
z/OS Basic Skills Information Center

Data and storage management on z/OS

���

z/OS Basic Skills Information Center

Data and storage management on z/OS

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 23.

This edition applies to z/OS (product number 5694-A01).

We appreciate your comments about this publication. Comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use

the personal information that you supply to contact you about the issues that you state on this form.

Send your comments through this Web site:

http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/index.jsp?topic=/com.ibm.zcontact.doc/webqs.html

© Copyright International Business Machines Corporation 2005, 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/index.jsp?topic=/com.ibm.zcontact.doc/webqs.html

Contents

Introduction to data and storage

management on z/OS v

Chapter 1. The DFSMS software suite . . 1

Chapter 2. Data and storage

management policies 5

Chapter 3. DFSMS tools for data and

storage management 7

DFSMSdfp access methods 7

Access Method Services (IDCAMS) commands . . . 8

DFSMSdfp callable services 8

Data management utility programs 9

Guide to z/OS utility program functions 9

Data set utilities 13

System utilities 19

Notices 23

Programming interface information 24

Trademarks 25

© Copyright IBM Corp. 2005, 2008 iii

iv z/OS Basic Skills Information Center: Data and storage management on z/OS

Introduction to data and storage management on z/OS

As your business expands, so do your needs for storage to hold your applications

and data, and the costs of managing that storage. Storage costs include more than

the price of the hardware, with the highest cost being the people needed to

perform storage management tasks.

Additionally, you must pay for people to install, monitor, and operate your storage

hardware devices, for electrical power to keep each piece of storage hardware cool

and running, and for floor space to house them.

Business systems need to be available continuously, efficient, easy to use, and

secure from unauthorized users. System outages can be costly because users cannot

access the system and data loss might result. As businesses grow, the systems tend

to become extremely complicated and difficult to maintain, which results in lost

productivity and time spent troubleshooting problems.

The DFSMS™ software suite, together with IBM® hardware products, and your

installation-specific requirements for data and resource management, comprise the

key to system-managed storage in a z/OS® environment. The elements of DFSMS

automate and centralize storage management, based on policies your installation

defines for availability, performance, space, and security.

© Copyright IBM Corp. 2005, 2008 v

vi z/OS Basic Skills Information Center: Data and storage management on z/OS

Chapter 1. The DFSMS software suite

DFSMS is a software suite that automatically manages data from creation to

expiration. The base element of this suite, DFSMSdfp™, performs the essential data,

storage, and device management functions of the system. Other DFSMS features in

the suite complement DFSMSdfp to provide a fully integrated approach to data

and storage management.

In a system-managed storage environment, the DFSMS suite automates and

centralizes storage management based on the policies that your installation defines

for availability, performance, space, and security. Storage management policies

reduce the need for users to make many detailed decisions that are not related to

their business objectives.

DFSMSdfp

Storage management

DFSMSdfp includes Interactive Storage Management Facility (ISMF), which

lets you define and maintain policies to manage your storage resources.

These policies help to improve the usage of storage devices and to increase

levels of service for user data, with minimal effort required from users.

Storage Management Subsystem (SMS) uses these policies to manage

storage for the operating system. More specifically, the storage

administrator uses SMS to define data classes, storage classes, management

classes, storage groups, aggregate groups, copy pools, and automatic class

selection routines. You can also use the NaviQuest tool under ISMF to

migrate to SMS, maintain your SMS configuration, and perform testing,

implementation, and reporting tasks in batch.

Tape mount management

Tape mount management is a methodology for improving tape usage and

reducing tape costs. This methodology involves intercepting selected tape

data set allocations through the SMS automatic class selection (ACS)

routines and redirecting them to a direct access storage device (DASD)

buffer. Once on DASD, you can migrate these data sets to a single tape or

small set of tapes, thereby reducing the overhead associated with multiple

tape mounts.

Data management

DFSMSdfp helps you store and catalog information on DASD, optical, and

tape devices so that it can be quickly identified and retrieved from the

system. DFSMSdfp provides access to both record- and stream-oriented

data in the z/OS environment.

Device management

DFSMSdfp can be used when you define your input and output (I/O)

devices to the system and in controlling those devices in the z/OS

environment.

Distributed data access

Distributed data access allows all authorized systems and users in a

network to use system-managed storage or automated storage

management.DFSMSdfp uses the Distributed FileManager/MVS (DFM) or

the z/OS Network File System to enable remote clients in a network to

access data and storage resources on z/OS systems.

© Copyright IBM Corp. 2005, 2008 1

z/OS UNIX® System Services (z/OS UNIX) provides the command

interface that interactive UNIX users can use. z/OS UNIX allows z/OS

programs to directly access UNIX data.

Advanced copy services

Advanced Copy Services includes remote and point-in-time copy functions

that provide backup and recovery of data. When used before a disaster

occurs, Advanced Copy Services provides rapid backup of critical data

with minimal impact to business applications. If a disaster occurs to your

data center, Advanced Copy Services provides rapid recovery of critical

data.

Object access method

Object access method (OAM) provides storage, retrieval, and storage

hierarchy management for objects. OAM also manages storage and

retrieval for tape volumes that are contained in system-managed libraries.

DFSMSdss™

Data movement and replication

DFSMSdss lets you move or copy data between volumes of like and unlike

device types. If you create a backup in DFSMSdss, you can copy a backup

copy of data. DFSMSdss also can produce multiple backup copies during a

dump operation.

Space management

DFSMSdss can reduce or eliminate DASD free-space fragmentation.

Data backup and recovery

DFSMSdss provides you with host system backup and recovery functions

at both the data set and volume levels. It also includes a stand-alone

restore program that you can run without a host operating system.

Data set and volume conversion

DFSMSdss can convert your data sets and volumes to system-managed

storage. It can also return your data to a non-system-managed state as part

of a recovery procedure.

DFSMShsm™

Storage management

DFSMShsm provides automatic DASD storage management, relieving users

from manual storage management tasks.

Space management

DFSMShsm improves DASD space usage by keeping only active data on

fast-access storage devices. It automatically frees space on user volumes by

deleting eligible data sets, releasing overallocated space, and moving

low-activity data to lower cost-per-byte devices, even if the job did not

request tape.

Tape mount management

DFSMShsm can write multiple output data sets to a single tape, making it

a useful tool for implementing tape mount management under SMS. When

you redirect tape data set allocations to DASD, DFSMShsm can move those

data sets to tape, as a group, during interval migration. This methodology

greatly reduces the number of tape mounts on the system. DFSMShsm uses

a single-file format, which improves your tape usage and search

capabilities.

2 z/OS Basic Skills Information Center: Data and storage management on z/OS

Availability management

DFSMShsm backs up your data—automatically or by command—to ensure

availability if accidental loss of the data sets or physical loss of volumes

should occur. DFSMShsm also allows the storage administrator to copy

backup and migration tapes, and to specify that copies be made in parallel

with the original. You can store the copies on site as protection from media

damage, or offsite as protection from site damage. DFSMShsm also

provides disaster backup and recovery for user-defined groups of data sets

(aggregates) so that you can restore critical applications at the same

location or at an offsite location.

DFSMSrmm™

Library Management

You can create tape libraries, or collections of tape media associated with

tape drives, to balance the work of your tape drives and help the operators

that use them.

Shelf Management

DFSMSrmm groups information about removable media by shelves into a

central online inventory, and keeps track of the volumes residing on those

shelves. DFSMSrmm can manage the shelf space that you define in your

removable media library and in your storage locations.

Volume management

DFSMSrmm manages the movement and retention of tape volumes

throughout their life cycle.

Data set management

DFSMSrmm records information about the data sets on tape volumes.

DFSMSrmm uses the data set information to validate volumes and to

control the retention and movement of those data sets.

DFSMStvs

DFSMS Transactional VSAM Services (DFSMStvs) allows you to share VSAM data

sets across CICS®, batch, and object-oriented applications on z/OS or distributed

systems. DFSMStvs enables concurrent shared updates of recoverable VSAM data

sets by CICS transactions and multiple batch applications. DFSMStvs enables

24-hour availability of CICS and batch applications. DFSMStvs is built on top of

VSAM record-level sharing (RLS), which permits sharing of recoverable VSAM

data sets at the record level.

Chapter 1. The DFSMS software suite 3

4 z/OS Basic Skills Information Center: Data and storage management on z/OS

Chapter 2. Data and storage management policies

To allow your business to grow efficiently and profitably, you want to find ways to

control the growth of your information systems and use your current storage more

effectively. In an SMS-managed storage environment, your enterprise establishes

centralized policies for how to use your hardware resources. The Interactive

Storage Management Facility (ISMF) provides the user interface for defining and

maintaining these policies, while the Storage Management Subsystem (SMS)

governs the system.

Data and storage management policies balance your available resources with your

users’ requirements for data availability, performance, space, and security. SMS

implements these policies and manages most of your storage management tasks.

This frees users from manually administering storage and makes more efficient use

of your storage resources.

The policies defined by your installation represent decisions about your resources,

such as:

v What performance objectives are required at your site?

v When and how to back up data?

v Whether data sets should be kept available for use during backup or copy?

v How to manage backup copies kept for disaster recovery?

v What to do with data that is obsolete or seldom used?

To implement a policy for managing storage, your storage administrator defines

classes of space management, performance, and availability requirements for data

sets at your installation. For example, the administrator can define one storage

class for data entities requiring high performance and another for those requiring

standard performance. Then, the administrator writes automatic class selection

(ACS) routines that use naming conventions, or other criteria of your choice, to

automatically assign the classes that have been defined to data as that data is

created. These ACS routines can then be validated and tested.

When the ACS routines are started and the classes (also referred to as constructs)

are assigned to the data, SMS uses the policies defined in the classes and applies

them to the data for the life of the data. Additionally, devices with various

characteristics can be pooled together into storage groups so that new data can be

automatically placed on devices that best meet the needs of the data.

The ISMF panels make it easy to define SMS classes and groups, test and validate

ACS routines, and perform other tasks to analyze and manage your storage.

© Copyright IBM Corp. 2005, 2008 5

6 z/OS Basic Skills Information Center: Data and storage management on z/OS

Chapter 3. DFSMS tools for data and storage management

DFSMSdfp provides several types of tools for system programmers and database

administrators to use to manage the organization and storage of data in the z/OS

environment.

With DFSMS tools, you can use access methods with macro instructions to

organize and process a data set or object; use access method services commands to

manage data sets, volumes, and catalogs; use utilities to perform tasks such as

copying or moving data. You also can use system commands to display and set

SMS configuration parameters, callable services to write advanced application

programs, and installation exits to customize DFSMS.

DFSMSdfp access methods

DFSMSdfp provides several access methods for formatting and accessing data. An

access method defines the organization of the data in a data set and the technique

by which the data is stored and retrieved. DFSMSdfp access methods have their

own data set structures to organize data, macro instructions to process data sets,

and utility programs to manipulate data sets.

Table 1 describes the access methods that DFSMSdfp uses.

 Table 1. DFSMSdfp access methods

Access method Description Data set organization

Basic partitioned

access method

(BPAM)

Use BPAM to create and retrieve

program and data libraries on DASD.

BPAM arranges records as members of

PDSs, PDSEs, or z/OS UNIX

directories.

v PDS

v PDSE

v z/OS UNIX

Basic sequential

access method

(BSAM)

Use BSAM to process data sets

sequentially. You organize the records

into blocks for retrieval.

v Sequential data sets

v Extended-format data sets

v PDS members

v PDSE members

v z/OS UNIX files

Object access

method

(OAM)—OSREQ

interface

Use OAM to store, back up, and

retrieve objects on DASD, optical, and

tape storage.

v Objects

Queued sequential

access method

(QSAM)

Use QSAM to process data sets

sequentially. QSAM collects the

records into blocks.

v Sequential data sets

v Extended-format data sets

v PDS members

v PDSE members

v z/OS UNIX files

Virtual storage

access method

(VSAM)

Use VSAM for direct or sequential

processing of records on DASD.

VSAM arranges records by an index

key, by relative byte address, or by

relative record number. VSAM

catalogs data sets for easy retrieval.

v Entry-sequenced data sets

v Key-sequenced data sets

v Linear data sets

v Relative record data sets

v HFS files

© Copyright IBM Corp. 2005, 2008 7

DFSMS also supports the basic direct access method (BDAM) for coexistence with

previous operating systems.

You can use assembler language macro instructions to create, maintain, and

process all the data set types supported by the access methods described in Table 1

on page 7. Macro instructions control data set allocation, input and output, and

data security.

Each compiler provides facilities to create, read, and write data sets. Your compiler

documentation describes how to use the access method facilities.

The following are a few of the functions that the macro instructions perform:

v Control block macros generate information that the access method needs to

process the data sets.

v Request macros retrieve, update, delete, or insert logical records into data sets.

v Checkpoint/restart functions establish checkpoints during a program and restart

the job at a checkpoint or at the beginning of a job step.

Access Method Services (IDCAMS) commands

Access method services, also known as IDCAMS, creates and maintains VSAM data

sets.

With access method services, you can perform the following tasks:

v Define VSAM data sets.

v Define and build alternate indexes.

v Back up and restore VSAM data sets.

v Copy data sets.

v Print the contents of data sets.

v Delete data sets.

v Collect information about data sets.

v Examine the structural consistency of VSAM key-sequenced data sets.

v Control DASD cache.

v List tape volume (VOLCAT) catalog entries.

v Diagnose catalog errors.

v Recover from catalog errors.

v Define system-managed libraries and volumes.

v Define extended addressability for an extended-format VSAM data set to

support a data set size greater than 4 GB.

v Encrypt and decrypt data sets.

You also can define VSAM data sets using JCL or dynamic allocation macros.

DFSMSdfp callable services

User programs written in assembler language and in high-level languages can call

the DFSMSdfp callable services.

IGWABWO

Retrieves or sets data set indicators. For example, your program can

determine if a data set can be backed up while it is open for update.

8 z/OS Basic Skills Information Center: Data and storage management on z/OS

IGWARLS

Obtains information about the record-level sharing attributes for a VSAM

data set.

IGWASMS

Determines if a data set is system-managed, and returns the SMS class

names and data set type.

IGWASYS

Determines the version, release, and modification level of DFSMS and the

status of the SMS subsystem.

IGWLSHR

Determines the DFSMSdfp share attributes currently in use on the system.

Data management utility programs

No specific set of characteristics define what constitutes a z/OS utility program

today, but common usage includes only a limited number of z/OS-provided

programs as utilities. The UNIX community, by contrast, considers many of the

standard commands as utilities, including compilers, backup programs, filters, and

many other types of programs. To the z/OS community these are applications or

programs, not utilities.

z/OS utilities are usually submitted as batch programs that have similar JCL

requirements, including four specific data definition (DD) statements:

v The SYSPRINT DD statement tells the system where to print the informational or

error messages from the utility program.

v The SYSUT1 DD statement identifies the data set that the utility is to use for input.

v The SYSUT2 DD statement identifies the data set that the utility is to use for

output.

v The SYSIN DD statement contains utility control statements, which identify a

particular function to be performed by a utility program and, when required, to

identify specific volumes or data sets to be processed. As an alternative to using

the input stream (the SYSIN DD statement), you may place utility control

statements in a sequential data set, in a member of a partitioned data set or

PDSE, or in a z/OS UNIX System Services (z/OS UNIX) file such as a HFS file.

Although utilities are usually run as batch jobs, using ALLOC commands in the

TSO foreground is an alternative to using JCL.

Considering the wide-ranging functions and abilities of z/OS, only a small number

of system-provided utilities exist. Most z/OS users are familiar with the utilities

IEFBR14, IEBGENER, and IEBCOPY. VSAM users must be familiar with IDCAMS,

which is the program name for the access method services utility.

A large number of customer-written utility programs also exist– although most

users refrain from naming them utilities– and many of these are widely shared by

the user community. Independent software vendors also provide many similar

products (for a fee). Some of these programs or products can be categorized as

utilities; of these, some compete with IBM utilities, while many others provide

functions not included with the IBM-provided utilities.

Guide to z/OS utility program functions

Although z/OS utilities provide functions that are better performed by newer

applications, many customers continue to use these programs, and IBM continues

Chapter 3. DFSMS tools for data and storage management 9

to ship them for compatibility with older supported system levels. This guide lists

the tasks for which you can use these utilities, and identifies which utility is

especially suited to perform each task.

You can use the DFSMS utility programs to perform a variety of tasks, as shown in

Table 2. The “Task” column shows tasks that you might want to perform. The

“Options” column more specifically defines the tasks. The “Primary Utility”

column identifies the utility that is especially suited for the task. The “Secondary

Utilities” column identifies other utilities that can be used to perform the task.

 Table 2. Tasks and Utility Programs

Task Options Primary Utility Secondary Utilities

Add a member to a partitioned data set IEBUPDATE,

IEBGENER

IEBDG

a password IEHPROGM

Alter in place a load module IEBCOPY

Catalog a data set in a catalog IEHPROGM

Change data set organization IEBUPDTE IEBGENER,

IEBPTPCH

logical record length IEBGENER

Clear checkpointed members from a PDSE IEBCOPY

Compare z/OS UNIX System Services (z/OS UNIX) files such as

HFS files

IEBCOMPR

partitioned data sets IEBCOMPR

sequential data sets IEBCOMPR

PDSEs IEBCOMPR

Compress a partitioned data set IEBCOPY

Compress in

place

a partitioned data set IEBCOPY

Convert to

partitioned data

set

an unloaded PDSE containing program objects cannot

be loaded into a PDS. An unloaded PDSE containing

data objects can be loaded into a PDS but all extended

attributes will be lost.

IEBCOPY

sequential data sets IEBGENER IEBUPDTE

a PDSE IEBCOPY

Convert to PDSE a partitioned data set IEBCOPY

an unloaded copy of a partitioned data set or PDSE IEBCOPY

sequential data sets IEBGENER IEBUPDTE

Convert to

sequential data

set

a partitioned data set or PDSE IEBGENER IEBUPDTE

10 z/OS Basic Skills Information Center: Data and storage management on z/OS

Table 2. Tasks and Utility Programs (continued)

Task Options Primary Utility Secondary Utilities

Copy a load module or load module library IEBCOPY

a partitioned data set IEBCOPY IEHMOVE

a volume of data sets (on tape or disk) IEHMOVE

job steps IEBEDIT

selected members of a partitioned data set IEBCOPY IEHMOVE

sequential data sets IEBGENER IEHMOVE,

IEBUPDTE,

IEBPTPCH

a PDSE IEBCOPY

a group of PDSE members IEBCOPY

selected members of a PDSE IEBCOPY

Create a backup copy of a partitioned data set or PDSE IEBCOPY

a character arrangement table module IEBIMAGE

a copy modification module IEBIMAGE

a 3800 or 4248 forms control buffer module IEBIMAGE

a graphic character modification module IEBIMAGE

a library character set module IEBIMAGE

a library of partitioned members IEBGENER IEBUPDTE

a member of a partitioned data set or PDSE IEBGENER IEBDG, IEBUPDTE

a sequential output data set IEBDG IEBGENER,

IEBPTPCH

an indexed sequential data set IEBDG

an output job stream IEBEDIT

Delete a data set or member of a partitioned data set IEHPROGM

password IEHPROGM

catalog entries IEHPROGM

records in a partitioned data set or PDSE member IEBUPDTE

Edit and convert

to partitioned

data set or PDSE

a sequential data set IEBGENER IEBUPDTE

Edit and copy a job stream IEBEDIT

a sequential data set IEBGENER IEBUPDTE,

IEBPTPCH

Edit and list error statistics by volume (ESV) records IFHSTATR

Edit and print a sequential data set IEBPTPCH IEBGENER

Edit and punch a sequential data set IEBPTPCH IEBGENER

Enter a procedure into a procedure library IEBUPDTE

Exclude a partitioned data set member from a copy operation IEBCOPY IEHMOVE

a PDSE member from a copy operation IEBCOPY

Expand a partitioned data set or PDSE IEBCOPY

a sequential data set IEBGENER

Generate test data IEBDG

Chapter 3. DFSMS tools for data and storage management 11

Table 2. Tasks and Utility Programs (continued)

Task Options Primary Utility Secondary Utilities

Include changes to members or sequential data sets IEBUPDTE

a partitioned data set member from a copy operation IEBCOPY IEHMOVE

a PDSE member from a copy operation IEBCOPY

Indicate double-byte character set string by supplying enclosing

shift-out/shift-in characters

IEBGENER IEBPTPCH

Insert records into a partitioned data set or PDSE IEBUPDTE

Label magnetic tape volumes IEHINITT

List a password entry IEHPROGM

a volume table of contents IEHLIST

number of unused directory blocks and tracks IEHLIST IEBCOPY

partitioned data set or PDSE directories IEHLIST IEHPROGM

CVOL entries IEHLIST

Load an unloaded partitioned data set to a partitioned data

set

IEBCOPY

an unloaded data set IEHMOVE

an unloaded partitioned data set to a PDSE (for

non-load modules only)

IEBCOPY

an unloaded PDSE to a partitioned data set (for

non-load modules only)

IEBCOPY

an unloaded PDSE to a PDSE IEBCOPY

Merge partitioned data sets IEBCOPY IEHMOVE

PDSEs IEBCOPY

partitioned data sets and PDSEs IEBCOPY

Modify a partitioned or sequential data set, or a PDSE IEBUPDTE

Move a volume of data sets IEHMOVE

partitioned data sets IEHMOVE

sequential data sets IEHMOVE

Number records in a new or old member of a partitioned data set or

PDSE

IEBUPDTE

Password

protection

add a password IEHPROGM

delete a password IEHPROGM

list passwords IEHPROGM

replace a password IEHPROGM

Print sequential data sets IEBPTPCH IEBGENER,

IEBUPDTE

partitioned data sets or PDSEs IEBPTPCH

selected records IEBPTPCH

mixed strings of double-byte and single-byte character

set data

IEBPTPCH IEBGENER

double-byte character set data IEBPTPCH IEBGENER

12 z/OS Basic Skills Information Center: Data and storage management on z/OS

Table 2. Tasks and Utility Programs (continued)

Task Options Primary Utility Secondary Utilities

Punch a partitioned data set member IEBPTPCH

a sequential data set IEBPTPCH

selected records IEBPTPCH

mixed strings of double-byte and single-byte character

set data

IEBPTPCH IEBGENER

Double-byte character set data IEBPTPCH IEBGENER

Reblock a load module IEBCOPY

a partitioned data set or PDSE IEBCOPY

a sequential data set IEBGENER IEBUPDTE

Re-create a partitioned data set or PDSE IEBCOPY

Rename member of a partitioned data set or PDSE IEBCOPY IEHPROGM

a sequential or partitioned data set, or PDSE IEHPROGM

moved or copied members of a partitioned data set IEHMOVE

Renumber logical records IEBUPDTE

Remove indication of a double-byte character set string by

stripping off enclosing shift-out/shift-in characters

IEBGENER

Replace a password IEHPROGM

logical records IEBUPDTE

records in a member of a partitioned data set or PDSE IEBUPDTE

selected members of a PDSE IEBCOPY IEBUPDTE

selected members of a partitioned data set IEBCOPY IEBUPDTE,

IEHMOVE

Scratch data sets IEHPROGM

Uncatalog data sets IEHPROGM

Unload a partitioned data set IEBCOPY IEHMOVE

a sequential data set IEHMOVE

a PDSE IEBCOPY

Update in place a partitioned data set or PDSE IEBUPDTE

Data set utilities

Data set utilities reorganize, change, or compare data at the data set or record

level. These programs are widely used in batch jobs.

These utilities allow you to manipulate partitioned, sequential or indexed

sequential data sets, or partitioned data sets extended (PDSEs), which are provided

as input to the programs. You can manipulate data ranging from fields within a

logical record to entire data sets. These data set utilities cannot be used with

VSAM data sets.

IDCAMS: Use access method services for catalogs

Although it provides other functions, IDCAMS, which is the program name for

access method services, is used primarily to define and manage VSAM data sets

and integrated catalog facility catalogs.

Chapter 3. DFSMS tools for data and storage management 13

An access method defines the technique that is used to store and retrieve data.

Access methods have their own data set structures to organize data,

system-provided programs (or macros) to define data sets, and utility programs to

process data sets. VSAM (Virtual Sequential Access Method) is an access method

used for more complex applications. VSAM arranges records by an index key,

relative record number, or relative byte addressing.

Some users pronounce the name of this program as “id-cams” (two syllables) while

others say “I-D-cams” (three syllables).

A typical example of a simple use of IDCAMS is as follows:

//VDFNDEL JOB 1,LINDAJO,MSGCLASS=X

//STEP1 EXEC PGM=IDCAMS

//SYSPRINT DD *

//DATAIN DD DISP=OLD,DSN=LINDA.SORTOUT

//SYSIN DD *

 DEFINE CLUSTER (NAME (LINDA.DATA.VSAM) -

 VOLUMES(WORK02) CYLINDERS(1 1) -

 RECORDSIZE (72 100) KEYS(9 8) INDEXED)

 REPRO INFILE(DATAIN) OUTDATASET(LINDA.DATA.VSAM) ELIMIT(200)

/*

//STEP2 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DELETE LINDA.DATA.VSAM CLUSTER

/*

This sample job, named VDFNDEL, consists of two steps: One to define a VSAM

data set; the other to delete it. The first step, STEP1 performs two functions:

1. Creates a VSAM data set through the DEFINE CLUSTER command. Note that

IDCAMS uses dynamic allocation to create the necessary JCL for this new data

set, so the sample does not include a DD statement for the new data set.

v The DEFINE CLUSTER command is continued over three records; the

continuation indicators are hyphens.

v The VSAM data set is on volume WORK02, and uses one cylinder for

primary space and one cylinder for secondary allocation. The average record

size is 72 bytes and the maximum record size is 100 bytes. (VSAM data sets

always use variable length records.) The primary key (for accessing records

in the data set) is 8 bytes long and begins at an offset of 9 bytes into each

record.

v Records for loading a VSAM data set this way should already be sorted into

key order.

v The ELIMIT parameter specifies the number of error records that REPRO will

ignore before terminating operation. An error record is usually due to a

duplicate key value.
2. Loads the new data set through the REPRO command. The input loaded into

the new data set comes from a sequential data set, which is identified through

the DATAIN DD statement.

The second step, STEP2, deletes the data set that is created STEP1.

Many of IDCAMS functions can be entered as TSO commands. For example,

DEFINE CLUSTER can be used as a TSO command. However, using IDCAMS in

this manner is generally not recommended because these commands can be

complex and the errors encountered can be complex. Entering the IDCAMS

commands through a batch job allows the commands and resulting messages to be

reviewed as often as necessary by using SDSF to view the output.

14 z/OS Basic Skills Information Center: Data and storage management on z/OS

The IEBCOPY utility: Copy libraries (partitioned data sets)

IEBCOPY is a data set utility that is used to copy or merge members between one

or more partitioned data sets, or partitioned data sets extended (PDSEs), in full or

in part.

More specifically, this utility is commonly used for several purposes:

v To copy selected (or all) members from one partitioned data set to another.

v To copy a partitioned data set into a unique sequential format known as an

unloaded partitioned data set. As a sequential data set it can be written on tape,

sent by FTP, or manipulated as a simple sequential data set.

v To read an unloaded partitioned data set (which is a sequential file) and recreate

the original partitioned data set. Optionally, only selected members might be

used.

v To compress partitioned data sets (in place) to recover lost space.

Most z/OS software products are distributed as unloaded partitioned data sets.

The ISPF copy options (option 3.3, among others) uses IEBCOPY “under the

covers.” Moving a PDS or PDSE from one volume to another is easily done with

IEBCOPY. If there is a need to manipulate partitioned data sets in batch jobs,

IEBCOPY is probably used. Equivalent manipulation under TSO (using ISPF) uses

IEBCOPY indirectly.

A simple IEBCOPY job might be the following:

//COPYJOB5 JOB 1,WAYNE,MSGCLASS=X

// EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=*

//SYSIN DD DUMMY

//SYSUT1 DD DISP=SHR,DSN=WAYNE.LIB.SOURCE

//SYSUT2 DD DISP=(NEW,KEEP),UNIT=TAPE,DSN=WAYNES.SOURCE,

// VOL=SER=123456

This job will unload WAYNE.LIB.SOURCE (which we assume is a partitioned data

set) and write it on tape. (The name TAPE is assumed to be an esoteric name that

the local installation associates with tape drives.) By default, IEBCOPY copies from

the data set defined by the SYSUT1 DD statement to the data set defined by

SYSUT2 DD. For most utilities, SYSUT1 is the name used for the DD statement

that defines the input data set, and SYSUT2 for the DD statement that defines the

output data set. Notice that the data set name on tape is not the same as the data

set name used as input (the same name could be used, but there is no requirement

to do so).

The following job could be used to restore the PDS on another volume:

//COPYJOB6 JOB 1,WAYNE,MSGCLASS=X

// EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=*

//SYSIN DD DUMMY

//SYSUT1 DD DISP=OLD,UNIT=TAPE,DSN=WAYNES.SOURCE,

// VOL=SER=123456

//SYSUT2 DD DISP=(NEW,CATLG),DSN=P390Z.LIB.PGMS,UNIT=3390,

// SPACE=(TRK,(10,10,20)),VOL=SER=333333

In this example, IEBCOPY will detect that the input data set is an unloaded

partitioned data set, which we determined would fit in about 10 tracks and should

have 20 directory blocks.

Instead of using the DUMMY parameter on the SYSIN DD statement, you could

substitute this JCL:

Chapter 3. DFSMS tools for data and storage management 15

//SYSIN DD *

 COPY OUTDD=SYSUT2,INDD=SYSUT1

 SELECT MEMBER=(PGM1,PGM2)

/*

The SELECT statement specifies the member names to be processed, with the

OUTDD and INDD parameters specifying the DD names to be used for output and

input, respectively. You would have to use this JCL if you used names other than

SYSUT1 and SYSUT2 for the input and output DD statements.

Restoring a partitioned data set from an unloaded copy automatically compresses

(recovers lost space) the data set.

The IEBDG utility: Generate test data

The IEBDG utility provides a pattern of test data to be used as a programming

debugging aid. This pattern of data can then be analyzed quickly for predictable

results.

You can either use one of the IBM-supplied patterns or you can specify your own

pattern of data to be generated in a variety of fields in a data set. The fields can be

changed for each record with ripple, wave, shift, roll, and other field permutations.

IEBDG can accept input data records and overlay specified fields in the input with

generated data.

The following is a simple example of IEGDB use:

//GENDATA7 JOB 1,CHRIS,MSGCLASS=X

// EXEC PGM=IEBDG

//SYSPRINT DD SYSOUT=*

//OUTDS DD DISP=(NEW,CATLG),DSN=CHRIS.TEST.DATA,UNIT=3390,

// VOL=SER=WORK01,SPACE=(CYL,(10,1)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000)

//SYSIN DD *

 DSD OUTPUT=(OUT)

 FD NAME=FIELD1,LENGTH=30,FORMAT=AL,ACTION=RP

 FD NAME=FIELD2,LENGTH=10,PICTURE=10,’TEST DATA ’

 FD NAME=FIELD3,LENGTH=10,FORMAT=RA

 CREATE QUANTITY=90000,NAME=(FIELD1,FIELD2,FIELD3)

 END

/*

This job creates a new data set, CHRIS.TEST.DATA, with 90,000 records. Each

record is 80 bytes, as specified in the DCB parameters in the DD statement. The

control statements specify three fields that occupy the first 50 bytes of each record.

By default, IEBDG fills the remaining bytes with binary zeros. The three fields are:

v An alphabetic field (’ABCDEF...’), 30 bytes long. It is rippled (rotated left one

byte) after each record is generated.

v The second field contains 10 bytes with the fixed constant ’TEST DATA ’.

v The third field contains 10 bytes with random binary data.

The utility can generate more complex patterns, but this example is typical of

simple usage. It also illustrates an estimate of the amount of disk space needed for

data:

v A 3390 track holds about 57 K, less whatever space is lost to inter-record gaps.

v The data control block (DCB) parameters, which relate to the program that will

use the test data, specify:

– A logical record length (LRECL) of 80

– A block size (BLKSIZE) of 8000, and

16 z/OS Basic Skills Information Center: Data and storage management on z/OS

– A record format (RECFM) of fixed block (FB)

The space requirements (SPACE) for the data set are based on the following

assumptions:

v Approximately six blocks of 8000 each will probably fit on one track.

v Each block contains 100 records of 80 bytes each, and each track contains 600

records.

v A cylinder contains 15 tracks, therefore a cylinder will hold 9000 of these

records.

v Given these assumptions, 10 cylinders are needed to hold 90,000 records. So 10

cylinders is the primary space allocation specified in the JCL, with one cylinder

as the secondary allocation increment. The secondary allocation is used only if

the primary allocation is not sufficient space.

The IEBGENER utility: Generate (copy) a sequential data set

The IEBGENER utility is a copy program that has been part of the operating

system since the first release of OS/360. One of its many uses is to copy a

sequential data set, a member of a partitioned data set (PDS) or PDSE, or a z/OS

UNIX System Services (z/OS UNIX) file such as a HFS file.

IEBGENER also can filter data; change a data set’s logical record length (LRECL)

and block size (BLKSIZE); and generate records.

The most common use is to simply copy data sets. A typical job looks like this:

//SMITH2 JOB 1,GEOFF,MSGCLASS=X

// EXEC PGM=IEBGENER

//SYSIN DD DUMMY

//SYSPRINT DD SYSOUT=X

//SYSUT1 DD DISP=SHR,DSN=SMITH.SEQ.DATA

//SYSUT2 DD DISP=(NEW,CATLG),DSN=SMITH.COPY.DATA,UNIT=3390,

// VOL=SER=WORK02,SPACE=(TRK,3,3))

IEBGENER requires four data definition (DD) statements with the DD names

shown in the example:

v The SYSIN DD statement is used to read control parameters; for simple uses, no

control parameters are needed and a DD DUMMY can be used.

v The SYSPRINT statement is for messages from IEBGENER.

v The SYSUT1 statement is for input and the SYSUT2 statement is for output. This

example reads an existing data set and copies it to a new data set.

The IEBUPDTE utility: Update data sets with fixed-length records

The IEBUPDTE utility creates multiple members in a partitioned data set, or

updates records within a member. While it can be used for other types of records,

its main use is to create or maintain JCL procedure libraries or assembler macro

libraries.

Today, this utility is used mostly for z/OS licensed program distributions and

maintenance. It is seldom used by TSO users.

This basic example uses IEBUPDTE to add two JCL procedures to the data set

named MY.PROCLIB:

//ADDPROC1 JOB 1,SMCHUGH,MSGCLASS=X

// EXEC PGM=IEBUPDTE

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DISP=OLD,DSN=MY.PROCLIB

//SYSUT2 DD DISP=OLD,DSN=MY.PROCLIB

Chapter 3. DFSMS tools for data and storage management 17

//SYSIN DD DATA

./ ADD LIST=ALL,NAME=MYJOB1

//STEP1 EXEC=SUZNX1

//PRINT DD SYSOUT=A

// (more JCL for MYJOB1)

//SYSUDUMP DD SYSOUT=* (last JCL for MYJOB1)

./ REPL LIST=ALL,NAME=LASTJOB

//LIST EXEC PGM=SUZNLIST

// (more JCL for this procedure)

//* LAST JCL STATEMENT FOR LASTJOB

./ ENDUP

/*

This example requires a few comments:

v When a library is to be updated, then SYSUT1 and SYSUT2 both point to that

library. (If they point to different libraries, the SYSUT1 library is copied to the

SYSUT2 library and then updated.)

v The SYSIN DD DATA format indicates that the data in the input stream contains

// (two slashes) in columns one and two. The information in the input stream

should not be interpreted as JCL. The end of the input stream is indicated by /*.

v The IEBUPDTE utility uses control statements with the symbols ./ (a period and

slash) in the first two columns.

v A member named MYJOB1 is added to MY.PROCLIB; this member should not

already exist in the library.

v A member named LASTJOB is replaced with new contents.

The IEBUPDTE utility also can add or replace statements in a member based on

the sequence numbers in the statements. This capability is one of the few

remaining uses for sequence numbers in JCL or source statements.

Again, IEBUPDTE is typically used for program distribution and maintenance. For

example, if a software vendor’s product adds 25 JCL procedures to a customer’s

procedure library, the vendor might package the procedures as an IEBUPDTE job.

One advantage is that all the material is in source format and the customer can

easily review the contents before running the job.

The IEFBR14 utility: Do (almost) nothing

The utility program IEFBR14 performs no action other than return a completion

code of 0; however, “running” this utility invokes other system components that

perform useful tasks.

For example, submitting JCL to run IEFBR14 causes the z/OS job scheduler to

check your JCL statements for syntax errors. If your JCL contains data definition

(DD) statements, the z/OS initiator will allocate space for new data sets and

perform disposition processing for all data sets.

The following JCL for the job named SMITH1 accomplishes several tasks, even

though IEFBR14 does nothing but return 0:

//SMITH1 JOB 1,LEO,MSGCLASS=X

// EXEC PGM=IEFBR14

//NEWDS DD DSN=SMITH.LIB.CNTL,DISP=(NEW,CATLG),VOL=SER=WORK02,

// UNIT=3390,SPACE=(CYL,(3,1,25)

//OLDDS DD DSN=SMITH.OLD.DATA,DISP=(OLD,DELETE)

v The z/OS job scheduler to check your JCL statements for syntax errors.

v The initiator allocates the new data set defined by NEWDS (SMITH.LIB.CNTL)

and keeps the data set when the job ends.

18 z/OS Basic Skills Information Center: Data and storage management on z/OS

v The initiator also deletes an old data set defined by OLDDS

(SMITH.OLD.DATA) at the end of the job.

The same functions to create one data set and delete another could be done

through ISPF, for example, but these actions might be needed as part of a larger

sequence of batch jobs.

Note: This explanation of the name IEFBR14 might help you remember what this

utility does... One IBM group writing early OS/360 code used the prefix “IEF” for

all their code modules. In assembly language, “BR” means Branch to the address

in a register. Branching to the address in general register 14 is the standard way to

end a program.

System utilities

System utility programs are used to list or change information that is related to

data sets and volumes, such as data set names, catalog entries, and volume labels.

Most functions that system utility programs can perform are performed more

efficiently with other programs, such as IDCAMS, ISMF, or DFSMSrmm.

The ICKDSF utility: Install and manage DASD volumes

The ICKDSF utility performs functions needed for the installation, use, and

maintenance of IBM direct-access storage devices (DASD). You also can use it to

perform service functions, error detection, and media maintenance.

The ICKDSF utility is used primarily to initialize disk volumes. At a minimum,

this process involves creating the disk label record and the volume table of

contents (VTOC). ICKDSF also can scan a volume to ensure that it is usable, can

reformat all the tracks, can write home addresses, as well as other functions.

You can use the ICKDSF utility through two methods:

v Execute ICKDSF as a job or job step using job control language (JCL). ICKDSF

commands are then entered as part of the SYSIN data for z/OS.

v Use Interactive Storage Management Facility (ISMF) panels to schedule ICKDSF

jobs.

The IEHINITT utility: Initialize tape devices

IEHINITT is a system utility used to place standard volume label sets onto any

number of magnetic tapes mounted on one or more tape units. Many larger z/OS

installations do not allow unlabeled tapes to be brought into the installation.

The tape labels can be ISO/ANSI Version 3 or ISO/ANSI Version 4 volume label

sets written in ASCII (American Standard Code for Information Interchange) or

IBM standard labels written in EBCDIC.

IEHINITT is an APF-authorized program, which means that if another program

calls IEHINITT, that program must also be APF-authorized. To protect system

integrity, the calling program must follow the sytem integrity requirements

described in z/OS MVS™ Programming: Authorized Assembler Services Guide.

Because IEHINITT can overwrite previously labeled tapes regardless of expiration

date and security protection, IBM recommends that the security administrator use

PROGRAM protection as noted in z/OS DFSMSdfp Utilities.

Chapter 3. DFSMS tools for data and storage management 19

The IEHLIST utility: List system data

IEHLIST is a system utility used to list entries in the directory of one or more

partitioned data sets or PDSEs, or entries in an indexed or non-indexed volume

table of contents (VTOC).

IEHLIST is not used often in most installations, but is needed in the rare cases

where a VTOC is corrupted. It is sometimes used with the SUPERZAP program to

patch or fix a broken VTOC.

IEHLIST can list up to 10 partitioned data set or PDSE directories at a time. The

directory of a partitioned data set is composed of variable-length records blocked

into 256-byte blocks. Each directory block can contain one or more entries that

reflect member or alias names and other attributes of the partitioned members.

IEHLIST can list these blocks in edited and unedited format. The directory of a

PDSE, when listed, will have the same format as the directory of a partitioned data

set.

IEHLIST can be used to list, partially or completely, entries in a specified volume

table of contents (VTOC), whether indexed or non-indexed. The program lists the

contents of selected data set control blocks (DSCBs) in edited or unedited form.

The IEHPROGM utility: Manage catalogs and data sets

The IEHPROGM utility is used primarily to manage catalogs, rename data sets,

and delete data sets. Most of the IEHPROGM functions are available through

access method services (the IDCAMS utility), which is now the preferred utility for

catalog and data set functions.

The IEHPROGM utility offers a programmatic alternative to using job control

language to perform functions required during system installation or the

installation of a major program product. These functions may involve dozens (or

hundreds) of such catalog and data set actions. Having commands prepared

beforehand (in a batch job with IEHPROGM) is much less error-prone than more

dynamic approaches.

You can use IEHPROGM to perform the following tasks:

v Scratch (delete) a data set or a member of a partitioned data set.

v Rename a data set or a member of a partitioned data set.

v Maintain data set passwords.

You must have RACF® authority to use IEHPROGM.

SPZAP (a.k.a. Superzap): Dynamically update programs or data

The SPZAP service aid has several aliases, including AMASPZAP and Superzap,

the latter being the most commonly used. SPZAP allows you to patch or fix

volume table of contents (VTOCs), executable programs, or almost any other disk

record. In practice, it is used most frequently to patch executable programs.

The functions of SPZAP provide many capabilities, including:

v Using the inspect and modify functions of SPZAP, you can fix programming

errors that require only the replacement of instructions in a load module

member of a PDS or a program object member of a PDSE without recompiling

the program.

v Using the modify function of SPZAP, you can set traps in a program by

inserting incorrect instructions. The incorrect instructions will force abnormal

20 z/OS Basic Skills Information Center: Data and storage management on z/OS

ending; the dump of storage provided as a result of the abnormal ending is a

valuable diagnostic tool, because it shows the contents of storage at a predictable

point during processing.

v Using SPZAP to replace data directly on a direct access device, you can

reconstruct VTOCs or data records that may have been destroyed as the result of

an I/O error or a programming error.

As an example of the first function, modifying a programming error, suppose your

company has just purchased a new release of product XXX. The new release may

have been sent on tape to hundreds or thousands of customers. After shipping all

these tapes the product developers may have discovered a minor bug that could be

fixed by changing a few instructions. Instead of creating new distribution tapes

and shipping them to all the customers (a massive and expensive undertaking for

a major software product), the developers could create an SPZAP solution and

mail, fax, or ftp it to their customers.

The SPZAP solution might look something like this:

//AMYS15 JOB 1,AMYS,MSGCLASS=X

//STEP1 EXEC PGM=AMASPZAP

//SYSPRINT DD SYSOUT=*

//SYSLIB DD DISP=OLD,DSN=LANDER.LIB.LOAD

//SYSIN DD *

 NAME QSAM1

 VERIFY 004E 4780

 REP 004E 4700

/*

In the example:

v The EXEC statement identifies SPZAP as the program to run, using Superzap’s

program name (AMASPZAP).

v The SYSLIB DD statement points to the data set containing the load module to

be modified.

v The SYSIN DD statement contains the control statements that tell SPZAP what

actions to perform:

– The NAME control statement identifies the executable module (which is the

PDS member name) to be altered.

– The VERIFY statement says to look at offset x’004E’ in the module and verify

that it contains x’4780’.

– If the verify is correct then change the module to contain x’4700’ at this same

offset. This action changes a Branch Equal instruction to a No Operation and

changes the logic of the program.

An SPZAP patch like this is easily constructed when you have an assembly listing

of the program and can see the exact offset within the module containing the

instruction you want to change. Creating a patch is more difficult without a listing,

although it can be accomplished by reading hexadecimal storage dumps and

reconstructing machine language operation from the dumps. Note that the format

of executable programs on disk is complex and is not a simple image of the

program when it is loaded into memory. (Relocation data, external symbols, and an

optimized disk loading format form part of the complexity.) SPZAP understands

this disk format and allows users to zap an executable program as if it were a

memory image.

Chapter 3. DFSMS tools for data and storage management 21

22 z/OS Basic Skills Information Center: Data and storage management on z/OS

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2005, 2008 23

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, NY 12601-5400

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming interface information

This book documents information that is NOT intended to be used as

Programming Interfaces of z/OS.

24 z/OS Basic Skills Information Center: Data and storage management on z/OS

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. If these and other IBM trademarked terms are marked on their first

occurrence in this information with a trademark symbol (® or

™), these symbols

indicate U.S. registered or common law trademarks owned by IBM at the time this

information was published. Such trademarks may also be registered or common

law trademarks in other countries. A current list of IBM trademarks is available on

the Web at ″Copyright and trademark information″ at http://www.ibm.com/legal/
copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be trademarks or service marks of

others.

Notices 25

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

26 z/OS Basic Skills Information Center: Data and storage management on z/OS

����

Printed in USA

	Contents
	Introduction to data and storage management on z/OS
	Chapter 1. The DFSMS software suite
	Chapter 2. Data and storage management policies
	Chapter 3. DFSMS tools for data and storage management
	DFSMSdfp access methods
	Access Method Services (IDCAMS) commands
	DFSMSdfp callable services
	Data management utility programs
	Guide to z/OS utility program functions
	Data set utilities
	IDCAMS: Use access method services for catalogs
	The IEBCOPY utility: Copy libraries (partitioned data sets)
	The IEBDG utility: Generate test data
	The IEBGENER utility: Generate (copy) a sequential data set
	The IEBUPDTE utility: Update data sets with fixed-length records
	The IEFBR14 utility: Do (almost) nothing

	System utilities
	The ICKDSF utility: Install and manage DASD volumes
	The IEHINITT utility: Initialize tape devices
	The IEHLIST utility: List system data
	The IEHPROGM utility: Manage catalogs and data sets
	SPZAP (a.k.a. Superzap): Dynamically update programs or data

	Notices
	Programming interface information
	Trademarks

