping of network devices to
interface names.

ls -d /sys/devices/css0/*/*/virtio*/net/*

Example:

ls -d /sys/devices/css0/*/*/virtio*/net/*
/sys/devices/css0/0.0.0001/0.0.f500/virtio0/net/eth0
/sys/devices/css0/0.0.0002/0.0.1ed0/virtio1/net/eth1

You can pipe the command output to awk to obtain a more compact view:

ls -d /sys/devices/css0/*/*/virtio*/net/* | awk -F "/" ’{print $9 "\t" $6}’
eth0 0.0.f500
eth1 0.0.1ed0

Activating an interface
Use ip or an equivalent command to activate an interface.

Example:

ip addr 192.0.2.5 dev eth0 peer 192.0.2.6

Virtual SCSI-attached tape devices
The representation of virtual SCSI-attached tape devices on Linux as a KVM guest
on z Systems depends on your device driver.

st SUSE Linux Enterprise Server 12 SP2 includes the st device driver as a
separate module. SUSE Linux Enterprise Server 12 SP2 loads this module
for you when it is required.

For each device, st provides device nodes of the form /dev/st<i><x> and
/dev/nst<i><x> where the latter is for non-rewinding devices, where

<x>
is an alphabetic character that specifies a tape property, for example,
compression or encryption.

Chapter 4. virtio CCW 23

<i>
identifies an individual device.

The identifier, <i>, is assigned when Linux is booted or when a device is
set online. As a result, there is no fixed mapping between a physical tape
device and the tape device nodes. For details, see the st man page.

lin_tape
The lin_tape device driver is available from the IBM Fix Central site at
www.ibm.com/support/fixcentral. For details about downloading the
device driver, see Technote 1428656.

The device nodes that it provides include characteristics of the physical
tape drive and are persistent across reboots and after setting a tape device
offline and back online. For details, see IBM Tape Device Drivers Installation
and User's Guide, GC27-2130.

Listing your tape devices

Use the lsscsi command with the -v option to list all your SCSI-attached devices,
including SCSI-attached tape devices. You can also use the lstape command to list
tape devices.

Example:

lsscsi -v
[0:0:0:4] tape IBM 03592E07 35CD /dev/st0
dir: /sys/bus/scsi/devices/0:0:0:4
[/sys/devices/css0/0.0.0002/0.0.1ab0/virtio2/host0/target0:0:0/0:0:0:4]

The output includes the device node as used by the st device driver and the SCSI
stack ID of the form <scsi_host_no>:0:<scsi_id>:<scsi_lun>, 0:0:0:4 in the example.

The sysfs path in the output includes two bus IDs:
v The first bus ID, from left to right, applies to the subchannel
v The second bus ID applies to the virtual SCSI host bus adapter (HBA)

The two bus IDs can but do not need to be the same. In the example, the device
bus-ID is 0.0.1ab0.

For the same example, the output of the lstape command also shows the generic
device name sg0 that is assigned by the virtio_scsi device driver.

lstape
FICON/ESCON tapes (found 0):
TapeNo BusID CuType/Model DevType/Model BlkSize State Op MedState

SCSI tape devices (found 1):
Generic Device Target Vendor Model Type State
sg0 st0 0:0:0:4 IBM 03592E07 tapedrv running

Use the SCSI stack ID and the device bus-ID to communicate about the devices
with the hypervisor administrator.

Virtual SCSI-attached CD/DVD drives
The KVM hypervisor might provide virtual SCSI-attached CD/DVD drives to your
KVM guest.

24 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

http://www.ibm.com/support/fixcentral

Virtual SCSI-attached CD/DVD drives have device nodes of the form /dev/sr<n>,
where <n> is an integer that identifies an individual device. The node for the first
drive is /dev/sr0.

Issue the following command to list all device nodes for CD/DVD drives:

ls /dev/sr*

You can use the isoinfo command with the -i option to find out if a drive contains
media.

Example:

isoinfo -i /dev/sr0

This command returns an error if no media is present.

You can also use the lsscsi command to list all your SCSI-attached devices,
including SCSI-attached CD/DVD drives.

lsscsi
[0:0:0:0] cd/dvd QEMU QEMU CD-ROM 2.3. /dev/sr0

You can use the mount command to mount the content of media in the drive on the
file system.

Example:

mount /dev/sr0 /mnt/media

Unmount the content of the media to release it.

Example:

unmount /dev/sr0

You depend on the KVM hypervisor to eject and insert media.

Chapter 4. virtio CCW 25

26 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Chapter 5. Console device driver

Linux as a KVM guest on z Systems supports SCLP-based terminal devices for
displaying Linux kernel messages.

Typically, you access these devices when IPLing your guest from a terminal session
with the KVM hypervisor.

After the boot process has completed, a guest is usually accessed through a user
login, for example, in an ssh session. The possible connections depend on the
configuration of your particular Linux instance.

Console features
The console is accessed through the service-call logical processor (SCLP) console
interface.

Two device drivers can provide a console for Linux as a KVM guest on z Systems:
v SCLP VT220 terminal device driver
v SCLP line-mode terminal device driver

The line-mode terminal provides fewer capabilities than the VT220 terminal and
is intended as a backup device for emergencies.

One of the console devices that are provided by these device drivers becomes the
preferred console (see the console= parameter in “Console kernel parameter syntax”
on page 28).

You access the preferred console of a guest from an ssh session with the host. For
details, see KVM Virtual Server Management, SC34-2752.

Linux kernel (guest)

SCLP VT220 terminal device driver

Workstation

ssh session

Network

ttysclp0

User space (guest)

/dev/ttysclp0

Linux kernel (host)

User space (host)

shell

Console device driver

ttyS1 sclp_line0

Console device driver

ttyS0

SCLP line-mode terminal device driver

/dev/sclp_line0/dev/console

shell

Figure 4. Accessing the console

© Copyright IBM Corp. 2000, 2016 27

http://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.ldva/ldva_c_welcome.html

Device names and nodes

You require a device node to make a terminal device available to applications, for
example to a login program. SUSE Linux Enterprise Server 12 SP2, creates the
device nodes of Table 3 for you.

Table 3. Terminal device nodes

Device driver
Console
name Device name Device node

SCLP line-mode terminal device
driver

ttyS0 sclp_line0 /dev/sclp_line0

SCLP VT220 terminal device driver ttyS1 ttysclp0 /dev/ttysclp0

Apart from the standard device nodes, /dev/sclp_line0 and /dev/ttysclp0, there
is also a generic device node, /dev/console, that maps to the current console. The
console device driver itself presents /dev/console as a pure input device to the
user space. However, through its association with the terminal device driver, it
becomes bidirectional.

Consoles versus terminals
Terminal and console have special meanings in Linux.

Linux terminal
An input/output device through which users interact with Linux and
Linux applications. Login programs and shells typically run on Linux
terminals and provide access to the Linux system.

Linux console
An output-only device to which the Linux kernel can write kernel
messages. Linux console devices can be associated with Linux terminal
devices. Thus, console output can be displayed on a Linux terminal.

Mainframe terminal
Any device that gives a user access to operating systems and applications
that run on a mainframe. A mainframe terminal can be a physical device
such as a 3270 terminal hardware that is linked to the mainframe through
a controller. It can also be a terminal emulator on a workstation that is
connected through a network. For example, you access z/OS® through a
mainframe terminal.

On the mainframe, the Linux console and Linux terminals can both be connected
to a mainframe terminal.

Setting up the console device drivers
You configure the console device drivers through kernel parameters. You also
might have to ensure suitable terminal settings.

Console kernel parameter syntax
You configure the console or consoles for Linux as a KVM guest on z Systems
through kernel parameters.

28 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Console kernel parameter syntax

►►
console=ttyS0
console=ttyS1
console=ttyS1 console=ttyS0

►

►
sclp_con_drop=0 sclp_con_pages=6

sclp_con_drop=1 sclp_con_pages=<n>
►◄

where:

console=<console_name>
activates console devices to receive Linux kernel messages and specifies the
preferred console.

The preferred console is used as an initial terminal device, beginning at the
stage of the boot process when the initialization procedures run. Messages
from programs that run at this stage are displayed only on the preferred
console. You can activate ttyS0 and ttyS1 to simultaneously receive Linux
kernel messages, but only one of them can be the preferred console.

The following table explains the possible specifications.

Table 4. Statements for the console= kernel parameter

Specification Result

console=ttyS0 ttyS0 is activated to receive Linux kernel messages and
it is also the preferred console. This is the default.

console=ttyS1 ttyS0 and ttyS1 are activated to receive Linux kernel
messages. ttyS1 is the preferred console.

console=ttyS1 console=ttyS0 ttyS0 and ttyS1 are activated to receive Linux kernel
messages. ttyS0 is the preferred console.

sclp_con_drop=
governs the behavior of the terminal device drivers if they run out of output
buffer pages. The trade-off is between slowing down Linux and losing console
output. Possible values are 0 (default) and 1.

0 assures complete console output by pausing until used output buffer pages
are written to an output device and can be reused without loss.

1 avoids system pauses by overwriting used output buffer pages, even if the
content was never written to an output device.

You can use the sclp_con_pages= parameter to set the number of output
buffers.

sclp_con_pages=<n>
specifies the number of 4-KB memory pages to be used as the output buffer for
the terminal. Depending on the line length, each output buffer can hold
multiple lines. Use many buffer pages for a kernel with frequent phases of
producing console output faster than it can be written to the output device.

Depending on the setting for the sclp_con_drop=, running out of pages can
slow down Linux or cause it to lose console output.

Chapter 5. Console 29

The value is a positive integer. The default is 6.

Example: The following specification activates ttyS1 to receive kernel messages
and makes it the preferred console. The statement also configures 32 4-KB pages
(128 KB) for the output buffer. If buffer pages run out, the device driver does not
wait for pages to be written to an output device. Instead of pausing, it reuses
output buffer pages at the expense of losing content.

console=ttyS1 sclp_con_pages=32 sclp_con_drop=1

Indicating the terminal capabilities
Depending on the terminal you are using, specify linux or dumb as the terminal
name to indicate the capabilities of the terminal.

The capabilities of a terminal are indicated through the TERM environment variable.
This setting is often referred to as the terminal name. Do not confuse this setting
with the console name that can be associated with a terminal.

If the terminal does not provide the expected output, ensure that a suitable value
is assigned to the TERM environment variable.

linux
for the VT220 terminal.

dumb
for the line-mode terminal.

For example, enter the following command:

export TERM=linux

Entering control and special characters on the line-mode terminal
Line-mode terminals do not have a control (Ctrl) key. Without a control key, you
cannot enter control characters directly.

Also, pressing the Enter key adds a newline character to your input string. Some
applications do not tolerate such trailing newline characters.

Table 5 summarizes how you can use the caret character (^) to enter some control
characters and to enter strings without appended newline characters.

Table 5. Control and special characters on line-mode terminals

For the key
combination

Enter Usage

Ctrl+C ^c Cancel the process that is running in the foreground of the
terminal.

Ctrl+D ^d Generate an end of file (EOF) indication.

Ctrl+Z ^z Stop a process.

n/a ^n Suppresses the automatic generation of a new line. Thus,
you can enter single characters; for example, the characters
that are needed for yes/no answers in some utilities.

30 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Using the magic sysrequest feature
You can call the magic sysrequest functions from the SCLP terminals.
v To call the magic sysrequest functions on the VT220 terminal, enter the single

character Ctrl+o followed by the character for the particular function.
v To call the magic sysrequest functions on the line-mode terminal, enter the 2

characters “^-” (caret and hyphen) followed by a third character that specifies
the particular function.

Table 6 provides an overview of the commands for the magic sysrequest functions:

Table 6. Magic sysrequest functions

On the line-mode
terminal, enter

On the VT220 terminal,
enter

To

^-b Ctrl+o b Re-IPL immediately.

^-c Ctrl+o c Crash through a forced kernel panic.

^-s Ctrl+o s Emergency sync all file systems.

^-u Ctrl+o u Emergency remount all mounted file
systems read-only.

^-t Ctrl+o t Show task info.

^-m Ctrl+o m Show memory.

^-
followed by a digit
(0 - 9)

Ctrl+o

followed by a digit
(0 - 9)

Set the console log level.

^-e Ctrl+o e Send the TERM signal to end all tasks
except init.

^-i Ctrl+o i Send the KILL signal to end all tasks
except init.

Note: In Table 6 Ctrl+o

means pressing

while holding down the control key.

Table 6 lists the main magic sysrequest functions that are known to work on Linux
on z Systems. For a more comprehensive list of functions, see Documentation/
sysrq.txt in the Linux source tree. Some of the listed functions might not work on
your system.

Activating and deactivating the magic sysrequest feature
Use the sysrq procfs attribute to activate or deactivate the magic sysrequest
feature.

Procedure

From a Linux terminal or a command prompt, enter the following command to
activate the magic sysrequest feature:

echo 1 > /proc/sys/kernel/sysrq

Enter the following command to deactivate the magic sysrequest feature:

echo 0 > /proc/sys/kernel/sysrq

Chapter 5. Console 31

|

|

|
|

|
|
|

|

||

|
|
|
|
|

|||

|||

|||

|||
|

|||

|||

|
|
|

|
|
|

|

|||
|

|||
|
|

|

|
|
|
|

|

|
|

|

|
|

|
||

|

|
||

Triggering magic sysrequest functions from procfs
You can trigger the magic sysrequest functions through procfs.

Procedure

Write the character for the particular function to /proc/sysrq-trigger.
You can use this interface even if the magic sysrequest feature is not activated as
described in “Activating and deactivating the magic sysrequest feature” on page
31.

Example

To set the console log level to 9, enter:

echo 9 > /proc/sysrq-trigger

32 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

|

|

|

|
|
|
|

|

|

|
||

Chapter 6. Pseudo-random number device driver

The pseudo-random number device driver provides user-space applications with
pseudo-random numbers generated by the z Systems CP Assist for Cryptographic
Function (CPACF).

The PRNG device driver supports the Deterministic Random Bit Generator (DRBG)
requirements that are defined in NIST Special Publication 800-90/90A. The device
driver uses the SHA-512 based DRBG mechanism.

To use the SHA-512 algorithm, the device driver requires version 5 of the Message
Security Assist (MSA), which is available as of the EC12 with the latest firmware
level. During initialization of the prng kernel module, or, if prng is compiled into
the kernel, during kernel startup, the device driver checks for the prerequisite.

If the prerequisites for SHA-512 mode are not fulfilled, the device driver uses the
Triple Data Encryption Standard (TDES) algorithm instead. In TDES mode, the
PRNG device driver uses a DRBG in compliance with ANSI X9.17 based on the
TDES cipher algorithm. You can force the fallback to TDES mode by using the
prng.mode= kernel parameter or mode= module parameter.

Terminology hint: Various abbreviations are commonly used for Triple Data
Encryption Standard, for example: TDES, triple DES, 3DES, and TDEA.

User-space programs access the pseudo-random-number device through a device
node, /dev/prandom. SUSE Linux Enterprise Server 12 SP2 provides udev to create
it for you.

Setting up the pseudo-random number device driver
In SUSE Linux Enterprise Server, the pseudo-random number device driver is
compiled as a module. To use it, load the device driver module.

Module parameters
You can load and configure the PRNG device driver module.

Module parameter syntax

►► modprobe prng
mode=0

mode= 1
2

chunksize=256

chunksize=<sizeparam>
►

►
reseed_limit=100000

reseed_limit=<reseedparam>
►◄

where:

© Copyright IBM Corp. 2000, 2016 33

mode=
specifies the mode in which the device driver runs:

0 Default. In this mode, the device driver automatically detects the MSA
extension level and feature enablement. The device driver runs in
SHA512 mode if the requirements are fulfilled, otherwise it falls back
to TDES mode.

1 forces the device driver to run in TDES mode. The device driver starts
only if the requirements for TDES mode are fulfilled.

2 forces the device driver to run in SHA512 mode. The device driver
starts only if the requirements for SHA512 mode are fulfilled. The
device driver does not fall back to TDES mode.

<sizeparam>
adjusts the random-buffer block size that the device driver uses to generate
new random bytes. In TDES mode, this value can be in the range 8 - 65536, for
SHA512 mode, the range is 64 - 65536. The default is 256 bytes.

<reseedparam>
adjusts the reseed limit in SHA512 mode. Multiply this value with the
chunksize to obtain the reseed boundary in bytes. The value can be in the
range 10000 - 100000. The default is 100000. In TDES mode, the reseed limit is
a constant value of 4096 bytes.

Controlling access to the device node
SUSE Linux Enterprise Server by default assigns access mode 0644 to
/dev/prandom.

To restrict access to the device node to root users, add the following udev rule. It
prevents non-root users from reading random numbers from /dev/prandom.

KERNEL=="prandom", MODE="0400", OPTIONS="last_rule"

If access to the device is restricted to root, add the following udev rule. It
automatically extends access to the device to other users.

KERNEL=="prandom", MODE="0444", OPTIONS="last_rule"

Working with the PRNG device driver
Read random numbers and control the settings of the PRNG device driver.

Tasks include:
v “Reading pseudo-random numbers”
v “Displaying PRNG information” on page 35
v “Reseeding the PRNG” on page 36
v “Setting the reseed limit” on page 36

Reading pseudo-random numbers
The pseudo-random number device is read-only. Use the read function, cat
program, or dd program to obtain random numbers.

Example

In this example bs specifies the block size in bytes for transfer, and count specifies
the number of records with block size. The bytes are written to the output file.

34 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

dd if=/dev/prandom of=<output file name> bs=<xxxx> count=<nnnn>

Displaying PRNG information
Read the attributes of the prandom device in sysfs.

About this task

The sysfs representation of a PRNG device is a directory: /sys/devices/virtual/
misc/prandom. This sysfs directory contains a number of attributes with information
about the device.

Table 7. Attributes with PRNG information

Attribute Explanation

chunksize The size, in bytes, of the random-data bytes buffer that is used to generate new random
numbers. The value can be in the range 64 bytes - 64 KB. The default is 256 bytes. It is
rounded up to the next 64-byte boundary and can be adjusted as a module parameter when
you start the module.

byte_counter The number of random bytes generated since the PRNG device driver was started. You can
reset this value only by removing and reloading the kernel module, or rebooting Linux (if
PRNG was compiled into the kernel). This attribute is read-only.

errorflag SHA512 mode only: 0 if the PRNG device driver is instantiated and running well. Any
other value indicates a problem. If there is an error indication other than 0:

v The DRBG does not provide random data bytes to user space

v The read() function fails

v The error code errno is set to EPIPE (broken pipe)

This attribute is read-only.

mode SHA512 if the PRNG device driver runs in SHA512 mode, TDES if the PRNG device driver
runs in TDES mode. This attribute is read-only.

reseed SHA512 mode only: An integer, writable only by root. Write any integer to this attribute to
trigger an immediate reseed of the PRNG. See “Reseeding the PRNG” on page 36.

reseed_limit SHA512 mode only: An integer, writable only by root to query or set the reseed counter
limit. Valid values are in the range 10000 - 100000. The default is 100000. See “Setting the
reseed limit” on page 36.

strength SHA512 mode only: A read-only integer that shows the security strength according to NIST
SP800-57. Returns the integer value of 256 in SHA512 mode.

Procedure

Issue a command of this form to read an attribute:

cat /sys/devices/virtual/misc/prandom/<attribute>

where <attribute> is one of the attributes of Table 7.

Example

This example shows a prandom device that is running in SHA512 mode, set to
reseed after 2.56 MB:

Chapter 6. Pseudo-random numbers 35

cat /sys/devices/virtual/misc/prandom/chunksize
256
cat /sys/devices/virtual/misc/prandom/mode
SHA512
cat /sys/devices/virtual/misc/prandom/reseed_limit
10000

Setting the reseed limit
The PRNG reseeds after chunksize × reseed_limit bytes are read. By default, the
reseed limit in bytes is 100000 × 256 = 25.6 MB.

Procedure

To set the number of times a chunksize amount of random data can be read from
the PRNG before reseeding, write the number to the reseed_limit attribute. For
example:

echo 10000 > /sys/devices/virtual/misc/prandom/reseed_limit

The reseed_limit value must be in the range 10000 - 100000.

Reseeding the PRNG
You can force a reseed by writing to the reseed attribute.

Procedure

To reseed the PRNG, write an integer to its reseed attribute:

echo 1 > /sys/devices/virtual/misc/prandom/reseed

Writing any integer value to this attribute triggers an immediate reseed of the
PRNG instance.

36 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Chapter 7. The diag288 watchdog device driver

The diag288 watchdog device driver provides Linux watchdog applications with
access to the watchdog timer on the KVM host.

You can use the diag288 watchdog if it is configured for your KVM virtual server
by the KVM hypervisor.

The diag288 watchdog device driver provides the following features:
v Access to the watchdog timer on the KVM host.
v An API for watchdog applications (see “External programming interfaces” on

page 38).

Watchdog applications can be used to set up automated restart mechanisms for
Linux as a KVM guest on z Systems.

What you should know about the diag288 watchdog device driver
The watchdog function comprises two components: a watchdog application that
runs on the Linux instance being controlled and a watchdog timer outside the
Linux instance.

While the Linux instance operates satisfactorily, the watchdog application reports a
positive status to the watchdog timer at regular intervals. The watchdog
application uses a device node to pass these status reports to the timer (Figure 5).

The watchdog application typically derives its status by monitoring critical
network connections, file systems, and processes on the Linux instance. If a
specified time elapses without a positive report being received by the watchdog
timer, the watchdog timer assumes that the Linux instance is in an error state.

The watchdog timer then triggers an action that is defined in the guest definition
on the KVM hypervisor. For example, the Linux instance might be shut down or
rebooted, or a system dump might be initiated.

For information about setting the default timer and performing other actions, see
“External programming interfaces” on page 38.

See also the generic watchdog documentation in the Linux kernel source tree
under Documentation/watchdog.

Watchdog

application

Linux KVM host

User space Kernel

Watchdog

timer/dev/watchdog

Figure 5. Watchdog application and timer

© Copyright IBM Corp. 2000, 2016 37

Loading and configuring the diag288 watchdog device driver
You configure the diag288 watchdog device driver when you load the module.

watchdog module parameter syntax

►► modprobe diag288_wdt
nowayout=<nowayout_flag>

►◄

The value of <nowayout_flag> determines what happens when the watchdog device
node is closed by the watchdog application:

1 the watchdog timer keeps running and triggers an action if no positive status
report is received within the specified time interval. This is the default.

0 if the character "V" is written to the device, the watchdog timer is stopped and
the Linux instance continues without the watchdog support.

The modprobe command succeeds only if your KVM hypervisor supports the
diag288 watchdog and the watchdog is specified in your virtual server
configuration.

External programming interfaces
There is an API for applications that work with the watchdog device driver.

Application programmers: This information is intended for programmers who
want to write watchdog applications that work with the watchdog device driver.

For information about the API and the supported IOCTLs, see the
Documentation/watchdog/watchdog-api.txt file in the Linux source tree.

The default watchdog timeout is 30 seconds, the minimum timeout that can be set
through the IOCTL WDIOC_SETTIMEOUT is 15 seconds.

38 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Part 3. System resources

Chapter 8. Displaying system information . . . 41
Displaying hardware and hypervisor information . 41
Checking whether the Linux instance can be a
hypervisor. 42

Chapter 9. Managing CPUs 43
CPU capability change. 43
Setting CPUs offline or online 44

Chapter 10. cpuplugd - Control CPUs 45
cpuplugd service utility syntax 45
cpuplugd command-line syntax 46
Configuration file structure 47

Basic configuration file for CPU control 47
Keywords for CPU hotplug rules 48
Using historical data 49
Writing more complex rules 50

Sample configuration file 51

Chapter 11. Hardware-accelerated in-kernel
cryptography 53
Hardware dependencies and restrictions. 53
Support modules 54
Confirming hardware support for cryptographic
operations 54

Manage the resources of your virtual hardware.

Newest version

You can find the newest version of this publication on IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html

Restrictions

For prerequisites and restrictions see the z Systems architecture specific
information in the SUSE Linux Enterprise Server 12 SP2 release notes at
www.suse.com/releasenotes

© Copyright IBM Corp. 2000, 2016 39

|
||

||
||
||

|
||
||
||
|
||

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html
http://www.suse.com/releasenotes

40 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Chapter 8. Displaying system information

You can display information about the resources and capabilities of your Linux
instance and about the hardware and hypervisor on which your Linux instance
runs.

Displaying hardware and hypervisor information
You can display information about the physical and virtual hardware on which
your Linux instance runs.

Procedure

Issue the following command:

cat /proc/sysinfo

The output of the command is divided into several blocks.
v The first two blocks provide information about the mainframe hardware.
v The third block provide information about the LPAR on which the KVM host

runs.
v The final block provides information about your KVM virtual server.

The field names in this section have a prefix, VM<nn>, where <nn> is the
hypervisor level. VM00 means that the KVM host runs in LPAR mode.

You can use the information from /proc/sysinfo, for example, to verify that a
guest relocation has taken place.

Example:

cat /proc/sysinfo
Manufacturer: IBM
...
LPAR Number: 9
...
VM00 Name: Linux in
VM00 Control Program: KVM/Linux
VM00 Adjustment: 1000
VM00 CPUs Total: 4
VM00 CPUs Configured: 4
VM00 CPUs Standby: 0
VM00 CPUs Reserved: 0
VM00 Extended Name: Linux instance 42
VM00 UUID: 82038f2a-1344-aaf7-1a85-2a7250be2076

The fields with prefix VM00 show the following information:

Name shows the name of the virtual server according to the domain XML on the
KVM host. Names of up to 8 characters are displayed in full; longer names
are truncated after the eighth character. See also “Extended Name” on page
42.

Control Program
always shows KVM/Linux for Linux as a KVM guest on z Systems.

© Copyright IBM Corp. 2000, 2016 41

Adjustment
does not show useful information for Linux as a KVM guest on z Systems.

CPUs Total
shows the number of virtual CPUs that the KVM host provides to the
virtual server.

CPUs Configured
shows the number of virtual CPUs that are online.

CPUs Standby
is always 0 for Linux as a KVM guest on z Systems.

CPUs Reserved
is always 0 for Linux as a KVM guest on z Systems.

Extended Name
shows the name of the virtual server as specified in the domain XML on
the KVM host. This field is present only if the name exceeds 8 characters.
See also “Name” on page 41.

UUID shows the universally unique identifier (UUID) according to the domain
XML on the KVM host. If you do not specify an identifier, it is created for
you.

Checking whether the Linux instance can be a hypervisor
An instance of Linux on z Systems must have the SIE (Start Interpretive Execution)
capability to be able to act as a hypervisor, such as a KVM host.

Procedure
1. Issue the following command to find out whether you can operate your Linux

instance as a hypervisor:

cat /proc/cpuinfo
vendor_id : IBM/S390
processors : 1
bogomips per cpu: 14367.00
features : esan3 zarch stfle msa ldisp eimm dfp edat etf3eh
highgprs sie
cache0 : level=1 type=Data scope=Private size=128K
...

2. Examine the features line in the command output. If the list of features includes
sie, the Linux instance can be a hypervisor. The Linux instance of the example
can be a hypervisor.

42 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

|

|
|

|

|
|

|
|
|
|
|
|
|
|
||

|
|
|

|

Chapter 9. Managing CPUs

You can set CPUs offline or online and you can find out about CPU capabilities.

Use the lscpu and chcpu commands to manage CPUs. These commands are part of
the util-linux package. For details, see the man pages. Alternatively, you can
manage CPUs through the attributes of their entries in sysfs.

Some attributes that govern CPUs are available in sysfs under:
/sys/devices/system/cpu/cpu<N>

where <N> is the number of the logical CPU. Both the sysfs interface and the
lscpu and chcpu commands manage CPUs through their logical representation in
Linux.

You can obtain a mapping of logical CPU numbers to physical CPU addresses by
issuing the lscpu command with the -e option.

Example:

lscpu -e
CPU NODE BOOK SOCKET CORE L1d:L1i:L2d:L2i ONLINE CONFIGURED POLARIZATION ADDRESS
0 0 0 0 0 0:0:0:0 yes yes horizontal 0
1 0 1 1 1 1:1:1:1 yes yes horizontal 1
2 0 2 2 2 2:2:2:2 yes yes horizontal 2
3 0 3 3 3 3:3:3:3 yes yes horizontal 3
4 0 4 4 4 4:4:4:4 yes yes horizontal 4

The logical CPU numbers are shown in the CPU column and the physical address
in the ADDRESS column of the output table. For Linux as a KVM guest on z
Systems, expect the physical CPU address to match the number of the logical CPU.

Alternatively, you can find the physical address of a CPU in the sysfs address
attribute of a logical CPU.

Example:

cat /sys/devices/system/cpu/cpu0/address
0

CPU capability change
When mainframe CPUs heat or cool, the Linux kernel generates a uevent for each
affected online CPU.

You can read the CPU capability from the Capability and, if present, Secondary
Capability fields in /proc/sysinfo.

The capability values are unsigned integers as defined in the system information
block (SYSIB) 1.2.2 (see z/Architecture Principles of Operation, SA22-7832). A smaller
value indicates a proportionally greater CPU capacity. Beyond that, there is no

© Copyright IBM Corp. 2000, 2016 43

|

|

|

|
|
|

|

|

|
|
|

|
|

|

|
|
|
|
|
|
|
||

|
|
|

|
|

|

|
|
||

|
|

|
|

|
|

|
|
|

formal description of the algorithm that is used to generate this value. The value is
used as an indication of the capability of the CPU relative to the capability of other
CPU models.

Setting CPUs offline or online
You can change the state of a CPU from online to offline, or from offline to
online. After booting Linux on z Systems as a KVM guest, all CPUs are online.

Before you begin

Daemon processes like cpuplugd can change the state of any CPU at any time. Such
changes can interfere with manual changes.

Procedure

Change the online state of a CPU by issuing a command of this form:

chcpu -e|-d <N>

where

<N>
is the number of the logical CPU.

-d sets an online CPU offline.

-e sets an offline CPU online.

Alternatively, you can write 0 to the online sysfs attribute of a CPU to set it
offline, or 1 to set it online.

Examples:

v The following chcpu command sets the logical CPU with number 2 offline.

chcpu -d 2

The following command achieves the same results by writing 0 to the online
sysfs attribute of the CPU.

echo 0 > /sys/devices/system/cpu/cpu2/online

v The following chcpu command sets the logical CPU with number 2 online.

chcpu -e 2

The following command achieves the same results by writing 1 to the online
sysfs attribute of the CPU.

echo 1 > /sys/devices/system/cpu/cpu2/online

44 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

|
|
|

|
|

|
|

|

|
|

|

|

|
||

|

|
|

||

||

|
|

|

|

|
||

|
|

|
||

|

|
||

|
|

|
||

|

Chapter 10. cpuplugd - Control CPUs

Use the cpuplugd command and a set of rules in a configuration file to dynamically
enable or disable CPUs.

Rules that are tailored to a particular system environment and the associated
workload can increase performance. The rules can include various system load
variables.

Note: Do not use cpuplugd with NUMA emulation. cpuplugd can distort the
balance of CPU assignments to NUMA nodes. See “NUMA emulation” on page
107.

You can start cpuplugd from the command line in two ways:
v Through the service utility
v Through the cpuplugd command interface

Note: Do not run multiple instances of cpuplugd simultaneously.

cpuplugd service utility syntax
If you run the cpuplugd daemon through the service utility, you configure the
daemon through specifications in the /etc/sysconfig/cpuplugd configuration file.

►► service cpuplugd start
stop
status
restart

►◄

Where:

start
starts the cpuplugd daemon with the configuration in /etc/sysconfig/
cpuplugd. Do not run multiple instances of cpuplugd simultaneously. Check
the cpuplugd status before starting a new instance.

stop
stops the cpuplugd daemon.

status
shows current status of cpuplugd.

restart
stops and restarts the cpuplugd daemon. Useful to re-read the configuration
file when it was changed.

© Copyright IBM Corp. 2000, 2016 45

|
|
|

|

|

|

|

Examples
v To stop a running instance of cpuplugd:

service cpuplugd stop

v To display the status:

service cpuplugd status
...

Active: active (running) ...

cpuplugd command-line syntax
You can start cpuplugd through a command interface.

Before you begin: Do not run multiple instances of cpuplugd simultaneously.
Check the cpuplugd status through the service utility before you issue the
cpuplugd command (see “cpuplugd service utility syntax” on page 45).

cpuplugd syntax

►► cpuplugd
-f -V

-c <config file> ►◄

Where:

-c or --config <config file>
specifies the path to the configuration file with the rules (see “Configuration
file structure” on page 47). You can find a sample configuration file at
/etc/sysconfig/cpuplugd. This sample configuration file contains specifications
for both CPU hotplug and memory hotplug. Memory hotplug is not applicable
to Linux as a KVM guest on z Systems.

-f or --foreground
runs cpuplugd in the foreground and not as a daemon. If this option is
omitted, cpuplugd runs as a daemon in the background.

-V or --verbose
displays verbose messages to stdout when running in the foreground or to
syslog when running as a daemon in the background. This option can be
useful for debugging.

-h or --help
displays help information for the command. To view the command man page,
enter man cpuplugd. To view the man page for the configuration file, enter
man cpuplugd.conf. These man pages describe both CPU hotplug and memory
hotplug. Memory hotplug is not applicable to Linux as a KVM guest on z
Systems.

-v or --version
displays version information for cpuplugd.

46 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Examples
v To start cpuplugd in daemon mode with a configuration file

/etc/sysconfig/cpuplugd:

cpuplugd -c /etc/sysconfig/cpuplugd

v To run cpuplugd in the foreground with verbose messages and with a
configuration file /etc/sysconfig/cpuplugd:

cpuplugd -V -f -c /etc/sysconfig/cpuplugd

Configuration file structure
The cpuplugd configuration file can specify rules for controlling the number of
active CPUs.

The configuration file contains these elements:
v <variable>=“<value>” pairs

These pairs must be specified within one line. The maximum valid line length is
2048 characters. The values can be decimal numbers or algebraic or boolean
expressions.

v Comments
Any part of a line that follows a number sign (#) is treated as a comment. There
can be full comment lines with the number sign at the beginning of the line or
comments can begin in mid-line.

v Empty lines

Attention: The configuration file samples in this section illustrate the syntax of
the configuration file. Do not use the sample rules on production systems. Useful
rules differ considerably, depending on the workload, resources, and requirements
of the system for which they are designed.

Basic configuration file for CPU control
A configuration file for dynamically enabling or disabling CPUs has several
required specifications.

The configuration file sample of Figure 6 is reduced to the required specifications
for dynamically enabling or disabling CPUs.

In the configuration file:

UPDATE
specifies the time interval, in seconds, at which cpuplugd evaluates the rules
and, if a rule is met, enables or disables CPUs.

UPDATE="10"
CPU_MIN="2"
CPU_MAX="10"

HOTPLUG = "idle < 10.0"
HOTUNPLUG = "idle > 100"

Figure 6. Simplified configuration file with CPU hotplug rules

Chapter 10. cpuplugd 47

In the example, the rules are evaluated every 10 seconds.

CPU_MIN
specifies the minimum number of CPUs. Even if the rule for disabling CPUs is
met, cpuplugd does not reduce the number of CPUs to less than this number.

In the example, the number of CPUs cannot become less than 2.

CPU_MAX
specifies the maximum number of CPUs. Even if the rule for enabling CPUs is
met, cpuplugd does not increase the number of CPUs to more than this
number. If 0 is specified, the maximum number of CPUs is the number of
CPUs available on the system.

In the example, the number of CPUs cannot become more than 10.

HOTPLUG
specifies the rule for dynamically enabling CPUs. The rule resolves to a
boolean true or false. Each time this rule is true, cpuplugd enables one CPU,
unless the number of CPUs has already reached the maximum specified with
CPU_MAX.

Setting HOTPLUG to 0 disables dynamically adding CPUs.

In the example, a CPU is enabled when the idle times of all active CPUs sum
up to less than 10.0%. See “Keywords for CPU hotplug rules” for information
about available keywords.

HOTUNPLUG
specifies the rule for dynamically disabling CPUs. The rule resolves to a
boolean true or false. Each time this rule is true, cpuplugd disables one CPU,
unless the number of CPUs has already reached the minimum specified with
CPU_MIN.

Setting HOTUNPLUG to 0 disables dynamically removing CPUs.

In the example, a CPU is disabled when the idle times of all active CPUs sum
up to more than 100%. See “Keywords for CPU hotplug rules” for information
about available keywords.

If one of these variables is set more than once, only the last occurrence is used.
These variables are not case-sensitive.

If both the HOTPLUG and HOTUNPLUG rule are met simultaneously,
HOTUNPLUG is ignored.

Keywords for CPU hotplug rules
Use the predefined HOTPLUG and HOTUNPLUG keywords for CPU hotplug.

The following keywords are available:

loadavg
is the current load average.

onumcpus
is the current number of online CPUs.

runnable_proc
is the current number of runnable processes.

user
is the current CPU user percentage.

48 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

nice
is the current CPU nice percentage.

system
is the current CPU system percentage.

idle
is the current CPU idle percentage.

iowait
is the current CPU iowait percentage.

irq
is the current CPU irq percentage.

softirq
is the current CPU softirq percentage.

steal
is the current CPU steal percentage.

guest
is the current CPU guest percentage.

guest_nice
is the current CPU guest_nice percentage.

cpustat.<name>
is data from /proc/stat and /proc/loadavg. In the keyword, <name> can be
any of the previously listed keywords, for example, cpustat.idle. See the proc
man page for more details about the data that is represented by these
keywords.

With this notation, the keywords resolve to raw timer ticks since system start,
not to current percentages. For example, idle resolves to the current idle
percentage and cpustat.idle resolves to the total timer ticks spent idle. See
“Using historical data” about how to obtain average and percentage values.

loadavg, onumcpus, and runnable_proc are not percentages and resolve to the
same values as cpustat.loadavg, cpustat.onumcpus, and
cpustat.runnable_proc.

cpustat.total_ticks
is the total number of timer ticks since system start.

time
is the UNIX epoch time in the format “seconds.microseconds”.

Percentage values are accumulated for all online CPUs. Hence, the values for the
percentages range 0 - 100×(number of online CPUs). To get the average percentage
per CPU device, divide the accumulated value by the number of CPUs. For
example, idle / onumcpus yields the average idle percentage per CPU.

Using historical data
Historical data is available for the keyword time and the sets of keywords
cpustat.<name>.

See “Keywords for CPU hotplug rules” on page 48 for details about these
keywords.

Use the suffixes [<n>] to retrieve the data of <n> intervals in the past, where <n>
can range 0 - 100.

Chapter 10. cpuplugd 49

Examples

cpustat.idle
yields the current value for the counted idle ticks.

cpustat.idle[1]
yields the idle ticks as counted one interval ago.

cpustat.idle[5]
yields the idle ticks as counted 5 intervals ago.

cpustat.idle - cpustat.idle[5]
yields the idle ticks during the past 5 intervals.

time - time[1]
yields the length of an update interval in seconds.

cpustat.total_ticks - cpustat.total_ticks[5]
yields the total number of ticks during the past 5 intervals.

(cpustat.idle - cpustat.idle[5]) / (cpustat.total_ticks - cpustat.total_ticks[5])
yields the average ratio of idle ticks to total ticks during the past 5
intervals.

Multiplying this ratio with 100 yields the percentage of idle ticks during
the last 5 intervals.

Multiplying this ratio with 100 * onumcpus yields the accumulated
percentage of idle ticks for all processors during the last 5 intervals.

Writing more complex rules
In addition to numbers and keywords, you can use mathematical and boolean
operators, and you can use user-defined variables to specify rules.
v The keywords of “Keywords for CPU hotplug rules” on page 48
v Decimal numbers
v The mathematical operators

+ addition
- subtraction
* multiplication
/ division
< less than
> greater than

v Parentheses (and) to group mathematical expressions
v The Boolean operators

& and
| or
! not

v User-defined variables
You can specify complex calculations as user-defined variables, which can then
be used in expressions. User-defined variables are case-sensitive and must not
match a pre-defined variable or keyword. In the configuration file, definitions
for user-defined variables must precede their use in expressions.
Variable names consist of alphanumeric characters and the underscore (_)
character. An individual variable name must not exceed 128 characters. All
user-defined variable names and values, in total, must not exceed 4096
characters.

50 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Examples
v HOTPLUG = "loadavg > onumcpus + 0.75"

v HOTPLUG = "(loadavg > onumcpus + 0.75) & (idle < 10.0)"

v
my_idle_rate = "(cpustat.idle - cpustat.idle[5]) / (cpustat.total_ticks - cpustat.total_ticks[5])"
my_idle_percent_total = "my_idle_rate * 100 * onumcpus"
...
HOTPLUG = "(loadavg > onumcpus + 0.75) & (my_idle_percent_total < 10.0)"

Sample configuration file
A typical configuration file includes multiple user-defined variables and values
from procfs, for example, to evaluate idle cycles.

Attention: The sample file of Figure 7 illustrates the syntax of the configuration
file. Useful rules might differ considerably, depending on the workload, resources,
and requirements of the system for which they are designed.

After you install cpuplugd with the s390-tools RPM, a commented sample
configuration file is available at /etc/sysconfig/cpuplugd. This file is used by the
cpuplugd service. Do not enable the memory hotplug rules. Memory hotplug is

###########################
Required static variables

UPDATE="1"
CPU_MIN="1"
CPU_MAX="0"

########################
User-defined variables

user_0="(cpustat.user[0] - cpustat.user[1])"
nice_0="(cpustat.nice[0] - cpustat.nice[1])"
system_0="(cpustat.system[0] - cpustat.system[1])"
user_2="(cpustat.user[2] - cpustat.user[3])"
nice_2="(cpustat.nice[2] - cpustat.nice[3])"
system_2="(cpustat.system[2] - cpustat.system[3])"

CP_Active0="(user_0 + nice_0 + system_0) / (cpustat.total_ticks[0] - cpustat.total_ticks[1])"
CP_Active2="(user_2 + nice_2 + system_2) / (cpustat.total_ticks[2] - cpustat.total_ticks[3])"
CP_ActiveAVG="(CP_Active0+CP_Active2) / 2"

idle_0="(cpustat.idle[0] - cpustat.idle[1])"
iowait_0="(cpustat.iowait[0] - cpustat.iowait[1])"
idle_2="(cpustat.idle[2] - cpustat.idle[3])"
iowait_2="(cpustat.iowait[2] - cpustat.iowait[3])"

CP_idle0="(idle_0 + iowait_0) / (cpustat.total_ticks[0] - cpustat.total_ticks[1])"
CP_idle2="(idle_2 + iowait_2) / (cpustat.total_ticks[2] - cpustat.total_ticks[3])"
CP_idleAVG="(CP_idle0 + CP_idle2) / 2"

###############
Hotplug rules

HOTPLUG="((1 - CP_ActiveAVG) * onumcpus) < 0.08"
HOTUNPLUG="(CP_idleAVG * onumcpus) > 1.15"

Figure 7. Sample configuration file for CPU hotplug

Chapter 10. cpuplugd 51

not applicable to Linux as a KVM guest on z Systems

52 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Chapter 11. Hardware-accelerated in-kernel cryptography

The Linux kernel implements cryptographic operations for kernel subsystems like
dm-crypt and IPSec. Applications can use these operations through the kernel
cryptographic API.

In-kernel cryptographic operations can be performed by platform-specific
implementations instead of the generic implementations within the Linux kernel.

On z Systems, hardware-accelerated processing is available for some of these
operations.

Hardware dependencies and restrictions
The cryptographic operations that can be accelerated by hardware implementations
depend on your z Systems hardware features and mode of operating SUSE Linux
Enterprise Server 12 SP2.

z196 and later z Systems hardware supports hardware-acceleration for operations
that cover the following standards:
v SHA-1
v SHA-256
v SHA-512
v DES and TDES (ECB, CBC, and CTR modes)
v AES (ECB, CBC, and CTR modes for all AES key sizes; XTS for 256-bit and

512-bit keys)
v GHASH

CPACF dependencies

Hardware-acceleration for DES, TDES, AES, and GHASH requires the Central
Processor Assist for Cryptographic Function (CPACF). Read the features line from
/proc/cpuinfo to find out whether the CPACF feature is enabled on your
hardware.

Example:

cat /proc/cpuinfo | grep features
features : esan3 zarch stfle msa ldisp eimm dfp edat etf3eh highgprs te vx sie

In the output line, msa indicates that the CPACF feature is enabled. For information
about enabling CPACF, see the documentation for your z Systems hardware.

FIPS restrictions of the hardware capabilities

If the kernel runs in Federal Information Processing Standard (FIPS) mode, only
FIPS 140-2 approved algorithms are available. DES, for example, is not approved
by FIPS 140-2.

Read /proc/sys/crypto/fips_enabled to find out whether your kernel runs in FIPS
mode.

© Copyright IBM Corp. 2000, 2016 53

|

|

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|

|

|

|

|
|

|

|

|
|
|
|

|

|
|
||

|
|

|

|
|
|

|
|

Example:

cat /proc/sys/crypto/fips_enabled
0

The kernel of the example does not run in FIPS mode. For kernels that run in FIPS
mode, the output of the command is 1.

You control the FIPS mode with the fips kernel parameter, see “fips - Run Linux in
FIPS mode” on page 99.

For more information about FIPS, go to csrc.nist.gov/publications/PubsFIPS.html.

Support modules
SUSE Linux Enterprise Server 12 SP2 automatically loads the modules that support
the available hardware-acceleration.

sha1_s390
enables hardware-acceleration for SHA-1 operations. sha1_s390 requires the
sha_common module.

sha_256
enables hardware-acceleration for SHA-224 and SHA-256 operations.
sha_256 requires the sha_common module.

sha_512
enables hardware-acceleration for SHA-384 and SHA-512 operations.
sha_512 requires the sha_common module.

ghash_s390
enables hardware-acceleration for Galois hashes.

aes_s390
enables hardware-acceleration for AES encryption and decryption for the
following modes of operation:
v ECB, CBC, and CTR for key lengths 128, 192, and 256 bits
v XTS for key lengths 128 and 256 bits

des_s390
enables hardware-acceleration for DES and TDES for the following modes
of operation: ECB, CBC, and CTR.

Note: CPACF for AES-GCM operations requires both the aes_s390 and ghash_s390
module.

Confirming hardware support for cryptographic operations
Read /proc/crypto to confirm that cryptographic operations are performed with
hardware support.

Procedure

Read the driver lines from the content of /proc/crypto.

Example:

54 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

|

|
|
||

|
|

|
|

|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|

|

|
|
|

|
|

|
|

|
|

|

|

|

http://csrc.nist.gov/publications/PubsFIPS.html

cat /proc/crypto | grep driver
driver : sha512-s390
driver : sha224-s390
driver : sha256-s390
driver : sha1-s390
driver : ghash-s390
...

Each line that ends in -s390 indicates hardware-acceleration for a corresponding
algorithm or mode.

Chapter 11. Hardware-accelerated cryptography 55

|
|
|
|
|
|
|
||

|
|

56 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Part 4. Booting and shutdown

Chapter 12. IPL, booting, and starting the virtual
server 59

Chapter 13. Shutdown actions 61

Displaying current IPL parameters. 62
Rebooting from an alternative source 63

Boot SUSE Linux Enterprise Server 12 SP2 as a KVM guest on z Systems by
starting a KVM virtual server. Use the chshut and chreipl commands to configure
shutdown and restart options.

Newest version

You can find the newest version of this publication on IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html

Restrictions

For prerequisites and restrictions see the z Systems architecture specific
information in the SUSE Linux Enterprise Server 12 SP2 release notes at
www.suse.com/releasenotes

© Copyright IBM Corp. 2000, 2016 57

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html
http://www.suse.com/releasenotes

58 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Chapter 12. IPL, booting, and starting the virtual server

On z Systems, you usually start booting Linux by performing an Initial Program
Load (IPL) from an IPL device.

For Linux on z Systems as a KVM guest, this IPL is initiated by starting a virtual
server on the KVM hypervisor.

In mainframe terminology, an IPL device can hold any mainframe operating system
or stand-alone program, for example, a dump program. An IPL device that holds a
Linux image is a boot device for Linux. In the context of Linux on z Systems as a
KVM guest, the terms IPL device and boot device are used interchangeably.

The following graphic summarizes the main steps of the boot process for SUSE
Linux Enterprise Server 12 SP2 as a KVM guest.

First step: Start
The KVM hypervisor, starts the virtual server by assigning resources to the
virtual hardware, including an IPL device. Then, the hypervisor loads
s390-ccw.img into the memory of the new virtual hardware.

s390-ccw.img then loads Linux. As a source, it can handle ISO images and
CCW devices that are prepared as a boot device.

(3) Boot process 2:

GRUB 2 loads

target kernel

memory

IPL device

Auxiliary
kernel image

GRUB 2

Linux
target kernel

image

Auxiliary
kernel image

GRUB 2

Linux
target kernel

image

(2) Boot process 1:

loads a

kernel

s390-ccw.img

uxiliary

IPL device

Auxiliary
kernel image

GRUB 2

Linux
target kernel

image

memory

Auxiliary
kernel image

GRUB 2

s390-ccw.img

(1) Start of virtual server:

the KVM host assigns

the virtual hardware

and loads s390-ccw.img

IPL device

Auxiliary
kernel image

GRUB 2

Linux
target kernel

image

memory

s390-ccw.img

KVM
hypervisor

memory

Linux
target kernel

image

(4) Target kernel

gets control

Figure 8. Server start, IPL, and boot process

© Copyright IBM Corp. 2000, 2016 59

|
|

Second step: boot process for the auxiliary kernel
In this step, s390-ccw.img gets control. It loads a Linux auxiliary kernel
into memory. This auxiliary kernel includes GRUB 2.

Third step: boot process for the target kernel
In this step, GRUB 2 gets control. It loads the target Linux kernel into
memory.

Forth step: target kernel gets control
When the boot process for the target Linux kernel has completed, the
target Linux kernel gets control.

60 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Chapter 13. Shutdown actions

Several triggers can cause Linux to shut down. For each shutdown trigger, you can
configure a specific shutdown action to be taken as a response.

Table 8. Shutdown triggers and default action overview

Trigger Command or condition
Default
shutdown action

halt Linux shutdown -H command stop

poff Linux poweroff or shutdown -P command stop

reboot Linux reboot or shutdown -r command reipl

restart A virsh command on the host stop

panic Linux kernel panic stop

The available shutdown actions are summarized in Table 9:

Table 9. Shutdown actions

Action Explanation

stop For panic or restart, enters a disabled wait state.

For all other shutdown triggers, stops all CPUs and frees all resources
that were used by the Linux instance, including memory.

ipl Performs an IPL according to the specifications in /sys/firmware/ipl.
See “Displaying current IPL parameters” on page 62

reipl Performs an IPL according to the specifications in /sys/firmware/
reipl/ccw. See “Rebooting from an alternative source” on page 63.

dump Not applicable to Linux as a KVM guest on z Systems.

dump_reipl Not applicable to Linux as a KVM guest on z Systems.

vmcmd Not applicable to Linux as a KVM guest on z Systems.

Use lsshut to find out which shutdown actions are configured, see “lsshut - List
the current system shutdown actions” on page 89.

For halt, poff, and reboot you can use chshut to configure the action, see “chshut
- Control the system shutdown actions” on page 82. You cannot change the
shutdown actions for restart and panic, but you can set up kdump to override
the default shutdown actions.

kdump for restart and panic

If kdump is set up for a Linux instance, kdump is started in response to the
restart and panic triggers, regardless of the specified shutdown actions.

kdump is not a shutdown action that you can set as a sysfs attribute value for a
shutdown trigger. See Using the Dump Tools on SUSE Linux Enterprise Server 12 SP1,
SC34-2746 about how to set up kdump.

© Copyright IBM Corp. 2000, 2016 61

The shutdown configuration in sysfs

The configured shutdown action for each shutdown trigger is stored in a sysfs
attribute /sys/firmware/shutdown_actions/on_<trigger>.

The preferred way to read or change these settings is using the lsshut and chshut
commands. Alternatively, you can read and write to the /sys/firmware/
shutdown_actions/on_<trigger> attributes.

Examples
v This command reads the shutdown configuration:

lsshut
Trigger Action
========================
Halt stop
Power off stop
Reboot reipl
Restart kdump,stop
Panic kdump,stop

v This command reads the shutdown setting for the poff shutdown trigger.

cat /sys/firmware/shutdown_actions/on_poff
stop

v This command changes the setting for the reboot shutdown trigger to ipl:

chshut reboot ipl

Alternatively, you can directly write the new setting to sysfs:

echo ipl > /sys/firmware/shutdown_actions/on_reboot

Details for the ipl and reipl shutdown actions are contained in the corresponding
subdirectories in /sys/firmware. For example, /sys/firmware/ipl contains
specifications for an IPL device and other IPL parameters.

Displaying current IPL parameters
To display the IPL parameters, use the lsreipl command with the -i option.
Alternatively, a sysfs interface is available.

/sys/firmware shutdown_actions

on_poff

on_halt

on_restart

on_reboot

on_panic

Figure 9. sysfs branch with shutdown action settings

62 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

For more information about the lsreipl command, see “lsreipl - List IPL and
re-IPL settings” on page 88.

In sysfs, information about IPL parameters is available in subdirectories of
/sys/firmware/ipl:

ipl_type
is always ccw for Linux as a KVM guest on z Systems.

device Contains the bus ID of the CCW device that is used for IPL.

Example

To find out the IPL device:

lsreipl -i
IPL type: ccw
Device: 0.0.1234
Loadparm: ""

Alternatively, you can read this information from sysfs:

cat /sys/firmware/ipl/device
0.0.1234

Rebooting from an alternative source
When you reboot Linux, the system conventionally boots from the last used
location. However, you can configure an alternative CCW device to be used for
re-IPL instead of the last used IPL device.

Use the chreipl command to configure the re-IPL device (see “chreipl - Modify the
re-IPL configuration” on page 80).

Alternatively, you can write the device to the /sys/firmware/reipl/reipl/ccw sysfs
attribute. By default, this attribute specifies the last boot device, as specified in
/sys/firmware/ipl/device.

Chapter 13. Shutdown actions 63

64 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Part 5. Diagnostics and troubleshooting

Chapter 14. Creating a kernel dump 67

Chapter 15. Known issues 69
Do not set your channel path offline 69
Ignore unnecessary I/O devices 69
Assure that essential devices are not ignored . . . 69

Booting stops with disabled wait state 69

Chapter 16. Kernel messages 71
Displaying a message man page 71
Viewing messages with the IBM Doc Buddy app . . 72

Find resources for diagnosing and solving problems for Linux as a KVM guest on
z Systems.

Newest version

You can find the newest version of this publication on IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html

Restrictions

For prerequisites and restrictions see the z Systems architecture specific
information in the SUSE Linux Enterprise Server 12 SP2 release notes at
www.suse.com/releasenotes

© Copyright IBM Corp. 2000, 2016 65

||

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html
http://www.suse.com/releasenotes

66 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Chapter 14. Creating a kernel dump

When reporting a problem to IBM support, you might be asked to supply a kernel
dump. A dump of a KVM guest can be driven by the host or by the guest.

Guest-driven dumps

You can set up kdump to create a kernel dump for an instance of SUSE Linux
Enterprise Server 12 SP2 as a KVM guest on z Systems. With kdump in place, a
dump is triggered automatically by a kernel panic.

Alternatively, you can use the zgetdump command to create a live-system dump.

See Using the Dump Tools on SUSE Linux Enterprise Server 12 SP1, SC34-2746 about
kdump and live-system dumps. You can find this publication on the
developerWorks website at www.ibm.com/developerworks/linux/linux390/
documentation_suse.html.

Host-driven dumps

The KVM virtual server administrator can initiate dumps of KVM guests. See the
section about dumping KVM guests in KVM Virtual Server Management, SC34-2752.

© Copyright IBM Corp. 2000, 2016 67

http://www.ibm.com/developerworks/linux/linux390/documentation_suse.html
http://www.ibm.com/developerworks/linux/linux390/documentation_suse.html
http://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.ldva/ldva_c_welcome.html

68 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Chapter 15. Known issues

Learn how to avoid unnecessary problems.

Do not set your channel path offline
Linux will crash if you set the only available channel path offline.

Linux as a KVM guest on z Systems has only one channel path, with CHPID 00. If
you set this channel path logically offline, all CCW devices become
non-operational and the root file system is no longer available.

Ignore unnecessary I/O devices
Linux instances should not register unnecessary I/O devices.

Rationale: Numerous unused devices can cause:
v Unnecessary high memory usage due to device structures being allocated.
v Unnecessary high load on status changes, because hotplug events must be

handled for every device found.
v Unnecessarily long boot times.

The KVM hypervisor might assign unnecessary I/O devices to your instance of
Linux as a KVM guest on z Systems. Use the cio_ignore= kernel parameter to
ignore all devices that are not currently needed.

If more devices are needed later, they can be dynamically removed from the list of
devices to be ignored. For a description on how to use the cio_ignore= kernel
parameter and the /proc/cio_ignore dynamic control, see “cio_ignore - List
devices to be ignored” on page 94 and “Managing the exclusion list through
procfs” on page 95.

Assure that essential devices are not ignored
With cio_ignore=, essential devices might have been hidden.

For example, if Linux does not boot, check if the cio_ignore= kernel parameter is
used. Ensure that the block device with the root file system is not ignored.

Booting stops with disabled wait state
An automatic processor type check might stop the boot process with a disabled
wait PSW.

On SUSE Linux Enterprise Server 12 SP2, a processor type check is automatically
run at every kernel startup. If the check determines that SUSE Linux Enterprise
Server 12 SP2 is not compatible with the hardware, it stops the boot process with a
disabled wait PSW 0x000a0000/0x8badcccc.

If this problem occurs, ensure that you are running SUSE Linux Enterprise Server
12 SP2 on supported hardware. See the SUSE Linux Enterprise Server 12 SP2
release notes at www.suse.com/releasenotes.

© Copyright IBM Corp. 2000, 2016 69

http://www.suse.com/releasenotes

70 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Chapter 16. Kernel messages

z Systems specific kernel modules issue messages on the console and write them to
the syslog. SUSE Linux Enterprise Server 12 SP2 issues these messages with
message numbers.

Based on these message numbers, you can display man pages to obtain message
details.

The message numbers consist of a module identifier, a dot, and six hexadecimal
digits. For example, os_info.d3cf4c is a message number.

Kernel Messages on SUSE Linux Enterprise Server 12 SP2, SC34-2747 provides
explanations for the messages that are issued by z Systems specific kernel modules
on SUSE Linux Enterprise Server 12 SP2. You can find this documentation on
developerWorks at
www.ibm.com/developerworks/linux/linux390/documentation_suse.html

A summary of messages that are issued by z Systems specific kernel modules is
available on the IBM Knowledge Center at

www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.l0kmsg.doc/
l0km_plugin_top.html

Note: Some messages are issued with message numbers although there is no
message explanation. These messages are considered self-explanatory and they are
not included in this documentation. If you find an undocumented message with a
message text that needs further explanation, complete a Readers’ Comment Form
or send a request to eservdoc@de.ibm.com.

Displaying a message man page
Man page names for z Systems specific kernel messages match the corresponding
message numbers.

Before you begin

Ensure that the RPM with the message man pages is installed on your Linux
system. This RPM is called kernel-default-man-<kernel-version>.s390x.rpm and
shipped on DVD1.

About this task

For example, the following message has the message number os_info.d3cf4c:

os_info.d3cf4c: crashkernel: addr=0x8000000 size=256M

Enter a command of this form, to display a message man page:

man <message_number>

© Copyright IBM Corp. 2000, 2016 71

http://www.ibm.com/developerworks/linux/linux390/documentation_suse.html
http://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.l0kmsg.doc/l0km_plugin_top.html
http://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.l0kmsg.doc/l0km_plugin_top.html

Example

Enter the following command to display the man page for message
os_info.d3cf4c:

man os_info.d3cf4c

The corresponding man page looks like this example:

os_info.d3cf4c(9) os_info.d3cf4c(9)

Message
os_info.d3cf4c: crashkernel: addr=0x%lx size=%lu

Severity
Informational

Parameters
@1: address

@2: size

Description
Linux is running in kdump mode and reports the address and size of the
memory area that was reserved for kdump by the previously running pro-
duction kernel.

User action
None.

LINUX Linux Messages os_info.d3cf4c(9)

Viewing messages with the IBM Doc Buddy app
You can view documentation for z Systems specific Linux kernel messages through
an app for mobile devices.

IBM Doc Buddy is helpful in environments from where the message
documentation on the Internet is not directly accessible.

Before you begin

You can obtain IBM Doc Buddy from Apple App Store or from Google Play. For
more information about IBM Doc Buddy, go to
http://ibmdocbuddy.mybluemix.net.

Procedure

Perform the following steps to set up IBM Doc Buddy on your mobile device:
1. In your app repository, search for “IBM Doc Buddy”, then download, install,

and start the app.

2. Enter the setup mode by tapping the

symbol at the top left corner in the
app window.

3. Select Components.
4. Search for “Linux on z Systems” and download the messages component.

72 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

|

|
|

|
|

|

|
|
|

|

|

|
|

|
|

|

|

https://geo.itunes.apple.com/us/app/ibm-doc-buddy/id1121244571?mt=8
https://play.google.com/store/apps/details?id=com.ibm.systems.supportassistant&utm_source=global_co&utm_medium=prtnr&utm_content=Mar2515&utm_campaign=PartBadge&pcampaignid=MKT-Other-global-all-co-prtnr-py-PartBadge-Mar2515-1
http://ibmdocbuddy.mybluemix.net

5. Close the setup mode.

Results

You can now enter IDs for messages of interest in the main search field and
display the message documentation on your mobile device.

Chapter 16. Kernel messages 73

|

|

|
|

74 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Part 6. Reference

Chapter 17. Commands for Linux as a KVM
guest on z Systems 77
Generic command options 77
chccwdev - Set CCW device attributes 78
chreipl - Modify the re-IPL configuration 80
chshut - Control the system shutdown actions . . . 82
cio_ignore - Manage the I/O exclusion list 83
lscss - List subchannels 86
lsreipl - List IPL and re-IPL settings 88
lsshut - List the current system shutdown actions . 89
scsi_logging_level - Set and get the SCSI logging
level 90

Chapter 18. Selected kernel parameters 93
cio_ignore - List devices to be ignored 94

Managing the exclusion list through procfs . . . 95
cmma - Reduce hypervisor paging I/O overhead . . 98

fips - Run Linux in FIPS mode 99
maxcpus - Limit the number of CPUs that Linux
can use at IPL 100
possible_cpus - Limit the number of CPUs Linux
can use 101
ramdisk_size - Specify the ramdisk size 102
ro - Mount the root file system read-only 103
root - Specify the root device 104
vdso - Optimize system call performance 105

Chapter 19. Features described elsewhere . . 107
NUMA emulation 107
snipl 107

Chapter 20. Diagnose code use 109

Use these commands, kernel parameters, and kernel options to configure Linux as
a KVM guest on z Systems. Be aware of the required DIAG calls.

Newest version

You can find the newest version of this publication on IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html

Restrictions

For prerequisites and restrictions see the z Systems architecture specific
information in the SUSE Linux Enterprise Server 12 SP2 release notes at
www.suse.com/releasenotes

© Copyright IBM Corp. 2000, 2016 75

||

||

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html
http://www.suse.com/releasenotes

76 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Chapter 17. Commands for Linux as a KVM guest on z
Systems

You can use z Systems specific commands on SUSE Linux Enterprise Server 12 SP2
to work with device drivers and features that are specific to z Systems.

These commands are included in the s390-tools RPM.

Note: This section does not describe all commands that are included in the
s390-tools package:
v Commands from the s390-tools package that are not relevant to Linux on KVM

have been omitted.
v Some of the commands have options that are not relevant to Linux on KVM.

These options have been omitted from the command descriptions.
v For the cpuplugd command, see Chapter 10, “cpuplugd - Control CPUs,” on

page 45.

Some commands come with an init script or a configuration file or both. It is
assumed that init scripts are installed in /etc/init.d/. You can extract any missing
files from the etc subdirectory in the s390-tools RPM.

Generic command options
For simplicity, generic common command options have been omitted from some of
the syntax diagrams.

-h or --help
to display help information for the command.

--version
to display version information for the command.

The syntax for these options is:

Common command options

►► <command> Other command options
-h
--help
--version

►◄

where <command> can be any of the commands that are described in this section.

© Copyright IBM Corp. 2000, 2016 77

chccwdev - Set CCW device attributes
Use the chccwdev command to set attributes for CCW devices and to set CCW
devices online or offline.

Before it makes any changes, chccwdev uses cio_settle to ensure that sysfs reflects
the latest device status information and includes newly available devices.

chccwdev syntax

►► ▼chccwdev
-e -a <name>=<value>
-d

►

► ▼

,

<device_bus_id>
<from_device_bus_id>-<to_device_bus_id>

►◄

Where:

-e or --online
sets the device online.

-d or --offline
sets the device offline.

-a or --attribute <name>=<value>
sets the <name> attribute to <value>.

The available attributes depend on the device type. See the chapter for your
device for details about the applicable attributes and values.

Setting the online attribute has the same effect as using the -e or -d options.

<device_bus_id>
identifies a device. Device bus-IDs are of the form 0.<n>.<devno>, where <n> is
a subchannel set ID and <devno> is a device number. Input is converted to
lowercase.

<from_device_bus_id>-<to_device_bus_id>
identifies a range of devices. If not all devices in the specified range exist, the
command is limited to the existing ones. If you specify a range with no
existing devices, you get an error message.

-h or --help
displays help information for the command. To view the man page, enter man
chccwdev. The man page might include options that are not applicable to Linux
on KVM.

-v or --version
displays version information for the command.

chccwdev

78 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Examples
v To set a CCW device 0.0.b100 online issue:

chccwdev -e 0.0.b100

v Alternatively, using -a to set a CCW device 0.0.b100 online, issue:

chccwdev -a online=1 0.0.b100

v To set all CCW devices in the range 0.0.b200 through 0.0.b2ff online issue:

chccwdev -e 0.0.b200-0.0.b2ff

v To set a CCW device 0.0.b100 and all CCW devices in the range 0.0.b200 through
0.0.b2ff offline issue:

chccwdev -d 0.0.b100,0.0.b200-0.0.b2ff

v To set several CCW devices in different ranges and different subchannel sets
offline, issue:

chccwdev -d 0.0.1000-0.0.1100,0.1.7000-0.1.7010,0.0.1234,0.1.4321

chccwdev

Chapter 17. Commands 79

chreipl - Modify the re-IPL configuration
Use the chreipl tool to modify the re-IPL configuration for Linux on z Systems.
You can configure a particular device as the reboot device.

chreipl syntax

►► chreipl
ccw

<device_bus_id>
node

<node>
<dir>

-f
►◄

Where:

<device_bus_id> or -d <device_bus_id> or --device <device_bus_id>
specifies the device bus-ID of a CCW re-IPL device.

<node>
specifies a device node of a DASD, SCSI, or logical device mapper re-IPL
device.

<dir>
specifies a directory in the Linux file system on the re-IPL device.

-f or --force
With this option, you can force the re-IPL from a target device even if the
target cannot be verified by the system. This is the case, for example, if the
device is on the cio_ignore exclusion list (blacklist).

Note: Use this option with great care. Specifying a non-existing device causes
the re-IPL to fail.

-h or --help
displays help information for the command. To view the man page, enter man
chreipl. The man page might include options that are not applicable to Linux
on KVM.

-v or --version
displays version information.

The command accepts but does not require an initial ccw or node statement.

Examples

These examples illustrate common uses for chreipl.
v The following commands all configure the same DASD as the re-IPL device,

assuming that the device bus-ID of the DASD is 0.0.7e78, that the standard
device node is /dev/dasdc, that udev created an alternative device node
/dev/disk/by-path/ccw-0.0.7e78, that /mnt/boot is located on the Linux file
system in a partition of the DASD.
– Using the bus ID:

chreipl 0.0.7e78

chreipl

80 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

|

|
|
|
|

|
|

– Using the bus ID and the optional ccw statement:

chreipl ccw 0.0.7e78

– Using the bus ID, the optional statement and the optional --device keyword:

chreipl ccw --device 0.0.7e78

– Using the standard device node:

chreipl /dev/vda

– Using a directory within the file system on the DASD:

chreipl /mnt/boot

v To configure a DASD with bus ID 0.0.7e78 as the re-IPL device, issue:

chreipl 0.0.7e78
Re-IPL type: ccw
Device: 0.0.7e78
Loadparm: ""
Bootparms: ""

chreipl

Chapter 17. Commands 81

chshut - Control the system shutdown actions
Use the chshut command to change the shutdown actions for the following
shutdown triggers:
v halt

v poff

v reboot

Linux on z Systems performs shutdown actions according to sysfs attribute settings
within the /sys/firmware directory structure. The chshut command sets a
shutdown action for a shutdown trigger by changing the corresponding sysfs
attribute setting. For information about the sysfs attributes and the shutdown
actions, see Chapter 13, “Shutdown actions,” on page 61.

chshut syntax

►► chshut halt
poff
reboot

ipl
reipl
stop

►◄

Where:

halt
sets an action for the halt shutdown trigger.

poff
sets an action for the poff shutdown trigger.

reboot
sets an action for the reboot shutdown trigger.

ipl
sets IPL as the action to be taken.

reipl
sets re-IPL as the action to be taken.

stop
sets “stop” as the action to be taken.

-h or --help
displays help information for the command. To view the man page, enter man
chshut. The man page might include options that are not applicable to Linux
on KVM.

-v or --version
displays version information.

Example

To make the system start again after a power off:

chshut poff ipl

chshut

82 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

cio_ignore - Manage the I/O exclusion list
Use the cio_ignore command to specify I/O devices that are to be ignored by
Linux.

When a Linux on z Systems instance boots, it senses and analyzes all available I/O
devices. You can use the cio_ignore kernel parameter (see “cio_ignore - List devices
to be ignored” on page 94) to specify devices that are to be ignored. This exclusion
list can cover all possible devices, even devices that do not exist.

The cio_ignore command manages this exclusion list on a running Linux instance.
You can change the exclusion list and display it in different formats.

cio_ignore syntax

►► ▼

,

cio_ignore -a <device_bus_id>
-r <from_device_bus_id>-<to_device_bus_id>

-A
-R
-l
-i <device_bus_id>
-L
-k
-u
-p
-h
-v

►◄

Where:

-a or --add
adds one or more device specifications to the exclusion list.

When you add specifications for a device that has already been sensed and
analyzed, there is no immediate effect of adding it to the exclusion list. For
example, the device still appears in the output of the lscss command and can
be set online. However, if the device later becomes unavailable, it is ignored
when it reappears.

See the -p option about making devices that have already been sensed and
analyzed unavailable to Linux.

-r or --remove
removes one or more device specifications from the exclusion list.

When you remove device specifications from the exclusion list, the
corresponding devices are sensed and analyzed if they exist. Where possible,
the corresponding device driver is informed, and the devices become available
to Linux.

<device_bus_id>
identifies a single device.

Device bus-IDs are of the form 0.<n>.<devno>, where <n> is a subchannel set
ID and <devno> is a device number. If the subchannel set ID is 0, you can
abbreviate the specification to the device number, with or without a leading 0x.

cio_ignore

Chapter 17. Commands 83

Example: The specifications 0.0.0190, 190, 0190, and 0x190 are all equivalent.
There is no short form of 0.1.0190.

<from_device_bus_id>-<to_device_bus_id>
identifies a range of devices. <from_device_bus_id> and <to_device_bus_id> have
the same format as <device_bus_id>.

-A or --add-all
adds the entire range of possible devices to the exclusion list.

When you add specifications for a device that has already been sensed and
analyzed, there is no immediate effect of adding it to the exclusion list. For
example, the device still appears in the output of the lscss command and can
be set online. However, if the device later becomes unavailable, it is ignored
when it reappears.

See the -p option about making devices that have already been sensed and
analyzed unavailable to Linux.

-R or --remove-all
removes all devices from the exclusion list.

When you remove device specifications from the exclusion list, the
corresponding devices are sensed and analyzed if they exist. Where possible,
the corresponding device driver is informed, and the devices become available
to Linux.

-l or --list
displays the current exclusion list.

-i or --is-ignored
checks if the specified device is on the exclusion list. The command prints an
information message and completes with exit code 0 if the device is on the
exclusion list, or with exit code 2, if the device is not on the exclusion list.

-L or --list-not-blacklisted
displays specifications for all devices that are not in the current exclusion list.

-k or --kernel-param
returns the current exclusion list in kernel parameter format.

You can make the current exclusion list persistent across rebooting Linux by
using the output of the cio_ignore command with the -k option as part of the
Linux kernel parameter. See “Kernel and module parameters” on page 115.

-u or --unused
discards the current exclusion list and replaces it with a specification for all
devices that are not online. This includes specification for possible devices that
do not exist.

-p or --purge
makes all devices that are in the exclusion list and that are currently offline
unavailable to Linux. This option does not make devices unavailable if they are
online.

-h or --help
displays help information for the command. To view the man page, enter
man cio_ignore.

-v or --version
displays version information.

cio_ignore

84 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Examples
v The following command shows the current exclusion list:

cio_ignore -l
Ignored devices:
=================
0.0.0000-0.0.7e8e
0.0.7e94-0.0.f4ff
0.0.f503-0.0.ffff
0.1.0000-0.1.ffff
0.2.0000-0.2.ffff
0.3.0000-0.3.ffff

v The following command shows specifications for the devices that are not on the
exclusion list:

cio_ignore -L
Accessible devices:
===================
0.0.7e8f-0.0.7e93
0.0.f500-0.0.f502

The following command checks if 0.0.7e8f is on the exclusion list:

cio_ignore -i 0.0.7e8f
Device 0.0.7e8f is not ignored.

v The following command adds, 0.0.7e8f, to the exclusion list:

cio_ignore -a 0.0.7e8f

The previous example then becomes:

cio_ignore -L
Accessible devices:
===================
0.0.7e90-0.0.7e93
0.0.f500-0.0.f502

And for 0.0.7e8f in particular:

cio_ignore -i 0.0.7e8f
Device 0.0.7e8f is ignored.

v The following command shows the current exclusion list in kernel parameter
format:

cio_ignore -k
cio_ignore=all,!7e90-7e93,!f500-f502

cio_ignore

Chapter 17. Commands 85

lscss - List subchannels
Use the lscss command to gather subchannel information from sysfs and display
it in a summary format.

lscss syntax

►► lscss
-s -u --avail

►

►

▼

,

<bus_id>
-d <from_bus_id>-<to_bus_id>

►◄

Where:

-s or --short
strips the 0.0. from the device bus-IDs in the command output.

Note: This option limits the output to bus IDs that begin with 0.0.

-u or --uppercase
displays the output with uppercase letters. The default is lowercase.

Changed default: Earlier versions of lscss printed the command output in
uppercase. Specify this option, to obtain the former output style.

--avail
includes the availability attribute of I/O devices.

-d or --devrange
interprets bus IDs as specifications of devices. By default, bus IDs are
interpreted as specifications of subchannels.

<bus_id>
specifies an individual subchannel; if used with -d specifies an individual
device. If you omit the leading 0.<subchannel set ID>., 0.0. is assumed.

If you specify subchannels or devices, the command output is limited to these
subchannels or devices.

<from_bus_id>-<to_bus_id>
specifies a range of subchannels; if used with -d specifies a range of devices. If
you omit the leading 0.<subchannel set ID>., 0.0. is assumed.

If you specify subchannels or devices, the command output is limited to these
subchannels or devices.

-h or --help
displays help information for the command. To view the man page, enter man
lscss. The man page might include options that are not applicable to Linux on
KVM.

-v or --version
displays version information for the command.

lscss

86 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

See “Listing devices with lscss” on page 7 about how to interpret the output of this
command.

lscss

Chapter 17. Commands 87

lsreipl - List IPL and re-IPL settings
Use the lsreipl command to find out which boot device and which options are
used if you issue the reboot command.

You can also display information about the current boot device.

lsreipl syntax

►► lsreipl
-i

►◄

Where:

-i or --ipl
displays the IPL setting.

-v or --version
displays the version number of lsreipl and exits.

-h or --help
displays a short help text, then exits. To view the man page, enter man lsreipl.

By default the re-IPL device is set to the current IPL device. Use the chreipl
command to change the re-IPL settings.

Example
lsreipl
Re-IPL type: ccw
Device: 0.0.1234
Loadparm: ""

lsreipl

88 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

lsshut - List the current system shutdown actions
Use the lsshut command to see how the Linux instance is configured for the halt,
poff, reboot, restart, and panic system shutdown triggers.

For information about the shutdown triggers and possible shutdown actions, see
Chapter 13, “Shutdown actions,” on page 61.

If the action is kdump, a second action might be listed. This second action is the
backup action that is taken if kdump fails. See Using the Dump Tools on SUSE Linux
Enterprise Server 12 SP1, SC34-2746 for details about using kdump.

lsshut syntax

►► lsshut
-h
-v

►◄

where:

-h or --help
displays a short help text, then exits. To view the man page, enter man lsshut.

-v or --version
displays the version number of lsshut and exits.

Examples
v To query the configuration issue:

lsshut
Trigger Action
========================
Halt stop
Power off stop
Reboot reipl
Restart kdump,dump_reipl
Panic kdump,dump_reipl

lsshut

Chapter 17. Commands 89

scsi_logging_level - Set and get the SCSI logging level
Use the scsi_logging_level command to create, set, or get the SCSI logging level.

The SCSI logging feature is controlled by a 32-bit value – the SCSI logging level.
This value is divided into 3-bit fields that describe the log level of a specific log
area. Due to the 3-bit subdivision, setting levels or interpreting the meaning of
current levels of the SCSI logging feature is not trivial. The scsi_logging_level
script helps with both tasks.

scsi_logging_level syntax

►► ▼scsi_logging_level -s
-a <level> -g
-E <level> -c
-T <level>
-S <level>
-M <level>
--mlqueue <level>
--mlcomplete <level>
-L <level>
--llqueue <level>
--llcomplete <level>
-H <level>
--hlqueue <level>
--hlcomplete <level>
-I <level>

►◄

Where:

-a or --all <level>
specifies value for all SCSI_LOG fields.

-E or --error <level>
specifies SCSI_LOG_ERROR.

-T or --timeout <level>
specifies SCSI_LOG_TIMEOUT.

-S or --scan <level>
specifies SCSI_LOG_SCAN.

-M or --midlevel <level>
specifies SCSI_LOG_MLQUEUE and SCSI_LOG_MLCOMPLETE.

--mlqueue <level>
specifies SCSI_LOG_MLQUEUE.

--mlcomplete <level>
specifies SCSI_LOG_MLCOMPLETE.

-L or --lowlevel <level>
specifies SCSI_LOG_LLQUEUE and SCSI_LOG_LLCOMPLETE.

--llqueue <level>
specifies SCSI_LOG_LLQUEUE.

scsi_logging_level

90 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

--llcomplete <level>
specifies SCSI_LOG_LLCOMPLETE.

-H or --highlevel <level>
specifies SCSI_LOG_HLQUEUE and SCSI_LOG_HLCOMPLETE.

--hlqueue <level>
specifies SCSI_LOG_HLQUEUE.

--hlcomplete <level>
specifies SCSI_LOG_HLCOMPLETE.

-I or --ioctl <level>
specifies SCSI_LOG_IOCTL.

-s or --set
creates and sets the logging level as specified on the command line.

-g or --get
gets the current logging level.

-c or --create
creates the logging level as specified on the command line.

-v or --version
displays version information.

-h or --help
displays help text.

You can specify several SCSI_LOG fields by using several options. When multiple
options specify the same SCSI_LOG field, the most specific option has precedence.

Examples
v This command displays the logging word of the SCSI logging feature and each

logging level.

#> scsi_logging_level -g
Current scsi logging level:
dev.scsi.logging_level = 0
SCSI_LOG_ERROR=0
SCSI_LOG_TIMEOUT=0
SCSI_LOG_SCAN=0
SCSI_LOG_MLQUEUE=0
SCSI_LOG_MLCOMPLETE=0
SCSI_LOG_LLQUEUE=0
SCSI_LOG_LLCOMPLETE=0
SCSI_LOG_HLQUEUE=0
SCSI_LOG_HLCOMPLETE=0
SCSI_LOG_IOCTL=0

v This command sets all logging levels to 3:

#> scsi_logging_level -s -a 3
New scsi logging level:
dev.scsi.logging_level = 460175067
SCSI_LOG_ERROR=3
SCSI_LOG_TIMEOUT=3
SCSI_LOG_SCAN=3
SCSI_LOG_MLQUEUE=3
SCSI_LOG_MLCOMPLETE=3
SCSI_LOG_LLQUEUE=3
SCSI_LOG_LLCOMPLETE=3
SCSI_LOG_HLQUEUE=3
SCSI_LOG_HLCOMPLETE=3
SCSI_LOG_IOCTL=3

scsi_logging_level

Chapter 17. Commands 91

v This command sets SCSI_LOG_HLQUEUE=3, SCSI_LOG_HLCOMPLETE=2 and
assigns all other SCSI_LOG fields the value 1.

scsi_logging_level --hlqueue 3 --highlevel 2 --all 1 -s
New scsi logging level:
dev.scsi.logging_level = 174363209
SCSI_LOG_ERROR=1
SCSI_LOG_TIMEOUT=1
SCSI_LOG_SCAN=1
SCSI_LOG_MLQUEUE=1
SCSI_LOG_MLCOMPLETE=1
SCSI_LOG_LLQUEUE=1
SCSI_LOG_LLCOMPLETE=1
SCSI_LOG_HLQUEUE=3
SCSI_LOG_HLCOMPLETE=2
SCSI_LOG_IOCTL=1

scsi_logging_level

92 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Chapter 18. Selected kernel parameters

You can use kernel parameters that are beyond the scope of an individual device
driver or feature to configure Linux in general.

Kernel parameters that are specific to a particular device driver or feature are
described in the setup section of the respective device driver or feature.

See “Kernel and module parameters” on page 115 for information about specifying
kernel parameters.

© Copyright IBM Corp. 2000, 2016 93

cio_ignore - List devices to be ignored
When a Linux on z Systems instance boots, it senses and analyzes all available I/O
devices. You can use the cio_ignore= kernel parameter to list specifications for
devices that are to be ignored. This exclusion list can cover all possible devices,
even devices that do not exist. The following statements apply to ignored devices:
v Ignored devices are not sensed and analyzed. The device cannot be used unless

it is analyzed.
v Ignored devices are not represented in sysfs.
v Ignored devices do not occupy storage in the kernel.
v The subchannel to which an ignored device is attached is treated as if no device

were attached.

See also “Managing the exclusion list through procfs” on page 95.

Format

cio_ignore syntax

►►

▼

cio_ignore= all
<device_spec> ,

, <device_spec>
!

►◄

<device_spec>:

<device_bus_id>
<from_device_bus_id>-<to_device_bus_id>
ipldev
condev

Where:

all
states that all devices are to be ignored.

<device_bus_id>
specifies a device. Device bus-IDs are of the form 0.<n>.<devno>, where <n> is
a subchannel set ID and <devno> is a device number.

<from_device_bus_id>-<to_device_bus_id>
are two device bus-IDs that specify the first and the last device in a range of
devices.

ipldev
specifies the IPL device. Use this keyword with the ! operator to avoid
ignoring the IPL device.

condev
specifies the CCW console. Use this keyword with the ! operator to avoid
ignoring the console device.

cio_ignore

94 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

! makes the following term an exclusion statement. This operator is used to
exclude individual devices or ranges of devices from a preceding more general
specification of devices.

Examples
v This example specifies that all devices in the range 0.0.b100 through 0.0.b1ff, and

the device 0.0.a100 are to be ignored.
cio_ignore=0.0.b100-0.0.b1ff,0.0.a100

v This example specifies that all devices except the console are to be ignored.
cio_ignore=all,!condev

v This example specifies that all devices but the range 0.0.b100 through 0.0.b1ff,
and the device 0.0.a100 are to be ignored.
cio_ignore=all,!0.0.b100-0.0.b1ff,!0.0.a100

v
This example specifies that all devices in the range 0.0.1000 through 0.0.1500 are
to be ignored, except for devices in the range 0.0.1100 through 0.0.1120.
cio_ignore=0.0.1000-0.0.1500,!0.0.1100-0.0.1120

This is equivalent to the following specification:
cio_ignore=0.0.1000-0.0.10ff,0.0.1121-0.0.1500

v This example specifies that all devices in range 0.0.1000 through 0.0.1100 as well
as all devices in range 0.1.7000 through 0.1.7010, plus device 0.0.1234 and device
0.1.4321 are to be ignored.

cio_ignore=0.0.1000-0.0.1100, 0.1.7000-0.1.7010, 0.0.1234, 0.1.4321

Managing the exclusion list through procfs
Use the procfs interface to view or change the specifications for I/O devices that
are to be ignored.

When a Linux on z Systems instance boots, it senses and analyzes all available I/O
devices. You can use the cio_ignore kernel parameter to list specifications for
devices that are to be ignored.

On a running Linux instance, you can view and change the exclusion list through a
procfs interface or with the cio_ignore command (see “cio_ignore - Manage the
I/O exclusion list” on page 83). This section describes the procfs interface.

After booting Linux you can display the exclusion list by issuing:

cat /proc/cio_ignore

To add device specifications to the exclusion list issue a command of this form:

echo add <device_list> > /proc/cio_ignore

When you add specifications for a device that was already sensed and analyzed,
there is no immediate effect of adding it to the exclusion list. For example, the
device still appears in the output of the lscss command and can be set online.
However, if the device then becomes unavailable, it is ignored when it reappears.
For example, if the device is removed by the KVM hypervisor it is ignored when it
is added again.

cio_ignore

Chapter 18. Kernel parameters 95

To make all devices that are in the exclusion list and that are currently offline
unavailable to Linux issue a command of this form:

echo purge > /proc/cio_ignore

This command does not make devices unavailable if they are online.

To remove device specifications from the exclusion list issue a command of this
form:

echo free <device_list> > /proc/cio_ignore

When you remove device specifications from the exclusion list, the corresponding
devices are sensed and analyzed if they exist. Where possible, the respective device
driver is informed, and the devices become available to Linux.

In these commands, <device_list> follows this syntax:

<device_list>:

all
<device_spec>

▼

,

, <device_spec>
!

<device_spec>:

<device_bus_id>
<from_device_bus_id>-<to_device_bus_id>

Where the keywords and variables have the same meaning as in “Format” on page
94.

Ensure device availability

After the echo command completes successfully, some time might elapse until the
freed device becomes available to Linux. Issue the following command to ensure
that the device is ready to be used:

echo 1 > /proc/cio_settle

This command returns after all required sysfs structures for the newly available
device are created. The cio_ignore command (see “cio_ignore - Manage the I/O
exclusion list” on page 83) also returns after any new sysfs structures are
completed. You do not need a separate echo command when using cio_ignore to
remove devices from the exclusion list.

cio_ignore

96 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Results

The dynamically changed exclusion list takes effect only when a device in this list
is newly made available to the system, for example after it is defined to the
system. It does not have any effect on setting devices online or offline within
Linux.

Examples
v This command removes all devices from the exclusion list.

echo free all > /proc/cio_ignore

v This command adds all devices in the range 0.0.b100 through 0.0.b1ff and device
0.0.a100 to the exclusion list.

echo add 0.0.b100-0.0.b1ff,0.0.a100 > /proc/cio_ignore

v This command lists the ranges of devices that are ignored by common I/O.

cat /proc/cio_ignore
0.0.0000-0.0.a0ff
0.0.a101-0.0.b0ff
0.0.b200-0.0.ffff

v This command removes all devices in the range 0.0.b100 through 0.0.b1ff and
device 0.0.a100 from the exclusion list.

echo free 0.0.b100-0.0.b1ff,0.0.a100 > /proc/cio_ignore

v This command removes the device with bus ID 0.0.c104 from the exclusion list.

echo free 0.0.c104 > /proc/cio_ignore

v This command adds the device with bus ID 0.0.c104 to the exclusion list.

echo add 0.0.c104 > /proc/cio_ignore

v This command makes all devices that are in the exclusion list and that are
currently offline unavailable to Linux.

echo purge > /proc/cio_ignore

cio_ignore

Chapter 18. Kernel parameters 97

cmma - Reduce hypervisor paging I/O overhead
Use the cmma= kernel parameter to reduce hypervisor paging I/O overhead.

With the Collaborative Memory Management Assist (CMMA, or "cmm2") support,
the KVM hypervisor and the guest virtual machines can communicate attributes
for specific 4K-byte blocks of guest memory. This exchange of information helps
both the KVM hypervisor and the guest virtual machines to optimize their use and
management of memory.

Note: CMMA and the balloon device are both designed to reduce paging.
Depending on your resources and workload, using CMMA and the balloon device
simultaneously can further improve performance or be counterproductive. In
contrast to CMMA, ballooning can be configured. You need performance
measurement and experimentation to find the best settings.

Format

cmma syntax

►►

cmma= yes
on

cmma= no
off

►◄

Examples

This specification disables the CMMA support:
cmma=off

Alternatively, you can use the following specification to disable the CMMA
support:

cmma=no

cmma

98 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

fips - Run Linux in FIPS mode
In Federal Information Processing Standard (FIPS) mode, the kernel enforces FIPS
140-2 security standards. For example, in FIPS mode only FIPS 140-2 approved
encryption algorithms can be used (see “FIPS restrictions of the hardware
capabilities” on page 53).

For more information about FIPS, go to csrc.nist.gov/publications/PubsFIPS.html.

Format

fips syntax

►►
fips=0

fips=1
►◄

1 enables the FIPS mode. 0, the default, disables the FIPS mode.

Example
fips=1

fips

Chapter 18. Kernel parameters 99

|

|
|
|
|

|

|
|

|

|||||||||||||||

|
||

|

|

|

http://csrc.nist.gov/publications/PubsFIPS.html

maxcpus - Limit the number of CPUs that Linux can use at IPL
Use the maxcpus= kernel parameter to limit the number of CPUs that Linux can use
at IPL and that are online after IPL.

If the real or virtual hardware provides more than the specified number of CPUs,
these surplus CPUs are initially offline. For example, if five CPUs are available,
maxcpus=2 results in two online CPUs and three offline CPUs after IPL.

Offline CPUs can be set online dynamically unless the possible_cpus= parameter is
set and specifies a maximum number of online CPUs that is already reached. The
possible_cpus= parameter sets an absolute limit for the number of CPUs that can
be online at any one time (see possible_cpus). If both maxcpus= and possible_cpus=
are set, a lower value for possible_cpus= overrides maxcpus= and makes it
ineffective.

Format

maxcpus syntax

►► maxcpus=<number> ►◄

Examples
maxcpus=2

maxcpus

100 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

possible_cpus - Limit the number of CPUs Linux can use
Use the possible_cpus= parameter to set an absolute limit for the number of CPUs
that can be online at any one time. If the real or virtual hardware provides more
than the specified maximum, the surplus number of CPUs must be offline.
Alternatively, you can use the common code kernel parameter nr_cpus.

Use the maxcpus= parameter to limit the number of CPUs that are online initially
after IPL (see maxcpus).

Format

possible_cpus syntax

►► possible_cpus=<number> ►◄

Examples
possible_cpus=8

possible_cpus

Chapter 18. Kernel parameters 101

ramdisk_size - Specify the ramdisk size

Use the ramdisk_size= kernel parameter to specify the size of the RAM disk in
kilobytes.

Format

ramdisk_size syntax

►► ramdisk_size=<size> ►◄

Examples
ramdisk_size=32000

ramdisk_size

102 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

ro - Mount the root file system read-only
Use the ro kernel parameter to mount the root file system read-only.

Format

ro syntax

►► ro ►◄

ro

Chapter 18. Kernel parameters 103

root - Specify the root device
Use the root= kernel parameter to tell Linux what to use as the root when
mounting the root file system.

Format

root syntax

►► root=<rootdevice> ►◄

Examples

This example makes Linux use /dev/vda1 when mounting the root file system:
root=/dev/vda1

root

104 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

vdso - Optimize system call performance
Use the vdso= kernel parameter to control the vdso support for the gettimeofday,
clock_getres, and clock_gettime system calls.

The virtual dynamic shared object (vdso) support is a shared library that the kernel
maps to all dynamically linked programs. The glibc detects the presence of the
vdso and uses the functions that are provided in the library.

Because the vdso library is mapped to all user-space processes, this change is
visible in user space. In the unlikely event that a user-space program does not
work with the vdso support, you can switch off the support.

The default, which is to use vdso support, works well for most installations. Do
not override this default, unless you observe problems.

The vdso support is included in the Linux on z Systems kernel.

Format

vdso syntax

►►

vdso= 1
on

vdso= 0
off

►◄

Examples

This example switches off the vdso support:
vdso=0

vdso

Chapter 18. Kernel parameters 105

vdso

106 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Chapter 19. Features described elsewhere

The following features for Linux in LPAR mode and Linux on z/VM can be also
be used on Linux on z Systems as a KVM guest.

NUMA emulation
Especially on large systems, NUMA emulation can improve the overall system
performance, or latency, or both.

Typical KVM guests are relatively small and little gain is to be expected from
NUMA emulation. If you have a large guest and want to use NUMA emulation,
see the NUMA section in Device Drivers, Features, and Commands on SUSE Linux
Enterprise Server 12 SP2, SC34-2745.

Note: Do not use NUMA emulation with cpuplugd. The cpuplugd daemon can
distort the balance of CPU assignment to NUMA nodes. Issue the following
command to find out if cpuplugd is running:

service cpuplugd status

See also Chapter 10, “cpuplugd - Control CPUs,” on page 45.

snipl
You cannot control KVM guests with snipl, but you can install snipl on a KVM
guest to control instances of Linux in LPAR mode and Linux on z/VM.

For a description about how to set up and use snipl, see the section about snipl
in Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2,
SC34-2745.

© Copyright IBM Corp. 2000, 2016 107

|

|
|

|
|
|
|

|
|
|

|
||

|

|

108 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Chapter 20. Diagnose code use

Linux as a KVM guest on z Systems issues several diagnose instructions to the
KVM hypervisor.

Table 10 lists all diagnose codes that are used by the kernel or a kernel module of
Linux as a KVM guest on z Systems.

Table 10. Diagnose codes

Number Description Linux use
Required/
Optional

0x010 Release pages cmma and balloon device Required

0x044 Voluntary time-slice end In the kernel for spinlock and
udelay

Required

0x09c Voluntary time-slice yield Spinlock Optional

0x288 Virtual watchdog timer The watchdog device driver Required

0x258 Page-reference services In the kernel, for pfault Optional

0x308 Re-ipl Re-ipl and dump code Required

0x500 Virtio functions Operate virtio-ccw devices Required

Required means that a function is not available without the diagnose call; optional
means that the function is available but there might be a performance impact.

© Copyright IBM Corp. 2000, 2016 109

110 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Part 7. Appendixes

© Copyright IBM Corp. 2000, 2016 111

112 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

How devices are accessed by Linux

Applications on Linux access character and block devices through device nodes,
and network devices through network interfaces.

Device names, device nodes, and major/minor numbers
The Linux kernel represents the character and block devices it knows as a pair of
numbers <major>:<minor>.

Some major numbers are reserved for particular device drivers. Other devices are
dynamically assigned to a device driver when Linux boots. A major number can
also be shared by multiple device drivers. See /proc/devices to find out how
major numbers are assigned on a running Linux instance.

The device drivers use the minor numbers to distinguish individual devices.

Device drivers assign device names to their devices, according to a device
driver-specific naming scheme. Each device name is associated with a minor
number as illustrated in Figure 10.

See Table 2 on page 20 for information about the naming scheme for the block
devices on Linux on z Systems as a KVM guest.

User space programs access character and block devices through device nodes also
referred to as device special files. When a device node is created, it is associated with
a major and minor number.

SUSE Linux Enterprise Server 12 SP2 uses udev to create device nodes for you.
Standard device nodes match the device name that is used by the kernel, but
different or additional nodes might be created by special udev rules. See SUSE
Linux Enterprise Server 12 SP2 Administration Guide and the udev man page for
more details.

Figure 10. Minor numbers and device names

Figure 11. Device nodes

© Copyright IBM Corp. 2000, 2016 113

Network interfaces
The Linux kernel representation of a network device is an interface.

On Linux as a KVM guest on z Systems, all network devices are Ethernet
interfaces and are handled by the virtio_net device driver module. When a
network device is defined, it is associated with a virtual network adapter (see
Figure 12).

You activate or deactivate a connection by addressing the interface with ip or an
equivalent command. All interfaces that are provided by the network device
drivers as described in this publication are interfaces for the Internet Protocol (IP).

Figure 12. Interfaces

114 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Kernel and module parameters

Kernel and module parameters are used to configure the kernel and kernel
modules.

Individual kernel parameters or module parameters are single keywords, or
keyword-value pairs of the form keyword=<value> with no blank. Blanks separate
consecutive parameters.

Kernel parameters and module parameters are encoded as strings of ASCII
characters.

Use kernel parameters to configure the base kernel and any optional kernel parts
that have been compiled into the kernel image. Use module parameters to configure
separate kernel modules. Do not confuse kernel and module parameters. Although
a module parameter can have the same syntax as a related kernel parameter,
kernel and module parameters are specified and processed differently.

Kernel parameters
Use kernel parameters to configure the base kernel and all modules that have been
compiled into the kernel.

Where possible, this publication describes kernel parameters with the device driver
or feature to which they apply. Kernel parameters that apply to the base kernel or
cannot be attributed to a particular device driver or feature are described in
Chapter 18, “Selected kernel parameters,” on page 93. You can also find
descriptions for most of the kernel parameters in Documentation/kernel-
parameters.txt in the Linux source tree.

Specifying kernel parameters
Use GRUB 2 to specify kernel parameters.

Use GRUB 2 to create or modify boot configurations for SUSE Linux Enterprise
Server 12 SP2 for z Systems. During the boot process, the interactive GRUB 2
menu might be displayed. On the interactive menu, you can specify additional
kernel parameters.

Note: Kernel parameters that you add when booting Linux are not persistent.

See SUSE Linux Enterprise Server 12 SP2 Administration Guide about how to specify
kernel parameters with GRUB 2.

How kernel parameters from different sources are combined
If kernel parameters are specified both in the boot configuration and during the
boot process, they are concatenated in a specific order.
1. Kernel parameters that have been included in the boot configuration with

GRUB 2.
2. Kernel parameters that are specified with the GRUB 2 interactive boot menu.

© Copyright IBM Corp. 2000, 2016 115

The combined parameters that are specified in the boot configuration and through
the GRUB 2 interactive boot menu must not exceed 895 characters.

Multiple specifications for the same parameter

For some kernel parameters, multiple instances in the kernel parameter string are
treated cumulatively. For example, multiple specifications for cio_ignore= are all
processed and combined.

Conflicting kernel parameters

If the kernel parameter string contains kernel parameters with mutually exclusive
settings, the last specification in the string overrides preceding ones. Thus, you can
specify a kernel parameter when booting to override an unwanted setting in the
boot configuration.

Example: If the kernel parameters in your boot configuration include
possible_cpus=8 but you specify possible_cpus=2 when booting, Linux uses
possible_cpus=2.

Parameters other than kernel parameters

Parameters on the kernel parameter string that the kernel does not recognize as
kernel parameters are ignored by the kernel and made available to user space
programs. How multiple specifications and conflicts are resolved for such
parameters depends on the program that evaluates them.

Examples for kernel parameters
Typical parameters that are used for booting Linux on z Systems configure the
console and the root file system.

console=<name>
to set up the Linux console. See “Console kernel parameter syntax” on page 28
for details.

ramdisk_size=<size>
to specify the size of the initial RAM disk.

ro to mount the root file system read-only.

root=<rootdevice>
to specify the device to be mounted as the root file system.

Displaying the current kernel parameter line
Read /proc/cmdline to find out with which kernel parameters a running Linux
instance was booted.

About this task

Apart from kernel parameters, which are evaluated by the Linux kernel, the kernel
parameter line can contain parameters that are evaluated by user space programs,
for example modprobe.

Example:

cat /proc/cmdline
root=/dev/vda1

116 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

See also “Displaying current IPL parameters” on page 62 about displaying the
parameters that were used to IPL and boot the running Linux instance.

Module parameters
Use module parameters to configure kernel modules that are compiled as separate
modules and must be loaded before they can be used.

Many modules are loaded automatically by SUSE Linux Enterprise Server 12 SP2
when they are needed and you use YaST to specify the module parameters.

To keep the module parameters in the context of the device driver or feature
module to which they apply, this information describes module parameters as part
of the syntax you would use to load the module with modprobe.

To find the separate kernel modules for SUSE Linux Enterprise Server 12 SP2, list
the contents of the subdirectories of /lib/modules/<kernel-release> in the Linux
file system. In the path, <kernel-release> denotes the kernel level. You can query
the value for <kernel-release> with uname -r.

Specifying module parameters
How to specify module parameters depends on how the module is loaded, for
example, with YaST or from the command line.

YaST is the preferred tool for specifying module parameters for SUSE Linux
Enterprise Server 12 SP2. You can use alternative means to specify module
parameters, for example, if a particular setting is not supported by YaST. Avoid
specifying the same parameter through multiple means.

Specifying module parameters with modprobe
If you load a module explicitly with a modprobe command, you can specify the
module parameters as command arguments.

Module parameters that are specified as arguments to modprobe are effective only
until the module is unloaded.

Note: Parameters that you specify as command arguments might interfere with
parameters that SUSE Linux Enterprise Server 12 SP2 sets for you.

Module parameters on the kernel parameter line
Parameters that the kernel does not recognize as kernel parameters are ignored by
the kernel and made available to user space programs.

One of these programs is modprobe, which SUSE Linux Enterprise Server 12 SP2
uses to load modules for you. modprobe interprets module parameters that are
specified on the kernel parameter line if they are qualified with a leading module
prefix and a dot.

Including module parameters in a boot configuration
Module parameters for modules that are required early during the boot process
must be included in the boot configuration.

About this task

SUSE Linux Enterprise Server 12 SP2 uses an initial RAM disk when booting.

Kernel and module parameters 117

Procedure

Perform these steps to provide module parameters for modules that are included
in the initial RAM disk:
1. Make your configuration changes with YaST or an alternative method.
2. If YaST does not perform this task for you, run mkinitrd to create an initial

RAM disk that includes the module parameters.

Displaying information about module parameters
Loaded modules can export module parameter settings to sysfs.

The parameters for modules are available as sysfs attributes of the form:
/sys/module/<module_name>/parameters/<parameter_name>

Before you begin

You can display information about modules that fulfill these prerequisites:
v The module must be loaded.
v The module must export the parameters to sysfs.

Procedure

To find and display the parameters for a module, follow these steps:
1. Optional: Confirm that the module of interest is loaded by issuing a command

of this form:

lsmod | grep <module_name>

where <module_name> is the name of the module.
2. Optional: Get an overview of the parameters for the module by issuing a

command of this form:

modinfo <module_name>

3. To check if a module exports settings to sysfs, try listing the module
parameters. Issue a command of the form:

ls /sys/module/<module_name>/parameters

4. If the previous command listed parameters, you can display the value for the
parameter you are interested in. Issue a command of the form:

cat /sys/module/<module_name>/parameters/<parameter_name>

Example
v To list the module parameters for the virtio_net module, issue:

ls /sys/module/virtio_net/parameters
csum
...

v To display the value of the csum parameter, issue:

118 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

cat /sys/module/virtio_net/parameters/csum
Y

Kernel and module parameters 119

120 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Accessibility

Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use information technology products successfully.

Documentation accessibility

The Linux on z Systems publications are in Adobe Portable Document Format
(PDF) and should be compliant with accessibility standards. If you experience
difficulties when you use the PDF file and want to request a Web-based format for
this publication, use the Readers' Comments form in the back of this publication,
send an email to eservdoc@de.ibm.com, or write to:

IBM Deutschland Research & Development GmbH
Information Development
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about
the commitment that IBM has to accessibility at
www.ibm.com/able

© Copyright IBM Corp. 2000, 2016 121

http://www.ibm.com/able

122 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

© Copyright IBM Corp. 2000, 2016 123

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at
www.ibm.com/legal/copytrade.shtml

Adobe is either a registered trademark or trademark of Adobe Systems
Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

124 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

http://www.ibm.com/legal/copytrade.shtml

Index

Numerics
3DES 33

A
acceleration, in-kernel cryptography 53
accessibility 121
actions, shutdown 61
AES 53
aes_s390, kernel module 54
app, messages 72
attributes

device 12
for CCW devices 12
setting 13

auxiliary kernel 59
availability, CCW attribute 12

B
balloon device 8
block devices

major and minor numbers 20
naming 20

boot configuration
kernel parameters 115
module parameters 117

booting Linux
boot device 59
rebooting 63
troubleshooting 69
versus IPL 59

buffer settings, SCLP line-mode terminal 29
bus ID 11
byte_counter

prandom attribute 35

C
capability

CPU sysfs attribute 43
CBC 53
CCW

common attributes 12
devices 11
hotplug events 15
setting attributes 78
setting devices online/offline 78

CD/DVD drive 25
Central Processor Assist for Cryptographic Function

See CPACF
change, CPU capability 43
changes

summary vii
chccwdev

Linux command 78
setting attributes 13

chreipl, Linux command 80
chshut, Linux command 82

chunksize
prandom attribute 35

chunksize=, module parameters 33
cio_ignore

disabled wait 69
kernel parameter 94
Linux command 83
procfs interface 95

cmb_enable, CCW attribute 12
CMMA 98
cmma=, kernel parameter 98
Collaborative Memory Management Assist 98
commands, Linux

chccwdev 78
chreipl 80
chshut 82
cio_ignore 83
cpuplugd 45, 46
ethtool 114
ip 114
lscss 86
lsreipl 88
lsshut 89
scsi_logging_level 90

configuration file for CPU hotplug 51
console

definition 28
device nodes 28
mainframe versus Linux 28

console device driver
features 27
kernel parameters 29
SCLP line-mode buffer page reuse 29
specifying preferred console 29

console=, kernel parameter 29
control characters, line-mode terminals 30
CP Assist for Cryptographic Function 33

See CPACF
CPACF

in-kernel cryptography 53
support modules, in-kernel cryptography 54

CPU
managing 43

CPU capability change 43
CPU configuration 45
CPU hotplug rules 48
CPU hotplug, sample configuration file 51
CPU sysfs attribute

capability 43
CPU sysfs attributes

changing 43
CPU, bringing online 44
CPU, taking offline 44
cpuplugd

service utility syntax 45
cpuplugd, Linux command 45, 46
CTR 53
cutype, CCW attribute 12

© Copyright IBM Corp. 2000, 2016 125

D
des_s390, kernel module 54
device bus-ID 11
device driver

overview 11
pseudo-random number 33
terminal 27
virtio CCW transport 19
watchdog 37

device names
block devices 20
concept 113
random number 33
tape 23
terminal 28

device node
prandom, non-root users 34

device nodes
block devices 20
CD/DVD drive 25
console 28
random number 33
standard 113
tape 23
terminal 28
watchdog 37

device numbers 113
device special file

See device nodes
devices

attributes 12
balloon 8
CCW, types of 8
corresponding interfaces 22
ignoring 94
in sysfs 11
initialization errors 13
types of CCW 8
working with newly available 13

devtype, CCW attribute 12
DIAG call 109
diag288 watchdog 37
diagnose call 109
diagnostics and troubleshooting 65
disabled wait

booting stops with 69
cio_ignore 69

Doc Buddy 72
drive, CD/DVD 25
driver

See device driver
dump, virtual server 67
DVD drive 25

E
ECB 53
errorflag

prandom attribute 35
ethernet

interface names 22
interfaces 114

ethtool, command 114

F
Federal Information Processing Standard 53, 99
file systems

procfs 32, 95
sysfs 11

FIPS 53
fips=, kernel parameter 99

G
GHASH 53
ghash_s390, kernel module 54
GRUB 2 115
guest live migration 6

H
halt, shutdown action 61
hardware information 41
hardware-acceleration, in-kernel cryptography 53
hotplug

CCW devices 15
cpuplgd sample configuration file 51
rules, CPU 48

I
IBM Doc Buddy 72
in-kernel cryptography 53
Initial Program Load

See IPL
initrd, including module parameters 117
interface names

versus devices 22
interfaces, network

concepts 114
ethernet, names 22

ip, command 114
IPL

and booting 59
device 59
displaying current settings 88

K
kernel cryptographic API 53
kernel messages 71
kernel module

aes_s390 54
des_s390 54
ghash_s390 54
sha_256 54
sha_512 54
sha1_s390 54

kernel parameter line
length limit for booting 115
module parameters 117

kernel parameters 115
cio_ignore= 94
cmma= 98
console= 29
fips= 99
general 93
maxcpus= 100
possible_cpus= 101

126 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

kernel parameters (continued)
ramdisk_size= 102
ro 103
root= 104
sclp_con_drop= 29
sclp_con_pages= 29
specifying 115
vdso= 105

L
line-mode terminal 27

control characters 30
special characters 30

Linux device special file
See device nodes

live migration, virtual server 6
lscss, Linux command 86
lsreipl, Linux command 88
lsshut, Linux command 89

M
magic sysrequest functions 31
major and minor

block devices 20
concept 113

man pages, messages 71
maxcpus=, kernel parameter 100
messages 71
messages app 72
migration, virtual server 6
minor and major

block devices 20
concept 113

modalias, CCW attribute 12
mode

prandom attribute 35
module

diag288_wdt 38
parameters 118
virtio_blk 20

module parameters 115, 117
boot configuration 117
chunksize= 33
kernel parameter line 117
mode= 33

module parameters 33
nowayout= 38
reseed_limit= 33

N
name, devices

See device names
network interfaces

concepts 114
names 22

node, device
See device nodes

nowayout=, module parameter 38

O
online, CCW attribute 12

P
panic, shutdown action 61
poff, shutdown action 61
possible_cpus=, kernel parameter 101
prandom

access to 34
byte_counter attribute 35
chunksize attribute 35
errorflag attribute 35
mode attribute 35

preferred console 29
prng

reseed 36
reseed_limit 36

procfs
cio_ignore 95
magic sysrequest function 31

pseudo-random number
device driver 33
device names 33
device nodes 33

pseudorandom number device driver
setup 33

PSW, disabled wait 69

R
ramdisk_size=, kernel parameter 102
random number

device driver 33
device names 33
device nodes 33

random numbers
reading 34

reboot
from alternative source 63
shutdown action 61

reseed
prandom attribute 35
prng 36

reseed_limit
prandom attribute 35
prng 36

reseed_limit=, module parameters 33
restart, shutdown action 61
ro, kernel parameter 103
root=, kernel parameter 104
RPM

message man pages 71
s390-tools 77

S
s390-ccw.img 59
s390-tools, package 77
sample configuration file for CPU hotplug 51
SCLP line-mode terminal

buffer pages 29
control characters 30
magic sysrequest functions 31
special characters 30

SCLP terminals 27
sclp_con_drop=, kernel parameter 29
sclp_con_pages=, kernel parameter 29
SCSI

tape 23

Index 127

SCSI (continued)
virtual CD/DVD drive 25
virtual HBA 8

scsi_logging_level, Linux command 90
service utility

cpuplugd 45
sha_256, kernel module 54
sha_512, kernel module 54
SHA-1 53
SHA-256 53
SHA-512

in-kernel cryptography 53
sha1_s390, kernel module 54
shutdown

changing settings 82
current settings 89
triggers and actions 61

special characters, line-mode terminals 30
special file

See device nodes
strength

prandom attribute 35
subchannels

CCW devices 11
displaying overview 86
in sysfs 14

summary of changes vii
sysfs 11
sysinfo 41

T
TDEA 33
TDES 33

in-kernel cryptography 53
terminal

device names 28
mainframe versus Linux 28
name 30
SCLP 27

trademarks 124
Triple Data Encryption Standard 33
triple DES 33
troubleshooting 65, 69

V
vdso=, kernel parameter 105
virtio_blk, module 20
virtio-blk 3, 20
virtio-net 3
virtual dynamic shared object 105
virtual server

dump 67
live migration 6
starting 59
system information 41

VT220 terminal 27

W
watchdog 37

X
XTS 53

128 Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP2 as a KVM Guest

Readers’ Comments — We'd Like to Hear from You

Linux on z Systems and LinuxONE
Device Drivers, Features, and Commands
on SUSE Linux Enterprise Server 12 SP2
as a KVM Guest

Publication No. SC34-2756-01

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send your comments via email to: S390ID@de.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-2756-01

SC34-2756-01

IBM®
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Research & Development GmbH
Information Development
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBM®

SC34-2756-01

	Contents
	Summary of changes
	SUSE Linux Enterprise Server 12 SP2 changes

	About this publication
	Other publications that apply to SUSE Linux Enterprise Server 12 SP2 on IBM z Systems

	Part 1. The guest environment
	Chapter 1. KVM virtualization on z Systems
	Linux on KVM versus Linux on z/VM or Linux in LPAR mode
	Linux as a KVM guest on z Systems versus distributed systems
	Live guest migration

	Chapter 2. The virtual channel subsystem
	Listing devices with lscss
	Types of CCW devices
	Listing channel paths with lschp

	Chapter 3. Devices in sysfs
	Device categories
	Device directories
	Device attributes
	Setting attributes
	Working with hotplugged devices

	Device views in sysfs
	Device view
	Channel subsystem view

	CCW hotplug events

	Part 2. Device drivers
	Chapter 4. The virtio CCW transport device driver
	Setting CCW devices offline or online
	Virtual block devices
	Block device naming-scheme
	Mapping block devices to CCW devices
	Partitioning block devices

	Virtual network devices
	Interface names
	Mapping interfaces to CCW devices
	Activating an interface

	Virtual SCSI-attached tape devices
	Virtual SCSI-attached CD/DVD drives

	Chapter 5. Console device driver
	Console features
	Consoles versus terminals
	Setting up the console device drivers
	Console kernel parameter syntax
	Indicating the terminal capabilities

	Entering control and special characters on the line-mode terminal
	Using the magic sysrequest feature
	Activating and deactivating the magic sysrequest feature
	Triggering magic sysrequest functions from procfs

	Chapter 6. Pseudo-random number device driver
	Setting up the pseudo-random number device driver
	Module parameters
	Controlling access to the device node

	Working with the PRNG device driver
	Reading pseudo-random numbers
	Displaying PRNG information
	Setting the reseed limit
	Reseeding the PRNG

	Chapter 7. The diag288 watchdog device driver
	What you should know about the diag288 watchdog device driver
	Loading and configuring the diag288 watchdog device driver
	External programming interfaces

	Part 3. System resources
	Chapter 8. Displaying system information
	Displaying hardware and hypervisor information
	Checking whether the Linux instance can be a hypervisor

	Chapter 9. Managing CPUs
	CPU capability change
	Setting CPUs offline or online

	Chapter 10. cpuplugd - Control CPUs
	cpuplugd service utility syntax
	cpuplugd command-line syntax
	Configuration file structure
	Basic configuration file for CPU control
	Keywords for CPU hotplug rules
	Using historical data
	Writing more complex rules

	Sample configuration file

	Chapter 11. Hardware-accelerated in-kernel cryptography
	Hardware dependencies and restrictions
	Support modules
	Confirming hardware support for cryptographic operations

	Part 4. Booting and shutdown
	Chapter 12. IPL, booting, and starting the virtual server
	Chapter 13. Shutdown actions
	Displaying current IPL parameters
	Rebooting from an alternative source

	Part 5. Diagnostics and troubleshooting
	Chapter 14. Creating a kernel dump
	Chapter 15. Known issues
	Do not set your channel path offline
	Ignore unnecessary I/O devices
	Assure that essential devices are not ignored
	Booting stops with disabled wait state

	Chapter 16. Kernel messages
	Displaying a message man page
	Viewing messages with the IBM Doc Buddy app

	Part 6. Reference
	Chapter 17. Commands for Linux as a KVM guest on z Systems
	Generic command options
	chccwdev - Set CCW device attributes
	chreipl - Modify the re-IPL configuration
	chshut - Control the system shutdown actions
	cio_ignore - Manage the I/O exclusion list
	lscss - List subchannels
	lsreipl - List IPL and re-IPL settings
	lsshut - List the current system shutdown actions
	scsi_logging_level - Set and get the SCSI logging level

	Chapter 18. Selected kernel parameters
	cio_ignore - List devices to be ignored
	Managing the exclusion list through procfs

	cmma - Reduce hypervisor paging I/O overhead
	fips - Run Linux in FIPS mode
	maxcpus - Limit the number of CPUs that Linux can use at IPL
	possible_cpus - Limit the number of CPUs Linux can use
	ramdisk_size - Specify the ramdisk size
	ro - Mount the root file system read-only
	root - Specify the root device
	vdso - Optimize system call performance

	Chapter 19. Features described elsewhere
	NUMA emulation
	snipl

	Chapter 20. Diagnose code use
	Part 7. Appendixes
	How devices are accessed by Linux
	Device names, device nodes, and major/minor numbers
	Network interfaces

	Kernel and module parameters
	Kernel parameters
	Specifying kernel parameters
	How kernel parameters from different sources are combined
	Examples for kernel parameters
	Displaying the current kernel parameter line

	Module parameters
	Specifying module parameters
	Specifying module parameters with modprobe
	Module parameters on the kernel parameter line

	Including module parameters in a boot configuration
	Displaying information about module parameters

	Accessibility
	Notices
	Trademarks

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W
	X

	Readers’ Comments — We'd Like to Hear from You

