IBM i
시스템 관리
성능
7.1
IBM i
시스템 관리
성능
7.1
목차

<table>
<thead>
<tr>
<th>항목</th>
<th>페이지</th>
</tr>
</thead>
<tbody>
<tr>
<td>상능</td>
<td>1</td>
</tr>
<tr>
<td>IBM i 7.1의 새로운 사항</td>
<td>1</td>
</tr>
<tr>
<td>상능에 대한 PDF 파일</td>
<td>3</td>
</tr>
<tr>
<td>시스템 상능 관리</td>
<td>4</td>
</tr>
<tr>
<td>상능 관리 전략 선택</td>
<td>4</td>
</tr>
<tr>
<td>시스템 확장 방법 및 시기 관별</td>
<td>6</td>
</tr>
<tr>
<td>시스템 변경 전후의 상능 미터법 비교</td>
<td>7</td>
</tr>
<tr>
<td>상능 트래킹</td>
<td>8</td>
</tr>
<tr>
<td>상능 문제정 조사</td>
<td>9</td>
</tr>
<tr>
<td>상능 데이터 표시</td>
<td>21</td>
</tr>
<tr>
<td>상능 조정</td>
<td>22</td>
</tr>
<tr>
<td>e-business 상능</td>
<td>27</td>
</tr>
<tr>
<td>상능 관리와 함께 애플리케이션</td>
<td>31</td>
</tr>
<tr>
<td>상능 데이터 콜레터</td>
<td>34</td>
</tr>
<tr>
<td>데이터 보기 및 분석</td>
<td>80</td>
</tr>
<tr>
<td>시나리오: 상능</td>
<td>207</td>
</tr>
<tr>
<td>시나리오: 업그레이드 또는 마이그레이션 후에</td>
<td>207</td>
</tr>
<tr>
<td>시스템 상능 개선</td>
<td>208</td>
</tr>
<tr>
<td>시나리오: 시스템 모니터</td>
<td>209</td>
</tr>
<tr>
<td>시나리오: 메시지 모니터</td>
<td>210</td>
</tr>
<tr>
<td>시나리오: CPU 이용률에 대한 작업 모니터</td>
<td></td>
</tr>
<tr>
<td>시나리오: 확장 작업 스케줄리 알림을 사용하는 작업 모니터</td>
<td>212</td>
</tr>
<tr>
<td>상능에 대한 관련 정보</td>
<td>214</td>
</tr>
<tr>
<td>부록, 주의사항</td>
<td>219</td>
</tr>
<tr>
<td>프로그래밍 인터페이스 정보</td>
<td>221</td>
</tr>
<tr>
<td>상표</td>
<td>221</td>
</tr>
<tr>
<td>이용약관</td>
<td>221</td>
</tr>
</tbody>
</table>
성능

시스템 성능의 모니터링 및 관리의 변화는 비즈니스 요구에 대처하는 데 매우 중요합니다.

비즈니스 변화에 효과적으로 반응하려면 시스템도 변경되어야 합니다. 처음에는 시스템을 관리하는 것이 시간 소모적인 작업처럼 보일 수 있습니다. 하지만 더 효율적인 시스템의 실행으로 곧 투자수익이 발생하게 되고 이는 귀하의 비즈니스에 반영됩니다. 변경이 계획 및 관리되므로 효과적입니다.

시스템 성능 관리는 시스템 하드웨어 및 소프트웨어를 전반적으로 이해해야 하는 복잡한 태스크일 수 있습니다. IBM® i는 성능 관리 분야에서 업계 선두주자로서 다른 시스템에서 볼 수 없는 강력한 기능(최고의 성능 미터법, 인터넷에 항상 접속된 물리적 서비스 및 성능 데이터의 그래픽 보기 등)을 보유하고 있습니다. 시스템 성능에 영향을 주는 다른 모든 프로세스를 이해하는 것은 어려운 과제이며 성능 문제점 해결을 위해서는 대형 풀 스위트를 효과적으로 사용해야 합니다. IBM i는 사용자가 이 작업을 보다 쉽게 할 수 있도록 여러 기능을 제공합니다.

이 주제는 성능 관리와 연관되는 태스크 및 풀을 안내합니다.

주: 다음 코드 예를 사용하는 것은 [216 페이지의 '코드 라이센스 및 멤버십 정보']의 조건에 동의한 것으로 간주합니다.

관련 개념

[작업 관리]

작업 관리는 시스템에 대한 일일 작업부하와 시스템 운영을 제어하는 데 필요한 명령 및 내부 기능을 지원 합니다.

IBM i 7.1의 새로운 사항

이 주제에서는 본 풀리스의 새로운 사항이나 변경된 정보에 대해 설명합니다.

콜렉션 서비스

• 추가 데이터 콜렉션 범주가 추가되었습니다.
 - 제거 가능한 기록장치 - 이 범주는 IBM i 파일시스템에 부속된 테이프 장치에 대한 데이터 콜렉션을 사용할 수 있습니다. 성능 데이터 작성(CRTPFRDTA) 명령은 이 데이터를 QAPMTAPE 새 데이터베이스 파일로 내보냅니다.
 - 외부 기록장치 - 이 범주는 IBM i 파일시스템에 부속된, 특정 외부 기록장치 서브시스템과 연관된 비표준 데이터의 콜렉션을 지원합니다. 이 데이터의 형식은 서브시스템에 따라 다르고 변경될 수 있으므로 CRTPFRDTA는 문자 스트링으로 데이터를 새 데이터베이스 파일 QAPMXSTGD로 내보냅니다. 이 데이터는 iDoctor에서 볼 수 있습니다.
 - 시스템 내부 - 이 범주는 내부 시스템 데이터의 콜렉션을 지원합니다. 이 데이터가 제공되면 이것은 IBM 내부에서의 사용을 위한 것입니다.
• 단기 스펙 및 태스크의 클럭 및 보고 영향이 감소되었습니다. 이러한 태스크 및 스펙에 대한 데이터는 개별적으로 보고되지 않고 누적되어 보고됩니다. 추가 정보는 66 페이지의 단기 스펙 및 태스크 참조하십시오.

• 디스크 I/O 조각의 더 상세한 분석을 위해 디스크 평균값 대신 I/O 응답 시간의 분배를 보여주는 응답 시간 그룹이 향상되었습니다.
 - 그룹 정의 수가 증가되었습니다.
 - 시간은 밀리초 대신 마이크로초로 사용합니다.
 - 응답 및 쓰기 시간이 개별 그룹으로 분리되었습니다.
 - 세 응답 시간 그룹 데이터가 새 파일 QAPMDISKRB에 제공됩니다.

주: 호환성을 위해 7.1 이전에 정의한 응답 시간 그룹이 QAPMDISK 파일에서 계속 제공됩니다.

• 저장 또는 복원이 완료되면 작업에 대한 추가 데이터가 수집됩니다. 이 데이터는 새 파일 QAPMJOBRSR에 제공됩니다.

• 기존의 여러 파일에는 변경사항 및 추가 필드가 있습니다. 이에 대한 정보는 클래식 서비스 데이터 파일 주제를 참조하십시오.

i용 IBM Systems Director Navigator 성능 인터페이스

데이터 조사 태스크를 선택해서 액세스할 수 있는 성능 데이터 조사기의 몇 가지 사항이 개선되었습니다.

• 일반 성능 인디케이터: 사용자가 정의한 성능 임계값으로 구성 가능한 파티션의 일반 성능을 보여주는 세 컨텐츠 페키지가 포함되었습니다.

• 교차 파티션 CPU 미터법 보기: 클래식 서비스에는 오프로팅 시스템에 관계없이 동일한 단일 실제 서버에서 모든 논리 파티션에 대한 상위 레벨 교차 파티션 프로세서 성능 미터법을 수집하기 위한 기능이 있습니다. 이는 최소 몇개의 레벨 xx340_061이 설치된 POWER6® 이상의 시스템에서 사용할 수 있습니다. 이 데이터가 사용 가능하면 "실제 시스템" 아래의 몇몇 Perspective를 통해 볼 수 있습니다.

• 내보내기: 데이터는 이미지(도표 전용), 스크립트, 또는 템 구분 파일로 내보낼 수 있습니다.

• 다음과 같이 업그레이드: 데이터 조사는 이제 현재 성능 특성을 사용하여 추후 시스템의 사이징에 사용하기 위해 현재 세션에서 Workload Estimator로 데이터를 전송할 수 있습니다.

• 대화식 Perspective 개발: 새 도표 및 테이블을 데이터 조사 내에서 개발할 수 있습니다. 보기 추가, SQL 문 수정 및 데이터 정보 수정이 페이지를 벌어나지 않고 수행될 수 있습니다.

• 미터법 파인더: 데이터 조사에서는 수많은 미터법을 제공하므로, 어떤 Perspective에 보이고 있는 미터법이 있는지 구별하는 것은 때때로 쉽지 않습니다. 미터법을 검색해서 Perspective를 선택할 수 있습니다. 데이터 조사를 시작할 때 "탐색" 버튼 아래에서 이 기능을 활용하십시오.

• 성능 탐색기 컨텐츠 페키지: 단순 성능 탐색기 컨텐츠 페키지가 성능 탐색기 데이터 분석을 시작하기 위해 포함되어 있습니다.

• 새 미터법: 여러 새 Perspective가 데이터 조사에 추가되고, 여러 새 미터법이 기존 Perspective에 추가되었습니다. 새 미터법에는 SAN, 가상 I/O, 에너지 관리, 가상 메모리 및 통신 데이터 등이 포함됩니다.
• 기타 개선사항: 기타 변경사항이 성능 테스크의 전반적인 성능을 개선하기 위해 이루어졌습니다. 데이터 조사 내의 예로는 지속적 옵션, 각 Perspective 단계의 세 콜렉션 전태스트, 더 빠른 검색 및 더 완전한 이력 데이터를 수행하는 세 메뉴 바 등이 있습니다.

주: 이러한 새 기능은 다음 PTF(SI35659, SI35663 및 SI36093)가 있는 IBM i 6.1에서 사용할 수 있습니다.

성능 관리 에이전트

PM 에이전트는 SNA를 사용해서 성능 데이터를 IBM으로 전송하는 기능을 제공했습니다. Electronic Service Agent™만 성능 관리 데이터 전송에 사용됩니다. GO PM400 옵션 2 표시 화면(자동으로 스케줄된 작업에 대한 작업)에 있는 세 개의 항목이 더 이상 표시되지 않습니다. 이러한 작업은 성능 데이터 전송에 SNA를 사용합니다.

GO PMAGT에 대한 지원이 추가되고 있는 GO PM400과 동일한 기능을 갖고 있습니다. 두 개의 새 옵션이 PMAGT/PM400 메뉴에 추가되었습니다.

• 전자 서비스 에이전트가 IBM에 연결되는지 여부를 확인하는 기능
• 성능 데이터의 전송을 시작하는 기능

두 개의 명령 PMLINMON 및 CFGPMLIN이 시스템에서 제공되었습니다.

변경사항 또는 새로운 사항을 알아보는 방법

기술적 변경사항이 작성된 부분을 표시하기 위해 이 정보는 다음을 사용합니다.

• » 이미지는 새 정보나 변경된 정보가 시작되는 부분을 알려줍니다.
• << 이미지는 새 정보나 변경된 정보가 끝나는 부분을 알려줍니다.

이 팔리스의 새로운 사항이나 변경된 사항에 대한 기타 정보를 보려면 사용자 메모를 참조하십시오.

성능에 대한 PDF 파일

이 정보의 PDF 파일을 보고 인쇄할 수 있습니다.
• 성능 주제의 PDF 버전을 보거나 다운로드하려면 [성능] 약 1,100KB)을 선택하십시오. 이 PDF 파일에는 성
능에 대한 참조 정보가 포함되지 않습니다.
• 성능에 대한 참조 정보의 PDF 버전을 보거나 다운로드하려면 [참조 정보] 약 1,000KB)를 선택하십시오.

PDF 파일 저장

보거나 인쇄하기 위해 웹스테이션에 PDF를 저장하려면 다음을 수행하십시오.
1. 브라우저에서 PDF 링크를 마우스 오른쪽 단추로 클릭하십시오.
2. PDF를 로컬로 저장하는 옵션을 클릭하십시오.
3. PDF를 저장하려는 디렉토리를 탐색하십시오.
4. 저장을 클릭하십시오.

Adobe® Reader 다운로드

이 PDF를 보거나 인쇄하려면 시스템에 Adobe Reader를 설치 해야 합니다. [Adobe 웹 사이트](http://get.adobe.com/reader/)에서 무료 사본을 다운로드할 수 있습니다.

관련 참조

214 페이지의『성능에 대한 관련 정보』

여기에는 제품 매뉴얼 및 IBM Redbooks®(PDF 형식), 웹 사이트 및 성능 주제에 관련된 information center 주제가 나열됩니다. PDF 파일을 보거나 인쇄할 수 있습니다.

시스템 성능 관리

성공적인 성능 관리는 사용자 시스템이 효율적으로 자원을 사용하여 서버가 사용자 및 비즈니스 요구사항에 대해 최상의 서비스를 제공하도록 합니다. 또한, 효과적인 성능 관리는 시스템에서 일어나는 변경에 신속하게 대응하고 비용이 많이 드는 업그레이드 및 서비스 비용을 연기하여 비용을 절감할 수 있습니다.

성능 관리는 현재 기능을 측정하고 추세를 인식하며 응답 시간이나 작업 처리량과 같은 일반 사용자 및 관리 요구사항을 충족하도록 적절하게 조정하여 컴퓨터 시스템의 이용률을 최적화하는 데 필요합니다. 이것은 비즈니스 효율성을 유지보수하고 장기적인 비즈니스 활동이 오랜 기간 일시중단되지 않도록 하기 위해 필요합니다. 따라서 성능 관리는 일일 작업의 일부분입니다.

시스템 성능에 영향을 주는 요소를 이해하면 문제점에 대응하고 더 나은 장기적인 계획을 세우는 데 도움이 됩니다. 효율적인 계획은 개발로 인한 잠재된 성능 문제점 발생을 예방하며 현재 및 증가하는 작업부하를 처리하기 위한 시스템 용량을 보유할 수 있도록 합니다.

관련 정보

[Performance Management on IBM i](http://www.ibm.com/ibm/kr/kr-solutions/ibm_i/html/)

IBM i 오퍼레이팅 시스템에 대한 광범위한 참조 정보(백서, 기사, 최신 블로그 글 등을 포함하여)는 Performance Management 웹 사이트를 참조하십시오.

성능 관리 전략 선택

적절한 성능 관리 전략을 개발하면 시스템의 성능을 관리하는 데 도움이 됩니다.

성능 관리 전략은 성능 관리에 소비될 수 있는 시간에 크게 의존합니다. 작은 회사에서 근무 중인 경우 비즈니스의 다양한 측면을 관리하고 있어서 많은 시간을 성능 관리에 사용할 수 없습니다. 대부분의 큰 회사는 시스템 성능을 조정하고 효율적으로 실행되도록 유지하기 위해 성능 전문가를 고용합니다.

비즈니스 요구가 다르면 성능 관리 전략도 달라야 합니다. 기본적인 성능 관리 전략을 판별하고 사용할 성능 애플리케이션을 식별하려면 세 가지 범주(소규모 비즈니스, 중간 규모 비즈니스 및 대규모 비즈니스) 중 하나로 회사를 분류하십시오. 비즈니스 자원은 규모마다 다양하며 관리 전략도 이에 따라 달라집니다.
소규모 비즈니스

소규모 비즈니스는 대규모 비즈니스보다 성능 관리에 할애할 자원이 적습니다. 이러한 이유로, 가능한 한 많은 자동화를 사용하십시오. IBM i용 Performance Management(IBM i용 PM)를 사용하여 성능 데이터가 IBM으로 직접 송신되도록 할 수 있습니다. 데이터는 사용자 대신 컴파일되어 보고서에 생성됩니다. 이를 통해 시간이 절약될 뿐만 아니라 서버에 업그레이드가 필요할 때 IBM이 사용자에게 제안할 수 있습니다.

다음은 소규모 비즈니스의 권장되는 성능 애플리케이션 리스트입니다.
- IBM Systems Director Navigator 성능 인터페이스: 성능 데이터를 표시 및 관리합니다.
- 콜렉션 서비스: 추후 분석을 위해 사용자 정의 간격으로 샘플 데이터를 수집합니다.
- IBM i용 Performance Management: 시스템 성능 데이터의 콜렉션, 아카이브 및 분석을 자동화합니다.
- 성능 분석 용: 시스템 성능 정보를 수집, 분석 및 유지보수합니다.
- IBM i Navigator Monitor: 시스템 성능의 그래픽 표시를 관리하고, 사전 정의된 이벤트 또는 조건에 대한 응답을 자동화합니다.

중간 규모 비즈니스

중간 규모 비즈니스에는 소규모 비즈니스보다 성능 관리에 할애되는 자원이 더 많을 수 있습니다. 계속해서 가능한 한 많은 것을 자동화할 수 있고 IBM i용 PM을 사용하여 이점도 얻을 수 있습니다.

다음은 중간 규모 비즈니스의 권장되는 성능 애플리케이션 리스트입니다.
- IBM Systems Director Navigator 성능 인터페이스: 성능 데이터를 표시 및 관리합니다.
- 콜렉션 서비스: 추후 분석을 위해 사용자 정의 간격으로 샘플 데이터를 수집합니다.
- IBM i용 Performance Management: 시스템 성능 데이터의 콜렉션, 아카이브 및 분석을 자동화합니다.
- 성능 분석 용: 시스템 성능 정보를 수집, 분석 및 유지보수합니다.
- IBM i Navigator Monitor: 시스템 성능의 그래픽 표시를 관리하고, 사전 정의된 이벤트 또는 조건에 대한 응답을 자동화합니다.

대규모 비즈니스

대규모 비즈니스에서는 성능 관리에 자원이 할애됩니다.

다음은 대규모 비즈니스의 권장되는 성능 애플리케이션 리스트입니다.
- IBM Systems Director Navigator 성능 인터페이스: 성능 데이터를 표시 및 관리합니다.
- 콜렉션 서비스: 추후 분석을 위해 사용자 정의 간격으로 샘플 데이터를 수집합니다.
- IBM i용 Performance Management: 시스템 성능 데이터의 콜렉션, 아카이브 및 분석을 자동화합니다.
- 성능 분석 용: 시스템 성능 정보를 수집, 분석 및 유지보수합니다.
- IBM i 작업 감시: 특정 작업 또는 스크립트 자원에 대한 자세한 정보를 수집합니다.
- IBM i 디스크 감시: 디스크 성능 데이터에 대한 자세한 정보를 수집합니다.
- 성능 탐색기: 특정 애플리케이션 또는 시스템 자원에 대한 자세한 정보를 수집합니다.
관련 개념
80 페이지의 『IBM Systems Director Navigator 성능 인터페이스』
IBM Systems Director Navigator 성능 인터페이스를 사용하면 다양한 성능 정보 및 통계 하나의 중앙 위치로 가져와서 성능 데이터를 보고 수집하고 관리할 수 있습니다.
34 페이지의 『콜렉션 서비스』
콜렉션 서비스는 시스템 관리 데이터 수집을 위해 제공됩니다. 이 서비스는 시스템 데이터의 1차 콜렉션이다.
67 페이지의 『IBM i 작업 감시』
IBM i 작업 감시는 시스템의 모든 또는 일부 작업, 스텝 및 테스크에 대한 작업 데이터 콜렉션에 대해 제공됩니다. 작업 관련 성능 문제점을 진단하기 위해 사용되는 호출 스타, SQL문, 대기 중인 오브젝트, Java™ JVM 통계, 대기 통계 등을 제공합니다.
68 페이지의 『IBM i 디스크 감시』
IBM i 디스크 감시는 디스크 관련 성능 문제점을 진단하기 위해 디스크 성능 데이터 콜렉션에 대해 제공 됩니다.
118 페이지의 『그래프 이력』
그래프 이력은 지정된 시간 동안 콜렉션 서비스가 수집한 성능 데이터의 그래픽 표시를 제공합니다.
121 페이지의 『IBM Performance Management for Power Systems - IBM i에 대한 지원』
IBM i 오류링의 지원에서 IBM Performance Management for Power Systems™(PM for Power Systems)는 시스템 성능 데이터의 콜렉션, 보존 및 분석을 자동화하고 보고서를 리턴하여 시스템 자원 및 용량을 관리하는 데 도움을 제공합니다.
69 페이지의 『성능 담금』
성능 담금기는 특정 애플리케이션, 프로그램 또는 시스템 자원에 대한 자세한 정보를 수집하고 특정 성능 문제점을 세부사항을 제공합니다. 여기에는 몇 가지의 추적 유형 및 레벨을 수행하고 자세한 보고서를 실행하기 위한 기능이 포함됩니다.
관련 참조
136 페이지의 『성능 분석 툴』
성능 분석 툴 라이선스가 있는 프로그램에는 오류링팅 시스템에서 사용 가능한 기본 성능 분석 툴의 기능을 보충하거나 확장하는 많은 보충 기능이 있습니다.
105 페이지의 『모니터』
모니터는 시스템의 성능에 대한 현재 정보를 표시합니다. 또한 특정 이벤트가 발생할 때 이 정보를 사용하여 사전 경계된 조치를 수행할 수 있습니다.
시스템 확장 방법 및 시기 관별
비즈니스 요구가 변경됨에 따라 시스템도 변경되어야 합니다. 변경을 준비하기 위해 현재 시스템을 모델링하고 시스템, 구성 또는 작업부가 변경될 때 발생하는 사항에 대해 살펴봅니다.
비즈니스 요구가 변화함에 따라 시스템 요구도 변화합니다. 차후의 시스템 요구 및 성장에 대해 계획하려면 시스템 구성 또는 작업부가 변경될 때 발생하는 사항에 대해 관찰해야 합니다. 이 프로세스를 추세 분석이라고 하며 매일 수행해야 합니다. 시스템이 자원 용량 지점에 접근하면 이 데이터를 더 자주 수집하려고 할 수 있습니다.

대화식 및 통합처리 환경에 대해 별도로 추세 분석을 수행해야 합니다. 회사에서 특정 애플리케이션을 광범위하게 사용하는 경우 애플리케이션에 대해 추세 분석을 수행할 수 있습니다. 주의에 중요한 다른 환경은 빠르게 처리 외부 맵. 추세 분석 데이터를 일관성 있게 수집하는 것이 중요합니다. 시스템의 최대 작업량 시간이 오전 10:00과 오후 2:00 사이이고 사용자가 이 시간 동안 추세 분석 데이터를 수집하는 경우, 이 데이터를 다른 시간에서 수집된 데이터와 비교하지 마십시오.

적절한 용량 계획 및 성능 분석 작업을 수행하려면 성능 데이터를 수집, 분석, 유지보수 및 보존해야 합니다. IBM은 용량 계획, 자원 예측 및 사이징에 도움이 되는 몇 가지의 도움이 제공합니다.

- System i®용 IBM Performance Management
- IBM Systems Workload Estimator

관련 개념

[121 페이지의 IBM Performance Management for Power Systems - IBM i에 대한 지원]
IBM i 오퍼링이 자원에서 IBM Performance Management for Power Systems는 시스템 성능 데이터의 콜레션, 보존 및 분석을 자동화하고 보고서를 리턴하여 시스템 자원 및 용량을 관리하는 데 도움을 제공합니다.

[36 페이지의 IBM Systems Workload Estimator]
IBM Systems Workload Estimator는 System i®, System p® 및 System x®용 웹 기반 사이징 도구입니다. 이 도구를 사용하여 새 시스템의 크기를 정하고 기존 시스템에 대한 업그레이드 크기를 정하며 여러 시스템의 통합 크기를 정할 수 있습니다.

관련 참조

[4 페이지의 성능 관리 전략 선택]
적절한 성능 관리 전략을 개발하면 시스템의 성능을 관리하는 데 도움이 됩니다.

시스템 변경 전후의 성능 미터법 비교
시스템 변경 전후의 성능 미터법을 비교하면 문제해결 및 계획 등 다에 대한 중요한 정보가 제공됩니다.

시스템 구성에서 주요 변경사항: 새 애플리케이션 추가 또는 시스템 업그레이드 수행, 이전에 사용된 시스템 성능 미터법 세트를 설정해야 합니다. 정확한 시스템 성능 미터법을 유지보수하면 중요한 문제해결 정보가 제공될 수 있습니다. 최소한, 시스템 성능 미터법에는 콜렉션 서비스의 현재 콜렉션 오브젝트가 포함되어야 합니다.
관련 개념
34 페이지의『콜렉션 서비스』

콜렉션 서비스는 시스템 관리 테이터 수집을 위해 제공됩니다. 이 서비스는 시스템 데이터의 1차 콜렉터입니다.

성능 트래킹
시스템 성능 트래킹을 계속 사용하면 시스템 성장을 계획할 수 있고 성능 문제점의 원인을 식별하고 분리시키는 데 도움을 주는 데이터를 사용할 수 있습니다. 사용할 애플리케이션과 일상적으로 성능 데이터를 수집하는 방법을 학습합니다.

시스템 성능 트래킹은 시스템 구성에 조정할 수 있는 트렌드를 식별할 수 있고 시스템을 업그레이드할 최적의 시기와 방법을 선택하도록 도움을 줍니다. 또한 문제가 발생할 때 성능 문제점의 원인의 범위를 줄이기 위해 사전이 발생한 전과 후의 성능 데이터를 얻어서 적절한 해결책을 찾는 것이 중요합니다.

시스템에는 성능 트렌드를 트래킹하고 성능 데이터의 지난 레코드를 유지보수하는 여러 애플리케이션이 있습니다. 대부분의 애플리케이션은 콜렉션 서비스가 수집한 데이터를 사용합니다. 콜렉션 서비스를 사용하여 다음 영역에서 트렌드를 감시할 수 있습니다.
- 시스템 자원 활용의 트렌드. 이 정보를 사용하여 시스템 구성 변경과 업그레이드를 계획하고 명확하게 조정할 수 있습니다.
- 구성의 실제 구성요소에 대한 중점 식별
- 대화식 작업에 의한 시스템 자원의 사용과 최대 및 보통 사용량 동안의 일관처리작업의 균형
- 구성 변경사항. 콜렉션 서비스 데이터를 사용하여 사용자 그룹, 증가된 대화식 작업 및 기타 변경사항 추가와 같은 변경사항의 효과를 정확하게 예측할 수 있습니다.
- 시스템에서 기타 활동으로 문제점이 야기될 수 있는 작업 식별
- 사용 가능한 통신 화면에 대한 트렌드 및 활용 레벨

다음 둘은 시스템 성능을 모니터하는 데 도움을 줍니다.
- IBM Systems Director Navigator 성능 인터페이스
- 콜렉션 서비스
- System i5용 IBM Performance Management
관련 개념
80 페이지의 [IBM i5/OS® Systems Director Navigator 성능 인터페이스]
IBM Systems Director Navigator 성능 인터페이스를 사용하면 다양한 성능 정보 및 툴을 하나의 중앙 위치로 가져와서 성능 데이터를 보고 수집하고 관리할 수 있습니다.

34 페이지의 [콜렉션 서비스]
콜렉션 서비스는 시스템 관리 데이터 수집을 위해 제공됩니다. 이 서비스는 시스템 데이터의 1차 콜레터입니다.

118 페이지의 [그래프 이력]
그래프 이력은 지정된 시간 동안 콜렉션 서비스가 수집한 성능 데이터의 그래픽 표사를 제공합니다.

121 페이지의 [IBM Performance Management for Power Systems - IBM i에 대한 지원]
IBM i 오피러링의 자원에서 IBM Performance Management for Power Systems(PM for Power Systems)는 시스템 성능 데이터의 콜렉션, 보존 및 분석을 자동화하고 보고서를 리턴하여 시스템 자원 및 용량을 관리하는 데 도움을 제공합니다.

관련 참조
27 페이지의 [네트워크 성능]
네트워크 설계, 하드웨어 자원 및 통신량 증가는 종종 e-business 애플리케이션의 성능에 중요한 영향을 줍니다. 네트워크 성능을 최적화하고 서버 통신 자원을 조정하는 방법에 대한 정보는 이 주제를 사용하십시오.

성능 문제점 조사
성능 문제점을 식별하고 해결하는 데 도움이 되는 사용 가능한 많은 옵션이 있습니다. 성능 문제점의 소스를 찾는 데 도움이 되는 사용 가능한 툴 및 보고서의 사용 방법에 대해 학습합니다.

성능을 수집하거나 분석하는 대부분의 툴은 추적 또는 샘플 데이터를 사용합니다. 콜렉션 서비스는 주기적으로 다양한 시스템 자원에 대해 성능 데이터를 수집합니다. 여러 툴은 이 성능 데이터에 대해 분석하거나 보고하고 이를 사용하여 시스템 자원 활용에 대한 가시성을 확보할 수 있으며 많은 공통 성능 문제에 응답할 수 있습니다. IBM i5/OS® 작업 감시기 및 IBM i5/OS 디스크 감시기는 성능 데이터를 수집합니다. 자세한 성능 정보의 경우 여러 툴이 추적 데이터를 생성합니다. 추적 데이터는 종종 시스템의 작업 및 애플리케이션의 자원 소모 및 작동에 대한 자세한 정보를 제공할 수 있습니다. 성능 탐색기 및 성능 추적 시작(STRPFRTRC) 명령은 추적 데이터를 생성하기 위한 2 개의 공통 툴입니다.

예를 들어, 시스템이 느리게 실행되는 경우 System i Navigator 모니터를 사용해서 문제를 찾을 수 있습니다. CPU 이용률이 높다는 것을 인지한 경우 유연한 많은 양의 자원을 사용 중인 것처럼 보이는 작업을 식별할 수 있습니다. 그런 다음 구성 변경사항을 작성해서 문제점을 수정할 수 있습니다. 그러나 일부 문제가 추가 정보가 필요합니다. 해당 작업의 성능에 대한 자세한 정보를 얻으려면 원하는 작업에 대한 IBM i5/OS 작업 감시기 콜렉션을 시작하고 서버의 해당 작업 작동에 대한 자세한 정보를 수집하고 이를 발생한 프로그램에 대한 잠재적으로 변경사항을 작성할 수 있습니다.

성능 문제점 식별
성능 문제점 식별과 연관된 공통 단계를 학습합니다.
성능 문제점을 식별하려고 할 때 하드웨어 구성이 작업부하를 지원하기에 적합한지를 평가하는 것이 중요합니다. CPU 용량은 충분합니까? 다른 유형의 애플리케이션에 대해 주 기역장치는 충분합니까? 용량 모델링 기법을 통해서 먼저 이 질문에 응답을 하면 추후의 불필요한 노력을 방지할 수 있습니다.

충족시킬 목적 및 문제점의 증상에 대해 이해하면 분석자는 문제점의 원인을 설명할 가설을 공식화할 수 있습니다. 분석자는 라이센스가 있는 프로그램의 성능 분석 툴과 i5/OS로 사용 가능한 툴 및 명령을 사용하여 시스템 성능과 연관된 데이터를 수집해서 검토할 수 있습니다.

데이터를 검토하면 문제점을 더 정의할 수 있고 가설의 유효성을 검증하거나 거부할 수 있습니다. 명백한 원인이 분리되면 솔루션을 제안할 수 있습니다. 한 번에 하나의 솔루션을 처리할 때 프로그램을 다시 디자인하고 테스트할 수 있습니다. 다시, 여러 경우에 분석자의 툴이 솔루션의 유효성을 측정하고 가능한 부작용을 찾을 수 있습니다.

최적의 성능을 달성하려면 중요한 시스템 자원 간의 연관성을 인식하고 CPU, 디스크, 주 기억장치와 같은 자원의 소진의 경우 리모트 화면의 균형을 맞추어야 합니다. 이 자원은 각각 성능 저하를 아기할 수 있습니다.

대화식 처리량, 대화식 응답 시간, 일괄처리 처리량 또는 이러한 성능 중 일부 조합에 대해서는 시스템 성능에 대한 개선은 활동 테이프 또는 필터를 조정하는 것부터 애플리케이션 코드 자체를 변경하는 것까지 많은 양식을 사용합니다. 이 인스턴스에서 활동 테이프는 처리 장치에 대해 동시에 참가할 수 있는 작업의 최대 수를 지정하는 서브시스템의 특성입니다.

공통 성능 문제점 식별 및 해결

서로 다른 여러 성능 문제점은 종종 시스템의 공통 영역에 영향을 끼칩니다. 공통 영역의 문제점을 조사하고 해결하는 방법(예: 백업 및 복구)을 학습합니다.

성능 문제점이 시스템에 발생할 때 이는 우션 시스템의 특정 영역에 종종 영향을 끼칩니다. 이러한 시스템 영역에서 성능을 조사할 수 있는 일부 방법에 대해 다음 표를 참고하십시오.

| 영역 | 설명 | 사용 가능한 품
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>프로세서 로드</td>
<td>시스템에 나무 많은 작업이 있는지 여부 또는 일부 작업이 프로세서 시간의 큰 부분을 사용하는지 여부를 판별하십시오.</td>
<td>• i용 IBM Systems Director Navigator에 서 발견한 성능 데이터 조사기
• 활동 작업에 대한 작업(WRKACTJOB) 명령
• 시스템 활동에 대한 작업(WRKSYSACT) 명령
• System i Navigator의 작업 관리 기능
• System i Navigator 모니터 내의 CPU 이용률 미터법</td>
</tr>
<tr>
<td>영역</td>
<td>설명</td>
<td>사용 가능한 통</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>주 기약장치</td>
<td>결합 및 대기에서 부적합으로의 전이를 조사하십시오.</td>
<td>- i용 IBM Systems Director Navigator에서 발견한 성능 데이터 조사기</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- System i Navigator 모니터 내의 디스크 기약장치 미터법</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 시스템 상태에 대한 작업(WRKSYSSTS) 명령</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- System i Navigator의 작업 관리 아래의 메모리 풀 기능</td>
</tr>
<tr>
<td>디스크</td>
<td>너무 적은 암(arm)이 있거나 암(arm)이 너무 느린지 여부를 판별하십시오.</td>
<td>- i용 IBM Systems Director Navigator에서 발견한 성능 데이터 조사기</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 디스크 상태에 대한 작업(WRKSSTSK) 명령</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- System i Navigator 모니터 내의 디스크 암(arm) 이용률 미터법</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 성능 분석 풀 시스템 및 구성요소 보고서</td>
</tr>
<tr>
<td>통신</td>
<td>느린 화면, 화면의 오류 또는 화면에 대해 너무 많은 사용자를 찾으십시오.</td>
<td>- i용 IBM Systems Director Navigator에서 발견한 성능 데이터 조사기</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 성능 분석 풀 구성요소 보고서</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- System i Navigator 시스템 모니터 내의 LAN 이용률 미터법</td>
</tr>
<tr>
<td>IOP</td>
<td>IOP의 균형이 맞지 않는지 충분한 IOP가 없는지 여부를 판별하십시오.</td>
<td>- i용 IBM Systems Director Navigator에서 발견한 성능 데이터 조사기</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 성능 분석 풀 구성요소 보고서</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- System i Navigator 시스템 모니터 내의 IOP 이용률 미터법</td>
</tr>
<tr>
<td>소프트웨어</td>
<td>장금 및 상호 제어를 조사하십시오.</td>
<td>- i용 IBM Systems Director Navigator에서 발견한 성능 데이터 조사기</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 성능 분석 풀 장금 보고서</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 성능 분석 풀 주격 보고서</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 오브젝트 장금에 대한 작업(WRKOBJLCK) 명령</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- System i Navigator의 작업 관리자 아래에 있는 의심되는 작업의 세부사항을 보 심십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 시스템 활동에 대한 작업(WRKSYSACT) 명령</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 성능 데이터 표시(DSPPFRDTA) 명령</td>
</tr>
<tr>
<td>배업 및 복구</td>
<td>배업 및 복구와 저장 및 복원 조작에 영향을 주는 영역을 조사하십시오.</td>
<td>- System i 성능 기능 참조(저장/복원 성능 장)</td>
</tr>
</tbody>
</table>
관련 개념
80 페이지의 『i용 IBM Systems Director Navigator 성능 인터페이스』
i용 IBM Systems Director Navigator 성능 인터페이스를 사용하면 다양한 성능 정보 및 품목 하나의 중앙 위치로 가져와서 성능 데이터를 보고 수집하고 관리할 수 있습니다.

작업 관리
iSeries Navigator의 작업 관리 기능에 대한 자세한 정보는 작업 관리 주제를 참조하십시오.

관련 참조
107 페이지의 『모니터 미터법』
시스템 성능을 효율적으로 모니터하려면 모니터할 시스템 성능 측면을 결정해야 합니다. 중앙 관리는 시스템 성능의 여러 측면을 정확히 찾아내는 데 도움이 될 다양한 성능 측정(미터법이라고 함)을 제공합니다.

백업 및 복구 FAQ
공통 백업 및 복구 질문에 대해서는 백업 및 복구 FAQ 주제를 참조하십시오.

관련 정보
상능에 대한 CL 명령

Performance Management on IBM i 웹 사이트 - Performance Capabilities Reference PDF
Performance Management on IBM i 웹 사이트에서 적절한 Performance Capabilities Reference PDF를 선택하십시오. 백업 및 복구 관련 성능에 대한 정보는 Performance Capabilities Reference의 Save/Restore Performance 장을 참조하십시오.

시스템 성능 데이터 수집
데이터 수집은 성능 개선에 중요한 단계입니다.

성능 데이터를 수집할 때 응답 시간 및 처리량을 이해하기 위해 사용할 수 있는 시스템에 대한 정보를 수집합니다. 이는 수행된 작업을 가져오는 데 포함되는 시스템 또는 시스템 세트의 성능 상태를 캡처하는 방식입니다. 데이터 콜렉션은 나중에 수행할 수 있는 비교 및 분석에 대한 컨텍스트 또는 시작점을 제공합니다. 첫 번째 데이터 콜렉션을 사용할 때 추가 개선을 위한 벤치마크와 현재 성능 개선에 대한 시작이 수반됩니다. 수집한 성능 데이터를 사용하여 조정하고, 응답 시간을 개선하며 시스템이 최고 성능에 도달하는 데 도움을 제공할 수 있습니다. 성능 문제점 분석은 종종 “변경된 것이 무엇인가?”라는 간단한 질문에서 시작됩니다. 성능 데이터는 사용자가 이 질문에 응답하는 데 도움이 됩니다.

엑세스 권한이 있고 데이터를 수집할 수 있는 네 개의 콜렉터가 있습니다.

- 콜렉션 서비스
- 작업 감시기
- 디스크 감시기
- 성능 탐색기
관련 개념

34 페이지의 [콜렉션 서비스]
콜렉션 서비스는 시스템 관리 데이터 수집을 위해 제공됩니다. 이 서비스는 시스템 데이터의 1차 콜렉터입니다.

67 페이지의 [IBM i 작업 감시]
IBM i 작업 감시는 시스템의 모든 또는 일부 작업, 스크립트 및 태스크에 대한 작업 데이터 콜렉션에 대해 제공됩니다. 작업 관리 성능 문제가 전단하기 위해 사용되는 오류 스크립트, SQL문, 대기 중인 오브젝트, Java JVM 통계, 대기 통계 등을 제공합니다.

68 페이지의 [IBM i 디스크 감시]
IBM i 디스크 감시는 디스크 관련 성능 문제점을 전단하기 위해 디스크 성능 데이터 콜렉션에 대해 제공 됩니다.

69 페이지의 [성능 탐색기]
성능 탐색기는 특정 애플리케이션, 프로그램 또는 시스템 자원에 대한 자세한 정보를 수집하고 특정 성능 문제점의 세부사항을 제공합니다. 여기에는 몇 가지의 추적 유형 및 트랩을 수행하고 자세한 보고서를 실행하기 위한 기능이 포함됩니다.

시스템 자원 이용에 대한 정보 수집

각 기능의 통합 처리 장치(CPU), 디스크 공간, 대화상용량 및 기타 많은 요소와 같은 자원이 어떻게 사용되는지 모니터링합니다. 이러한 통합을 사용하여 문제점 영역 식별을 시작할 수 있습니다.

시스템과 애플리케이션이 사용 가능한 자원을 사용하는 방식을 모니터하고 추적하는 데 도움을 제공하기 위해 많은 통합을 사용할 수 있습니다. 문제점 분석에 대한 시작점으로, 그리고 시스템 성능 관리 및 용량 계획에 도움이 될 추적을 식별하기 위해 이 정보를 사용할 수 있습니다.

이 통합을 사용하는 방법 및 시기를 학습하려면 다음 주제를 참조하십시오.

- IBM Systems Director Navigator 성능 인터페이스
- System i Navigator 모니터
- 성능에 대한 CL 명령
- System i5용 IBM Performance Management
 관련 개념

80 페이지의『IBM Systems Director Navigator 성능 인터페이스』
i용 IBM Systems Director Navigator 성능 인터페이스를 사용하면 다양한 성능 정보 및 토론 하나의 중앙
위치로 가서서 성능 데이터를 보고 수집하고 관리할 수 있습니다.

121 페이지의『IBM Performance Management for Power Systems - IBM i에 대한 지원』
IBM i 인프라의 자원에서 IBM Performance Management for Power Systems(PM for Power
Systems)는 시스템 성능 데이터의 콜렉션, 보존 및 분석을 자동화하고 보고서를 리턴하여 시스템 자원 및 용
량을 관리하는 데 도움을 제공합니다.

 관련 참조

105 페이지의『모니터』
모니터는 시스템의 성능에 대한 현재 정보를 표시합니다. 또한 특정 이벤트가 발생할 때 이 정보를 사용하여
사전 정의된 조치를 수행할 수 있습니다.

 관련 정보

 성능에 대한 CL 명령

애플리케이션의 성능에 대한 정보 수집
애플리케이션은 다양한 이유로 느리게 수행될 수 있습니다. IBM i에 포함된 몇몇 테이터 기가 타이어스에 있는
프로그램을 사용하여 자세한 정보를 얻을 수 있습니다.

애플리케이션의 성능에 대한 정보를 수집하는 것은 시스템 성능에 대한 정보를 수집하는 것과 아주 다릅니다.
애플리케이션 정보를 수집하는 것은 성능 탐색기와 작업 감시기와 같은 특정 성능 애플리케이션으로만 수행할
수 있습니다. 또한 개별적인 서비 성능을 추적하기 위해 작업 모니터를 사용하고 서비 작업을 추적 및 분석하
기 위해 성능 분석 도구를 사용하여 애플리케이션 성능의 개요를 얻을 수도 있습니다.

주: 애플리케이션의 성능 데이터 수집은 시스템 성능에 중요한 영향을 미칠 수 있습니다. 콜렉션을 시작하기
전에, 다른 모든 콜렉션 옵션은 시도했던지 확인하십시오.

STRPFRTG(성능 추적 시작) 명령은 다중 프로그래밍 및 트랜잭션 데이터를 수집합니다. 이 명령을 실행한
후, DMPRTC(추적 담포) 명령을 사용하여 데이터를 데이터베이스 파일로 내보낼 수 있습니다.
관련 개념

IBM i 작업 감시는 시스템의 모든 또는 일부 작업, 스크립트 및 테스크에 대한 작업 데이터 콜렉션에 대해 제공됩니다. 작업 관련 성능 문제점을 진단하기 위해 사용되는 호출 스태, SQL문, 대기 중인 오브젝트, Java JVM 통계, 대기 통계 등을 제공합니다.

관련 참조

모니터는 시스템의 성능에 대한 현재 정보를 표시합니다. 또한 특정 이벤트가 발생할 때 이 정보를 사용하여 사전 정의된 조치를 수행할 수 있습니다.

성능 분석 툴 라이선스가 있는 프로그램에선 익세팅 시스템에서 사용 가능한 기본 성능 분석 툴의 기능을 보충하거나 확장하는 데 많은 보충 가능이 있습니다.

다중 프로그래밍 레벨(MPL) 및 트랜잭션 데이터를 수집하려면 STRPFTRC(성능 추적 시작) 명령을 참조하십시오.

i5/OS에서는 Java 성능

i5/OS는 시스템에서 Java 애플리케이션 또는 서비스의 성능을 최적화하기 위한 몇몇 구성 품질 및 자원을 제공합니다. Java 환경과, Java 기반 애플리케이션에서 최상의 가능한 성능을 얻는 방법에 대해 힌트하려면 이 주제를 사용하십시오.

추적 데이터 담포:

DMPTRC(추적 담포) 명령은 내부 추적 테이블의 정보를 데이터베이스 파일에 넣습니다.

로드된 시스템에서 최대 활동 동안 또는 우선순위가 높은(대화식) 작업 내에서 추적 데이터를 담포하는 것은 좋은 사례가 아닙니다. 추적 담포를 연기할 수 있지만 그 존재를 잊기 전에 데이터를 담포하려고 할 것입니다. 어떠한 이유로 추적 기록이 지워지거나 추적 데이터가 손실될 경우. 그러나 담포를 연기하고 DMPTRC 명령을 사용하여 일시 중지 작업으로 추적을 담포하려고 사용자에 대한 성능을 유지할 수 있습니다.

추적 데이터를 담포하려면 다음 명령을 발행하십시오.

```
DMPTRC MBR
   (member-name) LIB
   (library-name)
```

데이터를 저장할 라이브러리명과 멤버명을 지정해야 합니다. 추적 정보를 수집하는 동일 시간에 콜렉션 서비스 로열터나 멤버 데이터를 수집할 수 있습니다. 이 외 유사하게 콜렉터 데이터와 추적 데이터를 함께 수집할 때 해당
데이터를 일관성 있게 명명된 테이블에 놓아야 합니다. 즉, CRTPFRDTA TOMB 및 TOLIB 메개변수에서 제공하는 이름은 DMPTRC MBR 및 LIB 메개변수에서 제공하는 이름과 같아야 합니다.

관련 개념

34 페이지의 『클러스터 서비스』
클러스터 서비스는 시스템 관리 데이터 수집을 위해 제공됩니다. 이 서비스는 시스템 데이터의 1차 클러스터입니다.

관련 참조

주적 덤프(DMPTRC) 명령
내부 주적 테이블의 정보를 데이터베이스 파일에 넣으려면 DMPTRC(주적 덤프) 명령을 참조하십시오.

메모리 덤프:

DMPMEMINF(주 메모리 정보 덤프) 명령은 주 메모리의 페이지에 대한 정보를 파일로 덤프합니다.

메모리 데이터를 덤프하려면 다음 명령을 발행하십시오.

DMPMEMINF OUTFILE(MYLIBRARY/DMPMEMFILE)

디스크를 보기 위한 명령은 다음 SQL과 같은 명령이 될 수 있습니다.

SELECT count(*), POOL, OBJNAME, LIBNAME FROM mylibrary/dmpmemfile
 group BY POOL, OBJNAME, LIBNAME
 order by 1 desc

관련 참조

DMPMEMINF(주 메모리 정보 덤프) 명령
주 메모리의 페이지에 대한 정보 파일로 덤프하려면 DMPMEMINF(주 메모리 정보 덤프) 명령을 참조하십시오.

IBM i 대기 개정의 기초

1. 대기 개정은 스케줄 또는 태스크가 어떤 것도 수행하지 않음을 표시할 때 이 스케줄 또는 태스크가 수행 중인 것을 사용자에게 알리는 특별한 기술로, IBM i 오피스팀 시스템에 내장되어 있습니다.
2. 스케줄 또는 태스크가 실행되지 않는 경우 대기 중입니다. IBM i에 배치된 개별 대기 개정은 자세한 성능 분석을 위한 아주 강력한 기능입니다. 다음 정보는 대기, 스케줄이 대기하는 이유, 대기 개정을 사용하여 성능 문제점을 해결하거나 사용자 애플리케이션의 성능을 개선하는 방법에 한해 초점을 두었습니다.
3. 작업(job)은 작업(work)이 수행되는 기본 메카니즘입니다. 모든 작업(job)에는 하나 이상의 스케줄이 있으며 복 수의 스케줄이 있을 수 있습니다. 모든 스케줄은 라이선스가 있는 내부 코드(LIC) 태스크로 표시되지만, 태스크 역시 IBM i 스케줄 구조 없이 존재합니다. LIC 태스크는 IBM i 성능 분석 둘 또는 서비스 둘을 통하는 경우를 제외하고 보통 외부에서 볼 수 없습니다. 대기 개정 개선은 스케줄과 태스크 모두에 적용되므로, 스케줄과 태스크 용어는 작업의 실행 가능 조건을 가리킬 때 사용됩니다.
4. 스케줄 또는 태스크의 가능한 기본 상태는 두 가지입니다.
5. 프로세서에서 실행 중인 "실행 중" 상태입니다.
프로세서에서 실행 대기 중.

세 가지의 주요 대기 조건이 있습니다.

1. 실행 준비 완료(프로세서에 대해 대기 중), 이는 특수 대기 상태로, 보통 "CPU 큐"로 언급됩니다. 이는 스레드 또는 태스크가 큐에 있고 CPU에서 실행 대기 중임을 의미합니다. CPU 큐에 발생할 수 있는 몇 가지의 이유가 있습니다. 예를 들어, 파티션이 과부하되었는데 파티션이 수용할 수 있는 것보다 많은 작업이 있는 경우 작업은 CPU를 대기하기 위해 큐에 넣어질 수 있습니다. 이는 텐트 미터가 있는 고속도로에 비교될 수 있습니다. 고속도로가 정체될 때 자동차가 교통에 진입하기 전에 정지하여 대기할 수 있도록 텐트 미터에 희간색 신호가 표시됩니다. 논리 파티션 및 동시 멀티스レ디드 역시 CPU 큐에 발생할 수 있습니다.

2. 유휴 대기. 유휴 대기는 정상적이며 예상되는 대기 조건입니다. 유휴 대기는 스레드가 외부 입력에 대해 대기 중일 때 발생합니다. 이 입력은 사용자, 네트워크 또는 다른 애플리케이션에서 제공될 수 있습니다. 입력이 수신될 때까지 수행할 작업이 없습니다.

3. 차단된 대기. 차단된 대기는 공유 자원에 대한 액세스를 동기화하기 위한 직접화 매커니즘의 결과입니다. 차단된 대기는 정상적이고 예상된 조건일 수 있습니다. 이에 대한 예로는 테이블 행 갱신, 디스크 입출력 조작, 또는 통신 입출력 조작에 대해 직접화된 액세스가 있습니다. 그러나 차단된 대기는 정상이 아닐 수 있으며, 대기 조건을 분석하기 위해 대기 계정을 사용할 수 있는 상황인 예상하지 못한 차단점 입니다.

스레드 또는 태스크의 활성 시간을 그래픽 방식으로 생각하고, 실행 또는 대기하면서 소비된 시간을 구분합니다. 이 그래픽 설명을 "실행-대기 시간 서명"이라고 합니다. 상위 레벨에서는 이 서명이 다음과 같이 보입니다.

!그림

일반적으로, 애플리케이션 성능 개선에 대한 초점을 가능한 효율적으로 CPU를 사용하도록 하는 것이었습니다. 대기 계정이 있는 IBM i에서는 대기하면서 소비된 시간을 조사하여 대기 시간에 관여한 사항을 알 수 있습니 다. 줄이거나 제거할 수 있는 대기 요소가 있으면 전체 성능도 개선될 수 있습니다.

IBM i 오퍼레이팅 시스템에서 거의 모든 대기 조건은 식별되어 연결되었습니다. 즉, 각각의 고유 대기점에 적용된 특징이 지정됩니다. 이는 IBM의 라이센스가 있는 내부 코드와 오퍼레이팅 시스템을 다룰 환경에 사용할 수 있습니다. IBM i 6.1 리リ스부터 268개의 고유 대기 조건이 있습니다. 모든 스레드 및 태스크에 대해 250개보다 많은 고유 대기 조건을 추적하면 너무 많은 기억장소가 소비되므로 그룹화 접근 방식이 사용되었습니다. 각각의 고유 대기 조건은 32개의 그룹 또는 "버켓" 중 하나에 지정됩니다. 스레드 또는 태스크가 대기 조건에 들어가고 나오는 대로, 태스크 디스페처는 대기 조건을 해당 그룹에 밀링합니다.

대기 계정을 사용하여 실행-대기 시간 사정을 취하면, 이제 스레드나 태스크가 대기 중이었던 시간을 구분하는 구조요소를 식별할 수 있습니다.

예:
스레드의 대기 시간이 디스크에서 데이터 읽기 및 디스크에 데이터 쓰기, 직렬화된 액세스에 대한 레코드 장
급, 데이터 저널링으로 인해 발생한 경우, 위와 같이 구분된 대기를 볼 수 있습니다. 관련된 대기의 유형을 이
해하면 일부 질문이 떠오를 수 있습니다. 위 예의 경우 다음 질문이 예상됩니다.

• 페이저 결합을 야기하는 디스크 읽기가 있습니까? 그러한 경우, 내 몇 크기가 적절합니까?
• 디스크 읽기 및 쓰기를 야기하는 프로그램은 무엇입니까? 줄이거나 제거할 수 있는 불필요한 I/O가 있습니까?
 또는 I/O를 비동기식으로 수행할 수 있습니까?
• 내 레코드 잡급 전략이 최적화되었습니까? 또는 레코드를 불필요하게 잡고 있지 않습니까?
• 저널되는 파일은 무엇입니까? 모든 저널이 필수이며 최적으로 구성되었습니까?

IBM i 6.1 릴리스부터 정의된 32개의 대기 그룹 또는 “버켓”은 다음과 같습니다. 대기 그룹의 정의는 릴리스
마다 다르며 나중에 변동될 수 있습니다.

1. CPU에서 디스페치된 시간
2. CPU 큐입
3. 예약
4. 기타 대기
5. 디스크 페이저 결합
6. 디스크 비결합 읽기
7. 디스크 공간 사용 결합
8. 디스크 운영 시작 결합
9. 디스크 쓰기
10. 디스크 기타
11. 저널링
12. 세마포어 결합
13. Mutex 결합
14. 기계 레벨 케이트 직렬화 - IBM 지원 호출
15. 잠금 결합 - IBM 지원 호출
16. 데이터베이스 레코드 잡급 결합
17. 오브젝트 잡급 결합
18. 부적합한 대기
19. 주 기억장치 폴 결합 - IBM 지원 호출
20. 잠금을 포함하는 Classic Java 사용자
21. Classic Java JVM
22. Classic Java 기타
23. 소켓 숫자(Socket)
24. 소켓 전송
25. 소켓 수신
26. 소켓 기타
27. IFS
28. PASE
29. 데이터 큐 수신
30. 작업 제품/대기 중
31. 동기화 토큰 경합
32. 비정상 경합 - IBM 지원 화 혹은

애플리케이션에 대해 대기 분석을 수행하는 경우 이 대기 그룹 중에서 많은 그룹이 나타날 수 있습니다. 애플리케이션은 수행 중인 것과 해당 상황에서 대기 중인 이유를 알려 블록하진 대기를 줄이거나 제거하는 데 도움이 될 수 있습니다.

그룹 16(데이터베이스 레코드 잠금 경합)을 사용하는 경우 실제로 이 그룹 안에 몇 개의 다른 열거된 대기가 있습니다. 다음과 같습니다.

- 일기
- 개선
- 낮음
- 전송
- 검사
- 총괄 종료

보유자 및 대기자

IBM i는 스크드 또는 태스크가 대기 중인 자원을 추적할 뿐만 아니라 자원이 할당된 스크드나 태스크도 추적합니다. 이는 아주 강력한 피처입니다. "보유자(holder)"는 적립화된 자원을 사용 중인 스크드 또는 태스크입니다. "대기자(waiter)"는 적립화된 해당 자원에 액세스하려는 스크드 또는 태스크입니다.

호출 스택

IBM i는 또한 모든 스크드 또는 태스크에 대한 호출 스택을 관리합니다. 이는 대기 계정 정보와 독립적이지 않습니다. 호출 스택은 호출된 프로그램을 표시하여 대기 조건을 이해하는 데(자원 보유 중 또는 자원 액세스 없기 때문에 중상태로 유지한 논리를 이기는 것) 아주 유용할 수 있습니다. 보유자, 대기자 및 호출 스택을 조합하면 대기 조건을 분석하기 위한 아주 강력한 기능이 제공됩니다.
데이터 수집 및 분석

콜렉션 서비스 및 작업 감시하는 IBM i에서 대기 재정 정보를 수집하는 두 가지의 성능 데이터 콜렉션 메카니즘입니다. 작업 감시는 또한 보유자 및 대기자 정보 뿐만 아니라 호출 스택 정보도 수집합니다. 성능 데이터 모니터링으로 대너트를 분석할 수 있습니다. iDoctor 제품에는 성능 데이터를 그래픽으로 볼 수 있는 Windows® 클라이언트가 있습니다. IBM i 6.1에서도, IBM Systems Director Navigator 웹 콘솔에 웹 브라우저 인터페이스를 통해 성능 데이터를 그래픽으로 볼 수 있는 "데이터 조사" 빌드가 있습니다.

관련 개념
80 페이지의 『데이터 조사』
데이터 조사 테스크를 선택하면 강력한 성능 데이터 조사기 툴이 실행됩니다. 이 툴을 사용하면 도표 및 테이블 형식의 성능 콜렉션에 저장된 데이터를 보고 분석할 수 있습니다.
67 페이지의 『IBM i 작업 감시』
IBM i 작업 감시는 시스템의 모든 또는 일부 작업, 스크립트 및 대스크립트에 대한 작업 데이터 콜렉션에 대해 제공됩니다. 작업 관련 성능 문제점을 진단하기 위해 사용되는 호출 스택, SQL 문, 대기 중인 오브젝트, Java JVM 동계, 대기 동계 등을 제공합니다.

시나리오: 업그레이드 또는 마이그레이션 후에 시스템 성능 개선
이 시나리오에서는, 방금 시스템을 업그레이드 또는 마이그레이션했으며, 시스템이 이전보다 느리게 실행되는 것으로 나타납니다. 이 시나리오는 성능 문제점을 식별하고 수정하는 데 도움이 됩니다.

상황

최근에 시스템을 최신 버전으로 업그레이드했습니다. 정상적인 조작 업그레이드 및 제어를 완료한 후, 시스템 성능이 현저하게 저하되었습니다. 성능 문제점의 원인을 식별하고 시스템을 정상 성능으로 복원하려고 합니다.

세부사항

오퍼레이팅 시스템을 업그레이드한 후 몇몇 문제점으로 성능이 저하될 수 있습니다. i5/OS 또는 성능 분석 툴에 따르면 프로그램(5770-PT1)에 포함된 성능 관리를 통해 사용하여 성능 문제점에 대한 자세한 정보를 얻고 원인이 되는 문제점의 범위를 줄일 수 있습니다.
1. CPU 이용률을 검사합니다. 간혹 업그레이드 후에 작업이 필요한 자원에 액세스하지 못할 수 있습니다. 이 높을 수 없는 많은 CPU 자원을 소비하는 단일 작업 때문일 수 있습니다.
 • WRKSYSACT, WRKSYSSTS, WRKACTJOB 또는 System i Navigator 시스템 모니터를 사용하여 종 CPU 이용율을 찾아보십시오.
 • CPU 이용률이 높은 경우(예: 90% 초과) 활성 작업에 이용되는 CPU의 양을 검사합니다. 단일 작업이 CPU 자원의 30%를 초과하여 소비하는 경우 파일 호출 또는 오브젝트가 누락될 수 있습니다. 그러면 추가 자원을 위해 백업(백업에서 제공하는 프로그램의 경우)이나 작업 소유자 또는 프로그래머에 문의할 수 있습니다.
2. STRPFPRRC 명령으로 성능 추적을 시작한 후 시스템 및 구성요소 보고서를 사용하여 다음의 가능한 문제점을 식별하고 정정합니다.
• 기계 폴의 페이지 결과물이 초당 10개 결과를 초과하는 경우 결과물이 이 레벨 아래로 떨어질 때까지 추가 메모리를 기계 폴에 제공합니다.
• 디스크 이용률이 40%를 초과하는 경우 대기 및 서비스 시간을 상쇄습니다. 이 값이 승인 가능하면 작업부하를 줄여서 우선순위를 관리해야 할 수도 있습니다.
• IOP 이용률이 60%를 초과하는 경우 추가 IOP를 추가하고 일부 디스크 자원을 할당합니다.
• 사용자 폴에서의 페이지 결과물 승인할 수 없을 만큼 높은 경우 자동으로 성능을 조정할 수 있습니다.

3. 작업 요약 보고서를 실행하고 잠유 잡금 중돌 보고서를 참조하십시오. 점유 또는 잡금 중돌 수가 높으면 액세스 정로 크기가 1TB로 설정되었는지 확인하십시오. 점유 또는 잡금 중돌이 사용자 프로파일에 있고 참조된 사용자 프로파일이 많은 오브젝트를 소유하는 경우 해당 프로파일이 소유하는 오브젝트 수를 줄이십시오.

관련 개념

25 페이지의 [자동으로 성능 조정]

 대부분의 사용자는 자동으로 성능을 조정하기 위해 시스템을 설정해야 합니다. 새 시스템이 선적될 때 자동으로 조정하도록 구성됩니다.

관련 참조

STRPFTRC 명령
다중 프로그래밍 레벨(MPL) 및 트랜잭션 데이터를 수집하려면 STRPFTRC(성능 추적 시작) 명령을 참조하십시오.

관련 정보

성능 분석 툴 보고서
성능 분석 툴 보고서는 계속해서 수집된 데이터에 대한 정보를 제공합니다. 시스템 자원의 성능 및 사용에 대한 추가 정보를 얻으려면 이 보고서를 사용하십시오.

성능 데이터 표시

성능 데이터를 수집한 후 사용자 목적에 가장 적절한 툴을 사용하여 데이터를 표시할 방법을 학습하십시오.

성능 데이터를 표시하면 시스템의 성능을 더욱 정확하게 분석할 수 있습니다. 성능 데이터는 많은 다양한 방법으로 표시될 수 있지만, 어떤 상황에서는 특정 성능 애플리케이션의 성능이 적절하다는 것을 알 수 있습니다. 대부분의 애플리케이션은 콜백 서비스나 성능 추적으로 수집된 데이터를 표시합니다. 이러한 데이터에 액세스하는 최상의 방법은 성능 문제점 해결하려고 하는지 여부, 추후 종합을 위해 계획한 시스템 성능율 모니터 중인지 여부, 추세를 식별하고 있는지 여부에 따라 결정됩니다.

거의 실시간 성능 데이터 표시

현재 또는 최근 성능 정보를 표시하려면 다음 툴을 사용하십시오.

• IBM Systems Director Navigator 성능 인터페이스
• 성능에 대한 CL 명령
• 성능 분석 툴 플러그 인
이력 성능 데이터 표시

시스템에 저장된 데이터를 보려면 다음 둘을 사용하십시오.

- IBM Systems Director Navigator 성능 인터페이스
- System i5용 IBM Performance Management
- 성능 분석 통합ом
- System i Navigator 그래프 이력

관련 개념

80 페이지의 [i용 IBM Systems Director Navigator 성능 인터페이스]

i용 IBM Systems Director Navigator 성능 인터페이스를 사용하면 다양한 성능 정보 및 통합의 중앙 위치로 가슷하여 성능 데이터를 보고 수집하고 관리할 수 있습니다.

34 페이지의 [콜렉션 서비스]

콜렉션 서비스는 시스템 관리 데이터 수집을 위해 제공됩니다. 이 서비스는 시스템 데이터의 1차 콜렉터입니다.

121 페이지의 [IBM Performance Management for Power Systems - IBM i에 대한 지원]

IBM i 오버링의 지원에서 IBM Performance Management for Power Systems(PM for Power Systems)는 시스템 성능 데이터의 콜렉션, 보존 및 분석을 자동화하고 보고서를 리턴하여 시스템 자원 및 용량을 관리하는 데 도움을 제공합니다.

118 페이지의 [그래프 이력]

그래프 이력은 저장된 시간 동안 콜렉션 서비스가 수집한 성능 데이터의 그래픽 표시를 제공합니다.

관련 테스크

139 페이지의 [성능 분석 통합통]

System i Navigator에서 시스템 자원 이용률 데이터를 볼 수 있습니다. 데이터를 보고, 그래프로 표현하며 보고서에 요약할 수 있습니다. 여기에는 이 기능에 앱세스하는 방법에 대한 정보가 있습니다.

관련 참조

105 페이지의 [모니터]

모니터는 시스템의 성능에 대한 현재 정보를 표시합니다. 또한 특정 이벤트가 발생할 때 이 정보를 사용하여 사전에 경고된 조치를 수행할 수 있습니다.

관련 정보

성능에 대한 CL 명령

성능 조정

성능 문제점을 식별할 때 문제점을 수정하기 위해 시스템을 조정합니다.
성능 조정의 주요 목적은 시스템 자원을 가장 효율적으로 사용하는 것입니다. 성능 조정은 수동 또는 자동으로 시스템의 성능을 조정하는 방식입니다. 시스템을 조정하기 위한 많은 옵션이 있습니다. 사용자 환경에 최적화된 조정을 수행하고 성능을 관찰하도록 한다는 점에서 각 사용자 시스템 환경은 다릅니다. 즉, 두근 성능 보니터링을 수행해야 합니다.

또한, 프로세스 및 스크립트가 메모리 및 프로세서 자원에 대해 향상된 인화성을 달성할 수 있도록 하는 일부 조정 옵션을 고려할 수도 있습니다.

관련 참조

스프레드 인화성 시스템 값
2차 스프레드가 초기 스프레드와 동일한 프로세서 및 메모리 그룹에 대해 인화성을 보유할 것인지 여부를 지정하려면 스프레드 인화성 시스템 값을 참조하십시오.

프로세서 멀티미링 시스템 값
프로세서 멀티미링이 시스템에 의해 설정, 설정 해제되거나 관리되는지 여부를 지정하려면 프로세서 멀티미링 시스템 값을 참조하십시오.

기본 시스템 성능 조정 수행
시스템 성능을 조정하려면 초기 조정 값을 설정하고 시스템 성능을 관찰하여 값을 검토하고 조정하려는 것을 판별해야 합니다.

이 테스크 정보
성능 조정을 시작하려면 초기 시스템 및 사용자 폴 크기를 관별해서 초기 조정 값을 먼저 설정해야 합니다. 그런 다음 시스템 성능 관찰을 시작할 수 있습니다.

초기 조정 값 설정
초기 조정 값 설정에는 초기에 시스템 폴 크기를 구성하기 위해 취한 단계와 시스템을 효과적으로 성능 조정하기 위한 활동 레벨이 포함됩니다. 초기값은 예측에 기반을 드립니다. 따라서 예측은 시스템이 사용 중인 동안 더 많은 성능 조정을 요구합니다. 다음 단계는 초기 조정 값을 설정합니다.

- 초기 기계 폴 크기 관별
 기계 폴은 초당 10개의 결합 이하로 성능 조정하십시오.
- 초기 사용자 폴 크기 관별
 모든 사용자 폴의 결합 합계가 프로세서 수에 사용 중인 프로세서 퍼센트를 곱한 값보다 작도록 사용자 폴을 성능 조정하십시오. 예를 들어, 50 퍼센트 사용에서 실행 중인 네 개의 프로세서가 있는 시스템에서(4 * 50 = 200) 결합을 초당 200 미만으로 설정하게 됩니다.

시스템 성능 관찰
시스템 성능을 관찰하려면 시스템 상태에 대한 작업(WRKSYSSTS), 디스크 상태에 대한 작업(WRKDISKSTS) 및 환경 작업에 대한 작업(WRKACTJOB) 명령을 사용할 수 있습니다. 각 관찰 기간에 성능 목적에 대한 시스템 성능 측정을 검정하고 평가해야 합니다.
1. 불규칙한 시스템 활동을 제거하십시오. 예를 들어, 삼각형 성능 저하를 가진 수 있는 불규칙한 활동에는 대화식 프로그램 컴파일, 동시 오류 복구 프로시저(ERP), 열린 퀘리 파일(OPNQRYF), 애플리케이션 오류 및 사인 오프 활동 등이 있습니다.

2. WRKSYSSTS, WRKDSKSTS, WRKACTJOB 및 WRKSYSACT CL 명령을 사용하여 성능 데이터를 표시할 수 있습니다.

3. 시스템이 최소 5분 동안 데이터를 수집할 수 있도록 허용하십시오.

4. 성능 목적에 대한 성능 측정을 평가하십시오. 일반적인 측정에는 다음이 포함됩니다.
 • WRKACTJOB 표시 화면에서 사용 가능한 대화식 처리량 및 응답 시간
 • 애플리케이션 처리량. 활성 애플리케이션 작업에 대한 보조 입력(AuxIO) 및 CPU 백분율(CPU%) 값을 참조합니다.
 • 스플립 처리량. 활성 출력에서의 보조 입력(AuxIO) 및 CPU 백분율(CPU%) 값을 참조합니다.

5. 기대에 미치지 않는 성능 데이터를 관찰한 경우 새 데이터를 기반으로 시스템을 성능 조정하십시오. 다음을 확인하십시오.
 • 모든 주요 성능 측정을 측정하고 비교하십시오.
 • 한 번에 하나를 성능 조정하고 평가하십시오.

결과

성능 검토

적절한 성능 조정 값을 설정한 다음에는 시스템 작동이 계속 잘되고 있는지 확인하기 위해 주기적으로 검토해야 합니다. 진행 중인 성능 조정은 시스템 성능의 양상을 관찰하고 권장되는 지침으로 성능 조정하는 것으로 구성됩니다.

중요한 통계를 수집하려면 활동의 일반 레벨 동안 시스템 성능을 관찰해야 합니다. 예를 들어, 작업이 시스템에서 실행되지 않는 동안 수집된 통계는 시스템 성능 평가에 빌로 가치가 없습니다. 최선의 노력에도 불구하고 성능이 만족스럽지 못한 경우 구성 성능을 평가해야 합니다. 목표에 부합하려면 다음을 고려하십시오.

• 프로세서 업그레이드
• 추가 기억장치 및 제어기
• 추가 주 기억장치
• 애플리케이션 수행

이러한 접근 중 하나 이상을 적용해서 목적을 성취해야 합니다. 상당한 노력 이후에도 여전히 목표에 부합하지 못한 경우 목표가 수행 중인 작업 유형에 대해 실험 가능한지 여부를 판단해야 합니다.

성능 조정하려는 사항 관리

시스템 성능이 저하되고 성능 조정이 필요한 경우 성능 문제점의 소스를 식별하고 특정한 정점을 수행해야 합니다.
관련 참조
9페이지의 [성능 문제점 조사]
성능 문제점을 식별하고 해결하는 데 도움이 되는 사용 가능한 많은 옵션이 있습니다. 성능 문제점의 소스를 찾는 데 도움이 되는 사용 가능한 툴 및 보고서의 사용 방법에 대해 학습합니다.

자동으로 성능 조정

대부분의 사용자는 자동으로 성능을 조정하기 위해 시스템을 설정해야 합니다. 새 시스템이 선착될 때 자동으로 조정하도록 구성됩니다.

시스템이 자동으로 성능 값을 설정해서 시스템 자원의 효율적인 사용을 제공할 수 있습니다. 시스템을 설정해서 다음과 같이 시스템 성능을 자동으로 조정할 수 있습니다.

* 기여장치 폴 크기 및 활동 레벨 조정
* 기여장치 폴 페이지 조정

기여장치 폴 크기 및 활동 레벨 조정

QPFRADJ 시스템 값을 사용하여 기여장치 폴 및 활동 레벨의 자동 조정을 제어할 수 있습니다. 이 값은 시스템이 시스템 제차장(IPL) 시에 값을 조정해야 하는지 제차장 이후에 주기적으로 값을 조정해야 하는지를 표시합니다.

시스템을 설정해서 동적으로 IPL 또는 둘 다에서 성능을 조정할 수 있습니다.

* 시스템 제차장(IPL) 시에만 조정하도록 시스템을 설정하면 구성 및 서비스 > 시스템 값 > System i Navigator의 성능을 선택하십시오. 메모리 폴 밑으로 클릭해서 자동으로 메모리 폴 및 활동 레벨 조정에서 시스템 제차장 시를 선택하십시오. 이는 QPFRADJ 시스템 값을 1로 설정하는 것과 같습니다.
* 시스템 제차장(IPL) 시에 기여장치 폴을 조정하도록 시스템을 설정하고 제차장 이후에 주기적으로 기여장치 폴을 조정하도록 시스템을 설정하려면 구성 및 서비스 > 시스템 값 > System i Navigator의 성능을 선택하십시오. 메모리 폴 밑으로 클릭해서 자동으로 메모리 폴 및 활동 레벨 조정 아래에서 시스템 제차장 시 및 제차장 이후에 주기적으로를 선택하십시오. 이는 QPFRADJ 시스템 값을 2로 설정하는 것과 같습 니다.
* 제차장 이후에 주기적으로 기여장치 폴을 조정하고 시스템 제차장(IPL) 시에는 조정하지 않도록 시스템을 설정하려면 구성 및 서비스 > 시스템 값 > System i Navigator의 성능을 선택하십시오. 메모리 폴 밑으로 클릭해서 자동으로 메모리 폴 및 활동 레벨 조정 아래에서 제차장 이후 주기적으로를 선택하십시오. 이는 QPFRADJ 시스템 값을 3로 설정하는 것과 같습니다.

기여장치 폴 값은 시스템 제차장(IPL) 시에 초기값으로 재설정하지 않습니다.

기여장치 폴 페이지 조정

시스템이 제공한 동적 조정 지원은 시스템의 성능을 개선하기 위해 공유 폴에 대한 활동 레벨 및 폴 크기를 자동으로 조정합니다. 이 조정은 가장 적게 사용되는 기여장치 폴에서 더 많은 기여장치가 있는 폴에 이용해서 적용합니다. 이 조정은 또한 활동 레벨을 설정하여 폴에 할당된 기여장치로 폴의 스케드 수의 균형을 조정합니 다. 시스템을 조정하기 위해 조정기는 스케드 수를 기반으로 연산된 자침을 사용합니다.
동적 조정이 실시될 때 다음 성능 값은 자동으로 적절한 설정값으로 변경됩니다.
- 기계(*MACHINE) 메모리 폴 크기(QMCHPOOL 시스템 값)
- 기본(*BASE) 메모리 폴 활성 레벨(QBASACTLVL 시스템 값)
- 공유 폴에 대한 폴 크기 및 활성 레벨 *INTERACT
- 공유 폴에 대한 폴 크기 및 활성 레벨 *SPOOL
- 공유 폴에 대한 폴 크기 및 활성 레벨 *SHRPOOL1-6

동적 조정이 실시될 때(QPFRADJ 시스템 값은 2 또는 3으로 설정) QSYS 프로파일에서 실행되는 QPFRADJ 작업은 시스템에서 활성으로 표시됩니다.

관련 정보
메모리 폴
메모리 폴에 대한 정보는 메모리 폴 주체를 참조하십시오.

동시 멀티스레딩을 사용할 경우 관별
동시 멀티스레딩은 두 개의 애플리케이션이나 동일한 애플리케이션의 두 스레드를 동시에 실행할 수 있도록 프로세스 기능 공유를 허용합니다.

오퍼레이팅 시스템이 아주 많은 테스크를 동시에 실행할 수 있지만, 대칭적 멀티프로세서(SMP)의 각 프로세서는 보통 특정 순간에 단일 테스크 명령어 스트림을 실행합니다. QPRCMLTTSK 시스템 값은 개별적인 SMP 프로세서가 동시에 여러 명령어 스트림을 실행할 수 있도록 할 것인지 여부를 제어합니다. 각 명령어 스트림은 분리된 테스크 또는 스레드에 속합니다. 작동 가능한 경우, 각 개별 프로세서는 동시에 여러 테스크를 실행합니다. 사용 효과로, 시스템의 성능 용량이 증가하거나 멀티스레드된 애플리케이션의 응답성이 개선됩니다. 여러 개의 명령어 스트림을 동시에 실행할 경우 지정된 테스크의 성능은 개선되지 않습니다. 성능 균형상태의 경우와 같이 결과는 여러 환경에서 다양합니다.

멀티스레딩이 수행되는 방법은 하드웨어 모델에 따라 다르므로, 성능 용량은 다양합니다. 일부 모델은 동시 멀티스레딩(SMT)이라고 하는 개념을 통해 이러한 접근을 지원합니다. 이 접근방식(일부 Intel® 프로세서에서는 하이퍼스레딩이라고 함)은 프로세서 기능을 공유하여 각 테스크의 명령어를 동시에 실행합니다. 이전 프로세서는 하드웨어 멀티스레딩(HMT)이라고 하는 접근방식을 사용합니다. 하드웨어 멀티스레딩 접근방식에서, 하드웨어는 장기 처리 지원 이벤트(예: 캐시 부적절)에서 테스크 사이에 전환됩니다. 일부 모델은 멀티스레딩 양식을 지원하지 않습니다. 이는 QPRCMLTTSK 시스템 값이 성능 효과가 없음을 의미합니다.

QPFRADJ 시스템 값은 공유 프로세서 자원의 병렬 사용이 가능하도록 하므로, 성능 이점을 애플리케이션 및 모델의 영향을 많이 받습니다. 해당 사용을 통해 예상할 수 있는 성능 이점에 대한 지침은 System i Performance Capabilities Reference를 참조하십시오. 어떤 경우에는 이 시스템 값이 작동되지 않도록 하면 일부 애플리케이션에 더 나은 서비스가 제공됩니다.
e-business 성능

e-business 환경에서 성능을 관리하면 시스템 관리자에 대한 몇 가지의 새 문제점이 발생합니다.

서버에 대한 일상적인 성능 조정 외에도, 관리자는 e-business 트랜잭션을 지원하는 하드웨어 및 서비스를 모니터하고 최적화해야 합니다.

클라이언트 성능

시스템 관리자가 종종 e-business 네트워크의 클라이언트 측을 얽어낼 수 있는 반면, 사용자는 다음 클라우드 사양을 사용하여 클라이언트 장치가 e-business 환경의 최적화되도록 할 수 있습니다.

웹 브라우저가 있는 PC로 구성된 클라이언트는 종종 관리자가 최소한의 직접 제어를 가지고 있는 e-business 구성요소를 제시합니다. 그러나 이 구성요소는 계속 웹 애플리케이션에 대한 단말 응답 시간에 중요한 영향을 줍니다.

성능을 최적화하려면 클라이언트 PC 상태가 다음과 같아야 합니다.

- 적절한 메모리를 보유하고 있습니다. 복잡 양식 및 그래픽과 관련 집약적 애플리케이션 사용하는 인터페이스는 클라이언트 프로세스의 요구사항을 충족할 수도 있습니다.
- 고속 및 최적화 네트워크 연결을 사용합니다. 클라이언트 PC의 많은 통신 어댑터는 해당 네트워크 환경에 대해 최적화되지 않은 상태에서 작동할 수 있습니다. 자세한 정보는 통신 하드웨어 문서를 참조하십시오.
- 필요한 기술을 완전히 지원하는 브라우저를 사용합니다. 또한 웹 인터페이스를 설계할 때 브라우저 지원 및 성능이 주요 관심사이어야 합니다.

네트워크 성능

네트워크 설계, 하드웨어 사용 및 통신량 증가는 종종 e-business 애플리케이션의 성능에 중요한 영향을 줍니다. 네트워크 성능을 최적화하고 서버 통신 자원을 조정하는 방법에 대한 정보는 이 주제를 사용하십시오.
네트워크는 중종 웹 애플리케이션에 대한 응답 시간에 주 역할을 수행합니다. 또한 넷워크 구성요소에 대한 성능 영향은 중종 복잡에서 측정하기가 어렵습니다. 넷워크 통신량과 사용 가능한 대역폭이 지주 변경될 수 있고 시스템 관리자가 직접 제어할 수 없는 영향을 받을 수 있기 때문입니다. 그러나 서버에서 통신 차원을 모니터하고 조정하는 데 도움이 될 수 있는 몇몇 자원이 있습니다.

자세한 정보는 다음 주제를 참조하십시오.

관련 개념
80 페이지의 [i5/OS Systems Director Navigator 성능 인터페이스]
i5/OS Systems Director Navigator 성능 인터페이스를 사용하면 다양한 성능 정보 및 물을 하나의 중앙 위치로 가져와서 성능 데이터를 보고 수집하고 관리할 수 있습니다.

8 페이지의 [성능 트래킹]
시스템 성능 트래킹을 계속 사용하면 시스템 성장을 계획할 수 있고 성능 문제점의 원인을 식별하고 분리시키는 데 도움을 주는 데이터를 사용할 수 있습니다. 사용할 애플리케이션과 일상적으로 성능 데이터를 수집하는 방법을 학습합니다.

관련 참조
105 페이지의 [모니터]
모니터는 시스템의 성능에 대한 현재 정보를 표시합니다. 또한 특정 이벤트가 발생할 때 이 정보를 사용하여 사진 정의된 조치를 수행할 수 있습니다.

관련 정보
- [Performance Management on IBM i 웹사이트 - Performance Capabilities Reference PDF]
 Performance Management on IBM i 웹사이트에서 적절한 Performance Capabilities Reference PDF를 선택하십시오. Performance Capabilities Reference는 최적의 성능을 위해 서버를 구성하거나 조정하는 데 도움이 될 수 있는 자세한 정보, 보고서 및 예를 제공합니다. 특히, 통신 자원 계획 및 관리에 도움이 될 Chapter 5: Communications Performance를 참조하십시오.
- [SystemiNetwork.com]
 이 웹 사이트는 네트워크 계획 및 자원 최적화를 위해 많은 자원을 호스트합니다. 특히, "Cultivate your AS/400 Networks" 및 "8 tools for better network performance" 기사를 참조하십시오.

i5/OS에서 Java 성능
i5/OS는 시스템에서 Java 애플리케이션 또는 서비스의 성능을 최적화하기 위한 몇몇 구성 옵션 및 자원을 제공합니다. Java 환경과, Java 기반 애플리케이션에서 최상의 가능성을 얻는 방법에 대해 학습하려면 이 주제를 사용하십시오.

Java는 중종 웹 기반 애플리케이션에 대해 선택되는 어려움입니다. 그러나 Java 애플리케이션은 최적의 성능을 위해 i5/OS 환경과 Java 애플리케이션 둘 다의 최적화를 요구할 수 있습니다.

i5/OS에서의 Java 환경과, Java 성능 분석 및 개선을 위한 추가 정보 및 툴에 대해 학습하려면 다음 자원을 사용하십시오.
관련 개념
80 페이지의 [IBM Systems Director Navigator 성능 인터페이스]
iOS IBM Systems Director Navigator 성능 인터페이스를 사용하면 다양한 성능 정보 및 트래픽 분석을 하여의 중요
위치로 가져와서 성능 데이터를 보고 수립하고 관리할 수 있습니다.

Java 프로그램 성능 조정
Java 기반 애플리케이션에서 최상의 성능을 얻는 데 도움이 될 중요한 몇몇 구성 선택사항 및 패턴이 있습니
d.
관련 참고
[14 페이지의 [애플리케이션의 성능에 대한 정보 수집]]
애플리케이션은 다양한 이유로 느리게 수행될 수 있습니다. IBM i에 포함된 몇몇 트래픽과 기타 라이선스가 있
는 프로그램을 사용하여 자세한 정보를 얻을 수 있습니다.
관련 정보
Performance Management on IBM i 웹 사이트 - Performance Capabilities Reference PDF
Performance Management on IBM i 웹 사이트에서 적절한 Performance Capabilities Reference PDF를 선택하십시오. Performance Capabilities Reference는 최적의 성능을 위해 서버를 구성하거나 조정하는 데
도움이 될 수 있는 자세한 정보, 보고서 및 예를 제공합니다. 특히, Java 애플리케이션의 성능을 최적화하고
Java에서 프로그래밍에 대한 성능 추가 정보를 학습하는 데 도움이 되는 Chapter 7: Java Performance를 참조하십시오.

Java and WebSphere Performance on IBM eServer iSeries Servers
Java 및 WebSphere 성능을 최대화하고 성능 데이터를 수집 및 분석하는 데 도움이 되도록 운영 환경을 계
획하고 구성하는 방법을 학습하려면 이 IBM Redbooks 서적을 사용하십시오.

WebSphere J2EE Application Development for the IBM eServer iSeries Server
이 IBM Redbooks 서적은 J2EE 소개를 제공하고, 서버에서 J2EE 애플리케이션을 성공적으로 구현하는 데
도움이 되는 예제 및 제안사항을 제공합니다.

IBM HTTP Server 성능
IBM HTTP Server는 종종 e-business 성능의 중요한 파트입니다. IBM은 이 서버를 최대한 이용할 수 있도
록 하는 몇몇 옵션 및 구성 선택사항을 제공합니다.

i5/OS용 IBM HTTP Server는 웹 기반 애플리케이션의 단말 성능에서 중요한 역할을 수행할 수 있으며, 몇
몇 기능을 사용하여 웹 서버 성능을 효과적으로 모니터 및 개선할 수 있습니다. 특히 FRCA(Fast Response
Caching Accelerator)를 사용하여 HTTP Server 성능을 크게 개선할 수 있습니다(특히 대부분의 정적 환경에
서). i5/OS용 IBM HTTP Server는 또한 웹 성능 모니터와 웹 성능 어드바이저도 제공합니다.

HTTP Server 성능을 최대화하는 방법에 대한 정보는 다음 자원을 참조하십시오.
관련 개념

80 페이지의 "IBM Systems Director Navigator 성능 인터페이스"

IBM Systems Director Navigator 성능 인터페이스를 사용하면 다양한 성능 정보 및 통계 하나의 중앙 위치로 가시화해 성능 데이터를 보고 수집하고 관리할 수 있습니다.

관련 정보

클래식 서비스 데이터 파일: QAPMHTTPB
클래식 서비스 데이터 파일: QAPMHTTPD

i5/OS용 IBM HTTP Server

i5/OS에서의 HTTP Server 설정, 구성 및 관리에 대한 정보는 이 주제를 참조하십시오. 이 주제에는 또한 웹 성능 모니터, 웹 성능 어드바이저 및 FRCA(Fast Response Caching Accelerator)의 설명도 있습니다.

IBM HTTP Server (powered by Apache): An Integrated Solution for IBM eServer iSeries

공통 사용 시나리오에서 HTTP Server를 구성하기 위한 예를 포함하여, i5/OS용 HTTP Server(Apache로 강화)의 장이 있는 설명을 보러면 이 IBM Redbooks 서적을 사용하십시오.

AS/400 HTTP Server Performance and Capacity Planning

성능 조정 및 계획에 대한 HTTP Server 영향에 대해 학습하려면 이 IBM Redbooks 서적을 사용하십시오. 이 서적은 성능 관리 통계를 사용한 웹 서버 성능 데이터 수집, 해석 및 응답에 대한 제안사항도 포함합니다.

WebSphere 성능

WebSphere® Application Server는 선택할 수 있는 e-business 애플리케이션 전개 환경입니다. WebSphere 환경에서 성능을 계획하고 최적화할 방법을 학습하려면 이 주제를 사용합니다.

WebSphere 환경에서 시스템 성능을 관리하면 관리자에게 몇 가지의 도전이 제시됩니다. 웹 기반 트랜잭션은 더 많은 자원을 소비하고, 기존 방식의 통신 작업부하와 다르게 소비할 수 있습니다.

WebSphere 환경에서 최적 성능을 계획하고 시스템 자원을 조정하는 방법을 학습하려면 다음 주제 및 자원을 참조하십시오.
관련 정보
클래식 서비스 데이터 파일: QAPMWASAPP
클래식 서비스 데이터 파일: QAPMWASCFG
클래식 서비스 데이터 파일: QAPMWASEJB
성능 데이터 파일: QAPMWARSC
클래식 서비스 데이터 파일: QAPMWASSVR

WebSphere Application Server Performance 웹 사이트
이 웹 사이트는 많은 유효한 성능 추가 정보 및 권장사항을 비롯하여, WebSphere Application Server의 각 버전에 대한 지원을 제공합니다. 이 자원은 특히 서브릿, JSP(Java Server Page) 및 EJB(Enterprise JavaBeans)를 사용하는 환경에 유효합니다.

DB2 UDB/WebSphere Performance Tuning Guide
이 IBM Redbooks 서적은 WebSphere 및 DB2 환경에 대한 소개를 제공하고, WebSphere 및 DB2 성능 최적화에 도움이 될 수 있는 공동 성능 문제점의 제안사항, 예제 및 솔루션을 제공합니다.

Java and WebSphere Performance Tuning on IBM eServer iSeries Servers
Java 및 WebSphere 성능을 최대화하고 성능 데이터를 수집 및 분석하는 데 도움이 되도록 운영 환경을 개선하고 구성하는 방법을 학습하려면 이 IBM Redbooks 서적을 사용하십시오.

WebSphere V3 Performance Tuning Guide
이 IBM Redbooks 서적은 WebSphere V3 성능 최적화를 위한 자세한 권장사항 및 예를 제공합니다.

Performance Management on IBM i 웹 사이트 - Performance Capabilities Reference PDF
Performance Management on IBM i 웹 사이트에서 적절한 Performance Capabilities Reference PDF를 선택하십시오. Performance Capabilities Reference는 최적의 성능을 위해 서버를 구성하거나 조정하는 데 도움이 될 수 있는 자세한 정보, 보고서 및 예를 제공합니다. 특히, WebSphere Application Server에 특정한 성능 추가 정보에 대해 Chapter 6, "Web Server and Web Commerce"를 참조하십시오.

성능 관리에 대한 애플리케이션
성능을 관리하려면 특수화된 다양한 애플리케이션을 사용해야 합니다. 이 애플리케이션 각각은 특정한 시스템 성능 통찰을 제공합니다. 일부 애플리케이션은 데이터를 수집하고, 다른 애플리케이션은 수집된 데이터를 표시, 분석, 모니터 또는 관리하는 데 사용됩니다.

다음 그림은 기본 성능 애플리케이션을 표시합니다. 구름 형태는 시스템에 존재하는 수집 가능한 모든 데이터를 나타냅니다. 액세스 권한이 있고 데이터를 수집할 수 있는 네 개의 콜렉터가 있습니다. 결국 콜렉터에 의해 수집되는 데이터는 데이터베이스 파일 세트에 저장됩니다.
콜렉션 서비스

애플리케이션 정의 및 사용자 정의 간격 데이터

성능 데이터

성능 탐색기

애플리케이션 정의 추적점

콜렉션 서비스

작업 감시기

디스크 감시기

성능 탐색기

추적 또는 생물 데이터
각각의 콜렉터에는 고유한 특성이 있습니다.

콜렉션 서비스
콜렉션 서비스는 시스템 관리 데이터 수집을 위해 제공됩니다. 이 서비스는 시스템 데이터의 1차 콜렉션을 합니다. 시스템에 대한 활동이 있는 것을 알리면 연속적으로 이를 실행하면 됩니다. 콜렉션 서비스 데이터는 관리 콜렉션 오브젝트에 저장된 후 데이터베이스 파일로 변환되어 놓입니다. 수집된 간격 데이터는 애플리케이션 정보 또는 사용자 정보의 간격 데이터에 의해 저장됩니다.

IBM i 작업 감시기
IBM i 작업 감시기는 시스템의 모든 또는 임의 작업, 스레드 및 작업에 대한 작업 데이터 콜렉션에 대해 제공됩니다. 작업 관련 성능 문제점 진단하기 위해 사용되는 호출 스택, SQL문, 대기 중인 오브젝트, Java JVM 동작, 대기 동작 등을 제공합니다.
IBM i 디스크 감사기

IBM i 디스크 감사기는 디스크 관련 상호 문제점을 진단하기 위해 디스크 성능 데이터 콜렉션에 대해 제공합니다.

성능 탐색기

성능 탐색기는 프로그램 및 애플리케이션 레벨에서 문제점을 진단하기 위한 자세한 데이터 콜렉션을 위해 제공됩니다. 또한 애플리케이션에서 작업 효율을 추적하고 어려운 성능 문제점을 진단하는 데 사용할 수 있습니다. 애플리케이션 정의 성능 탐색기 추적점(예를 들어, Domino®, NetServer 또는 WebSphere 서버에 대한)은 수집되는 데이터를 저장합니다. IBM에서 지시하는 대로 사용해야 합니다. 성능 탐색기 데이터는 관리 콜렉션 오브젝트에 저장된 후 데이터베이스 파일로 변환되어 놓입니다.

데이터베이스 파일에 포함되는 성능 데이터는 API 및 CL 명령을 통해 액세스할 수 있습니다. 일부 데이터베이스 파일에 포함되는 성능 데이터는 데이터 보기 및 분석에 추가로 설명되는 다양한 하나 이상의 툴을 사용하여 조사하고 분석할 수 있습니다.

성능 데이터 콜렉터

IBM i에는 액세스 권한이 있고 데이터를 수집할 수 있는 네 개의 콜렉터가 있습니다. 각각의 콜렉터에는 고유한 특성이 있습니다.

콜렉션 서비스

콜렉션 서비스는 시스템 관리 데이터 수집을 위해 제공됩니다. 이 서비스는 시스템 데이터의 1차 콜렉터입니다.

콜렉션 서비스는 시스템의 다양한 영역에서 사용되는 상대적 시스템 자원량을 식별하는 데이터를 수집합니다. 다음을 수행하려면 콜렉션 서비스를 사용하십시오.
- 콜렉션 오브젝트의 수준 관리
- 최소의 시스템 오버헤드로 연속 및 자동으로 성능 데이터 수집
- 수집 데이터 및 데이터 사용 방법 제어
- 데이터 변환 없이 탈리스 사이에 성능 데이터 이동
- 성능 데이터 파일 작성
- 사용자 정의 성능 데이터를 수집하기 위해 사용자 고유 프로그램을 콜렉션 서비스로 통합
관련 개념

iSeries Navigator

System i Navigator를 사용하여 성능 데이터를 수집하고 관리하는 방법에 대한 정보는 System i Navigator 주제를 참조하십시오.

제41 페이지의 [콜렉션 서비스에 대한 시간대 고려사항]

성능 데이터를 검토하고 분석할 때 콜렉션의 실제 로컬 시간이 중요할 수 있습니다.

제70 페이지의 [성능 탐색기 개념]

성능 탐색기는 지정된 시스템 프로세스 또는 자원에 대한 자세한 정보를 수집하여 작동합니다. 이 주제에서는 성능 탐색기가 작동하는 방법과 최적의 사용법에 대해 설명합니다.

관련 테스크

제123 페이지의 [PM 에이전트 활성화]

PM 에이전트는 오피스테링 시스템의 일부이므로 해당되는 수집 기능을 사용하려면 활성화해야 합니다.

관련 참조

STRPRFCOL(성능 콜렉션 시작) 명령

데이터 콜렉션 시작 방법에 대한 정보는 STRPRFCOL(성능 콜렉션 시작) 명령을 참조하십시오.

Performance Management API

Performance Management API를 사용하여 성능 데이터를 수집하고 관리하는 방법에 대한 정보는 Performance Management API를 참조하십시오.

관련 정보

성능 데이터 파일

성능 데이터를 포함하는 파일에 대한 정보는 성능 데이터 파일 주제를 참조하십시오.

콜렉션 서비스 작동 방법:

콜렉션 서비스는 필요한 만큼 데이터베이스 파일의 여러 세트를 작성할 수 있는 단일 콜렉션 오브젝트에서 각 콜렉션에 대한 데이터를 저장합니다.

단일 콜렉션 오브젝트에 데이터를 저장하면 성능 데이터를 수집할 때 시스템 오버헤드가 낮아집니다. 콜렉션 중에 데이터베이스 파일을 작성할 값을 선택하면 콜렉션 서비스는 낮은 우선순위(50) 일괄처리 작업을 사용하여 이 파일을 갱신합니다. 이 낮은 콜렉션 오버헤드를 사용하면 실제로 연속 기준으로 짧은 간격에 자세한 성능 데이터를 수집할 수 있게 됩니다. 콜렉션 서비스는 성능 데이터 수집 및 보유에 대한 네트워크 전반의 시스템 정책을 설정하고 해당 정책을 자동으로 구현할 수 있도록 합니다. 관리 콜렉션 오브젝트를 오래 보유하는 한, 요구가 발생할 경우 성능 관련 이벤트를 사용자가 수집한 세부사항 레벨까지 보고 분석할 수 있는 기능을 갖게 됩니다.

다음 그림은 다음 콜렉션 서비스 요소의 개요를 제공합니다.
사용자 인터페이스

콜렉션 서비스의 다른 요소에 액세스할 수 있도록 하는 몇 개의 메소드가 존재합니다. 예를 들어, CL 명령, API, System i Navigator 인터페이스 및 IBM Systems Director Navigator Performance 인터페이스를 사용할 수 있습니다.

일반 등록정보

일반 등록정보는 콜렉션을 완수해야 하는 방법을 정의하며 자동화 콜렉션 속성을 제어합니다.

데이터 범주

데이터 범주는 수집할 데이터의 유형을 식별합니다. 수집되는 데이터와 데이터가 수집되는 방법을 독립적으로 제어하므로 범주를 구성할 수 있습니다.

콜렉션 프로파일

콜렉션 프로파일은 특정 범주 구성의 저장 및 활성화하기 위한 수단을 제공합니다.

상속 클렉터

상속 클렉터는 일반 등록정보와 범주 정보를 사용하여 상속 데이터의 콜렉션을 제어합니다. 상속 클렉터는 시작 및 중단하거나, 자동으로 실행하도록 구성할 수 있습니다.

콜렉션 오브젝트

콜렉션 오브젝트 *MGTCOL은 많은 양의 상속 데이터에 대한 효율적인 기억장치 매체로 제공됩니다.

CRTPRFDTA(상속 데이터 작성) 명령

CRTPFRDTA 명령은 관리 콜렉션 오브젝트에 저장되는 데이터를 처리하고 상속 데이터베이스 파일을 생성합니다.

상속 데이터베이스

데이터베이스 파일은 CRTPFRDTA 명령이 처리하는 데이터를 저장합니다. 파일은 시간 간격 데이터를 포함하는 상속 데이터 파일, 구성 데이터 파일 및 추적 데이터 파일과 같은 범주로 나눌 수 있습니다.
고객 지원 서비스에서 데이터베이스 파일 작성:

고객 지원 서비스에서 데이터베이스 파일을 수동 또는 자동으로 작성하려면 이 정보를 사용하십시오.

이 테스크 정보

고객 지원 서비스는 수집한 데이터를 관리 고객 지원 오브젝트에 담습니다. 이 데이터를 사용하면 먼저 데이터를 특수 데이터베이스 파일 세트에 두어야 합니다. 데이터가 수집된 대로 자동으로 데이터베이스 파일을 작성하려고 고객 지원 서비스 시작 대화상자에서 데이터베이스 파일 작성성을 선택하십시오. 또한 기존의 관리 고객 지원 오브젝트에서 데이터베이스 파일로 데이터를 내보내려고 할 때 나중에 데이터베이스 파일을 작성할 수도 있습니다.

data베이스 파일을 작성할 수 있는 많은 응선이 있습니다.
- 고객 지원 서비스를 사용하여 수동 데이터를 수집할 때 데이터가 수집되는 대로 자동으로 데이터베이스 파일을 작성할 수 있습니다.
- 관리 고객 지원 오브젝트에서 데이터베이스 파일을 작성할 수 있습니다. 데이터가 수집된 후 이 파일에서 저장 됩니다. 관리 고객 지원(*MGTCOL) 오브젝트에 저장된 수동 정보에서 수동 데이터베이스 파일 세트를 작성하려면 CRTPFRDTA(수동 데이터 작성) 명령을 사용하면 됩니다. System i Navigator 인터페이스나 CRTPFRDTA 명령을 사용할 수 있습니다.
- 고객 지원 중에 데이터베이스 파일을 작성하는 PM 에이전트를 활성화할 수 있습니다.
IBM i의 IBM Systems Director Navigator 성능 인터페이스 또는 다른 애플리케이션에서 작성한 데이터베이스 파일을 사용하여 성능 보고서를 생성할 수 있습니다. 하나의 시스템에서 성능 데이터를 수집한 후 관리 콜렉션 오브젝트(*MGTCOL)을 다른 시스템으로 이동하여 성능 데이터 파일을 생성하고 성능 보고서를 생성할 수 있습니다. 이 음성은 소스 시스템의 성능에 영향을 주지 않고 다른 시스템에서 성능 데이터를 분석할 수 있도록 합니다.

데이터베이스 파일 대신 관리 콜렉션 오브젝트에 데이터 저장

보고서를 실행해야 하는 데이터베이스 파일 대신 관리 콜렉션 오브젝트에 데이터를 저장해야 하는 이유는 무엇입니까? 관리 콜렉션 오브젝트에 데이터를 파일과 별도로 관리할 수 있으므로, 짧은 콜렉션 간격(예: 5분 간격)으로 성능 데이터를 수집한 후 더 긴 간격(예: 15분 간격)으로 데이터베이스 파일을 작성할 수 있습니다.

단일 관리 콜렉션 오브젝트에서 다른 데이터 범주, 다른 시간 범위 및 다른 샘플링 간격을 지정하여 다른 목적에 따른 많은 데이터베이스 파일 세트를 작성할 수 있습니다.

예를 들어, 24시간에 대해 5분 콜렉션 간격으로 전체 범주 세트(모든 데이터 또는 표준 + 프로토통 프로 파일)의 성능 데이터를 수집할 수 있습니다. 해당되는 하나의 관리 콜렉션 오브젝트에서 다른 목적으로 다른 데이터베이스 파일 세트를 작성할 수 있습니다. 정상적인 일반 성능 보고서를 실행하기 위해 하나의 데이터베이스 파일 세트를 작성할 수 있습니다. 이 파일은 샘플링 간격이 15분인 모든 범주의 데이터를 포함할 수 있습니다. 특정 성능 문제점을 분석하려면 다른 데이터베이스 파일 세트를 작성할 수 있습니다. 이 파일은 분석하는 데 필요한 단일 범주, 24시간 내의 특정 시간, 그리고 완전 정밀한 샘플링 간격 5분에 대한 데이터만 포함될 수 있습니다.

또한 단일 관리 콜렉션 오브젝트를 사용하여 많은 파일이 아닌 단일 오브젝트로 데이터를 관리할 수 있습니다. 단일 콜렉션 오브젝트를 사용하여 데이터 탐색 없이 람스 사이에 성능 데이터를 이동할 수 있습니다. 콜렉션 오브젝트를 오래 보유하는 한, 성능 관련 이벤트를 사용자가 수집한 세부사항 레벨까지 보고 분석할 수 있습니다.

관련 테스크

100 페이지의 [데이터베이스 파일 작성]
데이터베이스 파일을 작성하려면 다음 단계를 수행하십시오.

관련 참조

성능 데이터 작성(CRTPFRTA) 명령
성능 파일 작성에 대한 정보는 CRTPFRTA(성능 데이터 작성) 명령을 참조하십시오.

데이터 콜렉션 사용자 정의:

콜렉션 서비스를 사용하여 성능 데이터를 수집할 때 수집되는 데이터와 수집되는 빈도를 제어합니다.

이 테스크 정보

제공된 콜렉션 프로파일에서 선택할 수 있습니다. 표준 프로파일은 품질 데이터를 제외하고, 일반적으로 성능 분석 없이 필요한 범주에 해당됩니다. 표준 + 프로토통 프로파일은 품질 데이터를 포함하고, 일반적으로 성능
본문 둘레 필요한 모든 범주에 해당됩니다. 또는 사용자 정의를 선택하여 사용자 고유의 사용자 정의 프로파일을 작성할 수 있습니다. 사용 가능한 몇 가지의 다른 프로파일이 있습니다. 자세한 설명은 온라인 도움말을 참조하십시오. 사용자 정의 프로파일의 경우 시스템 CPU, 로컬 응답 시간, 디스크 기억장치 및 IOP(입/출력 프로세서)와 같은 사용할 수 있는 데이터 범주 리스트에서 선택할 수 있습니다.

수집하는 데이터의 범주마다 데이터 수집 빈도를 지정할 수 있습니다. 대부분의 범주에 대해 디포트 콜렉션 간격을 선택할 수 있습니다. 사전 정의된 설정에서 15초 및 60분 사이로 설정할 수 있습니다. (권장 설정은 15 분입니다.)

주: 디포트 값이 지정된 시간으로 설정되면 다음 범주를 제외한 모든 범주가 지정된 시간을 사용합니다.

- 명시적 시간 간격이 사용자 정의 프로파일에 설정될 수 있는 범주
- 디스크 기억장치, 입출력 프로세서, 최소 5분마다 수집해야 하는 통신 관련 범주와 같은 간격 제한사항이 있는 범주

수집된 데이터는 콜렉션이라고 하는 관리 콜렉션 오브젝트(유형 *MGTCOL)에 저장됩니다. 이 관리 콜렉션 오브젝트가 너무 커지지 않도록 하려면 콜렉션이 일정한 간격으로 순환되어야 합니다. 콜렉션 순환(Cycling)은 콜렉션 오브젝트를 새로 작성하고 데이터 콜렉션이 원래 콜렉션 오브젝트에서 중단할 때 동시에 데이터 저장을 시작하는 것을 의미합니다. 계획하는 데이터 사용 방법에 따라 1시간 - 24시간의 어떤 주기 간격도 지정할 수 있습니다.

관련 테스크

[100 페이지의 [콜렉션 서비스 구성]]
다음을 수행해서 콜렉션 서비스를 구성하십시오.

콜렉션 서비스 콜렉션 프로파일:
콜렉션 서비스 콜렉션 프로파일의 설명입니다. 콜렉션 프로파일은 수집되는 데이터를 정의합니다.
- 최소 - 가장 일반적으로 사용되는 성능 데이터 세트. 권장되는 최소한의 데이터 콜렉션이며 다음 범주가 포함됩니다.
 - 시스템 비스: 이 범주에는 시스템 범스의 운영에 대한 데이터가 포함됩니다.
 - 메모리 끝: 이 범주에는 메모리 끝 구성 데이터와 메모리 끝 운영 데이터가 포함됩니다.
 - 하드웨어 구성: 이 범주에는 시스템에 대한 하드웨어 자원 정보가 포함됩니다. 이 범주에는 DSPHDWRSC(하드웨어 자원 표시) 명령이 포함하는 동일한 데이터가 포함됩니다. 둘 이상의 인스턴스가 발견되는 경우 데이터의 첫 번째 인스턴스만 데이터베이스에서 보고됩니다.
 - 시스템 CPU: 이 범주에는 해당 프로세서의 시스템 CPU 사용에 대한 데이터가 포함됩니다.
 - 시스템 레벨 데이터: 이 범주에는 시스템 전반에서 사용되는 일반 시스템 데이터가 포함됩니다.
 - 작업(MI 테스크 및 스펙): 이 범주에는 시스템에 있는 모든 활성 테스크, 작업 및 스펙에 대한 정보가 포함됩니다. 수집된 데이터는 기계 인터페이스(MI)에 의해 제공됩니다.
 - 작업(오피어팅 시스템): 이 범주에는 시스템에 있는 모든 활성 작업에 대한 정보가 포함됩니다. 수집된 데이터는 오피어팅 시스템에 의해 제공됩니다.
- 디스크 기역장치: 이 범주에는 시스템 기역장치 데이터가 포함됩니다. 기본 기역장치 정보와 디스크 드라이브에 대한 운영 데이터가 포함됩니다.
- 입/출력 프로세서: 이 범주에는 시스템 입/출력 프로세서(IOP)에 대한 데이터가 포함됩니다. 아랫작자 지원 별로 IOP 버스 사용 및 IOP 이용률에 대한 데이터가 포함됩니다.
- 표준 - 통신 프로토콜 데이터의 경우를 제외하고, 일반적으로 IBM i용 성능 분석 툴에 있는 툴에 필요한 데이터 범주. 표준 프로파일의 데이터 범주에는 최소 프로파일의 모든 범주에 대하여 다음 범주가 포함됩니다.
- 메모리 폴 성능 조정: 이 범주에는 각 시스템 메모리 폴에 대한 폴 성능 조정 구성 데이터가 포함됩니다.
- 서브시스템: 이 범주에는 활성 서브시스템과 서브시스템 폴에 대한 데이터가 포함됩니다. 둘 이상의 인스턴스가 발견되는 경우 데이터의 첫 번째 인스턴스만 데이터베이스에서 보고됩니다.
- SNADS: 이 범주에는 시스템에 있는 활성 SNADS 작업에 특정한 트랜잭션 경계 정보가 포함됩니다.
- 로컬 응답 시간: 이 범주에는 5254 제어기에 연결된 워크스테이션에 대한 응답 시간 정보가 포함됩니다. 응답 시간 데이터는 워크스테이션마다 보고되며 응답 시간 버켓 세트에 저장됩니다.
- APPN: 이 범주에는 시스템의 APPN 지원에 대한 데이터가 포함됩니다. 기록된 데이터에는 일반 정보와, 트랜잭션 유형 및 작업 활동에 따라 분류된 데이터가 모두 포함됩니다.
- SNA: 이 범주에는 시스템의 SNA 지원에 대한 데이터가 포함됩니다. 데이터는 제어기, 채스크 및 세션 정보로 구성되는 활성 T2 채스크마다 보고됩니다.
- TCP/IP(기본): 이 범주에는 TCP/IP에 대한 시스템 전반의 성능 정보가 포함됩니다.
 - 사용자 정의 트랜잭션 데이터: 이 범주에는 IBM 정의 트랜잭션이나 애플리케이션 정의 트랜잭션에 대한 데이터가 포함됩니다. 사용자 고유의 사용자 정의 트랜잭션을 작성할 수 있습니다.
 - i용 IBM Domino: 이 범주는 i용 IBM Domino 라이센스가 있는 프로그램이 시스템에 설치된 경우 이 프로파일에 포함됩니다.
 - i용 IBM HTTP Server(Apache로 강화됨): 이 범주는 i용 IBM HTTP Server 라이센스가 있는 프로그램이 시스템에 설치된 경우 이 프로파일에 포함됩니다.
 - 외부 기역장치: 이 범주에는 외부적으로 IBM i 파티션에 접속된 디스크 장치에 대한 비표준화 데이터가 포함됩니다.
 - 시스템 내부 데이터: 이 범주에는 시스템에 대한 내부 데이터가 포함됩니다.
 - 제어 가능 기역장치: 이 범주에는 시스템에 연결된 제어 가능 기역장치에 대한 데이터(더 자세하게는 대 이프 장치 데이터)가 포함됩니다.
 - 표준 + 프로토콜 - 통신 프로토콜 데이터를 비롯하여, 일반적으로 i용 성능 분석 툴에 있는 툴에 필요한 데이터 범주. 표준 + 프로토콜 프로파일의 데이터 범주에는 표준 프로파일의 모든 범주에 대하여 다음 범주가 포함됩니다.
- 네트워크 서버: 이 범주에는 네트워크 서버에 대한 정보가 포함됩니다. 통합 xSeries® Servers의 경우, CPU 이용률에 대한 데이터가 보고됩니다. 호스팅 펌웨어(실제 자원을 제공하는 파티션)의 가상 I/O 어댑터의 경우 예스테 파티션 대신 제공하는 가상 장치 지원으로 인해 이 파티션 내에 발생하는 I/O 활동에 대한 데이터가 포함됩니다.
- 통신(기본): 이 빌주에는 사용(연결변환) 가능한 각 통신 화면의 기본 프로토콜 정보가 포함됩니다.
- 통신(스테이션): 이 빌주에는 특정 통신 화면에 대한 스테이션 정보가 포함됩니다. 사용(연결변환) 가능한 스테이션마다 데이터가 보고됩니다. 이 데이터를 지원하는 프로토콜은 투톤링, 이더넷, DDI, 프레임 릴레이 및 X.25입니다.
- 통신(SAP): 이 빌주에는 특정 통신 화면에 대한 서비스 액세스 포인트(SAP) 정보가 포함됩니다. 사용(연결변환) 가능한 화면 내의 구성한 SAP마다 데이터가 보고됩니다. 이 데이터를 지원하는 프로토콜은 투톤링, 이더넷, DDI 및 프레임 릴레이입니다.
- 데이터 포트 서비스: 이 빌주에는 데이터 포트 서비스에서 확보된 성능 데이터가 포함됩니다. 데이터 포트 서비스는 소스 시스템과 iSeries® 클러스터 환경에 자동 시스템 중 하나 사이의 대용량 데이터 전송을 지원하는 라이센스가 있는 내부 코드입니다. 데이터 포트 서비스는 리모트 독립 보조 기역장치 (AP)의 복잡성과 같은 라이선스가 있는 내부 코드 클라이언트에서 사용됩니다.
- 논리 파티션: 이 빌주에는 IBM Director Server(5761-DR1) 라이센스가 있는 프로그램이 콜렉션 서비스를 실행 중인 파티션에 설치된 경우 적합한 파티션에서 수집되는 성능 데이터가 포함됩니다. 다른 파티션에서 데이터를 수집하려면 IBM Director Agent(5761-DA1) 라이센스가 있는 프로그램이 다른 파티션에 설치되어야 하고 서비에 다른 파티션에 대한 권한이 있어야 합니다.
- TCP/IP 인터페이스: 이 빌주에는 각 활성 TCP/IP 인터페이스에 대한 정보가 포함됩니다.
 - 향상된 용량 계획: 향상된 용량 계획 프로파일의 데이터 범주에는 표준 및 프로토콜 프로파일의 모든 범주에 대하여 PEX 데이터 - 프로세서 효율성 데이터 범주가 포함됩니다. PEX 데이터 - 프로세서 효율성 데이터 범주에는 성능 탐색기(PEX) 데이터에 대한 지침을 사용자가 포함됩니다. 용량 계획 기능을 향상시키거나 다른 목적으로 데이터를 수집할 수 있습니다. 이 빌주를 사용할 때 특수한 고려사항이 적용됩니다.
 - 성능 탐색기 정의 QPMIPEXPEI가 작성됩니다. 성능 탐색기 정의가 이미 존재하는 경우 삭제되고 다시 작성됩니다.
 - 이 벌주에는 콜렉션 서비스가 성능 탐색기(PEX) 콜렉션(세션 ID QPMINTPEXD)을 시작해야 합니다. 이 콜렉션은 다른 성능 탐색기 콜렉션과 충돌할 수 있습니다.
 - 수집되는 데이터의 유형에 영향을 주므로, QPMINTPEXD 세션을 수동으로 종료하거나 시작하면 안 됩니다.
 - 이 벌주의 콜렉션이 중단될 때 세션 QPMINTPEXD에 대한 성능 탐색기 콜렉션도 종료됩니다.

IBM은 더 이상 이 프로파일 사용을 권장하지 않습니다.

- 사용자 정의: 이 옵션은 수집되는 데이터의 범주 뿐만 아니라 간격 스케줄 사용자 정의도 허용합니다. 다른 간격으로 수집되는 다른 데이터 범주를 보유할 수 있습니다.

콜렉션 서비스에 대한 시간대 고려사항:

성능 데이터를 검토하고 분석할 때 콜렉션의 실제 로컬 시간이 중요할 수 있습니다.

예를 들어, 검토 중인 시스템에서 발생한 가장 많은 작업부하를 나타내도록 해당 일의 가장 바쁜 기간 동안 수집된 데이터가 무엇인지 확인해야 할 수도 있습니다. 성능 데이터를 수집하는 시스템 중 일부가 다른 시간대에 있는 경우, 다음 사항을 고려해야 합니다.
• 시스템 그룹에 대한 콜렉션 서비스를 시작할 때 그룹에 있는 모든 시스템에서 동시에 콜렉션 서비스를 시작 합니다. 다른 시스템에 있는 일부 시스템으로 인해 발생하는 시스템 시간 및 날짜 설정 차이는 고려되지 않습니다.

• 중앙 관리 스케줄러를 사용하여 콜렉션 서비스를 시작하는 경우 스케줄러가 테스크를 시작하는 시간은 중앙 관리에 있는 중앙 시스템의 시스템 시간 및 날짜를 기초로 합니다.

• 각 종료점 시스템에 대한 관리 콜렉션 오프셋은 해당 종료점 시스템 및 중앙 시스템의 QTIME 및 QUTCOFFSET(협정 세계시 오프셋) 시스템 값을 기초로 시각 및 종료 시간을 반영합니다. 종료점 시스템 이 중앙 시스템과 다른 시스템에 있고 이 시스템 값이 두 시스템 모두에서 올바르게 설정되는 경우 콜렉션 오프셋에 대해 보고되는 시작 및 종료 시간이 종료점 시스템의 실제 시간입니다. 즉, 시작 및 종료 시간은 해당 이벤트가 발생한 실제 시점에 있었던 대로 종료점 시스템의 QTIME 값을 반영합니다.

• 성능 콜렉션의 스케줄링은 표준 시간에서 일광 절약 시간으로 또는 일광 절약 시간에서 표준 시간으로 경계를 교차할 수 있습니다. 그러한 경우 이 시각 시간이 시작 시간을 스케줄링할 때 고려해야 합니다. 그렇지 않으면 실제 시각 및 종료 시간이 예상보다 1시간 늦거나 빨라질 수 있습니다. 또한 관리 콜렉션 오프셋에 대해 보고되는 시작 및 종료 시간은 일광 절약 시각으로부터의 변경이 적용될 때마다 QUTCOFFSET 시스템 값이 조정되지 않는 한 이 차이의 영향을 받습니다.

관련 개념

날짜 및 시간 시스템 값: 시간
QTIME 시스템 값에 대한 정보는 날짜 및 시간 시스템 값: 시간 주제를 참조하십시오.

날짜 및 시간 시스템 값: 협정 세계시(UTC)에서 오프셋
QUTCOFFSET 시스템 값에 대한 정보는 날짜 및 시스템 값: 협정 세계시(UTC)에서 오프셋 주제를 참조하십시오.

클렉션 서비스에서 사용자 정의 범주 구현:

클렉션 서비스의 사용자 정의 범주 기능은 애플리케이션이 성능 데이터 콜렉션을 클렉션 서비스에 통합할 수 있도록 합니다.

이 테스크 정보

이로서 데이터 콜렉션 프로그램을 작성하고, 등록한 후 클렉션 서비스에 통합하여 애플리케이션에서 데이터를 수집할 수 있습니다. 클렉션 서비스는 모든 클렉션 간격에서 데이터 콜렉션을 호출하고 데이터를 클렉션 오브젝트에 저장합니다. 아래에 나열된 클렉션 오브젝트 API를 사용하여 클렉션 오브젝트에 저장된 데이터에 액세스해야 합니다. 수집되는 대로, 또는 클렉션 오브젝트가 보유되는 한 실시간으로 데이터에 액세스할 수 있습니다.

이 기능을 구현하려면 다음을 수행해야 합니다.

1. 클렉션 서비스에서 새 범주에 대한 성능 데이터를 수집할 프로그램을 개발하십시오.
2. 클렉션 프로그램에 대한 작업 설명을 작성하십시오. QGPL의 작업 설명 QPMUSRCAT는 예를 제공하지만 다름과 같이나 권장사항을 제시하지 않습니다.
3. 새 범주를 등록하고 데이터 콜렉션 프로그램을 저장하십시오.
• 등록: QypsRegCollectorDataCategory
• 등록 취소: QypsDeregCollectorDataCategory

4. 범주의 사용자의 콜렉션 서비스 프로파일에 추가한 후 콜렉션 서비스를 순환시킴시오.

5. 콜렉션 오브젝트를 쿼리할 프로그램을 개발하십시오.
 • 활성 관리 콜렉션 오브젝트명 QpmRtvActiveMgtcolName(실시간으로 콜렉션 오브젝트를 쿼리하기 위해서만 사용됨)을 검색하십시오.
 • 관리 콜렉션 오브젝트 속성(QpmRtvMgtcolAttrs)을 검색하십시오.
 • 관리 콜렉션 오브젝트(QpmOpenMgtcol)를 여십시오.
 • 관리 콜렉션 오브젝트(QpmCloseMgtcol)를 닫으십시오.
 • 관리 콜렉션 오브젝트 저장소(QpmOpenMgtcolRepo)를 여십시오.
 • 관리 콜렉션 오브젝트 저장소(QpmCloseMgtcolRepo)를 닫으십시오.
 • 관리 콜렉션 오브젝트 데이터(QpmReadMgtcolData)를 읽으십시오.

결과

사용자 정의된 콜렉션 프로그램은 이제 각 콜렉션 간격을 실행하고, 수집된 데이터는 콜렉션 오브젝트로 아카
이브립니다.

또한 이 API의 Java 버전을 구현할 수도 있습니다. 필수 Java 클래스는 QIBM/ProdData/OS400/CollectionServices/lib 동합 파일 시스템(IFS) 디렉토리에서 ColSrv.jar에 포함됩니다. Java 애플리케이션은 이 파일을 해당 클래스 경로에 포함해야 합니다. Java 구현에 대한 자세한 정보는 .zip 파일에 javadocs를 다운로드하십시오.

실시간으로 콜렉션 오브젝트 쿼리

애플리케이션이 실시간으로 콜렉션 오브젝트를 쿼리해야 하는 경우 콜렉션 서비스로 쿼리를 동기화해야 하니
d. 이를 수행하려면 애플리케이션이 데이터 큐를 작성하고 콜렉션 서비스에 등록해야 합니다. 등록되면, 콜렉
t리는 각 콜렉션 간격에 대한 알림과 콜렉션 주기 종료에 대한 알림을 송신합니다. 애플리케이션은 완료 시 메
이터 큐를 제거하고 비정상 종료를 처리하는 것을 비롯하여 데이터 큐를 유지보수해야 합니다. 데이터 큐를 등
록 및 등록 취소하려면 다음 API를 참조하십시오.
• 콜렉터 알림 추가: QypsAddCollectorNotification
• 콜렉터 알림 제거: QypsRmvCollectorNotification
관련 참고

QpmCloseMgtcol API
관리 콜렉션 오브젝트 닫기(QpmCloseMgtcol) API는 이전에 관리 콜렉션 오브젝트 열기(QpmOpenMgtcol) API로 열린 관리 콜렉션 오브젝트를 닫습니다.

QpmCloseMgtcolRepo API
관리 콜렉션 오브젝트 저장소 닫기(QpmCloseMgtcolRepo) API는 이전에 관리 콜렉션 오브젝트 저장소 열기(QpmOpenMgtcolRepo) API로 열린 관리 콜렉션 오브젝트의 저장소를 닫습니다.

QpmOpenMgtcol API
관리 콜렉션 오브젝트 열기(QpmOpenMgtcol) API는 처리를 위해 저장된 관리 콜렉션 오브젝트를 열고 열린 관리 콜렉션 오브젝트에 대한 핸들을 리턴합니다.

QpmOpenMgtcolRepo API
관리 콜렉션 오브젝트 저장소 열기(QpmOpenMgtcolRepo) API는 처리를 위해 저장된 관리 콜렉션 오브젝트 저장소를 열니다.

QpmReadMgtcolData API
관리 콜렉션 오브젝트 데이터 액세스(QpmReadMgtcolData) API는 관리 콜렉션 오브젝트 저장소에 있는 특정 레코드에 대한 정보를 리턴합니다.

QpmRtvActiveMgtcolName API
활성 관리 콜렉션 오브젝트 명(QpmRtvActiveMgtcolName) API는 활성 관리 콜렉션 오브젝트의 오브젝트명 및 라이브러리명을 리턴합니다.

QpmRtvMgtcolAttrs API
관리 콜렉션 오브젝트 속성 검색(QpmRtvMgtcolAttrs) API는 관리 콜렉션 오브젝트의 속성과 관리 콜렉션 오브젝트의 저장소에 있는 정보를 리턴합니다.

QypsAddCollectorNotification API
콜렉터 알림 추가(QypsAddCollectorNotification) API는 저장된 데이터 채널에 콜렉션 이벤트에 대한 알림을 제공하기 위해 콜렉터에 등록합니다.

QypsDeregCollectorDataCategory API
콜렉터 데이터 범주 등록 취소(QypsDeregCollectorDataCategory) API는 중앙 관리의 콜렉션 서비스 기능에서 사용자가 정의 데이터 범주를 제거합니다.

QypsRmvCollectorNotification API
콜렉터 알림 제거(QypsRmvCollectorNotification) API는 저장된 데이터 채널에 콜렉션 이벤트에 대해 콜렉터에서 등록을 제거합니다.

QypsRegCollectorDataCategory API
콜렉터 데이터 범주 등록(QypsRegCollectorDataCategory) API는 중앙 관리의 콜렉션 서비스 기능에 대한 하나 이상의 콜LECTOR 정의에 사용자 정의 데이터 범주를 추가합니다.

콜렉션 프로그램 관점사항 및 요구사항:
콜렉션 서비스는 콜렉션 주기 시작 중에 한 번, 콜렉션 갱신마다 한 번, 그리고 콜렉션 주기 종료 시 다시 콜렉션 프로그램을 호출합니다.
데이터 콜렉션 프로그램은 데이터 콜렉션을 수행해야 하며 해당 데이터를 콜렉션 서비스가 제공하는 데이터 버퍼에 라틴합니다. 데이터 버퍼를 제공하는 것 외에도, 콜렉션 서비스는 데이터 콜렉션 프로그램이 콜렉션 간격 사이에 상태 정보를 유지보수하도록 하는 작업 영역도 제공합니다.

데이터 콜렉션 프로그램은 가능한 신속하게 데이터를 수집하고 최소의 형식화를 수행해야 합니다. 프로그램은 데이터 처리 또는 정렬을 수행하지 않아도 됩니다. 사용자의 명령의 데이터가 데이터베이스 파일로 변환되지 않아도, 콜렉션 서비스는 CRTPFRDTA(성능 데이터 작성) 명령을 자동으로 실행하여 콜렉션 오브젝트의 데이터를 각 콜렉션 간격 끝에서 데이터베이스 파일에 추가할 수 있습니다. 데이터 콜렉션 프로그램이 콜렉션 간격 내에서 해당 테스크를 완료할 수 없는 경우 CRTPFRDTA 명령은 적절하게 실행되지 않습니다.

다음의 몇몇 환경에서 데이터 콜렉션 프로그램을 작성할 수 있습니다.

• OPM 언어용 *PGM. 이 환경은 콜렉션 오브젝트 퀘리에 사용할 수 없으며 결국 성능이 저하될 수 있습니다. 그러나 이전 프로그래밍 언어에 대해 지원합니다.

• *SRVPGM(서비스 프로그램의 입력점). ILE 언어용입니다.

• *JVPAGM(필수 Java 클래스가 ColSrv.jar에 포함됨). 이 파일은 QIBM/ProdData/OS400/CollectionServices/lib에서 IFS에 포함됩니다. javadocs.zip 파일은 다운로드하고 index.html을 열어서 API의 Java 구현 설명을 보십시오.

콜렉션 서비스는 다음 요청을 데이터 콜렉션 프로그램에 보냅니다.

<table>
<thead>
<tr>
<th>요청</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>콜렉션 시작</td>
<td>데이터 콜렉션 프로그램은 데이터 콜렉션 중에 사용되는 인터페이스나 자원을 초기화해야 합니다. 선택사항으로, 콜렉션 간격 사이에 상태 정보를 보존하는 작업 영역(콜렉션 서비스에서 제공되는)도 초기화할 수 있습니다. 수집된 데이터 이전에 제어 레코드를 포함하려는 경우 데이터 콜렉션 프로그램은 적절한 데이터 버퍼에 올 수 있습니다. 일반적으로, 이 제어 레코드는 데이터 해석을 돕기 위해 데이터 처리 중에 사용됩니다.</td>
</tr>
<tr>
<td>콜렉션 간격</td>
<td>콜렉션 서비스는 콜렉션 간격마다 간격 요청을 보냅니다. 데이터 콜렉션 프로그램은 데이터를 수집하고 데이터 베이스에서 데이터를 라틴해야 합니다. 콜렉션 서비스는 해당 데이터를 콜렉션 오브젝트의 간격 해코드에 기록합니다. 데이터의 양이 데이터 베이스에 비해 너무 큰 경우 데이터 콜렉션 프로그램은 "추가 데이터" 레코드를 생성해야 합니다. 이 요청을 수행하면 콜렉션 서비스가 크기가 초과할 것을 보고하는 수행이 끝나고 취소한 다른 간격 요청을 송신합니다. 콜렉션 서비스는 각각의 호출 이전에 추가 데이터 레코드를 재설정합니다. 이 프로세스는 모든 데이터가 콜렉션 오브젝트로 이동될 때까지 반복됩니다.</td>
</tr>
<tr>
<td>콜렉션 종료</td>
<td>데이터 콜렉션 프로그램이 들어 있는 방법에 대한 콜렉션이 종료될 때 콜렉션 서비스는 이 요청을 송신합니다. 데이터 콜렉션 프로그램은 종료된 상태로 콜렉션 사태 레코드를 라틴할 수 있습니다. 데이터 콜렉션 프로그램은 또한 콜렉션의 결과를 표시하는 리턴 코드를 송신해야 합니다.</td>
</tr>
<tr>
<td>클레임 및 종료(시스템 종료)</td>
<td>클레임 서비스는 비정상 종료가 필요한 경우 이 요청을 송신합니다. 오피에프 프로그램은 데이터 콜렉션 프로그램이 종료될 때 자동으로 해제되지만, 다른 시스템 종료 조작은 데이터 콜렉션 프로그램으로 수행해야 합니다. 데이터 콜렉션 프로그램은 언제든지 이 요청을 수신할 수 있습니다.</td>
</tr>
</tbody>
</table>

이 메개변수, 작업 영역, 데이터 베이스 및 리턴 코드에 대한 자세한 설명은 QSYSINC에 있는 QPMDCPRM 헤더 파일을 참조하십시오.
콜렉션 오브젝트의 데이터 기록장치

콜렉션 오브젝트에는 데이터 콜렉션 범주마다 하나의 저장소가 있습니다. 이 저장소는 해당 범주에 대한 콜렉션이 시작될 때 콜렉션 서비스에 의해 작성됩니다. 각 저장소는 다음 레코드로 구성됩니다.

<table>
<thead>
<tr>
<th>레코드</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>제어</td>
<td>이 선택적 레코드는 데이터 콜렉션 프로그램에서 발생할 수 있는 첫 번째 또는 마지막 레코드일 수 있으며, 두 위치 모두에서 발생할 수도 있습니다. 일반적으로, 레코드 데이터를 해석하는 데 필요한 정보가 포함되어야 합니다.</td>
</tr>
<tr>
<td>간격</td>
<td>각 콜렉션 간격은 간격 레코드를 작성합니다(미어 있는 경우에도 작성). 간격 레코드에는 콜렉션 간격에서 데이터 비파라미터의 데이터가 포함됩니다. 크기는 4GB를 초과하면 안됩니다.</td>
</tr>
<tr>
<td>중단</td>
<td>콜렉션 서비스는 데이터 콜렉션 세션의 끝을 표시하기 위해 자동으로 이 레코드를 작성합니다. 사용자 정의 범주에 대한 콜렉션이 콜렉션 서비스의 종료나 중단 없이 제시작된 경우, 선택적으로 중단 레코드 다음에 제어 레코드를 포함할 수 있으며 끝이되어 추가 간격 레코드가 옵니다.</td>
</tr>
</tbody>
</table>

예: 사용자 정의 구현:

제공된 API를 사용하여 사용자 정의된 데이터 콜렉션을 콜렉션 서비스에 통합할 수 있는 방법을 보여주는 샘플 프로그램이 있습니다.

예: 데이터 콜렉션 프로그램:

이 프로그램 예는 일부 테스트 데이터를 수집하여 데이터 바퍼에 저장합니다. 그러면 콜렉션 서비스가 콜렉션 오브젝트로 복사합니다.

주: 해당 코드 예제를 사용하는 것은 216 페이지의 『코드 라이센스 및 면책사항 정보』의 조건에 동의한 것으로 간주합니다.

C++ 샘플 코드

```c
#include "string.h"   // memcpy(), memset(), strlen()
#include "stdio.h"    // printf()
#include "qpmDCprm.h" // data collection program interface
#include "time.h"

extern "C"
void DCPentry( Qpm_DC_Parm_t *request, char *dataBuffer, char *workArea, int *returnCode )
{
    static char testData[21] = "Just some test stuff";
    int i;

    /* Print contents of request structure */

    printf("DCP called with parameters:Wn");
    printf(" format name: W"%8.8sW; category name: W"%10.10sW;Wn",
        request->formatName, request->categoryName );
    printf(" rsvd1: %4.4X; req type: %d; req mod: %d; buffer len: %d;Wn",
        *(short *)(request->rsvd1), request->requestType, request->requestModifier, request->dataBufferLength);
```
printf("prm offset: %d; prm len: %d; work len: %d; rsvd2: %8.8X; \
request->parmOffset, request->parmLength, request->workAreaLength,
*(int *)(request->rsvd2) ");
printf("rec key: %8.8s; timestamp: %8.8X %8.8X; \
request->intervalKey,
*(int *)(request->intervalTimestamp),
*(int *)(request->intervalTimestamp + 4) ");
printf("return len: %d; more data: %d; rsvd3: %8.8X %8.8X; \
request->bytesProvided, request->moreData,
*(int *)(request->rsvd3),
*(int *)(request->rsvd3 + 4) ");

switch (request->requestType)
{
 /* Write control record in the beginning of collection */
 case PM_DOBEGIN:
 printf("doBegin(%d) %\n", request->requestModifier);
 switch (request->requestModifier)
 {
 case PM_CALL_NORMAL:
 memcpy(dataBuffer, testData, 20);
 *(int *)workArea = 20;
 request->moreData = PM_MORE_DATA;
 request->bytesProvided = 20;
 break;

 case PM_CALL_CONTINUE:
 if (*(int *)workArea < 200)
 {
 memcpy(dataBuffer, testData, 20);
 *(int *)workArea += 20;
 request->moreData = PM_MORE_DATA;
 request->bytesProvided = 20;
 }
 else
 {
 *(int *)workArea = 0;
 request->moreData = PM_NO_MORE_DATA;
 request->bytesProvided = 0;
 }
 break;

 default:
 *returnCode = -1;
 return;
 }
 break;

 /* Write control record in the end of collection */
 case PM_DOEND:
 printf("doEnd(%d) %\n", request->requestModifier);
 switch (request->requestModifier)
 {
 case PM_CALL_NORMAL:
 memcpy(dataBuffer, testData, 20);
 *(int *)workArea = 20;
 request->moreData = PM_MORE_DATA;
 request->bytesProvided = 20;
 break;
 }
}
case PM_CALL_CONTINUE:
 if (*(int *)workArea < 200)
 {
 memcpy(dataBuffer, testData, 20);
 *(int *)workArea += 20;
 request->moreData = PM_MORE_DATA;
 request->bytesProvided = 20;
 } else
 {
 *(int *)workArea = 0;
 request->moreData = PM_NO_MORE_DATA;
 request->bytesProvided = 0;
 }
 break;

default:
 *returnCode = -1;
 return;
} break;

/*Write interval record */
case PM_DOCOLLECT:
 printf("doCollect(%d)\n", request->requestModifier);
 for (i = 0; i < 10000; i++)
 dataBuffer[i] = i % 256;
 request->bytesProvided = 10000;

 switch (request->requestModifier)
 {
 case PM_CALL_NORMAL:
 (time_t)(workArea + 4) = time(NULL);
 *(int *)workArea = 1;
 request->moreData = PM_MORE_DATA;
 break;

 case PM_CALL_CONTINUE:
 *(int *)workArea += 1;
 if (*(int *)workArea < 20)
 request->moreData = PM_MORE_DATA;
 else
 {
 (time_t)(workArea + 8) = time(NULL);
 printf("doCollect() complete in %d secs (%d bytes transferred)\n",
 (time_t)(workArea + 8) - *(time_t*)(workArea + 4), 10000 * 20);
 request->moreData = PM_NO_MORE_DATA;
 }
 break;

 default:
 *returnCode = -1;
 return;
 } break;

/* Clean-up and terminate */
case PM_DOSHUTDOWN:
printf("doShutdown\n");
+returnCode = 0;
return;
break;

default:
+returnCode = -1;
return;
break;
}

C++ 샘플 코드
#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "qypscll.h"

int main(int argc, char *argv[])
{
 int CCSID = 0;
 int RC = 0;
 Qyps_USER_CAT_PROGRAM_ATTR *pgmAttr;
 Qyps_USER_CAT_ATTR catAttr;
 char collectorName[11] = "*PFR ";
 char categoryName[11] = "TESTCAT ";
 char collectorDefn[11] = "*CUSTOM "; /* Register to +CUSTOM profile only */

 if (argc > 2)
 {
 int len = strlen(argv[2]);
 if (len > 10) len = 10;
 memset(categoryName, ",10);
 memcpy(categoryName, argv[2], len);
 }

 if (argc < 2 || *argv[1] == 'R')
 {
 pgmAttr = (Qyps_USER_CAT_PROGRAM_ATTR *)malloc(4096);
 memset(pgmAttr, 0x00, sizeof(pgmAttr));
 pgmAttr->fixedPortionSize = sizeof(Qyps_USER_CAT_PROGRAM_ATTR);
 memcpy(pgmAttr->programType, "*SRVPGM ", 10);
 memcpy(pgmAttr->parameterFormat, "PMDC0100", 8);
 }
memcpy(pgmAttr->ownerUserId, "USERID ", 10);
memcpy(pgmAttr->jobDescription, "QPMUSRCAT QGPL ", 20);
memcpy(pgmAttr->qualPgmSrvpgmName, "DCPTEST LIBRARY ", 20);
pgmAttr->workAreaSize = 123;
pgmAttr->srvpgmEntrypointOffset = pgmAttr->fixedPortionSize;
pgmAttr->srvpgmEntrypointLength = 8;
pgmAttr->categoryParameterOffset = pgmAttr->srvpgmEntrypointOffset +
 pgmAttr->srvpgmEntrypointLength;
pgmAttr->categoryParameterLength = 10;

/* Set entry point name */
memcpy((char *)(pgmAttr) + pgmAttr->srvpgmEntrypointOffset,
 "DCPentry", pgmAttr->srvpgmEntrypointLength); /* Set parameter string */
memcpy((char *)(pgmAttr) + pgmAttr->categoryParameterOffset,
 "1234567890", pgmAttr->categoryParameterLength);

memset(&catAttr, 0x00, sizeof(catAttr));
catAttr.structureSize = sizeof(Qyps_USER_CAT_ATTR);
catAttr.minCollectionInterval = 0;
catAttr.maxCollectionInterval = 0;
catAttr.defaultCollectionInterval = 30; /* Collect at 30 second interval */
memset(catAttr.qualifiedMsgId, ' ', sizeof(catAttr.qualifiedMsgId));
memcpy(catAttr.categoryDesc,
 "12345678901234567890123456789012345678901234567890", sizeof(catAttr.categoryDesc));

QypsRegCollectorDataCategory(collectorName,
 categoryName,
 collectorDefn,
 &CCSID,
 (char*)pgmAttr,
 (char*)&catAttr,
 &RC
);

else
 if(argc >= 2 && *argv[1] == 'D')
 QypsDeregCollectorDataCategory(collectorName, categoryName, &RC);
else
 printf("Unrecognized option
 ");

}/* main() */

예: 콜렉션 오브젝트를 쿼리하기 위한 프로그램:

이 샘플 프로그램은 QIBM/ProdData/OS400/CollectionServices/lib 디렉토리 경로에서 ColSrv.jar 파일에 제공되는 Java 클래스를 사용하여 콜렉션 오브젝트에 저장된 데이터를 쿼리하는 방법을 보여줍니다.

Java 샘플 코드

import com.ibm.iseries.collectionservices.*;

class testmco2
{
 public static void main(String argv[])
 {
 String objectName = null;
 String libraryName = null;
 String repoName = null;
 MgtcoObj mco = null;
 int repoHandle = 0;
 int argc = argv.length;
 MgtcoObjAttributes attr = null;

 }
MgtcolObjRepositoryEntry
 repoE = null;
MgtcolObjCollectionEntry
 col1E = null;
int i,j;

if (argc < 3)
{
 System.out.println("testmco2 objectName libraryName repoName");
 System.exit(1);
}
o
o
b
o
j
a
m
e
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
System.out.println("MCOA0200: Object " + mco.getLibrary() + "/" + mco.getName());
System.out.println(" size = " + attr.size + " retention = " + attr.retainPeriod +
" interval = " + attr.dfltInterval + " time created = " + attr.timeCreated +
" time updated = " + attr.timeUpdated);
System.out.println(" serial = " + attr.logicalPSN + " active = " + attr.isActive +
" repaired = " + attr.isRepaired + " summary = " + attr.sumStatus +
" repo count = " + attr.repositoryCount);
if (attr.repositoryInfo != null)
 for(i = 0; i < attr.repositoryCount; i++)
 {
 repoE = attr.repositoryInfo[i];
 System.out.println(" name = " + repoE.name + " category = " + repoE.categoryName +
" size = " + repoE.size);
 for(j = 0; j < repoE.collectionInfo.length; j++)
 {
 collE = repoE.collectionInfo[j];
 System.out.println(" startTime = " + collE.startTime + " endTime = " + collE.endTime +
" interval = " + collE.interval);
 }
 }
 if(repoName.equals("NONE"))
 return;
try
{
 mco.open();
} catch (Exception e)
{
 System.out.println("open(): Exception " + e);
 System.exit(1);
}
try
{
 repoHandle = mco.openRepository(repoName, "MCOD0100");
} catch (Exception e)
{
 System.out.println("openRepository(): Exception " + e);
 mco.close();
 System.exit(1);
}
System.out.println("repoHandle = " + repoHandle);
MgtcolObjReadOptions readOptions = new MgtcolObjReadOptions();
MgtcolObjRecInfo recInfo = new MgtcolObjRecInfo();
readOptions.option = MgtcolObjReadOptions.READ_NEXT;
readOptions.recKey = null;
readOptions.offset = 0;
readOptions.length = 0;
while (recInfo.recStatus == MgtcolObjRecInfo.RECORD_OK)
{
 try
 {
 mco.readData(repoHandle, readOptions, recInfo, null);
 } catch (Exception e)
 {
 System.out.println("readData(): Exception " + e);
 mco.close();
 System.exit(1);
 }
 if(recInfo.recStatus == MgtcolObjRecInfo.RECORD_OK)
 {
 System.out.println("Type = " + recInfo.recType);
 System.out.println(" Key = " + recInfo.recKey);
 }
클렉션 오브젝트 관리:

클렉션 서비스를 사용하여 성능 데이터를 수집할 때 각 클렉션은 단일 오브젝트로 저장됩니다.

이 테스크 정보

시스템에서 클렉션 오브젝트를 삭제할 수 있습니다. 오브젝트를 수동으로 삭제하지 않는 경우 클렉션 서비스는
만기 날짜 및 시간 이후에 자동으로 오브젝트를 삭제합니다.

1. 클렉션 서비스는 다음에 클렉션을 시작하거나 순환할 때 만기 날짜 및 시간에 도달한 순환 클렉션 오브젝트를
2. 삭제합니다. 만기일이 관리 클렉션 오브젝트와 연관됩니다. 클렉션 서비스는 구성된 클렉션 라이브러리에 존재
3. 하는 만기된 관리 클렉션 오브젝트만 삭제합니다.

각 관리 클렉션 오브젝트에 대한 만기일이 해당 클렉션 오브젝트에 대한 등록정보에 표시됩니다. 시스템에서
오브젝트를 오래 보유하면서 등록정보 페이지에서 날짜를 변경하면 됩니다. 클렉션 서비스가 사용자 대신 관리
클렉션 오브젝트를 삭제하지 않도록 하려면 영구를 지정하면 됩니다.

결과

관련 테스크

97 페이지의 "클렉션 관리"

IBM Systems Director Navigator를 사용해서 성능 클렉션을 관리하십시오.

사용자 정의 트랜젝션:

클렉션 서비스 및 성능 탐색기는 애플리케이션에서 정의하는 성능 데이터를 수집합니다.

제공된 API에서, 클렉션 서비스를 사용하여 정기적으로 스크립트된 샘플 데이터 클렉션으로 트랜잭션 데이터를
통합하고 성능 탐색기를 실행하여 트랜잭션에 대한 추적 데이터를 가져올 수 있습니다.

자세한 설명 및 사용 주의사항은 다음 API 설명을 참조하십시오.

- 트랜잭션 시작(QYPESTRT, qypeStartTransaction) API
- 트랜잭션 종료(QYPEENDT, qypeEndTransaction) API
- 트랜잭션 로그(QYPELOGT, qypeLogTransaction) API(성능 탐색기에서만 사용됨)
- 추적점 추가(QYPEADDT, qypeAddTracePoint) API(성능 탐색기에서만 사용됨)
주: 애플리케이션을 한 번만 인스트루먼트해야 합니다. 콜렉션 서비스 및 상등 탐색기는 동일한 API 호출을
사용하여 다른 유형의 상등 데이터를 수집합니다.

사용자 정의 트랜잭션 데이터를 콜렉션 서비스로 통합

콜렉션 서비스 구성에서 콜렉션에 대한 범주로 사용자 정의 트랜잭션을 선택할 수 있습니다. 콜렉션 서비스는
모든 콜렉션 간격에서 트랜잭션 데이터를 수집하고 해당 데이터를 콜렉션 오브젝트에 저장합니다. CRTPRDTA(상등 데이터 작성) 명령은 사용자 정의 트랜잭션 상등 데이터베이스 파일 QAPMUSRNTS로
이 데이터를 내보냅니다. 콜렉션 서비스는 트랜잭션 유형별로 데이터를 구성합니다. 필요한 만큼 많은 트랜잭
션 유형을 지정할 수 있지만, 콜렉션 서비스는 처음 15개의 트랜잭션 유형만 보고합니다. 추가 트랜잭션 유형
에 대한 데이터가 결합되고 *OTHER 트랜잭션 유형으로 저장됩니다. 모든 콜렉션 간격에서, 콜렉션 서비스는
고유한 각 작업에 대한 각 트랜잭션 유형에 하나의 레코드를 작성합니다. 자세한 설명은 트랜잭션 시작 API에
있는 사용 노트를 참조하십시오.

콜렉션 서비스는 트랜잭션 응답 시간과 같은 일반 트랜잭션 데이터를 수집합니다. 트랜잭션에 사용되는 SQL
문 또는 다른 증가 측정과 같이 애플리케이션 특정 데이터를 추적할 수 있는 16개까지의 선택적 애플리케
이션 정의 카운터를 포함할 수 있습니다. 애플리케이션은 트랜잭션 시작 API를 사용하여 새로운 트랜잭션의 시작
을 표시하고, 트랜잭션 데이터를 콜렉션 서비스에 전달하기 위해 해당되는 트랜잭션 종료 API를 포함해야 합
니다.

상등 탐색기를 사용하여 사용자 정의 트랜잭션에 대한 추적 정보 수집

상등 탐색기 시작 중에 트랜잭션 시작, 종료 및 로그 API를 사용하여 추적 레코드를 작성할 수 있습니다. 상등
탐색기는 이 추적 레코드에 있는 현재 스레드에 대한 CPU 이용률, I/O 및 점유/잠금 활동과 같은 시스템
자원 이용률을 저장합니다. 또한 애플리케이션 특정 상등 데이터를 포함시킨 후 API 각각에서 이 데이터를 상등
탐색기로 보낼 것을 선택할 수 있습니다. 또한 추적점 추가 API를 사용하여 상등 탐색기가 추적 데이터를
수집해야 하는 애플리케이션 특정 이벤트를 식별할 수 있습니다.

트랜잭션에 대한 상등 탐색기 세션을 시작하려면 상등 탐색기 정의의 (OSEVT) 매개변수에서 *USRTRNS를
지정하십시오. ENDPEX 명령을 입력하면 상등 탐색기는 애플리케이션에서 제공되는 데이터를 QAYPEMIUSR
상등 탐색기 데이터베이스 파일의 QMUDTA 필드에 기록합니다. 데이터 시작, 종료 및 로그를 위한 시스템
제공 상등 데이터는 QAYPEMIUSR 및 QAYPETIDX 데이터베이스 파일에 저장됩니다.
관련 개념

사용자 정의 트랜잭션을 콜렉션 서비스에 통합:

이 C++ 프로그램 예는 트랜잭션 시작 및 트랜잭션 종료 API를 사용하여 사용자 정의 트랜잭션을 콜렉션 서비스에 통합하는 방법을 보여줍니다.


```c++
//**********************************************************************
// tnstst.C
// This example program illustrates the use
// of the Start/End Transaction APIs (qypeStartTransaction,
// qypeEndTransaction).
// This program can be invoked as follows:
// CALL lib/TNSTST PARM('threads' 'types' 'transactions' 'delay')
// where
// threads = number of threads to create (10000 max)
// types = number of transaction types for each thread
// transactions = number of transactions for each transaction type
// delay = delay time (milliseconds) between starting and ending the transaction
// This program will create "threads" number of threads. Each thread
// will generate transactions in the same way. A thread will do
// "transactions" number of transactions for each transaction type,
// where a transaction is defined as a call to Start Transaction API,
// then a delay of "delay" milliseconds, then a call to End Transaction API. Thus, each thread will do a total of "transactions" * "types"
// number of transactions. Each transaction type will be named
// "TRANSACTION_TYPE_nnn" where nnn ranges from 001 to "types". For
// transaction type n, there will be n-1 (16 max) user-provided
```
// counters reported, with counter m reporting m counts for each
// transaction.

// This program must be run in a job that allows multiple threads
// (interactive jobs typically do not allow multiple threads). One
// way to do this is to invoke the program using the SBMJOB command
// specifying ALWMLTTHD(*YES).

#define _MULTI_THREADED

#include "pthread.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "qusec.h"
#include "lbcpynv.h"
#include "qypesvpg.h"

// Constants
#define maxThreads 10000

// Transaction pgm parm structure
typedef struct
{
 int types;
 int trans;
 int delay;
} tnsPgmParm_t;

// Error code structure
typedef struct
{
 Qus_EC_t error;
 char Exception_Data[100];
} error_code_t;

// Transaction program to run in each secondary thread

void *tnsPgm(void *parm)
{
 tnsPgmParm_t *p = (tnsPgmParm_t *)parm;

 char tnsTyp[] = "TRANSACTION_TYPE_XXX";
 char pexData[] = "PEX";
 unsigned int pexDataL = sizeof(pexData) - 1;
 unsigned long long colSrvData[16] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
 unsigned int colSrvDataL;
 char tnsStrTim[8];
struct timespec ts = {0, 0};

error_code_t errCode;

_DPA_Template_T target, source; // Used for LBCPYNV MI instr

unsigned int typCnt;
unsigned int tnsCnt;
int rc;

// Initialize error code
memset(&errCode, 0, sizeof(errCode));
errCode.error.Bytes_Provided = sizeof(errCode);

// Initialize delay time
ts.tv_sec = p->delay / 1000;
ts.tv_nsec = (p->delay % 1000) * 1000000;

// Loop doing transactions
for (tnsCnt = 1; tnsCnt <= p->trans; tnsCnt++)
{
 for (typCnt = 1; typCnt <= p->types; typCnt++)
 {
 // Set number field in transaction type
 source.Type = _T_UNSIGNED;
 source.Length = 4;
 source.reserved = 0;
 target.Type = _T_ZONED;
 target.Length = 3;
 target.reserved = 0;
 _LBCPYNV(tnsTyp + 17, &target, &typCnt, &source);

 // Set Coll Svcs data length in bytes
 colSrvDataL = (typCnt <= 16) ? (typCnt - 1) : 16;
 colSrvDataL = colSrvDataL * 8;

 // Call Start Transaction API
 qypeStartTransaction(tnsTyp,
 (unsigned int *)&tnsCnt,
 pexData,
 (unsigned int *)&pexDataL,
 tnsStrTim,
 &errCode);

 // Delay specified amount
 rc = pthread_delay_np(&ts);

 // Call End Transaction API
 qypeEndTransaction(tnsTyp,
 (unsigned int *)&tnsCnt,
 pexData,
 (unsigned int *)&pexDataL,
 tnsStrTim,
 (unsigned long long *)&colSrvData[0],
 (unsigned int *)&colSrvDataL,
 &errCode);
 }
}
return NULL;
}

//**
//
// Main program to run in primary thread
//
//**

void main(int argc, char *argv[])
{
 // Integer version of parms
 int threads; // # of threads
 int types; // # of types
 int trans; // # of transactions
 int delay; // Delay in millisecs

 pthread_t threadHandle[maxThreads];
 tnsPgmParm_t tnsPgmParm;
 int rc;
 int i;

 // Verify 4 parms passed
 if (argc != 5)
 {
 printf("Did not pass 4 parms\n");
 return;
 }

 // Copy parms into integer variables
 threads = atoi(argv[1]);
 types = atoi(argv[2]);
 trans = atoi(argv[3]);
 delay = atoi(argv[4]);

 // Verify parms
 if (threads > maxThreads)
 {
 printf("Too many threads requested\n");
 return;
 }

 // Initialize transaction pgm parms (do not modify
 // these while threads are running)
 tnsPgmParm.types = types;
 tnsPgmParm.trans = trans;
 tnsPgmParm.delay = delay;

 // Create threads that will run transaction pgm
 for (i=0; i < threads; i++)
 {
 // Clear thread handle
 memset(&threadHandle[i], 0, sizeof(pthread_t));
 // Create thread
import com.ibm.iseries.collectionservices.PerformanceDataReporter;

// parameters:
// number of TXs per thread
// number of threads
// log|nolog
// enable|disable
// transaction seconds

public class TestTXApi
{
 static TestTXApiThread[] thread;

 static private String[] TxTypeString;
 static private byte[][] TxTypeArray;

 static private String TxEventString;
 static private byte[] TxEventArray;

 static
 {
 int i;

 // initialize transaction type strings and byte arrays
 TxTypeString = new String[20];
 TxTypeString[0] = "Transaction type 00";
 TxTypeString[1] = "Transaction type 01";
 TxTypeString[2] = "Transaction type 02";
 TxTypeString[3] = "Transaction type 03";
 TxTypeString[4] = "Transaction type 04";
 TxTypeString[5] = "Transaction type 05";
 TxTypeString[6] = "Transaction type 06";
 TxTypeString[7] = "Transaction type 07";
 TxTypeString[8] = "Transaction type 08";
 TxTypeString[9] = "Transaction type 09";
 TxTypeString[10] = "Transaction type 10";

 if (rc != 0)
 printf("pthread_create() failed, rc = %d", rc);

 // Wait for each thread to terminate
 for (i=0; i < threads; i++)
 {
 rc=pthread_join(threadHandle[i], // Thread handle
 NULL); // No exit status
 }
 }

} /* end of Main */
public static void main (String[] args) {
 int numberOfTXPerThread;
 int numberOfThreads;
 boolean log;
 boolean enable;
 int secsToDelay;

 // process parameters
 if (args.length >= 5)
 try {
 numberOfTXPerThread = Integer.parseInt(args[0]);
 numberOfThreads = Integer.parseInt(args[1]);

 if (args[2].equalsIgnoreCase("log"))
 log = true;
 else
 if (args[2].equalsIgnoreCase("nolog"))
 log = false;
 else {
 System.out.println("Wrong value for 3rd parameter! ");
 System.out.println("it should be log|nolog");
 return;
 }

 if (args[3].equalsIgnoreCase("enable"))
 enable = true;
 else
 if (args[3].equalsIgnoreCase("disable"))
 enable = false;
 else {
 System.out.println("Wrong value for 4th parameter! ");
 System.out.println("it should be enable|disable");
 return;
 }

 secsToDelay = Integer.parseInt(args[4]);
 } catch (Exception e) {
 System.out.println("Oops! Cannot process parameters!");
 return;
 }
}
else
{
 System.out.println("Incorrect Usage.");
 System.out.println("The correct usage is:");
 System.out.println("java TestTXApi numberOfTXPerThread numberOfThreads
log|nolog enable|disable secsToDelay*");
 System.out.println("Wtlog will make the program cut 1 log transaction per start / end pair");
 System.out.println("Wtdisable will disable performance collection to minimize overhead");
 System.out.println("WnExample: W"java TestTXApi 10000 100 log enable 3W" will call ");
 System.out.println("Wcause 10000 transactions for each of 100 threads");
 System.out.println("Wwith 3 seconds between start and end of transaction");
 System.out.println("WPlus it will place additional log call and will enable reporting.");
 return;
}

System.out.println("Parameters are processed:");
System.out.println("numberOfTXPerThread=" + numberOfTXPerThread);
System.out.println("numberOfThreads=" + numberOfThreads);
System.out.println("log=" + log);
System.out.println("enable=" + enable);
System.out.println("secsToDelay=" + secsToDelay);

// cause initialization of a PerformanceDataReporter class
{
 PerformanceDataReporter pReporter = new PerformanceDataReporter();
 pReporter.enableReporting();
}

TestTXApi t = new TestTXApi();

System.out.println("WAbout to start ...");
t.prepareTests(numberOfTXPerThread, numberOfThreads, log, enable, secsToDelay);

long startTime = System.currentTimeMillis();
t.runTests(numberOfThreads);

// wait for threads to complete
for (int i = 0; i < numberOfThreads; i++)
try
{
 thread[i].join();
} catch(Exception e)
{
 System.out.println("***Exception W"" + e + "W" while joining thread " + i);
}

long endTime = System.currentTimeMillis();

System.out.println("WTest runtime for " + (numberOfTXPerThread * numberOfThreads) + " TXs was " + (endTime - startTime) + " msec");

}/* main() */

private void prepareTests(int numberOfTxPerThread,
int numberOfThreads, boolean log,
boolean enable, int secsToDelay)
{
 System.out.println("Creating " + numberOfThreads + " threads");
 thread = new TestTXApiThread[numberOfThreads];
 for (int i = 0; i < numberOfThreads; i++)
 thread[i] = new TestTXApiThread(i, numberOfTxPerThread,
 log, enable, secsToDelay);
}

private void runTests(int numberOfThreads)
{
for (int i = 0; i < numberOfThreads; i++)
 thread[i].start();
*/ runTests() */

private class TestTXApiThread extends Thread
{
 private int ordinal;
 private int numberOfTxPerThread;
 private boolean log;
 private boolean enable;
 private int secsToDelay;
 private PerformanceDataReporter pReporter;
 private long timeStamp[];
 private long userCounters[];

 public TestTXApiThread(int ordinal, int numberOfTxPerThread, boolean log, boolean enable, int secsToDelay)
 {
 super();
 this.ordinal = ordinal;
 this.numberOfTxPerThread = numberOfTxPerThread;
 this.log = log;
 this.enable = enable;
 this.secsToDelay = secsToDelay;

 pReporter = new PerformanceDataReporter(false);
 if (enable)
 pReporter.enableReporting();
 timeStamp = new long[1];
 userCounters = new long[16];
 for (int i = 0; i < 16; i++)
 userCounters[i] = i;
 }
*/ constructor */

 public void run()
 {
 int i;

 for (i = 0; i < numberOfTxPerThread; i++)
 {
 pReporter.startTransaction(TxTypeArray[i%20], i, TxTypeArray[i%20], 20, timeStamp);
 // pReporter.startTransaction(TxTypeArray[i%20], i, TxTypeString[i%20], time stamp);
 if (log)
 pReporter.logTransaction(TxTypeArray[i%20], i, TxTypeArray[i%20], 20);
 // pReporter.logTransaction(TxTypeArray[i%20], i, TxTypeString[i%20]);
 if (secsToDelay > 0)
 try
 {
 Thread.sleep(secsToDelay * 1000);
 } catch(Exception e) {}
 // pReporter.endTransaction(TxTypeArray[i%20], i, TxTypeArray[i%20], 20, time stamp,
 // userCounters);
 // pReporter.endTransaction(TxTypeArray[i%20], i, TxTypeString[i%20], time stamp,
 // userCounters);
 }
 }
*/ run() */

} /* class TestTXApiThread */

} /* class TestTXApi */

작업, 테스트 또는 스레드에 대한 대기 통계 찾기:
작업, 테스크 또는 스레드 실행 중에 프로세스가 대기하도록 하는 조건이 발생합니다 (예: 시스템 장애 또는 필수 오브젝트 보유 상태).

클렉션 서비스는 프로세스가 대기하면서 소비하는 지속 시간과 원인에 대한 데이터를 수집할 수 있습니다. 이 데이터는 클렉션 서비스 데이터베이스 파일 QAPMJOBWT 및 QAPMJOBWTG에서 보고됩니다.

주: QAPMJOBWT 파일을 관리하려면, 작업의 CCSID가 시스템에 설치된 1차 언어의 CCSID(65535 2진 데이터가 아니거나)로 설정되어야 합니다.

작업 대기 통계를 표시하는 또 다른 툴은 IBM i5/OS 작업 감시기입니다. IBM i5/OS 작업 감시기는 선택된 작업, 스레드 및 라이센스가 있는 내부 코드(LIC) 프로그램 테스크 셋트에 대한 실시간 정보를 리턴합니다. 지정된 시간 간격으로, IBM i5/OS 작업 감시기는 작업당 하나의 스레드와 작업당 모든 스레드 사이의 특정 부분을 샘플링합니다. IBM i5/OS 작업 감시기는 작업, 테스크 및 스레드에 대한 자세한 대기 통계를 포함하여, 다양한 성능 데이터를 수집합니다.

대기 상태 데이터를 누적하는 32개의 대기 버켓이 있습니다. 클렉션 서비스와 IBM i5/OS 작업 감시기 둘 다에서 사용되는 이 정적 대기 버켓은 안정적인 대기 상태 데이터 보기를 제공합니다. 클렉션 서비스에서, 이 버켓의 테이터는 QAPMJOBWT 및 QAPMJOBWTG 파일에서 보고됩니다. 작업 감시기에서, 이 버켓의 데이터는 QAPYJWTD 및 QAPYJWTS에서 보고됩니다.

관련 개념
67 페이지의 「IBM i 작업 감시기」
IBM i 작업 감시기는 시스템의 모든 또는 임의 작업, 스레드 및 테스크에 대한 작업 데이터 클렉션에 대해 제공됩니다. 작업 관련 성능 문제점을 진단하기 위해 사용되는 호출 스택, SQL 문, 대기 중인 오브젝트, Java JVM 동작, 대기 통계 등을 제공합니다.

16 페이지의 「IBM i 대기 계정의 기초」
대기 계정은 스레드 또는 테스크가 어떤 것도 수행하지 않음을 표시할 때 이 스레드 또는 테스크가 수행 중인 것을 사용자에게 알리는 특허받은 기술로, IBM i 오퍼레이팅 시스템에 내장되어 있습니다.

관련 정보
성능 데이터 파일: QAPMJOBWT
성능 데이터 파일: QAPMJOBWTG
작업 수행
작업 관리 작업 속성

클렉션 서비스의 디스크 소비 이해:

클렉션 서비스가 소비하는 디스크 자원량은 사용하는 설정에 따라 상당히 다릅니다.

일러스트레이션 용도로, 클렉션 서비스가 메일 사용되고 자동 순환된다고 가정합니다. 그러면 각 *MGTCOL 오브젝트는 1일분의 데이터 클렉션을 포함합니다. 다음으로, 클렉션 서비스에 대한 디폴트 동록정보를 사용하여 1일분의 데이터 클렉션에 대한 기본 크기를 설정합니다. 간격 값이 15분인 표준 + 프로토콜 프로파일은
*MGTCOL 오브젝트에서 500MB의 데이터를 수집할 수 있습니다. 다폴트 동장정보를 사용하여 1일 동안 실제로 수집하는 크기는 시스템 크기 및 사용에 따라 다를 수 있습니다. 500MB 예는 과중하게 사용되는 고급 시스템을 표시할 수 있습니다.

<table>
<thead>
<tr>
<th>간격</th>
<th>플렉션 간격</th>
<th>추수</th>
<th>크기(MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15분</td>
<td>96</td>
<td>1</td>
<td>500</td>
</tr>
</tbody>
</table>

1일간 데이터의 크기는 플렉션 기간당 수집되는 간격 번호에 영향을 받습니다. 예를 들어, 간격 비율을 15분에서 5분으로 변경하면 요소 3만큼 간격 번호가 증가하고 동일한 요소에 의해 크기가 증가합니다.

<table>
<thead>
<tr>
<th>간격</th>
<th>플렉션 간격</th>
<th>추수</th>
<th>크기(MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15분</td>
<td>96</td>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>5분</td>
<td>288</td>
<td>3</td>
<td>1500</td>
</tr>
</tbody>
</table>

다음 표는 다폴트 표준 + 프로토콜 프로파일을 사용하여 각 간격 비율로 플렉션 서비스가 매일 생성하는 하나의 *MGTCOL 오브젝트 크기를 보입니다.

<table>
<thead>
<tr>
<th>간격</th>
<th>플렉션 간격</th>
<th>추수</th>
<th>크기(MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15분</td>
<td>96</td>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>5분</td>
<td>288</td>
<td>3</td>
<td>1500</td>
</tr>
<tr>
<td>1분</td>
<td>1440</td>
<td>15</td>
<td>7500</td>
</tr>
<tr>
<td>30초</td>
<td>2880</td>
<td>30</td>
<td>15000</td>
</tr>
<tr>
<td>15초</td>
<td>5760</td>
<td>60</td>
<td>30000</td>
</tr>
</tbody>
</table>

이 예에서 *MGTCOL 오브젝트의 크기는 플렉션의 비율에 따라 500MB에서 30GB까지 다양할 수 있습니다. 작성된 *MGTCOL 오브젝트의 크기에 대한 실제 관측을 통해 1일 플렉션 간격 동안의 특정 시스템 디스크 소비를 예측할 수 있습니다. 다폴트 플렉션 간격 15분과 표준 + 프로토콜 프로파일을 기본으로 사용한 후 이전 데이터에서의 추수율 사용하여 다른 플렉션 간격으로 디스크 소비를 관리합니다. 예를 들어, *MGTCOL 오브젝트 크기의 관은 1일 플렉션에 대한 오브젝트의 크기가 15분 간격에 대해 50MB임을 나타내는 경우, 15초 간격으로 데이터를 수집할 때 3GB 크기의 *MGTCOL 오브젝트를 플렉션 서비스가 생성할 것으로 예상할 수 있습니다.

주: 플렉션 공간이 15초동안 빈번한 것으로 간주될 때 주의하십시오. 빈번한 플렉션 간격은 시스템 성능에 영향을 줄 수 있습니다.

보유 기간

보유 기간은 플렉션 서비스가 소비하는 디스크 공간의 양에서 중요한 역할을 합니다. 다폴트 보유 기간은 1일 입니다. 그러나 현실적으로는 다폴트 값이 제공되면 작성된 날을 지난 플렉션 3일째에 *MGTCOL 오브젝트가 삭제됩니다. 따라서 플렉션 3일째에는 이전에 수집된 2일 간 데이터와 오늘 데이터가 시스템에 있습니다. 위의 데이터를 사용하면, 이는 15분 간격에서 1GB 및 1.5GB 사이의 디스크 소비가 있는 것으로 변환되고, 3일째 및 그 이후에는 시스템에 15초 간격의 60 ~ 90GB 소비가 있는 것으로 변환됩니다.
보유 기간 값을 기초로 하는 디스크 소비 연산 공식은 다음과 같습니다.

\[(\text{보유 기간(일)} + 2.5) \times 1\text{일 클러스 크기} \times \text{총 디스크 소비} \]

주: 2.5는 2일 간의 이전 클러스 크 데이터의 평균(2일 + 1/2일)에 해당됩니다.

위의 태이블 및 공식을 사용하면, 예로 든 시스템은 보유 기간 2주는 15분 간격에서 8.25GB의 디스크 소비를, 15초 간격에서 495GB를 제공합니다.

지정된 시스템에 대한 허용 가능한 클러스 크 간격 및 보유 기간을 알기 위해 클러스 크 서비스의 디스크 소비를 이해하는 것은 중요합니다. 이를 알면 디스크 소비로 시스템 문제점이 발생하지 않도록 할 수 있습니다. 시스템 모니터 또는 작업 모니터가 범주의 클러스 크 간격을 대체하여 모니터에 대한 데이터를 그래프로 표현할 수 있습니다. 시스템 관리자는 모니터가 데이터 소비를 초과하는 간격으로 데이터를 수집하지 않도록 확인해야 합니다.

모든 패턴에 대한 CPU 이용률 수집 및 표시:

복수의 패턴을 사용할 때 패턴이 실행하는 IBM i, AIX® 또는 Linux®와 관계없이 모든 패턴에 걸쳐 전체 처리 가능한 이용률을 이해하는 것이 중요할 수 있습니다. IBM i는 이 데이터를 수집하고 표시하는 방법을 제공합니다.

데이터 수집

실제 시스템에 대한 CPU 이용률을 수집하려면 다음 구성 요구사항을 충족해야 합니다.

- IBM i 6.1이 있고 펌웨어 레벨이 xx340_061 이상인 POWER6 하드웨어
- 데이터를 수집할 패턴에 대해 생성 데이터 클러스 크이 작동 가능합니다. 하나의 패턴에서 해당 데이터만 수집해야 하며 이 패턴은 IBM i 패턴이어야 합니다. 수집되는 CPU 이용률 정보는 AIX 및 Linux와 IBM i를 실행 중인 패턴에서 수행되는 작업을 반영하지만 AIX 및 Linux는 이 데이터의 수집을 지원하지 않습니다.

이 생성 데이터의 클러스 크이 작동 가능하도록 하려면 HMC 또는 IVM(Integrated Virtualization Manager)에서 구성 메개변수를 설정해야 합니다. HMC에서는 프로세스 구성 탭에 "상승 정보 클러스 크 허용" 선택란이 있습니다. 해당 데이터를 수집하려는 IBM i 패턴에서 이 선택란을 선택하십시오. IVM은 사용 중인 경우 all_perf_collection(패턴이 공유 프로세스 그룹 이용률을 검색할 수 있도록 하는 허용) 메개변수를 설정하여 lssyscf의 명령을 사용합니다. 메개변수에 대한 유용값은 0(권한을 무시하지 않음/디폴트)과 1(권한 허용)입니다.

상생 데이터 클러스 크 지원이 작동 가능하게 되면 클러스 크 서비스는 이 추가 정보를 수집합니다. 각 클러스 크 간격에서, 클러스 크 서비스는 하이퍼바이저에서 패턴 구성 및 이용률 정보를 수집합니다. 데이터는 클러스 크 서비스 데이터베이스 파일 QAPMLPARH에 저장됩니다. 또한 클러스 크 서비스 데이터베이스 파일 QAPMSYSPRC에 서 실제 프로세스 이용률을 얻을 수 있는 기능도 있습니다.

데이터 표시
IBM Systems Director Navigator에 있는 성능 데이터 조사기 툴을 사용하여 웹에서 그래프로 수집된 데이터를 볼 수 있습니다. 이 도포는 콜렉션 서비스 컨텐츠 패키지 아래의 "설계 시스템" 폴더에서 볼 수 있습니다. 이 데이터를 사용하는 도포 예는 다음과 같습니다.

- 논리 파티션 개요
- 논리 파티션에 의해 제공된 프로세스 시간
- 논리 파티션에서 사용된 제한된 프로세스 시간
- 실제 공유 프로세스 폴 이용률
- 실제 프로세스별 실제 프로세스 이용률
- 논리 파티션별 전용 프로세스 이용률
- 프로세스 상태 개요별 실제 프로세스 이용률
- 프로세스 상태 세부사항별 실제 프로세스 이용률

관련 정보

콜렉션 서비스 데이터 파일: QAPMLPARH
QAPMLPARH

QAPMSYSRC

ARM 성능 데이터 수집:

콜렉션 서비스를 사용하여 ARM(Application Response Measurement) 성능 데이터를 수집할 수 있습니다.

ARM API는 ARM 트랜잭션에 대한 성능 데이터를 수집합니다. (ARM API는 애플리케이션 러너에게 ARM 트랜잭션 진행을 보고할 수 있도록 Open Group가 개발한 API 세트입니다.) 이 트랜잭션은 QAPMARMTRT 및 QAPMUSRTNS 데이터베이스 파일에서 보고됩니다.

ARM API에 대해 자세히 학습하려면 The Open Group 웹 사이트 www.theopengroup.org/arm에 방문하시십시오.

단기 스펙 및 테스트:

콜렉션 서비스는 셀룰 간격 동안 프로세스 시간을 사용한 모든 작업, 테스트 및 보조 스레드에 대한 성능 데이터를 캡처합니다. 이 데이터는 QAPMJOMBI 파일에서 탐색을 통해 보고됩니다.

작업은 거의 하지 않고 빵 륜하는 보조 스레드 및 테스트가 작성될 때가 있습니다. 이는 수명이 일반적으로 1초 미만입니다. 이런 상황이 자주 발생하고 계속되면 문제가 될 수 있습니다. 이는 콜렉션 오브젝트와 QAPMJOBMI 파일에 있는 테이블의 크기를 상당히 증가시킬 수 있습니다. 이 데이터를 사용하는 테이블은 사용 중인 더 많은 자원 뿐만 아니라 데이터를 캡처하고 파일을 생성하기 위해 CPU 이용률의 증가로 가집니다.
IBM i 7.1에서 시작해서 콜렉션 서비스는 수명이 특정 스레드 미만인 보조 스레드 및 태스크에 대한 데이터를 촉진합니다. 이러한 스레드가 있는 작업에 대한 작업은 단기 보조 스레드를 촉진합니다. 프로세서 노드는 단기 태스크를 촉진합니다. 이 촉진된 데이터는 기타 태스크 또는 보조 스레드가 보고되는 방법과 유사한 상태가 됩니다.

QAPMJOBMI 파일에는 새로운 "단기 항목 수" 필드가 있습니다. 이 필드에는 단기 스레드 또는 태스크의 메 이터를 포함하는 메모리에 대해 0 이상의 값이 있습니다. 이 값은 표시된 작업 또는 노드에 대한 결과에서 촉 진된 항목의 수입니다. QAPMCONF 파일은 콜렉션 동안 사용하는 단기 스레드를 보고합니다. QAPMCONF 조항의 GKEY = "F1" 설정을 참조하십시오.

다운트로 태스크와 스레드에 사용되는 업계값은 1000밀리초입니다(수명이 1000밀리초 미만인 스레드 및 태스크 종료는 개별적으로 보고되지 않음). 이 처리를 작동 불가능하게 해야하거나 다른 임계값을 원하는 경우 환 경 변수를 사용해서 다음을 완료할 수 있습니다.

QPM_TASK_SL_THRESHOLD 변수를 작성해서 단기 태스크 처리 제어
QPM_THREAD_SL_THRESHOLD 변수를 작성해서 단기 보조 스레드 처리 제어

환경 변수와 연관된 값은 적용해야 하는 밀리초의 임계값입니다. 0 또는 넣(null) 값은 모든 스레드 또는 태스크가 보고되도록 합니다. 콜렉션 서비스 콜렉터 작업(YPSFPRCOL)이 해당 변수를 참조하도록 하기 위해 환경 변수를 시스템 레벨 변수로 작성해야 합니다. 콜렉션 시작 시에 한 번만 해당 값을 읽습니다. 사용할 새 값을 변경한 후에 활성 콜렉션을 순환시켜야 합니다.

다음은 환경 변수를 작성하고 다운트 값은 1000밀리초로 설정하는 예제입니다.
ADDENVVAR ENVVAR(QPM_TASK_SL_THRESHOLD) VALUE(1000) LEVEL(*SYS)
ADDENVVAR ENVVAR(QPM_THREAD_SL_THRESHOLD) VALUE(1000) LEVEL(*SYS)

IBM i 작업 감시기

IBM i 작업 감시기는 시스템의 모든 또는 일부 작업, 스레드 및 태스크에 대한 작업 데이터 콜렉션에 대해 제공됩니다. 작업 관련 성능 문제점을 진단하기 위해 사용되는 호출 스택, SQL문, 대기 중인 오브젝트, Java JVM 동작, 대기 동작 등의 제공됩니다.

IBM i 작업 감시기는 생활기 기능에서 각각의 화면 정보에서 끝 간격에 대한 메타 정보를 제공하는 CL 명령 WRKACTJOB 및 WRKSYSACT와 유사합니다. 따라서 감시하는 작업, 스레드 또는 태스크에서 수집되는 메타데이터는 비침입 방식으로 수행됩니다.

IBM i 작업 감시기는 IBM Systems Director Navigator 성능 인터페이스 또는 CL 명령을 통해 구성 및 관리될 수 있습니다.
관련 개념

16 페이지의『IBM i 대기 계정의 기초』

대기 계정은 스페드 또는 테스크가 어떤 것도 수행하지 않음을 표시할 때 이 스페드 또는 테스크가 수행 중인 것을 사용자에게 알려는 특허받은 기술로, IBM i 오픈레인팅 시스템에 내장되어 있습니다.

관련 테스크

103 페이지의『IBM i 작업 감시기 관리』
i용 IBM Systems Director Navigator를 사용해서 IBM i 작업 감시기를 관리하십시오.

관련 참조

ADDJWDFN(작업 감지기 정의 추가)

작업 감지 기 클레션 중에 수집된 성능 데이터 자정에 대한 정보는 ADDJWDFN(작업 감지기 정의 추가) 명령을 참조하십시오.

ENDJW(작업 감지기 종료)

작업 감지기 클레션 종료에 대한 정보는 ENDJW(작업 감지기 종료) 명령을 참조하십시오.

RMVJWDFN(작업 감지기 정의 제거)

시스템에서 작업 감지기 정의 제거에 대한 정보는 RMVJWDFN(작업 감지기 정의 제거) 명령을 참조하십시오.

STRJW(작업 감지기 시작)

작업 감지기 클레션 시작에 대한 정보는 STRJW(작업 감지기 시작) 명령을 참조하십시오.

IBM i 디스크 감시기

IBM i 디스크 감시기는 디스크 관련 성능 문제점을 진단하기 위해 디스크 성능 데이터 클레션에 대해 제공됩니다.

IBM i 디스크 감시기를 사용하면 액세스하는 오브젝트, 파일, 프로세스, 스페드 및 테스크를 관리하기 위해 제출 필요한 런타임 데이터와 디스크 장치에 대한 입출력 조건에 관한 데이터를 확인할 수 있습니다. 이 틀은 WRKDSKSTS, WRKSYSSTS 및 WRKSYSACT와 같은 틀에서 제공되는 것을 넘어 더 많은 데이터를 나 타냅니다. 디스크 감시기는 연관된 테스크 및 오브젝트명과 함께 디스크 입출력을 수집하기 위해 단기 및 장기 지속 기간 추적을 사용하기 위한 메커니즘을 제공합니다.

이 틀의 일부 기능은 다음과 같습니다.

- 대중 경로 디스크 장치에 대한 입출력 조건의 성능 평가
- 입출력 규량의 성능 평가
- 장치 간의 데이터 분배하여 개선할 수 있는 성능 관별
- 장치, IOA 또는 버스의 최적 위치 관별

IBM i 디스크 감시기는 i용 IBM Systems Director Navigator 성능 인터페이스 또는 CL 명령을 통해 구성 및 관리될 수 있습니다.
관련 테스크

101 페이지의 [IBM i 디스크 감시기 관리]

i용 IBM Systems Director Navigator를 사용해서 IBM i 디스크 감시기를 관리하십시오.

관련 참조

ADDDWDFN(디스크 감시기 정의 추가)

시스템에서 디스크 감시기 정의를 추가하는 방법에 대한 정보는 ADDDWDFN(디스크 감시기 정의 추가) 명령을 참조하십시오.

ENDDW(디스크 감시기 종료)

디스크 감시기 콜렉션 종료에 대한 정보는 ENDDW(디스크 감시기 종료) 명령을 참조하십시오.

RMVDWDFN(디스크 감시기 정의 제거)

시스템에서 디스크 감시기 정의 제거에 대한 정보는 RMVDWDFN(디스크 감시기 정의 제거) 명령을 참조하십시오.

STRDW(디스크 감시기 시작)

디스크 감시기 콜렉션 시작에 대한 정보는 STRDW(디스크 감시기 시작) 명령을 참조하십시오.

관련 정보

디스크 감시기 데이터 파일

성능 탐색기

성능 탐색기는 특정 애플리케이션, 프로그램 또는 시스템 자원에 대한 자세한 정보를 수집하고 특정 성능 문제점의 세부사항을 제공합니다. 여기에는 몇 가지의 추적 유형 및 레벨을 수행하고 자세한 보고서를 실행하기 위한 기능이 포함됩니다.

성능 탐색기는 클레임 서비스를 사용하여 데이터를 수집하거나 일반 추세 분석을 수행하여 식별할 수 없는 성능 문제점의 원인을 사용자가 식별할 수 있도록 하는 데이터 콜렉션 툴입니다. 성능 탐색기를 사용할 두 가지 이유는 다음과 같습니다.

• 문제점을 발생시키는 시스템 자원, 애플리케이션, 프로그램, 프로시저 또는 메소드로 성능 문제점을 분리합니다.
• 애플리케이션의 성능을 분석합니다.

AS/400® Performance Explorer Tips and Techniques 서적은 향상된 성능 탐색기 추적 자원의 예 및 성능 탐색기 기능의 추가 예를 제공합니다.

성능 탐색기는 일반 성능 모니터링을 수행하는 툴을 사용하여 식별할 수 없는 성능 문제점의 원인을 찾아 데 도움이 되는 툴입니다. 컴퓨터 환경의 규모 및 복잡도가 늘어나면 성능 분석의 복잡도도 증가합니다. 성능 탐색기는 복잡한 성능 문제점에 대한 데이터를 수집하여 이러한 복잡도의 증가를 처리합니다.

주: 성능 탐색기는 다른 툴을 시도한 후에 사용해야 하는 툴입니다. 이 탐색기는 성능 문제점에 포함되는 요소를 한층 쉽게 분리할 수 있는 특정 데이터 양식을 수집하지만, 이 데이터를 수집할 때 시스템 성능에 중요한 영향이 미칠 수 있습니다.
이 톱은 해당 프로그램의 성능을 이해하고 개선하는 데 관심이 있는 애플리케이션 개발자에게 설계되었습니다. 또한 복잡한 성능 문제점을 식별하고 분리하는 데 도움이 될 성능 관리의 사용자가 직에 유용할 수도 있습니다.

관련 개념

53 페이지의『사용자 정의 트래픽』

클래식 서비스 및 성능 탐색기는 애플리케이션에서 정의하는 성능 데이터를 수집합니다.

관련 정보

AS/400 성능 탐색기 추가 정보 및 기술 노트 서적

성능 탐색기 개념:

성능 탐색기는 지정된 시스템 프로세스 또는 자원에 대한 자세한 정보를 수집하여 작동합니다. 이 주제에서는 성능 탐색기가 작동하는 방법과 최적의 사용법에 대해 설명합니다.

성능 탐색기에는 자세한 성능 분석이 필요한 사용자를 위한 장점이 있습니다. 성능 탐색기를 사용하여 다음을 수행할 수 있습니다.

- 시스템에서 사용자, 작업, 파일, 오브젝트, 스펙드, 태스크, 프로그램, 모듈, 프로시저, 명령문 또는 명령어 주 소 롤로 인해 성능 문제점을 야기하는 원인을 관별합니다.
- 사용자 개발 소프트웨어 및 시스템 소프트웨어에 대해 성능 정보를 수집합니다.
- 시스템에서의 다른 조작 성능에 영향을 주지 않게 하나의 작업에 대한 자세한 분석을 수행합니다.
- 데이터가 수집된 시스템이 아닌 다른 시스템에서 데이터를 분석합니다. 예를 들어, 네트워크에 있는 관리 시스템에서 데이터를 수집하는 경우 분석을 위해 중앙 시스템으로 데이터를 보낼 수 있습니다.

클래식 서비스와 같이, 성능 탐색기는 추후 분석을 위해 데이터를 수집합니다. 그러나 이는 다른 유형의 데이터를 수집합니다. 클래식 서비스는 최소한의 시스템 자원을 소비하여 경기적 캐시 접근으로 광범위한 시스템 데이터를 수집합니다. 반대로, 성능 탐색기는 추적 메트릭을 수집하는 세션을 시작합니다. 이 추적은 애플리케이션, 작업 또는 스펙드가 소비하는 자원에 대한 많은 양의 자세한 정보를 생성합니다. 특히, 성능 탐색기를 사용하여 시스템 생성 디스크 I/O, 프로시저 호출, Java 메소드 호출, 페이지 결함 및 기타 추적 이벤트와 같은 분야에 대한 특정 질문에 응답할 수 있습니다. 이는 성능 탐색기가 성능 문제점을 분리하는 데 도움이 되도록 특정 정보 및 상세한 정보를 수집할 수 있는 기능입니다. 예를 들어, 클래식 서비스는 디스크 가용공간 공간이 빠르게 소비되고 있음을 사용자에게 알릴 수 있습니다. 성능 탐색기를 사용하여 너무 많은 디스크 공간을 소비하는 프로그램 및 오브젝트와 그 원인을 식별할 수 있습니다.

성능 탐색기가 실행 중일 때 클래식에 필요한 파일만 작성합니다.

주: 성능 탐색기 데이터와 클래식 서비스 데이터를 동시에 수집할 수 있습니다.
성능 탐색기 작동 방법

다음 그림은 사용자가 성능 탐색기를 통해 정상 경로에 익숙하게 되는 데 도움이 됩니다. 각 단계에 대한 세부사항은 성능 탐색기 구성요소 참조하십시오. 그림은 다음 단계로 구성되는 기본 작업 주기를 보여줍니다.

1. 성능 탐색기 데이터 콜렉션을 정의합니다. 특정 이벤트에 대한 비교 값을 저장하여 수집된 데이터 양을 제한하기 위한 필터를 추가할 수도 있습니다.
2. 성능 탐색기를 시작하여 정의된 기준으로 데이터를 수집합니다.
3. 프로그램, 명령 또는 작업부하를 실행합니다.
4. 수집된 데이터를 데이터베이스 파일 세트에 저장하는 콜렉션을 종료합니다.
5. 데이터베이스 파일에서 보고서를 작성하고 인쇄합니다.

성능 탐색기에 대해 자세히 학습하려면 다음 성능 탐색기 주제에서 참조하십시오.

관련 개념
34 페이지의『콜렉션 서비스』
콜렉션 서비스는 시스템 관리 데이터 수집을 위해 제공됩니다. 이 서비스는 시스템 데이터의 1차 콜렉터입니다.

관련 테스크
78 페이지의『성능 탐색기 구성』
자세한 추적 정보를 수집하려면 추적이 수행되는 애플리케이션 프로세스에 대해 최적으로 작동하도록 성능 탐색기를 조정해야 합니다.

성능 탐색기 정의:

성능 탐색기가 수집하는 데이터와 수집 방법을 관리하는 메개변수 및 조건은 성능 탐색기 정의를 사용하여 구성 및 저장됩니다. 이 주제에서는 이 정의를 사용하는 방법을 설명하고 갭단한 정의를 보여주는 샘플을 제공합니다.
성능 탑색기 데이터를 수집하려면 성능 탑색기에 수집할 데이터를 알리야 합니다. ADDPENXDFN(성능 탑색기 정의 추가) 명령으로 성능 탑색기 정의를 작성하여 알릴 수 있습니다. 정의가 완료되고 저장되면 작업 주기에 서 다음 테스크로 계속할 준비가 완료됩니다.

새 정의를 작성하기 전에 원하는 정보 종류와 필요한 세부 정도를 고려하십시오. 성능 탑색기는 다음 유형의 데이터 콜렉션을 제공합니다.

통계 유형 정의

과도한 CPU 사용량을 소비하거나 많은 디스크 입출력 작업을 수행하는 IBM 프로그램 또는 모듈과 애플리케이션을 식별합니다. 일반적으로, 통계 유형을 사용하여 잠재된 성능 병목 현상에 대해 조사해야 하는 프로그램을 식별합니다.

- i5/OS 프로그램, 프로시저 및 MI 복합 명령어의 첫 번째 순서 분석에 적합합니다.
 - 여러 호출을 제공합니다.
 - 인라인 및 누적 CPU 사용량을 마크로도 단위로 제공합니다.
 - 인라인 및 누적 동기화, 비동기화 입출력 수를 제공합니다.
 - 작성된 호출 수를 제공합니다.

- 단기 또는 장기 실행에 대해 계대로 작동합니다.

- 수집된 데이터의 크기가 모든 실행에 상당히 작고 일정합니다.

- ILE 프로시저의 컨트롤 콜레스텐 오버헤드는 호출 빈도로 인해 문제점이 될 수 있습니다. 컨트롤이 성능이 떨어져서, 수집된 통계는 계속 정확합니다. 성능 탑색기 데이터에서 대부분의 콜렉션 오버헤드를 제거하기 때문입니다.

- 결합되거나 분리된 데이터 영역을 사용합니다. ADDPENXDFN 명령의 MRGJOB 매개변수는 모든 프로그램 통계가 하나의 데이터 영역에서 누적되거나 별도의 영역에서 보유됩니다(예를 들어, 작업마다 하나의 데이터 영역).

통계는 계층 구조 또는 단순 방식으로 구조화될 수 있습니다.

- 계층 구조는 통계를 트리의 각 노드가 작업 또는 테스크에 의해 실행되는 프로그램 프로시저를 나타내는 호출 트리 양식으로 구성합니다.

- 단층 구조는 단순한 프로그램 또는 프로시저 리스트로 구성합니다. 프로그램 또는 프로시저 각각에는 고유한 통계 세트가 있습니다.

다음은 프로그램 또는 프로시저 레벨마다 CPU 및 디스크 자원 사용량을 표시하는 MYSTATS라고 하는 성능 탑색기 통계 정의 예입니다.

```
ADDPENXDFN DFN(MYSTATS) /* The name of the definition. */
  TYPE(*STATS) /* The type of definition */
  JOB(*ALL) /* All Jobs */
  TASKS(*ALL) /* All tasks */
  DTAORG(*FLAT) /* Do not keep track of who calls who */
```
프로파일 유형 정의

소스 프로그램 명령문 번호를 기초로 과도한 CPU 이용률을 보이는 고급 언어(HLL) 프로그램, 모듈, 프로시저 및 명령문을 식별합니다.

- 프로그램 프로파일(ADDPEXDFN 명령에서 TYPE(*PROFILE) 및 PRFTYPE(*PGM) 지정)
 - 특정 작업 내의 프로그램 세트 안에서 사용자가 시간을 소모하는 자세한 분석 결과를 제공합니다.
 - 프로그램, 모듈, 프로시저, 명령문 또는 명령어별로 데이터를 요약할 수 있습니다.
 - 콜백선의 크기는 실행 시간에 관계없이 상대적으로 작고 일정합니다.
 - 16 MiB 프로그램 한정은 이를 두 번째 순서 분석 툴로 사용해야 함을 의미합니다.
 - 샘플 간격을 변경하여 오버헤드를 다양하게 할 수 있습니다. 2달리 초 간격은 벤치마크에 대한 양호한 한
 번째 선택입니다.
 - 지정된 프로그램 수나 지정된 프로그램 크기에 인해 분할장 크기에 대한 제한사항은 없습니다.

다음은 특정 프로시저에 대한 사용을 표시할 PGMPROF 성능 탐색기 프로그램 프로파일 정의의 예입니다.

ADDPEXDFN DFN(PGMPROF) /* The name of the definition. */
TYPE(*PROFILE) /* The type of definition */
JOB(*ALL) /*All Jobs */
PGM((MYLIB/MYPGM MYMODULE MYPROCEDURE)) /* The name of the program to monitor. */
INTERVAL(1) /* 1-millisecond samples will be taken. */

- 작업 프로파일(ADDPEXDFN 명령에서 TYPE(*PROFILE) 및 PRFTYPE(*JOB) 지정)
 - 콜백선의 작업 또는 테스크 세트에서 사용자가 시간을 소모하는 자세한 분석 결과를 제공합니다.
 - 콜백선의 크기는 상대적으로 작지만 일정하지 않습니다. 크기는 실행 시간에 증가하는 대로 증가합니다.
 - 시스템의 모든 작업 및 테스크를 프로파일링하거나 관심이 있는 단 몇 개의 작업 또는 테스크로 데이터
 수집 전략을 중합할 수 있습니다.
 - 샘플 간격을 변경하여 오버헤드를 다양하게 할 수 있습니다. 2달리 초 간격은 벤치마크에 대한 양호한 한
 번째 선택입니다.

다음은 모든 작업에 대한 사용을 표시할 ALLJOBPROF 성능 탐색기 작업 프로파일 정의의 예입니다.

ADDPEXDFN DFN(ALLJOBPROF) /* The name of the definition. */
TYPE(*PROFILE) /* The type of definition */
PRFTYPE(*JOB) /* A job profile type will be monitored. */
JOB(*ALL) /*All Jobs */
TASKS(*ALL) /*All tasks */
INTERVAL(1) /* 1-millisecond samples will be taken. */

추적 정의

시스템의 하나 이상의 작업별로 수집된 성능 환등의 이력 추적을 수집합니다. 추적 유형은 이벤트 발생 시기와
이벤트 발생 순서에 대한 특정 정보를 수집합니다. 추적 유형은 프로그램, LIC(Licensed Internal Code) 테스크,
i5/OS 작업 및 오브젝트 참조 정보에 대한 자세한 참조 정보를 수집합니다.

- 일부 공통 추적 이벤트는 다음과 같습니다.
 - 프로그램과 프로시저의 호출 및 리턴
- 기역장치(예: 없습니다 및 할당해제)
- 디스크 입출력(예: 읽기 조작 및 쓰기 조작)
- Java 메소드(예: 진행 및 나감)
- Java(예: 오브젝트 작성 및 가비지 콜렉션)
- 자닐(예: 화약 시작 및 화약 종료)
- 동기화(예: mutex 잠금 및 잠금 해제나 셔미포어 대기)
- 통신(예: TCP, IP 또는 UDP)

- 실험 시간이 길면 더 많은 데이터가 수집됩니다.

다음은 모든 디스크 이벤트에 대한 사용을 표시할 DISKTRACE 성능 탐색기 추적 정의의 예입니다.

```
ADDPEXDFN DFN(DISKTRACE) /* The name of the definition. */
  TYPE(*TRACE) /* The type of definition */
  JOB(*ALL) /*All Jobs */
  TASKS(*ALL) /*All tasks */
  TRCTYPE(*SLTEVT) /* Only selected individual events and machine instructions
                  are included in the trace definition */
  SLTEVT(*YES) /* *SLTEVT allows you to specify individual machine instructions
                  and events to be specified in addition to the categories of events
                  available with the TRCTYPE parameter. */
  DSKEVT(*ALL)) /* All disk events are to be traced. */
```

다음은 HEAPEVENTS라고 하는 성능 탐색기 추적 정의의 예입니다.

```
ADDPEXDFN DFN(HEAPEVENTS) /* The name of the definition. */
  TYPE(*TRACE) /* The type of definition */
  JOB(*ALL) /*All Jobs */
  TASKS(*ALL) /*All tasks */
  MAXSTG (100000) /*Maximum storage. Set to 100000 because the default of
                  10000 KB is often too small for the large number of heap events that can be
                  generated when tracing all jobs and all tasks.*/
  TRCTYPE(*HEAP) /* Selects all heap events from the STGEVT
                  (storage events) parameter. */
```
관련 개념
77 페이지의『성능 탐색기 보고서』
성능 탐색기 세션으로 성능 데이터를 수집하면 포함된 보고서를 실행하거나 데이터베이스 파일을 직접 퀘리해서 볼 수 있습니다.

관련 테스크
78 페이지의『성능 탐색기 구성』
자세한 추적 정보를 수집하려면 추적이 수행되는 애플리케이션 프로세스에 대해 최적으로 작동하도록 성능 탐색기를 조정해야 합니다.

관련 참조
ADDPEXDFN(성능 탐색기 경의 추가) 명령

성능 탐색기 데이터베이스 파일:
성능 탐색기가 수집하는 데이터는 성능 탐색기 데이터베이스 파일에 저장됩니다.

다음 테이블은 데이터 콜렉션 명령을 사용할 때 시스템이 수집한 성능 탐색기(PEX) 데이터 파일을 보여줍니다. 단일 파일의 내용을 보려면 다음과 같이 DSPFFD(파일 필드 설명 표시) 명령을 입력하십시오.
DSPFFD FILE(***********)

이것서 **********는 표시할 파일의 이름입니다.

<table>
<thead>
<tr>
<th>파일에 포함된 정보의 유형</th>
<th>파일명</th>
</tr>
</thead>
<tbody>
<tr>
<td>추적 자원 점화성</td>
<td>QAYPEAFN</td>
</tr>
<tr>
<td>보조 기약장치 관리 이벤트 데이터</td>
<td>QAYPEASM</td>
</tr>
<tr>
<td>보조 기약장치 줄(ASP) 정소 데이터</td>
<td>QAYPEASPI</td>
</tr>
<tr>
<td>기본 이벤트 데이터</td>
<td>QAYPEBASE</td>
</tr>
<tr>
<td>기본 구성 정보</td>
<td>QAYPECFGI</td>
</tr>
<tr>
<td>통신 이벤트 데이터</td>
<td>QAYPECMN</td>
</tr>
<tr>
<td>디스크 이벤트 데이터</td>
<td>QAYPEDASD</td>
</tr>
<tr>
<td>디스크 서비스 이벤트 데이터</td>
<td>QAYPEDSRV</td>
</tr>
<tr>
<td>이벤트 유형 및 하위 유형 탭령</td>
<td>QAYPEEVENT</td>
</tr>
<tr>
<td>파일 서비스 제공 이벤트 데이터</td>
<td>QAYPEFILSV</td>
</tr>
<tr>
<td>구성된 필터 정보</td>
<td>QAYPEFTRI</td>
</tr>
<tr>
<td>성능 측정 가온타(PMC) 선택사항</td>
<td>QAYPEFQCFG</td>
</tr>
<tr>
<td>월 이벤트 데이터</td>
<td>QAYPEHEAP</td>
</tr>
<tr>
<td>하드웨어 모니터 데이터</td>
<td>QAYPEHMON</td>
</tr>
<tr>
<td>하드웨어 모니터 총계 데이터</td>
<td>QAYPEHTOT</td>
</tr>
<tr>
<td>성능 탐색기 Java 이벤트 데이터</td>
<td>QAYPEJVA</td>
</tr>
<tr>
<td>성능 탐색기 Java 클래스 정보 데이터</td>
<td>QAYPEJVCI</td>
</tr>
<tr>
<td>성능 탐색기 Java 메소드 정보 데이터</td>
<td>QAYPEJVMI</td>
</tr>
<tr>
<td>성능 탐색기 Java 이름 정보 데이터</td>
<td>QAYPEJVNI</td>
</tr>
<tr>
<td>라이센스가 있는 내부 코드(LIC) 브라켓 데이터</td>
<td>QAYPELBRKT</td>
</tr>
</tbody>
</table>
상성 탐색기 데이터베이스 파일의 마이그레이션

상성 탐색기(PEX) 데이터베이스 파일은 새 이벤트 및 새 데이터가 파일에 추가되는 대로 달리서 사이에 변경 됩니다. i5/OS의 새 태블로 마이그레이션할 때 시스템이 호환 불가능한 PEX 데이터베이스 파일을 찾는 경우 이 파일은 QPEXDVrmxx 라이브러리로 이동합니다. 여기서 vrm은 버전입니다. 시스템은 파일의 이동을 표시하는 상태 메세지를 표시합니다. 파일이 이동된 후, 시스템은 이동의 성공 또는 실패 여부를 표시하는 완료 메세지를 표시합니다. 이동이 실패하는 경우 시스템은 호환 불가능한 저장소 메세지를 표시합니다.
관련 개념

[C상능 탐색기 보고서]

상능 탐색기 세션으로 상능 데이터를 수집하면 포함된 보고서를 실행하거나 데이터베이스 파일을 직접 쿼리해서 볼 수 있습니다.

상능 탐색기 보고서:

상능 탐색기 세션으로 상능 데이터를 수집하면 포함된 보고서를 실행하거나 데이터베이스 파일을 직접 쿼리해서 볼 수 있습니다.

상능 탐색기는 프로그램이나 작업의 작동 및 상능에 대한 자세한 정보를 수집하고 이 정보를 상능 탐색기 데이터베이스 파일에 저장합니다. 이 파일을 SQL로 쿼리하거나 여러 보고서 중 하나를 실행해서 쿼리할 수 있습니다. 상능 탐색기로 네 가지의 다른 보고서(통계, 프로파일, 추적 및 기본 보고서)를 생성할 수 있습니다. 이러한 보고서 중 하나를 생성하기 위해 특정 조건을 사용하는 이유에 대한 정보는 상능 탐색기 정의를 참조하십시오. 각 보고서는 상능 분석 품에서 자세히 설명합니다.

상능 탐색기 보고서 인쇄(PRTPEXRRPT) 명령을 사용하여 상능 탐색기 보고서를 작성하고 인쇄할 수 있습니다. 추적 보고서를 사용자 정의하려면 OUTFILE 매개변수를 사용하십시오. 다음 명령은 각 유형의 상능 탐색기 데이터의 보고서를 인쇄하기 위한 예제입니다.

- 사용한 CPU 시간으로 정렬해서 *STATS 보고서 인쇄

PRTPEXRT MBR(MYSTATS) LIB(MYLIB) TYPE(*STATS) STATSOPT(*CPU)

- 프로시저가 요청한 프로파일 보고서 인쇄

PRTPEXRT MBR(MYPROFILE) LIB(MYLIB) TYPE(*PROFILE)
 PROFILEOPT(*SAMPLECOUNT *PROCEDURE)

- 테스크 ID로 정렬된 추적 인쇄

PRTPEXRT MBR(MYTRACE) LIB(MYLIB) TYPE(*TRACE) TRACEOPT(*TASK)

상능 탐색기는 QPFR 라이브러리에 있는 QAVPETRCI 파일에 수집된 데이터를 저장합니다. 단일 레코드의 내용을 보려면 다음 명령을 입력하십시오.

DSPFFD FILE(QPFR/QAVPETRCI)
관련 개념
71 페이지의『상용 탐색기 정의』
상용 탐색기가 수집하는 데이터와 수집 방법을 관별하는 메개변수 및 조건은 상용 탐색기 정의를 사용하여 구성 및 저장됩니다. 이 주제에서는 이 정의를 사용하는 방법을 설명하고 간단한 정의를 보여주는 샘플을 제공합니다.

관련 참조
75 페이지의『상용 탐색기 데이터베이스 파일』
상용 탐색기가 수집하는 데이터는 상용 탐색기 데이터베이스 파일에 저장됩니다.

PRTPEXRPT(상용 탐색기보고서 인쇄) 명령
관련 정보

상용 탐색기 구상:
자세한 추적 정보를 수집하려면 추적이 수행되는 애플리케이션 프로세스에 대해 최적으로 작동하도록 상용 탐색기를 조정해야 합니다.

이 할로크 정보
상용 탐색기를 구성하려면 다음 단계를 수행하십시오.
1. 수집할 상용 데이터를 시스템에 알려리는 세션 정의를 작성하십시오. 상용 탐색기 정의 추가(ADDPEXDFN) 표시 화면에서 정의에 대한 콜렉션 유형 및 이름을 지정하십시오. 이 정의는 QUSRSYS 라이브러리의 QAPEXDFN 파일에서 해당 이름을 사용하여 데이터베이스 멤버로 저장됩니다. 저장하는 이름은 STRPEx(상용 탐색기 시작) 명령에서 사용됩니다.
2. (선택사항) 필터를 추가하십시오(ADDPEXFR(PEX 필터 추가) 명령). 상용 탐색기 필터는 상용 탐색기 세션 중에 수집된 상용 데이터를 식별하고, 특정 이벤트에 대한 비교 값을 지정하여 수집된 데이터 양을 재현합니다.
3. 데이터 수집을 시작하십시오(STRPEx(상용 탐색기 시작) 명령). 작업은 *PMCO 이벤트가 수집되지 않는 경우, 이상의 상용 탐색기 콜렉션에 있을 수 있습니다. *PMCO 이벤트가 수집되는 경우 작업은 모든 콜렉션에 동일한 간격 스펙(ADDPEXDFN INTERVAL) 메개변수)를 가지고 있는 경우에만 상용 탐색기 콜렉션에 있을 수 있습니다. STRPEx 명령에 정의 및 선택적 필터를 지정할 수 있습니다.
4. 분석하려는 데이터에 대해 명령, 프로그램 또는 작업부하를 실행하십시오.
5. 데이터 수집을 중단하고 분석을 위해 데이터베이스 파일에 저장하십시오. ENDPEx(상용 탐색기 종료) 명령을 사용하여 콜렉션을 중단하십시오.
6. 상용 데이터를 분석하십시오. PRTPEXRPT(상용 탐색기보고서 인쇄) 명령은 데이터 유형(통계, 프로파일, 추적 프로파일 또는 추적)마다 고유한 보고서를 제공합니다.

다음은 분석을 위한 기타 옵션입니다.
• 데이터베이스 파일 세트에 대한 고유한 취리를 작성이름.
7. 성능 탐색기 세션을 종료하려면 ENDPEX(성능 탐색기 종료) 명령을 사용하십시오.

결과

모든 성능 탐색기 명령은 다음 방법 중 하나로 액세스할 수 있습니다.
• 명령 인터페이스 명령행에서 명령을 입력하십시오. 모든 명령은 IBM i 오퍼레이팅 시스템의 일부입니다.
• 성능 분석 툴 매뉴 옵션.

관련 개념

70 페이지의 [성능 탐색기 개념]
성능 탐색기는 지정된 시스템 프로세스 또는 자원에 대한 자세한 정보를 수집하여 작동합니다. 이 주제에서는 성능 탐색기가 작동하는 방법과 최적의 사용법에 대해 설명합니다.

71 페이지의 [성능 탐색기 정의]
성능 탐색기가 수집하는 데이터와 수집 방법을 판별하는 매개변수 및 조건은 성능 탐색기 정의를 사용하여 구성 및 저장됩니다. 이 주제에서는 이 정의를 사용하는 방법을 설명하고 간단한 정의를 보여주는 샘플을 제공합니다.

관련 참고

ADDPEXFTR(PEX 필터 추가) 명령
STRPEX(성능 탐색기 시작) 명령
PRTPEXRPT(성능 탐색기 보고서 인쇄) 명령

성능 탐색기 종료:

성능 탐색기 세션을 종료하려면 ENDPEX(성능 탐색기 종료) 명령을 사용하십시오.

ENDPEX(성능 탐색기 종료) 명령은 수집된 데이터에 대해 다음 조치를 수행합니다.
• 사용자가 지정하는 라이브러리의 QAYPxxx 파일에 수집된 데이터를 넣습니다. OPTION(*END) 및 DTAOPT(*LIB)를 사용하여 이를 수행하십시오. DTAMBR 매개변수에 이름을 지정하지 않으면 모든 QAYPxxx 파일에 대한 데이터베이스 메타데이터는 다중도 세션명을 사용합니다. RPLDTA(*NO)를 지정하여 기존 데이터 위에 새 데이터를 격차쓰지 않거나 RPLDTA(*YES)를 사용하여 기존 데이터 위에 새 데이터를 격차쓰며 사용할 수 있습니다. 이와 같은 조치가 아니면 RPLDTA(*NO)를 사용하십시오.
• 수집된 데이터를 단일 IBM 정의 파일에 넣습니다. OPTION(*END) 및 DTAOPT(*LIB)를 사용하여 이를 수행하십시오. 일반적으로, IBM 서버에 담당자의 지시가 있는 경우에만 *MGTCOL을 사용합니다. DTAOPT 매개변수에 *MGTCOL 값을 지정하면 클래식 정보가 관리 콘솔 오브젝트에 저장됩니다. 관리 콘솔 오브젝트 옵션은 데이터가 IBM에 제공되는 경우에만 사용해야 합니다. 성능 분석 툴은 데이터베이스 파일만 분석할 수 있습니다.
• 수집된 데이터를 삭제합니다. 데이터를 저장하려면 OPTION(*END)을 사용하고 수집된 데이터를 삭제하면 DTAOPT(*DLT)을 사용하십시오. 수집된 데이터를 사용할 수 없음을 관별할 때 이와 같이 수행합니다.
예를 들어, 의심이 가는 작업 중 하나가 예상대로 시작하지 못했습니다. *DLT 옵션을 선택하는 경우 세션에 대해 수집된 성능 데이터는 저장되지 않습니다.
• 콜렉션 세션을 일시중단하지만 종료하지 않습니다. OPTION(*SUSPEND)을 사용하여 수행하십시오. 나중에 저장된 세션 ID에 대해 OPTION(*RESUME)과 함께 STRPEX 명령을 발행하여 다시 데이터 콜렉션을 시작할 수 있습니다.

주: 활성 콜렉션 세션명을 잊은 경우 ENDPX SSNID(*SELECT) 명령을 사용하시십시오.

데이터 보기 및 분석
성능 데이터 콜렉터가 수집한 데이터가 데이터베이스 파일에 저장됩니다. IBM i에는 데이터를 관리하고 보며 분석하도록 도움을 줄 수 있는 많은 도움이 있습니다.
관련 정보

End to End Performance Management on IBM i

i용 IBM Systems Director Navigator 성능 인터페이스

i용 IBM Systems Director Navigator 성능 인터페이스를 사용하면 다양한 성능 정보 및 툴을 하나의 중앙 위치로 가져와서 성능 데이터를 보고 수집하고 관리할 수 있습니다.
관련 정보

i용 IBM Systems Director Navigator

성능 데이터 조사:

성능 데이터 조사는 대화식 도표와 테이블을 사용하여 성능 데이터에 대한 웹 기반 GUI를 제공합니다. 이 조사기를 사용하여 콜렉터(콜렉션 서비스, IBM i 작업 감시기, IBM i 디스크 감시기 및 성능 탐색기) 각각에 대한 성능 데이터를 보고 분석할 수 있습니다.

이 테스크 정보

다음 단계에 따라 액세스할 수 있습니다.
1. i용 IBM Systems Director Navigator를 실행하십시오.
 a. 웹 브라우저에서 http://hostA:2001 URL에 액세스하십시오. 여기서 hostA는 IBM i 파티션 이름입니다.
 b. 시스템 ID 및 암호를 사용하여 로그인하십시오.
2. 왼쪽 패널에서 성능을 선택하십시오.
3. 데이터 조사를 선택하십시오.

 데이터 조사:
데이터 조사 테스크를 선택하면 강력한 성능 데이터 조사기 풀이 실행됩니다. 이 풀을 사용하면 도표 및 테이블 형식의 성능 콜레션에 저장된 데이터를 보고 분석할 수 있습니다.

데이터 조사 기본 페이지에서 분석할 Perspective 및 콜렉션을 선택합니다. 각 콜렉션(콜렉션 서비스, 작업 감시기, 디스크 감시기 및 성능 검색기)에는 해당 데이터 콜렉션 유형의 사전 정의된 Perspective를 포함하는 연관된 콜렉션 패키지가 있습니다. 성능 인터페이스에 대한 IBM이 배포하는 콜렉션 패키지도 있습니다. 성능 인터페이스 패키지에는 파티션의 일반 성능 상태를 표시하고 사용자 정의 알림을 구성하도록 하는 Perspective가 포함됩니다. 리스트의 사용자가 작성하고 저장한 Perspective 및 사용자 정의 콜렉션 패키지를 가질 수 있습니다.

다음은 데이터 조사 페이지에서 발견한 콜렉션 패키지 리스트의 계층 구조 형식의 예제를 표시합니다.

각 콜렉션 패키지에는 데이터의 다른 설명(렌더링)을 제공하기 위해서 콜렉션 패키지 아래에 Perspective 리스트가 있습니다. Perspective는 분석할 데이터를 표시하기 위해 사용할 수 있는 도표 또는 테이블의 한 페이지를 정의합니다.

데이터 조사 페이지를 사용하여 다음 단계에 따라 분석하려는 콜렉션 및 Perspective를 선택할 수 있습니다.
1. 컨텐츠 패키지 옆에 있는 사각형을 누르거나 컨텐츠 패키지명을 즉시 선택해서 작업하려는 컨텐츠 패키지를 클릭하시오.
2. Perspective가 컨텐츠 패키지에 재생적으로 저장됩니다. 서브폴더를 탐색하려면 폴더명 옆에 있는 사각형을 클릭하시십시오.
3. 보려는 Perspective를 발견하였으면 Perspective를 클릭하여 선택하십시오. 페이지의 반대편에서 Perspective에 대한 간략한 설명을 볼 수 있습니다. 페이지의 맨 아래에서 콜렉션을 선택하도록 도와주는 두 개의 옵션 리스트를 볼 수 있습니다.
4. 콜렉션 라이브러리 리스트는 사용해서 작업하려는 라이브러리를 선택하십시오. 이는 콜렉션명 리스트가 선택된 라이브러리의 콜렉션으로 구성되도록 합니다. 선택된 Perspective에 유효한 콜렉션만 리스트에 포함됩니다.
5. 콜렉션 명 리스트를 사용해서 작업하려는 콜렉션을 선택하십시오.
6. 표시 화면을 클릭해서 선택된 Perspective에 표시된 콜렉션 데이터를 볼 수 있습니다.

IBM i 6.1 이상에서 작성되거나 6.1 형식으로 변환된 IBM Systems Director Navigator의 성능 변화 콜렉션 테스크 또는 성능 콜렉션 변경(CVTPRCOL) 명령 사용) 콜렉션만 성능 데이터 조사기에서 분석할 수 있습니다.

필요한 기능 레벨에 따라 다음 중 일부 혹은 모두를 설치해야 합니다.
IBM i 및 IBM i 디스크 감시 기능을 위한 i용 성능 분석 툴(5761PT1) 음성 1 - 관리 기능

IBM i 작업 감시 기능을 위한 i용 성능 분석 툴(5761PT1) 음성 3

관련 개념

1. 페지의 [IBM i 대기 계정의 기초]
 대기 계정은 스테드 또는 테스크가 어떤 것도 수행하지 않음을 표시할 때 이 스테드 또는 테스크가 수행 중인 것을 사용자에게 알려는 특허받은 기술로, IBM i 오퍼레이팅 시스템에 내장되어 있습니다.

2. 페지의 [모든 파티션에 대한 CPU 이용률 수집 및 표시]
 복수의 파티션을 사용할 때 파티션 설정하는 IBM i, AIX 또는 Linux와 관계없이 모든 파티션에 걸쳐 전체 처리 기능의 이용률을 이해하는 것이 중요할 수 있습니다. IBM i는 이 데이터를 수집하고 표시하는 방법을 제공합니다.

관련 테스크

1. 페지의 [콜렉션 보기]
 i용 IBM Systems Director Navigator를 사용하는 콜렉션을 보려면 다음 단계의 시리즈 중 하나를 따르십시오.

Perspective에 대한 작업:

Perspective는 저장된 콜렉션 데이터의 표시(도표 또는 테이블 양식으로)입니다. 콜렉션 데이터가 표시되면 사용자가 상호작용하고 데이터를 분석할 수 있는 피처가 있습니다.

이 테스크 정보

1. 가장 강력한 피처 중 하나는 데이터 콜렉션으로 드릴다운할 수 있는 기능입니다. 현재 Perspective 표시의 조치 리스트 메뉴에서 두 번째 Perspective를 선택하여 다른 데이터 보기로 드릴다운할 수 있습니다. 각 도표는 사용자 데이터에 대해 다른 통합을 제공할 수 있지만, 성능 데이터 조사기 툴의 능력은 각 Perspective가 후속 Perspective에 영향을 미치는 특성을 가지고 있습니다. 드릴다운을 통해 액세스한 각 Perspective를 사용하여 사용자 정의 보고 컨텍스트의 범위를 줄일 수 있습니다. 도표의 정이나 레이블의 행을 선택하면 추후 보기에 범위를 줄이는 데 사용해야 하는 데이터 세트를 표시하는 것입니다. 예를 들어, CPU 이용률 및 대기 개요 Perspective를 보는 동안 잠재된 성능 문제점에 유의할 수 있습니다. 특정의 날짜-시간 범위에서 확대하여 관심이 있는 범위를 줄일 수 있습니다. 그러면 조치 리스트 메뉴에서 다른 Perspective를 선택하여(예: 스테드 또는 테스크별 CPU 이용률) 관련된 추가 정보를 얻을 수 있습니다. 데이터 검을 선택하고 다른 Perspective로 드릴다운하는 프로세스는 반복 가능합니다. Perspective의 맨 위에 있는 이력 메뉴를 사용하여 사용자가 표시한 Perspective와 이 Perspective로 리턴하는 방법을 추적할 수 있습니다.

2. 데이터가 표시되는 방식을 수정할 수 있는 기능을 가지고 있으므로, 나중에 수정된 Perspective를 참조할 수 있도록 저장 조치가 제공됩니다.

3. 음성을 클릭하여 성능 데이터 조사기 내에 사용될 지속적 사용자 기본설정을 저장할 수 있습니다. 이 음성 중 하나인 "설계 모드 작동 가능"은 사용자 고유의 콜렉션 편집 및 Perspective를 작성할 수 있는 기능을 제공합니다.
• 데이터 내보내기 또는 Perspective를 생성하기 위해 사용되는 SQL 수정을 수행할 수 있는 기능을 비롯하여 사용자 조사기의 데이터 조작을 쉽게 만들도록 만드는 데 도움이 되는 사용 가능한 많은 다른 조치와 대화식 도표 및 테이블 목록이 있습니다.

Perspective 저장:

Perspective 저장 기능을 사용하면 나중에 사용하기 위해 저장된 Perspective를 저장할 수 있습니다.

이 테스크 정보

드릴다운 및 컨텍스트 수정을 통해 클래식에서 데이터를 조사할 때 현재 컨텍스트 Perspective가 수정됩니다.

수정된 이 Perspective를 저장하면 나중에 이 Perspective로 리턴할 수 있고 클래식 데이터(적절한 레이아웃)로 작성된 Perspective의 특정사항으로 신속하게 표시할 수 있습니다.

사용자 정의된 테이블 또는 도표에서 저장 조치를 수행하려면 맨 아래에서 “다른 이름으로 저장” 버튼을 클릭하거나, Perspective 메뉴 상단에서 “다른 이름으로 저장” 조치를 사용하십시오. Perspective 저장 페이지에서 이 새 Perspective를 삭제하는 데 도움이 될 이름 및 설명을 저장할 수 있습니다. 저장이 성공적으로 완료되면, 사용자 정의가 발생했음을 표시하는 추가 메세지와 나중에 이 동일한 Perspective로 바로 되돌아 갈 수 있도록 URL이 있는 Perspective 페이지가 다시 표시됩니다.

다음은 이 피처에 대한 핵심 사항입니다.

• 저장된 URL은 동일한 시스템에서 iSeries IBM Systems Director Navigator를 사용하는 한 다른 것과 공유될 수 있습니다.

• 저장된 Perspective는 사용자 정의 데이터 조작, 데이터 표시에서 사용할 수 있습니다. 저장된 Perspective는 기본 데이터 조작 페이지에서 "Perspective 사용자 정의 - USERNAME" 컨텐츠 페이지 아래에 표시됩니다.

• 컨텐츠 페이지는 "QIBM/UserData/OS400/iSeriesNavigator/config/PML/CCP"에 있는 IFS에서 "CCP_USERNAME.PML" 파일에 저장됩니다. 시스템에서 저장한 Perspective를 보호하려면 백업해야 합니다.

• 저장된 Perspective는 라이브러리 및 이름 드롭다운 상자에서 클래식을 선택하여 간단하게 다른 저장 클래식을 선택하는 데 사용할 수 있습니다. 컨텍스트 정보는 적절하게 표시된 클래식에 적용해야 합니다. 비어 있는 도표가 표시되는 경우 컨텍스트 변경 조치를 사용하여 Perspective 컨텍스트를 확인 및 변경하십시오.

관련 테스크

90 페이지의『컨텍스트 변경』

컨텍스트 변경 조치를 사용하여 도표 또는 테이블 보기의 현재 컨텍스트 정보를 검사하고 수정할 수 있습니다.

옵션:

옵션 페이지에서, 사용자 정의 및 사용자 기본설정을 설정할 수 있습니다.
이 테스크 정보

이 페이지에서 설정할 수 있는 옵션은 다음과 같습니다.

- 패턴 사용 - 도표에서 적용 가능한 패턴을 사용할 것인지 여부를 설정합니다. 디폴트는 선택됨입니다.
- 도표 표시 - 가능한 때마다 테이블이 아니라 도표를 표시하도록 디폴트를 설정합니다. 디폴트는 선택됨입니다.
- 설계 모드 작동 가능 - 새 컨텐츠 패키지의 설계 및 개발을 허용하는 확장 기능을 작동할 수 있습니다. 디폴트는 선택되지 않습니다.
- 도움말 표시 - 많은 테스크에 대한 도움말 메세지를 작동할 수 있습니다. 디폴트는 선택됨입니다.
- 테이블 크기 설정 - 테이블에 대해 표시되는 볼 수 있는 행 및 열 수를 지정할 수 있습니다.

다폴트 라이브러리의 콜렉션이 수집될 때 사용될 라이브러리를 지정합니다. 다음 각 중 하나로 설정할 수 있습니다.

- 콜렉션 서비스에서 구성된 라이브러리
- 마지막으로 방문한 라이브러리
- 지정된 라이브러리

설계 모드 작동 기능:

설계 모드 작동 기능 설정은 옵션 패키지에서 찾을 수 있습니다. 설계 모드가 작동되도록 설정하면 새 컨텐츠 패키지의 사용자 정의 개발이 허용됩니다.

이 테스크 정보

설계 모드를 선택하면 추가 확장 기능을 사용할 수 있게 됩니다. 여기에는 다음을 수행할 수 있는 기능이 포함됩니다.

- 새 폴더 및 Perspective 작성
- 폴더 및 Perspective 편집
- Perspective에서 보기 추가, 편집 및 삭제
- 사용자 정의 폴더 및 Perspective 삭제
- 도표 보기에 대한 데이터 시리즈 추가, 편집 및 삭제
- 도표 보기에 대한 업계값 추가, 편집 및 삭제
- 확장 편집 옵션을 사용하여 Perspective를 생성하는 데 사용되는 XML 편집
- 나중에 편집할 수 없도록 사용자 정의 Perspective “잠금”
- 워크 이동 또는 아래로 이동을 사용하여 폴더에서 Perspective 순서 배열
- Perspective 리스트 화면정리
화면 정리

이 테스크 정보

성능 테이터 조사하기의 테이터 조사 페이지에는 맨 아래에 Perspective 화면 정리 버튼이 있습니다. 이 버튼을 클릭하면 화면 정리가 생성되도록 시스템의 컨텐츠 테이터가 다시 로드됩니다. 이는 시스템에서 새 컨텐츠 테이터를 수동으로 개발할 때 유용합니다.

도표 펼쳐:

데이터를 추가 조사하고 도표 보기가 컨텍스트를 수정할 수 있는 도표 보기에 사용할 수 있는 많은 피쳐가 있습니다.

이 테스크 정보

도표의 대화식 기능으로 도표는 성능 데이터를 분석하기 위한 강력한 도구가 됩니다. 그래프 성능 데이터를 시각화할 수 있어서 활동의 최대 및 최소 부분을 두드러지게 할 수 있습니다. 추가 세부사항 및 특정 시간 간격으로 드릴다운할 수 있는 기능은 매우 유용합니다. 다음 도표 아이콘은 분석에 도움이 될 수 있는 인터액티임니다.

화살표 아이콘을 클릭하면 도표에서 점 또는 막대를 선택할 수 있습니다. 데이터 점을 선택하면 성능 데이터 조사자가 사용자가 찾은 관심있는 컨텍스트를 기초로 추후 분석 범위를 줄이는 데 도움이 될 수 있습니다. 도표에서 점을 선택하고 조치 리스트 메뉴에서 조치를 선택하여 해당 데이터에 대한 추가 분석을 위해 드릴다운할 수 있습니다. 이것은 디플트 인터액티입니다.

손모양 아이콘을 클릭하면, 도표 이미지 주변을 클릭하고 끌어서 도표를 펼(pan)할 수 있습니다. 이 인터액티는 도표의 부분에 근접하게 확대될 때 확대/축소 요소를 조정하지 않고 주변으로 이동하려는 경우에 유용합니다.

말풍선 아이콘을 클릭하여 도구 패널 정보가 작동되거나 작동되지 않도록 할 수 있습니다. 도구 패널은 도표 데이터 점 위에 마우스를 옮겨 놓을 때 표시되며 관심있는 여러 정보 비트를 표시하도록 정의할 수 있습니다. 디플트로 작동 불가능합니다.
· 뒤에 점선 직사각형이 있는 돋보기와 유사한 아이콘을 클릭하여 확대 조치 인터액터를 작동시킬 수 있습니다. 확대/축소는 점을 클릭하고 추가 조사하려는 도표 부분 주위로 장을 끌어서 수행할 수 있습니다.
 마우스 버튼을 해제하면 Perspective 도표가 다시 표시되어 사용자가 선택한 영역만 표시합니다.

· 옆에 빗기 부호(”-“)가 있는 돋보기 아이콘을 클릭하면 Perspective의 전체 도표 보기로 리턴할 때까지 현재 확대/축소 레벨에서 점점 축소됩니다.

· 모든 방향으로 지시하는 회살표가 있는 정사각형 아이콘을 클릭하면 도표 확대/축소가 최대 레벨로 재설정됩니다. 그러면 Perspective에 대한 전체 도표 보기로 표시됩니다.

한 번에 하나의 도표 인터액터만 활성화할 수 있습니다.

또한, 도표 조치 리스트 메뉴에 "테이블로 표시" 조치가 추가됩니다. 이 조치는 테이블로 표시하도록 현재 보기로 변경합니다.

테이블 피처:

테이블을 추가 조사하는 데 도움이 되는 테이블 보기에 사용할 수 있는 많은 피처가 있습니다.

이 테스크 정보

테이블은 전체 행을 선택하여 테이블의 일부를 조사할 것을 선택할 수 있는 기능을 보유합니다. 테이블은 특정 정보에 대해 쉽게 필터, 정렬 또는 탐색 가능합니다. 다시 도표로 전환하면 테이블에 대해 작성된 순서 및 필터 변경사항이 반영됩니다.

테이블에 특정한, 사용 가능한 몇 가지 조치가 있습니다. 다음과 테이블 아이콘 피처를 클릭하거나 조치 리스트 메뉴에서 특정 조치를 선택하여 사용할 수 있습니다.

- 모두 선택 - 선택 영역의 모든 행에 대한 모든 선택란을 선택합니다. 선택된 행은 조치 리스트 메뉴의 조치를 통해 생성 데이터 조사기에서 조작될 수 있습니다.
- 모두 선택 취소 - 선택 영역에서 모든 선택 표시를 지웁니다.
- 필터 행 표시 또는 숨기기 도구 - 필터 행은 디폴트로 숨겨집니다. 데이터 필터에 사용할 수 있는 필터 행을 표시하려면 이 아이콘을 선택하십시오. 그러면 열 값의 특정 매개변수에 의해 표시되는 테이터를 제한할 수 있습니다.
- 모든 필터 자우기 - 열 필터를 제거합니다.
- 정렬 편집 - 최대 세 개의 열에 있는 값을 기초로 테이블 보기에 표시되는 열을 정렬할 수 있습니다. 테이블 보기에 대한 정렬 편집을 수행하려면 이 아이콘을 클릭하십시오. 정렬 편집 위기리가 표시됩니다. 첫 번째, 두 번째 및 세 번째 정렬 위치에 대해 세 개까지의 열 표제를 선택하십시오. 그런 다음 우산순위 방식으로 정렬된 데이터를 표시하기 위해 각 정렬에 대한 오름차순 또는 내림차순 순서를 선택하십시오.
- 모든 정렬 자우기 - 작동 가능한 모든 사용자 정의 정렬을 제거합니다.

다음 조치는 테이블의 조치 리스트 메뉴에서만 사용할 수 있습니다.
• 도표로 표시 : 이 조지는 도표로 표시하도록 현재 보기를 변경합니다.
• 옵션 페이지에서 "도표 표시"를 선택하지 않은 경우에는 이 조지를 사용할 수 없습니다.
• 데이터 시리즈가 정의되지 않은 테이블을 보는 동안 "도표 표시" 조지를 선택하려고 할 경우 이 조지를 사용하려면 계속하기 전에 데이터 시리즈를 정의해야 합니다.
• 열 - 테이블 보기에 열을 추가하거나 제거합니다. 또한 열 표시를 위 또는 아래로 이동하여 열 순서를 재배치할 수 있습니다.
• 다룰 복원 - 테이블을 다룰 복원 및 필터링으로 복원합니다.

다음 조지는 테이블에서 발견되는 아이콘을 클릭하여 사용할 수 있습니다.
• 선택 - 행 옆에 있는 선택란을 클릭하여 테이블에서 행을 선택할 수 있습니다. 행을 선택하면 상단 테이블 조사자가 사용자가 찾은 관심 있는 컨텍스트를 기초로 추후 분석 범위를 줄이는 데 도움이 될 수 있습니다.
• 조언 리스트 메뉴에서 선택된 조사가 선택된 행에 대해 수행됩니다.
• 정렬 - 열 헤더에 있는 정렬 인디케이터(극대 부호 "^")를 클릭하면 테이블이 오름차순 또는 내림차순으로 정렬될 수 있습니다. 또한 정렬 편집 또는 모든 정렬 지우기 아이콘을 사용하여 현재 정렬 범주를 조작할 수도 있습니다.
• 필터링 - 필터 행 표시 테이블 아이콘을 클릭하면 테이블에 대한 열 표제 아래에 필터 행이 표시됩니다. 그러므로 열 값의 특정 매개변수에 의해 표시되는 데이터를 정제할 수 있습니다. 필터 행은 다룰로 슬래핑 하다. 열에 대한 조건을 기초로 표시된 데이터를 필터하려면 해당 열에 대한 "필터" 링크를 클릭하십시오.

테이블 및 도표 조치:

• 테이블 또는 도표 보기에서 수행할 수 있는 많은 유용한 조치가 있습니다.

내보내기:

• 보기 내보내기 기능을 사용하여 나중에 참조할 수 있도록 도표 또는 테이블을 파일로 내보낼 수 있습니다. 데이터는 이미지(도표만), 합표 구분 또는 테이블 구분 파일로 내보낼 수 있습니다.
• 이 테스크 정보

• 도표 또는 테이블 보기에서 내보내기 조치를 선택하면 내보내기 페이지로 이동됩니다. 이 페이지에서, 저장하려는 Perspective 보기에 대한 다음 링크를 참조하고 수정할 수 있습니다.
• 제목 - 저장된 파일의 링크 위치에서 사용될 제목입니다.
• 형식 - Perspective 보기로 저장하기 위한 형식을 선택합니다.
 • 테이블의 경우 선택사항은 합표 구분(*csv) 또는 테이블 구분(*.txt) 파일 형식입니다.
 • 도표의 경우 이미지(*.png), 합표 구분(*.csv) 또는 테이블 구분(*.txt) 형식에서 선택할 수 있습니다.
• 데이터 범위 - 내보낸 보기에서 데이터 범위를 변경할 수 있습니다. 사용할 수 있는 선택사항은 다음과 같습니다.
 • 모든 데이터 - 현재 보기에 사용할 수 있는 모든 데이터를 내보냅니다.

88 IBM 시스템 관리 상용
표시된 데이터 - 현재 볼 수 있는 보기 데이터만 내보냅니다.
사용자 정의 범위 - 이 옵션을 선택하는 경우 최 번째 및 마지막 레코드 번호를 지정할 수 있습니다. 레코드 번호는 해당 데이터 시리즈에 대한 모든 데이터 사이에 데이터 요소의 색인을 가리킵니다. 이는 지정된 범위를 내보냅니다.
내보내기 페이지에서 확인을 선택하는 경우 새 브라우저 창이 열려서 도표 또는 테이블 보기의 다운로드할 수 있습니다. 파일을 다운로드할 수 있도록 브라우저의 메세지 표시줄에 응답해야 할 수도 있습니다. 파일 다운로드 창에서 데이터를 클라이언트로 저장하거나 열 수 있습니다.

SQL 수정:

SQL 수정 조치를 사용하여 현재 컨텍스트에 있는 성공 클래식에서 데이터를 감색하기 위해 사용하는 SQL문을 검사하고 수정할 수 있습니다.

이 테스크 정보

Perspective 보기의 정의된 SQL문을 통해 선택된 클래식 데이터로 표시합니다. SQL 수정을 사용하여 데이터를 검색하기 위해 사용되는 퀘리를 변경할 수 있습니다. SQL문을 수정하기 전에 SQL 개발 경험을 권장합니다. 이 퀘리를 사용하여 성공 데이터 조사자가 보기에서 표시된 목록에 미터법을 제공하기 위해 사용하는 데이터베이스 필드를 이해할 수 있습니다.

쿼리 또는 선택된 성공 클래식을 대상으로 저장하는 데 필요한 특정 데이터베이스 메타데이터를 표시하기 위해 SQL 별명에 의존한다는 점에 유의하십시오. 별명은 QTEMP에서 작성되며 라이브러리, 파일 및 테이블을 함께 단일 별명으로 연결하여 이름으로 저장할 수 있습니다. 성공 데이터 조사가 외부에서 이러한 쿼리를 실행하려면 사용자 고유의 대화식 세션에서 별명을 다시 작성해야 합니다.

SQL문이 수정되고 Perspective가 다시 표시되면, 나중에 사용하기 위해 "다른 이름으로 저장" 조치를 사용하여 생성된 Perspective를 사용자 정의 컨텐츠 패키지에 저장할 수 있습니다.

SQL 수정 패널에도 패널이 로드될 때의 SQL문으로 SQL문을 재설정할 재설정 버튼이 있습니다. 또한 선택한 경우(다중 선택) 쿼리가 현재 선택된 클래식이 아닌 임의 클래식에 대해 실행할 수 있도록 하는 "클래식 선택사항 허용" 선택란도 있습니다.

관련 테스크

- 94 페이지의 [Perspective 작성]
 실행 모드가 작동 가능한 경우 "새 Perspective" 버튼이 기본 "데이터 조사" 페이지의 "사용자 정의 Perspective 작성" 패널에 표시됩니다. 잠금 해제된 컨텐츠 패키지 또는 사용자가 선택하는 Perspective 그룹에 새 사용자 정의 Perspective를 작성할 수 있습니다.

- 91 페이지의 [보기 작성 및 편집]
 실행 모드가 작동 가능한 경우, 현재 테이블 또는 도표를 보고 있으면 보기 편집 조치를 사용할 수 있습니다. 또한 새 보기를 작성 및 편집하고 잠금 해제된 Perspective에 새 보기를 추가할 수도 있습니다.

다음 업그레이드 크기 조정:
현재 성능 통계를 사용하여 향후 시스템을 사이징할 때 사용하도록 현재 세션에서 Workload Estimator로 데이터 송신하려면 다음과 업그레이드 크기 조정 조치를 사용하십시오.

이 테스크 정보

다음 업그레이드 크기 조정 조치는 콜렉션 서비스 파일 콜렉션을 조사할 때 보기 Perspective에서 사용할 수 있습니다. 이 조치가 선택되면 IBM Systems WLE(Workload Estimator)로 이동합니다. WLE로 송신된 데이터는 현재 컨텍스트를 기초로 현재 콜렉션에서 검색됩니다. 다음 업그레이드 크기 조정 조치를 선택할 때 다음 정보가 표시됩니다.

- 필터 - WLE로 송신될 데이터를 서브세팅하는 데 날짜/시간별 필터링이 사용되었는지 여부를 표시합니다.
- 시스템명, 오프리닝 시스템, 버전 및 작업부하 ID와 같은 일반 정보
- 이용률 및 대화식 이용률과 같은 CPU 미터법
- 디스크 기억장치 용량

데이터는 확인 버튼을 클릭할 때 WLE(Workload Estimator) 웹 애플리케이션으로 송신되고 IBM Systems WLE(Workload Estimator) 웹 애플리케이션이 새 창에 열립니다.

이력 상장 추세 데이터나 정기적인 최대 데이터를 기초로 업그레이드 크기를 조정하려면 PM for Power Systems를 사용할 것을 권장합니다. PM for Power Systems는 여러 파티션을 통한 크기 조정도 용이하게 합니다.

관련 개념

[121] 페이지의 [IBM Performance Management for Power Systems - IBM i에 대한 지원]
IBM i 오플링의 지원에서 IBM Performance Management for Power Systems(IBM Power Systems)는 시스템 성능 데이터의 콜렉션, 보존 및 분석을 자동화하고 보고서를 리턴하여 시스템 자원 및 용량을 관리하는 데 도움을 제공합니다.

컨텍스트 변경:

컨텍스트 변경 조치를 사용하여 도표 또는 테이블 보기에 대한 현재 컨텍스트 정보를 검사하고 수정할 수 있습니다.

이 테스크 정보

이 패널에 표시되는 정보는 현재 테이블 또는 도표에 영향을 주는 이전 Perspective에서 마이닝된 컨텍스트를 표시합니다. 값을 변경하면 동일한 데이터를 마이닝하는 향후 Perspective와 현재 테이블 또는 도표에 영향이 미칩니다. 그러나 이전 Perspective에는 영향을 미치지 않습니다. 현재 Perspective를 나가면 현재 Perspective를 사용하여 작성된 변경사항은 손실되고 값은 이전의 마이닝된 값으로 재설정됩니다. 일반적으로, 계속 분석하고 드립다운할 계획인 경우 현재 Perspective를 닫고 새 테이블 포인트를 선택하는 것이 컨텍스트를 직접 변경하는 것보다 좋습니다.
관련 테스크

8.4 페이지의『Perspective 저장』
Perspective 저장 기능을 사용하면 나중에 사용하기 위해 수정된 Perspective를 저장할 수 있습니다.

보기 작성 및 편집:

전체 모드가 작동 가능한 경우, 현재 테이블 또는 도표를 보고 있으면 보기 편집 조작을 사용할 수 있습니다.
또한 새 보기를 작성 및 편집하고 잠금 해제된 Perspective에 새 보기 추가할 수도 있습니다.

이 테스크 정보

보기는 단일 도표 또는 테이블입니다. Perspective는 하나 이상(10개까지)의 보기로 구성됩니다. 기본 "데이터 조사" 페이지나 "사용자 정의 Perspective 저장" 패널에서 잠금 해제된 Perspective를 선택하고 "편집" 버튼을 선택하여 보기를 새로 작성할 수 있습니다. Perspective 편집 페이지의 보기 선택에서 "추가" 버튼을 클릭하면 시오. 보기 추가 패널이 열립니다. 이 패널에서 다음을 자정할 수 있습니다.

보기
・ 이름
・ 보기의 유형(테이블 또는 도표)

데이터 세트

데이터 세트는 보기를 생성하기 위해 사용됩니다. SQL 쿼리에 의해 정의됩니다. "SQL 수정"을 클릭하면 보기의 데이터를 생성하는 SQL문을 수정할 수 있는 다른 패널이 열립니다.

드릴다운

드릴다운 선택은 보기에 대한 드릴다운 옵션으로 추가(또는 제거)할 수 있는 Perspective의 리스트를 표시합니다. 드릴다운 Perspective는 보기의 조치 메뉴에 표시되며 동일한 컨텍스트의 다른 Perspective를 조사할 수 있습니다.

도표 등록정보
・ 측 백구기 - 보기의 도표인 경우 도메인 또는 범위에서 측을 변경하기 위해 측 백구기 선택란을 선택할 수 있습니다(도메인은 밴 아래 대신 왼쪽에 표시됨).
・ 데이터 시리즈 - 간혹 도표 표시는 데이터를 보여주는 방식이 아닐 수 있습니다. 이는 테이블에서 사용할 수 있는 데이터가 도표에 포함되지 않은 경우에 또는 도표 시리즈가 정의되지 않은 경우에 발생할 수 있습니다. 다음을 수행할 수 있습니다.
・ 데이터 시리즈 추가 - 현재 도표 보기에 추가될 새 데이터 시리즈를 작성할 수 있습니다.
・ 데이터 시리즈 편집 - 도표 보기에 대한 기존 데이터 시리즈를 보고 수정할 수 있습니다. 데이터 시리즈 속성을 수정할 수 있습니다. 보기 편집 페이지에서 도표 보기로 리턴할 때 변경사항이 도표 보기에 반영 됩니다.
・ 삭제 - 도표 보기에서 데이터 시리즈를 삭제합니다.
위로 이동 - 보기 리스트에서 선택된 데이터 시리즈를 위로 이동합니다.
아래로 이동 - 보기 리스트에서 선택된 데이터 시리즈를 아래로 이동합니다.

- 임계값 - 이 옵션을 사용하여 보기에서 사용될 임계값을 정의합니다. 임계값은 해당 버튼을 사용하여 보기에서 추가, 편집 또는 삭제할 수 있습니다.

 관련 테스크

94 페이지의『Perspective 작성』

설계 모드가 작동 가능한 경우 "새 Perspective" 버튼이 기본 "데이터 조사" 페이지와 "사용자 정의 Perspective" 페이지에 표시됩니다. 지금 흥미로운 컨텐츠 페이지나 사용자가 선택하는 Perspective 그룹에 새 사용자 정의 Perspective를 작성할 수 있습니다.

89 페이지의『SQL 수정』

SQL 수정 조차를 사용하여 현재 컨텐츠에 있는 성능 콜렉션에서 데이터를 검색하기 위해 사용하는 SQL 문을 검시하고 수정할 수 있습니다.

95 페이지의『데이터 시리즈』

데이터 시리즈 패널에서는 도표 보기에 사용되는 데이터 시리즈를 보고 수정하거나, 도표에 사용될 새 데이터 시리즈를 정의할 수 있습니다.

96 페이지의『임계값』

임계값은 도표를 선정하게 한데 볼 수 있는 방법을 제공하며 표시된 값이 지침 내에 있는지 또는 조치를 수행해야 하는지 여부에 대한 시각적 인터페이스를 보유합니다.

Perspective 탐색: 미터법 파인더:

특정 미터법을 포함하는 Perspective를 찾는 데 도움이 될 수 있는 미터법 파인더 기능을 표시하려면 데이터 조사 페이지에서 "탐색" 버튼을 사용하십시오.

이 테스크 정보

데이터 조사 페이지의 미터법 파인더 형식은 관심있는 특정 미터법이나 정보 유형을 기초로 사용자가 선정하게 Perspective를 표시할 수 있도록 설계되었습니다. 정의된 지원 미터법의 항목 리스트에서 미터법을 선택하여 정보의 해당 영역을 기초로 보기 를 제공하는 Perspective 리스트를 볼 수 있습니다.

데이터 조사 페이지의 미터법 파인더 형식에는 데이터 조사 페이지의 개층 구조 형식과 다른 다음과 같은 색 선이 있습니다.

- 미터법 - 이 미터법 찾기 리스트를 사용하여 특정 정보 유형을 포함하는 Perspective 리스트를 표시할 수 있습니다.
 - 필터 - 사용 가능한 많은 미터법이 있습니다. 미터법 색션의 필터 필드에서는 필터의 텍스트를 미터법의 이름으로 입력시켜서 "미터법" 리스트에서 미터법의 리스트를 표시할 수 있습니다. 이 필터는 정확한 이름을 모는 경우, 하나의 특정 미터법을 탐색하는 데 도움이 됩니다.
 - 필터 텍스트를 입력한 후 "필터 적용"을 클릭하여 미터법명 리스트가 갱신되도록 해야 합니다.
 - 미터법 리스트가 필터될 때 필터와 일치하는 미터법(부분적으로 또는 완전적으로)만 드룹 다운에 포함 됩니다.
- 필터링 없이 제공되는 미터법 리스트는 Perspective의 계층 구조 형식에서 사용 가능한 모든 Perspective의 미터법과 정확히 같습니다. 즉, Perspective의 계층 구조 형식에서 동일한 Perspective가 발견된 경우에 할 수 있는 것처럼 원하는 미터법을 선택하여 모든 최상위 레벨 Perspective를 가져올 수 있습니다.

여기에는 사용자가 정의한 고객 패키지 Perspective가 포함됩니다. 드릴다운을 통해서만 액세스할 수 있는 Perspective는 Perspective 리스트에 포함되지 않습니다.

- Perspective - Perspective 리스트가 테이블로 표시됩니다. 테이블에는 위의 미터법 색선에서 선택한 미터법과 일치하는 하나 이상의 Perspective가 포함됩니다. 여기에는 콜렉션 데이터를 표시하기 위해 사용할 Perspective를 선택할 수 있습니다.

- 각 Perspective의 위치는 다음 형식으로 도표 항목에 표시됩니다.

 컨텐츠 패키지 -> 폴더 [-> 서브폴더] -> Perspective 이름

주: Perspective에 미터법이 있는 경우 이것이 데이터 콜렉션의 도표 보기에 다플랫로 해당 미터법이 포함될을 의미하는 것은 않습니다. 어떤 경우에는, Perspective가 표시되면 미터법을 찾기 위해 "데이터로 표시" 조치를 수행해야 합니다.

사용자 정의 패키지 작성:

실제 모드가 작동 가능한 경우 사용자 고유의 사용자 정의 컨텐츠 패키지를 작성할 수 있습니다. 이 패키지에는 사용자 요구에 맞게 조정된 Perspective가 있을 수 있습니다.

이 테스크 정보

사용자 정의 도표 및 테이블을 작성하기 위한 대화식 기능은 IBM에서 제공하는 컨텐츠 패키지와 다른 방식으로 성능 데이터를 보이거나 하는 고급 사용자에게 아주 유용할 수 있습니다. 컨텐츠 패키지는 보통의 컨텐츠 패키지로 구성되며 전체 Perspective 세트가 있습니다. 컨텐츠 패키지를 새로 작성하려면 기본 "데이터 조사" 패널의 패널 또는 "사용자 정의 Perspective 저장" 패널의 Perspective 리스트 패널에서 "새 패키지..." 아이콘을 클릭하시십시오. 그러면 새 패키지에 대한 이름 및 설명을 지정할 수 있는 새 패널이 실행됩니다.

패키지가 작성되면 편집 버튼을 사용하여 패키지 정보를 편집할 수 있습니다. 편집 모드에서, 패키지는 대형 Dialog의 Form으로 표시되며, 페이지 내에 있는 각 객체의 이름과 설명을 편집할 수 있습니다. 편집 후에는 편집된 정보를 사용하여 패키지 정보를 편집하거나 삭제 버튼을 사용하여 삭제할 수 있습니다.

작성하는 컨텐츠 패키지는 기본 Perspective 계층 리스트에 표시됩니다. 패키지가 작성되면 새 Perspective 그룹 및 Perspective를 패키지에 추가할 수 있습니다.
관련 테스크

85 페이지의 『설계 모드 작동 가능』
설계 모드 작동 가능 설정은 옵션 페이지에서 찾을 수 있습니다. 설계 모드가 작동되도록 설정하면 새 컨텐츠 폴더가 생성됩니다.

폴더 작성:

설계 모드가 작동 가능한 경우 "새 폴더" 버튼이 기본 "데이터 조사" 페이지와 "사용자 정의 Perspective 저장" 패널에 표시됩니다. 이 버튼을 사용하여 논리 그룹으로 작성된 Perspective를 구성할 수 있습니다.

이 테스크 정보

Perspective 그룹을 작성하려면 잠금 해제된 컨텐츠 폴더나 트리에서 선택한 Perspective 그룹을 가지고 있거나 합니다. "새 폴더" 버튼을 클릭하면 새 폴더의 이름 및 설명을 입력할 수 있는 패널이 실행됩니다. "새 폴더" 조작을 수행할 때 컨텐츠 폴더가 선택되는 경우 선택된 컨텐츠 폴더 아래에 Perspective 그룹이 작성됩니다. Perspective 그룹이 선택된 동안 "새 폴더" 조작이 수행되는 경우 선택된 Perspective 그룹 아래에 새 Perspective 그룹이 나타킵니다.

Perspective 그룹이 작성되면 편집 버튼을 사용하여 폴더 정보를 판정할 수 있습니다. 편집 모드에 있을 때 Perspective 그룹에 대한 디폴트 Perspective를 선택할 수도 있습니다. 새로운 모드에 정의된 Perspective가 있는 경우, 또한 편집할 수 있도록 폴더(모든 해당되는 종속 사항)를 잡그려는 경우 "잠금" 선택란을 선택할 수 있습니다. 작성 후에 폴더가 잠기지 않고 유지되는 경우 편집 버튼을 사용하여 Perspective 그룹 정보를 편집하거나 삭제 버튼을 사용하여 삭제할 수 있습니다.

작성하는 Perspective 그룹은 연관된 컨텐츠 폴더 아래에서 기본 Perspective 계층 리스트에 표시됩니다. Perspective 그룹이 작성되면 새 Perspective 그룹 및 Perspective를 추가할 수 있습니다. 위로 이동 또는 아래로 이동 버튼을 사용하여 컨텐츠 폴더에서 Perspective 그룹의 순서를 배열할 것을 선택할 수도 있습니다.

Perspective 작성:

설계 모드가 작동 가능한 경우 "새 Perspective" 버튼이 기본 "데이터 조사" 페이지와 "사용자 정의 Perspective 저장" 패널에 표시됩니다. 잠금 해제된 컨텐츠 폴더나 사용자가 선택하는 Perspective 그룹에 새 사용자 정의 Perspective를 작성할 수 있습니다.

이 테스크 정보

Perspective는 일반적으로 하나 이상의 도표 또는 테이블 양식으로 되어 있는 하나의 데이터 표시 패널입니다. Perspective에는 하나 이상(10개까지)의 보기와 포함됩니다. 보기는 단일 도표 또는 테이블입니다. Perspective를 작성하려면 잠금 해제된 컨텐츠 폴더나 Perspective 트리에서 선택한 Perspective 그룹을 가지고 있어야 합니다. 그러면 "새 Perspective" 버튼을 선택할 수 있습니다. 선택하면 Perspective의 이름 및 설명을 저장할 수 있는 새 패널이 실행됩니다. 편집할 수 있도록 Perspective를 잡그려는 경우 "잠금" 선택란을 선택할 수 있습니다. 또한 이 패널에서 Perspective에 보기와 추가할 것을 저장할 수 있습니다.
Perspective가 잡금 해제 상태로 작성되면 편집 버튼을 사용하여 Perspective 정보를 편집할 수 있습니다. 편집 모드에서 이름 또는 설명을 변경하거나 잡김 상태를 변경(잡금 해제됨에서 잡킴으로)할 수 있습니다. 또한 Perspective와 연관된 보기들 추가, 편집 또는 삭제할 수도 있습니다. 잡금 해제된 Perspective는 삭제 버튼을 사용하여 삭제될 수도 있습니다.

상근 데이터 조사는 XML 파일을 사용하여 Perspective가 정의된 방법(예: 마이닝 방법과 데이터 표시 방법인)에 저장합니다. 파일은 "상근 마크업 언어(PML)로 언급됩니다. 기본 "데이터 조사" 페이지와 "사용자 정의 Perspective 저장" 패널에서 "확장 편집" 버튼을 클릭하여 잡금 해제된 Perspective에 대해 직접 PML 보기나 편집할 수 있습니다.

작성하는 Perspective는 연관된 컨텐츠 패키지나 Perspective 그룹 아래에 기본 Perspective 케이스 리스트로 표시됩니다.

관련 테스크

89 페이지의 SQL 수정

SQL 수정 조치를 사용하여 현재 컨텍스트에 있는 상근 콘텐츠에서 데이터를 삽입하기 위해 사용하는 SQL 문을 검토하고 수정할 수 있습니다.

91 페이지의 [보기 작성 및 편집]

설계 모드가 작성 가능한 경우, 현재 테이블 또는 도표를 보고 있으면 보기 편집 조치를 사용할 수 있습니다. 또한 새 보기들 작성 및 편집하고 잡금 해제된 Perspective에 새 보기를 추가할 수도 있습니다.

데이터 시리즈:

데이터 시리즈 패널에서는 도표 보기에 사용되는 데이터 시리즈를 보고 수정하거나, 도표에 사용될 새 데이터 시리즈를 정의할 수 있습니다.

이 테스크 정보

데이터 시리즈 속성은 다음과 같습니다. 일부 속성은 도표에 이미 속성이 지정된 경우에 잡길 수 있습니다.

- 도메인 - 이 도표에 사용되는 독립 속성 사용될 필드를 지정합니다. 현재 도표에 대해 다른 데이터 시리즈가 존재하는 경우 이 필드는 기존 도메인 값에 일치하도록 잡길니다.
- 범위 - 이 도표에 사용될 범위 값을 지정할 수 있습니다. 사용 가능한 리스트는 가능한 모든 범위를 표시합니다. 추가 범위은 데이터 시리즈에 사용 가능한 리스트에서 선택된 범위를 추가합니다. 제거 범위은 데이터 시리즈에서 선택된 범위에서 선택된 범위를 제거합니다. 각 범위의 색상, 백그라운드 및 패턴을 지정할 수 있으며, 선택된 테이블에서 드롭다운 메뉴를 사용할 수 있습니다.
- 유형 - 도표 유형을 선택하십시오.(변화가 있는 선 또는 막대).
- 분석 결과 - 선택된 브레이크다운 필드의 각 고유 값은 해당되는 분석 결과 값의 모든 범위 값을 나타내는 고유 데이터 시리즈를 생성합니다. 이는 시간 경과에 따라 시스템에서 고유 작업마다 개별 데이터 시리즈를 작성하는 데 사용되는 메카니즘입니다. 예를 들어, 다음 데이터 세트를 가정한다고.
표 1. 데이터 세트 예

<table>
<thead>
<tr>
<th>간격 번호</th>
<th>작업 CPU</th>
<th>작업명</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>작업 A</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>작업 B</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>작업 A</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>작업 B</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>작업 A</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
<td>작업 B</td>
</tr>
</tbody>
</table>

간격 번호 도메인 및 작업 CPU 범위의 선택 도표 결과는 (1, 10), (1, 15), (2, 20), (2, 30), (3, 30), (3, 45) 데이터집입니다.

작업명 분석 결과 차원을 지정하면 시리즈 1 = (1, 10), (2, 20), (3, 30) 및 시리즈 2 = (1, 15), (2, 30), (3, 45) 데이터집이 있는 두 개의 선이 생성됩니다.

이는 완전히 이해하기에는 약간의 실험이 필요한 수 있는 정교하면서 강력한 피쳐입니다.

- 도구 팀 필드 - 이 리스트에서 필드를 선택하면, 데이터 시리즈의 각 점이 현재 도메인에 대해 선택하는 필드의 값을 해당 도구 팀에 포함시킵니다.

데이터 시리즈 기능은 도표 보기에만 사용할 수 있습니다. 테이블 보기에 도표 보기에 전환할 때 데이터 시리즈를 추가하기 위해 필요할 수 있습니다. 데이터 시리즈가 정의되지 않은 테이블을 보는 동안 "도표로 표시" 조치를 선택하려고 한 경우 이 조치를 사용하려면 계속하기 전에 데이터 시리즈를 정의해야 합니다.

관련 테스크

91 페이지의 [보기 작성 및 편집]
설계 모드가 작동 가능한 경우, 현재 테이블 또는 도표를 보고 있으며 보기 편집 조치를 사용할 수 있습니다. 또한 새 보기를 작성 및 편집하고 잠금 해제된 Perspective에 새 보기를 추가할 수도 있습니다.

임계값:

임계값은 도표를 신속하게 한눈에 볼 수 있는 방법을 제공하며 표시된 값이 지침 내에 있는지 또는 조치를 수행해야 하는지 여부에 대한 시각적 인디케이터를 보유합니다.

이 테스크 정보

임계값은 교차한 경우 데이터가 새 상태에 도달했음을 표시하는 경계를 나타냅니다. 임계값은 지속적이며 사용자 프로파일에 따라 저장됩니다. 임계값에 대해 다음을 지정할 수 있습니다.

- 이름 - 임계값에 대해 표시할 이름입니다.
- 필드 - 임계값이 정의된 필드입니다.
- 색상 - 도표에 임계값을 그릴 때 사용할 색상을 지정합니다.
- 현재 값 - 현재 값은 현재 사용자가 지정한 임계값을 나타냅니다. 이 값은 쉽게 변경할 수 있으며 애플리케이션 설정에서 지정됩니다. 동일한 이름 및 필드로 정의되는 추후 임계값도 동일한 값을 사용합니다. 현재 값을 다음 값으로 재설정하려면 "다음 값으로 재설정" 버튼을 클릭하십시오.
다중값 - 다중값은 컨텐츠 패키지가 작성될 때 제공된 값을 나타냅니다. 이 값은 사용자가 현재 값을 지정하여 의도적으로 대체하지 않을 경우 사용됩니다. 다중값은 이 임계값의 세 값으로 사용하도록 하며, "현재 값으로 갱신"을 클릭하십시오.

관련 테스크

1. 페이지의 [보기 작성 및 편집]

설계 모드가 작동 가능한 경우, 현재 페이지 또는 도표를 보고 있으며 보기 편집 조치를 사용할 수 있습니 다. 또한 새 보기를 작성 및 편집하고 잠금 해제된 Perspective에 새 보기를 추가할 수도 있습니다.

콜렉션 관리:

1. IBM Systems Director Navigator를 사용해서 상능 콜렉션을 관리하십시오.

콜렉션 보기:

1. IBM Systems Director Navigator를 사용하는 콜렉션을 보려면 다음 단계의 시리즈 중 하나를 따르십시오.

 1. IBM Systems Director Navigator 창에서 상능을 선택하십시오.
 2. 데이터 조사를 선택하십시오. 이는 상능 데이터 검색기 둠을 시작합니다.
 3. 콜렉션 라이브러리를 선택하십시오.
 4. 콜렉션명을 선택하십시오.
 5. 단색 상자를 클릭하여 컨텐츠 패키지를 편집하십시오.
 6. 사용하려는 Perspective를 선택하니 전까지 트리의 노드를 계속 편집하십시오.
 7. Perspective를 선택하십시오.
 8. 확인을 클릭하십시오.

다음에 수행할 작업

다음은 수행하여 콜렉션에 기반을 둔 작업 간시기 파일, 디스크 간시기 및 콜렉션 서비스도 볼 수 있습니다.

1. IBM Systems Director Navigator 창에서 상능을 선택하십시오.

2. 콜렉션을 선택하십시오. 이는 시스템의 데이터 콜렉션 리스트를 시작합니다.

3. 보리는 콜렉션 열에 있는 화살표를 클릭해서 메뉴에서 데이터 조사를 선택하십시오. 이는 상능 데이터 검
색기 둠을 시작합니다. 선택된 콜렉션 데이터는 컨텐츠 패키지가 정의한 다중값 Perspective를 사용하여 표 시됩니다.
관련 개념
80 페이지의 "데이터 조사"
데이터 조사 테스크를 선택하면 강력한 성능 데이터 조사기 툴이 실행됩니다. 이 툴을 사용하면 도표 및 테이블 형식의 성능 콜렉션에 저장된 데이터를 보고 분석할 수 있습니다.

콜렉션 복사:
콜렉션을 복사하려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 성능을 선택하십시오.
2. 콜렉션을 클릭하십시오.
3. 복사할 콜렉션을 선택하십시오.
4. 조치 선택 메뉴에서 복사를 선택하십시오.

콜렉션 삭제:
콜렉션을 삭제하려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 성능을 선택하십시오.
2. 콜렉션을 클릭하십시오.
3. 삭제할 콜렉션을 선택하십시오.
4. 조치 선택 메뉴에서 삭제를 선택하십시오.

콜렉션 저장:
콜렉션을 저장하려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 성능을 선택하십시오.
2. 콜렉션을 클릭하십시오.
3. 저장할 콜렉션을 선택하십시오.
4. 조치 선택 메뉴에서 저장을 선택하십시오.

콜렉션 복원:
콜렉션을 복원하려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 성능을 선택하십시오.
2. 성능 태스크 모두 표시를 클릭하십시오.
3. 콜렉션을 펼치십시오.
4. 콜렉션 복원을 클릭하십시오.

콜렉션 변경:
이전 탐색에 수집된 콜렉션을 변경하려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 성능을 선택하십시오.
2. 콜렉션을 클릭하십시오.
3. 변경할 콜렉션을 선택하십시오.
4. 조치 선택 메뉴에서 변경을 선택하십시오.

콜렉션 등록정보 보기:
콜렉션 등록정보를 보려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 상품을 선택하십시오.
2. 콜렉션을 클릭하십시오.
3. 등록정보를 보는 콜렉션을 선택하십시오.
4. 조치 선택 메뉴에서 등록정보를 선택하십시오.

콜렉션 서비스 관리:
i용 IBM Systems Director Navigator를 사용해서 콜렉션 서비스를 관리하십시오.

콜렉션 서비스 시작:
다음으로 수행해서 콜렉션 서비스를 시작하십시오.

이 테스크 정보
콜렉션 서비스를 시작하려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 상품을 선택하십시오.
2. 상품 테스크 모두 표시를 클릭하십시오.
3. 콜렉션을 평가하십시오.
4. 콜렉션 서비스를 평가하십시오.
5. 콜렉션 서비스 시작을 클릭하십시오.

콜렉션 서비스 중단:
다음으로 수행해서 콜렉션 서비스를 중단하십시오.

이 테스크 정보
콜렉션 서비스를 중단하려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 상품을 선택하십시오.
2. 상품 테스크 모두 표시를 클릭하십시오.
3. 콜렉션을 평가하십시오.
4. 콜렉션 서비스를 평가하십시오.
5. 콜렉션 서비스 중단을 클릭하십시오.
콜렉션 서비스 구성:

다음에 수행하기 전에 콜렉션 서비스를 구성하십시오.

이 테스크 정보

콜렉션 서비스를 구성하려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 성능을 선택하십시오.
2. 상황 태스크 모두 표시를 클릭하십시오.
3. 콜렉션을 필치십시오.
4. 콜렉션 서비스를 필치십시오.
5. 콜렉션 서비스 구성에 클릭하십시오. 콜렉션이 순환할 때 요약 데이터가 생성되도록 지정하면 분석 끝이 성
 능 데이터베이스 데이터를 더 빠르게 처리할 것입니다.

콜렉션 서비스 순환:

다음에 수행하기 전에 콜렉션 서비스를 순환시키십시오.

이 테스크 정보

콜렉션 서비스를 순환시키려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 성능을 선택하십시오.
2. 상황 태스크 모두 표시를 클릭하십시오.
3. 콜렉션을 필치십시오.
4. 콜렉션 서비스를 필치십시오.
5. 콜렉션 서비스 순환을 클릭하십시오.

데이터베이스 파일 작성:

데이터베이스 파일을 작성하려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 성능을 선택하십시오.
2. 콜렉션을 클릭하십시오.
3. 상황 데이터를 작성할 콜렉션 서비스 *MGTCOL 오브젝트 기반 콜렉션을 선택하십시오.
4. 조치 선택 메뉴에서 데이터베이스 파일 작성을 선택하십시오.

관련 테스크

[37 페이지의『콜렉션 서비스 데이터에 데이터베이스 파일 작성』]

콜렉션 서비스 데이터에 데이터베이스 파일을 수동 또는 자동으로 작성하려면 이 정보를 사용하십시오.

콜렉션 서비스 상태 표시:

다음에 수행하기 전에 콜렉션 서비스 상태를 표시하십시오.
이 테스크 정보

콜렉션 서비스 상태를 표시하려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 성능을 선택하십시오.
2. 성능 테스크 모두 표시를 클릭하십시오.
3. 콜렉터를 필치십시오.
4. 콜렉션 서비스를 필치십시오.
5. 콜렉션 서비스 상태를 클릭하십시오.

IBM i 디스크 감시기 관리:

1. i5/OS용 IBM Systems Director Navigator를 사용해서 IBM i 디스크 감시기를 관리하십시오.

관련 개념

68 페이지의 『IBM i 디스크 감시기』
IBM i 디스크 감시기는 디스크 관련 성능 문제점을 진단하기 위해 디스크 성능 데이터 콜렉션에 대해 제공 됩니다.

디스크 감시기 시작:

다음으로 수행해서 디스크 감시기를 시작하십시오.

이 테스크 정보

디스크 감시기를 시작하려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 성능을 선택하십시오.
2. 성능 테스크 모두 표시를 클릭하십시오.
3. 콜렉터를 필치십시오.
4. 디스크 감시기를 필치십시오.
5. 디스크 감시기를 시작을 클릭하십시오.

디스크 감시기 종단:

다음으로 수행해서 디스크 감시기를 종단하십시오.

이 테스크 정보

디스크 감시기를 종단하려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 성능을 선택하십시오.
2. 성능 테스크 모두 표시를 클릭하십시오.
3. 콜렉터를 필치십시오.
4. 디스크 감시기를 필치십시오.
5. 디스크 감시기 중단을 클릭하십시오.

디스크 감시기 정의 추가:

다음을 수행해서 디스크 감시기 정의를 추가하십시오.

이 테스크 정보

디스크 감시기 정의를 추가하려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 성능을 선택하십시오.
2. 성능 태스크 모두 표시를 클릭하십시오.
3. 콜렉터를 필치십시오.
4. 디스크 감시기를 필치십시오.
5. 디스크 감시기 정의 추가를 클릭하십시오.

디스크 감시기 정의 삭제:

다음을 수행해서 디스크 감시기 정의를 삭제하십시오.

이 테스크 정보

디스크 감시기 정의를 삭제하려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 성능을 선택하십시오.
2. 성능 태스크 모두 표시를 클릭하십시오.
3. 콜렉터를 필치십시오.
4. 디스크 감시기를 필치십시오.
5. 디스크 감시기 정의를 클릭하십시오.
6. 삭제할 디스크 감시기 정의를 선택하십시오.
7. 조치 선택 메뉴에서 삭제를 선택하십시오.

디스크 감시기 정의의 등록정보 표시:

다음을 수행해서 디스크 감시기 정의의 등록정보를 표시하십시오.

이 테스크 정보

디스크 감시기 정의의 등록정보를 표시하려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 성능을 선택하십시오.
2. 성능 태스크 모두 표시를 클릭하십시오.
3. 콜렉터를 필치십시오.
4. 디스크 감시기를 필치십시오.
5. 디스크 감시기 정의를 클릭하십시오.
6. 등록정보를 표시할 디스크 감시기 정의를 선택하십시오.
7. 조치 선택 메뉴에서 등록정보를 선택하십시오.

IBM i 작업 감시기 관리:

i5/OS용 IBM Systems Director Navigator를 사용해서 IBM i 작업 감시기를 관리하십시오.

관련 개념

[67 페이지의 [IBM i 작업 감시기]](#)

IBM i 작업 감시기는 시스템의 모든 또는 일부 작업, 스크립트 및 테스크에 대한 작업 데이터 콜렉션에 대해 제공됩니다. 작업 관련 성능 문제점을 진단하기 위해 사용되는 호출 스택, SQL문, 대기 중인 오브젝트, Java JVM 통계, 대기 통계 등을 제공합니다.

작업 감시기 시작:

다음을 수행해서 작업 감시기를 시작하십시오.

이 테스크 정보

작업 감시기를 시작하려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 성능을 선택하십시오.
2. 성능 테스크 놓과 표시를 클릭하십시오.
3. 콜렉터를 폼처리십시오.
4. 작업 감시기를 폼처리십시오.
5. 작업 감시기 시작을 클릭하십시오.

작업 감시기 중단:

다음을 수행해서 작업 감시기를 중단하십시오.

이 테스크 정보

작업 감시기를 중단하려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 성능을 선택하십시오.
2. 성능 테스크 모두 표시를 클릭하십시오.
3. 콜렉터를 폼처리십시오.
4. 작업 감시기를 폼처리십시오.
5. 작업 감시기 중단을 클릭하십시오.

작업 감시기 정의 추가:

다음을 수행해서 작업 감시기 정의를 추가하십시오.
이 테스크 정보

작업 감시기 정의를 추가하려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 생성을 선택하십시오.
2. 생성 테스크 모두 표시를 클릭하십시오.
3. 클릭하십시오.
4. 작업 감시기를 클릭하십시오.
5. 작업 감시기 정의를 클릭하십시오.

작업 감시기 정의의 삭제:

다음을 수행해서 작업 감시기 정의를 삭제하십시오.

이 테스크 정보

작업 감시기 정의를 삭제하려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 생성을 선택하십시오.
2. 생성 테스크 모두 표시를 클릭하십시오.
3. 클릭하십시오.
4. 작업 감시기를 클릭하십시오.
5. 작업 감시기 정의를 클릭하십시오.
6. 삭제할 작업 감시기 정의를 선택하십시오.
7. 조치 선택 메뉴에서 삭제를 선택하십시오.

작업 감시기 정의의 등록정보 표시:

다음을 수행해서 작업 감시기 정의의 등록정보를 표시하십시오.

이 테스크 정보

작업 감시기 정의의 등록정보를 표시하려면 다음 단계를 수행하십시오.
1. i5/OS용 IBM Systems Director Navigator 창에서 생성을 선택하십시오.
2. 생성 테스크 모두 표시를 클릭하십시오.
3. 클릭하십시오.
4. 작업 감시기를 클릭하십시오.
5. 작업 감시기 정의를 클릭하십시오.
6. 등록정보를 표시할 작업 감시기 정의를 선택하십시오.
7. 조치 선택 메뉴에서 등록정보를 선택하십시오.
System i Navigator

System i Navigator는 Windows 데스크탑에서 시스템을 관리하는 그래픽 사용자 인터페이스입니다. System i Navigator의 기능을 사용하여 시스템의 성능을 관리할 수 있습니다.

모니터:

모니터는 시스템의 성능에 대한 현재 정보를 표시합니다. 또한 특정 이벤트가 발생할 때 이 정보를 사용하여 사전 정의된 조치를 수행할 수 있습니다.

시스템, 메시지, 작업, 파일 및 B2B(business-to-business) 트랜잭션 모니터를 사용하여 시스템에 대한 정보를 표시하고 모니터할 수 있습니다. 시스템 및 작업 모니터는 클레식 서비스에서 수집된 성능 데이터를 사용합니다.

System i Navigator에 포함된 모니터는 클레식 서비스 데이터를 사용하여 관심있는 특정 시스템 성능의 요소를 추적할 수 있습니다. 또한 특정 이벤트(예: CPU 이용률의 백분율이나 작업 상태)가 발생할 때 지정된 조치를 수행할 수 있습니다. 모니터를 사용하여 복수 시스템 및 시스템 그룹에서 발생하는 대로 시스템 성능을 보고 관리할 수 있습니다.

모니터를 사용하는 경우, 모니터를 시작한 후 서버, System i Navigator 또는 PC의 다른 테스크를 수행할 수 있습니다. 실제로, PC를 끄 수도 있습니다. System i Navigator는 사용자가 지정한 스크립트 명령 또는 조치를 계속 모니터하고 수행합니다. 모니터는 사용자가 중단할 때까지 실행됩니다. 또한 모니터를 사용하여 무선용 System i Navigator로 엑세스하여 리모트로 성능을 관리할 수도 있습니다.

System i Navigator는 다음 유형의 모니터를 제공합니다.

시스템 모니터

발생 즉시 또는 최대 1시간까지 성능 데이터를 수집하고 표시합니다. 상세한 그래프는 서버에서 어떤 발생이 진행되는지 시각적으로 보여줍니다. 다양한 미터법(성능 측정)에서 선택하여 시스템 성능의 특정 측면을 정확히 찾아내도록 하십시오. 예를 들어, 서버에서 평균 CPU 이용률을 모니터 중인 경우 그래프에서 클레식 점을 클릭하여 최상위 CPU 이용률을 가지고 있는 20개 작업을 표시하는 세부사항 도표를 볼 수 있습니다. 그러면 이 작업 중에서 마우스 오른쪽 버튼으로 클릭하여 작업에 대해 직접 작업할 수 있습니다.

작업 모니터

작업명, 작업 사용자, 작업 유형, 서브시스템 또는 서버 유형을 기초로 하나의 작업 또는 작업 리스트를 모니터합니다. 다양한 미터법에서 선택하여 작업에 대한 성능, 상태 또는 오류 메세지를 모니터하십시오. 작업에 대해 직접 작업하려면 작업 모니터 창에서 표시되는 리스트에서 작업을 마우스 오른쪽 버튼으로 클릭하십시오.

메시지 모니터

에플리케이션이 성공적으로 완료되었는지 확인하거나 비즈니스 요구에 중요한 특정 메세지를 모니터합니다. 메시지 모니터 창에서 메세지의 세부사항 보기, 메세지에 응답, 메세지 송신 및 메세지 삭제를 수행할 수 있습니다.
B2B 활동 모니터

파일 모니터

지정된 텍스트 문자열, 지정된 크기 또는 파일 수정사항에 대해 선택된 하나 이상의 파일을 모니터할 수 있습니다.

관련 개념

34 페이지의 [콜레션 서비스]

콜레션 서비스는 시스템 관리 데이터 수집을 위해 제공됩니다. 이 서비스는 시스템 데이터의 1차 콜렉터입니다.

관련 참조

27 페이지의 [네트워크 성능]

네트워크 설계, 하드웨어 자원 및 통신량 중간의 중요한 e-business 애플리케이션의 성능에 중요한 영향을 줍니다. 네트워크 성능을 최적화하고 서버 통신 자원을 조정하는 방법에 대한 정보는 이 주제를 사용하십시오.

모니터 개념:

모니터는 실시간 성능 데이터를 표시합니다. 또한 지정된 암계값에 도달할 때 선택된 명령을 실행하기 위해 시스템을 계속 모니터할 수 있습니다. 모니터 작동 방법, 모니터할 수 있는 대상 및 지정된 성능 상황에 모니터가 응답할 수 있는 방법을 찾아십시오.

시스템 모니터는 콜레션 서비스가 생성하고 유지보수하는 콜레션 오브젝트에 저장된 데이터를 표시합니다. 시스템 모니터는 최대 1시간 동안 수집된 되도 데이터를 표시합니다. 오랜 기간의 데이터를 보러면 그래프 이력 사용해야 합니다. 모니터 동록정보에서 데이터 콜레션의 빈도로 변경할 수 있습니다. 모니터 동록정보의 설정값은 콜레션 서비스의 설정보다 우선합니다.

모니터를 사용하여 시스템 성능의 다양한 많은 요소를 추적하고 조사할 수 있으며 동시에 다양한 많은 모니터를 실행할 수 있습니다. 함께 사용하는 경우, 모니터는 시스템 성능을 관찰하고 관리하기 위한 정교한 툴을 제공합니다. 예를 들어, 세 대화식 애플리케이션을 구현할 때 시스템 모니터를 사용하여 작업의 자원 이용률, 문제점이 있는 작업을 감시하고 처리하기 위한 작업 모니터, 사용자 시스템에서 메세지가 발생하는 경우 경고할 메세지 모니터의 우선순위를 지정할 수 있습니다.

암계값 및 조치 설정

세 모니터를 작성할 때 시스템 미터법이 지정된 암계값에 도달하거나 이벤트가 발생하는 경우에 발생하도록 할 조치를 지정할 수 있습니다. 암계값 또는 이벤트가 발생할 때 종료점 시스템에서 i5/OS 명령을 실행할 것을 선택할 수 있습니다(예: 메세지 송신 또는 작업 큐 보류). 또한 모니터가 및 가지의 사건 정의된 조치(예: PC에서 경보를 울리거나 모니터를 시작하여 경고, 이벤트 로그 생성)를 수행하도록 선택할 수 있습니다. 마침말
모니터를 작성한 후에는 모니터 이름을 마우스 오른쪽 버튼으로 클릭하고 시작을 선택하여 모니터를 실행하고 모니터 그래프에 대한 작업을 시작하십시오.
시스템 성능을 효율적으로 모니터하려면 모니터할 시스템 성능 측면을 결정해야 합니다. 중앙 관리는 시스템 성능의 여러 측면을 정확히 찾아내는 데 도움이 될 다양한 성능 측정(미터법이라고 함)을 제공합니다.

새 모니터 창의 미터법 페이지에서 모니터하려는 미터법을 보고 변경할 수 있습니다. 이 페이지에서 액세스하면 모니터를 선택하고 시스템을 마우스 오른쪽 버튼으로 클릭한 후 새 모니터를 선택하시오. 필수 필드는 채운 후 미터법 밑을 클릭하십시오.

모니터를 구현할 때 모니터에 포함될 암의 미터법, 미터법 그룹 또는 리스트의 모든 미터법을 사용할 수 있습니다. 모니터에서 사용할 수 있는 미터법 유형은 다음과 같습니다.

표 2.

<table>
<thead>
<tr>
<th>미터법 그룹</th>
<th>미터법 설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU 이용률</td>
<td>시스템에서 작업이 소비하는 사용 가능한 처리 장치 시간의 백분율. 다음 CPU 이용률 미터법 유형에서 모니터에 사용할 유형을 선택하십시오.</td>
</tr>
<tr>
<td></td>
<td>• CPU 이용률(평균)</td>
</tr>
<tr>
<td></td>
<td>• CPU 이용률(대화식 작업)</td>
</tr>
<tr>
<td></td>
<td>• CPU 이용률(대화식 피치)</td>
</tr>
<tr>
<td></td>
<td>• CPU 이용률(데이터베이스 기능)</td>
</tr>
<tr>
<td></td>
<td>• CPU 이용률(2차 작업부하)</td>
</tr>
<tr>
<td></td>
<td>• CPU 이용률 기본(평균)</td>
</tr>
<tr>
<td></td>
<td>이 미터법에 대해, 그리고 이 미터법을 사용하는 방법에 대해 자세히 학습하면 System i Navigator에서 세 모니터 창이나 모니터 등록정보 창의 일반 탭에서 사용할 수 있는 온라인 도움말을 참조하십시오.</td>
</tr>
<tr>
<td>대화식 응답 시간(평균 및 최대)</td>
<td>대화식 작업이 시스템에서 경험하는 응답 시간</td>
</tr>
<tr>
<td>트랜잭션 비율(평균)</td>
<td>시스템의 모든 작업에 의해 완료된 초당 트랜잭션 수</td>
</tr>
<tr>
<td>트랜잭션 비율(대화식)</td>
<td>다음 유형의 작업에 의해 시스템에서 완료된 초당 트랜잭션 수</td>
</tr>
<tr>
<td></td>
<td>• 대화식</td>
</tr>
<tr>
<td></td>
<td>• 복수 리스터 단말기(MRT)</td>
</tr>
<tr>
<td></td>
<td>• System/36 환경 대화식</td>
</tr>
<tr>
<td></td>
<td>• Passthr</td>
</tr>
<tr>
<td>입력처리 논리 데이터베이스 I/O</td>
<td>현재 시스템에서 입력처리 작업에 의해 수행된 평균 논리 데이터베이스 입출력 조작 수</td>
</tr>
<tr>
<td>디스크 응(Arm) 이용률(평균 및 최대)</td>
<td>데이터를 수집하는 동안 현재 시스템에서 사용된 디스크 응(Arm) 입출력 백분율</td>
</tr>
<tr>
<td>디스크 기역장치(평균 및 최대)</td>
<td>데이터를 수집하는 동안 시스템에서 기록 된 디스크 응(Arm) 기역 장치 백분율</td>
</tr>
<tr>
<td>디스크 IOP 이용률(평균 및 최대)</td>
<td>데이터를 수집하는 동안 시스템에서 디스크 입출력 프로세서(IOP)가 사용 중인 백도</td>
</tr>
<tr>
<td>통신 IOP 이용률(평대 및 평균)</td>
<td>데이터를 수집하는 동안 시스템에서 통신 입출력 프로세서(IOP)가 사용 중인 백도</td>
</tr>
</tbody>
</table>
| 통신 회전 이용률(평균 및 최대) | 모든 시스템 통신 화면에서 실제로 송신 및 수신된 데이터 양
추가 도움말이 필요한 경우 새 모니터 미터법 상에서 도움말 버튼을 클릭하시십시오. 중앙 관리 미터법에 익숙해지면, 컴퓨터 환경의 정보 요구사항에 따라 미터법을 선택할 수 있습니다. 보고하는 정보를 대상으로 하는 미터법을 선택하면, 모니터에 대해 선택한 미터법마다 자세한 미터법 정보를 보고 변경할 준비가 완료된 것입니다.

클레션 서비스를 사용하는 시스템 및 작업 모니터 상호작용:

클레션 서비스는 성능 데이터 콜라세이션을 위해 다른 애플리케이션에 의해 사용되는 독립형 애플리케이션 또는 유 틸리티로서 성능 분석을 위한 강력한 도구입니다.

간혹 성능 분석으로 인해, 사용자가 시스템에 표시되는 활동을 담당하는 애플리케이션을 관별하려고 할 때 혼 동이 발생합니다. 이 문제가 해결하기 위한 하나의 쉬운 규칙은 다른 애플리케이션이 사용 중인 것으로 보여도 지정된 시간에 시스템에서 발생하는 클레션 서비스 데이터 콜라세이션은 단 하나라는 것입니다.

다음 시나리오는 시스템 모니터 및 작업 모니터가 클레션 서비스 사이의 다양한 조합과 클레션 서비스가 표시 하는 내용을 설명합니다.

클레션 서비스는 다중드 값을 사용하여 데이터를 수집함

이 시나리오에서는 시스템에 활성 상태의 시스템 모니터 또는 작업 모니터가 없습니다. 클레션 서비스 등록정보 페이지와 *MGTCOL 오브젝트 등록정보 보기를 볼 때 다음과 유사한 내용이 표시됩니다.

<table>
<thead>
<tr>
<th>미터법 그룹</th>
<th>미터법 설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAN 이용률(회비 및 평균)</td>
<td>모든 근거리 통신망(LAN) 통신 화면에서 실제로 송신 및 수신된 데이터 양</td>
</tr>
<tr>
<td>기계 폴 결합</td>
<td>시스템의 기계 폴에서 발생하는 조영 결합 수</td>
</tr>
<tr>
<td>사용자 폴 결합(회비 및 평균)</td>
<td>시스템의 모든 사용자 폴에서 발생하는 조영 결합 수</td>
</tr>
</tbody>
</table>
콜렉션 서비스와 시스템 모니터 모두 시작됨

이 시나리오는 콜렉션 서비스가 이미 특정 시점에 시작되었고 나중에 누군가 시스템 모니터를 시작하여 30초 간격으로 CPU 이용률(평균) 미터법을 수집했습니다. *MGTCOL 오브젝트 등록정보 보기에 시스템 레벨 데이터, 작업 MI 데이터 및 작업 OS 데이터 범주에 대한 콜렉션 간격이 15분에서 30초로 변경되었다는 점에 유의하십시오. 이는 동일한 *MGTCOL 오브젝트가 사용되고 지정된 미터법에 대한 정보를 계산하는 데 필요한 범주만 세 간격으로 수집하도록 변경되었음을 보여줍니다.
콜렉션 서비스는 중단되고 시스템 모니터는 시작 상태로 유지됨

이 시나리오에서, 콜렉션 서비스는 중단되었고 시스템 모니터는 시작된 상태로 유지되어 그래프 미터법 계산에 필요한 데이터를 계속 수집합니다.

다음은 관찰하시는가요.

• 콜렉션 서비스 등록정보 페이지는 시스템 콜렉션 중단됨. 시스템에 대해서만 수집 중 상태를 표시합니다.

• *MGTCOL 오브젝트 등록정보 페이지는 그래프 미터법 데이터 수집에 필요한 범주를 제외하고 모든 범주에 대해 데이터 콜렉션이 종료되었음을 표시합니다.

• 콜렉션 서비스 리스트 보기는 시스템에 대해 수집 중... 상태의 *MGTCOL 오브젝트를 표시합니다. 이는 혼동될 수 있으므로, 콜렉션 서비스 상태를 보려면 콜렉션 서비스 등록정보 페이지를 보십시오.
시나리오: System i Navigator 모니터:

시스템 성능의 특정 측면을 보기 위해 다양한 유형의 모니터 중 일부를 사용할 수 있는 방법을 보려면 이 정보를 사용합니다.

System i Navigator에 포함된 모니터는 시스템을 조사하고 관리하기 위한 강력한 훌륭한 도구세트를 제공합니다. System i Navigator에서 제공되는 모니터 유형의 개요는 System i Navigator 모니터를 참조하십시오.

자세한 사용 예 및 샘플 구성은 다음 시나리오를 참조하십시오.
시나리오: 시스템 모니터:

CPU 이용률이 너무 높아서 더 많은 자원을 사용할 수 있을 때까지 임시로 더 낮은 우선순위 작업을 보류하는 경우 사용자에게 경고하는 시스템 모니터 예를 참조합니다.

상황

시스템 관리자로서, 시스템에 사용자의 현재 요구와 비즈니스 요구사항을 충족시키기에 충분한 자원이 있는지 확인해야 합니다. 사용자 시스템의 경우 CPU 이용률은 특히 중요한 관심사입니다. CPU 이용률이 너무 높아서 더 많은 자원을 사용할 수 있을 때까지 임시로 더 낮은 우선순위 작업을 보류하는 경우 시스템이 사용자에게 경고하도록 할 수 있습니다.

이와 같이 하려면 CPU 이용률이 80%를 초과하는 경우 메시지를 보내는 시스템 모니터를 설정할 수 있습니다. 또한, CPU 이용률이 60%(작업이 해체되는 지점)로 떨어지고 정상 운영이 계속될 때까지 Qbatch 작업 큐에 있는 모든 작업을 보류할 수 있습니다.

구성 예

시스템 모니터를 설정하려면 추적할 미터법과 미터법이 지정된 레벨에 도달할 때 모니터가 수행할 조치를 정의해야 합니다. 이 목표를 달성하는 시스템 모니터를 정의하려면 다음 단계를 완료하십시오.

1. System i Navigator에서, 중앙 관리 → 모니터를 펼치고 시스템 모니터를 마우스 오른쪽 버튼으로 클릭한 후 세 모니터...를 선택하십시오.

2. 일반 페이지에서 이 모니터의 이름 및 설명을 입력하십시오.

3. 미터법 탭을 클릭하고 다음 값을 입력하십시오.
 a. 사용할 수 있는 미터법 리스트에서 CPU 이용률 기본(평균)을 선택하고 추가를 클릭하십시오. CPU 이용률 기본(평균)은 이제 모니터할 미터법 아래에 나열되고, 창의 맨 아래 부분에는 이 미터법에 대한 설정이 표시됩니다.
 b. 클릭한 값에 대해, 데이터를 수집할 빈도를 지정하십시오. 이는 클릭된 서비스 설정을 대체합니다. 이 예의 경우 30초를 지정하십시오.
 c. 이 미터법에 대한 모니터 그래프의 수직 축에 대한 스케일을 변경하려면 최대 그래프 값을 변경하십시오. 이 미터법에 대한 그래프의 수평 축에 대한 스케일을 변경하려면 시간 표시 값을 변경하십시오.
 d. 미터법 설정에 대해 임계값 1 탭을 클릭하고 다음 값을 입력하여 CPU 이용률이 80% 이상인 경우 조화 메세지를 송신하도록 하십시오.
 1) 임계값 작동 가능을 선택하십시오.
 2) 임계값 트리거 값에 대해 >= 80(80% 이상 사용 중)을 지정하십시오.
 3) 지속 기간에 대해 1 간격을 지정하십시오.
 4) i5/OS 명령에 대해 다음을 지정하십시오.

SNOMSG MSG('Warning,CPU...') TOUSR(*SYSOPR) MSGTYPE(*INQ)

5) 임계값 재설정 값에 대해 < 60(60% 미만 사용 중)을 지정하십시오. 그러면 CPU 이용률이 60% 미만이 될 때 모니터를 재설정합니다.
e. 임계값 2 탭을 클릭하고 다음 값을 입력하여 CPU 이용률이 5개의 콜렉션 간격에 대해 80% 이상을 유지할 때 QBATCH 작업 큐의 모든 작업을 보류하십시오.

1) 임계값 작동 가능을 선택하십시오.
2) 임계값 트리거 값에 대해 >= 80(80% 이상 사용 중)을 지정하십시오.
3) 지속 기간에 대해 5개 간격을 지정하십시오.
4) i5/OS 명령에 대해 다음을 지정하십시오.

 HLDJ0BQ JOBQ(QBATCH)

5) 임계값 재설정 값에 대해 < 60(60% 미만 사용 중)을 지정하십시오. 그러면 CPU 이용률이 60% 미만이 될 때 모니터를 재설정합니다.
6) 지속 기간에 대해 5개 간격을 지정하십시오.
7) i5/OS 명령에 대해 다음을 지정하십시오.

 RLSJ0BQ JOBQ(QBATCH)

이 명령은 CPU 이용률이 5개의 콜렉션 간격에 대해 60% 미만으로 유지될 경우 QBATCH 작업 큐를 해제합니다.

4. 조치 탭을 클릭하고 트리거 및 재설정 값 모두에서 로그 이벤트를 선택하십시오. 이 조치는 임계값이 트리거되고 재설정될 때 이벤트 로그에서 항목을 작성합니다.
5. 모니터할 시스템과 그룹을 지정하려면 시스템 및 그룹 탭을 클릭하십시오.
6. 확인을 클릭하여 모니터를 저장하십시오.
7. 시스템 모니터 리스트에서 새 모니터를 마우스 오른쪽 버튼으로 클릭하고 시작을 선택하십시오.

결과

새 모니터는 지정된 콜렉션 간격에 따라 30초마다 새 데이터 점이 추가되는 CPU 이용률을 표시합니다. 모니터는 사용자 PC가 거치 있는 경우에도 CPU 이용률이 80%에 도달할 때마다 지정된 임계값 조치를 수행합니다.

주: 이 모니터는 CPU 이용률만 추적합니다. 그러나 사용할 수 있는 몇 개의 미터업도 동일한 모니터에 포함할 수 있으며, 각 미터업에는 고유한 임계값과 조치가 있을 수 있습니다. 또한 몇 개의 시스템 모니터를 동시에 실행할 수도 있습니다.

시나리오: CPU 이용률에 대한 작업 모니터:

지정된 작업의 CPU 이용률을 추적하고 CPU 이용률이 너무 높을 경우 작업 소유자에게 경고하는 작업 모니터를 참조하십시오.

상황

현재 시스템에서 새 애플리케이션을 실행 중이고 새 대화식 작업 중 일부가 승인할 수 없을 만큼의 자원을 소비하고 있다는 점에 관심을 가지고 있습니다. 작업이 너무 많은 CPU 용량을 소비할 경우 해당 작업의 소유자에게 알리려고 합니다.
새 애플리케이션에서 작업을 감시하고 작업이 CPU 용량의 30%를 초과하여 소비하는 경우 메세지를 보내도록 작업 모니터를 설정할 수 있습니다.

구성 예

작업 모니터를 설정하려면 감시할 작업, 감시할 작업 속성, 지정된 작업 속성이 발견될 때 모니터가 수행해야 할 조치를 정의해야 합니다. 이를 수행하기 위해 작업 모니터를 설정하려면 다음 단계를 완료하십시오.

1. System i Navigator에서, 중앙 관리 → 모니터를 클릭하고 작업 모니터를 마우스 오른쪽 버튼으로 클릭한 후 새 모니터를 선택하십시오.

2. 일반 페이지에서 다음 값을 입력하십시오.
 a. 이 모니터에 대한 이름 및 설명을 저장하십시오.
 b. 모니터할 작업 탭에서 다음 값을 입력하십시오.
 1) 작업명에 대해 감시할 작업의 이름을 지정하십시오(예: MKWIDGET).
 2) 추가를 클릭하십시오.

3. 미터법 탭을 클릭하고 다음 정보를 입력하십시오.
 a. 사용할 수 있는 미터법 리스트에서 요약 숫자 값을 필치고 CPU 이용률(백분율)을 선택한 후 추가를 클릭하십시오.
 b. 미터법 설정에 대해 임계값 1 탭에서 다음 값을 입력하십시오.
 1) 트리거 작동 가능을 선택하십시오.
 2) 임계값 트리거 값에 대해 >= 30% 이상 사용 중을 지정하십시오.
 3) 지속 기간에 대해 1 간격을 지정하십시오.
 4) i5/OS 트리거 명령에 대해 다음을 지정하십시오.
 SNOMSG MSG('Your job is exceeding 30% CPU capacity')
 TOUSR(&OWNER)
 5) 재설정 작동 가능을 클릭하십시오.
 6) 임계값 재설정 값에 대해 < 20(20% 미만 사용 중)을 지정하십시오.

4. 콜렉션 간격 탭을 클릭하고 15초를 선택하십시오. 이는 콜렉션 서비스 설정을 대체합니다.

5. 조치 탭을 클릭하고 트리거 및 재설정 열 모두에서 로그 이벤트를 선택하십시오.

6. 서버 및 그룹 탭을 클릭하고 이 작업에 대해 모니터할 서버 및 그룹을 선택하십시오.

7. 새 모니터를 저장하려면 확인을 클릭하십시오.

8. 작업 모니터 리스트에서 새 모니터를 마우스 오른쪽 버튼으로 클릭하고 시작을 선택하십시오.

결과

새 모니터는 15초마다 QINTER 서브시스템을 감사하며, 작업 MKWIDGET가 CPU의 30%를 초과하여 소비하는 경우 모니터는 메세지를 작업 소유자에게 보냅니다. 작업이 20% CPU 용량 미만을 사용할 때 모니터가 재설정됩니다.
시나리오: 확장 작업 스케줄러 알림을 사용하는 작업 모니터:

작업의 임계값 한계를 초과할 때 전자 우편을 오피레터에 보내는 작업 모니터 예를 참조하십시오.

상황

현재 시스템에서 애플리케이션을 실행 중이며 CPU 이용률이 지정된 임계값에 도달할 경우 알리리라고 합니다.

확장 작업 스케줄러가 종료점 시스템에 설치된 경우 SNDDSTJS(OPERATOR 수신자(수신자가 정의한 전자 우편 주소 리스트)에게 메세지를 보냅니다. 또한 수신자 대신 전자 우편 주소를 지정하거나 돕다 지정할 수 있습니다. 이를 수행하기 위해 작업 모니터를 설정하려면 다음 단계를 완료하십시오.

주: 해당 코드 예제를 사용하는 것은 216 페이지의 『코드 라이센스 및 면책사항 정보』의 조건에 동의한 것으로 간주합니다.

1. System i Navigator에서, 중앙 관리 → 모니터를 펼치고 작업 모니터를 마우스 오른쪽 버튼으로 클릭한 후 새 모니터...를 선택하십시오.
2. 일반 페이지에서 다음 값을 입력하십시오.
 a. 이 모니터에 대한 이름 및 설명을 지정하십시오.
 b. 모니터의 작업 탭에서 다음 값을 입력하십시오.
 1) 작업명에 대해 감시할 작업의 이름을 지정하십시오(예: MKWIDGET).
 2) 추가를 클릭하십시오.
3. 미터법 탭을 클릭하고 다음 정보를 입력하십시오.
 a. 사용할 수 있는 미터법 리스트에서 요약 숫자 값을 펼치고 CPU 이용률(백분율)을 선택한 후 추가를 클릭하십시오.
 b. 미터법 설정에 대해 임계값 1 탭에서 다음 값을 입력하십시오.
 1) 트리거 작동 가능을 선택하십시오.
 2) 임계값 트리거 값에 대해 >= 30(30% 이상 사용 중)을 지정하십시오.
 3) 지속 기간에 대해 1 간격을 지정하십시오.
 4) i5/OS 트리거 명령에 대해 다음을 지정하십시오.
 SNDDSTJS RCP(OPERATOR) SUBJECT('Job monitor trigger') MSG('Job &JOBNAME is still running!')
 5) 재설정 작동 가능을 클릭하십시오.
 6) 임계값 재설정 값에 대해 < 20(20% 미만 사용 중)을 지정하십시오.
4. 콜렉션 간격 패턴을 클릭하고 15초를 선택하십시오. 이는 콜렉션 서비스 설정을 대체합니다.
5. 조치 패턴을 클릭하고 드러그 및 재설정 열 모두에서 로그 이벤트를 선택하십시오.
6. 서버 및 그룹 패턴을 클릭하고 이 작업에 대해 모니터할 서버 및 그룹을 선택하십시오.
7. 새 모니터를 저장하려면 확인을 클릭하십시오.
8. 작업 모니터 리스트에서 새 모니터를 마우스 오른쪽 버튼으로 클릭하고 시작을 선택하십시오.

메시지 모니터 구성 예

메시지 모니터를 사용하는 경우 수신자에게 메시지 텍스트를 보낼 수 있습니다. 다음은 SNDDSTJS 명령을 사용하여 메시지 텍스트를 검색하고 모든 대기(on-call) 수신자에게 전자 우편을 보내는 CL 프로그램의 예입니다.


```
PGM PARM(&MSGKEY &TOMSGQ &TOLIB)

DCL &MSGKEY *CHAR 4
DCL &TOMSGQ *CHAR 10
DCL &TOLIB *CHAR 10
DCL &MSGTXT *CHAR 132

RCVMSG MSGQ(&TOLIB/&TOMSGQ) MSGKEY(&MSGKEY)
RMV(*NO) MSG(&MSGTXT)
MONMSG CPF0000 EXEC(RETURN)

SNDDSTJS RCP(+ONCALL) SUBJECT('Message queue trigger')
MSG(&MSGTXT)
MONMSG MSGID(CPF0000 IJS0000)

ENDPGM
```

다음은 CL 프로그램을 호출할 명령입니다.

```
CALL SNDMAIL PARM('&MSGKEY' '&TOMSG' '&TOLIB')
```

결과

모니터는 15초마다 QINTER 서브시스템을 검사하며, 작업 MKWIDGET가 CPU의 30%를 초과하여 소비하는 경우 모니터는 전자 우편을 오퍼레이터에 보내냅니다. 작업이 20% CPU 용량 미만을 사용할 때 모니터가 재설정됩니다.

확장 작업 스케줄러 알림 기능에 대한 자체한 정보는 알림에 대한 작업을 참조하십시오.

관련 개념

알림에 대한 작업
확장 작업 스케줄러의 알림 기능을 사용하는 방법에 대한 정보는 알림에 대한 작업 주제를 참조하십시오.

시나리오: 메시지 모니터:
시스템에 발생하는 사용자 메세지의 조회 메세지를 표시하는 메세지 모니터 채널을 참조하십시오. 모니터는 감지되는 즉시 메세지를 열어서 표시합니다.

상황

회사에는 몇 개의 시스템이 있으므로 시스템마다 메세지 큐를 검사하면서 시간이 소비됩니다. 시스템 관리자로서, 시스템에 발생하는 메세지를 관리하는 대로 조화를 해야 합니다.

시스템에 발생하는 사용자 메세지의 조회 메세지를 표시하도록 메세지 모니터를 설정할 수 있습니다. 모니터는 감지되는 즉시 메세지를 열어서 표시합니다.

구성 예

메세지 모니터를 설정하려면 감시할 메세지 유형과 메세지가 발생할 때 모니터가 수행할 조치를 정의해야 합니다. 이러한 목표를 수행하는 메세지 모니터를 설정하려면 다음 단계를 완료하십시오.

1. System Navigator에서, 중앙 관리 > 모니터를 필치고 메세지 모니터를 마우스 오른쪽 버튼으로 클릭한 후 새 모니터를 선택하십시오.
2. 기본 페이지에서 이 모니터의 이름 및 설명을 입력하십시오.
3. 메세지 패널을 클릭하고 다음 값을 입력하십시오.
 a. 모니터할 메세지 유형에 대해 QSYSOPR를 지정하십시오.
 b. 메세지 셀트 1 패널에서 유형에 대해 조호를 선택하고 추가를 클릭하십시오.
 c. 다음 메세지 수에서 트리거를 선택하고 1개 메세지를 지정하십시오.
4. 클릭한 간격 패널을 클릭하고 15초를 선택하십시오.
5. 조호 패널을 클릭하고 모니터 열기를 선택하십시오.
6. 시스템 및 그룹 패널을 클릭하고 조호 메세지에 대해 모니터할 시스템 및 그룹을 선택하십시오.
7. 새 모니터를 저장하려면 확인을 클릭하십시오.
8. 메세지 모니터 리스트에서 새 모니터를 마우스 오른쪽 버튼으로 클릭하고 시작을 선택하십시오.

결과

새 메세지 모니터는 모니터되는 시스템에서 QSYSOPR로 송신된 조호 메세지를 표시합니다.

주: 이 모니터는 QSYSOPR에 송신된 조호 메세지에만 응답합니다. 그러나 단일 모니터에 서로 다른 두 개의 메세지 셀트가 포함될 수 있으며 동시에 실행되는 몇 개의 메세지 모니터도 보유할 수 있습니다. 또한 메세지 모니터는 메시지가 수신될 때 i5/OS 명령을 수행할 수 있습니다.

그래프 이력:

그래프 이력은 지정된 시간 동안 클릭한 서비스가 수집한 성능 데이터의 그래픽 표시를 제공합니다.
그래프 이력은 콜렉션 서비스에서 미침. 몇 주, 몇 달 또는 몇 년을 거쳐 수집된 상생 데이터의 그래프 표시를 제공합니다. 상생 데이터를 보기 위해 시스템 모니터가 실행 중 상태일 필요는 없습니다. 콜렉션 서비스를 사용하여 데이터를 수집하는 동안 그래프 이력 장을 볼 수 있습니다.

주: 시스템 상생 모니터링에 대한 자세한 정보는 상생 데이터 추적 주제를 참조하십시오.

관련 개념

34 페이지의 [콜렉션 서비스]

콜렉션 서비스는 시스템 관리 데이터 수집을 위해 제공됩니다. 이 서비스는 시스템 데이터의 1차 콜러틴입니다.

8 페이지의 [상생 트래킹]

시스템 상생 트래킹을 계속 사용하면 시스템 상장은 계획할 수 있고 상생 문제점의 원인을 췌별하고 분리시키는 데 도움을 주는 데이터를 사용할 수 있습니다. 사용할 애플리케이션에 일상적으로 상생 데이터를 수집하는 방법을 학습합니다.

그래프 이력 개념:

상생 데이터 레코드를 관리 및 표시하는 데 사용할 수 있는 응선의 설명이 있습니다.

그래프 이력은 콜렉션 서비스에서 작성된 콜렉션 오브젝트에 포함된 데이터를 표시합니다. 따라서, 사용 가능한 데이터의 유형 및 양은 콜렉션 서비스 구성에 따라 결정됩니다.

그래프로 표시할 수 있는 데이터 양은 콜렉션 서비스 등록정보에서 선택한 설정(특히 콜렉션 보유 기간)으로 판별됩니다. 복수 시스템을 통해 PM 에이전트를 활성화하려면 System i Navigator를 사용하십시오. PM 에이전트를 활성화할 때 머릴 전, 몇 주일 전 또는 몇 달 전에 수집된 데이터를 보기 위해 그래프 이력 기능을 사용할 수 있습니다. 사용자는 실시간 모니터 기능을 사용할 수 있으며 요약 또는 세부 데이터에 대한 액세스를 보유합니다. PM 에이전트가 작동하는 경우 그래프 데이터 필드는 1 - 7일을 지원합니다. PM 에이전트가 작동되며 관리 콜렉션 오브젝트가 시스템에서 유지되는 기간을 정의합니다.

- 세부 데이터(QMPGDATA.LIB 또는 QPFRTDATA.LIB의 속성 유형 *PFR)

 관리 콜렉션 오브젝트가 삭제되기 전에 파일 시스템에서 유지되는 시간. 시 또는 일 단위로 특정 시간을 선택하거나, 영구를 선택할 수 있습니다. 영구를 선택하는 경우 관리 콜렉션 오브젝트는 자동으로 삭제되지 않습니다.

- 그래프 데이터(QMGTC2.LIB의 속성 유형 *PFRDL)

 그래프 이력 장에 표시되는 세부사항 및 등록정보 데이터가 삭제되기 전에 시스템에서 유지되는 시간. PM 에이전트를 시작하지 않는 경우 1 - 7일을 지정할 수 있습니다. PM 에이전트를 시작하는 경우에는 1 - 30일을 지정할 수 있습니다. 디폴트는 1시간입니다.

- 그래프 이력 데이터(QMGTC2.LIB의 속성 유형 *PFRHST)
그래프의 데이터 콜렉션 점이 이상 장애에 포착되거나 삭제되기 전에 시스템에서 유지되는 시간. 사용할 수 있는 세부사항이나 등록정보 데이터는 없습니다. 요약 데이터 필드를 사용하려면 PM 에이전트를 시작해야 합니다. 더불어는 한 달입니다. 요약 데이터는 1시간 간격으로 요약되고 두 번째 및 세 번째 레벨 세부사항을 지원하지 않습니다.

* 그래프 이력 상태

그래프 이력 창은 이제 그래프 이력 상태를 표시합니다. 또한 누락된 경우에 그래프 이력 데이터를 다시 작성할 수도 있습니다.

관련 개념
34 페이지의 [콜렉션 서비스]
콜렉션 서비스는 시스템 관리 데이터 수집을 위해 제공됩니다. 이 서비스는 시스템 데이터의 1차 콜렉터입니다.

관련 테스크
123 페이지의 [PM 에이전트 활성화]
PM 에이전트는 오피테이팅 시스템의 일부이므로 해당되는 수집 기능을 사용하려면 활성화해야 합니다.

그래프 이력 보기:

이 주제에는 System i Navigator를 통해 그래프 이력을 보기 위한 단계별 지침이 있습니다.

이 테스크 정보

그래프 이력이 System i Navigator에 포함됩니다. 콜렉션 서비스로 모니터 중인 데이터의 그래프 이력을 보려면 다음 단계를 수행하십시오.
1. 단일 시스템 또는 시스템 그룹에서 콜렉션 서비스를 시작하려면 System i Navigator 온라인 도움말을 따르십시오.
2. 콜렉션 서비스 시작 - 일반 페이지에서 필요에 따라 IBM Performance Management for Power Systems 시작을 선택하십시오.
3. 콜렉션 보유 기간에 대한 다른 값을 변경하십시오.
4. 확인을 클릭하십시오.
5. 시스템 모니터나 콜렉션 서비스 오브젝트를 마우스 오른쪽 버튼으로 클릭하고 그래프 이력을 선택하여 그래프 이력을 볼 수 있습니다.
6. 화면경리를 클릭하여 그래프 보기 보십시오.

결과

팁: 그래프 이력 데이터가 누락되면 다시 작성할 수 있습니다. 그래프 이력 데이터를 다시 작성하려면 System i Navigator에서 오브젝트를 마우스 오른쪽 버튼으로 클릭하고 그래프 이력 데이터를 선택하십시오. 그래프 이력을 실행하면, 창에 그래프로 일련의 콜렉션 점이 표시됩니다. 그래프 선의 콜렉션 점은 사용 가능한 데이터의 세 레벨에 해당되는 세 가지의 다른 그래픽으로 식별됩니다.
• 정사각형 클럭션 점은 자세한 정보와 동록정보가 모두 포함된 데이터를 표시합니다.
• 삼각형 클럭션 점은 자세한 정보를 포함하는 요약된 데이터를 나타냅니다.
• 원형 클럭션 점은 자세한 정보 또는 동록정보가 없는 데이터를 표시합니다.

다음에 수행할 작업

시스템은 다음 상황이 발생할 때 활성 클럭션 오브젝트(*PFR 속성)의 데이터를 *PFRDTL 및 *PFRHST 클럭션 오브젝트에 추가합니다.
• 순환될 때 클럭션 오브젝트 동록정보가 그래프 데이터 및 요약 데이터를 추가하도록 설정된 경우 클럭션은 순환됩니다.
• 이미 순환된 오브젝트가 선택되고 데이터를 요약할 멤뉴 옵션이 선택된 경우
• 시스템 모니터가 실행 중인 경우, 시스템 모니터가 실행 중이므로 데이터는 *PFRDTL 오브젝트에만 추가 됩니다.

관련 개념
34 페이지의 『클럭션 서비스』
클럭션 서비스는 시스템 관리 데이터 수집을 위해 제공됩니다. 이 서비스는 시스템 데이터의 1차 클럭터입니다.

IBM Performance Management for Power Systems - IBM i에 대한 지원

IBM i 오퍼링의 지원에서 IBM Performance Management for Power Systems(PM for Power Systems)는
시스템 성능 데이터의 클럭션, 보존 및 분석을 자동화하고 보고서를 리턴하여 시스템 자원 및 용량을 관리하는
데 도움을 제공합니다.

PM for Power Systems 오퍼링에는 성능 관리 에이전트(PM Agent)가 포함됩니다. PM 에이전트는 비독점
클럭션 서비스 데이터의 자동화된 클럭션을 제공하고, 데이터를 줄이고, 데이터를 IBM에 보내는 오퍼레이팅 시
스템의 가능합니다. 데이터를 IBM에 보낼 때, 사용자 스스로 모든 추세 데이터를 저장하지 않아도 됩니다. IBM
은 사용자 대신 데이터를 저장하고 사용자의 서버 중대 및 성능을 표시하는 그래프 및 보고서 시리즈를 사용
자에게 제공합니다. 일반적인 브라우저를 사용하여 전자적으로 보고서에 액세스할 수 있습니다.

이 오퍼링은 IBM Systems Workload Estimator와 함께 사용하면 비즈니스 추세가 필요한 하드웨어 업그레
이드(예: 중앙 처리 장치(CPU) 또는 디스크)의 타이밍에 어떻게 관련되는지를 더 이해하기 쉽습니다. IBM Systems
Workload Estimator는 PM 에이전트가 복수 시스템 또는 파티션에 대한 데이터를 IBM Systems Workload
Estimator에 보내 시스템 통합 크기를 저장하거나 논리 파티션이 있는 시스템 업그레이드를 평가할 수 있습니
d.
관련 개념
34 페이지의 『콜렉션 서비스』
콜렉션 서비스는 시스템 관리 데이터 수집을 위해 제공됩니다. 이 서비스는 시스템 데이터의 1차 콜렉터입니다.

관련 테스크
89 페이지의 『다음 업그레이드 크기 조정』
현재 성능 통계를 사용하여 향후 시스템을 사정할 때 사용하도록 현재 세션에서 Workload Estimator로 데이터를 송신하려면 다음 업그레이드 크기 조정 조치를 사용하십시오.

관련 정보
⇒ PM for Power Systems 웹 사이트
PM for IBM i에 대한 자세한 정보는 PM for Power Systems 웹 사이트를 참조하십시오.

PM 에이전트 개념:
PM 에이전트가 제공할 수 있는 기능 및 이점과 중요한 구현 고려사항에 대해 학습합니다.

PM 에이전트는 콜렉션 서비스를 사용하여 비독점 성능 및 용량 데이터를 서버에서 수집한 후 데이터를 IBM에 보냅니다. 이 정보에는 CPU 이용률 및 디스크 용량, 응답 시간, 처리량, 애플리케이션 및 사용자 상황이 포함됩니다. 데이터를 IBM에 보낼 때, 사용자 스스로 모든 추정 데이터를 저장하지 않아도 됩니다. IBM은 사용자 대신 데이터를 저장하고 사용자의 서버 중대 및 성능을 표시하는 그래프 및 보고서 시리즈를 사용자에게 제공합니다. 일반적인 브라이저를 사용하여 전자적으로 보고서에 액세스할 수 있습니다.

시스템 이용률, 작업부하 및 성능 측정의 정확한 추정을 설정하기 위한 가장 중요한 요구사항은 일관성입니다. 이상적으로, 성능 데이터는 하루 24시간 수집해야 합니다. PM 에이전트 및 콜렉션 서비스 사이의 관계로 인해, PM 에이전트를 사용할 때 발생할 수 있는 내재적 요소를 인식해야 합니다.

다음은 PM 에이전트를 사용할 때 콜렉션을 정의하는 데 도움이 되는 일부 자침입니다.
• 콜렉션 서비스에서 연속으로 데이터를 수집합니다.
 PM 에이전트는 콜렉션 서비스에서 하루 24시간 동안 데이터를 수집하여 이 요구사항을 충족합니다. PM 에이전트는 15분 간격으로 성능 데이터를 수집합니다. PM 에이전트는 15분 간격 다플랫을 사용 하지만 설정한 간격을 변경하지 않습니다. 15분은 권장 간격입니다.
• 표준 + 프로토콜 프로파일을 선택합니다.
 표준 + 프로토콜은 콜렉션 프로파일의 다플랫입니다. 콜렉션 프로파일은 수집되는 데이터를 표시합니다.
 콜렉션은 순환하지 않습니다(다른 이유로 순환해야 하는 경우가 아니면). 이 조치는 PM 에이전트 보고서에 대한 중분한 데이터를 수집하기 위해 수행됩니다.
• PM 에이전트가 활성 상태일 때 콜렉션 매개변수에 대해 중간 변경사항을 작성하지 않습니다.
예를 들어, System i Navigator에서 PM 에이전트를 활성화하는 경우 콜렉션 중에 데이터베이스 파일 작성 필드가 다를지 않으므로 선택해보세요. 이를 변경하면 PM 에이전트는 다시 시간에 대해 다들어가야 합니다. 변경은 즉시 적용됩니다. 콜렉션은 순환하지 않습니다(다른 이유로 순환해야 하는 경우가 아닌 경우).

관련 참조
39 페이지의『콜렉션 서비스 콜렉션 프로파일』
콜렉션 서비스 콜렉션 프로파일의 설명입니다. 콜렉션 프로파일은 수집되는 데이터를 정의합니다.

PM 에이전트 구성
PM 에이전트 사용을 시작하려면 활성화하고 전송 방법을 설정한 후 데이터 콜렉션 및 기억장치를 사용자 정의해야 합니다.

PM 에이전트는 콜렉션 서비스를 통해 성능 데이터의 콜렉션을 자동화합니다. 라이브러리가 기본 보조 기억장치 폴(ASP)에 상주하는 한 데이터를 저장할 수 있는 라이브러리를 저장할 수 있습니다. 라이브러리는 독립 보조 기억장치 폴로 이동하면 안됩니다. 독립 보조 기억장치 폴이 단절변환되어 PM 에이전트 콜렉션 프로세스가 중단될 수 있기 때문입니다. 라이브러리가 아직 존재하지 않는 경우 PM 에이전트는 활성화 중에 라이브러리를 작성합니다.

PM 에이전트 사용을 시작하려면 다음 테스크를 수행해야 합니다.

PM 에이전트 활성화
PM 에이전트는 오피에팅 시스템의 일부이므로 해당되는 수집 기능을 사용하려면 활성화해야 합니다.

이 테스크 정보
해당되는 데이터 수집 기능을 이용하려면 PM 에이전트를 시작해야 합니다. 다음 방법 중 하나를 사용하여 PM 에이전트를 시작할 수 있습니다.

System i Navigator 사용
복수의 시스템을 통해 PM 에이전트를 활성화하려면 System i Navigator를 사용하십시오. PM 에이전트를 활성화할 때 메시지 전, 몇 주일 전 또는 몇 달 전에 수집된 데이터를 볼 수 있습니다. 사용자는 실시간 모니터 기능을 사용할 수 있습니다. PM 에이전트가 작동되지 않으면 마지막 7일 테이터까지 볼 수 있습니다. PM 에이전트가 작동되지 않으면 테이터를 보유한 시간 동안을 선택합니다.

System i Navigator에서 PM 에이전트를 시작하려면 다음을 수행하십시오.
1. System i Navigator에서, PM 에이전트를 시작할 시스템을 펼쳐십시오.
2. 구성 및 서비스를 펼쳐십시오.
3. 콜렉션 서비스를 마우스 오른쪽 버튼으로 클릭하십시오.
4. PM 에이전트를 선택하십시오.
5. 시작을 선택하십시오.
6. PM 에이전트를 시작할 시스템을 선택하십시오.
7. 확인을 클릭하십시오.

결과

QSYSOPR 메세지 큐의 **CPAB02A** 메세지에 응답

QSYSWRK 서브시스템이 시작할 때 이 메세지는 사용자가 PM 에이전트를 활성화할 것인지 확인합니다.

1. 문자 기반 인터페이스에서 QSYSOPR의 메세지 "PM 에이전트를 활성화하시겠습니까?(I G C)"에 G로 응답하십시오. QSYSOPR 메세지 큐는 PM 에이전트가 활성화되었다는 메세지를 수신합니다.

2. 문의치 정보를 개신하십시오. **GO PM400** 명령을 발행하고 옵션 1을 지정하십시오.

CFGPMAGT(PM 에이전트 구성) 명령 발행

문자 기반 인터페이스에서 **CFGPMAGT(PM 에이전트 구성) 명령을 발행할 수 있습니다.**

설정 프로세스에서 다음 단계로 진행할 수 있습니다. 다음 단계는 데이터를 **IBM**에 보내기 위해 사용되는 서버 에이전트 전송을 설정하는 것입니다.

관련 개념

[118 페이지의 '그래프 이력']

그래프 이력은 지정된 시간 동안 콘텐츠 서비스가 수집한 성능 데이터의 그래픽 표시를 제공합니다.

[데이터의 PM 에이전트 전송 설정]

전자 서비스 에이전트의 명세 기능을 사용하여 성능 데이터를 수집하고 송신합니다.

관련 테스크

[131 페이지의 'PM 에이전트 비활성화']

PM 에이전트를 중단할 수 있는 방법을 학습합니다.

데이터의 PM 에이전트 전송 설정:

1. 전자 서비스 에이전트의 명세 기능을 사용하여 성능 데이터를 수집하고 송신합니다.

2. 전송 방법을 구현하면 PM 에이전트를 관리하기 위한 다른 테스크를 수행할 준비가 된 것입니다.

관련 개념

[중요 관리]

관련 참조

[131 페이지의 'PM 에이전트 관리']

이제 네트워크를 설정함으로써, PM 에이전트에 대해 다양한 테스크를 수행할 수 있습니다.

전자 서비스 에이전트로 **PM 에이전트 데이터 송신**: 성능 데이터를 수집하려면 PM 에이전트가 활성 상태여야 합니다. PM 에이전트는 콘텐츠 서비스를 사용하여 비동점 성능 및 용량 데이터를 서버에서 수집합니다. 이 데이터를 수집하고 나면 전자 서비스 에이전트를 사용하여 데이터를 **IBM**으로 보내십시오.
관련 개념

일반 관계
관련 테스크

1. CM 솔루션의 [PM 에이전트 활성화]
PM 에이전트는 오픈체계 시스템의 일부이므로 해당되는 수집 기능을 사용하려면 활성화해야 합니다.

관련 참조

131 페이지의 [PM 에이전트 관리]
이제 네트워크를 설정했으므로, PM 에이전트에 대해 다양한 테스크를 수행할 수 있습니다.

단일 서버에 대한 PM 에이전트 네트워크 구성:
단일 서버는 해당 데이터를 직접 IBM에 보냅니다.

이 테스크 정보

다음은 단일 서버에 대해 PM 에이전트를 구성하기 위해 수행해야 하는 단계입니다.

1. 명령행에서 CFGPMAGT를 입력하십시오.
2. 상속 데이터를 IBM에 보내기 위한 연결 옵션 선택 필드에 대해 1(서비스 에이전트로 데이터 송신)을 지정하십시오.
3. 상속 데이터 수신 필드에 대해 0(아니오)을 지정하십시오.
4. 문의 정책에 대한 작업 표시 화면에서 회사의 문의 정책을 입력하여 모든 필수 필드를 채웠는지 확인하십시오. 그렇지 않으면 구성이 완료되지 않습니다.

관련 참조

131 페이지의 [PM 에이전트 관리]
이제 네트워크를 설정했으므로, PM 에이전트에 대해 다양한 테스크를 수행할 수 있습니다.

호스트 서버에 대한 PM 에이전트 네트워크 구성:

호스트 서버는 다른 서버에서 상속 데이터를 수신하고 데이터를 IBM으로 전달합니다.

이 테스크 정보

다음은 호스트 서버에 대해 PM 에이전트를 구성하기 위해 수행해야 하는 단계입니다.

1. 호스트 서버의 명령행에서 CFGPMAGT를 입력하십시오. PM 에이전트 구성 표시 화면에서 다음을 수행하십시오.
 • 상속 데이터를 IBM에 보내기 위한 연결 옵션 선택 필드에 대해 1(서비스 에이전트로 데이터 송신)을 지정하십시오.
 • 상속 데이터 수신 필드에 대해 1(예)를 지정하십시오.
2. 호스트 서버의 명령행에서 **GO PMAGT**를 입력하십시오. PM 애플랫 메뉴 표시 화면에서 다음을 수행 하십시오.
 - 리모트 IBM i 시스템에 대해 작업하기 위해 명령행에서 5를 입력한 후 **Enter**를 누르십시오.
 - 데이터를 호스트 서버에 보낼 서버를 색별하려면 **F6**(작성)을 누르십시오.
 - 필드를 완료하고 **Enter**를 누르십시오.

결과

PM 애플랫는 리모트 서버에서 데이터가 수신된 다음날 1차 서버에서 IBM으로 데이터가 전송되도록 자동으로 스케줄을 지정합니다. 자동 스케줄링이 사용자 작업 관리 설계에 맞지 않으면 1차 서버로부터의 데이터 전 송 스케줄을 수동으로 지정할 수 있습니다.

다음은 데이터 전송을 스케줄링할 때 유의해야 할 추가 정보입니다. 해당 주 내내 고르게 호스트 서버로의 데이터 전송 스케줄을 지정합니다. 이 조치는 호스트 서버에 대한 성능 영향을 최소화합니다. 예를 들어, 12개 서버가 있는 네트워크에서 네 시스템으로 구성된 세 그룹이 있을 수 있습니다. 해당 데이터를 필요할, 수요일, 금요일에 송신하도록 각 그룹의 스케줄을 지정할 수 있습니다. 그러면 호스트 서버에 송신되는 데이터의 양이 고르게 분산됩니다.

서버를 구성하면 PM 애플랫을 관리하기 위한 다른 테스크를 수행할 준비가 된 것입니다.

관련 참조

[131 페이지의 [PM 애플랫 관리]]

이제 네트워크를 설정했으므로, PM 애플랫에 대해 다양한 테스크를 수행할 수 있습니다.

리모트 서버에 대한 PM 애플랫 네트워크 구성:

리모트 서버는 해당 성능 데이터를 호스트 서버로 보냅니다.

이 테스크 정보

다음은 리모트 서버에 대해 PM 애플랫을 구성하기 위해 수행해야 하는 단계입니다.

1. 명령행에서 **CFGPMAGT**를 입력하십시오.
2. 성능 데이터를 IBM에 보내기 위한 연결 옵션 선택 필드에 대해 2(SNA를 사용하는 리모트 IBM i임)을 지정하십시오.
3. 성능 데이터 수신 필드에 대해 0(아니오)을 지정하십시오.

결과

주: 시스템 네트워크가 있는 경우 System i Navigator의 명세 기능을 사용하여 데이터를 수집한 후 범용 연결을 통해 해당 시스템에 대한 데이터를 전송하는 것이 바람직합니다.

서버를 구성하면 PM 애플랫을 관리하기 위한 다른 테스크를 수행할 준비가 된 것입니다.
관련 참조
[31 페이지의 PM 에이전트 관리]
이제 네트워크를 설정했으므로, PM 에이전트에 대해 다양한 태스크를 수행할 수 있습니다.

리모트 서버에 대한 작업:

일부 사이트에는 호스트 서버와 하나 이상의 리모트 서버로 구성되는 네트워크가 있습니다. 이 경우 호스트 서버는 처리를 위해 PM 데이터를 IBM으로 보냅니다.

이 태스크 정보

1. 호스트 서버 네트워크를 사용할 때 네트워크의 다른 서버는 IBM으로 전송하기 위해 이 호스트 서버로 자체의 성능 데이터를 보내도록 해야 합니다. 호스트 서버를 사용하도록 네트워크를 설정하려면 다른 리모트 서버를 식별하고 해당 데이터 전송을 위한 스케줄을 설정해야 합니다. 리모트 System i 시스템에 대한 작업표시 화면(GO PMAGT를 입력한 후 5 입력)에서 이러한 다른 서버를 정의할 수 있습니다.

주: 시스템 네트워크가 있는 경우 System i Navigator의 명세 기능을 사용하여 데이터를 수집한 후 범용 언결을 통해 해당 시스템에 대한 데이터를 전송하는 것이 바람직합니다.

다음 단계를 수행하여 리모트 서버를 정의하십시오.

1. 명령행에서 GO PMAGT를 입력하십시오.
2. PM 에이전트 메뉴에서 5(리모트 IBM i 시스템에 대한 작업)를 입력한 후 Enter를 누르십시오. 초기에는 리모트 서버가 표시되지 않습니다. 리모트 위치를 새로 작성해야 합니다.
3. F6(작성)을 눌러서 리모트 위치를 새로 작성하십시오.
4. 다음 정보에 대한 값을 기록하십시오. DSPNETA(네트워크 속성 표시) 명령을 사용하여 리모트 시스템에서 이 값을 표시하십시오.
 1. 로컬 네트워크 ID
 2. 디포트 로컬 위치

리모트 IBM 시스템에 대한 작업 표시 화면은 리모트 서버リスト를 표시합니다. 이 리스트에는 서버 상태(활성 또는 비활성)와 각 서버에 대한 설명이 포함됩니다.
5. PM 에이전트 리모트 사이트 유지보수 표시 화면이나 리모트 사이트 IBM i 변경 표시 화면을 사용하여 리모트 사이트 서버에 대한 설명을 작성하거나 변경하십시오. 리모트 위치명은 리모트 서버 사이에 고유해야 합니다.

결과

PM 에이전트 소프트웨어에서는 데이터를 수신하는 서버(호스트 서버)와 데이터를 송신하는 서버(리모트 서버) 사이에 Advanced Peer-to-Peer Networking(APPN) 링크를 정의한 것으로 가정합니다. 시스템에서 시스템 값 QCRTAUT(디포트 공유 권한 작성)로 *EXCLUDE 또는 *USE로 설정한 경우, 제어기 설정을 정의하는 방
법에 대한 정보는 리모트 서버에 대한 장치 설정 작업을 참조하십시오. 네트워크가 이 가정을 충족하지 못하면 각 리모트 서버에 대한 연결을 지원하기 위해 장치 쌍 작성 방법에 대해 IBM APPN 네트워크 고려사항을 참조하십시오.

리모트 서버를 정의하면 특정 화면 연결을 사용하도록 PM 에이전트를 사용자 정의할 준비가 된 것입니다.

관련 테스크

[132 페이지의 [PM 에이전트에 대한 작업 스케줄링]]
PM 에이전트에 대해 작업을 스케줄링하는 방법을 학습합니다.

[129 페이지의 [PM 에이전트에 대한 장치 설정 작성]]
PM 에이전트에 대한 장치 설명을 작성할 수 있습니다.

『APPC 네트워크에서 리모트 서버에 대한 작업』
호스트 서버는 다른 서버에서 PM 에이전트를 수신하고 데이터를 IBM으로 보냅니다. 리모트 서버는 PM 에이전트 데이터를 호스트 서버에 보냅니다.

[130 페이지의 [PM 에이전트 사용자 정의]]
이제 네트워크를 설정했으므로, 요구에 맞도록 PM 에이전트를 사용자 정의해야 할 수 있습니다.

APPC 네트워크에서 리모트 서버에 대한 작업:

- 호스트 서버는 다른 서버에서 PM 에이전트를 수신하고 데이터를 IBM으로 보냅니다. 리모트 서버는 PM 에이전트 데이터를 호스트 서버에 보냅니다.

이 테스크 정보

다음 정보에서는 언급된 제어기가 이전에 정의된 것으로 가정합니다.

- PM 에이전트가 데이터를 수집하는 경우에만 각 리모트 서버에 대한 연결을 지원하도록 장치 쌍을 작성해야 합니다.

 1. CRTDEVAPP(장치 설명 작성(APPC)) 명령을 사용하십시오. 리모트 서버에서 CRTDEVAPP를 입력하십시오. F4를 눌러 매개변수에 대해 프롬프트하고 다음 정보로 값을 정의하십시오.

<table>
<thead>
<tr>
<th>표 3. 리모트 시스템</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVD(QIPLOC)</td>
</tr>
<tr>
<td>RMTLOCNAME(QIPLOC)</td>
</tr>
<tr>
<td>ONLINE(*YES)</td>
</tr>
<tr>
<td>LCLLOCNAME(QIPRMxx)</td>
</tr>
<tr>
<td>CTL(yyyyyy)</td>
</tr>
<tr>
<td>MODE(QIPMOD)</td>
</tr>
<tr>
<td>APPN(*NO)</td>
</tr>
</tbody>
</table>

2. 호스트 서버에서 다음 정보를 지정하십시오. 명령행에서 CRTDEVAPP를 입력하십시오. F4를 눌러 매개변수에 대해 프롬프트하고 다음 정보로 값을 정의하십시오.
표 4. 1차 서비
DEVD(Q1PRMxxx)

장치 설계의 이름을 지정합니다. 여기서 사용되는 이름은 리모트 시스템의 장치 설계 이름과 일치합니다.

RMTLOCNAME(Q1PRMxxx)

리모트 위치의 이름을 지정합니다. 여기서 사용되는 이름은 리모트 서비의 RMTLOCNAME과 일치합니다. 여기서 x는 리모트 위치마다 고유합니다.

ONLINE(*YES)

시스템이 작동되고 제시작될 때 장치가 온라인으로 되는지 여부를 지정합니다.

LCLLOCNAME(Q1PLOC)

모델 위치명을 지정합니다. 이 값은 리모트 서비의 RMTLOCNAME과 일치합니다.

MODE(Q1PMOD)

접속된 제품의 이름을 지정합니다. aaaaa는 리모트 서비에 접속하는 제품입니다.

APPN(*NO)

장치가 APPN 가능한지 여부를 지정합니다.

3. APPC 장치를 정의한 후 장치를 연결변화(VRYCFG(구성 변경) 명령)하십시오. 리모트 서비에서 VRYCFG 를 입력하십시오. F4를 눌러 매개변수에 대해 프롬트하십시오.

표 5. 리모트 시스템 연결변화

CFGOBJ(Q1PLOC)

구성 오브젝트를 지정합니다.

CFGTYPE(*DEV)

구성 오브젝트의 유형을 지정합니다.

STATUS(*ON)

상태를 지정합니다.

4. 리모트 서비로 Q1PRMxxx를 추가하려면 PM 에이전트 메뉴에서 옵션 5를 입력하십시오. 리모트 서비를 추가하는 방법에 대한 지침은 리모트 서비에 대한 작업을 참조하십시오.

결과

이제 PM 에이전트 구성이 완료되었습니다. PM 에이전트 에 대해 수행할 수 있는 기타 테스크에 대해서는 PM 에이전트 관리에 참조하십시오.

관련 테스크

| 127 페이지의 [리모트 서버에 대한 작업] |

일부 사이트에는 호스트 서버와 하나 이상의 리모트 서버로 구성되는 네트워크가 있습니다. 이 경우 호스트 서버는 처리를 위해 PM 데이터를 IBM으로 보냅니다.

관련 참조

| 131 페이지의 [PM 에이전트 관리] |

이제 네트워크를 설정했으므로, PM 에이전트에 대해 다양한 테스크를 수행할 수 있습니다.

PM 에이전트에 대한 장치 설계 작성:

PM 에이전트에 대한 장치 설명을 작성할 수 있습니다.

이 테스크 정보

다음 단계는 QCRTAUX(디플로트 공용 권한 작성) 시스템 없이 *EXCLUDE 또는 *USE로 설정된 리모트 서버마다 필요합니다. QUSER에 장치 설명 Q1PLOC에 대한 *CHANGE 권한이 없는 경우 리모트 전송이 실패합니다. 이 단계에서는 장치가 자동으로 작성되지 않거나 삭제되지 않도록 합니다.

주: 이 테스크는 PM 에이전트가 데이터를 수집하는 경우에만 필요합니다.
장치가 자동으로 작성되도록 허용하면 QCRTAUT에 설정된 값에 따라 PUBLIC *EXCLUDE 또는 *USE 권한으로 장치 설명이 작성됩니다. 장치를 자동으로 작성 또는 삭제할 수 있는지 여부는 제어기에 의해 제어됩니다.

APPN을 사용하되 루프 구성되지 않은 시스템의 경우 장치 설명 작성 방법에 대한 정보는 비APPN 환경에서 리모트 서버에 대한 작업을 참조하십시오.

다음 정보에서는 호스트 서버와의 통신에 사용할 제어기 리모트 서버에서 이전에 정의된 것으로 가정합니다.

*remote server*에 대해 장치 설명 Q1PLOC를 다시 작성하십시오.

<table>
<thead>
<tr>
<th>명령</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRTDEVAAPPC</td>
<td>DEVD(Q1PLOC)</td>
</tr>
<tr>
<td>CRTOBJAUT</td>
<td>OBJ(Q1PLOC)</td>
</tr>
<tr>
<td>VRYCFG</td>
<td>CFGOBJ(Q1PLOC)</td>
</tr>
<tr>
<td>DLTDEVD</td>
<td>DEVD(Q1PLOC)</td>
</tr>
<tr>
<td>CRTDEVAAPPC</td>
<td>RMTLOCNAME(Q1PLOC)</td>
</tr>
<tr>
<td>CRTOBJAUT</td>
<td>OBJTYPE(*DEVD)</td>
</tr>
<tr>
<td>VRYCFG</td>
<td>CFGTYPE(*DEV)</td>
</tr>
<tr>
<td></td>
<td>STATUS(*OFF)</td>
</tr>
<tr>
<td></td>
<td>STATUS(*ON)</td>
</tr>
<tr>
<td></td>
<td>STATUS(*ON)</td>
</tr>
</tbody>
</table>

관련 명령

- [128 페이지의 [APPC 네트워크에서 리모트 서버에 대한 작업]](128)
- [131 페이지의 [PM 에이전트 관리]](131)

이제 네트워크를 설정했으므로, PM 에이전트에 대해 다양한 테스크를 수행할 수 있습니다.

PM 에이전트 사용자 정의:

이제 네트워크를 설정했으므로, 요구에 맞도록 PM 에이전트를 사용자 정의해야 할 수 있습니다.
이 테스크 정보

PM 이벤트 사용자 정의에 대한 작업 표시 화면은 다음을 수행할 수 있는 기능을 제공합니다.

PM 이벤트 소프트웨어의 운영에 대한 글로벌 매개변수 설정

글로벌 매개변수를 사용하여 다음 항목을 사용자 정의할 수 있습니다. 이 필드에 대한 설명은 온라인 도움말
을 참조하십시오.

- 우선순위 항계
- 추세 및 시프트 스케줄

PM 이벤트 데이터 전환 번호 정의

글로벌 매개변수를 사용자 정의하려면 다음 단계를 수행하십시오.

1. 명령행에서 GO P MAGT를 입력하십시오.
2. PM 이벤트 메뉴에서 3을 입력하여 PM 이벤트 사용자 정의에 대한 작업 표시 화면을 표시하고 Enter
 를 누르십시오.

결과

PM 이벤트에 대해 수행할 수 있는 기타 테스크에 대해서는 PM 이벤트 관리를 참조하십시오.

관련 참조

[PM 이벤트 관리]
이제 네트워크를 설정했으므로, PM 이벤트에 대해 다양한 테스크를 수행할 수 있습니다.

PM 이벤트 관리:

이제 네트워크를 설정했으므로, PM 이벤트에 대해 다양한 테스크를 수행할 수 있습니다.

PM 이벤트를 사용하도록 네트워크를 설정하고 나면 다음 테스크를 수행할 수 있습니다.
관련 참조

[PM 이벤트 종료(QIPENDPM) API]

PM 성능 데이터 전송 시작:

PM 이벤트 메뉴를 사용하여 성능 데이터의 서비스 이벤트 전송을 시작할 수 있습니다.

이 테스크 정보

PM 성능 데이터 전송을 시작하려면 다음 단계를 수행하십시오.
1. 명령행에서 GO PM400을 입력하십시오.
2. 명령행에 9를 입력하고 Enter를 누르십시오. 리턴되는 메세지에 대해 작업 로그를 검사하십시오.

PM 이벤트 비활성화:
PM 에이전트를 중단할 수 있는 방법을 학습합니다.

이 테스크 정보

PM 에이전트의 실행을 중단하려면 다음 방법 중 하나를 사용하십시오.

System i Navigator 사용

다음 단계를 수행하십시오.

1. System i Navigator에서, PM 에이전트가 실행 중인 시스템을 필히십시오.
2. 구성 및 서비스를 필치십시오.
3. 콜렉션 서비스를 마우스 오른쪽 버튼으로 클릭하십시오.
4. PM 에이전트를 선택하십시오.
5. 중단을 선택하십시오.
6. PM 에이전트를 중단할 시스템을 선택하십시오.
7. 확인을 클릭하십시오.

결과

API 사용

PM 에이전트 종료(Q1PENDPM) API를 사용하여 PM 에이전트를 비활성화하십시오.

관련 테스크

123 페이지의 「PM 에이전트 활성화」

PM 에이전트는 오피오팅 시스템의 일부이므로 해당되는 수립 기능을 사용하려면 활성화해야 합니다.

PM 에이전트 문의처 정보 변경:

원래 설정에서 문의처 정보를 변경하는 방법을 학습합니다.

이 테스크 정보

PM 에이전트 소프트웨어 구성 중에, 조직에 대한 담당자를 삭제하고 메일 정보를 제공했습니다. 나중에 정보를 갱신해야 하는 경우 문의처 정보에 대한 작업 옵션을 사용하여 정보를 변경하십시오. 문의처 정보를 변경하려면 다음 단계를 수행하십시오.

1. 명령행에서 GO PM400을 입력하십시오.
2. PM 에이전트 메뉴에서 1을 입력하고 Enter를 누르십시오. 문의처 정보에 대한 작업 표시 화면이 나타납니다.
3. 직접하게 문의처 정보를 변경하고 Enter를 누르십시오.

PM 에이전트에 대한 작업 스케줄링:

PM 에이전트에 대해 작업을 스케줄링하는 방법을 학습합니다.
이 테스크 정보

PM 에이전트 소프트웨어에 필수적인 것은 PM 에이전트 상생 데이터 콜렉션 및 분석을 지원하는 데 필요한 작업을 자동으로 시작하는 스크줄러입니다.

PM 에이전트 소프트웨어 활성화 프로세스의 일부로 QIPSCH라고 하는 작업 시작이 있습니다. 이 작업은 다시 다음 테이블에 표시된 대로 다른 작업을 시작합니다.

PM 에이전트 스크줄된 작업에 액세스하려면 다음을 수행하십시오.

1. 명령행에서 GO PM400을 입력하십시오.
2. PM 에이전트 메뉴에서 2를 입력하고 Enter를 누르십시오. 자동으로 스크줄된 작업에 대한 작업 표시 화면이 나타납니다.
3. 각 작업에 대한 상태를 활성화에서 비활성으로 변경할 수 있습니다. 변경하려는 작업 옆에 2(변경)를 입력하고 Enter를 누르십시오. 자동으로 스크줄된 작업 변경 표시 화면이 표시됩니다.

결과

다음 테이블은 가능한 PM 에이전트 작업 리스트를 보여줍니다.

<table>
<thead>
<tr>
<th>PM 에이전트 스크줄된 작업</th>
<th>스크줄</th>
<th>기능</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1PTEST</td>
<td>활성화</td>
<td>PM 에이전트가 활성화된 후 비활성 상태로 이동하는지 확인합니다.</td>
</tr>
<tr>
<td>Q1PPMSUB</td>
<td>매시간</td>
<td>졸택한 서비스가 데이터를 수집 중인지 확인합니다.</td>
</tr>
<tr>
<td>Q1PRD</td>
<td>매일</td>
<td>데이터 갱신을 수행하고 상생 데이터를 제거합니다.</td>
</tr>
<tr>
<td>Q1PPG</td>
<td>매일</td>
<td>갱신된 상생 데이터를 제거합니다.</td>
</tr>
<tr>
<td>Q1PCM4</td>
<td>필요 시</td>
<td>리모트 서비스에서 PM 에이전트에 액세스합니다. 이 작업은 PM 에이전트 메뉴에서 익션 5를 사용하여 리모트 시스템에 추가한 경우에만 시작됩니다.</td>
</tr>
<tr>
<td>Q1PPMCHK</td>
<td>4시간마다</td>
<td>데이터 콜렉션이 활성 상태인지 확인합니다.</td>
</tr>
</tbody>
</table>

IBM i용 IBM Performance Management 분석에서 항목 생략:

IBM i용 IBM Performance Management(PM for IBM i)에서 분석을 수행할 때 작업, 사용자 및 통신 화션을 생략하는 방법을 학습합니다.

이 테스크 정보

IBM i용 PM 소프트웨어 애플리케이션 요약에는 일관처리 작업, 사용자 및 통신 화션에 대한 항목 분석이 포함됩니다. 그러나 일부 작업, 사용자 또는 통신 화션은 이와 같은 분석에 적절하지 않습니다. 예를 들어, 런타임 범주에서 자동 시작 작업과 같이 정상 실행 시간보다 긴 작업을 제외시킬 수 있습니다.
일반 생략 가능성을 사용하여 본문에서 일반처리 작업 및 사용자 그룹을 생략할 수 있습니다. 예를 들어, MYAPP로 시작하는 모든 작업을 생략하려면 MYAPP*를 지정하시십시오.

생략에 대해 작업하려면 다음 단계를 수행하십시오.
1. 명령행에서 GO PM400을 입력하십시오.
2. PM 에이전트 메뉴에서 4을 입력하고 Enter를 누르십시오. 생략에 대한 작업 표시 화면이 나타납니다.
3. 생략하라는 항목에 따라 적절한 옵션 번호를 입력하십시오.
 - 작업(job)에 대해 작업(work)하려면 1을 입력하십시오.
 - 사용자에 대해 작업하려면 2를 입력하십시오.
 - 통신 화면에 대해 작업하려면 3을 입력하십시오.
4. 특정 범주에서 사용자 또는 작업을 생략하려면 해당 필드에 1을 입력하십시오. 통신 화면의 경우 화면의 이름을 입력한 후 해당 필드에 1을 입력하십시오.

PM 에이전트 잠시 중단:

PM 에이전트를 잠시 중단할 수 있는 방법을 학습합니다.

이 테스크 정보

콜렉션 서비스가 데이터를 수집하고 있는지 PM 에이전트가 확인하는 것을 중단시키려면 스케줄러 작업을 사용하여 날짜를 Q1PPMSUB 작업에 대한 추후 날짜로 변경하면 됩니다.

1. 명령행에서 GO PM400을 입력하십시오.
2. 2(자동으로 스케줄된 작업에 대한 작업)를 입력하십시오.
3. Q1PPMSUB 작업 옆에 2(변경)를 입력하십시오.
4. 날짜 및 시간을 추후 날짜 및 시간으로 변경하십시오.
5. Enter를 누르십시오. 이 변경으로 콜렉션 서비스가 데이터를 수집하고 있는지 PM 에이전트가 확인하는 것
이 잠시 중단됩니다. 현재 수집 중인 것을 종료해야 합니다.

결과

주: PM 에이전트는 Q1PPMSUB 작업을 설정한 날짜 및 시간에 도달할 때까지 콜렉션 서비스를 시작, 순환
또는 변경하지 않습니다.

관련 테스크

132 페이지의 『PM 에이전트에 대한 작업 스케줄링』
PM 에이전트에 대해 작업을 스케줄링하는 방법을 학습합니다.

1 서비스 에이전트 연결 확인:

PM 에이전트 메뉴를 사용하여 서버에서 IBM으로의 서비스 에이전트 연결에 대한 상태를 확인할 수 있습니
다.
이 테스크 정보

서비스 에이전트 연결을 확인하려면 다음 단계를 수행하십시오.

1. 명령행에서 GO PM400을 입력하십시오.
2. 명령행에 8을 입력하고 Enter를 누르십시오. 리턴되는 메세지에 대해 작업 로그를 검사하십시오.

PM 에이전트 상태 보기:

System i Navigator 또는 PM 에이전트 메뉴를 사용하여 PM 에이전트 상태를 표시하는 방법을 학습합니다.

이 테스크 정보

사용자 시스템의 PM 에이전트 메뉴나 System i Navigator를 사용하여 PM 에이전트의 상태를 표시할 수 있습니다. 하나 이상의 시스템 또는 그룹에 대해 PM 에이전트의 전체 상태를 보려면 PM 에이전트 상태 대화 상자를 사용하십시오. 예를 들어, PM 에이전트가 활성 상태인지에 대해 세부사항이 표시됩니다. PM 에이전트 메뉴를 사용하여 클릭하면 서비스 상태, PM 에이전트 스크립터 상태, 성능 데이터 텔리스, 마지막 전송 시도, 성능 데이터 메비 및 성능 데이터 크기를 보십시오.

System i Navigator에서 PM 에이전트에 대한 전체 상태를 보려면 다음 단계를 수행하십시오.

1. System i Navigator에서 종료점 시스템이나 시스템 그룹을 필치십시오.
2. 구성 및 서비스를 필치십시오.
3. 클릭한 서비스를 마우스 오른쪽 버튼으로 클릭하십시오.
4. 성능 에이전트를 선택하십시오.
5. 상태를 선택하십시오.

결과

PM 에이전트 메뉴에서 PM 에이전트에 대한 자세한 상태를 보려면 다음 단계를 수행하십시오.

1. 명령행에서 GO PM400을 입력하십시오.
2. 명령행에 6을 입력하고 Enter를 누르십시오. 각 필드에 대한 설명은 온라인 도움말을 참조하십시오.

IBM i용 IBM Performance Management 보고서 보기:

IBM i용 IBM Performance Management 보고서의 예와 보고서 해석 방법에 대한 설명을 참조하십시오.

IBM i용 IBM Performance Management 오퍼링의 출력은 관리 보고서 및 그레프 세트입니다. 보고서 및 그 레프의 용도는 경영진에게 해당 서버의 현재 성능과 정확한 중가 추세에 대한 명확한 이해를 제공하기 위한 것입니다. 보고서를 보고 해당 이점 및 사용 중 일부에 대해 학습하려면 IBM i용 IBM Performance Management 웹 사이트를 방문하십시오.
IBM Systems Workload Estimator

IBM Systems Workload Estimator는 System i, System p 및 System x용 웹 기반 사이즈 트립니다. 이 툴을 사용하여 새 시스템의 크기를 정하고 기존 시스템에 대한 업그레이드 크기를 정하며 여러 시스템의 통합 크기를 정할 수 있습니다.

관련 정보

IBM Systems Workload Estimator의 온라인 버전을 실행하려면 IBM Systems Workload Estimator 웹 사이트를 참조하십시오.

성능 분석 툴

성능 분석 툴 라이센스가 있는 프로그램에는 오피오팅 시스템에서 사용 가능한 기본 성능 분석 툴의 기능을 보충하거나 확장하는 많은 보충 기능이 있습니다.

관련 개념

34 페이지의 『콜렉션 서비스』
콜렉션 서비스는 시스템 관리 데이터 수집을 위해 제공됩니다. 이 서비스는 시스템 데이터의 1차 콜렉타입니다.

138 페이지의 『관리자 및 애플리케이션 피처 비교』
관리자 및 애플리케이션 피처를 사용하여 분산 환경을 통해 성능 분석 툴의 필수 기능을 효율적으로 나눌 수 있습니다. 이 주제에는 두 피처의 설명과 각 피처에 있는 기능, 가장 효율적으로 사용하는 방법에 대한 정보가 있습니다.

관련 정보

성능 분석 툴 PDF
성능에 대한 CL 명령

성능 분석 툴 개념:
성능 정보를 수집하고 분석하는 데 도움이 되는 다양한 툴을 설명합니다. 어떤 툴이 어떤 기능을 수행하며 어떤 작업에 적합한지 정확하게 자세한 정보를 살펴보십시오.

관련 개념

IBM i
IBM Systems Director Navigator

IBM Systems Director Navigator는 시스템 관리 툴을 수집을 위해 제공됩니다. 이 서비스는 시스템 데이터의 1차 콘텐츠이며, IBM i의 툴을 수집을 위해 제공됩니다.

성능 분석 툴에서 제공되는 기능:

성능 분석 툴에는 성능 데이터를 수집, 분석 및 보고하기 위한 다양한 애플리케이션이 있습니다. 사용할 수 있는 기능과 지정된 툴에서 가장 적합한 기능을 이는 것은 복잡할 수 있습니다. 이 주제에서는 이 라이센스가 있는 프로그램에 포함된 기능에 대해 설명합니다.

성능 분석 툴에는 보고서, 대화식 명령 및 기타 기능이 포함됩니다. 예를 들어 성능 분석 툴에는 다음이 포함 됩니다.

<table>
<thead>
<tr>
<th>툴</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>성능 데이터 표시</td>
<td>성능 데이터 표시 사용자 인터페이스에서는 성능 데이터 보기, 데이터를 보고서로 요약, 툴을 표시하기 위한 그래프 표시, System i Navigator 내에서 모든 시스템 성능 세부사항 분석 등을 수행할 수 있습니다.</td>
</tr>
<tr>
<td>보고서</td>
<td>보고서는 성능 분석 툴 시각에 자세히 설명되어 있습니다.</td>
</tr>
</tbody>
</table>
관리 개념

80 페이지의『i용 IBM Systems Director Navigator 성능 인터페이스』
i용 IBM Systems Director Navigator 성능 인터페이스를 사용하면 다양한 성능 정보 및 품을 하나의 중앙 위치로 가져와서 성능 데이터를 보고 수집하고 관리할 수 있습니다.

관련 테스크

139 페이지의『성능 분석 풀 플러그 인』
System i Navigator에서 시스템 자원 이용률 데이터를 볼 수 있습니다. 데이터를 보고, 그래프로 표현하며 보고서에 요약할 수 있습니다. 여기에는 이 기능에 액세스하는 방법에 대한 정보가 있습니다.

관련 참조

WRKSYSACT(시스템 활동에 대한 작업) 명령

관련 정보

성능 분석 풀 보고서

 성능 분석 풀 PDF

관리자 및 에이전트 피처 비교:

관리자 및 에이전트 피처를 사용하여 분산 환경을 통해 성능 분석 풀의 필수 기능을 효율적으로 나눌 수 있습니다. 이 주제에는 두 피처의 설명과 각 피처에 있는 기능, 가장 효율적으로 사용하는 방법에 대한 정보가 있습니다.

성능 분석 풀은 별도로 설치 가능한 두 피처에서 사용할 수 있습니다. 이 주제에서는 사용자 애플리케이션에 더 적합한 피처를 결정하는 데 도움이 되도록 두 피처 사이의 차이를 설명합니다.

관리자 피처

성능 분석 풀 관리자 피처는 분산 환경의 중앙 시스템이나 단일 시스템에 사용되도록 설계된 전기능 폐기지입니다. 추적 데이터를 분석하거나, 데이터를 그래픽으로 보거나, 실시간으로 시스템 활동을 보거나, 시스템 성장을 관리 및 추적해야 하는 경우 성능 분석 풀의 관리자 피처가 아주 유용합니다. i용 IBM Systems Director Navigator 성능 인터페이스의 IBM i/OS 디스크 감시기 기능도 관리자 피처에 포함합니다.

에이전트 피처

관리자 기능 서브세트가 있는 성능 분석 풀 에이전트 피처는 추가 기능이 있는 저렴한 가격의 폐기지입니다. 분산 환경에서, 에이전트 피처는 네트워크의 관리 시스템에 대해 제대로 작동합니다. 자세한 분석이 필요한 경우 데이터를 관리자에 보낼 수 있기 때문입니다. 적절한 레벨의 자세 기능이 필요하지만 사용할 수 있는 전문 기술이 없는 사례에 효과적인 풀이기도 합니다.

성능 분석 풀의 에이전트 피처는 성능 데이터의 콜렉션, 관리, 온라인 표시, 데이터 감소 및 분석을 단순화하기 위한 기능을 제공합니다. 성능 탐색기 보고 기능 및 연관 명령은 i/OS용 성능 분석 풀 라이센스가 있는 프로그램의 기본 응용에 포함되므로, 관리자 피처나 에이전트 피처에서 사용할 수 있습니다. 에이전트 피처에 포함되지 않은 주요 성능 분석 풀 기능은 성능 및 추적 보고서, 성능 유틸리티 (작업 추적 및 파일 선택 유틸리티), 시스템 활동 모니터링 및 성능 그래픽입니다.

138 IBM i: 시스템 관리 성능
관련 개념

System i Navigator에서 시스템 자원 이용률 데이터를 볼 수 있습니다. 데이터를 보고, 그래프로 표현하며 보고서에 요약할 수 있습니다. 여기에는 이 기능에 액세스하는 방법에 대한 정보가 있습니다.

이 테스크 정보

성능 분석 툴 플러그 인:

System i Navigator에 대한 플러그 인성 성능 데이터 표시 GUI(Graphical User Interface)에서 성능 데이터를 표시할 수 있습니다. GUI에서, 성능 데이터 보기, 데이터를 보고서로 요약, 추세를 표시하기 위한 그래프 표시, 시스템 성능 세부사항 분석 등을 수행할 수 있습니다.

미터법

System i Navigator는 선택된 시간 간격에 걸쳐 성능 미터법을 표시합니다. 성능 데이터 표시 GUI의 그래프 분할영역에서 볼 수 있는 성능 미터법은 다음과 같습니다.

- 트랜잭션 수
- 트랜잭션 응답 시간
- 총 CPU 이용률
- 대화식 CPU 이용률
- 일괄처리 CPU 이용률
- 대화식 피처 이용률
- 높은 디스크 이용률
- 기계 폼 페이지 결합 수/초
- 사용자 폼 페이지 결합 수/초

세부사항 분할영역에서는 선택된 시간 간격에 대한 자세한 성능 데이터를 다양한 방식으로 볼 수 있습니다. 시스템 성능을 분석하기 위해 작업 데이터, 서브시스템 데이터, 폼 데이터 또는 디스크 장치 데이터를 볼 수 있습니다.

보고서

그래프 및 세부 데이터를 보는 것 외에도, 성능 데이터 표시 GUI에서 보고서를 인쇄할 수 있습니다. 성능 보고서를 사용하여 성능 문제점을 여지하는 시스템 영역을 조사할 수 있습니다. 시스템 자원이 사용되는 위치를 보기 위해 다양한 보고서를 실행할 수 있습니다. 성능 분석 툴에서 보고서를 인쇄하는 것은 i5/OS용 성능 분석 툴(5770-PT1)의 옵션 1(관리자 피처)이 중앙 시스템에 설치된 경우에만 가능합니다.
성능 데이터 표시 GUI에서 인쇄할 수 있는 보고서는 다음과 같습니다.

- 시스템
- 구성요소
- 작업
- 품
- 자원

System i Navigator를 통해 액세스

성능 데이터 표시 GUI는 System i Navigator에 대한 플러그 인립니다. 이미 플러그 인을 설치한 경우 System i Navigator에서 다음 단계에 따라 액세스할 수 있습니다.

1. System i Navigator에서 내 연결(또는 활성 환경)을 펼치십시오.
2. 보려고 하는 성능 데이터가 있는 서버를 펼치십시오.
3. 구성 및 서비스를 펼치십시오.
4. 클릭한 서비스를 마우스 오른쪽 버튼으로 클릭하고 성능 분석 토글 선택한 후 성능 데이터를 선택하십시오.
5. 표시하려는 성능 데이터 파일을 선택하십시오.
6. 표시를 클릭하십시오.

결과

System i Navigator에서 성능 데이터 표시 GUI를 사용하는 방법에 대한 자세한 정보는 System i Navigator 온라인 도움말을 참조하십시오.

관련 개념

138 페이지의 [관리자 및 에이전트 파처 비교]
관리자 및 에이전트 파처를 사용하여 분산 환경을 통해 성능 분석 토글의 필수 기능을 효율적으로 나눌 수 있습니다. 이 주제에는 두 파처의 설명과 각 파처에 있는 기능, 가장 효율적으로 사용하는 방법에 대한 정보가 있습니다.

관련 테스크

144 페이지의 [System i Navigator에 성능 분석 토글 플러그 인 설치]
시스템 자원 이용률 데이터를 보기 위해 System i Navigator에 성능 분석 토글 플러그 인을 설치할 수 있습니다.

CPU 이용률 보고:

가상 프로세서에서 소비된 총 CPU가 보고되는 방법에 대해 알아 보겠습니다.

V5R3 이전에는 프로세서 이용률이 사용 가능한 CPU 시간의 백분율로 계산되었습니다. 클럭과 서비스는 결과 뿐만 아니라 각 프로세서에서 사용되는 시간을 성능 데이터베이스 파일에 보고했습니다. 데이터(예: 성능 분석 토글 보고서 및 표시 화면) 사용자는 소비된 시스템의 전체 CPU 양을 알 수 보러면 각 프로세서에서 사
용된 시간을 모두 더해야만 했습니다. 사용할 수 있는 CPU 시간은 파티션에 있는 프로세서 수에 데이터 클락
선 간격의 지속 기간을 곱한 값으로 계산되었습니다. 마지막으로, CPU 이용율(백분율)을 알기 위해서는 계산
된 사용 가능한 시간으로 CPU 시간을 나누어야 했습니다.

이전 방법의 문제점은 데이터의 모든 사용자가 전체 가상 프로세서를 가정하고 구성된 용량에 대한 변경에 따
라 다르지 않는 것입니다. 또한 프로세서 용량의 눈리 파티션과 동적 구성 수정이 필요할 경우에 더 이상 이 방법
으로 작동하지 않았습니다. 이러한 문제점의 영향을 최소화하기 위한 일시 솔루션으로 전체 프로세서 수에 대
해 보고되는 시스템 프로세서의 이용률을 계산하고, 구성 변경 시 클락 선 서비스의 순환에 포함되었습니다.
개별 작업 CPU 시간은 스케일되지 않았으므로, 추가 시간은 HVLP TASK에 의해 소비되는 대로 보고하여 계
산되었습니다. HVLP TASK 테스크는 실제로 CPU를 사용하지 않았지만, 동계 용도로 HVLP TASK에서 소비
될 CPU 시간이 표시되었습니다. HVLP TASK에 부과된 CPU 시간이 실제 작업에서 수행된 작업량에 비례했
습니다. 그 결과 시스템 CPU 이용율(백분율)은 수행된 각 작업량에 정비하여 0에서 100으로 진행되었습니다.

VSR3에서 클락 선 서비스는 소비된 총 CPU와 간격 내에서 파티션에 사용 가능한 총 CPU를 보고합니다. 공유
프로세서 환경에서 전체 가상 프로세서로 스케일한 HVLP TASK 및 CPU의 개념은 존재하지 않습니다. 클락
선 서비스는 구성이 변경될 때 더 이상의 클락선을 순환하지 않습니다.

클락선 서비스는 이제, 구성된 가상 프로세서 수, 구성된 파티션 장치 또는 간격에서 변경된 방식에 관계없이,
파티션 내에서 소비될 수 있었던 프로세서 시간과 함께 파티션에서 소비되는 총 프로세서 시간을 보고합니다.
이용률을 연산하기 위해 이 데이터의 사용자는 보고된 소비 CPU를 사용 가능한 용량으로 나눕니다. 이러한 CPU
이용률 연산 방법을 사용하면 점점 더 오류 발생 가능성이 커지는 사용 가능한 CPU 시간 계산 테스크가 없어
집니다. 이러한 새 모티브로 계산되는 CPU 이용률은 존재하는 처리 장치 수(정수 또는 분수), 처리 장치 변
경 시기 또는 장치 변경 빈도에 관계없이 정합합니다.

CPU 이용률 연산 시 이 변경에 대해 몇 가지의 이유가 고려됩니다. 한 가지 이유로는 스케일링에서 작업 또
는 작업 그룹에 대한 이용률이 예상보다 높은 작게 표시된 것입니다. 이 개념은 뒤에 있는 예에서 설명됩니다.
또 다른 이유는 구성 변경으로 CPU 보고가 올바르지 않게 될 수 있는 것입니다. 일반적으로, CPU 수는 클락
선 시작 시 구성된 값을 기초로 하므로 변경하면 IPL이 필요합니다. 동적 구성이 소개될 때 클락선 서비스
는 구성 변경사항을 처리하기 위해 클락선을 순환했습니다. 이때 변경사항이 드물게 작성이 되지 않은 것으
로 가정되셨습니다. 그러나 더 자주 변경하면 순환도 더 자주 발생합니다. 너무 자주 변경되면 성능 데이터를 수집할 수
 없습니다. 마지막으로, 적절한 구성 데이터를 보고하고 모든 간격에 사용되었고, 사용되는 간격이 시작된 시
간과 완료된 시간 사이에 발생한 것을 알지 못합니다. 이용률은 하나 이상의 구성 변경사항이 발생한 간격에서
계속 올바르지 않게 연산됩니다.

예

파티션 A는 0.3 용량의 프로세서 장치를 가지고 있고 하나의 가상 프로세서를 사용하도록 정의되었습니다. 클
락선 간격 시간은 300초입니다. 시스템은 CPU를 45초 사용합니다(대화식 작업에 15초, 일괄처리 작업에 30초).
이 예에서 사용할 수 있는 CPU 시간은 90초입니다(300초의 0.3). 총 CPU 이용률은 50%입니다.
V5R3 이전에는, 숫자가 스크립트되었을 때 시스템 CPU가 150초로 보고되었습니다. 150초를 간격 시간 300초로 나누어서 50% 이용률이 생성됩니다. 대화식 이용률은 15초를 300초로 나누는 30초는 10%입니다. 일괄처리 이용률은 30초를 300초로 나누는 10%입니다. HLQPTASK에는 35% 이용률이 설명(15초 - 45초), 또는 105초를 300초로 나눈 이용률이 부과됩니다. 이 백분율은 총 50%를 제공합니다.

V5R3부터는, 수의 45초가 더 이상 스키립트되지 않고 그대로 보고됩니다. 보고된 소비 CPU 시간을 보고된 사용 가능 용량을 나눈 값에서 파생되는 연산된 CPU 시간은 50% (45초/90초)입니다. 대화식 이용률(백분율)은 17% (15초/90초)입니다. 일괄처리 이용률(백분율)은 33% (30초/90초)입니다.

<table>
<thead>
<tr>
<th>형태</th>
<th>총 CPU</th>
<th>대화식</th>
<th>일괄처리</th>
<th>HLQPTASK</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS/400® V5R2 이하</td>
<td>50%</td>
<td>5%</td>
<td>10%</td>
<td>35%</td>
</tr>
<tr>
<td>OS/400 V5R3 이상</td>
<td>50%</td>
<td>17%</td>
<td>33%</td>
<td>N/A</td>
</tr>
</tbody>
</table>

구성된 용량 보고:

구성된 용량의 정보가 기록된 위치를 찾습니다.

파티션의 시작과 이 시간에 사용 가능한 용량 자원에 따라 파티션 용량 값이 처음 결정됩니다. 이러한 초기 값을 파티션의 사용 중인 동안 구성 변경사항을 통해 변경될 수 있습니다.

 논리 파티션 (LPAR)은 일부 파티션의 특정 상황에서 구성된 용량을 초과할 수 있도록 합니다. 이 시간 동안 이러한 파티션의 프로세서 사용률 범위는 구성된 용량의 100% 이상일 수 있습니다.

사용 및 용량 정보는 QAPMSYSTEM 데이터베이스 파일에 기록됩니다. 가상 프로세서 정보는 QAPMSYSCPU 데이터베이스 파일에 기록됩니다. 다음은 이 정보를 요약합니다.

가상 프로세서

공유 프로세서 폴의 프로세서 용량을 공유하는 논리 파티션에 저장된 프로세서 수. 이 값은 논리 파티션에 사용할 수 있는 동시 프로세서의 수를 판별합니다. 이 값은 SCTACT 필드 또는 옆의 QAPMSYSCPU 성능 데이터베이스 파일에 포함됩니다.

사용 가능한 공유 프로세서 폴 용량

공유 프로세서 논리 파티션이 사용할 수 있는 공유 프로세서 폴의 전체 프로세서 용량. 이 값은 SYSPLA 옆의 QAPMSYSTEM 성능 데이터베이스 파일에 포함됩니다. 비례한으로 구성된 파티션이 확보한 양을 초과하는 사용 가능한 공유 폴 용량과 경쟁하는 경우, 프로세서 용량의 분배는 논리 파티션에 저장된 비례한 가중치로 결정됩니다.

사용된 공유 프로세서 용량

모든 활성 공유 프로세서 논리 파티션이 사용하는 공유 프로세서 용량의 전체 양. 공유 폴에서 폴을 공유하는 모든 파티션이 사용하는 전체 CPU 양. 이 값은 SYSPLU 옆의 QAPMSYSTEM 성능 데이터베이스 파일에 포함됩니다.
환보된 파티션 용량
공유 프로세서 플에서 공유 프로세서 논리 파티션으로 구성된 프로세서 용량. 이 값은 SYSCTA 열의 QAPMSYSTEM 성능 데이터베이스 파일에 포함됩니다. 구성된 5250 OLTP 용량은 SYIFTA 열에 기록됩니다.

파티션 프로세서 활용
논리 파티션이 사용하는 전체 CPU 시간 비례한 용량의 공유 프로세서 논리 파티션 아예. 공유 프로세서 플에 사용되지 않은 용량이 있는 경우 이 값은 확보된 용량을 초과할 수 있습니다. 이 값은 SYSPTU 열의 QAPMSYSTEM 성능 데이터베이스 파일에 포함됩니다. 사용된 5250 OLTP 용량은 SYIFUS 열에 기록됩니다. 파티션의 최대 프로세서 용량은 구성된 가상 프로세서 수로 관별입니다.

사용 가능한 파티션 용량
논리 파티션이 사용할 수 있는 프로세서 용량. 이 값은 SYSUTA 열의 QAPMSYSTEM 성능 데이터베이스 파일에 포함됩니다. 이는 공유 프로세서 플(SYSPLA)에서 사용하지 않은 용량과 사용된 프로세서 용량(SYSPTU)입니다. 한도는 다음과 같습니다.
- 최소값은 구성된(확보된) 용량입니다.
- 최대값은 파티션 및 플에 저장된 가상 프로세서 수에 기반한 용량입니다.

관련 정보
성능 데이터 파일: QAPMSYSTEM
성능 데이터 파일: QAPMSYSCPU

5250 온라인 트랜잭션 처리(OLTP):

이 주제에서는 5250 온라인 트랜잭션 처리와, 이 처리에 연관되는 작업 또는 스페드에 대해 설명합니다.

온라인 트랜잭션 처리(OLTP)는 사용자가 제출한 요청이 수신되는 즉시 처리되는 대화식 애플리케이션의 유형을 가리킵니다. 다음은 OLTP 처리의 예입니다.
- 5250 셀, passthru 작업 또는 Telnet 작업을 통한 시스템 상호작용.
- Domino 메일 또는 캘린더나, 브라우저 기반 애플리케이션의 워크스테이션 기반 요청.

System i Access 작업은 기능에 따라 대화식 및 일괄처리 둘 다를 사용합니다. V5R3 이전에는 이러한 작업이 CA4 범주에 포함되고 대화식 작업으로 나열되었습니다. 분산 데이터 관리(DDM) 서버 작업도 대화식 작업으로 나열되었습니다.

V5R3 이후에는, CPU 주기가 부족한 프로세서 용량 피처에 따라 작업부하를 제대로 분배하도록 성능 분석 툴 라이센스가 있는 프로그램이 개선되었습니다. 대화식 CPU 보고는 해당 CPU가 5250 OLTP 프로세서 용량에 할당된 작업을 가리킵니다. System i Access 작업은 성능 분석 툴 보고서의 해당 섹션에 나열됩니다. 또한 DDM 작업은 보고서의 대화식 작업부하 섹션에서 비대화식 작업부하 섹션으로 이동되었습니다.

성능 분석 툴 설치 및 구성:
설치 및 설정 지침은 이 주제를 참조하십시오.
성능 분석 툴을 설치하려면 시스템 자장(*SAVSYS) 권한이 있는 사용자 프로파일이 필요합니다. 시스템 오피러레이터 프로파일을 사용하여 이 권한을 얻을 수 있습니다.

성능 분석 툴은 QPFR 라이브러리에서 실행해야 합니다. 시스템에 이 이름의 라이브러리가 있는 경우 성능 분석 툴을 설치하기 전에 RNMOBJ(오브젝트 이름 변경) 명령을 사용하여 이름을 변경하십시오. 이 단계에서는 성능 분석 툴이 적절히 작동하는지 확인합니다.

다음 명령을 사용하여 성능 분석 툴을 라이브러리 QPFR에 놓으십시오.
RSTLICPGM LICPGM(xxxxPT1) DEV(NAME) OPTION(*BASE)

다음 중 하나를 수행해야 합니다.

- 관리자 파일을 구입한 경우 다음 명령을 사용하십시오.
 RSTLICPGM LICPGM(xxxxPT1) DEV(tape-device-name) OPTION(1)

- 예사전트 파일을 구입한 경우 다음 명령을 사용하십시오.
 RSTLICPGM LICPGM(xxxxPT1) DEV(NAME) OPTION(2)

- 관리 또는 예사전트 파일을 설치하는 것을 위해, IBM i5/OS 작업 감시기를 구입한 경우 다음 명령을 사용하십시오.
 RSTLICPGM LICPGM(xxxxPT1) DEV(tape-device-name) OPTION(3)

설치할 여러 개의 CD-ROM이 있으면 다음 상황이 발생할 수 있습니다. 첫 번째 CD-ROM을 설치한 후 라이센스가 있는 프로그램이 복원되지만 언어 오브젝트는 복원되지 않았음을 알리는 메시지가 수신될 수 있습니다. 이러한 상황이 발생하면 다음 CD-ROM을 삽입하고 다음을 입력하십시오.

RSTLICPGM LICPGM(xxxxPT1) DEV(NAME) RSTOBJ(*LNG) OPTION(*BASE)

성능 분석 툴 프로그램을 설치하기 위한 다른 방법은 GO LICPGM을 입력하고 메뉴 옵션을 사용하는 것입니다.

성능 분석 툴은 프로세스 기반 프로그램입니다. 사용 유형은 동시이고 프로그램은 사용 하계 *NOMAX로 설치됩니다.

이 프로그램은 성능 분석 툴 시작시 자세히 설명합니다.

관련 정보

상성 분석 툴 PDF

System i Navigator에 성능 분석 툴 플러그 인 설치:
시스템 자원 이용률 데이터를 보기 위해 System i Navigator에 성능 분석 툴 플러그 인을 설치할 수 있습니다.
이 테스크 정보

상능 분석 통 플러그 인을 설치하기 전에, 먼저 상능 분석 통(5770-PT1) 라이센스가 있는 프로그램이 설치된지 확인해야 합니다. 상능 분석 통 플러그 인을 설치하려면 다음을 수행하십시오.

1. System i Navigator에서 대 연결을 마우스 오른쪽 버튼으로 클릭한 후 옵션 설치 → 플러그 인 설치를 선택하십시오.
2. 플러그 인 설치 패널에서 플러그 인 설치할 시스템을 선택하고(5770-PT1 제품이 설치된 시스템이어야 함) 확인을 클릭하십시오.
3. 암호 패널에 i5/OS 사용자 프로파일 및 암호를 입력하고 확인을 클릭하십시오. (Windows 암호에 대해 묻는 프롬프트가 표시될 수 있지만 i5/OS 사용자 프로파일 암호여야 합니다.)

주: 일부 Windows 오퍼레이팅 시스템에서는 Windows와 i5/OS 사용자 프로파일 암호가 일치해야 합니다.

4. 선택된 시스템에서 플러그 인에 대한 스캔이 발생합니다. 플러그 인 선택사항 패널이 표시되면 상능 분석 통 선택란을 검사하고 다음을 클릭하십시오.
5. 플러그 인을 설치한 후 System i Navigator를 처음 사용할 때 System i Navigator 스캔 패널이 표시됩니다. 자동 스캔을 클릭하십시오. 자동 스캔 버튼을 클릭하지 않는 경우 방금 설치된 플러그 인은 작동되지 않고 System i Navigator에 표시되지 않습니다.

상능 분석 통 보고서:

상능 분석 통 보고서는 계속해서 수집된 데이터에 대한 정보를 제공합니다. 시스템 자원의 경능 및 사용에 대한 추가 정보를 얻으려면 이 보고서를 사용하십시오.

상능 분석 통 보고서는 수집된 자료를 쉽게 볼 수 있도록 하고 상능 문제점을 분리시킵니다. 계속적으로 상능 데이터를 수집하면 보고서를 인쇄해서 시스템 자원이 사용 중인 장소와 사용 방법을 볼 수 있습니다. 해당 보고서는 느린 전체 응답 시간을 약간하는 비효율적인 작업부하. 사용자 또는 특정 애플리케이션 프로그램으로 안내할 수 있습니다.

클램프 서비스는 트랜잭션, 잡금 및 추적 보고서를 제외하고 대부분의 상능 분석 통 보고서에 데이터를 제공합니다. 상능 추적 시작(STRPFRTRC) 및 상능 추적 종료(ENDPFRTRC) 명령을 사용하여 해당 세 보고서에 대한 추적 정보를 수집해야 합니다.

상능 분석 통 보고서의 개요:

다음 리스트는 각각의 보고서를 설명하고 특수 보고서를 사용하는 이유에 대해 간략한 개요를 제공합니다.
표 6. 성능 분석 및 보고서의 개념

<table>
<thead>
<tr>
<th>보고서</th>
<th>설명</th>
<th>표시되는 내용</th>
<th>정책 사용 방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>시스템 보고서</td>
<td>클래식 서비스 데이터를 사용하여 시스템 작동 방법의 개요를 제공합니다. 보고서에는 작업부하, 자원 사용, 기억장치 총 이용률, 디스크 이용률 및 통신에 대한 요약 정보가 있습니다. 시스템 사용의 일반적인 아다이어를 제공하기 위해 이 보고서를 종종 실행하고 인쇄하십시오.</td>
<td>시스템 작업부하. 보고서에는 데이터베이스 기능 데이터가 포함됩니다.</td>
<td>작업부하 투영</td>
</tr>
<tr>
<td>구성요소 보고서</td>
<td>시스템 보고서와 동일한 시스템 성능 성능요소에 대한 정보를 제공하지만 세부사항은 클래식 서비스 데이터를 사용합니다. 이 보고서는 CPU, 디스크 등의 값을 많은 양의 시스템 자원을 소비하는 작업을 찾는 데 도움이 됩니다.</td>
<td>자원 사용, 통신, 시스템 및 사용자 작업. 보고서에는 데이터베이스 기능 데이터와 파워 사용의 이용률이 포함됩니다.</td>
<td>하드웨어 성장 및 구성 처리 추세</td>
</tr>
<tr>
<td>트랜잭션 보고서</td>
<td>클래식 서비스 데이터 중에 발생한 트랜잭션에 대한 자세한 정보를 제공하기 위해 추적 데이터를 사용합니다.</td>
<td>CPU, 디스크, 주 기기장치, 트랜잭션 작업부하, 오브젝트 경험의 이용률 및 작업부하.</td>
<td>작업부하 투영, 폴 구성, 에플리케이션 설정, 파워 경험 및 프로그램 사용</td>
</tr>
<tr>
<td>임공 보고서</td>
<td>시스템 운용 중 발생하는 임공 및 임공 솔루션에 대한 정보를 제공하기 위해 추적 데이터를 사용합니다. 이 정보를 사용하여, 만족스럽지 않은 임공 요청이나 내부 기기 임공 중으로 처리 중에 작업이 지연되는지 여부를 판별할 수 있습니다. 이 상태를 대기하고 도 합니다. 이러한 대기가 발생하면 작업이 대기 중인 오브젝트와 대기 임공을 판별할 수 있습니다.</td>
<td>시간별 외부, 에코드 또는 오브젝트 경험, 보유하는 작업 또는 오브젝트 경험, 요청하는 작업 또는 오브젝트 경험.</td>
<td>문제점 분석, 오브젝트 경험 강소 또는 제거</td>
</tr>
<tr>
<td>임관처리 작업 추적 보고서</td>
<td>시간을 통해 추적된 여러 작업 유형. 임관처리 작업의 진행을 표시하기 위해 추적 데이터를 사용합니다. 이용된 자원, 예외 및 상태 전이가 보고됩니다.</td>
<td>작업 클래식 시간 분할 및 추적 데이터.</td>
<td>문제점 분석 및 임관처리 작업 진행</td>
</tr>
<tr>
<td>작업 간격 보고서</td>
<td>대화식 작업 및 비대화식 작업에 대한 세부 정보와 요약 정보를 포함하여, 모든 또는 선택된 간격 및 작업에 대한 정보를 표시하기 위해 클래식 서비스를 사용합니다. 보고서가 길 수 있으므로, 포함하려는 간격 및 작업을 선택하여 출력을 제한할 수 있습니다.</td>
<td>간격별 작업.</td>
<td>작업 데이터</td>
</tr>
</tbody>
</table>

IBM i: 시스템 관리 성능
표 6. 성능 분석 품 보고서의 개요 (계속)

<table>
<thead>
<tr>
<th>보고서</th>
<th>설명</th>
<th>표시하는 내용</th>
<th>정보 사용 방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>온 간격 보고서</td>
<td>서브시스템 활동에 대한 섹션별 활용에 대한 섹션을 제공하기 위해 클래식 서버 캐시를 사용합니다. 데이터는 생성 간격마다 표시됩니다. 보고서가 길 수 있으므로, 포함하려는 간격 및 작업을 선택하여 출력을 제한할 수 있습니다.</td>
<td>간격별 품</td>
<td>온 데이터</td>
</tr>
<tr>
<td>자원 간격 보고서</td>
<td>모든 또는 선택된 간격에 대한 자원 정보를 제공하기 위해 클래식 서비스 데이터를 사용합니다. 보고서가 길 수 있으므로, 포함하려는 간격을 선택하여 출력을 제한할 수 있습니다.</td>
<td>간격별 자원</td>
<td>시스템 자원 사용</td>
</tr>
</tbody>
</table>

성능 탐색기 및 클래식 서비스는 분리된 수집 메시지입니다. 각각 그룹화된 수집 메시지 세트를 포함하는 고유한 데이터베이스 파일 세트를 생성합니다. 두 클래식 모두 동시에 실행할 수 있습니다.

샘플 시스템 보고서 - 작업부하:

시스템 보고서의 작업부하 섹션은 시스템의 대화식 및 비대화식 작업부하를 표시합니다.

시스템 보고서의 작업부하 섹션의 첫 번째 부분은 시스템의 대화식 작업부하를 표시합니다. 작업부하 섹션의 두 번째 부분은 시스템의 비대화식 작업부하를 표시합니다.

<table>
<thead>
<tr>
<th>Job Type</th>
<th>Number of Jobs</th>
<th>Logical DB I/O Count</th>
<th>Logical DB Lines</th>
<th>Logical DB Pages</th>
<th>Printer I/O Count</th>
<th>Printer Lines</th>
<th>Printer Pages</th>
<th>Communications I/O Count</th>
<th>Communications Max ime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,242</td>
<td>16,734</td>
<td>12,910</td>
<td>339</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDM Server</td>
<td>0</td>
<td>866,667</td>
<td>443</td>
<td>23</td>
<td>1,596,696</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PassThru</td>
<td>6,645</td>
<td>343,262</td>
<td>1,119,009</td>
<td>27,769</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9,887</td>
<td>1,224,663</td>
<td>1,132,362</td>
<td>28,131</td>
<td>1,596,336</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Job Type</th>
<th>Number of Jobs</th>
<th>Logical DB I/O Count</th>
<th>Logical DB Lines</th>
<th>Logical DB Pages</th>
<th>Printer I/O Count</th>
<th>Printer Lines</th>
<th>Printer Pages</th>
<th>Communications I/O Count</th>
<th>Communications Max ime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch</td>
<td>18,151</td>
<td>1,030,253,068</td>
<td>18,656,603</td>
<td>544,032</td>
<td>1,531,738</td>
<td>0</td>
<td></td>
<td></td>
<td>95,526.4</td>
</tr>
<tr>
<td>Spool</td>
<td>70</td>
<td>1,066</td>
<td>14,933</td>
<td>369</td>
<td></td>
<td>0.0285</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autostart</td>
<td>56</td>
<td>426,047</td>
<td>1,692,060</td>
<td>41,502</td>
<td>170,200</td>
<td>0.0008</td>
<td>39.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLLECTION</td>
<td>1</td>
<td>2,910</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0.071</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SQL</td>
<td>192</td>
<td>3,252,232</td>
<td>3,519</td>
<td>88</td>
<td>0</td>
<td>0.0003</td>
<td>301.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGMTCENTRAL</td>
<td>2</td>
<td>12,229</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0.0046</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>18,303</td>
<td>1,033,469,157</td>
<td>20,367,115</td>
<td>585,991</td>
<td>1,713,007</td>
<td>0.003</td>
<td>95,871.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>18,151</td>
<td>1,030,253,068</td>
<td>18,656,603</td>
<td>544,032</td>
<td>1,531,738</td>
<td>0.0001</td>
<td>95,526.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average CPU Utilization : 61.0
CPU 1 Utilization : 55.4
CPU 2 Utilization : 57.9
CPU 3 Utilization : 61.5
CPU 4 Utilization : 62.2
CPU 5 Utilization : 62.0
CPU 6 Utilization : 60.1
샘플 구성요소 보고서 - 작업 작업부하 활동:

구성요소 보고서의 작업부하 활동 셀션은 트랜잭션 총 수, 시간당 트랜잭션 수, 평균 응답 시간, 디스크 조작 수, 통신 조작 수, PAG 결합 수, 간주 넘침 수 및 작업마다 영구 쓰기 수를 제공합니다.

보고서 헤더에 표시되는 값은 콜레턴이 시작될 때 QAPMCONF 파일에서 확보한 구성 미터법을 반영합니다.
이 값은 논리 파티션 구성에서의 동적 변경으로 인해 콜레턴 기간 내에 갱신되며 변경될 수 있습니다.

Component Report
10/02/03 17:12:15
Job Workload Activity Page 6
Perf data from 14:00 to 16:00 at 1 min

Member ... : Q275140000 Model/Serial ... : 890/10-3907F
Main storage ... : 56.4 GB Started ... : 10/02/03 14:00:00
Library ... : PTLIBV5R3 System name ... : ABSYSTEM
Version/Release ... : 5/ 3.0 Stopped ... : 10/02/03 16:00:00
Partition ID ... : 003 Feature Code ... : 7427-2498-7427
Int Threshold ... : .00 %
Virtual Processors ... : 4 Processor Units ... : 4.0

CPU 7 Utilization ... : 61.7	CPU 8 Utilization ... : 63.1	CPU 9 Utilization ... : 55.4	CPU 10 Utilization ... : 56.0
CPU 11 Utilization ... : 59.9	CPU 12 Utilization ... : 60.6	CPU 13 Utilization ... : 60.9	CPU 14 Utilization ... : 62.5
CPU 15 Utilization ... : 63.7	CPU 16 Utilization ... : 64.1	CPU 17 Utilization ... : 54.7	CPU 18 Utilization ... : 57.3
CPU 19 Utilization ... : 59.8	CPU 20 Utilization ... : 60.6	CPU 21 Utilization ... : 61.6	CPU 22 Utilization ... : 62.9
CPU 23 Utilization ... : 63.9	CPU 24 Utilization ... : 64.7	CPU 25 Utilization ... : 57.0	CPU 26 Utilization ... : 55.2
CPU 27 Utilization ... : 66.2	CPU 28 Utilization ... : 61.1	CPU 29 Utilization ... : 62.4	CPU 30 Utilization ... : 63.2
CPU 31 Utilization ... : 66.2	CPU 32 Utilization ... : 66.4	Total CPU Utilization (Interactive Feature) ... : .0	
Total CPU Utilization (Database Capability) ... : 51.6			

IBM i: 시스템 관리 상황
<table>
<thead>
<tr>
<th>Column</th>
<th>Total</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Util</td>
<td>98.740 *</td>
<td></td>
</tr>
<tr>
<td>DB Cpb Util</td>
<td></td>
<td>82.3 *</td>
</tr>
<tr>
<td>Tns</td>
<td>2,099</td>
<td></td>
</tr>
<tr>
<td>Tns /Hour</td>
<td>1,043</td>
<td></td>
</tr>
<tr>
<td>Resp</td>
<td></td>
<td>1.610</td>
</tr>
<tr>
<td>Sync Disk I/O</td>
<td>304,001</td>
<td></td>
</tr>
<tr>
<td>Async Disk I/O</td>
<td>1,906,096</td>
<td></td>
</tr>
<tr>
<td>Logical Disk I/O</td>
<td>6,257,174</td>
<td></td>
</tr>
<tr>
<td>Cmn I/O</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PAG Fault</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Arith Dvrfw</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Perm Write</td>
<td>1,980,564</td>
<td></td>
</tr>
</tbody>
</table>

* ---- Average based on the total elapsed time for the selected intervals

성능 보고서 인쇄:

수집한 성능 데이터를 사용하여 보고서를 인쇄할 수 있습니다.

이 테스크 정보

주: 추적 데이터와 생물 데이터 모두 현재 라이브러리에 있는 경우, F20을 사용하여 두 개의 성능 보고서 인쇄 표시 화면 사이에 토글할 수 있습니다.

데이터를 수집한 후, 관리 콜렉션(*MGTCOL) 오브젝트에 저장된 성능 정보에서 성능 데이터 파일 세트를 작성해야 합니다. CRTPFRTD(성능 데이터 작성) 명령을 사용하십시오. 데이터 파일을 작성한 후에는 보고서를 인쇄할 것을 요청할 수 있습니다.

콜렉션 서비스로 수집한 생물 데이터에 대한 보고서를 인쇄하려면 다음 명령을 사용하십시오.

- PRTSYSRPT(시스템 보고서 인쇄)
- PRTCPTPRPT(구성요소 보고서 인쇄)
- PRTJOBFRPT(작업 간격 보고서 인쇄)
- PRTPOLRPT(폴 보고서 인쇄)
- PRTRSSRPT(자원 보고서 인쇄)

STRPFRTRC(성능 추적 시작) 및 TRCINT(내부 추적) 명령으로 수집한 추적 데이터에 대한 보고서를 인쇄하려면 다음 명령을 사용하십시오.

성능 149
• PRTTNSRPT(트랜잭션 보고서 인쇄)
• PRTLCKRPT(잠금 보고서 인쇄)
• PRTTRCRPT(작업 추적 보고서 인쇄)

주: 트랜잭션 보고서를 인쇄하려면 먼저 ENDPFRTRC(성능 추적 종료) 명령을 사용하여 성능 추적 데이터의 콜렉션을 종단한 후 선택적으로 성능 추적 데이터를 데이터베이스 파일에 기록해야 합니다.

관련 정보

성능 보고서 열:

각 보고서에는 정보 열이 포함됩니다. 이 정보에 대한 설명은 다음을 참조하십시오.

>8.0 (구성요소) 응답 시간이 8초를 초과하는 횟수

%쓰기 개시 과수행
 (구성요소) 콜랙션 간격 동안 쓰기 개시 과수행 퍼센트

------------ (pgmname)
 (트랜잭션) 트랜잭션 총 레코드 수. 예를 들어, ----------- QUYLST입니다. 이 보고서 행은 작업에 활동에서 대기로의 트랜잭션이 있을 때마다 발생합니다. 총계는 트랜잭션에 대한 I/O 개수. CPU 조 및 Rsp*(응답 시간)에 대해 작성됩니다.

A-I 대기/트랜잭션
 (트랜잭션) 트랜잭션당 활동에서 부적합으로 대기 시간의 평균 시간(초). 이 값이 높은 경우 많은 대화 식 작업에 대한 시간 분할 값을 너무 낮게 설정했기 때문입니다. 시간 분할 값 증가를 고려하십시오.

수신된 중단
 (자원 간격) HDLC 중단 인더케이터를 포함하는 수신된 프레임 수. 이는 프레임이 완료되기 전에 리모트 장비가 프레임을 종료했음을 표시합니다.

Act 작업
 (작업 간격) 간격 동안 활동하는 선택된 작업(보고서 섹션에 따른 대화식 또는 비대화식)의 수

활동 레벨
 (구성요소) 초기 폴 활동 레벨

활동 레벨
 (시스템, 폴 간격) 활동 레벨. 폴 간격 보고서의 폴 활동 섹션에 대한 간격 동안 폴의 활동 레벨. 시스템 보고서의 기여기치 폴 이용률 섹션에 대한 첫 번째 샘플 간격의 활동 레벨

활동-레벨
 (시스템, 구성요소) 분당 활동에서 부적합으로 작업 상태 전이 평균 수

활동-대기
 (시스템, 구성요소) 이 폴에 지정된 프로세스에 의해 활동 상태에서 대기 상태로 분당 전이된 수

활동 (작업 추적) 작업이 처리하는 시간

150 IBM i 시스템 관리 성능
활동 장치
(시스템) 화선의 활동 장치 평균 수

활동 표시장치(로컬 또는 리모트)
(시스템) 측정 기간 동안 트랜잭션을 입력하는 로컬 또는 리모트 표시장치 수

활동 작업
(트랜잭션) 간격 동안 활동하는 대화식 작업 수

간격당 활동 작업
(시스템) 샘플 간격당 활동한 대화식 작업 수

활동 K/T /트랜잭션
(트랜잭션) 활동 작업 스테이션(Est of AWS에서 설명)에 대한 평균 인지 시간 및 키 시간(또는 트랜잭션 종료 및 다음 트랜잭션 시작 사이의 지연 시간)(초). 활동 K/T /트랜잭션 지연 시간은 600초를 초과하는 지연 시간을 600초로 바꾼다는 점에서 키/인치/TNS 지연 시간과 다름. 이 기술은 활동 작업 스테이션의 추정값에 대한 임시 사용자(예, 예상작업시 직업 스테이션을 오랜 기간 방문하지 않은 사용자)의 영향을 줄이는 데 사용합니다.

활동 작업 스테이션
(자원 간격) 활동이 있는 작업 스테이션의 수

활동/응답
(트랜잭션) 활동 대역을 보류하는 중 트랜잭션 처리 동안 작업이 사용하는 대기 또는 활동 시간

활동 레벨
(시스템) 대화식 폴에서 실행하는 대화식 작업 활동을 가진 모든 대화식 폴의 활동 레벨 총계

활동 레벨 시간
(트랜잭션) ACTIVE, SHORT WAIT에서 대기 및 SEIZE/CFT에서 대기하는 대 사용한 트랜잭션 시간의 분석 결과(잠유 총합). 이러한 시간 동안 활동 레벨 슬롯을 그만두지 않기 때문에 ACTIVITY LEVEL TIME에 SHORT WAIT 및 SEIZE CFT 시간이 포함됩니다. 잠유 총합 시간은 트랜잭션/응답 시간을 연기 위해 추가되지 않고 대기 시간과 마찬가지로 활동 시간에 포함되는 것을 유의하십시오.

산술 논집
(구성요소, 작업 간격) 간격 동안 선택된 대화식 작업에 발생한 산술 논집 예외의 수

ASP ID
(시스템, 자원 간격) 보조 기억장치 폴 ID

ASP 자원명
(시스템, 자원) 디스크 장치가 클러스터 시간에 할당한 ASP 자원명을 식별합니다.

비동기 (시스템, 구성요소, 트랜잭션, 작업 간격) 간격 동안 선택된 대화식 작업이 시작한 비동기 디스크 I/O 조작의 수. I/O 조작을 시작한 작업은 I/O 조작이 완료되도록 대기하지 않고 처리를 계속합니다. 백그 라운드 시스템 테스트가 I/O 조작을 완료합니다.
비동기 DIO /트랜잭션
 (트랜잭션) 비동기 DB READ, DB WRITE, NDB READ 및 NDB WRITE 요청의 평균 합계(작업에 대한 트랜잭션당 비동기 I/O 요청의 평균 수)

비동기 디스크 I/O
 (시스템, 구성요소, 트랜잭션) 트랜잭션당 비동기 디스크 입/출력 조작 수

초당 비동기 디스크 I/O
 (구성요소) 초당 평균 비동기 디스크 I/O 조작

비동기 디스크 I/O 요청
 (트랜잭션) 우선순위, 작업 유형 및 풀의 특정한 결합에 대한 비동기 디스크 I/O 요청의 총 수

비동기 I/O 총
 (작업 간격) 간격 동안 작업이 초당 시작한 비동기 디스크 I/O 조작의 평균 수, 비동기 디스크 I/O 개수를 경과 시간으로 나누어서 연산합니다.

초당 비동기 I/O
 (작업 간격) 간격 동안 선택된 비대화식 작업이 초당 시작한 비동기 디스크 I/O 조작의 평균 수

비동기 최대
 (트랜잭션) 평균 DIO/트랜잭션에 나열된 단일 트랜잭션에 대해 해당 작업에 의해 발생한 비동기 DBR, NDBR 및 WRT I/O 요청의 최대 수. 해당 작업이 대화식 또는 자동시작 작업 유형이 아닌 경우 작업에 대한 총 디스크 I/O가 여기에 나열됩니다.

비동기 합계
 (트랜잭션) 평균 DIO/트랜잭션에 나열된 비동기 DBR, NDBR 및 WRT 요청의 평균 합계(작업에 대한 트랜잭션당 비동기 I/O 요청의 평균 수).

비동기 DBR
 (시스템, 작업 간격, 폴 간격) 간격 동안 작업의 트랜잭션당 디스크에 있는 비동기 데이터베이스 읽기 조작의 평균 수. 비동기 데이터베이스 읽기 개수를 처리한 트랜잭션으로 나누어서 연산합니다. 이 필드는 시스템 작업의 트랜잭션을 처리하지 않는 경우에 인쇄되지 않습니다. 시스템 보고서의 자원 이용률 색션의 경우 초당 비동기 데이터베이스 읽기 조작의 수입니다.

주: 비동기 I/O 조작은 시스템 비동기 I/O 테스크에 의해서 수행됩니다.

비동기 DBW
 (시스템, 작업 간격) 간격 동안 선택된 작업에 대한 트랜잭션당 디스크에 있는 비동기 데이터베이스 쓰기 조작의 평균 수. 비동기 데이터베이스 쓰기 개수를 처리한 트랜잭션으로 나누어서 연산합니다. 이 필드는 시스템 작업의 트랜잭션을 처리하지 않는 경우에 인쇄되지 않습니다. 시스템 보고서의 자원 이용률 색션의 경우 초당 비동기 데이터베이스 읽기 조작의 수입니다.

주: 비동기 I/O 조작은 시스템 비동기 I/O 테스크에 의해서 수행됩니다.

트랜잭션당 비동기 디스크 I/O
 (시스템) 대화식 트랜잭션당 비동기 실제 디스크 I/O 조작의 평균 수
비동기 NDBR
(시스템, 작업 간격, 폴 간격) 간격 동안 시스템 작업에 대한 트랜잭션당 비동기 비데터베이스 읽기 조작의 평균 수. 비동기 비데터베이스 읽기 계수를 처리된 트랜잭션으로 나누어 연산합니다. 이 필드 는 시스템 작업이 트랜잭션을 처리하지 않는 경우에 인쇄되지 않습니다. 시스템 보고서의 자원 이용률 색선의 경우 간단 비동기 비데터베이스 읽기 조작입니다.
주: 비동기 I/O 조작은 시스템 비동기 I/O 태스크에 의해서 수행됩니다.

비동기 NDBW
(시스템, 작업 간격, 폴 간격) 간격 동안 시스템 작업에 대한 트랜잭션당 비동기 비데터베이스 쓰기 조작의 평균 수. 비동기 비데터베이스 쓰기 계수를 처리된 트랜잭션으로 나누어 연산합니다. 이 필드 는 시스템 작업이 트랜잭션을 처리하지 않는 경우에 인쇄되지 않습니다. 시스템 보고서의 자원 이용률 색선의 경우 간단 비동기 비데터베이스 쓰기 조작의 수입입니다.
주: 비동기 I/O 조작은 시스템 비동기 I/O 태스크에 의해서 수행됩니다.

사용 가능한 로컬 기역장치(K)
(자원 간격) IOP에 있는 사용 가능한 로컬 기역장치의 KB 수

사용 가능한 기역장치
(구성요소) 사용 가능한 로컬 기역장치(바이트). IOP에 있는 사용 가능한 주 기역장치의 평균 바이트 수. 사용 가능한 로컬 기역장치는 작은 조각으로 구분되기 때문에 결합되지 않습니다.

평균 (트랜잭션) 모든 트랜잭션에 대해 얻어 설명된 항목의 평균 값

평균 (작업 추적) 필드의 평균. SEQUENCE 열에 있는 AVERAGE 행의 항목은 발생한 STRTNS 및 ENDTNS 샘의 수를 표시합니다. 대화식 작업의 경우 기본 STRTNS 및 ENDTNS 값이 사용된 경 우 추적이 수행되는 중에 입력한 트랜잭션의 수입입니다.

시간당 평균 디스크 활동
(구성요소) 디스크 암(Arm) 검색 거리 참조

평균 DIO/트랜잭션
(트랜잭션) 실제 디스크 I/O 계수에 대한 정보의 7개 열. 실제 I/O는 이러한 보고서의 다른 곳에 표시된 논리 I/O와 대조적입니다. 논리 I/O는 보조 기역장치(DASD)에 대한 액세스를 유발한 프로그램 해 벨에서 송신된 요청입니다. 실제 I/O는 사실상 보조 기역장치에 대한 액세스를 유발한 요청을 나타냅니다.
- 동기 DBR
- 동기 NDBR
- 동기 쓰기
- 동기 합계
- 동기 최대
- 비동기 합계
- 비동기 최대
I/O당 평균 K
 (지원 기능) 각 디스크 읽기 또는 쓰기 조작 중에 전송된 평균 KB 수

평균 실제 I/O /초
 (지원 기능) 시스템의 모든 디스크에 작성된 초당 실제 디스크 읽기 및 쓰기의 평균 조작 수

평균 읽기/초
 (지원 기능) 시스템의 모든 디스크에 작성된 초당 실제 디스크 읽기의 평균 조작 수

평균 응답
 (시스템) 대화식 트랜잭션에 대한 평균 응답 시간(초) 총/평균 대화식 응답 시간에는 DDM 서비 작업
 에 대한 트랜잭션이 포함되지 않습니다.

평균 응답 시간
 (시스템) I/O 조작당 평균 디스크 응답 시간

평균 응답 시간(초)
 (시스템) 평균 대화식 응답 시간

평균 서비스 시간
 (시스템) I/O 조작당 평균 디스크 서비스 시간. 경합이 없는 경우 요청에 걸리는 시간의 양입니다.

평균 대기 시간
 (시스템) I/O 조작당 평균 디스크 대기 시간. 보통 경합에 가깝습니다.

평균 쓰기/초
 (지원 기능) 시스템의 모든 디스크에 작성된 초당 실제 디스크 쓰기의 평균 조작 수

평균 CPU /트랜잭션
 (트랜잭션) 지정한 병주에 있는 트랜잭션당 처리 장치 초의 평균 수

평균 K/T /트랜잭션
 (트랜잭션) 대화식 작업에 대한 평균 인지 시간 및 키 시간(또는 트랜잭션 경계 사이의 자연 시간)(초)

평균 길이
 (잠금) 잠금 또는 점유가 보류된 평균 일리초 수

평균 응답(초)
 (트랜잭션) 평균 트랜잭션 응답 시간(초)

평균 응답/트랜잭션
 (트랜잭션) 지정한 병주에 있는 트랜잭션에 대한 트랜잭션당 평균 응답(초)

평균 응답 시간
 (구성요소) 평균 트랜잭션 응답 시간

평균 잠금(초)
 (트랜잭션) 대화식 또는 비대화식 대기자로 인한 평균 잠금 길이(초)

평균 점유(초)
 (트랜잭션) 대화식 또는 비대화식 대기자로 인한 평균 점유 길이(초)
서비스당 평균 시간
(자원 간격) 디스크 압(arm)이 지정한 요청을 처리하기 위해 사용하는 시간의 양

평균 이용률
(시스템, 자원 간격) 자원 보고서의 디스크 이용률 요약에서 디스크가 사용 중인 사용 가능한 시간의 평균 백분율. 시스템의 모든 디스크에 대한 복합 평균입니다. 시스템 보고서의 통신 요청에서 측정된 시간 간격 동안 사용한 회전 용량의 평균 백분율

초당 일괄처리 비동기 I/O
(시스템) 일괄처리의 초당 비동기 실제 디스크 I/O 조작의 평균 수

I/O당 일괄처리 CPU 초
(시스템) 일괄처리 작업이 수행한 각 I/O에 대해 모든 일괄처리 작업이 사용한 시스템 처리 장치의 평균 초 수

일괄처리 CPU 이용률
(구성요소) 시스템이 일괄처리로 간주하는 작업이 사용한 사용할 수 있는 처리 장치 시간의 백분율
주: 다중 프로세서 시스템의 경우 모든 프로세서에 걸쳐 평균적으로 사용됩니다.

일괄처리 영향 요소
(시스템) 모델링 목적의 일괄처리 작업부하 조정

초당 일괄처리 영구 쓰기
(시스템) 일괄처리의 초당 영구 쓰기 조작의 평균 수

초당 일괄처리 동기 I/O
(시스템) 일괄처리의 초당 동기 실제 디스크 I/O 조작의 평균 수

BCPU / 동기 DIO
(트랜잭션) 동기 디스크 I/O 조작당 평균 일괄처리 프로세서 장치 초 수
2전 (트랜잭션) 2전 넘침 예외 수
2전 넘침
(구성요소) 초당 2전 넘침 수

BMPL - Cur 및 Inl
(트랜잭션) 현재 활동 레벨에 있는 작업의 수(현재 다중 프로그래밍 레벨 시작) 및 작업이 대기 상태 (트랜잭션의 시작)일 때 작업이 실행하는 기억장치 골에 대해 부적합한 큐(부적합한 다중 프로그래밍 레벨 시작)에 있는 작업 수
주: 다중 프로그래밍 레벨(MPL)은 활동 레벨과 호환성 있게 사용됩니다.

변할 대기 계수
(구성요소) 저널 변할이 디스크에 작성되도록 테스크 및 작업이 대기하는 총 횟수

변할 대기 백분율
(구성요소) 저널 변할이 디스크에 작성되도록 대기하는 데 사용한 시간의 백분율(간격 경과 시간과 관
련)
변화 쓰기 시스템
(구성요소) 내부 시스템 저널에 대한 변장 쓰기 수. 변장 쓰기는 시스템이 함께 저장한 저널 항목 그룹입니다.

변화 쓰기 사용자
(구성요소) 사용자 작성 저널에 대한 변장 쓰기 수. 변장 쓰기는 시스템이 함께 저장한 저널 항목 그룹입니다.

초당 수신된 바이트 수
(시스템) 초당 수신된 평균 바이트 수

초당 전송된 바이트 수
(시스템) 초당 전송된 평균 바이트 수

법주 (트랜잭션) 함께 변주화된 트랜잭션 그룹. 대화식 트랜잭션 범주에 의한 분석에서 트랜잭션은 처리 장치 모델에 의해 변주화됩니다. 트랜잭션을 분리하기 위해 사용된 경계 값이 평균 CPU /트렌잭션 열에 표시됩니다. 대화식 응답 시간에 의한 분석의 경우 응답 시간으로 변주화됩니다. 대화식 커/커지 시간에 의한 분석의 경우 커/커지 시간으로 변주화됩니다.

캐시 일치 동계
(구성요소) 캐시 사용에 대한 통계 데이터에는 다음이 포함됩니다.
- 각 암(arm)에 대한 캐시 임기 일치 파센트
- 각 암(arm)에 대한 캐시 임기 일치 파센트
- 캐시의 효율성 파센트

장치 임기
장치 임기는 파센트로 표현된 장치 임기 조작(DSDROP) 수로 나눈 장치 캐시 임기 일치(DSDCRH)의 수집입니다.

제어기 임기
제어기 임기는 파센트로 표현된 임기 명령(DSRDS) 수로 나눈 제어기 캐시 임기 일치(DSCCRH)의 수집입니다.

쓰기 효율성
쓰기 효율성은 파센트로 표현된 쓰기 명령(DSWRTS)으로 나눈 쓰기 명령(DSWRTS) 및 장치 쓰기 조작(DSDWOP) 사이의 차이입니다.

EACS 임기
확장 응답 캐시 사물레이아에 의한 임기 일치 파센트

EACS 응답
확장 응답 캐시 사물레이아에 의한 응답 시간 개선 파센트
제한됨 (시스템) 각 나각 곁에서 파티션 채널이 제한되는지 제한되지 않는지 여부를 표시합니다. 이 열은 성능 데이터를 수집하는 i5/OS 파티션에 대해서만 인쇄됩니다.
채널 (지정 간격) IDLC 화면이 사용하는 B 채널. (특수 조건)
통신 (작업 간격) 간격 동안 선택된 대화식 작업이 수행한 통신 I/O 조작의 수
통신 I/O
(구성요소) 통신 조작 (Get, Put)의 수
초당 통신 I/O
(적정 간격) 간격 동안 선택된 비대화식 작업이 초당 수행한 통신 I/O 조작의 평균 수
충돌 감지
(지정 간격) 동일한 버스를 사용하려고 시도하는 다른 단말기 장비 (TE)에 의해서 전송된 프레임이 손상되었음을 TE가 감지하는 횟수
확약 조작
(구성요소) 수행한 확약 조작. 애플리케이션 및 시스템 제공 참고용 무결성 확약을 포함합니다.
통신 I/O 계수
(시스템) 통신 I/O 조작의 수
통신 I/O GET
(시스템) 트랜잭션당 통신 GET 조작 수
통신 I/O PUT
(시스템) 트랜잭션당 통신 PUT 조작 수
통신 화면
(시스템, 구성요소, 작업 간격, 폴 간격) 보고서 선택 범주의 경우 포함 (SLTLINE 메개변수) 또는 제외 (OMTLINE 메개변수)되도록 선택한 통신 화면의 리스트. 사용자가 지정한 통신 화면명입니다.
제어장치
(시스템, 구성요소, 작업 간격, 폴 간격) 포함 (SLTCTL 메개변수) 또는 제외 (OMTCTL 메개변수)되도록 선택한 제어장치의 리스트. 사용자가 지정한 제어장치명입니다.
계수 (트랜잭션, 잡금) 열에 있는 항목의 발생 수. 예를 들어, 잡금 보고서에서 이는 발생한 잡금 또는 잡유의 수입입니다.
CPU (트랜잭션) 지정한 우선순위로 작업이 사용한 총 처리 장치 조
CPU (작업 추적) 이 추적 항목에서 사용한 CPU의 근사치. 이는 사용한 시간 및 실행 중인 CPU 모델을 기반으로 연산된 값입니다.
CPU /트랜잭션
(트랜잭션, 작업 간격) 트랜잭션당 사용 가능한 처리 장치 시간의 양 (초)
CPU 모델
(시스템) 처리 장치 모델 번호
I/O 비동기 CPU
 (시스템) 비동기 I/O당 CPU 사용

I/O 동기 CPU
 (시스템) 동기 I/O당 CPU 사용

논리 I/O 당 CPU
 (시스템) 각 논리 디스크 I/O 조작에 사용한 처리 장치 시간

CPU QM
 (트렌젝션) 송수를 큐링하는 단순 처리 장치

CPU 초
 (트렌젝션) 이 단계에서 작업이 사용하는 처리 장치 시간

CPU 초/동기 DIO
 (트랜잭션) 각 작업 유형에 대해 동기 디스크 I/O 요청으로 나눈 CPU 초의 비율

CPU 초 평균 및 최대
 (트렌젝션) 작업의 트랜잭션에 사용한 가장 큰 처리 장치 시간 및 작업에 대한 트랜잭션당 평균 처리 장치 시간. 해당 작업이 대화식 또는 자동시작 작업 유형이 아닌 경우 작업에 대한 총 처리 장치 시간
 만 최대 열 표제에 나열됩니다.

트랜잭션당 CPU 초
 (트랜잭션) 트랜잭션당 처리 장치 시간

CPU 초
 (시스템, 트랜잭션, 구성 요소) 트랜잭션당 사용한 평균 처리 장치 초. 시스템 요약 데이터의 경우 추적
 기간 동안 작업이 사용한 총 사용 가능한 처리 장치 시간입니다. 우선순위-작업유형-풀 동계의 경우 우
 선순위, 작업 유형 및 폴의 지정한 결과로 작업이 사용한 총 처리 장치 초입니다. 일반처리 작업 분
 석의 경우 작업이 사용한 사용 가능한 프로세서 장치 시간(초)의 양입니다. 동시 일괄처리 작업 동계의
 경우 설정된 작업에서 작업이 사용한 사용 가능한 프로세서 장치 시간(초)의 양입니다.

CPU 초
 (작업 추적) 트랜잭션에 사용한 대략의 처리 장치 시간

트랜잭션당 CPU 초
 (시스템) 트랜잭션당 평균 처리 장치 초

CPU 이용률
 (시스템, 구성 요소, 트랜잭션, 작업 간격, 폴 간격, 일반처리 작업 추적) 사용한 사용 가능한 처리 장치
 시간의 백분율. 다중 프로세서 시스템의 경우 프로세서 수로 나눈 총 이용률입니다.

트랜잭션당 CPU 이용률
 (구성 요소) 작업에 대한 총 트랜잭션 수로 나눈 CPU 이용률의 결과

CPU 이용률(일괄처리)
 일괄처리 작업이 사용한 사용 가능한 CPU 시간의 백분율. 이는 모든 프로세서의 평균입니다.
CPU 이용률(대화식)
대화식 작업이 사용한 사용 가능한 CPU 시간의 백분율. 이는 모든 프로세서의 평균입니다.

CPU 이용률(총계)
대화식 및 일괄처리 작업이 사용한 사용 가능한 CPU 시간의 백분율. 이는 모든 프로세서의 평균입니다.

주: 제한되지 않는 파티션의 경우 총 CPU 이용률은 100퍼센트를 초과할 수 있습니다.

CPU/비동기 I/O
(작업 간격) 각 비동기 디스크 I/O 조작에 소요된 처리 장치 시간의 평균 밀리초 수. 이는 작업이 사용한 처리 장치 시간(밀리초)을 비동기 디스크 I/O 계수로 나누어 연산합니다.

CPU/동기 I/O
(작업 간격) 각 동기 디스크 I/O 조작에 사용된 처리 장치 시간의 평균 밀리초 수. 작업에 사용된 처리 장치 시간(밀리초)을 동기 디스크 I/O 계수로 나누어 연산합니다.

CPU/트랜잭션
(트랜잭션) 간격 동안 작업에 대한 트랜잭션당 평균 처리 초 수. 사용된 처리 장치 시간의 양을 처리된 트랜잭션 수로 나누어 연산합니다.

CPU/트랜잭션(초)
(트랜잭션) 트랜잭션당 처리 초 수

Ctl (구성요소) 제어기 ID

누적 CPU 이용률
(트랜잭션) 트랜잭션당 지정한 범주 이하인 평균 응답 시간을 가진 트랜잭션이 사용하는 사용 가능한 처리 장치 시간의 누적 백분율. 예를 들어, 총 추적 기간 동안 모든 작업의 우선순위에 따른 CPU(시스템 오작 데이터)에서 지정한 우선순위 이상인 작업이 사용한 장치 시간입니다.

누적 퍼센트 트랜잭션
(트랜잭션) 트랜잭션당 누적 CPU 퍼센트. 시스템 요약 데이터의 경우 지정한 범주 이하인 트랜잭션당 평균 응답 시간을 가진 모든 트랜잭션의 누적 CPU 퍼센트입니다. 대화식 프로그램 트랜잭션 동안의 경우 나열된 프로그램을 통한 모든 트랜잭션의 누적 CPU 퍼센트입니다. 작업 동작 색선의 경우 나열된 작업을 통한 총 트랜잭션의 누적 CPU 퍼센트입니다. 대화식 프로그램 동작 색선의 경우 나열된 프로그램을 통한 모든 트랜잭션의 누적 CPU 퍼센트입니다.

누적 이용률
(시스템) 누적 CPU 사용률(통계 값).

주: 이는 개별 작업에서 가격고 작업부하 페이지의 전체 처리 장치 사용과 약간 다릅니다.

Cur Inl MPL
(트랜잭션) 기억장치 폴에서 활동 레벨(무작함)을 대기하는 작업의 수

Cur MPL
(트랜잭션) 기억장치 폴에서 활동 레벨을 보유하는 작업의 수
현재 사용자
(작업) 작업이 각 간격 끝에서 실행 중인 사용자

DASD 조작/조작
(구성요소)초당 디스크 조작

초당 DASD 조작 임계
(자원)초당 임계 수

초당 DASD 조작 쓰기
(자원)초당 쓰기 수

수신된 데이터그램 수
(구성요소)인터넷에서 수신된 입력 데이터그램의 총 수. 이 수에는 오류로 수신된 것이 포함됩니다.

DB (작업 추적) 항목에 발생한 실제 데이터베이스 읽기 수

DB 가능 이용률
(구성요소)데이터베이스 처리를 수행하기 위해 사용되는 데이터베이스 가동의 백분율

DB 결합
(시스템, 구성요소)초당 데이터베이스 결합의 평균 수

DB 페이지
(시스템, 구성요소)초당 데이터베이스 페이지 임계 임계의 평균 수

DB 읽기
(트랜잭션) 실제 I/O 개수 열에 나열될 때 작업이 해당 상태에 있는 동안 데이터베이스 읽기 요청의 수입입니다. 동기 디스크 I/O 요청/트랜잭션 열에 나열될 때 트랜잭션당 동기 데이터베이스 읽기 요청의 평균 수입입니다.

DB 읽기
(작업 추적) 발생한 실제 데이터베이스 읽기 수

DB 쓰기
(트랜잭션) 동기 디스크 I/O 요청/트랜잭션 열에 나열될 때 트랜잭션당 동기 데이터베이스 쓰기 요청의 평균 수입입니다.

DB 쓰기
(트랜잭션) 실제 I/O 개수 열에 나열될 때 작업이 해당 상태에 있는 동안 데이터베이스 쓰기 요청의 수입입니다. 동기 디스크 I/O 개수 열에 나열될 때 트랜잭션당 동기 데이터베이스 쓰기 요청의 수입입니다.

DDM I/O
(구성요소, 작업 간격) 분산 데이터 관리(DDM) 서버 작업의 논리 데이터베이스 I/O 조작 수
DDM 서버 대기 / 트랜잭션

(트랜잭션) 트랜잭션단 데이터에 대한 요청에 응답하기 위해 대상 시스템을 기다리는 데 소스 분산 데이터 관리(DDM) 서버 작업이 사용한 평균 시간(초). 이 값에는 흑성 시간 및 데이터 요청에 응답하는 대상 시스템이 사용한 시간이 포함됩니다.

실험 (트랜잭션) 실험 넘침 예외 수

실험 데이터

(구성요소) 초당 데이터 예외 개수. 유효하지 않은 데이터가 산출 명령어로 감지될 때 데이터 예외가 발생합니다. 예는 실험 명령어의 유효하지 않은 습자 코드 또는 부호이거나 꼭하기 명령어에 가장 왼쪽 0의 수가 충분하지 않습니다.

해제 조작

(구성요소) 수행한 해제 조작. 애플리케이션 및 시스템 제공 참조 무결성 해제를 포함합니다.

실험 넘침

(구성요소) 초당 실험 넘침 수

설명 (구성요소) 예외 유형의 상세한 설명

감지된 액세스 전송 오류(DTSE)

(자원 간격) 전송 전송 종료(LT)에서 네트워크 종료 1(NT1) 종료점까지 ISDN U 인터페이스에 걸쳐 데이터 오류를 단말기 장비(TE)로 NT1 종료점이 통지를 횟수. NT1 종료점이 유지보수 채널 S1을 통해 TE에 오류를 보고합니다.

감지된 액세스 전송 오류(DTSE)

(자원 간격) NT1 종료점에서 LT까지의 ISDN U 인터페이스에 걸쳐 데이터 오류를 단말기 장비(TE)로 네트워크 종료 1(NT1) 종료점이 통지를 횟수. NT1 종료점은 유지보수 채널 S1을 통해 TE에 오류를 보고합니다.

장치 (구성요소) 장치 ID

DIO/초 비동기

(시스템) 초당 비동기 I/O 조작 수

DIO/초 동기

(시스템) 초당 동기 I/O 조작 수

디스크 업(Arm) 찾기 거리

(구성요소) 시간당 평균 검색 거리 분배:

```plaintext
0     0 찾기 수
1/12  디스크의 0 - 1/12 사이의 찾기 수
1/6   디스크의 1/12 - 1/6 사이의 찾기 수
1/3   디스크의 1/6 - 1/3 사이의 찾기 수
2/3   디스크의 1/3 - 2/3 사이의 찾기 수
>2/3  디스크의 2/3 이상의 찾기 수
```
디스크 압(Arm)
(시스템) 이 IOP에 대한 디스크 압-arm의 수
디스크 용량
(구성요소) 사용하거나 사용 가능한 디스크 공간의 평균 양
MB 디스크의 사용 가능한 수백만 바이트 수
퍼센트 디스크의 사용 가능한 공간의 퍼센트
디스크 제어기
(시스템) 이 IOP에 대한 디스크 기억장치 제어기의 수
디스크 가능
(시스템) 디스크의 유형(예:9332, 9335)
디스크 I/O 비동기
(시스템, 구성요소) 비동기 디스크 I/O 조작의 총 수
디스크 I/O 논리
(구성요소) 논리 디스크 조작(예: GET 및 PUT)의 수
초당 디스크 I/O
(시스템) 초당 실제 디스크 I/O 조작의 평균 수
디스크 I/O 합기 /초
(자원 간격) 디스크 IOP에 의한 초당 디스크 합기 조작의 평균 수
디스크 I/O 요청
(트랜잭션) 추적 기간 동안 작업이 발생한 동기 및 비동기 디스크 I/O 요청의 총 수
디스크 I/O 동기
(시스템, 구성요소) 동기 디스크 I/O 조작의 총 수
디스크 I/O 쓰기 /초
(자원 간격) 디스크 IOP에 의한 초당 디스크 쓰기 조작의 평균 수
디스크 IOP
(시스템) 디스크 IOP 제어기의 수
디스크 이중복사
(시스템) 디스크 이중복사가 활성화하는지 여부를 표시합니다.
사용된 디스크 공간
(자원 간격) 전체 시스템에 대해 사용한 총 디스크 공간(GB)
디스크 전송 크기(KB)
(시스템) 디스크 조작당 전송된 평균 키클로바이트 수
디스크 이용률
(시스템) 디스크 압-arm이 I/O 조작을 수행하는 시간 간격의 분수
디스크 CPU 이용률

(시스템, 자원 간격) 디스크 장치가 사용하는 CPU 백분율

데이터그램 요청 전송 계제

(구성요소) 다음 이유로 삭제된 IP 데이터그램의 백분율

• 데이터그램을 목적지로 전송하는 라우트가 없습니다.

• 비퍼 공간이 부족합니다.

전송 Tot에 대한 데이터그램 요청

(구성요소) 전송에 대한 요청으로 로컬 IP 사용자 프로토콜이 IP에 제공한 IP 데이터그램의 총 수

경과 시간(초)

(트랜잭션, 구성요소) 경과 시간(초), 트랜잭션 보고서의 일괄처리 작업 분석 색선의 경우 작업의 시작 부터 작업의 종료까지의 경과된 초 수립니다. 트랜잭션 보고서의 동시 일괄처리 작업 동계 색선의 경 우 설정된 해당 작업에서 모든 작업의 총 경과 시간입니다.

경과 시간

(작업 간격) 간격 동안 작업이 있는 시간(분 및 초)의 양. 이는 간격 동안 작업이 시작되거나 종료되지 않는 경우에는(이 경우에는 더 작음) 간격 길이와 동일합니다.

경과 시간-- 초

(트랜잭션) 다음 열에는 작업이 사용한 시간이 표시됩니다.

긴 대기

상태에서의 경과 시간(예: 다음 트랜잭션 또는 잠금 대기 시간에 대한 대기).

활동/응답

트랜잭션 처리 동안 활동 레벨을 보류하는 중 작업이 사용하는(대기 또는 활동) 시간. 트랜잭션 클러스터(트랜잭션 전체 화선) 작업이 활동 레벨, 잠금에 의한 긴 대기 및 부적합한 상태의 트랜잭션을 처리하기 위해 사용한 시간입니다.

부적합한 대기

작업이 부적합한 대기 상태에서 활동 레벨을 기다리는 데 사용한 시간

EM3270 대기 /트랜잭션

(트랜잭션) 트랜잭션당 2진 동기 통신(BSC 3270DE 및 시스템 네트워크 구조(SNA)의 호스트 시스템 통신에서 기다리는 데 사용한 평균 시간(초). 애뮬레이션 프로그램이 표시장치 또는 호스트 처리 장치와 통신하는지 판별하기 위해 프로그램 논리가 필요합니다. 이벤트 대기 처리에 요구사항이 있기 때문에 모든 전송 조합을 검지할 수 있는 것은 아닙니다.

항목 (작업 추적) 프로그램의 특정 세어인 프로그램 명령어

EORn (트랜잭션) 대기 코드 열에 나열된 트랜잭션 n에 대한 응답 시간의 값. 이러한 코드는 대기 코드 열에 있지만 대기 코드는 아닙니다. 트랜잭션 경계 추적 레코드를 표시합니다.

EOTn (트랜잭션) 대기 코드 열에 나열된 유형 n의 트랜잭션에 대한 트랜잭션의 끝. 이러한 코드는 대기 코드 열에 있지만 대기 코드는 아닙니다. 트랜잭션 경계 추적 레코드를 표시합니다.
저널이 아닌 추정 노출 AP
(구성요소) 시스템이 저널한 액세스 경로가 없는 경우 시스템 추정 액세스 경로 복구 시간 노출(분)
추정 노출 현재 시스템
(구성요소) 시스템 추정 액세스 경로 복구 시간 노출(분)
활동 작업 스테이션의 추정
(트랜잭션) 추정 기간 또는 간격 동안 활동 작업 스테이션의 추정 수: 600초를 초과하는 지연 시간을 600초로 바꿉니다. 이 기술은 활동 작업 스테이션의 추정값에 대한 임시 사용자(때때로 작업하거나 작업 스테이션을 웨던 기간 방문하지 않은 사용자)의 영향을 줄이는 데 사용합니다.
이벤트 대기 /트랜잭션
(트랜잭션) 트랜잭션 달이 이벤트 대기 시간의 평균 시간(초). 시스템에서 실행되는 작업이 작성한 요청을 종종 비동기 작업에 작성합니다. 이러한 비동기 작업은 이벤트를 사용하여 요청 완료 신호를 리패리스에 보냅니다. 이벤트 대기 시간은 요청 작업이 그러한 신호를 대기하는 시간입니다.
이벤트 (트랜잭션) 대기 코드 열에 나열된 이벤트 대기. 이는 메시지 큐에서 대기할 때 발생하는 간 빗기입니다.
예외 유형
(구성요소) 내부 마이크로프로그램 명령어 프로시저에서 실행 중인 내부 마이크로프로그램 명령어의 결과로 발생하는 프로그램 예외 유형. 이러한 예외가 시스템 내의 낮은 레벨에서 모니터되기 때문에 이러한 예외를 특정 일반 사용자 조작과 연관시키기 어렵습니다. 계수를 처리해야 하는 처리 장치 시간이 시스템 성능에 영향을 줄 때 계수는 의미가 있습니다. 계수의 변화는 성능에 영향을 줄 수 있는 시스템 변경을 표시합니다. 예를 들어, 점유 또는 잡금 계수의 큰 변화는 동일한 자원을 사용하는 새 애플리케이션과 이전 애플리케이션 사이에 경쟁이 존재한다는 것을 표시하거나 작업 스케줄링 문제점을 표시합니다.
주: 점유율 보고 계수를 감소력면 성능 추적 시작(STRPTRC) 명령을 사용하여 추적 데이터를 수집해야 합니다. 트랜잭션 보고서 인체(PRTTNSRPT)를 실행해서 잡금을 보유하는 작업 및 오브젝트를 나열하십시오.
예외적 대기
(시스템) 트랜잭션당 평균 예외적 대기 시간(초). 예외적 대기는 프로세스 및 디스크의 사용에 원인이 있을 수 없는 내부 응답 시간의 부분입니다. 예외적 대기는 시스템의 내부 자원에 대한 경합으로 발생 됩니다(예: 데이터베이스 레코드에서 잡금 대기).
상수 처리량이 증가함에 따라 상수를 보유하는 예외적 대기 시간의 부분
변수 처리량이 증가함에 따라 다양한 예외적 대기 시간의 부분
예외 (구성요소, 트랜잭션 구성요소 보고서의 경우 초당 발생하는 프로그램 예외의 총 수입니다. 트랜잭션 보고서의 경우 이 열의 Y는 트랜잭션에 예외가 있다는 것을 의미합니다. 포함된 예외 유형은 프로세스 액세스 그룹 예외와 십진, 2진 및 부동 소수점 넘침입니다. 트랜잭션에 있는 예외를 보려면 전이 보고서를 참조하십시오.
예외적 대기
(트랜잭션) 설정된 작업에서 작업에 대한 예외적 대기 시간(초)의 흐름
예외적 대기/트랜잭션
(트랜잭션) 트랜잭션당 평균 예외적 대기 시간(초). 이 값은 작업 유형 파트에 의한 예외적 대기 분석 결과에 나열된 해당 대기의 합계입니다.
예외적 대기 초
(트랜잭션) 작업에 대한 예외적 대기 시간(초)의 총 양

Excs ACTM /트랜잭션
(트랜잭션) 트랜잭션당 초과 활동 레벨 시간의 평균 시간(초)(예: 처리 장치를 사용하지 않고 활동 상태에서 사용한 시간). 충분한 활동 레벨이 사용 가능하고 수행할 상위 우선순위의 대화식 작업이 많은 경우 작업은 조금 더 오래 처리 장치 주기를 기다립니다. 값이 .3을 초과하는 경우 자세한 정보는 특정한 애플리케이션에 해당하는 작업을 참조하십시오. 이러한 작업을 참조하면서 이 값에 가장 가까운 애플리케이션 작업을 결정할 수 있습니다. 추가 정보는 이러한 작업에 대한 트랜잭션 및 전이 보고서를 사용하십시오. 초과 활동 레벨 시간에 대한 통계가 아래에 표시됩니다.

Active Time = [(multiplier X CPU X Beginning Activity Level) + (Number of synchronous disk I/O operations X .010)]

주: 시작 활동 레벨이 1보다 큰 경우 승수는 0.5입니다. 시작 활동 레벨이 기타 값인 경우 승수는 1 입니다.

종료 (작업 추적) 프로그램이 제어를 포기한 프로그램의 명령어 번호

전문가 캐시
(시스템, 구성요소) 오브젝트 내에서 데이터의 참조 패턴을 기반으로 공유 주 기록장치 풀에 있어야 하는 오브젝트 또는 오브젝트의 부분을 결정하기 위해 시스템을 관리합니다. 독립적으로 시스템 동적 조정기를 실행하는 전문가 캐시는 기록장치 관리 조정기를 사용하여 풀의 이력 및 전체 페이지 특성을 점검합니다. 이 패턴에 보는 일부 같은 공유 풀에 대한 작업(WRKSHRPOOL) 명령과 연관됩니다.
- 0=FIXED, 이는 시스템이 기록장치 풀의 페이지 특성을 동적으로 조정하지 않는다는 것을 표시합니다. 시스템은 디플레이 값을 사용합니다.
- 3=CALC, 이는 시스템이 최적 성능에 대한 기록장치 풀의 페이지 특성을 동적으로 조정한다는 것을 표시합니다.

저널화 노출 AP 시스템
(구성요소) 시스템이 현재 저널 중인 노출된 액세스 경로 수

저널하지 않은 노출 AP 시스템
(구성요소) 시스템이 현재 저널하지 않은 노출된 액세스 경로 수

/F (시스템, 자원 간격) 전이중으로 보고된 프로토콜의 회선 속도. 이 인디케이터는 이더넷(ELAN) 토큰 릴(TRLAN) 회선 또는 비동기 전송 모드 회선에 대한 회선 속도에 적용됩니다.
먼 끝 코드 위반
(자원 간격) T 참조 지점에 대한 인터페이스에서 네트워크 종료 I(NT1) 종료점에 전송된 프레임의 NT1 종료점이 감지하지 않은 코드 위반 수. NT1 종료점은 유지보수 체널 S1을 통해 단말기 장비 (TE)에 위반을 보고합니다.
결합 (시스템) 클래식 동안 각 작업 유형 또는 작업 우선순위에 발생한 총 페이지 결합을 표시하는 값. 이는 QAPMJOBS 또는 QAPMJOBL 파일의 JBTFLT 필드에 표시된 것과 동일한 값입니다.
파일 (트랜잭션) 오브젝트를 포함하는 파일
Flp (트랜잭션) 부동 소수점 넘침 예외 수
부동 넘침
(구성요소) 조달 부동 소수점 넘침 수
프레임 제시도
(자원 간격) 프레임을 리모트 제어기에 다시 전송하는 시도 수
오류로 수신된 프레임 백분율
(자원 간격) 오류로 수신된 프레임의 백분율. 호스트 시스템에 오류가 있거나 수신된 데이터를 놓고 하여 빠르게 처리할 수 없을 때 오류가 발생합니다.
수신된 프레임 총계
(자원 간격) 수신한 프레임과 오류가 있는 프레임을 포함하는 수신된 프레임의 총 수
오류로 전송된 프레임 백분율
(자원 간격) 오류로 다시 전송된 프레임의 백분율
전송된 프레임 총계
(자원 간격) 전송된 프레임의 총 수
전체 닫기
(작업 추적) 모든 유형의 파일에 대한 전체 닫기 수
전체 열기
(작업 추적) 모든 유형의 파일에 대한 전체 열기 수
가능 (작업 추적) 이는 추적 항목이 레코드되도록 합니다. 가능한 추적 항목은 다음과 같습니다.

<table>
<thead>
<tr>
<th>가능 ID</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>데이터</td>
<td>데이터 추적 레코드</td>
</tr>
<tr>
<td>호출</td>
<td>호출 외부</td>
</tr>
<tr>
<td>XCTL</td>
<td>전송 제어</td>
</tr>
<tr>
<td>이벤트</td>
<td>이벤트 헤더리 호출</td>
</tr>
<tr>
<td>EEXTXHINV</td>
<td>외부 예외 헤더리 호출</td>
</tr>
<tr>
<td>INTXHINV</td>
<td>내부 예외 헤더리 호출</td>
</tr>
<tr>
<td>INTXHRET</td>
<td>내부 예외 헤더리에서 리턴</td>
</tr>
<tr>
<td>INVEXIT</td>
<td>호출 종료</td>
</tr>
</tbody>
</table>

표 7.
표7. (계속)

<table>
<thead>
<tr>
<th>가능 ID</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>RETURN</td>
<td>리턴 외부</td>
</tr>
<tr>
<td>ITRMXRS</td>
<td>다시 신호를 보내는 예외로 인해 종료된 호출</td>
</tr>
<tr>
<td>EXTXHRET</td>
<td>외부 또는 프로세서 명령어에서 리턴</td>
</tr>
<tr>
<td>PTRMTTP</td>
<td>종료 단계 끝</td>
</tr>
<tr>
<td>PTRMNX</td>
<td>처리되지 않은 예외로 인한 처리 종료</td>
</tr>
<tr>
<td>NOTUSED</td>
<td>이 유형은 유효하지 않은 주적 요청입니다.</td>
</tr>
<tr>
<td>TERM</td>
<td>종료된 호출</td>
</tr>
<tr>
<td>CANCLINV</td>
<td>취소 호출 명령어</td>
</tr>
</tbody>
</table>

함수 영역

(시스템, 구성요소, 트랜잭션, 작업 간격, 폴 간격) 보고서 선택 범주의 경우 포함(SLTFCNARA 메개 변수) 또는 제외(OMTFCNARA 메개변수)되도록 선택한 함수 영역의 리스트

/H (시스템, 자원 간격) 반복적으로 보고된 프로토콜의 화선 속도. 이 인디케이터는 이다넷(ELAN) 토큰 링(TRLAN) 회선 또는 바동기 전송 모드 화선에 대한 화선 속도에 적용됩니다.

HDW (트랜잭션) 대기 코드 열에 나열된 보류 대기(일시중단된 작업 또는 시스템 요청). 보고서의 다음 세부 항(OBJECT -->)에 명령된 오브젝트에 있는 잔금을 해제한 작업. 오브젝트를 가리키는 작업의 이름이 잔금이 해제되도록 대기하는 데 작업이 사용한 시간의 약과 함께 이 행(WAITER-->)에 명명됩니다.

높은 서비스 시간

(자원 간격) 시스템의 디스크 임(arm)에 대한 최대의 평균 서비스 시간(초)

높은 서비스 장치

최대의 서비스 시간이 있는 디스크 임(arm)

높은 이용률

(자원 간격) 최상위 이용률을 가진 디스크 임(arm) 사용의 백분율

높은 이용률 장치

(구성요소, 자원 간격) 최상위 이용률을 가진 디스크 임(arm)

높은 이용률 디스크

(구성요소) 이 간격 동안 가장 많이 이용된 디스크 임(arm)의 이용률

높은 이용률 장치

(구성요소) 간격 동안 가장 높은 이용률을 가진 디스크 임(arm)

홀더 작업명

(트랜잭션) 오브젝트를 보유한 작업명

홀더 수

(트랜잭션) 오브젝트를 보유한 작업 수

홀더 폴

(트랜잭션) 실행되는 중에 작업을 보유한 폴
홀더 우선순위
 (트랜잭션) 홀더 작업의 우선순위

홀더 유형
 (트랜잭션) 홀더 작업의 유형 및 하위 유형

홀더 사용자명
 (트랜잭션) 오브젝트를 보류한 사용자명

홀더의 작업명
 (관리) 오브젝트를 보류한 작업명

초당 수신된 I 프레임
 (자원 간격) 초당 수신된 정보 프레임 수

초당 전송된 I 프레임
 (자원 간격) 초당 전송된 정보 프레임 수

I/O 대기
 (자원 간격) 특정한 I/O 요청이 처리될 준비가 되었지만 디스크 암(arm)이 요청을 수행할 수 없는 시간의 양

ICMP 메세지 오류
 (구성요소) 엔티티가 수신했지만 메세지에 오류가 있거나 엔티티가 문제점으로 인해 송신하지 않은 메세지인 것으로 판별한 인터넷 제어 메세지 프로토콜(ICMP) 메세지의 수입입니다.

수신된 ICMP 메세지
 (구성요소) 엔티티가 수신된 인터넷 제어 메세지 프로토콜(ICMP) 메세지의 총 수입입니다.

송신한 ICMP 메세지
 (구성요소) 엔티티가 송신하려고 한 인터넷 제어 메세지 프로토콜(ICMP) 메세지의 총 수입니다.

수신 호출 백분율 계시도
 (자원 간격) 네트워크가 거부한 수신 호출의 백분율

수신 호출 총계
 (자원 간격) 시도한 수신 호출의 총 수

부적합한 시간 A-I/W-I
 (트랜잭션) 사건 분할 결과(활동에서 부적합으로) 또는 대기 상태(대기에서 부적합으로)에서 수신된 부적합한 상태에서 작업이 사용한 시간의 양

부적합한 대기
 (트랜잭션) 경과 시간-초 양에 나열된 활동 레벨을 기다리는 부적합한 대기 상태에서 작업이 사용한 시간

대화식 기능 이용률
 (구성요소) 모든 작업이 사용한 대화식 기능의 백분율
대화식 CPU 이용률
(구성요소) 시스템이 대화식으로 간주하는 작업이 사용한 사용할 수 있는 처리 장치 시간의 백분율

주: 다중 프로세서 시스템의 경우 모든 프로세서에 걸쳐 평균적으로 사용됩니다.

INV (작업 추적) 문제점의 호출 레벨
IOP (구성요소) 각 통신 IOP, DASD IOP, 로컬 워크스테이션 IOP 및 다기능 IOP에 대한 입/출력 프로세서(IOP) 자원명 및 모델 번호. 통신 IOP는 IOP에서 사용된 CPU의 퍼센트입니다. 퍼센트는 IOP가 데이터 전송을 수행 중임을 반드시 의미하는 것은 아닙니다. 일부 퍼센트는 활동 화선의 오버헤드에 원인이 있을 수 있습니다.

IOP 이름/화선
(시스템, 자원 간격) 입/출력(IOP) 프로세서 자원명 및 모델 번호 화선

IOP 이름(모델)
(자원 간격) 꼴호 안의 모델 번호 및 입/출력 프로세서(IOP) ID

IOP 이름
(시스템, 구성요소) 입/출력 프로세서(IOP) 자원명

IOP 이름 네트워크 인터페이스
(자원 간격) 네트워크 인터페이스의 IOP 이름

IOP 프로세서 이용률 통신
(구성요소, 자원) 통신 활동으로 인한 IOP의 이용률

IOP 프로세서 이용률 LWSC
(구성요소, 자원) 로컬 워크스테이션 활동으로 인한 IOP의 이용률

IOP 프로세서 이용률 DASD
(구성요소, 자원) DASD 활동으로 인한 IOP의 이용률

IOP 프로세서 이용률 총계
(구성요소, 자원 간격) 각 로컬 워크스테이션, 디스크 및 통신 IOP에 대한 총 이용률

IOP 이용률
(시스템) 시스템 보고서의 디스크 이용률 섹션의 경우 각 입/출력 프로세서(IOP)에 대한 이용률입니다.

주: 다기능 I/O 프로세서의 경우 통신 활동이 아니라 디스크 활동으로 인한 이용률입니다. 시스템 모델 매개변수 섹션의 경우 디스크 IOP가 I/O 조작을 수행하는 시간 간격의 분수입니다.

간격 종료
(구성요소, 트랜젝션, 작업 간격, 폴 간격, 자원 간격) 데이터를 수집할 때 시간(시 및 분). 구성요소 보고서의 간격 계수 및 예외 발생 요약의 경우 콜백 서비스가 예외를 허용한 샘플 간격의 종료 시간 입니다.

작업 최대 A-I
(폴 간격) 폴 또는 서브시스템에서 선택한 작업에 의한 활동 상태에서 부적합한 상태로의 상태 전이 최대 수
작업 최대 A-W
(앞) 폴 또는 서브시스템에서 선택한 작업에 의해 활동에서 대기 상태로 전이한 최대 수

작업 최대 CPU 이용률
(앞 간격) 폴 또는 서브시스템에서 선택한 작업에 의해 사용된 사용 가능한 처리 장치 시간의 최상위 백분율

작업 최대 실제 I/O
(앞 간격) 폴 또는 서브시스템에서 선택된 작업에 의한 실제 디스크 입력 및 출력 조작의 최상위 수

작업 최대 응답
(앞 간격) 폴 또는 서브시스템에서 선택한 작업에 의한 트랜잭션 응답 시간(초). 응답 시간은 자원을 사용하고 기다리는 대 사용한 시간을 트랜잭션 수로 나눈 양입니다.

작업 최대 트랜잭션
(앞 간격) 폴 또는 서브시스템에서 선택한 작업에 의한 트랜잭션의 최상위 수

작업 최대 W-I
(앞 간격) 폴 또는 서브시스템에서 선택한 작업에 의한 대기 상태에서 부적합한 상태로의 전이 최대 수

작업명 (구성요소, 트랜잭션, 작업 간격, 일괄처리 작업 추적) 작업명. 트랜잭션 보고서의 작업 요약 보고서에서 작업이 시스템 재러우트 작업(RRTJOB) 명령을 사용하는 경우 작업(동일한 작업명, 사용자명 및 작업 번호)이 여러 번 이 리스트에 표시됩니다.

작업 번호
(구성요소, 트랜잭션, 작업 간격, 일괄처리 작업 추적) 요약 행이 설명하는 작업의 번호. 트랜잭션 보고서에서 작업 번호 앞의 별표(*)는 측정 기간 동안 작업이 사인 오류 했음을 표시합니다. 작업 번호 뒷의 별표(*)는 측정 기간 동안 작업이 사인 오프 했음을 표시합니다.

작업 우선순위
(일괄처리 작업 추적) 작업의 우선순위

작업 세트
(트랜잭션) 작업 세트 수는 추적 기간 동안 활동할 수 있는 일괄처리 작업의 수입니다. 두 개의 작업이 연속적으로 실행되는 경우 동일한 작업 세트에 두 개의 작업으로 표시됩니다. 두 개의 작업이 동시에 실행되는 경우 두 개의 다른 작업 세트에 표시됩니다.

작업 유형
(트랜잭션 보고서에 언급된 것을 제외한 모든 보고서) 작업 유형 및 부속유형. 가능한 작업 유형 값에는 다음과이 포함됩니다.

A 자동시작
B 일괄처리
BD 즉시 일괄처리(트랜잭션 전용)
주: 즉시 일련처리 값은 활동 작업에 대한 작업 표시 화면에는 BCI로 표시되고 서브시스템
작업에 대한 작업 표시 화면에는 BATCHI로 표시됩니다.

BE 일반처리 호출(트랜잭션 전용)
BJ 일반처리 사전시작 작업(트랜잭션 전용)
C APPC를 통한 5250 애플레이션 및 APPC 또는 TCP/IP를 실행하는 System i Access 호스
트 서비스를 포함하는 프로그래밍 가능 워크스테이션 애플레이션 서비스. 다음 항목 중 하나가
참인 경우 작업이 System i Access 서비스로 보고됩니다.
 • 수신 APPC 호출은 서비스 프로그램 명 중 하나를 요청합니다. 이는 명령된 프로그램을 이미
 가지고 있는 QSERVER, QCMN 및 QSYSWRK 서브시스템의 사전시작된 작업에 적
 용됩니다.
 • 수신 IP 포트 번호는 서비스명 설정 포트 번호 중 하나와 일치합니다. 이는 지정된 IP 포트
 번호를 이미 가지고 있는 QSERVER, QCMN 및 QSYSWRK 서브시스템의 사전시작
 된 작업에 적용됩니다.
 • 수신 IPX 소켓 번호는 서비스명 설정 포트 번호 중 하나와 일치합니다. 이는 지정된 IPX
 포트 번호를 이미 가지고 있는 QSERVER, QCMN 및 QSYSWRK 서브시스템의 사전
 시작작된 작업에 적용됩니다.
 • 동등한 WARP 또는 OS/2 통신 관리자 아래에서 5250 애플레이션에 의해 송신된 APPC
 데이터 스트림에서 나온 수신 5250 표시장치 애플레이션 작업

D 대상 분산 데이터 관리(DDM) 서버
I 대화식. 대화식에는 쌍축 데이터 링크 제어(TDLC), 5250 리모트 워크스테이션 및 3270 리
모트 워크스테이션이 포함됩니다. 트랜잭션 보고서의 경우 쌍축 데이터 링크 제어(TDLC), 5250
리모트 워크스테이션, 3270 리모트 워크스테이션, SNA passthru 및 5250 Telnet이 포함됩니
d.
L 라이센스가 있는 내부 코드 태스크
M 서브시스템 모니터
P SNA passthru 및 5250 Telnet passthru. 트랜잭션 보고서에서 이러한 작업은 I(대화식)로 표
시됩니다.
R 스크 징목기
S 시스템
W 스크 스트 작업을 포함하는 스크 출력기 및 확장 가능 인쇄(AFP)가 지정된 경우 인쇄 드라이
버 작업
WP 스크 인쇄 드라이버(트랜잭션 전용)
X 시스템 작업 시작
가능한 작업 하위 유형에는 다음이 포함됩니다.
D 일반처리 즉시 작업
E 호출(동신 일반처리)
J 사전시작 작업
P 인쇄 드라이버 작업
T 복수 리퀘스트 단말기(MRT)(System/36 환경 전용)

3 System/36

비대화식 작업 유형에는 다음이 포함됩니다.
• 자동시작
• 일반처리
• 호출
• System i Access 일반처리
• 서버
• 스톤
• 분산 데이터 관리(DDM) 서버

특수 대화식 작업 명주에는 다음이 포함됩니다.
• 대화식
• 복수 리퀘스트 단말기(MRT)
• Passthru
• System/36

작업 (시스템, 구성요소, 트랜잭션, 폴 간격, 작업 간격) 사용자가 지정한 작업. 항목의 형식은 jobnumber/username/jobname입니다. 보고서 선택 범주 보고서의 경우 포함(SLTTJOB 매개변수) 또는 제외 (OMTJOB 매개변수)되도록 선택한 작업의 리스트입니다. STLFCNARA 또는 OMTFCNARA 매개 변수를 사용해서 선택한 작업이 포함되지 않습니다.

I/O당 K
(시스템, 자원 간격) 각 디스크 I/O 조작에 작성되거나 읽은 KB(1024바이트)의 평균 수

K/T /트랜잭션 초
(트랜잭션) 작업에 대한 트랜잭션 사이의 키 및 인지에 사용한 시간 또는 평균 지연 시간(초). 값은 활동에서 대기 및 대기에서 활동 사이의 시간 간격 또는 대기에서 부적합으로의 작업 상태 전이를 표시 합니다.

I/O 읽기당 KB
(자원 간격) 읽기 조작당 전송되는 KB(1KB는 1024바이트와 같음)의 평균 수

I/O 쓰기당 KB
(자원 간격) 쓰기 조작당 전송되는 KB(1024바이트)의 평균 수
수신된 KB/초
(시스템, 구성요소) 선택된 간격에서 활동할 때 지정된 인터레이스에서 초당 수신된 KB(1024)의 총 수이고 프레임 문자가 포함됩니다.

전송된 KB/초
(시스템, 구성요소) 선택된 간격에서 활동할 때 지정된 인터레이스에서 초당 전송된 KB(1024)의 총 수이고 프레임 문자가 포함됩니다.

전송된 KB IOP
(구성요소, 자원 간격) 버스를 통해 IOP에서 시스템으로 전송된 전체 KB

전송된 KB 시스템
(구성요소, 자원 간격) 버스를 통해 시스템에서 IOP로 전송된 전체 KB

키/인치
(트랜잭션) 프로그램에 의한 작업 스테이션 사용자를 가리키는 데 사용된 시간의 양

키/인치 /트랜잭션
(트랜잭션) 대화식 작업에 대한 평균 인지 시간 및 키 시간(또는 트랜잭션 경계 사이의 지연 시간)(초)

L
(잠금) 이것이 잠금시간 점유 총돌입지 여부. 잠금인 경우 열에는 L이 포함되고 점유인 경우 공백이 포함됩니다.

오류로 수신된 LAPD 프레임 백분율
(자원 간격) 오류로 수신된 프레임의 백분율(D 채널에만 적용). 호스트 시스템에 오류가 있거나 수신된 데이터를 충분히 빠르게 처리할 수 없을 때 오류가 발생합니다.

다시 전송된 LAPD 프레임 백분율
(자원 간격) 오류로 인해 다시 전송된 프레임의 백분율(D 채널에만 적용)

수신된 LAPD 총 프레임
(자원 간격) 수신하지 않은 프레임 및 오류가 있는 프레임을 포함하는 수신된 프레임의 총 수(D 채널에만 적용)

전송된 LAPD 총 프레임
(자원 간격) 전송된 프레임의 총 수(D 채널에만 적용)

호출 스택의 마지막 네 개의 프로그램
(트랜잭션) 프로그램 스택의 마지막 네 개의 프로그램. 예를 들어, 트랜잭션의 시작 (예: 작업 스테이션 조작이 Enter 키를 입력할 때)에서 읽기 조작을 발행한 프로그램, QWSGET 및 QT3REQIQ라는 프로그램명을 참조합니다. 트랜잭션의 글 (예: 프로그램이 표시장치에 기록할 때)에서 표시장치에 기록한 프로그램, QWSPUT 및 QT3REQIQ가 표시됩니다. 스택의 세 번째 또는 네 번째 프로그램은 트랜잭션 요약 PGMNAME 데이터에 표시된 프로그램입니다. 그러나 대기 코드 열에 값이 있는 경우 마지막으로 레이블된 열의 프로그램은 추적 테코드를 가지는 것입니다. 열에 프로그램명이 없는 경우 프로그램명은 열의 이전 이름과 같고 해당 이름은 생략됩니다.

배기 길이
(잠금) 리퀘스터가 잠긴 오브젝트를 가리키는 릴리즈의 수
초당 논리 I/O
(작업 간격) 간격 동안 작업이 초당 수행한 논리 디스크 I/O 조작의 평균 수. 논리 디스크 I/O 계수를 경과 시간으로 나누어 연산합니다.

라이브러리
(시스템, 트랜잭션) 오브젝트를 포함하는 라이브러리

라이브러리
(작업 추적) 추적 항목과 연관된 프로그램이 포함된 라이브러리명

회선 계수
(작업 간격) 간격 동안 선택된 비대화식 작업이 인쇄한 회선 수

회선 설명
(자원 간격) 회선 설명 이름

회선 오류
(자원 간격) 감지된 모든 오류의 총계. 이 값이 계속 크게 증가하는 경우 회선 상태를 확인하십시오.

회선 속도
(시스템, 자원 간격) 초당 칸로비트(1킬로비트 = 1000비트)의 회선 속도

회선 유형/회선명
(구성요소, 시스템) 인터페이스가 사용한 회선 설명의 이름 및 유형. 회선 설명을 사용하지 않는 인터페이스의 경우 회선명 필드는 지정한 회선 유형이 없는 *LOOPBACK, *OPC 또는 *VIRTUALIP로 표시됩니다.

회선 이용률
(자원 간격) 전송 및 수신 조작을 사용하는 사용 가능한 회선 용량의 파센트

회선 이용률 전송/수신
(자원 간격) 통신 회선의 데이터 전송 용량으로 사용한 파센트. 간격 동안 회선 속도로 나눈 수신된 비트 수 및 전송된 비트 수

LKRL
(트랜잭션) 해결된 잡금. 보고서의 다음 세부 행(OBJECT -->)에 명명된 오브젝트에 있는 잡금을 해결한 작업. 오브젝트를 가리키는 작업의 이름이 잡금이 해결되도록 대기하는 데 작용이 사용한 시간의 양과 함께 이 행(WAITER -->)에 명명됩니다.

LKW (트랜잭션) 대기 코드 열에 나열된 잡금 대기. 이러한 것이 많이 있는 경우 또는 ACTIVE/RSP* 열에 있는 유효 시간 값이 가진 항목이 표시되는 경우 추가 분석이 필요합니다. 이 LKW 보고서 행에 앞서는 LWKT 보고서 행은 대기 중인 오브젝트와 오브젝트를 가진 사용자를 표시합니다.

LKWT
(트랜잭션) 대기 코드 열에 나열된 잡금 총률 대기. 작업은 잡금 총률에서 대기 중입니다. 시간(*/ 시간 /*)은 잡금 총률의 지속 시간이고 LKW 시간과 동일하지 않더라도 LKW 시간에 매우 근접해야 합니다. 잡금의 흐터는 보고서 행(HOLDER -->)의 오른쪽에 명명됩니다. 잡겨진 오브젝트는 다음 보고서 행(OBJECT -->)에 명명됩니다.
로컬 종료 코드 위반
(차원 간격) ISDN S/T 참조 지점에 대한 인터페이스에서 수신된 프레임의 단말기 장비(TE)가 감지한
의도하지 않은 코드 위반 횟수

로컬 준비 인원
(차원 간격) 호스트 시스템이 전송된 모든 수신 불가능 프레임의 퍼센트. 높은 값의 백분율은 종종 호
스트가 데이터를 빠리 처리할 수 없음을 의미합니다(정체).

로컬 작업 스테이션 IOP 이용률
작업 스테이션 I/O 프로세서가 사용 중인 시간 간격의 분수

로컬 작업 스테이션 IOP
(시스템) 각 로컬 워크스테이션 IOP의 자원명 및 모델 번호

잠금 충돌
(구성요소) 초당 잠금 예외 수. 데이터베이스 레코드 갑상이 이 계수에 반영됩니다. 자세한 정보는 성
능 추적 시스템(STRPRTRC) 명령을 발행하고 트랜잭션 보고서 인쇄(PRTTNSRPT) 및 잠금 보고서
인쇄(PRTLCKRPT) 명령을 사용하십시오. 이 계수는 정상 시스템 조작인 경우에도 매우 높을 수 있
습니다. 계수를 모니터링 사용하십시오. 큰 변화 또는 변경사항이 있는 경우 추가 정보에서 이러한 변
화를 탐색하십시오.

잠금 대기/트랜잭션
(트랜잭션) 트랜잭션당 잠금 대기 시간의 평균 시간(초). 값이 큰 경우 트랜잭션 상세 계산 및 잠금 보
고서 인쇄(PRTLCKRPT) 명령을 조사하십시오.

논리 (작업 간격) 간격 동안 선택된 대화식 작업이 수행한 논리 디스크 I/O 조작의 수

논리 데이터베이스 I/O 기타
(시스템) 트랜잭션당 기타 논리 데이터베이스 조작. 캐시 및 삭제와 같은 조작이 포함됩니다.

논리 데이터베이스 I/O 읽기
(시스템) 트랜잭션당 논리 데이터베이스 읽기 조작

논리 데이터베이스 I/O 쓰기
(시스템) 트랜잭션당 논리 데이터베이스 쓰기 조작

논리 DB I/O
(시스템) 트랜잭션당 논리 I/O 조작의 평균 수

논리 DB I/O 계수
(시스템) 내부 데이터베이스 I/O 읽기, 쓰기 또는 기타 함수가 호출되는 횟수. 스품 파일 복사(CPYSPLF)
명령 또는 스품 파일 표시(DSPSPLF) 명령이 요구한 I/O 조작, 쓰기 또는 읽기에 대한 I/O 조작은
포함되지 않습니다. SEQONLY(*YES)를 지정한 경우 개별 레코드 읽기 또는 쓰기 수가 아니라 레코
드 읽기 또는 쓰기의 각 블록을 표시하는 수가 나타납니다. 기타 함수에는 캐시, 삭제, 데이터 강제 종
료 및 탐색이 포함됩니다.

논리 디스크 I/O
(구성요소) 논리 디스크 조작(Get, Put, 캐시 및 기타)의 수
논리 I/O /초
(시스템) 초당 논리 디스크 I/O 조작의 평균 수

초당 논리 I/O
(작업 간격) 간격 동안 선택된 비대화식 작업이 초당 수행한 논리 디스크 I/O 조작의 평균 수

긴 대기
(트랜잭션) 작업이 시스템 자원을 기다리는 데 사용한 시간. 긴 대기의 예는 롤코드 집금 총돌입입니다.
경과 시간-초 영에 나열될 때 상태에서의 경과 시간입니다(예: 다음 트랜잭션 또는 집금 대기 시간 대기).

긴 대기 Lck/Oth
(트랜잭션) 작업이 시스템 자원을 기다리는 데 사용한 시간의 약. 긴 대기의 예는 롤코드 집금 총돌입입니다.

프레임 정렬 손실
(자원 간격) 회선 코드 위반에 유효한 쌍을 감지하지 않고 두 개의 48비트 프레임 경과 시간이 시간 간격과 동일한 횟수

MAC 오류
(자원 간격) 메체 엑세스 제어(MAC) 오류 수

주 기역장치(MB)
(시스템) MB로 측정된 총 주 기역장치 크기. 이러한 코드는 메기 코드 열에 있지만 대기 코드는 아닙니다. 트랜잭션 경계 추적 롤코드를 표시합니다.

최대 이용률
(시스템) 제공된 업무값에서 또는 그 이상에서의 일관된 사용은 시스템 성능에 영향을 주고 더 긴 응답 시간 또는 적은 처리량을 가져옵니다.

최대 (트랜잭션) 열에서 발생한 항목의 최대 값

멤버 (시스템, 트랜잭션) 시스템 보고서의 경우 성능 데이터 작성(CRTPFRTDA) 명령의 TOMBR 매개변수에서 지정된 성능 데이터 멤버의 이름입니다. 트랜잭션 보고서의 경우 홀들에 연관된 멤버입니다.

최소 (트랜잭션) 열에서 발생한 항목의 최소 값

MRT 최대 시간
(시스템) MRTMAX에 도달한 후 복수 리소스 단말기에 라우트한 작업이 대기하는 데 사용한 시간

주: 작업 유형이 MRT가 아닌 경우 값이 이 열에 표시되지 않습니다.

MSGS
(작업 추적) 각 트랜잭션 동안 작업에 송신한 메세지의 수

MTU 크기(바이트)
(시스템) 인터페이스에서 전송하거나 수신할 수 있는 가장 큰 데이터그램의 크기. 크기는 요약(바이트)으로 지정됩니다. 네트워크 데이터그램 전송에 사용한 인터페이스의 경우 인터페이스에서 송신할 수 있는 가장 큰 네트워크 데이터그램의 크기입니다.
Nbr A-I
(트랜잭션) 작업에 의한 활성에서 부적합으로의 전이 수. 이 열은 작업에 자정된 시간 분할 값의 작업 이 조화한 횟수와 시스템이 트랜잭션을 처리하기 전에 작업이 활성 레벨 슬롯을 기다려야 하는 횟수를 표시합니다. 값이 이 열에 표시되면 작업이 수행하는 작업을 확인하고 시간 분할 값에 대한 변경이 필 요한지 여부를 판별하십시오.

Nbr 디스크 장치
(시스템) 보고된 파티션에 지정된 디스크 장치 수

Nbr 이벤트
(트랜잭션) 작업 처리 동안 발생한 이벤트 대기 수

Nbr 작업
(트랜잭션) 작업 수

Nbr 사인 오프
(트랜잭션) 간격 동안 사인 오프하는 작업 수

Nbr 사인 온
(트랜잭션) 간격 동안 사인 온하는 작업 수

Nbr 트랜잭션
(트랜잭션) 지정된 범주의 트랜잭션 수

주: 트랜잭션 보고서 인쇄(PRTTNSRPT) 명령을 사용하여 생성한 보고서에 표시된 트랜잭션 계수 및 기타 트랜잭션 관련 정보에 대한 값은 시스템 보고서 인쇄(PRTSYSRPT) 및 구성요소 보고서 인쇄(PRTCPTRPT) 명령을 사용하여 생성한 보고서에 표시된 값과 다를 수 있습니다. PRTSYSRPT 및 PRTCPTRPT 명령이 입력으로 샘플 데이터를 사용하는 중에 PRTTNSRPT 명령이 입력으로 샘플 데이터를 사용하기 때문에 이러한 차이가 발생합니다.

이러한 보고서에 표시된 트랜잭션 관련 정보의 값에 큰 차이가 있는 경우 이러한 차이점이 존재하는 이유를 조사해야 데이터를 사용할 수 있습니다.

Nbr W-I
(트랜잭션) 작업에 의한 대기에서 부적합 상태로의 전이 수. 이 열은 작업이 트랜잭션을 기다려야 하는 횟수를 표시합니다.

NDB 읽기
(트랜잭션) 실제 I/O 개수 열에 나열될 때 작업이 해당 상태에 있는 동안 비데이터베이스 읽기 요청의 수입니다. 동기 디스크 I/O 요청/트랜잭션 열에 나열될 때 트랜잭션당 동기 비데이터베이스 읽기 요청 의 평균 수입니다.

NDB 쓰기
(트랜잭션) 동기 디스크 I/O 요청/트랜잭션 열에 나열될 때 트랜잭션당 동기 비데이터베이스 쓰기 요청 의 평균 수입니다.
NDB 쓰기
(트랜잭션) 실제 I/O 개수 열에 나열될 때 작업이 해당 상태에 있는 동안 비데이터베이스 쓰기 요청의 수입니다. 동기 디스크 I/O 개수 열에 나열될 때 트랜잭션 진행 동기 비데이터베이스 쓰기 요청의 수입니다.

Non-DB
(작업 추적) 항상 발생한 실제 비데이터베이스 읽기의 수

Non-DB 결합
(시스템, 구성요소) 초당 비데이터베이스 결합의 평균 수

Non-DB 페이지
(시스템, 구성요소) 초당 비데이터베이스 페이지 읽기의 평균 수

NON-DB RDS
(작업 추적) 발생한 실제 비데이터베이스 읽기의 수

비SMAPP
(구성요소) 시스템 관리 액세스 경로 보호(SMAPP)에 직접 관련되지 않은 저널 저장

비SSL 인바운드 연결
(시스템) 서버가 승인한 비SSL 인바운드 연결 수

수신된 바이어니캐스트 패킷
(시스템) 저장된 인터페이스에서 수신된 패킷의 상위 계층 프로토콜로 전달된 바이어니캐스트 패킷의 총 수

송신한 바이어니캐스트 패킷
(시스템) 상위 레벨 프로토콜이 바이어니캐스트 주소로 전송하도록 요청한 패킷의 총 수. 그 때문에 이 수에는 삭제되거나 전송된 패킷과 전송되지 않은 패킷이 포함됩니다.

수
(트랜잭션) 트랜잭션이 연관된 작업의 수

초당 I/O 수
(시스템) 이 특정한 IOP에 대한 초당 I/O의 수

작업수
(트랜잭션) 작업 세트의 일괄처리 작업 수

Number Lck 충돌
(트랜잭션) 작업 처리 동안 발생한 잡금 대기(데이터베이스 레코드 잡금 포함)의 수. 이 수가 높은 경우 잡금 대기 상태 충돌의 지속 시간을 확인한 후 작업에 대한 트랜잭션 및 전이 보고서를 참조하십시오. 또한 잡금 보고서 인쇄(PRTLCKRPT) 명령을 사용할 때 생성된 보고서를 사용해서 조사를 수행할 수 있습니다.

잡금 충돌 수
(트랜잭션) 작업에 잡금 충돌이 있는 횟수
잠금 수
(트랜잭션) 대화식 또는 비대화식 매기자로 인한 잠금 수

일괄처리 작업 수
(시스템) 활동 일괄처리 작업의 평균 수. 일괄처리 작업은 최소 5분당 하나의 I/O가 평균인 경우 사용 중으로 고려됩니다.

작업 수
(시스템) 작업 수

오류로 수신된 펌킷 수
(시스템) 오류로 수신되거나 기타 이유로 삭제된 펌킷의 총 수. 예를 들어, 버퍼 공간에 여유를 주기 위해 펌킷을 삭제할 수 있습니다.

접속 수
(트랜잭션) 대화식 또는 비대화식 매기자로 인한 접속 수

접속 총돌 수
(트랜잭션) 작업 처리 동안 발생한 접속/잠금 총돌 수. 이 수가 높은 경우 총돌 지속 기간, 오브젝트를 보유한 작업의 규모의 크기, 보류 중인 오브젝트의 이름과 유형 및 작업이 대기하는 것을 보려면 작업에 대한 트랜잭션 및 전이 보고서를 참조하십시오.

접속 총돌 수
(트랜잭션) 작업에 접속 총돌이 있는 횟수

트랜잭션 수
(시스템, 트랜잭션) 처리한 트랜잭션 총 수. 예를 들어, 시스템 보고서에서 이 폴의 작업이 처리한 트랜잭션의 총 수입니다. 트랜잭션 보고서에서 프로그램과 연관된 트랜잭션의 수입니다.

추적 수
(일괄처리 작업 추적) 추적 수

트랜잭션 수
(시스템) 처리한 트랜잭션 총 수

오브젝트 파일
(트랜잭션) 오브젝트를 포함하는 파일

오브젝트 라이브러리
(트랜잭션) 오브젝트를 포함하는 라이브러리

오브젝트 멤버
(트랜잭션) 총돌과 관련된 멤버

오브젝트명
(잠금) 잠긴 오브젝트의 이름

오브젝트 RRN
(트랜잭션) 총돌과 관련된 레코드의 관련 레코드 번호
오브젝트 유행

(트랜잭션, 잠금) 잠긴 오브젝트의 유행. 사용할 수 있는 오브젝트 유행은 다음과 같습니다.

AG 엑세스 그룹
CB 확약 불록
CBLK 확약 불록
CD 제어기 설명
CLS 클래스
CMD 명령
CTLD 제어기 설명
CTX 컨테스트
CUD 제어 장치 설명
CUR 커서
DEVD 장치 설명
DS 데이터 공간
DSI 데이터 공간 채인
DTAARA 데이터 영역
EDTD 편집 설명
FILE 파일
JOBD 작업 설명
JOBQ 작업 큐
JP 저널 포트
JRN 저널
JRNRCV 저널 리시버
JS 저널 공간
LIB 라이브러리
LIND 회신 설명
LUD 논리 장치 설명
MBR 멤버
MEM 데이터베이스 파일 멤버
MSGF 메시지 파일
MSGQ 메시지 큐
ND 네트워크 설명
OCUR 데이터베이스 조작 커서
OUTQ 출력 큐
PGM 프로그램
PROG 프로그램
PRTIMG 인쇄 이미지
QDAG 복합 조작 - 액세스 그룹
QDDS 복합 조작 - 데이터 공간
QDDSI 복합 조작 - 데이터 공간 레이어
QTAG 임시 - 액세스 그룹
QTDS 임시 - 데이터 공간
QTDSI 임시 - 데이터 공간 레이어
SBSD 서브시스템 설명
TBL 테이블

생략 매개변수
(시스템, 구성요소, 트랜잭션, 작업 간격, 폴 간격) 데이터 레코드가 보고서에서 제외되도록 선택하는 매
사용한 범주. 범주는 일반적으로 명령의 OMTxxx 매개변수를 사용하여 지정됩니다. 다플트 이외의 값
(*NONE 외의 것)만 인쇄됩니다. 매개변수를 지정하지 않은 경우 보고서에 표시되지 않습니다.
초당 조작
(시스템) 초당 디스크 조작의 평균 수

기타 대기/트랜잭션
(트랜잭션) 트랜잭션당 이전 범주 중 하나에 없는 대기에 사용한 평균 시간(초). 예를 들어, 시스템이 새 메체(테이프 또는 디스크)를 요청할 때 저장복원 조작 동안 대기하는 데 사용한 시간

전송 호출 백분율 제시도
(자원 간격) 네트워크가 거부한 전송 호출의 백분율

전송 호출 총계
(자원 간격) 시도한 전송 호출의 총 수

파라 확약 비율
(시스템) 주 기역장치 파라 확약 비율(OCR)

PAG (트랜잭션) 프로세스 액세스 그룹 결합 수

PAG 결합
(구성요소, 작업 간격) 구성요소 보고서의 예외 발생 요약에서 프로그램 액세스 그룹(PAG)이 참조되지만 주 기역장치에 없는 총 횟수입니다. 라이센스가 있는 내부 코드는 더 이상 데이터 캐싱에 프로세스 액세스 그룹을 사용하지 않습니다. 이런 구현으로 인해 해당 값은 현재 릴리스에 대해 항상 0이 됩니다. 구성요소 보고서의 예외 발생 요약에서 초당 프로세스 액세스 그룹을 포함하는 결합 수입니다.

페이지 계수
(작업 간격) 간격 동안 선택된 비대화식 작업이 인쇄한 페이지 수

범주별 CPU 백분율
(트랜잭션) 다양한 범주에 있는 트랜잭션이 사용한 수 있는 처리 장치 시간의 백분율. 범주의 설명에 대해 시스템 요약 데이터 색연의 대화식 트랜잭션 범주 일부로 분석을 참조하십시오.

오류로 수신된 데이터 문자 파생
(자원 간격) 오류로 수신된 데이터 문자의 파생

오류로 전송된 데이터 문자 파생
(자원 간격) 오류로 전송된 데이터 문자의 파생

데이터그램 오류 백분율
(구성요소) 이러한 오류로 삭제된 데이터그램의 백분율
- IP 헤더의 목적지 필드에 있는 IP 주소는 이 엔터티에서 수신할 유요한 주소가 아닙니다.
- 프로토콜은 알 수 없거나 지원되지 않습니다.
- 버퍼 공간이 충분하지 않습니다.

오류 응답 백분율
(구성요소) 오류의 응답 백분율
Ex-Wt /응답 백분율
(트랜잭션) 예외적 대기로 인한 응답 시간의 백분율

ICMP 메세지 오류 백분율
(구성요소) 엔터티가 수신했지만 메세지에 오류가 있거나 엔터티가 문제점으로 인해 송신하지 않은 메세지인 것으로 판별한 인터넷 제어 메세지 프로토콜(ICMP) 메세지의 수입입니다.

트랜잭션 범주의 백분율
(트랜잭션) 다양한 범주에 있는 모든 트랜잭션의 백분율. 범주의 설명에 대해 시스템 요약 데이터 색선의 대화식 트랜잭션 범주 일부로 분석을 참조하십시오.

오류로 수신된 패킷 백분율
(시스템) 오류로 수신되거나 기타 이유로 삭제된 패킷의 백분율. 예를 들어, 버퍼 공간이 여유를 주기 위해 패킷을 삭제할 수 있습니다.

오류로 송신한 패킷 백분율
(시스템) 오류로 인해 송신되지 않거나 기타 이유로 삭제된 패킷의 백분율. 예를 들어, 버퍼 공간에 여유를 주기 위해 패킷을 삭제할 수 있습니다.

오류로 수신된 PDU 백분율
(자원 간격) 시간 간격 동안 오류로 수신된 프로토콜 데이터 단위(PDU)의 백분율. 호스트 시스템에 오류가 있거나 데이터를 빠르게 수신할 수 없는 경우(정체) 이러한 오류가 발생합니다.

주: 비동기 통신의 프로토콜 데이터 단위(PDU)는 프로토콜 제어 문자 또는 버퍼 크기로 종료된 데이터의 가변 길이의 단위입니다.

폴 재시도 시간 백분율
(자원 간격) IOP가 단절 되도 있는 작업 스케이션 제어기(또는 리모트 시스템)의 응답을 기다리는 중 화선을 사용할 수 없는 시간 간격의 백분율.

주: 이 손실 시간을 최소화하려면 다음을 수행하십시오.
 • 경진 제어기만 연결변환하십시오.
 • 모든 제어기를 경진시오.
 • 화선 설정 변경(SDLC/CHGTLINS DLC) 명령을 사용하여 연결 폴 타이머를 작은 값(대기 시간 줄임)으로 설정하십시오.
 • 제어기 설정 변경(CHGCTLxxxx) 명령(여기서 xxx는 APPC, FNC, RWS 또는 RTL임)을 사용하여 NDMPOLLTMR 값을 큰 값(폴 사이의 시간 증가)으로 설정하십시오.

트랜잭션 백분율
(트랜잭션) 총 트랜잭션의 백분율. 작업 요약 보고서의 시스템 요약 색선의 경우 트랜잭션은 특정 제거 속성을 가진 특정 기간 내에 있습니다. 작업 요약 보고서의 대화식 프로그램 트랜잭션 통계 색선의 경우 프로그램과 연관된 트랜잭션의 백분율. 작업 통계 색선의 경우 이 작업으로 인한 총 트랜잭션의 백분율입니다. 대화식 프로그램 통계 색선의 경우 프로그램과 연관된 모든 트랜잭션입니다.
UDP 데이터그램 오류 퍼센트
(구성요소) 목적지 포트에 애플리케이션이 없거나 어떤 이유로 전달될 수 없는 사용자 데이터그램 프로토콜(UDP) 데이터그램의 퍼센트

오류 초 퍼센트
(자원 간격) 최소한 하나의 감지 액세스 전송(DTSE) 안팎으로 오류가 발생된 초의 퍼센트

오류로 수신된 프레임 퍼센트
(자원 간격) 오류로 수신된 모든 수신 프레임의 퍼센트. 호스트 시스템에 오류가 있거나 수신된 데이터를 빠르게 처리할 수 없는 경우(정지) 오류가 발생합니다.

 전체 백분율
(시스템) 사용 중인 디스크 공간의 백분율

오류로 전송된 I 프레임 퍼센트
(자원 간격) 제전송이 필요한 전송된 정보 프레임의 퍼센트. 리모트 장치에 오류가 있거나 수신된 데이터를 빠르게 처리할 수 없을 때(정지) 제전송이 발생할 수 있습니다.

중대한 오류 초 퍼센트
(자원 간격) 최소한 세 개의 감지 액세스 전송(DTSE) 안팎으로 오류가 발생된 초의 퍼센트

트랜잭션 퍼센트(동적 아니오)
(시스템) 시스템 주 기역장치 이용률의 측정. 동적 아니오의 제거 속성으로 수행된 모든 대화식 트랜잭션의 퍼센트

트랜잭션 퍼센트(제거 아니오)
(시스템) 시스템 주 기역장치 이용률의 측정. 아니오의 제거 속성으로 수행된 모든 대화식 트랜잭션의 퍼센트

트랜잭션 퍼센트(제거 예)
(시스템) 시스템 주 기역장치 이용률의 측정. 예외 제거 속성으로 수행된 모든 대화식 트랜잭션의 퍼센트

이용률 퍼센트
(시스템) 평균 디스크 압(arm) 이용률(사용 중). 디스크 압(arm) 이용률에 제공한 임계값에서 또는 그 이상에서의 일관된 사용은 시스템 성능에 영향을 주고 더 긴 응답 시간 또는 적은 처리량을 가져옵니다.

주: 사용 중인 퍼센트 값은 I/O 프로세서에서 측정된 데이터에서 연산됩니다. 디스크 상태에 대한 작업(WRKDSKSTS) 명령으로 보고된 사용 중인 퍼센트와 이 값을 비교할 때 일부 차이점이 있을 수 있습니다. WRKDSKSTS 명령은 I/O 요청의 수, 전송된 데이터의 수 및 디스크 장치의 유형을 기반으로 하는 사용 중인 퍼센트를 측정합니다.

시스템 평균 이용률에는 그런 간격이 제거 또는 일시중단 상태에 있는 측정 간격의 이용복사된 압(arm)에 대한 데이터가 포함되지 않습니다.

영구 크기
(구성요소) 영구 영역에 있는 KB. 이는 검색하고 표시할 수 있는 일반 저장 영역입니다.
영구 쓰기
(구성요소, 작업 간격) 간격 동안 선택된 작업에 수행한 영구 쓰기 조작의 수

트랜잭션당 영구 쓰기
(시스템) 대화식 트랜잭션당 영구 쓰기 조작의 평균 수

실제 I/O 계수
(트랜잭션, 일괄처리 작업 추적) 일괄처리 작업 추적 보고서의 작업 요약 섹션의 경우 동기 및 비동기 디스크 조작의 수(읽기 및 쓰기). 전이 보고서의 경우 다음 다섯 개의 열은 작업이 특정 상태에 있는 동안 동기 및 비동기 디스크 I/O 요청 수에 대한 정보를 제공합니. 첫 번째 행은 동기 디스크 I/O 요청의 두 번째 행은 비동기 디스크 I/O 요청입니다.

DB 읽기
작업이 해당 상태에 있는 동안 데이터베이스 읽기 요청 수

DB 쓰기
작업이 해당 상태에 있는 동안 데이터베이스 쓰기 요청 수

NDB 읽기
작업이 해당 상태에 있는 동안 비데이터베이스 읽기 요청 수

NDB 쓰기
작업이 해당 상태에 있는 동안 비데이터베이스 쓰기 요청 수

Tot DB 읽기, DB 쓰기, NDB 읽기 및 NDB 쓰기 요청의 총 수

실제 쓰기
(구성요소) 디스크에 대한 실제 저널 쓰기 조작

PI (구성요소, 트랜잭션, 작업 간격, 풀 간격) 서브시스템 또는 작업이 실행한 풀의 번호

풀 (트랜잭션, 작업 간격, 일괄처리 작업 추적) 트랜잭션(예: 작업이 실행됨)을 포함하는 풀 번호

풀 ID (시스템) 풀 ID

풀 ID 결합
(구성요소) 최대의 페이지 결합 바이어 있는 사용자 풀

풀 기계 결합/초
(구성요소) 초당 기계 풀 페이지 결합의 평균 수

풀 크기(MB)
(구성요소) 구성요소 보고서의 기억장치 풀 활동 섹션의 경우 초기 풀 크기(MB)입니다.

풀 사용자 결합/초
(구성요소) 간격 동안 최대의 결합 바이어 있는 사용자 풀에 대해 초당 사용자 풀 페이지 결합의 평균 수

풀 (시스템, 구성요소, 트랜잭션, 작업 간격, 풀 간격) 보고서 선택 범주 섹션에서 포함(SLTPOOLS 예외 변수) 또는 제외(OMTPOOLS 예외변수)되도록 선택한 풀의 리스트. 그렇지 않으면 지정한 풀임니다. 값은 1 - 64입니다.
Prg (트랜잭션) 작업의 제거 속성
프린터 행
 (시스템, 작업 간격) 간격 동안 작업이 인쇄한 행 수
프린터 페이지
 (시스템, 작업 간격) 간격 동안 작업이 인쇄한 페이지 수
우선순위
 (시스템, 트랜잭션) 작업의 우선 순위
프로그램
 (트랜잭션) 트랜잭션에 연관된 프로그램의 이름
PROGRAM
 (작업 추적) 항목에 대한 프로그램의 이름
PROGRAM CALL
 (작업 추적) 해당 단계 동안 호출한 비QSYS 라이브러리 프로그램의 수. 이는 PROGRAM NAME 필드에 명명된 프로그램이 호출된 횟수가 아닙니다.
PROGRAM DATABASE I/O
 (작업 추적) 트랜잭션 동안 IBM 제공 데이터베이스 모듈이 사용한 횟수. 데이터베이스 모듈 이름에는 제거된 QDB 접두부(QDBPUT, 대신 PUT)가 있습니다. 각각에 의해서 수행된 논리 I/O 조작 유형은 다음과 같습니다.
GETDR
 직접 획득
GETSQ
 순차적 획득
GETKY
 키별 획득
GETM
 목수 획득
PUT, PUTM
 레코드 추가
UDR 레코드 개선, 삭제 또는 해체
프로그램 INIT
 (작업 추적) 트랜잭션 동안 IBM 제공 초기화 프로그램을 호출한 횟수. RPG 프로그램의 경우 QRGXINIT이고 COBOL의 경우 QCRMAIN입니다. 사용자 프로그램이 LR(RPG) 또는 END(COBOL)로 종료될 때마다 IBM 제공 프로그램도 호출됩니다. 이는 PROGRAM NAME 필드에 명명된 프로그램이 초기화되는 횟수가 아닙니다. QCRMAIN은 프로그램 초기화 이외의 가능으로 사용됩니다(예: 블록 레코드 I/O, 일부 데이터 변환).
프로그램명

(트랜잭션) 트랜잭션 보고서의 작업 요약 섹션의 경우 트랜잭션 시작에서 제어의 프로그램명. 기타 프로그램은 트랜잭션 동안 사용될 수 있습니다. 트랜잭션 보고서 섹션의 경우 트랜잭션 시작에서 사용 중인 프로그램명. ADR=UNKWN(주소 알 수 없음)이 열 아래에 표시된 경우 프로그램은 추적 데이터가 데이터베이스 파일에 담기되기 전에 삭제되었습니다. ADR=00000이 열 아래에 표식된 경우 프로그램명을 관별하기에 충분하지 않은 추적 데이터가 있거나 추적 코드가 작성됨 때 작업의 해당 레벨에서 사용 중인 프로그램이 없습니다.

프로그램명

(작업 추적) 트랜잭션 종료 이전에 QSYS 라이브러리에 없는 호출된 마지막 프로그램명

프로토콜

(시스템) 화면 프로토콜

• SDLC
• ASYNC
• BSC
• X25
• TRLAN
• ELAN(이터넷)
• IDLC
• DDI
• FRLY
• PPP

우선순위

(구성요소, 트랜잭션, 작업 간격) 작업의 우선순위. 트랜잭션 보고서의 동시 일괄처리 작업 전체 섹션의 경우 작업 세트에서 작업의 우선순위입니다.

PU

(시스템) 파티션 용량. 보고된 파티션에 저장된 프로세서 장치 수

제거

(트랜잭션) 작업의 제거 습성

PWrt

(트랜잭션) 영구 쓰기 I/O 조작 수

큐 길이

(작업 간격) 이 장치를 위해 큐에서 대기해야 하는 I/O 요청의 평균 수

등급

(트랜잭션) 순서. 작업 요약 섹션의 경우 트랜잭션 수에 따른 프로그램의 순서입니다. 작업 전체 섹션의 경우 작업의 순서입니다. 대화식 프로그램 전체 섹션의 경우 프로그램의 순서입니다. 개별 트랜잭션 전체 섹션의 경우 중요성에 의해 순서대로 놓인 데이터에 따른 트랜잭션의 순서입니다. 가장 큰 점유/점급 손돌 섹션의 경우 점유 또는 점급 손돌의 순서입니다.

전체 디스크 I/O에 대한 쓰기 디스크 I/O 비율

(시스템) 디스크에 대한 데이터 쓰기로 인한 총 디스크 활동의 분수
초당 임기
(자원 간격) 디스크 임(arb)에 의해 초당 수행된 디스크 임기 조작의 평균 수

CRC 오류 수신
(자원 간격) 주기 중복성 확인(CRC) 오류를 포함하는 수신된 프레임 수. 이는 데이터가 오류 없음을 수신하지 않았다는 것을 표시합니다.

레코드 번호
(점검) 데이터베이스 파일 멤버의 경우 데이터베이스 파일 멤버 내에 있는 레코드의 상대 레코드 번호
수신된 리모트 LAN 프레임 백분율
(자원 간격) 레코드로 접속된 LAN에 연결된 근거리 통신망(LAN)에서 수신된 프레임 수
전송된 리모트 LAN 프레임 백분율
(자원 간격) 레코드로 접속된 LAN에 연결된 근거리 통신망(LAN)으로 전송된 프레임 수
리모트 준비되지 않음
(자원 간격) 호스트 시스템이 수신된 모든 수신 불가능 프레임의 백분율. 높은 값의 백분율은 종종 리모트 장치가 데이터를 빨리 처리할 수 없음을 의미합니다(정체).
리모트 요청 오류
(자원 간격) 리모트 장치 또는 시스템에 의해 고장을 수신된 프레임 패킷. 이는 리모트 장치 또는 시스템이 데이터를 충분히 빨리 처리할 수 없을 때 발생할 수 있습니다.
요청 유형
(구성요소) 보고되는 요청 유형
수신된 요청
(시스템, 구성요소) 서버가 수신된 모든 유형의 요청 수
라베스터의 작업명
(점검) 잠긴 오브젝트를 요청하는 작업명(상세히 나열된 것과 동일)
수신된 재설정 패킷
(자원 간격) 네트워크가 수신된 재설정 패킷 수 재설정 패킷은 오류가 발생했기 때문에 재전송된 패킷 입니다.
전송된 재설정 패킷
(자원 간격) 네트워크가 전송된 재설정 패킷 수
응답 (시스템) 평균 시스템 응답(서비스) 시간
평균 및 최대 응답 시간(초)
(트랜잭션) 작업에 대한 평균(AVG) 및 최대(MAX) 트랜잭션 응답 시간(초). 평균 응답 시간은 대기에서 활동으로 전이한 시간과 활동에서 대기로 전이한 시간을 합한 값을 작업에서 발생한 총의 수로 나누어 연산됩니다. 최대 응답 시간은 작업의 가장 큰 응답 시간입니다.
응답 시간(초)
(시스템) 트랜잭션당 평균 응답 시간(초)
송신한 응답
(시스템, 구성요소) 서버가 송신한 모든 요청의 요청 수

응답
(구성요소) 평균 대화식 트랜잭션 응답 시간(초)

응답 시간
(구성요소, 자원 간격) 평균 외부 응답 시간(초). 자원 간격 보고서의 로컬 작업 스테이션 IOP 이용률
색션의 경우 이 제어기의 작업 스테이션에 대한 응답 시간입니다. 구성요소 보고서의 리모트 작업 스테이션
색션의 경우 이 작업 스테이션에 대한 응답 시간입니다.

종료한 응답 타이머
(자원 간격) 리모트 장치에서 응답을 기다리는 종료한 응답 타이머의 횟수

응답/트랜잭션
(구성요소, 트랜잭션, 작업 간격) 트랜잭션당 평균 응답 시간(초). 작업 간격 보고서의 작업 요청 색션
의 경우 간격 동안 선택된 대화식 작업에 대한 트랜잭션당 응답 시간입니다(처리된 시스템 자원을 사
용하거나 기다리는 데 사용된 시간을 트랜잭션 수로 나눈 값). 트랜잭션을 처리하는 데 최소 및 초가
길리지 않으면 이 수는 정확하지 않습니다.

S/L (트랜잭션) 중들이 점유(S) 또는 잠금(L) 중둘인지 여부

SECONDS
(작업 추적) 작업이 대기하거나 사용 중인 대략적인 시간

제전송된 세그먼트 헤드트
(구성요소) 제전송된 세그먼트 백분율. 이 수는 전송되고, 하나 이상 이전에 전송된 육맷(바이트)을 포
함하는 TCP 세그먼트입니다.

초당 수신된 세그먼트
(구성요소) 초당 수신된 세그먼트 수. 이 수에는 오류로 수신된 것과 현재 확립된 연결에 수신된 것이
포함됩니다.

초당 송신된 세그먼트
(구성요소) 초당 송신된 세그먼트 수. 이 수에는 현재 확립된 연결에서 송신된 것이 포함되고 제전송된
육맷(바이트)만 포함하는 것은 제외됩니다.

점유 및 잠금 중돌
(일괄처리 작업 추적) 점유 중돌 및 잠금 대기 수

점유 중돌
(구성요소) 초당 점유 예외 수. 자세한 정보는 상등 추적 시작(STRPFRTC) 명령을 발행하고
PRTTNSRPT 또는 PRTLCKRPT 명령을 사용하실시오. 이 계수는 정상 시스템 조작인 경우에도 매
우 높을 수 있습니다. 계수를 모니터링 사용하실시오 큰 변화 또는 변경사항이 있는 경우 추가 정보
에서 이러한 변화를 탐색하십시오.

점유 보류 시간
(트랜잭션) 오브젝트의 점유 또는 잠금에 의해 시스템에서 트랜잭션이 기타 작업을 보류하는 시간의 양
접유 대기/트랜잭션
(트랜잭션) 평균 트랜잭션 동안 발생한 모든 접유-접급 총돌의 평균 시간(초). 그러나 이와의 접유-접급 총돌은 동일한 작업에 대한 단일 트랜잭션 동안 발생할 수 있습니다. 이 수가 높은 경우 접유 총돌이 있는 작업을 조사하십시오. 트랜잭션 보고서는 발생한 각 총돌, 홀더명 및 보류한 오브젝트의 이름을 나열합니다. 작업 요소 보고서의 5분 간격에 의한 트랜잭션 색선의 경우 트랜잭션당 평균 접유 대기 시간(초)입니다. 트랜잭션이 접유/접급 총돌에 사용한 평균 시간의 양입니다. 이 수가 높은 경우 초과 대기 시간을 아끼는 작업에 대해 트랜잭션 및 전이 보고서를 참조하십시오.

매개변수 선택
(시스템, 구성요소, 트랜잭션, 작업 간격, 폴 간격) 데이터 레코드가 보고서에 포함되도록 선택하는 데 사용한 범주. 범주는 일반적으로 명령의 SLTxxx 매개변수를 사용하여 지정됩니다. 디폴트 이외의 값 (*ALL 외의 것)만 입력됩니다. 매개변수를 지정하지 않은 경우 보고서에 표시되지 않습니다.

SEQNBR
(작업 추적) 추적 항목의 수

SEQNCE 또는 SEQUENCE
(작업 추적) 이 요약 행이 참조한 상세 보고서의 작업 추적 순번

순서지정 오류
(자원 간격) 프레임 손실을 표시하는 순번을 포함한 수신된 프레임 수

서버 작업명
(시스템) 서버 작업 번호. 서버에 대한 하위 작업을 식별합니다.

서버 작업 사용자
(시스템) 서버 작업 사용자. 서버에 대한 하위 작업을 식별합니다.

서버명 (시스템) 서버 작업명. 서버에 대한 하위 작업을 식별합니다.

서버 시간 날짜시간
(시스템) mm/dd/yy hh:mm:ss 형식의 가장 최근 시작 또는 재시작 시간

짧은 프레임 오류
(자원 간격) 수신된 짧은 프레임 수. 짧은 프레임은 시작 플래그와 종료 플래그 사이에 하용된 것보다 더 적은 용량을 가진 프레임입니다.

짧은 대기 /트랜잭션
(트랜잭션) 트랜잭션당 짧은(활동) 대기 시간의 평균 시간(초). 대화식 프로그램 동계 색선의 경우 값이 높으면 프로그램 표시장치 파일에서 DFRWRT(*NO) 또는 RSTDSP(*YES) 사용 또는 데이터 규 사
용으로 인한 것일 수 있습니다.

짧은 WaitX /트랜잭션(짧은 대기 확장)
(트랜잭션) 2초를 초과하는 짧은(활동) 대기로 인해 발생되고 긴 대기 전적이 발생하도록 한 트랜잭션 당 대기 시간의 평균 시간(초). 활동 레벨이 허용되였지만 이 시간은 손 용당 시간에 대해 연산됩니
d. 표시장치 파일에서 DFRWRT(*NO) 및 또는 RSTDSP(*YES)를 사용하거나 데이터 큐에서 대기 하면 이 값이 높을 수 있습니다.
크기 (구성요소) 초당 십진 데이터 남점 및 언더플로 예외. 숫자 연산에서 작동하지 않은 필드 크기의 표시
크기(MB)
 (시스템) 폴 크기(MB)
크기(GB)
 (폴 간격) 폴 크기(GB)
크기(M)
 (시스템) 디스크 공간 용량(MB)
SHARE CLS
 (작업 추적) 모든 유형의 파일에 대한 공유 닫기 수
SHARE OPN
 (작업 추적) 모든 유형의 파일에 대한 공유 열기 수
SMAPP ReTune
 (구성요소) 시스템 관리 액세스 경로 보호 조정 조정
SMAPP 시스템
 (구성요소) 시스템 제공(디폴트) 저절에 저장된 SMAPP 유발 저절 항목
SMAPP 사용자
 (구성요소) 사용자 제공 저절에 저장된 SMAPP 유발 저절 항목
SOTn (트랜잭션) 대기 코드 열에 나열된 트랜잭션 n의 시작. 이러한 코드는 대기 코드 열에 있지만 대기 코드는 아닙니다. 트랜잭션 경계 추적 레코드를 표시합니다.
I/O장 스크립터 CPU 초
 (시스템) 스크립터 작업이 수행한 각 I/O에 대해 모든 스크립터 작업이 사용한 시스템 처리 장치의 평균 초 수
초당 스크립터 데이터베이스 입기
 (시스템) 스크립터 처리의 초당 데이터베이스 파일에 대한 입력 조작의 평균 수
초당 스크립터 I/O
 (시스템) 스크립터 처리의 초당 실제 디스크 I/O 조작의 평균 수
서비스 시간
 (구성요소) 디스크 대기 시간을 포함하지 않는 요청당 평균 디스크 서비스 시간(초)
SSL 인바운드 연결
 (시스템) 서버가 송신한 SSL 인바운드 연결 수
시간 (트랜잭션) 작업이 시작된 시간
시작 (트랜잭션) HH.MM.SS(시, 분, 초) 형식의 추적 데이터에서 첫 번째 레코드 시간
상태 (트랜잭션) 세 개의 가능한 작업 상태는 다음과 같습니다.
 • W-(대기 상태) 활동 레벨을 보유하지 않습니다.
 • A-(활동 또는 대기 상태) 활동 레벨을 보유합니다.
- I-(부적합한 상태) 활동 레벨에 대해 대기를 합니다.
아래의 테이블은 가능한 작업 상태 전이를 표시합니다. 예를 들어, W 에서 A로는 애입니다. 이는 작업이 대기 상태에서 활동 상태로 변경할 수 있다는 것을 의미합니다.

<table>
<thead>
<tr>
<th>상태 전이 A-A</th>
<th>대상 상태</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>원래 상태</td>
<td>yes</td>
</tr>
<tr>
<td>W</td>
<td>예</td>
</tr>
<tr>
<td>I</td>
<td>yes</td>
</tr>
</tbody>
</table>

상태 전이 A-I
(일반처리 작업 추적) 활동에서 활동으로의 전이 수

상태 전이 A-I
(일반처리 작업 추적) 활동에서 부적합으로의 전이 수

중단 (트랜잭션) 작업이 중료된 시간

중단점 (트랜잭션) HH.MM.SS(시간, 분, 초) 형식의 추적 데이터에서 마지막 레코드 시간

서브파일 읽기
(작업 추적) 서브파일 읽기의 수

서브파일 쓰기
(작업 추적) 서브파일 쓰기의 수

서브시스템명
(냬 간격) 서브시스템의 이름

서브시스템
(시스템, 구성요소, 네 간격) 시스템 보고서의 경우 지정한 서브시스템명, 각 이름은 10자 이릅니다.

구성요소 보고서의 경우 포함(SLTSBS 예계변수) 또는 제외(OMTSBS 예계변수)되도록 선택한 서브시스템의 리스트

합계 (트랜잭션) 동기 디스크 I/O 요청/트랜잭션 열에 나열된 동기 DB READ, DB WRITE, NDB READ 및 NDB WRITE 요청의 평균 총계(작업에 대한 트랜잭션당 동기 I/O 요청의 평균 수)

SWX (트랜잭션) 대기 코드 열에 나열된 쌍은 대기 확장, 짧은 대기는 2초의 한계를 초과하고 시스템이 트랜잭션을 긴 대기에 넣습니다. 긴 대기는 트랜잭션 응답 시간에 부과해야 합니다. 대부분의 경우 활동에서 대기로 트랜잭션은 트랜잭션 경계를 반영하지 않습니다.

동기 (작업 간격) 간격 동안 선택된 대화식 작업이 수행한 동기 디스크 I/O 조작의 수

동기 DIO/트랜잭션
(트랜잭션) 간격 동안 작업에 대한 동기 I/O 요청의 평균 수

동기 디스크 I/O
(시스템, 구성요소, 트랜잭션) 동기 디스크 I/O 조작
초당 동기 디스크 I/O
(구성요소) 초당 평균 동기 디스크 I/O 조작

동기 디스크 I/O 요청
(트랜잭션) 우선순위, 작업 유형 및 복구의 특정한 결과에 대한 동기 디스크 I/O 요청의 총 수

동기 디스크 I/O 요청/트랜잭션
(트랜잭션) 다음 다섯 개의 열은 트랜잭션 동기 디스크 I/O 요청의 수에 대한 정보를 제공합니다.

DB 임기
트랜잭션 동기 데이터베이스 임기 요청의 평균 수

DB 쓰기
트랜잭션 동기 데이터베이스 쓰기 요청의 평균 수

NDB 임기
트랜잭션 동기 비데이터베이스 임기 요청의 평균 수

NDB 쓰기
트랜잭션 동기 비데이터베이스 쓰기 요청의 평균 수

합계 동기 DB READ, DB WRITE, NDB READ 및 NDB WRITE 요청의 평균 총계(작업에 대한 트랜잭션 동기 I/O 요청의 평균 수)

동기 I/O 임과 시간
(트랜잭션) 작업이 사용한 임과 시간의 초당 모든 작업에 대한 동기 디스크 I/O 요청의 평균 수

동기 I/O /초
(작업 임과) 임과 동안 작업이 초당 수행한 동기 디스크 I/O 조작의 평균 수. 동기 디스크 I/O 계수의 임과 시간으로 나누어 연산합니다.

초당 동기 I/O
(작업 임과) 임과 동안 선택된 비대화식 작업이 초당 수행한 동기 디스크 I/O 조작의 평균 수

동기 DBR
(시스템, 트랜잭션, 작업 임과, 복구 임과) 동기 데이터베이스 임기 조작의 평균 수. 이는 총 트랜잭션으로 나누는 전체 동기 데이터베이스 임기입니다. 복구 임과 작업 임과 보고서의 경우, 이는 임과 동안 작업에 대한 트랜잭션 동기 I/O 요청입니다. 시스템 보고서의 경우 초당 연산됩니다. 트랜잭션(작업 임과)의 경우 트랜잭션 동기 I/O 요청입니다. 평균 I/O 트랜잭션에 나열된 트랜잭션 동기 데이터베이스 임기 요청의 평균 수. 이 필드는 시스템 작업이 트랜잭션을 처리하지 않는 경우에 인쇄되지 않습니다.

동기 DBW
(시스템, 트랜잭션, 작업 임과, 복구 임과) 동기 데이터베이스 쓰기 조작의 평균 수. 이는 총 트랜잭션으로 나누는 전체 동기 데이터베이스 쓰기입니다. 복구 임과 작업 임과 보고서의 경우, 이는 임과 동안 작업에 대한 트랜잭션 동기 I/O 요청입니다. 시스템 보고서의 경우 초당 연산됩니다. 트랜잭션(작업 임과)의 경우 트랜잭션 동기 I/O 요청입니다. 평균 I/O 트랜잭션에 나열된 트랜잭션 동기 데이터베이스 쓰기 요청의 평균 수. 이 필드는 시스템 작업이 트랜잭션을 처리하지 않는 경우에 인쇄되지 않습니다.
동기 DIO / 활동 조
(시스템, 트랜잭션) 활동 조 동안 동기 디스크 I/O 조작의 수. 활동 시간은 경과 시간에서 대기 시간을 뺀 것입니다.

동기 DIO / 전용 조
(트랜잭션) 작업이 전용 모드에서 실행 중인 것처럼 초당 동기 디스크 I/O 조작의 추정 수. 전용 모드
는 시스템의 자원에 대해 경합 상태에 있거나 활동 중인 다른 작업이 없음을 의미합니다.

동기 DIO / 경과 시간 조
(트랜잭션) 경과 시간 조 동안 동기 디스크 I/O 조작의 수

동기 디스크 I/O 계수
(트랜잭션) 다음 다섯 개의 열은 트랜잭션당 동기 디스크 I/O 요청의 수에 대한 정보를 제공합니다.

DB 읽기
트랜잭션당 동기 데이터베이스 읽기 요청의 수

DB 쓰기
트랜잭션당 동기 데이터베이스 쓰기 요청의 수

NDB 읽기
트랜잭션당 동기 비데이터베이스 읽기 요청의 수

NDB 쓰기
트랜잭션당 동기 비데이터베이스 쓰기 요청의 수

합계 동기 DB Read, DB Wrt, NDB Read 및 NDB Wrt 합계(트랜잭션당 동기 I/O 요청의 수)

트랜잭션당 동기 디스크 I/O
(시스템, 트랜잭션) 대화식 트랜잭션당 동기 실제 디스크 I/O 조작의 평균 수

동기 최대
(트랜잭션) 해당 작업에 의해 단일 트랜잭션에 대해 발생한 동기 DBR, NDBR 및 WRT I/O 요청의
최대 수. 해당 작업이 대화식 또는 자동작업 작업 유형이 아닌 경우 작업에 대한 총 디스크 I/O가 여
기의 나열됩니다.

동기 NBR
(시스템, 트랜잭션, 작업 간격, 폴 간격) 간격 동안 시스템 작업에 대한 트랜잭션당 동기 비데이터베이
스 읽기 조작의 평균 수. 트랜잭션 보고서의 경우 폴의 선택된 작업에 대해 트랜잭션당 디스크의 조작
동기 비데이터베이스 읽기 계수를 처리된 트랜잭션으로 나누어 연산합니다. 이 필드는 시스템 작업이
트랜잭션을 처리하지 않는 경우에 인쇄되지 않습니다.

동기 NDBW
(시스템, 작업 간격, 폴 간격) 폴의 선택된 작업에 대해 트랜잭션당 디스크에 있는 동기 비데이터베이
스 쓰기 조작의 평균 수. 시스템 보고서의 경우 간격 동안 시스템의 작업에 대한 트랜잭션당 조작입니
다. 동기 비데이터베이스 읽기 계수를 처리된 트랜잭션으로 나누어 연산합니다. 이 필드는 시스템 작업
이 트랜잭션을 처리하지 않는 경우에 인쇄되지 않습니다.
동기 합계
(트랜잭션 동기 DBR, NDBR 및 WRT 요청의 평균 합계(작업에 대해 트랜잭션 동기 I/O 요청의 평균 수)

동기 쓰기
(트랜잭션) 트랜잭션 동기 데이터베이스 및 비데이터베이스 쓰기 요청의 평균 수

트랜잭션당 시스템 CPU(초)
(시스템) 대화식 트랜잭션당 시스템 처리 장치 초의 평균 수

트랜잭션당 시스템 디스크 I/O
(시스템) 대화식 트랜잭션당 시스템으로 인한 실제 디스크 I/O 조작의 총 수

시스템 시작
(구성요소) 시스템이 시작한 시작 지연 조작의 수

시스템 중단
(구성요소) 시스템이 시작한 중단 지연 조작의 수

시스템 총계
(구성요소) 시스템 지연 오브젝트의 결과로 발생하는 지연 저장의 총 수. 경로 보호를 통해 시스템 관리(SMAPP)에 의해 수행된 저장입니다.

시스템 ToUser
(구성요소) 사용자 작성 지연에 대한 시스템 지연 오브젝트의 결과로 발생하는 지연 저장의 수

SZWG
(트랜잭션) 대기 코드 열에 나열된 점유 대기 부여. 작업이 점유 충돌에서 대기 중입니다. 원래 홀더는 오브젝트에 있는 점급을 해제하고 점급은 대기 작업에 부여됩니다. 오브젝트를 기다리는 작업의 이름 및 점급 충돌이 해제되도록 대기하는 대기 작업이 사용하는 시간의 양과 함께 이 행(WAITER -->)에 명명 됩니다. 보유된 오브젝트는 보고서의 다음 행(OBJECT -->)에 명명됩니다.

SZWT
(트랜잭션) 대기 코드 열에 나열된 점유/잠금 충돌 대기. 작업은 점유/잠금 충돌에 대기 중입니다. 시간(*) 시간(*))은 점유/잠금 충돌의 지속 기간이고 보고서에서 이를 따르는 활동 시간에 포함됩니다. 점급의 홀더는 보고서 행(HOLDER -->)의 오른쪽에 명명됩니다. 보유 중인 오브젝트는 다음 보고서 행(OBJECT -->)에 명명됩니다.

Teraspace EAO
(구성요소) 예약 발생 요약 및 간격 계수에 나열됨. 16 경계를 가로지르는 teraspace 주소를 계산할 때 teraspace 유효 주소 논점(EAO)이 발생합니다. 초당 2,300개의 EAO가 있는 경우 빠른 추정은 1% 성능 저하가 발생한다는 것을 표시합니다.

스레드 (작업 요청, 트랜잭션, 전이) 스피드는 처리 전에 있는 제어의 고유한 호름입니다. 모든 작업에는 이와 연관된 초기 스피드가 있습니다. 모든 작업은 하나 이상의 2차 스피드를 시작할 수 있습니다. 시스템은 스피드 번호를 다음과 같은 작업에 지정합니다.
시스템은 순차적으로 스크드 ID를 지정합니다. 이전에 활동했던 작업 구조를 사용하고 있는 작업이 시작될 때 초기 스크드에 지정된 스크드 ID는 순서에서 다음 번호입니다.

작업의 첫 번째 스크드에는 번호가 지정됩니다.

동일한 작업의 추가 스크드에는 1이 증가된 번호가 지정됩니다.

예:

<table>
<thead>
<tr>
<th>Job Name</th>
<th>User Name/Thread</th>
<th>Job Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>QJVACMSRV SMITH</td>
<td>023416</td>
<td></td>
</tr>
<tr>
<td>QJVACMSRV 00000006</td>
<td>023416</td>
<td></td>
</tr>
<tr>
<td>QJVACMSRV 00000007</td>
<td>023416</td>
<td></td>
</tr>
<tr>
<td>QJVACMSRV 00000008</td>
<td>023416</td>
<td></td>
</tr>
</tbody>
</table>

1보다 큰 스크드 값은 작업에 많은 스크드 활동이 동시에 있다는 것을 의미하는 것은 아닙니다. 현재 동일한 작업에 대해 사용 중인 스크드 수를 결정하기 위해 WRKACTJOB, WRKBSJOB 또는 WRKUSRJOB 명령을 사용하여 동일한 작업명으로 복수의 세 부분 ID를 찾으십시오.

스레드 활동

(시스템) 데이터가 샘플링될 때 작업을 수행하는 스크드 수

스레드 유형

(시스템) 데이터가 샘플링될 때 유형 스크드 수

시간

(트랜잭션) 트랜잭션이 완료되거나 점유 또는 잠금 종료가 발생할 때의 시간, 하나의 상태에서 다른 상태로 상태 전이가 발생한 시간을 표시하는 열 표제(HH.MM.SS.mmm 배열)

시간

(작업 추적) 추적 항목에 대한 시간. 시간을 시, 분, 초 및 미크로초로 연속적으로 제공합니다.

트랜잭션

(구성요소, 폴 간격) 폴 또는 서브시스템에서 선택한 작업에 의해 처리된 트랜잭션의 총 수

트랜잭션 계수

(구성요소, 작업 간격) 간격 동안 선택된 대화식 작업이 수행한 트랜잭션 수

트랜잭션/시

(구성요소, 트랜잭션, 작업 간격) 간격 동안 선택된 대화식 작업이 처리한 시간당 트랜잭션의 평균 수

트랜잭션/시 비율

(시스템) 시간당 트랜잭션의 평균 수

대기의 TOD

(점검) 총돌 시작의 시간

Tot

(트랜잭션) 실제 I/O 계수 열에 나열된 DB 읽기, DB 쓰기, NDB 읽기 및 NDB 쓰기 요청의 총 수

Tot Nbr Tns

(트랜잭션) 작업에 대해 완료된 입력 데이터에서 PRTTNSRPT 프로그램이 결정한 트랜잭션의 총 수

총계

(구성요소) 보고서 기간 동안 총 예외 계수

총계

(작업 추적) 필드에 대한 총계
총계 /작업
(트랜잭션) 작업에 대해 열에 있는 항목의 총계(합계)

트랜잭션당 총 문자
(시스템) 대화식 트랜잭션당 표시장치 화면에 작성되거나 표시장치 화면에서 읽은 문자의 평균 수

총 CPU 초 /동기 DIO
(트랜잭션) 총 동기 디스크 I/O 요청으로 나는 총 CPU 초의 비율

총 CPU 이용률
(시스템, 구성요소) 파티션에 사용한 사용 가능한 처리 장치 시간의 백분율. 다중 프로세서 시스템의 경우, 모든 프로세서에 걸쳐 평균적으로 사용됩니다. 전용 파티션의 경우 총 CPU 이용률은 파티션의 각 프로세서에 대한 이용률 값으로 대체됩니다. 두 개의 프로세서가 있는 전용 파티션에 대한 표시장치의 이 부분에 대한 예는 다음과 같습니다.

Average CPU utilization: 41.9
CPU 1 utilization: 41.7
CPU 2 utilization: 42.2

공유 프로세서 파티션에서 개별 CPU 이용률 행은 인쇄되지 않습니다.

주: 이 값은 시스템 카운터에서 가져옵니다. 기타 처리 장치 사용은 개별 작업 제어 블록(WCB)에서 가져옵니다. 이러한 총계는 약간 다를 수 있습니다. 제한없는 파티션의 경우 총 CPU 이용률은 100퍼센트를 초과할 수 있습니다.

총 CPU 이용률(데이터베이스 기능)
(시스템) 시스템의 DB2 Universal Database™ 활동을 표시합니다. 이 필드는 V4R5 이상을 실행하는 모든 시스템에 적용되고 모든 SQL 및 데이터 I/O 조작을 포함하는 모든 데이터베이스 활동이 포함됩니다.

총 CPU 이용률(대화식 기능)
(시스템) CPU 이용률(대화식 기능)은 대화식 작업에 대한 시스템 기능과 관련된 5250 워크스테이션 I/O 조작을 수행하는 모든 작업의 CPU 이용률을 표시합니다. 구매한 언관 기능 및 시스템에 따라 대화식 용량은 시스템의 총 용량 이하입니다.

수신된 총 데이터 문자
(자원 간격) 성공적으로 수신된 데이터 문자 수

전송된 총 데이터 문자
(자원 간격) 성공적으로 전송된 데이터 문자 수

전송에 요청한 총 데이터값
(구성요소) 다음 이유로 삭제된 IP 데이터값의 백분율
• 데이터값을 목적지로 전송하는 라우트가 없습니다.
• 비퍼 공간이 부족합니다.

트랜잭션당 총 필드
(시스템) 대화식 트랜잭션당 작성되거나 읽은 표시장치 필드의 평균 수
수신된 총 프레임
(자원 간격) 유호하지 않은 프레임 및 오류가 있는 프레임을 포함하는 수신된 프레임 수

전송된 총 1 프레임
(자원 간격) 전송된 프레임 정보의 총 수

총 I/O
(시스템) 읽기 및 쓰기 조작의 합계

수신된 총 PDU
(자원 간격) 시간 간격 동안 수신된 프로토콜 데이터 단위(PDU)의 수

주: 비동기 통신의 프로토콜 데이터 단위(PDU)는 프로토콜 제어 문자 또는 바퍼 크기로 종료된 데이터의 가변 길이의 단위입니다.

초당 총 실제 I/O
(자원 간격) 디스크 압(arm)에 의해 초당 수행된 실제 디스크 I/O 조작의 평균 수

총 응답
(구성요소, 자원 간격) 보고서 시간에 대해 이 제어기의 모든 장치 또는 활동 작업 스테이션에 대한 평균 응답 시간과 함께 제수된 트랜잭션의 총 수

총 접유/내기 시간
(구성요소) 각 작업에 대한 응답 시간(밀리초)

총 트랜잭션
(구성요소) 이 필수에서 처리된 트랜잭션 수

트랜잭션 응답 시간(초/트랜잭션)
(트랜잭션) 각 트랜잭션에 대한 응답 시간(초). 이 값에는 통신 회전 시간이 포함되지 않습니다. 작업 스테이션에서 측정된 응답 시간은 데이터 전송 시간만으로 이 시간을 초과합니다(작업 스테이션에서 처리 장치로 데이터를 전송하고 처리 장치에서 작업 스테이션으로 응답 데이터를 다시 전송해야 하는 시간).

시간당 트랜잭션(로컬)
(시스템) 로컬 표시장치로 인한 시간당 대화식 트랜잭션

시간당 트랜잭션(리모트)
(시스템) 리모트 표시장치로 인한 시간당 대화식 트랜잭션

임시 크기
(구성요소) 저널 임시 영역에서 배치된 KB. 이는 시스템의 생성한 숫자진 저널 항목입니다.

전송/수신/평균 화면 이용률
(자원 간격) 악용방 전송 모드에서 사용한 전송 화면 용량의 백분율, 사용한 수신 화면 용량의 백분율 및 전송과 수신 용량의 평균

TSE (트랜잭션) 대기 코드 열에 나열된 시간 분할 종료. LAST로 레이블된 스테 항목에 표시된 프로그램은 시간 분할 종료로 이동한 프로그램입니다.
유형 (구성요소, 트랜잭션)
시스템 작업 유형 및 부속유형. 구성요소 보고서는 이 열에 하나의 문자만 허용합니다. 트랜잭션 보고서는 두 개의 문자를 허용합니다. 트랜잭션 보고서는 QAPMJOBS 필드에서 직접 작업 유형 및 작업 부속유형을 보고합니다. 구성요소 보고서는 작업 유형 및 작업 부속유형 값을 사용하여 이를 QAPMJOBS 필드에서 값이 되거나 될 수 없는 문자로 변환합니다. 가능한 작업 유형은 다음과 같습니다.

<table>
<thead>
<tr>
<th>A</th>
<th>자동시작</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>일괄처리</td>
</tr>
<tr>
<td>BD</td>
<td>즉시 일괄처리(트랜잭션 전용)</td>
</tr>
</tbody>
</table>

주: 즉시 일괄처리 값은 활동 작업에 대한 작업 표시 화면에는 BCI로 표시되고 서브시스템 작업에 대한 작업 표시 화면에는 BATCH로 표시됩니다.

BE	일괄처리 호출(트랜잭션 전용)
BJ	일괄처리 사전시작 작업(트랜잭션 전용)
C	APPC를 통한 5250 에뮬레이션 및 APPC 또는 TCP/IP를 실행하는 System i Access 호스트 서버를 포함하는 프로그래밍 가능 작업 스테이션 애플리케이션 서버. 자세한 정보는 호스트 서버 관리 주제를 참조하십시오. 다음 항목 중 하나가 참입 경우 작업이 System i Access 서버로 보고됩니다.

- 수신 APPC 호출은 서버 프로그램명 중 하나를 요청합니다. 이는 명령된 프로그램을 이미 기다리고 있는 QSERVER, QCMN 및 QSYSWRK 서브시스템의 사전시작 작업에 적용됩니다.
- 수신 IP 포트 번호는 서비스명 설명 포트 번호 중 하나와 일치합니다. 이는 저장된 IP 포트 번호를 이미 기다리고 있는 QSERVER, QCMN 및 QSYSWRK 서브시스템의 사전시작된 작업에 적용됩니다.
- 수신 IPX 소켓 번호는 서비스명 설명 포트 번호 중 하나와 일치합니다. 이는 저장된 IPX 포트 번호를 이미 기다리고 있는 QSERVER, QCMN 및 QSYSWRK 서브시스템의 사전시작된 작업에 적용됩니다.
- 동등한 WARP 또는 OS/2 통신 관리자 아래에서 5250 에뮬레이션에 의해 송신된 APPC 데이터 스트림에서 나온 수신 5250 표시장치 에뮬레이션 작업 |

| D | 대상 분산 데이터 관리(DDM) 서버 |
| I | 대화식, 구성요소 보고서의 경우 쌍축 데이터 링크 제어(TDLC), 5250 리모트 워크스테이션 및 3270 리모트 워크스테이션이 포함됩니다. 트랜잭션 보고서의 경우 쌍축 데이터 링크 제어 (TDLC), 5250 리모트 워크스테이션, 3270 리모트 워크스테이션, SNA pass thru 및 5250 Telnet 이 포함됩니다. |

| L | 라이센스가 있는 내부 코드 테스크 |
| M | 서브시스템 모니터 |
P SNA passthru 및 5250 Telnet passthru. 트랜잭션 보고서에서 이러한 작업은 I(대화식)로 표시됩니다.
R 스크린 관리기
S 시스템
W 스크린 쓰기 작업을 포함하는 스크린 출력기 및 확장 기능 인쇄(AFP)가 지정된 경우 인쇄 드라이버 작업
WP 스크린 인쇄 드라이버(트랜잭션 전용)
X 시스템 시작
가능한 작업 부속유형은 다음과 같습니다.
D 일람처리 즉시 작업
E 호출(통신 일람처리)
J 사전시작 작업
P 인쇄 드라이버 작업
T 복수 리퀘스터 단말기(MRT)(System/36 환경 전용)
3 System/36
주:
1. 작업 부속유형은 구성요소 보고서에 표시되지 않습니다.
2. 작업 유형이 공백이거나 이를 제거하려면 작업 유형 변경(CHGJOBTYP) 명령을 사용하여 적절한 작업 유형을 지정하십시오.

유형 (시스템, 트랜잭션, 작업 간격) DTNTY 필드의 설명에 나열된 트랜잭션 유형 중 하나
(시스템)
 디스크 유형
(트랜잭션)
 작업의 유형 및 부속유형
(트랜잭션)
 오브젝트에 의한 점유/잠금 충돌 섹션의 경우 점유/잠금 충돌 유형

수신된 UDP 데이터그램
 (구성요소) UDP 사용자에 전달된 사용자 데이터그램 프로토콜(UDP) 데이터그램의 총 수
송신한 UDP 데이터그램
 (구성요소) 이 엔터프라이즈에서 송신한 사용자 데이터그램 프로토콜(UDP) 데이터그램의 총 수

사용 가능한 비계산 CPU
 (구성요소) 구성된 CPU와, 간격 동안 공유 프로세서 풀의 파티션에 사용 가능한 CPU 시간의 백분율.
 이 값은 특정 파티션에 대해 사용 가능한 구성된 CPU와 관련됩니다.
수신된 유니캐스트 패킷
(시스템) 상위 계층 프로토콜로 전달한 서브넷워크 유니캐스트 패킷의 총 수. 해당 수에는 저장된 인터페이스에서 수신된 패킷만 포함됩니다.

송신한 유니캐스트 패킷
(시스템) 상위 레벨 프로토콜이 서브넷워크 유니캐스트 주소로 전송되도록 요청한 패킷의 총 수. 이 수에는 삭제되거나 송신되지 않은 패킷이 포함됩니다.

장치 (시스템, 구성요소, 자원 간격) 특정 디스크 장치 또는 압(arm)을 식별하기 위해 시스템이 지정한 번호. 장치 번호 다음에 오는 ‘A’ 또는 ‘B’는 디스크 장치가 이중복사 되었다는 것을 표시합니다. (예: 0001A 및 0001B는 이중복사 쌍입니다.)

장치명 디스크 압(arm)의 자원명

사용자 ID
(시스템, 구성요소, 트랜잭션, 작업 간격, 품) 포함(SLTUSRID 매개변수) 또는 제외(OMTUSRID 매개변수)되도록 선택한 사용자의 리스트

사용자명
(구성요소, 트랜잭션, 작업 간격, 일관처리 작업 추적) 연관된 사용자명(작업 제출, 중돌 발생 등)

사용자명/스레드
(구성요소, 트랜잭션) 작업 정보에 2차 스프레드가 포함된 경우 이 열은 스프레드 ID를 표시합니다. 작업 정보에 2차 스프레드가 포함되지 않은 경우 열은 사용자명을 표시합니다. 시스템은 스프레드 번호를 다음 값과 같은 작업에 저장합니다.
- 시스템은 순차적으로 스프레드 ID를 지정합니다. 이전에 활성했던 작업 구조를 사용하는 작업이 시작될 때 초기 스프레드에 저장된 스프레드 ID는 순서에서 다음 번호입니다.
- 작업의 첫 번째 스프레드에는 번호가 저장됩니다.
- 동일한 작업의 추가 스프레드에는 1이 증가된 번호가 저장됩니다.
예:

<table>
<thead>
<tr>
<th>Job Name</th>
<th>User Name/Job Number</th>
<th>Thread</th>
</tr>
</thead>
<tbody>
<tr>
<td>QJVCMDRSV</td>
<td>SMITH 023416</td>
<td>2QJVCMDRSV 00000006 023416</td>
</tr>
<tr>
<td>QJVCMDRSV</td>
<td>00000007 023416</td>
<td></td>
</tr>
<tr>
<td>QJVCMDRSV</td>
<td>00000008 023416</td>
<td></td>
</tr>
</tbody>
</table>

1보다 큰 스프레드 값은 작업에 많은 스프레드 활동이 동시에 있다는 것을 의미하는 것은 아닙니다. 현재 동일한 작업에 대해 사용 중인 스프레드 수를 결정하기 위해 WRKACTJOB, WRKBSJOB 또는 WRKUSRJOB 명령을 사용하여 동일한 작업명으로 복수의 세 부분 ID를 찾으십시오.

사용자 시작
(구성요소) 사용자가 시작한 시작 자널 조작의 수

사용자 중단
(구성요소) 사용자가 시작한 중단 자널 조작의 수
사용자 총계

(구성요소) 시스템 저널 오브젝트의 결과로 발생하는 저널 저장의 총 수.

이용률 (구성요소, 자원 간격) 각 로컬 작업 스테이션, 디스크 또는 통신 IOP, 제어기 또는 드라이브에 대한 이용률의 퍼센트

주: 시스템 평균 이용률에는 그런 간격이 제게 또는 일시중단 상태에 있는 측정 간격의 이중복사된 양 (arm)에 대한 데이터가 포함되지 않습니다.

이용률 2

(구성요소, 자원) 코프로세서의 이용률

값 (트랜잭션) 작업 요약 보고서의 개별 트랜잭션 통계 섹션의 경우 트랜잭션에 대해 비교되는 데이터의 값입니다. 가장 긴 점유/잠금 총돌 섹션의 경우 점유 또는 잠금 총돌이 발생한 초 수

확률 (구성요소) 초당 확률 이외 수. 포인터가 해결되어야 할 때, 블록 MI 명령어가 보안 레벨 10, 20 또는 30에서 사용될 때 및 분석되지 않은 기호명이 호출될 때 확인 예외가 발생합니다. 이 계수는 정상 시스템 조작의 경우에도 매우 높을 수 있습니다. 계수를 모니터로 사용하십시오. 큰 변화 또는 변경사항이 있는 경우 추가 정보에서 이러한 변화를 탐색하십시오.

VP (시스템) 보고된 파티션에서 사용 중인 가상 프로세서 수

가상 공유 프로세서 폴 ID

(시스템) 가상 공유 프로세서 폴 ID. 이 열은 i5/OS 파티션에 대해서만 인쇄됩니다.

W-I 대기/트랜잭션

(트랜잭션) 트랜잭션당 대기에서 부적합으로 시간의 평균 시간(초). 이 값은 활동 레벨이 응답 시간에 갖는 효과에 대한 표시입니다. 이 값이 낮으면 대기에서 부적합으로의 전이 수는 응답 시간에 가의 효력이 발생하지 않습니다. 값이 높으면 추가 대화를 폴 가역장치 추가 및 대화를 폴 활동 레벨 증가는 응답 시간을 향상시켜야 합니다. 대화를 폴 가역장치를 중가시킬 수 없는 경우(제한된 사용 가능한 기역장치로 인해), 활동 레벨 증가는 응답 시간도 중가시킵니다. 그러나 활동 레벨 증가는 가역장치 폴 내의 초과 결합의 결과를 가져오지 않습니다.

대기 코드

(트랜잭션) 추적 레코드가 생성되도록 하는 작업 상태 전이. 값은 다음과 같을 수 있습니다.

이벤트 이벤트 대기. 메시지 큐에서 대기할 때 발생하는 긴 대기

EOTn 유형 n의 트랜잭션에 대한 트랜잭션 끝. 이러한 코드는 대기 코드 열에 있지만 대기 코드는 아닙니다. 트랜잭션 경계 추적 레코드를 표시합니다.

EORn 트랜잭션 n에 대한 응답 시간의 끝. 이러한 코드는 대기 코드 열에 있지만 대기 코드는 아닙니다. 트랜잭션 경계 추적 레코드를 표시합니다.

오류 응답

(구성요소) 오류의 응답 수

HDW 보류 대기(일시중단된 작업 또는 시스템 요청)
LKL

잠금 해제됨. 보고서의 다음 세부 행(OBJECT -->)에 명명된 오브젝트에 있는 잠금을 해제한 작업. 오브젝트를 가리키는 작업의 이름이 잠금이 해제되도록 대기하는 데 작업이 사용한 시간의 양과 함께 이 행(WAITER -->)에 명명됩니다.

LK

잠금 대기. 이러한 것이 많이 있는 경우 또는 ACTIVE/SP* 열에 있는 유호한 시간 긴장을 가진 항목을 보는 경우 추가 분석이 필요합니다. 이 LKW 보고서 행에 앞서는 LWKT 보고서 행은 대기 중인 오브젝트와 오브젝트를 가진 사용자를 표시합니다.

LKW

잠금 충돌 대기. 작업은 잠금 충돌에서 대기 중입니다. 시간(*) 시간 /*)은 잠금 충돌의 지속 기간이고 LKW 시간과 동일하지 않더라도 LKW 시간에 매우 근접해야 합니다. 잠금의 혼다는 보고서 행(HOLDER -->)의 오른쪽에 명명됩니다. 잠겨진 오브젝트는 다음 보고서 행(OBJECT -->)에 명명됩니다.

SOTn

트랜잭션 n의 시작. 이러한 코드는 대기 코드 열에 있지만 대기 코드는 아닙니다. 트랜잭션 경계 추적 해코드를 표시합니다.

SWX

짧은 대기 환경. 짧은 대기는 2초의 한계를 초과하고 시스템이 트랜잭션을 긴 대기에 넣습니다. 긴 대기는 트랜잭션 응답 시간에 부과해야 합니다. 즉 활동에서 대기로 트랜잭션은 트랜잭션 경계를 반복하지 않습니다.

SZWG

(트랜잭션) 대기 코드 열에 나열된 점유 대기 부여. 작업이 점유 충돌에서 대기 중입니다. 원래 혼다는 오브젝트에 있는 잠금을 해제하고 잠금은 대기 작업에 부여됩니다. 오브젝트를 가리키는 작업의 이름이 점유 충돌이 해제되도록 대기하는 데 작업이 사용한 시간의 양과 함께 이 행(WAITER -->)에 명명됩니다. 보류된 오브젝트는 보고서의 다음 행(OBJECT -->)에 명명 됩니다.

SZWT

점유/잠금 충돌 대기. 작업은 점유/잠금 충돌에서 대기 중입니다. 시간(*) 시간 /*)은 점유/잠금 충돌의 지속 기간이고 보고서에서 이를 따르는 활동 시간에 포함됩니다. 잠금의 혼다는 보고서 행(HOLDER -->)의 오른쪽에 명명됩니다. 보류 중인 오브젝트는 다음 보고서 행(OBJECT -->)에 명명 됩니다.

TSE

시간 분할 종료. LAST로 레이블된 스테이트 항목에 표시된 프로그램은 시간 분할 종료로 이동한 프로그램입니다. 작업이 긴 대기 사이의 CPU 시간(이 빠른 프로세서의 0.2초)에서 0.5초를 사용할 때마다 시스템이 CPU 쿠키에 동일한 우선순위의 작업이 있는지 여부를 검사합니다. 동일한 우선순위 작업이 있는 경우 동일한 우선순위가 있는 다음 작업은 CPU를 사용 받고 인터럽트 작업이 동일한 우선순위의 마지막으로 규로 이동합니다. 그러나 작업은 활동 레벨을 보유합니다. 이는 내부 시간 분할 종료입니다. 작업이 외부 시간 분할 값에 도달할 때 다른 작업이 활동 레벨을 가리키는 경우, 활동에서 부적합으로 작업 상태 전이가 발생할 수 있습니다. 작업이 활동 레벨 외부로 강제실행될 때 해당 페이지는 다른 작업에서 도용하기 쉽고 작업이 활동 레벨을 복구할 때 추가 I/O를 야기합니다. 대화식 작업의 경우 2초 및 일괄처리 작업의
경우 IBM이 제공하는 다플트 값인 5초는 경우에 따라 너무 높을 수 있습니다. 특히 고급 프로세서의 경우에 그러합니다. 초기값으로, 시간 분할을 트랜잭션당 평균 CPU 초의 3배로 설정하십시오.

WTO 대기 시간 종료. 작업은 대기에 정의된 대기 제한시간을 초과합니다(예: 잡금, 메시지 큐 또는 레코드에서 대기).

WAIT
(작업 추적) 발생한 대기 수

WAIT-ACT
(작업 추적) 작업 추적 분석 요약에서 ENDTNS 및 STRTNS 프로그램 사이에 WAIT-ACT로 레이블 표시된 시간입니다. 대화식 작업을 추적하고 다플트 STRTNS 및 ENDTNS 매개변수를 사용한 경우 이 값은 트랜잭션을 처리하는 데 사용한 시간입니다.

작업 추적 분석 I/O 요약에서 사용자의 입력이 있거나 인지 시간으로 인해 작업이 비활동 상태인 시간입니다.

Wait-Inel
(시스템, 구성요소) 분당 대기에서 부작용으로 작업 상태 전이 평균 수

작업 스테이션 제어기
(자원 간격) 리모트 작업 스테이션 제어기명

쓰기 (작업 추적) 발생한 실제 쓰기 수

초당 쓰기
(자원 간격) 디스크 압(arm)에 의해 초당 수행된 디스크 쓰기 조작의 평균 수

WRITTEN
(작업 추적) 항목에 발생한 실제 쓰기의 수

WTO (트랜잭션) 대기 코드 열에 나열된 대기 시간 종료. 작업은 대기에 정의된 대기 제한시간을 초과합니다(예: 잡금, 메시지 큐 또는 레코드에서 대기).

0.0-1.0
(구성요소, 자원 간격) 응답 시간이 0~1초 사이인 횟수

1.0-2.0
(구성요소, 자원 간격) 응답 시간이 1~2초 사이인 횟수

2.0-4.0
(구성요소, 자원 간격) 응답 시간이 2~4초 사이인 횟수

4.0-8.0
(구성요소, 자원 간격) 응답 시간이 4~8초 사이인 횟수

성능 보고서 해더:
유형 또는 색상에 상관없이 각 보고서에는 데이터의 특성을 관별하는 정보가 보고서의 헤더에 포함됩니다. 헤더 정보에 대한 설명은 다음을 참조하십시오.

보고서 제목
첫 번째 행에서 상등 보고서의 유형을 식별합니다. 두 번째 행에서 보고서의 색상을 식별합니다.

현재 날짜 및 시간
보고서가 인쇄된 날짜와 시간을 표시합니다.

보고서 페이지 수
보고서의 페이지를 식별합니다.

간격에서 시간 · 시간까지의 상등 데이터
데이터가 수집된 기간과 간격을 표시합니다.

사용자 선택 보고서 제목
사용자가 보고서에 지정한 이름을 표시합니다.

멤버 보고서에 사용된 상등 데이터 멤버를 표시합니다. 이 이름은 상등 데이터 작성이(CRTPFRDTA) 명령의 MBR 매개변수에 사용된 이름과 일치합니다.

라이브러리
특정 보고서에 사용된 상등 데이터가 있는 라이브러리를 식별합니다.

모델/일련 번호
보고서의 상등 데이터가 수집된 서버의 모델과 일련 번호를 표시합니다. 일련 번호는 10자리 문자일 수 있습니다.

주 기역장치 크기
상등 데이터가 수집된 서버의 주 기역장치 크기를 표시합니다.

작업됨 날짜 및 시간 콜렉션 서비스가 보고서에 대한 상등 데이터 수집을 시작했는지 표시합니다. 특정 간격 또는 특정 시작 시간의 선택 여부에 따라 다른을 볼 수 있습니다.

- 보고서를 실행할 간격을 지정하지 않은 경우 시작 날짜 및 시간은 데이터가 수집된 날짜와 시간입니다.
- 보고서를 실행할 특정 간격을 지정한 경우 시작 날짜 및 시간은 데이터가 수집된 날짜와 시간입니다.

주: 시스템 보고서의 경우에는만 선택된 간격을 찾아보면 보고서 선택 범주 색상을 참조해야 합니다.

중단됨 날짜 및 시간 콜렉션 서비스가 이 보고서에 대한 상등 데이터 수집을 중단했습니다. 특정 간격 또는 특정 종료 시간의 선택 여부에 따라 다음을 볼 수 있습니다.

- 보고서를 실행할 간격을 지정하지 않은 경우 중단 날짜 및 시간은 데이터가 수집된 날짜와 시간입니다.
- 보고서를 실행할 특정 간격을 지정한 경우 중단 날짜 및 시간은 데이터가 수집된 날짜와 시간입니다.
주: 시스템 보고서의 경우에만 선택된 간격을 찾으러면 보고서 선택 범주 섹션을 참조해야 합니다.

시스템명
보고서의 성능 데이터가 수집된 서버의 이름을 표시합니다.

버전/리리스 레벨
x/ x.0은 성능 데이터가 수집된 때에 서바가 실행 중인 오피레팅 시스템의 버전 및 릴리스 레벨을 표시합니다.

파티션 ID
클래식이 실행된 파티션 ID를 식별합니다. 이 변경은 논리 파티션 구현을 수용합니다. 표시될 일부 값은 다음과 같습니다.
- 시스템이 파티션되지 않거나(디폴트) 클래식 서비스를 사용해서 논리 파티션 시스템의 기본 파티션에 대한 성능 데이터를 수집하고 인쇄할 경우 이 값은 00이 됩니다.
- 이전 레벨에서 성능 모니터 시작(STRPFRMON) 명령으로 데이터를 수집한 경우 파티션 ID에 대한 값은 00입니다.
- 클래식 서비스를 사용하여 논리 파티션 시스템의 2차 파티션에서 성능 데이터를 수집하고 인쇄한 경우 이 값은 서비스 모니터 시작(STRSST) 명령 아래의 시스템 파티션으로 작업 표시 화면에 표시된 파티션 ID와 동일합니다.

가능 코드
서버에 대한 대화식 가능 코드 값을 식별합니다.

대화식 임계값
클래식 기간 동안 사용된 대화식 작업의 전체 시스템 CPU 파센트를 표시합니다. 값은 QAPMCONF 파일(GKEY IT)에서 얻어지고 클래식이 시작될 때 얻어진 구성 미터법을 반영합니다. 이 값은 논리 파티션 구성의 동적 변경사항으로 인해 클래식 기간 내의 각 간격을 변경한다는 것을 명심하십시오.

가상 프로세서
파티션에 구성된 가상 프로세서 수. 값은 QAPMCONF 파일(GKEY 13)에서 얻어지고 클래식이 시작될 때 얻어진 구성 미터법을 반영합니다. 이 값은 논리 파티션 구성의 동적 변경사항으로 인해 클래식 기간 내의 각 간격을 변경한다는 것을 명심하십시오.

프로세서 장치
파티션에 할당된 프로세서 장치의 수. 값은 QAPMCONF 파일(GKEY PU)에서 얻어지고 클래식이 시작될 때 얻어진 구성 미터법을 반영합니다. 이 값은 논리 파티션 구성의 동적 변경사항으로 인해 클래식 기간 내의 각 간격을 변경한다는 것을 명심하십시오.

처리 장치는 하나 이상의 가상 프로세서를 통해 공유된 처리 전원에 대한 측정 장치입니다. 하나의 가상 프로세서에 있는 하나의 공유 처리 장치는 대략적으로 하나의 전용 프로세서와 같은 작업을 수행합니다. 두 개의 가상 프로세서에 있는 하나의 공유 처리 장치는 두 개의 전용 프로세서의 작업 중 절반을 수행합니다.
시나리오: 성능
성능 관리 학습을 위한 좋은 방법 중 하나는 비즈니스 환경에서의 해당 애플리케이션 또는 둘의 사용 방법을 보여주는 예제를 참조하는 것입니다.

시나리오: 업그레이드 또는 마이그레이션 후에 시스템 성능 개선
이 시나리오에서는, 방금 시스템을 업그레이드 또는 마이그레이트했으며, 시스템이 이전보다 느리게 실행되는 것으로 나타났습니다. 이 시나리오는 성능 문제점을 식별하고 수정하는 데 도움이 됩니다.

상황
최근에 시스템을 최신 릴리스로 업그레이드했습니다. 정상적인 조작 업그레이드 및 재개를 완료한 후, 시스템 성능이 현저하게 저하되었습니다. 성능 문제점의 원인을 식별하고 시스템을 정상성능으로 복원하려고 합니다.

세부사항
오래된 시스템을 업그레이드한 후 몇몇 문제점으로 성능이 저하될 수 있습니다. i5/OS 및 성능 분석 루이션스가 있는 프로그램(5770-PT1)에 포함된 성능 관리 루이션을 사용하여 성능 문제점에 대한 자세한 정보를 얻고 원인이 되는 문제점의 범위를 줄일 수 있습니다.

1. CPU 이용률을 검사합니다. 간혹 업그레이드 후에 작업이 필요한 자원에 액세스하지 못할 수 있습니다. 이는 승인할 수 없는 많은 CPU 자원을 소비하는 단일 작업 때문일 수 있습니다.
 • WRKSYSACT, WRKSYSSTS, WRKACTJOB 또는 System i Navigator 시스템 모니터를 사용하여 총 CPU 이용률을 찾아요.
 • CPU 이용률이 높은 경우(예: 90% 초과) 성능 작업에 이용되는 CPU의 양을 검사합니다. 단일 작업이 CPU 자원의 30%를 초과하여 소비하는 경우 파일 호출 또는 오브젝트가 누락될 수 있습니다. 그러면 추가 자원을 위해 벤더(벤더에서 제공하는 프로그램의 경우)나 작업 소유자 또는 프로그래머에 문의할 수 있습니다.

2. STRPFTRRC 명령으로 성능 추적을 시작한 후 시스템 및 구성요소 보고서를 사용하여 다음과의 가능한 문제점임을 식별하고 정정합니다.
 • 기계 폴의 페이지 결합이 초당 10개 결합을 초과하는 경우 결합들이 이 레벨 아래로 떨어질 때까지 추가 메모리를 기계 폴에 제공합니다.
 • 디스크 이용률이 40%를 초과하는 경우 대기 및 서비스 시간을 살펴봅니다. 이 값이 승인 가능하면 작업부하를 줄여서 우선순위를 관리해야 할 수도 있습니다.
 • IOP 이용률이 60%를 초과하는 경우 추가 IOP를 추가하고 일부 디스크 자원을 할당합니다.
 • 사용자 폴에서의 페이지 결합이 승인할 수 없을 만큼 높은 경우 자동으로 성능을 조정할 수 있습니다.

시간이: 시스템 모니터

CPU 이용률이 너무 높아서 더 많은 자원을 사용할 수 있을 때까지 임시로 더 낮은 우선순위 작업을 보류하는 경우 사용자에게 경고하는 시스템 모니터 예를 참조합니다.

상황

시스템 관리자로서, 시스템에 사용자의 현재 요구와 비즈니스 요구사항을 충족시키기에 충분한 자원이 있는지 확인해야 합니다. 사용자 시스템의 경우 CPU 이용률은 특히 중요한 관심사입니다. CPU 이용률이 너무 높아서 더 많은 자원을 사용할 수 있을 때까지 임시로 더 낮은 우선순위 작업을 보류하는 경우 시스템이 사용자에게 경고하도록 할 수 있습니다.

이와 같이 하려면 CPU 이용률 80%를 초과하는 경우 메세지를 보내는 시스템 모니터를 설정할 수 있습니다. 또한 CPU 이용률이 60%(작업이 해제되는 지점)로 떨어지고 정상 운영이 제거될 때까지 QBATCH 작업 큐에 있는 모든 작업을 보류할 수 있습니다.

구성 예

시스템 모니터를 설정하려면 추적할 미터법과 미터법이 지정된 레벨에 도달할 때 모니터가 수행할 조치를 정의해야 합니다. 이 목표를 달성하는 시스템 모니터를 정의하려면 다음 단계를 완료하십시오.
1. System i Navigator에서, 장치 관리 → 모니터를 열고 시스템 모니터를 마우스 오른쪽 버튼으로 클릭한 후 새 모니터...를 선택하십시오.
2. 일반 페이지에서 이 모니터의 이름 및 설명을 입력하십시오.
3. 미터법 패널을 클릭하고 다음 값을 입력하십시오.
 a. 사용할 수 있는 미터법 리스트에서 CPU 이용률 기본(평균)을 선택하고 추가를 클릭하십시오. CPU 이용률 기본(평균)은 이제 모니터할 미터법 아래에 나열되고, 창의 맨 아래 부분에는 이 미터법에 대한 설정이 표시됩니다.
 b. 콜렉션 간격에 대해, 데이터를 수집할 빈도를 지정하십시오. 이는 콜렉션 서비스 설정을 대체합니다. 이 에의 경우 30초를 지정하십시오.
 c. 이 미터법에 대한 모니터 그래프의 수직 축에 대한 스케일을 변경하려면 최대 그래프 값을 변경하십시오. 이 미터법에 대한 그래프의 수평 축에 대한 스케일을 변경하려면 시간 표시 값을 변경하십시오.
 d. 미터법 설정에 대해 임계값 1 패널을 클릭하고 다음 값을 입력하여 CPU 이용률이 80% 이상인 경우 조 회 메세지를 송신하도록 하십시오.
 1) 임계값 작동 가능을 선택하십시오.
 2) 임계값 트리거 값에 대해 ≥ 80(80% 이상 사용 중)을 지정하십시오.
 3) 지속 기간에 대해 1 간격을 지정하십시오.
4. i5/OS 명령에 대해 다음을 지정하십시오.
 SNDMSG MSG('Warning,CPU...') TOUSR(*SYSOPR) MSGTYPE(*INQ)
5. 임계값 재설정 값에 대해 < 60(60% 미만 사용 중)을 지정하십시오. 그러면 CPU 이용률이 60% 미만이 될 때 모니터를 재설정합니다.
e. 임계값 2 탭을 클릭하고 다음 값을 입력하여 CPU 이용률이 5개의 클럭선 간격에 대해 80% 이상을 유지할 때 QBATCH 작업 큐의 모든 작업을 보류하십시오.
 1) 임계값 작동 가능을 선택하십시오.
 2) 임계값 트리거 값에 대해 >= 80(80% 이상 사용 중)을 지정하십시오.
 3) 지속 기간에 대해 5개 간격을 지정하십시오.
4. i5/OS 명령에 대해 다음을 지정하십시오.
 HLDJOBQ JOBQ(QBATCH)
5. 임계값 재설정 값에 대해 < 60(60% 미만 사용 중)을 지정하십시오. 그러면 CPU 이용률이 60% 미만이 될 때 모니터를 재설정합니다.
6. 지속 기간에 대해 5개 간격을 지정하십시오.
7. i5/OS 명령에 대해 다음을 지정하십시오.
 RLSJOBQ JOBQ(QBATCH)

이 명령은 CPU 이용률이 5개의 클럭선 간격에 대해 60% 미만으로 유지될 경우 QBATCH 작업 큐를 해제합니다.

4. 조치 탭을 클릭하고 트리거 및 재설정 열 모두에서 로그 이벤트를 선택하십시오. 이 조치는 임계값이 트리거되고 재설정될 때 이벤트 로그에서 항목을 작성합니다.
5. 모니터할 시스템과 그룹을 지정하면서 시스템 및 그룹 탭을 클릭하십시오.
6. 확인을 클릭하여 모니터를 저장하십시오.
7. 시스템 모니터 리스트에서 새 모니터를 마우스 오른쪽 버튼으로 클릭하고 시작을 선택하십시오.

결과
새 모니터는 지정된 클럭선 간격에 따라 30초마다 새 데이터 점이 추가되는 CPU 이용률을 표시합니다. 모니터는 사용자 PC가 커져 있는 경우에도 CPU 이용률이 80%에 도달할 때마다 지정된 임계값 조치를 수행합니 다.

주: 이 모니터는 CPU 이용률만 추적합니다. 그러나 사용할 수 있는 몇 개의 미터법도 동일한 모니터에 포함할 수 있으며, 각 미터법에는 고유한 임계값과 조치가 있을 수 있습니다. 또한 몇 개의 시스템 모니터를 동시에 실행할 수도 있습니다.

시나리오: 메세지 모니터
시스템에 발생하는 사용자 메세지 큐의 조회 메시지를 표시하는 메세지 모니터 예를 참조하십시오. 모니터는 감지되는 즉시 메세지를 열어서 표시합니다.
상황

회사에는 몇 개의 시스템이 있으므로 시스템마다 메세지 que를 검사하려면 시간이 소비됩니다. 시스템 관리자로서, 시스템에 발생하는 대로 조회 메세지를 인식해야 합니다.

시스템에 발생하는 사용자 메세지 큐의 조회 메세지를 표시하도록 메세지 모니터를 설정할 수 있습니다. 모니터는 감지되는 즉시 메세지를 열어서 표시합니다.

구성 예

메세지 모니터를 설정하려면 검시할 메세지 유형과 메세지가 발생할 때 모니터가 수행할 조치를 정의해야 합니다. 이러한 목적을 수행하는 메세지 모니터를 설정하려면 다음 단계를 완료하십시오.

1. System i Navigator에서, 중앙 관리 → 모니터를 설치하고 메세지 모니터를 마우스 오른쪽 버튼으로 클릭한 후 새 모니터...를 선택하십시오.
2. 일반 페이지에서 이 모니터의 이름 및 설명을 입력하십시오.
3. 메세지 탭을 클릭하고 다음 값을 입력하십시오.
 a. 모니터할 메세지 큐에 대해 QSYSOPR을 저장하십시오.
 b. 메세지 세트 1 탭에서 유형에 대해 조회를 선택하고 추가를 클릭하십시오.
 c. 다음 메세지 수에서 트리거를 선택하고 1개 메세지를 저장하십시오.
4. 클릭한 간격 탭을 클릭하고 15초를 선택하십시오.
5. 조치 탭을 클릭하고 모니터 열기를 선택하십시오.
6. 시스템 및 그룹 탭을 클릭하고 조회 메세지에 대해 모니터할 시스템 및 그룹을 선택하십시오.
7. 새 모니터를 저장하려면 확인을 클릭하십시오.
8. 메세지 모니터 리스트에서 새 모니터를 마우스 오른쪽 버튼으로 클릭하고 시작을 선택하십시오.

결과

새 메세지 모니터는 모니터되는 시스템에서 QSYSOPR로 송신된 조회 메세지를 표시합니다.

주: 이 모니터는 QSYSOPR에 송신된 조회 메세지에만 응답합니다. 그러나 단일 모니터에 서로 다른 두 개의 메세지 세트가 포함될 수 있으며 동시에 실행되는 몇 개의 메세지 모니터도 보유할 수 있습니다. 또한 메세지 모니터는 지정된 메세지가 수신될 때 i5/OS 명령을 수행할 수 있습니다.

시나리오: CPU 이용률에 대한 작업 모니터

지정된 작업의 CPU 이용률을 추적하고 CPU 이용률이 너무 높을 경우 작업 소유자에게 경고하는 작업 모니터 예를 참조하십시오.
상황

현재 시스템에서 새 애플리케이션을 실행 중이고 새 대화식 작업 중 일부가 승인할 수 없을 만큼의 자원을 소비하고 있다는 점에 관심을 가지고 있습니다. 작업이 너무 많은 CPU 용량을 소비할 경우 해당 작업의 소유자에게 알리려고 합니다.

새 애플리케이션에서 작업을 감시하고 작업이 CPU 용량의 30%를 초과하여 소비하는 경우 메세지를 보내도록 작업 모니터를 설정할 수 있습니다.

구성 예

작업 모니터를 설정하려면 감시할 작업, 감시할 작업 속성, 지정된 작업 속성이 발견될 때 모니터가 수행해야 할 조치를 정의해야 합니다. 이를 수행하기 위해 작업 모니터를 설정하려면 다음 단계를 완료하십시오.
1. System i Navigator에서, 중앙 관리 → 모니터를 필치고 작업 모니터를 마우스 오른쪽 버튼으로 클릭한 후 새 모니터...를 선택하십시오.
2. 일반 페이지에서 다음 값을 입력하십시오.
 a. 이 모니터에 대한 이름 및 설명을 지정하십시오.
 b. 모니터한 작업 템에서 다음 값을 입력하십시오.
 1) 작업명에 대해 감시할 작업의 이름을 지정하십시오(예: MKWIDGET).
 2) 추가를 클릭하십시오.
3. 미터법 템을 클릭하고 다음 정보를 입력하십시오.
 a. 사용할 수 있는 미터법 리스트에서 요약 숫자 값을 필치고 CPU 이용률(백분율)을 선택한 후 추가를 클릭하십시오.
 b. 미터법 설정에 대해 임계값 1 템에서 다음 값을 입력하십시오.
 1) 트리거 작동 가능을 선택하십시오.
 2) 임계값 트리거 값에 대해 >= 30(30% 이상 사용 중)을 지정하십시오.
 3) 지속 시간에 대해 1 간격을 지정하십시오.
 4) i5/OS 트리거 명령에 대해 다음을 지정하십시오.
 SNDMSG MSG('Your job is exceeding 30% CPU capacity')
 TOUSR(&OWNER)
 5) 재설정 작동 가능을 클릭하십시오.
 6) 임계값 재설정 값에 대해 < 20(20% 미만 사용 중)을 지정하십시오.
4. 클릭한 간격 템을 클릭하고 15초를 선택하십시오. 이는 클릭한 서비스 설정을 대체합니다.
5. 조치 템을 클릭하고 트리거 및 재설정 열 모두에서 로그 이벤트를 선택하십시오.
6. 서버 및 그룹 템을 클릭하고 이 작업에 대해 모니터할 서버 및 그룹을 선택하십시오.
7. 새 모니터를 저장하려면 확인을 클릭하십시오.
8. 작업 모니터 리스트에서 새 모니터를 마우스 오른쪽 버튼으로 클릭하고 시작을 선택하십시오.
결과

새 모니터는 15초마다 QINTER 서비스시스템을 검사하며, 작업 MKWIDGET가 CPU의 30%를 초과하여 소비하는 경우 모니터는 메세지를 작업 소유자에게 보냅니다. 작업이 20% CPU 용량 미만을 사용할 때 모니터가 재설정됩니다.

시나리오: 확장 작업 스케줄링 알림을 사용하는 작업 모니터

작업의 임계값 한계를 초과할 때 전자 우편을 오피에 이메일로 보내는 작업 모니터 예를 참조하십시오.

상황

현재 시스템에서 애플리케이션을 실행 중이며 CPU 이용률이 지정된 임계값에 도달할 경우 알리려고 합니다.

확장 작업 스케줄러가 종료점 시스템에 설치된 경우 SNDDSTJS(JS)를 사용하여 전자 우편(송신) 알람을 사용하여 임계값 초과 시 전자 우편으로 누군가에게 알림할 수 있습니다. 예를 들어, 개별된 수신자가 메세지를 중단하여 응답하지 않는 경우 다음 사용자로 알림이 전송되도록 지정할 수 있습니다. 대기(on-call) 스케줄을 작성하고 대기 사용자에게만 알림을 보낼 수 있습니다. 여러 개의 전자 우편 주소에 알림을 보낼 수도 있습니다.

작업 모니터 구성 예

이 예는 SNDDSTJS 명령을 사용하여 OPERATOR 수신자(사용자가 정의한 전자 우편 주소 리스트)에게 메세지를 보냅니다. 또한 수신자 대신 전자 우편 주소를 지정하거나 둘 다 지정할 수 있습니다. 이를 수행하기 위해 작업 모니터를 설정하려면 다음 단계를 완료하십시오.

1. System Navigator에서 자원 관리 > 모니터를 펼치고 작업 모니터를 마우스 오른쪽 버튼으로 클릭한 후 새 모니터를 선택하십시오.

2. 일반 페이지에서 다음 값을 입력하십시오.

 a. 이 모니터에 대한 이름 및 설명을 지정하십시오.
 b. 모니터의 작업 패널에서 다음 값을 입력하십시오.

 1) 작업명에 대해 감시할 작업의 이름을 지정하십시오.(예: MKWIDGET).

 2) 추가를 클릭하십시오.

3. 미터법 패널을 클릭하고 다음 정보를 입력하십시오.

 a. 사용할 수 있는 미터법 리스트에서 요약 숫자 값을 펼치고 CPU 이용률(백분율)을 선택한 후 추가를 클릭하십시오.

 b. 미터법 설정에 대해 임계값 1 패널에서 다음 값을 입력하십시오.

 1) 트리거 작업 가능을 선택하십시오.

 2) 임계값 트리거 값에 대해 >= 30 (30% 이상 사용 중)을 지정하십시오.

 3) 지속 기간에 대해 1 간격을 지정하십시오.
4) i5/OS 트리거 명령에 대해 다음을 지정하십시오.

```plaintext
SNDDSTJS RCP(OPERATOR) SUBJECT('Job monitor trigger') MSG('Job &JOBNAME is still running!')
```

5) 재설정 작업 가능을 클릭하십시오.

6) 임계값 재설정 값에 대해 < 20(20% 미만 사용 중)을 지정하십시오.

4. 클릭한 긴급 링크를 클릭하고 15초를 선택하십시오. 이는 클릭한 서비스 설정을 파쇄합니다.
5. 조치 링크를 클릭하고 트리거 및 재설정 열 모두에서 로그 이벤트를 선택하십시오.
6. 서버 및 그룹 링크를 클릭하고 이 작업에 대해 모니터링 서버 및 그룹을 선택하십시오.
7. 새 모니터링 저장하려면 확인을 클릭하십시오.
8. 작업 모니터링 리스트에서 새 모니터링 마우스 오른쪽 버튼으로 클릭하고 시작을 선택하십시오.

메세지 모니터 구성 예

메세지 모니터를 사용하는 경우 수신자에게 메세지 텍스트를 보낼 수 있습니다. 다음은 SNDDSTJS 명령을 사용하여 메세지 텍스트를 감색하고 모든 대기(on-call) 수신자에게 전자 우편을 보내는 CL 프로그램의 예입니다.


```plaintext
PGM PARM(&MSGKEY &TOMSGQ &TOLIB)

DCL &MSGKEY =CHAR 4
DCL &TOMSGQ =CHAR 10
DCL &TOLIB =CHAR 10

DCL &MSGTXT =CHAR 132

RCVMSG MSG(&TOLIB/&TOMSGQ) MSGKEY(&MSGKEY)
RMV(*NO) MSG(&MSGTXT)
MONMSG CPF0000 EXEC(RETURN)

SNDDSTJS RCP(*ONCALL) SUBJECT('Message queue trigger')
MSG(&MSGTXT)
MONMSG MSGID(CPF0000 IJS0000)

ENDPGM
```

다음은 CL 프로그램을 호출할 명령입니다.

```plaintext
CALL SNDMAIL PARM('&MSGKEY' '&TOMSG' '&TOLIB')
```

결과

모니터는 15초마다 QINTER 서브시스템을 감사하며, 작업 MKWIDGET가 CPU의 30%를 초과하여 소비하는 경우 모니터는 전자 우편을 오버레이터에 보냅니다. 작업이 20% CPU 용량 미만을 사용할 때 모니터가 재설정됩니다.
성능에 대한 관련 정보
여기에는 제품 메뉴얼 및 IBM Redbooks(PDF 형식), 웹 사이트 및 성능 주제에 관한 information center 주제가 나열됩니다. PDF 파일을 보거나 인쇄할 수 있습니다.

메뉴얼

- **Performance Tools for iSeries**
 이 시리즈 프로그램어에 시스템, 작업 또는 프로그램 성능에 대한 데이터를 수집하는 데 필요한 정보를 제공합니다. 또한 존재할 수 있는 비효율성을 식별하고 정정하기 위해 성능 데이터의 인쇄 및 분석을 위한 정보와 관리자 및 에이전트 위치에 대한 정보도 포함합니다.

- **System i Performance Capabilities Reference**
 이 참조서는 성능 밸런싱, 용량 계획 및 서버 성능 계획에 도움이 되는 서버 성능에 대한 고급 기술 정보를 제공합니다.

IBM Redbook

- **End to End Performance Management on IBM i**
 이 IBM Redbooks 시리즈에 있는 주제는 성능 관리 주기를 제대로 이해하는 데 도움이 되고 추가 정보와 우수 사례를 제공합니다. 콜렉션 서비스, 작업 강사, 디스크 강사 및 성능 풍급기와 같은 데이터 콜렉션에 대한 정보가 제공됩니다. 또한 i형 IBM Systems Director Navigator의 일부로 6.1에서 제공되는 새 웹 기반 그래픽 사용자 인터페이스를 사용하여 성능 분석을 최대화하는 방법에 대한 정보도 제공합니다.

- **IBM Systems Director Navigator for i**
 이 새로운 웹 기반 콘솔을 사용하여 IBM i를 관리하는 방법을 학습합니다. 포함된 정보는 사용자가 이 새로운 콘솔을 사용하여 시각적인 데 도움을 주고 콘솔의 다양한 부분에 대해 작업하는 방법에 관한 추가 정보를 제공하기 위한 것입니다. 네트워크 데이터베이스, 성능, 파일 시스템, IBM i용 고급 작업 스케줄러, 보안 및 통합 서버 관리 등의 포함된 많은 테스크에 대한 세부사항을 제공합니다.

- **Performance Management for IBM eServer™ iSeries and pSeries®: A Systems Management Guide**
 이 IBM Redbooks 시리즈에 있는 주제는 시스템 관리 전략의 기본적이면서 중요한 구성요소로서 IBM Performance Management를 다루기 위한 추가하는 요구 및 관리사항을 지원합니다. Performance Management에서 시스템 관리 전략의 일부를 오버라이딩하도록 만들 수 있는 방법과, 대화식 오버라이딩을 사용하는 방법, 그리고 오버라이딩의 구성요소에서 탐색하는 방법에 대해 설명합니다.
- **IBM eServer iSeries Performance Management Tools**

 IBM iSeries 성능 관리 도구는 전반적인 도움에 대해 학습합니다. 이 IBM Redpaper는 IBM i5/OS V5R3M0 레벨에서 사용자가 사용 가능한 다양한 성능 관리 도구 사용 시기를 이해하는 데 도움이 되도록 설계되었습니다.

- **AS/400 HTTP Server Performance and Capacity Planning**

 인터넷 및 웹 브라우저 기반 애플리케이션은 조직의 정보를 분배하고 비즈니스 프로세스를 수행하며 고객에게 서비스를 제공하고 새로운 마켓을 형성하는 방법에 많은 영향을 미칩니다. 이 책은 System i 프로그래머, 네트워크 및 시스템 관리 전문가, 기타 웹 기반 애플리케이션 및 정보 시스템 설계, 개발, 전개를 담당하는 정보 기술자를 위한 것입니다.

- **AS/400 Performance Explorer Tips and Techniques**

 이 문서는 V3R6에 사용 가능한 성능 탐색기 기능의 설명 및 자세한 예를 제공합니다. 특정 애플리케이션 예 및 보고서가 제공됩니다.

- **DB2® UDB/WebSphere Performance Tuning Guide**

 이 문서는 WebSphere Application Server 구조 및 해당되는 기본 구성요소를 제공하고 해당되는 주요 애플리케이션 성능 조정 메개변수 및 시스템 성능 조정 메개변수 중 일부를 소개합니다.

- **IBM eserver iSeries Universal Connection for Electronic Support and Services**

 이 문서는 Universal Connection을 소개합니다. 또한 사용자 시스템의 소프트웨어 및 하드웨어 명세를 IBM에 보고하는 다양한 지원 툴의 사용 방법도 설명합니다. 이를 통해 시스템 데이터를 기반으로 하는 개인화된 전자 지원을 얻을 수 있습니다.

- **Java and WebSphere Performance on IBM eserver iSeries Servers**

 이 문서는 Java 및 WebSphere Application Server 성능 관리 문제에 대해 작업하기 위한 추가 정보, 기술 노트 및 방법론을 제공합니다.

- **Lotus® Domino for AS/400: Performance, Tuning, and Capacity Planning**

 이 문서는 성능 관리에 대한 방법론을 설명합니다. 여기에는 성능 목적 설정, 성능 데이터 수집 및 검토, 자원 조정, 용량 계획이 포함됩니다. 성능 지침 및 애플리케이션 설계 추가 정보도 제공됩니다.

- **Managing OS/400 with Operations Navigator V5R1, Volume 1: Overview and More**

 이 문서는 Operations Navigator V5R1의 개요를 제공합니다. 작업, 서브시스템, 작업 큐 및 메모리 폴 관리, 시스템 성능 모니터링, 작업 및 메시지, 콜렉션 서비스 등에 대해 다룹니다.
• **Managing OS/400 with Operations Navigator V5R1, Volume 5: Performance Management**

이 블록은 블록 1에 설명된 모니터, 그래프 이력 및 콜백 서비스 기능을 기반으로 합니다. 이 시점은 예。

웹 사이트

• **Performance Management for IBM System i Resource Library** (www.ibm.com/servers/eserver/iseries/perfmgt/resource.html)

이 라이브러리는 성능 참조 자료, 백서 및 테마마크 보고서, 그리고 System i 성능 전문가가 작성한 업계
신문 기사의 콜렉션을 보유합니다.

• **Performance Management for IBM System i** (www.ibm.com/servers/eserver/iseries/perfmgt/)

Performance Management는 고객이 컴퓨팅 환경의 성능을 이해하고 관리할 수 있는 기능을 제공합니다.
이 웹 사이트에서 최신 Performance Management 기능 및 툴에 대해 읽도록 하십시오.

PDF 파일 저장

보거나 인쇄하기 위해 워크스테이션에 PDF를 저장하려면 다음을 수행하십시오.
1. 브라우저에서 PDF를 마우스 오른쪽 단추로 클릭하십시오(위의 링크를 마우스 오른쪽 단추로 클릭).
2. PDF를 로컬로 저장하는 옵션을 클릭하십시오.
3. PDF를 저장하려는 디렉토리를 닫십시오.
4. 저장을 클릭하십시오.

Adobe Acrobat Reader 다운로드

코드 라이센스 및 면책사항 정보

IBM은 사용자가 자신의 특정 필요에 맞게 유사한 기능을 생성하는 데 모든 프로그래밍 코드 예를 사용할 수 있도록 비무작위 저작권을 부여합니다.

배제할 수 없는 합법적인 보증에 근거하여 IBM, 해당 프로그램 개발자 및 공급자는 프로그램 또는 기술 지원이 있는 경우 이와 관련하여 타인의 권리 비침해, 상품성 및 특정 목적에의 적합성에 대한 무시적 보증을 포함
하여(단, 이에 한하지 않음) 무시적이든 명시적이든 어떠한 종류의 보증도 하지 않습니다.

어떠한 경우에도 IBM, 해당 프로그램 개발자 또는 공급자는 그 기능성을 통지받았더라도 다음 사항에 대해
책임을 지지 않습니다.
1. 데이터 손실 또는 손상
2. 직접적이고, 특수한, 우발적이거나 간접 손상 또는 경제적으로 수반되는 손상 또는
3. 손실된 수익, 비즈니스 수입, 신용 또는 예상되는 절약

일부 법령에서는 직접적이고, 우발적이거나 간접 손상의 배제 또는 제한을 허용하지 않으므로 위 제한사항 또는 배제사항의 일부 또는 전부가 사용자에게 적용되지 않을 수 있습니다.
부록. 주의사항

이 정보는 미국에서 제공되는 제품 및 서비스용으로 작성된 것입니다.

IBM은 다른 국가에서는 이 자료에 기술된 제품, 서비스 또는 기능을 제공하지 않을 수도 있습니다. 현재 사용할 수 있는 제품 및 서비스에 대한 정보는 한국 IBM 담당자에게 문의하십시오. 이 책에서 IBM 제품, 프로그램 또는 서비스를 언급했다고 해서 해당 IBM 제품, 프로그램 또는 서비스만을 사용할 수 있다는 것을 의미하지는 않습니다. IBM의 지적 재산권을 침해하지 않는 한, 기능적으로 동등한 제품, 프로그램 또는 서비스를 대신 사용할 수도 있습니다. 그러나 비IBM 제품, 프로그램 또는 서비스의 운영에 대한 평가 및 검증은 사용자의 책임입니다.

IBM은 이 책에서 다루고 있는 특정 내용에 대해 특허를 보유하고 있거나 현재 특허 출원 중일 수 있습니다. 이 책을 제공한다고 해서 특허에 대한 라이센스까지 부여하는 것은 아닙니다. 라이센스에 대한 문의사항은 다음으로 문의하십시오.

135-700
서울특별시 강남구 도곡동 467-12, 군인공제회관빌딩
한국 아이비앤 주식회사
고객만족센터
전화번호: 080-023-8080

2바이트(DBCS) 정보에 관한 라이센스 문의는 한국 IBM 고객만족센터에 문의하거나 다음 주소로 서면 문의하시기 바랍니다.

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

다음 단락은 현지법과 상충하는 영국이나 기타 국가에서는 적용되지 않습니다. IBM은 타인의 권리 비침해, 상품성 및 특정 목적에의 적합성에 대한 목시적 보증을 포함하여(단, 이에 한하지 않음) 목시적이든 명시적이든 어떠한 종류의 보증 없이 이 책을『현상태대로』 제공합니다. 일부 국가에서는 특정 거래에서 명시적 또는 목시적 보증의 면책사항을 허용하지 않으므로, 이 사항이 적용되지 않을 수도 있습니다.

이 정보에는 기술적으로 부정확한 내용이나 인쇄상의 오류가 있을 수 있습니다. 이 정보는 주기적으로 변경되며, 변경된 사항은 최신판에 통합됩니다. IBM은 이 책에서 설명한 제품 및 또는 프로그램을 사전 통지 없이 언제든지 개선 및 또는 변경할 수 있습니다.

이 정보에서 언급되는 비IBM의 웹 사이트는 단지 편의상 제공된 것으로, 어떤 방식으로든 이들 웹 사이트를 응호하고자 하는 것은 아닙니다. 해당 웹 사이트의 자료는 본 IBM 제품 자료의 일부가 아니므로 해당 웹 사이트 사용으로 인한 위험은 사용자 본인이 감수해야 합니다.
IBM은 귀하의 권리를 침해하지 않는 범위 내에서 적절하다고 생각하는 방식으로 귀하가 제공한 정보를 사용하거나 배포할 수 있습니다.

(i) 독립적으로 작성된 프로그램과 기타 프로그램(본 프로그램 포함)간의 정보 교환 및 (ii) 교환된 정보의 상호 이용을 목적으로 본 프로그램에 관한 정보를 원하는 프로그램 라이센스 사용자는 다음 주소로 문의하십시오.

135-700
서울특별시 강남구 도곡동 467-12, 군인공제화관빌딩
한국 아이비 엠파주식회사
고객만족센터

이러한 정보는 해당 조건(예를 들어, 사용료 지불 등)하에서 사용될 수 있습니다.

이 책에 기술된 라이센스가 있는 프로그램 및 사용 가능한 모든 라이센스가 있는 자료는 IBM이 IBM 기본 계약, IBM 프로그램 라이센스 계약(PLA), 시스템 코드용 IBM 라이센스 계약 또는 이와 동등한 계약에 따라 제공한 것입니다.

본 문서에 포함된 모든 성능 데이터는 제한된 환경에서 산출된 것입니다. 따라서 다른 운영 환경에서 얻어진 결과는 상당히 다를 수 있습니다. 일부 성능은 개발 단계의 시스템에서 측정되었을 수 있으므로 이러한 측정치가 일반적으로 사용되고 있는 시스템에서도 동일하게 나타날 것이라고는 보증할 수 없습니다. 또한 일부 성능은 추정을 통해 추측되었을 수도 있으므로 실제 결과는 다를 수 있습니다. 이 책의 사용자는 해당 데이터를 본인의 특정 환경에서 검증해야 합니다.

비IBM 제품에 관한 정보는 해당 제품의 공급업체, 공개 자료 또는 기타 법적 소스로부터 얻은 것입니다. IBM에서는 이러한 제품들을 테스트하지 않았으며, 비IBM 제품과 관련된 성능의 정확성, 효율성 또는 기타 항목에 대해서는 확신할 수 없습니다. 비IBM 제품의 성능에 대한 의문사항은 해당 제품의 공급업체에 문의하신다.

IBM이 제시하는 방향 또는 의도에 관한 모든 언급은 특별한 통지 없이 변경될 수 있습니다.

이 정보에는 일상의 비즈니스 운영에서 사용되는 자료 및 보고서에 대한 예제가 들어 있습니다. 이들 예제에는 개념을 가능하게 설명하기 위하여 개인, 회사, 상표 및 제품의 이름이 사용될 수 있습니다. 이들 이름은 모두 가공의 것이며 실제 기업의 이름 및 주소와 유사하다거나 이는 원칙적으로 유연입니다.

저작권 라이센스:

이 정보에는 여러 운영 플랫폼에서의 프로그래밍 기법을 보여주는 원시 원어로 된 샘플 응용프로그램이 들어 있습니다. 귀하는 이러한 샘플 프로그램의 작성 기준에 따라 운영 플랫폼의 응용프로그램 프로그래밍 인터페이스(API)에 부합하는 응용프로그램을 개발, 사용, 판매 또는 배포할 목적으로 추가 비용 없이 이들 샘플 프로그램을 어떠한 형태로든 복사, 수정 및 배포할 수 있습니다. 이러한 샘플 프로그램은 모든 조건하에서 완전히 테스트된 것은 아닙니다. 따라서 IBM은 이들 샘플 프로그램의 신뢰성, 서비스 가능성 또는 가능성을 보증하거나 진술하지 않습니다. 본 샘플 프로그램은 일부의 보증 없이 "현상태대로" 제공됩니다. IBM은 귀하의 샘플 프로그램 사용과 관련되는 손해에 대해 책임을 지지 않습니다.
이러한 샘플 프로그램 또는 과생 제품의 각 사본이나 그 일부에는 반드시 다음과 같은 저작권 표시가 포함되어야 합니다.

© (귀하의 회사명) (연도). 이 코드의 일부는 IBM Corp.의 샘플 프로그램에서 파생됩니다.
© Copyright IBM Corp. _연도 또는 복수 연도_.

이 정보를 소프트웨어로 보는 경우에는 사전과 커리 삽화가 제대로 나타나지 않을 수도 있습니다.

프로그램 인터페이스 정보
이 설명서는 고객이 IBM i의 서비스를 얻기 위한 프로그램을 작성할 수 있는 계획된 프로그램 인터페이스에 대해 설명합니다.

상표

Intel, Intel Inside(로고), MMX 및 Pentium은 미국 또는 기타 국가에서 사용되는 Intel Corporation의 상표입니다.

Microsoft, Windows, Windows NT 및 Windows 로고는 미국 또는 기타 국가에서 사용되는 Microsoft Corporation의 상표입니다.

Java 및 모든 Java 기반 상표는 미국 또는 기타 국가에서 사용되는 Sun Microsystems, Inc.의 상표입니다.

Linux는 미국 또는 기타 국가에서 사용되는 Linus Torvalds의 상표입니다.

기타 회사, 제품 및 서비스 이름은 해당 회사의 상표 또는 서비스표입니다.

이용약관
다음 조건에 따라 이 책을 사용할 수 있습니다.

개인적 사용: 모든 소유권 사항을 표시하는 경우에 한하여 귀하는 이 책을 개인적, 비상업적 용도로 복제할 수 있습니다. 귀하는 IBM의 명시적 동의 없이 본 문서 또는 그 일부를 배포 또는 전시하거나 2차적 저작물을 만들 수 없습니다.

상업적 사용: 모든 소유권 사항을 표시하는 경우에 한하여 귀하는 이 책을 귀하 기업집단 내에서만 복제, 배포 및 전시할 수 있습니다. 귀하의 기업집단 외에서는 IBM의 명시적인 동의 없이 이 책의 2차적 저작물을 만들거나 이 책 또는 그 일부를 복제, 배포 또는 전시할 수 없습니다.
본 허가에서 명시적으로 부여된 경우를 제외하고, 이 책이나 이 책에 포함된 정보, 데이터, 소프트웨어 또는 기타 지적 재산권에 대해서는 어떠한 허가나 라이센스 또는 권리도 명시적 또는 목시적으로 부여되지 않습니다.

IBM은 이 책의 사용에 IBM의 이익을 해치거나 판단되거나 위에서 언급된 지시사항이 준수되지 않는다고 판단하는 경우 언제든지 부여한 허가를 철회할 수 있습니다.

귀하는 미국 수출법 및 관련 규정을 포함하여 모든 적용 가능한 법률 및 규정을 철저히 준수하는 경우에만 본 정보를 다운로드, 송신 또는 재송신할 수 있습니다.

IBM은 이 책의 내용에 대해 어떠한 보장도 하지 않습니다. 타인의 권리 비침해, 상품성 및 특정 목적에의 적합성에 대한 목시적 보증을 포함하여 (단 이에 한하지 않음) 목시적이든 명시적이든 어떠한 종류의 보증이 없어 현 상태대로 제공합니다.
IBM 한글 지원에 관한 설문

IBM i 시스템 관리
설명 7.1

FAX : (02) 3787-0123

보내 주시는 의견은 더 나은 고객 지원 체제를 위한 귀중한 자료가 됩니다. 독자 여러분의 좋은 의견을 기다립니다.

<table>
<thead>
<tr>
<th>성 명</th>
<th>직위/담당업무</th>
</tr>
</thead>
<tbody>
<tr>
<td>회 사 명</td>
<td>부 서 명</td>
</tr>
<tr>
<td>주 소</td>
<td></td>
</tr>
<tr>
<td>전화번호</td>
<td>팩스번호</td>
</tr>
</tbody>
</table>

기타우편 주소

사용중인 시스템
- o 중대형 서버
- o UNIX 서버
- o PC 및 PC 서버

1. IBM에서 제공하는 한글 책자와 영문 책자 중 어느 것을 더 좋아하십니까?
 - □ 한글 책자
 - □ 영문 책자
 (이유:)

2. 본 책자와 해당 소프트웨어에서 사용된 한글 용어에 대한 귀하의 평가 점수는?
 - □ 수 □ 우 □ 미 □ 양 □ 가

3. 본 책자와 해당 소프트웨어에서 번역 품질에 대한 귀하의 평가 점수는?
 - □ 수 □ 우 □ 미 □ 양 □ 가

4. 본 책자의 인쇄 상태에 대한 귀하의 평가 점수는?
 - □ 수 □ 우 □ 미 □ 양 □ 가

5. 한글 소프트웨어 및 책자 지원되는 분야에 대해 귀하는 어떻게 생각하십니까?
 - □ 한글 책자를 더 좋아하십니까
 - □ 현재 수준으로 만족
 - □ 그다지 필요성을 느끼지 않음

6. IBM은 인쇄물 형식(hardcopy)과 화면 형식(softcopy)의 두 종류로 책자를 제공합니다. 어느 형식을 더 좋아하십니까?
 - □ 인쇄물 형식(hardcopy) □ 화면 형식(softcopy) □ 둘 다

IBM 한글 지원 서비스에 대해 기타 제안사항이 있으시면 적어주십시오.

※ 설문에 답해 주셔서 감사합니다.
귀하의 의견은 저희에게 매우 소중한 것이며, 고객 여러분들의 보다 좋은 제품을 제공해 드리기 위해 최선을 다하겠습니다.