<|ll

Linux on System z

Using the Linux cpuplugd Daemon to
manage CPU and memory resources from

z/VM Linux guests

<|ll

Linux on System z

Using the Linux cpuplugd Daemon to
manage CPU and memory resources from

z/VM Linux guests

Note
FBefore using this information and the product it supports, read the information in ['Notices” on page 63|

Contents

Figures .

Tables .

About this publication

Chapter 1. Introduction
Objectives .
Executive summary .

Chapter 2. Summary
CPU plugging .
Memory plugging

Chapter 3. Hardware and software
configuration .

Server configuration

Client configuration

Chapter 4. Workload description.
DayTrader . .
WebSphere Studio Workload Slmulator .

Chapter 5. z/VM and Linux setup
WebSphere environment . .
WebSphere Studio Workload Slmulator
configuration . P
Java heap size

Database conﬁguratlon

z/VM settings

Linux guests .

Chapter 6. Results.

Methodology .
Manual sizing
Monitoring the management behav1or of the
cpuplugd .

© Copyright IBM Corp. 2012

.V

. Vil

a1

- N
.1
.11

. 13
.13
.14

. 15
.15

. 16
.17
.17
.17
.18

. 21
.21
.21

.22

Understanding the sizing charts
cpuplugd configuration rules
CPU plugging
Memory plugging .
Dynamic runs
Setup tests and Varlatlons
Scaling the cpuplugd update mterval
Memory plugging and steal time .

Appendix A. Tunlng scrlpts
DB2 UDB tuning .
WebSphere tuning scrlpt

Appendix B. cpuplugd conflguratlon
files .

Recommended default conflguratlon .
CPU plugging via loadavg .
CPU plugging via real CPU load .
Memory plugging configuration 1 .
Memory plugging configuration 2 .
Memory plugging configuration 3 .
Memory plugging configuration 4 .
Memory plugging configuration 5 .
Memory plugging configuration 7 .
Memory plugging configuration 8 .
Memory plugging configuration 9 .
Memory plugging configuration 10

References .

Notices
Trademarks .
Terms and conditions .

Index

.22
.24
.24
.27
.41
. 45
. 45
. 47

. 51
.51
.51

. 53
. 53
. 53
. 54
. 54
. 55
. 56
. 56
. 57
. 58
. 58
. 59
. 60

. 61
. 63
. 65
. 65

. 67

iii

iV Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

Figures

—_

11.

12.

13.

DayTrader J2EE components . . .
Setup for one set of servers and a targeted
load . .o

Number of active CPUs ass1gned to all guests
when managed by cpuplugd. .o
Number of active CPUs assigned to selected
guests when managed by cpuplugd

Number of active CPUs over time when
managed by cpuplugd based on loadavg value
Number of active CPUs over time when
managed by cpuplugd based on real CPU load
Relative Linux memory size for the individual
guests for two different cpuplugd
configuration files (manual sized = 100%)
Throughput reached for the individual
components and three different configuration
files. . .

CMM Pool size over t1me w1th conﬁguratlon 1
CMM Pool size over time with WebSphere
Application Server 1 .

CMM Pool size over time for a database
system .

CMM Pool size over t1me for a Combo System
(IHS, WebSphere Application Server, DB2) .
Relative Linux memory size for the individual
guests and different configuration files.
(manual sized = 100%) .

© Copyright IBM Corp. 2012

.13

. 16

.23

.23

25

26

. 33

. 34

35

. 35

. 36

. 36

. 39

14.

15.

16.

17.

18.

19.

20.

21.

22.

Throughput reached for the individual
components and three different configuration
files . .

Free z/VM memory over tlme when sw1tchmg
the workload from guest set 1 to guest set 2.
Linux memory size calculated as defined guest
size (5 GB) — CMM pool size when switching
the workload from guest set 1 (Incombo2)to
guest set 2 (Incombo4) .

Number of active CPUs for a WebSphere guest
and a Combo guest of Set 1 over time when
switching the workload from guest set 1 to
guest set 2 . .

Number of active CPUs for a WebSphere guest
and a Combo guest of Set 2 over time when
switching the workload from guest set 1 to
guest set 2 . .

CPU cost per transactlon for the manual 31zed
run as a function of the duration of the
cpuplugd UPDATE interval . .

CMM pools size over time for scaling the
cpuplugd UPDATE interval . .

CMM Pools size and CPU steal time over tlme
when compiling a Linux kernel .

CMM Pools size and CPU steal time over tlme
when compiling a Linux kernel with the fix
released in APAR VM65060 installed .

. 40

. 42

. 43

. 44

. 44

. 46

. 47

. 48

. 48

vi Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

Tables

Memory sizes .
Different Sizing approaches and thelr trade offs 3
3. Interpretation of the variables CP_Active AVG

—_
N

N

and CP_idleAVG . . 4
4. Server type-dependent approach .. .9
5. Server software used for cpuplugd daemon

testso
6. Client software used for cpuplugd daemon

tests |
7. Baseline Virtual CPU and V1rtual memory

settings for set 1 and set2 . . oL 21

8. Throughput and average CPU load when
managed by cpuplugd based on loadavg value 25

© Copyright IBM Corp. 2012

10.

11.

12.

13.

Throughput and average CPU load when
managed by cpuplugd based on real CPU load
values

Impact of the various conﬁguratlon rules for
throughput and guest size

Impact of the various Conﬁguratlon rules for
throughput and guest size .
Recommended rules set depending on server
type . . .

Impact of scahng the cpuplugd UPDATE
interval on throughput and guest size.

. 26

.31

. 37

. 40

. 45

vii

viii Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

About this publication

This paper is intended to provide information regarding performance of
environments using the cpuplugd daemon. It discusses findings based on
configurations that were created and tested under laboratory conditions. These
findings may not be realized in all customer environments, and implementation in
such environments may require additional steps, configurations, and performance
analysis. The information herein is provided “AS IS with no warranties, express
or implied. This information does not constitute a specification or form part of the
warranty for any IBM® products.

Authors

Linux end-to-end Performance team:
e Dr. Juergen Doelle
e Paul V. Sutera

Acknowledgements

Thank you to the following people for their contributions to this project:
* Eugene Ong
 Stephen McGarril

The benchmarks were performed at the IBM System z® World Wide Benchmark
Center in Poughkeepsie, NY.

© Copyright IBM Corp. 2012 ix

X Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

Chapter 1. Introduction

An introduction to the cpuplugd daemon and what the tests described in this
white paper set out to achieve.

Objectives

Sizing Linux z/VM® guests can be a complex task, despite the fact that z/VM does
a good job of managing the resource requests as appropriately as possible. But
oversized guests often cause additional management effort by the Hypervisor and
undersized guests often have performance-related issues with workload peaks. A
large amount of guests with large ratios of resource overcommitment (more virtual
resources than are physically available) and changing workload characteristics over
time make a correct sizing even more challenging.

Therefore to simplify guest management the obvious question is, why not let the
system manage the resources automatically, based on the operating requirements of
the guest. This ensures that each guest receives what it requires at a certain point
in time and the limits can then be adjusted in cases where a guest unintentionally
receives too many resources.

The Linux cpuplugd daemon, also called hotplug daemon, can control the amount
of CPUs and memory available for a guest by adding or removing these resources
according to predefined rules.

There is an updated version of the cpuplugd daemon available starting with SUSE
Linux Enterprise Server (SLES) SP2 or Red Hat Enterprise Linux (RHEL) 6.2, which
greatly enhances the capability to define rules and the available performance
parameters for the rule set. This tool now provides exactly what is required to
enable the operating system of the guest to manage the resources within the range
of the guest definition.

This study analyzes various rules for the Linux cpuplugd daemon, which can be
used to automatically adjust CPU and memory resources of a Linux z/VM guest.
We used a development version from the s390 tools applied on a SLES11 SP1.

The methodology used is:

¢ Determine the performance of an manually optimized system setup and keep
these sizings and performance as the baseline

* Then start with a common sizing for each guest of 4 CPUs and 5 GB memory

* Let the cpuplugd daemon to adjust the resources under a predefined workload

¢ Identify appropriate rules to minimize the resource usage with the lowest
performance impact

This will help customers to automatically adjust and optimize the resource usage
of Linux guests according to their current load characteristics.

Note: In the following paper are memory sizes based on 1024 bytes. To avoid
confusion with values based on 1000 bytes, the notations are used according to IEC
60027-2 Amendment 2:

© Copyright IBM Corp. 2012 1

Table 1. Memory sizes

Symbol Bytes

KiB 1024' =0

MiB 1024%= 1.048.576
GiB 1024°= 1.073.741.824

That means one memory page has a size of 4KiB.

Executive summary

The approach used to analyze the impact of the cpuplugd rules.

This new version of the Linux cpuplugd daemon is a very powerful tool that can
automatically adjust the CPU and memory resources of a Linux z/VM guest.
Starting with a common sizing of 4 CPUs and 5 GB memory for each guest, it
adjusts the resources as required. Guests with very different middleware and
combinations of middleware, different memory sizes, and workload levels have
been tested and compared with a manually sized setup.

The approach is to manage all the different guests with the same rule set. For CPU
management the important criteria is the management target. It is possible to
either manage the CPUs exactly and with a very fast response to changing
requirements, or to have a system which reacts to increasing requirements in a
very restrictive manner.

The more complex part with respect to one common rule set for all guests is the
memory management. Here the requirements of the various guests were so
different, that for one common set of rules a trade-off between best performance or
minimal resource usage had to be made. Setting up individual rules could improve
the result. However, even with the common set of rules the impact on performance
can be kept small (around 4% throughput degradation and corresponding
reduction in CPU load) with only 5% more memory (z/VM view) as compared to
the manually-sized run.

In our memory management tests, we stopped the middleware to ensure that the
memory was freed up and made available again. An alternative would be to set up
the middleware so that the required memory buffers can shrink when not in use.
For example, define a WebSphere® Application Server with a much smaller initial
heap size than the maximum heap size.

Note: For a high performance environment it is recommended that the initial heap
size is set to the maximum heap size to avoid memory fragmentation and memory
allocations during runtime.

Another important aspect of the comparison is that the manual sizing requires a
set of test runs to identify this setup, and it is only valid for that single load
pattern. If, for example, the workload on one system increases and decreases on
another system by a similar amount, the total performance will suffer, whereas the
cpuplugd managed guests would activate and deactivate resources as required and
keep the total amount of used resources constant, that is, without changing the
resource overcommitment ratio. The system now reacts according to the load
pressure.

[Table 2 on page 3| compares the different approaches for sizing and their trade-offs:

2 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

Table 2. Different Sizing approaches and their trade-offs

Server-type adapted
rules

Sizing and
Approach Effort performance Flexibility
Manual sizing very high optimal none
Generic default rules |small good trade-off very high
singular effort very good high

The paper helps to select either generic rules or gives guidance to develop server
type depending rules. The suggested default configuration file is described in

[‘Recommended default configuration” on page 53]

This will help customers to automatically adjust and optimize resource usage of

Linux guests according to the current load characteristics

Chapter 1. Introduction

3

4 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

Chapter 2. Summary

This summary discusses the elements of the cpuplugd configuration file in detail
and the recommended settings.

See [Appendix B, “cpuplugd configuration files,” on page 53| for details about the
tested configuration files. A sample config file named cpuplugd is available in
/etc/sysconfig for each installation.

When testing the impact of various rules, it is recommended to avoid rules which
cause a system to oscillate with a high frequency. This means that in a very short
time period resources are repeatedly added and withdrawn. When the workload
itself is oscillating with a high frequency, it might help to use average values over
larger time periods and decrease the limits.

The opposite behavior is a very sensitive system which reacts very quickly to load
changes to cover peak workloads. But even in this scenario, when these load peaks
occur very quickly, it might be better to hold the resources.

Note:

* Managing the memory of a Linux guest with the cpuplugd daemon, rules out
the usage of VM Resource Manager (VMRM) Cooperative Memory Management
for this guest.

¢ Managing the CPUs of a Linux guest with the cpuplugd daemon is incompatible
with task bindings using the task_set command or the cgroups mechanism.

CPU plugging

To vary the amount of active CPUs in a system, the CPUs are enabled or disabled
via sysfs from the cpuplugd daemon.

Note: This changes the amount of CPUs within the range of CPUs defined to the
guest, either via CPU statements in the user directory or via CP DEFINE CPU
command.

@PDATE="1")

The update parameter determines the frequency of the evaluation of the rules in
seconds, 1 is the smallest value. We could not identify any overhead related to a
1 second interval. A larger interval would produce a system that reacts more
slowly. The recommendation is to use 1 second intervals for a fast system
reaction time. If the objective is not to react immediately to each value change
from a certain parameter, the evaluation of that parameter might cover values
from several intervals.

CPU_MIN="1"
CPU_MAX="0"

These parameters define the range within cpuplugd daemon varies the amount
of CPUs. The lower limit is set to 1, the maximum value is set to '0' which

© Copyright IBM Corp. 2012 5

means unlimited, so it is possible to use all of the CPUs that the guest is defined
with. In case a middleware works better with two than with one CPU,
CPU_MIN would be set to 2.

user_0="(cpustat.user[0] - cpustat.user[1])"
nice_0="(cpustat.nice[0] - cpustat.nice[1])"
system 0="(cpustat.system[0] - cpustat.system[1])"
user_2="(cpustat.user[2] - cpustat.user[3])"
nice_2="(cpustat.nice[2] - cpustat.nice[3])"
system 2="(cpustat.system[2] - cpustat.system[3])"

These rules calculate user, system, and nice CPU values from the last interval
and the third previous interval. The cpustat.<parm> values are counting the
CPU ticks for a certain type of load accumulated from the system start, that
means they are continually increasing. At each update interval the parameters
are determined and saved. They are referred to by an index, which starts at 0 for
the most current value. The user CPU from the last interval is the difference
between the most current user value cpustat.user[0] minus the value before
cpustat.user[1].

Note: These values are accumulated values from all CPUs and counted in the
number of CPU ticks spent for that type of CPU usage!

CP_Actived="(user_0 + nice_0 + system_0)/ (cpustat.total_ticks[0] - cpustat.total_ticks[1])"
CP_Active2="(user_2 + nice_2 + system_2)/ (cpustat.total_ticks[2] - cpustat.total_ticks[3])"

The differences in CPU ticks for a certain type of load must be normalized with
the total amount of CPU ticks in which they are gathered, because the length of
the intervals always varies slightly.

Note:

— Even the UPDATE interval is specified with a fixed value in seconds, depending
on the load level the real interval length might differ more or less. Therefore
it is highly recommended to use the values from the cpustat.total_ticks
array. The index has the same semantics as the values array, [0] is the most
current value, [1] the one before, and so on.

— cpustat.total ticks values are accumulated CPU ticks from all CPUs since
system start! If the system is 100% busy this means that the number of CPU
ticks spent for user, system and nice is equal to cpustat.total_ticks.

The actively used CPU value for this calculation is composed of the user,
system, and nice CPU values.

CCP_Acti veAVG="(CP_Active0+CP_Active2) / 2")

We use the average of the current and the third previous interval to cover a
certain near term interval.

6 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

idle_0="(cpustat.idle[0] - cpustat.idle[1])"

jowait_0="(cpustat.iowait[0] - cpustat.iowait[1])"

idle_2="(cpustat.idle[2] - cpustat.idle[3])"

jowait_2="(cpustat.iowait[2] - cpustat.iowait[3])"

CP_idle0="(idle_0 + iowait_0)/ (cpustat.total ticks[0] - cpustat.total ticks[1])"
CP_idle2="(idle 2 + iowait_2)/ (cpustat.total ticks[2] - cpustat.total ticks[3])"
CP_id1eAVG="(CP_id1e0 + CP_idle2) / 2"

The considerations are the same as for the elements which contribute to
CP_ActiveAVG as described in the previous paragraph. The states idle and iowait
contribute to idle.

Note: We did not include steal time in these formulas. Never count steal time as
active CPU, because adding CPUs triggered by steal time will worsen the
situation. In case of very high CPU overcommitment rates, it might make sense
to include steal to idle and to remove a CPU if steal time becomes too high. This
reduces the level of CPU overcommitment and allow for a low prioritized
system to relieve the CPU pressure. For productive systems, we recommend that
you ignore it, especially if it appears for a limited period only.

HOTPLUG="((1 - CP_ActiveAVG) * onumcpus) < 0.08"
HOTUNPLUG="(CP_id1eAVG * onumcpus) > 1.15"

— onumcpus is the current number of CPUs which are online.

- shows the interpretation of the variables CP_Active AVG and
CP_id1eAVG:

Table 3. Interpretation of the variables CP_Active AVG and CP_idleAVG

Variable

Range Interpretation Comment

CP_Active AVG

0 means: no CPU is doing work includes user, system and nice
1 means: all CPUs are actively used

CP_idleAVG

0-1

0 means: no idle time includes idle and iowait, steal time is
1 means: all CPUs are fully idling |not included

(1-CP_ActiveAVG) represents the unused capacity of the system as value between
0 and 1. The multiplication with onumcpus creates a value with a unit in
multiples of CPUs. Due to that the comparison with 0.08 refers to 8% of a single
CPU independent to the size of the system.

The rules above:

— Add another CPU when only less than 8% of one (a single) CPU's capacity is
available

— Remove a CPU when more than 1.15 CPUs are in the state idle or iowait.
This is the recommended CPU plugging setup for a fast reacting system. If a

system that acts in a restrictive manner is required, a loadavg base rule as
described in [“DB2 UDB tuning” on page 51| can be used.

Memory plugging

To vary the amount of memory in a system, the cpuplugd daemon uses a
ballooning technology provided by the Linux cmm module.

This manages a memory pool, called the CMM pool. Memory in that pool is 'in
use' from the Linux operating system point of view, and therefore not available,
but eligible for the z/VM in case memory pages are needed. The CMM module

Chapter 2. Summary

handles the communication with the z/VM Hypervisor that these pages are
disposable. To vary the amount of memory in a system, the memory is either
assigned to or withdrawn from the CMM pool by the cpuplugd daemon.

pgscan_d="vmstat.pgscan_direct_dma[0] + vmstat.pgscan_direct_normal[0] + vmstat.pgscan_direct_movable[0]"
pgscan_dl="vmstat.pgscan_direct_dma[l] + vmstat.pgscan_direct_normal[l] + vmstat.pgscan_direct_movable[1]"

There are two mechanisms managing the memory, an asynchronous process,
called the kswap daemon and a synchronous mechanism, called direct page
scans. The kswap daemon is triggered when the amount of free pages falls
below some high water marks. The synchronous mechanism is triggered by a
memory request which could not be served. The last one delays the requester.
We got very good results when using only the direct scans as in the following
calculations. If this causes systems that are too small, kswap scans as used in
configuration 3 in [“Memory plugging configuration 3” on page 56| can be
included.

G)gscanrate="(pgscan_d - pgscan_dl) / (cpustat.total_ticks[0] - cpustat.total ticks[1])")

Only the current situation is considered. If only direct scans are used as criteria
this is important because the occurrence of direct page scans indicates that an
application delay already occurred.

(avai1_cache="mem1’nfc.Cached -meminfo.Shmem")

The memory reported as cache consists mostly of page cache and shared
memory. The shared memory is memory used from applications and should not
be touched, whereas the page cache can roughly be considered as free memory.
This is especially the case if there are no application runnings which perform a
high volume of disk I/O transfers through the page cache.

CMM_MIN="0"
CMM_MAX="1245184"

CMM_MIN specifies the minimum size of the cmm pool in pages. A value of zero
pages allows the full removal of the pool. As maximum value (CMM_MAX) a very
large value of 1,245,184 pages (4,864 MiB) was used, which would stop the size
of the pool from increasing when less than 256 GB memory remain. In real life
the pool never reached that limit, because the indicators for memory shortage
were reached earlier and stopped the size of the pool from increasing.

CMM_INC="meminfo.MemFree / 40"
CMM_DEC="meminfo.MemTotal / 40"

These values are specified in pages (4 KiB each), KiB base values as the data in
meminfo must be divided by a factor of 4, for example, 40 KiB is 10 pages.
CMM_INC is defined as percentage of free memory (for example, 10%). This causes
the increment of the CMM pool to become smaller and smaller the closer the

8 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

system comes to the 'ideal' configuration. CMM_DEC is defined for a percentage of
the system size, for example, 10%. This leads to a relatively fast decrement of the
CMM pool (that is, providing free memory to the system), whenever an
indicator of a memory shortage is detected.

MEMPLUG
MEMUNPLUG

"pgscanrate > 20"
"(meminfo.MemFree + avail_cache) > (meminfo.MemTotal / 10)"

Memory is moved from the CMM pool to the system (plugged), when the direct
scan rates exceed a small value. Memory is moved from the system to the CMM
pool (unplugged), if more than 10% of the total memory is considered as

unused, this includes the page cache.

Note:

— The increments for the CMM pool are always smaller then the smallest value
created here to allow an iterative approach to reduce the volatile memory.

— In case a workload depends on Page Cache caching, such as a database
performing normal file system I/0, an increase of the limit specified in the
MEMUNPLUG rule could improve the performance significantly. For most
application caching behavior add twice the I/O throughput rate (read +
write) in KiB as start value to the recommended 10% in our rule. For
example, for a total throughput of 200MB/sec:

MEMUNPLUG=" (meminfo.MemFree+avail_cache)>(400*1024+meminfo.MemTotal/10)"

In case of special page cache demanding applications even higher values
might be required.

For small systems (<0.5 GB) the 10% limit might be reduced to 5%.

Memory hotplug seems to be workload dependent. This paper does give a basis to
start from, a server type-dependent approach for our scenario could look as

follows:

Table 4. Server type-dependent approach

Server type Memory size CMM_INC Unplug when

Web Server < 0.5 GB free mem /40 (free mem + page cache) > 5%
Application Server <2GB free mem /40 (free mem + page cache) > 5%
Database Server = 0.5 GB (free mem+page cache) /40 | (free mem + page cache) > 5%
Combo > 2GB free mem /40 (free mem + page cache) > 10%

Installation of z/VM APAR VM65060 is a requirement when memory management
via cpuplugd is planned. It reduces the amount of steal time significantly, more

details are in [“Memory plugging and steal time” on page 471t is available for

z/VGM 54, z/VM 6.1, and z/VM 6.2.

Chapter 2. Summary 9

10 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

Chapter 3. Hardware and software configuration

To perform our tests, we created a customer-like environment. This section
provides details about the hardware and software used in our testing.

Server configuration
Server hardware

System z

One z/VM LPAR on a 56 way IBM System z196 EC, 5.2 GHz, model

2817-M80, equipped with:

* Up to 8 physical CPUs dedicated to z/VM
* Up to 20 GB Central memory and 2 GB Expanded Storage
* Up to 2 OSA cards (1 shared for admin LAN, and a 1-Gigabit OSA card.)

Storage server setup

The storage server was a DS8300 2107-932. For all System z systems and
applications on up to 16 Linux host systems:

™

¢ 214 ECKD mod 9s spread over 2 Logical Control Units (LCUs)

Server software

Table 5. Server software used for cpuplugd daemon tests

Product

Version and release

IBM DB2 Universal Database™ Enterprise Server

9.7 fixpack 4

SUSE Linux Enterprise Server

SLES 11, SP1 64-bit + development version of
s390-tools package

DayTrader Performance Benchmark

Version 2.0 — 20080222 build

WebSphere Application Server

7.0 fixpack 17, 64-bit

IBM HTTP Server

7.0 fixpack 17, 64-bit

z/VM

6.1

A development version was installed for the updated cpuplugd server.

Client configuration
Client hardware

Two IBM xSeries X336 2-way 3.60GHz Intel 8GB RAM were used as a DayTrader

workload generator.

Client Software

Table 6. Client software used for cpuplugd daemon tests

Product

Version and release

WebSphere Studio Workload Simulator

Version 03309L

SUSE Linux Enterprise Server

10 SP2 (x86_64)

© Copyright IBM Corp. 2012

11

12 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

Chapter 4. Workload description

This section describes the following products that were used in the tests:

e [“DayTrader”

* |“WebSphere Studio Workload Simulator” on page 14|

DayTrader

An internally available version of the DayTrader multi-tier performance benchmark
was used for the cpuplugd studies.

DayTrader Performance Benchmark is a suite of workloads that allows
performance analysis of J2EE 1.4 Application Servers. With Java classes, servlets
and ServerPage (JSP) files, and Enterprise JavaBeans (E]Bs) all of the major J2EE
1.4 application programming interfaces are exercised so that scalability and
performance can be measured. These components include the Web container
(servlets and JSPs), the EJB container, EJB 2.0 Container Managed Persistence, JMS
and Message Driven Beans, transaction management and database connectivity.

The DayTrader structure is shown in

4 Trade
Databasd

= 8
g WebSphere E
| Dynamic w
Cachin
Web Container E d §
= el
‘x\\ s =
o JAX/IRPC
Sarviet
Auditor
Client Web Services

S

Figure 1. DayTrader J2EE components

DayTrader is modeled on an online stock brokerage. The workload provides a set
of user services such as login and logout, stock quotes, buy, sell, account details,
and so on, through standards-based HTTP and Web services protocols such as
SOAP and WSDL. DayTrader provides the following server implementations of the
emulated "Trade" brokerage services:

* EJB - Database access uses EJB 2.1 methods to drive stock trading operations

* Direct - This mode uses database and messaging access through direct JDBC and
JMS code

Our configuration uses EJB 2.1 database access including session, entity and
message beans and not direct access.

© Copyright IBM Corp. 2012 13

DayTrader also provides an Order Processing Mode that determines the mode for
completing stock purchase and sell operations. Synchronous mode completes the
order immediately. Asynchronous_2-Phase performs a 2-phase commit over the EJB
Entity /DB and MDB/JMS transactions.

Our tests use synchronous mode only.

DayTrader can be configured to use different access modes. This study uses
standard access mode, where servlets access the enterprise beans through the
standard Remote Method Invocation (RMI) protocol.

Type 4 JDBC connectors are used with EJB containers to connect to a remote
database.

To learn more about the DayTrader performance benchmark, or to download the
latest package, find the DayTrader sample application at:

[HTTP://cwiki.apache.org/GMOXDOC22/sample-applications.html|

WebSphere Studio Workload Simulator

The DayTrader workload was driven by the WebSphere Studio Workload Simulator
and the WebSphere Studio Workload Simulator script provided with DayTrader.

You specify the parameters for this script in a configuration file. Typically, you set
up several different configuration files and then tell the script which file to use.
The configuration changes we made are detailed in WebSphere Studio Workload
Simulator configuration.

We used different copies of the modified WebSphere Studio Workload Simulator
script to perform runs that were intended to stress anywhere from one to five
application servers.

When DayTrader is running, four different workloads are running: two triplets and
two combination mode servers. The stress test involves two clients for workload
generation. Each client runs one DayTrader shell script, and each script invokes
two separate instances of the iwl engine. One client targets the two combination
servers, and the other client targets the two triplets, to spread the workload fairly
evenly across the client workload generators.

14 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

HTTP://cwiki.apache.org/GMOxDOC22/sample-applications.html

Chapter 5. z/VM and Linux setup

This topic details the modifications we made to the system setup for our z/VM
and Linux environments.

WebSphere environment

To emulate a customer-like configuration, one WebSphere Application Server
environment consisted of:

e An IBM HTTP web server
* The WebSphere Application Server
+ A DB2® UDB database server

This environment is called a "triplet".

"Combination" servers were also employed where the IBM HTTP Server,
WebSphere, and DB2 UDB coexist on the same Linux on System z server, these
servers are called "combos". The setup is shown in Figure 2. This setup represents
guests with very different resource requirements at very different workload levels.

For the static portion of our test we use two triplets, and two combo servers;
Triplet 1, Triplet2, Combol and Combo2. This is referred to in the paper as the first
"Set" or "Set 1".

For the dynamic portion of the test, two additional triplets and two additional
combo servers were added; Triplet 3, Triplet 4, Combo3 and Combo4. In this paper
this is referred to as the second set or "Set 2".

For the static tests there are a total of eight Linux on System z guests. For the
dynamic tests the total number of Linux guests is 16.

For dynamic workload testing the workload was switched to the second set after
completing the workload on the first set, and then similarly back to the first set
after completing the workload on the second set. This creates warmed up idling
systems, which are switched from a state where the resource utilization is at its
maximum to a state where the resource utilization is at its minimum.

For all tests we used two Client drivers on two System x336 systems.

© Copyright IBM Corp. 2012 15

nnn = z/VM guest

WebSphere
IBM HTTP S DB2 UDB
| Application Triplet 1
Server (IHS) Server Server p
Workload |~
Generator IBMHTTP WebSphere | pgy ypp Triolet 2
Server (IHS) psperver Server rple
IBM HTTP Server
[— WebSphere Application Server Combo1
Workload = — DB2 UDB Server
Generator
IBM HTTP Server
WebSphere Application Server Combo2
DB2 UDB Server
2 Two-way
Blades T
8-way z/VM with Linux on System z

ystem utilization:

Triplet 1 - low utilized, each system < 1 CPU
Triplet 2- medium utilized, load on WebSphere Application Server > 1 CPU
Combol- high utilized system, load > 2 CPUs

Combo2- high utilized system, load > 2 CPUs

Figure 2. Setup for one set of servers and a targeted load

WebSphere Studio Workload Simulator configuration

How the default WebSphere Studio Workload Simulator configuration was
modified for use in the tests is described in this topic.

Parameter changes

The parameter configuration file we passed to the workload generator engine was
a modified version of the default WebSphere Studio Workload Simulator
configuration provided with the DayTrader distribution. We specified the following
parameter values:

16 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

e The number of simulated clients was set to four on the combo servers, three on
Triplet 1 and 6 on Triplet 2. This number of clients enabled us to reach optimal
throughput while keeping the system CPU between 90% and 97%.

¢ The time limit (length of our runs) was set to 10 minutes.
* The "element delay" (or "think time") was kept at 0.

¢ The "xml_interval" is the interval, in minutes, between successive snapshots of
the output of the WebSphere Studio Workload Simulator. This output can be
customized. Taking into account pages per second, transactions per second, and
response time, we set the xm1_interval to 5 minutes.

Below is a sample invocation of a WebSphere Studio Workload Simulator script for
one triplet:

/var/iwl/bin/iwlengine -c 4 -e 0 -D on -r 10000 --enginename tripletl --max_clients \
300 --xml_interval 5 --timelimit 600 -s /etc/iwl/common/trade6_Tnwebl.jxs

Java heap size

A Java heap size of 1 Gigabyte was used for all WebSphere JVM Heap sizes and all
test runs, with both the minimum and maximum heap sizes being set to 1
Gigabyte (1024 MB or 1024M).

Database configuration

The database buffer pools and other parameters are defined as shown in the
tuning script in ["DB2 UDB tuning” on page 51

z/VM settings

This section describes the Quickdsp and SRM settings:

.

* [‘SRM settings”
Quickdsp

The set Quickdsp command and the quickdsp operand of the option directory
statement allow you to designate virtual machines that will not wait in the eligible
list when they have work to do.

All measurements in this study that were run on z/VM used the quickdsp
operand. For the guests it was specified in the option directory statement for all
z/VM virtual guest user directory definitions.

SRM settings

For some of the tests, the z/VM SRM settings were changed. The presence of the
quickdsp option directory statement, however, may make these changes less
relevant to the Linux virtual systems. Other z/VM virtual users dispatching
priorities would be affected by the SRM settings because they did not run with the
quickdsp option in our test.

It is recommended to use CP SET SRM STORBUF to increase the z/VM system's

tolerance for over-committing dynamic storage. CP SET SRM LDUBUF is often used to
increase the z/VM system's tolerance for guests that induce paging.

Chapter 5. z/VM and Linux setup 17

Some of the tests used the SRM values shown in the following QUERY SRM
command:

g srm

TIABIAS : INTENSITY=90%; DURATION=2
LDUBUF : Q1=300% Q2=300% Q3=300%
STORBUF: Q1=300% Q2=300% Q3=300%
DSPBUF : Q1=32767 Q2=32767 Q3=32767
DISPATCHING MINOR TIMESLICE = 5 MS
MAXWSS : LIMIT=9999%

...... : PAGES=999999

XSTORE : 0%

LIMITHARD METHOD: DEADLINE

Ready; T=0.01/0.01 15:35:12

The LDUBUF parameters specify the percentage of paging exposures the scheduler is
to view when considering adding or loading a user into the dispatch list with a
short, medium or long-running transaction, respectively. The values Q1, Q2, and Q3
shown in the output above, refer to the expected length of a transaction, where:

* Q3 is the longest running transaction
* Q2 includes medium and long length transaction users
* Q1 includes all users

The larger the percentage allocated, the more likely it is that a user is added to the
dispatch list of users that are already on the list and waiting to be dispatched.
Values over 100% indicate a tolerance for an overcommitment of paging DASD
resources. A value of 300%, for example, indicates that all users in that
transaction-length classification will be loaded into the dispatch list even if this
would lead to an overuse of paging resources by up to three times.

The STORBUF parameters are also specified in three values. The values specify the
percentage of pageable storage that can be overcommitted by the various classes of
users (Q1, Q2, Q3) based on the length of their transactions, as described in the
previous paragraph. Again, Q1 includes all classes, and Q2 includes Q2 and Q3 users.
Q3 is reserved for long-running transaction users. Any value over 100% represents
a tolerance for that amount of storage overcommitment to users included in that
classification.

For some tests we changed the values using the SET command, as shown below, to
set slightly less aggressive dispatching decisions for our non-Linux z/VM guests.

SET SRM LDUBUF 100 100 100
LDUBUF : Q1=100% Q2=100% Q3=100%
Ready; T=0.01/0.01 15:35:22

set srm storbuf 300 250 200
STORBUF: Q1=300% Q2=250% Q3=200%
Ready; T=0.01/0.01 15:36:19

Linux guests

This topic describes the baseline settings for Linux guests and which rpms are
installed.

Baseline settings

The baseline CPU and memory settings for the Linux guests were established.

18 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

A DayTrader workload is tested against each triplet and each combo server
through an iterative process to reach load targets and optimize sizing and resource
usage.

A specific load based on a number of DayTrader clients running on each triplet
and each combo server is established where system-wide CPU-utilization is
between 90% and 97%. Baseline memory and CPU settings, in conjunction with the
established DayTrader load, represent a hand-tuned end-to-end system where the
virtual CPUs and memory allocated for each guest are just sufficient to support the
workload.

The number of clients for each triplet and each combo server is then kept the same
throughout the tests, keeping the workload generation constant. The baseline
settings are a good approximation of the ideal CPU and memory configuration for
a given client-driven workload.

In the case of the dynamic runs, a second set of servers was created as an exact
replica of the first set of servers. Set 2 servers were only used for the dynamic test
runs and are not up during the static tests when the configuration files are
evaluated.

For the tests with cpuplugd, the guest definitions were changed to 4 CPUs and 5
GB memory for all guests. Using different cpuplugd configuration files and
keeping the number of DayTrader clients constant we measured how the
management of CPU or virtual memory or both for systems with oversized virtual
resource allocations was affected by CPU plugging and memory plugging.

Various configuration files were tested for their ability to quickly and correctly
adjust virtual CPUs and memory for a particular DayTrader user count, where
correctly allocated memory is as close as possible to the manually-sized
configuration.

Linux service levels

The following rpms were installed during the testing of the cpuplugd daemon on
top of the SUSE Linux Enterprise Server (SLES11) SP1 distribution to fix known
issues relevant for this test. The s390-tools rpm contained the new version of
cpuplugd:

kernel-default-2.6.32.43-0.4.1.s390x.rpm
kernel-default-base-2.6.32.43-0.4.1.5390x.rpm
kernel-default-devel-2.6.32.43-0.4.1.5390x.rpm
kernel-default-man-2.6.32.43-0.4.1.5390x.rpm
kernel-source-2.6.32.43-0.4.1.5390x.rpm

$390-tools-1.8.0-44.45.2cpuplug8.s390x.rpm

Chapter 5. z/VM and Linux setup 19

20 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

Chapter 6. Results

This topic describes not only the test results but also the methods we used to set
up and run the tests together with any observations and conclusions.

Methodology

To compare the impact of the various rules for the cpuplugd daemon, a manually
optimized setup was prepared.

The objectives for the manual sizing were minimal memory requirements (without
swapping) and a CPU utilization of 90% to 95% for all CPUs. The assumption was
that the automated sizing using cpuplugd will never create a system with a higher
utilization.

Compared to this workload, the additional CPU utilization needed to run
cpuplugd, which is activated at intervals potentially as small as 1 second, was
expected to be small, and the system will never run faster when the resources are
managed by any kind of tool. The question of interest was whether the expected
degradation would be large or acceptable.

Manual sizing

The workload was adjusted so that the individual servers have different
requirements (100% = 1 CPU fully utilized)

* The web server systems are minimally utilized systems

* The database servers are also considered to be low-utilization systems, which
means the load is always less than 90% of one processor

¢ The two standalone WebSphere Application Servers were used to vary the load:
— Triplet 1, the WebSphere guest must not exceed 80% CPU utilization

— Triplet 2 has a WebSphere server with 2 CPUs, and the workload is set so that
the CPUs are utilized to approximately 130%

e The workload of the combo servers is set so that the CPUs are utilized to
approximately 130% . In both cases the "last" CPU may be idle during the test

shows the sizing settings as configured in our manual sized setup:

Table 7. Baseline Virtual CPU and virtual memory settings for set 1 and set 2

Set number | Guest name Function Number of CPUs Memory (MiB)
1 Inweb1 IBM HTTP Server 1 342

1 Inweb2 IBM HTTP Server 1 342

1 Inwasl WebSphere Application Server 1 1600

1 Inwas2 WebSphere Application Server 2 1600

1 Inudb1 DB2 UDB 1 512

1 Inudb2 DB2 UDB 1 512

1 Incombol All above 3 2300

1 Incombo2 All above 3 2300

2 Inwas3 WebSphere Application Server 1 1600

© Copyright IBM Corp. 2012 21

Table 7. Baseline Virtual CPU and virtual memory settings for set 1 and set 2 (continued)

Set number | Guest name Function Number of CPUs Memory (MiB)
2 Inwas4 WebSphere Application Server 2 1600

2 Inudb3 DB2 UDB 1 512

2 Inudb4 DB2 UDB 1 512

2 Incombo3 All above 3 2300

2 Incombo4 All above 3 2300

2 Inweb3 IBM HTTP Server 1 342

2 Inweb4 IBM HTTP Server 1 342

The total memory size of all guests in a set is 9,508 MiB. Both sets together are
defined with 19,016 MiB.

Monitoring the management behavior of the cpuplugd

Put your short description here; used for first paragraph and abstract.

To monitor the management decisions of the cpuplugd daemon, it is started with
the option -V and -f to generate a log file, for example:

cpuplugd -c <config file> -f -V>&<logname> &

The messages in the log file are then parsed for the timestamp, the value for

onumcpus, and the amount of pages in the statement “changing number of pages
permanently reserved to nnnnn”. These numbers are used to determine the real
system size.

Understanding the sizing charts

When the system resources are managed by cpuplugd the amount of CPUs and
memory varies over time. The tables list the average memory sizes allocated at the
time when the system's CPU load reaches a steady state.

To show the dynamic behavior, the charts depict the individual values over times
of interest. However, these charts are not always clear. [Figure 3 on page 23] as an
example, shows the number of CPUs over time assigned to all guests.

22 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

Amount of CPUs over time for all guests

4
3 (
w 2
>
o
®» o1
0
B D 2 T e % D % D2 2 2 =
A T I N S e N - T N
== nweb1 ==Inweb2 Inwas1 ==Inwas2 ==Inudb1 Inudb2 ===Incombo1 Incombo?2

Figure 3. Number of active CPUs assigned to all guests when managed by cpuplugd

It is very hard to see what really happens. With the following simplifications:

* All systems which are expected never to exceed the load of 1 CPU are
withdrawn. In the example, these are Inweb1, Inweb2, Inudbl and Inudb2.

¢ The combo systems are expected to behave the same, therefore only Incombol is
shown.

The result is shown in

Amount of CPUs over time from selected guests

CPUs

SRR N R A N N N N - - N R
2 % 2 @ 2 % 2 @ 2 % 9 v 9 9 0

Inwas1 —Inwas2 —Incombo1

Figure 4. Number of active CPUs assigned to selected guests when managed by cpuplugd

After applying these simplifications you can see that the two WebSphere servers
are handled differently. The chart also shows what happens during the different
load phases:

00:00 cpuplugd gets started, the number of CPUs is quickly reduced to 1

00:29 The middleware is started, causing a short load increase to 2 CPUs.

01:41 The workload starts, after a ramp-up phase the number of CPUs assigned to
Inwasl is reduced

11:41 The workload stops, and the number of CPUs assigned to all servers is reduced to
one

Chapter 6. Results 23

The charts for memory sizing are optimized in a similar fashion. The optimization
rules are explained for each scenario. The memory size considered is the difference
of the defined guest size, (5 GB per guest) and the size of the CMM pool, which is
reported in /proc/sys/vm/cmm_pages (in pages). Mostly only the size of the CMM
pool is shown; but a large pool signifies a small system memory size. The target is
to be close to the manually sized setup. If the remaining memory size is smaller
than the manually sized setup, it is likely that the performance is negatively
impacted.

cpuplugd configuration rules

This topic describes the impact of various rules for CPU and memory management
with cpuplugd.

CPU plugging

For managing CPUs with the cpuplugd daemon two rules are compared.

The two rules are:

* Using the first load average from /proc/loadavg (loadavg parameter). which is
the number of jobs in the run queue or waiting for disk I/O (state D) averaged
over 1 minute.

* Using averages of the real CPU load from the last three values

loadavg-based

The full configuration file is listed in [Appendix B, “cpuplugd configuration files,”|
_on page 53.

The lines of interest are:

HOTPLUG="(10adavg > onumcpus + 0.75) & (idle < 10.0)"
HOTUNPLUG="(1oadavg < onumcpus - 0.25) | (idle > 50)"

These lines implement the following rules:
¢ The system plugs CPUs when there are both more runnable processes and
threads than active CPUs and the system is less than 10% idle

* The system removes CPUs when either the amount of runnable processes and
threads is 25% below the number of active CPUs or the system is more than 50%
idle

[Figure 5 on page 25|shows the effect of the CPU management rules over time:

24 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

CPUs
N

CPU management with cpuplugd - loadavg based

2?2 2 % % % % BB B2 DB
I AN > 2 o > 2 e

Inwas1 —Inwas2 —Incombo1

Figure 5. Number of active CPUs over time when managed by cpuplugd based on loadavg value

Table 8. Throughput and average CPU load when managed by cpuplugd based on loadavg value

Configuration

TPS* Relative CPU load*

loadavg-based

88% 84%

*100% is the manual-sized run

Observation

The number of CPUs is lower than manually sized for most of the time. The
combo-system is frequently reduced to 1 CPU for a short time. The throughput is
significantly reduced.

Conclusion

The value of Toadavg determines the amount of runnable processes or threads
averaged over a certain time period, for example, one 1 minute. It seems that this
value changes very slowly and results in a system running short on CPUs. The
guests running a WebSphere application server are always highly utilized, but the
rules do not add the required CPUs, which leads to the observed reduction in
throughput.

This configuration is probably useful when trying to restrict the addition of CPUs
and to accept that the guests run CPU-constrained with the corresponding impact
on throughput, for example in an environment with a very high level of CPU
overcommitment.

Real CPU load-based

The full configuration file is listed in |[Appendix B, “cpuplugd configuration files,”]

This configuration uses the CPU load values (from /proc/stat). The values of user,
system, and nice are counted as active CPU use. idle, and iowait are considered as
unused CPU capacity. These values start increasing from system start.

The averages over the last three intervals are taken and divided by the

corresponding time interval. The resulting values are stored in the variables
CP_ActiveAVG and CP_idleAVG. The corresponding rules are as follows:

Chapter 6. Results 25

HOTPLUG="((1 - CP_ActiveAVG) * onumcpus) < 0.08"
HOTUNPLUG="(CP_id1eAVG * onumcpus) > 1.15"

The values of CP_ActiveAVG and CP_idleAVG are between 0 and 1. Therefore, 1 -
CP_ActiveAVG is the unused CPU capacity. When multiplied by the number of
active CPUs, it is specified in CPUs. When the total unused CPU capacity falls
below 8% of a single CPU, a new CPU is added. If the total amount of idle
capacity is larger than 115% (this is 15% more than one CPU free), a CPU is
withdrawn.

The steal time is not included in these calculations. Steal time limits the amount of
available CPU capacity, thus ensuring that no additional CPUs are plugged in, as
this would worsen the scenario. You could consider including the steal times in the
unplug rule, whereupon significant steal times would cause CPUs to be removed,
leading to reduction in pressure on the physical CPUs.

shows the effect of the CPU management rules over time when managed
based on real CPU load:

CPU management with cpuplugd - real CPU load based

CPUs

% % 2 % % 2
> % a

% % 2
% @ 2

Inwas1 —Inwas2 —Incombo1

Figure 6. Number of active CPUs over time when managed by cpuplugd based on real CPU load

Table 9. Throughput and average CPU load when managed by cpuplugd based on real CPU load values

Configuration

TPS* Relative CPU load*

real cpu load based

96% 96%

*100% is the manual-sized run

Observation

The automated sizing values are the same as the manual sizing settings. The
system reacts very fast to load variations. The throughput closely approximates the
throughput of the manual sizing.

Conclusion

This is a very good solution when the objective is to adapt the number of CPUs
directly to the load requirements. The automated values are very close to the
manual settings. This rule is used for managing the number of active CPUs in all
subsequent runs.

26 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

Memory plugging

These tests are aimed at providing the managed system with exactly the amount of
memory required for an optimal system performance, thereby minimizing the
system's memory usage.

The critical task is to detect that the system needs additional memory before the
performance degrades too much, but not too early to limit the possible impact of
memory overcommitment.

When an application requests additional storage, Linux memory management
works as follows:

e If there are sufficient free pages, the request is served with no further actions.

* If that causes the amount of free memory to fall below a high water mark, an
asynchronous page scan by kswapd is triggered in the background.

* If serving the request would cause the amount of free memory to fall below a
low water mark, a so called direct scan is triggered, and the application waits
until this scan provides the required pages.

* Depending on various other indicators the system may decide to mark
anonymous pages (pages that are not related with files on disks) for swapping
and initiate that these pages be written to swap asynchronously. After a memory
page is backed up to disk it can be removed from memory. If it needs to be
accessed later, it is retrieved from disk

From this, we conclude the following:
* The occurrence of page scans is a clear but soft indicator of memory pressure.

* The occurrence of direct page scans is an indicator of a serious lack of free
memory pages likely to impact system performance, because applications are
waiting for memory pages to free up.

¢ The amount of pages freed during the scans is reported as steal rate. The best
case is a steal rate identical to the page scan rate, which would mean that each
scanned page turns out to be a freeable page.

* The exact role of swapping with regard to the level of memory pressure is not
clear at the moment, and it is therefore not considered in our test.

General considerations regarding cpuplugd rules for memory
management

This section describes cpuplugd basic memory management, rule priority and how
to calculate Linux guest sizes, as well as CMM pool sizing.

Rule priority

The cpuplugd mechanism ensures that the plugging rule (adding resources) always
overrules the unplugging rule (removing resources), for both CPU and memory
allocation. This protects the system against unexpected effects when testing overly
aggressive unplugging rules.

Memory management basics

To identify memory which could be removed, any free pages could be taken as a
first approach. However, a system continuously doing disk I/0O, such as a
database, will sooner or later use all its unused memory for page cache, so that no
free memory remains. Therefore the memory used for cache and buffers need to be
taken into account as well. The critical points here are:

Chapter 6. Results 27

* Buffers are used by the kernel, and a shortage here may lead to unpredictable
effects

* Page cache is counted as cache
* Shared memory is also counted as cache

Considering shared memory as free memory is very critical for a system with a Java
heap or database buffer pools, because they reside in shared memory. Therefore
another approach is to calculate the page cache as the difference between cache
and shared memory and consider this as free memory. The page cache itself always
uses the oldest memory pages for new 1/O requests or, in case of cache hits , the
accessed page is marked as recently referenced.

Reducing the memory size leads to a reduction of the page cache at the cost of the
oldest referenced pages. How much page cache is needed depends on the
application type; web server and WebSphere have relatively low requirements,
because in the case under study they are doing only a small amount of disk I/O,
as the database itself constitutes a very powerful caching system.

The page scan rate is calculated as the sum of the following parameters:
* vmstat.pgscan_kswapd_dma

* vmstat.pgscan_kswapd_normal

* vmstat.pgscan_kswapd_movable

The direct page scan rate is calculated as the sum of the following parameters:
* vmstat.pgscan_direct_dma

* vmstat.pgscan_direct_normal

* vmstat.pgscan_direct_movable

The available part of the cache (from here on referred to as "page cache') is
calculated as the following difference:

meminfo.Cached -meminfo.Shmem.

All runs were done with a minimum cmm pool size of 0 (CMM_MIN="0") and a
maximum of the system size (5 GB) minus 256 KiB (CMM_MAX="1245184") to allow
the cmm pool to grow to the maximal possible size. Reserving 256 KiB for the
kernel was intended as a safety net; if our rules work well the size of the cmm
pool should never approach that maximum value .

Monitoring the guest sizes

The following methods were used to calculate the guest size during the tests:
* Linux view: the guest definition size minus the cmm pools size over time.

* z/VM view: sum of resident pages below 2 GB and pages above 2 GB from the
UPAGE report (FCX113) over time.

These two views typically differ. One reason is that Linux provides a view on
virtual memory allocation, while z/VM shows the physical memory allocation.
Due to optimizations inside z/VM, not all virtual memory pages Linux allocates
are backed up with physical memory.

28 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

CMM pool increments and decrements

Another important consideration is the size of the increments and decrements of
the CMM pool. There are two important requirements:

* Starting an application, middleware or workload leads to a relatively large
memory requirement in a short time. If the system does not react fast enough
this in turn may lead to an out of memory exception. Our results indicate that
the middleware typically does not allocate the entire amount of configured
memory in a single step. For example, on the WebSphere Application Server
systems with a 1 GB Java heap the CMM pool is reduced in multiple (4) steps
when the workload was started, where only the first step was at the maximum
size of 500 MiB. This softens this requirement for a fast reaction time, because
even a system with a much larger Java heap (for example, 6 GB) would
probably not require a CMM_DEC of 6 GB.

* A highly frequent oscillating CMM pool size should be avoided, because of the
related overhead for operating system and z/VM.

These considerations suggest the following approach:

* The parameter CMM_INC was defined as the percentage of memory that is free (for
example, 10%). This causes the increment of the pool to become smaller and
smaller the closer the system comes to the 'ideal’ configuration.

* The parameter CMM_DEC was defined as a percentage of the system size (for
example, 10%, which would correspond to ~500 MiB). This results in a fix value
independent of the current load situation and leads to a relatively fast decrement
of the pool whenever a memory shortage is detected, depending on the applied
rule.

The effect is an asymptotic increase of the CMM pool, up to the level where no
more volatile memory is available for removal, while a request for new memory
can be served in a small number of steps. With this setup both requirements where
fulfilled in most cases.

CMM_MIN and CMM_MAX

The minimum size of the pool was specified as 0 pages, to allow full removal of
the pool. As maximum value a very large value of 1,245,184 pages (4,864 MiB) was
specified, which stops increasing the pool when less than 256 GB memory remains.
The expectation was that the indicators for memory shortage would appear before
the pool reaches that size, causing a reduction in the pool size, which in turn
increases the available memory. This approach worked very well.

Optimizing for throughput
This topic briefly describes how the variables mentioned in the listings in this
section are calculated.

For complete configuration file listings, refer to [Appendix B, “cpuplugd|
[configuration files,” on page 53

The first test series was aimed at reaching a throughput close to the manual sized
case. The following rules are analyzed:

Memory configuration 1 (plug: page scan, unplug: free + cache memory). The
plugging rules are:

* MEMPLUG="pgscanrate > 20" # kswapd + direct scans

Chapter 6. Results 29

* MEMUNPLUG="(meminfo.MemFree > meminfo.MemTotal / 10) | (cache >
meminfo.MemTotal / 2)"

Memory is increased if the page scan rate (normal and direct page scans)
exceeds 20 pages/sec. Memory is reduced if more than 10% of the total memory
is free or if memory of the types cache and buffers exceeds 50% of the total
memory. The rules use the values the variables have during the current interval.

The CMM pool increments are defined as:
e CMM_INC="(meminfo.MemFree + cache) / 40"
e CMM_DEC="meminfo.MemTotal / 40"

where cache means the memory reported as cache and as buffers in /proc/meminfo.

Memory configuration 2 (plug: page scan, unplug: free memory). The plugging
rules are:

* MEMPLUG="pgscanrate > 20" # kswapd + direct scans
e MEMUNPLUG="meminfo.MemFree > meminfo.MemTotal / 10 "

Memory is increased if the page scan rate (normal and direct page scans)
exceeds 20 pages/sec. Memory is reduced if more than 10% of the total memory
is free. The rules use the values the variables have during the current interval.

The CMM pool increments are defined as:
e CMM_INC="meminfo.MemFree / 40"
e CMM_DEC="meminfo.MemTotal / 40"

Memory configuration 3 (plug: page scan, unplug: free memory + page cache).
The plugging rules are:

* MEMPLUG="pgscanrate > 20" # kswapd + direct scans
¢ MEMUNPLUG=" (meminfo.MemFree + avail_cache) > (meminfo.MemTotal / 10)"

Memory is increased if the page scan rate (normal and direct page scans)
exceeds 20 pages/sec. Memory is reduced if the sum of free memory and page
cache (avail_cache=cache- shared memory) exceeds 10% of the total memory. The
rules use the values the variables have during the current interval.

The CMM pool increments are defined as:
e CMM_INC="meminfo.MemFree / 40"
* CMM_DEC="meminfo.MemTotal / 40"

Memory configuration 4 (plug: direct scan, unplug: free memory + page cache).
The plugging rules are:

* MEMPLUG="pgscanrate > 20" # direct scans only!
* MEMUNPLUG="(meminfo.MemFree + avail_cache) > (meminfo.MemTotal / 10)"

Memory is increased if the direct page scan rate exceeds 20 pages per second.
Memory is reduced if the sum of free memory the page cache exceeds 10% of the
total memory. The rules use the values the variables have during the current
interval.

The CMM pool increments are defined as:
e CMM_INC="meminfo.MemFree / 40"
* CMM_DEC="meminfo.MemTotal / 40"

30 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

Memory configuration 5 (plug: page scan vs steal, unplug: free memory + page
cache). The plugging rules are:
* MEMPLUG="pgscanrate > pgstealrate" # kswapd + direct scans

* MEMUNPLUG="(meminfo.MemFree + avail_cache) > (meminfo.MemTotal / 10)"

Memory is increased if the page scan rate exceeds the page steal rate. Memory is
reduced if the sum of free memory and page cache exceeds 10% of the total
memory. The page scan rate exceeding the page steal rate indicates high memory
usage while not all unused pages are consolidated at the end of the lists used for
memory management. The strength of this rule is limited, and lies between normal
pages scans a direct page scans. The system is no longer relaxed. The rules use the
values the variables have during the last two intervals.

The CMM pool increments are defined as:
* CMM_INC="meminfo.MemFree / 40"
* CMM_DEC="meminfo.MemTotal / 40"

able 10 shows the result for these configurations for throughput and guest size:

Table 10. Impact of the various configuration rules for throughput and guest size

Increase memory;, if Shrink memory, if Guest size [MiB]*
% of Relative
Rate Memory total Relative LPAR CPU
ConfiguratiglParameter |[pages/sec] |type memory |TPS* load* Linux z/VM
1 page scans | > 20 free (cache |> 10% or |97% 99% 132% 115%
+ buffers) |> 50%
2 page scans |> 20 free > 10% 97% 98% 131% 107%
3 page scans | > 20 free + page |> 10% 96% 99% 120% 114%
cache
4 direct scans | > 20 free + page |> 10% 96% 99% 109% 105%
cache
5 page scans | > page free + page |> 10% 95% 97% 118% 105%
steal cache
*100% is the manual sized run higher is lower is closer to 100% is better
better better

Observation

The CPU load varies only slightly between scenarios. It is slightly lower than the
manually sized run, but follows the throughput. The throughput also only varies
slightly. Configuration 5 provides the lowest throughput and therefore the lowest
CPU load. The resulting memory sizes are higher than the manually sized run.

Configurations 1 to 3 vary only the UNPLUG rule. It seems that the rule which
uses page cache and free memory as a parameter to determine whether memory
can be reduced (configuration 3) provides the smallest memory size at relatively
high throughput values. In runs using the number of direct pages scans instead of
kswapd page scans the system size is reduced further without additional impact
on throughput or CPU load.

The VM view, which represents the real allocation of physical memory, typically
shows lower values, which are much closer together than the Linux memory sizes.

Chapter 6. Results 31

Conclusion

The combination of using direct page scan rates to increase memory and using free
memory and page cache to reduce memory is very suitable for memory
management. It provides a throughput and memory size very close to the
manually sized configuration. Interestingly, the plug and the unplug rules
influence the system size. The expectation was that the plug rule would have no
effect unless the system load changes.

It is expected that the smallest system results from using the direct scan rate
instead of kswapd page scans for plugging memory, because direct scans are an
indicator for a higher memory pressure. meaning the system tolerates a higher
memory pressure before increasing memory.

Configuration 4 impacts throughput only slightly (-4%), but results in a memory
size that is 9% larger than the manually sized configuration. This finding indicates
that it is likely to be difficult to optimize both throughput and memory size at the
same time.

More details about Linux memory size and throughput:
To understand better what happens in the various scenarios we compare the guest
memory behavior for the rule with the largest guests (configuration 1) with the

rule with the smallest guest (configuration 4).

Linux memory size for individual guests and three different configuration files

[Figure 7 on page 33| shows the Linux memory size for the individual guests
relative to the manually-sized configuration:

32 Linuxon System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

Linux memory sizes managed via cpuplugd

240%

220%

200%
180%
160%
140%
120% L

80%

100%)

relative memory size (manual sized

<« N N N N

B config 1 M config 4

Figure 7. Relative Linux memory size for the individual guests for two different cpuplugd configuration files (manual
sized = 100%)

Observation

The automated sizing of memory of the web server systems shows the worst
results. None of our configurations allocates less than twice the manually sized
memory. The database systems behave similar, but the rule with the direct scans
allocates only around 50% too much memory. The sizing for the WebSphere
systems is very good, especially when direct scans are used. Using this rule, the
combos are even smaller than the manually sized systems.

Conclusion

The reason for oversizing the web servers by this much is most certainly caused by
the small size of these systems when sized manually (342 MiB). The same
argument applies to the database servers. Applying stronger conditions, especially
with regard to the lower limits, will probably result in a better sizing. For a pure
WebSphere system the direct scan rule is a very good fit.

Throughput reached for the individual components and three different
configuration files

The fact that some of the combos are smaller than when manually sized,
immediately raises the question whether the systems are too small. This should be
evident from inspecting the reached throughput in [Figure 8 on page 34}

Chapter 6. Results 33

140%

120%

100%

80%

60%

40%

throughput relative to manual sized

20%

0%

Throughput, Linux managed via cpuplugd

Triplet1 Triplet2 Combo1 Combo2

M config 1 ™ config 4

Figure 8. Throughput reached for the individual components and three different configuration files.

Observation

For both triplets, applying the direct scan rule leads to similar or even higher
throughput than applying the manually sized configuration. Throughput for
Combo2 is comparable to the throughput for the manually sized configuration
while throughput for Combol is lower, especially when using the direct page scan
rule.

Conclusion

The setup is relatively sensitive to memory sizes. The reason for the lower
throughput for Combol is shown in the log output from cpulogd: the CPU
plugging rule using direct scan provides only two CPUs for this system, where in
the other scenarios Combol is allocated three CPUs. This confirms the impression
that it will be difficult to optimize throughput and memory size with the same set
of rules. It might be important to mention that the CPU cost spent to drive a
certain throughput with these workload is very similar, even with the variations in
throughput. That means that there is no overhead related to that.

CMM pool size
Looking at the size of the CMM pool over time shows that the same server types

always behave in similar manner, even when the load on the triplets is different.
The exception here are the combos, see [Figure 9 on page 35| for an example:

34 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

CMM Pool size over time
config 1
1200000
1000000 L
800000 - l
3
& 600000
+H
400000
200000
0
2,2 2 2 %2 % % % %% %% %% %% %L g 2
e % % A DB DB OB A BT S YT DD SR G AR D
—Incombo1 —Incombo2

Figure 9. CMM Pool size over time with configuration 1

The other interesting topic is the im

pact of the rules on the memory sizing. Figures

[Figure 10} [Figure 11 on page 36| and

Figure 12 on page 36/ show the cmm pool sizes

Pages

over time for Inwas1, Inudbl and Incombo2, for the rules with the largest memory
sizes (configuration 1), and for the rules with the lowest memory sizes
(configuration 4).

CMM Pool size over time
WebSphere Application Server 1

1200000

1000000

800000

600000
400000

200000

% @
% S

o o
NN

—Config 1 — Config 4

Figure 10. CMM Pool size over time with WebSphere Application Server 1

Chapter 6. Results 35

CMM Pool size over time
Database Server 1

1200000

1000000 r—
800000
2 600000
I3
e 400000
200000
0
2 2 %2 2 22 22 2 %2 % % %@ %@ @ 2 2 % B 22 v v 2 0D
> & %P B A S B B D 2A2B RV DAE GRS B DG W
—Config 1 — Config 4
Figure 11. CMM Pool size over time for a database system
CMM Pool size over time
Combo System2
1200000
1000000
800000
- 1
2 600000 ¥
S
o 400000
200000
0
2,02 %2 % 2 % % % %% % % % 22 % e @ 2 g g R
e & @ B AT VW B D AB ROV AL G A DGR

—Config 1 — Config 4
Figure 12. CMM Pool size over time for a Combo System (IHS, WebSphere Application Server, DB2)
Observation

In all scenarios we observe how first the CMM pool increases (meaning the guest
systems yield memory to the Hypervisor) when the cpuplugd daemon is started.
After 30 seconds the middleware servers are started, and after 60 seconds the
workload is started and left to run for 10 minutes. The size of the CMM pool of all
systems is relatively constant during the workload phase.

The largest difference between configuration 4 and configuration 1 results for the
combos, the next largest difference results for the database systems and the
smallest difference results for the WebSphere systems.

Conclusion
All configurations are very stable and react quickly to changing requirements.
There are only small overswings where the pool was reduced by a large amount

and then increased again. The configurations using direct page scans react slower
and with smaller pool decreases than the configurations which also include

36 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

kswapd page scans. In the light of these results the latter configuration was not
further evaluated.

Minimizing memory size
This text briefly describes how the variables mentioned in the listings in this
section are calculated

For complete configuration file listings, refer to|Appendix B, “cpuplugd]
[configuration files,” on page 53

The second series of tests was aimed at minimizing the memory size further in
order to reach the manually sized setup. The following rules are evaluated:

Memory configuration 7 (same as configuration 4, but with reduced free memory

limit). The plugging rules are as follows:
* MEMPLUG="pgscanrate > 20" # direct scans only!
e MEMUNPLUG="(meminfo.MemFree + avail_cache) > (meminfo.MemTotal / 20)"

Memory is increased if direct page scan rates exceed 20 pages/sec. Memory is
reduced if the sum of free memory and page cache exceeds 5% of the total
memory. The rules use the values the variables assumed during the current
interval.

The CMM pool increments are defined as follows:
¢ CMM_INC="meminfo.MemFree / 40"
¢ CMM_DEC="meminfo.MemTotal / 40"

Memory configuration 8 (same as configuration 7 with include page cache for

CMM increment). The plugging rules are:
* MEMPLUG="pgscanrate > 20" # direct scans only!
* MEMUNPLUG="(meminfo.MemFree + avail_cache) > (meminfo.MemTotal / 20)"

Memory is increased if direct page scan rates exceed 20 pages/sec. Memory is
reduced if the sum of free memory and page cache exceeds 5% of the total
memory. The rules use the values the variables assumed during the current
interval .

The CMM pool increments are defined as follows:

e CMM_INC="(meminfo.MemFree + avail _cache) / 40"

* CMM_DEC="meminfo.MemTotal / 40"

CMM_INC, which defines the chunk size when the CMM pool is increased, now
includes the page cache, which should result in larger increments. All other
scenarios have CMM_INC="meminfo.MemFree / 40".

Table 11. Impact of the various configuration rules for throughput and guest size

Increase memory if | Shrink memory if Guest size (MiB)*
Rate Relative
[pages/ | Memory % of total Relative LPAR CPU
Config |Parameter|sec] type memory TPS* load* Linux z/VM
4 direct > 20 free + page |> 10% 96% 99% 109% 105%
scans cache

Chapter 6. Results

37

Table 11. Impact of the various configuration rules for throughput and guest size (continued)

Increase memory if |Shrink memory if Guest size (MiB)*
Rate Relative
[pages/ |Memory % of total Relative LPAR CPU
Config |Parameter|sec] type memory TPS* load* Linux z/VM
7 direct > 20 free + page |>5% 93% 98% 97% 99%
scans cache
8 direct > 20 free + page |> 5% 94% 97% 97% 99%
scans cache
CMM_INC=(freet+page cache)
/40
*100% is the manual sized run higher is lower is closer to 100% is better
better better

Observation

The total memory size is now smaller than the manually sized configuration, but
the throughput is also lower.

Conclusion

There is a very slight advantage to using configuration 8 (the configuration with
larger increments) over configuration 7, but the difference between them is very
small.

More details about Linux memory size and throughput:

This topic describes the impact of Linux memory size and throughput for
individual guests and different configuration files.

Impact of Linux memory size for the individual guests and three different
configuration files

[Figure 13 on page 39| shows the impact of the rule sets on the memory size of the
individual servers:

38 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

220%

200%

180%

100%)

160%

140%

120%

100%

80%

relative memory size (manual sized

bh. . LL

Linux memory sizes managed via cpuplugd

060{1' & &
& c)o‘(\ c)o‘(\
& &

& N v N
& & & S
&

B Config 4 ™ Config 7 © Config 8

Figure 13. Relative Linux memory size for the individual guests and different configuration files. (manual sized =

100%)

Observation

In addition to the WebSphere Application Server, the database servers are now also
very close to the manually sized systems. Even the web servers are only
moderately oversized. The combos are further reduced in size.

Conclusion

It seems that configuration 7 is more appropriate for the Web and the Application
Servers, while the database server is more optimally sized by configuration 8.
When considering that the database servers are the only systems in our setup
using a significant amount of page cache for disk I/O, this confirms that treating
page cache as free memory for this purpose is a good approach. Remembering that
configuration 4 leads to a throughput degradation for combos, it is to be expected
that the rules evaluated here will perform even worse for the combos.

Throughput reached for the individual components and three different
configuration files

The fact that some of the combos are smaller than when manually sized,
immediately raises the question whether the systems are too small. This should be
evident from inspecting the reached throughput in [Figure 14 on page 40}

Chapter 6. Results 39

140%
120%

throughput relative to manual sized

100%
80%
60%
40%
20%

0%

Throughput, Linux managed via cpuplugd

Inwas1 Inwas2 Incombo1 Incombo2

Figure 14. Throughput reached for the individual components and three different configuration files

Observation

The triplets achieve a higher throughput when applying these rules. The combos,
however, suffer significantly.

Conclusion

It seems that the concept of using one set of rules to manage all servers is flawed
by the issue that throughput and size can not be optimized at the same time. The
rule sets using direct page scans for memory plugging and those using the sum of
free memory and page cache (as computed from the difference between cache and
shared memory) both perform well; the difference between them is which values
are used as limits. It seems that compared to larger systems, smaller systems end
up closer to the manually sized configuration when less memory is left free.

There are two approaches to select cpuplugd configuration files:

* A generic approach (which is our suggested default), which provides a good fit
for all of our tested workloads and server types. It provides a slightly worse
throughput, and slightly oversized systems (which leaves some space for
optimizations for z/VM):

— Plug memory when direct page scans exceed 20 pages/sec
— CMM DEC=total mem /40

* A server type dependent approach:

Table 12. Recommended rules set depending on server type

Recommended
Server type rules CMM_INC Unplug, when
1 Web server configuration 7 | free memory /40 (free mem+page cache) > 5%
2 WebSphere Application | configuration 7 | free memory /40 (free mem+page cache) > 5%
Server
3 Database server configuration 8 | (free mem+page cache)/40 (free mem+page cache) > 5%

40 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

Table 12. Recommended rules set depending on server type (continued)

Recommended
Server type rules CMM_INC Unplug, when
4 Combo configuration 4 | free memory /40 (free mem+page cache) > 10%

Additional consideration:

* The Web servers, which are a front end for the Application servers, are very
small systems. In this case it may be appropriate to use even smaller unplugging
conditions. Important for these systems is that they just transfer the requests to
the Application Server. A stand-alone Web server which provides a large amount
of data from its file system is probably better treated in the same way as a
database server.

* The alternative manual sizing needs to be done for each system individually and
fits really well for one level of workload. But is also an valuable option when
the additional win in performance is necessary, especially for servers with very
constant resource requirements.

Dynamic runs

The tests in the previous sections are intended to determine the impact of the
various rules. The next important question is how a system managed by cpuplugd
reacts to load shifts.

For this purpose an additional group of guests are created (two additional triplets
and two additional combo servers). The first group of guest are referred to as “Set

1”, the new group of guests referred to as “Set 1” (see also [“WebSphere

fenvironment” on page 15|

The steps in the experiment are as follows:

1. load phase 1: Load on guest set 1
a. Start the middleware on the servers in guest set 1.
b. Run the workload against the servers in guest set 1.

c. Stop the workload and shut down the middleware running on the servers
in guest set 1.

2. wait phase 1

* Now that all guests in set 1 are warmed up, no middleware server or load is
running, the important question is whether the guests release resources

* The second set of guests are idle, and require few resources
3. load phase 2: Load on guest set 2

a. Start the middleware on the servers in guest set 2.

b. Run the workload against the servers in guest set 2.

c. Stop the workload and shut down the middleware running on the servers
in guest set 2.

4. wait phase 2
* Now that all guests in all sets are warmed up, no middleware server or load
is running
* Resources allocated to servers in guest set 2 should be released

¢ The question is whether the resource utilization reaches the same level it
reached in wait phase 1

5. load phase 3: Load on guest set 1

Chapter 6. Results 41

a. Start the middleware on the servers in guest set 1.
b. Run the workload against the servers in guest set 1.

c. Stop the workload and shut down the middleware running on the servers
in guest set 1.

The cpuplugd configuration used is configuration 2:

Memory configuration 2 (page scan, free memory). The plugging rules are:

* MEMPLUG="pgscanrate > 20" # kswapd + direct scans

* MEMUNPLUG="meminfo.MemFree > meminfo.MemTotal / 10 "

Memory is increased if the page scan rate exceeds 20 pages per second. Memory is

reduced if more than 10% of the total memory is free. The rules use the values the
variables have during each interval.

The CMM pool increments are defined as follows:
e CMM_INC="meminfo.MemFree / 40"
e CMM_DEC="meminfo.MemTotal / 40"

shows the amount of free memory in z/VM over time for the manually
sized configuration and for cpuplugd with configuration 2 as reported from the
z/VM performance toolkit report AVAILOG (FCX254).

In the manually sized case, the total memory size from the guests of one set is
9,508 MiB, both sets together are defined with 19,016 MiB. The z/VM system size
is 20 GB.

cpuplugd - switching the Load (Set 1 — Set 2 — Set 1)

free z/VM memory (AVAILLOG)
20.000

15.000 *
10.000
—

5.000 ﬁl—\ I

—

0) -

\} \} \} N} \}) \} \\} \) N} N Vv 2 v Z v
S o) N\ 25 \) Ko O &) S o) N Kol Q Ko} Q D

time [mm:ss]

memory size [MB]

Load on: | Set 1 | | Set2 | | Set 1 |
—manually sized —Mem config 2

Figure 15. Free z/VM memory over time when switching the workload from guest set 1 to guest set 2.

Observations

The free memory during load phase 1 is larger in the manually sized scenarios
than in the cpuplugd managed scenario. In both wait phases, when the
middleware is shut down, some memory is given back in the cpuplugd managed

42 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

case, while the manually sized scenario shows no reaction on that. This means that
the cpuplugd managed scenario frees up more memory and this does not change

for the remainder of the test. Comparing the manual configuration with the system
being managed by cpuplugd, the latter scenario uses up about 1.5 GB less memory.

When the middleware and load are started on guest set 2 in load phase 2, a
significant amount of memory from these guests is allocated.

Conclusion

cpuplugd automatically adapts memory size to the requirements. This simplifies
systems management significantly. In case of changing requirements (for example
when one guest frees memory because an application terminates while another
guest raises memory requirements because an application is started), the
automated memory management resulted in a lower memory footprint as
compared to the manually sized setup.

CMM pools

The fact that the memory size never comes back to the level of phase 1 merits a
more detailed look at the CMM pools. shows the Linux memory size

calculated as defined guest size (5 GB) — CMM pool for two selected guests the
combo 2 from Set 1 and combo 4 from Set 2.

cpuplugd - switching the Load (Set 1 — Set 2 — Set 1)
Linux memory (5GB - CMM Pool size), Mem config2
5.000
4.000
3.000

o v L

0
D D D D D >

Memory size [MB]

e

" "
"bNPP‘ i 03’5‘& 036* g

time [mm:ss]
Loadon: | Set1 | | Set2 | | Set 1 |

—Incombo?2 (Set 1) —Incombo4 (Set 2)

Figure 16. Linux memory size calculated as defined guest size (5 GB) — CMM pool size when switching the workload
from guest set 1 (Incombo2)to guest set 2 (Incombo4)

Observations

The CMM pools grow and shrink according to the load and memory requirements
of the servers. The memory sizes after the first load shift phases are very similar
on both systems, and slightly higher than before.

Conclusion

The cpuplugd daemon works as expected. The fact that this is not reflected in the
z/VM view is caused by a lack of real memory pressure in z/VM. There is no
hard requirement from z/VM to take away the pages from the guests.

Chapter 6. Results 43

Compare the number of active guest CPUs

[Figure 17| and [Figure 18| compare the number of active guest CPUs over time for
selected guests in the manually sized configuration with cpuplugd using
configuration 2. The guests running web servers and databases, as well as the
low-utilization WebSphere Application Server, always run with 1 CPU and are
omitted. The behavior of the two combo system in each guest set is very similar,
therefore only one combo is shown.

cpuplugd - switching the Load (Set 1 — Set 2 — Set 1)

#CPUs from selected guests from Set 1

#CPUs

2 | ‘ | |
0
Na @* ol Al o rb"‘ c“ n.? QP "bb‘ 0"‘ ‘bb‘ c“ n.? 0"‘ n;"‘ o‘* v? Qb‘ "bb‘ RSl oS SN N n;"‘

N & F & EHIE N S
time [mm:ss]
—Inwas2 - Incombo2

Figure 17. Number of active CPUs for a WebSphere guest and a Combo guest of Set 1 over time when switching the
workload from guest set 1 to guest set 2

cpuplugd - switching the Load (Set 1 — Set 2 — Set 1)

#CPUs from selected guests from Set 2

2 H |

0

time [mm:ss]

#CPUs

—Inwas4 —Incombo4

Figure 18. Number of active CPUs for a WebSphere guest and a Combo guest of Set 2 over time when switching the
workload from guest set 1 to guest set 2

Observations
The number of CPUs exactly follows the workload load pattern. The small peaks at

the start and the end are from starting and stopping the middleware. The increase
from 1 to 3 CPUs happens over two intervals, adding one CPU in each step.

Conclusion

The chosen rules are very suitable to provide the system with the appropriate CPU
resources while reacting very quickly to workload changes.

44 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

Setup tests and variations

Four setup tests are described along together with their results and conclusions

Scaling the cpuplugd update interval

This topic text briefly describes how the variables mentioned in the listings in this

section are calculated.

For complete configuration file listings, refer to|Appendix B, “cpuplugd]
[configuration files,” on page 53

This series of test aims to compare the impact of different update intervals
(parameter UPDATE). The following rules are evaluated:

Memory configuration 2 (page scan, free memory, update 1 sec). The UPDATE

parameter is set to 1 second (default value used for this study). The plugging rules

are:
* MEMPLUG="pgscanrate > 20" # kswapd + direct scans
e MEMUNPLUG="meminfo.MemFree > meminfo.MemTotal / 10 "

Memory is increased when the page scan rate exceeds 20 page per second.
Memory is reduced when the amount of free memory exceeds 10% of total
memory.

The CMM pool increments are defined as follows:
* CMM_INC="meminfo.MemFree / 40"
¢ CMM_DEC="meminfo.MemTotal / 40"

Memory configuration 9 (page scan, free memory, update 2 sec). The UPDATE
parameter is set to 2 seconds. The plugging rules are the same as those in
configuration 2.

Memory configuration 10 (page scan, free memory, update 5 sec). The UPDATE
parameter is set to 5 seconds. The plugging rules are the same as those in
configuration 2, but they use only the values from the current interval, which
covers now 5 seconds. The others runs use an average of the last three values.

able 13| shows the results when scaling the cpuplugd UPDATE interval.

Table 13. Impact of scaling the cpuplugd UPDATE interval on throughput and guest size

Update Relative . .
interval Increase Shrink Relative LPAR CPU Guest size (MiB)*
Configuration (seconds) memory, if |memory, if |TPS* load* Linux z/VM
2 1 page scans > |Free > 10% 97% 98% 131% 107%
9 2 20 pages/sec | of total 93% 99% 131% 119%
memory
10 5 96% 96% 124% 109%
*100% is the manual sized run higher is lower is closer to 100% is better
better better

Chapter 6. Results

45

100%
90%
80%
70%
60%
50%
40%
30%

normalized TPS/CPU

20%

10%

manual sized 1

Observation

The throughput for the scenario using an update interval of 2 seconds is lower
than expected, but the throughput for the scenario using an update interval of 5
seconds is close to the throughput for the scenario using an update interval of 1
second. The CPU load shows no clear tendency either. The sum of the guest sizes
in the Linux view decreases as the update interval is increased.

Conclusion

The run using an update interval of 5 seconds is consistent with the run using an
update interval of 1 second in the sense that the guest size, throughput and CPU
load decrease. The run using an update interval of 2 seconds seems to be affected
by other unknown influences.

Determining whether cpuplugd activity depends on CPU load

is used to determine if cpuplugd activity depends on the CPU load. The
figure shows the CPU cost per transaction for the manually sized run as a function
of the duration of the cpuplugd UPDATE interval.

Scaling the Update Interval of cpuplugd

2 5

transactions/CPU

UPDATE Interval [seconds]

Figure 19. CPU cost per transaction for the manual sized run as a function of the duration of the cpuplugd UPDATE

interval

Observation

The CPU cost per transaction for all scenarios is very similar, with the exception of
the scenario using an update interval of 2 seconds, which yielded unexpected
results.

Conclusion

The expectation was that the overhead caused by cpuplugd would increase as the
update interval is made shorter. However, under normal workload conditions we
see no differences, meaning that evaluating the rules seems to create no
noteworthy additional CPU cost. If cpuplugd changes the system configuration

46 Linuxon System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

with a very high frequency (for example each interval) a different result may be
obtained.

CMM pool size over time for scaling the cpuplugd UPDATE
interval

is used to determine if cpuplugd activity depends on the CPU load. The

figure shows the CPU cost per transaction for the manually sized run as a function
of the duration of the cpuplugd UPDATE interval.

CMM Pool size over time

Combo System 1

1200000
1000000
S 800000 L_L_
© LA | 1
o 600000 -
H*
400000
200000
0
2 2 2 22 2% % % 2% 2 %2 2 2 a 2 2
N I - T I - S CHEE R

—Update Interval: 1sec — 2sec 5sec

Figure 20. CMM pools size over time for scaling the cpuplugd UPDATE interval

Observation

The system reaction to load changes becomes more moderate as the update
interval increases. When applying an update interval of 5 seconds the CMM pool
stays smaller than for shorter intervals, but in steady state it remains larger than
for the shorter intervals. This is true for the Combo systems, as well as for the
WebSphere Application Server system with the higher load.

Conclusion

Neither cpuplugd activity nor the size of the UPDATE interval generates a significant
overhead in terms of additional CPU cost. The UPDATE value can be used to
determine how fast a system should react to changing requirements.

The recommended approach is to start with an update interval of 1 second and
monitor the behavior of the system. If the update interval is changed too
frequently, it is possible to calm down the system by increasing the update interval
at the cost of a slower reaction to load changes. An alternative method to achieve a
flattening effect is to average update values over several intervals.

Memory plugging and steal time

The cpuplugd tests with memory plugging revealed a serious problem when a
kernel compile was used as workload.

Chapter 6. Results 47

The result is shown in

Managing the CMM Balloon - avg Linux Steal Time vs Pool Size, kernel compile

1200000 120
1000000 100
800000 80

Pages
0/ Qtasl Tima

600000 60

400000 Lﬂ 40

200000 J 20
0 0

Time [mm:ss]

cmm pool —%steal

Figure 21. CMM Pools size and CPU steal time over time when compiling a Linux kernel
Observation
During the increase of the CMM pool the steal time frequently reaches values
between 90% and 100%. The issue appears on z/VM 5.4 and on z/VM 6.1 when
the APAR described below is not installed.
Conclusion

It is not recommended using cpuplugd to manage the memory size of a guest
without the APAR installed, described in the next section.

shows the behavior after installing the fix released in APAR VM65060.

Managing the CMM Balloon, z/VM Fix installed, avg Linux Steal Time vs Pool Size

1200000

e E =
W] |

Time [mm:ss]

o =2 N W A OO N ®
% Steal Time or #CPUs

\19'%\
Qv
©®

—#CPUs — %steal — cmm pool

Figure 22. CMM Pools size and CPU steal time over time when compiling a Linux kernel with the fix released in APAR
VM65060 installed

Observation

After installing the fix the steal time is between 1% and 4% for most of the time
instead of 90%-100% without the fix, see The graph also shows that the
number of assigned CPUs increases during the compile phase and decreases
afterwards during the link phase, in line with the processing power required.

48 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

Conclusion

Installing the z/VM APAR VM65060 fix is required when memory management
with cpuplugd is planned to avoid excessive steal time numbers. It is available for
z/VM 54, z/VM 6.1, and z/VM 6.2.

Chapter 6. Results 49

50 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

Appendix A. Tuning scripts

These tuning scripts can be run.

DB2 UDB tuning

The following tuning script is run every time the DB2 database for trade, tradedb
is created or recreated, and populated with test data.

db2 -v "connect to tradedb"

db2 -v "update db cfg for tradedb using DBHEAP 25000"
db2 -v "update db cfg for tradedb using CATALOGCACHE Sz 282"
db2 -v "update db cfg for tradedb using LOGBUFSZ 8192"
db2 -v "update db cfg for tradedb using BUFFPAGE 366190"
db2 -v "update db cfg for tradedb using LOCKLIST 1000"
db2 -v "update db cfg for tradedb using SORTHEAP 642"
db2 -v "update db cfg for tradedb using STMTHEAP 2048"
db2 -v "update db cfg for tradedb using PCKCACHESZ 7500"
db2 -v "update db cfg for tradedb using MAXLOCKS 75"

db2 -v "update db cfg for tradedb using MAXAPPLS 500"
db2 -v "update db cfg for tradedb using LOGFILSIZ 5000"
db2 -v "update db cfg for tradedb using LOGPRIMARY 6"
db2 -v "update db cfg for tradedb using LOGSECOND 6"

db2 -v "update db cfg for tradedb using SOFTMAX 70"

db2 -v "update dbm cfg using MAXAGENTS 200"

db2 -v "update dbm cfg using NUM_POOLAGENTS -1"

db2 -v "update dbm cfg using MAX_QUERYDEGREE -1"

db2 -v "update dbm cfg using FCM_NUM_BUFFERS 512"

db2 -v "update dbm cfg using FCM_NUM_RQB 256"

db2 -v "update dbm cfg using DFT_MON_LOCK OFF"

db2 -v "update dbm cfg using DFT_MON_BUFPOOL ON"

db2 -v "update dbm cfg using DFT_MON_STMT OFF"

db2 -v "update dbm cfg using DFT_MON_TABLE OFF"

db2 -v "update dbm cfg using DFT_MON_UOW OFF"

db2 -v "alter bufferpool ibmdefaultbp size 500"

db2 -v "reorgchk update statistics on table all"

db2 -v "connect reset"

db2 -v "terminate"

WebSphere tuning script

The WebSphere tuning script is run only once because the effects are persistent.

The script is run as follows:
/opt/IBM/WebSphere/AppServer/bin/wsadmin.sh -f tuneDayTrader.py server serverl

The values for the JVM heap are then overridden manually. These are common
WebSphere tuning variables, which are set to values to optimize the performance

of the DayTrader application.

The tuneDayTrader.py python script is provided in the downloaded DayTrader
source zip file.

© Copyright IBM Corp. 2012 51

52 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

Appendix B. cpuplugd configuration files

Sample configuration scripts

Recommended default configuration
UPDATE="1"

CPU_MIN="1"
CPU_MAX="0"

user_0="(cpustat.user[0] - cpustat.user[1])"
nice 0="(cpustat.nice[0] - cpustat.nice[1])"
system 0="(cpustat.system[0] - cpustat.system[1])"

user_2="(cpustat.user[2] - cpustat.user[3])"
nice_2="(cpustat.nice[2] - cpustat.nice[3])"
system_2="(cpustat.system[2] - cpustat.system[3])"

CP_Active0d="(user 0 + nice 0 + system 0)/ (cpustat.total ticks[0] - cpustat.total ticks[1])"
CP_Active2="(user_2 + nice_2 + system_2)/ (cpustat.total_ticks[2] - cpustat.total ticks[3])"

CP_ActiveAVG="(CP_Active0+CP_Active2) / 2"

idle_0="(cpustat.idle[0] - cpustat.idle[1])"

jowait_0="(cpustat.iowait[0] - cpustat.iowait[1])"

idle_2="(cpustat.idle[2] - cpustat.idle[3])"

jowait_2="(cpustat.iowait[2] - cpustat.iowait[3])"

CP_idle0="(idle_0 + iowait 0)/ (cpustat.total ticks[0] - cpustat.total ticks[1])"
CP_idle2="(idle_2 + iowait_2)/ (cpustat.total_ticks[2] - cpustat.total_ticks[3])"
CP_id1eAVG="(CP_idled + CP_idle2) / 2"

HOTPLUG="((1 - CP_ActiveAVG) * onumcpus) < 0.08"
HOTUNPLUG="(CP_id1eAVG * onumcpus) > 1.15"

pgscan_d="vmstat.pgscan _direct _dma[0] + vmstat.pgscan_direct normal[0] + vmstat.pgscan direct movable[0]"
pgscan_dl="vmstat.pgscan_direct_dma[l] + vmstat.pgscan_direct normal[l] + vmstat.pgscan_direct _movable[1]"

pgscanrate="(pgscan_d - pgscan_dl) / (cpustat.total ticks[0] - cpustat.total ticks[1])"
avail_cache="meminfo.Cached -meminfo.Shmem"

CMM_MIN="0"
CMM_MAX="1245184"

CMM_INC="meminfo.MemFree / 40"
CMM_DEC="meminfo.MemTotal / 40"

MEMPLUG "pgscanrate > 20"
MEMUNPLUG = "(meminfo.MemFree + avail_cache) > (meminfo.MemTotal / 10)"

CPU plugging via loadavg

UPDATE="1"

CPU_MIN="1"
CPU_MAX="0"

HOTPLUG="(Toadavg > onumcpus + 0.75) & (idle < 10.0)"
HOTUNPLUG="(Toadavg < onumcpus - 0.25) | (idle > 50)"

CMM_MIN="0"
CMM_INC="0"

© Copyright IBM Corp. 2012 53

CMM_DEC="0"

MEMPLUG="0"
MEMUNPLUG="0"

CPU plugging via real CPU load

UPDATE="1"

CPU_MIN="1"
CPU_MAX="0"

user_0="(cpustat.user[0] - cpustat.user[1])"
nice 0="(cpustat.nice[0] - cpustat.nice[1])"
system 0="(cpustat.system[0] - cpustat.system[1])"

user_2="(cpustat.user[2] - cpustat.user[3])"
nice_2="(cpustat.nice[2] - cpustat.nice[3])"
system 2="(cpustat.system[2] - cpustat.system[3])"

CP_Active0="(user_0 + nice_0 + system 0)/ (cpustat.total ticks[0] - cpustat.total ticks[1])"
CP_Active2="(user_2 + nice_2 + system 2)/ (cpustat.total ticks[2] - cpustat.total ticks[3])"
CP_ActiveAVG="(CP_Active0+CP_Active2) / 2"

idle_0="(cpustat.idle[0] - cpustat.idle[1])"
jowait_0="(cpustat.iowait[0] - cpustat.iowait[1])"
idle_2="(cpustat.idle[2] - cpustat.idle[3])"
jowait_2="(cpustat.iowait[2] - cpustat.iowait[3])"

CP_idl1e0="(idle_0 + jowait _0)/ (cpustat.total ticks[0] - cpustat.total ticks[1])"
CP_idle2="(idle_2 + jowait_2)/ (cpustat.total_ticks[2] - cpustat.total ticks[3])"
CP_id1eAVG="(CP_idle0 + CP_idle2) / 2"

HOTPLUG="((1 - CP_ActiveAVG) * onumcpus) < 0.08"
HOTUNPLUG="(CP_id1eAVG * onumcpus) > 1.15"

CMM_MIN="0"
CMM_INC="0"

CMM_DEC="0"

MEMPLUG="0"
MEMUNPLUG="0"

Memory plugging configuration 1
UPDATE="1"

CPU_MIN="1"
CPU_MAX="0"

user_0="(cpustat.user[0] - cpustat.user[1])"
nice_0="(cpustat.nice[0] - cpustat.nice[1])"
system 0="(cpustat.system[0] - cpustat.system[1])"
user_2="(cpustat.user[2] - cpustat.user[3])"
nice 2="(cpustat.nice[2] - cpustat.nice[3])"
system_2="(cpustat.system[2] - cpustat.system[3])"

CP_Active0="(user_0 + nice_0 + system_0)/ (cpustat.total_ticks[0] - cpustat.total ticks[1])"
CP_Active2="(user 2 + nice 2 + system 2)/ (cpustat.total ticks[2] - cpustat.total ticks[3])"
CP_ActiveAVG="(CP_Active0+CP_Active2) / 2"

idle_0="(cpustat.idle[0] - cpustat.idle[1])"

jowait_0="(cpustat.iowait[0] - cpustat.iowait[1])"
idle_2="(cpustat.idle[2] - cpustat.idle[3])"

54 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

jowait_2="(cpustat.iowait[2] - cpustat.iowait[3])"

CP_idle0="(idle_0 + iowait 0)/ (cpustat.total ticks[0] - cpustat.total ticks[1])"
CP_idle2="(idle_2 + iowait_2)/ (cpustat.total_ticks[2] - cpustat.total_ticks[3])"
CP_id1eAVG="(CP_idled + CP_idle2) / 2"

HOTPLUG="((1 - CP_ActiveAVG) * onumcpus) < 0.08"
HOTUNPLUG="(CP_id1eAVG * onumcpus) > 1.15"

pgscan_k="vmstat.pgscan_kswapd dma[0] + vmstat.pgscan_kswapd normal[0] + vmstat.pgscan_kswapd movable[0]"
pgscan_d="vmstat.pgscan_direct_dma[0] + vmstat.pgscan_direct normal[0] + vmstat.pgscan_direct movable[0]"
pgscan_k1l="vmstat.pgscan_kswapd_dma[l] + vmstat.pgscan_kswapd_normal[1l] + vmstat.pgscan_kswapd_movable[1]"
pgscan_dl="vmstat.pgscan_direct_dma[l] + vmstat.pgscan_direct normal[l] + vmstat.pgscan_direct _movable[1]"
pgscanrate="(pgscan_k + pgscan_d - pgscan_kl - pgscan_dl) / (cpustat.total ticks[0] - cpustat.total ticks[1])"
cache="meminfo.Cached + meminfo.Buffers"

CMM_MIN="0"
CMM_MAX="1245184"

CMM_INC="(meminfo.MemFree + cache) / 40"
CMM_DEC="meminfo.MemTotal / 40"

MEMPLUG = "pgscanrate > 20"
MEMUNPLUG = "(meminfo.MemFree > meminfo.MemTotal / 10) | (cache > meminfo.MemTotal / 2)"

Memory plugging configuration 2
UPDATE="1"

CPU_MIN="1"
CPU_MAX="0"

user_0="(cpustat.user[0] - cpustat.user[1])"
nice 0="(cpustat.nice[0] - cpustat.nice[1])"
system 0="(cpustat.system[0] - cpustat.system[1])"

user_2="(cpustat.user[2] - cpustat.user[3])"
nice 2="(cpustat.nice[2] - cpustat.nice[3])"
system_2="(cpustat.system[2] - cpustat.system[3])"

CP_Active0d="(user 0 + nice 0 + system_0)/ (cpustat.total ticks[0] - cpustat.total ticks[1])"
CP_Active2="(user_2 + nice_2 + system 2)/ (cpustat.total _ticks[2] - cpustat.total ticks[3])"
CP_ActiveAVG="(CP_Active0+CP_Active2) / 2"

idle_0="(cpustat.idle[0] - cpustat.idle[1])"
jowait_0="(cpustat.iowait[0] - cpustat.iowait[1])"
idle_2="(cpustat.idle[2] - cpustat.idle[3])"
jowait_2="(cpustat.iowait[2] - cpustat.iowait[3])"

CP_idle0="(idle_0 + iowait 0)/ (cpustat.total ticks[0] - cpustat.total ticks[1])"
CP_idle2="(idle_2 + iowait_2)/ (cpustat.total_ticks[2] - cpustat.total_ticks[3])"
CP_id1eAVG="(CP_idled + CP_idle2) / 2"

HOTPLUG="((1 - CP_ActiveAVG) * onumcpus) < 0.08"
HOTUNPLUG="(CP_id1eAVG * onumcpus) > 1.15"

pgscan_k="vmstat.pgscan_kswapd _dma[0] + vmstat.pgscan_kswapd normal[0] + vmstat.pgscan_kswapd movable[0]"
pgscan_d="vmstat.pgscan_direct_dma[0] + vmstat.pgscan_direct_normal[0] + vmstat.pgscan_direct _movable[0]"
pgscan_k1l="vmstat.pgscan_kswapd_dma[l] + vmstat.pgscan_kswapd_normal[1l] + vmstat.pgscan_kswapd_movable[1]"
pgscan_dl="vmstat.pgscan_direct_dma[l] + vmstat.pgscan_direct normal[l] + vmstat.pgscan_direct movable[1]"
pgscanrate="(pgscan_k + pgscan_d - pgscan_kl - pgscan_dl) / (cpustat.total ticks[0] - cpustat.total ticks[1])"

CMM_MIN="0"
CMM_MAX="1245184"

CMM_INC="meminfo.MemFree / 40"
CMM_DEC="meminfo.MemTotal / 40"

Appendix B. Sample configuration files 55

MEMPLUG = "pgscanrate > 20"
MEMUNPLUG = "meminfo.MemFree > meminfo.MemTotal / 10 "

Memory plugging configuration 3
UPDATE="1"

CPU_MIN="1"
CPU_MAX="0"

user 0="(cpustat.user[0] - cpustat.user[1])"
nice_0="(cpustat.nice[0] - cpustat.nice[1])"
system 0="(cpustat.system[0] - cpustat.system[1])"

user_2="(cpustat.user[2] - cpustat.user[3])"
nice 2="(cpustat.nice[2] - cpustat.nice[3])"
system_2="(cpustat.system[2] - cpustat.system[3])"

CP_Active0="(user_0 + nice_0 + system _0)/ (cpustat.total_ticks[0] - cpustat.total ticks[1])"
CP_Active2="(user_2 + nice 2 + system 2)/ (cpustat.total ticks[2] - cpustat.total_ ticks[3])"
CP_ActiveAVG="(CP_Active0+CP_Active2) / 2"

idle_0="(cpustat.idle[0] - cpustat.idle[1])"
jowait_0="(cpustat.iowait[0] - cpustat.iowait[1])"
idle_2="(cpustat.idle[2] - cpustat.idle[3])"
jowait_2="(cpustat.iowait[2] - cpustat.iowait[3])"

CP_id1e0="(idle_0 + jowait_0)/ (cpustat.total ticks[0] - cpustat.total ticks[1])"
CP_idle2="(idle_2 + iowait_2)/ (cpustat.total ticks[2] - cpustat.total ticks[3])"
CP_id1eAVG="(CP_idle® + CP_idle2) / 2"

HOTPLUG="((1 - CP_ActiveAVG) * onumcpus) < 0.08"
HOTUNPLUG="(CP_id1eAVG * onumcpus) > 1.15"

pgscan_k="vmstat.pgscan_kswapd _dma[0] + vmstat.pgscan_kswapd normal[0] + vmstat.pgscan_kswapd _movable[0]"
pgscan_d="vmstat.pgscan_direct_dma[0] + vmstat.pgscan_direct_normal[0] + vmstat.pgscan_direct movable[0]"
pgscan_kl="vmstat.pgscan_kswapd dma[l] + vmstat.pgscan_kswapd normal[l] + vmstat.pgscan_kswapd movable[1]"
pgscan_dl="vmstat.pgscan_direct_dma[l] + vmstat.pgscan_direct normal[l] + vmstat.pgscan_direct _movable[1]"
pgscanrate="(pgscan_k + pgscan_d - pgscan_kl - pgscan_dl) / (cpustat.total ticks[0] - cpustat.total ticks[1])"
avail_cache="meminfo.Cached -meminfo.Shmem"

CMM_MIN="0"
CMM_MAX="1245184"

CMM_INC="meminfo.MemFree / 40"
CMM_DEC="meminfo.MemTotal / 40"

MEMPLUG="pgscanrate > 20"
MEMUNPLUG=" (meminfo.MemFree + avail cache) > (meminfo.MemTotal / 10)"

Memory plugging configuration 4
UPDATE="1"

CPU_MIN="1"
CPU_MAX="0"

user_0="(cpustat.user[0] - cpustat.user[1])"
nice_0="(cpustat.nice[0] - cpustat.nice[1])"
system 0="(cpustat.system[0] - cpustat.system[1])"

user_2="(cpustat.user[2] - cpustat.user[3])"

nice 2="(cpustat.nice[2] - cpustat.nice[3])"
system_2="(cpustat.system[2] - cpustat.system[3])"

56 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

CP_Active0d="(user 0 + nice 0 + system 0)/ (cpustat.total ticks[0] - cpustat.total ticks[1])"
CP_Active2="(user_2 + nice_2 + system_2)/ (cpustat.total_ticks[2] - cpustat.total ticks[3])"
CP_ActiveAVG="(CP_Active0+CP_Active2) / 2"

idle_0="(cpustat.idle[0] - cpustat.idle[1])"
jowait_0="(cpustat.iowait[0] - cpustat.iowait[1])"
idle_2="(cpustat.idle[2] - cpustat.idle[3])"
jowait_2="(cpustat.iowait[2] - cpustat.iowait[3])"

CP_idle0="(idle_0 + iowait 0)/ (cpustat.total ticks[0] - cpustat.total ticks[1])"
CP_idle2="(idle_2 + iowait_2)/ (cpustat.total_ticks[2] - cpustat.total_ticks[3])"
CP_id1eAVG="(CP_idled + CP_idle2) / 2"

HOTPLUG="((1 - CP_ActiveAVG) * onumcpus) < 0.08"
HOTUNPLUG="(CP_id1eAVG * onumcpus) > 1.15"

pgscan_d="vmstat.pgscan _direct _dma[0] + vmstat.pgscan_direct normal[0] + vmstat.pgscan direct movable[0]"
pgscan_dl="vmstat.pgscan_direct_dma[l] + vmstat.pgscan_direct normal[l] + vmstat.pgscan_direct _movable[1]"
pgscanrate="(pgscan_d - pgscan_dl) / (cpustat.total ticks[0] - cpustat.total ticks[1])"
avail_cache="meminfo.Cached -meminfo.Shmem"

CMM_MIN="0"
CMM_MAX="1245184"

CMM_INC="meminfo.MemFree / 40"
CMM_DEC="meminfo.MemTotal / 40"

MEMPLUG = "pgscanrate > 20"
MEMUNPLUG = " (meminfo.MemFree + avail_cache) > (meminfo.MemTotal / 10)"

Memory plugging configuration 5
UPDATE="1"

CPU_MIN="1"
CPU_MAX="0"

user_0="(cpustat.user[0] - cpustat.user[1])"
nice_0="(cpustat.nice[0] - cpustat.nice[1])"
system 0="(cpustat.system[0] - cpustat.system[1])"

user_2="(cpustat.user[2] - cpustat.user[3])"
nice 2="(cpustat.nice[2] - cpustat.nice[3])"
system_2="(cpustat.system[2] - cpustat.system[3])"

CP_Active0d="(user_0 + nice_0 + system_0)/ (cpustat.total_ticks[0] - cpustat.total ticks[1])"
CP_Active2="(user 2 + nice_2 + system 2)/ (cpustat.total_ticks[2] - cpustat.total ticks[3])"
CP_ActiveAVG="(CP_Active@+CP_Active2) / 2"

idle_0="(cpustat.idle[0] - cpustat.idle[1])"
jowait_0="(cpustat.iowait[0] - cpustat.iowait[1])"
idle_2="(cpustat.idle[2] - cpustat.idle[3])"
jowait_2="(cpustat.iowait[2] - cpustat.iowait[3])"

CP_idle0="(idle_0 + iowait _0)/ (cpustat.total ticks[0] - cpustat.total ticks[1])"
CP_idle2="(idle_2 + jowait_2)/ (cpustat.total ticks[2] - cpustat.total ticks[3])"
CP_id1eAVG="(CP_idled + CP_idle2) / 2"

HOTPLUG="((1 - CP_ActiveAVG) * onumcpus) < 0.08"
HOTUNPLUG="(CP_1'd1eAVG % onumcpus) > 1.15"

pgscan_k="vmstat.pgscan_kswapd_dma[0] + vmstat.pgscan_kswapd normal[0] + vmstat.pgscan_kswapd movable[0]"
pgscan_d="vmstat.pgscan_direct_dma[0] + vmstat.pgscan_direct _normal[0] + vmstat.pgscan_direct _movable[0]"
pgscan_k2="vmstat.pgscan_kswapd dma[2] + vmstat.pgscan_kswapd normal[2] + vmstat.pgscan_kswapd movable[2]"
pgscan_d2="vmstat.pgscan_direct_dma[2] + vmstat.pgscan_direct normal[2] + vmstat.pgscan_direct _movable[2]"
pgscanrate="(pgscan_k + pgscan_d - pgscan_k2 - pgscan_d2)"

pgsteal="vmstat.pgsteal _dma + vmstat.pgsteal normal + vmstat.kswapd_steal + vmstat.pgsteal_movable"

Appendix B. Sample configuration files 57

pgsteal2="vmstat.pgsteal dma[2] + vmstat.pgsteal normal[2] + vmstat.kswapd steal[2] + vmstat.pgsteal movable[2]"
pgstealrate="(pgsteal-pgsteal2)"

avail_cache="meminfo.Cached -meminfo.Shmem"

CMM_MIN="0"
CMM_MAX="1245184"

CMM_INC="meminfo.MemFree / 40"
CMM_DEC="meminfo.MemTotal / 40"

MEMPLUG = "pgscanrate > pgstealrate"
MEMUNPLUG = "(meminfo.MemFree + avail_cache) > (meminfo.MemTotal / 10)"

Memory plugging configuration 7
UPDATE="1"

CPU_MIN="1"
CPU_MAX="0"

user_0="(cpustat.user[0] - cpustat.user[1])"
nice_0="(cpustat.nice[0] - cpustat.nice[1])"
system 0="(cpustat.system[0] - cpustat.system[1])"

user_2="(cpustat.user[2] - cpustat.user[3])"
nice 2="(cpustat.nice[2] - cpustat.nice[3])"
system 2="(cpustat.system[2] - cpustat.system[3])"

CP_Active0d="(user 0 + nice 0 + system 0)/ (cpustat.total ticks[0] - cpustat.total ticks[1])"
CP_Active2="(user 2 + nice 2 + system 2)/ (cpustat.total ticks[2] - cpustat.total ticks[3])"
CP_ActiveAVG="(CP_Active0+CP_Active2) / 2"

idle_0="(cpustat.idle[0] - cpustat.idle[1])"
jowait_0="(cpustat.iowait[0] - cpustat.iowait[1])"
idle_2="(cpustat.idle[2] - cpustat.idle[3])"
jowait_2="(cpustat.iowait[2] - cpustat.iowait[3])"

CP_idle0="(idle_0 + jowait_0)/ (cpustat.total_ticks[0] - cpustat.total ticks[1])"
CP_idle2="(idle_2 + iowait_2)/ (cpustat.total ticks[2] - cpustat.total ticks[3])"
CP_id1eAVG="(CP_idle® + CP_idle2) / 2"

HOTPLUG="((1 - CP_ActiveAVG) * onumcpus) < 0.08"
HOTUNPLUG="(CP_id1eAVG * onumcpus) > 1.15"

pgscan_d="vmstat.pgscan_direct_dma[0] + vmstat.pgscan_direct normal[0] + vmstat.pgscan_direct movable[0]"
pgscan_dl="vmstat.pgscan_direct dma[l] + vmstat.pgscan direct_normal[1l] + vmstat.pgscan_direct _movable[1]"
pgscanrate="(pgscan_d - pgscan_dl) / (cpustat.total_ticks[0] - cpustat.total ticks[1])"
avail_cache="meminfo.Cached -meminfo.Shmem"

CMM_MIN="0"
CMM_MAX="1245184"

CMM_INC="meminfo.MemFree / 40"
CMM_DEC="meminfo.MemTotal / 40"

MEMPLUG = "pgscanrate > 20"
MEMUNPLUG = "(meminfo.MemFree + avail_cache) > (meminfo.MemTotal / 20)"

Memory plugging configuration 8
UPDATE="1"

CPU_MIN="1"
CPU_MAX="0"

58 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

user_0="(cpustat.user[0] - cpustat.user[1])"
nice_0="(cpustat.nice[0] - cpustat.nice[1])"
system 0="(cpustat.system[0] - cpustat.system[1])"

user_2="(cpustat.user[2] - cpustat.user[3])"
nice 2="(cpustat.nice[2] - cpustat.nice[3])"
system 2="(cpustat.system[2] - cpustat.system[3])"

CP_Active@="(user 0 + nice 0 + system_0)/ (cpustat.total_ticks[0] - cpustat.total ticks[1])"
CP_Active2="(user 2 + nice 2 + system 2)/ (cpustat.total ticks[2] - cpustat.total ticks[3])"
CP_ActiveAVG="(CP_Active0+CP_Active2) / 2"

idle_0="(cpustat.idle[0] - cpustat.idle[1])"
jowait_0="(cpustat.iowait[0] - cpustat.iowait[1])"
idle_2="(cpustat.idle[2] - cpustat.idle[3])"
jowait_2="(cpustat.iowait[2] - cpustat.iowait[3])"

CP_idle0="(idle_0 + iowait_0)/ (cpustat.total ticks[0] - cpustat.total_ ticks[1])"
CP_idle2="(idle_2 + jowait_2)/ (cpustat.total ticks[2] - cpustat.total_ticks[3])"
CP_id1eAVG="(CP_idle0® + CP_idle2) / 2"

HOTPLUG="((1 - CP_ActiveAVG) * onumcpus) < 0.08"
HOTUNPLUG="(CP_id1eAVG * onumcpus) > 1.15"

pgscan_d="vmstat.pgscan_direct_dma[0] + vmstat.pgscan_direct normal[0] + vmstat.pgscan_direct movable[0]"
pgscan_dl="vmstat.pgscan_direct dma[l] + vmstat.pgscan direct_normal[1l] + vmstat.pgscan_direct_movable[1]"

pgscanrate="(pgscan_d - pgscan_dl) / (cpustat.total _ticks[0] - cpustat.total ticks[1])"
avail_cache="meminfo.Cached -meminfo.Shmem"

CMM_MIN="0"
CMM_MAX="1245184"

CMM_INC="(meminfo.MemFree + avail _cache) / 40"
CMM_DEC="meminfo.MemTotal / 40"

MEMPLUG = "pgscanrate > 20"
MEMUNPLUG = " (meminfo.MemFree + avail_cache) > (meminfo.MemTotal / 20)"

Memory plugging configuration 9
UPDATE="2"

CPU_MIN="1"
CPU_MAX="0"

user_0="(cpustat.user[0] - cpustat.user[1])"
nice_0="(cpustat.nice[0] - cpustat.nice[1])"
system_0="(cpustat.system[0] - cpustat.system[1])"
user_1="(cpustat.user[1l] - cpustat.user[2])"
nice 1="(cpustat.nice[1] - cpustat.nice[2])"
system_1="(cpustat.system[1] - cpustat.system[2])"

CP_Active0d="(user_0 + nice_0 + system_0)/ (cpustat.total ticks[0] - cpustat.total ticks[1])"
CP_Activel="(user_1 + nice_1 + system_1)/ (cpustat.total_ticks[1] - cpustat.total_ ticks[2])"

CP_ActiveAVG="(CP_Active0+CP_Activel) / 2"

idle_0="(cpustat.idle[0] - cpustat.idle[1])"
jowait_0="(cpustat.iowait[0] - cpustat.iowait[1])"

idle_1="(cpustat.idle[1] - cpustat.idle[2])"
jowait_1="(cpustat.iowait[1l] - cpustat.iowait[2])"

CP_idle0="(idle_0 + iowait 0)/ (cpustat.total ticks[0] - cpustat.total ticks[1])"

CP_idlel="(idle_1 + iowait_1)/ (cpustat.total_ticks[1] - cpustat.total_ticks[2])"
CP_id1eAVG="(CP_idle0 + CP_idlel) / 2"

Appendix B. Sample configuration files

59

HOTPLUG="((1 - CP_ActiveAVG) * onumcpus) < 0.08"
HOTUNPLUG="(CP_id1eAVG * onumcpus) > 1.15"

pgscan_k="vmstat.pgscan_kswapd_dma[0] + vmstat.pgscan_kswapd_normal[0] + vmstat.pgscan_kswapd_movable[0]"
pgscan_d="vmstat.pgscan_direct_dma[0] + vmstat.pgscan_direct _normal[0] + vmstat.pgscan_direct movable[0]"
pgscan_kl="vmstat.pgscan_kswapd_dma[l] + vmstat.pgscan_kswapd normal[l] + vmstat.pgscan_kswapd _movable[1]"
pgscan_dl="vmstat.pgscan_direct_dma[l] + vmstat.pgscan_direct_normal[1l] + vmstat.pgscan_direct_movable[1]"

pgscanrate="(pgscan_k + pgscan_d - pgscan_kl - pgscan_dl) / (cpustat.total ticks[0] - cpustat.total ticks[1])"

CMM_MIN="0"
CMM_MAX="1245184"

CMM_INC="meminfo.MemFree / 40"
CMM_DEC="meminfo.MemTotal / 40"

MEMPLUG = "pgscanrate > 20"
MEMUNPLUG = "meminfo.MemFree > meminfo.MemTotal / 10 "

Memory plugging configuration 10
UPDATE="5"

CPU_MIN="1"
CPU_MAX="0"

user_0="(cpustat.user[0] - cpustat.user[1])"
nice_0="(cpustat.nice[0] - cpustat.nice[1])"
system 0="(cpustat.system[0] - cpustat.system[1])"

CP_Active0="(user 0 + nice 0 + system 0)/ (cpustat.total ticks[0] - cpustat.total ticks[1])"
CP_ActiveAVG="(CP_Active0)"

idle_0="(cpustat.idle[0] - cpustat.idle[1])"

jowait_0="(cpustat.iowait[0] - cpustat.iowait[1])"

CP_idl1e0="(idle_0 + jowait_0)/ (cpustat.total ticks[0] - cpustat.total ticks[1])"
CP_id1eAVG="(CP_id1e0)"

HOTPLUG="((1 - CP_ActiveAVG) * onumcpus) < 0.08"
HOTUNPLUG="(CP_id1eAVG * onumcpus) > 1.15"

pgscan_k="vmstat.pgscan_kswapd_dma[0] + vmstat.pgscan_kswapd _normal[0] + vmstat.pgscan_kswapd_movable[0]"
pgscan_d="vmstat.pgscan_direct_dma[0] + vmstat.pgscan_direct normal[0] + vmstat.pgscan_direct movable[0]"
pgscan_k1l="vmstat.pgscan_kswapd_dma[l] + vmstat.pgscan_kswapd_normal[l] + vmstat.pgscan_kswapd_movable[1]"
pgscan_dl="vmstat.pgscan _direct dma[l] + vmstat.pgscan_direct normal[l] + vmstat.pgscan direct movable[1]"
pgscanrate="(pgscan_k + pgscan_d - pgscan_kl - pgscan_dl) / (cpustat.total_ticks[@] - cpustat.total ticks[1])"

CMM_MIN="0"
CMM_MAX="1245184"

CMM_INC="meminfo.MemFree / 40"
CMM_DEC="meminfo.MemTotal / 40"

MEMPLUG = "pgscanrate > 20"
MEMUNPLUG = "meminfo.MemFree > meminfo.MemTotal / 10 "

60 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

References

This section provides information about where you can find information about
topics referenced in this white paper.

* Man pages (SLES11 SP2, RHEL 6.2 or newer distributions):
- man cpuplugd man
- cpuplugd.conf

* Linux on System z: Device Drivers, Features, and Commands
|http://public.dhe.ibm.com/software/dw/1inux390/docu/13n1dd13. pdf|

© Copyright IBM Corp. 2012

61

http://public.dhe.ibm.com/software/dw/linux390/docu/l3n1dd13.pdf

62 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing 2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2012 63

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N

Rochester, MN 55901

USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

64 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information in softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, ibm.com®, DB2, DB2 Universal Database, DS8000°, ECKD,
Express®, FICON®, HiperSocketsw, Rational® Redbooks®, Resource Link®, Service
Request Manager®, System Storage®, System x°, System z, System z9%, System
710%, Tivoli®, WebSphere, z/VM, and 79® are trademarks or registered trademarks
of International Business Machines Corporation in the United States, other
countries, or both. These and other IBM trademarked terms are marked on their
first occurrence in this information with the appropriate symbol (* or ™), indicating
US registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A complete and current list of IBM trademarks
is available on the Web at |http://www.ibm.com /legal / copytrade.shtml|

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Centrino, Intel Xeon, Intel SpeedStep, Itanium, Pentium, and Xeon are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following
terms and conditions.

Personal Use: You may reproduce these publications for your personal,
noncommercial use provided that all proprietary notices are preserved. You may

Notices 65

http://www.ibm.com/legal/copytrade.shtml

not distribute, display or make derivative works of these publications, or any
portion thereof, without the express consent of the manufacturer.

Commercial Use: You may reproduce, distribute and display these publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these publications, or reproduce, distribute
or display these publications or any portion thereof outside your enterprise,
without the express consent of the manufacturer.

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any data,
software or other intellectual property contained therein.

The manufacturer reserves the right to withdraw the permissions granted herein
whenever, in its discretion, the use of the publications is detrimental to its interest
or, as determined by the manufacturer, the above instructions are not being
properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

THE MANUFACTURER MAKES NO GUARANTEE ABOUT THE CONTENT OF
THESE PUBLICATIONS. THESE PUBLICATIONS ARE PROVIDED "AS-IS" AND
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A
PARTICULAR PURPOSE.

66 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

Index
C

CMM pool 7,27, 48
configuration 11
client 11
database 17
memory plugging 1 54
memory plugging 10 60
memory plugging 2 55
memory plugging 3 56
memory plugging 4 56
memory plugging 5 57
memory plugging 7 58
memory plugging 8 58
memory plugging 9 59
rules for cpuplugd 24

WebSphere Studio Workload

Simulator 16
z/VM 17

CPU plugging
loadavg-based 24
parameters 5
real CPU load-based 25
rules 24

cpuplugd
configuration rules 24
log file 22
logfile 22
memory management 27
monitoring behavior 22
rule

priority 27

rule priority 27
update interval 45

D

database

configuration 17
DayTrader 13
DB2 UDB tuning 51
default configuration 53
dynamic runs 41

G

GiB 1
guest size 27

H

hardware
client 11
configuration 11
server 11
hotplug daemon 1

introduction 1

© Copyright IBM Corp. 2012

J

Java heap size 17

K

KiB 1

L

Linux Device Drivers Book 61

Linux environment 15
Linux guests
baseline settings 18
Linux service levels 18
Linux service levels
rpm 18
loadavg 53
loadavg-based 24

M

man pages 61
manual sizing 21
memory 21
memory
minimizing size 37
memory management 27
memory plugging 7, 27, 48
memory settings 21
methodology 21
MiB 1

P

parameters 5

Q

Quickdsp 17

R

real CPU load 54

real CPU load-based 25
references 61

results 21

rpm 18

S

sample
default configuration 53
loadavg 53

memory plugging config 1 54
memory plugging config 10 60
memory plugging config 2 55
memory plugging config 3 56

sample (continued)
memory plugging config 4
memory plugging config 5
memory plugging config 7
memory plugging config 8
memory plugging config 9
real CPU load 54

scripts
DB2 UDB tuning 51
tuneDayTrader.py 51

server 11
hardware 11
software 11

sizing charts 22

software
client 11
configuration 11
server 11

SRM settings 17

summary 2,5

T

throughput
optimizing 29

tuneDayTrader.py 51

tuning scripts 51

V

VM APAR 48

w

WebSphere environment 15
WebSphere Studio Workload
Simulator 14
configuration 16
workload description 13
workload sizing
memory 21

V4

z/VM
configuration 17
z/VM environment 15

56
57
58
58
59

67

68 Linux on System z: Using the Linux cpuplugd Daemon to manage CPU and memory resources from z/VM Linux guests

Printed in USA

	Contents
	Figures
	Tables
	About this publication
	Chapter 1. Introduction
	Objectives
	Executive summary

	Chapter 2. Summary
	CPU plugging
	Memory plugging

	Chapter 3. Hardware and software configuration
	Server configuration
	Client configuration

	Chapter 4. Workload description
	DayTrader
	WebSphere Studio Workload Simulator

	Chapter 5. z/VM and Linux setup
	WebSphere environment
	WebSphere Studio Workload Simulator configuration
	Java heap size
	Database configuration
	z/VM settings
	Linux guests

	Chapter 6. Results
	Methodology
	Manual sizing
	Monitoring the management behavior of the cpuplugd
	Understanding the sizing charts

	cpuplugd configuration rules
	CPU plugging
	loadavg-based
	Real CPU load-based

	Memory plugging
	General considerations regarding cpuplugd rules for memory management
	Optimizing for throughput
	Minimizing memory size

	Dynamic runs
	Setup tests and variations
	Scaling the cpuplugd update interval
	Memory plugging and steal time

	Appendix A. Tuning scripts
	DB2 UDB tuning
	WebSphere tuning script

	Appendix B. cpuplugd configuration files
	Recommended default configuration
	CPU plugging via loadavg
	CPU plugging via real CPU load
	Memory plugging configuration 1
	Memory plugging configuration 2
	Memory plugging configuration 3
	Memory plugging configuration 4
	Memory plugging configuration 5
	Memory plugging configuration 7
	Memory plugging configuration 8
	Memory plugging configuration 9
	Memory plugging configuration 10

	References
	Notices
	Trademarks
	Terms and conditions

	Index
	C
	D
	G
	H
	I
	J
	K
	L
	M
	P
	Q
	R
	S
	T
	V
	W
	Z

