IBMi
7.3

Security
Cryptography

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
235.

This edition applies to IBM i 7.3 (product number 5770-SS1) and to all subsequent releases and modifications until
otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor
does it run on CISC models.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.

© Copyright International Business Machines Corporation 1998, 2015.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

(04 9 V7 01 e T=1 - 1] 1 V78 |

What's NEW fOr IBM i 7.3 ittt ettt et st st e st e sat e s be e s ae e st e esbe e sabe e be e saaeesbeesabesnteessaesaseensaesssesnsens 1
D 1 = (o T O Y] o] (o] = =T o] o1V ZS USRS 1
(01 gV o1 {eY={=To1a) Vol] a o1 =T o] £ 2
Cryptographic services Key Manag@emMeENnt.......cccueiiciieeiiiieeiieeeiieeecieeesteeesteeestee e beeessaaessasaeessseeensseesnnsens 7
MaANAZING MASTEI KEYS..iiuiieiiiieiciieeeeiteeeeteeeteeestee e e rtreeestae e e sae e e baee s saeeessaseesaesassteesnsesessseessssessaneesens 8
Loading and Setting MaSter KEYS....ucuiiiiiiieciie ettt et et e e re e e te e s ba e s aree e asae e nsaeennnees 8
Loading and setting auxiliary storage pool Master KeY.......ccueecueeeciiieeciiecciee e 9
Loading and setting save/restore Master KEY......u i ieecieeecieeccteeecte e 10
TESTING MASTET KOY S .uiiiieiieieiee ettt ettt rre e e te e et e e e tee e e at e e sbee e s beeesbteeeseeesaseeesnseaesnseeeensees 11
Clearing MASTEr KEBYS....uuiiiciieiciiieeiiee et e ettt e ettt eestte e setae e e eatee e taeessteessseeesseesasseeesseesssaeessaesnnseenn 11
Saving and reStOriNgG MASEEr KEYS....iuiiiiicieeeeiie ettt et e ree et e e te e e s te e e s baeeebaeeeasaeennsaeeas 12
Managing cryptographiC KeYStOre fileS.....cccuiiiiiiiiiee e e 13
Creating @ NEW KEYStOre filB.. i e ee e e e e aee e e 13
Adding an existing KeYStOre file.....cccuiieiiiiciieecee e e e e e 14
Translating KeYStOre fileS.. .o et e e e s re e e e ba e e aes 14
Viewing translation status of Keystore fileS.......uciiiiieoiieciieecceeceece e 15
DiISEIIDULING KBYS.eeeineiieeiie ettt e et e e et e e s e e e e baeeesbae e e baeessseeesnseseesseeeanseesanseassnsens 16
LYYt = YA =T oo e TR 17
P o [g Y = W o TV = VN =Yl o SRR 17
EXPOIrting @ KEY FECOIT...ccuiiieiie ettt e et e e te e e s te e e eateeeeataeeentaeeentaeesntaeennes 17
EXEracting @ PUDLIC KEY.uoiiuiieeiie ettt ettt e e cte e e e rte e e s be e e sbae e sbae e ebaeesnbaaeenes 18
Viewing a key record's attribULeS.......cui et 19
Deleting @ KBY FECOIM...cicciiieciie ettt ettt e te e e ee e s ate e e ate e e rte e eaaeesesaee s seeesseaeennens 19
4769 CryptographiC COPIrOCESSOIS. .. uuiiiiieeeeiteeeeiteeeeitreeeiteeeeiteeeesteeeesseeesssasesssseessseeesssssesssasesssesssssesssssesenns 20
CryptographiC hardWare CONCEPLS......uiicciii et eetee ettt et e e rte e ee e e e e teeesteeeestaeesasaeeensaeesnsaeannes 21
F AU S ettt e s st e e s e et e e s e b e e e e e et e e e e et e e s e et e e e e ra e e e e e nraeeas 23
Scenarios: CryptographiC COPIOCESSON ..iiuuiiiiiieieieeeiieeeeiteeeiteeeeteeesteeseseessseeessseessssaessssessssseessnsees 25
Scenario: Protecting private keys with cryptographic hardware..........ccccoveeeeieeciiieccieeccieeeeees 25
Scenario: Writing an IBM i application to use the Cryptographic Coprocessor........ccccoeeevveenneen. 26
Scenario: Enhancing system SSL performance by using the 4769 Cryptographic
(000 o] goTol=T=1-To] UNUU RO PRSPPI 28
Planning for the CryptographiC COPrOCESSON......uiiiiiiiicieeecieectte ettt e etre e etee e re e e eae e e s bae e s vaeeeneeas 29
R ETe TU LT =Ta = oL =TSSR 29
SBCUIE @CCESS. . uutieiieitttee ettt e e ettt e e ettt e e e ettt e e s e abe e e e s s aaat e e s s e mbbteeseansbteeeeanneeeeeeanneteeseannraeeesannes 30
Object authorities that are required for SAPI........oocuiiiiie e e e 31
Configuring the CryptographiC COPIrOCESSON.....uuiiiiieecieeeeteeecteeeereeeeteeseteeesteessaseessseesssseesnssaeennseeas 34
Creating a deviCe dESCIIPLION....ccciii i ee ettt et eete e eete e e tte e e te e e ateesesteesesteesestaeenseeesnssasanns 35
NaminNg files t0 KEYSIOre file....uiiiiiieiieecee ettt e e re e s te e e s aree e e 36
Creating and defining roles and Profiles........uuiiiiiieiie e e e 36
Example: ILE C program for creating roles and profiles for your Coprocessor..........cccueu...... 41
Example: ILE C program for enabling all access control points in the default role for
YOUE COPIOCESSON . uuutrrreeereereeieerisirrrrrtteeeseseessssssssrsreseseeesesssssssssssssseseeeeesssessssssssssssssaseeeeees 51
Example: ILE RPG program for creating roles or profiles for your Coprocessor.........cccuueu... 55
Example: ILE RPG program for enabling all access control points in the default role for
YOUTE COPIOCESSON . uuuirrreeeeeereeierrisiiurrrrteteeesessessssssssrsreteteeesessesssssssssssseseeeeesssesssssssssssssseseeeeees 63
Example: ILE C program for changing an existing profile for your Coprocessor..........c......... 66
Example: ILE RPG program for changing an existing profile for your Coprocessor................ 68
Setting the environmMent ID and CLOCK......ccueiieiiiicieeecee et s 70
Example: ILE C program for setting the environment ID on your COproCcessor.......cceevveenueenne 71
Example: ILE RPG program for setting the environment ID on your COprocessor.................. 73

Example: ILE C program for setting the clock on your COproCessor.......uucvevrveerriveerrcreesnnnen 75

Example: ILE RPG program for setting the clock on your COpProCessOr.......ccveveveereieernveennne 77
Loading a fUNCLION CONTIOL VECTON.....uiiiiiiiieiieieiiecete ettt s see e s saee e s saee e s saeas 80
Example: ILE C program for loading a function control vector for your Cryptographic
[070] o] {o o1 =10] (PPN 81
Example: ILE RPG program for loading a function control vector for your Coprocessor........ 82
Example: ILE C program for clearing a function control vector from your Coprocessor......... 86
Example: ILE RPG program for clearing a function control vector from your Coprocessor....87
Loading and Setting @ MasSter KEY.....cuiiiciiiiiieiecieeete ettt ettt e st e s sbe e s sse e s sabe e s e 89
Example: ILE C program for loading a master key into your Cryptographic Coprocessor...... 90
Example: ILE RPG program for loading a master key into your Cryptographic
[070] o] {o To1 =10 1 L UPUPRPN 92
Example: ILE C program for re-encrypting keys for your Cryptographic Coprocessor........... 95
Configuring the Cryptographic Coprocessor for use with DCM and SSL.......ccccccvvvvieinieeiniieennnnen. 99
Configuring the Cryptographic Coprocessor for use with IBM i applications........cccoccceevvveennnnen. 100
Migrating to the CryptographiC COPrOCESSON....ciiiiiiiiiieriiieriitersieeesreessreessreessbeeessaessseeesbeessaneas 100
Managing the CryptographiC COPrOCESSON. ccuuiiiiiiiiiiieiritersieessieesereeesreeessbeeesbeeessreeesreessseeesnnes 101
Logging on or off of the Cryptographic COProCeSSOr......uuiiciiiiciieriieeiciee sttt seireeseee e 101
Example: ILE C program for logging on to your Cryptographic CoOprocessor.........cccevveeenee. 101
Example: ILE RPG program for logging on to your Cryptographic Coprocessor................... 103
Example: ILE C program for logging off of your Cryptographic Coprocessor........cccecveerunenn. 106
Example: ILE RPG program for logging off of your Cryptographic Coprocessor...........ceeu... 107
Query status or request INFOrMATION.......coii i e e e e e e e e e eeanes 110
Example: Querying the status of your Cryptographic COproCeSSOr....cecuiirerirrevierriieeraeeenans 110
Example: Requesting information from your Cryptographic COproCessor......ccceveveerrueeernneen 112
INItializing @ KEYSTOTE file...uuiiiiiiiiiieiete et e s aee e s aae e saee e saeas 114
Example: ILE C program for initializing a keystore for your Cryptographic Coprocessor..... 115
Example: ILE RPG program for initializing a keystore for your Cryptographic Coprocessor 116
Creating AES, DES, and PKA KEYS......iiiciiiiiieeiiieesiieessieeseteeseiteessiteessseeeseseeeseseesseseesssseessaseessane 119
Example: Creating a DES key with your Cryptographic COproCessor.......cccevveveerneeerneeernnnen 120
Example: Creating a PKA key with your Cryptographic COproCessor.......ccevvvveerrveerriveeeninnenns 122
Encrypting or deCryplting @ file...uii ittt s 125
Example: Encrypting data with your Cryptographic COproCessOor......ccuvivieiireeeinieesneeeenneen 126
WOTKING WITN PINS.....uiiiiiiiiiiieeiciee ettt ettt st e st s st e st e e ssate e s seeessseeesssteessseesnseesnnseesas 130
Example: Working with PINs on your Cryptographic COproCeSSOr.....cueirveeerieeerseeesnneeesnee 131
Generating and verifying a digital SigNatUre.......oocieiecieiriieiree e 141
Example: Signing a file with your Cryptographic COproCeSSOr.....cuivrvieeirireerriieeerieeenieeenanees 142
Example: Verifying a digital signature with your Cryptographic Coprocessor..........ccocuueeneue 145
Managing multiple CryptographiC COPrOCESSOIS.uiiiiiiriieiriieeeiieeeiteesseeeeseeesseeesseeessneeessaes 149
Example: ILE C program for allocating @ COPrOCESSON.....uutiruriiriieeerieeenieeesseeesseeeeseeesnneens 150
Example: ILE RPG program for allocating @ COProCESSON......civvveeicieeriieeririeerireesseeeessrneenane 151
Example: ILE C program for deallocating @ COProCESSON......civcueircieeriieeriieerireesseeessrneenans 154
Example: ILE RPG program for deallocating @ COpProCeSSOr.....ccuvviiirieeinieernieesnieeeneeesnaeens 155
ClONING MASTEE KBYS..uiiiiciiiieiieeitie ettt ettt e e st e s st e e sbae e sbeeesbaessasaessasaeesasaeessaeens 158
Example: ILE C program for setting the min and max values for master key shares in
YOUT CryptographiC COPIrOCESSO . . uuiiiiiiiiriiteeiieesirtessteessreessreessreessseessseessseesssseesssees 159
Example: ILE RPG program for setting the min and max values for master key shares in
your CryptographiC COPrOCESSON ..uiiiuiiiiriieieieeisieeesteeesiteeesteesseeesssseessseessseeessseessssassnns 161
Example: ILE C program for generating a retained key pair for cloning master keys........... 163
Example: ILE RPG program for generating a retained key pair for cloning master keys...... 167
Example: ILE C program for registering a public key hash.......cccocceevvivieiniiiiniieinieeeceeee, 173
Example: ILE RPG program for registering a public key hash......ccccccveveiinviieinviiinieeniieenns 175
Example: ILE C program for registering a public key certificate......ccccccevvveernveennieeinieennnnen. 180
Example: ILE RPG program for registering a public key certificate......ccccvevveirvcieiricieirceennans 182
Example: ILE C program for certifying a public key toKeN.......cooviiiviiiiniieiniecreeceiee e 186
Example: ILE RPG program for certifying a public key token........ccccoevevieveiinveninviecinieeenee, 190
Example: ILE C program for obtaining a master key share.......cccccvevevviieiiciieencieencieescieenane 196
Example: ILE RPG program for obtaining a master key share........cccoecevvvvieeinveeinieeenieennne, 199

Example: ILE C program for installing a master key share........cccocceevveeinveiinieeiniieesnieeee 204

Example: ILE RPG program for installing a master key share........ccoecevvveiniveiinieniniennnnen, 208

Example: ILE C program for listing retained KeYS........cccuvievieeieviieiiieeiniee e seiee e seeee e 213

Example: ILE RPG program for listing retained KeyS.......ccccevviieiniieiniienniieereeeeee e 215

Example: ILE C program for deleting retained KeYS......ccccuverviiiriiiiniiieniiieecieessieessee s 217

Example: ILE RPG program for deleting retained KeYsS......cccvvceeirieeiniieinieeeree e 219
Troubleshooting the CryptographiC COPrOCESSON.....uiiiciiiiiiieiriiieeriteesiteesteesrreeesrreeessreeessseesssreesssaeesas 221
Reinitializing the CryptographiC COPrOCESSOr....civuiiiriitiriteirieeesieesrteessieeeseeesseeessreeessseeessneeesneas 223
Example: ILE C program for reinitializing the Cryptographic COproCess0r......ccuvirvveeirveeerrsreennnne 223
Example: ILE RPG program for reinitializing your Cryptographic COprocessor........ccceeveernnenn. 226

Using the Hardware SErviCe ManagEr.......cucuiiiriiiriiieieieesiieessieessteessaeessreessseessseesssseesssseessseesas 229
Related information for CryptOgraphy.. ... ittt e s e s be e s beessaraeeas 233
N 0 4o - N 235
Programming interface iNformMation. ... i e s e saees 236
TrAAEMAIKS ...ttt ettee ettt ettt ettt e ettt e et e e s bt e e s bt e e s bt e e sbeeesabteesbeeessaeesasaeesasaeessaeessaeesasaeesaseeesnseeesnn 236
BT g 0TS TaTo eteTaTe L A To] o I-T PRSPPI 237

Cryptography

IBM offers several IBM® i cryptography solutions. A comprehensive cryptography solution is an important
part of a successful security strategy. IBM offers both software cryptography and a family of cryptographic
hardware options for protecting data and for securing transaction processing.

You can make cryptography an integral part of your security solution. To ensure that you understand how
cryptography works and how you can implement it in your system, review these topics:

Note: This information includes programming examples. Read the “Code license and disclaimer
information” on page 234 for important legal information.

What's new for IBMi 7.3

This topic provides the new and changed information for the Cryptography topic collection.

Miscellaneous updates have been made to this topic collection.

How to see what's new or changed
To help you see where technical changes have been made, this information uses:

e The # image to mark where new or changed information begins.
« The € image to mark where new or changed information ends.

In PDF files, you might see revision bars (|) in the left margin of new and changed information.

To find other information about what's new or changed this release, see the Memo to users.

PDF file for Cryptography

To view and print a PDF file of the Cryptography topic collection.
You can view or download the PDF version of this information, select Cryptography PDF.

Saving PDF files
To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF link in your browser.

2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free
copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html)-'-ﬁ'.

Related concepts
Related information for Cryptography

© Copyright IBM Corp. 1998, 2015 1

http://www.adobe.com/products/acrobat/readstep.html

This topic provides information about product manuals and Web sites that relate to the IBM i
Cryptography topic collection. You can view or print any of the PDFs.

Cryptography concepts

This topic provides a basic understanding of cryptographic function and an overview of the cryptographic
services for the systems running the IBM i operating system.

Cryptography

Cryptography is the study and implementation of processes, which manipulate data for the purpose of
hiding and authenticating information.

The IBM i cryptographic services help ensure data privacy, maintain data integrity, authenticate
communicating parties, and prevent repudiation when a party refutes having sent a message.

Cryptographic algorithms

A cryptographic algorithm is a mathematical procedure that is used in the transformation of data for the
purpose of securing data.

Cipher algorithms
A cipher algorithm transforms understandable information (plaintext) into an unintelligible piece of
data (ciphertext), and can transform that unintelligible data back into understandable information.

There are two types of cipher algorithms:
« Symmetric

With a symmetric or secret key algorithm, the key is a shared secret between two communicating
parties. Encryption and decryption both use the same key. The Advanced Encryption Standard (AES)
is an example of a symmetric key algorithm.

There are two types of symmetric key algorithms:
— Block cipher

In a block cipher, the cipher algorithm works on a fixed-size block of data. For example, if the
block size is eight, eight bytes of plaintext are encrypted at a time. Normally, the user's interface
to the encrypt/decrypt operation handles data longer than the block size by repeatedly calling the
low-level cipher function.

— Stream cipher

Stream ciphers do not work on a block basis, but convert 1 bit (or 1 byte) of data at a time.
Basically, a stream cipher generates a keystream based on the provided key. The generated
keystream is then XORed with the plaintext data.

« Asymmetric

With an asymmetric or public key algorithm (PKA), a pair of keys is used. One of the keys, the private
key, is kept secret and not shared with anyone. The other key, the public key, is not secret and

can be shared with anyone. When data is encrypted by one of the keys, it can only be decrypted

and recovered by using the other key. The two keys are mathematically related, but it is virtually
impossible to derive the private key from the public key. The RSA algorithm is an example of a public
key algorithm.

Public key algorithms are slower than symmetric key algorithms. Applications typically use public
key algorithms to encrypt symmetric keys (for key distribution) and to encrypt hashes (in digital
signature generation).

Together, the key and the cryptographic algorithm transform data. All of the supported algorithms are in
the public domain. Therefore, it is the key that controls access to data. You must safeguard the keys to
protect data.

2 IBMi: Cryptography

One-way hash algorithms
A cryptographic hash algorithm produces a fixed-length output string (often called a digest) from a
variable-length input string. For all practical purposes, the following statements are true of a good
hash function:

- Collision resistant: If any portion of the data is modified, a different hash will be generated.

- One-way: The function is irreversible. That is, given a digest, it is not possible to find the data that
produces it.

Key distribution algorithms
When encrypted data must be decrypted at another location, distributing the key in a secure manner
can be a challenge. There are many methods of key distribution. Some employ a cryptographic
algorithm.

« RSA: An RSA public key is used to encrypt a symmetric key which is then distributed. The
corresponding private key is used to decrypt it.

- Diffie-Hellman: The communicating parties generate and exchange D-H parameters which are then
used to generate PKA key pairs. The public keys are exchanged and each party is then able to
compute the symmetric key independently.

Random number generation algorithms
Many security-related functions rely on random number generation. Random number generation is
performed both in IBM i using Cryptographic Services and on the cryptographic coprocessors using
CCA. Both use a FIPS approved pseudorandom number generator (PRNG).

On the cryptographic coprocessor, an electronic noise source provides unpredictable input to a
random bit-value accumulator. Periodically the hardware outputs seed to a FIPS 140-1 approved
pseudorandom number generator.

The IBM i pseudorandom number generator resides in the IBM i LIC (Licensed Internal Code). It uses
a PRNG algorithm from Appendix 3 of FIPS 186-2, Digital Signature Standard (DSS).

Cryptographically strong pseudorandom numbers rely on good seed. The FIPS 186-1 algorithm is
seeded from a system seed digest. The system automatically generates seed using data collected
from system information or by using the random number generator function on a cryptographic
coprocessor if one is available. System-generated seed can never be truly unpredictable. If a
cryptographic coprocessor is not available, you should add your own random seed (via the Add Seed
for Pseudorandom Number Generator API) to the system seed digest. This should be done as soon as
possible any time the Licensed Internal Code is installed.

Cryptographic operations

Different cryptographic operations may use one or more algorithms. You choose the cryptographic
operation and algorithm(s) depending on your purpose. For example, for the purpose of ensuring data
integrity, you might want to use a MAC (message authentication code) operation with the AES algorithm.

The system provides several API sets that support cryptographic operations. See the System
cryptography overview information at the bottom of this topic for more information.

Data privacy

Cryptographic operations for the purpose of data privacy (confidentiality) prevent an unauthorized person
from reading a message. The following operations are included in data privacy:

Encrypt and Decrypt
The encrypt operation changes plaintext data into ciphertext through the use of a cipher algorithm
and key. To restore the plaintext data, the decrypt operation must employ the same algorithm and key.

Encryption and decryption may be employed at any level of the operating system. There are three
levels:

Cryptography 3

Field level encryption
With field level encryption, the user application explicitly requests cryptographic services. The
user application completely controls key generation, selection, distribution, and what data to
encrypt.

Session level encryption
With encryption at the session layer, the system requests cryptographic services instead of an
application. The application may or may not be aware that encryption is happening.

Link level encryption
Link level encryption is performed at the lowest level of the protocol stack, usually by specialized
hardware.

The Cryptographic Coprocessors may be used for both field level encryption and Secure Sockets
Layer (SSL) session establishment encryption. While VPN is supported in IBM i, it does not use the
coprocessor. Furthermore, the system does not support SNA session level encryption at all.

Translate
The translate operation decrypts data from encryption under one key and encrypts the data under
another key. This is done in one step to avoid exposing the plaintext data within the application
program.

Data integrity, authenticity, and non-repudiation

Encrypted data does not mean the data can not be manipulated (for example, repeated, deleted, or even
altered). To rely on data, you need to know that it comes from an authorized source and is unchanged.
Additional cryptographic operations are required for these purposes.

Hash (Message Digest)
Hash operations are useful for authentication purposes. For example, you can keep a copy of a digest
for the purpose of comparing it with a newly generated digest at a later date. If the digests are
identical, the data has not been altered.

MAC (Message Authentication Code)
A MAC operation uses a secret key and cipher algorithm to produce a value (the MAC) which later
can be used to ensure the data has not been modified. Typically, a MAC is appended to the end of
a transmitted message. The receiver of the message uses the same MAC key, and algorithm as the
sender to reproduce the MAC. If the receiver's MAC matches the MAC sent with the message, the data
has not been altered.

The MAC operation helps authenticate messages, but does not prevent unauthorized reading because
the transmitted data remains as plaintext. You must use the MAC operation and then encrypt the
entire message to ensure both data privacy and integrity.

HMAC (Hash MAC)
An HMAC operation uses a cryptographic hash function and a secret shared key to produce an
authentication value. It is used in the same way a MAC is used.

Sign/Verify
A sign operation produces an authentication value called a digital signature. A sign operation works as
follows:

1. The data to be signed is hashed, to produce a digest.

2. The digest is encrypted using a PKA algorithm and a private key, to produce the signature.
The verify operation works as follows:

1. The signature is decrypted using the sender's PKA public key, to produce digest 1.

2. The data that was signed is hashed, to produce digest 2.

3. If the two digests are equal, the signature is valid.

Theoretically, this also verifies the sender because only the sender should posses the private key.
However, how can the receiver verify that the public key actually belongs to the sender? Certificates
are used to help solve this problem.

4 IBMi: Cryptography

Key and random number generation

Many security-related functions rely on random number generation, for example, salting a password

or generating an initialization vector. An important use of random numbers is in the generation of
cryptographic key material. Key generation has been described as the most sensitive of all computer
security functions. If the random numbers are not cryptographically strong, the function will be subject to
attack.

Financial PINs

Personal identification number (PIN) generation and handling are also considered cryptographic
operations.

A PIN is a unique number assigned to an individual by an organization. PINs are commonly assigned to
customers by financial institutions. The PIN is typed in at a keypad and compared with other customer
associated data to provide proof of identity.

To generate a PIN, customer validation data is encrypted by a PIN key. Other processing is done on the
PIN as well, such as putting it in a particular format.

Key management

Key management is the secure handling and storage of cryptographic keys. This includes key storage and
retrieval, key encryption and conversions, and key distribution.

Key storage
Key storage on the system includes the following:
 Cryptographic Services keystore

In addition, keys can also be stored on the Cryptographic Coprocessors themselves.
- Digital certificate manager certificate store
« CCA keystore (used with the Cryptographic Coprocessors)
« JCE keystore

Key Encryption and Conversions

Keys must be encrypted prior to sending or storing them outside the secured system environment. In
addition, keys should be handled in encrypted form within the system as much as possible to reduce the
risk of exposure. The management of encrypted keys is often done via a hierarchical key system.

- At the top is a master key (or keys). The master key is the only clear key value and must be stored in a
secure fashion.

« Key-encrypting keys (KEKs) are used to encrypt other keys. Typically, a KEK is used to encrypt a stored
key, or a key that is sent to another system. KEKs are normally encrypted under a master key.

- Data keys are keys used directly on user data (such as to encrypt or MAC). A data key may be encrypted
under a KEK or under a master key.

Various uses of a key will require the key to be in different forms. For example, keys received from

other sources will normally be converted to an internal format. Likewise, keys sent out of the system are
converted to a standard external format before sending. Certain key forms are standard, such as an ASN.1
BER-encoded form, and others are peculiar to a cryptographic service provider, such as the Cryptographic
Coprocessors.

Key Distribution

Typically, data encryption is performed using symmetric key algorithms. The symmetric keys are
distributed using asymmetric key algorithms as described above. Keys are made ready to send by using
an Export operation. Keys are received into the system using an Import operation.

Cryptography 5

System cryptography overview

Cryptographic Service Providers
A cryptographic service provider (CSP) is the software or hardware that implements a set of
cryptographic operations. The system supports several CSPs:

« 4769 Cryptographic Coprocessor

« 4767 Cryptographic Coprocessor (no longer available, but still supported)
« IBMiLIC

- Java™ Cryptography Extensions

Cryptographic API sets
User applications can utilize cryptographic services indirectly via IBM i functions such as SSL, VPN
IPSec, and LDAP. User applications can also access cryptographic services directly using the following
APIs:

« CCA

The Common Cryptographic Architecture (CCA) API set is provided for running cryptographic
operations on a Cryptographic Coprocessor.

- IBM i Cryptographic Services

The IBM i Cryptographic Services API set is provided for running cryptographic operations within the
Licensed Internal Code.

« Java Cryptography
Java Cryptography Extension (JCE) is a standard extension to the Java Software Development Kit.
- Network Authentication Service

GSS (Generic Security Services), Java GSS, and Kerberos APIs are part of the Network
Authentication Service which provides authentication and security services. These services include
session level encryption capability.

- IBMiSSL and JSSE

IBMi SSL and JSSE support the Secure Sockets Layer Protocol. APIs provide session level
encryption capability.

« SQL

Structured Query Language is used to access or modify information in a database. SQL supports
encryption/decryption of database fields.

This table indicates what CSPs are used under each user interface.

Table 1. CSPs used under each user interface

CSP APIs IBMilLIC JCE 4769, 4767

CCA X

IBM i Cryptographic X
Services

Java Cryptography X X

Network X
Authentication Service

IBMi SSL and JSSE X X X

SQL

Related concepts
Initializing a keystore file

6 IBMi: Cryptography

A keystore file is a database file that stores operational keys, that is keys encrypted under the master key.
This topic provides information on how to keep records of your DES and PKA keys on systems running the
IBM i operating system.

4769 Cryptographic Coprocessor

IBM offers Cryptographic Coprocessors, which are available on a variety of system models. Cryptographic
Coprocessors contain hardware engines, which perform cryptographic operations used by IBM i
application programs and IBM i SSL transactions.

Cryptographic services key management

Cryptographic services key management for the IBM i operating system allows you to store and manage
master keys and keystores. Since you are exchanging sensitive data to manage master keys and
keystores, it is recommended that you use a secure session.

Related information

Digital Certificate Manager
Cryptographic Services API set
Certificate Stores

Java Cryptography Extension

Cryptographic services key management

Cryptographic services key management for the IBM i operating system allows you to store and manage
master keys and keystores. Since you are exchanging sensitive data to manage master keys and
keystores, it is recommended that you use a secure session.

Cryptographic Services supports a hierarchical key system. At the top of the hierarchy is a set of master
keys. These keys are the only key values stored in the clear (unencrypted). Cryptographic services
securely stores the master keys within the IBM i Licensed Internal Code (LIC).

Eight general-purpose master keys are used to encrypt other keys which can be stored in keystore files.
Keystore files are database files. Any type of key supported by cryptographic services can be stored in a
keystore file, for example AES, RC2, RSA, SHA1-HMAC.

In addition to the eight general-purpose master keys, cryptographic services supports two special-
purpose master keys. The ASP master key is used for protecting data in the Independent Auxiliary Storage
Pool (in the Disk Management GUI is known as an Independent Disk Pool). The save/restore master key

is used to encrypt the other master keys when they are saved to media using a Save System (SAVSYS)
operation.

You can work with Cryptographic services key management using the IBM Navigator for i interface. You
can access IBM Navigator for i by visiting the following URL from a Web browser where hostA is your IBM i
name:

http://hostA:2001

After you connect to IBM Navigator for i, click Security > Cryptographic Services Key Management. You
can, thereafter, work with managing master keys and cryptographic keystore files.

You can also use the cryptographic services APIs or the control language (CL) commands to work with the
master keys and keystore files.

Note: You should use Secure Sockets Layer (SSL) to reduce the risk of exposing key values while
performing key management functions.

Related concepts

Cryptography concepts

This topic provides a basic understanding of cryptographic function and an overview of the cryptographic
services for the systems running the IBM i operating system.

Related information
Cryptographic Services API set
IBM Navigator for i

Cryptography 7

Control language
Secure Sockets Layer

Managing master keys

Master keys are used to encrypt other keys. You can load, set, and test master keys. You can clear a
master key only after you have set it.

Cryptographic Services allows you to set up eight general-purpose master keys and two-special purpose
master keys that cannot be directly modified or accessed by the user (including the security officer).

The two special purpose master keys are the Save/Restore master key used for encrypting the master
keys while on SAVSYS media and the auxiliary storage pool (ASP) master key used for ASP encryption.
Cryptographic Services master keys are 256-bit AES keys that are securely stored within the IBM i
Licensed Internal Code (LIC).

Master keys are used to encrypt other keys. If a master key is lost, all keys encrypted under that master
key, and consequently all data encrypted under those keys, are lost. It is important you backup the master
keys both by saving the passphrases, and by using a SAVSYS operation. To protect the master keys while
on the save media, they are encrypted with the save/restore master key.

Note: You should use Secure Sockets Layer (SSL) to reduce the risk of exposing key values while
performing key management functions.

Each master key is composed of four 32-byte values, called versions. The versions are new, current, old,
and pending.
- The new master key version contains the value of the master key while it is being loaded.

« The current master key version contains the active master key value. This is the value that will be used
when a master key is specified on a cryptographic operation (unless specifically stated otherwise).

- The old master key version contains the previous current master key version. It is used to prevent the
loss of data and keys when the master key is changed.

The pending master key version holds a master key value that has been restored to the system but
cannot be correctly decrypted.

Each version of a master key has a key verification value (KVV). The KVV is a 20-byte hash of the key
value. It is used to determine if a master key has changed, or what version of a master key was used in an
encryption operation.

The following describes master key operations. All master key operations will create a CY (Cryptographic
Configuration) audit record.

Loading and setting master keys
To use a master key, you must first load its key parts, and then set it.

Note: If a master key is lost, all keys encrypted under that master key, and consequently all data
encrypted under those keys, are lost. Therefore, it is important to backup your master keys. Whenever a
master key is changed, you should make a backup by performing a SAVSYS operation. Even when backed
up using the SAVSYS operation, you should write down the passphrases for the master keys and store
them securely; this is in case the Licensed Internal Code install from the SAVSYS operation fails.

The load master key operation takes a passphrase as input. It is hashed and then loaded into the new
version. You can load as many passphrases as desired. Each passphrase is XORed into the new version of
the master key. To ensure that no single individual has the ability to reproduce a master key, you should
assign passphrases to several people. Loading a master key part does not affect the current master key
version.

To load a master key from the IBM Navigator for i interface, follow these steps:

1. Select Security from your IBM Navigator for i window.
2. Select Cryptographic Services Key Management.
3. Select Manage Master Keys.

8 IBMi: Cryptography

4. Select the Master key.
5. Select Load Part from the Select Actions menu.
6. Specify the Passphrase and click OK.

You can also use the Add Master Key Part (ADDMSTPART) CL command to load a key part for the specified
master key.

Or, if you prefer to write your own application to load a master key part, you can do so by using the Load
Master Key Part (QC3LDMKP; Qc3LoadMasterKeyPart) API.

To activate the new master key value, which consists of the passphrases previously loaded, you set it. The
following steps are performed when a master key is set:

1. The current version master key value and Key Verification Value (KVV) are moved to the old version
wiping out what was in the old version.

2. The new version master key value is finalized. Then, new version master key value and its KVV are
moved to the current version.

3. The new version is erased.
To set the master key, select the Master key and then from the Select Actions menu, select Set.

You can also use the Set Master Key (SETMSTKEY) command to set the specified master key that has
parts already added.

Or, if you prefer to write your own application to set the master key, you can do so by using the Set Master
Key (OPM, QC3SETMK; ILE, Qc3SetMasterKey) API.

Note: The Set Master Key operation returns the master key's Key Verification Value (KVV). You can use
this value at a later date to determine whether the master key has been changed.

Related tasks

Saving and restoring master keys
If a master key is lost, all keys encrypted under that master key, and consequently all data encrypted
under those keys, are lost. Therefore, it is important to backup your master keys.

Related information
Key Management APIs
IBM Navigator for i
Control language

Loading and setting auxiliary storage pool master key

You can set the auxiliary storage pool (ASP) master key as you would any other master key, by first loading
key parts and then setting the ASP master key. The ASP master key is used for protecting data in the
independent auxiliary storage pool (known as an independent disk pool in the graphical interface).

When you set up an encrypted independent auxiliary storage pool (IASP), the system generates a data key
which encrypts data written to that IASP, and decrypt data read from that IASP. The IASP data key is kept
with the IASP and is protected with the ASP master key.

Important: To encrypt an independent disk pool from the disk management folder of the graphical
interface, it must be a V6R1 or later version system and it must have Encrypted ASP Enablement feature
of IBMiinstalled. This feature can be ordered separately for a fee.

To set the ASP master key, you must first load master key parts and then set the ASP master key. You can
load as many master key parts as you want for the ASP master key. By setting the save/restore master
key, the new ASP master key version moves to the current ASP master key version.

To load the ASP master key from the IBM Navigator for i interface, follow these steps:

1. Select Security from your IBM Navigator for i window.
2. Select Cryptographic Services Key Management.
3. Select Manage Master Keys.

Cryptography 9

4. Select the ASP master key.
5. Select Load Part from the Select Actions menu.
6. Use the Load Part dialog to specify the passphrase.

You can also use the Add Master Key Part (ADDMSTPART) CL command to load a key part for the ASP
master key.

Or, if you prefer to write your own application to load the ASP master key, you can do so by using the Load
Master Key Part (OPM, QC3LDMKP; ILE, Qc3LoadMasterKeyPart) API.

To set the ASP master key, select the ASP master key and then from the Select Actions menu, select
Set.

You can also use the Set Master Key (SETMSTKEY) CL command to set the ASP master key that has parts
already added.

Or, if you prefer to write your own application to set the ASP master key, you can do so by using the Set
Master Key (QC3SETMK; Qc3SetMasterKey) APL.

Related information
Independent auxiliary storage pool (ASP)

Loading and setting save/restore master key

The save/restore master key is a special purpose master key used to encrypt all the other master keys
when you save them in a Save System (SAVSYS) operation. The save/restore master key itself is not
saved. The save/restore master key has a default value. So, for optimum security, the save/restore master
key should be set to another value.

The save/restore master key has only two versions. The versions are new and current.

Note: Since the save/restore master key is not included in the Save System operation, it is recommended
that you write the passphrases for the save/restore master key and store them securely.

You should set the save/restore master key before performing the SAVSYS operation. To set the save/
restore master key, you must first load master key parts and then set the save/restore master key.

You can load as many master key parts as you want for the save/restore master key. Setting the save/
restore master key causes the new save/restore master key version to move to the current save/restore
master key version. After the save/restore master key has been set, you should perform the SAVSYS
operation to save the master keys on the save media.

To load a save/restore master key from the IBM Navigator for i interface, follow these steps:

1. Select Security from your IBM Navigator for i window.
2. Select Cryptographic Services Key Management.

3. Select Manage Master Keys.

4. Select the Save/Restore master key.

5. Select Load Part from the Select Actions menu.

6. Specify the Passphrase and click OK.

If you prefer to write your own application to load the save/restore master key, you can do so by using the
Load Master Key Part (QC3LDMKP; Qc3LoadMasterKeyPart) API.

You can also use the Add Master Key Part (ADDMSTPART) CL command to load a master key part for the
save/restore master key.

To set the save/restore master key, select the Save/Restore master key and then from the Select
Actions menu, select Set.

If you prefer to write your own application to set the save/restore master key, you can do so by using the
Set Master Key (QC3SETMK; Qc3SetMasterKey) APL.

10 IBMi: Cryptography

You can also use the Set Master Key (SETMSTKEY) CL command to set the save/restore master key that
has parts already added.

You cannot use Option 5, Save Licensed Internal Code from the IPL or Install the System menu to
save the master key. You must use the SAVSYS operation. You should also perform a SAVSYS operation
whenever you load and set any of the master keys.

Related information
Key Management APIs
IBM Navigator for i
Control language

Testing master keys

You can check the Key Verification Value (KVV) for any version of any master key. The KVV is a 20-byte
hash of the key value. By checking its KVV, you can test if the master key value is what you believe it to
be. For example, if you save the KVV returned on the set master key operation, you can use it to compare
against the value returned on the check KVV operation at a later date to determine if the master key has
changed.

To check a master key KVV using IBM Navigator for i, follow these steps:

1. Select Security from your IBM Navigator for i window.
2. Select Cryptographic Services Key Management.

3. Select Manage Master Keys.

4. Select the master key that you want to test.

5. Select Properties from the Select Actions menu.

You can also use the Check Master KVV (CHKMSTKVV) CL command to test a specified master key and
version.

If you prefer to write your own application, you can use the Test Master Key (QC3TSTMK,
QcTestMasterKey) APL.

Note:

1. The ASP Master Key and the Save/Restore Master Keys do not have pending versions. Also, the Save/
Restore Master Key does not have an old version.

2. If the KVV for the Save/Restore Master Key is hexadecimal
16C1D3E3C073E77DB28F33E81EC165313318CEL4, it is set to the default value. For optimum
security, you should load and set the Save/Restore Master Key.

Related information
Key Management APIs
IBM Navigator for i
Control language

Clearing master keys

You can clear any version of any master key. Before clearing an old master key version, care should be
taken to ensure no keys or data are still encrypted under it. You can clear a master key version only if it is
set.

Note: The ASP master key and the save/restore master keys do not have pending versions. Also, the
save/restore master key does not have an old version.

To clear a master key using IBM Navigator for i, follow these steps:

1. Select Security from your IBM Navigator for i window.
2. Select Cryptographic Services Key Management.
3. Select Manage Master Keys.

Cryptography 11

4. Select the master key.
5. Select Clear from the Select Actions menu.

You can also use the Clear Master Key (CLRMSTKEY) command to clear the specified master key version.

Or, if you prefer to write your own application to clear a master key, you can do so by using the Clear
Master Key (QC3CLRMK; Qc3ClearMasterKey) API.

Note: By clearing the save/restore master key, it will be set to its default value. For optimum security, you
should load and set the save/restore master key.

Related information
Key Management APIs
IBM Navigator for i
Control language

Saving and restoring master keys

If a master key is lost, all keys encrypted under that master key, and consequently all data encrypted
under those keys, are lost. Therefore, it is important to backup your master keys.

There are two methods of backing up your master keys:
« Save the individual passphrases

Master key passphrases should not be stored on the system in plaintext. Also, do not encrypt them
under any master key or any key encrypted under a master key. If the master keys are lost (for

example, when the Licensed Internal Code is installed) or damaged, you will be unable to recover the
passphrases and therefore the master keys. Store the passphrases securely outside the system, such as
in separate safes.

« Save the master keys by performing a SAVSYS operation

Master keys are saved as part of a SAVSYS operation. To protect the master keys while on save media,
they are encrypted with the save/restore master key. The save/restore master key is the only master key
that is not saved as part of the SAVSYS operation.

To back up the master keys, follow these steps:

1. Set the save/restore master key.
2. Perform a SAVSYS operation.

To recover the master keys on the target system, the save/restore master key on the target system

must match the save/restore master key on the source system at the time of the SAVSYS operation.

If they match, the master keys are automatically decrypted and made ready for use. If they do not
match, the restored master keys are put in pending versions. When you attempt to use a master key
that has a pending version (for example, you encrypt using a key from a keystore file that is encrypted
under a master key with a pending version), you get an error message indicating there is an unrecovered
master key. You must either recover the pending master key version by setting the correct value for the
save/restore master key on the target system, or you must clear the pending master key version.

The save/restore master key has a default value. Therefore, if it is not changed on either the source

or target systems, the master keys will restore without any intervention. However, using the default
save/restore master key is not recommended as this provides little protection. You should load and set
the save/restore master key for optimum security of the master keys while on SAVSYS media.

When master keys are restored and decrypted successfully with the save/restore master key, they are
moved into the current versions. If a master key already has a current version, it is moved to the old
version. Therefore, it is important that there are no keys on the system encrypted under the old version,
because that will be lost. After restoring the master keys, you must translate all keystore files and any
other keys encrypted under a master key.

There might be instances when you do not want your master keys, or some of your master keys, to be
distributed to another system through the SAVSYS media. When you do not want any of your master

12 IBMi: Cryptography

keys to successfully restore and decrypt on another system, ensure you have loaded and set the save/
restore master key prior to the SAVSYS operation, and do not share it with the target system. On the
target system, the pending versions are needed to be cleared.

If you want to distribute only some of your master keys, you can do the same. Then, share the
passphrases for the master keys you want to share. Otherwise, you will need to temporarily clear the
master keys you do not want distributed.

Even when the master keys are backed up using the SAVSYS operation, you should write down the
passphrases for the master keys and store them securely; this is in case the Licensed Internal Code
install from the SAVSYS operation fails.

You cannot use Option 5, Save Licensed Internal Code from the IPL or Install the System menu to
save the master key. You must use the SAVSYS operation.

Note: Any time you change a master key, you must back it up.

Managing cryptographic keystore files

You can create keystore files, and add, generate, delete, import, export, and retrieve attributes for key
records.

A keystore is a set of database files that are used for storing cryptographic keys. Any type of key that

is supported by cryptographic services can be stored in a keystore file. Some examples of the types of
keys supported by cryptographic services are AES, RC2, RSA, and MD5-HMAC. You can create as many
keystore files as you want, and add as many key records as you want into a keystore file. Since each
keystore file is a separate system object, you can authorize different users to each file. You can save and
restore each keystore file at different times. This depends on how often key records are added to the
keystore file and how often the master key for the keystore file is changed.

You can manage keystore files from the IBM Navigator for i interface, or use the Cryptographic Services
APIs or control language (CL) commands.

Note: You should use Secure Sockets Layer (SSL) to reduce the risk of exposing key values while
performing key management functions.

Creating a new keystore file

You can create as many keystore files as desired. When you create a keystore file using the IBM Navigator
foriinterface it is automatically added to your list of managed keystore files.

To create a new keystore file using the IBM Navigator for i interface, follow these steps:

1. Select Security from your IBM Navigator for i window.
. Select Cryptographic Services Key Management.

. Select Manage Cryptographic Keystore Files.

. Click Create New Keystore.

. Enter the Keystore name for the new keystore you want to create and specify the Library in which you
want to create the new keystore.

. Enter the Description of the new keystore that you want to create.

. Enter the Master key that you want to be associated with the new keystore file.
. Select the Public authority that you want to assign to the new keystore file.

. Click OK.

You can also use the Create Keystore File (CRTCKMKSF) command to create a database file for storing
cryptographic key records.

o b WD

O 00 9 O

Or, if you prefer to write your own application to create a new keystore file, you can do so by using the
Create Keystore (QC3CRTKS; Qc3CreateKeyStore) API.

To add an existing keystore file to your list of managed keystore files using the IBM Navigator for i
interface, see Adding an existing keystore file

Cryptography 13

Related information
Key Management APIs
IBM Navigator for i
Control language

Adding an existing keystore file

From the IBM Navigator for i interface, you can add an existing keystore file to your list of managed
keystore files.

To add an existing keystore file to your list of managed keystore files, follow these steps:

1. Select Security from your IBM Navigator for i window.
2. Select Cryptographic Services Key Management.

3. Select Manage Cryptographic Keystore Files.

4. Click Add Keystore.

5. Specify the File name and the Library.

6. Click OK.

Related information
Cryptographic Services API set
IBM Navigator for i

Control language

Translating keystore files

When the master key for a keystore file is changed, all keys in that keystore file must be translated
(re-encrypted). You can translate a keystore to another master key, or if the same master key is specified,
to the current version of the master key.

To translate a keystore using the IBM Navigator for i, follow these steps:

1. Select Security from your IBM Navigator for i window.

2. Select Cryptographic Services Key Management.

3. Select Manage Cryptographic Keystore Files.

4. Select the Keystore you want to translate.

5. Select Translate from the Select Actions menu.

6. Select the Master key to which you want to translate the keystore file.

Note: In order to avoid losing keys, a keystore file should be translated soon after the master key for that

keystore file has changed. If the master key is changed again before you have translated the keystore file,
all the keys in the keystore file will be lost.

You can also use the Translate Keystore File (TRNCKMKSF) command to translate key records stored in

the specified keystore files to another master key, or if the same master key is specified, to the current
version of the master key.

Or, if you prefer to write your own application, use the Translate Key Store (QC3TRNKS;
Qc3TranslateKeyStore) API.

To learn about how you can determine the translation status of keystore files, see Viewing translation
status of keystore files

Related tasks

Distributing keys

You can move a keystore file and single keys from one system to another without exposing clear key
values.

Related information
Backup Recovery and Media Services for IBM i

14 IBMi: Cryptography

Backup, Recovery, and Media Services (BRMS)
Cryptographic Services API set

IBM Navigator for i

Control language

Viewing translation status of keystore files

You can view the translation status of each keystore file to determine whether a keystore file requires
translation.

For example, you used master key 5 to encrypt all keys in a single keystore file. However, all keys might
not be encrypted under the same version of the master key because after you created a keystore file and
assigned master key 5 to that keystore file, you added several key records. Later, you changed master key
5 using the load and set master key operations. After that, you added several key records to the keystore
file. The keystore file now has some keys encrypted under the current version of the master key and some
keys encrypted under the old version of the master key. If you change master key 5 again and add more
key records, there will be some keys encrypted under the current version, some keys encrypted under the
old version, and some keys lost.

To view the translation status of each keystore file from the IBM Navigator for i interface, follow these
steps:

1. Select Security from your IBM Navigator for i window.
2. Select Cryptographic Services Key Management.

3. Select Manage Cryptographic Keystore Files.

4. Select the Keystore you want to translate.

5. Select Properties from the Select Actions menu.

The translation statuses explain if the keystore file requires translation:

Current
Indicates that all keys are encrypted under the current version of the keystore file's master key. No
translation is needed.

Old (Translation needed)
Indicates that the keystore file contains at least one key that is encrypted under the old version of
the keystore file's master key. You should translate the keystore file so that all keys will be encrypted
under the current version of the master key.

Lost (Recovery needed)
Indicates that the keystore file contains at least one key that is not encrypted under the old or current
version of the keystore file's master key. To recover lost keys, first translate the keystore file. This will
ensure that any keys with a translation status of old become current. Then, set a master key to the
master key value that no longer exists and translate the keystore file to that master key. All keys in the
keystore file should now have a translation status of current.

Note: To view the translation status of each key record using the IBM Navigator for i interface, open the
keystore file. The Keystore Contents page displays the translation status of each key record.

You can also determine the translation status of key records programmatically. Use the Retrieve

Key Record Attributes (QC3RTVKA; Qc3RetrieveKeyRecordAtr) API or the Retrieve Keystore Records
(QC3RTVKS, Qc3RetrieveKeystoreRecords) API to obtain the Key Verification Value (KVV) of the master
key at the time the key record was added. Then, compare it with the KVV returned on the Test Master Key
(QC3TSTMK; Qc3TestMasterKey) API, to determine the translation status of the key record.

Similarly, you can use the Display Keystore File Entry (DSPCKMKSFE) and Check Master KVV
(CHKMSTKVV) CL commands to determine the translation status of a key record.

Related tasks
Translating keystore files

Cryptography 15

When the master key for a keystore file is changed, all keys in that keystore file must be translated
(re-encrypted). You can translate a keystore to another master key, or if the same master key is specified,
to the current version of the master key.

Related information

Cryptographic Services API set

IBM Navigator for i

Control language

Distributing keys
You can move a keystore file and single keys from one system to another without exposing clear key
values.

Moving a keystore file

In general, you should not share master keys with another system. Each system should have unique
master keys. However, to move an entire keystore file from one system to another without exposing clear
key values, you need to set up identical master key values on both systems. To avoid exposing your
master key values, perform the following steps.

1. Set up a temporary master key on both systems by loading and setting an unused master key with
identical passphrases.

2. On the source system, create a duplicate of the keystore file (for example, using the CRTDUPOBJ CL
command).

. Translate the duplicated keystore file to the temporary master key.

. Move the keystore file to the target system.

. Delete the translated keystore file from the source system. (You still have the original keystore file.)
. On the target system, translate the keystore file to another master key.

. Clear the temporary master key on both systems.

Note:

N o o W

- If the target system already has a file by the same name, you will need to rename one of the files. You
could also export individual keys from the source system keystore file and write them into the target
system keystore file as described below.

- To merge two keystore files together, you will need to export the keys out of one of the keystore files,
and write them into the other keystore file using the Write Key Record API or the New Key Record wizard
from the IBM Navigator for i interface as described below. If there are duplicate label names, you will
have to provide a new name on the Write Key Record API or the New Key Record wizard from the IBM
Navigator for i interface.

Moving single keys

To move a single key that is encrypted under a master key (in or outside of keystore) to another system,
use the Export Key API or the Export Key wizard from the IBM Navigator for i interface. The export
operation translates the key from encryption under the master key to encryption under a key-encrypting
key (KEK). On the target system, you can then use the Write Key Record API or the New Key Record wizard
from the IBM Navigator for i interface to move the migrated key into the keystore. Both systems must
agree on the KEK ahead of time.

Note: The Export Key API is shipped with public authority *EXCLUDE. Be careful about the access you
give to the Export Key API. Anyone with access to master key-encrypted keys and the Export Key API can
obtain the clear key values.

Related tasks

Translating keystore files

16 IBMi: Cryptography

When the master key for a keystore file is changed, all keys in that keystore file must be translated
(re-encrypted). You can translate a keystore to another master key, or if the same master key is specified,
to the current version of the master key.

Exporting a key record
An export operation is used to translate (re-encrypt) a key encrypted under a master key to encryption
under a key-encrypting key (KEK).

Managing key records

You can create a new key record by generating or importing a key into it. You can also export a key out of a
key record, extract a public key from a key record, view a key record's attributes, and delete a key record.

You can store any type of key that is supported by cryptographic services in a keystore file. You can add as
many key records as you want in a keystore file and manage them from the IBM Navigator for i interface,
or you can choose to use the Cryptographic Services APIs and control language (CL) commands.

Each record in a keystore file holds a key or a key pair. Besides the encrypted key value, the record
contains the key type (for example, TDES, AES, RSA), the key size, the Key Verification Value (KVV) of
the master key at the time the key value was encrypted, and a label. All fields in the keystore record are
stored as CCSID 65535 except for the record label. At the time the record label was assigned, it was
converted from the job CCSID or the job default CCSID to Unicode UTF-16 (CCSID 1200).

Adding a new key record

You can add a new key record into a keystore file. You can either have the system generate a random
key value for you, or you can supply a key value. The supplied key value can be specified in the clear or
encrypted.

You can add a new key record to a keystore using the New Key Record wizard from the IBM Navigator for
i interface. You can either have the key automatically generated or you can specify the key value. If the
specified key value is encrypted, the wizard prompts you for the location of the key for use in decrypting
the key value.

To add a key record using the New Key Record wizard, follow these steps:

1. Select Security from your IBM Navigator for i window.
2. Select Cryptographic Services Key Management.

3. Select Manage Cryptographic Keystore Files.
4

. Right-click the Keystore to which you want to add the key record, select OpenKeyStore to display the
keystore contents.

5. Click the New Key Record button.
6. Follow the steps in the New Key Record wizard.
You can also use the Add Keystore File Entry (ADDCKMKSFE) CL command to add a key record with the

specified clear key value or key pair. Or you can use the Generate Keystore File Entry (GENCKMKSFE) CL
command to generate a random key or key pair for a key record.

Or, if you prefer to write your own application, you can use the Generate Key Record (QC3GENKR,;
Qc3GenKeyRecord) or Write Key Record (QC3WRTKR; Qc3WriteKeyRecord) APIs.

Related information

Cryptographic Services API set

IBM Navigator for i

Control language

Exporting a key record
An export operation is used to translate (re-encrypt) a key encrypted under a master key to encryption
under a key-encrypting key (KEK).

Usually you encrypt a key under a KEK for one of the reasons below:

Cryptography 17

« You plan to send the key to another system. Normally you should not share master keys with other
systems. Instead you exchange a KEK. For example, Alice generates an RSA key pair and sends the
public key to Bob. Bob encrypts the key he wishes to send Alice with Alice's public key and sends it to
Alice. Only Alice will be able to decrypt the key.

- The key will be stored with the data it encrypts. You should not store the key encrypted under the
master key, because if the master key changes you might not remember to translate the key. By
encrypting it under a KEK, you reduce that risk.

You can export key records using the Export key wizard from the IBM Navigator for i interface. The wizard
will take you through the steps required to export a key from a key record in a keystore file to a stream file.
The wizard requires that you first choose another key record that will be used as the KEK. The KEK must
already exist in a keystore file.

To export key records to another system, follow these steps:

1. Select Security from your IBM Navigator for i window.

. Select Cryptographic Services Key Management.

. Select Manage Cryptographic Keystore Files.

. Select the Keystore that contains the key record that you want to export.
. Select the Key record you want to export.

. Select Export from the Select Actions menu.

7. Follow the steps in the Export Key wizard.

ool DN

If you prefer to write your own application, use the Export Key (QC3EXPKY; Qc3ExportKey) API.

Note: Anyone with authority to a keystore file and the Export key wizard can obtain the clear key values
for all keys in the file. Because the Export key wizard uses the Export Key API, you can control access
to this function by the access you give to the Export Key API. The Export Key API is shipped with public
authority *EXCLUDE.

Related tasks

Distributing keys

You can move a keystore file and single keys from one system to another without exposing clear key
values.

Related information
Cryptographic Services API set
IBM Navigator for i

Control language

Extracting a public key

You can extract a public key if you want to send the public key to another individual. A public key can be
extracted from a BER encoded PKCS #8 string or from a key record that contains a public or private PKA
key. The public key is extracted in X.509 SubjectPublicKeyInfo format.

To extract a public key from a key record using IBM Navigator for i follow these steps:

1. Select Security from your IBM Navigator for i window.

. Select Cryptographic Services Key Management.

. Select Manage Cryptographic Keystore Files.

. Select the Keystore that contains the public key record that you want to extract.
. Select the Key record that you want to extract.

. Select Extract Public Key from the Select Actions menu.

7. Specify the extract location.

ool WON

If you prefer to write your own application, use the Extract Public Key (QC3EXTPB; Qc3ExtractPublicKey)
API which can extract a public key from a keystore file record or from a BER encoded PKCS #8 string.

18 IBMi: Cryptography

Related information
Cryptographic Services API set
IBM Navigator for i

Control language

Viewing a key record's attributes

Even though you cannot view the value of the key, you can view the attributes of a key stored in a keystore
file. These include the key record label, the key type, the key size, the disallowed functions, the id of the
master key that encrypts the key value and the Key Verification Value (KVV) of the master key.

To view a key record’s attributes using IBM Navigator for i, follow these steps:

1. Select Security from your IBM Navigator for i window.

2. Select Cryptographic Services Key Management.

3. Select Manage Cryptographic Keystore Files.

4. Select the Keystore that contains the key record that you want to view the attributes for.
5. Select the Key record that you want to view.

6. Select Properties from the Select Actions menu.

You can also use the Display Keystore File Entry (DSPCKMKSFE) CL command to display the attributes of a
keystore file record.

Or, if you prefer to write your own application, you can use the Retrieve Key Record
Attributes (QC3RTVKA; Qc3RetrieveKeyRecordAtr) or Retrieve Keystore Records (QC3RTVKS,
Qc3RetrieveKeystoreRecords) API.

Deleting a key record
By deleting a key record, you also delete the key associated with the key record. The data encrypted
under the key will be lost.

To delete a key record from the IBM Navigator for i interface, follow these steps:

1. Select Security from your IBM Navigator for i window.

2. Select Cryptographic Services Key Management.

3. Select Manage Cryptographic Keystore Files.

4. Select the keystore that contains the key record that you want to delete.
5. Select the key record that you want to delete.

6. Select Delete from the Select Actions menu.

Note: Make sure you have no data or keys encrypted under the key in the key record (that you want to
delete) before you delete it.

You can also use the Remove Keystore File Entry (RMVCKMKSFE) CL command to delete a key record
from a keystore file.

Or, if you prefer to write your own application, use the Delete Key Record (QC3DLTKR;
Qc3DeleteKeyRecord) API.

Related information
Cryptographic Services API set
IBM Navigator for i

Control language

Cryptography 19

| 4769 Cryptographic Coprocessor

IBM offers Cryptographic Coprocessors, which are available on a variety of system models. Cryptographic
Coprocessors contain hardware engines, which perform cryptographic operations used by IBM i
application programs and IBM i SSL transactions.

| Note: The IBM 4767 Cryptographic Coprocessor is no longer available but it is still supported.
I The 4769 Cryptographic Coprocessor is available on the Power 9 model as hardware feature EJ35 or
EJ37.

Cryptographic Coprocessors can be used to augment your system in the following ways:

 You can use a Cryptographic Coprocessor to implement a broad range of IBM i based
applications. Examples are applications for performing financial PIN transactions, bank-to-clearing-
house transactions, EMV transactions for integrated circuit (chip) based credit cards, and basic SET
block processing. To do this, you or an applications provider must write an application program,
using a security programming interface (SAPI) to access the security services of your Cryptographic
Coprocessor. The SAPI for the Cryptographic Coprocessor conforms to IBM's Common Cryptographic
Architecture (CCA). The SAPI is contained in the CCA Cryptographic Service Provider (CCA CSP) which is
delivered as IBM i Option 35.

To meet capacity and availability requirements, an application can control up to eight

Coprocessors. The application must control access to individual Coprocessor by using the
Cryptographic_Resource_Allocate (CSUACRA) and Cryptographic_Resource_Deallocate (CSUACRD) CCA
APIs.

« You can use a Cryptographic Coprocessor along with DCM to generate and store private keys associated
with SSL digital certificates. A Cryptographic Coprocessor provides a performance assist enhancement
by handling SSL private key processing during SSL session establishment.

« When using multiple Coprocessors, DCM configuration gives you the following options for using
hardware to generate and store the private key associated with a digital certificate.

— The private key is generated in hardware and stored (that is retained) in hardware. With this option
the private key never leaves the Coprocessor, and thus the private key cannot be used or shared with
another Coprocessor. This means that you and your application have to manage multiple private keys
and certificates.

— The private key is generated in hardware and stored in software (that is stored in a keystore file).
This option allows a single private key to be shared among multiple Coprocessors. A requirement is
that each Coprocessor must share the same master key. You can use the Clone master keys page
to set up your Coprocessors to have the same master key. The private key is generated in one of
the Coprocessors and is then saved in the keystore file, encrypted under the master key of that
Coprocessor. Any Coprocessor with an identical master key can use that private key.

« The IBMJCECCAI5O0S implementation extends Java Cryptography Extension (JCE) and Java
Cryptography Architecture (JCA) to add the capability to use hardware cryptography by using the
IBM Common Cryptographic Architecture (CCA) interfaces. This new provider takes advantage of
hardware cryptography within the existing JCE architecture and gives Java 2 programmers the
significant security and performance advantages of hardware cryptography with minimal changes to
existing Java applications. As the complexities of hardware cryptography are taken care of within the
normal JCE, advanced security and performance using hardware cryptographic devices are made easily
available. The IBMJCECCAI5O0S provider plugs into the JCE framework in the same manner as the
current providers. For hardware requests, the CCA APIs are called by the new native methods. The
IBMJCECCAI5OS stores CCA RSA key labels in a new Java keystore type of JCECCAI5SOSKS.

- Features: Cryptographic Coprocessors contain hardware engines, which perform cryptographic
operations used by IBM i application programs and SSL transactions. Each IBM Cryptographic
Coprocessor contains a tamper-resistant hardware security module (HSM) which provides secure
storage for store master keys. The HSM is designed to meet FIPS 140 security requirements. To meet
your capacity and high availability needs, multiple Cryptographic Coprocessors are supported. The
features information describes in greater detail what the Cryptographic Coprocessors and CCA CSP have
to offer.

20 IBMi: Cryptography

« Requirements: Your system must meet some requirements before you can install and use a
Cryptographic Coprocessor. Use the requirements page to determine whether you are ready to install
and use a Cryptographic Coprocessor on your system.

« Cryptography hardware concepts: Depending on your familiarity with cryptography, you may need
more information about a term or concept. This page explains some basic concepts regarding the
cryptographic hardware available for your system, enabling you to better understand how to maximize
your usage of cryptography and cryptographic hardware options with your system.

 Related information: See Related information for additional sources of cryptography information
recommended by IBM.

Related concepts

Cryptography concepts

This topic provides a basic understanding of cryptographic function and an overview of the cryptographic
services for the systems running the IBM i operating system.

Requirements
Your system must run the IBM i operating system and must meet these requirements before you install
and use the Cryptographic Coprocessors.

Managing multiple Cryptographic Coprocessors

You can have up to eight Cryptographic Coprocessors per partition. The maximum number of
Cryptographic Coprocessors supported per system is dependent on the system mode. This topic provides
information on using multiple coprocessors with SSL in systems running the IBM i operating system.

Related information for Cryptography
This topic provides information about product manuals and Web sites that relate to the IBM i
Cryptography topic collection. You can view or print any of the PDFs.

4764 Cryptographic Coprocessor

Using hardware cryptography

Related tasks

Cloning master keys

Master key cloning is a method for securely copying a master key from one Cryptographic Coprocessor

to another without exposing the value of the master key. If you are using multiple coprocessors with

SSL on your system running the IBM i operating system, use the Cryptographic Coprocessor configuration
Web-based utility to clone master keys.

Related information
Java Cryptography Extension

Cryptographic hardware concepts

To better understand how to maximize your use of cryptography and cryptographic hardware options
with your system running the IBM i operating system, this topic provides basic concepts regarding
cryptographic hardware.

Key types associated with the Cryptographic Coprocessor
Your Coprocessor uses various key types. Not all DES or Triple DES keys can be used for all symmetric
key operations. Likewise, not all public key algorithm (PKA) keys can be used for all asymmetric key
operations. This is a list of the various key types which the Coprocessor uses:

Master key
This is a clear key, which means that no other key encrypted it. The Coprocessor uses the master
key to encrypt all operational keys. The Coprocessor stores the master key in a tamper-responding
module. You cannot retrieve the master key from the Coprocessor. The Coprocessor responds to
tamper attempts by destroying the master key and destroying its factory certification. The 4769
coprocessors have four master keys: one for encrypting DES keys, one for encrypting PKA keys,
one for encrypting AES keys, and one for encrypting APKA keys.

Cryptography 21

https://www.ibm.com/support/knowledgecenter/ssw_i5_54/rzajc/rzajcco4758.htm

Double-length key-encrypting keys
Your Coprocessor uses this type of Triple-DES key to encrypt or decrypt other DES or Triple DES
keys. Key-encrypting-keys are generally used to transport keys between systems. However, they
can also be used for storing keys offline for backup. If key-encrypting-keys are used to transport
keys, the clear value of the key-encrypting-key itself must be shared between the two systems.
Exporter key-encrypting keys are used for export operations where a key encrypted under
the master key is decrypted and then encrypted under the key-encrypting key. Importer key-
encrypting keys are used for import operations where a key encrypted under the key-encrypting
key is decrypted and then encrypted under the master key.

Double-length PIN keys
Your Coprocessor uses this type of key to generate, verify, encrypt, and decrypt PINs used in
financial operations. These are Triple DES keys.

MAC keys
Your Coprocessor uses this type of key to generate Message Authentication Codes (MAC). These
can be either DES or Triple DES keys.

Cipher keys
Your Coprocessor uses this type of key to encrypt or decrypt data. These can be AES, DES, or
Triple DES keys.

Single-length compatibility keys
Your Coprocessor uses this type of key to encrypt or decrypt data and generate MACs. These are
DES keys and are often used when encrypted data or MACs are exchanged with systems that do
not implement the Common Cryptographic Architecture.

Private keys
Your Coprocessor uses private keys for generating digital signatures and for decrypting DES or
Triple DES keys encrypted by the public key.

Public keys
Your Coprocessor uses public keys for verifying digital signatures, for encrypting DES or Triple DES
keys, and for decrypting data encrypted by the private key.

Key forms
The Coprocessor works with keys in one of four different forms. The key form, along with the key type,
determines how a cryptographic process uses that key. The four forms are:

Clear form
The clear value of the key is not protected by any cryptographic means. Clear keys are not usable
by the Coprocessor. The clear keys must first be imported into the secure module and encrypted
under the master key and then stored outside the secure module.

Operational form
Keys encrypted under the master key are in operational form. They are directly usable for
cryptographic operations by the Coprocessor. Operational keys are also called internal keys. All
keys that are stored in the system keystore file are operational keys. However, you do not need to
store all operational keys in the keystore file.

Export form
Keys encrypted under an exporter key-encrypting key as the result of an export operation are in
export form. These keys are also called external keys. A key in export form can also be described
as being in import form if an importer key-encrypting key with the same clear key value as the
exporter key-encrypting key is present. You may store keys in export form in any manner you
choose except in keystore files.

Import form
Keys encrypted under an importer key-encrypting key are in import form. Only keys in import form
can be used as the source for an import operation. These keys are also called external keys. A
key in import form can also be described as being in export form if an exporter key-encrypting key
with the same clear key value as the importer key-encrypting key is present. You may store keys in
import form in any manner you choose except in keystore files.

22 IBMi: Cryptography

Function control vector
IBM provides a digitally signed value known as a function control vector. This value enables the
cryptographic application within the Coprocessor to yield a level of cryptographic service consistent
with applicable import regulations and export regulations. The function control vector provides your
Coprocessor with the key length information necessary to create keys.

Control vectors
A control vector, different from a function control vector, is a known value associated with a key that
governs the following:

- Key type

« What other keys this key can encrypt

« Whether your Coprocessor can export this key
« Other allowed uses for this key

The control vector is cryptographically linked to a key and can not be changed without changing the
value of the key at the same time.

Key store file
An IBM i database file that is used to store keys which you encrypted under the master key of the
Coprocessor.

Key token
A data structure that can contain a cryptographic key, a control vector, and other information related
to the key. Key tokens are used as parameters on most of the CCA API verbs that either act on or use
keys.

Features

Cryptographic Coprocessors provide cryptographic processing capability and a means to securely store
cryptographic keys. You can use the Coprocessors with IBM i SSL or with IBM i application programs
written by you or an application provider. Cryptographic functions supported include encryption for
keeping data confidential, message digests and message authentication codes for ensuring that data
has not been changed, and digital signature generation and verification. In addition, the Coprocessors
provide basic services for financial PIN, EMV, and SET applications.

Note: The IBM 4767 Cryptographic Coprocessor is no longer available but it is still supported.

IBM 4769 Cryptographic Coprocessors

The primary benefit of the IBM Cryptographic Coprocessors is their provision of a secure environment for
executing cryptographic functions and managing cryptographic keys. Master keys are stored in a battery
backed-up, tamper-resistant hardware security module (HSM). The HSM is designed to meet Federal
Information Processing Standard (FIPS) PUB 140 security requirements.

You can use the Coprocessors with IBM i SSL or with IBM i application programs written by you or an
application provider. The 4769 Cryptographic Coprocessor offers improved performance over the 4767.

SSL application features

Establishment of secure sockets layer (SSL) or transport layer security (TLS) sessions requires
computationally intensive cryptographic processing. When the Cryptographic Coprocessors are used with
IBM i, SSL can offload this intensive cryptographic processing, and free the system CPU for application
processing. The Cryptographic Coprocessors also provide hardware-based protection for the private key
that is associated with the system's SSL digital certificate.

The 4769 Cryptographic Coprocessor can be used with SSL in several different ways. First, through Digital
Certificate Manager the Cryptographic Coprocessors can be used to create and store a private key in

the FIPS 140 certified HSM for use by SSL. Secondly, the Cryptographic Coprocessors can be used to
create a private key, encrypt it with the master key (all performed within the HSM), and then store the
encrypted private key by using the system software in a keystore file. This enables a given private key

Cryptography 23

to be used by multiple Cryptographic Coprocessor cards. Master keys are always stored in the FIPS 140
certified hardware module. Lastly, if private keys created via Digital Certificate Manager are not created
using the Cryptographic Coprocessors, SSL can still use the Cryptographic Coprocessors for offload by
simply varying the device description on. This accelerator mode of operation does not provide secure key
storage, but it does process cryptographic operations at a much higher rate than in the other two modes.

IBM i CCA application features

You can use your Cryptographic Coprocessor to provide a high-level of cryptographic security for your
applications. To implement IBM i applications using the facilities of a Cryptographic Coprocessor you

or an applications provider must write an application program using a security application programming
interface (SAPI) to access the security services of your Cryptographic Coprocessor. The SAPI for the
Cryptographic Coprocessor conforms to the IBM Common Cryptographic Architecture (CCA) and is
supplied by IBM i Option 35 CCA Cryptographic Service Provider (CCA CSP).

With IBM i the Cryptographic Coprocessor SAPI supports application software that is written in ILE C,
RPG, and Cobol. Application software via the SAPI can call on CCA services to perform a wide range

of cryptographic functions, including Tripe-Data Encryption Standard (T-DES), RSA, ECC, MD5, SHA, and
RIPEMD-160 algorithms. Basic services supporting financial PIN, EMV2000 (Europay, MasterCard, Visa)
standard, and SET (Secure Electronic Transaction) block processing are also available. In support of an
optional layer of security the Cryptographic Coprocessor provides a role-based access control facility,
which allows you to enable and control access to individual cryptographic operations that are supported
by the Coprocessor. The role-based access controls define the level of access that you give to your users.

The SAPI is also used to access the key management functions of the Coprocessor. Key-encrypting keys
and data encryption keys can be defined. These keys are generated in the Cryptographic Coprocessor and
encrypted under the master key so that you can store these encrypted keys outside of your Coprocessor.
You store these encrypted keys in a keystore file, which is an IBM i database file. Additional key
management functions include the following:

« Create keys using cryptographically secure random-number generator.
« Import and export encrypted T-DES, RSA, ECC, and AES keys securely.
« Clone a master key securely.

Multiple Cryptographic Coprocessor cards can be used to meet your performance capacity and/or high-
availability requirements. See Manage multiple Cryptographic Coprocessors for more information.

Security APIs for the 4769 Cryptographic Coprocessor are documented in the IBM PClIe Cryptographic
Coprocessor CCA Basic Services Reference and Guide, Release 5.6x and 7.x. You can find these and other
publications in the IBM PCle Cryptographic Coprocessor documentation library.

Security APIs for the 4767 Cryptographic Coprocessor are documented in the IBM PCle Cryptographic
Coprocessor CCA Basic Services Reference and Guide, Release 5.6x You can find these and other
publications in the IBM PCle Cryptographic Coprocessor documentation library.

Related concepts
4764 Cryptographic Coprocessor

24 IBMi: Cryptography

http://www.ibm.com/security/cryptocards/pciecc4/library
http://www.ibm.com/security/cryptocards/pciecc2/library
https://www.ibm.com/support/knowledgecenter/ssw_i5_54/rzajc/rzajcco4758.htm

Scenarios: Cryptographic Coprocessor

To give you some ideas of how you can use this cryptographic hardware with your system running the IBM
i operating system, read these usage scenarios.

Scenario: Protecting private keys with cryptographic hardware

This scenario might be useful for a company that needs to increase the security of the system digital
certificate private keys that are associated with the IBM i SSL-secured business transactions.

Situation:

A company has a system dedicated to handling business-to-business (B2B) transactions. This company's
system specialist, Sam, has been informed by management of a security requirement from its B2B
customers. The requirement is to increase the security of the system's digital certificate private keys that
are associated with the SSL-secured business transactions that Sam's company performs. Sam has heard
that there is a cryptographic hardware option available for systems that both encrypts and stores private
keys associated with SSL transactions in tamper-responding hardware: a Cryptographic Coprocessor card.

Sam researches the Cryptographic Coprocessor, and learns that he can use it with the IBM i Digital
Certificate Manager (DCM) to provide secure SSL private key storage, as well as increase system
performance by off-loading from the system those cryptographic operations which are completed during
SSL-session establishment.

Note: To support load balancing and performance scaling, Sam can use multiple Cryptographic
Coprocessors with SSL on the system.

Sam decides that the Cryptographic Coprocessor meets his company's requirement to increase the
security of his company's system.

Details:

1. The company's system has a Cryptographic Coprocessor installed and configured to store and protect
private keys.

2. Private keys are generated by the Cryptographic Coprocessor.
3. Private keys are then stored on the Cryptographic Coprocessor.
4. The Cryptographic Coprocessor resists both physical and electronic hacking attempts.

Prerequisites and assumptions:

1. The system has a Cryptographic Coprocessor installed and configured properly. Planning for the
Cryptographic Coprocessor includes getting SSL running on the system.

Note: To use multiple Cryptographic Coprocessor cards for application SSL handshake processing, and
securing private keys, Sam will need to ensure that his application can manage multiple private keys
and certificates.

2. Sam's company has Digital Certificate Manager (DCM) installed and configured, and uses it to manage
public Internet certificates for SSL communications sessions.

3. Sam's company obtain certificates from a public Certificate Authority (CA).
4. The Cryptographic Coprocessor is varied on prior to using DCM. Otherwise, DCM will not provide a page

for selecting a storage option as part of the certificate creation process.
Configuration steps:

Sam needs to perform the following steps to secure private keys with cryptographic hardware on his
company's system:

1. Ensure that the prerequisites and assumptions for this scenario have been met.

Cryptography 25

2. Use the IBM Digital Certificate Manager (DCM) to create a new digital certificate, or renew a current
digital certificate:
a. Select the type of certificate authority (CA) that is signing the current certificate.
b. Select the Hardware as your storage option for certificate's private key.
c. Select which cryptographic hardware device you want to store the certificate's private key on.
d. Select a public CA to use.
The private key associated with the new digital certificate is now stored on the Cryptographic Coprocessor
specified in Step 2.c. Sam can now go into the configuration for his company's web server and specify that
the newly created certificate be used. Once he restarts the web server, it will be using the new certificate.
Related concepts

Managing multiple Cryptographic Coprocessors

You can have up to eight Cryptographic Coprocessors per partition. The maximum number of
Cryptographic Coprocessors supported per system is dependent on the system mode. This topic provides
information on using multiple coprocessors with SSL in systems running the IBM i operating system.

Planning for the Cryptographic Coprocessor
This information is pertinent to those planning to install an IBM Cryptographic Coprocessor in their
system running the IBM i operating system.

Configuring the Cryptographic Coprocessor

Configuring your Cryptographic Coprocessor allows you to begin to use all of its cryptographic operations.
To configure the Cryptographic Coprocessor on your system running the IBM i operating system, you can
either use the Cryptographic Coprocessor configuration Web—based utility or write your own application.

Configuring the Cryptographic Coprocessor for use with IBM i applications
This topic lists the steps needed to make Cryptographic Coprocessors ready for use with an IBM i
application.

Related information
Managing public Internet certificates for SSL communications sessions

Scenario: Writing an IBM i application to use the Cryptographic Coprocessor

This scenario could help an IBM i programmer reason through the process of writing a program that
calls the Cryptographic Coprocessor to verify user data such as financial personal identification numbers
(PINs), which are entered at automatic teller machines (ATMs).

Situation:

Suppose you are a system programmer for a large financial Credit Union. You have been assigned the task
of getting a Cryptographic Coprocessor PClIe card that is installed in the Credit Union system to verify
members' financial personal identification numbers (PINs) when they are entered at automatic teller
machines (ATMs).

You decide to write an IBM i application program using the CCA CSP (cryptographic service provider) APIs
that are a part of Option 35 to access the cryptographic services in the Cryptographic Coprocessors to
verify members' PINs. IBM i application programs written for the Cryptographic Coprocessor utilize the
coprocessor to perform security-sensitive tasks and cryptographic operations.

Note: Multiple Cryptographic Coprocessors can be used via the CCA CSP. The application must
control access to individual Coprocessor by using the Cryptographic_Resource_Allocate (CSUACRA) and
Cryptographic_Resource_Deallocate (CSUACRD) CCA APIs.

Details:

1. A Credit Union member enters his or her PIN at an ATM.
2. The PIN is encrypted at the ATM, and then sent along the network to the Credit Union's system.
3. The system recognizes the transaction request, and calls a program to verify the member's PIN.

26 IBMi: Cryptography

4. The program sends a request containing the encrypted PIN, member's account number, PIN-
generating key, and PIN encrypting key to the Cryptographic Coprocessor.

5. The Cryptographic Coprocessor confirms or denies the validity of the PIN.
6. The program sends the Cryptographic Coprocessor's results to the ATM.

a. If the PIN is confirmed, the member can successfully complete a transaction with the Credit Union.
b. If the PIN is denied, the member is unable to complete a transaction with the Credit Union.

Prerequisites and assumptions:

1. Your company has a system with a properly installed and configured Cryptographic Coprocessor. Refer
to the following information:

a. Plan for the Cryptographic Coprocessor

b. Configure the Cryptographic Coprocessor

c. Configure the Cryptographic Coprocessor for use with IBM i applications

2. You are familiar with Option 35: The Common Cryptographic Architecture Cryptographic Service
Provider (CCA CSP). It is packaged as IBM i Option 35, and provides a security application
programming interface (SAPI) to which you can write applications that allow you to access the
cryptographic services of the Cryptographic Coprocessor.

3. You have access to the CCA Basic Services Guide %5, where you can find Financial Services Support
verbs to use in your application.

Configuration steps:

One way to accomplish your objective of using the Cryptographic Coprocessor to validate PINs is to write
two IBM i applications:

1. Write a program that loads the both the PIN verification keys, and PIN encrypting keys, and stores
them in a keystore file. Assuming that clear key parts are used, you need to use the following APIs:

» Logon_Control (CSUALCT)
« Key_Part_Import (CSNBKPI)
« Key_Token_Build (CSNBKTB)
« Key_Record_Create (CSNBKRC)
« Key_Record_Write (CSNBKRW)
« Optional API: KeyStore_Designate (CSUAKSD)
2. Write a second program that calls the Encrypted_PIN_Verify (CSNBPVR) API to verify encrypted PINs,
and then reports their valid or invalid status back to the ATM.
Related concepts

Secure access
Access control restricts the availability of system resources to only those users you have authorized to
interact with the resources. The system allows you to control authorization of users to system resources.

Configuring the Cryptographic Coprocessor

Cryptography 27

http://www.ibm.com/security/cryptocards/pdfs/CCA_Basic_Services_241_Revised_20030918.pdf

Configuring your Cryptographic Coprocessor allows you to begin to use all of its cryptographic operations.
To configure the Cryptographic Coprocessor on your system running the IBM i operating system, you can
either use the Cryptographic Coprocessor configuration Web—based utility or write your own application.

Scenario: Enhancing system SSL performance by using the 4769
Cryptographic Coprocessor

In this scenario, a company orders and installs the 4769 Cryptographic Coprocessor. The scenario
specifies the steps this company takes to get the card configured to enhance the SSL performance of
its system running the IBM i operating system.

Situation:

A company's system handles thousands of secured Internet transactions per day. The company's
transactions use the Secure Sockets Layer and Transport Layer Security protocols (SSL and TLS), a
common method for securing Internet transactions. This company's system administrator, Sue, wants to
free system resources for additional application processing, including the ability to support even more
SSL transactions. Sue is looking for a solution that fits these objectives:

- Asizeable increase in the available system resources for application processing, including additional
SSL transactions

- Minimal installation and configuration effort
« Minimal resource management requirements

Based on these objectives, Sue orders and installs an IBM 4769 PCle Cryptographic Coprocessor.
The 4769 Cryptographic Coprocessor is specially designed to accelerate the very compute-intensive
processing that is required when establishing an SSL and TLS session. You can obtain the IBM 4767
Cryptographic Coprocessor by ordering hardware feature code EJ32 or EJ33. You can obtain the IBM
4769 Cryptographic Coprocessor by ordering hardware feature code EJ35 or EJ37.

Details:
1. The system has a 4769 Cryptographic Coprocessor installed and configured.
2. The system receives a high number of SSL transaction requests from the network.

3. The 4769 Cryptographic Coprocessor performs the cryptographic processing in the initiation of SSL
transactions.

Prerequisites and assumptions:

This scenario assumes that Sue has planned for the installation of the 4769 Cryptographic Coprocessor,
and then configured the card properly. This scenario also assumes that Sue has already set up a digital
certificate for SSL.

Configuration steps:

Sue completes the following steps to enhance the SSL performance of her company's system:

1. Order Hardware Feature code EJ35 or EJ37, which provides the 4769 Cryptographic Coprocessor.
2. Install and configure the 4769 Cryptographic Coprocessor.

3. Ensure that the device is varied on and that the function control vector is loaded.

Related concepts
Loading a function control vector

28 IBMi: Cryptography

The function control vector tells the Cryptographic Coprocessor for the system running the IBM i
operating system what key length to use to create keys. You cannot perform any cryptographic functions
without loading a function control vector.

Planning for the Cryptographic Coprocessor

This information is pertinent to those planning to install an IBM Cryptographic Coprocessor in their
system running the IBM i operating system.

Before you install

It is important that you take ensure your system meets the requirements necessary for the Cryptographic
Coprocessor, prior to installing it. These requirements include hardware and software prerequisites.
Additionally, you need to ensure the secure access of your system's resources prior to installing a
Cryptographic Coprocessor. Lastly, familiarize yourself with the object authorities that are required for
the security APIs (SAPI). [link to related topics here]

« Requirements
« Secure access
« Object authorities required for SAPI

Related concepts

Scenario: Protecting private keys with cryptographic hardware
This scenario might be useful for a company that needs to increase the security of the system digital
certificate private keys that are associated with the IBM i SSL-secured business transactions.

Requirements

Your system must run the IBM i operating system and must meet these requirements before you install
and use the Cryptographic Coprocessors.

Note: The IBM 4767 Cryptographic Coprocessor is no longer available, but it is still supported.

Requirements for the 4769 Cryptographic Coprocessor

The 4769 Cryptographic Coprocessor can be ordered by specifying Hardware Feature Code EJ35 or
EJ37, depending on the system model. Refer to the IBM Power Systems Hardware Information Center to
determine which system models support the Cryptographic Coprocessors.

Your Cryptographic Coprocessor is a PCIe card and requires the following software:

« IBMi: The 4769 Cryptographic Coprocessor requires IBM i 7.3 or later.

« IBM i Option 35 Common Cryptographic Architecture Cryptographic Service Provider (CCA CSP)
provides the SAPI.

« IBMi5733-CY3 Cryptographic Device Manager provides the CCA firmware for the 4764, 4765, 4767,
and 4769 Cryptographic Coprocessors.

« IBM i Option 34 Digital Certificate Manager (if you are planning on using the Cryptographic Coprocessor
configuration web-based utility).

« IBMi5770-TC1 TCP/IP Connectivity Utilities (if you are planning on using the Cryptographic
Coprocessor configuration web-based utility).

« IBMi5770-DG1 IBM HTTP Server (if you are planning on using the Cryptographic Coprocessor
configuration web-based utility).

Hardware note: The Cryptographic Coprocessors destroy their factory certification if allowed to cool
below -15 degrees C (5 degrees F). If your Coprocessor destroys its factory certification, you can no
longer use the card, and you must contact your hardware service provider to order a new Cryptographic
Coprocessor.

Cryptography 29

Related concepts

4769 Cryptographic Coprocessor

IBM offers Cryptographic Coprocessors, which are available on a variety of system models. Cryptographic
Coprocessors contain hardware engines, which perform cryptographic operations used by IBM i
application programs and IBM i SSL transactions.

4764 Cryptographic Coprocessor
Related information
IBM Power Systems Hardware Information Center

Secure access

Access control restricts the availability of system resources to only those users you have authorized to
interact with the resources. The system allows you to control authorization of users to system resources.

Your organization should identify each system resource in the organization's security hierarchy. The
hierarchy should clearly delineate the levels of access authorization users have to resources.

All of the service programs in IBM i Option 35 are shipped with *EXCLUDE authority for *PUBLIC. You
must give users *USE authority for the service program that they need to use. In addition, you must also
give users *USE authority to the QC6SRV service program in library QCCA.

Users who take part in setting up a Cryptographic Coprocessor must have *IOSYSCFG special

authority to use the Master_Key_Process (CSNBMKP), Access_Control_Initialize (CSUAACI), or
Cryptographic_Facility_Control (CSUACFC) security application programming interfaces (SAPIs). These
three SAPIs are used to perform all configuration steps for the Cryptographic Coprocessors. For all SAPIs,
users may require additional object authorities.

For the most secure environments, consider assigning the role of Coprocessor Administrators to a set of
users who do not have *ALLOBJ special authority. This way, users with *ALLOBJ special authority cannot
alter the configuration of the Coprocessor because they will not be able to log on to an administrative role
on the Coprocessor. They can, however, control object authority to the SAPI service programs, preventing
misuse by the administrators.

In order to use the Cryptographic Coprocessor configuration web utility, users must have *SECADM
special authority.

Cryptographic Coprocessors have separate access controls which are unrelated to the access controls
of the system. The Cryptographic Coprocessor access controls allow you to control access to the
Cryptographic Coprocessor hardware commands.

For even more security, limit the capabilities of the default role within your Cryptographic Coprocessor.
Assign capabilities among other roles to require two or more people to perform security-sensitive
functions, like changing the master key. You can do this when you work with roles and profiles.

Note: You should consider some standard physical security measures as well, such as keeping your
system behind a locked door.

Related concepts

Creating and defining roles and profiles

Cryptographic Coprocessors on systems running the IBM i operating system use role-based access
control. In a role-based system, you define a set of roles, which correspond to the classes of Coprocessor
users. You can enroll each user by defining an associated user profile to map the user to one of the
available roles.

Configuring the Cryptographic Coprocessor for use with DCM and SSL
This topic provides information on how to make the Cryptographic Coprocessor ready for use with SSL in
IBMi.

Scenario: Writing an IBM i application to use the Cryptographic Coprocessor

30 IBMi: Cryptography

https://www.ibm.com/support/knowledgecenter/ssw_i5_54/rzajc/rzajcco4758.htm
http://publib.boulder.ibm.com/infocenter/powersys/v3r1m5/index.jsp

This scenario could help an IBM i programmer reason through the process of writing a program that
calls the Cryptographic Coprocessor to verify user data such as financial personal identification numbers
(PINs), which are entered at automatic teller machines (ATMs).

Related reference

Object authorities that are required for SAPI

Refer to the table for information regarding the object authorities that SAPI requires for restricting the
availability of system resources by setting up the Cryptographic Coprocessor on your system running the
IBM i operating system.

Object authorities that are required for SAPI

Refer to the table for information regarding the object authorities that SAPI requires for restricting the
availability of system resources by setting up the Cryptographic Coprocessor on your system running the
IBM i operating system.

SAPI *USE for *USE for *CHANGE | *USE for *CHANGE | *USE for *CHANGE

device DES for DES PKA for PKA AES for AES
keystore? |keystore? |keystore® |keystore® [Keystore® [Keystore®

CSNBAKRC Y

CSNBAKRD Y

CSNBAKRL

CSNBAKRR

CSNBAKRW Y

CSNBCKC Y Yl

CSNBCKI Y &

CSNBCKM Y &

CSNBCPA Y &

CSNBCPE Y vyl

CSNBCSG Y vl

CSNBCSV Y Yl

CSNBCVE Y Y1

CSNBCVG

CSNBCVT Y &

CSNBDEC Y vyl

CSNBDKG Y vl

CSNBDKM Y Y2 Y2

CSNBDKX Y Y1

CSNBENC Y Y1

CSNBEPG Y &

CSNBHMG Y Yl

CSNBHMV Y Yl

CSNBKET Y

CSNBKEX Y Y1

Cryptography 31

SAPI *USE for *USE for *CHANGE | *USE for *CHANGE | *USE for *CHANGE

device DES for DES PKA for PKA AES for AES
keystore?* |keystore? |keystore® |keystore® [Keystore® |Keystore®

CSNBKGN Y Y2 Y2

CSNBKGN2 |Y vyl

CSNBKPI Y vl

CSNBKPI2 Y vl

CSNBKRC Y

CSNBKRD Y

CSNBKRL Y Y

CSNBKRR Y

CSNBKRW Y Y

CSNBKSI Y3 Y3 Y3

CSNBKTB2

CSNBKTC Y &

CSNBKTC2 &

CSNBKTP

CSNBKTP2

CSNBKTR Y Y1

CSNBKTR2 Y Yl Y1

CSNBKYT Y Yl

CSNBKYT2 Y vl

CSNBKYTX |Y vl

CSNBMDG Y

CSNBMGN Y Y1

CSNBMKP Y

CSNBOWH

CSNBPCU Y &

CSNBPEX Y vl

CSNBPEXX Y Yl

CSNBPGN Y Yl

CSNBSPN Y Yl

CSNBPTR Y Yl

CSNBPVR Y &

CSNBRKA Y Y2 Y2 & vl

CSNBRKX Y Yl

CSNBSAD Y Yl

32 IBMi: Cryptography

SAPI

*USE for
device

*USE for
DES
keystore®

*CHANGE
for DES
keystore?

*USE for
PKA
keystore®

*CHANGE
for PKA
keystore®

*USE for
AES
Keystore®

*CHANGE
for AES
Keystore®

CSNBSAE

Yl

CSNBSKY

YCI.

CSNBSYI2

Y2

Y2

CSNBTRV

CSNBT31I

<[=<[=<|=<]|=<

Y2

Y2

CSNBT310

CSNBT31R

CSNBT31X

YCI.

CSNBTBC

Yl

CSNDDSG

Yl

CSNDDSV

Yl

CSNDEDH

<[=<[=<|=<]|=<

CSNDKRC

CSNDKRD

CSNDKRL

CSNDKRR

CSNDKRW

CSNDKTC

Yl

CSNDPKB

CSNDPKG

YCI.

Yl

CSNDPKH

CSNDPKI

Yl

Yl

CSNDPKR

CSNDPKT

Yl

Yl

CSNDPKX

Yl

CSNDRKD

CSNDRKL

CSNDSBC

Yl

CSNDSBD

Yl

CSNDSYG

CSNDSYI

Y:I.

Yl

CSNDSYX

Yl

Yl

CSUAACI

CSUAACM

<[=<[=<l=<|=<|=<|=<|=<|=<|=<|=<|=<]|=<[=<]|[=x<

Cryptography 33

SAPI

*USE for
device

*USE for
DES
keystore®

*CHANGE
for DES
keystore?

*USE for
PKA
keystore®

*CHANGE
for PKA
keystore®

*USE for
AES
Keystore®

*CHANGE
for AES
Keystore®

CSUACFC

CSUACFQ

CSUACRA

<[=<[=<[=

CSUACRD

CSUAKSD

CSUALCT

CSUAMKD Y

CSUARNT

1Use of AES or Data Encryption Standard (DES) or public key algorithm (PKA) keystore for this API is
optional.

2More than one parameter may optionally use keystore. The authority requirements differ on each of
those parameters.

3The Key_Store_Initialize SAPI does not require authority to all three files simultaneously.

4*JSE authority for the DES keystore library is required if *USE or *CHANGE authority is required for the
DES keystore.

5*USE authority for the PKA keystore library is required if *USE or *CHANGE authority is required for the
PKA keystore.

6*USE authority for the AES keystore library is required if *USE or *CHANGE authority is required for the
AES keystore.

Related concepts

Secure access

Access control restricts the availability of system resources to only those users you have authorized to
interact with the resources. The system allows you to control authorization of users to system resources.

Configuring the Cryptographic Coprocessor

Configuring your Cryptographic Coprocessor allows you to begin to use all of its cryptographic operations.
To configure the Cryptographic Coprocessor on your system running the IBM i operating system, you can
either use the Cryptographic Coprocessor configuration Web—based utility or write your own application.

The easiest and fastest way to configure your Cryptographic Coprocessor is to use the Cryptographic
Coprocessor configuration web—based utility found by clicking on the IBM i Tasks Page link on the IBM
Navigator for i welcome page at http://server-name:2001. The utility includes the Basic configuration
wizard that is used for configuring (and initializing) a Coprocessor that has not been previously configured.
If HTTP and SSL have not been previously configured, you will need to do the following before using the
Configuration Wizard.

« Start the HTTP Administrative server.

« Configure the HTTP Administrative server to use SSL.

« Use DCM to create a certificate, specifying that the private key be generated and stored in software.
Use DCM to receive the signed certificate.

Associate the certificate with the HTTP Administrative server application ID.

Restart the HTTP Administrative server to enable it for SSL processing.

34 IBMi: Cryptography

If the Cryptographic Coprocessor has already been configured, then click on the Manage configuration
option to change the configuration for specific portions of the Coprocessor.

If you would prefer to write your own application to configure the Coprocessor, you can do so by using

the Cryptographic_Facility_Control (CSUACFC), Access_Control_Initialize (CSUAACI), Master_Key_Process
(CSNBMKP), and Key_Store_Initialize (CSNBKSI) API verbs. Many of the pages in this section include one
or more program examples that show how to configure the Coprocessor via an application. Change these
programs to suit your specific needs.

Whether you choose to use the Cryptographic Coprocessor configuration utility or write your own
applications, the following outlines the steps you must take to properly configure your Cryptographic
Coprocessor:

Related concepts

Scenario: Protecting private keys with cryptographic hardware

This scenario might be useful for a company that needs to increase the security of the system digital
certificate private keys that are associated with the IBM i SSL-secured business transactions.

Configuring the Cryptographic Coprocessor for use with DCM and SSL
This topic provides information on how to make the Cryptographic Coprocessor ready for use with SSL in
IBMi.

Scenario: Writing an IBM i application to use the Cryptographic Coprocessor

This scenario could help an IBM i programmer reason through the process of writing a program that
calls the Cryptographic Coprocessor to verify user data such as financial personal identification numbers
(PINs), which are entered at automatic teller machines (ATMs).

Creating a device description

The device description specifies a default location for key storage. You can create a device description
with or without naming any keystore files for the Cryptographic Coprocessor on your system running the
IBM i operating system.

You must create a device description for your Cryptographic Coprocessor on your system. The device
description is used by CCA CSP to help direct cryptographic requests to the Coprocessor. Additionally,
the device description gives your Coprocessor a default location for keystore file storage. The Basic
configuration wizard in the Cryptographic Coprocessor configuration utility, found by clicking on the IBM
i Tasks page link on the IBM Navigator for i welcome page at http://server-name:2001, can create a
device description for you, or you can create a device description yourself by using the Cxreate Device
Cxypto CL command.

To create a device description using the Basic configuration wizard, follow these steps:

1. Point your web browser to the IBM i Tasks page by clicking on the IBM i Tasks page link on the IBM
Navigator for i welcome page at http://server-name:2001

. Click on Cryptographic Coprocessor configuration.

. Click on the button labeled Start secure session.

. Click Basic configuration wizard.

. Click continue on the Welcome page.

. Click on the list entry with the device name set to *CREATE for the resource you want to use.

. Continue as instructed by the Basic configuration wizard.

N oo A WDN

Creating a device description using CL
To create a device description using the CL command, follow these steps:

1. Type CRTDEVCRP at the CL command line

2. Specify a name for the device as prompted. If you want to set up a default device, name the
device CRPO1. Otherwise, each application you create must use the Cryptographic Resource Allocate
(CSUACRA) API in order to access your device description.

Cryptography 35

3. Specify the name of a default PKA keystore file or let the parameter default to *NONE.
4. Specify the name of a default DES keystore file or let the parameter default to *NONE.
5. Specify a description as prompted.

6. Use either the Vaxry Configuration (VRYCFG) ortheWork with Configuration Status
(WRKCFGSTS) CL commands to vary on the device once you have created the device description. This
typically takes one minute, but it may take ten minutes to complete.

Note: The APPTYPE defaults to *CCA, so you do not need to specify it on the Create command. However,
if you have changed it to another value, you need to change it back to *CCA before the device can vary on.

You have now completed creation of the device description.

Naming files to keystore file

Before you can perform any operation in IBM i using a keystore file or key stored in a keystore file, you
must name the keystore file.

You can name three types of keystore files. One type stores Data Encryption Standard (DES) keys and
Triple-DES keys. The second type stores Advanced Encryption Standard (AES) keys. AES, DES, and

Triple DES are symmetric cryptographic algorithms; the Cryptographic Coprocessor uses the same key

to encrypt and decrypt. The third type stores public key algorithm (PKA) keys. Public key algorithms are
asymmetric; keys are created in pairs. Cryptographic Coprocessors use one key to encrypt and the other
to decrypt. Cryptographic Coprocessors support the RSA public key algorithm and the Elliptic Curve public
key algorithm.

You can name a keystore file using three methods:

« Use a program to name the keystore file explicitly
« Configure the keystore file on the device description
« Name the keystore file in an environment variable

To name a keystore file from a program, use the Key_Store_Designate (CSUKSD) security application
programming interface (SAPI). If you name keystore files that use a program, your Cryptographic
Coprocessor only uses the names for the job that ran the program. However, by naming keystore files
explicitly in your program, you can use separate keystore files from other users.

If you name keystore files on the device description, you do not have to name them in your program. This
option is only available for DES and PKA keystores.

To name a keystore file in an environment variable, use the Add Environment Variable

(ADDENVVAR) CL command to add the QIBM_CCA_AES_KEYSTORE variable for AES keystores, or the
QIBM_CCA_DES_KEYSTORE variable for DES keystores, or the QIBM_CCA_PKA_KEYSTORE variable for
PKA keystores.

Using the device description or environment variables may help if you are trying to maintain the same
program source across multiple IBM platforms. It is also useful if you are porting a program from another
implementation of Common Cryptographic Architecture.

You need to store your cryptographic keys in a secure form so that you can use them over time and
exchange them with other users and systems, as appropriate. You can store your cryptographic keys by
using your own methods, or you can store them in a keystore file. You can have as many keystore files
as you want, and you can create multiple keystore files for each type of key. You can place as many
cryptographic keys in your keystore files as you want.

Since each keystore file is a separate system object, you can authorize different users to each file. You can
save and restore each keystore file at different times. This depends on how often the file's data changes
or which data it is protecting.

Creating and defining roles and profiles

Cryptographic Coprocessors on systems running the IBM i operating system use role-based access
control. In a role-based system, you define a set of roles, which correspond to the classes of Coprocessor

36 IBMi: Cryptography

users. You can enroll each user by defining an associated user profile to map the user to one of the
available roles.

The capabilities of a role are dependent on the access control points or cryptographic hardware
commands that are enabled for that role. You can then use your Cryptographic Coprocessor to create
profiles that are based on the role you choose.

A role-based system is more efficient than one in which the authority is assigned individually for each
user. In general, you can separate the users into just a few different categories of access rights. The use of
roles allows you to define each of these categories just once, in the form of a role.

The role-based access control system and the grouping of permissible commands that you can use

are designed to support a variety of security policies. In particular, you can set up Cryptographic
Coprocessors to enforce a dual-control, split-knowledge policy. Under this policy no one person should
be able to cause detrimental actions other than a denial-of-service attack, once the Cryptographic
Coprocessor is fully activated. To implement this policy, and many other approaches, you need to limit
your use of certain commands. As you design your application, consider the commands you must enable
or restrict in the access-control system and the implications to your security policy.

Every Cryptographic Coprocessor must have a role called the default role. Any user that has not logged
on to the Cryptographic Coprocessor will operate with the capabilities defined in the default role. Users
who only need the capabilities defined in the default role do not need a profile. In most applications, the
majority of the users will operate under the default role, and will not have user profiles. Typically, only
security officers and other special users need profiles.

When Cryptographic Coprocessors are in an un-initialized state, the default role has the following access
control points enabled:

« PKA96 One Way Hash

- Set Clock

 Re-initialize Device

« Initialize access control system roles and profiles
« Change the expiration data in a user profile

- Reset the logon failure count in a user profile

« Read public access control information

« Delete a user profile

- Deletearole

The default role is initially defined such that the functions permitted are those functions that are related
to access control initialization. This guarantees that the Cryptographic Coprocessor will be initialized
before you do any useful cryptographic work. The requirement prevents security "accidents" in which
someone might accidentally leave authority intact when you put the Coprocessor into service.

Note: The default role for previous adapters (4764, 4765, and 4767) is an ASCII encoded string named
"DEFAULT ". The default role for the 4769 adapter is an ASCII encoded string of the form "DFLTXXXX",
such that XXXX refers to the domain of the adapter. The 4769 currently only operates in stand alone mode
such that the default role will run under the authorities granted to "DFLT0000". The 4769 also includes

a pre-defined role "INITADM " and established roles for possible other (future) domains numbered up to
255. These roles and variations of them should be considered reserved and not used when creating other
role authorities for managing a 4769 cryptographic coprocessor environment.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

Defining roles

The easiest and fastest way to define new roles (and redefine the default role) is to use the Cryptographic
Coprocessor configuration web-based utility found by clicking on the IBM i Tasks page link on the IBM
Navigator for i welcome page at http://server-name:2001. The utility includes the Basic configuration
wizard that is used when the Coprocessor is in an un-initialized state. The Basic configuration wizard can

Cryptography 37

define either 1 or 3 administrative roles along with redefining the default role. If the Coprocessor already
has been initialized, then click on Manage configuration and then click on Roles to define new roles or
change or delete existing ones.

If you would prefer to write your own application to manage roles, you can do so by using the
Access_Control_Initialization (CSUAACI) and Access_Control_Maintenance (CSUAACM) API verbs. To
change the default role in your Coprocessor, specify "DEFAULT " (4767) or "DFLT0000" (4769) encoded in
ASCII into the proper parameter. "DEFAULT " must be padded with one ASCII space character for a total
of eight characters. Otherwise, there are no restrictions on the characters that you may use for role IDs or
profile IDs.

Defining profiles

After you create and define a role for your Coprocessor, you can create a profile to use under this role.
A profile allows users to access specific functions for your Coprocessor that may not be enabled for the
default role.

The easiest and fastest way to define new profiles is to use the Cryptographic Coprocessor configuration
web-based utility found by clicking on the IBM i Tasks page link on the IBM Navigator for i welcome

page at http://server-name:2001. The utility includes the Basic configuration wizard that is used when the
Coprocessor is in an un-initialized state. The Basic configuration wizard can define either one or three
administrative profiles. If the Coprocessor has already been initialized, click Manage configuration >
Profiles to define new profiles or change or delete existing ones.

If you want to write your own application to manage profiles, you can use the
Access_Control_Initialization (CSUAACI) and Access_Control_Maintenance (CSUAACM) API verbs.

Coprocessor for SSL

If you will be using the Coprocessor for SSL, the default role must at least be authorized to the following
access control points:

- Digital Signature Generate
- Digital Signature Verify

« PKA Key Generate

« PKA Clone Key Generate

« RSA Encipher Clear Data

« RSA Decipher Clear Data

« Delete Retained Key

« List Retain Keys

The Basic configuration wizard in the Cryptographic Coprocessor configuration utility automatically
redefines the default role such that it can be used for SSL without any changes.

To avoid security hazards, consider denying the following access control points (also called cryptographic
hardware commands) for the default role, after you have set up all of the roles and profiles:

Note: You should enable only those access control points that are necessary for normal operations. At

a maximum, you should only enable specifically required functions. To determine which access control
points are required, refer to the CCA Basic Services Guide. Each API lists the access control points that
are required for that API. If you do not need to use a particular API, consider disabling the access control
points that are required for it.

Load first part of Master Key

Combine Master Key Parts

Set Master Key

Generate Random Master Key
« Clear New Master Key Register

38 IBMi: Cryptography

Clear Old Master Key Register
Translate CV
Set Clock

Attention: If you intend to disable the Set Clock access control point from the default role,
ensure that the clock is set before you disable access. The clock is used by the Coprocessor

when users try to log on. If the clock is set incorrectly, users can not log on.

Re-initialize device

Initialize access control system

Change authentication data (for example, pass phrase)
Reset password failure count

Read Public Access Control Information

Delete user profile

Delete role

Load Function Control Vector

Clear Function Control Vector

Force User Logoff

Set EID

Initialize Master Key Cloning Control

Register Public Key Hash

Register Public Key, with Cloning

Register Public Key

PKA Clone Key Generate (Access control point required for SSL)

Clone-Information Obtain Parts 1, 2, 3, 4, 5,6,7,8,9,10, 11,12, 13, 14, 15
Clone-Information Install Parts 1, 2, 3, 4, 5, 6, 7,8, 9, 10, 11, 12, 13, 14, 15

Delete retained key (Access control point required for SSL)
List retained keys (Access control point required for SSL)
Encipher Under Master Key

Data Key Export

Data Key Import

Re-encipher to Master Key

Re-encipher from Master Key

Load First Key Part

Combine Key Parts

Add Key Part

Complete Key part

Clear AES New Master Key

Clear APKA New Master Key

Clear New Asymmetric Master Key

Clear AES Old Master Key

Clear APKA Old Master Key

Clear Old Asymmetric Master Key

Load First AES Master Key Part

Load First APKA Master Key Part

Cryptography 39

Load First Asymmetric Master Key Part
Combine AES Master Key Parts
Combine APKA Master Key Parts
Combine Asymmetric Master Key Parts
Activate New AES Master Key

Activate New APKA Master Key

« Set Asymmetric Master Key

For the most secure environment, consider locking the access-control system after initializing it. You can
render the access-control system unchangeable by deleting any profile that would allow use of the Access
Control Initialization or the Delete Role access control point. Without these access control points, further
changes to any role are not possible. With authority to use either the Initialize Access Control or Delete
Role access control points, one can delete the DEFAULT role.

Deleting the DEFAULT role will cause the automatic recreation of the initial DEFAULT role. The initial
DEFAULT role permits setting up any capabilities. Users with access to these access control points
have unlimited authority through manipulation of the access-control system. Before the Coprocessor
is put into normal operation, the access-control setup can be audited through the use of the
Access_Control_Maintenance (CSUAACM) and Cryptographic_Facility_Query (CSUACFQ) API verbs.

If for any reason the status response is not as anticipated, the Coprocessor should not be used for
application purposes until it has been configured again to match your security policy. If a role contains
permission to change a pass phrase, the pass phrase of any profile can be changed. You should consider if
passphrase changing should be permitted and, if so, which role(s) should have this authority.

If any user reports an inability to log on, this should be reported to someone other than (or certainly

in addition to) an individual with pass phrase changing permission. Consider defining roles so that dual-
control is required for every security sensitive operation to protect against a malicious insider acting on
his/her own. For example, consider splitting the following groups of access control points between two
or more roles. It is recommended that one person should not be able to use all of the commands in the
Master key group, because this could represent a security risk.

The Master key group consists of these access control points:

Load 1st part of Master Key

Combine Master Key Parts

Set Master Key

Generate Random Master Key

Clear New Master Key Register

Clear Old Master Key Register

By the same token, one person should not be authorized to all of the commands in the Cloning key group.
The Cloning key group consists of these access control points:

« Initialize Master Key Cloning Control

- Register Public Key Hash

« Register Public Key, with Cloning

 Register Public Key

« PKA Clone Key Generate

 Clone-Information Obtain Parts 1, 2, 3, 4,5, 6,7,8,9,10, 11, 12,13, 14, 15

 Clone-Information Install Parts 1, 2, 3,4,5,6,7,8,9,10,11,12,13, 14, 15

After you create and define a profile for your Coprocessor, you must load a function control vector for your
Coprocessor. Without the function control vector, your Coprocessor cannot perform any cryptographic
functions.

40 IBMi: Cryptography

Coprocessor for IBMJCECCAI50S JCE provider

If you will be using the Coprocessor for the IBMJCECCAI50S JCE provider, the default role must at least
be authorized to the following access control points:

- Digital Signature Generate
- Digital Signature Verify

« PKA Key Generate

« PKA Key Import

« PKA Encipher Clear Key

« PKA Decipher Clear Key

» Delete Retained Key

« List Retained Key Names

« Generate Key

The Basic configuration wizard in the Cryptographic Coprocessor configuration utility automatically
redefines the default role such that it can be used with the IBMJCECCAI50S JCE provider without any
changes.

Related concepts

Secure access
Access control restricts the availability of system resources to only those users you have authorized to
interact with the resources. The system allows you to control authorization of users to system resources.

Loading a function control vector

The function control vector tells the Cryptographic Coprocessor for the system running the IBM i
operating system what key length to use to create keys. You cannot perform any cryptographic functions
without loading a function control vector.

Related reference

Example: ILE C program for creating roles and profiles for your Coprocessor

Change this IBM i ILE C program example to suit your needs for creating a role or a profile for your
Coprocessor.

Example: ILE C program for enabling all access control points in the default role for your Coprocessor
Change this IBM i ILE C program example to suit your needs for enabling all access control points in the
default role for your Coprocessor.

Example: ILE RPG program for creating roles or profiles for your Coprocessor
Change this IBM i ILE RPG program example to suit your needs for creating roles and profiles for your
Coprocessor.

Example: ILE RPG program for enabling all access control points in the default role for your Coprocessor
Change this IBM i ILE RPG program example to suit your needs for enabling all access control points in
the default role for your Coprocessor.

Example: ILE C program for changing an existing profile for your Coprocessor
Change this IBM i ILE C program example to suit your needs for changing an existing profile for your
Coprocessor.

Example: ILE RPG program for changing an existing profile for your Coprocessor
Change this IBM i ILE RPG program example to suit your needs for changing an existing profile for your
Coprocessor.

Example: ILE C program for creating roles and profiles for your Coprocessor
Change this IBM i ILE C program example to suit your needs for creating a role or a profile for your
Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

Cryptography 41

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values

provided.

J R R e */
/* CRTROLEPRF */
/* */
/* Sample program to create roles and profiles in the */

/* cryptographic adapter. */
/* */
/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. 1IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these program. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for x/
/* these programs and files. */
/* */
/* */
/* Note: Input format is more fully described in Chapter 2 of */
/* IBM CCA Basic Services Reference and Guide */
/* (SC31-8609) publication. */
/* */
/* Parameters: */
/* none. */
/* */
/* Example: */
/* CALL PGM(CRTROLEPRF) */
/* */
/* Use these commands to compile this program on the system: */
/* CRTCMOD MODULE (CRTROLEPRF) SRCFILE(SAMPLE) */
/* CRTPGM PGM(CRTROLEPRF) MODULE(CRTROLEPRF) */
/* BNDSRVPGM (QCCA/CSUAACI QCCA/CSNBOWH) */
/* */
/* Note: Authority to the CSUAACI and CSNBOWH service programs */
/* in the QCCA library is assumed. */
/* */
/* The Common Cryptographic Architecture (CCA) verbs used are */
/* Access_Control_Initialization (CSUAACI) and */
/* One_Way_Hash (CSNBOWH) . */
/* */
/* Note: This program assumes the device you want to use is */
/* already identified either by defaulting to the CRPO1 */
/* device or has been explicitly named using the */
/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/> Note: Before running this program, the clock in the must be x*/

/* set using Cryptographic_Facility_Control (CSUACFC) in order x*/
/* to be able to logon afterwards. */
/* */
R e */
#include "csucincl.h" /* header file for CCA Cryptographic

Service Provider */
f#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main(int argc, char *argv[]) %

J R R e e T */
/* standard return codes */
R e */
#tfdefine ERROR -1
#define OK 0
#tdefine WARNING 4
R e e */
/* Variables used for parameters on CCA APIs */
R e */

long return_code;
long reason_code;

42 IBMi: Cryptography

long exit_dat
char exit_dat
char rule_arr
long rule_arr
long verb_dat
long verb_dat
long hash_len
long text_len
char *text;

char chaining
long chaining

a_length;
al2];
ay[4][8];
ay_count;
al_length;
a2_length;
gth;

gth;

_vector[128];
_vector_length;

J R R e e T */

/* Definitions for profiles */

R R e T */

typedef struct
1
char version[2]; /* Profile structure version «/
short length; /* length of structure */
char comment[20]; /* Description */
short checksum;
char logon_failure_count;
char reserved;
char userid[8]; /* Name for this profile */
char role[8]; /* Role that profile uses */
short act_year; /* Activation date - year */
char act_month; /* Activation date - month */
char act_day; /* Activation date - day */
short exp_year; /* Expiration date - year */
char exp_month; /* Expiration date - month */
char exp_day; /* Expiration date - day */
short total_auth_data_length;
short field_type;
short auth_data_length_1;
short mechanism; /* Authentication mechanism */
short strength; /* Strength of mechanism */
short mech_exp_year; /* Mechanism expiration - yearx/
char mech_exp_month; /* Mech. expiration - month */
char mech_exp_day; /* Mechansim expiration - day =/
char attributes[4];
char auth_data[20]; /* Secret data */
t profile_T;

typedef struct
i
long number; /* Number profiles in struct =*/
long reserved;
profile T profile[3];
%t aggregate_profile;

aggregate_profile * verb_datal; /* Aggregate structure for */

/* defining profiles */

R R e */

/* Definitions for roles */

R L */

J R e T */

/* Default role - access control points list - */

/* authorized to everything EXCEPT: */

/* 0x0018 - Load 1st part of Master Key */

/* 0x0019 - Combine Master Key Parts */

/* Ox001A - Set Master Key */

/* 0x0020 - Generate Random Master Key */

/* 0x0032 - Clear New Master Key Register */

/* 0x0033 - Clear 0ld Master Key Register */

/* 0x0053 - Load 1st part of PKA Master Key */

/* 0x0054 - Combine PKA Master Key Parts */

/* 0Ox0057 - Set PKA Master Key */

/* 0Ox0060 - Clear New PKA Master Key Register */

/* 0x0061 - Clear 0ld PKA Master Key Register */

/* 0x0110 - Set Clock */

/* Ox0111 - Reinitialize device */

/* 0x0112 - Initialize access control system */

/* 0x0113 - Change user profile expiration date */

/* 0x0114 - Change authentication data (eg. passphrase) */

/* 0x0115 - Reset password failure count */

/* Ox0116 - Read Public Access Control Information */

/* 0x0117 - Delete user profile */

/* 0x0118 - Delete role */

/* 0x0119 - Load Function Control Vector */

/* Ox011A - Clear Function Control Vector */

/* 0x011B - Force User Logoff */

Cryptography 43

/* 0x0200 -

/* 0x0201 -
/* 0x0202 -
/* 0x0203 -
/* 0x0204 -
/* 0x0211 -

/* For access

Register PKA Public Key Hash

Register PKA Public Key, with cloning
Register PKA Public Key

Delete Retained Key

PKA Clone Key Generate

Ox21F - Clone information - obtain 1-15

control points 0x01 - 0x127 */

char default_bitmap[] =
3 Ox00, 0x03, OxFO, Ox1D, Ox00, Ox00, Ox00, 0x00,
Ox80, Ox00, Ox00, Ox00, Ox00, Ox00, O0x00, 0x00,
Ox00, OxOA, 0x80, Ox00, O0x88, Ox2F, 0x71, 0x10,
0x10, 0x04, 0x03, 0x31, O0x80, Ox00, Ox00, O0x00,
OxFF, Ox7F, Ox40, Ox6B, 0x80%;

/* For access

char default2_

control points 0x200 - Ox23F *x/
bitmap[] =

i 0x00, 0x00, 0x00, 0x00, 0x00, Ox00, OxE6, OXOF %;

R L e
/* role #1 - authorized to same as default plus also

/* authorized to:

/* 0x0018 - Load 1st part of Master Key

/* 0x0020 - Generate Random Master Key

/* 0x0032 - Clear New Master Key Register

/* 0x0053 - Load 1st part of PKA Master Key

/* 0Ox0060 - Clear New PKA Master Key Register

/* 0x0119 - Load Function Control Vector

/* 0x0201 - Register PKA Public Key, with cloning

/* 0x0202 - Register PKA Public Key

/* 0x0203 - Delete Retained Key

/* 0x0204 - PKA Clone Key Generate

/* 0x0211 - 0x215 - Clone information - obtain 1-5

/* 0x0221 - Ox225 - Clone information - install 1-5

R L e

char rolel_bitmap[] =
§ 0x00, 0x03, OxFO, Ox9D, 0x80, 0x00, 0x20, 0x00,
0x80, Ox00, 0x10, Ox00, Ox80, Ox00, Ox00, 0x00,
Ox00, OxOA, Ox80, Ox00, O0x88, Ox1F, O0x71, 0x10,
0x10, 0x04, 0x03, 0x11, O0x80, Ox00, Ox00, O0x00,
OxFF, Ox7F, Ox00, Ox4F, 0x80%;
char rolel_bitmap2[] =
3 0x78, 0x00, 0x7C, Ox00, Ox7C, Ox00, OxE6, OxOF %;

J R e R
/* role #2 - authorized to same as default plus also

/* authorized to:

/* 0x0019 - Combine Master Key Parts

/* Ox001A -
/* 0x0033 -
/* 0x0054 -
/* 0x0057 -
/* 0x0061 -
/* Ox011A -
/* 0x0200 -
/* 0x0201 -
/* 0x0203 -
/* 0x0204 -
/* 0x0216 -
/* 0x0226 -

Set Master Key

Clear 0ld Master Key Register

Combine PKA Master Key Parts

Set PKA Master Key

Clear 0ld Master Key Register

Clear Function Control Vector

Register PKA Public Key Hash

Register PKA Public Key, with cloning
Delete Retained Key

PKA Clone Key Generate

Ox21A - Clone information - obtain 6-10
Ox22A - Clone information - install 6-10

char role2_bitmap[] =
i 0x00, 0x03, OxFO, 0x7D, 0x80, 0x00, 0x10, 0x00,
Ox80, Ox00, O0x09, 0x00, 0x40, 0x00, O0x00, 0x00,
Ox00, OxOA, 0Ox80, Ox00, 0x88, Ox1F, 0x71, 0x10,
0x10, Ox04, Ox03, O0x31, Ox80, Ox00, Ox00, 0x00,
OxFF, Ox7F, Ox00, Ox2F, 0x80%;
char role2_bitmap2[] =
i OxD8, 0x00, 0x03, OxEO, O0x03, OxEO, OxE6, OXOF %;

R L e
/* role #3 - authorized to same as default plus also

/* authorized to:

/* 0x0110 - Set Clock

/* Ox0111 - Reinitialize device

/* 0x0112 - Initialize access control system

/* 0x0113 - Change user profile expiration date

/* 0x0114 - Change authentication data (eg. passphrase)
/* 0x0115 - Reset password failure count

/* 0x0116 - Read Public Access Control Information

/* 0x0117 - Delete user profile

/* 0x0118 - Delete role

44 IBMi: Cryptography

/* 0x011B - Force User Logoff */

/* 0x0200 - Register PKA Public Key Hash */
/* 0x0201 - Register PKA Public Key, with cloning */
/* 0x0203 - Delete Retained Key */
/* 0x0204 - PKA Clone Key Generate */
/* Ox021B - Ox21F - Clone information - obtain 11-15 */
/* 0x022B - Ox22F - Clone information - install 11-15 */
R L L e E T T T */

char role3_bitmap[] =
3 0x00, 0x03, OxFO, Ox1D, Ox00, Ox00, Ox00, O0x00,
Ox80, Ox00, Ox00, Ox00, OxCO, OxO00, O0x00, O0x00,
Ox00, OxOA, 0x80, Ox00, O0x88, Ox1F, 0x71, 0x10,
0x10, 0x04, 0x03, 0x31, O0x80, Ox00, Ox00, O0x00,
OxFF, Ox7F, OxFF, Ox9F, 0x80%;
char role3_bitmap2[] =
3 OxD8, 0x00, 0x00, Ox1F, Ox00, Ox1F, OxE6, OxOF %;

J R R e */
/* Structures for defining the access control points in a role */
R L LR e EE T T */

struct access_control_points_header

short number_segments; /* Number of segments of */
/* the access points map */

short reserved;

%t access_control_points_header;

struct access_control_points_segment_header

short start_bit; /* Starting bit in this =/
/* segment. */
short end_bit; /* Ending bit */
short number_bytes; /* Number of bytes in */
/* this segment */
short reserved;

% access_control_points_segment_header;

B e T T P */
/* Structure for defining a role */
R e i */

struct role_header

char version[2];
short length;

char comment[20];
short checksum;
short reservedl;
char role[8];

short auth_strength;
short lower_time;
short upper_time;
char valid_days_of_week;
char reserved?2;

t role_header;

B e */
/* Structure for defining aggregate roles */
R e e */

struct aggregate_role_header
1
long number;
long reserved;
t aggregate_role_header;
char * verb_data2;

char * work_ptr;
char xbitmapl, *bitmap2;

int 1i; /* Loop counter */
J R e R */
/% >>>>>>>> Start of code <<<<<<<<KLKLLLLKLK */
R L L E TR T */
R e */
/* Allocate storage for the aggregate role structure */

sizeof(role_header) % 3 +
sizeof(access_control_points_header) * 3 +
sizeof(access_control_points_segment_header)
* 6 + [/* 3 roles * 2 segments each %/

Cryptography 45

sizeof(default_bitmap) * 3 +
sizeof(default2_bitmap) * 3);

work_ptr = verb_data2; /* Set working pointer to

start of verb data 2 storage */
aggregate_role_header.number = 3; /% Define/replace 3 roles */
aggregate_role_header.reserved = 0;

/* Copy header into verb data

2 storage. */
memcpy (work_ptr, (void*)&aggregate_role_header,
sizeof(aggregate_role_header));

/* Adjust work pointer to point

after header. */
work_ptr += sizeof(aggregate_role_header);
J R e e */
/* Fill in the fields of the role definitions. */
/* Each role is version 1, has authentication strength of 0, */
/* has valid time from 12:00 Midnight (0) to 23:59 (x173B), */
/* is valid every day of the week. (xFE is 7 bits set), */
/* has one access control points segment that starts at bit 0 x/
/* and goes to bit x11F, and has 20 spaces for a comment. */
F R e e */
role_header.version[0] =1;
role_header.version[1] = 0;
role_header.length = sizeof(role_header) +

sizeof(access_control_points_header) +
2 % sizeof(access_control_points_segment_header) +
sizeof(default_bitmap) + sizeof(default2_bitmap);

role_header.checksum = 0;
role_header.reservedl 0;
role_header.auth_strength 0;
role_header.lower_time 0;
role_header.uppexr_time 0x173B;
role_header.valid_days_of_week OXFE;
role_header.reserved2 0;
memset(role_header.comment,' ', 20);

access_control_points_header.number_segments
access_control_points_header.reserved
access_control_points_segment_header.reserved = 0;

nu
N

for (i=0; i<3; i++)

case 0:
memcpy (role_header.role, "ROLE1 ", 8);
bitmapl = rolel_bitmap;
bitmap2 rolel_bitmap2;

break;

J R e R T T */
/* Set name for ROLE2 */

case 1:
memcpy (role_header.role, "ROLE2 ", 8);
bitmapl = role2_bitmap;
bitmap2 = role2_bitmap2;
break;

J R e e T */
/> Set name for ROLE3 */

case 2:
memcpy (role_header.role, "ROLE3 ", 8);

bitmapl = role3_bitmap;
bitmap2 = role3_bitmap2;

R R e T */
/* Copy role header */
memcpy (work_ptr, (void*)&role_header, sizeof(role_header));

/* Adjust work pointer to
point after role header. x/

46 IBMi: Cryptography

work_ptr += sizeof(role_header);

R L R */
/* Copy access control points header */
R e T */

memcpy (work_ptr,
(void x)&access_control_points_header,
sizeof(access_control_points_header));

/* Adjust work pointer to
point after header. =x/
work_ptr += sizeof(access_control_points_header);

R T */
/* Copy access control points segment 1 */
J R R e e e */
access_control_points_segment_header.start_bit = 0;

access_control_points_segment_header.end_bit = 0x127;

access_control_points_segment_header.number_bytes =

sizeof(default_bitmap);

memcpy (work_ptr,
(void x)&access_control_points_segment_header,
sizeof(access_control_points_segment_header));

/* Adjust work pointer to
point after header. =x/
work_ptr += sizeof(access_control_points_segment_header);

R L e T */
/* Copy access control points segment 1 bitmap */
J R R e */

memcpy (work_ptr, bitmapl, sizeof(default_bitmap));

/* Adjust work pointer to
point after bitmap. =x/
work_ptr += sizeof(default_bitmap);

R */
/* Copy access control points segment 2 */
R R e e T */
access_control_points_segment_header.start_bit = 0x200;
access_control_points_segment_header.end_bit = Ox23F;

access_control_points_segment_header.number_bytes =

sizeof(default2_bitmap);

memcpy (work_ptr,
(void *)&access_control_points_segment_header,
sizeof(access_control_points_segment_header));

/* Adjust work pointer to
point after header. «/
work_ptr += sizeof(access_control_points_segment_header);

R e */
/* Copy access control points segment 2 bitmap */
R R T */

memcpy (work_ptr, bitmap2, sizeof(default2_bitmap));

/* Adjust work pointer to
point after bitmap. */
work_ptr += sizeof(default2_bitmap);

3

R e L E L TR T P
/* Allocate storage for aggregate profile structure

J R e T
verb_datal = malloc(sizeof(aggregate_profile));
verb_datal->number = 3; /* Define 3 profiles
verb_datal->reserved = 0;

/* Each profile:

/* will be version 1,

/* have an activation date of 1/1/2013,

/* have an expiration date of 6/30/2020,

/* use passphrase hashed with SHA1 for the mechanism (0x0001),
/* will be renewable (attributes = 0x8000)

/* and has 20 spaces for a comment

for (i=0; i<3; i++)

Cryptography 47

verb_datal->profile[i].length
verb_datal->profile[i].version[0]
verb_datal->profile[i].version[1]
verb_datal->profile[i].checksum
verb_datal->profile[i].logon_failure_count
verb_datal->profile[i].reserved
verb_datal->profile[i].act_year
verb_datal->profile[i].act_month
verb_datal->profile[i].act_day
verb_datal->profile[i].exp_year
verb_datal->profile[i].exp_month
verb_datal->profile[i].exp_day
verb_datal->profile[i].total_auth_data_length
verb_datal->profile[i].field_type
verb_datal->profile[i].auth_data_length_1
verb_datal->profile[i] .mechanism
verb_datal->profile[i].strength
verb_datal->profile[i] .mech_exp_year
verb_datal->profile[i] .mech_exp_month
verb_datal->profile[i] .mech_exp_day
verb_datal->profile[i].attributes[0]
verb_datal->profile[i].attributes[1]
verb_datal->profile[i].attributes[2]
verb_datal->profile[i].attributes[3]

sizeof(profile_T);

memset (verb_datal->profile[i].comment, ' ', 20);

memcpy (rule_array, "SHA-1 ", 8);
rule_array_count = g
chaining_vector_length
hash_length

1é8;
20;

case 0:
memcpy (verb_datal->profile[i].userid, "SECOFR1 ",8);
memcpy (verb_datal->profile[i].role, "ROLE1 ",8);
text_length = 10;
text "Is it safe";

case 1:
memcpy (verb_datal->profile[i].userid, "SECOFR2 ",8);
memcpy (verb_datal->profile[i].role, "ROLE2 ",8);
text_length = 18;
text = "I think it is safe";

case 2:
memcpy (verb_datal->profile[i].userid, "SECOFR3 ",8);
memcpy (verb_datal->profile[i].role, "ROLE3 ",8);
text_length = 12;
text "Is what safe";

R e */
/* Call One_Way_Hash to hash the pass-phrase */

&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(charx)rule_array,
&text_length,

text,
&chaining_vector_length,
chaining_vector,
&hash_length,
verb_datal->profile[i].auth_data);

R */
/* Call Access_Control Initialize (CSUAACI) to create */
/* the roles and profiles. */

48 IBM i: Cryptography

R e T */

rule_array_count = 2;

memcpy (rule_array, "INIT-AC REPLACE ", 16);

verb_datal_length sizeof(aggregate_profile);

verb_data2_length sizeof(aggregate_role_header) +
sizeof(role_header) * 3 +
sizeof(access_control_points_header) % 3 +
sizeof(access_control_points_segment_header)
* 6 + /% 3 roles x 2 segments each x/
sizeof(default_bitmap) * 3 +
sizeof(default2_bitmap) * 3;

CSUAACI(&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *)rule_array,
(long *) &verb_datal_length,
(char =) verb_datal,
(long x) &verb_data2_length,
(char *) verb_data2);

if (return_code > WARNING)
printf("Access_Control_Initialize failed. Return/reason codes: \
%d/%d\n" , return_code, reason_code);

else
printf("The new roles and profiles were successfully created\n");
R e */
/* The Access_Control_Initialize SAPI verb needs to be */
/* called one more time to replace the DEFAULT role so that */
/* a user that does not log on is not able to change any */
/* settings in the . */
R e L EE TR */
work_ptr = verb_data2; /* Set working pointer to
start of verb data 2 storage */
aggregate_role_header.number = 1; /x Define/replace 1 roles */

aggregate_role_header.reserved = 0;
memcpy (work_ptr, (void*)&aggregate_role_header,
sizeof(aggregate_role_header));

/* Adjust work pointer to
point after header. «/
work_ptr += sizeof(aggregate_role_header);

J R e */
/* Fill in the fields of the role definitions. */
/* Each role is version 1, has authentication strength of 0, */
/* has valid time from 12:00 Midnight (0) to 23:59 (x173B), */
/* is valid every day of the week. (xFE is 7 bits set), */
/* has one access control points segment that starts at bit 0 x/
/* and goes to bit x11F, and has 20 spaces for a comment. */
J R e */
role_header.version[0] =1;

role_header.version[1] =0;

sizeof(role_header) +
sizeof(access_control_points_header) +
2 % sizeof(access_control_points_segment_header) +
sizeof(default_bitmap) + sizeof(default2_bitmap);

role_header.length

role_header.checksum = 0;
role_header.reservedl = 0;
role_header.auth_strength = 0;
role_header.lower_time = 0;
role_header.uppexr_time = 0x173B;
role_header.valid_days_of_week = OxFE;
role_header.reserved2 = 0;
memset(role_header.comment,' ', 20);
access_control_points_header.number_segments = 2;
access_control_points_header.reserved = 0;
access_control_points_segment_header.reserved = 0;

/* DEFAULT role id must be in «/
/* ASCII representation. */
memcpy (role_header.role, "\x44\x45\x46\x41\x55\x4C\x54\x20", 8);
bitmapl = default_bitmap;
bitmap2 = default2_bitmap;

R e T T */
/* Copy role header */

Cryptography 49

R e T T */
memcpy (work_ptr, (void*)&role_header, sizeof(role_header));

/* Adjust work pointer to
point after header. =x/
work_ptr += sizeof(role_header);

R T */
/* Copy access control points header */
R e */

memcpy (work_ptzr,
(void *)&access_control_points_header,
sizeof(access_control_points_header));

/* Adjust work pointer to
point after header. =*/
work_ptr += sizeof(access_control_points_header);

R R e T T */
/* Copy access control points segment 1 */
B e */
access_control_points_segment_header.start_bit = 0;
access_control_points_segment_header.end_bit = 0x127;

access_control_points_segment_header.number_bytes =
sizeof(default_bitmap);
memcpy (work_ptzr,
(void =x)&access_control_points_segment_header,
sizeof(access_control_points_segment_header));

/* Adjust work pointer to
point after header. =*/
work_ptr += sizeof(access_control_points_segment_header);

R R e T */
/* Copy access control points segment 1 bitmap */
B e e T */

memcpy (work_ptr, bitmapl, sizeof(default_bitmap));

/* Adjust work pointer to
point after bitmap. */
work_ptr += sizeof(default_bitmap);

R R e T */
/* Copy access control points segment 2 */
B e */
access_control_points_segment_header.start_bit = 0x200;
access_control_points_segment_header.end_bit = Ox23F;

access_control_points_segment_header.number_bytes =
sizeof(default2_bitmap);

memcpy (work_ptr,
(void x)&access_control_points_segment_header,
sizeof(access_control_points_segment_header));

/* Adjust work pointer to
point after header. =x/
work_ptr += sizeof(access_control_points_segment_header);

R L e T */
/* Copy access control points segment 2 bitmap */
R R e e */

memcpy (work_ptr, bitmap2, sizeof(default2_bitmap));

rule_array_count = 2;

memcpy (rule_array, "INIT-AC REPLACE ", 16);

verb_datal_length = 0;

verb_data2_length = sizeof(aggregate_role_header) +
sizeof(role_header) +
sizeof(access_control_points_header) +
sizeof(access_control_points_segment_header)
* 2 +
sizeof(default_bitmap) +
sizeof(default2_bitmap);

CSUAACI(&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *)rule_array,
(long x) &verb_datal_length,
(char %) verb_datal,

50 IBMi: Cryptography

(long *) &verb_data2_length,
(char *) verb_data2);

if (return_code > 4)

printf("The default role was not replaced. Return/reason code:\

%d/%d\n",return_code, reason_code);

else

printf("The default role was successfully updated.\n");

Related concepts
Creating and defining roles and profiles

Cryptographic Coprocessors on systems running the IBM i operating system use role-based access
control. In a role-based system, you define a set of roles, which correspond to the classes of Coprocessor
users. You can enroll each user by defining an associated user profile to map the user to one of the
available roles.

Example: ILE C program for enabling all access control points in the default role for

your Coprocessor
Change this IBM i ILE C program example to suit your needs for enabling all access control points in the
default role for your Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values
provided.

SETDEFAULT

Sample program to authorize the default role to all access
control points in the cryptographic coprocessor.

COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

This material contains programming source code for your
consideration. These examples have not been thoroughly

tested under all conditions. 1IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function

of these program. All programs contained herein are

provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
these programs and files.

Note: Input format is more fully described in Chapter 2 of
IBM CCA Basic Services Reference and Guide */
(SC31-8609) publication.

Parameters:
none.

Example:
CALL PGM(SETDEFAULT)

Use these commands to compile this program on the system:
CRTCMOD MODULE (SETDEFAULT) SRCFILE(SAMPLE)
CRTPGM PGM(SETDEFAULT) MODULE (SETDEFAULT)

BNDSRVPGM (QCCA/CSUAACI)

Note: Authority to the CSUAACI service programs
in the QCCA library is assumed.

The Common Cryptographic Architecture (CCA) verb used is
Access_Control_Initialization (CSUAACI).

Note: This program assumes the device you want to use is
already identified either by defaulting to the CRPO1
device or has been explicitly named using the
Cryptographic_Resource_Allocate verb. Also this
device must be varied on and you must be authorized
to use this device description.

*/

Cryptography 51

/*
R R

#include "csucincl.h" /* header file for CCA Cryptographic
Service Provider

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

void main(int argc, char *argv[]) %

R e

/* standard return codes

R L T E T T

#tdefine ERROR -1
tdefine OK 0
#define WARNING 4

R L
/* parameters for CCA APIs

J R R e T T

long return_code;

long reason_code;

long exit_data_length;
char exit_data[2];

char rule_array[4][8];
long rule_array_count;
long verb_datal_length;
long verb_data2_length;
char verb_datal[4];

e T */
/* Structure for defining a role */
R */
struct role_header
{
char version[2];
short length;
char comment[20];
short checksum;
short reservedl;
char role[8];
short auth_strength;
char lower_time_hour;
char lower_time_minute;
char upper_time_hour;
char upper_time_minute;
char valid_days_of_week;
char reserved2;
%t role_header;
J R e */
/* Structure for defining aggregate roles */
R L L L EE T T T */
struct aggregate_role
{
long number;
long reserved;

% aggregate_role_header;

R e e */
/* Structures for defining the access control points in a role =%/
B e T */

struct access_control_points_header

short number_segments; /* Number of segments of */
/* the access points map */

short reserved;

%t access_control_points_header;

struct access_control_points_segment_header

short start_bit; /* Starting bit in this */
/* segment. */
short end_bit; /* Ending bit */
short number_bytes; /* Number of bytes in */
/* this segment */
short reserved;

% access_control_points_segment_header;

52 IBMi: Cryptography

*/
*/

*/

*/
*/

Default role - access control points list -
authorized to everything

For access control points 0Ox01 - 0x127

char default_bitmap[] =

/*
/*

i 0x00, 0x03, OxFO, OxFD, 0x80, 0x00, 0x30, 0x00,
0x80, Ox00, 0x19, 0x00, OxCO, Ox00, Ox00, 0x00,
Ox00, OxOA, 0x80, Ox00, O0x88, Ox2F, 0x71, 0x10,
0x18, Ox04, Ox03, O0x31, Ox80, Ox00, Ox00, 0x00,
OxFF, Ox7F, OxFF, OxFF, 0Ox80%;

For access control points 0x200 - 0x23F

char default2_bitmap[] =

3 OxF8, 0x00, Ox7F, OxFF, Ox7F, OxFF, OxE6, OxOF %;

unsigned char % verb_data2;
unsigned char * work_ptr;

int i; /* Loop counter */
R L L e E T T */
/* Start of code */
R e */
R e e e */
/* Allocate storage for the aggregate role structure */

sizeof(role_header) +
sizeof(access_control_points_header) +
sizeof(access_control_points_segment_header)
* 2 +

sizeof(default_bitmap) +
sizeof(default2_bitmap));

work_ptr = verb_data2; /* Set up work pointer */

aggregate_role_header.number =
aggregate_role_header.reserved

1; /* Define/replace 1 role */
= 0; /% Initialize reserved fieldx/

/* Copy header to verb_data2
storage. */

memcpy (work_ptr, (void*)&aggregate_role_header,

sizeof(aggregate_role_header));

work_ptr += sizeof(aggregate_role_header); /* Set work pointer

after role header =%/

J R e L */
/* Fill in the fields of the role definition. */
R L R E e E T */
role_header.version[0] =1; /* Version 1 role */
role_header.version[1] = 0;

/* Set length of the role x/

role_header.length = sizeof(role_header)

+ sizeof(access_control_points_header)

+ 2 *
sizeof(access_control_points_segment_header)
+ sizeof(default_bitmap)

+ sizeof(default2_bitmap);

role_header.checksum = 0; /* Checksum is not used */
role_header.reservedl = 0; /* Reserved must be 0O */
role_header.auth_strength = 0; /* Authentication strength x/
/* is set to 0. */
/* Lower time is 00:00 */
role_header.lower_time_hour = 0;
role_header.lower_time_minute = 0;
/* Upper time is 23:59 */
role_header.upper_time_hour = 23;
role_header.upper_time_minute = 59;
role_header.valid_days_of_week = OxFE; /% Valid every day */
/* 7 bits - 1 bit each day x/
role_header.reserved2 = 0; /* Reserved must be 0O */

Cryptography 53

/* Role is DEFAULT */
/* expressed in ASCII */
memcpy (role_header.role, "\x44\x45\x46\x41\x55\x4C\x54\x20", 8);

memset (role_header.comment,' ',20); /* No description for role %/
R T */
/* Copy role header into verb_data2 storage */
e e *

memcpy (work_ptr, (void*)&role_header, sizeof(role_header));
work_ptr += sizeof(role_header);

R T */
/* Set up access control points header and then */
/* copy it into verb_data2 storage. */
R */
access_control_points_header.number_segments = 2;
access_control_points_header.reserved = 0;
access_control_points_segment_header.reserved = 0;

memcpy (work_ptr,
(void *)&access_control_points_header,
sizeof(access_control_points_header));

/* Adjust work_ptr to point to the

first segment */

work_ptr += sizeof(access_control_points_header);
R e T */

/* Set up the segment header for segment 1 and then =*/

/* copy into verb_data2 storage */

B N e e T */
access_control_points_segment_header.start_bit = 0;
access_control_points_segment_header.end_bit = 0x127;

access_control_points_segment_header.number_bytes =
sizeof(default_bitmap);
memcpy (work_ptzr,
(void =x)&access_control_points_segment_header,
sizeof(access_control_points_segment_header));

/* Adjust work_ptr to point to the

first segment bitmap */
work_ptr += sizeof(access_control_points_segment_header);
R R e T T */
/* Copy access control points segment 1 bitmap */

*/
memcpy (work_ptr, default_bitmap, sizeof(default_bitmap));

/* Adjust work_ptr to point to the

second segment */

work_ptr += sizeof(default_bitmap);

R R e e T */

/* Set up the segment header for segment 2 and then */

/* copy into verb_data2 storage */

R e e */
access_control_points_segment_header.start_bit = 0x200;
access_control_points_segment_header.end_bit = Ox23F;

access_control_points_segment_header.number_bytes =
sizeof(default2_bitmap);

memcpy (work_ptr,
(void *)&access_control_points_segment_header,
sizeof(access_control_points_segment_header));

/* Adjust work_ptr to point to the

second segment bitmap */
work_ptr += sizeof(access_control_points_segment_header);
R e T */
/* Copy access control points segment 2 bitmap */

--- */
/* Set the length of verb data 2 (Role definition) */
R e e */

verb_data2_length = sizeof(aggregate_role_header) +
role_header.length;

54 IBMi: Cryptography

R e T T */

/* Set remaining parameters */

rule_array_count = 2;
memcpy (rule_array, "INIT-AC REPLACE ", 16);
verb_datal_length = 0;

R R */
/* Call Access_Control Initialize (CSUAACI) to set the =*/
/* default role. */

&reason_code,
&exit_data_length,

exit_data,

&rule_array_count,

(unsigned char *)rule_array,
&verb_datal_length,

(unsigned char x) verb_datal,
&verb_data2_length,
verb_data2);

if (return_code > 4)
printf("The default role was not replaced. Return/reason code:\
%d/%d\n" , return_code, reason_code);
else
printf("The default role was successfully updated.\n");

Related concepts

Creating and defining roles and profiles

Cryptographic Coprocessors on systems running the IBM i operating system use role-based access
control. In a role-based system, you define a set of roles, which correspond to the classes of Coprocessor
users. You can enroll each user by defining an associated user profile to map the user to one of the
available roles.

Example: ILE RPG program for creating roles or profiles for your Coprocessor
Change this IBM i ILE RPG program example to suit your needs for creating roles and profiles for your
Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values
provided.

D* CRTROLEPRF

Dx Sample program to create 3 roles and 3 profiles in the
Dx and change the authority for the default role.

D* COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

Dx This material contains programming source code for your

Dx consideration. These example has not been thoroughly

Dx tested under all conditions. IBM, therefore, cannot

Dx guarantee or imply reliability, serviceability, or function

Dx of these programs. All programs contained herein are

Dx provided to you "AS IS". THE IMPLIED WARRANTIES OF

Dx MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Dx ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
Dx these programs and files.

Dx

D*

Dx Note: Input format is more fully described in Chapter 2 of
D% IBM CCA Basic Services Reference and Guide
D% (SC31-8609) publication.

D%

Dx Parameters: None

D*

Dx Example:

Dx CALL PGM(CRTROLEPRF)

D*

Cryptography 55

Dx Use these commands to compile this program on the system:
D* CRTRPGMOD MODULE (CRTROLEPRF) SRCFILE (SAMPLE)
D+ CRTPGM PGM(CRTROLEPRF) MODULE (CRTROLEPRF)

D* BNDDIR(QCCA/QC6BNDDIR)

D*

Dx Note: Authority to the CSUAACI service program in the
D* QCCA library is assumed.

D*

Dx The Common Cryptographic Architecture (CCA) verbs used are
D* Access_Control_Initialize (CSUAACI)

D*

D R R R R R R R R R S S T S 2 T
Dk = = = = == = = = e e e e e e e e e e e e e emoo -
D* Declare variables used by CCA SAPI calls

D Gl e LG L L L
Dx *% Return code

DRETURNCODE S 9B 0

Dx ** Reason code

DREASONCODE S 9B 0

D* *% Exit data length

DEXITDATALEN S 9B 0

Dx **% Exit data

DEXITDATA S 4

Dx* *%* Rule array count

DRULEARRAYCNT S 9B 0

Dx* ** Rule array

DRULEARRAY S 16

D* *% Text length

DTEXTLEN S 9B 0

Dx ** Text to hash

DTEXT S 20

D* *% Chaining vector length

DCHAINVCTLEN S 9B 0 INZ(128)

D* *% Chaining vector

DCHAINVCT S 128

D* *% Hash length

DHASHLEN S 9B 0 INZ(20)

D 5 55 5 5 533 5 5 5 55 555 5905 55 5

Dx VERBDATA1l contains the aggregate profile structure which
D* in turn contains 3 profiles.

D 5 5 5 5 5 5 5 5 55 3 £ 555 55 555 5905 55 5
DVERBDATALEN1 S 9B 0 INZ(278)
DVERBDATAL DS 278

D* *x Define 3 Profiles

DNUMPROFS 9B 0 INZ(3)

D* *% Reserved field

DRESR1 9B 0 INZ(0)
DPROF1 90

DPROF2 90

DPROF3 90

D*

D e L L T T T T e L E T T T T T
Dx Define the profile structure

D G Y A GE L L L
DPROFILESTRUCT DS

D* **x Version 1 struct

DPROFVERS 2 INZ(X'0100"')
D* *% Length of profile

DPROFLEN 2 INZ(X'O05A")
Dx* *% Description of profile
DCOMMENTP 20 INZ('

D* *% Checksum is not used
DCHECKSUMP 2 INZ(X'0000")
D* *% Logon failure count

DLOGFC 1 INZ(X'00")
Dx **% Reserved

DRESR2 1 INZ(X'00")
D* *%x Profile name

DUSERID

D* **% Role used

DROLENAME 8

D% *% Activation year (2013)
DACTYEAR 2 INZ(X'O7DD")
Dx *% Activation month (01)
DACTMONTH 1 INZ(X'01")
Dx *% Activation day (01)

DACTDAY 1 INZ(X'01")
D% *% Expiration year (2020)
DEXPYEAR 2 INZ(X'O7E4")
Dx *% Expiration month (12)
DEXPMONTH 1 INZ(X'OC")
Dx *% Expiration day (31)

56 IBMi: Cryptography

DEXPDAY

Dx

D*
DTOTAUTDTALEN
Dx
DFIELDTYPE
Dx
DAUTDATLEN
D
DMECHANISM
Dx
DSTRENGTH
Dx
DMCHEXPYEAR
D*
DMCHEXPMONTH
Dx
DMCHEXPDAY
Dx
DATTRIBUTES
D
DAUTHDATA
Dx

**
**

**

*%

*%

**

*%

*%

**

*%

*%

1 INZ(X'1F")
Total authentication
data length

2 INZ(X'0024")
Field type

2 INZ(X'0001"')
Authentication data len

2 INZ(X'0020")
Authentication mechanism

2 INZ(X'0001"')
Mechanism strength

2 INZ(X'0000")
Mech expiration year (2020)

2 INZ(X'O7E4")
Mech expiration month (12)

1 INZ(X'OC"')
Mech expiration day (31)

1 INZ(X'1F")
Attributes

4 INZ(X'80000000")
Authentication data

20 INZ(' ")

Dx The Default role is being replaced
D* Verb_data_2 length set to the length of the default role

Dx VERBDATA2 contains the aggregate role structure which
Dx in turn contains 3 roles.

D 5 5 5 5 5 0 55 55 3053 555 55 555 5905 505 5
DVERBDATA2 DS

D* *% Define 3 Roles

DNUMROLES 9B 0 INZ(3)

D* *% Reserved field

DRESR3 9B 0 INZ(0)

DROLEL 109

DROLE2 109

DROLE3 109

Dx

D e
Dx Define the role structure

D 5 5 5 5 5 5 5 53 53 555 55 555 505 55 5
DROLESTRUCT DS

Dx *% Version 1 struct

DROLEVERS 2 INZ(X'0100"')

D* *% Length of role

DROLELEN 2 INZ(X'006D")

D* *% Description of role

DCOMMENTR 20 INZ(')
D* *% Checksum is not used

DCHECKSUMR 2 INZ(X'0000")

D* *% Reserved field

DRESR4 2 INZ(X'00060")

Dx ** Role Name

DROLE 8

D* *% Authentication strength is set to 0
DAUTHSTRN 2 INZ(X'0000")

D* **% Lower time is 00:00

DLWRTIMHR 1 INZ(X'00")

DLWRTIMMN 1 INZ(X'00")

D* *% Upper time is 23:59

DUPRTIMHR 1 INZ(X'17")

DUPRTIMMN 1 INZ(X'3B"')

Dx* *% Valid days of week

DVALIDDOW 1 INZ(X'FE")

D* *% Reserved field

DRESR5 1 INZ(X'00")

D* *% 2 Access control points segments are defined
DNUMSEG 2 INZ(X'0002"')

D* **% Reserved field

DRESR6 2 INZ(X'0000")

D* *% Starting bit of segment 1 is 0

DSTART1 2 INZ(X'0000")

Dx *% Ending bit of segment 1 is 295 (Hex 127).
DEND1 2 INZ(X'0127")

Dx *% 37 Bytes in segment 1

DNUMBYTES1 2 INZ(X'0025")

D* *% Reserved field

DRESR7 2 INZ(X'00")

D* *% Segment 1 access control pointer

Cryptography 57

DBITMAP1A 8

DBITMAP1B 8

DBITMAP1C 8

DBITMAP1D 8

DBITMAP1E 5

Dx *% Starting bit of segment 2 is 512 (Hex 200)
DSTART2 2 INZ(X'0200")

D* *% Ending bit of segment 2 is 575 (Hex 23F)
DEND2 2 INZ(X'023F")

D* *% 8 Bytes in segment 2

DNUMBYTES2 2 INZ(X'0008")

Dx ** Reserved field

DRESR8 2 INZ(X'0000")

Dx* *% Segment 2 access control points
DBITMAP2 8

Dx

Dx D *

Dx* * DEFAULT expressed in ASCII *

D R *

DDEFAULT S 8 INZ (X'44454641554C5420")
Dx

D ||

Dx Prototype for Access_Control_Initialize (CSUAACI)
D R R R R R R R R R R B B S T T = 2 2

DCSUAACI PR

DRETCODE 9B 0
DRSNCODE 9B 0
DEXTDTALEN 9B 0
DEXTDTA 4
DRARRAYCT 9B 0
DRARRAY 16
DVRBDTALEN1 9B 0
DVRBDTA1 278
DVRBDTALEN2 9B 0
DVRBDTA2 335

D

D ||

Dx Prototype for One_Way_Hash (CSNBOWH)
D R R R R R R R R R R B B R S T = 2 T

DCSNBOWH PR

DRETCOD 9B 0

DRSNCOD 9B 0

DEXTDTALN 9B 0O

DEXTDT 4

DRARRYCT 9B 0

DRARRY 16

DTXTLEN 9B 0

DTXT 20

DCHNVCTLEN 9B 0

DCHNVCT 128

DHSHLEN 9B 0

DHSH 20

D*

D R Y i AGE L L L
D* *% Declares for sending messages to the

D* *% job log using the QMHSNDPM API

[N e e T
DMSG S 64 DIM(3) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(64)

D DS

DMSGTEXT 1 75

DSAPI 1 7

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ (')
DMESSAGEFILE S 21 INZ ('

DMSGKEY S 4 INZ(' ")

DMSGTYPE S 10 INZ('*INFO)
DSTACKENTRY S 10 INZ('*)
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(O)

Cx

[0 3 R R R R R R R R B R R R R e T
Cx START OF PROGRAM *
C* *
(0 e G R *
Cx Set up roles in verb data 2 *
(0 e e T *
Cx Set ROLE name (ROLE1)

© MOVEL 'ROLE1 ' ROLE

58 IBMi: Cryptography

Cx
Cx*
Cx
Cx
Cx*
Cx
Cx
Cx*
Cx
Cx
Cx*
Cx
Cx
Cx*
Cx
Cx
Cx*
Cx
Cx
Cx*
Cx
Cx
Cx*
Cx
Cx
Cx*
Cx
Cx
Cx*
Cx
Cx
Cx*
Cx
Cx
Cx*
Cx
Cx
Cx*
Cx
Cx
Cx*
Cx
Cx
Cx*
Cx
Cx
Cx*
Cx

OOO0O0OO0O0

%k K ok % ok Sk ok ok % ok Sk ok ok % oF 3k Ok ok % ok 3 Ok ok % ok 3 o ok % oF 3k F ok % ok 3k F ok ¥ ok * F ok X o *

*

*

%k ok kK ok % ok ok Kk ok Xk ok ok X ok F F *

Set Access

DEFAULT i
except fo
0x0018 -
0x0019 -
OXx001A -
0x0020 -
0x0032 -
0x0033 -
0x00D6 -
0x0110 -
0Ox0111 -
0x0112 -
0x0113 -
0x0114 -
0x0115 -
0x0116 -
0Ox0117 -
0x0118 -
0x0119 -
Ox011A -
0x011B -
0x0200 -
0x0201 -
0x0202 -
0x0203 -
0x0204 -
0x0211 -
0x0221 -

ROLE 1 is
to which

0x0018 -
0x0020 -
0x0032 -
0x0053 -
Ox0060 -
0x0119 -
0x0201 -
0x0202 -
0x0203 -
0x0204 -
0x0211 -
0x0221 -

Copy role i

Set ROLE na

Set Access

ROLE 2 is
to which

0x0019 -
Ox001A -
0x0033 -
0x0054 -
0x0057 -
0x0061 -
Ox011A -
0x0200 -
0x0201 -
0x0203 -
0x0204 -
0x0216 -
0x0226 -

Control Points for ROLE1

s authorized to all access control points
r the following:

Load 1st part of Master Key

Combine Master Key Parts

Set Master Key

Generate Random Master Key

Clear New Master Key Register

Clear 0ld Master Key Register

Translate CV

Set Clock

Reinitialize device

Initialize access control system

Change user profile expiration date
Change authentication data (eg. passphrase)
Reset password failure count

Read Public Access Control Information
Delete user profile

Delete role

Load Function Control Vector

Clear Function Control Vector

Force User Logoff

Register PKA Public Key Hash

Register PKA Public Key, with cloning
Register PKA Public Key

Delete Retained Key

PKA Clone Key Generate

0x21F - Clone information - obtain 1-15
Ox22F - Clone information - install 1-15

authorized to all access control points

the DEFAULT role is authorized plus the following:

Load 1st part of Master Key

Generate Random Master Key

Clear New Master Key Register

Load 1st part of PKA Master Key

Clear New PKA Master Key Register

Load Function Control Vector

Register PKA Public Key, with cloning
Register PKA Public Key

Delete Retained Key

PKA Clone Key Generate

0x215 - Clone information - obtain 1-5
0x225 - Clone information - install 1-5

EVAL BITMAP1A = X'0003F09D80002000"
EVAL BITMAP1B = X'8000100080000000"
EVAL BITMAP1C = X'0O00A8000881F7110'
EVAL BITMAP1D = X'1004031180000000"
EVAL BITMAP1E = X'FF7FQ04F80'
EVAL BITMAP2 = X'78007C007COOE6OF'
nto aggregate structure
MOVEL ROLESTRUCT ROLE1
me (ROLE2)
MOVEL "ROLE2 ' ROLE

Control Points for ROLE2

authorized to all access control points

the DEFAULT role is authorized plus the following:

Combine Master Key Parts

Set Master Key

Clear 0ld Master Key Register

Combine PKA Master Key Parts

Set PKA Master Key

Clear 0ld Master Key Register

Clear Function Control Vector

Register PKA Public Key Hash

Register PKA Public Key, with cloning
Delete Retained Key

PKA Clone Key Generate

Ox21A - Clone information - obtain 6-10
0x22A - Clone information - install 6-10

EVAL BITMAP1A = X'0003F07D80001000"
EVAL BITMAP1B = X'8000090040000000'

Cryptography 59

© EVAL BITMAP1C = X'OOOA8000881F7110'

C EVAL BITMAP1D = X'1004031180000000'

© EVAL BITMAP1E = X'FF7F002F80"

© EVAL BITMAP2 = X'DB0OOO3EOO3EOE6OF'

Cx Copy role into aggregate structure

© MOVEL ROLESTRUCT ROLE2

Cx Set ROLE name (ROLE3)

© MOVEL 'ROLES3 ' ROLE

(08 R i
Cx * Set Access Control Points for ROLE3

Cx *

Cx * ROLE 3 is authorized to all access control points

Cx * to which the DEFAULT role is authorized plus the following:
Cx *

Cx * 0x0110 - Set Clock

Cx * 0x0111 - Reinitialize device

Cx * 0x0112 - Initialize access control system

Cx * 0x0113 - Change user profile expiration date

Cx * 0x0114 - Change authentication data (eg. passphrase)

Cx * 0x0115 - Reset password failure count

Cx * 0x0116 - Read Public Access Control Information

Cx * 0x0117 - Delete user profile

Cx * 0x0118 - Delete role

Cx * 0Ox011B - Force User Logoff

Cx * 0Ox0200 - Register PKA Public Key Hash

Cx * 0x0201 - Register PKA Public Key, with cloning

Cx * 0x0203 - Delete Retained Key

Cx * 0Ox0204 - PKA Clone Key Generate

Cx * Ox021B - Ox21F - Clone information - obtain 11-15

Cx * 0x022B - Ox22F - Clone information - install 11-15

Cx %

(o I e

© EVAL BITMAP1A = X'0003F01DOOOOOOOO"

© EVAL BITMAP1B = X'80000000C0000000"

© EVAL BITMAP1C = X'OOGA8000881F7110"

© EVAL BITMAP1D = X'1004021180000000"

© EVAL BITMAP1E = X'FF7FFF9F80"

© EVAL BITMAP2 = X'D8OOOO1FOOLFE6OF'

Cx Copy role into aggregate structure

© MOVEL ROLESTRUCT ROLE3

(R L LT *
Cx Set up roles in verb data 1 *
(08 *
Cx Set Profile name (SECOFR1)

© MOVEL 'SECOFR1 ' USERID

Cx Set Role name (ROLE1)

© MOVEL 'ROLE1 ' ROLENAME

Cx Hash pass-phrase for profile 1

© SETOFF 05
© EVAL TEXT = 'Is it safe'

© Z-ADD 10 TEXTLEN

© EXSR HASHMSG

C 05 SETON LR
Cx Copy profile into aggregate structure

© MOVEL PROFILESTRUCT PROF1

Cx Set Profile name (SECOFR2)

© MOVEL 'SECOFR2 ' USERID

Cx Set Role name (ROLE2)

© MOVEL "ROLE2 ' ROLENAME

Cx Hash pass-phrase for profile 2

© EVAL TEXT = 'I think it is safe'

© Z-ADD 18 TEXTLEN

© EXSR HASHMSG

© 05 SETON LR
Cx Copy profile into aggregate structure

© MOVEL PROFILESTRUCT PROF2

Cx Set Profile name (SECOFR3)

© MOVEL 'SECOFR2 ' USERID

Cx Set Role name (ROLE3)

© MOVEL 'ROLE3 ' ROLENAME

Cx Hash pass-phrase for profile 3

© EVAL TEXT = 'Is what safe'

© Z-ADD 12 TEXTLEN

© EXSR HASHMSG

C 05 SETON LR
Cx Copy profile into aggregate structure

C MOVEL PROFILESTRUCT PROF3

(0 e *
Cx Set the keywords in the rule array *
(L *
© MOVEL "INIT-AC ' RULEARRAY

© MOVE 'REPLACE ' RULEARRAY

60 IBMi: Cryptography

C Z-ADD 2 RULEARRAYCNT

Cx Call Access_Control_Initialize SAPI

C ||
© CALLP CSUAACI (RETURNCODE:

© REASONCODE :

C EXITDATALEN:

© EXITDATA:

© RULEARRAYCNT :

C RULEARRAY :

© VERBDATALEN1:

© VERBDATA1:

C VERBDATALEN2:

© VERBDATA2)

Cx R *

Cx * Check the return code =

Ck hmmmmmmmmmmmmmmmmeeeeeo *

© RETURNCODE IFGT 0]

Cx R *

Cx * Send failure message *

Cx R *

C MOVEL MSG (1) MSGTEXT

© MOVE RETURNCODE FAILRETC

© MOVE REASONCODE FAILRSNC

C MOVEL "CSUAACT' SAPI

© EXSR SNDMSG

© RETURN

C ELSE

Cx R L e *

Cx * Send success message *

Cx R *

© MOVEL MSG(2) MSGTEXT

© EXSR SNDMSG

C ENDIF

Cx

(0 e L R *
Cx Change the Default Role *
(o *
Cx Set the Role name

C MOVEL DEFAULT ROLE

(I R e
Cx * Set Access Control Points for DEFAULT

Cx %

(I R L LT T
© EVAL BITMAP1A = X'0O003F01DOOOOOOOO"
© EVAL BITMAP1B = X'8000000000000000"
© EVAL BITMAP1C = X'OOOGA8000881F7110"
© EVAL BITMAP1D = X'1004021180000000"
C EVAL BITMAP1E = X'FF7F406B80'

C EVAL BITMAP2 = X'00000O00000COE6OF'
Cx Copy role into aggregate structure

C MOVEL ROLESTRUCT ROLE1

Cx

Cx Set the new verb data 2 length

C Z-ADD 117 VERBDATALEN2

Cx

Cx Set the verb data 1 length to @ (No profiles)

C Z-ADD 0 VERBDATALEN1

Cx Change the number of roles to 1

© Z-ADD 1 NUMROLES

©

C ||
Cx Call Access_Control_Initialize SAPI

C ||
© CALLP CSUAACI (RETURNCODE:

© REASONCODE :

C EXITDATALEN:

© EXITDATA:

© RULEARRAYCNT :

C RULEARRAY :

© VERBDATALEN1:

© VERBDATAL:

C VERBDATALEN2:

© VERBDATA2)

(0 R *

Cx Check the return code =*

Chmmmmmmmmmmmmmmmmmmmee *

© RETURNCODE IFGT 0

Cx R *

Cx * Send failure message *

Cx R *

C MOVEL MSG (1) MSGTEXT

Cryptography 61

© MOVE RETURNCODE FAILRETC

© MOVE REASONCODE FAILRSNC

© MOVEL 'CSUAACT' SAPI

© EXSR SNDMSG

Cx

© ELSE

Cx* L L T *

Cx * Send success message *

Cx R *

© MOVEL MSG(3) MSGTEXT

© EXSR SNDMSG

Cx*

© ENDIF

Cx

© SETON LR
Cx*

C ||
Cx Subroutine to send a message

C ||
© SNDMSG BEGSR

© CALL "QMHSNDPM'

© PARM MESSAGEID

© PARM MESSAGEFILE
© PARM MSGTEXT

© PARM MSGLENGTH

© PARM MSGTYPE

© PARM STACKENTRY

© PARM STACKCOUNTER
© PARM MSGKEY

© PARM ERRCODE

© ENDSR

Cx

[0 3 R R R R R R R R B E R R R R e e
C*x Subroutine to Hash pass-phrase

C ||
© HASHMSG BEGSR

Cx R e *

Cx *x Set the keywords in the rule array *

Cx R *

© MOVEL 'SHA-1 ' RULEARRAY

© Z-ADD 1 RULEARRAYCNT
Cx* R T *

Cx % Call One Way Hash SAPI *

Ck hmmmmmmmmmmmmmmmmmeeeeeoo *

© CALLP CSNBOWH (RETURNCODE:
© REASONCODE :
© EXITDATALEN:
© EXITDATA:

© RULEARRAYCNT :
© RULEARRAY :

© TEXTLEN:

© TEXT:

© CHAINVCTLEN:
© CHAINVCT:

© HASHLEN :

© AUTHDATA)

(08 I e

Cx * Check the return code

Ck hemmmmmmmmmmmmmmmmmmeeeoo

© RETURNCODE IFGT 0]

Cx R e *

Cx * Send failure message *

Cx L L *

© MOVEL MSG (1) MSGTEXT

© MOVE RETURNCODE FAILRETC

© MOVE REASONCODE FAILRSNC

© MOVEL 'CSNBOWH' SAPI

© EXSR SNDMSG

© SETON 05
© ENDIF

Cx

© ENDSR

*%

CSUAACI failed with return/reason codes 9999/9999.
SECOFR1, SECOFR2, and SECOFR3 profiles were successfully created.
The Default role was successfully changed.

Related concepts

Creating and defining roles and profiles

62 IBMi: Cryptography

Cryptographic Coprocessors on systems running the IBM i operating system use role-based access
control. In a role-based system, you define a set of roles, which correspond to the classes of Coprocessor
users. You can enroll each user by defining an associated user profile to map the user to one of the
available roles.

Example: ILE RPG program for enabling all access control points in the default role for

your Coprocessor
Change this IBM i ILE RPG program example to suit your needs for enabling all access control points in
the default role for your Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values
provided.

Dxkkkkkkkkhkhkhkhhkhkhkhkhkhkhkhkhkkhhhkhkhhhhhkhk kA kA A Akhhhhhhhhhkhkkr Ak Ak kkkk
D* SETDEFAULT

D*

Dx Sample program to authorize the default role to all access
Dx control points in the cardX.

D*

Dx

Dx COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

D*

Dx This material contains programming source code for your

Dx consideration. These example has not been thoroughly

Dx tested under all conditions. IBM, therefore, cannot

Dx guarantee or imply reliability, serviceability, or function
Dx of these programs. All programs contained herein are

Dx provided to you "AS IS". THE IMPLIED WARRANTIES OF

D* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Dx ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
Dx these programs and files.

D*

Dx

Dx Note: Input format is more fully described in Chapter 2 of
Dx* IBM CCA Basic Services Reference and Guide
Dx (SC31-8609) publication.

Dx

Dx Parameters: None

Dx

D% Example:

D* CALL PGM(SETDEFAULT)

Dx

Dx Use these commands to compile this program on the system:
D% CRTRPGMOD MODULE (SETDEFAULT) SRCFILE(SAMPLE)
D* CRTPGM PGM(SETEID) MODULE(SETDEFAULT)

Dx BNDSRVPGM (QCCA/CSUAACI)

Dx

Dx Note: Authority to the CSUAACI service program in the
D* QCCA library is assumed.

Dx

Dx The Common Cryptographic Architecture (CCA) verbs used are
Dx Access_Control_Initialize (CSUAACI)

D*

D ||
D 5 5 5 5 5 5 5 5 5 5 5 5 5 8 8 5 5 5 5 5 5 8 5 5 S 8 e 5 5 e 5 8 e
D* Declare variables used by CCA SAPI calls

D= === e oo-
D* *%x Return code

DRETURNCODE S 9B 0

D* *% Reason code

DREASONCODE S 9B 0

D* *% Exit data length

DEXITDATALEN S 9B 0

D* *% Exit data

DEXITDATA S 4

D* *% Rule array count

DRULEARRAYCNT S 9B 0

D* *% Rule array

DRULEARRAY S 16

D* ** Verb data 1 length

DVERBDATALEN1 S 9B 0 INZ(0)

D* *% Verb data 1

DVERBDATAL S 4

Cryptography 63

D*
DVERBDATALEN2

*k
S

Verb data 2 length
9B 0 INZ(2117)

Dx Verbdata 2 contains the aggregate role structure which
D* in turn contains 1 role - the default role

DVERBDATA2
Dx
DNUMROLES
Dx

DRESR1

D*

DVERS

Dx
DROLELEN
Dx
DCOMMENT
D
DCHECKSUM
Dx

DRESR2

DAUTHSTRN
Dx
DLWRTIMHR
DLWRTIMMN
Dx
DUPRTIMHR
DUPRTIMMN
Dx
DVALIDDOW
Dx

DRESR3

D*
DNUMSEG
Dx

DRESR4

Dx
DSTART1

DNUMBYTES1
D*

DRESR5

D*
DBITMAP1A
DBITMAP1B
DBITMAP1C
DBITMAP1D
DBITMAPL1E
D*

DSTART2

Dx

DEND2

Dx
DNUMBYTES2

*%

**

*%

*%

**

*%

*%

**

**

**

*%

*%

**

*%

*%

**

*%

*%

*%

**

*%

*%

**

200
Define 1 Role
9B 0 INZ(1)
Reserved field
9B 0 INZ(O)
Version 1 struct
2 INZ(X'0100"')
Length of role
2 INZ(X'006D")
Description of role
20 INZ (' D)
Checksum is not used
2 INZ(X'0000")
Reserved field
2 INZ(X'0000")
Role Name is DEFAULT expressed in ASCII
8 INZ (X'44454641554C5420")
Authentication strength is set to 0
2 INZ(X'0000")
Lower time is 00:00
1 INZ(X'00")
1 INZ(X'00")
Upper time is 23:59
1 INZ(X'17")
1 INZ(X'3B"')
Valid days of week
1 INZ(X'FE")
Reserved field
1 INZ(X'00")
2 Access control points segements are defined
2 INZ(X'0002")
Reserved field
2 INZ(X'0000")
Starting bit of segment 1 is 0.
2 INZ(X'0000")
Ending bit of segment 1 is 295 (Hex 127).
2 INZ(X'0127")
37 Bytes in segment 1
2 INZ(X'0025")
Reserved field
2 INZ(X'00")
Segment 1 access control points
INZ(X'O003FOFD80OO3000"
INZ(X'80001900CO000000"
INZ(X'O00A8000882F7110"
INZ(X'1804033180000000'
INZ(X'FF7FFFFF80")
Starting bit of segment 2 is 512 (Hex 200).
2 INZ(X'0200")
Ending bit of segment 2 is 575 (Hex 23F)
2 INZ(X'023F")
8 Bytes in segment 2
2 INZ(X'0008")
Reserved field
2 INZ(X'0000"')
Segment 2 access control points
8 INZ(X'F80O7FFF7FFFE6OF ")

U100 00 00 00
NN

DCSUAACI
DRETCODE
DRSNCODE
DEXTDTALEN
DEXTDTA
DRARRAYCT
DRARRAY
DVRBDTALEN1
DVRBDTA1
DVRBDTALEN2
DVRBDTA2

D*

64 IBMi: Cryptography

PR

*%
*%

9B 0
9B 0
9B 0
4
9B 0
16
9B 0
4
9B 0
200

Declares for sending messages to the
job log using the QMHSNDPM API

DMSG S 64 DIM(2) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(64)

D DS

DMSGTEXT 1 64

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ (')
DMESSAGEFILE S 21 INZ (')
DMSGKEY S 4 INZ (' ")

DMSGTYPE S 10 INZ('*INFO)
DSTACKENTRY S 10 INZ('*)
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(O)

C*

[0 3 R R R R R R R R R B B E E R R S = S S S
Cx START OF PROGRAM *
C* *
(0 e) *
Cx Set the keywords in the rule array *
= m = = mm s m oo e e e o e *
C MOVEL "INIT-AC ' RULEARRAY

© MOVE 'REPLACE ' RULEARRAY

© Z-ADD 2 RULEARRAYCNT

Chhkkhkhkhkhhhkhhkhkhhhkhhhhkhkhhkhkhhkhkhkhhhkhkhhkhkhhhkhkhhhkhkkhkhkhhkhkhkhhkkhkkhkkrkkkix
Cx Call Access_Control_Initialize SAPI

C ||
C CALLP CSUAACI (RETURNCODE:

© REASONCODE :

© EXITDATALEN:
C EXITDATA:

© RULEARRAYCNT :
© RULEARRAY :

C VERBDATALENZ1:
© VERBDATA1L:

© VERBDATALEN2:
C VERBDATA2)

(0 R *

C*x Check the return code *

(0 e T T *

© RETURNCODE IFGT 4

C* e T T *

Cx * Send failure message *

Cx L e T *

© MOVEL MSG (1) MSGTEXT

C MOVE RETURNCODE FAILRETC

© MOVE REASONCODE FAILRSNC

© EXSR SNDMSG

Cx*

© ELSE

C* D LT *

Cx * Send success message *

Cx R *

© MOVE MSG(2) MSGTEXT

C EXSR SNDMSG

Cx

© ENDIF

Cx*

© SETON

Cx

[0 3 R R R R R R R R B B S E E R R S T T S S S
Cx Subroutine to send a message

C ||
C SNDMSG BEGSR

C CALL "QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY

C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

*%
CSUAACI failed with return/reason codes 9999/9999.
The Default role was successfully set.

Cryptography 65

Related concepts

Creating and defining roles and profiles

Cryptographic Coprocessors on systems running the IBM i operating system use role-based access
control. In a role-based system, you define a set of roles, which correspond to the classes of Coprocessor
users. You can enroll each user by defining an associated user profile to map the user to one of the
available roles.

Example: ILE C program for changing an existing profile for your Coprocessor
Change this IBM i ILE C program example to suit your needs for changing an existing profile for your
Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values

provided.

J R R e */
/* Change certain fields in a user profile on the */
/* card. This program changes the expiration date using a new */
/* date in the form YYYYMMDD. */
/* */
/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these program. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for «/
/* these programs and files. */
/* */
/* */
/> Note: Input format is more fully described in Chapter 2 of */
/* IBM CCA Basic Services Reference and Guide */

/* (SC31-8609) publication. */
/* */
/* Parameters: */
/* none. */
/* */
/* Example: */
/* CALL PGM(CHG_PROF) */
/* */
/* */
/* Note: This program assumes the card with the profile is */
/* already identified either by defaulting to the CRPO1 */
/* device or by being explicitly named using the */
/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* The Common Cryptographic Architecture (CCA) verb used is */
/* Access_Control_Initialization (CSUAACI). */
/* */
/* Use these commands to compile this program on the system: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (CHG_PROF) SRCFILE (SAMPLE) */
/* CRTPGM PGM(CHG_PROF) MODULE (CHG_PROF) */
/* BNDSRVPGM (QCCA/CSUAACI) */
/* */
/* Note: Authority to the CSUAACI service program in the */
/* QCCA library is assumed. */
/* */
/* The Common Cryptographic Architecture (CCA) verb used is */
/* Access_Control_Initialization (CSUAACI). */
/* */
R R R T */
#include "csucincl.h" /* header file for CCA Cryptographic */

/* Service Provider */
#include <stdio.h>
#include <string.h>

66 IBMi: Cryptography

#include <stdlib.h>
#include <decimal.h>

J R R e e T */
/* standard return codes */
R R e */
#define ERROR =d
#define OK 0

#define WARNING 4

int main(int argc, char xargv[])

]

long return_code
long reason_code = 0;

long exit_data_length = 2;
char exit_data[4];

char rule_array[8];

long rule_array_count = 1;

1l
(o]

/* fields unique to this sample program */

R L */

long verb_data_length;
char *x verb_data;
long verb_data_length2;
char * verb_data2;

memcpy (rule_array, "CHGEXPDT",8); /* set rule array keywords =/
verb_data_length = 8;
verb_data = "SECOFR1 "; /* set the profile name */
verb_data_length2 = 8;
verb_data2 = "20200621"; /* set the new date */
/* invoke verb to change the expiration date in specified profile */

CSUAACI(&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *)rule_array,
&verb_data_length,
verb_data,
&verb_data_length2,
verb_data2);

if ((return_code == OK) | (return_code == WARNING))
i

printf("Profile expiration date was changed successfully");
printf(" with return/reason codes ");

printf("%1ld/%1ld\n\n", return_code, reason_code);
return (0K) ;

%

else

printf("Change of expiration date failed with return/");
printf("reason codes ");
printf(" %1d/%ld\n\n", return_code, reason_code);
return(ERROR) ;

Related concepts
Creating and defining roles and profiles

Cryptography 67

Cryptographic Coprocessors on systems running the IBM i operating system use role-based access
control. In a role-based system, you define a set of roles, which correspond to the classes of Coprocessor
users. You can enroll each user by defining an associated user profile to map the user to one of the
available roles.

Example: ILE RPG program for changing an existing profile for your Coprocessor
Change this IBM i ILE RPG program example to suit your needs for changing an existing profile for your
Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values
provided.

D R R R R R R R R R S S S T S S 2 T
Dx CHG_PROF

D*

Dx Change certain fields in a user profile on the

Dx card. This program changes the expiration date using a new
Dx date in the form YYYYMMDD.

Dx

Dx COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

D*

Dx This material contains programming source code for your

Dx consideration. These example has not been thoroughly

Dx tested under all conditions. IBM, therefore, cannot

Dx guarantee or imply reliability, serviceability, or function
Dx of these programs. All programs contained herein are

Dx provided to you "AS IS". THE IMPLIED WARRANTIES OF

Dx MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Dx ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
Dx these programs and files.

D*

D*

D*x Note: Input format is more fully described in Chapter 2 of
Dx* IBM CCA Basic Services Reference and Guide

Dx (SC31-8609) publication.

Dx

D* Parameters: Profile

Dx

D% Example:

Dx CALL PGM(CHG_PROF)
Dx

Dx Use these commands to compile this program on the system:
D* CRTRPGMOD MODULE (CHG_PROF) SRCFILE(SAMPLE)

D* CRTPGM PGM(CHG_PROF) MODULE (CHG_PROF)

PARM(PROFILE)

Dx BNDDIR(QCCA/QC6BNDDIR)

Dx

Dx Note: Authority to the CSUAACI service program in the
D* QCCA library is assumed.

Dx

Dx The Common Cryptographic Architecture (CCA) verbs used are
Dx Access_Control_Initialize (CSUAACI)

Dx

Dx This program assumes the card with the profile is

Dx already identified either by defaulting to the CRPO1

Dx device or by being explicitly named using the

Dx Cryptographic_Resource_Allocate verb. Also this

Dx device must be varied on and you must be authorized

D* to use this device description.

D ||
D 55 5 5 5 5 5 5 5 5 5 5 5 5 5 8 5 5 5 5 S e 5 e 5 e
D* Declare variables for CCA SAPI calls

Dk= = = === === = m e m e e e e e e e oo
D* *%x Return code

DRETURNCODE S 9B 0

D* *% Reason code

DREASONCODE S 9B 0

Dx *% Exit data length
DEXITDATALEN S 9B 0

D* *% Exit data

DEXITDATA S 4

D* *% Rule array count
DRULEARRAYCNT S 9B 0

Dx* *% Rule array

DRULEARRAY S 16

68 IBMi: Cryptography

D* *% Verb data 1 length

DVERBDATALEN1 S 9B 0 INZ(8)

Dx ** Verb data 1

DVERBDATAL S 8

D% ** Verb data 2 length

DVERBDATALEN2 S 9B 0 INZ(8)

Dx *% Verb data 2

DVERBDATA2 S 8

Dx

D*

D ||
D*x Prototype for Access_Control_Initialize (CSUAACI)

D ||
DCSUAACI PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DVRBDTALEN1 9B 0

DVRBDTA1 8

DVRBDTALEN2 9B 0

DVRBDTA2 8

D*

D 55 5 5 53 £33 555 55 555 5905 55 5
D* *% Declares for sending messages to the
D* *% job log using the QMHSNDPM API

D 5 5 5 0 5 5 55 £ 5 5 5 5 55 55 55 505 55 5
DMSG S 75 DIM(2) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 75

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ (')
DMESSAGEFILE S 21 INZ ('

DMSGKEY S 4 INZ (' ")

DMSGTYPE S 10 INZ('*INFO ")
DSTACKENTRY S 10 INZ('* ")
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

Chkkkkkhkhkkkkhhkhkhkhkhkkhkhkhkhkhhhkhkhkkhkhkhkhkkhkhkhkhkkhkkkhkhkkhkkkkhkhkkkkkx

Cx START OF PROGRAM *
Cx *
(0 e G T *
C*x Parameter is profile to be changed. *
(0 e T LT T *
© *ENTRY PLIST

C PARM VERBDATAL

[e *
Cx Set the keywords in the rule array *
(08 i *
o MOVEL ' CHGEXPDT' RULEARRAY

© Z-ADD 1 RULEARRAYCNT

(08 e T *
Cx Set new expiration date *
(0 e T T *
C MOVEL '20201231" VERBDATA2

(O R e LT T *
Cx Call Access_Control_Initialize SAPI *
(08 i *
© CALLP CSUAACI (RETURNCODE:

© REASONCODE :

C EXITDATALEN:

© EXITDATA:

© RULEARRAYCNT :

C RULEARRAY :

© VERBDATALEN1:

© VERBDATAL:

C VERBDATALEN2:

© VERBDATA?2)

(0 R *

Cx Check the return code =*

Ckmmmmmmmmmmmmmmmmmmme e *

© RETURNCODE IFGT 0]

Cx R *

Cx * Send error message *

Cx L *

C MOVE MSG (1) MSGTEXT

)

Cryptography 69

C MOVE RETURNCODE FAILRETC

© MOVE REASONCODE FAILRSNC

C EXSR SNDMSG

Cx*

C ELSE

Cx L *

Cx * Send success message *

Cx R *

C MOVE MSG(2) MSGTEXT

C EXSR SNDMSG

C*

C ENDIF

Cx*

C SETON LR
Cx*

C ||

C*x Subroutine to send a message
Chhhkhkhkhkhhkhhkhkhkhhhkhhhhkhkhhkhkhkhhkhkhhhkhkhhkhkhhhkhkhhkhkhkhhkhkhhkhkhkhhkhkhkkhkkrkkkix

C SNDMSG BEGSR

© CALL 'QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
© PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

© PARM STACKENTRY
C PARM STACKCOUNTER
C PARM MSGKEY

© PARM ERRCODE

C ENDSR

Cx

*k
CSUAACI failed with return/reason codes 9999/9999'
The request completed successfully

Related concepts

Creating and defining roles and profiles

Cryptographic Coprocessors on systems running the IBM i operating system use role-based access
control. In a role-based system, you define a set of roles, which correspond to the classes of Coprocessor
users. You can enroll each user by defining an associated user profile to map the user to one of the
available roles.

Setting the environment ID and clock

The Cryptographic Coprocessor on your system running the IBM i operating system uses the EID to verify
which Coprocessor created a key token. It uses the clock for time and date stamping and to control
whether a profile can log on.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

The Environment ID (EID)

Your Coprocessor stores the EID as an identifier. The easiest and fastest way to set the EID is to use

the Cryptographic Coprocessor configuration web-based utility found by clicking on the IBM i Tasks page
link on the IBM Navigator for i welcome page at http://server-name:2001. The utility includes the Basic
configuration wizard that is used when the Coprocessor is in an un-initialized state. If the Coprocessor
already has been initialized, then click on Manage configuration and then click on Attributes to set the
EID.

If you would prefer to write your own application to set the EID, you can do so by using the
Cryptographic_Facility_Control (CSUACFC) API verb. Two example programs are provided for your
consideration. One of them is written in ILE C, while the other is written in ILE RPG. Both perform the
same function.

Your Cryptographic Coprocessor copies the EID into every PKA key token that your Coprocessor creates.
The EID helps the Coprocessor identify keys that it created as opposed to keys that another Coprocessor
created.

70 IBMi: Cryptography

The clock

The Coprocessor uses its clock-calendar to record time and date and to determine whether a profile can
log on. The default time is Greenwich Mean Time (GMT). Because of its function, you should set the clock

inside your Coprocessor before removing the default role's capability of setting it.

The easiest and fastest way to set the clock is to use the Cryptographic Coprocessor configuration
web-based utility found by clicking on the IBM i Tasks page link on the IBM Navigator for i welcome

page at http://server-name:2001. The utility includes the Basic configuration wizard that is used when the
Coprocessor is in an un-initialized state. If the Coprocessor already has been initialized, then use click on

Manage configuration and then click on Attributes to set the clock.

If you would prefer to write your own application to set the clock, you can do so by using the

Cryptographic_Facility_Control (CSUACFC) API verb.

Related reference

Example: ILE C program for setting the environment ID on your Coprocessor

Change this IBM i ILE C program example to suit your needs for setting the environment ID on your

Coprocessor.

Example: ILE RPG program for setting the environment ID on your Coprocessor

Change this IBM i ILE RPG program example to suit your needs for setting the environment ID on your

Coprocessor.

Example: ILE C program for setting the clock on your Coprocessor

Change this IBM i ILE C program example to suit your needs for setting the clock on your Coprocessor.

Example: ILE RPG program for setting the clock on your Coprocessor

Change this IBM i ILE RPG program example to suit your needs for setting the clock on your Coprocessor.

Example: ILE C program for setting the environment ID on your Coprocessor
Change this IBM i ILE C program example to suit your needs for setting the environment ID on your

Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

/* Set the environment ID on the card, based on a
/* 16-byte sample value defined in this program.

/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007

/* This material contains programming source code for your
/* consideration. These examples have not been thoroughly
/* tested under all conditions. 1IBM, therefore, cannot

/* guarantee or imply reliability, serviceability, or function

/* of these program. All programs contained herein are
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

/* ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for

/* these programs and files.

/*

/*

/* Note: Input format is more fully described in Chapter 2 of
/* IBM CCA Basic Services Reference and Guide

/* (SC31-8609) publication.

/*

/* Parameters:

/* none.

/*

/* Example:

/* CALL PGM(SETEID)

/*

/*

/* Note: This program assumes the device to use is

/* already identified either by defaulting to the CRPO1
/* device or by being explicitly named using the

/* Cryptographic_Resource_Allocate verb. Also this

/* device must be varied on and you must be authorized
/* to use this device description.

/*

*/

Cryptography 71

/* Use these commands to compile this program on the system: */

/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (SETEID) SRCFILE(SAMPLE) */
/* CRTPGM PGM(SETEID) MODULE (SETEID) */
/* BNDSRVPGM (QCCA/CSUACFC) */
/* */
/* Note: Authority to the CSUACFC service program in the */
/% QCCA library is assumed. */
/* */
/* The Common Cryptographic Architecture (CCA) verb used is */
;* Cryptographic_Facilites_Control (CSUACFC). *;
* *

J R R e e T */
#include "csucincl.h" /* header file for CCA Cryptographic */
/* Service Provider */

#include <stdio.h>
#include <string.h>
f##include <stdlib.h>

J R e T T */
/* standard return codes */
R e */
#define ERROR =d
#define OK 0

#define WARNING 4

int main(int argc, char xargv[])

]

long return_code = 0;

long reason_code = 0;

long exit_data_length = 2;
char exit_data[4];

char rule_array[2][8];
long rule_array_count = 2;

/* fields unique to this sample program

R R
long verb_data_length;
char * verb_data = "SOME ID data 16@";
/* set keywords in the rule array
memcpy (rule_array, "ADAPTERAISET-EID ", 16);
verb_data_length = 16;
/* invoke the verb to set the environment ID
CSUACFC (&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *)rule_array,
&verb_data_length,
verb_data);
if ((return_code == OK) | (return_code == WARNING))
1
printf("Environment ID was successfully set with ");
printf("return/reason codes %1d/%ld\n\n", return_code, reason_code);

return(0OK) ;
3

else

printf("An error occurred while setting the environment ID.\n");

72 IBMi: Cryptography

*/
*/

*/

*/

printf("Return/reason codes %1d/%ld\n\n", return_code, reason_code);
return (ERROR) ;
3

3

Related concepts
Setting the environment ID and clock

The Cryptographic Coprocessor on your system running the IBM i operating system uses the EID to verify
which Coprocessor created a key token. It uses the clock for time and date stamping and to control

whether a profile can log on.

Example: ILE RPG program for setting the environment ID on your Coprocessor
Change this IBM i ILE RPG program example to suit your needs for setting the environment ID on your

Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

D R R R R R R R R R R S S T S S 2 T
Dx SETEID

D*

Dx Set the environment ID on the card, based on a

Dx 16-byte sample value defined in this program.

D*

Dx

Dx COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

D*

Dx This material contains programming source code for your

Dx consideration. These example has not been thoroughly

Dx tested under all conditions. 1IBM, therefore, cannot

Dx guarantee or imply reliability, serviceability, or function
Dx of these programs. All programs contained herein are

Dx provided to you "AS IS". THE IMPLIED WARRANTIES OF

Dx MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Dx ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
Dx these programs and files.

D*

D*

Dx Note: Input format is more fully described in Chapter 2 of
Dx* IBM CCA Basic Services Reference and Guide

Dx (SC31-8609) publication.

Dx

Dx Parameters: None

D*

D% Example:

Dx CALL PGM(SETEID)

D*

Dx Use these commands to compile this program on the system:
D* CRTRPGMOD MODULE(SETEID) SRCFILE(SAMPLE)

D* CRTPGM PGM(SETEID) MODULE(SETEID)

Dx BNDSRVPGM (QCCA/CSUACFC)

D

Dx Note: Authority to the CSUACFC service program in the
D% QCCA library is assumed.

Dx

Dx The Common Cryptographic Architecture (CCA) verbs used are
Dx Cryptographic_Facilty_Control (CSUACFC)

Dx

D ||
5 5 5 5 55 5 5 55 5 55 5 505 55 55 5 5
D* Declare variables for CCA SAPI calls

D= === = mm e m e e e e e e e e e emmememmmmmm—oa---
D* *%* Return code

DRETURNCODE S 9B 0O

Dx* *% Reason code

DREASONCODE S 9B 0

Dx *% Exit data length
DEXITDATALEN S 9B 0

D* *x Exit data

DEXITDATA S 4

D* *% Rule array count
DRULEARRAYCNT S 9B 0

D* *% Rule array

DRULEARRAY S 16

D* ** Verb data length
DVERBDATALEN S 9B 0O

Dx* *x \erb data

Cryptography 73

DVERBDATA S 16
Dx
D*

INZ('Caxrd ID 01234567"')

Dx Prototype for Cryptographic_Facilty_Control (CSUACFC)
D R R R R R R R R R R R B B R S T = 2 2

DCSUACFC PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DVRBDTALEN 9B 0

DVRBDTA 16

Dx

D 55 5 5 5 53 £33 555 55 555 505 55 5
D* *% Declares for sending messages to the

D* *% job log using the QMHSNDPM API

D 5 5 5 0 5 5 55 £ 5 5 5 5 55 55 55 505 55 5
DMSG S 75 DIM(2) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 80

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(')
DMESSAGEFILE S 21 INZ('

DMSGKEY S 4 INZ(')

DMSGTYPE S 10 INZ('*INFO ")
DSTACKENTRY S 10 INZ('*)
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

Cx*

C ||
Cx START OF PROGRAM *
Cx* *
(08 e L T *
Cx Set the keyword in the rule array *
(08 I e e e T R *
© MOVEL "ADAPTER1' RULEARRAY

© MOVE 'SET-EID ' RULEARRAY

C Z-ADD 2 RULEARRAYCNT

(08 R e e *
C*x Set the verb data length to 16 *
(0 e *
© Z-ADD 16 VERBDATALEN

C ||
Cx Call Cryptographic Facilty Control SAPI

C ||
© CALLP CSUACFC (RETURNCODE :

C REASONCODE :

© EXITDATALEN:

© EXITDATA:

C RULEARRAYCNT:

© RULEARRAY :

© VERBDATALEN:

C VERBDATA)

(R R e T *

C*x Check the return code *

(0 R *

© RETURNCODE IFGT 4

C* D LT *

Cx * Send error message *

Cx R *

© MOVEL MSG (1) MSGTEXT

C MOVE RETURNCODE FAILRETC

© MOVE REASONCODE FAILRSNC

© EXSR SNDMSG

Cx*

© ELSE

C* D LT *

Cx * Send success message *

Cx Kmmmmmmm e e m o *

© MOVE MSG(2) MSGTEXT

C EXSR SNDMSG

Cx

© ENDIF

Cx*

© SETON

74 IBMi: Cryptography

)

*/

LR

**

C ||
Cx Subroutine to send a message

C ||
C SNDMSG BEGSR

C CALL 'QMHSNDPM'

© PARM MESSAGEID

C PARM MESSAGEFILE

C PARM MSGTEXT

© PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY

© PARM STACKCOUNTER

C PARM MSGKEY

C PARM ERRCODE

© ENDSR

CSUACFC failed with return/reason codes 9999/9999.
The Environment ID was successfully set.

Related concepts
Setting the environment ID and clock

The Cryptographic Coprocessor on your system running the IBM i operating system uses the EID to verify
which Coprocessor created a key token. It uses the clock for time and date stamping and to control
whether a profile can log on.

Example: ILE C program for setting the clock on your Coprocessor

Change this IBM i ILE C program example to suit your needs for setting the clock on your Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007

This material contains programming source code for your
consideration. These examples have not been thoroughly
tested under all conditions. 1IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function
of these program. All programs contained herein are
provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for

these programs and files.

Note: Input format is more fully described in Chapter 2 of

IBM CCA Basic Services Reference and Guide
(SC31-8609) publication.

Parameters:

char * new time 16 characters

Example:

CALL PGM(SETCLOCK) PARM('1999021011375204")

Note: This program assumes the device to use is

already identified either by defaulting to the CRPO1
device or by being explicitly named using the
Cryptographic_Resource_Allocate verb. Also this
device must be varied on and you must be authorized
to use this device description.

Use these commands to compile this program on the system:
ADDLIBLE LIB(QCCA)

CRTCMOD MODULE (SETCLOCK) SRCFILE(SAMPLE)

CRTPGM PGM(SETCLOCK) MODULE (SETCLOCK)

BNDSRVPGM (QCCA/CSUACFC)

Note: Authority to the CSUACFC service program in the

QCCA library is assumed.

Set the clock on the card, based on a string from

the command line. The command line string must be of
form YYYYMMDDHHMMSSWW, where WW is the day of week (01
means Sunday and 07 means Saturday).

*/

Cryptography 75

/% */

/* The Common Cryptographic Architecture (CCA) verb used is */
/* Cryptographic_Facilities_Control (CSUACFC). */
/* */
R L */
#include "csucincl.h" /* header file for CCA Cryptographic */

/* Service Provider */

f#include <stdio.h>
#include <string.h>
#include <stdlib.h>

R L T E T T */
/* standard return codes */
J R R e T */
#define ERROR -1
#define OK 0

#define WARNING 4

void help(void)

t printf("\n\nThis program loads the time and date into the card.\n");
printf ("It requires a single command line parameter containing the \n");
printf("new date and time in the form YYYYMMDDHHMMSSWW, where WW is the\n");

printf("day of the week, 01 meaning Sunday and 07 meaning Saturday.\n\n");

int main(int argc, char *argv([])

1
R e */
/* standard CCA parameters */
B e e L T */

long return_code
long reason_code = 0;

long exit_data_length = 2;
char exit_data[4];

char rule_array[2][8];

1l
(o]

long rule_array_count = 2;

B */
/* fields unique to this sample program */
J R e T */

long verb_data_length;
char = verb_data;
if (arge != 2)

help();

return(ERROR) ;

if (strlen(argv[1]) != 16)

{
printf("Your input string is not the right length.");
help();

return(ERROR) ;

/* set keywords in the rule array */
memcpy (rule_array, "ADAPTERISETCLOCK",16) ;
verb_data_length = 16;

/* copy keyboard input for new time */

76 IBMi: Cryptography

verb_data = argv[1];
/* Set the clock to the time the user gave us */
CSUACFC(&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *)rule_array,
&verb_data_length,
verb_data);
if ((return_code == OK) | (return_code == WARNING))
printf("Clock was successfully set.\nReturn/");
printf("reason codes %1d/%ld\n\n", return_code, reason_code);

return(0K) ;

else
printf("An error occurred while setting the clock.\nReturn");
printf("/reason codes %1d/%ld\n\n", return_code, reason_code);
return (ERROR) ;
%

Related concepts

Setting the environment ID and clock

The Cryptographic Coprocessor on your system running the IBM i operating system uses the EID to verify
which Coprocessor created a key token. It uses the clock for time and date stamping and to control
whether a profile can log on.

Example: ILE RPG program for setting the clock on your Coprocessor
Change this IBM i ILE RPG program example to suit your needs for setting the clock on your Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

D* SETCLOCK

Dx Set the clock on the card, based on a string from

Dx the command line. The command line string must be of
Dx form YYYYMMDDHHMMSSWW, where WW is the day of week (01
D* means Sunday and 07 means Saturday).

D+ COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

Dx This material contains programming source code for your

Dx consideration. These example has not been thoroughly

Dx tested under all conditions. IBM, therefore, cannot

Dx guarantee or imply reliability, serviceability, or function

Dx of these programs. All programs contained herein are

Dx provided to you "AS IS". THE IMPLIED WARRANTIES OF

D* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Dx ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
Dx these programs and files.

Dx

Dx

D* Note: Input format is more fully described in Chapter 2 of
Dx* IBM CCA Basic Services Reference and Guide
D* (SC31-8609) publication.

D

Dx Parameters:

D* char * new time 16 characters

D*

Dx Example:

Dx CALL PGM(SETCLOCK) PARM('2000061011375204"')

D*

Dx Use these commands to compile this program on the system:
Dx CRTRPGMOD MODULE (SETCLOCK) SRCFILE(SAMPLE)

Cryptography 77

Dx CRTPGM PGM(SETCLOCK) MODULE (SETCLOCK)

Dx BNDSRVPGM (QCCA/CSUACFC)

Dx

Dx Note: Authority to the CSUACFC service program in the
D* QCCA library is assumed.

Dx

Dx The Common Cryptographic Architecture (CCA) verbs used are
Dx Cryptographic_Facilty_Control (CSUACFC)

Dx

D ||
5 5 5 5 55 5 5 55 5 55 535 505 55 55 5 5
D* Declare variables for CCA SAPI calls

D e
D* *%x Return code

DRETURNCODE S 9B 0

D* *% Reason code

DREASONCODE S 9B 0

D* *% Exit data length
DEXITDATALEN S 9B 0

D* *% Exit data

DEXITDATA S 4

D* *% Rule array count
DRULEARRAYCNT S 9B 0

D* *% Rule array

DRULEARRAY S 16

D* ** Verb data length
DVERBDATALEN S 9B 0

Dx *%x Verb data

DVERBDATA S 16

Dx

D ||

Dx Prototype for Cryptographic_Facilty_Control (CSUACFQ)
Dk sk sk ok sk ke ok ok ok ok ke ok ok ok ok ok ke ok ok ok ok ok ok ook ok ok ok ok ook ok ok ok ok ok ok ok ok ok ok ook ok sk ok ok ok ok ok

DCSUACFC PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DVRBDTALEN 9B 0

DVRBDTA 16

Dx

D 55 5 5 5 53 £33 555 55 555 505 55 5
D* *% Declares for sending messages to the

D* *% job log using the QMHSNDPM API

D 5 5 0 5 55 5 5 5 5 5 55 55 555 5905 55 5
DMSG S 75 DIM(6) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 80

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ (')
DMESSAGEFILE S 21 INZ ('

DMSGKEY S 4 INZ (' ")

DMSGTYPE S 10 INZ('*INFO)
DSTACKENTRY S 10 INZ('* ")
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

Cx*

C ||
Cx START OF PROGRAM *
Cx* *
© *ENTRY PLIST

C PARM VERBDATA

Cx* *
(08 e e el *
Cx Check the number of parameters passed in *
[e L *
© IF %PARMS < 1)

C* TP *
Cx * Send message describing the format of the parameter =
Cx e e *
C MOVEL MSG(3) MSGTEXT

C EXSR SNDMSG

© MOVEL MSG(4) MSGTEXT

C EXSR SNDMSG

C MOVEL MSG(5) MSGTEXT

© EXSR SNDMSG

78 IBM i: Cryptography

© MOVEL MSG(6) MSGTEXT

C EXSR SNDMSG

C RETURN

© ENDIF

C*

(0 e L R *
Cx Set the keyword in the rule array *
(0 e T *
C MOVEL "ADAPTER1' RULEARRAY

© MOVE 'SETCLOCK' RULEARRAY

© Z-ADD 2 RULEARRAYCNT

(0 e L R *
Cx Set the verb data length to 16 *
(0 e *
C Z-ADD 16 VERBDATALEN

C ||

Cx Call Cryptographic Facilty Control SAPI
Chhhkhkhkhkhhkhhkhkhkhhhkhhhhkhkhhkhkhkhhkhkhhhkhkhhkhkhhhkhkhhkhkhkhhkhkhhkhkhkhhkhkhkkhkkrkkkix

© CALLP CSUACFC (RETURNCODE :
© REASONCODE :
© EXITDATALEN:
© EXITDATA:

© RULEARRAYCNT :
© RULEARRAY :

© VERBDATALEN:
© VERBDATA)

(0 *

Cx Check the return code =*

Chmmmmmmmmmmmmmmmm e emee *

© RETURNCODE IFGT 4

Cx R *

Cx * Send error message *

Cx K= mmm e m e e m e mmmm o oo *

© MOVEL MSG (1) MSGTEXT

© MOVE RETURNCODE FAILRETC

© MOVE REASONCODE FAILRSNC

© EXSR SNDMSG

Cx

© ELSE

Cx R *

Cx * Send success message *

Cx R *

© MOVE MSG(2) MSGTEXT

© EXSR SNDMSG

Cx

© ENDIF

Cx

© SETON

Cx

C ||
Cx Subroutine to send a message

C ||
© SNDMSG BEGSR

© CALL "QMHSNDPM'

© PARM MESSAGEID

© PARM MESSAGEFILE
© PARM MSGTEXT

© PARM MSGLENGTH

© PARM MSGTYPE

© PARM STACKENTRY

© PARM STACKCOUNTER
© PARM MSGKEY

© PARM ERRCODE

© ENDSR

*%
CSUACFC failed with return/reason codes 9999/9999.

The request completed successfully.

This program loads the time and date into the card.

It requires a single command line parameter containing the

new date and time in the form YYYYMMDDHHMMSSWW, where WW is the
day of the week, 01 meaning Sunday and 07 meaning Saturday.

Related concepts
Setting the environment ID and clock

Cryptography 79

The Cryptographic Coprocessor on your system running the IBM i operating system uses the EID to verify
which Coprocessor created a key token. It uses the clock for time and date stamping and to control
whether a profile can log on.

Loading a function control vector

The function control vector tells the Cryptographic Coprocessor for the system running the IBM i
operating system what key length to use to create keys. You cannot perform any cryptographic functions
without loading a function control vector.

After you create and define role and profile, you must load a function control vector (FCV) for your
Cryptographic Coprocessor. Without it, your Coprocessor will be unable to perform any cryptographic
operations.

A function control vector is a digitally signed value stored in a file provided by IBM. When you install IBM i
Option 35, two stream files are copied to the /QIBM/ProdData/CAP directory:

FCV.CRT
Contains the FCV for the 4764

FCV4765.CRT
Contains the FCV for the 4765

When you install 5733-CY3 a stream file is placed in the /QIBM/ProdData/CryptoDevMgr directory:

FCVECCA4765.CRT
Contains the FCV for the 4765 that enables ECC

FCV4767.CRT
Contains the FCV for the 4767

FCV4769.CRT
Contains the FCV for the 4769

These values enable the cryptographic application within the Coprocessor to yield a level of cryptographic
service consistent with applicable import and export regulations.

The easiest and fastest way to load the FCV is to use the Cryptographic Coprocessor configuration
web-based utility found by clicking on the IBM i Tasks page link on the IBM Navigator for i welcome
page at http://server-name:2001. The utility includes the Basic configuration wizard that is used when
the Coprocessor is in an un-initialized state. If the Coprocessor has already been initialized, then click on
Manage configuration and then click on Attributes to load the FCV.

If you would prefer to write your own application to load the FCV, you can do so by using the
Cryptographic_Facility_Control (CSUACFC) API verb.

Two other example programs are provided that show how to clear the function control vector. One of them
is written in ILE C, while the other is written in ILE RPG.

After you load a function control vector for your Coprocessor, you can load and set a master key using
master key to use to encrypt keys.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

Related concepts

Creating and defining roles and profiles

Cryptographic Coprocessors on systems running the IBM i operating system use role-based access
control. In a role-based system, you define a set of roles, which correspond to the classes of Coprocessor
users. You can enroll each user by defining an associated user profile to map the user to one of the
available roles.

Loading and setting a master key

After you load a function control vector, load and set the master key. The master key is used to encrypt
other keys. It is a special key-encrypting key stored within the Coprocessor secure module on systems
running the IBM i operating system.

Scenario: Enhancing system SSL performance by using the 4769 Cryptographic Coprocessor

80 IBMi: Cryptography

In this scenario, a company orders and installs the 4769 Cryptographic Coprocessor. The scenario
specifies the steps this company takes to get the card configured to enhance the SSL performance of
its system running the IBM i operating system.

Example: ILE C program for loading a function control vector for your Cryptographic

Coprocessor
Change this IBM i ILE C program example to suit your needs for loading a function control vector for your
Cryptographic Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

R e */
/* Load the Function Control Vector into the 4765 card. */
/* The Function Control Vector enables the cryptographic */
/* functions of the 4765. */
/* */
/* COPYRIGHT 5770-SS1 (C) IBM CORP. 1999, 20013 */
/* */

/* This material contains programming source code for your x/
/* consideration. These examples have not been thoroughly x/

/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or */
/> functions of these program. All programs contained */
/* herein are provided to you "AS IS". THE IMPLIED */
/* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A */
/* PARTICULAR PURPOSE ARE ARE EXPRESSLY DISCLAIMED. 1IBM */
/* provides no program services for these programs and files.x/
/* */
/* Note: The Function Control Vector is stored in an IFS */
/* file owned by the system. The format of this */
/* vector is described in an appendix of the */
/* IBM 4758 CCA Basic Services Reference and Guide */
/* (SC31-8609) publication. */
/* */
/* Use the following command to compile this program: */
/* CRTCMOD MODULE (LOAD_FCV) SRCFILE(SAMPLE) SYSIFCOPT(*IFSIO) =/
/* CRTPGM PGM(LOAD_FCV) MODULE (LOAD_FCV) */
/* BNDSRVPGM (QCCA/CSUACFC) */
/* */
/* Common Cryptographic Architecture (CCA) verbs used: */
;* - Cryptographic_Facility_Control (CSUACFC) *;
* *
J R e */

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <csucincl.h> /* header file for CCA Cryptographic
Service Provider for IBM i */

int main(void)

R e T */
/* standard return codes */
R R L T T T T */
#define ERROR -1

#define OK 0

J R R T T */
/* standard CCA parameters */
R e T T */

long return_code;
long reason_code;
long exit_data_length;
char exit_data[2];
char rule_array[4][8];
long rule_array_count;

J R e */
/> fields unique to this sample program */
R e */

long verb_data_length;

Cryptography 81

char xverb_data;
char buffer[3000];
int num_bytes;

FILE =fcv;
R R e */
/* retrieve FCV from IBM supplied file */
R e e T T T */

fcv = fopen("/QIBM/ProdData/CryptoDevMgr/FCVECC4765.CRT", "xb");
if (fcv==NULL)

printf("Function Control Vector file not available\n\n");

return ERROR; /* File not found or not authorized =x/
num_bytes = fread(buffer,1,3000,fcv);
fclose(fcv);
if (num_bytes != 2338)

printf("Function Control Vector file has wrong size\n\n");

return ERROR; /* Incorrect number of bytes read */
J R e T T */
/* extract fields in FCV needed by 4765 card */
/% Note: use offsets and lengths from CCA publication listed earlier x/
J R R e */

verb_data_length = 588;
verb_data = &buffer[1238];

rule_array_count = 2;
memcpy ((char*x)rule_array, "ADAPTER1LOAD-FCV",16);

R R e */
/* Load the 4765 card with the FCV just retrieved */
R */

CSUACFC (&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(charx)rule_array,
&verb_data_length,
verb_data);

if (return_code != 0)
printf("Function Control Vector rejected for reason %d/%d\n\n",
return_code, reason_code);
return ERROR; /* Operation failed. */
else

printf("Loading Function Control Vector succeeded\n\n");
return OK;

Example: ILE RPG program for loading a function control vector for your Coprocessor
Change this IBM i ILE RPG program example to suit your needs for loading a function control vector for
your Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

D* LOAD_FCV

D*x Load the Function Control Vector into the 4765 card.
Dx The Function Control Vector enables the cryptographic
D*x functions of the 4765 card.

Dx The Function Control Vector is contained within a stream
Dx file. Before compiling and running this program, you

Dx must copy the contents of the stream file to a database
D* member. An example of how to do this is shown in the

Dx instructions below for compiling and running this program.

82 IBMi: Cryptography

Dx COPYRIGHT 5770-SS1 (C) IBM CORP. 2000, 2013

D*

Dx This material contains programming source code for your

Dx consideration. These example has not been thoroughly

Dx tested under all conditions. 1IBM, therefore, cannot

Dx guarantee or imply reliability, serviceability, or function
Dx of these programs. All programs contained herein are

Dx provided to you "AS IS". THE IMPLIED WARRANTIES OF

Dx MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Dx ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
Dx these programs and files.

Dx

Dx

D*

D*x Parameters: None

Dx

D*x Example:

Dx CALL PGM(LOAD_FCV)

Dx

Dx Use these commands to compile this program on AS/400:
D

D* CRTRPGMOD MODULE (LOAD_FCV) SRCFILE (SAMPLE)

D*

Dx CRTPGM PGM(LOAD_FCV) MODULE(LOAD_FCV)

D* BNDSRVPGM (QCCA/CSUACFC)

D*

Dx Note: Authority to the CSUACFC service program in the
D* QCCA library is assumed.

D*

Dx The Common Cryptographic Architecture (CCA) verbs used are
Dx Cryptographic_Facilty_Control (CSUACFC)

D*

D R R R R R R R R R S S T 2 2 T
D= == e e eoo-
Dx Declare variables used by CCA SAPI calls

D e
Dx *% Return code

DRETURNCODE S 9B 0

D* *% Reason code

DREASONCODE S 9B 0

D* *% Exit data length

DEXITDATALEN S 9B 0

Dx *% Exit data

DEXITDATA S 4

Dx* *%* Rule array count

DRULEARRAYCNT S 9B 0O

Dx* ** Rule array

DRULEARRAY S 16

D* *% Verb data length

DVERBDATALEN S 9B 0 INZ(588)

Dx ** Verb data

DVERBDATA S 588

D 5 55 5 5 55 53 3 5 555 55 505 505 50
Dx Declare variables for working with files

D= = e e eo-
D* *% File descriptor

DFILED S 9B 0

D* *% File path

DPATH S 80

D* *% Open Flag - Open for Read only
DOFLAGR S 10T 0 INZ(1)

D* *% Structure of Funciton control vector file
DFLD1 DS

DFLDDTA 2338

DFENCCTLVCT 1239 1827

Dx *% Length of data read from file

DINLEN S 9B 0O

D* *% Index into a string

DINDEX S 5B O

D* *% Variable to hold temporary character value
DCHAR S 1

D*

D ||

Dx Prototype for Cryptographic_Facilty_Control (CSUACFC)
D R R R R R R R R R R R R B B R R 2 2

DCSUACFC PR

DRETCODE 9B 0
DRSNCODE 9B 0
DEXTDTALEN 9B 0
DEXTDTA 4
DRARRAYCT 9B 0
DRARRAY 16

Cryptography 83

DVRBDTALEN 9B 0
DVRBDTA 204
D*

Dx Prototype for open()
D R R R R R R R R R R R B B R S T = 2 2

Dx value returned = file descriptor (0K), -1 (error)
Dopen PR 9B @ EXTPROC('open')

D path name of file to be opened.

D 128 OPTIONS (*VARSIZE)

D* Open flags

D 9B O VALUE

Dx (OPTIONAL) mode - access rights

D 10U O VALUE OPTIONS(*NOPASS)
Dx (OPTIONAL) codepage

D 10U © VALUE OPTIONS (*NOPASS)
Dx

Dxkkkkhkhkkhkhkhkhhkhkhkhkhhhkhkhhkhkhkhhkhkhhhkhkhhkhkhhhkhhhkhkhkhhkhkhhhkhhhkhkhkkhkkhkhkhkhkkkkkkx
Dx Prototype for read()

D value returned = number of bytes actually read, or -1
Dread PR 9B O EXTPROC('read')

D* File descriptor returned from open()

D 9B O VALUE

D* Input buffer

D 2500 OPTIONS (*VARSIZE)

D* Length of data to be read
D 9B 0 VALUE

Dx
Dxkkkkhkhkhkhkhkhhkhkhhkhkhhhkhkhhkhkhkhkhkhhhkhkhhkhkhkhhkhhhhkhkhhkhkhhhkhhhkhkhkkhkhhkhkhkrhkkkkkkx
Dx Prototype for close()

D* value returned = 0 (OK), or -1

Dclose PR 9B O EXTPROC('close')

D* File descriptor returned from open()

D 9B 0 VALUE

Dx

D 55 5 5 5 53 £33 555 55 555 505 55 5
D* *% Declares for sending messages to the

D* *% job log using the QMHSNDPM API

D 5 5 0 5 55 5 53 5 5 5 55 55 555 505 55 5
DMSG S 80 DIM(5) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(80)

D DS

DMSGTEXT 1 80

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(')
DMESSAGEFILE S 21 INZ(' ")
DMSGKEY S 4 INZ (' ")

DMSGTYPE S 10 INZ('*INFO ")
DSTACKENTRY S 10 INZ('* ")
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(O)

Cx*

C ||
Cx START OF PROGRAM *
Cx *
(08 R e e *
Cx Open the FCV file *
(0 e G R *
Cx R e e P *

Cx *% Null terminate path name *

Cx* L e T *

© MOVEL MSG (1) PATH

© EVAL %SUBST (PATH:43:1) = X'00'

Cx L *

Cx % Open the file *

Ck hmmmmmmmmmmmmmmmeeo o *

C EVAL FILED = open(PATH: OFLAGR)

Cx R *

Cx % Check if open worked =

Cx L *

© FILED IFEQ =

C* K mmmmm e o-- *

Cx * Open failed, send an error message *

Cx R *

C MOVEL MSG(2) MSGTEXT

C EXSR SNDMSG

© RETURN

84 IBMi: Cryptography

© ENDIF

Cx e e I *

Cx * Open worked, read the FCV, and close the file *

Cx R e *

© Z-ADD 2338 INLEN

C EVAL INLEN = read(FILED: FLDDTA: INLEN)
C CALLP close (FILED)

Cx

Cx R e *

Cx * Check if read operation was OK *

Cx R *

C INLEN IFEQ =1

© MOVEL MSG(3) MSGTEXT

© EXSR SNDMSG

C RETURN

© ENDIF

Cx

(08 e *
Cx Copy the FCV to the verb data parameter. *
(0 R e T *
C MOVEL FNCCTLVCT VERBDATA

(O *
Cx Set the keywords in the rule array *
(08 e e T *
© MOVEL "ADAPTERL1' RULEARRAY

© MOVE "LOAD-FCV' RULEARRAY

C Z-ADD 2 RULEARRAYCNT

C ||
Cx Call Cryptographic Facilty Control SAPI */
C ||
© CALLP CSUACFC (RETURNCODE:

© REASONCODE :

C EXITDATALEN:

© EXITDATA:

© RULEARRAYCNT :

C RULEARRAY :

© VERBDATALEN:

© VERBDATA)

Ck hemmmmmmmm e e e e e *

Cx * Check the return code *

[0 *

C RETURNCODE IFGT 0

Cx Ko e *

Cx * Send failure message *

Cx R *

© MOVEL MSG(4) MSGTEXT

© MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FAILRSNC

© EXSR SNDMSG

Cx

C ELSE

Cx

Cx L *

Cx * Send success message *

Cx e T *

© MOVEL MSG(5) MSGTEXT

C EXSR SNDMSG

© ENDIF

Cx

C SETON LR
Cx

[0 3 R R R R R R R R R R R B S E E R R R S e 2
Cx Subroutine to send a message

SNDMSG

OO0 0O0O0O0O0O0

*%

BEGSR
CALL "QMHSNDPM'
PARM
PARM
PARM
PARM
PARM
PARM
PARM
PARM
PARM
ENDSR

/QIBM/ProdData/CryptoDevMgr/FCVECC4765.CRT
Error trying to open FCV file.
Error reading data from FCV file.

MESSAGEID
MESSAGEFILE
MSGTEXT
MSGLENGTH
MSGTYPE
STACKENTRY
STACKCOUNTER
MSGKEY
ERRCODE

Cryptography 85

CSUACFC failed with return/reason codes 9999/9999.
The Function Control Vector was successfully loaded.

Example: ILE C program for clearing a function control vector from your Coprocessor
Change this IBM i ILE C program example to suit your needs for clearing a function control vector from
your Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

R L */
/* Clear the Function Control Vector from the cazxd. */

/* The Function Control Vector enables the cryptographic */
/* functions of the card. Clearing it from the */

/* disabled the cryptographic functions. */
[x/
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007 */
/* */

/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly x/

/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or */
/> functions of these program. All programs contained */
/* herein are provided to you "AS IS". THE IMPLIED */
/* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A */
/* PARTICULAR PURPOSE ARE ARE EXPRESSLY DISCLAIMED. 1IBM */
/* provides no program services for these programs and files.x/
/* */
/* */
/* Note: Input format is more fully described in Chapter 2 of %/
/* IBM CCA Basic Services Reference and Guide */

/* (SC31-8609) publication. */
/* */
/* Parameters: */
/* none. */
/* */
/* Example: */
/* CALL PGM(CLEARFCV) */
/* */
/* */
/* Use the following command to compile this program: */
/* CRTCMOD MODULE(CLEARFCV) SRCFILE(SAMPLE) */
/* CRTPGM PGM(CLEARFCV) MODULE (CLEARFCV) */
/* BNDSRVPGM (QCCA/CSUACFC) */
/* */
/* Common Cryptographic Architecture (CCA) verbs used: */
;* - Cryptographic_Facility_Control (CSUACFC) *;
* *
J R e */

#include <stdlib.h>
f#include <stdio.h>
#include <string.h>
#include "csucincl.h"

void main(void)

long return_code;

long reason_code;

long exit_data_length;
char exit_data[2];
char rule_array[4][8];
long rule_array_count;
long verb_data_length;
char xverb_data;

char buffer[4];

R e I */
/* No verb data is needed for this option. */
R R R */

verb_data_length = 0;
verb_data = buffer;

R R e */
/* Rule array has two elements or rule array keywords */
R e e E T T */

rule_array_count = 2;
memcpy ((char*)rule_array, "ADAPTERAICLR-FCV ",16);

86 IBMi: Cryptography

J R R e */

/* Clear the Function control vector from the card */

CSUACFC (&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(charx)rule_array,
&verb_data_length,
verb_data);

if (return_code != 0)
printf("Operation failed: return code %d : reason code %d \n",
return_code, reason_code);
else
printf("FCV is successfullly cleared\n");

Example: ILE RPG program for clearing a function control vector from your

Coprocessor
Change this IBM i ILE RPG program example to suit your needs for clearing a function control vector from
your Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

D R R R R R Rl R R R R S S S T S S 2 T
Dx CLEARFCV

D*

Dx Clear the Function Control Vector from the card.

Dx The Function Control Vector enables the cryptographic

Dx functions of the card. Clearing it from the

Dx disabled the cryptographic functions.

Dx

D*

Dx COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

Dx

Dx This material contains programming source code for your

Dx consideration. These example has not been thoroughly

Dx tested under all conditions. IBM, therefore, cannot

Dx guarantee or imply reliability, serviceability, or function
Dx of these programs. All programs contained herein are

D% provided to you "AS IS". THE IMPLIED WARRANTIES OF

Dx MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Dx ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
Dx these programs and files.

Dx

D*

Dx Note: Input format is more fully described in Chapter 2 of
D% IBM CCA Basic Services Reference and Guide
D% (SC31-8609) publication.

D%

Dx Parameters: None

D*

Dx Example:

Dx CALL PGM(CLEARFCV)

D*

Dx Use these commands to compile this program on the system:
D* CRTRPGMOD MODULE (CLEARFCV) SRCFILE(SAMPLE)
D+ CRTPGM PGM(CLEARFCV) MODULE (CLEARFCV)

D* BNDSRVPGM (QCCA/CSUACFC)

D*

Dx Note: Authority to the CSUACFC service program in the
D* QCCA library is assumed.

D*

Dx The Common Cryptographic Architecture (CCA) verbs used are
Dx Cryptographic_Facilty_Control (CSUACFC)

D*

D R R R R R R R R R S S T 2 S T
D T
D* Declare variables used on CCA SAPI calls

B R LG L L
D* *%x Return code

DRETURNCODE S 9B 0O

Dx ** Reason code

DREASONCODE S 9B 0O

D* *% Exit data length

DEXITDATALEN S 9B 0

Cryptography 87

Dx

DEXITDATA

D*
DRULEARRAYCNT
Dx
DRULEARRAY
Dx
DVERBDATALEN
D*

DVERBDATA

Dx

D*

*%x Exit data

S 4

% Rule array count
S 9B 0
** Rule array

S

*% Verb data length
S 9B 0
*% Verb data

S 16

Dx Prototype for Cryptographic_Facilty_Control (CSUACFQ)

Dk kkkkkkkkkkhkhkkhkkkhkhkhkkhkhkhkhkkhkkhkhkhkkkkhkhkhkkhkkkkhkhkkkkkkkkkkk

DCSUACFC PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DVRBDTALEN 9B 0

DVRBDTA 10

Dx

D 55 5 3 £33 555 55 5355 505 55 5
D* *% Declares for sending messages to the

D* *% job log using the QMHSNDPM API

D 5 5 5 0 5 5 55 5 5 5 5 5 55 55 555 5905 505 5
DMSG S 75 DIM(2) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 75

DFAILRETC 41 44

DFAILRSNC 46 49

Dx *% Variables required for the QMHSNDPM API
DMESSAGEID S 7 INZ (' ")
DMESSAGEFILE S 21 INZ ('

DMSGKEY S 4 INZ(')

DMSGTYPE S 10 INZ('*xINFO ")
DSTACKENTRY S 10 INZ('*)
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B O INZ(0)

Dx

C ||
Cx START OF PROGRAM *
Cx *
(0 e *
Cx Set the keyword in the rule array *
(08 R e *
© MOVEL "ADAPTER1' RULEARRAY

C MOVE 'CLR-FCV ' RULEARRAY

o Z-ADD 2 RULEARRAYCNT
(0 T *
Cx Set the verb data length to 0 *
(08 e T *
o Z-ADD 0 VERBDATALEN

(0 R e L E T T *
Cx Call Cryptographic Facilty Control SAPI

(0 e T *
C CALLP CSUACFC (RETURNCODE:

© REASONCODE :

C EXITDATALEN:

C EXITDATA:

© RULEARRAYCNT :

C RULEARRAY :

C VERBDATALEN:

© VERBDATA)
Chmmmmmmmmmmmmmme e *

Cx Check the return code

(0 R *

© RETURNCODE IFGT 0

Cx R *

Cx * Send a failure message *

C* T T T *

C MOVE MSG (1) MSGTEXT

© MOVE RETURNCODE FAILRETC

© MOVE REASONCODE FAILRSNC

C EXSR SNDMSG

Cx

88 IBMi: Cryptography

C ELSE

Cx R *

Cx * Send a Success message *

Cx R *

C MOVE MSG(2) MSGTEXT

C EXSR SNDMSG

Cx*

C ENDIF

Cx*

C SETON LR
C*

[0 3 R R R R R R R B B S F E F & S T T T S S S
C*x Subroutine to send a message

C ||
C SNDMSG BEGSR

C CALL 'QMHSNDPM'

© PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

© PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY

© PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

© ENDSR

Cx

*%
CSUACFC failed with return/reason codes 9999/9999'
The request completed successfully

Loading and setting a master key

After you load a function control vector, load and set the master key. The master key is used to encrypt
other keys. It is a special key-encrypting key stored within the Coprocessor secure module on systems
running the IBM i operating system.

After you load a function control vector, you can load and set a master key. The Coprocessor uses the
master key to encrypt all operational keys. The master key is a special key-encrypting key stored in the
clear (not encrypted) within the Coprocessor secure module. Your Coprocessor uses the master key to
encrypt other keys so that you can store those keys outside of your Coprocessor. The master key is a
168-bit key formed from at least two 168-bit parts exclusive ORed together.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

Loading a master key

There are three registers for your master keys: New, Current, and Old. The new master key register

is used to hold a pending master key while it is being built. It is not used to encrypt any keys. The

Current master key register holds the master key that is currently being used to encrypt newly generated/
imported/re-enciphered keys. The old master key register holds the previous master key. It is used to
recover keys after a master key change has occurred. When you load a master key, the Coprocessor
places it into the New master key register. It remains there until you set the master key.

Choose one of these three ways to create and load a master key, based on your security needs:

« Load the first key parts and the subsequent key parts separately to maintain split knowledge of the key
as a whole. This is the least secure method, but you can increase security by giving each key part to a
separate individual.

« Use random key generation, which will remove any human knowledge of the key. This is the most secure
method for loading a master key, but you will need to clone this randomly generated master key into a
second Cryptographic Coprocessor in order to have a copy of it.

« Use a pre-existing master key by cloning it from another Coprocessor.

Setting a master key

Setting the master key causes the key in the Current master key register to move to the Old master key
register. Then, the master key in the New master key register moves to the Current master key register.

Cryptography 89

Note: It is vital for retrieval of data encrypted by the master key that you have a backup copy of the
master key at all times. For example write it on a piece of paper, and make sure that you store the backup
copy with appropriate security precautions. Or, clone the master key to another Coprocessor.

The easiest and fastest way to load and set master keys is to use the Cryptographic Coprocessor
configuration web-based utility found by clicking on the IBM i Tasks page link on the IBM Navigator

for i welcome page at http://server-name:2001. The utility includes the Basic configuration wizard that

is used when the Coprocessor is in an un-initialized state. If the Cryptographic Coprocessor already has
been initialized, then click on Manage configuration and then click on Master keys to load and set master
keys.

If you would prefer to write your own application to load and set master keys, you can do so by using the
Master_Key_Process (CSNBMKP) API verb.

Re-encrypting keys

When you set a master key, you should re-encrypt all keys that were encrypted under the former master
key to avoid losing access to them. You must do this before you change and set the master key.

You can re-encrypt keys in keystore by using the Cryptographic Coprocessor configuration web-based
utility found by clicking on the IBM i Tasks page link on the IBM Navigator for i welcome page at http://
server-name:2001. The Cryptographic Coprocessor must have already been initialized. Click on "Manage
configuration" and then click on either "DES keys" to re-encrypt DES keys, or "PKA keys" to re-encrypt
PKA keys.

If you have keys that are not in keystore or if you would prefer to write your own application to re-encrypt
keys, you can do so by using the Key_Token_Change (CSNBKTC) or PKA_Key_Token_Change (CSNDKTC)
API verbs.

An example program is provided for your consideration.

Related concepts

Loading a function control vector

The function control vector tells the Cryptographic Coprocessor for the system running the IBM i
operating system what key length to use to create keys. You cannot perform any cryptographic functions
without loading a function control vector.

Related reference

Example: ILE C program for loading a master key into your Cryptographic Coprocessor

Change this IBM i ILE C program example to suit your needs for loading a new master key into your
Cryptographic Coprocessor.

Example: ILE RPG program for loading a master key into your Cryptographic Coprocessor
Change this IBM i ILE RPG program example to suit your needs for loading a new master key into your
Cryptographic Coprocessor.

Example: ILE C program for re-encrypting keys for your Cryptographic Coprocessor
Change this IBM i ILE C program example to suit your needs for re-encrypting keys for your Cryptographic
Coprocessor.

Related information
IBM PCle Cryptographic Coprocessor documentation library

Example: ILE C program for loading a master key into your Cryptographic Coprocessor
Change this IBM i ILE C program example to suit your needs for loading a new master key into your
Cryptographic Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values
provided.

90 IBM i: Cryptography

http://www.ibm.com/security/cryptocards/pciecc2/library.shtml

/* Load a new master key on the card. */
/* */
/* */
/* COPYRIGHT 5769-SS1, 5722-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/> of these program. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for x/
/* these programs and files. */
/* */
/* */
/* */
/* Parameters: */
/* OPTION (FIRST, MIDDLE, LAST, CLEAR, SET) */
/* KEYPART (24 bytes entered in hex -> X'O1F7C4....") */
/* Required for FIRST, MIDDLE, and LAST */
/* */
/* Example: */
/* CALL PGM(LOAD_KM) */
/* (FIRST X'0123456789ABCDEFFEDCBA98765432100123456789ABCDEF ') */
/* */
/* Note: This program assumes the device to use is */
/* already identified either by defaulting to the CRPO1 */
/* device or by being explicitly named using the */
/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* */
/* Use these commands to compile this program on the system: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (LOAD_KM) SRCFILE(SAMPLE) */
/* CRTPGM PGM(LOAD_KM) MODULE (LOAD_KM) */
/* BNDSRVPGM (QCCA/CSNBMKP QCCA/CSNBRNG) */
/* */
/* Note: Authority to the CSNBMKP and CSNBRNG service programs */
/* in the QCCA library is assumed. */
/* */
/* The main Common Cryptographic Architecture (CCA) verb used */
/* is Master_Key_Process (CSNBMKP) . */
/* */
R R e T */
#include "csucincl.h" /* header file for CCA Cryptographic */
/* Service Provider */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

R i */
/* standard return codes */
R L R */
#tdefine ERROR -1
tdefine OK 0

#define WARNING 4

int main(int argc, char xargv[])

{
R R e e E T T */
/* standard CCA parameters */
R e */

long return_code = 0;
long reason_code = 0;
long exit_data_length
char exit_data[4];

char rule_array[2][8];
long rule_array_count

R e I */

/* parameters unique to this program */

1l
N

Il
[

char keypart[24]; /* Dummy parm for SET and CLEAR x/

Cryptography 91

J R R */

/* Process the parameters */
if (arge < 2)
i
printf("Option parameter must be specified.\n");
return(ERROR) ;
if (argc < 3 && memcmp(argv[1],"CLEAR",5) != 0 &&
memcmp (argv[1],"SET",3) != 0)

printf("KeyPart parameter must be specified.\n");

return(ERROR) ;

b
J R R e e T */
/* Set the keywords in the rule array */
R e T */
memset(rule_array,' ',8);

memcpy (rule_array,argv([1],
(strlen(argv[1]) > 8) ? 8 : strlen(argv[l]));

R L L T */
/* Call Master Key Process SAPI */
J R R T */

CSNBMKP (&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(unsigned char x)rule_array,
(axgc == 3) ? argv[2] : keypart);

printf("Request was successful with return/reason codes: %d/%d \n",
return_code, reason_code);
return (0K) ;

else

printf("Request failed with return/reason codes: %d/%d \n",
return_code, reason_code);
return(ERROR) ;

%

Related concepts

Loading and setting a master key

After you load a function control vector, load and set the master key. The master key is used to encrypt
other keys. It is a special key-encrypting key stored within the Coprocessor secure module on systems
running the IBM i operating system.

Example: ILE RPG program for loading a master key into your Cryptographic
Coprocessor

Change this IBM i ILE RPG program example to suit your needs for loading a new master key into your
Cryptographic Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values
provided.

Dxkkkkkkhkhkhkhkhhkhkhhhkhkhhkhkhhhkhkhhkhkhhhkhhhhkhkhhkhkhkhhkhhhhkhkhhkkhkkhkhkhkkkkk
Dx LOAD_KM

Dx

D* Load a new master key on the cazxd.

92 IBMi: Cryptography

Dx
Dx
D*
Dx
Dx
D
Dx
Dx
D
Dx
Dx
D
Dx
Dx
D*
Dx
Dx
D
Dx
Dx
D
Dx
Dx
D*
Dx
Dx
D*
Dx
Dx
D
Dx
Dx
D*
Dx
Dx
D
Dx
Dx
D*
Dx
Dx
D
Dx
Dx
D*
Dx
Dx
D*
Dx
Dx
D
D*
Dx
D*
D*
Dx
D
Dx
Dx
D*
Dx
Dx
D
Dx
Dx
D*
Dx
Dx
D*
Dx
Dx
D
D%
Dx
D*
Dx
Dx
D*
Dx
Dx
D*
Dx

COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

This material contains programming source code for your
consideration. These example has not been thoroughly

tested under all conditions. 1IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function

of these programs. All programs contained herein are

provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
these programs and files.

Note: Input format is more fully described in Chapter 2 of
IBM CCA Basic Services Reference and Guide
(SC31-8609) publication.

Parameters:
OPTION (FIRST, MIDDLE, LAST, CLEAR, SET)
KEYPART (24 bytes entered in hex -> X'O1F7C4....")
Required for FIRST, MIDDLE, and LAST

The master key is loaded in 3 or more parts. Specify FIRST
when loading the first part, MIDDLE when loading all parts
between the first and the last, and LAST when loading the final
part of the master key.

As the master key parts are entered, they are Exclusively OR'ed
with the current contents of the master key register. After the
last master key, if the contents do not have odd parity in every
byte, a non-zero return/reason code will be returned. In order

to ensure that the final result has odd parity, each key part
should have odd parity in every byte. This is assuming that there
is an odd number of key parts. (If there is an even number of

key parts, then one of the key parts should have even parity).

A byte has odd parity if is contains:
an odd parity nibble : 1, 2, 4, 7, 8, B, D, or E AND
an even parity nibble: 0, 3, 5, 6, 9, A, C, or F.

For example 32, A4, 1F, and 75 are odd parity bytes because
they contain both an odd parity and an even parity
nibble.

05, 12, 6C, and E7 are even parity bytes because
they contain either two even parity nibbles or
two odd parity nibbles.

The New master key register must be empty before the first part
of a master key can be entered. Use CLEAR to ensure that the
New master key register is empty before loading the master key
parts.

After loading the master key, use SET to move the master key from
the New-master-key register to the Current-master-key register.
Cryptographic keys are encrypted under the master key in the

the Current-master-key register.

Example:
CALL PGM(LOAD_KM) (CLEAR)

CALL PGM(LOAD_KM)
(FIRST X'0123456789ABCDEFFEDCBA98765432100123456789ABCDEF ')

CALL PGM(LOAD_KM)
(MIDDLE X'1032A873458010F7EF3438373132F1F2F4F8B3CDCDCDCEF1")

CALL PGM(LOAD_KM)
(LAST X'2040806789ABCDEFFEDC3434346432100123456789FEDCBA")

CALL PGM(LOAD_KM) (SET)

Use these commands to compile this program on the system:
CRTRPGMOD MODULE (LOAD_KM) SRCFILE(SAMPLE)
CRTPGM PGM(LOAD_KM) MODULE (LOAD_KM)

BNDSRVPGM (QCCA/CSNBMKP)

Note: Authority to the CSNBMKP service program in the

Cryptography 93

D* QCCA library is assumed.

Dx

Dx The Common Cryptographic Architecture (CCA) verbs used are
Dx Master_Key_Process (CSNBMKP)

D*

D R R R R R R R R R S S T 2 2 T
D= == oo-

D* Declare variables for CCA SAPI calls

D LG L Y

D* *% Return code

DRETURNCODE S 9B 0

D* *% Reason code

DREASONCODE S 9B 0

D* *% Exit data length

DEXITDATALEN S 9B 0

D* *% Exit data

DEXITDATA S 4

D *%* Rule array count

DRULEARRAYCNT S 9B 0

Dx* **x Rule array

DRULEARRAY S 16

D* *% Option (Rule Array Keyword)

DOPTION S 8

D* **% Master key part parameter on program
DMASTERKEYPART S 24

D* ** Master key part parameter on CSNBMKP
DKEYPART S 24 INZ(*ALLX'00")

Dx

D ||

D*x Prototype for Master_Key_Process (CSNBMKP)

D ||
DCSNBMKP PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DMSTRKEY 24 OPTIONS (*NOPASS)

Dx

D 55 5 5 5 53 £33 555 55 555 505 55 5
D* *% Declares for sending messages to the

D* *% job log using the QMHSNDPM API

D 5 5 0 5 55 5 53 5 5 5 55 55 555 505 55 5
DMSG S 75 DIM(2) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 75

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(')
DMESSAGEFILE S 21 INZ ('

DMSGKEY S 4 INZ (' ")

DMSGTYPE S 10 INZ('*INFO ")
DSTACKENTRY S 10 INZ('* ")
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(O)

D*

C ||
Cx START OF PROGRAM *
Cx *
© *ENTRY PLIST

© PARM OPTION

© PARM MASTERKEYPART

Cx *
(R e *
Cx Set the keyword in the rule array *
(08 e e L T *
© MOVEL OPTION RULEARRAY

© Z-ADD 1 RULEARRAYCNT

Cx

[e LT T *
Cx Check for FIRST, MIDDLE, or LAST *
(08 e *
© OPTION IFEQ "FIRST'

© OPTION OREQ '"MIDDLE'

© OPTION OREQ "LAST'

Cx R e e *

Cx * Copy keypart parameter =*

Cx R *

94 IBM i: Cryptography

C MOVEL MASTERKEYPART KEYPART

© ENDIF

Cx*

(08 e T *

Cx Call Master Key Process SAPI *

(0 L e *

© CALLP CSNBMKP (RETURNCODE :
© REASONCODE :
C EXITDATALEN:
© EXITDATA:

© RULEARRAYCNT :
C RULEARRAY :

© KEYPART)
Chmmmmmmmmmmmmmm e *

Cx Check the return code *

(0 *

© RETURNCODE IFGT (0]

Cx L *

Cx * Send error message @ *

C* Ko mmmmmmm e mmeee oo *

C MOVE MSG (1) MSGTEXT

© MOVE RETURNCODE FAILRETC

© MOVE REASONCODE FAILRSNC

C EXSR SNDMSG

Cx*

© ELSE

Cx* R T *

Cx * Send success message *

C* LT *

C MOVE MSG(2) MSGTEXT

© EXSR SNDMSG

C*

C ENDIF

Cx

© SETON LR
Cx*

C ||

C*x Subroutine to send a message
Chhhkkhkhkhkhhkhkhkhkhkhkhhkhhhhkhkhhkhkhhhkhhhhkhkhhkhkhhhkhhhkhkhkhhkhkhhkhkhkhhkkhkkhkkrxkkkx

C SNDMSG BEGSR

© CALL 'QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
© PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

© PARM STACKENTRY
C PARM STACKCOUNTER
C PARM MSGKEY

© PARM ERRCODE

C ENDSR

Cx

*k
CSNBMKP failed with return/reason codes 9999/9999
The request completed successfully

Related concepts

Loading and setting a master key

After you load a function control vector, load and set the master key. The master key is used to encrypt
other keys. It is a special key-encrypting key stored within the Coprocessor secure module on systems
running the IBM i operating system.

Example: ILE C program for re-encrypting keys for your Cryptographic Coprocessor
Change this IBM i ILE C program example to suit your needs for re-encrypting keys for your Cryptographic
Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values
provided.

R L */
/* Description: Re-enciphers keystore files using the current =*/
/* master key. */
/* */

Cryptography 95

/* COPYRIGHT 5769-SS1 (c) IBM Corp 1999, 2007 */

/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function x*/
/* of these programs. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* EXPRESSLY DISCLAIMED. IBM provides no program services for x/
/* these programs and files. */
/* */
/* Parameters: */
/* char * keysto_type, choices are "DES" or "PKA" */
/* (If omitted, the default is "PKA".) */
/* Examples: */
/* CALL PGM(REN_KEYSTO) PARM(DES) */
/* CALL PGM(REN_KEYSTO) */
/* */
/> Note: The CCA verbs used in the this program are more fully x/
/* described in the IBM CCA Basic Services Reference x/

/* and Guide (SC31-8609) publication. */
/* */
/* Note: This program assumes the card you want to use is */
/* already identified either by defaulting to the CRPO1 */
/* device or has been explicitly named using the */
/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* This program also assumes the keystore file you will */
/* use is already identified either by being specified on =%/
/* the cryptographic device or has been explicitly named */
/* using the Key_Store_Designate verb. Also you must be */
/* authorized to update records in this file. */
/* */
/* Use the following commands to compile this program: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (REN_KEYSTQO) SRCFILE(SAMPLE) */
/* CRTPGM PGM(REN_KEYSTO) MODULE (REN_KEYSTO) */
/* BNDSRVPGM (QCCA/CSNBKTC QCCA/CSNBKRL */
/* QCCA/CSNDKTC QCCA/CSNDKRL) */
/* */
/* Note: authority to the CSNDKTC, CSNDKRL, CSNBKTC, and CSNBKRL x/
/* service programs in the QCCA library is assumed. */
/* */
/* Common Cryptographic Architecture (CCA) verbs used: */
/* PKA_Key_Token_Change (CSNDKTC) */
/* DES_Key_Token_Change (CSNBKTC) */
/* PKA_Key_Record_List (CSNDKRL) */
/* DES_Key_Record_List (CSNBKRL) */
J R e T */

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "csucincl.h" /* header file for CCA Cryptographic
Service Provider */

/* Define the acceptable file types */

#define PKA 1

#define DES 0

int re_encipher(FILE xkey_rec, long rec_length, int key_type);

int main(int argc, char xargv[])

R e e T */
/* standard return codes */
R e */

#define ERROR -1

#define OK 0
J R e */
/* standard CCA parameters */
B e */

96 IBM i: Cryptography

long reason_code = 0;

long exit_data_length = 0;
char exit_data[2];

long rule_array_count = 0;
char rule_array[1][8];

R e */
/> fields unique to this sample program */
J R e */

char key_label[65] =
kok.k. k. koKL K "

long data_set_name_length = 0;

char data_set_name[65];

char security_server_name[9] = " ;

FILE xkrl;
int keysto_type = PKA;
/

/> a PKA keystore file. Default to PKA if key file type is =x/

/* not specified. */
J e */
if (axge >= 2)

1

if ((stxcmp(argv[1],"DES")==0))

printf("\nDES ");
keysto_type = DES;

else if ((strcmp(argv[l1],"PKA")==0))
printf("\nPKA ");

else

1
printf("\nKeystore type parm incorrectly specified.\n");
printf("Acceptable choices are PKA or DES.\n");
printf("The default is PKA.\n");
return ERROR;

k

%

else

{
printf("\nPKA ");
%

if (keysto_type == DES)
{

J R L R T */
/* Invoke the verb to create a DES Key Record List */
B e i */
CSNBKRL (&return_code,

&reason_code,

&exit_data_length,

exit_data,

key_label,

&data_set_name_length,

data_set_name,

security_server_name);
3
else
1
R e i */
/* Invoke the verb to create a PKA Key Record List */
e e T */

CSNDKRL (&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *) rule_array,
key_label,
&data_set_name_length,
data_set_name,
security_server_name);

%
if ((return_code != 0) || (reason_code != 0))
printf("Key Record List generation was unsuccessful. ");

printf("Return/reason code = %d/%d\n",return_code, reason_code);

Cryptography 97

else

printf("Key Record List generation was successful. ");
printf("Return/reason codes = %d/%d\n",return_code, reason_code);
data_set_name[data_set_name_length] = '\0';

printf("data_set_name = %s\n",6data_set_name);

/* Open the Key Record List file. x/
krl = fopen(data_set_name, "rb");

if (krl == NULL) /% Open failed. =/
i

printf("The open of the Key Record List file failed\n");
return ERROR;
¥
else /* Open was successful. %/
1
char header1[77];
int num_rec, i;
long rec_length, offset_recl;

/* Read the first part of the KRL header. x/
fread(header1,1,77,krl);

/* Get the number of key records in the file. x/
num_rec = atoi(&headerl[50]);
printf ("Number of key records = %d\n",6 num_rec);

/* Get the length for the key records. */
rec_length = atol(&headerl[58]);

/* Get the offset for the first key record. */
offset_recl = atol(&headerl[62]);

/* Set the file pointer to the first key record. x/
fseek(krl, offset_recl, SEEK_SET);

/* Loop through the entries in the KRL and re-encipher. */
for (i = 1; i <= num_rec; i++)

int result;

result = re_encipher(krl, rec_length, keysto_type);
if (result !=0)

{

fclose(krl);
return ERROR;
?

printf("Key store file re-enciphered successfully.\n\n");

fclose(krl);
return OK;

¥
¥

t /* end of main() =%/

int re_encipher(FILE xkey_rec, long rec_length, int key_type)

{
R e e T */
/* standard CCA parameters */
B e T */

long return_code;
long reason_code;
long exit_data_length
char exit_data[2];
long rule_array_count = 1;
char rule_array[1][8];

1l
(o]

B e */
/* fields unique to this function */
J R e R */

long key_identifier_length = 64;
char key_identifier[64];
char key_record[154];

fread(key_record, 1, rec_length, key_rec);

memcpy (key_identifier, &key_record[3], 64);
memcpy (rule_array, "RTCMK ",8);

98 IBM i: Cryptography

if (key_type == DES)

CSNBKTC (&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *) rule_array,
key_identifier);

b
else if (key_type == PKA)
1

CSNDKTC (&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *) rule_array,
&key_identifier_length,
key_identifier);

¥

else

{

printf("re_encipher() called with an invalid key type.\n");
return ERROR;

b

printf("Re-enciphering for key_label = %.64s", key_identifier);
printf("completed with return/reason codes of ");
printf("%d/%d\n",return_code,reason_code);

return return_code;

¥/* end of re_encipher() =/

Related concepts

Loading and setting a master key

After you load a function control vector, load and set the master key. The master key is used to encrypt
other keys. It is a special key-encrypting key stored within the Coprocessor secure module on systems
running the IBM i operating system.

Configuring the Cryptographic Coprocessor for use with DCM and SSL

This topic provides information on how to make the Cryptographic Coprocessor ready for use with SSL in
IBMi.

The following section lists the steps needed to make the Cryptographic Coprocessor ready for use with
SSL.

Using your Coprocessor with DCM and SSL
To install the Cryptographic Coprocessor and prerequisite software, you must do the following:
« Install the Coprocessor in your system.

For feature EJ35 or EJ37, install your Cryptographic Coprocessor, as instructed in the instructions that
are shipped with your Cryptographic Coprocessor.

« Install IBM i Option 35 CCA CSP and 5733-CY3 Cryptographic Device Manager.
« Set IBM i object authorities for secure access.

 Use your web browser to go to the IBM i Tasks page found by clicking on the IBM i Tasks page link on
the IBM Navigator for i welcome page at http://server-name:2001.

 Configure the Coprocessor.
The Cryptographic Coprocessor is now ready to be used to create private keys for SSL certificates.

- Use DCM to create a certificate, specifying that the private key be generated by the hardware.
« Use DCM to receive the signed certificate.

Note: If you plan to use multiple cards for SSL, see “Managing multiple Cryptographic Coprocessors” on
page 149 and “Cloning master keys” on page 158.

Cryptography 99

Related concepts

Managing multiple Cryptographic Coprocessors

You can have up to eight Cryptographic Coprocessors per partition. The maximum number of
Cryptographic Coprocessors supported per system is dependent on the system mode. This topic provides
information on using multiple coprocessors with SSL in systems running the IBM i operating system.

Secure access
Access control restricts the availability of system resources to only those users you have authorized to
interact with the resources. The system allows you to control authorization of users to system resources.

Configuring the Cryptographic Coprocessor

Configuring your Cryptographic Coprocessor allows you to begin to use all of its cryptographic operations.
To configure the Cryptographic Coprocessor on your system running the IBM i operating system, you can
either use the Cryptographic Coprocessor configuration Web—based utility or write your own application.

Configuring the Cryptographic Coprocessor for use with IBM i applications

This topic lists the steps needed to make Cryptographic Coprocessors ready for use with an IBM i
application.

Using the Cryptographic Coprocessor for IBM i applications
To install the Cryptographic Coprocessor and prerequisite software, you must do the following:
« Install the Coprocessor in your system.

Install your Cryptographic Coprocessor, as instructed in the instructions that are shipped with your
Cryptographic Coprocessor.

- Install IBM i Option 35 CCA CSP and install 5733-CY3 Cryptographic Device Manager.
- Set IBM i object authorities for secure access.

« Use your web browser to go to the IBM i Tasks page found by clicking on the IBM i Tasks page link on
the IBM Navigator for i welcome page at http://server-name:2001.

« Configure the Coprocessor.
« Write your application to use the Cryptographic Coprocessor.

Note: If you plan to use multiple cards for your IBM i applications, see “Managing multiple Cryptographic
Coprocessors” on page 149.

Related concepts

Scenario: Protecting private keys with cryptographic hardware

This scenario might be useful for a company that needs to increase the security of the system digital
certificate private keys that are associated with the IBM i SSL-secured business transactions.

Migrating to the Cryptographic Coprocessor

If you have worked with cryptography before, you might have a requirement to migrate from a previous
cryptography product to the 4769 Cryptographic Coprocessor.

The IBM 4767 Cryptographic Coprocessor is no longer available, but it is still supported.
Migrating from the 4767 to the 4769:

If you are replacing your 4767 Cryptographic Coprocessor with the 4769 Cryptographic Coprocessor,
then ensure that the roles and profiles for the 4769 Coprocessor are set up similarly to those used with
the 4767 Coprocessor. This includes configuring your "DFLTO000" role (4769) to be equivalent to your
"DEFAULT " role (4767). The 4764, 4765, 4767, and 4769 Cryptographic Coprocessors can all use the
same CCA APIs and keystore files.

100 IBM i: Cryptography

Managing the Cryptographic Coprocessor

After you set up your Cryptographic Coprocessor, you can begin writing programs to make use of your
Cryptographic Coprocessor's cryptographic functions. This section is mainly for IBM i application use of
the Cryptographic Coprocessor.

Note: Many of the pages in this section include one or more program examples. Change these programs
to suit your specific needs. Some require that you change only one or two parameters while others require
more extensive changes. For security reasons, IBM recommends that you individualize these program
examples rather than using the default values provided.

Logging on or off of the Cryptographic Coprocessor

You can log on or off the Cryptographic Coprocessor by working with role-restricted IBM i APIs.

Logging on

You need to log on only if you wish to use an API that uses an access control point that is not enabled in
the default role. Log on with a profile that uses a role that has the access control point you want to use
enabled.

After you log on to your Cryptographic Coprocessor, you can run programs to utilize the cryptographic
functions for your Cryptographic Coprocessor. You can log on by writing an application that uses the
Logon_Control (CSUALCT) API verb.

Logging off

When you have finished with your Cryptographic Coprocessor, you should log off of your Cryptographic
Coprocessor. You can log off by writing an application that uses the Logon_Control (CSUALCT) API verb.

Note:

Read the “Code license and disclaimer information” on page 234 for important legal information
Related concepts

Creating AES, DES, and PKA keys

You can create Advanced Encryption Standard (AES), Data Encryption Standard (DES), and Public key
algorithm (PKA) keys. You can create AES keys and store them in an AES keystore. You can create DES
keys and store them in a DES keystore. You can create PKA keys and store them in a PKA keystore. The
AES, DES, and PKA keys can be created by writing IBM i programs.

Example: ILE C program for logging on to your Cryptographic Coprocessor
Change this IBM i ILE C program example to suit your needs for logging on to your Cryptographic
Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values

provided.

R e e T */
/* Log on to the card using your profile and passphrase. */

/* */
/* */
/* COPYRIGHT 5769-SS1, 5722-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these program. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for «/
/* these programs and files. */
/* */

Cryptography 101

/* Note: This verb is more fully described in Chapter 2 of

/* IBM CCA Basic Services Reference and Guide

/* (SC31-8609) publication.

/*

/* Parameters:

/* none.

/*

/* Example:

/* CALL PGM(LOGON)

/*

/*

/* Note: This program assumes the card with the profile is
/* already identified either by defaulting to the CRPO1
/* device or by being explicitly named using the

/* Cryptographic_Resource_Allocate verb. Also this

/* device must be varied on and you must be authorized
/* to use this device description.

/*

/*

/* Use these commands to compile this program on the system:
/* ADDLIBLE LIB(QCCA)

/* CRTCMOD MODULE (LOGON) SRCFILE(SAMPLE)

/* CRTPGM PGM(LOGON) MODULE(LOGON) BNDSRVPGM(QCCA/CSUALCT)

/* Note: Authority to the CSUALCT service program in the
/* QCCA library is assumed.

/* The Common Cryptographic Architecture (CCA) verb used is
/* Logon_Control (CSUALCT).

#include "csucincl.h" /* header file for CCA Cryptographic
/* Service Provider

f#include <stdio.h>

#include <string.h>

#include <stdlib.h>

R L
/* standard return codes

J R R e
#define ERROR -1

#define OK 0

#define WARNING 4

int main(int argc, char xargv[])

1

1l
(o]

long return_code
long reason_code = 0;

long exit_data_length = 2;
char exit_data[4];

char rule_array[2][8];
long rule_array_count = 2;

char profile[8];

long auth_parm_length;
char auth_parm[4];
long auth_data_length;
char auth_data[256];

/* set rule array keywords
memcpy (rule_array, "LOGON PPHRASE ", 16);

/* Check for correct number of parameters
if (argc < 3)

printf("Usage: CALL LOGON (profile 'pass phrase')\n");
return(ERROR) ;

102 IBM i: Cryptography

*/

*/
*/

*/

*/

/* Set profile and pad out with blanks
memset (profile, ' ', 8);
if (strlen(argv[1]) > 8)

printf("Profile is limited to 8 characters.\n");
return (ERROR) ;

b
memcpy (profile, argv[1], strlen(argv[l1]));

/* Authentication parm length must be 0 for logon
auth_parm_length = 0;

/* Authentication data length is length of the pass-phrase
auth_data_length = strlen(argv[2]);

/* invoke verb to log on to the card */

CSUALCT(&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *)rule_array,
profile,
&auth_parm_length,
auth_parm,
&auth_data_length,
argv[2]);

if (return_code != 0K)

printf("Log on failed with return/reason codes %1d/%ld\n\n",
return_code, reason_code);
¥
else
printf("Logon was successful\n");

*/

*/

*/

Example: ILE RPG program for logging on to your Cryptographic Coprocessor
Change this IBM i ILE RPG program example to suit your needs for logging on to your Cryptographic

Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values

provided.

D R R R R R R R R R B S S S T S S S T
Dx LOGON

D*

Dx Log on to the Cryptographic Coprocessor.

Dx

D*

Dx COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

Dx

Dx This material contains programming source code for your

Dx consideration. These example has not been thoroughly

Dx tested under all conditions. 1IBM, therefore, cannot

Dx guarantee or imply reliability, serviceability, or function
Dx of these programs. All programs contained herein are

Dx provided to you "AS IS". THE IMPLIED WARRANTIES OF

Dx MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Dx ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
Dx these programs and files.

Dx

D*

Dx Note: Input format is more fully described in Chapter 2 of
D* IBM CCA Basic Services Reference and Guide

D% (SC31-8609) publication.

Dx

Dx Parameters: Profile

Dx* Pass-phrase

Cryptography 103

D* Example:
Dx CALL PGM(LOGON) PARM(PROFILE PASSPRHASE)

Dx Use these commands to compile this program on the system:
D% CRTRPGMOD MODULE(LOGON) SRCFILE(SAMPLE)
D* CRTPGM PGM(LOGON) MODULE (LOGON)

Dx BNDDIR(QCCA/QC6BNDDIR)

Dx

Dx Note: Authority to the CSUALCT service program in the
D* QCCA library is assumed.

Dx

Dx The Common Cryptographic Architecture (CCA) verbs used are
Dx Cryptographic_Facilty_Control (CSUACFC)

Dx This program assumes the card with the profile is

Dx already identified either by defaulting to the CRPO1
Dx device or by being explicitly named using the

Dx Cryptographic_Resource_Allocate verb. Also this

Dx device must be varied on and you must be authorized
D* to use this device description.

D ||
5 5 5 5 55 5 5 55 5 55 535 505 55 55 5 5

D* Declare variables for CCA SAPI calls

D e

D* *%x Return code

DRETURNCODE S 9B 0

D* *% Reason code

DREASONCODE S 9B 0

D* *% Exit data length

DEXITDATALEN S 9B 0O

D* *% Exit data

DEXITDATA S

D* *% Rule array count

DRULEARRAYCNT S 9B 0

Dx* *% Rule array

DRULEARRAY S 16

D* *% Userid parm

DUSERID S 8

D* *% Authentication parameter length
DAUTHPARMLEN S 9B 0 INZ(O)

Dx* *% Authentication parameter
DAUTHPARM S 10

D* *% Authentication data length
DAUTHDATALEN S 9B 0 INZ(0)

D* *% Authentication data

DAUTHDATA S 50

Dx

D ||

Dx Prototype for Logon Control (CSUALCT)
D R R R R R R R R R R R B B R R S T

DCSUALCT PR

DRETCODE 9B 0O

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DUSR 8

DATHPRMLEN 9B 0

DATHPRM 10

DATHDTALEN 9B 0

DATHDTA 50

D*

D ||
Dx Declares for sending messages to job log

D ||
D 5 55 5 3 30 53 555 55 55 505 55 5
Dx *% Declares for sending messages to the

D* *% job log using the QMHSNDPM API

D 5 5 5 0 0 5 55 5 5 5 5 55 55 55 5905 55 5
DMSG S 75 DIM(2) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 75

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(')
DMESSAGEFILE S 21 INZ ('

DMSGKEY S 4 INZ (' ")

DMSGTYPE S 10 INZ('*INFO ")
DSTACKENTRY S 10 INZ('* ")

104 IBM i: Cryptography

DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(O)

D*

[0 3 R R R R R R R R R B E R R R R e T
Cx START OF PROGRAM *
Cx *
(0 e T *
© *ENTRY PLIST

© PARM USERID

C PARM AUTHDATA

(08 e e *
Cx Set the keywords in the rule array *
(0 R e L *
© MOVEL "LOGON ' RULEARRAY

C MOVE 'PPHRASE ' RULEARRAY

C Z-ADD 2 RULEARRAYCNT

(08 e e *
Cx Get the length of the passphrase *
(08 R e e e T R *
© EVAL AUTHDATALEN = 9%LEN(%TRIM(AUTHDATA))
Cx

[0 3 R R R R R R R R B S E E R R R e e
Cx Call Logon Control SAPI

C ||
C CALLP CSUALCT (RETURNCODE:
© REASONCODE :
© EXITDATALEN:
C EXITDATA:

© RULEARRAYCNT :
© RULEARRAY :

C USERID:

© AUTHPARMLEN :
© AUTHPARM:

C AUTHDATALEN:
© AUTHDATA)
Chmmmmmmmmmmmmmm e *

Cx Check the return code *

(0 R *

© RETURNCODE IFGT 0

Cx* T *

Cx * Send error message @ *

C* D e *

C MOVE MSG (1) MSGTEXT

© MOVE RETURNCODE FAILRETC

© MOVE REASONCODE FAILRSNC

C EXSR SNDMSG

Cx

© ELSE

Cx* T *

Cx * Send success message *

C* D *

C MOVE MSG(2) MSGTEXT

© EXSR SNDMSG

Cx

C ENDIF

Cx

© SETON

Cx*

C ||

C*x Subroutine to send a message
Chhhkkhkhkhhhkhkhhkhkhkhhkhhhhkhkhhkhkhhhkhkhhhkhkhhkhkhhhkhhhkhkhkhhkhkhkhkhkhkhhkkhkkkkrxkkkx

C SNDMSG BEGSR

© CALL 'QMHSNDPM*

C PARM MESSAGEID

C PARM MESSAGEFILE
© PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

© PARM STACKENTRY
C PARM STACKCOUNTER
C PARM MSGKEY

© PARM ERRCODE

C ENDSR

Cx

Kk
CSUALCT failed with return/reason codes 9999/9999'
The request completed successfully

Cryptography 105

Example: ILE C program for logging off of your Cryptographic Coprocessor
Change this IBM i ILE C program example to suit your needs for logging off of your Cryptographic
Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values

provided.
J R */
/> Log off the Cryptographic CoProcessor */
/* */
/* */
/* COPYRIGHT 5769-SS1, 5722-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these program. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for x/
/* these programs and files. */
/* */
/* */
/* Note: This verb is more fully described in Chapter 2 of */
/* IBM CCA Basic Services Reference and Guide */
/* (SC31-8609) publication. */
/* */
/* Parameters: */
/* none. */
/* */
/* Example: */
/* CALL PGM(LOGOFF) */
/* */
/* */
/* Note: This program assumes the card with the profile is */
/* already identified either by defaulting to the CRPO1 */
/* device or by being explicitly named using the */
/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* */
/* Use these commands to compile this program on the system: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (LOGOFF) SRCFILE(SAMPLE) */
/* CRTPGM PGM(LOGOFF) MODULE(LOGOFF) BNDSRVPGM(QCCA/CSUALCT) */
/* */
/* Note: Authority to the CSUALCT service program in the */
/* QCCA library is assumed. */
/* */
/* The Common Cryptographic Architecture (CCA) verb used is */
/* Logon_Control (CSUALCT). */
/* */
R R e */
#include "csucincl.h" /* header file for CCA Cryptographic */
/* Service Provider */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
R R e L T */
/* standard return codes */
R R */
#define ERROR -1
#define OK 0

int main(int argc, char xargv[])

/* standard CCA parameters */

106 IBM i: Cryptography

long return_code = 0;
long reason_code = 0;
long exit_data_length
char exit_data[4];

char rule_array[2][8];
long rule_array_count

1l
N

1l
[

char profile[8];

long auth_parm_length;

char = auth_parm = " “;

long auth_data_length = 256;

char auth_data[300];

/* set rule array keywords to log off */
memcpy (rule_array, "LOGOFF ",8);

rule_array_count = 1;

/* Both Authenication parm and data lengths must be 0 */
auth_parm_length = 0;
auth_data_length = 0;

/* Invoke verb to log off the Cryptographic CoProcessor */

CSUALCT(&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char x)rule_array,
profile,
&auth_parm_length,
auth_parm,
&auth_data_length,
auth_data);

if (return_code != 0K)
printf("Log off failed with return/reason codes %1d/%ld\n\n",
return_code, reason_code);
return (ERROR) ;
else

printf("Log off successful\n");
return(0K) ;

Example: ILE RPG program for logging off of your Cryptographic Coprocessor
Change this IBM i ILE RPG program example to suit your needs for logging off of your Cryptographic
Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values
provided.

D* LOGOFF

Dx Log off from the Cryptographic Coprocessor.

Dx COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

Dx This material contains programming source code for your

Dx consideration. These example has not been thoroughly

Dx tested under all conditions. IBM, therefore, cannot

Dx guarantee or imply reliability, serviceability, or function
Dx of these programs. All programs contained herein are

D*x provided to you "AS IS". THE IMPLIED WARRANTIES OF

D* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Cryptography 107

Dx ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
Dx these programs and files.

D*

Dx

Dx Note: Input format is more fully described in Chapter 2 of
D* IBM CCA Basic Services Reference and Guide

Dx (SC31-8609) publication.

D*

D* Parameters: None

Dx

D% Example:

Dx CALL PGM(LOGOFF)

Dx

Dx Use these commands to compile this program on the system:

CRTRPGMOD MODULE (LOGOFF) SRCFILE(SAMPLE)
CRTPGM PGM(LOGOFF) MODULE (LOGOFF)
BNDDIR(QCCA/QC6BNDDIR)

Note: Authority to the CSUALCT service program in the

D* QCCA library is assumed.

Dx

Dx The Common Cryptographic Architecture (CCA) verbs used are
Dx Cryptographic_Facilty_Control (CSUACFC)

Dx

Dx This program assumes the card with the profile is

Dx already identified either by defaulting to the CRPO1
Dx device or by being explicitly named using the

Dx Cryptographic_Resource_Allocate verb. Also this

Dx device must be varied on and you must be authorized
D* to use this device description.

D ||
5 5 5 5 55 5 5 55 5 55 35 505 55 55 5 5

D* Declare variables for CCA SAPI calls

Dk= = = === === = m e m e e e e e e oo

D* *%x Return code

DRETURNCODE S 9B 0

D* *% Reason code

DREASONCODE S 9B 0

D* *% Exit data length

DEXITDATALEN S 9B 0

D* *% Exit data

DEXITDATA S

D* *% Rule array count

DRULEARRAYCNT S 9B 0

D* *% Rule array

DRULEARRAY S 16

D* *% Userid parm

DUSERID S 8

D* *% Authentication parameter length
DAUTHPARMLEN S 9B 0 INZ(O)

Dx* *% Authentication parameter

DAUTHPARM S 8

D* *% Authentication data length
DAUTHDATALEN S 9B 0 INZ(0)

D* *% Authentication data

DAUTHDATA S 8

Dx

D ||

Dx Prototype for Logon Control (CSUALCT)
D R R R R R R R R R R R B e S R T S T

DCSUALCT PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DUSR 8

DATHPRMLEN 9B 0

DATHPRM 8

DATHDTALEN 9B 0

DATHDTA 8

DA = == === = = == e e e e e e e e e e e e e mmemememmemememeo———--o--
D* *% Declares for sending messages to the
Dx *% job log using the QMHSNDPM API

DA = == === = = = e e e e e e e e e e e e mmmmemememmemememe————--o--
DMSG S 75 DIM(2) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0@ INZ(75)

D DS

DMSGTEXT 1 75

DFAILRETC 41 44

DFAILRSNC 46 49

108 IBM i: Cryptography

DMESSAGEID
DMESSAGEFILE
DMSGKEY
DMSGTYPE
DSTACKENTRY
DSTACKCOUNTER
DERRCODE
DBYTESIN
DBYTESOUT

D*

21

10
10
9B 0

oununnnnm

1 4B 0
5 8B 0

INZ ('

INZ('

INZ (')
INZ('*INFO
INZ('*
INZ(2)

INZ(0)
INZ(0)

)

~——

Cx START OF PROGRAM

Cx

(R e L T T *
Cx Set the keywords in the rule array
(08 e L T *

MOVEL '"LOGOFF '
Z-ADD 1

RULEARRAY
RULEARRAYCNT

(®
*

CALLP CSUALCT

Cx Check the return code *

OO
*

o000
* X *

C
C
©
Cx
C
Cx*
Cx
Cx
©
C
Cx
©
Cx
C
Cx*

MOVE
MOVE
MOVE
EXSR

MSG (1)
RETURNCODE
REASONCODE
SNDMSG

MOVE
EXSR

MSG(2)
SNDMSG

ENDIF
SETON

(RETURNCODE :
REASONCODE :
EXITDATALEN:
EXITDATA:
RULEARRAYCNT :
RULEARRAY :
USERID:
AUTHPARMLEN :
AUTHPARM:
AUTHDATALEN:
AUTHDATA)

MSGTEXT
FAILRETC
FAILRSNC

MSGTEXT

LR

Chkkkkkhkhkhkkkhkhkhkkhkhhkhkhkhkhhhkhkhkkhkhkhkhkkhkkhkhkhkkhkkkhkhkkkkkkhkhkkkkkx

Cx Subroutine

to send a message

C ||
C SNDMSG BEGSR

C CALL 'QMHSNDPM'

© PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

© PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY

© PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

© ENDSR

Cx

*%

CSUALCT failed with return/reason codes 9999/9999'
The request completed successfully

Cryptography 109

Query status or request information

You can query the Cryptographic Coprocessor on your system running the IBM i operating system to
determine characteristics such as which algorithms are enabled, the key lengths it supports, the status of
the master key, the status of cloning, and the clock setting.

The easiest and fastest way to query the Cryptographic Coprocessor is to use the Cryptographic
Coprocessor configuration web-based utility. Click on Display configuration and then select a device,
then select items you want to display.

If you would prefer to write your own application to query the Coprocessor, you can do so by using
the Cryptographic_Facility_Query (CSUACFQ) API verb. The IBM PCI Cryptographic Coprocessor CCA

Basic Services Reference and Guide"d¥ describes the Cryptographic_Facility_Query (CSUACFQ) security
application programming interface, the types of information that you can request, and the format of the
information that is returned.

Example: Querying the status of your Cryptographic Coprocessor
Change this IBM i program example to suit your needs for querying the status of your Cryptographic
Coprocessor. This program uses the STATEID and TIMEDATE keywords.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values

provided.
JE R e e R R */
/* Query the card for status or other information. */

;* This sample program uses the STATEID and TIMEDATE keywords. *;
* *
/* */
;* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007 *;
* *
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. 1IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/> of these program. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for =x/
/* these programs and files. */
/* */
/* */
/* Note: This verb is more fully described in Chapter 2 of */

/* IBM CCA Basic Services Reference and Guide */

/* (SC31-8609) publication. */
/* */
/* Parameters: */
/* none. */
/* */
/* Example: */
/* CALL PGM(QUERY) */
/* */
/* */
/* Note: This program assumes the device to use is */
/* already identified either by defaulting to the CRPO1 */
/* device or by being explicitly named using the */
/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* Use these commands to compile this program on the system: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (QUERY) SRCFILE(SAMPLE) */
/* CRTPGM PGM(QUERY) MODULE (QUERY) BNDSRVPGM (QCCA/CSUACFQ) */
/* */
/* Note: Authority to the CSUACFQ service program in the */
/* QCCA library is assumed. */
/* */
/* The Common Cryptographic Architecture (CCA) verb used is */
/* Cryptographic_Facility_Query (CSUACFQ). */
/* */
R e */

110 IBMi: Cryptography

http://www.ibm.com/security/cryptocards/pciecc/library.shtml
http://www.ibm.com/security/cryptocards/pciecc/library.shtml

#include "csucincl.h" /* header file for CCA Cryptographic
/* Service Provider

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

R R e

/* standard return codes

R L T E T T

#tdefine ERROR -1
tdefine OK 0
#define WARNING 4

#define IDSIZE 16 /* number of bytes in environment ID
#define TIMEDATESIZE 24 /* number of bytes in time and date

int main(int argc, char *argv([])

]

long return_code = 0;

long reason_code = 0;

long exit_data_length = 2;
char exit_data[4];

char rule_array[2][8];
long rule_array_count = 2;
char rule_array2[3][8];

/* fields unique to this sample program

*/
*/

*/
*/

*/
*/

R */

long verb_data_length = 0; /% currently not used by this verb
char * verb_data = " ";

/* set keywords in the rule array
memcpy (rule_array, "ADAPTERAISTATEID ",16);
/* get the environment ID from the card
CSUACFQ(&return_code,

&reason_code,

&exit_data_length,

exit_data,

&rule_array_count,

(char *)rule_array,

&verb_data_length,

verb_data);
if ((return_code == OK) | (return_code == WARNING))
printf("Environment ID was successfully returned.\n");
printf("Return/reason codes ");
printf("%1ld/%ld\n\n", return_code, reason_code);
printf("ID = %.16s\n", rule_array);
b
else
printf("An error occurred while getting the environment ID.\n");
printf("Return/reason codes ");

printf("%1ld/%ld\n\n", return_code, reason_code);

/% return(ERROR) =*/;
b

/* set count to number of bytes of returned data

*/

*/

*/

Cryptography 111

rule_array_count = 2;

return_code = 0;
reason_code = 0;
/* set keywords in the rule array */

memcpy (rule_array2, "ADAPTERITIMEDATE",16) ;
/* get the time from the card */

CSUACFQ(&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *)rule_array2?,
&verb_data_length,
verb_data);

if ((return_code == OK) | (return_code == WARNING))
grintf(“Time and date was successfully returned.\n");
printf("Return/reason codes ");

printf("%1ld/%1ld\n\n", return_code, reason_code);
printf ("DATE %.8s\n", rule_array2);

printf("TIME = %.8s\n", &rule_array2[1]);
printf("DAY of WEEK = %.8s\n", &rule_array2[2]);
3t

else

printf("An error occurred while getting the time and date.\n");
printf("Return/reason codes ");

printf("%1ld/%ld\n\n", return_code, reason_code);

return (ERROR) ;
3

Example: Requesting information from your Cryptographic Coprocessor
Change this IBM i program example to suit your needs for requesting information from your Cryptographic
Coprocessor. This program prompts the user for the second required keyword.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values

provided.

R e */
/* Query the card for status or other information. */

/* This sample program prompts the user for the second required */
/* keyword. (ADAPTER1 keyword is assumed.) */
/* */
/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. 1IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these program. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for x/
/* these programs and files. */
/* */
/* */
/* Note: This verb is more fully described in Chapter 2 of */
/* IBM CCA Basic Services Reference and Guide */

/* (SC31-8609) publication. */
/* */

112 IBMi: Cryptography

/* Parameters: */

/* char * keyword2 upto 8 bytes */
/* */
/* Example: */
/* CALL PGM(CFQ) TIMEDATE */
/* */
/* */
/* Note: This program assumes the device to use is */
/* already identified either by defaulting to the CRPO1 */
/* device or by being explicitly named using the */
/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* Use these commands to compile this program on the system: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (CFQ) SRCFILE(SAMPLE) */
/* CRTPGM PGM(CFQ) MODULE(CFQ) BNDSRVPGM(QCCA/CSUACFQ) */
/* */
/* Note: Authority to the CSUACFQ service program in the */
/* QCCA library is assumed. */
/* */
/* The Common Cryptographic Architecture (CCA) verb used is */
/* Cryptographic_Facility_Query (CSUACFQ). */
/* */
R L L T */
#include "csucincl.h" /* header file for CCA Cryptographic */

/* Service Provider */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

R L L L T */
/* standard return codes */
J R R e e T */
#define ERROR -1
#define OK 0
#tfdefine WARNING 4

int main(int argc, char xargv[])

1

long return_code = 0;

long reason_code = 0;

long exit_data_length = 2;
char exit_data[4];

char rule_array[18][8];
long rule_array_count = 2;

/* fields unique to this sample program
LR R e T

long verb_data_length = 0; /% currently not used by this verb
char * verb_data = " ";

int 1i;

/* check the keyboard input

if (arge !'= 2)

printf("You did not enter the keyword parameter.\n");
printf("Enter one of the following: STATCCA, STATCARD, ");
printf ("STATDIAG, STATEXPT, STATMOFN, STATEID, TIMEDATE\n");

return(ERROR) ;
¥

%f ((strlen(axgv[1]) > 8) | (strlen(axgv[l]) < 7))

printf("Your input string is not the right length.\n");

x/
x/

x/

Cryptography 113

printf("Input keyword must be 7 or 8 characters.\n");
printf("Enter one of the following: STATCCA, STATCARD, ");
printf ("STATDIAG, STATEXPT, STATMOFN, STATEID, TIMEDATE\n");

return (ERROR) ;

/* set keywords in the rule array */
memcpy (rule_array, "ADAPTER1 ",16);
memcpy (&rule_array[1], argv[1l], strlen(argv[l]));
/* get the requested data from the card */
CSUACFQ(&return_code,

&reason_code,

&exit_data_length,

exit_data,

&rule_array_count,

(char *)rule_array,

&verb_data_length,

verb_data);

if ((return_code == OK) | (return_code == WARNING))
1

printf("Requested data was successfully returned.\n");
printf("Return/reason codes ");
printf("%1ld/%ld\n\n", return_code, reason_code);
printf("%s data = ", argv[1]);
for (i = 0; i < 8 % rule_array_count; i++)
printf("%c", rule_array[i / 8][i % 8]);
printf("\n");
b
else
printf("An error occurred while getting the requested data.\n");
printf("You requested %s\n", argv[1]);
printf("Return/reason codes ");
printf("%1ld/%ld\n\n", return_code, reason_code);

return (ERROR) ;

Initializing a keystore file

A keystore file is a database file that stores operational keys, that is keys encrypted under the master key.
This topic provides information on how to keep records of your DES and PKA keys on systems running the
IBM i operating system.

You can initialize two different types of keystores for your Cryptographic Coprocessor. The Cryptographic
Coprocessor uses one type to store PKA keys and the other to store DES keys. You need to initialize a
keystore file if you plan to store keys in it. Even though retain keys are not stored in a keystore file, one

is still required because CCA searches for labels in key store files before it searches for labels in the
COProcessor.

The CCA CSP creates a DB2° keystore file, if one does not already exist. If a keystore file already exists,
the CCA CSP deletes the file and recreates a new one.

To initialize a keystore, you can use the Cryptographic Coprocessor configuration utility. Click on Manage
configuration and then click on AES keys, DES keys, or PKA keys depending upon what keystore file you
wish to initialize. With the utility, you can only initialize a file if it does not already exist.

114 IBMi: Cryptography

If you would rather write your own application to initialize a keystore file, you can do so by using the
KeyStore_Initialize (CSNBKSI) API verb.

After you create a keystore for your Cryptographic Coprocessor, you can generate DES and PKA keys to
store in your keystore files.

Related concepts

Cryptography concepts

This topic provides a basic understanding of cryptographic function and an overview of the cryptographic
services for the systems running the IBM i operating system.

Creating AES, DES, and PKA keys

You can create Advanced Encryption Standard (AES), Data Encryption Standard (DES), and Public key
algorithm (PKA) keys. You can create AES keys and store them in an AES keystore. You can create DES
keys and store them in a DES keystore. You can create PKA keys and store them in a PKA keystore. The
AES, DES, and PKA keys can be created by writing IBM i programs.

Example: ILE C program for initializing a keystore for your Cryptographic Coprocessor
Change this IBM i ILE C program example to suit your needs for initializing a keystore for your
Cryptographic Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values
provided.

R e */
/* Create keystore files for PKA keys. */
/* */
/* COPYRIGHT 5769-SS1 (c) IBM Corp 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function =/
/* of these programs. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* EXPRESSLY DISCLAIMED. IBM provides no program services for =/
/* these programs and files. */
/* */
/* Parameters: */
/* Qualified File Name */
/* */
/* Examples: */
/* CALL PGM(INZPKEYST) PARM('QGPL/PKAFILE") */
/* */
/* */
/* Use the following commands to compile this program: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (INZPKEYST) SRCFILE(SAMPLE) */
/* CRTPGM PGM(INZPKEYST) MODULE(INZPKEYST) + */
/% BNDSRVPGM (QCCA/CSNBKST) */
/* */
/* Note: authority to the CSNBKSI service program in the */
/* QCCA library is assumed. */
/* */
/* Common Cryptographic Architecture (CCA) verbs used: */
/* Keystore_Initialize (CSNBKSI) */
/* */
e e */

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "csucincl.h" /* header file for CCA Cryptographic
Service Provider */

int main(int argc, char *argv([])

{
R e */
/* standard return codes */

Cryptography 115

#define ERROR -1

#define OK 0

R R e */
/* standard CCA parameters */
R */

long return_code;
long reason_code;
long exit_data_length;
char exit_data[2];
char rule_array[4][8];
long rule_array_count;

R L T E T T */
/* fields unique to this sample program */
J R R e */

long file_name_length;
unsigned char description[4];
long description_length = 0;
unsigned char masterkey[8];

e e i R */
/* Check if file name was passed */
R e */

if(arge < 2)

printf("File name was not specified.\n");
return ERROR;

b

J R R R e T */
/> £ill in parameters for Keystore_Initialize */
R e T */

rule_array_count = 2;

memcpy ((char*)rule_array, "CURRENT PKA ",16);

file_name_length = strlen(argv[1l]);
R L */
/* Create keystore file */
J R R e T */

CSNBKSI (&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(charx)rule_array,
&file_name_length,
argv[1],
&description_length,
description,
masterkey) ;

R e e T */

/* Check the return code and display the result */

R R e */
if (return_code != 0)

printf("Request failed with return/reason codes: %d/%d\n",
return_code, reason_code);
return ERROR;
3

else

printf("Key store file created\n");
return OK;

3

3

Example: ILE RPG program for initializing a keystore for your Cryptographic
Coprocessor

Change this IBM i ILE RPG program example to suit your needs for initializing a keystore for your
Cryptographic Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

116 IBMi: Cryptography

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values
provided.

D* INZPKAST

Dx Create keystore files for PKA keys.

Dx COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

Dx This material contains programming source code for your

Dx consideration. These example has not been thoroughly

Dx tested under all conditions. 1IBM, therefore, cannot

D% guarantee or imply reliability, serviceability, or function

Dx of these programs. All programs contained herein are

Dx provided to you "AS IS". THE IMPLIED WARRANTIES OF

Dx MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Dx ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
Dx these programs and files.

D*

Dx

Dx Note: Input format is more fully described in Chapter 2 of
Dx* IBM CCA Basic Services Reference and Guide

Dx (SC31-8609) publication.

Dx

Dx Parameters: None

Dx

D% Example:
Dx CALL PGM(INZPKEYST) ('QGPL/PKAKEYS')

Dx Use these commands to compile this program on the system:
D* CRTRPGMOD MODULE (INZPKAST) SRCFILE(SAMPLE)
Dx CRTPGM PGM(INZPKEYST) MODULE (INZPKEYST)

Dx BNDSRVPGM (QCCA/CSNBKSTI)

Dx

Dx Note: Authority to the CSNBKSI service program in the
D* QCCA library is assumed.

Dx

Dx The Common Cryptographic Architecture (CCA) verbs used are
Dx Key_Store_Initialize (CSNBKSI)

Dx

D ||
5 5 5 5 5 55 5 5 55 5 55 35 505 55 55 5
D* Declare variables for CCA SAPI calls

D e
D* *% Return code

DRETURNCODE S 9B 0

Dx *%* Reason code

DREASONCODE S 9B 0O

D* *% Exit data length
DEXITDATALEN S 9B 0

D* *% Exit data

DEXITDATA S 4

D* *% Rule array count
DRULEARRAYCNT S 9B 0

D* *% Rule array

DRULEARRAY S 16

D* *% File name length
DFILENAMELEN S 9B 0

D* *% File name

DFILENAME S 21

D* *% Description length
DDESCRIPLEN S 9B 0

Dx *%* Description

DDESCRIP S 16

D* *% Master key part

DMASTERKEY S 24

Dx

D ||

Dx Prototype for Key_Store_Initialize (CSNBKSI)
Dk ok sk ok sk ke ok ok ok ok ke ok ok ok ok ok e ko ok ko ok ook ok ok ok ke ook ok ok ok ok ook ok ok ok ok ook ok sk ko ok ok ok

DCSNBKSI PR

DRETCODE 9B 0
DRSNCODE 9B 0
DEXTDTALEN 9B 0
DEXTDTA 4
DRARRAYCT 9B 0
DRARRAY 16

Cryptography 117

DFILENMLN 9B 0

DFILENM 21

DDSCPLN 9B 0

DDSCRP 16

DMSTRKY 24

D*

D= === e e e e e e oo
D* *% Declares for sending messages to the

D* *% job log using the QMHSNDPM API

D= === e e e e e e oo
DMSG S 75 DIM(2) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0@ INZ(75)

D DS

DMSGTEXT 1 75

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ (')
DMESSAGEFILE S 21 INZ('

DMSGKEY S 4 INZ(' ")

DMSGTYPE S 10 INZ('*INFO)
DSTACKENTRY S 10 INZ('*)
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B © INZ(O)

DBYTESOUT 5 8B 0 INZ(0)

D*

[0 3 R R R R B E E R R a2
Cx START OF PROGRAM *
C ||
© *ENTRY PLIST

C PARM FILENAME

(O *
Cx Set the keyword in the rule array *
(08 i L L *
o MOVEL ' PKA ' RULEARRAY

© MOVE "CURRENT ' RULEARRAY

C Z-ADD 2 RULEARRAYCNT

(R e L T T *
Cx Set the description length *
(08 e L T *
o Z-ADD 0 DESCRIPLEN

(0 i L T *
Cx Find the file name length *
(O R e LT T *
© EVAL FILENAMELEN = %LEN(%TRIM(FILENAME))
C ||
Cx Call Key Store Initialize SAPI *
[0 3 R R R R R B E R R S T T S S 2
C CALLP CSNBKSI (RETURNCODE :

© REASONCODE :

© EXITDATALEN:

C EXITDATA:

© RULEARRAYCNT :

© RULEARRAY :

C FILENAMELEN:

© FILENAME:

© DESCRIPLEN:

C DESCRIP:

© MASTERKEY)

[0 I *

Cx * Check the return code =

Ck hemmmmmmmmmmmmmmmmmmeeeoo *

© RETURNCODE IFGT 4

Cx R *

Cx * Send failure message *

Cx R *

C MOVEL MSG (1) MSGTEXT

© MOVE RETURNCODE FAILRETC

© MOVE REASONCODE FAILRSNC

C EXSR SNDMSG

© RETURN

© ENDIF

Cx

Cx e T e *

Cx * Send success message *

Cx R *

© MOVEL MSG(2) MSGTEXT

© EXSR SNDMSG

Cx

© SETON

Cx

C ||

118 IBM i: Cryptography

C*x Subroutine to send a message

C ||
C SNDMSG BEGSR

C CALL "QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY

C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

*%
CSNBKSI failed with return/reason codes 9999/9999.
The file was succesully initialized.

Creating AES, DES, and PKA keys

You can create Advanced Encryption Standard (AES), Data Encryption Standard (DES), and Public key
algorithm (PKA) keys. You can create AES keys and store them in an AES keystore. You can create DES
keys and store them in a DES keystore. You can create PKA keys and store them in a PKA keystore. The
AES, DES, and PKA keys can be created by writing IBM i programs.

You can use your Cryptographic Coprocessor to create three types of cryptographic keys.

« AES keys base their content on a symmetric algorithm. This means that cryptography uses the same key
value to encrypt and decrypt data. Use AES keys to encrypt or decrypt files.
To create AES keys with your Cryptographic Coprocessor, write a program.

 DES keys base their content on a symmetric algorithm. This means that cryptography uses the same
key value to encrypt and decrypt data. Use DES keys to encrypt or decrypt files, working with PINS, and
managing keys.

To create DES keys with your Cryptographic Coprocessor, write a program.

« PKA keys base their content on an asymmetric algorithm, meaning that cryptography uses different keys
for encryption and decryption. Use PKA keys for signing files with digital signatures and for managing
keys.

To create PKA keys with your Cryptographic Coprocessor, write a program.

Note: If you choose to use the program examples provided, change them to suit your specific needs. For
security reasons, IBM recommends that you individualize these program examples rather than using the
default values provided.

Store your AES, DES, and PKA keys in the keystore file you created for them using a keystore file. You
can also store PKA keys in your Cryptographic Coprocessor. See the information at http://www.ibm.com/

security/cryptocards/pciecc/library.shtmH'} for more information on storing your keys in the hardware.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

Related concepts

Logging on or off of the Cryptographic Coprocessor
You can log on or off the Cryptographic Coprocessor by working with role-restricted IBM i APIs.

Encrypting or decrypting a file
One of the more practical uses for the Cryptographic Coprocessor on your system running the IBM i
operating system is encrypting and decrypting data files.

Generating and verifying a digital signature

You can protect data from undetected changes by including a proof of identity value called a digjtal
signature. You can write programs to generate and verify a digital signature for the Cryptographic
Coprocessor on your system running the IBM i operating system.

Initializing a keystore file

Cryptography 119

http://www.ibm.com/security/cryptocards/pciecc/library.shtml
http://www.ibm.com/security/cryptocards/pciecc/library.shtml

A keystore file is a database file that stores operational keys, that is keys encrypted under the master key.
This topic provides information on how to keep records of your DES and PKA keys on systems running the
IBM i operating system.

Related tasks

Working with PINs

A financial institution uses personal identification numbers (PINs) to authorize personal financial
transactions for its customers. A PIN is similar to a password except that a PIN consists of decimal digits
and is normally a cryptographic function of an associated account number. You can use the Cryptographic
Coprocessor of your system running the IBM i operating system to work with PINs.

Example: Creating a DES key with your Cryptographic Coprocessor
Change this IBM i program example to suit your needs for creating a DES key with your Cryptographic
Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values

provided.

R e e */
/* Generate DES keys in keystore. */

/* */
/* COPYRIGHT 5769-SS1 (c) IBM Corp 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function =/
/* of these programs. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* EXPRESSLY DISCLAIMED. IBM provides no program services for =/
/* these programs and files. */
/* */
/* Parameters: */
/* char * key label, 1 to 64 characters *

/* char x keystore name, 1 to 21 characters in form 'lib/file' x/

/* (optional, see second note below) */
/* */
/* Examples: */
/* CALL PGM(KEYGEN) PARM('TEST.LABEL.1') */
/* */
/* CALL PGM(KEYGEN) PARM('MY.OWN.LABEL' 'QGPL/MYKEYSTORE') */
/* */
/* Note: This program assumes the device you want to use is */
/* already identified either by defaulting to the CRPO1 */
/* device or has been explicitly named using the */
/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* If the keystore name parameter is not provided, this */

/* program assumes the keystore file you will use is */

/* already identifed either by being specified on the */
/* cryptographic device or has been previously named */
/* using the Key_Store_Designate verb. Also you must be */
/* authorized to add and update records in this file. */
/* */
/* Use the following commands to compile this program: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (KEYGEN) SRCFILE(SAMPLE) */
/* CRTPGM PGM(KEYGEN) MODULE(KEYGEN) + */
/* BNDSRVPGM (QCCA/CSUAKSD QCCA/CSNBKRC QCCA/CSNBKGN) */
/* */
/* Note: authority to the CSUAKSD, CSNBKRC and CSNBKGN service */
/* programs in the QCCA library is assumed. */
/* */
/* Common Cryptographic Architecture (CCA) verbs used: */
/* Key_Store_Designate (CSUAKSD) */
/* DES_Key_Record_Create (CSNBKRC) */
/* Key_Generate (CSNBKGN) */
/* */
R e L T */

120 IBM i: Cryptography

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "csucincl.h" /* header file for CCA Cryptographic
Service Provider */
int main(int argc, char xargv[])
R L T E T T */
/* standard return codes */
J R R e e T */
#define ERROR -1
#define OK 0
R R e */
/* standard CCA parameters */
R R R LR T */
long return_code;
long reason_code;
long exit_data_length;
char exit_data[2];
long rule_array_count;
J R R R T */
/* fields unique to this sample program */
R e R T */
long file_name_length;
char key_label[64];
R L L L T */
/* See if the user wants to specify which keystore file to use */
J R R e e T */

if(argec > 2)
$

file_name_length = strlen(argv([2]);

if((file_name_length > 0) &&
(file_name_length < 22))
i

rule_array_count = 1;

CSUAKSD (&return_code,

&reason_code,

&exit_data_length,

exit_data,

&rule_array_count,

"DES ", /* rule_array, we are working with
DES keys in this sample program =x/

&file_name_length,

argv([2]); /* keystore file name */
if (return_code != 0)
1
printf("Key store designate failed for reason %d/%d\n\n",
return_code, reason_code);
return ERROR;
else
printf("Key store designated\n");
printf ("SAPI returned %1d/%ld\n", return_code, reason_code);
?
¥
else

printf("Key store file name is wrong length");
return ERROR;

3
¥
else; /* let keystore file name default x/
R e */
/* Create a record in keystore */
R R LR T */
memset (key_label, ' ', 64);

Cryptography 121

memcpy (key_label, argv[1], strlen(argv([1]));

CSNBKRC (&return_code,
&reason_code,
&exit_data_length,
exit_data,
key_label);

if (return_code != 0)
printf("Record could not be added to keystore for reason %d/%d\n\n",
return_code, reason_code);
return ERROR;
else

printf("Record added to keystore\n");
printf ("SAPI returned %1d/%ld\n", return_code, reason_code);

J R e T T */
/* Generate a key */
R e T */

CSNBKGN (&return_code,
&reason_code,
&exit_data_length,

exit_data,

"op ", /* operational key is requested */
"SINGLE ", /* single length key requested */
"DATA ", /* Data encrypting key requested x/

0 /* second value must be blanks when
key form requests only one key */

"\o", /> key encrypting key is null for
operational keys */
"\0", /* key encrypting key is null since
only one key is being requested */
key_label, /* store generated key in keystorex/
"\0"); /* no second key is requested */
if (return_code != 0)

printf("Key generation failed for reason %d/%d\n\n",
return_code, reason_code);
return ERROR;
3

else

1
printf("Key generated and stored in keystore\n");
printf ("SAPI returned %1d/%ld\n\n", return_code, reason_code);
return OK;

Example: Creating a PKA key with your Cryptographic Coprocessor
Change this IBM i program example to suit your needs for creating a PKA key with your Cryptographic
Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values

provided.
R e */
/* Generate PKA keys in keystore. */
/* */
/* COPYRIGHT 5769-SS1 (c) IBM Corp 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function =*/
/* of these programs. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */

/* EXPRESSLY DISCLAIMED. IBM provides no program services for =/

122 IBM i: Cryptography

/* these programs and files. */

/* */
/* Parameters: */
/* char * key label, 1 to 64 characters */
/* */
/* Examples: */
/* CALL PGM(PKAKEYGEN) PARM('TEST.LABEL.1') */
/* */
/* Note: This program assumes the card you want to load is */
/* already identifed either by defaulting to the CRPO1 */
/* device or has been explicitly named using the */
/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device descrption. */
/* */
/* This program also assumes the keystore file you will */

/* use is already identifed either by being specified on %/
/* the cryptographic device or has been explicitly named */
/* using the Key_Store_Designate verb. Also you must be */
;* authorized to add and update records in this file. *;
* *

/* Use the following commands to compile this program: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (PKAKEYGEN) SRCFILE(SAMPLE) */
/* CRTPGM PGM(PKAKEYGEN) MODULE (PKAKEYGEN) + */
;* BNDSRVPGM (QCCA/CSNDKRC QCCA/CSNDPKG) *;
* *

/* Note: authority to the CSNDKRC and CSNDPKG service programs */
/* in the QCCA library is assumed. */
/* */
/* Common Cryptographic Architecture (CCA) verbs used: */
/* PKA_Key_Record_Create (CSNDKRC) */
/* PKA_Key_Generate (CSNDPKG) */
/* */
R e */

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "csucincl.h" /* header file for CCA Cryptographic
Service Provider

int main(int argc, char xargv[])

J R R e

/* standard return codes

R R e T

##fdefine ERROR -1
#define OK 0

R R e e e L e E T T

/* standard CCA parameters

J R e T T

long return_code;
long reason_code;
long exit_data_length;
char exit_data[2];
char rule_array[4][8];
long rule_array_count;

J R R R T T

/* fields unique to this sample program

R e R
char key_label[64]; /* identify record in keystore to

hold generated key
#pragma pack (1)

typedef struct rsa_key_token_header_section {
char token_identifier;
char version;
short key_token_struct_length;
char reserved_1[4];
t rsa_key_token_header_section;

typedef struct rsa_private_key_1024_bit_section {
char section_identifier;
char version;
short section_length;

*/

*/
*/

*/
*/

*/

Cryptography 123

char hash_of_private_key[20];
short reserved_1;
short master_key_verification_pattezn;
char key_format_and_security;
char reserved_2;
char hash_of_key_name[20];
char key_usage_flag;
char zrest_of_private_key[312];
t rsa_private_key_1024_bit_section;

typedef struct rsa_public_key_section {
char section_identifer;
char version;
short section_length;
short reserved_1;
short exponent_field_length;
short modulus_length;
short modulus_length_in_bytes;
char exponent;
% rsa_public_key_section;

struct §
rsa_key_token_header_section rsa_header;
rsa_private_key_1024_bit_section 1zrsa_private_key;
rsa_public_key_section rsa_public_key;

t key_token;

struct §

short modlen;
short modlenfld;
short pubexplen;
shoxrt prvexplen;
long pubexp;

t prvPubl;

#pragma pack ()
long key_struct_length;
long zero = 0;
long key_token_length;

long regen_data_length;
long generated_key_id_length;

J R R e */
/* Create record in keystore */
R e */

rule_array_count
key_token_length
memset (key_label, , 64);

memcpy (key_label, argv[1], strlen(argv[1]));

nn
[oNo)

CSNDKRC (&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
"\o", /* rule_array */
key_label,
&key_token_length,
"\0"); /* key token */

if (return_code != 0)
printf("Record could not be added to keystore for reason %d/%d\n\n",

return_code, reason_code);
return ERROR;

¥
else
1
printf("Record added to keystore\n");
printf ("SAPI returned %1d/%ld\n", return_code, reason_code);
3
J R R e */
/* Build a key token, needed to generate PKA key */
R e */

memset (&key_token, 0X00, sizeof(key_token));

key_token.rsa_header.token_identifier = OX1E; /% external token */
key_token.rsa_header.key_token_struct_length = sizeof(key_token);

124 IBM i: Cryptography

key_token.rsa_private_key.section_identifier =
0X02; /* RSA private key «/
key_token.rsa_private_key.section_length =
sizeof(rsa_private_key_1024_bit_section);
key_token.rsa_private_key.key_usage_flag = 0X80;

key_token.rsa_public_key.section_identifer = 0X04; /% RSA public key */
key_token.rsa_public_key.section_length =

sizeof(rsa_public_key_section);
key_token.rsa_public_key.exponent_field_length = 1;
key_token.rsa_public_key.modulus_length = 512;
key_token.rsa_public_key.exponent = 0x03;

key_token_length = sizeof(key_token);
printf("Key token built\n");

J R R e e T */
/* Generate a key */
R e */

rule_array_count = 1;
regen_data_length = 0;

/* key_token_length = 64; x/
generated_key_id_length = 2500;

CSNDPKG (&return_code,
&reason_code,
&exit_data_length,

exit_data,
&rule_array_count,
"MASTER ", /* rule_array */
®en_data_length,
"\o", /* regeneration_data, none needed */
&key_token_length, /* skeleton_key_token_length */
(char *x)&key_token, /* skeleton_key_token built above */
"\0", /* transport_id, only needed for
XPORT keys */
&generated_key_id_length,
key_label); /* generated_key_id, store generated
key in keystore */

if (return_code != 0)

printf("Key generation failed for reason %d/%d\n\n",
return_code, reason_code);
return ERROR;

else

i
printf("Key generated and stored in keystore\n");
printf ("SAPI returned %1d/%ld\n\n", return_code, reason_code);
return OK;

Encrypting or decrypting a file

One of the more practical uses for the Cryptographic Coprocessor on your system running the IBM i
operating system is encrypting and decrypting data files.

You can use one of these cryptographic methods to protect a file:

« Treat the whole file as a string of bytes (which is the method the program example uses).
« Encrypt each record or part of each record.

Write your own program protect data in many different formats, not just data files.

Related concepts

Creating AES, DES, and PKA keys

You can create Advanced Encryption Standard (AES), Data Encryption Standard (DES), and Public key
algorithm (PKA) keys. You can create AES keys and store them in an AES keystore. You can create DES
keys and store them in a DES keystore. You can create PKA keys and store them in a PKA keystore. The
AES, DES, and PKA keys can be created by writing IBM i programs.

Cryptography 125

Example: Encrypting data with your Cryptographic Coprocessor
Change this IBM i program example to suit your needs for encrypting data with your Cryptographic
Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values

provided.
J R R e */
/* */
/* Sample C program for enciphering data in a file. */
/* */
/* COPYRIGHT 5769-SS1 (c) IBM Corp 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. 1IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/> of these programs. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* EXPRESSLY DISCLAIMED. IBM provides no program services for */
/* these programs and files. */
/* */
/* Parameters: */
/* char = key label, 1 to 64 characters */
/* char x input file name, 1 to 21 characters (lib/file) */
/* char * output file name, 1 to 21 characters (lib/file) */
/* */
/* Example: */
/* CALL PGM(ENCFILE) PARM('MY.KEY.LABEL' 'QGPL/MYDATA' + */
/* "QGPL/CRYPTDATA') */
/* */
/> Note: This program assumes the device you want to use is */
/* already identified either by defaulting to the CRPO1 */
/* device or has been explicitly named using the */
/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* This program assumes the keystore file you will use is */
/* already identifed either by being specified on the */
/* cryptographic device or has been previously named */
/* using the Key_Store_Designate verb. Also you must be */
/* authorized to add and update records in this file. */
/* */
/* The output file should NOT have key fields since all */
/* data in the file will be encrypted and therefore trying */
/* to sort the data will be meaningless. */
/* (This is NOT checked by the program) */
/* */
/* Use the following commands to compile this program: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (ENCFILE) SRCFILE(SAMPLE) */
/* CRTPGM PGM(ENCFILE) MODULE(ENCFILE) + */
/* BNDSRVPGM (QCCA/CSNBENC) */
/* */
/* Note: authority to the CSNBENC service program in the */
/* QCCA library is assumed. */
/* */
/* Common Cryptographic Architecture (CCA) verbs used: */
/* Encipher (CSNBENC) */
/* */
R L EE R */
R L TR T T */
/* Retrieve various structures/utilities that are used in program. */
J R R e */
#include <stdio.h> /* Standard I/0 header. */
f##include <stdlib.h> /* General utilities. */
#include <stddef.h> /* Standard definitions. */
#include <string.h> /* String handling utilities. */
#include "csucincl.h" /* header file for CCA Cryptographic

Service Provider */

126 IBM i: Cryptography

J R R e */
/* Declares for working with files. */
R e R T */
##include <xxfdbk.h> /* Feedback area structures. */
#include <recio.h> /* Record I/0 routines */
_RFILE *dbfptr; /* Pointer to database file. */
_RFILE *dbfptre; /* Pointer to database file. */
_RIOFB_T *db_fdbk; /* I/0 Feedback - data base file */
_XXOPFB_T *db_opfb;

_XXOPFB_T *db_opfbe;

J R R e e T */
;* Declares for working with user space objects. *;
B T T *

#include "qusptrus.h"
#include "quscrtus.h"
#include "qusdltus.h"
#tdefine USSPC_ATTR "PF "
jtfdefine USSPC_INIT_VAL 0x40
#define USSPC_AUTH "xEXCLUDE "
#define USSPC_TEXT "Sample user space"
jtfdefine USSPC_REPLACE "xYES "
char space_name[21] = "PLAINTXT QTEMP "s /*x Name of user
space for plain text */
char cipher_name[21] = "CIPHER QTEMP "s /*x Name for user
space containing ciphertext */
struct § /* Error code structure required for =/
/* the User Space API's. */
int in_len; /* the length of the error code. */
int out_len; /* the length of the exception data. *x/
char excp_id[7]; /* the Exception ID. */
char rev; /* Reserved Field. */
char excp_data[120]; /* the output data associated */
%t error_code; /* the exception ID. */
char ext_atr[11] = USSPC_ATTR; /* Space attribute */
char initial_val = USSPC_INIT_VAL;
/* Space initial value */
char auth[11] = USSPC_AUTH;
/* Space authority */
char desc[51] = USSPC_TEXT;
/* Space text */
char replace[11] = USSPC_REPLACE;
/*Space replace attributex/
J R R e T */
/* Start of mainline code. */
R e */
int main(int argc, char xargv[])
J R e e */
/* standard return codes */
R i */
##fdefine ERROR -1
#define OK 0
R L */
/* standard CCA parameters */
J R R e */

long return_code;
long reason_code;

long exit_data_length;

char exit_data[2];

long rule_array_count;

char *user_space_ptr;

char *user_space;

char *cipher_spc;

long file_bytes;

long i;

long il

char key_label[64];

long text_len, pad_character;
char initial_vector[8];

char chaining_vector[18];

Cryptography 127

R R */

/* Open database files. */
J R R e */
if (argc < 4) /* were the correct number
of parameters passed? */
{
printf("This program needs 3 parameters - ");

printf("key label, input file name, output file name\n");

return ERROR;

else

]

file_bytes = 0; /* Set initial number of
bytes to encipher to 0 %/

/* Open the input file. If the file pointer, dbfptr is not

NULL, then the file was successfully opened. */
if ((dbfptr = _Ropen(argv[2], "rr riofb=n"))
!'= NULL)
1
R L L T */
/* Determine the number of bytes that will be enciphered. */
J R R e T T */
db_opfb = _Ropnfbk(dbfptr); /* Get pointer to the File
open feedback area. */
file_bytes = db_opfb->num_records =*
db_opfb->pgm_record_len
+ 1; /* 1 is added to prevent an
end of space error */
j = db_opfb->num_records; /* Save number of recordsx/
R R LR EE R R */
/* Create user space and get pointer to it. */
J e e */
error_code.in_len = 136; /* Set length of error */
/* structure. */

QUSDLTUS (space_name,&error_code); /* Delete the user space
if it already exists. */

/* Create the plaintext user space object */
QUSCRTUS (space_name,ext_atr,file_bytes,
&initial_val,auth,
desc, replace,&error_code);

error_code.in_len = 48; /* Set length of error
structure */
QUSPTRUS (space_name, /* Retrieve a pointer to «/
(void *)&user_space, /* the user space. */

(charx)&error_code);

user_space_ptr = user_space; /* Make copy of pointer x/
error_code.in_len = 136; /* Set length of error */
/* structure. */
QUSDLTUS (cipher_name,&error_code); /* Delete cipher space
if already exists. */

/* Create ciphertext user space object x/
QUSCRTUS (cipher_name,ext_atr,
file_bytes,&initial_val,auth,
desc, replace,&error_code);

error_code.in_len = 48; /* Set length of error */

/* structure */

QUSPTRUS (cipher_name, /* Retrieve pointer to */

(void *)&cipher_spc, /* ciphertext user space */
(charx)&error_code);

R e e I */
/* Read file and fill space */
J R T */

for (i=1; i<=j; i++) /* Repeat for each record x/

128 IBM i: Cryptography

/* Read a record and place in user space. */
db_fdbk = _Rreadn(dbfptr, user_space_ptr,
db_opfb->pgm_record_len, __DFT);

/* Move the user space ahead the length of a record «/
user_space_ptr = user_space_ptr +
db_opfb->pgm_record_len;

%
if (dbfptr != NULL) /* Close the file. x/
_Rclose(dbfptr);
J e e */
/* Encrypt data in space */
J R e e */
memset ((char *)key_label,' ',64); /* Initialize key label
to all blanks. */
memcpy ((char *)key_label, /* Copy key label parm x/

argv[1],strlen(argv[1]));

text_len = file_bytes - 1;
rule_array_count = 1;

pad_character = 40;

exit_data_length = 0;
memset ((char *)initial_vector, '\0',8);

/* Encipher data in ciphertext user space */
CSNBENC (&return_code,

&reason_code,

&exit_data_length,

exit_data,

key_label,

&text_len,

user_space,

initial_vector,

&rule_array_count,

"CBC ", /* rule_array */

&pad_character,

chaining_vector,

cipher_spc);

if (return_code == 0) %

R e L L E R T R */
/* Open output file */
J e e */

if ((dbfptre = _Ropen(argv[3],
"wr riofb=n")) != NULL)

db_opfbe = _Ropnfbk(dbfptr); /* Get pointer to
the File open feedback
area. */

if(text_len % db_opfhe->pgm_record_len != 0)

1

printf("encrypted data will not fit into ");
printf("an even number of records\n");

if (dbfptre != NULL) /* Close the file. */
_Rclose(dbfptre);
T */
/* Delete both user spaces. */
K= === m e e e e e e memememeoo-- */

error_code.in_len = 136; /* Set length of
error structure. %/

QUSDLTUS (space_name,&error_code); /* Delete the
user space */

QUSDLTUS (cipher_name,&error_code); /* Delete
ciphertext space %/

return ERROR;

R e L R */

/* Write data from space to file. */

J R e e */
user_space_ptr = cipher_spc; /* Save pointer to

cipher space. */

j = text_len / db_opfbe->pgm_record_len; /x find
how many records
are needed to store

Cryptography 129

result in output
file */
for (i=1; i<=j; i++) /* Repeat for each
record */
{

/* Write data to output file %/
db_fdbk = _Rwrite(dbfptre, user_space_ptr,
db_opfbe->pgm_record_len);

/* Advance pointer ahead the length of a record x/
user_space_ptr = user_space_ptr +
db_opfbe->pgm_record_len;

3
if (dbfptre != NULL) /* Close the file x/
_Rclose(dbfptre);

1 /* end of open open
output file */
else

1
printf("Output file %s could not be opened\n",

argv[3]);
B */
/* Delete both user spaces. */
e */
error_code.in_len = 136; /* Set length of

error structure. =/
QUSDLTUS (space_name,&error_code); /* Delete the

user space */
QUSDLTUS (cipher_name,&error_code); /* Delete

ciphertext space */
return ERROR;

t /* If return code = 0 %/
else

printf("Bad return/reason code : %d/%d \n",
return_code, reason_code);

R */

/* Delete both user spaces. */

R e e e T */
error_code.in_len = 136; /* Set length of

error structure. %/
QUSDLTUS (space_name,&error_code); /* Delete the

user space */
QUSDLTUS(cipher_name,&error_code); /* Delete

ciphertext space */
return ERROR;

¥
R R e E R */
/* Delete both user spaces. */
J e */
error_code.in_len = 136; /* Set length of
error structure. %/
QUSDLTUS (space_name,&error_code) ; /* Delete the user
space */
QUSDLTUS (cipher_name,&error_code); /* Delete ciphertext
space */
t /* End of open
input file */

else
printf("Input file %s could not be opened\n", argv[2]);
return ERROR;

¥

return OK;

/* argv[] == null */

Working with PINs

A financial institution uses personal identification numbers (PINs) to authorize personal financial
transactions for its customers. A PIN is similar to a password except that a PIN consists of decimal digits

130 IBM i: Cryptography

and is normally a cryptographic function of an associated account number. You can use the Cryptographic
Coprocessor of your system running the IBM i operating system to work with PINs.

To work with PINs, write a program.

Related concepts

Creating AES, DES, and PKA keys

You can create Advanced Encryption Standard (AES), Data Encryption Standard (DES), and Public key
algorithm (PKA) keys. You can create AES keys and store them in an AES keystore. You can create DES
keys and store them in a DES keystore. You can create PKA keys and store them in a PKA keystore. The
AES, DES, and PKA keys can be created by writing IBM i programs.

Example: Working with PINs on your Cryptographic Coprocessor
Change this IBM i program example to suit your needs for working with PINs on your Cryptographic
Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values
provided.

Fx PINSAMPLE

Fx

Fx Sample program that shows the use of the appropriate

Fx CCA Security API (SAPI) verbs for generating and verifying
Fx PINS

Fx

Fx The keys are created by first building a key token

Fx and then importing key parts using Key_Part_Import.

Fx Four keys are created each with a different

Fx key type - PINGEN, PINVER, IPINENC, and OPINENC. The

Fx PINGEN key will be used to generate a Clear PIN with the
Fx Clear_PIN_Generate verb. The OPINENC key will be used

Fx to encrypt the PIN with the Clear_PIN_Encrypt verb.

Fx The Encrypted_PIN_Verify with verify that the PIN is good
Fx using the IPINENC key (to decrypt) and the PINVER key

Fx to verify the PIN.

Fx

Fx COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007

F*

Fx This material contains programming source code for your

Fx consideration. These example has not been thoroughly

Fx tested under all conditions. 1IBM, therefore, cannot

Fx guarantee or imply reliability, serviceability, or function
Fx of these programs. All programs contained herein are

Fx provided to you "AS IS". THE IMPLIED WARRANTIES OF

Fx MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
Fx ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
Fx these programs and files.

Fx

Fx

Fx Note: Input format is more fully described in Chapter 2 of
Fx IBM CCA Basic Services Reference and Guide

Fx (SC31-8609) publication.

F*

F* Parameters:

Fx none.

F*

F*x Example:

Fx CALL PGM(PINSAMPLE)

F*

Fx Use these commands to compile this program on the system:
Fx CRTRPGMOD MODULE (PINSAMPLE) SRCFILE (SAMPLE)

Fx CRTPGM PGM(PINSAMPLE) MODULE (PINSAMPLE)

Fx BNDSRVPGM (QCCA/CSNBKPI QCCA/CSNBPGN +

Fx QCCA/CSNBCPE QCCA/CSNBPVR)

F*

Fx Note: Authority to the CSNBKPI, CSNBPGN, CSNBCPE, and

Fx CSNBPVR service programs in the QCCA library is assumed.
F*

Fx The Common Cryptographic Architecture (CCA) verbs used are
Fx Key_Part_Import (CSNBKPI), Clear_ PIN_Generate (CSNBPGN),
Fx Clear_PIN_Encrypt (CSNBCPE), and Encrypted_PIN_Verify (CSNBPVR).

Cryptography 131

Fx
Fx Note: This program assumes the card you want to load is

F* already identifed either by defaulting to the CRPO1
Fx device or has been explicitly named using the

F* Cryptographic_Resource_Allocate verb. Also this

F* device must be varied on and you must be authorized
Fx to use this device descrption.

F*

R R R R R B R R R R R S S T S 2 T
Fx Declare parameters that are common to all of the CCA verbs

Fx
Fakkkkhhkhkhhhhhhkhkhhkhkhhhkhkhhhkhkhhkhkhhhkhhhkhkhkhhkhkhhkhkhhhkhkkhkkrkhkhkkkkkkkkx
DRETURNCODE S 9B 0

DREASONCODE S 9B 0

DEXITDATALEN S 9B 0

DEXITDATA S 4

DRULEARRAYCNT S 9B 0

DRULEARRAY S 16

Dx

D ||
Dx Declare Key tokens used by this program

Dx

D ||
DIPINKEY S 64

DOPINKEY S 64

DPINGENKEY S 64

DPINVERKEY S 64

DKEYTOKEN DS

DKEYFORM 1 1

DKEYVERSION 5 5

DKEYFLAG1 7 7

DKEYVALUE 17 32

DKEYCV 33 48

DKEYTVV 61 64B 0

DTOKENPART1 1 16

DTOKENPART2 17 32

DTOKENPART3 33 48

DTOKENPART4 49 64

DKEYTVV1 1 4B 0

DKEYTVV2 5 8B 0

DKEYTVV3 9 12B 0

DKEYTVV4 13 16B 0

DKEYTVV5 17 20B 0

DKEYTVV6 21 24B 0

DKEYTVV7 25 28B 0

DKEYTVV8 29 32B 0

DKEYTVV9 33 36B 0O

DKEYTVV10 37 40B 0

DKEYTVV11 41 44B 0

DKEYTVV12 45 48B 0

DKEYTVV13 49 52B 0

DKEYTVV14 53 56B 0

DKEYTVV15 57 60B O

D

D ||
Dx Declare parameters unique to Key_Part_Import

D

D ||
DCLEARKEY S 16

D*

D ||

Dx Declare parameters unique to Clear_PIN_Generate,
Dx Clear_PIN_Encrypt, and Encrypted_PIN_Verify

D ||
DPINLEN S 9B 0

DPINCKL S 9B 0

DSEQNUMBER S 9B 0

DCPIN S 16

DEPIN S 16

DPAN S 12

DDATAARRAY DS

DDECTABLE 1 16

DVALDATA 17 32

DCLRPIN 33 48

DPROFILE DS

DPINFORMAT 1 8

DFORMATCONTROL 9 16

DPADDIGIT 17 24

D*

D ||

Dx Declare variables used for creating a control vector and
Dx clear key.

132 IBMi: Cryptography

DBLDKEY
DLEFTHALF
DLEFTHALFA
DLEFTHALFB
DRIGHTHALF
Dx

Dx

Dk Kk kkkkkkkkhkhkkkkhhkhkhkhkkkkhkhkhkkkkkhkhkkkkkhkhkhkkkkkkkhkkkk

8B 0
16

Dx Prototype for Key Part Import (CSNBKPI)

DCSNBKPI PR

DRETCODE 9B 0
DRSNCODE 9B 0
DEXTDTALEN 9B 0
DEXTDTA 4
DRARRAYCT 9B 0
DRARRAY 16
DCLRKEY 16
DIMPKEY 64

D*

D ||

Dx Prototype for Clear PIN Generate (CSNBPGN)
Dxkkkkkkkkhkhkhhkhhkhkhkhkhkhkhkhkhkhhhhhkhhhhkhkhkkrkrkhkhkkkkkkkkhhhkk

DCSNBPGN PR

DRETCODE 9B 0
DRSNCODE 9B 0
DEXTDTALEN 9B 0
DEXTDTA 4

DPINGEN 64
DRARRAYCT 9B 0
DRARRAY 16

DPINL 9B 0
DPINCHKLEN 9B 0
DDTAARRY 48

DRESULT 16

Dx

D ||
D*x Prototype for Clear PIN Encrypt (CSNBCPE)
D ||
DCSNBCPE PR

DRETCODE 9B 0
DRSNCODE 9B 0
DEXTDTALEN 9B 0
DEXTDTA 4

DPINENC 64
DRARRAYCT 9B 0
DRARRAY 16

DCLRPIN 16
DPINPROFILE 24

DPANDATA 12

DSEQN 9B 0
DEPINBLCK 8

D

D ||

Dx Prototype for Encrypted PIN Verify (CSNBPVR)
Dok sk ok sk ok ok ok ok ok ok ok ok ok ok e okok ok sk ok ok ok ok ok ok ok ok ook ok ok ok ok ok ok ok ok ok ok ok sk ok ok

DCSNBPVR PR

DRETCODE 9B 0
DRSNCODE 9B 0
DEXTDTALEN 9B 0
DEXTDTA 4
DPINENC 64
DPINVER 64
DPINPROFILE 24
DPANDATA 12
DEPINBLCK 8
DRARRAYCT 9B 0
DRARRAY 16
DCHECKLEN 9B 0
DDTAARRAY 24

D*

D ||

Dx Declares for sending messages to job log

Dk kkkkkkkkhkhkhkkhkkhhkhkkhkhkkhhkhkkkhkkhhkhkkhkhkkhkhkhkkhkhhkhkkkkkkhkhkkkkkkkxikx

DFAILMESSAGE
DGOODMESSAGE
DFAILMSG
DFAILMSGTEXT
DFAILRETC
DFAILRSNC
DRETSTRUCT

S
S
DS
1
41
46
DS

50
50

50
44
49

Cryptography 133

DRETCODE 1 41 0

DSLASH 5 5 INZ('/")

DRSNCODE 6 9I 0

DFAILMSGLENGTH S 9B 0 INZ(49)

DGOODMSGLENGTH S 9B 0@ INZ(29)

DMESSAGEID S 7 INZ (')

DMESSAGEFILE S 21 INZ(' ")
DMSGKEY S 4 INZ(' ")

DMSGTYPE S 10 INZ('*INFO)

DSTACKENTRY S 10 INZ('* ")

DSTACKCOUNTER S 9B 0@ INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0O)

C EVAL FAILMESSAGE = '**xxxx%*% failed with return+
C /reason codes 9999/9999'

C EVAL GOODMESSAGE = 'PIN Validation was successful'

Chhkkhkhhhhkhkhkhkhkhkhkhkhkhkhhhkhhhhkhkkrkrkhkhkhkkkkkk
Cx START OF PROGRAM

C*
Chhkkhkhhhhkhkhkhkhkhkhkhkhkhkhhhkhhhhkhkkrkrkhkhkhkkkkkk
Cx Build a PINGEN key token

C*
Chhkkkhhhhkhkhkhkkhkhkhkhkhhhhhkhhkhhkhkkrkrkhkhkkkkkkk
Cx Zero out the key token to start wit
C*

*kkkkkkkkkkkkkkkkhkkkkkkkk
*
*
*kkkkkkkkkkkkkkkkkkhkkkkkk

*kkkkkkkkkkkkhkkkkhkkkhkkkkk

h

C Z-ADD 0 KEYTVV1

© Z-ADD 0 KEYTVV2

© Z-ADD 0 KEYTVV3

C Z-ADD 0 KEYTVV4

© MOVE TOKENPART1 TOKENPART2
© MOVE TOKENPART1 TOKENPART3
C MOVE TOKENPART1 TOKENPART4
Cx

Cx Set the form, version, and flag byte

Cx*

© BITON '7' KEYFORM

© BITON ‘67" KEYVERSION
C BITON 1 KEYFLAG1
Cx

Cx The control vector for a PINGEN key that has the key part
Cx flag set is (in hex):

Cx

C* 00227EQ0 03480000 00227EG0 03280000

Cx*

Cx If each 4 byte hex part is converted to decimal you get:
Cx

C* 2260480 55050240 2260480 52953088

Cx

Cx Build the control vector by placing the decimal number in
Cx the appropriate half of the control vector field.

C ||
C Z-ADD 2260480 LEFTHALFA
C Z-ADD 55050240 LEFTHALFB
© MOVEL LEFTHALF KEYCV

C Z-ADD 2260480 LEFTHALFA
C Z-ADD 52953088 LEFTHALFB
© MOVE LEFTHALF KEYCV

Cx

Cx Calculate the Token Validation value by adding every 4 bytes
Cx and storing the result in the last 4 bytes.

Cx

C ADD KEYTVV1 KEYTVV

© ADD KEYTVV2 KEYTVV

© ADD KEYTVV3 KEYTVV

C ADD KEYTVV4 KEYTVV

© ADD KEYTVV5 KEYTVV

© ADD KEYTVV6 KEYTVV

C ADD KEYTVV7 KEYTVV

© ADD KEYTVV8 KEYTVV

© ADD KEYTVV9 KEYTVV

C ADD KEYTVV10 KEYTVV

© ADD KEYTVV11 KEYTVV

© ADD KEYTVV12 KEYTVV

C ADD KEYTVV13 KEYTVV

© ADD KEYTVV14 KEYTVV

© ADD KEYTVV15 KEYTVV

Cx*

Cx Copy token to PINGENKEY

Cx

C MOVE KEYTOKEN PINGENKEY
Cx

134 IBMi: Cryptography

Build a PINVER key token

The control vector for a PINVER key that
has the key part flag set is (in hex):
00224200 03480000 00224200 03280000
If each 4 byte hex part is converted to decimal you get:
2260480 55050240 2260480 52953088
Build the control vector by placing the decimal number in
the appropriate half of the control vector field.
Z-ADD 2245120 LEFTHALFA
Z-ADD 55050240 LEFTHALFB
MOVEL LEFTHALF KEYCV
Z-ADD 2245120 LEFTHALFA
Z-ADD 52953088 LEFTHALFB
MOVE LEFTHALF KEYCV

Calculate the Token Validation value by adding every 4 bytes

and storing the result in the last 4 bytes.
Z-ADD 0 KEYTVV
ADD KEYTVV1 KEYTVV
ADD KEYTVV2 KEYTVV
ADD KEYTVV3 KEYTVV
ADD KEYTVV4 KEYTVV
ADD KEYTVV5 KEYTVV
ADD KEYTVV6 KEYTVV
ADD KEYTVV7 KEYTVV
ADD KEYTVV8 KEYTVV
ADD KEYTVV9 KEYTVV
ADD KEYTVV10 KEYTVV
ADD KEYTVV11 KEYTVV
ADD KEYTVV12 KEYTVV
ADD KEYTVV13 KEYTVV
ADD KEYTVV14 KEYTVV
ADD KEYTVV15 KEYTVV

Copy token to PINVERKEY
MOVE KEYTOKEN PINVERKEY

Build an IPINENC key token

The control vector for an IPINENC key that
has the key part flag set is (in hex):

00215F00 03480000 00215F00 03280000
If each 4 byte hex part is converted to decimal you get:

2187008 55050240 2187008 52953088

OOOOOOO0O0O0

Build the control vector by placing the decimal number in
the appropriate half of the control vector field.

Z-ADD 2187008 LEFTHALFA

Z-ADD 55050240 LEFTHALFB

MOVEL LEFTHALF KEYCV

Z-ADD 2187008 LEFTHALFA

Z-ADD 52953088 LEFTHALFB

MOVE LEFTHALF KEYCV

Calculate the Token Validation value by adding every 4 bytes

and storing the result in the last 4 bytes.
Z-ADD (0] KEYTVV
ADD KEYTVV1 KEYTVV
ADD KEYTVV2 KEYTVV
ADD KEYTVV3 KEYTVV
ADD KEYTVV4 KEYTVV
ADD KEYTVV5 KEYTVV
ADD KEYTVV6 KEYTVV
ADD KEYTVV7 KEYTVV
ADD KEYTVV8 KEYTVV
ADD KEYTVV9 KEYTVV

Cryptography 135

ADD KEYTVV10 KEYTVV

ADD KEYTVV11 KEYTVV
ADD KEYTVV12 KEYTVV
ADD KEYTVV13 KEYTVV
ADD KEYTVV14 KEYTVV
ADD KEYTVV15 KEYTVV

Copy token to IPINENC
MOVE KEYTOKEN IPINKEY

Build an OPINENC key token

The control vector for an OPINENC key that
has the key part flag set is (in hex):

00247700 03480000 00247700 03280000
If each 4 byte hex part is converted to decimal you get:

2389760 55050240 2389760 52953088

Build the control vector by placing the decimal numbers in
the appropriate half of the control vector field.

Z-ADD 2389760 LEFTHALFA

Z-ADD 55050240 LEFTHALFB

MOVEL LEFTHALF KEYCV

Z-ADD 2389760 LEFTHALFA

Z-ADD 52953088 LEFTHALFB

MOVE LEFTHALF KEYCV

Calculate the Token Validation value by adding every 4 bytes

and storing the result in the last 4 bytes.
Z-ADD 0 KEYTVV
ADD KEYTVV1 KEYTVV
ADD KEYTVV2 KEYTVV
ADD KEYTVV3 KEYTVV
ADD KEYTVV4 KEYTVV
ADD KEYTVV5 KEYTVV
ADD KEYTVV6 KEYTVV
ADD KEYTVV7 KEYTVV
ADD KEYTVV8 KEYTVV
ADD KEYTVV9 KEYTVV
ADD KEYTVV10 KEYTVV
ADD KEYTVV11 KEYTVV
ADD KEYTVV12 KEYTVV
ADD KEYTVV13 KEYTVV
ADD KEYTVV14 KEYTVV
ADD KEYTVV15 KEYTVV

Copy token to OPINENC
MOVE KEYTOKEN OPINKEY

Cx

Cx
Cx
Cx
Cx
Cx

Clear key value for PINGEN/PINVER form will be:
01234567 01765432 01234567 01765432

The key will be imported into two parts that get exclusived
OR'ed together. This program uses as key parts:

00224466 00775533 00224466 00775533 and
01010101 01010101 01010101 01010101
Converting these to decimal results in
2245734 7820595 2245734 7820595 and
16843009 16843009 16843009 16843009
In this example, the left half of the key is the same as

the right half. PIN keys in CCA are double length keys.
However, some implementation of DES (including Cryptographic

136 IBM i: Cryptography

Cx Support/400) use single length keys for PINs. If both
Cx halves of a double are the same, then they produce the
Cx same output as a single length key, thereby allowing you
Cx to exchange data with non-CCA systems.

C ||
Cx Import the PINGEN key

C |||||||||||||||||||||||||

© MOVEL '"FIRST ' RULEARRAY

C Z-ADD 1 RULEARRAYCNT

C ||

Cx Build the next clear key part by placing the decimal numbers
Cx in the appropriate half of the clear key field.

C ||
C Z-ADD 16843009 LEFTHALFA
C Z-ADD 16843009 LEFTHALFB
C MOVEL LEFTHALF CLEARKEY
C MOVE LEFTHALF CLEARKEY

[0 3 R R R R R R B S E R R R R T e
Cx Call Key Part Import the first time for the PINGEN key

C ||
C CALLP CSNBKPI (RETURNCODE :

© REASONCODE :

© EXITDATALEN:

C EXITDATA:

© RULEARRAYCNT :

C RULEARRAY :

C CLEARKEY :

© PINGENKEY)

© RETURNCODE IFGT 4

C MOVEL 'CSNBKPI' FAILMESSAGE

© EXSR SNDFAILMSG

© SETON LR
C ENDIF

C ||
Cx Build the clear key part by placing the decimal number in
Cx the appropriate half of the clear key field.

C ||
© Z-ADD 2245734 LEFTHALFA

C Z-ADD 7820595 LEFTHALFB

© MOVEL LEFTHALF CLEARKEY

© MOVE LEFTHALF CLEARKEY

[0 3 R R R R R B B E E R R a2
Cx Call Key Part Import the second time for the PINGEN key

C ||
C MOVEL "LAST ' RULEARRAY

© CALLP CSNBKPI (RETURNCODE :

© REASONCODE :

C EXITDATALEN:

© EXITDATA:

© RULEARRAYCNT :

C RULEARRAY :

© CLEARKEY:

C PINGENKEY)

C RETURNCODE IFGT 4

© MOVEL 'CSNBKPI' FAILMESSAGE

© EXSR SNDFAILMSG

C SETON LR
© ENDIF

C ||
Cx Import the PINVER key *

C |||||||||||||||||||||||||

© MOVEL "FIRST ' RULEARRAY

C Z-ADD 1 RULEARRAYCNT

© Z-ADD 16843009 LEFTHALFA

© Z-ADD 16843009 LEFTHALFB

C MOVEL LEFTHALF CLEARKEY

© MOVE LEFTHALF CLEARKEY

Cx Call Key Part Import the first time for the PINVER key

C ||
© CALLP CSNBKPI (RETURNCODE:

C REASONCODE :

© EXITDATALEN:

C EXITDATA:

C RULEARRAYCNT :

© RULEARRAY :

C CLEARKEY :

C PINVERKEY)

© RETURNCODE IFGT 4

© MOVEL "CSNBKPI' FATILMESSAGE

C EXSR SNDFAILMSG

© SETON LR

Cryptography 137

Cx Build the clear key part by placing the decimal number in
Cx the appropriate half of the clear key field.

© Z-ADD 2245734 LEFTHALFA
© Z-ADD 7820595 LEFTHALFB
C MOVEL LEFTHALF CLEARKEY
© MOVE LEFTHALF CLEARKEY
C ||

Cx Call Key Part Import the second time for the PINVER key
C koo o e ek ok ok o e ek ok ok ok o ke ke ok ok ok o o ke ke ok ok ok o o ke ke ok ok ok o e ke ke ok ook o o ke ke okok ok o o e ok ok ok ok ok

C MOVEL "LAST ' RULEARRAY

C CALLP CSNBKPI (RETURNCODE:
C REASONCODE :
C EXITDATALEN:
C EXITDATA:

C RULEARRAYCNT :
C RULEARRAY :

C CLEARKEY :

C PINVERKEY)

C RETURNCODE IFGT 4

C MOVEL 'CSNBKPT' FAILMESSAGE
C EXSR SNDFAILMSG

C SETON

C ENDIF

[0 3 R R R R R R R B B S E R R R R e e
Cx Clear key value for IPINENC/OPINENC key pair will be:

C* 012332EF 01020408 012332EF 01020408

Cx*

Cx The key will be imported into two parts that get exclusived
Cx OR'ed together. This program uses as key parts:

g: 002233EE 00030509 002233EE 00030509 and
g: 01010101 01010101 01010101 01010101
g: Converting these to decimal results in
g: 2241518 197897 2241518 197897 and
g: 16843009 16843009 16843009 16843009

Cx Import the PINVER key *

Chhkkkkhhhhkhkkkhkhkhkkkkkhkkkhhkk

© MOVEL "FIRST ' RULEARRAY

C Z-ADD 1 RULEARRAYCNT

[0 3 R R R R B B S F E & * S T T T S S S
Cx Build the clear key part by placing the decimal number in

Cx the appropriate half of the clear key field.

[0 3 R R R R B B S F E E * S T T S S S

C Z-ADD 16843009 LEFTHALFA

© Z-ADD 16843009 LEFTHALFB

C MOVEL LEFTHALF CLEARKEY

C MOVE LEFTHALF CLEARKEY

C ||
Cx Call Key Part Import the first time for the IPINENC key

C ||
© CALLP CSNBKPI (RETURNCODE:

C REASONCODE :

C EXITDATALEN:

© EXITDATA:

C RULEARRAYCNT :

C RULEARRAY :

© CLEARKEY :

C IPINKEY)

C RETURNCODE IFGT 4

© MOVEL "CSNBKPI' FAILMESSAGE

C EXSR SNDFAILMSG

C SETON

© ENDIF

[0 3 R R R R B R R R R R R R R B S F E E & S T T S S S
Cx Build the clear key part by placing the decimal number in

Cx the appropriate half of the clear key field.

[0 3 R R R R R R R R B E R R R R E e e

C Z-ADD 2241518 LEFTHALFA
C Z-ADD 197897 LEFTHALFB
C MOVEL LEFTHALF CLEARKEY
C MOVE LEFTHALF CLEARKEY
C ||

138 IBM i: Cryptography

LR

LR

C MOVEL "LAST ' RULEARRAY

C CALLP CSNBKPI (RETURNCODE:

C REASONCODE :

C EXITDATALEN:
C EXITDATA:

C RULEARRAYCNT :
C RULEARRAY :

C CLEARKEY:

C IPINKEY)

C RETURNCODE IFGT 4

C MOVEL 'CSNBKPTI' FAILMESSAGE

C EXSR SNDFAILMSG

C SETON LR
C ENDIF

[0 3 R R R R R R B S E E R R S T S S 2
Cx Import the OPINENC key *

C |||||||||||||||||||||||||

© MOVEL '"FIRST ' RULEARRAY

© Z-ADD 1 RULEARRAYCNT

C ||

Cx Build the clear key part by placing the decimal number in
Cx the appropriate half of the clear key field.

© Z-ADD 16843009 LEFTHALFA
© Z-ADD 16843009 LEFTHALFB
C MOVEL LEFTHALF CLEARKEY
© MOVE LEFTHALF CLEARKEY
C ||

Cx Call Key Part Import the first time for the OPINENC key
Cokokok sk ok sk ok ok ok ok ok ok ook ok ok ok ke ook ok ok ok ok ok ok ok ook ok ok ook ok

C CALLP CSNBKPI (RETURNCODE :

C REASONCODE :

C EXITDATALEN:

C EXITDATA:

C RULEARRAYCNT :

C RULEARRAY :

C CLEARKEY :

C OPINKEY)

C RETURNCODE IFGT 4

C MOVEL 'CSNBKPI' FAILMESSAGE

C EXSR SNDFAILMSG

C SETON LR
C ENDIF

C ||

Cx Build the clear key part by placing the decimal number in
Cx the appropriate half of the clear key field.

© Z-ADD 2241518 LEFTHALFA
© Z-ADD 197897 LEFTHALFB
C MOVEL LEFTHALF CLEARKEY
© MOVE LEFTHALF CLEARKEY
C ||

Cx Call Key Part Import the second time for the OPINENC key
C ko ok

C MOVEL "LAST ' RULEARRAY

© CALLP CSNBKPI (RETURNCODE:

C REASONCODE :

C EXITDATALEN:

© EXITDATA:

C RULEARRAYCNT :

C RULEARRAY :

© CLEARKEY :

C OPINKEY)

C RETURNCODE IFGT 4

© MOVEL "CSNBKPI' FATILMESSAGE

C EXSR SNDFAILMSG

C SETON LR
© ENDIF

Cx

C --

Cx Generate a Clear PIN with CSNBPGN (Clear_PIN_Generate)
Cx Rule_array_count =1
Cx Rule_array = "IBM-PIN "
Cx PIN length = 8

Cx PIN Check length = 8
Cx Data array:

(Same as Crypto Support/400)
(But is ignored for IBM-PIN)

C* Dec. table set to 0123456789123456

Cx validation dta = 1111222233334444

Cx clear PIN = dignored

C ||
C Z-ADD 1 RULEARRAYCNT

© MOVEL '"IBM-PIN ' RULEARRAY

Cryptography 139

Z-ADD
Z-ADD
MOVEL
MOVE
MOVEL
MOVE

OOOO0O0O0

8
8
‘01234567
189123456
111112222
33334444

PINLEN
PINCKL
DECTABLE
DECTABLE
VALDATA
VALDATA

Cx Call Clear PIN Generate

Chkkkkkhkhkkkkhkhkhkhkhkkhkhkhkkhhhhkhkhkhkhkhkhkhkkhkkhkhkhkhkhkkkhkhkkkkkkhkkkkkkx

C CALLP CSNBPGN (RETURNCODE:

© REASONCODE :

C EXITDATALEN:
C EXITDATA:

© PINGENKEY :

C RULEARRAYCNT :
C RULEARRAY :

© PINLEN:

C PINCKL:

C DATAARRAY :

C CPIN)

C RETURNCODE IFGT 4

C MOVEL 'CSNBPGN' FAILMESSAGE

© EXSR SNDFAILMSG

C SETON

C ENDIF

C*

Cx

C ||

Cx Encrypt the clear PIN using CSNBCPE (Clear_PIN_Encrypt)

Cx Rule_array_count =1
Cx Rule_array = "ENCRYPT "
Cx PIN Profile = "3624

Cx PAN data is ignored

Cx Sequence number is ignored but set

NONE

to 99999 anyway

C ||
C Z-ADD 1 RULEARRAYCNT

C MOVEL "ENCRYPT ' RULEARRAY

C MOVEL 13624 ' PINFORMAT

C MOVE "NONE ' FORMATCONTROL

C MOVE ' F! PADDIGIT

C Z-ADD 99999 SEQNUMBER

Chkkkkkhkhkhkkkhhkhkhkhkhkhkhkhkhkhhhkhkhkhkhkhhkhkhkkhkhkhkhkkhkkkkhkhkkkkkkkhkkkkkx

Cx Call Clear PIN Encrypt

C ||
C CALLP CSNBCPE (RETURNCODE::

C REASONCODE :

© EXITDATALEN:
C EXITDATA:

C OPINKEY:

© RULEARRAYCNT :
C RULEARRAY :

C CPIN:

© PROFILE:

C PAN:

C SEQNUMBER:

© EPIN)

C RETURNCODE IFGT 4

C MOVEL 'CSNBCPE' FAILMESSAGE

© EXSR SNDFAILMSG

C SETON

C ENDIF

C*

Cx

C ||

Cx Verify encrypted PIN using CSNBPVR (Encrypted_PIN_Verify)
Cokokok sk ok ko ok sk ok ok e ko ok ok ok ok ke ook ok ok ok ok ook ok ook ok ok ook ok ook ok ok ook ok ook ok ok ok ok ok ok ok ok ok ok ok ok ook ok

MOVEL
CALLP

OOO0O0O0O0O0O0OO0O0O0O0O0n

RETURNCODE IFGT

140 IBM i: Cryptography

"IBM-PIN '

CSNBPVR

RULEARRAY

(RETURNCODE:
REASONCODE :
EXITDATALEN:
EXITDATA:
IPINKEY:
PINVERKEY:
PROFILE:
PAN:

EPIN:
RULEARRAYCNT :
RULEARRAY :
PINCKL:
DATAARRAY)

LR

LR

C MOVEL 'CSNBPVR' FAILMESSAGE

C EXSR SNDFAILMSG

C SETON LR
C ENDIF

C*
[0 R R R B B E R R R R = e 2
Cx Send successful completion message

C ||
C CALL "QMHSNDPM'

C PARM MESSAGEID

© PARM MESSAGEFILE

C PARM GOODMESSAGE

C PARM GOODMSGLENGTH

© PARM MSGTYPE

C PARM STACKENTRY

C PARM STACKCOUNTER

© PARM MSGKEY

C PARM ERRCODE

Cx

© SETON LR
Cx

C ||

C*x Subroutine to send a failure message
Chhkkkhhkkhkhhhkhkhhhkhhkhhkhkhhkhkhhhkhkhhkhkhkhhkhkhhhkhkhhhkhkhhkhkhkhkhkhkhhkkhkkhkkrxkkkx

C SNDFAILMSG BEGSR

C MOVE FAILMESSAGE FAILMSGTEXT
C MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FAILRSNC

C CALL "QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM FAILMSG

C PARM FAILMSGLENGTH
C PARM MSGTYPE

C PARM STACKENTRY

C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

Generating and verifying a digital signature

You can protect data from undetected changes by including a proof of identity value called a digjtal
signature. You can write programs to generate and verify a digital signature for the Cryptographic
Coprocessor on your system running the IBM i operating system.

Generating a digital signature

A digital signature relies on hashing and public key cryptography. When you sign data, you hash the data
and encrypt the results with your private key. The encrypted hash value is called a digital signature.

If you change the original data, a different digital signature will be generated.

To use a PKA key to sign a file, write a program.

Verifying a digital signature

Verifying a digital signature is the opposite of signing data. Verifying a signature will tell you if the signed
data has changed or not. When a digital signature is verified, the signature is decrypted using the public
key to produce the original hash value. The data that was signed is hashed. If the two hash values match,
then the signature has been verified. To do this, write a program.

Read the “Code license and disclaimer information” on page 234 for important legal information.
Related concepts

Creating AES, DES, and PKA keys

You can create Advanced Encryption Standard (AES), Data Encryption Standard (DES), and Public key
algorithm (PKA) keys. You can create AES keys and store them in an AES keystore. You can create DES
keys and store them in a DES keystore. You can create PKA keys and store them in a PKA keystore. The
AES, DES, and PKA keys can be created by writing IBM i programs.

Cryptography 141

Example: Signing a file with your Cryptographic Coprocessor
Change this IBM i program example to suit your needs for signing a file with your Cryptographic
Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security reasons,
IBM recommends that you individualize these program examples rather than using the default values

provided.

J R e e */
/> Description: Digitally signs a streams file. */
/* */
/* COPYRIGHT 5769-SS1 (c) IBM Corp 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function x/
/* of these programs. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* EXPRESSLY DISCLAIMED. IBM provides no program services for x/
/* these programs and files. */
/* */
/* Parameters: File to be signed */
/% File to contain signature */
/* Key label of key to use */
/* */
/* Examples: */
/* CALL PGM(SIGNFILE) PARM('file_to_sign' 'file_to_hold_sign' «/
/* 'key_label'); */
/* */
/* Note: The CCA verbs used in the this program are more fully */
/* described in the IBM CCA Basic Services Reference =*/

/* and Guide (SC31-8609) publication. */
/* */
/* Note: This program assumes the card you want to use is */
/* already identified either by defaulting to the CRPO1 */
/* device or has been explicitly named using the */
/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* Use the following commands to compile this program: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE(SIGNFILE) SRCFILE(SAMPLE) SYSIFCOPT(*IFSIO) %/
/* CRTPGM PGM(SIGNFILE) MODULE(SIGNFILE) */
/* BNDSRVPGM (QCCA/CSNDDSG QCCA/CSNBOWH) */
/* */
/* Note: authority to the CSNDDSG and CSNBOWH service programs */
/* in the QCCA library is assumed. */
/* */
/* Common Cryptographic Architecture (CCA) verbs used: */
/* Digital_Signature_Generate (CSNDDSG) */
/* One_Way_Hash (CSNBOWH) */
R L */

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "csucincl.h" /* header file for CCA Cryptographic
Service Provider */

J R e e */
/* standard return codes */
J R e */
#define ERROR -1
#define OK 0

int hash_file(long h_len, char h_out[128], FILE xt_in);

int main(int argc, char *argv([])

R L R LR T T T */
/* standard CCA parameters */
J R e */

long return_code;
long reason_code;

142 IBM i: Cryptography

long exit_data_length = OL;
char exit_data[2];

long rule_array_count = OL;
char rule_array[1][8];

J R L L */
/* parameters unique to this sample program */
B e e T T */

long PKA_private_key_identifier_length = 64;
char PKA_private_key_identifier[64];

long hash_length = 16L;
char hash[128];

long signature_field_length
long signature_bit_length =
char signature_field[256];
char key_label[64];

long key_token_length = 2500L;
char key_token[2500];

= 128L;
oL;

FILE xfile2sign;
FILE xsignature;
int hash_return;

if (argc < 2)

printf("Name of file to be signed is missing.");
return ERROR;

else if (argc < 3)

printf("Name of file where the signature should ");
printf("be written is missing.");
return ERROR;

else if (argc < 4)

printf("Key label for the key to be used for signing is missing.");
return ERROR;
b

if ((strlen(argv[3])) > 64)

printf("Invalid Key Label. Key label longer than 64.");
return ERROR;
¥

else

i

memset (PKA_private_key_identifier, ' ', 64);

memcpy (PKA_private_key_identifier, argv[3],strlen(argv([3]));
¥

/* Open the file that is being signed. %/
if ((file2sign = fopen(argv[1],"rb")) == NULL)

{

printf("Opening of file %s failed.",argv[1]);
return ERROR;

%

/* Obtain a hash value for the file. %/
hash_return = hash_file(hash_length, hash, file2sign);

/* Close the file. %/
fclose(file2sign);

if (hash_return != 0K)

printf("Signature generation failed due to hash error.\n");

else

1
/* Use CSNDDSG to generate the signature. x/
CSNDDSG (&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *) rule_array,
&PKA_private_key_identifier_length,

Cryptography 143

PKA_private_key_identifier,
&hash_length,

hash,
&signature_field_length,
&signature_bit_length,
signature_field);

3

if (return_code != 0)

printf("Signature generation failed with return/reason code %1d/%ld",

return_code, reason_code);

return ERROR;

3

else

printf("Signature generation was successful.");

printf("Return/Reason codes = %1d/%1ld\n", return_code, reason_code);
printf("Signature has length = %1ld\n",6signature_field_length);

signature = fopen(argv[2],"wb");
if (signature == NULL)

{
printf("Open of file %s failed.",argv[2]);

printf("Signature was not saved.");
return ERROR;
¥

fwrite(signature_field, 1, signature_field_length, signature);

fclose(signature);
printf("Signature was saved successfully in %s.", argv[2]);
return OK;
¥

3

int hash_file(long h_len, char h_out[128], FILE %t_in)

1
R */
/* standard CCA parameters */
R e e */

long return_code;
long reason_code;
long exit_data_length
char exit_data[2];
long rule_array_count = 2;
char rule_array[2][8];

1l
(o]

J R L R T */
/* parameters unique to this function */
R e */

long text_length;

char text[1024];

long chaining_vector_length = 128;
char chaining_vector[128];

long file_length;
fseek(t_in, ©, SEEK_END);
file_length = ftell(t_in);
rewind(t_in);

text_length = fread(text, 1, 1024, t_in);

memcpy (rule_array[0], "MD5 ", 8);
if (file_length <= 1024) {

memcpy (rule_array[1], "ONLY ", 8);
3

else §

memcpy (rule_array[1], "FIRST ", 8);
3

while (file_length > 0)

1

CSNBOWH (&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *) rule_array,
&text_length,
text,

144 IBM i: Cryptography

&chaining_vector_length,
chaining_vector,

&h_len,

h_out);

if (return_code != 0)
break;

printf("Hash iteration worked.\n");

file_length -= text_length;

if (file_length > 0)

i text_length = fread(text, 1, 1024, t_in);
if (file_length <= 1024) {

memcpy (rule_array[1], "LAST ", 8);
b
else {
memcpy (rule_array[1], "MIDDLE ", 8);
b

k

%

if (return_code != 0)

printf("Hash function failed with return/reason code %1d/%ld\n",

return_code, reason_code);
return ERROR;
3

else

i
printf("Hash completed successfully.\n");

printf("hash length = %1d\n", h_len);
printf("hash = %.32s\n\n", h_out);

return OK;

%

Example: Verifying a digital signature with your Cryptographic Coprocessor
Change this IBM i program example to suit your needs for verifying a digital signature with your
Cryptographic Coprocessor

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

Description: Verifies the digital signature of an IFS file

produced by the SIGNFILE sample program.
COPYRIGHT 5769-SS1 (c) IBM Corp 1999, 2007
This material contains programming source code for your

consideration. These examples have not been thoroughly
tested under all conditions. 1IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function
of these programs. All programs contained herein are
provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
EXPRESSLY DISCLAIMED. IBM provides no program services for
these programs and files.

Parameters: Signed file

File containing the signature
Key label of the key to use
Examples:
CALL PGM(VERFILESIG) PARM('name_of_signed_file' +
'name_of_file_w_signature' +
'key_label');
Note: The CCA verbs used in the this program are more fully

described in the IBM CCA Basic Services Reference x*/
and Guide (SC31-8609) publication.

Note: This program assumes the card you want to use is
already identified either by defaulting to the CRPO1
device or has been explicitly named using the
Cryptographic_Resource_Allocate verb. Also this

Cryptography 145

/* device must be varied on and you must be authorized */

/* to use this device description. */
/* */
/* Use the following commands to compile this program: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE(VERFILESIG) SRCFILE(SAMPLE) SYSIFCOPT(*IFSIO)x*/
/* CRTPGM PGM(SIGNFILE) MODULE(SIGNFILE) + */
;* BNDSRVPGM (QCCA/CSNDDSV QCCA/CSNBOWH) *;
* *
/* Note: authority to the CSNDDSV and CSNBOWH service programs */
/* in the QCCA library is assumed. */
/* */
/* Common Cryptographic Architecture (CCA) verbs used: */
/* Digital_Signature_Verify (CSNDDSV) */
/* One_Way_Hash (CSNBOWH) */
J R e e */

#include <stdlib.h>
f#include <stdio.h>
#include <string.h>

#include "csucincl.h" /* header file for CCA Cryptographic
Service Provider */
J R e */
/* standard return codes */
J R R */
#define ERROR -1
#define OK 0

int hash_file(long h_len, char h_out[128], FILE xt_in);

int main(int argc, char xargv[])

1
R e e T */
/* standard CCA parameters */
B e */

long return_code;

long reason_code;

long exit_data_length = OL;
char exit_data[2];

long rule_array_count = OL;
char rule_array[1][8];

J R L R T */
/* parameters unique to this sample program */
J R */

long PKA_public_key_identifier_length =
char PKA_public_key_identifier[64];
long hash_length = 16L;

char hash[128];

long signature_field_length;

char signature_field[256];

char key_label[64];

FILE xfile2verify;
FILE xsignature;
int hash_return;
if (argc < 2)

printf("Name of file to be verified is missing.\n");
return ERROR;

else if (argc < 3)

printf("Name of file containing the signature is missing.\n");
return ERROR;

b

else if (argc < 4)

{

printf("Key label for the key to be used for verification is missing.\n");
return ERROR;

b

if (strlen(argv[3]) > 64)

{

printf("Invalid Key Label. Key label longer than 64 bytes.");
return ERROR;

%

else

146 IBM i: Cryptography

1

memset (PKA_public_key_identifier, ' ', 64);

memcpy (PKA_public_key_identifier, argv[3], strlen(argv([3]));
3

/* Open the file that is being verified. x/
if ((file2verify = fopen(argv[1],"rb")) == NULL)
{

printf("Opening of file %s failed.",argv[1]);
return ERROR;
%

/* Obtain a hash value for the file. %/
hash_return = hash_file(hash_length, hash, file2verify);

/* Close the file. %/
fclose(file2verify);

if (hash_return != 0K)

printf("Signature verification failed due to hash error.\n");
return ERROR;
%

else

i

signature = fopen(argv([2],"rb");
if (signature == NULL)

{

printf("Open of signature file %s failed.",argv[2]);
printf("Signature was not verified.");
return ERROR;

3

memset (signature_field, ' ', 256);

fseek(signature, O, SEEK_END);
signature_field_length = ftell(signature);
rewind(signature);

fread(signature_field, 1, signature_field_length, signature);
fclose(signature);

/* Use CSNDDSV to verify the signature. x/
CSNDDSV (&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *) rule_array,
&PKA_public_key_identifier_length,
PKA_public_key_identifier,
&hash_length,
hash,
&signature_field_length,
signature_field);

%

if (return_code != 0)

printf("Signature verification failed with return/reason code %1d/%ld",
return_code, reason_code);

return ERROR;

b

else

printf("Signature verification was successful.");
printf("Return/Reason codes = %1d/%ld\n", return_code, reason_code);

int hash_file(long h_len, char h_out[128], FILE %t_in)
1

J R R R i */
/* standard CCA parameters */
J R e */

long return_code;
long reason_code;

Cryptography 147

long exit_data_length = 0;
char exit_data[2];

long rule_array_count = 2;
char rule_array[2][8];

J R L L */
/* parameters unique to this function */
B e */

long text_length;

char text[1024];

long chaining_vector_length = 128;
char chaining_vector[128];

long file_length;
fseek(t_in, ©, SEEK_END);
file_length = ftell(t_in);
rewind(t_in);

text_length = fread(text, 1, 1024, t_in);

memcpy (rule_array[0], "MD5 ", 8);
if (file_length <= 1024) {

memcpy (rule_array[1], "ONLY ", 8);
3

else §

memcpy (rule_array[1], "FIRST ", 8);
3

while (file_length > 0)

1

CSNBOWH (&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *) rule_array,
&text_length,
text,
&chaining_vector_length,
chaining_vector,
&h_len,
h_out);

if (return_code != 0)
break;

printf("Hash iteration worked.\n");
file_length -= text_length;

if (file_length > 0)

i text_length = fread(text, 1, 1024, t_in);

if (file_length <= 1024) {

memcpy (rule_array[1], "LAST ", 8);
3
else §
memcpy (rule_array[1], "MIDDLE ", 8);
3

¥

3

if (return_code != 0)

printf("Hash function failed with return/reason code %1d/%ld\n",
return_code, reason_code);

return ERROR;

3

else

1

printf("Hash completed successfully.\n");
printf("hash length = %1d\n", h_len);
printf("hash = %.32s\n\n", h_out);

return OK;

§

148 IBM i: Cryptography

Managing multiple Cryptographic Coprocessors

You can have up to eight Cryptographic Coprocessors per partition. The maximum number of
Cryptographic Coprocessors supported per system is dependent on the system mode. This topic provides
information on using multiple coprocessors with SSL in systems running the IBM i operating system.

Spreading the work across multiple Cryptographic Coprocessors and multiple jobs gives you better
performance provided that they are all configured the same. Only one Coprocessor (cryptographic device
description) may be allocated to a job at one time. However, the job can switch between Coprocessors by
deallocating the current Coprocessor and allocating a new one. For the IBM i SSL user, the allocation and
deallocation of the Coprocessors is managed by the system if the SSL configuration in DCM indicates that
more than one Coprocessor is to be used for SSL session establishment.

If you configure all of the Coprocessors the same, then all operational keys will work identically on all of
the Coprocessors. Any data encrypted on one Coprocessor can be decrypted on a different Coprocessor.
All keystore files will work interchangeably with any of the Coprocessors. The most important part of
configuring the Coprocessors identically is the master keys. If you entered the master key in parts for
one Coprocessor, you must enter the same master key parts for all of the other Coprocessors if you want
them to work interchangeably. If a random master key was generated inside of the Coprocessor, then
you must clone the master key to the other Coprocessors if you want all of the Coprocessors to work
interchangeably.

There may be certain situations where you do not want all of the Coprocessors to be configured the same.
They could all have different configurations or they could be set up in groups where the configuration
within a group is the same but between groups is different. For these cases, all operational keys may

not work identically on all of the Coprocessors. Data encrypted on one Coprocessor may not be able to

be recovered on a different Coprocessor. Also, the keystore files may not work interchangeably among
Coprocessors. For these situations, you must keep track of which keystore files and operational keys will
work for a given Coprocessor. While configuring the Coprocessors differently may limit the scalability of
cryptographic applications, it can provide more granularity in terms of security. For example, you can
grant different object authorities to different cryptographic device descriptions.

If you use retained PKA keys then the Coprocessors are also not interchangeable. Retained keys can not
be exported in any manner outside of the Coprocessor. Therefore, any cryptographic request that uses
that retained key must be sent to the Coprocessor that stores the retained key.

The following material is only applicable if you are using IBM i:

Allocating a device

The Cryptographic_Resource_Allocate (CSUACRA) API verb is used to explicitly allocate a cryptographic
device to your job so that the system can determine how to route all subsequent cryptographic requests.
If you use any of the CCA API verbs without first explicitly using the Cryptographic_Resource_Allocate
(CSUACRA) API verb, the system will attempt to allocate the default cryptographic device. The default
device is the cryptographic device named CRPO1. It must be created by either using the Basic
Configuration wizard or the Create Device Crypto (CRTDEVCRP) CL command. You only need to use
CSUACRA when you wish to use a device other than the default cryptographic device. A device allocated
to a job, either explicitly or implicitly, remains allocated until either the job ends or the device is
deallocated using the Cryptographic_Resource_Deallocate (CSUACRD) API verb.

Deallocating a device

When you have finished using a Cryptographic Coprocessor, you should deallocate the Cryptographic
Coprocessor by using the Cryptographic_Resource_Deallocate (CSUACRD) API verb. A cryptographic
device description can not be varied off until all jobs using the device have deallocated it.

Related concepts
4769 Cryptographic Coprocessor

Cryptography 149

IBM offers Cryptographic Coprocessors, which are available on a variety of system models. Cryptographic
Coprocessors contain hardware engines, which perform cryptographic operations used by IBM i
application programs and IBM i SSL transactions.

Scenario: Protecting private keys with cryptographic hardware
This scenario might be useful for a company that needs to increase the security of the system digital
certificate private keys that are associated with the IBM i SSL-secured business transactions.

Configuring the Cryptographic Coprocessor for use with DCM and SSL
This topic provides information on how to make the Cryptographic Coprocessor ready for use with SSL in
IBMi.

Related reference

Example: ILE C program for allocating a Coprocessor
Change this IBM i ILE C program example to suit your needs for allocating a Coprocessor.

Example: ILE RPG program for allocating a Coprocessor
Change this IBM i ILE RPG program example to suit your needs for allocating a Coprocessor.

Example: ILE C program for deallocating a Coprocessor
Change this IBM i ILE C program example to suit your needs for deallocating a Coprocessor.

Example: ILE RPG program for deallocating a Coprocessor
Change this IBM i ILE RPG program example to suit your needs for deallocating a Coprocessor.

Example: ILE C program for allocating a Coprocessor
Change this IBM i ILE C program example to suit your needs for allocating a Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

J R R T e T */
/* Allocate a crypto device to the job. */
/* */
/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/> of these program. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for x/
/* these programs and files. */
/* */
/* */
/* Note: Input format is more fully described in Chapter 2 of */
/* IBM CCA Basic Services Reference and Guide */

/* (SC31-8609) publication. */
/* */
/* Parameters: */
/* none. */
/* */
/* Example: */
/* CALL PGM(CRPALLOC) (CRPO2) */
/* */
/* */
/* The Common Cryptographic Architecture (CCA) verb used is */
/* Cryptographic_Resource_Allocate (CSUACRA). */
/* */
/* Use these commands to compile this program on the system: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (CRPALLOC) SRCFILE(SAMPLE) */
/* CRTPGM PGM(CRPALLOC) MODULE (CRPALLOC) */
/* BNDSRVPGM (QCCA/CSUACRA) */
/* */
/* Note: Authority to the CSUACRA service program in the */
/* QCCA library is assumed. */
/* */
R R */

#include <string.h>
#include <stdio.h>
#include "csucincl.h"

150 IBM i: Cryptography

/*

/* standard return codes

R R e
#tfdefine ERROR -1
#define OK 0

#define WARNING 4

int main(int argc, char *argv([])

]

¥

long return_code = 0;

long reason_code = 0;

long exit_data_length = 2;
char exit_data[4];

char rule_array[2][8];
long rule_array_count = 2;
long resource_name_length;

J R R

/* Process the parameters
if (arge < 1)
1

printf("Device parameter must be specified.\n");
return(ERROR) ;

memcpy (rule_array, "DEVICE ",8);
rule_array_count = 1;

/* Set the resource name length

J R e e T

resource_name_length = strlen(argv([1]);

(char *)exit_data,

(long %) &rule_array_count,

(char *) rule_array,

(long *) &resource_name_length,

(char %) argv[1]); /* resource name

if ((return_code == OK) | (return_code == WARNING))
i

printf("Request was successful\n");
return(0K) ;

else

printf("Request failed with return/reason codes: %d/%d \n",

return_code, reason_code);
return(ERROR) ;

Related concepts

Managing multiple Cryptographic Coprocessors

*/
*/

*/
*/

*/

x/

*/
*/

You can have up to eight Cryptographic Coprocessors per partition. The maximum number of
Cryptographic Coprocessors supported per system is dependent on the system mode. This topic provides
information on using multiple coprocessors with SSL in systems running the IBM i operating system.

Example: ILE RPG program for allocating a Coprocessor

Change this IBM i ILE RPG program example to suit your needs for allocating a Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

Cryptography 151

D* CRPALLOC

Dx Sample program that allocates a crypto device to the job.

Dx COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

Dx This material contains programming source code for your

Dx consideration. These example has not been thoroughly

Dx tested under all conditions. 1IBM, therefore, cannot

Dx guarantee or imply reliability, serviceability, or function

Dx of these programs. All programs contained herein are

D*x provided to you "AS IS". THE IMPLIED WARRANTIES OF

Dx MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Dx ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
Dx these programs and files.

Dx

Dx

Dx Note: Input format is more fully described in Chapter 2 of
Dx IBM CCA Basic Services Reference and Guide

Dx (SC31-8609) publication.

D*

Dx Parameters:
Dx* Device Name

D% Example:
Dx CALL PGM(CRPALLOC) PARM(CRPO2)

Dx Use these commands to compile this program on the system:
D* CRTRPGMOD MODULE (CRPALLOC) SRCFILE(SAMPLE)
Dx CRTPGM PGM(CRPALLOC) MODULE (CRPALLOC)

D* BNDSRVPGM (QCCA/CSUACRA)

Dx

D*x Note: Authority to the CSUACRA service program in the
Dx QCCA library is assumed.

Dx

Dx The Common Cryptographic Architecture (CCA) verbs used are
Dx Cryptographic_Resource_Allocate (CSUACRA)

Dx

5 5 5 5 55 5 5 55 5 55 535 505 55 55 5 5
D* Declare variables for CCA SAPI calls

D e
D* **% Return code

DRETURNCODE S 9B 0

Dx *%* Reason code

DREASONCODE S 9B 0

D* *% Exit data length
DEXITDATALEN S 9B 0

D* *% Exit data

DEXITDATA S 4

D* *% Rule array count
DRULEARRAYCNT S 9B 0

D* ** Rule array

DRULEARRAY S 16

Dx* ** Resource name length
DRESOURCENAMLEN S 9B 0

D* **x Resource name

DRESOURCENAME S 10

Dx

D ||

D*x Prototype for Cryptographic_Resource_Allocate (CSUACRA)
Dxkkkkkkhkkkhkhkhhkhkkhkhkhkhhkhkhhkhkhkhhkhkhhkhkhkhhkhkhkhhkhkhhkhkhkkhkkhkhkhkkkkkkkkx

DCSUACRA PR

DRETCODE 9B 0O

DRSNCODE 9B 0

DEXTDTALEN 9B 0O

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DRSCNAMLEN 9B 0

DRSCNAM 10

D*

D 55 5 53 £ 555 55 555 505 55 5
Dx **% Declares for sending messages to the

D* *% job log using the QMHSNDPM API

D 5 5 50 5 5 55 5 5 5 5 5 55 55 535 505 55 5
DMSG S 75 DIM(2) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 75

152 IBM i: Cryptography

*%

DFAILRETC
DFAILRSNC
DMESSAGEID
DMESSAGEFILE
DMSGKEY
DMSGTYPE
DSTACKENTRY

DSTACKCOUNTER

DERRCODE
DBYTESIN
DBYTESOUT

D*

41 44
46 49

21
10

10
9B 0

ounnnnunnm

1 4B 0O
5 8B 0

INZ (')

INZ(')
INZ(')

INZ('+INFO Y)

INZ('*)

INZ(2)

INZ(0)
INZ(0)

Cx START OF PROGRAM

Cx
Cx
©

C

Cx
Cx*
Cx
Cx
©

C

Cx
Cx*
Cx
Cx
©

Cx
Cx
Cx*
Cx

OO0O0O0O0O0O0n

Cx

Cx*
C
Cx
Cx*
Cx
Cx
©
C
Cx
©
Cx
C
Cx*

MOVEL 'DEVICE
Z-ADD 1

CALLP

MOVE
MOVE
MOVE
EXSR

MSG (1)

SNDMSG
ELSE

MOVE
EXSR

MSG(2)
SNDMSG

ENDIF
SETON

CSUACRA

RETURNCODE
REASONCODE

' RULEARRAY
RULEARRAYCNT

(RETURNCODE :
REASONCODE :
EXITDATALEN:
EXITDATA:
RULEARRAYCNT :
RULEARRAY :
RESOURCENAMLEN :
RESOURCENAME)

MSGTEXT
FAILRETC
FAILRSNC

MSGTEXT

LR

[0 3 R R R R R R R B S E R R R R e e
Cx Subroutine to send a message

OO0 O0O0O0O0O0O0O0

SNDMSG

BEGSR

CALL "QMHSNDPM'

PARM MESSAGEID
PARM MESSAGEFILE
PARM MSGTEXT
PARM MSGLENGTH
PARM MSGTYPE
PARM STACKENTRY
PARM STACKCOUNTER
PARM MSGKEY

PARM ERRCODE
ENDSR

Cryptography 153

CSUACRA failed with return/reason codes 9999/9999'
The request completed successfully

Related concepts

Managing multiple Cryptographic Coprocessors

You can have up to eight Cryptographic Coprocessors per partition. The maximum number of
Cryptographic Coprocessors supported per system is dependent on the system mode. This topic provides
information on using multiple coprocessors with SSL in systems running the IBM i operating system.

Example: ILE C program for deallocating a Coprocessor
Change this IBM i ILE C program example to suit your needs for deallocating a Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

R e e e T */
/* Deallocate a crypto device from a job. */
/* */
/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these program. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for =«/
/* these programs and files. */
/* */
/* */
/> Note: Input format is more fully described in Chapter 2 of */
/* IBM CCA Basic Services Reference and Guide */

/* (SC31-8609) publication. */
/* */
/* Parameters: */
/* none. */
/* */
/* Example: */
/* CALL PGM(CRPDEALLOC) (CRPO2) */
/* */
/* */
/* The Common Cryptographic Architecture (CCA) verb used is */
/* Cryptographic_Resource_Deallocate (CSUACRD). */
/* */
/* Use these commands to compile this program on the system: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (CRPALLOC) SRCFILE(SAMPLE) */
/* CRTPGM PGM(CRPALLOC) MODULE (CRPALLOC) */
/* BNDSRVPGM (QCCA/CSUACRD) */
/* */
/* Note: Authority to the CSUACRD service program in the */
/% QCCA library is assumed. */
/* */
J R R e T */

#include <string.h>
#include <stdio.h>
f##include "csucincl.h"

R e */
/* standard return codes */
R R R */
#define ERROR -1
tdefine OK 0

#define WARNING 4

int main(int argc, char xargv[])

{
R e */
/* standard CCA parameters */
R e i i T */
long return_code = 0;
long reason_code = 0;
long exit_data_length = 2;

char exit_data[4];

154 IBM i: Cryptography

char rule_array[2][8];
long rule_array_count = 2;
long resource_name_length;

J R R
/* Process the parameters
J R R e T
if (arge < 1)

i

printf("Device parameter must be specified.\n");

return (ERROR) ;
R L T E T T
/* Set the keyword in the rule array
J R e T
memcpy (rule_array, "DEVICE ",8);

rule_array_count = 1;

/* Set the resource name length

J R R e T

resource_name_length = strlen(argv[1]);

if (
]

else

¥

(char *)exit_data,

(long %) &rule_array_count,

(char *) rule_array,

(long *) &resource_name_length,

(char %) argv[1]); /* resource name */

(return_code == OK) | (return_code == WARNING))

printf("Request was successful\n");
return(0K) ;

printf("Request failed with return/reason codes: %d/%d \n",
return_code, reason_code);
return (ERROR) ;

Related concepts

Managing

multiple Cryptographic Coprocessors

*/
*/

*/

*/

*/
*/

You can have up to eight Cryptographic Coprocessors per partition. The maximum number of
Cryptographic Coprocessors supported per system is dependent on the system mode. This topic provides
information on using multiple coprocessors with SSL in systems running the IBM i operating system.

Example: ILE RPG program for deallocating a Coprocessor
Change this IBM i ILE RPG program example to suit your needs for deallocating a Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

D*
Dx
Dx
D*
D*
Dx
D*
Dx
Dx
D*
D*
Dx
D*
D*
Dx

CRPDEALLOC

Sample program that deallocates a crypto device to the job.

COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

This material contains programming source code for your
consideration. These example has not been thoroughly

tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function

of these programs. All programs contained herein are

provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for

Cryptography 155

Dx these programs and files.

Dx

D*

Dx Note: Input format is more fully described in Chapter 2 of
D* IBM CCA Basic Services Reference and Guide

D% (SC31-8609) publication.

Dx

Dx Parameters:

D Device name

Dx

D% Example:

Dx CALL PGM(CRPDEALLOC) PARM(CRPO2)

Dx

Dx Use these commands to compile this program on the system:
Dx CRTRPGMOD MODULE (CRPDEALLOC) SRCFILE(SAMPLE)

D* CRTPGM PGM(CRPDEALLOC) MODULE (CRPDEALLOC)

Dx BNDSRVPGM (QCCA/CSUACRD)

Dx

Dx Note: Authority to the CSUACRD service program in the
D* QCCA library is assumed.

Dx

Dx The Common Cryptographic Architecture (CCA) verbs used are
Dx Cryptographic_Resource_Deallocate (CSUACRD)

Dx

Dx

5 5 5 5 5 55 55 5 5 5 5555 505 5 55 5 5
D* Declare variables for CCA SAPI calls

D e
D* *% Return code

DRETURNCODE S 9B 0

Dx *%* Reason code

DREASONCODE S 9B 0

D* *% Exit data length
DEXITDATALEN S 9B 0

D* *% Exit data

DEXITDATA S 4

D* *% Rule array count
DRULEARRAYCNT S 9B 0

D* *%x Rule array

DRULEARRAY S 16

Dx* ** Resource name length
DRESOURCENAMLEN S 9B 0

D* **x Resource name

DRESOURCENAME S 10

Dx

D ||

Dx Prototype for Cryptographic_Resource_Deallocate (CSUACRD)
Dxkkkkkkhkkhkhkhkhhkhkkhkhkhhhkhkhhhkhhhkhkhhkhkhkhhkhkhkhhkhkhhkhkhkkhkhkhkhkhkkkkkkkkx
DCSUACRD PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DRSCNAMLEN 9B 0

DRSCNAM 10

Dx

D 5 55 5 5 5 £33 555 55 555 505 55 5
D* *% Declares for sending messages to the

D* *% job log using the QMHSNDPM API

D 5 5 0 5 5 55 5 5 5 5 5 55 55 555 5905 505 5
DMSG S 75 DIM(2) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 75

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ (')
DMESSAGEFILE S 21 INZ('

DMSGKEY S 4 INZ (' ")

DMSGTYPE S 10 INZ('*INFO ")
DSTACKENTRY S 10 INZ('* ")
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

Dx

C ||
Cx START OF PROGRAM *
Cx* *
(08 R *

156 IBM i: Cryptography

© *ENTRY PLIST

© PARM RESOURCENAME

(08 R e e
Cx Set the keyword in the rule array

Gk === == = === m m e e e e e e e
C MOVEL 'DEVICE RULEARRAY

© Z-ADD 1 RULEARRAYCNT

Cx

[i i *

Cx Set the resource name length *

(0 e TP *

C Z-ADD 10 RESOURCENAMLEN

Cx*

Gk === == = === mm e e e e e oo
Cx Call Cryptographic Resource Deallocate SAPI

(08 R e e e R
© CALLP CSUACRD (RETURNCODE :

C REASONCODE :

© EXITDATALEN:

© EXITDATA:

C RULEARRAYCNT :

© RULEARRAY :

© RESOURCENAMLEN :

C RESOURCENAME)
Chko--mmmmmmmmemm oo oo

C*x Check the return code *

Ch-mmmmmmmmmm e e - -

© RETURNCODE IFGT 4

C* LT *

Cx * Send error message *

Cx R *

© MOVE MSG (1) MSGTEXT

C MOVE RETURNCODE FAILRETC

© MOVE REASONCODE FAILRSNC

© EXSR SNDMSG

Cx*

© ELSE

Cx

Cx L *

Cx * Send success message *

C* e L *

C MOVE MSG(2) MSGTEXT

© EXSR SNDMSG

Cx

C ENDIF

Cx

© SETON

Cx*

C ||

C*x Subroutine to send a message

Chkkkkkhkhkkkkhhkhkhkkhkkhkhkhkhkhhhkhkhkkhkhkhkhkkhkhkhkhkkhkkkkhkhkkkkkkhkkkkkkx

SNDMSG

OOO00OO0OO0O0O0O0O0

Cx
**

BEGSR
CALL
PARM
PARM
PARM
PARM
PARM
PARM
PARM
PARM
PARM
ENDSR

"QMHSNDPM'

MESSAGEID
MESSAGEFILE
MSGTEXT
MSGLENGTH
MSGTYPE
STACKENTRY
STACKCOUNTER
MSGKEY
ERRCODE

CSUACRD failed with return/reason codes 9999/9999'

The request completed successfully

Related concepts

Managing multiple Cryptographic Coprocessors

LR

Cryptography 157

You can have up to eight Cryptographic Coprocessors per partition. The maximum number of
Cryptographic Coprocessors supported per system is dependent on the system mode. This topic provides
information on using multiple coprocessors with SSL in systems running the IBM i operating system.

Cloning master keys

Master key cloning is a method for securely copying a master key from one Cryptographic Coprocessor

to another without exposing the value of the master key. If you are using multiple coprocessors with

SSL on your system running the IBM i operating system, use the Cryptographic Coprocessor configuration
Web-based utility to clone master keys.

This is performed by a process of splitting the master key into n shares, where n is a number from 1 to 15.
m shares are required to rebuild the master key in another Coprocessor, where m is a number from 1 to
15 and less than or equal to n.

The term "cloning" is used to differentiate the process from "copying" because no one share, or any
combination of fewer than m shares, provide sufficient information needed to rebuild the master key.

The Coprocessor containing the master key to be cloned is referred to as either the master-key-share
source node or the Sender. The Sender must generate a retained RSA key pair. This private key must also
have been marked as suitable for use with cloning when it was generated. The key is known as either

the Coprocessor Share Signing key or the Sender key. The Coprocessor that will receive the master key is
referred to as either the master-key-share target node or the Receiver. The Receiver must also generate a
retained RSA key pair and must also have been marked as suitable for use with cloning. This key is known
as either the Coprocessor Share Receiving key or simply the Receiver key.

Both the Sender and Receiver public keys must be digitally signed or certified by a retained private key
in a Coprocessor, referred to as the public key certifying node or the Certifier. This retained private key

is the Certifier key. It is also referred to as the Share Administration key. The associated public key

must be registered in both the Sender and the Receiver before shares can be generated and received. A
Cryptographic Coprocessor can take on the role of Certifier only, or can it be both Certifier and Sender, or
it can be both Certifier and Receiver.

As each share is generated it is sighed by the Coprocessor using the Sender private key and encrypted by
a newly generated triple DES key. The triple DES key is then wrapped or encrypted by the Receiver public
key.

As each share is received, the signature on the share is verified using the Sender public key, the triple DES
key is unwrapped or decrypted using the Receiver private key, and the share decrypted using the triple
DES key. When m number of shares have been received, the cloned master key will be complete within
the new master key register of the Receiver.

The easiest and fastest way to clone master keys is to use the Cryptographic Coprocessor configuration
web-based utility. The utility includes the Master key cloning advisor. To start the master key cloning
advisor, follow these steps:

1. Click on Manage configuration on the Cryptographic Coprocessor configuration page.

2. Click on Master keys.

3. Select a device.

4. Enter a valid Coprocessor profile and password.

5. Click on the Clone button.

If you would prefer to write your own application to clone master keys, you can do so by using the
following API verbs:

 Cryptographic_Facility_Control (CSUACFC)

PKA_Key_Token_Build (CSNDPKB) (may not be needed depending upon how you write your application)
PKA_Key_Generate (CSNDPKQG)

PKA_Public_Key_Register (CSNDPKR)

One_Way_Hash (CSNBOWH)

158 IBM i: Cryptography

- Digital_Signature_Generate (CSNDDSG)
« Master_Key_Distribution (CSUAMKD)

Example programs

Nine pairs of example programs are provided for your consideration. Each pair contains a program written

in ILE C and a program written in ILE RPG. Both perform the same function.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

Related concepts
4769 Cryptographic Coprocessor

IBM offers Cryptographic Coprocessors, which are available on a variety of system models. Cryptographic
Coprocessors contain hardware engines, which perform cryptographic operations used by IBM i
application programs and IBM i SSL transactions.

Related information

IBM PCle Cryptographic Coprocessor CCA Basic Services Reference and Guide

Example: ILE C program for setting the min and max values for master key shares in

your Cryptographic Coprocessor
Change this IBM i ILE C program example to suit your needs for setting the minimum and maximum
values for master key shares in your Cryptographic Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

Set the M-o0f-N values in the Coprocessor. These values are

used in cloning of the master key. The master key is

cryptographically split into N number of parts and M number of

parts are needed to recover it.
COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007
This material contains programming source code for your

consideration. These examples have not been thoroughly
tested under all conditions. 1IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function

of these program. All programs contained herein are
provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for

these programs and files.

Note: Input format is more fully described in Chapter 2 of
IBM CCA Basic Services Reference and Guide
(SC31-8609) publication.

Parameters:
none.

Example:
CALL PGM(SETMOFN) PARM(5 15)

Note: This program assumes the device to use
already identified either by defaulting to the CRPO1
device or by being explicitly named using the
Cryptographic_Resource_Allocate verb. Also this
device must be varied on and you must be authorized
to use this device description.

Use these commands to compile this program on the system:
ADDLIBLE LIB(QCCA)
CRTCMOD MODULE (SETMOFN) SRCFILE(SAMPLE)
CRTPGM PGM(SETMOFN) MODULE (SETMOFN)
BNDSRVPGM (QCCA/CSUACFC)

Note: Authority to the CSUACFC service program in the
QCCA library is assumed.

The Common Cryptographic Architecture (CCA) verb used is

*/

Cryptography 159

http://www.ibm.com/security/cryptocards/pciecc2/library.shtml

/* Cryptographic_Facilites_Control (CSUACFC).
*

#include "csucincl.h" /* header file for CCA Cryptographic
/* Service Provider

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "decimal.h"

J
/* standard return codes

J R e
#tdefine ERROR -1

tdefine OK 0

#define WARNING 4

int main(int argc, char *argv([])

]

long return_code = 0;

long reason_code = 0;

long exit_data_length = 2;
char exit_data[4];

char rule_array[2][8];
long rule_array_count = 2;

decimal(15,5) mparm, nparm;
long verb_datal2];
long verb_data_length = 8;

R L E T
/* Process parameters. Numeric parms from the command line are
/* passed in decimal 15,5 format. The parms need to be converted

/* to int format.

memcpy (&mparm,argv[1],sizeof (mparm));
memcpy (&nparm,argv([2],sizeof (nparm));
verb_data[0] mpaxrm;
verb_data[1] nparm;

R e e T

&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,

(char *)rule_array,
&verb_data_length,

(unsigned char x)verb_data);

if ((return_code == OK) | (return_code == WARNING))
1

printf("M of N values were successfully set with ");

printf("return/reason codes %1d/%ld\n\n",
return_code, reason_code);

return(OK) ;

else

]

*/
*/

*/
*/

printf("An error occurred while setting the M of N values.\n");

printf("Return/reason codes %1d/%ld\n\n",

160 IBM i: Cryptography

return_code, reason_code);
return (ERROR) ;

Example: ILE RPG program for setting the min and max values for master key shares

in your Cryptographic Coprocessor

Change this IBM i ILE RPG program example to suit your needs for setting the minimum and maximum

values for master key shares in your Cryptographic Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

D* SETMOFN

Dx Set the M-of-N values in the Cryptographic Coprocessor. These values

Dx are used in cloning of the master key. The master key is

Dx cryptographically split into N number of parts and M number of

Dx parts are needed to recover it.

Dx COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

Dx This material contains programming source code for your

Dx consideration. These example has not been thoroughly

Dx tested under all conditions. 1IBM, therefore, cannot

Dx guarantee or imply reliability, serviceability, or function
Dx of these programs. All programs contained herein are

Dx provided to you "AS IS". THE IMPLIED WARRANTIES OF

Dx MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Dx ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for

Dx these programs and files.

D*

D%

Dx Note: Input format is more fully described in Chapter 2 of
Dx* IBM CCA Basic Services Reference and Guide

Dx (SC31-8609) publication.

Dx

D* Parameters: M and N

D*

D* Example:
Dx CALL PGM(SETMOFN) PARM(5 10)

Dx Use these commands to compile this program on the system:
D* CRTRPGMOD MODULE (SETMOFN) SRCFILE (SAMPLE)
Dx CRTPGM PGM(SETMOFN) MODULE (SETMOFN)

Dx BNDDIR(QCCA/QC6BNDDIR)

Dx

Dx Note: Authority to the CSUACFC service program in the
D* QCCA library is assumed.

Dx

Dx The Common Cryptographic Architecture (CCA) verbs used are
Dx Cryptographic_Facilty_Control (CSUACFC)

Dx

D ||
5 5 5 5 55 55 5 555 55 505 55 5
D* Declare variables used on CCA SAPI calls
D= === = mm e e e e e e e e mememmmmeoemo-a-
D* ** Return code

DRETURNCODE S 9B 0O

Dx* *% Reason code

DREASONCODE S 9B 0

D* *% Exit data length
DEXITDATALEN S 9B 0

D* *x Exit data

DEXITDATA S 4

D* *% Rule array count
DRULEARRAYCNT S 9B 0

D* ** Rule array

DRULEARRAY S 16

D* ** Verb data length
DVERBDATALEN S 9B 0O

Dx *x \Verb data contain M (minimum) and N (maximum)
DVERBDATA DS 8

DM 9B 0O

DN 9B 0

Dx

Dk Kk kkkkkkkkhkhkkkkkkhkhkhkhkkhkhkhkkhkkhkhkhkkkkhkhkhkkkkkkhkhkkkkkkhkkkkk

Cryptography 161

Dx Prototype for Cryptographic_Facilty_Control (CSUACFC)

DCSUACFC PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DVRBDTALEN 9B 0

DVRBDTA 8

D*

DA = == === = = == e e e e e e e e e e e e ememememmemememeo———--oo-
D* *% Declares for sending messages to the

D* *% job log using the QMHSNDPM API

DA = == === = = == e e e e e e e e e e e e mememmemememe———---o--
DMSG S 75 DIM(2) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0@ INZ(75)

D DS

DMSGTEXT 1 80

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(')
DMESSAGEFILE S 21 INZ('

DMSGKEY S 4 INZ(' ")

DMSGTYPE S 10 INZ('*INFO D)
DSTACKENTRY S 10 INZ('*)
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(O)

DBYTESOUT 5 8B 0 INZ(0)

Cx
Chhkkhkhhhhhkhhkhkhhhkhhkhkhkhkhhkhkhhhkhkhhhkhkhhkhkhhhkhkhhkhkhkhhkhkhhkhkhkhkkhkkhkkrxkkkx
Cx START OF PROGRAM *
(0 T T T L *
C *ENTRY PLIST

C PARM MVALUE 15 5
© PARM NVALUE 15 5
(0 e G e *
Cx Set the keyword in the rule array *
(0 T T L *
C MOVEL 'ADAPTER1' RULEARRAY

C MOVE 'SET-MOFN' RULEARRAY

© Z-ADD 2 RULEARRAYCNT

(0 R e R T *
Cx Set the verb data length to 8 *
(0 T T L *
C Z-ADD 8 VERBDATALEN

(08 R e *
Cx Set the M and N value (Convert from decimal 15 5 to binary)=*
[e *
C EVAL M = MVALUE

© EVAL N = NVALUE

[0 3 R R R R R B E R R S T T S S S
Cx Call Cryptographic Facilty Control SAPI

C ||
C CALLP CSUACFC (RETURNCODE:
© REASONCODE :
© EXITDATALEN:
C EXITDATA:

© RULEARRAYCNT :
© RULEARRAY :

C VERBDATALEN:
© VERBDATA)
Chmmmmmmmmmmmmmm e - *

Cx Check the return code *

(0 *

© RETURNCODE IFGT 0

Cx L *

Cx * Send error message @ *

C* D LT *

C MOVEL MSG (1) MSGTEXT

© MOVE RETURNCODE FAILRETC

© MOVE REASONCODE FAILRSNC

C EXSR SNDMSG

Cx

© ELSE

C* *kkkhkkkkkkkhkkhkkkkhkhkhkkhkkhkhkhkkhkkhkk

Cx * Send success message *

Cx kkkkkkkkkARARARARAAAAAAA

C MOVEL MSG(2) MSGTEXT

© EXSR SNDMSG

162 IBM i: Cryptography

*%

Cx

© ENDIF
Cx
C SETON
C*

[0 R R R B B E R R R R = e 2
Cx Subroutine to send a message

C ||
C SNDMSG BEGSR

C CALL "QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY

C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

CSUACFC failed with return/reason codes 9999/9999.
The request completed successfully.

LR

Example: ILE C program for generating a retained key pair for cloning master keys
Change this IBM i ILE C program example to suit your needs for generating a retained key pair for cloning
master keys.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

/*
/*

GENRETAIN

Sample program to generate a retained key to be used for
master key cloning.

COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007

This material contains programming source code for your
consideration. These examples have not been thoroughly

tested under all conditions. 1IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function

of these program. All programs contained herein are

provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
these programs and files.

Note: Input format is more fully described in Chapter 2 of
IBM CCA Basic Services Reference and Guide */
(SC31-8609) publication.

Parameters: RETAINED_KEY_NAME

Example:
CALL PGM(GENRETAIN) PARM(TESTKEY)

Note: This program assumes the card with the profile is
already identified either by defaulting to the CRPO1
device or by being explicitly named using the
Cryptographic_Resource_Allocate verb. Also this
device must be varied on and you must be authorized
to use this device description.

The Common Cryptographic Architecture (CCA) verbs used are
PKA_Key_Token_Build (CSNDPKB) and PKA_Key_Generate (CSNDPKG) .

Use these commands to compile this program on the system:

ADDLIBLE LIB(QCCA)

CRTCMOD MODULE (GENRETAIN) SRCFILE(SAMPLE)

CRTPGM PGM(GENRETAIN) MODULE(GENRETAIN)
BNDDIR(QCCA/QC6BNDDIR)

Note: Authority to the CSNDPKG and CSNDPKB service programs
in the QCCA library is assumed.

Cryptography 163

#include <stdio.h>
#include <string.h>
#include "csucincl.h"

int main(int argc, char xargv[])

J R e */
/* Declares for CCA parameters */
R L EE R T */

long return_code = 0;
long reason_code = 0;
long exit_data_length = 0;
char exit_datal[4];
char rule_array[24];
long rule_array_count;
long token_len = 2500;
char token[2500];
char regen_datal4];
char transport_key_id[4];
struct §
short modlen;
short modlenfld;
short pubexplen;
short prvexplen;
long pubexp;
t key_struct; /* Key structure for PKA Key Token Build x/
long key_struct_length;
long zero = 0;

J R e e */
/* Declares for working with a PKA token */
J R */
long pub_sec_len; /* Public section length */
long prv_sec_len; /* Private section length */
long cert_sec_len; /* Certificate section length */
long info_subsec_len; /* Information subsection length */
long offset; /* Offset into token */
long tempOffset; /* (Another) Offset into token */
long templLength; /* Length variable */
long templLenl, templLen2; /* temporary length variables */

char pub_token[2500];
long pub_token_len;
long name_len;

char name[64];

int i; /* Loop counter */
FILE xfp; /* File pointer */
if (arge < 2) /* Check the number of parameters passed */
1

printf("Need to enter a private key name\n");

return 1;
3
memset (token,0,2500) ; /* Initialize token to 0 */

memcpy ((void*)rule_array, "RSA-PRIVKEY-MGMT",16); /* Set rule array */
rule_array_count = 2;

memset(name,' ', 64); /* Copy key name parameter */
memcpy (name, argv[1], strlen(argv[1]));
name_len = 64;

R R */

/* Initialize key structure =*/

R R T *

memset ((void*)&key_struct, 0, sizeof(key_struct));

key_struct.modlen = 1024; /* Modulus length is 1024 */

key_struct.pubexplen = 3;

key_struct.pubexp = 0x01000100; /* Public exponent is 65537 */

key_struct_length = sizeof(key_struct);
||| /

/* Call PKA_Key_Token_Build SAPI */

/
CSNDPKB(&return_code, &reason_code, &exit_data_length,
exit_data,
&rule_array_count,
rule_array,
&key_struct_length,
(unsigned char x)&key_struct,

164 IBM i: Cryptography

&name_len,
name,
&zero,
NULL,
&zero,
NULL,
&zero,
NULL,
&zero,
NULL,
&zero,
NULL,
&token_len,
token) ;

if (return_code !=
printf("PKA Key T

return_co
return 1;

/*x 1 %/
/*x 2 %/
/* 3 %/
/* 4 %/
/* 5 %/

0)

oken Build Failed : return code %d : reason code %d\n",
de, reason_code);

/
/* Determine length of token from length x/

/* bytes at offset 2 and 3. */
token_len = ((256 * token[2]) + token[3]);

/> Determine length of private key */

/* section from length bytes at offset x/

/* 10. */
prv_sec_len = ((256 % token[10]) + token[11]);

/* Determine length of public key sectionx/

/* section from length bytes at offset */

/* 10 + private section length */

pub_sec_len = ((256 * token[prv_sec_len + 10]) +
token[prv_sec_len + 11]1);

/* Calculate the signature section lengthx/

cert_sec_len = 328 + /* from the signature subsection length, x/
20 + /* EID subsection length, *
12 + /* Serial number subsection length, */
4 + /* Information subsection header length, x/
pub_sec_len + /% Public key subsection length, */
4; /* and the certificate section hdr lengthx/

offset = token_len; /* Offset for additions to token */

/* Fill in certicate section header */

tempLenl = cert_sec_len;

tempLenl >>= 8;

token[offset++] = 0x40;

token[offset++] = 0x00;

token[offset++] = templLeni;

token[offset++] = cert_sec_len;

/* Fill in public key subsection %/

token[offset++] = 0x41;

for (i =1 ; i < pub_sec_len ; i ++)

i
/* Copy public key to certificate x/
token[offset++] = token[prv_sec_len +(i+8)];
/* Fill Optional Information Subsection Header x/
info_subsec_len = 20 + /% Length of EID section */
12 + /% Length of serial number section */
4; /* Length of Info subsection header */

tempLenl = info_subsec_len;
tempLenl >>= 8;

token[offset++] = 0x42;
token[offset++] = 0x00;
token[offset++] = templLeni;
token[offset++] = info_subsec_len;

/* Fill in Public Key Certficate EID subsection x/

token[offset++] = 0x51;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x14;
token[offset++] = 0x00;
token[offset++] = 0x00;

Cryptography 165

token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
/* Public key Certificate Serial Number TLV x/
token[offset++] = 0x52;
token[offset++] = 0x00;
token[offset++] = OXOO;
token[offset++] = OxOc;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
/* Fill in Slgnature Subsection *x/
token[offset++] = 0x45;
token[offset++] = 0x00;
token[offset++] = 0x01;
token[offset++] = 0x48;
token[offset++] = 0x01;
token[offset++] = Ox01;

for (i =0 ; i < 64 ;i++)

/* Copy private key name out of private key name section */
/* into certificate */
token[offset++] =

token[prv_sec_len + pub_sec_len + 12 + i];

token_len = offset + 258; /* add 258 to allow for digtal sig. =/
token[3] = token_len; /* Set new token length x/
token[2] = token_len >> 8;

/**/
/* Generate Retained key using PKA token with certificate */

memcpy ((void*)rule_array,"RETAIN CLONE ",16);
rule_array_count = 2;

memset (pub_token,0,2500) ;

pub_token_len = 2500;

memset (transport_key_id,0,4);

/***/
/* Call PKA_Key_Generate SAPI */

/
CSNDPKG(&return_code, &reason_code, &exit_data_length,
exit_data,
&rule_array_count,
rule_array,

&zero, /* regenerated data length */
regen_data,

&token_len,

token,

transport_key_id,
&pub_token_len,
pub_token);

if (return_code != 0)
printf("PKA Key Generate Failed : return code %d :reason code %d\n",

return_code, reason_code);
return 1;

166 IBM i: Cryptography

/% W

rite public key token out to file */

memc

fp =

if (
1
p

else

]
f

£
p
¥

name
prin
retu

/* Append ".PUB" to key name */

py ((voidx)&name[strlen(argv[1])],".PUB",5);

fopen(name, "wb"); /* Open the file */
1fp)

rintf("File open failed\n");
write(pub_token,pub_token_len,1,fp); /* Write token to file %/
close(fp); /* Close the file */
rintf("Public token written to file %s.\n",name);
[strlen(axgv[1])] = 0; /* Convert name to string */
tf("Private key %s is retained in the hardware\n",bname);

rn 0;

Example: ILE RPG program for generating a retained key pair for cloning master keys
Change this IBM i ILE RPG program example to suit your needs for generating a retained key pair for
cloning master keys.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

D**

Dx
D*-
D%
DRE
D
DRE
Dx

GENRETAIN

Sample program to generate a retained key to be used for
master key cloning.

COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

This material contains programming source code for your
consideration. These example has not been thoroughly

tested under all conditions. 1IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function

of these programs. All programs contained herein are

provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
these programs and files.

Note: Input format is more fully described in Chapter 2 of
IBM CCA Basic Services Reference and Guide
(SC31-8609) publication.

Parameters: RETAINED_KEY_NAME

Example:
CALL PGM(GENRETAIN) PARM(TESTKEY)

Use these commands to compile this program on the system:

CRTRPGMOD MODULE (GENRETAIN) SRCFILE(SAMPLE)

CRTPGM PGM(GENRETAIN) MODULE (GENRETAIN)
BNDDIR(QCCA/QC6BNDDIR)

Note: Authority to the CSNDPKG and CSNDPKB service programs
in the QCCA library is assumed.

The Common Cryptographic Architecture (CCA) verbs used are

PKA_Key_Token_Build (CSNDPKB) and PKA_Key_Generate (CSNDPKG) .
*hkkkkkkhkkhkkhkkhkhkhkkhkhkhkkhkkhkhkhkkhkkhhkkhkkhkhhkkhkkhhhkkhhhkkhkkhhhkkhhhkkhkkhhhkkhkhhhkkhhhkkhkkhhhkkhhik
Declare variables used by CCA SAPI calls

*% Return code
TURNCODE S 9B 0

*% Reason code
ASONCODE S 9B 0

*% Exit data length

Cryptography 167

DEXITDATALEN S 9B 0O

D* *% Exit data

DEXITDATA S 4

D* *% Rule array count

DRULEARRAYCNT S 9B 0

D* *% Rule array

DRULEARRAY S 16

D* *% Token length

DTOKENLEN S 9B 0 INZ(2500)

D* *% Token and array for subscripting
DTOKEN DS 2500

DTOKENARRAY 1 DIM(2500)

D* *% Regeneration data

DREGENDATA S 4 INZ(X'00000000")
Dx* *% Transport key encrypting key
DTRANSPORTKEK S 4 INZ(X'00000000")
D* *% Generated keyid

DGENKEY S 2500

D* *% Generated keyid length
DGENKEYLEN S 9B 0 INZ(2500)

Dx *% Key name and length

DKEYNAME S 64

DKEYNAMEL S 9B 0 INZ(64)

Dx* *%x Key structure for PKA Key Token Build
DKEYSTRUCT DS

DMODLEN 1 2B 0

DMODLENFLD 3 4B 0O

DPUBEXPLEN 5 6B 0

DPRVEXPLEN 7 8B 0

DPUBEXP 9 12B 0

D* *% Null parms needed for CSNDPKB and CSNDPKG
DZERO S 9B 0 INZ(O)

DNULLPTR S % INZ(*NULL)

D* *% Key structure length
DKEYSTRUCTLEN S 9B 0 INZ(12)

D* *% Data structure for aligning 2 bytes into
D* *% a 2 bytes integer

DLENSTRUCT DS 2

DMSB 1 1

DLSB 2 2

DLENGTH 1 2B 0

D* *% Private key section length
DPRVSECLEN S 9B 0O

D* *% Public key section length
DPUBSECLEN S 9B 0

D* *% Index into Token array

DINDEX S 9B 0

Dx* **% Declares for copying private key name
DNAMEPTR1 S *

DNAME1 S 64 BASED (NAMEPTR1)
DNAMEPTR2 S *

DNAME2 S 64 BASED (NAMEPTR2)
Dx* **x Loop counter

DI S 9B 0

D* *% File descriptor

DFILED S 9B 0

D* *% File path and length

DPATH S 80 INZ(*ALLX'00")
DPATHLEN S 9B 0

D* *% Open flag - Create on open, open for writing,
D* Kk and clear if exists
DOFLAG S 101 O INZ(X'4A")

Dx

D ||

Dx Prototype for PKA_Key_Token_Build (CSNDPKB)
Dok sk ok sk ke ok ok ok ok ke ko ok ok ok ke ok ok ok ok ok ok ook ok ok ok ok ook ok ok ok ok ook ok ok ok ok ook ok ko ok ok ook ok

DCSNDPKB
DRETCODE
DRSNCODE
DEXTDTALEN
DEXTDTA
DRARRAYCT
DRARRAY
DKEYSTRLEN
DKEYSTR
DKEYNML
DKEYNM
DRSRVLN1
DRSRV1
DRSRVLN2
DRSRV2
DRSRVLN3

168 IBM i: Cryptography

PR

9B
9B
9B

VALUE
VALUE

Ne]
w
(o] o (o] (o] (o] (o] [cNoNo]

DRSRV3 * VALUE

DRSRVLN4 9B 0O

DRSRV4 * VALUE

DRSRVLN5 9B 0

DRSRV5 * VALUE

DTKNLEN 9B 0O

DTKN 2500 OPTIONS (xVARSIZE)
Dx

D R R R R R R R R R R R R B B R S T = 2 2
Dx Prototype for PKA_Key_Generate (CSNDPKG)

DCSNDPKG PR

DRETCOD 9B 0

DRSNCOD 9B 0O

DEXTDTALN 9B 0O

DEXTDT 4

DRARRYCT 9B 0O

DRARRY 16

DREGDTAL 9B 0

DREGDTA 20 OPTIONS (*VARSIZE)
DSKTKNL 9B 0O

DSKTKN 2500 OPTIONS (xVARSIZE)
DTRNKEK 64 OPTIONS (*VARSIZE)
DGENKEYL 9B 0O

DGENKEY 2500 OPTIONS (xVARSIZE)
Dx

D R R R R R R R R R R R B B R T = 2 2
Dx Prototype for open()

D% value returned = file descriptor (0K), -1 (error)

Dopen PR 9B O EXTPROC('open')

D* path name of file to be opened.

D 128 OPTIONS (*VARSIZE)

D* Open flags

D 9B 0 VALUE

Dx (OPTIONAL) mode - access rights

D 10U O VALUE OPTIONS (*NOPASS)

D* (OPTIONAL) codepage

D 10U O VALUE OPTIONS (*NOPASS)

Dx

D |||
D* Prototype for write()

D ||

D* value returned = number of bytes actually written, or -1
Dwrite PR 9B O EXTPROC('write')

Dx File descriptor returned from open()

D 9B 0 VALUE

D* Data to be written

D 1200 OPTIONS (*VARSIZE)

D* Length of data to write

D 9B O VALUE

Dx

D |||
D% Prototype for close()

D |||
D% value returned = 0 (OK), or -1

Dclose PR 9B O EXTPROC('close')

Dx File descriptor returned from open()

D 9B 0 VALUE

D*

DA = == === = = == e e e e e e e e e e e emmemememmemememeo———--oo-
D* *% Declares for sending messages to the

D* *% job log using the QMHSNDPM API

DA = == === = = == e e e e e e e e e e e mmemememmemememe————--o--
DMSG S 75 DIM(4) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0@ INZ(75)

D DS

DMSGTEXT 1 75

DSAPI 1 7

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(')
DMESSAGEFILE S 21 INZ(' ")
DMSGKEY S 4 INZ(' ")

DMSGTYPE S 10 INZ('*INFO)
DSTACKENTRY S 10 INZ('* ")
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(O)

Cx

C ||

Cryptography 169

Cx START OF PROGRAM *

Cx *
C *ENTRY PLIST

© PARM KEYNAMEPARM 50
Ck hmmmmmmmmmmmmmmmeee oo *

Cx % Initialize tokens to 0 *

Cx* L L T *

© MOVEL *ALLX'00' TOKEN

C MOVEL *ALLX'00' GENKEY

Cx R *

Cx * Initialize key struct =

Cx* e T *

© Z-ADD 1024 MODLEN

© Z-ADD 0 MODLENFLD

C Z-ADD 3 PUBEXPLEN

© Z-ADD 0 PRVEXPLEN

© EVAL PUBEXP = 65537 % 256

Cx R *

Cx % Copy key name from parmx*

Ck hmmmmmmmmmmmmmmmeee oo *

C MOVEL KEYNAMEPARM KEYNAME

Cx e *

Cx * Set the keywords in the rule array =

Cx R L e *

© MOVEL "RSA-PRIV' RULEARRAY

© MOVE "KEY-MGMT' RULEARRAY

C Z-ADD 2 RULEARRAYCNT

C ||

Cx Call PKA_Key_Token_Build SAPI
C ke o e ek ok ok o e ke koo ok o ke ke ok ok ok o o ke ke ok ok ok ok o ke ke ok ok ok o e ke ke ok ok ok o o ke ke okok ok o e e ook ok ok ok

C CALLP CSNDPKB (RETURNCODE :

© REASONCODE :

C EXITDATALEN:
C EXITDATA:

© RULEARRAYCNT :
C RULEARRAY :

C KEYSTRUCTLEN:
© KEYSTRUCT :

C KEYNAMEL :

C KEYNAME :

© ZERO:

C NULLPTR:

C ZERO:

© NULLPTR:

C ZERO:

C NULLPTR:

© ZERO:

C NULLPTR:

C ZERO:

© NULLPTR:

C TOKENLEN:

C TOKEN)

Cx Kmmmmmmmm e m e oo *

Cx * Check the return code =

Cx R *

© RETURNCODE IFGT 0

Cx R *

Cx * Send failure message *

Cx Kmmmmmmmm e mmm e oo *

C MOVEL MSG (1) MSGTEXT

C MOVE RETURNCODE FAILRETC

© MOVE REASONCODE FAILRSNC

C MOVEL 'CSNDPKB' SAPI

C EXSR SNDMSG

© RETURN

C ENDIF

Cx
(0 *
Cx Build the certificate *
(08 R *
Cx Get the private section length. The length is at position 11
Cx of the token

C EVAL MSB = TOKENARRAY (10+1)

© EVAL LSB = TOKENARRAY (11+1)

C MOVE LENGTH PRVSECLEN

Cx Get the public section length. The length is at position
Cx (11 + Private key section length).

C EVAL MSB = TOKENARRAY (10 + PRVSECLEN + 1)
© EVAL LSB = TOKENARRAY (11 + PRVSECLEN + 1)
C MOVE LENGTH PUBSECLEN

Cx Calculate the certificate section length

Cx Cert Section length = Signature length (328) +

170 IBM i: Cryptography

Cx EID section length (20) +
Cx Serial number length (12) +
Cx Info subsection header length (4) +
Cx Public Key section length +
Cx Cert section header length (4)
C EVAL LENGTH = 328 + 20 + 12 + 4 + PUBSECLEN + 4
Cx Fill Certificate section header

C MOVE TOKENLEN INDEX

C EVAL TOKENARRAY (INDEX +1) = X'40'
© EVAL TOKENARRAY (INDEX +2) = X'00'
© EVAL TOKENARRAY (INDEX +3) = MSB

C EVAL TOKENARRAY (INDEX +4) = LSB
Cx Fill in public key subsection

© EVAL TOKENARRAY (INDEX +5) = X'41'
C ADD 5 INDEX

© Z-ADD 1 I

Cx Copy the public key section of the token into the public key
Cx subsection of the certificate section.

© I DOWLT PUBSECLEN

© EVAL TOKENARRAY (INDEX + I) =

C TOKENARRAY (PRVSECLEN + I + 8 + 1)
© 1 ADD I I

C ENDDO

C EVAL INDEX = INDEX + PUBSECLEN - 1
Cx Fill in Optional Information subsection header

© Z-ADD 36 LENGTH

C EVAL TOKENARRAY (INDEX +1) = X'42'
© EVAL TOKENARRAY (INDEX +2) = X'00'
© EVAL TOKENARRAY (INDEX +3) = MSB

C EVAL TOKENARRAY (INDEX +4) = LSB
Cx Fill in Public Key Certficate EID

C EVAL INDEX = INDEX + 4

C EVAL TOKENARRAY (INDEX +1) = X'51'
© EVAL TOKENARRAY (INDEX +4) = X'14'
Cx* Fill in Public Key Certficate Serial Number TLV

C EVAL INDEX = INDEX + 20

© EVAL TOKENARRAY (INDEX +1) = X'52'
© EVAL TOKENARRAY (INDEX +4) = X'oC'
Cx Fill in Signature Subsection

© EVAL INDEX = INDEX + 12

© EVAL TOKENARRAY (INDEX +1) = X'45'
C EVAL TOKENARRAY (INDEX +3) = X'01'
© EVAL TOKENARRAY (INDEX +4) = X'48'
© EVAL TOKENARRAY (INDEX +5) = X'01'
C EVAL TOKENARRAY (INDEX +6) = X'0O1'
Cx Fill in private key name

C EVAL INDEX = INDEX + 6

C EVAL NAMEPTR1 = %ADDR(TOKENARRAY (INDEX +1))
© EVAL NAMEPTR2 =

C %ADDR (TOKENARRAY (PRVSECLEN+PUBSECLEN+12+1))
C MOVEL NAME2 NAME1

Cx Adjust token length

C EVAL LENGTH = INDEX + 64 + 258

C MOVE MSB TOKENARRAY (3)
© MOVE LSB TOKENARRAY (4)
© EVAL TOKENLEN = LENGTH

Cx* e *

Cx % Set the keywords in the rule array =*

(O e *

C MOVEL 'RETAIN ' RULEARRAY

© MOVE 'CLONE ' RULEARRAY

© Z-ADD 2 RULEARRAYCNT

C

(08 *
C*x Call PKA_Key_Generate SAPI *
(08 R e e *
© CALLP CSNDPKG (RETURNCODE :

C REASONCODE :

C EXITDATALEN:
© EXITDATA:

C RULEARRAYCNT :
C RULEARRAY :

© ZERO:

C REGENDATA:

C TOKENLEN:

© TOKEN:

C TRANSPORTKEK:
C GENKEYLEN:

© GENKEY)
Chmmmmmmmm e mmmm e *

Cx Check the return code *

(0 R *

Cryptography 171

C RETURNCODE IFGT 0

Cx R e T R *

Cx * Send failure message *

Cx R e *

© MOVEL MSG (1) MSGTEXT

© MOVE RETURNCODE FAILRETC

© MOVE REASONCODE FAILRSNC

© MOVEL 'CSNDPKG' SAPI

© EXSR SNDMSG

© RETURN

© ENDIF

Cx

Cx R e *

Cx * Send success message *

Cx L *

© MOVEL MSG(2) MSGTEXT

© EXSR SNDMSG

Cx

(0 R T *

Cx Write certificate out to file =*

[R *

Cx *% Build path name

© EVAL PATHLEN = %LEN(%TRIM(KEYNAMEPARM))
© PATHLEN SUBST KEYNAMEPARM:1 PATH

© EVAL %SUBST (PATH:PATHLEN+1:4) = '.PUB'
Cx

Cx *% Open the file

Cx

© EVAL FILED = open(PATH: OFLAG)
Cx

Cx *% Check if open worked

Cx

© FILED IFEQ -1

Cx

Cx *% Open failed, send an error message

Cx

© MOVEL MSG(3) MSGTEXT

© EXSR SNDMSG

Cx

© ELSE

Cx

Cx *% Open worked, write certificate out to file and close file
Cx

© CALLP write (FILED:

© GENKEY :

© GENKEYLEN)
C CALLP close (FILED)

Cx

Cx *x Send completion message

Cx

© MOVEL MSG(4) MSGTEXT

© EVAL %SUBST (MSGTEXT: 32: PATHLEN + 4) =
C %SUBST(PATH: 1: PATHLEN + 4)
© EXSR SNDMSG

© ENDIF

Cx

© SETON

Cx

C ||
Cx Subroutine to send a message

C ||
© SNDMSG BEGSR

© CALL "QMHSNDPM'

© PARM MESSAGEID

© PARM MESSAGEFILE
© PARM MSGTEXT

© PARM MSGLENGTH

© PARM MSGTYPE

© PARM STACKENTRY

© PARM STACKCOUNTER
© PARM MSGKEY

© PARM ERRCODE

© ENDSR

Cx

%

CSNDPKB failed with return/reason codes 9999/9999.
The retained key was successfully created.

The file could not be opened.

The certificate was written to

172 IBM i: Cryptography

Example: ILE C program for registering a public key hash
Change this IBM i ILE C program example to suit your needs for registering a hash of a public key
certificate.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

J R e
/* REGHASH

/*

/* Sample program to register the hash of a CCA public key

/> certificate.

/*

/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007

/*

/* This material contains programming source code for your

/* consideration. These examples have not been thoroughly

/* tested under all conditions. IBM, therefore, cannot

/* guarantee or imply reliability, serviceability, or function

/* of these program. All programs contained herein are

/* provided to you "AS IS". THE IMPLIED WARRANTIES OF

/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

/* ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
;* these programs and files.

*

/*

/> Note: Input format is more fully described in Chapter 2 of

/* IBM CCA Basic Services Reference and Guide */
/* (SC31-8609) publication.

/*

/* Parameters: Stream file containing public key certificate

/*

/* Example:

/* CALL PGM(REGHASH) PARM(CERTFILE)

/*

/*

/* Note: This program assumes the card with the profile is

/* already identified either by defaulting to the CRPO1

/* device or by being explicitly named using the

/* Cryptographic_Resource_Allocate verb. Also this

/* device must be varied on and you must be authorized

;* to use this device description.

*

/* The Common Cryptographic Architecture (CCA) verbs used are

/* PKA_Public_Key_Hash_Register (CSNDPKH) and One_Way_Hash WH) .
/* (CSNBOWH) .

/*

/* Use these commands to compile this program on the system:

/* ADDLIBLE LIB(QCCA)

/* CRTCMOD MODULE (REGHASH) SRCFILE(SAMPLE)

/* CRTPGM PGM(REGHASH) MODULE (REGHASH)

/* BNDDIR(QCCA/QC6BNDDIR)

/*

/* Note: Authority to the CSNDPKH and CSNBOWH service programs

/* in the QCCA library is assumed.

/*

R L

#include <stdio.h>
#include <string.h>
#include "csucincl.h"

int main(int argc, char xargv[])

0:
0:
t

long return_code = 0;
H = 0;

long reason_code =

long exit_data_leng
char exit_data[4];

char rule_array[24];

long rule_array_count;

long token_len = 2500;

char token[2500];

long chaining_vector_length = 128;

long hash_length = 20;

long text_length;

unsigned char chaining_vector[128];
unsigned char hash[20];

/* Declares for working with a PKA token

Cryptography 173

J R e e T
long pub_sec_len; /* Public section length
long cert_sec_len; /* Certificate section length
long offset; /* O0ffset into token
long tempOffset; /* (Another) Offset into token
char name[64]; /* Registered key name
long count; /* Number of bytes read from file
FILE =fp; /* File pointer
if (arge < 2) /* Check the number of parameters passed
i
printf("Need to enter a public key name\n");
return 1;
¥
memset (name,' ',64); /* Copy key name (and pad) to a 64 byte
/* field.
memcpy (name,argv([1],strlen(argv([1]));
fp = fopen(argv[l],"rb"); /% Open the file for reading
if ('fp)
printf("File %s not found.\n",argv[1]);
return 1;
memset (token,0,2500) ; /* Initialize the token to 0
count = fread(token,1,2500,fp); /* Read the token from the file
fclose(fp); /* Close the file

/* Determine length of token from length
/* bytes at offset 2 and 3.

token_len = ((256 * token[2]) + token[3]);

if (count < token_len) /* Check if whole token was read in

printf("Incomplete token in file\n");

return 1;
[FFxkFk gk khkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhk kKA /
/* Find the certificate offset in the token */
/* */
/* The layout of the token is */
/* */
/* - Token header - 8 bytes - including 2 length bytes */
/* - Public key section - length bytes at offset 10 overall x/
/* - Private key name - 68 bytes */
/* - Certificate section */
/* */

/**/
pub_sec_len = ((256 * token[10]) + token[11]);

offset = pub_sec_len + 68 + 8; /% Set offset to certiicate section

/* Determine certificate section

/* length from the length bytes at

/* offset 2 of the section.
cert_sec_len = ((256 * token[offset + 2]) + token[offset + 3]);
tempOffset = offset + 4; /* Set offset to first subsection

R e */
/* Parse each subsection of the certificate until the =*/
/* signature subsection is found or the end is reached.x/
/* (Identifier for signature subsection is Hex 45.) */

T L REEEREEEEEES x/
tempOffset < offset + cert_sec_len)

tempOffset += 256 * token[tempOffset + 2] + token[tempOffset+3];
3

J R */
/* Check if no signature was found before the end of x/
/* the certificate section. */

printf("Invalid certificate\n");
return 1;

174 IBM i: Cryptography

*/
*/

*/

*/
*/
*/

*/
*/

/* Hash the certificate */

/**/

text_length = tempOffset - offset + 70; /x Text length is length */
/* of certificate subsection. */

memcpy ((void*)rule_array, "SHA-1 ",8); /* Set rule array */
rule_array_count = 1;

chaining_vector_length = 128;

hash_length = 20;

CSNBOWH (&return_code, &reason_code, &exit_data_length,
exit_data,
&rule_array_count,
(unsigned charx)rule_array,
&text_length,
&token[offset],
&chaining_vector_length,
chaining_vector,
&hash_length,
hash) ;

if (return_code != 0)
printf("One_Way_Hash Failed : return reason %d/%d\n",

return_code, reason_code);
return 1;

/**/

/* Register the Hash */
[HHEXR A AR AFARE ISR SAAFAFA R R RS S A AFAFI R RS SRS A AR /

/* Set the rule array */
memcpy ((void*)rule_array, "SHA-1 CLONE ",16);

rule_array_count = 2;
/* Build the name of the retained */
/* key from the file and "RETAINED"x/
memcpy (&name[strlen(argv[1])],".RETAINED",9);

CSNDPKH(&return_code, &reason_code, &exit_data_length,
exit_data,
&rule_array_count,
(unsigned charx)rule_array,

name,
&hash_length,
hash) ;

if (return_code != 0)

printf("Public Key Register_Hash Failed : return reason %d/%d\n",
return_code, reason_code);

return 1;
name[strlen(argv[1]) + 9] = 0; /% Convert name to a string */
printf("Hash registered for %s.\n",6name);

¥

Example: ILE RPG program for registering a public key hash
Change this IBM i ILE RPG program example to suit your needs for registering a hash of a public key
certificate.

Change this program example to suit your needs for registering a hash of a public key certificate.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

Dx REGHASH

Dx Sample program to register the hash of a CCA public key
Dx certificate.

Dx COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

Dx This material contains programming source code for your

Dx consideration. These example has not been thoroughly
D* tested under all conditions. 1IBM, therefore, cannot

Cryptography 175

Dx guarantee or imply reliability, serviceability, or function

Dx of these programs. All programs contained herein are

Dx provided to you "AS IS". THE IMPLIED WARRANTIES OF

D* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Dx ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
Dx these programs and files.

Dx

D*

D* Note: Input format is more fully described in Chapter 2 of
D* IBM CCA Basic Services Reference and Guide

D* (SC31-8609) publication.

D*

Dx Parameters: Stream file containing public key certificate
D*

D% Example:

D* CALL PGM(REGHASH) PARM(CERTFILE)

Dx

Dx Use these commands to compile this program on the system:
D* CRTRPGMOD MODULE (REGHASH) SRCFILE(SAMPLE)

D*x CRTPGM PGM(REGHASH) MODULE (REGHASH)

D* BNDDIR(QCCA/QC6BNDDIR)

Dx

D*x Note: Authority to the CSNDPKH and CSNBOWH service programs
Dx in the QCCA library is assumed.

Dx

Dx The Common Cryptographic Architecture (CCA) verbs used are
Dx PKA_Public_Key_Hash_Register (CSNDPKH) and One_Way_Hash
Cx (CSNBOWH) .

D*

D R R R R R R R R R R R S S T S S T
Dk = = = = == === e e e e e e e e e e e e e e
D* Declare variables used by CCA SAPI calls

D G e L GE L L L
Dx *%* Return code

DRETURNCODE S 9B 0

Dx ** Reason code

DREASONCODE S 9B 0

D* *% Exit data length

DEXITDATALEN S 9B 0

Dx *% Exit data

DEXITDATA S 4

Dx* *%* Rule array count
DRULEARRAYCNT S 9B 0O

D* *%x Rule array

DRULEARRAY S 16

D* *% Token length

DTOKENLEN S 9B 0 INZ(2500)

Dx* *% Token and array for subscripting token
DTOKEN DS 2500

DTOKENARRAY 1 DIM(2500)

D* *% Chaining vector length
DCHAINVCTLEN S 9B O INZ(128)

D* *% Chaining vector

DCHAINVCT S 128

D* *% Hash length

DHASHLEN S 9B 0 INZ(20)

Dx *%* Hash

DHASH S 20

D* *% Text length

DTXTLENGTH S 9B 0

D* *% Name of retained key

DNAME S 64

D* **% Structure used for aligning 2 bytes into a
D* *% 2 byte integer.

DLENSTRUCT DS 2

DMSB 1 1

DLSB 2 2

DLENGTH 1 2B 0

Dx

D* *% Certificate section length
DCRTSECLEN S 9B 0

D* *% Public key section length
DPUBSECLEN S 9B 0O

D* *% Index into PKA key token
DTKNINDEX S 9B 0

D* *% Index into PKA key token
DTMPINDEX S 9B 0

Dx* *%x File descriptor

DFILED S 9B 0

D* *% File path and path length
DPATH S 80 INZ(*ALLX'00")
DPATHLEN S 9B 0

176 IBM i: Cryptography

D* *% Open Flag - Open for Read only
DOFLAG S 101 0 INZ(1)
Dx

Dx Prototype for PKA_Public_Key_Hash_Register (CSNDPKH)
Dk sk sk ok sk ko ok ok ok ok ko ok ok ok ke ook ok ok ok e okok ok ok ok ok ook ok ok ok ok ok ok ok ok ok ok ook ok ko ok ok ok
DCSNDPKH PR

DRETCOD 9B 0O

DRSNCOD 9B 0O

DEXTDTALN 9B 0

DEXTDT 4

DRARRYCT 9B 0O

DRARRY 16

DKYNAM 64

DHSHL 9B 0O

DHSH 20 OPTIONS (xVARSIZE)
Dx

D R R R R R R R R R R R R B B R S T = 2 T
Dx Prototype for One_Way_Hash (CSNBOWH)

DCSNBOWH PR

DRETCOD 9B 0
DRSNCOD 9B 0O
DEXTDTALN 9B 0O
DEXTDT 4
DRARRYCT 9B 0O
DRARRY 16
DTXTLEN 9B 0
DTXT 500 OPTIONS (*VARSIZE)
DCHNVCTLEN 9B 0O
DCHNVCT 128
DHSHLEN 9B 0O
DHSH 20

Dx

Dx

D R R R Rl R R R R R R B B R S T = 2 T
Dx Prototype for open()

D% value returned = file descriptor (0K), -1 (error)

Dopen PR 9B O EXTPROC('open')

D* path name of file to be opened.

D 128 OPTIONS (*VARSIZE)

D* Open flags

D 9B 0 VALUE

Dx (OPTIONAL) mode - access rights

D 10U © VALUE OPTIONS (*NOPASS)

D* (OPTIONAL) codepage

D 10U @ VALUE OPTIONS(*NOPASS)

D*

D |||
D*x Prototype for read()

D ||

Dx* value returned = number of bytes actually read, or -1
Dread PR 9B @ EXTPROC('read')

Dx File descriptor returned from open()

D 9B 0 VALUE

Dx* Input buffer

D 2500 OPTIONS (*VARSIZE)

D* Length of data to be read

D 9B O VALUE

Dx

D |||
D*x Prototype for close()

D |||
Dx* value returned = 0 (OK), or -1

Dclose PR 9B @ EXTPROC('close')

Dx File descriptor returned from open()

D 9B 0 VALUE

D*

DA = == === = = == e e e e e e e e e e e e e mmemememmemememeo———--o--
D* *% Declares for sending messages to the

D* *% job log using the QMHSNDPM API

DA = == === = = == e e e e e e e e e e mmemememmemememe————--o--
DMSG S 75 DIM(6) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0@ INZ(75)

D DS

DMSGTEXT 1 80

DSAPI 1 7

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(')
DMESSAGEFILE S 21 INZ(' ")

Cryptography 177

DMSGKEY S 4
DMSGTYPE S 10
DSTACKENTRY S 10
DSTACKCOUNTER S 9B
DERRCODE DS

DBYTESIN 1 4B
DBYTESOUT o) 8B
C*

INZ (')

INZ('*INFO Y)
INZ('*)
0 INZ(2)
0 INZ(0)
0 INZ(O)

Chkkkkkhkhkkkkhkhkhkhkhkkhkhkhkkhhhkhkhkkhkhkhkhkkhkhkhkhkhkhkhkhkhkkkkkkhkhkkkkkx

Cx START OF PROGRAM *
Cx *
© *ENTRY PLIST

© PARM FILEPARM 50
C ||
Cx Open certificate file

C ||
Ck hmmmmmmmmmmmmmmmemeo *

Cx *% Build path name *

Cx R *

© EVAL PATHLEN = %LEN(%TRIM(FILEPARM))

© PATHLEN SUBST FILEPARM:1 PATH

Cx R *

Cx % Open the file *

Cx L *

© EVAL FILED = open(PATH: OFLAG)

Ck hmmmmmmmmmmmmmmmmeeeeo *

Cx * Check if open worked *

Cx R *

c FILED IFEQ -1

Cx R L E T T *

Cx * Open failed, send an error message *

Cx R e T T T *

© MOVEL MSG (1) MSGTEXT

© EXSR SNDMSG

© RETURN

Cx

© ENDIF

Cx R *

Cx * Open worked, read certificate and close the file *

Cx LR e R *

© EVAL TOKENLEN = read(FILED: TOKEN: TOKENLEN)
© CALLP close (FILED)

Cx

Cx R LT TR *

Cx * Check if read operation was OK *

Cx R *

C TOKENLEN IFEQ -1

© MOVEL MSG(2) MSGTEXT

© EXSR SNDMSG

© RETURN

© ENDIF

Cx

Cx R L e e R *

Cx * Check if certificate length is valid =*

Cx * The length bytes start at position 3 =*

Cx R e e T *

© EVAL MSB = TOKENARRAY (3)

© EVAL LSB = TOKENARRAY (4)

© LENGTH IFLT TOKENLEN

Cx e *

Cx * Certificate length is not valid *

Cx R L LT T *

© MOVEL MSG(3) MSGTEXT

© EXSR SNDMSG

© RETURN

© ENDIF

Cx

C ||
Cx Find the certificate in the token

Cx

Cx The layout of the token is

Cx

Cx - Token header - 8 bytes - including 2 length bytes

Cx - Public key section - length bytes at position 3 (11 overall)
Cx - Private key name - 68 bytes

Cx - Certificate section

Cx

Cx Note: 1 is added because RPG arrays start at 1.

C ||
© EVAL MSB = TOKENARRAY (11)

© EVAL LSB = TOKENARRAY (12)

© EVAL PUBSECLEN = LENGTH

178 IBM i: Cryptography

EVAL TKNINDEX =

PUBSECLEN + 68 + 8 + 1

Cx

Cx R L *

Cx * Determine length of certificate section =*

Cx * Length bytes are at position 2 of the *

Cx * section.

Cx R *

© EVAL MSB = TOKENARRAY (TKNINDEX + 2)

© EVAL LSB = TOKENARRAY (TKNINDEX + 3)

C EVAL CRTSECLEN = LENGTH

© EVAL TMPINDEX = TKNINDEX + 4

Cx

Cx R e e *
Cx * Parse each subsection of the certificate until the =
Cx * signature subsection is found or the end is reached.x*
Cx * (Identifier for signature subsection is Hex 45.) *
Cx R L T T *
© DOW (TOKENARRAY (TMPINDEX) <> X'45') AND
C (TMPINDEX < TKNINDEX + CRTSECLEN)
© EVAL MSB = TOKENARRAY (TMPINDEX + 2)

© EVAL LSB = TOKENARRAY (TMPINDEX + 3)

C TMPINDEX ADD LENGTH TMPINDEX

© ENDDO

Cx

Cx R e *
Cx * Check if no signature was found before the end of =«
Cx * the certificate section. *
Cx R *
© IF TOKENARRAY (TMPINDEX) <> X'45'

© MOVEL MSG(4) MSGTEXT

C EXSR SNDMSG

© RETURN

© ENDIF

Cx

C ||
C*x Hash the certificate

C ||
[e T *

Cx % Calculate the length to hash *

Cx R e *

© EVAL TXTLENGTH = TMPINDEX - TKNINDEX + 70
Cx i *

Cx % Set the keywords in the rule array *

[I L e *

© MOVEL 'SHA-1 ' RULEARRAY

C Z-ADD 1 RULEARRAYCNT

Ck hmmmmmmmmmmmmmmmmeeeeeeoo *

Cx * Call One Way Hash SAPI *

Cx R *

© CALLP CSNBOWH (RETURNCODE:

© REASONCODE :

C EXITDATALEN:

© EXITDATA:

© RULEARRAYCNT :

C RULEARRAY :

© TXTLENGTH:

© TOKENARRAY (TKNINDEX) :
C CHAINVCTLEN:

© CHAINVCT:

© HASHLEN :

C HASH)

Ck hmmmmmmmmmmmmmmmmmmeeeoo *

Cx * Check the return code *

Ck hemmmmmmm e e e e e - *

C RETURNCODE IFGT 0

Cx R *

Cx * Send failure message *

Cx e *

© MOVEL MSG(5) MSGTEXT

C MOVE RETURNCODE FAILRETC

© MOVE REASONCODE FATILRSNC

© MOVEL "CSNBOWH' SAPI

C EXSR SNDMSG

© RETURN

© ENDIF

Cx

C ||
Cx Register the certificate hash

C ||
Ck k=== mmmm e emmeeeemeo o *

Cx * Set the keywords in the rule array *

Cx R *

Cryptography 179

© MOVEL 'SHA-1 ' RULEARRAY

© MOVE 'CLONE ' RULEARRAY

C Z-ADD 2 RULEARRAYCNT

Cx R e *

Cx * Build the key name (FILENAME.RETAINED) *

Cx R *

© EVAL 9%SUBST (NAME: 1: PATHLEN) =

© 9%SUBST (PATH: 1: PATHLEN)
C EVAL 9%SUBST (NAME : PATHLEN+1:9) = '.RETAINED'
[0 *

Cx * Call PKA Public Key Hash Register *

Cx R e *

© CALLP CSNDPKH (RETURNCODE :

C REASONCODE :

© EXITDATALEN:

© EXITDATA:

C RULEARRAYCNT:

© RULEARRAY :

© NAME :

C HASHLEN :

© HASH)

Ck hmmmmmmmmmmmmmmmmee oo *

Cx * Check the return code =«

Ck hemmmmmmmm e e e o - *

© RETURNCODE IFGT 0

Cx R *

Cx * Send failure message *

C* R T *

C MOVEL MSG(5) MSGTEXT

© MOVE RETURNCODE FAILRETC

© MOVE REASONCODE FAILRSNC

C MOVEL "CSNDPKH' SAPI

© EXSR SNDMSG

© ELSE

Cx* Y R T *

Cx * Send success message *

C* R *

C MOVEL MSG(6) MSGTEXT

© EVAL 9%SUBST (MSGTEXT: 41: PATHLEN + 9) =
© 9%SUBST (NAME: 1: PATHLEN + 9)
C EXSR SNDMSG

© ENDIF

Cx

C SETON LR
Cx*

C ||
Cx Subroutine to send a message

C ||
© SNDMSG BEGSR

C CALL "QMHSNDPM'

© PARM MESSAGEID

© PARM MESSAGEFILE

C PARM MSGTEXT

© PARM MSGLENGTH

© PARM MSGTYPE

C PARM STACKENTRY

© PARM STACKCOUNTER

© PARM MSGKEY

C PARM ERRCODE

© ENDSR

Kk
The file could not be opened.

There was an error reading from the file.

The length of the certificate is not valid.

The certificate is not valid.

CSNBOWH failed with return/reason codes 9999/9999.
The hash was successfully registered as

Example: ILE C program for registering a public key certificate
Change this IBM i ILE C program example to suit your needs for registering a public key certificate.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

R R */
/* REGPUBKEY */
/* */
;* Sample program to register a CCA public key certificate *;
* *

180 IBM i: Cryptography

/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007

/* This material contains programming source code for your

/* consideration. These examples have not been thoroughly

/* tested under all conditions. IBM, therefore, cannot

/* guarantee or imply reliability, serviceability, or function

/* of these program. All programs contained herein are

/* provided to you "AS IS". THE IMPLIED WARRANTIES OF

/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

/* ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for

/* these programs and files.

/*

/*

/* Note: Input format is more fully described in Chapter 2 of

/* IBM CCA Basic Services Reference and Guide */
/* (SC31-8609) publication.

/*

/* Parameters: Stream file containing public key certificate

/*

/* Example:

/* CALL PGM(REGPUBKEY) PARM(CERTFILE)

/*

/*

/* Note: This program assumes the card with the profile is
/* already identified either by defaulting to the CRPO1
/* device or by being explicitly named using the

/* Cryptographic_Resource_Allocate verb. Also this

/* device must be varied on and you must be authorized
;* to use this device description.

*

/* The Common Cryptographic Architecture (CCA) verb used is
/* PKA_Public_Key_Register (CSNDPKR) .

/* Use these commands to compile this program on the system:
/* ADDLIBLE LIB(QCCA)

/* CRTCMOD MODULE (REGPUBKEY) SRCFILE(SAMPLE)

/* CRTPGM PGM(REGPUBKEY) MODULE (REGPUBKEY)

/* BNDDIR(QCCA/QC6BNDDIR)

/*

/* Note: Authority to the CSNDPKR service program

/* in the QCCA library is assumed.

/*

J R R e

#include <stdio.h>
#include <string.h>
f##include "csucincl.h"

int main(int argc, char *argv([])

long return_code = 0;

long reason_code = 0;

long exit_data_length = 0;
char exit_data[4];

char rule_array[24];

long rule_array_count;
long token_len = 2500;
char token[2500];

J R

/* Declares for working with a PKA token

J R R

long pub_sec_len; /* Public section length

long cert_sec_len; /* Certificate section length

long offset; /* Offset into token

long tempOffset; /* (Another) Offset into token

char name[64]; /* Registered key name

long count; /* Number of bytes read from file

FILE xfp; /* File pointer

if (arge < 2) /* Check the number of parameters passed
printf("Need to enter a public key name\n");
return 1;

memset(name,' ',64); /* Copy key name (and pad) to a 64 byte

/* field.
memcpy (name,argv[1],strlen(argv[1]));

*/
*/

*/
*/

Cryptography 181

fp = fopen(argv([1],"rb"); /* Open the file for reading */

if (!fp)
i
printf("File %s not found.\n",argv[1]);
return 1;
¥
memset (token,0,2500) ; /* Initialize the token to 0@ */
count = fread(token,1,2500,fp); /* Read the token from the file */
fclose(fp); /* Close the file */
/* Determine length of token from length x/
/* bytes at offset 2 and 3. */
token_len = ((256 * token[2]) + token[3]);
if (count < token_len) /* Check if whole token was read in */

printf("Incomplete token in file\n");
return 1;

/**/

/* Find the certificate length in the token */
/* */
/* The layout of the token is */
/* */
/* - Token header - 8 bytes - including 2 length bytes */
/* - Public key section - length bytes at offset 2 */
/* - Private key name - 68 bytes */
/* - Certificate section */

/**/
pub_sec_len = ((256 * token[10]) + token[11]);

offset = pub_sec_len + 68 + 8; /% Set offset to certiicate section %/

/* Determine certificate section */
/> length from the length bytes at */
/* offset 2 of the section. */
cert_sec_len = ((256 * token[offset + 2]) + token[offset + 3]);
[HREFEE AR AR SR SRS S RAFERAR AR A RS S SRR RAR AR AR SRS /
/* Register the Public Key */
/**/
memcpy ((void*)rule_array, "CLONE ",8); /* Set rule array */

rule_array_count = 1;
/* Build the name of the retained */
/* key from the file and "RETAINED"x/
memcpy (&name[strlen(argv[1])],".RETAINED",9);

CSNDPKR(&return_code, &reason_code, &exit_data_length,
exit_data,
&rule_array_count,
(unsigned charx)rule_array,
name,
&cert_sec_len,
&token[offset]);

if (return_code != 0)

printf("Public Key Register Failed : return reason %d/%d\n",
return_code, reason_code);

return 1;
name[strlen(argv[1]) + 9] = 0; /% Convert name to a string */
printf("Public key registered for %s.\n",name);

Example: ILE RPG program for registering a public key certificate
Change this IBM i ILE RPG program example to suit your needs for registering a public key certificate.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

Dx REGPUBKEY

Dx

Dx Sample program to register a CCA public key
Dx certificate.

Dx

182 IBM i: Cryptography

COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

This material contains programming source code for your
consideration. These example has not been thoroughly

tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function

of these programs. All programs contained herein are

provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
these programs and files.

Note: Input format is more fully described in Chapter 2 of
IBM CCA Basic Services Reference and Guide
(SC31-8609) publication.

Parameters: Stream file containing public key certificate

Example:
CALL PGM(REGPUBKEY) PARM(CERTFILE)

Use these commands to compile this program on the system:
CRTRPGMOD MODULE (REGPUBKEY) SRCFILE (SAMPLE)

Dx CRTPGM PGM(REGPUBKEY) MODULE (REGPUBKEY)

Dx BNDDIR(QCCA/QC6BNDDIR)

D*

D*x Note: Authority to the CSNDPKR service program

Dx in the QCCA library is assumed.

D*

Dx The Common Cryptographic Architecture (CCA) verbs used are
Dx PKA_Public_Key_Register (CSNDPKR).

D*

D ||
(D e e e
Dx Declare variables used by CCA SAPI calls

D 5 5 5 5 0 5 5 0 5 5 5 55 5 55 5 50 50 5 55 505 505 505 50
Dx ** Return code

DRETURNCODE S 9B 0

D* ** Reason code

DREASONCODE S 9B 0

D* *% Exit data length

DEXITDATALEN S 9B 0

Dx *% Exit data

DEXITDATA S 4

Dx* ** Rule array count

DRULEARRAYCNT S 9B 0

D* *% Rule array

DRULEARRAY S 16

D* *% Token length

DTOKENLEN S 9B 0 INZ(2500)

D* *% Token and array for subscripting token
DTOKEN DS 2500

DTOKENARRAY 1 DIM(2500)

Dx *% Name of retained key

DNAME S 64

D* *% Structure used for aligning 2 bytes into a
D* *% 2 byte integer.

DLENSTRUCT DS 2

DMSB 1 1

DLSB 2 2

DLENGTH 1 2B 0

D* *% Certificate section length
DCRTSECLEN S 9B 0

Dx *% Public key section length

DPUBSECLEN S 9B 0O

D* *% Index into PKA key token

DTKNINDEX S 9B 0

D* *% Index into PKA key token

DTMPINDEX S 9B 0

D* *%x File descriptor

DFILED S 9B 0O

D* *% File path and path length

DPATH S 80 INZ(*ALLX'00")
DPATHLEN S 9B 0

D* **% Open Flag - Open for Read only

DOFLAG S 10T 0 INZ(1)

D*

D ||

Cryptography 183

DCSNDPKR PR

DRETCOD 9B 0O

DRSNCOD 9B 0O

DEXTDTALN 9B 0

DEXTDT 4

DRARRYCT 9B 0O

DRARRY 16

DKYNAM 64

DCRTLEN 9B 0O

DCRT 500 OPTIONS (xVARSIZE)
Dx

D R R R R R R R R R R R B B R S T = 2 2
Dx Prototype for open()

D% value returned = file descriptor (0K), -1 (error)

Dopen PR 9B O EXTPROC('open')

D* path name of file to be opened.

D 128 OPTIONS (*VARSIZE)

D* Open flags

D 9B 0 VALUE

Dx (OPTIONAL) mode - access rights

D 10U O VALUE OPTIONS (*NOPASS)

D* (OPTIONAL) codepage

D 10U O VALUE OPTIONS (*NOPASS)

Dx

D |||
D* Prototype for read()

D ||

Dx* value returned = number of bytes actually read, or -1
Dread PR 9B O EXTPROC('read')

Dx File descriptor returned from open()

D 9B 0 VALUE

Dx* Input buffer

D 2500 OPTIONS (*VARSIZE)

D* Length of data to be read

D 9B O VALUE

Dx

D |||
D% Prototype for close()

D |||
Dx* value returned = 0 (OK), or -1

Dclose PR 9B @ EXTPROC('close')

Dx File descriptor returned from open()

D 9B 0 VALUE

D*

DA = == === = = == e e e e e e e e e e e e mmemememmememme————--a--
D* *% Declares for sending messages to the

D* *% job log using the QMHSNDPM API

DA = == === = = == e e e e e e e e e e e mmmemememmemememe————--o--
DMSG S 75 DIM(5) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0@ INZ(75)

D DS

DMSGTEXT 1 80

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(')
DMESSAGEFILE S 21 INZ(')
DMSGKEY S 4 INZ(' ")

DMSGTYPE S 10 INZ('*INFO)
DSTACKENTRY S 10 INZ('*)
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(O)

DBYTESOUT 5 8B 0 INZ(0O)

Cx
Chhhkkhkhkhkhhkhkhhkhkhkhhkhhhhkhkhhkhkhhhkhhhhkhkhhkhkhhhkhkhhhkhkhhkhkhkhhkhkhhkhkhkkhkkrkkkkx
Cx START OF PROGRAM *
Cx *
C *ENTRY PLIST

C PARM FILEPARM 50
C ||
Cx Open certificate file

Ck hmmmmmmmmmmmmmmmee oo *

Cx *% Build path name *

Cx R *

© EVAL PATHLEN = %LEN(%TRIM(FILEPARM))

C PATHLEN SUBST FILEPARM:1 PATH

Cx R *

Cx * Open the file *

Cx L *

C EVAL FILED = open(PATH: OFLAG)

184 IBM i: Cryptography

Cx R *
Cx % Check if open worked =

Cx* T *

© FILED IFEQ =

Cx R e *

Cx * Open failed, send an error message *

Cx* e *

© MOVEL MSG (1) MSGTEXT

© EXSR SNDMSG

© RETURN

Cx

© ENDIF

Cx R i *
Cx * Open worked, read certificate and close the file =*
Cx R L L *
© EVAL TOKENLEN = read(FILED: TOKEN: TOKENLEN)
C CALLP close (FILED)

Cx*

Cx R *

Cx * Check if read operation was OK *

Cx R *

© TOKENLEN IFEQ =

© MOVEL MSG(2) MSGTEXT

© EXSR SNDMSG

© RETURN

C ENDIF

Cx*

Cx R *

Cx * Check if certificate length is valid =*

Cx * The length bytes start at position 3 *

Cx e *

© EVAL MSB = TOKENARRAY (3)

© EVAL LSB = TOKENARRAY (4)

© LENGTH IFLT TOKENLEN

Cx R e T *

Cx * Certificate length is not valid *

Cx R e *

© MOVEL MSG(3) MSGTEXT

© EXSR SNDMSG

© RETURN

C ENDIF

Cx*

C ||
Cx Find the certificate in the token

Cx*

Cx The layout of the token is

Cx

Cx - Token header - 8 bytes - including 2 length bytes

Cx - Public key section - length bytes at position 3 (11 overall)
Cx - Private key name - 68 bytes

Cx - Certificate section

Cx Note: 1 is added because RPG arrays start at 1.
Chhkkhkhkhkhhkhkhhkhkhhhkhhhhkhkhhkhkhhhkhkhhhkhkhhkhkhhhkhhhhkhkhhkhkhkhhkhkhhkkhkkhkkhkkhkix

© EVAL MSB = TOKENARRAY (11)

© EVAL LSB = TOKENARRAY (12)

© EVAL PUBSECLEN = LENGTH

© EVAL TKNINDEX = PUBSECLEN + 68 + 8 + 1
Cx

Cx R i *

Cx * Determine length of certificate section =*

Cx * Length bytes are at position 2 of the *

Cx * section.

Cx R i i *

© EVAL MSB = TOKENARRAY (TKNINDEX + 2)
© EVAL LSB = TOKENARRAY (TKNINDEX + 3)
© EVAL CRTSECLEN = LENGTH

Cx

[0 3 R R R R R B R E R R R R e e
C*x Register the public key

C ||
Cx R e *

Cx % Set the keywords in the rule array *

[I e *

© MOVEL "CLONE ' RULEARRAY

o Z-ADD 1 RULEARRAYCNT

[I R e *

Cx % Build the key name (FILENAME.RETAINED) *

Cx R *

C EVAL %SUBST(NAME: 1: PATHLEN) =

© 9%SUBST (PATH: 1: PATHLEN)
© EVAL %SUBST (NAME : PATHLEN+1:9) = '.RETAINED'

Cryptography 185

Ckx hmmmmmmmmmm e *
Cx % Call PKA Public Key Register =*

Cx R *

© CALLP CSNDPKR (RETURNCODE :

© REASONCODE :

© EXITDATALEN:

© EXITDATA:

© RULEARRAYCNT :

© RULEARRAY :

© NAME :

© CRTSECLEN:

© TOKENARRAY (TKNINDEX))
Ck hemmmmmmmmmmmmmmmmmmeeeoo *

Cx * Check the return code *

Ck heommmmmmm e e e e o - *

© RETURNCODE IFGT 0

Cx L *

Cx * Send failure message *

Cx e *

© MOVEL MSG(4) MSGTEXT

© MOVE RETURNCODE FAILRETC

© MOVE REASONCODE FAILRSNC

© EXSR SNDMSG

© ELSE

Cx e *

Cx * Send success message *

Cx R *

© MOVEL MSG(5) MSGTEXT

© EVAL 9%SUBST (MSGTEXT: 41: PATHLEN + 9) =
© %SUBST(NAME: 1: PATHLEN + 9)
© EXSR SNDMSG

© ENDIF

Cx

© SETON LR
Cx*

C ||

C*x Subroutine to send a message
Chhhkkhkhkhhkhkhhkhkhhhkhhhhkhkhhkhkhhhkhkhhhkhkhhkhkhhhkhkhhkhkhkhhkkhhkhkhkhkkhkkhkkrxkkkx

C SNDMSG BEGSR

C CALL "QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY
C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

**

The file could not be opened.

There was an error reading from the file.

The length of the certificate is not valid.
CSNDPKR failed with return/reason codes 9999/9999.
The hash was successfully registered as

Example: ILE C program for certifying a public key token
Change this IBM i ILE C program example to suit your needs for certifying a CCA public key certificate to
be used for master key cloning.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

R e e */
/* CERTKEY */
/* */
/* Sample program to certify a CCA public key certificate to be */
/* used for master key cloning. */
/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/*x of these program. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */

186 IBM i: Cryptography

/* ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for

/* these programs and files.

/*

/*

/> Note: Input format is more fully described in Chapter 2 of

/* IBM CCA Basic Services Reference and Guide */
/* (SC31-8609) publication.

/*

/* Parameters: FILENAME - File containing public key token
/* RETAINED_KEY_NAME - Name of key to certify token

/*

/* Example:

/* CALL PGM(CERTKEY) PARM(MYKEY.PUB CERTKEY)

/*

/*

/* Note: This program assumes the card with the profile is

/* already identified either by defaulting to the CRPO1

/* device or by being explicitly named using the

/* Cryptographic_Resource_Allocate verb. Also this

/* device must be varied on and you must be authorized

/* to use this device description.

/*

/* The Common Cryptographic Architecture (CCA) verbs used are

/* Digital_Signature_Generate (CSNDDSG) and One_Way_Hash (CSNBOWH).

/* Use these commands to compile this program on the system:
/* ADDLIBLE LIB(QCCA)

/* CRTCMOD MODULE (CERTKEY) SRCFILE (SAMPLE)

/* CRTPGM PGM(CERTKEY) MODULE (CERTKEY)

/* BNDDIR(QCCA/QC6BNDDIR)

/*

/* Note: Authority to the CSNDDSG and CSNBOWH service programs

/* in the QCCA library is assumed.

/*

R L E R T

#include <stdio.h>
#include <string.h>
f##include "csucincl.h"
#include "decimal.h"

extern void QDCXLATE(decimal(5,0), char *, charx, char *);
{#pragma linkage (QDCXLATE, 0S, nowiden)

int main(int argc, char xargv[])

0:
0:
t

long return_code = 0;
ﬁ = 0;

long reason_code =

long exit_data_leng
char exit_data[4];

char rule_array[24];

long rule_array_count;

long token_len = 2500;

char token[2500];

long chaining_vector_length = 128;

long hash_length = 20;

long text_length;

unsigned char chaining_vector[128];
unsigned char hash[20];

long signature_length = 256;

R e */
long pub_sec_len; /* Public section length */
long cert_sec_len; /* Certificate section length */
long offset; /* Offset into token */
long tempOffset; /* (Another) Offset into token */
long tempLength; /* Length variable */
char name[64]; /* Private key name */
char SAname[64]; /* Share administration or certifying */

/* key name. */
char SAnameASCII[64]; /* Share admin key name in ASCII */
long SAname_length = 64; /* Length of Share admin key name */
long count; /* Number of bytes read from file */
decimal(5,0) xlate_length = 64; /% Packed decimal variable */

/* needed for call to QDCXLATE. */
FILE xfp; /* File pointer */
if (arge < 3) /* Check the number of parameters passed */

Cryptography 187

printf("Need to enter a public key name and SA key\n");

return 1;
name[0] = O; /* Make copy of name parameters */
strcpy (name,argv[1]);
memset (SAname, ' ', 64); /* Make copy of Share Admin key name */
memcpy (SAname,argv[2],strlen(argv[2]));
fp = fopen(name,"xb"); /* Open the file containing the token */
if (!fp)
1
printf("File %s not found.\n",argv[1]);
return 1;
3
memset (token,0,2500) ; /* Read the token from the file */
count = fread(token,1,2500,fp);
fclose(fp);
/* Determine length of token from length x/
/* bytes at offset 2 and 3. */
token_len = ((256 * token[2]) + token[3]);
if (count < token_len) /* Check if whole token was read in */

printf("Incomplete token in file\n");
return 1;

/**/

/* Find the certificate offset in the token */
* */
/* The layout of the token is */
/* */
/* - Token header - 8 bytes - including 2 length bytes */
/* - Public key section - length bytes at offset 10 overall x*/
/* - Private key name - 68 bytes */
/* - Certificate section */
/* */

/
pub_sec_len = ((256 % token[10]) + token[11]);

offset = pub_sec_len + 68 + 8; /% Set offset to certiicate section %/

/* Determine certificate section */
/* length from the length bytes at «/
/* offset 2 of the section. */
cert_sec_len = ((256 * token[offset + 2]) + token[offset + 3]);
tempOffset = offset + 4; /* Set offset to first subsection */
R R e */

/* Parse each subsection of the certificate until the =x/
/* signature subsection is found or the end is reached.x/
/* (Identifier for signature subsection is Hex 45.) */
R R e */
while(token[tempOffset] != Ox45 &&
tempOffset < offset + cert_sec_len)

tempOffset += 256 * token[tempOffset + 2] + token[tempOffset+3];

R e T */
/* Check if no signature was found before the end of =x/
/* the certificate section. */

R e */
if (token[tempOffset] != 0x45)

printf("Invalid certificate\n");
return 1;

3
/***/
/* Replace Private key name in certificate with the */
/* Share admin key name (expressed in ASCII). */

/***/
text_length = tempOffset - offset + 70;

-- */

/* Convert the Share Admin key name to ASCII */

R e */
QDCXLATE (xlate_length, SAnameASCII, "QASCII ", "QSYS ");

memcpy (&token[tempOffset + 6], SAnameASCII, 64);

188 IBM i: Cryptography

memcpy ((void*)rule_array, "SHA-1 ",8);
rule_array_count = 1;
chaining_vector_length = 128;
hash_length = 20;

CSNBOWH(&return_code, &reason_code, &exit_data_length,
exit_data,
&rule_array_count,
(unsigned charx)rule_array,
&text_length,
&token[offset],
&chaining_vector_length,
chaining_vector,
&hash_length,
hash) ;

if (return_code != 0)
printf("One_Way_Hash Failed : return reason %d/%d\n",

return_code, reason_code);
return 1;

/* Create a signature */
/**/
memcpy ((void*)rule_array, "IS0-9796",8);

rule_array_count = 1;

CSNDDSG(&return_code, &reason_code, &exit_data_length,
exit_data,
&rule_array_count,
(unsigned charx)rule_array,
&SAname_length,

SAname,

&hash_length,

hash,
&signature_length,
&signature_bit_length,
&token[tempOffset+70]);

if (return_code != 0)

printf("Digital Signature Generate Failed : return reason %d/%d\n",
return_code, reason_code);

return 1;

%
R e L e T T */
/* Check if the new signature is longer than the *x/
/* original signature */

B e */
if((token[tempOffset + 2] % 256 + token[tempOffset + 3]) - 70 !=
signature_length)

printf("Signature Length change from %d to %d.\n",
token[tempOffset + 2] * 256 + token[tempOffset + 3] - 70,
signature_length);

/* Adjust length in signature subsection */
token[tempOffset + 2] = signature_length >> 8;
token[tempOffset + 3] = signature_length;

/* Adjust length in certificate section */
token[offset + 2] (text_length + signature_length) >> 8;
token[offset + 3] text_length + signature_length;

/* Adjust length in token header section x/

tempLength = 8 + pub_sec_len + 68 + text_length +
signature_length;

token[2] = tempLength >> §;

token[3] = templLength;

%
else tempLength = token[2] * 256 + token[3];

Cryptography 189

strcat(name,".CRT");
fp = fopen(name,"wb");
if (!fp)

/* Append .CRP to filename */
/* Open the certificate file */
printf("File open failed for output\n");
else
fwrite(token, 1, tempLength, fp);

fclose(fp);
printf("Public token written to file %s.\n", name);

Example: ILE RPG program for certifying a public key token
Change this IBM i ILE RPG program example to suit your needs for certifying a CCA public key certificate
to be used for master key cloning.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

D* CERTKEY

Dx Sample program to certify a CCA public key certificate to be
Dx used for master key cloning.

D* COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

Dx This material contains programming source code for your

Dx consideration. These example has not been thoroughly

Dx tested under all conditions. 1IBM, therefore, cannot

Dx guarantee or imply reliability, serviceability, or function

Dx of these programs. All programs contained herein are

Dx provided to you "AS IS". THE IMPLIED WARRANTIES OF

Dx MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Dx ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
Dx these programs and files.

Dx

D*

Dx Note: Input format is more fully described in Chapter 2 of

D% IBM CCA Basic Services Reference and Guide

D% (SC31-8609) publication.

Dx

D* Parameters: FILENAME - File containing public key token
Dx RETAINED_KEY_NAME - Name of key to certify token

D*

D% Example:
Dx CALL PGM(CERTKEY) PARM(MYKEY.PUB CERTKEY)

Dx Use these commands to compile this program on the system:
D* CRTRPGMOD MODULE (CERTKEY) SRCFILE(SAMPLE)
Dx CRTPGM PGM(CERTKEY) MODULE (CERTKEY)

Dx BNDDIR(QCCA/QC6BNDDIR)

Dx

Dx Note: Authority to the CSNDDSG and CSNBOWH service programs
D* in the QCCA library is assumed.

Dx

Dx The Common Cryptographic Architecture (CCA) verbs used are
Dx Digital_Signature_Generate (CSNDDSG) and One_Way_Hash (CSNBOWH) .

D*

D ||
D 5 55 5 55 5 53 35 5 5 55 535 505 505 5
D* Declare variables used by CCA SAPI calls

D= === e e moo-
D* *%x Return code

DRETURNCODE S 9B 0

D* *% Reason code

DREASONCODE S 9B 0

D* *% Exit data length

DEXITDATALEN S 9B 0

D* *% Exit data

DEXITDATA S 4

D* *% Rule array count

DRULEARRAYCNT S 9B 0

Dx* ** Rule array

DRULEARRAY S 16

D* *% Token length

190 IBMi: Cryptography

DTOKENLEN S 9B 0 INZ(2500)

D* *% Token and array for subscripting token
DTOKEN DS 2500

DTOKENARRAY 1 DIM(2500)

D* *% Chaining vector length

DCHAINVCTLEN S 9B 0 INZ(128)

D* *% Chaining vector

DCHAINVCT S 128

D* *% Hash length

DHASHLEN S 9B 0 INZ(20)

D* *% Hash

DHASH S 20

Dx *% Text length

DTXTLENGTH S 9B 0

D* *% Signature length

DSIGLENGTH S 9B 0 INZ(256)

D* *% Signature length in bits

DSIGBITLEN S 9B 0

Dk= = = === === == e e e e e e e e e m—eo -
Dx Declare variables for working with tokens

D Gl e G L L L L
D* *% NAMEPTR and NAME are used for copying
D* *% private key name

DNAMEPTR S *

DNAME S 64 BASED (NAMEPTR)

D* *% Share administrator (certifying key) name length
DSANAMELEN S 9B 0

D* *% Share administrator (certifying key) name
DSANAME S 64

Dx* *% Share administrator name expressed in ASCII
DSANAMEASC S 64

D* *% Certificate section length
DCRTSECLEN S 9B 0

D* *% Public key section length

DPUBSECLEN S 9B 0

Dx* *%x Index into PKA key token

DTKNINDEX S 9B 0O

D* *% Index into PKA key token

DTMPINDEX S 9B 0

D* *% Structure used for aligning 2 bytes into a
D* *% 2 byte integer.

DLENSTRUCT DS 2

DMSB 1 1

DLSB 2 2

DLENGTH 1 2B 0

D* *% File descriptor

DFILED S 9B 0

Dx* *% File path and path length

DPATH S 80 INZ (*ALLX'00")
DPATHLEN S 9B 0

Dx* *% Open flag - Create on open, open for writing,
Dx Kk and clear if exists
DOFLAGW S 101 O INZ(X'4A")

Dx* *% Open Flag - Open for Read only
DOFLAGR S 10T 0 INZ(1)

D* *% Declares for calling QDCXLATE API
DXTABLE S 10 INZ('QASCII ")
DLIB S 10 INZ('QSYS ")
DXLATLEN S 5 0 INZ(64)

D

D*

D ||
D* Prototype for Digital_Signature_Generate (CSNDDSG)
DCSNDDSG PR

DRETCOD 9B 0

DRSNCOD 9B 0

DEXTDTALN 9B 0

DEXTDT 4

DRARRYCT 9B 0O

DRARRY 16

DKEYIDLEN 9B 0

DKEYID 2500 OPTIONS (*VARSIZE)
DHSHL 9B 0

DHSH 20 OPTIONS (*VARSIZE)
DSIGFLDL 9B 0

DSIGBTL 9B 0

DSIGFLD 256 OPTIONS (*VARSIZE)

D*

D ||

Cryptography 191

DCSNBOWH PR

DRETCOD 9B 0

DRSNCOD 9B 0

DEXTDTALN 9B 0

DEXTDT 4

DRARRYCT 9B 0

DRARRY 16

DTXTLEN 9B 0

DTXT 500 OPTIONS (*xVARSIZE)
DCHNVCTLEN 9B 0

DCHNVCT 128

DHSHLEN 9B 0

DHSH 20

Dx

D*

D ||

Dx Prototype for open()
D R R R R R R R R R R R B B S S T = 2 2

Dx value returned = file descriptor (0K), -1 (error)
Dopen PR 9B @ EXTPROC('open')

D path name of file to be opened.

D 128 OPTIONS (*VARSIZE)

D* Open flags

D 9B O VALUE

Dx (OPTIONAL) mode - access rights

D 10U O VALUE OPTIONS(*NOPASS)
Dx (OPTIONAL) codepage

D 10U O VALUE OPTIONS (*NOPASS)
Dx

Dxkkkkhkhkhkhkhkhhkhkhhkhkhhhkhkhhkhkhkhkhkhhhkhkhhkhkhkhhkhhhhkhkhhkhkhhhkhhhkhkhkkhkhhkhkhkrhkkkkkkx
Dx Prototype for read()

Dx* value returned = number of bytes actually read, or -1
Dread PR 9B O EXTPROC('read')

D* File descriptor returned from open()

D 9B O VALUE

D* Input buffer

D 2500 OPTIONS (*VARSIZE)

D* Length of data to be read
D 9B 0 VALUE

Dx*

D R R R R R R R B R B B L e e 3
D* Prototype for write()

Dx* value returned = number of bytes written, or -1
Dwrite PR 9B O EXTPROC('write')
D* File descriptor returned from open()

D 9B 0 VALUE

D* Output buffer

D 2500 OPTIONS (*VARSIZE)
D* Length of data to be written

D 9B 0 VALUE

D*

Dxkkkkhkhkhkhkhkhhkhkhhkhhhhkhkhhkhkhkkhkhkhhkhkhkhhkhkhkhhkhhhkhkhhhkhkhhhkhhhkhkhkkhkhkhhkhkhkkhkkkkx
Dx Prototype for close()

D* value returned = 0 (OK), or -1

Dclose PR 9B O EXTPROC('close')

D* File descriptor returned from open()

D 9B O VALUE

D*
Di¥cocoscooccosocanooocnocaocoocno0ao00sao00o000ca000sc000000000
D* *% Declares for sending messages to the

D* *% job log using the QMHSNDPM API
Difcocoscooccosocanooocnocaoooocno0ao00saa00o000ca000oc000000000
DMSG S 75 DIM(7) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 75

DSAPI 1 7

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(' ")
DMESSAGEFILE S 21 INZ (')
DMSGKEY S 4 INZ(')

DMSGTYPE S 10 INZ('*xINFO ")
DSTACKENTRY S 10 INZ('*)
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

Cx

192 IBM i: Cryptography

Cx START OF PROGRAM *
Chkkkkkhkhkkkhhhkkkkhk kA Ak kh kA kkkhhhkkkkkh kA kkkkhkhkkkkkkkkkkkkhk**
C *ENTRY PLIST

C PARM FILEPARM 32
C PARM CKEY 32
C ||

Cx Open certificate file
[0 3 R R R R R B B R E E R R R = S S 2
Cx R *

Cx %% Build path name *

Cx* e e T *

© EVAL PATHLEN = %LEN(%TRIM(FILEPARM))
c PATHLEN SUBST FILEPARM:1 PATH

Cx L *

Cx % Open the file *

Ck hmmmmmmmmmmmmmmeemee *

© EVAL FILED = open(PATH: OFLAGR)
Cx R e *

Cx * Check if open worked =

Cx e *

© FILED IFEQ =

Cx R e *

Cx * Open failed, send an error message *

Cx R e P *

© MOVEL MSG (1) MSGTEXT

© EXSR SNDMSG

© RETURN

Cx

© ENDIF

Cx R e R R *
Cx * Open worked, read certificate and close the file =*
Cx L e *
© EVAL TOKENLEN = read(FILED: TOKEN: TOKENLEN)
C CALLP close (FILED)

Cx*

Cx R *

Cx * Check if read operation was OK *

Cx R e *

C TOKENLEN IFEQ -1

© MOVEL MSG(2) MSGTEXT

© EXSR SNDMSG

© ENDIF

Cx

Cx R *

Cx * Check if certificate length is valid =*

Cx R e T *

© EVAL MSB = TOKENARRAY (3)

© EVAL LSB = TOKENARRAY (4)

© LENGTH IFLT TOKENLEN

Cx* L e *

Cx * Certificate length is not valid *

Cx R e T *

© MOVEL MSG(3) MSGTEXT

© EXSR SNDMSG

C RETURN

© ENDIF

Cx*

C ||
Cx Find the certificate in the token

Cx*

Cx The layout of the token is

Cx*

Cx - Token header - 8 bytes - including 2 length bytes
Cx - Public key section - length bytes at offset 2

Cx - Private key name - 68 bytes

Cx - Certificate section

Cx

[0 3 R R R R R R R R R R R B S E E R R R R e T
Cx R e *
Cx * Certificate starts after the public key header section x
Cx R e T *
© EVAL MSB = TOKENARRAY(11)

C EVAL LSB = TOKENARRAY (12)

C EVAL PUBSECLEN = LENGTH

© EVAL TKNINDEX = PUBSECLEN + 68 + 8 + 1
Cx

Cx R L *

Cx * Determine length of certificate section =*

Cx T TR *

C EVAL MSB = TOKENARRAY (TKNINDEX + 2)

© EVAL LSB = TOKENARRAY (TKNINDEX + 3)

Cryptography 193

C EVAL CRTSECLEN = LENGTH

© EVAL TMPINDEX = TKNINDEX + 4

Cx

Cx R e e *
Cx * Parse each subsection of the certificate until the =«
Cx * signature subsection is found or the end is reached.x*
Cx * (Identifier for signature subsection is Hex 45.) *
Cx R T T T *
© DOW (TOKENARRAY (TMPINDEX) <> X'45') AND
C (TMPINDEX < TKNINDEX + CRTSECLEN)
© EVAL MSB = TOKENARRAY (TMPINDEX + 2)
© EVAL LSB = TOKENARRAY (TMPINDEX + 3)
C TMPINDEX ADD LENGTH TMPINDEX

© ENDDO

Cx

Cx R e *
Cx * Check if no signature was found before the end of =
Cx * the certificate section. *
Cx R e *
© IF TOKENARRAY (TMPINDEX) <> X'45'

© MOVEL MSG(4) MSGTEXT

C EXSR SNDMSG

© RETURN

© ENDIF

Cx

C ||
Cx Sign the Certificate

C ||
Cx R LT *
Cx * Convert the Certifying Keyname to ASCII *
Cx R *
© EVAL SANAMELEN = %LEN(%TRIM(CKEY))

© SANAMELEN SUBST CKEY:1 SANAME

C MOVEL SANAME SANAMEASC

© CALL '"QDCXLATE"

© PARM XLATLEN

C PARM SANAMEASC

© PARM XTABLE

© PARM LIB

Cx R e I *
Cx * Replace the private key name in the certificate *
Cx R e *
C EVAL NAMEPTR = %ADDR (TOKENARRAY (TMPINDEX + 6))
© MOVEL SANAMEASC NAME

Cx R e *
Cx * Calculate length of data to hash *
Cx * TKNINDEX is the start of the certificate, *
Cx * TMPINDEX is start of signature subsection, *
Cx * signature subsection header is 70 bytes long *
Cx R L *
© EVAL TXTLENGTH = TMPINDEX - TKNINDEX + 70
Cx R e *

Cx * Set the keywords in the rule array *

Cx R e *

o MOVEL 'SHA-1 RULEARRAY

C Z-ADD 1 RULEARRAYCNT

Cx R *

Cx * Call One Way Hash SAPI *

Cx e *

© CALLP CSNBOWH (RETURNCODE:

C REASONCODE :

© EXITDATALEN:

© EXITDATA:

C RULEARRAYCNT :

© RULEARRAY :

© TXTLENGTH:

C TOKENARRAY (TKNINDEX) :
© CHAINVCTLEN:

© CHAINVCT:

C HASHLEN:

© HASH)
[0 *

Cx * Check the return code =*

Ck hmmmmmmmmmmmmmmmmee oo *

C RETURNCODE IFGT 0

Cx R *

Cx * Send failure message *

Cx R *

C MOVEL MSG (5) MSGTEXT
© MOVE RETURNCODE FAILRETC
C MOVE REASONCODE FAILRSNC
C MOVEL 'CSNBOWH' SAPI

194 IBM i: Cryptography

[eXeXe]

Cx

o0
*

Cx

QOOOOOOOOOOOOO(;

C*

o0
*

o0
X* X

OOOOOOO(;

Cx

Cx*
Cx
Cx
Cx

Cx

Cx
Cx

Cx*
Cx
Cx
Cx*

*

OOOOOOOQOOOOOOO

EXSR SNDMSG

RETURN
ENDIF
K== mm e m e e e e e e e oo mo oo *
* Set the keywords in the rule array *
R i *
MOVEL '1S0-9796' RULEARRAY
Z-ADD 1 RULEARRAYCNT
R i *
* Adjust TMPINDEX to where signature startsx
* in the certificate *
R i *
TMPINDEX ADD 70 TMPINDEX
e R *
* Set the Key name length *
B e *
Z-ADD 64 SANAMELEN
R L T *
* Call Digital Signature Generate SAPI *
e T T T *
CALLP CSNDDSG (RETURNCODE:
REASONCODE :
EXITDATALEN:
EXITDATA:
RULEARRAYCNT :
RULEARRAY :
SANAMELEN :
SANAME :
HASHLEN:
HASH :
SIGLENGTH:
SIGBITLEN:

TOKENARRAY (TMPINDEX))

________________________ *
RETURNCODE IFGT 0
e T *
* Send failure message *
OO OO0 000000000000000 00 *
MOVEL MSG (5) MSGTEXT
MOVE RETURNCODE FAILRETC
MOVE REASONCODE FAILRSNC
MOVEL 'CSNDDSG' SAPI
EXSR SNDMSG
RETURN
ENDIF

* Check if the new signature is longer than the =

* original signature *
___ *
*% Adjust TMPINDEX back the start of the subsection
TMPINDEX SuB 70 TMPINDEX
*% Get two byte length of subsection
EVAL MSB = TOKENARRAY (TMPINDEX + 2)
EVAL LSB = TOKENARRAY (TMPINDEX + 3)
*% Subtract length of subsection header
LENGTH SUB 70 LENGTH
**% Compare old length with new length
LENGTH IFNE SIGLENGTH
e *
* Adjust certificate lengths *
R *
*% Adjust signature length
EVAL LENGTH = SIGLENGTH
EVAL TOKENARRAY (TMPINDEX + 2) = MSB
EVAL TOKENARRAY (TMPINDEX + 3) = LSB
*% Adjust certificate section length
EVAL LENGTH = LENGTH + TXTLENGTH
EVAL TOKENARRAY (TKNINDEX + 2) = MSB
EVAL TOKENARRAY (TKNINDEX + 3) = LSB
*% Adjust length in token header section
EVAL LENGTH = LENGTH + 8 + PUBSECLEN + 68
EVAL TOKENARRAY (3) = MSB
EVAL TOKENARRAY (4) = LSB
Z-ADD LENGTH TOKENLEN
ENDIF

Cx Write certified public key out to a file

Cryptography 195

Cx *% Build path name

© EVAL %SUBST (PATH:PATHLEN+1:4) = '.CRT'
Cx

Cx *% Open the file

Cx

© EVAL FILED = open(PATH: OFLAGW)

Cx

Cx *% Check if open worked

Cx

C FILED IFEQ =1

Cx

Cx *% Open failed, send an error message

Cx

© MOVEL MSG(6) MSGTEXT

© EXSR SNDMSG

Cx

© ELSE

Cx

Cx *% Open worked, write certificate out to file and close file
Cx

© CALLP write (FILED:

C TOKEN:

© TOKENLEN)

© CALLP close (FILED)

Cx

Cx *% Send completion message

Cx

C MOVEL MSG(7) MSGTEXT

© EVAL %SUBST (MSGTEXT: 41: PATHLEN + 4) =
© %SUBST (PATH: 1: PATHLEN + 4)
C EXSR SNDMSG

© ENDIF

Cx

C SETON LR

[0 R R R R R B B R E E R R R e e
Cx Subroutine to send a message

C ||
C SNDMSG BEGSR

C CALL 'QMHSNDPM'

© PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

© PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY

© PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

© ENDSR

Cx

**

The input file could not be opened.

There was an error reading from the file.

The length of the certificate is not valid.

The certificate is not valid.

CSNBOWH failed with return/reason codes 9999/9999.
The output file could not be opened.

The certified token was written to file

Example: ILE C program for obtaining a master key share
Change this IBM i ILE C program example to suit your needs for obtaining a master key share.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

R R b */
/* GETSHARE */
/* */
/* Sample program to obtain a master key share as part of the */
/* master key cloning process. */
/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. 1IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these program. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */

196 IBM i: Cryptography

/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

/* ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
/* these programs and files.
/*
/*
/* Note: Input format is more fully described in Chapter 2 of
/* IBM CCA Basic Services Reference and Guide */
;* (SC31-8609) publication.
*
/* Parameters: Share number
/* Name of share sender private key
/* Name of certifying key
/* Stream file containing receiver certificate
/*
/*
/* Example:
/* CALL PGM(GETSHARE) PARM(2 SENDR SAKEY RECVR.PUB)
/*
/*
/> Note: This program assumes the card with the profile is
/* already identified either by defaulting to the CRPO1
/* device or by being explicitly named using the
/* Cryptographic_Resource_Allocate verb. Also this
/* device must be varied on and you must be authorized
/* to use this device description.
/*
/* The Common Cryptographic Architecture (CCA) verbs used is
/* Master_Key_Distribution (CSUAMKD) .
/*
/* Use these commands to compile this program on the system:
/* ADDLIBLE LIB(QCCA)
/* CRTCMOD MODULE (GETSHARE) SRCFILE(SAMPLE)
/* CRTPGM PGM(GETSHARE) MODULE (GETSHARE)
/* BNDDIR(QCCA/QC6BNDDIR)
/*
/* Note: Authority to the CSUAMKD service program
/* in the QCCA library is assumed.
/*
R e
#include <stdio.h>
#include <string.h>
#include "csucincl.h"
#include "decimal.h"
extern void QDCXLATE(decimal(5,0), char *, charx, char *);
#pragma linkage (QDCXLATE, 0S, nowiden)
int main(int argc, char *argv([])
{
R L
/* Declares for CCA parameters
J e e
long return_code = 0;
long reason_code = 0;
long exit_data_length = 0;
char exit_data[4];
char rule_array[24];
long rule_array_count;
long token_len = 2500;
char token[2500];
long cloneInfoKeylLength = 500;
unsigned char cloneInfoKey[500];
long cloneInfolength = 400;
unsigned char cloneInfo[400];
long shareIdx;
char name[64];
char SAname[64];
R e L e T T
/* Declares for working with a PKA token
J R e e
long pub_sec_len; /* Public section length
long prv_sec_len; /* Private section length
long cert_sec_len; /* Certificate section length
long info_subsec_len; /* Information subsection length
long offset; /* Offset into token
long tempOffset; /* (Another) Offset into token
long templLength; /* Length variable
long tempLenl, templLen2; /* temporary length variables
char cloneShare[] = "cloneShare@0"; /* Base cloning share filename
long count; /* Number of bytes read in from file
decimal(15,5) shareParm; /* Packed 15 5 var used for converting

*/
*/
*/

Cryptography 197

/* from packed 15 5 to binary. Numeric =*/
/* parms on system are passed as dec 15 5%/
FILE =fp; /* File pointer */

if (argc < 5) /* Check the number of parameters passed */

printf("Need to Share index, Sender name, SA name, and cert\n");
return 1;

/* Convert the packed decimal 15 5 parm */
/* to binary. */
memcpy (&shareParm,argv([1],sizeof(shareParm));
shareIdx = shareParm;

memset(name,' ',64); /* Copy the Private key name parm to a %/
memcpy (name,argv[2],strlen(argv[2])); /* 64 byte space padded var. =%/
memset (SAname, ' ',64); /* Copy the Share Admin name parm to a */

memcpy (SAname,argv[3],strlen(argv([3]));/* 64 byte space padded var. */

fp = fopen(argv([4],"rb"); /* Open the file containing the token */

if (!fp)
1
printf("File %s not found.\n",argv[4]);
return 1;
3
memset (token,0,2500) ; /* Read the token from the file */
count = fread(token,1,2500,fp);
fclose(fp); /* Close the file */
/* Determine length of token from length x/
/* bytes at offset 2 and 3. */
token_len = ((256 * token[2]) + token[3]);
if (count < token_len) /* Check if whole token was read in */

printf("Incomplete token in file\n");

return 1;
[FFr kK kg Kk khkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhk kKA /
/* Find the certificate offset in the token */
/* */
/* The layout of the token is */
/* */
/* - Token header - 8 bytes - including 2 length bytes */
/* - Public key section - length bytes at offset 10 overall x/
/* - Private key name - 68 bytes */
/* - Certificate section */
/* */

/**/
pub_sec_len = ((256 * token[10]) + token[11]);

offset = pub_sec_len + 68 + 8; /*x Set offset to certiicate section %/

/* Determine certificate section */
/> length from the length bytes at */
/* offset 2 of the section. */
cert_sec_len = ((256 * token[offset + 2]) + token[offset + 3]);
|| /
/* Obtain a share */
/**/
memcpy ((void*)rule_array, "OBTAIN ",8); /* Set rule array */

rule_array_count = 1;

CSUAMKD(&return_code, &reason_code, &exit_data_length,
exit_data,
&rule_array_count,
(unsigned charx)rule_array,
&shareIdx,
name,

SAname,
&cert_sec_len,
&token[offset],
&cloneInfoKeylLength,
cloneInfokKey,
&cloneInfolength,
cloneInfo);

if (return_code != 0)

198 IBM i: Cryptography

printf("Master Key Distribution Failed : return reason %d/%d\n",
return_code, reason_code);

return 1;
b
else
1
L F A F A F IR I I FIAIAFIAAFFIAAFFIAAFFHAAFFAAAF A FHH /
/> Write signed token out to a file */

/**/
printf("Master Key Distribution worked\n");

/* Build file path name
if (shareIdx < 9) cloneShare[11] = '@' + shareldx;

else
cloneShare[10] = '1';
cloneShare[11] = 'O' + shareIdx - 10;

fp = fopen(cloneShare,"wb"); /% Open the file
if (!fp)

printf("File %s not be opened for output.\n",cloneShare);
return 1;

/* Write out the length of KEK
fwrite((char*)&cloneInfoKeylLength,1,4,fp);

/* Write out the KEK
fwrite((char*x)cloneInfoKey,1,cloneInfoKeylLength, fp);

/* Write out the length of info
fwrite((charx)&cloneInfolength,1,4,fp);

/* Write out the clone info
fwrite((char*)cloneInfo,1,clonelnfolLength,fp);
printf("CLone share %d written to %s.\n",6shareIdx,cloneShare);

fclose(fp); /* Close the file
return 0O;

Example: ILE RPG program for obtaining a master key share

*/

*/

x/
x/
x/
x/

*/

Change this IBM i ILE RPG program example to suit your needs for obtaining a master key share.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

D R R R R R R R R R R R S S T S S 2 T
Dx GETSHARE

D*

Dx Sample program to obtain a master key share as part of the
Dx master key cloning process.

D*

Dx

Dx COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

D*

Dx This material contains programming source code for your

Dx consideration. These example has not been thoroughly

Dx tested under all conditions. 1IBM, therefore, cannot

Dx guarantee or imply reliability, serviceability, or function
Dx of these programs. All programs contained herein are

Dx provided to you "AS IS". THE IMPLIED WARRANTIES OF

Dx MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Dx ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for

Dx these programs and files.

Dx

Dx

Dx Note: Input format is more fully described in Chapter 2 of
Dx IBM CCA Basic Services Reference and Guide

Dx (SC31-8609) publication.

D*

Dx Parameters: Share number

Dx Name of share sender private key

D* Name of certifying key

D* Path name of stream file containing receiver certificate
Dx

D% Example:
Dx CALL PGM(GETSHARE) PARM(2 SENDR SAKEY RECVR.PUB)

Cryptography 199

Dx Use these commands to compile this program on the system:
D* CRTRPGMOD MODULE (GETSHARE) SRCFILE (SAMPLE)
D* CRTPGM PGM(GETSHARE) MODULE (GETSHARE)

Dx BNDDIR(QCCA/QC6BNDDIR)

Dx

Dx Note: Authority to the CSUAMKD service program
D* in the QCCA library is assumed.

Dx

Dx The Common Cryptographic Architecture (CCA) verbs used is
D*x Master_Key_Distribution (CSUAMKD) .

Dx

D ||
D 5 5 55 5 5 5 3 £33 5 55 55 55 505 50

D* Declare variables used by CCA SAPI calls

Dk = = === === == m m e e e e e e e e m—eo -

D* **% Return code

DRETURNCODE S 9B 0

Dx *%* Reason code

DREASONCODE S 9B 0

D* *% Exit data length

DEXITDATALEN S 9B 0

D* *% Exit data

DEXITDATA S

D* *% Rule array count

DRULEARRAYCNT S 9B 0

Dx* *% Rule array

DRULEARRAY S 16

D* *% Token length

DTOKENLEN S 9B 0 INZ(2500)

D* *% Token and array for subscripting

DTOKEN DS 2500

DTOKENARRAY 1 DIM(2500)

D* *% Private key name

DPRVNAME S 64

Dx* *% Certifying key name

DCERTKEY S 64

D*

DLSTRUCT DS

D* *% Clone KEK length - one is binary form and the
Dx *% other is used for reading the value from a file
DCLONEKEKL 9B 0 INZ(500)

DCLONEKEKLC 1 4

D* *% Clone info length - one is binary form and the
D* *% other is used for reading the value from a file
DCLONEINFOLEN 9B 0 INZ(400)

DCLONEINFOLENC 5 8

Dx* *% Cloning key-encrypting-key

DCLONEKEK S 500

D* *% Cloning info

DCLONEINFO S 400

Dx *% Share index

DSHAREIDX S 9B 0

D* *% Data structure for aligning 2 bytes into
D* *% a 2 bytes integer

DLENSTRUCT DS 2

DMSB 1 1

DLSB 2 2

DLENGTH 1 2B 0

D* *% Certificate section length

DCRTSECLEN S 9B 0

D* *% Public key section length

DPUBSECLEN S 9B 0

Dx *% Index into Token array

DTKNINDEX S 9B 0

Dx* *%x Number of bytes to write out to a file
DOUTLEN S 9B 0O

D* *% File descriptor

DFILED S 9B 0

D* *% File path and length

DPSTRUCT DS

DPATH 80 INZ(*ALLX'00")

DSIDX 11 12B 0O

DPATHLEN S 9B 0

Dx* *% Open Flag - Open for Read only

DOFLAGR S 10T 0 INZ(1)

D* *% Open flag - Create on open, open for writing,
Dx *% and clear if exists

DOFLAGW S 101 0 INZ(X'4A")

D* *% Base name of file to store cloning share
DSHAREFILE S 12 INZ('cloneShare@0')

D*

200 IBM i: Cryptography

Dx Prototype for Master_Key_Distribution (CSUAMKD)
Dk sk sk ok sk ko ok ok ok ke ko ok ok ok ok ok ok ok ko e okok ok ok ok ok ook ok ok ok ok ok ook ok ok ok ok ook ok ok ok ok ok
DCSUAMKD PR

DRETCOD 9B 0O

DRSNCOD 9B 0O

DEXTDTALN 9B 0

DEXTDT 4

DRARRYCT 9B 0O

DRARRY 16

DSHRINDX 9B 0O

DKYNAM 64

DCRTKYNAM 64

DCRTL 9B 0O

DCRT 2500 OPTIONS (*xVARSIZE)
DCLNKEKL 9B 0

DCLNKEK 1200 OPTIONS (*VARSIZE)
DCLNL 9B 0O

DCLN 400 OPTIONS (xVARSIZE)
Dx

Dxkkkkkkkkhhhkhkhkhkhkhkkhkhkhkhkhkkkhkhkhhkhhkhkhkrkrkhhkhkkkkhhhhhhhkhkkrhkhkhkkxkkk
Dx Prototype for open()

D% value returned = file descriptor (0K), -1 (error)

Dopen PR 9B O EXTPROC('open')

D* path name of file to be opened.

D 128 OPTIONS (*VARSIZE)

D* Open flags

D 9B 0 VALUE

Dx (OPTIONAL) mode - access rights

D 10U O VALUE OPTIONS (*NOPASS)

D* (OPTIONAL) codepage

D 10U @ VALUE OPTIONS(*NOPASS)

Dx

D |||
D% Prototype for write()

D ||

Dx value returned = number of bytes written, or -1

Dwrite PR 9B O EXTPROC('write')

Dx File descriptor returned from open()

D 9B 0 VALUE

D% Output buffer

D 2500 OPTIONS (*VARSIZE)

D* Length of data to be written

D 9B O VALUE

D*

D |||
D*x Prototype for read()

D ||

D% value returned = number of bytes actually read, or -1
Dread PR 9B @ EXTPROC('read')

Dx File descriptor returned from open()

D 9B 0 VALUE

Dx* Input buffer

D 2500 OPTIONS (*VARSIZE)

D* Length of data to be read

D 9B O VALUE

D*

D |||
D% Prototype for close()

D |||
Dx* value returned = 0 (OK), or -1

Dclose PR 9B O EXTPROC('close')

Dx File descriptor returned from open()

D 9B 0 VALUE

D*

DA = == === = = == e e e e e e e e e e e e mmmemememmemememeo———--o--
D* *% Declares for sending messages to the

D* *% job log using the QMHSNDPM API

DA = == === = = == e e e e e e e e e e e mmemememmemememe————--o--
DMSG S 75 DIM(6) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(80)

D DS

DMSGTEXT 1 80

DSAPI 1 7

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(')
DMESSAGEFILE S 21 INZ(' ")
DMSGKEY S 4 INZ(' ")

DMSGTYPE S 10 INZ ('*INFO)
DSTACKENTRY S 10 INZ('* ")

Cryptography 201

DSTACKCOUNTER S
DERRCODE DS
DBYTESIN 1
DBYTESOUT o)
C*

9B 0 INZ(2)

4B 0 INZ(0)
8B 0 INZ(0)

Chkkkkkhkhkkkkhkhkhkhkhkkhkhkhkhkhhhkhkhkhkhkkhkhkhkkhkhkhkhkkhkkkhkhkkkkkkhkkkkkkx

Cx START OF PROGRAM *
Cx *
© *ENTRY PLIST

© PARM SINDEX 5 B
© PARM PRVKEY 32
© PARM SAKEY 32
© PARM FILEPARM 32
C ||
Cx Open certificate file

C ||
Ck hmmmmmmmmmmmmmmmemee *

Cx *% Build path name *

Cx R *

© EVAL PATHLEN = %LEN(%TRIM(FILEPARM))

© PATHLEN SUBST FILEPARM:1 PATH

Cx R *

Cx % Open the file *

Cx L *

© EVAL FILED = open(PATH: OFLAGR)

Ck hmmmmmmmmmmmmmmmmeeeeo *

Cx * Check if open worked *

Cx R *

c FILED IFEQ -1

Cx R L E T T *

Cx * Open failed, send an error message *

Cx R e T T T *

© MOVEL MSG (1) MSGTEXT

© EXSR SNDMSG

C RETURN

Cx

© ENDIF

Cx e *

Cx * Open worked, read certificate and close file *

Cx LR e *

© EVAL TOKENLEN = read(FILED: TOKEN: TOKENLEN)
© CALLP close (FILED)

Cx

Cx R LT TR *

Cx * Check if read operation was OK *

Cx R *

C TOKENLEN IFEQ -1

© MOVEL MSG(2) MSGTEXT

© EXSR SNDMSG

C ENDIF

Cx

Cx R e *

Cx * Check if certificate length is valid =*

Cx * The length bytes start at position 3 =*

Cx R *

© EVAL MSB = TOKENARRAY (3)

© EVAL LSB = TOKENARRAY (4)

© LENGTH IFLT TOKENLEN

Cx R *

Cx * Certificate length is not valid *

Cx R e *

© MOVEL MSG(3) MSGTEXT

© EXSR SNDMSG

© RETURN

C ENDIF

Cx

C ||
Cx Find the certificate in the token

Cx

Cx The layout of the token is

Cx

Cx - Token header - 8 bytes - including 2 length bytes

Cx - Public key section - length bytes at position 3 (11 overall)
Cx - Private key name - 68 bytes

Cx - Certificate section

Cx

Cx Note: 1 is added because RPG arrays start at 1.

Chkkkkkhkhkkkkhkhkhkkhkkhkhkhkhkhkhhkhkhkhkhkhhkhkhkkhkhkhkhkhkhkkhkhkhkkhkkkkhkhkkkkkx

EVAL
EVAL
EVAL
EVAL

O0O0O0

202 IBMi: Cryptography

MSB = TOKENARRAY (11)
LSB = TOKENARRAY (12)
PUBSECLEN = LENGTH

TKNINDEX =

PUBSECLEN + 68 + 8 + 1

Cx

Cx R L *

Cx * Determine length of certificate section *

Cx * Length bytes are at position 2 of the =

Cx * section.

Cx R L *

C EVAL MSB = TOKENARRAY (TKNINDEX + 2)
© EVAL LSB = TOKENARRAY (TKNINDEX + 3)
© EVAL CRTSECLEN = LENGTH

Cx

C ||
Cx Obtain a certificate

C ||
(O I e T T *

Cx * Set share index number *

Cx * (Convert from packed 15 5 to binary) *

(O R L *

© Z-ADD SINDEX SHAREIDX

Cx R e *

Cx * Set private key name *

Cx R e *

C EVAL LENGTH = %LEN(%TRIM(PRVKEY))
o LENGTH SUBST PRVKEY: 1 PRVNAME

Cx R *

Cx % Set certifying key name *

(I R T *

© EVAL LENGTH = 9%LEN (%TRIM(SAKEY))
C LENGTH SUBST SAKEY:1 CERTKEY

Ck hmmmmmmm e emmmmeeemo o *

Cx * Set the keywords in the rule array *

Cx R e *

© MOVEL 'OBTAIN ' RULEARRAY

© Z-ADD 1 RULEARRAYCNT
Cx R e

Cx % Call Master Key Distribution SAPI

Cx R L E T T

C CALLP CSUAMKD (RETURNCODE:

© REASONCODE :

© EXITDATALEN:
C EXITDATA:

© RULEARRAYCNT :
© RULEARRAY :

C SHAREIDX:

© PRVNAME :

© CERTKEY :

C CRTSECLEN:

© TOKENARRAY (TKNINDEX) :
© CLONEKEKL :

C CLONEKEK:

© CLONEINFOLEN:
© CLONEINFO)

Ck heommmmmmm e e e e e - *

Cx * Check the return code *
[*

C RETURNCODE IFGT 0

Cx T e *

Cx * Send failure message *

Cx R *

© MOVEL MSG(4) MSGTEXT

© MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FAILRSNC

© MOVEL 'CSUAMKD'* SAPI

© EXSR SNDMSG

C RETURN

© ENDIF

Cx

C ||

Cx Write share out to a file

Chkkkkkhkhkhkkkhkhkhkkhkkhkhkhkhkhhhkhkhkkhkhkhkhkkhkhkhkhkkhkkkhkhkkkkkkhkhkkkkkx

Cx *% Build path name

C MOVEL *ALLX'00" PATH
C MOVEL SHAREFILE PATH
© SIDX ADD SHAREIDX SIDX
© SHAREIDX IFGE 10

C SIDX ADD 246 SIDX
© ENDIF

Cx

Cx *% Open the file

Cx

© EVAL FILED = open(PATH: OFLAGW)
Cx*

Cx *% Check if open worked

Cryptography 203

()]
*

© FILED IFEQ =al

Cx*

Cx *% Open failed, send an error message

C*
MOVEL MSG(5) MSGTEXT
EXSR SNDMSG
ELSE

*% Open worked, write certificate out to file and close file

Z-ADD 4 OUTLEN

CALLP write (FILED:
CLONEKEKLC:
OUTLEN)

CALLP write (FILED:
CLONEKEK:
CLONEKEKL)

CALLP write (FILED:
CLONEINFOLENC:
OUTLEN)

CALLP write (FILED:
CLONEINFO:
CLONEINFOLEN)

CALLP close (FILED)

*% Send completion message

2 Xsizinizizizizizizizisizisizizisizinizinisininls)
* * X * X *F

MOVEL MSG(6) MSGTEXT
© EVAL %SUBST (MSGTEXT: 32: 12) =
C %SUBST(PATH: 1: 12)
C EXSR SNDMSG
© ENDIF
C*
C SETON LR
Cx*
C ||
Cx Subroutine to send a message
C ||
C SNDMSG BEGSR
C CALL "QMHSNDPM'
© PARM MESSAGEID
C PARM MESSAGEFILE
C PARM MSGTEXT
© PARM MSGLENGTH
C PARM MSGTYPE
C PARM STACKENTRY
© PARM STACKCOUNTER
C PARM MSGKEY
C PARM ERRCODE
© ENDSR
C*

**

The input file could not be opened.

There was an error reading from the file.

The length of the certificate is not valid.
CSUAMKD failed with return/reason codes 9999/9999.
The output file could not be opened.

The share was written to file

Example: ILE C program for installing a master key share
Change this IBM i ILE C program example to suit your needs for installing a master key share.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

R e */
/* PUTSHARE */
/* */
/* Sample program to install a master key share as part of the */
/* master key cloning process. */
/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these program. All programs contained herein are */

204 IBMi: Cryptography

/* provided to you "AS IS". THE IMPLIED WARRANTIES OF
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

/* ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for

/* these programs and files.

/*

/*

/* Note: Input format is more fully described in Chapter 2 of
/* IBM CCA Basic Services Reference and Guide

/* (SC31-8609) publication.

/*

/* Parameters: Share number

/* Name of share receiver private key

/* Name of certifying key

/* Stream file containing sender certificate

/*

/*

/* Example:

/* CALL PGM(PUTSHARE) PARM(2 RECVR SAKEY SNDR.PUB)

/*

/*

/* Note: This program assumes the card with the profile is
/* already identified either by defaulting to the CRPO1
/* device or by being explicitly named using the

/* Cryptographic_Resource_Allocate verb. Also this

/* device must be varied on and you must be authorized
;* to use this device description.

*

/* The Common Cryptographic Architecture (CCA) verbs used is
/* Master_Key_Distribution (CSUAMKD) .

/* Use these commands to compile this program on the system:
/* ADDLIBLE LIB(QCCA)

/* CRTCMOD MODULE (PUTSHARE) SRCFILE(SAMPLE)

/* CRTPGM PGM(PUTSHARE) MODULE (PUTSHARE)

/* BNDDIR(QCCA/QC6BNDDIR)

/*

/* Note: Authority to the CSUAMKD service program

/* in the QCCA library is assumed.

/*

J R e e e T

#include <stdio.h>
#include <string.h>
f##include "csucincl.h"
#include "decimal.h"

extern void QDCXLATE(decimal(5,0), char *, charx, char x);
{#pragma linkage (QDCXLATE, 0S, nowiden)

int main(int argc, char xargv[])

long return_code = 0;

long reason_code = 0;

long exit_data_length = 0;
char exit_data[4];

char rule_array[24];

long rule_array_count;

long token_len = 2500;

char token[2500];

long cloneInfoKeylLength = 500;
unsigned char cloneInfoKey[500];
long cloneInfolength = 400;
unsigned char cloneInfo[400];
long shareIdx;

char name[64];

char SAname[64];

J R e e
/* Declares for working with a PKA token

R L e T
long pub_sec_len; /* Public section length

long prv_sec_len; /* Private section length

long cert_sec_len; /* Certificate section length

long info_subsec_len; /* Information subsection length

long offset; /* O0ffset into token

long tempOffset; /* (Another) Offset into token

long templLength; /* Length variable

long tempLenl, templLen2;

/* temporary length variables

char cloneShare[] = "cloneShare@0"; /* Base cloning share filename

long count;

/* Number of bytes read in from file

Cryptography 205

decimal(15,5) shareParm; /* Packed 15 5 var used for converting */
/> from packed 15 5 to binary. Numeric =x/
/* parms on system are passed as dec 15 5%/
FILE xfp; /* File pointer */

if (argc < 5) /* Check number of parameters passed in */

printf("Need Share index, Receiver name, SA name, and cert\n");
return 1;

/* Convert the packed decimal 15 5 parm */
/* to binary. */
memcpy (&shareParm,argv[1],sizeof (shareParm));
shareldx = shareParm;

memset(name,' ',64); /* Copy the Private key name parm to a */
memcpy (name,argv([2],strlen(argv[2])); /* 64 byte space padded var. */
memset (SAname,' ',64); /* Copy the Share Admin name parm to a %/

memcpy (SAname,argv([3],strlen(argv[3]));/* 64 byte space padded var. */
fp = fopen(argv[4],"rb"); /* Open the file containing the token */

if ('fp)
printf("File %s not found.\n",argv[4]);
return 1;
memset (token,0,2500) ; /* Read the token from the file */
count = fread(token,1,2500,fp);
fclose(fp); /* Close the file */
/* Determine length of token from length x/
/* bytes at offset 2 and 3. */
token_len = ((256 * token[2]) + token[3]);
if (count < token_len) /* Check if whole token was read in */

printf("Incomplete token in file\n");
return 1;

/**/

/* Find the certificate offset in the token */
* */
/* The layout of the token is */
/* */
/* - Token header - 8 bytes - including 2 length bytes */
/* - Public key section - length bytes at offset 10 overall x*/
/* - Private key name - 68 bytes */
/* - Certificate section */
/* */

/
pub_sec_len = ((256 % token[10]) + token[11]);

offset = pub_sec_len + 68 + 8; /* Set offset to certiicate section %/

/* Determine certificate section */
/* length from the length bytes at */
/* offset 2 of the section. */
cert_sec_len = ((256 * token[offset + 2]) + token[offset + 3]);
|| /
/* Open and read the clone file */
|| /
/* Build path name from the base */
/* file name and the index */
if (shareIdx < 9) cloneShare[11] = 'O@' + shareIdx;
else
cloneShare[10] = '1';
cloneShare[11] = 'O' + shareldx - 10;
fp = fopen(cloneShare,"rb"); /* Open the file with the share */
if (!fp)
1
printf("Clone share file %s not found.\n",cloneShare);
return 1;
3

/* Read in the length of the KEK */
count = fread((charx)&cloneInfoKeylLength,1,4,fp);

206 IBM i: Cryptography

if (count < 4) /* Check if there was an error

printf("Clone share file %s contains invalid data.\n",
cloneShare) ;

fclose(fp);

return 1;

¥

/* Read in the Key encrypting key
count = fread((charx)cloneInfoKey,1,cloneInfoKeylLength,fp);

if (count < cloneInfoKeylLength) /% Check for an error reading

printf("Clone share file %s contains invalid data.\n",
cloneShare);

fclose(fp);

return 1;

/* Read in the length of the clone info

count = fread((charx)&cloneInfolLength,1,4,fp);

if (count < 4) /* Check for an error
printf("Clone share file %s contains invalid data.\n",
cloneShare);
fclose(fp);
return 1;

¥

/* Read in the clone info
count = fread((charx)cloneInfo,1,cloneInfolLength,fp);

if (count < cloneInfolLength) /% Check for an error
printf("Clone share file %s contains invalid data.\n",
cloneShare) ;

fclose(fp);
return 1;

fclose(fp); /* Close the file

memcpy ((void*)rule_array, "INSTALL ",8); /* Set rule array
rule_array_count = 1;

CSUAMKD(&return_code, &reason_code, &exit_data_length,
exit_data,
&rule_array_count,
(unsigned charx)rule_array,
&sharelIdx,
name,

SAname,
&cert_sec_len,
&token[offset],
&cloneInfoKeylLength,
cloneInfokKey,
&cloneInfolength,
clonelInfo);

if (return_code > 4)

printf("Master Key Distribution Failed : return reason %d/%d\n",

return_code, reason_code);
return 1;
3

else

printf("Master Key share %d successfully installed.\n", shareIdx);
printf("Return reason codes %d/%d\n",return_code, reason_code);

return O;

*/

*/

*/

x/

*/

*/

*/

Cryptography 207

Example: ILE RPG program for installing a master key share
Change this IBM i ILE RPG program example to suit your needs for installing a master key share.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

D* PUTSHARE

Dx Sample program to install a master key share as part of
D*x the master key cloning process.

D+ COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

Dx This material contains programming source code for your

D* consideration.
D* tested under all conditions.

These example has not been thoroughly

IBM, therefore, cannot

Dx guarantee or imply reliability, serviceability, or function

D* of these programs.
D* provided to you "AS IS".

All programs contained herein are
THE IMPLIED WARRANTIES OF

D* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

D* ARE EXPRESSLY DISCLAIMED.

IBM provides no program services for

Dx these programs and files.

D*

Dx

D* Note: Input format is more fully described in Chapter 2 of
Dx* IBM CCA Basic Services Reference and Guide

D* (SC31-8609) publication.

D*

D* Parameters: Share number

D* Name of share receiver private key

Dx* Name of certifying key

D* Path name of stream file containing sender certificate
D*

D% Example:

D* CALL PGM(PUTSHARE) PARM(2 RECVR SAKEY SENDER.PUB)

Dx Use these commands to compile this program on the system:
D* CRTRPGMOD MODULE (PUTSHARE) SRCFILE (SAMPLE)
Dx CRTPGM PGM(PUTSHARE) MODULE (PUTSHARE)

D* BNDDIR(QCCA/QC6BNDDIR)

Dx

D*x Note: Authority to the CSUAMKD service program
Dx in the QCCA library is assumed.

D*

Dx The Common Cryptographic Architecture (CCA) verbs used is
D* Master_Key_Distribution (CSUAMKD) .

Dx

D ||
[N e e e

Dx Declare variables used by CCA SAPI calls

D 5 5 5 5 0 5 5 0 5 5 5 5 5 55 £ 50 50 555 55 505 505 50

Dx ** Return code

DRETURNCODE S 9B 0O

D* *% Reason code

DREASONCODE S 9B 0

D* *% Exit data length

DEXITDATALEN S 9B 0O

Dx *% Exit data

DEXITDATA S 4

Dx* ** Rule array count

DRULEARRAYCNT S 9B 0

D* *% Rule array

DRULEARRAY S 16

Dx *% Token length

DTOKENLEN S 9B 0 INZ(2500)

D* *% Token and array for subscripting

DTOKEN DS 2500

DTOKENARRAY 1 DIM(2500)

D* *% Private key name

DPRVNAME S 64

D* *% Certifying key name

DCERTKEY S 64

Dx

DLSTRUCT DS

D* *% Clone KEK length - one is binary form and the
D* *% other is used for reading the value from a file
DCLONEKEKL 9B 0 INZ(500)

DCLONEKEKLC 1 4

D* *% Clone info length - one is binary form and the

208 IBM i: Cryptography

D* *% other is used for reading the value from a file

DCLONEINFOLEN 9B 0 INZ(400)
DCLONEINFOLENC 5 8

D* *% Cloning key-encrypting-key
DCLONEKEK S 500

D* *% Cloning info

DCLONEINFO S 400

D* *% Share index

DSHAREIDX S 9B 0

D* *% Data structure for aligning 2 bytes into
D* *% a 2 bytes integer

DLENSTRUCT DS 2

DMSB 1 1

DLSB 2 2

DLENGTH 1 2B 0

D* *% Certificate section length
DCRTSECLEN S 9B 0

D* *% Public key section length
DPUBSECLEN S 9B 0

D* *% Index into Token array

DTKNINDEX S 9B 0

D* *% Number of bytes to read from a file
DINLEN S 9B 0O

Dx* *%x File descriptor

DFILED S 9B 0

D* *% File path and length

DPSTRUCT DS

DPATH 80 INZ (*ALLX'00")
DSIDX 11 12B O

DPATHLEN S 9B 0

D* *% Open Flag - Open for Read only
DOFLAGR S 101 0 INZ(1)

D* **% Base name of file to store cloning share
DSHAREFILE S 12 INZ('cloneShare00')
D*

D R R R R R R R R R R B B R S T = 2 T
Dx Prototype for Master_Key_Distribution (CSUAMKD)

DCSUAMKD PR

DRETCOD 9B 0

DRSNCOD 9B 0

DEXTDTALN 9B 0

DEXTDT 4

DRARRYCT 9B 0

DRARRY 16

DSHRINDX 9B 0

DKYNAM 64

DCRTKYNAM 64

DCRTL 9B 0

DCRT 2500 OPTIONS (*VARSIZE)
DCLNKEKL 9B 0

DCLNKEK 1200 OPTIONS (*VARSIZE)
DCLNL 9B 0

DCLN 400 OPTIONS (*VARSIZE)

D*

D ||
D*x Prototype for open()

D ||
D* value returned = file descriptor (0K), -1 (error)
Dopen PR 9B @ EXTPROC('open')

D* path name of file to be opened.

D 128 OPTIONS (*VARSIZE)

D* Open flags

D 9B 0 VALUE

D* (OPTIONAL) mode - access rights

D 10U O VALUE OPTIONS (*NOPASS)
Dx (OPTIONAL) codepage

D 10U O VALUE OPTIONS(*NOPASS)
D*

D ||

Dx Prototype for read()
D R R R R R R R R R R R R B B R 2 2

D* value returned = number of bytes actually read, or -1

Dread PR 9B O EXTPROC('read')

D% File descriptor returned from open()

D 9B O VALUE

D% Input buffer

D 2500 OPTIONS (*VARSIZE)

D* Length of data to be read

D 9B 0@ VALUE

Dx

D ||

Cryptography 209

Dx Prototype for close()

D* value returned = 0 (OK), or -1

Dclose PR 9B O EXTPROC('close')

D* File descriptor returned from open()

D 9B O VALUE

D*
Difcocoscoocconocanooocnocaocoscno0aon0sa000o000ca0000sc000000000
D* *% Declares for sending messages to the

D* *% job log using the QMHSNDPM API
Dicocoscooccosocanooocnocaoooocno0ao00saa00o000ca0000sc000000000
DMSG S 75 DIM(7) CTDATA PERRCD(1)

D DS

DMSGTEXT 1 80

DSAPI 1 7

DFAILRETC 41 44

DFAILRSNC 46 49

DMSGLENGTH S 9B 0 INZ(80)

DMESSAGEID S 7 INZ (' ")
DMESSAGEFILE S 21 INZ (' D)
DMSGKEY S 4 INZ(')

DMSGTYPE S 10 INZ('*xINFO ")
DSTACKENTRY S 10 INZ('*)
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

Cx

C ||
Cx START OF PROGRAM *
Cx *
C *ENTRY PLIST

C PARM SINDEX 15 5
© PARM PRVKEY 32
© PARM SAKEY 32
C PARM FILEPARM 32
C ||

Cx Open certificate file
Chhhkhkhkhkkhhkhkhkhkhkhhhkhhhhkhkhhkhkhhhkhhhkhkhkhhkhkhhhkhkhhkhkhkhhkhkhhkhkhkhhkhkhkkhkkrkkkhx

Cx R *

Cx %% Build path name *

Cx* e *

© EVAL PATHLEN = %LEN (%TRIM(FILEPARM))
c PATHLEN SUBST FILEPARM:1 PATH

Cx L *

Cx % Open the file *

Ck hmmmmmmmmmmmmmmmeeo o *

C EVAL FILED = open(PATH: OFLAGR)

Cx R *

Cx % Check if open worked =

Cx* T *

© FILED IFEQ =

C* B *

Cx * Open failed, send an error message *

Cx R e *

© MOVEL MSG (1) MSGTEXT

C EXSR SNDMSG

© RETURN

Cx

C ENDIF

Cx* I e T *
Cx * Open worked, read certificate from file and close file =*
Cx R *
© EVAL TOKENLEN = read(FILED: TOKEN: TOKENLEN)
C CALLP close (FILED)

Cx*

Cx R *

Cx * Check if read operation was OK *

Cx R *

© TOKENLEN IFEQ =

© MOVEL MSG(2) MSGTEXT

C EXSR SNDMSG

© ENDIF

Cx

Cx R *

Cx * Check if certificate length is valid =*

Cx * The length bytes start at position 3 *

Cx R e *

© EVAL MSB = TOKENARRAY (3)

© EVAL LSB = TOKENARRAY (4)

C LENGTH IFLT TOKENLEN

Cx R e *

210 IBMi: Cryptography

* Certificate length is not valid *

K m = = mm e e e oo *
MOVEL MSG(3) MSGTEXT
EXSR SNDMSG
RETURN
ENDIF

Find the certificate in the token

The layout of the token is

Token header - 8 bytes - including 2 length bytes

Public key section - length bytes at position 2 (11 overall)
Private key name - 68 bytes

Certificate section

Note: 1 is added because RPG arrays start at 1.

EVAL MSB = TOKENARRAY (11)

EVAL LSB = TOKENARRAY (12)

EVAL PUBSECLEN = LENGTH

EVAL TKNINDEX = PUBSECLEN + 68 + 8 + 1
B *

* Determine length of certificate section =
* Length bytes are at position 2 of the *

* section.

o *
EVAL MSB = TOKENARRAY (TKNINDEX + 2)
EVAL LSB = TOKENARRAY (TKNINDEX + 3)
EVAL CRTSECLEN = LENGTH

C*x Open and read the clone file
Chhkkhkhkhkhkhkhhkhkhhhkhhhhkhkhhkhkhhhkhkhhkhkhkhhkhkhhhkhkhhkhkhkkhhkhkhhkkhkkhhkkhkkkkx

Cx
Cx*
Cx
Cx
©
Cx
C
©
Cx
Cx
©
Cx
Cx
©
C
C
Cx*
Cx
Cx
©
Cx
Cx
Cx*
C
Cx
Cx
Cx
C
©
Cx
C
Cx*
Cx
Cx
©
C
C
Cx
Cx
Cx

OOOOO(;

e I e R e i I I I I I I T *

* Set share index number *

* (Convert from packed 15 5 to binary) *

R L T *
Z-ADD SINDEX SHAREIDX

*% Build path name
MOVEL *ALLX'00"' PATH
MOVEL SHAREFILE PATH

**% Adjust two digits on file name by adding to their

% character value
SIDX ADD SHAREIDX SIDX

*% If the index is greater than or equal to 10

*% then add 246 to force the first character to change
SHAREIDX IFGE 10
SIDX ADD 246 SIDX

ENDIF

*% Open the file

EVAL FILED = open(PATH: OFLAGR)
*% Check if open worked
FILED IFEQ =4l

*% Open failed, send an error message

MOVEL MSG(4) MSGTEXT
EXSR SNDMSG
ELSE

*% Open worked, read in the clone information and close file

SETON 01
Z-ADD 4 INLEN
EVAL INLEN = read(FILED: CLONEKEKLC: INLEN)
e e *
* Check if read operation was OK *
e P *
INLEN IFNE 4
MOVEL MSG(5) MSGTEXT
EXSR SNDMSG
SETOFF 01
ENDIF

Cryptography 211

© 01 EVAL INLEN = read(FILED: CLONEKEK: CLONEKEKL)
Cx*

© O1INLEN IFNE CLONEKEKL

C MOVEL MSG(5) MSGTEXT

C EXSR SNDMSG

© SETOFF 01
C ENDIF

Cx*

© 01 Z-ADD 4 INLEN

© 01 EVAL INLEN = read(FILED: CLONEINFOLENC: INLEN)
Cx*

Cx R e *

Cx * Check if read operation was OK *

Cx R *

© O1INLEN IFNE 4

C MOVEL MSG(5) MSGTEXT

C EXSR SNDMSG

© SETOFF 01
C ENDIF

Cx*

© 01 EVAL INLEN = read(FILED: CLONEINFO: CLONEINFOLEN)
Cx

Cx R *

Cx * Check if read operation was OK *

C* e e *

C OL1INLEN IFNE CLONEINFOLEN

© MOVEL MSG(5) MSGTEXT

C EXSR SNDMSG

C SETOFF 01
© ENDIF

Cx

C CALLP close (FILED)

C No1 SETON LR
Cx

Chhkkhkhkhkhhkhkhhkhkhhhkhhhhkhkhhkhkhhhkhkhhhkhkhhkhkhhhkhkhhkhkhkhhkhkhhhkhkhhkhkkkkhkkkkx
Cx Obtain a certificate

C ||
Cx R *

Cx * Set share index number *

Ck hmmmmmmm e emeemme o *

© Z-ADD SINDEX SHAREIDX

Cx R e *

Cx * Set private key name *

Cx R *

C EVAL LENGTH = %LEN(%TRIM(PRVKEY))
o LENGTH SUBST PRVKEY: 1 PRVNAME

Cx R e *

Cx % Set certifying key name *

(I R L *

© EVAL LENGTH = 9%LEN (%TRIM(SAKEY))
C LENGTH SUBST SAKEY:1 CERTKEY

[e T *

Cx * Set the keywords in the rule array *

Cx R *

© MOVEL "INSTALL ' RULEARRAY

© Z-ADD 1 RULEARRAYCNT
Cx R e *

Cx % Call Master Key Distribution SAPI *

Cx R L T T *

c CALLP CSUAMKD (RETURNCODE :

C REASONCODE :

© EXITDATALEN:
C EXITDATA:

© RULEARRAYCNT :
© RULEARRAY :

C SHAREIDX:

© PRVNAME :

© CERTKEY :

C CRTSECLEN:

© TOKENARRAY (TKNINDEX) :
© CLONEKEKL :

C CLONEKEK:

© CLONEINFOLEN:
© CLONEINFO)

Ck hemmmmmmmm e e e e e - *

Cx * Check the return code *

[0 *

C RETURNCODE IFGT 4

Cx e T e *

Cx * Send failure message *

Cx R *

212 IBMi: Cryptography

C MOVEL MSG(6) MSGTEXT

© MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FAILRSNC

C MOVEL 'CSUAMKD' SAPI

© EXSR SNDMSG

C RETURN

C ENDIF

Cx R L E e *

Cx * Send success message *

Cx R *

© MOVEL MSG(7) MSGTEXT

C EVAL 9%SUBST (MSGTEXT: 32: 12) =
C %SUBST (PATH: 1: 12)
© EXSR SNDMSG

C ENDIF

Cx*

C SETON

Cx*

C ||

C*x Subroutine to send a message
Chhkkhkhkhkhhhhhkhkhhhkhhhhkhkhhkhkhhhkhkhhkhkhkhhkhkhhhkhhhhkhkhhkhkhhkhkhkhhkkhkhhkkrkkkkx

C SNDMSG BEGSR

© CALL 'QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
© PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

© PARM STACKENTRY
C PARM STACKCOUNTER
C PARM MSGKEY

© PARM ERRCODE

C ENDSR

Cx

Kk
The certificate file could not be opened.

There was an error reading from the certificate file.

The length of the certificate is not valid.

The clone share file could not be opened.

The clone share file either could not be read or has invalid data.
CSUAMKD failed with return/reason codes 9999/9999.

The share was successfully installed.

Example: ILE C program for listing retained keys

Change this IBM i program example to suit your needs for listing retained keys.

LR

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

/* List the names of the RSA private keys retained.

/* COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

/* This material contains programming source code for your

/* consideration. These examples have not been thoroughly

/* tested under all conditions. 1IBM, therefore, cannot

/* guarantee or imply reliability, serviceability, or function

/* of these program. All programs contained herein are

/* provided to you "AS IS". THE IMPLIED WARRANTIES OF

/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

/* ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for

/* these programs and files.

/*

/*

/* Note: Input format is more fully described in Chapter 2 of
/* IBM CCA Basic Services Reference and Guide */
;* (SC31-8609) publication.

*

/* Parameters:

/* none.

/*

/* Example:

/* CALL PGM(LISTRETAIN)

/*

/*

/* Note: This program assumes the card with the profile is

/* already identified either by defaulting to the CRPO1

Cryptography 213

/* device or by being explicitly named using the */

/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* The Common Cryptographic Architecture (CCA) verb used is */
/* Access_Control_Initialization (CSUAACI). */
/* */
/* Use these commands to compile this program on the system: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (LISTRETAIN) SRCFILE (SAMPLE) */
/* CRTPGM PGM(LISTRETAIN) MODULE(LISTRETAIN) */
/* BNDSRVPGM (QCCA/CSNDRKL) */
/* */
/* Note: Authority to the CSNDRKL service program in the */
/* QCCA library is assumed. */
/* */
/* The Common Cryptographic Architecture (CCA) verb used is */
/* Retained_Key_List (CSNDRKL) . */
/* */
R R e */

#include <string.h>
f##include <stdio.h>
#include "csucincl.h"

void main(void)

J R e e */

/* standard CCA parameters */

J R R e e */

long return_code;

long reason_code;

long exit_data_length;

unsigned char exit_data[2];

long rule_array_count;

unsigned char rule_array[2][8];

J R e e T */

;* CCA parameters unique to CSNDRKL *;
R R e e *

unsigned char key_label_mask[64];
unsigned char key_label[500][64];

long retain_key_count;

long key_label_count = 500;

int k;

J R e */
/* Set up label mask, ie. which key name to retrieve. */
[/* *.k.%x.%k.%.%.% is a wildcard for all keys. */
J R e e T */

memset (key_label, 0x00, sizeof(key_label));

memset (key_label_mask, ' ', sizeof(key_label_mask));
memcpy (key_label_mask, "*.%.%.%.%.%.%x" 13);
rule_array_count = 0;

J R e T */
/* Invoke the verb to get the list of the retained keys. */
B */

CSNDRKL (&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(unsigned charx)rule_array,
key_label_mask,
&retain_key_count,
&key_label_count,
(unsigned charx)key_label);

R T */

/* Check the results */
B i e */
if (return_code != 0)

printf("Retained Key List failed with return/reason %d/%d \n",
return_code, reason_code);

return;

else
R */
/* Display number of keys retained/returned. */
R e e */

214 IBMi: Cryptography

printf("Retained key count [%d]\n",retain_key_count);
printf("No. of key labels returned [%d]\n",6 key_label_count);

if (key_label_count > 0)

{
R L */
/* Display the names of each key returned. */
J R e e */

printf("Retain list = \n");
for (k = 0 ;k < key_label_count; k++)

1
}printf("[%.64s]\n" , key_label[k]);

Example: ILE RPG program for listing retained keys

Change this IBM i ILE RPG program example to suit your needs for listing retained keys.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

Dk Kk kkkkkkkkhkhkkhkkhkhkhkkhkkhkhkhkkhkkkhhkhkkkhkkhkhkkkhkkkhkkkkkkkhkhkkkkkx

D*
Dx

List the names of the RSA private keys retained within the

Dx .

Dx
Dx
D*
Dx
Dx
D*
Dx
Dx
D*
Dx
Dx
D*

COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

This material contains programming source code for your
consideration. These example has not been thoroughly

tested under all conditions. 1IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function

of these programs. All programs contained herein are

provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for

D* these programs and files.

D*

D*

Dx Note: Input format is more fully described in Chapter 2 of
Dx IBM CCA Basic Services Reference and Guide

D% (SC31-8609) publication.

D*

D* Parameters: None

D*

Dx Example:

Dx CALL PGM(LISTRETAIN)

D*

Dx Use these commands to compile this program on the system:
D* CRTRPGMOD MODULE(LISTRETAIN) SRCFILE(SAMPLE)

Dx CRTPGM PGM(LISTRETAIN) MODULE(LISTRETAIN)

Dx BNDSRVPGM (QCCA/CSNDRKL)

D*

Dx The Common Cryptographic Architecture (CCA) verbs used are
Dx Retained_key_List (CSNDRKL)

D*

Dx Note: Authority to the CSNDRKL service program in the

D* QCCA library is assumed.

D*

D

Dx Note: This program assumes the card with the profile is
D* already identified either by defaulting to the CRPO1
Dx* device or by being explicitly named using the

D* Cryptographic_Resource_Allocate verb. Also this

D* device must be varied on and you must be authorized
Dx* to use this device description.

D*

D |||
D LG LG L

D* Declare variables for CCA SAPI calls

5 5 5 0 5 5 0 5 5 5 5 5 0 5 5 5 5 5 5 5 8 5 5 5 5 55 5

Dx *%* Return code

DRETURNCODE S 9B 0O

D* *% Reason code

DREASONCODE S 9B 0

D* *% Exit data length

DEXITDATALEN S 9B 0

Dx *%x Exit data

Cryptography 215

DEXITDATA
Dx
DRULEARRAYCNT
Dx
DRULEARRAY
D*
DKEYLBLMASK
Dx
DKEYCOUNT
Dx
DLABELCOUNT
D*
DLABELLIST
DLABELS

D*

DI

Dx

4
Rule array count

9B 0
Rule array

16
Key label mask

64
Key count

9B 0
Label count

9B 0
Label list and label array

3200

64 DIM(50)
Loop counter
9B 0

D R R R R R R R R R R R B B S S T = 2 2
Dx Prototype for Retained_Key_List

DCSNDRKL PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DKYLBLMSK 64

DKYCOUNT 9B 0

DLBLCOUNT 9B 0

DLBLS 64

D*

D e LG E L
D* *% Declares for sending messages to the

D* *% job log using the QMHSNDPM API

[N e e e T
DMSG S 75 DIM(4) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 75

DNUMKEYS 1 3

DNUMLABELS 25 26

DDSPLBL 2 65

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(' D)
DMESSAGEFILE S 21 INZ ('

DMSGKEY S 4 INZ(')

DMSGTYPE S 10 INZ('*xINFO ")
DSTACKENTRY S 10 INZ('*)
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

Dx

C ||
Cx START OF PROGRAM

Cx*

(0 *
Cx No rule array keywords *
(08 e T *
C Z-ADD 0 RULEARRAYCNT

(0 e G R *
Cx Get up to 50 labels *
(0 e *
C Z-ADD 50 LABELCOUNT

(08 e *
Cx Set the mask to everything *
(0 R e *
© MOVEL "x! KEYLBLMASK

(0 T T *
Cx Call Retained Key List SAPI *
(08 T *
© CALLP CSNDRKL (RETURNCODE:

C REASONCODE :

© EXITDATALEN:

C EXITDATA:

C RULEARRAYCNT :

© RULEARRAY :

C KEYLBLMASK:

C KEYCOUNT :

© LABELCOUNT :

216 IBMi: Cryptography

C LABELLIST)

Cx Check the return code *

(0 R *

© RETURNCODE IFGT 4

Cx L *

Cx * Send error message @ *

C* e e *

C MOVE MSG (1) MSGTEXT

© MOVE RETURNCODE FAILRETC

© MOVE REASONCODE FATILRSNC

C EXSR SNDMSG

Cx*

C ELSE

Cx*

Ck kommmmmmmmmm e e - *

Cx * Check number of keys *

[0 L *

© LABELCOUNT IFEQ 0

C* e *
Cx * Send message saying there are no keys *
Cx* R e T P *
C MOVE MSG(2) MSGTEXT

C EXSR SNDMSG

Cx

C ELSE

Cx*

Cx R *

Cx * Send message with number of keys =*

Cx R L T *

© MOVE MSG(3) MSGTEXT

© MOVE KEYCOUNT NUMKEYS

C MOVE LABELCOUNT NUMLABELS

© EXSR SNDMSG

Cx

Cx R e T *

Cx * Display each key label up to 50 =*

C* e *

C MOVE MSG(4) MSGTEXT

© FOR I=1 BY 1 TO LABELCOUNT

© MOVEL LABELS(I) DSPLBL

C EXSR SNDMSG

© ENDFOR

Cx

C ENDIF

© ENDIF

Cx

C SETON LR
Cx

C ||
C*x Subroutine to send a message

C ||
© SNDMSG BEGSR

C CALL "QMHSNDPM'

© PARM MESSAGEID

© PARM MESSAGEFILE
C PARM MSGTEXT

© PARM MSGLENGTH

© PARM MSGTYPE

C PARM STACKENTRY
© PARM STACKCOUNTER
© PARM MSGKEY

C PARM ERRCODE

© ENDSR

**

CSNDRKL failed with return/reason codes 9999/9999

There are no retained keys
000 keys were found and 00 labels returned
[

Example: ILE C program for deleting retained keys
Change this IBM i ILE C program example to suit your needs for deleting retained keys.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

R

/* Delete a retained key
/*
/*

Cryptography 217

/* COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these program. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for =x/
/* these programs and files. */
/* */
/* */
/> Note: Input format is more fully described in Chapter 2 of */
/* IBM CCA Basic Services Reference and Guide */
/* (SC31-8609) publication. */
/* */
/* Parameters: */
/* none. */
/* */
/* Example: */
/* CALL PGM(DLTRTNKEY) (SSLPRIV.KEY.ONE) */
/* */
/* */
/* Note: This program assumes the card with the profile is */
/* already identified either by defaulting to the CRPO1 */
/* device or by being explicitly named using the */
/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* The Common Cryptographic Architecture (CCA) verb used is */
/* Retained_Key_Delete (CSNDRKD). */
/* */
/* Use these commands to compile this program on the system: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (DLTRTNKEY) SRCFILE (SAMPLE) */
/* CRTPGM PGM(DLTRTNKEY) MODULE(DLTRTNKEY) */
/* BNDSRVPGM (QCCA/CSNDRKD) */
/* */
/* Note: Authority to the CSNDRKD service program in the */
/* QCCA library is assumed. */
/* */
/* */
R e */
#include <string.h>
#include <stdio.h>
#include "csucincl.h"
R R L E T */
/* standard return codes */
J R R e */
#define OK 0]
#tdefine WARNING 4
void main(int argc, char * argv[1])
{
J R e e T */
/* standard CCA parameters */
R e e */
long return_code;
long reason_code;
long exit_data_length;
unsigned char exit_data[2];
long rule_array_count = 0;
unsigned char rule_array[1][8];
unsigned char key_label[64];
R R e e T */
/* Process the parameters */
B e I */
if (argc < 1)
printf("Key label parameter must be specified.\n");
retuzrn;
%
R e T */
/* Set up the key label */

218 IBMi: Cryptography

J R R e */
memset (key_label, ' ', 64);
memcpy (key_label, argv[1l], strlen(argv[1]));

B e L */
/* Call the Retained Key List SAPI */
B e */

CSNDRKD (&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(unsigned charx)rule_array,

key_label);
R e R L R T */
/* Check the return code and display the results */
e e */
if ((return_code == OK) || (return_code == WARNING))
i
printf("Request was successful\n");
return;
¥
else
1
printf("Request failed with return/reason codes: %d/%d \n",
return_code, reason_code);
return;
¥

Example: ILE RPG program for deleting retained keys

Change this IBM i ILE RPG program example to suit your needs for deleting retained keys.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

D R R R R R Rl R R R R S S T S S 2 T
Dx DLTRTNKEY

D*

Dx Sample program to delete a retained key

Dx

D*

Dx COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

Dx

Dx This material contains programming source code for your

D% consideration. These example has not been thoroughly

Dx tested under all conditions. IBM, therefore, cannot

Dx guarantee or imply reliability, serviceability, or function
Dx of these programs. All programs contained herein are

Dx provided to you "AS IS". THE IMPLIED WARRANTIES OF

Dx MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Dx ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
Dx these programs and files.

Dx

D*

Dx Note: Input format is more fully described in Chapter 2 of
D* IBM CCA Basic Services Reference and Guide

D% (SC31-8609) publication.

D*

Dx Parameters:
Dx* Retained key label name

Dx (64 chacters - pad with blanks on the right)
Dx

D% Example:

Dx*

Dx CALL DLTRTNKEY +

D*x 'PKA.RETAINED.KEY.123

D*

Dx Use these commands to compile this program on the system:
D* CRTRPGMOD MODULE (DLTRTNKEY) SRCFILE(SAMPLE)

Dx CRTPGM PGM(DLTRTNKEY) MODULE (DLTRTNKEY)

Dx BNDSRVPGM (QCCA/CSNDRKD)

Dx

Dx Note: Authority to the CSNDRKD service program in the
D* QCCA library is assumed.

Dx

Cryptography 219

Dx The Common Cryptographic Architecture (CCA) verbs used are

Dx Retained_Key_Delete (CSNDRKD)

D*

D ||
5 5 5 5 55 5 5 55 5 55 35 505 55 55 5 5

Dx Declare variables for CCA SAPI calls

D= == oo-

D* *%x Return code

DRETURNCODE S 9B 0

D* *% Reason code

DREASONCODE S 9B 0

D* *% Exit data length

DEXITDATALEN S 9B 0

D* *% Exit data

DEXITDATA S

D* *% Rule array count

DRULEARRAYCNT S 9B 0

D* *% Rule array

DRULEARRAY S 16

D* *% Retained key label

DKEYNAME S 64

Dx

D ||

D*x Prototype for Retained_Key_Delete (CSNDRKD)

D ||
DCSNDRKD PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DKEYNAM 64

Dx

D 55 5 5 53 £33 555 55 555 5905 55 5
D* *% Declares for sending messages to the

D* *% job log using the QMHSNDPM API

D 5 5 5 0 5 5 55 £ 5 5 5 5 55 55 55 505 55 5
DMSG S 75 DIM(2) CTDATA PERRCD(1)
DMSGLENGTH S 9B O INZ(75)

D DS

DMSGTEXT 1 75

DFAILMSGTEXT 1 50

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(' ")
DMESSAGEFILE S 21 INZ('

DMSGKEY S 4 INZ(')

DMSGTYPE S 10 INZ('*xINFO ")
DSTACKENTRY S 10 INZ('* ")
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

Dx

C ||
Cx START OF PROGRAM *
Cx *
© *ENTRY PLIST

© PARM KEYNAME

Cx *
(R e e *
Cx Set the keywords in the rule array *
(08 G e *
o Z-ADD 0 RULEARRAYCNT

(0 R e R *
Cx Call Retained Key Delete SAPI *
(R L LT T *
© CALLP CSNDRKD (RETURNCODE:

C REASONCODE :

© EXITDATALEN:

© EXITDATA:

C RULEARRAYCNT :

© RULEARRAY :

© KEYNAME)

(0 *

C*x Check the return code *

(0 R *

C RETURNCODE IFGT 4

Cx R L *

Cx * Send error message *

Cx R *

220 IBMi: Cryptography

© MOVE MSG (1) MSGTEXT

© MOVE RETURNCODE FAILRETC

© MOVE REASONCODE FAILRSNC

© EXSR SNDMSG

Cx

© ELSE

Cx R *

Cx * Send success message *

Cx L *

© MOVE MSG(2) MSGTEXT

© EXSR SNDMSG

Cx

© ENDIF

Cx

© SETON LR
Cx

C ||
Cx Subroutine to send a message

C ||
© SNDMSG BEGSR

© CALL "QMHSNDPM'

© PARM MESSAGEID

© PARM MESSAGEFILE
© PARM MSGTEXT

© PARM MSGLENGTH

© PARM MSGTYPE

© PARM STACKENTRY

© PARM STACKCOUNTER
© PARM MSGKEY

© PARM ERRCODE

© ENDSR

Cx

*%
CSNDRKD failed with return/reason codes 9999/9999'
The request completed successfully

Troubleshooting the Cryptographic Coprocessor

Use these troubleshooting methods to tackle some of the basic problems that might occur with the
Cryptographic Coprocessor on your system running the IBM i operating system. If the troubleshooting
information does not address your problem, contact your service representative.

Always assure that you have applied all current PTFs for the relevant products and programs.

Using return codes

The primary method for detecting and troubleshooting problems is by monitoring return codes and reason
codes.

« A return code of 0 indicates successful completion. To provide some additional information, the
Cryptographic Coprocessor associates some non-zero reason codes with this return code.

« A return code of 4 indicates that the application programming interface (API) has completed
processing, but an unusual event occurred. It could be related to a problem created by the application
program, or it could be a normal occurrence based on data that is supplied to the API.

- A return code of 8 indicates that the API did not complete successfully. An application programming
error most likely caused this.

« Areturn code of 12 normally indicates some type of problem in the setup or configuration of your
Coprocessor. This code means that the processing of the API did not complete successfully.

« A return code of 16 normally indicates a severe error in Common Cryptographic Architecture
Cryptographic Service Provider (CCA CSP), system licensed internal code, or the Cryptographic
Coprocessor licensed internal code. For these types of errors, you should contact your service
representative.

You can also troubleshoot problems by analyzing the messages that appear in the job log or in the system
operator (QSYSOPR) queue. Generally, any event that sends a message to the job log also returns an
associated return code and a reason code to the calling programming. Messages sent to the system
operator message, if reporting a severe problem, will normally point to a source of additional information

Cryptography 221

about the problem. Such information is intended for IBM service, and therefore you may not necessarily
find them useful for problem determination.

Common errors

You should watch out for these common errors:

Did you vary on the device? You cannot send any requests to your Cryptographic Coprocessor until you
vary on the device.

Is the CCA finding a device? If you do not explicitly use the Cryptographic_Resource_Allocate
API, you must name the cryptographic device CRP0O1. If you do not name it that, the CCA
cannot select any device. Either name the device CRP01 or change your program to use the
Cryptographic_Resource_Allocate CCA API to select the device.

Are you selecting the correct device? If you have a default device (for example, a device named
CRPO01) and an additional device, the Cryptographic Coprocessor will select the default device, unless
you use Cryptographic_Resource_Allocate.

Is the Cryptographic Coprocessor finding a keystore file? If you do not explicitly use the
Key_Store_Designate SAPI, the CCA CSP support will attempt to use the files named on the device
description. If you have named no files on the device description, the Cryptographic Coprocessor will
not find any files.

Have you loaded and set a master key? The Cryptographic Coprocessor will not complete any
cryptographic requests other than those for configuring your Cryptographic Coprocessor, unless you
load a master key.

Does the Old master key register contain a key? The Cryptographic Coprocessor cannot re-encrypt
keys under the Current master key unless the Old master key register contains a value.

Does your default role have authority to use a given hardware command? If not, you will need to log
on by using a profile that uses a role that has the correct authority.

Does any role have authority to use a given hardware command? If your Cryptographic
Coprocessor requires the hardware command and you have not authorized a role to use that
command, you must reinitialize your Cryptographic Coprocessor. Do this by using either the
Cryptographic_Facility_Control API or the Hardware Service Manager that is found in System Service
Tools. Using the Cryptographic_Facilty_Control API requires that you authorize a role to the hardware
command that reinitializes the Cryptographic Coprocessor. If no such role exists, you must use the
Hardware Service Manager.

Is a function control vector loaded? Your Cryptographic Coprocessor cannot run any cryptographic
operations other than configuration until you load a function control vector.

If you are loading a master key, did you begin by clearing out the new master key register? If your
Cryptographic Coprocessor has a partially loaded new master key register, you cannot load the first part
of a master key.

Did you remember to set the clock in your Coprocessor before removing the authority to do so
from the DEFAULT role? If not, you must reinitialize your Cryptographic Coprocessor by using either
the Cryptographic_Facility_Control API or the Hardware Service Manager found in System Service
Tools. Using the Cryptographic_Facilty_Control API requires that you authorize a role to the hardware
command that reinitializes the Cryptographic Coprocessor. If no such role exists, you must use the
Hardware Service Manager.

Did you set the EID before trying to generate public-private key pairs? You must set the EID before
you can generate RSA keys.

222 IBMi: Cryptography

« Did you correctly initialize the first byte of a null key token to binary 0? If not, the CCA support may
try to use it as a key label. CCA Support will either report it as a bad label format or report that it could
find the key record.

« Do you use the same name for a label in a PKA keystore file and a retained PKA key? If so, your
Cryptographic Coprocessor will never find the retained key because the Cryptographic Coprocessor
always searches the keystore file first.

- Do you have EBCDIC data in any fields in a skeleton PKA key token? The Cryptographic Coprocessor
specifically checks for ASCII data in a number of the fields and will return an error if it finds EBCDIC
data.

Reinitializing the Cryptographic Coprocessor

If you set up your Cryptographic Coprocessor incorrectly, you can end up with an unusable configuration
with which you cannot perform any cryptographic functions and cannot use any of the APIs to recover.
For example, you can configure it such that you have no role authorized to set the master key and no role
authorized to change or create new roles or profiles. You can call the hardware command for reinitializing
the card by using the Cryptographic_Facility_Control (CSUACFC) SAPI.

However, in some cases, there may not be a role that is authorized to any hardware command. In this
case, you must reload the Licensed Internal Code by using the function that is provided in Hardware
Service Manager in System Service Tools.

Updating the Licensed Internal Code in the Cryptographic Coprocessor

Loading the Licensed Internal Code in your Cryptographic Coprocessor erases the master key, all private
keys, and all roles and profiles that are stored in your Cryptographic Coprocessor. Because of this,

the system does not automatically load PTFs for the Licensed Internal Code in the Cryptographic
Coprocessor, and the PTFs always require action on your part to enable them. Before you load the
Licensed Internal Code, take appropriate actions to ensure that you can recover, such as ensuring that you
have a hard copy of your master key.

Note: If you randomly generated your master key, you will need to clone that key into a second
Cryptographic Coprocessor. If you do not, you will lose all your encrypted keys when you reinitialize
your Cryptographic Coprocessor.

Related tasks

Using the Hardware Service Manager

Hardware service manager is a tool for displaying and working with the IBM i system hardware from both
a logical and a packaging viewpoint, an aid for debugging input/output (I/0) processors and devices, and
is also used to reinitialize the Cryptographic Coprocessor (set it back to an un-initialized state).

Example: ILE C program for reinitializing the Cryptographic Coprocessor

Change this IBM i ILE C program example to suit your needs for reinitializing your Cryptographic
Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use the program example that is provided, change it to suit your specific needs. For
security reasons, IBM recommends that you individualize these program examples rather than using the
default values provided.

R e e T */
/* Clear the card (reset to manufactured state). */

/* */
/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/> tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */

Cryptography 223

/* of these program. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for =«/
/* these programs and files. */
/* */
/* */
/* Note: This verb is more fully described in Chapter 2 of */
/* IBM CCA Basic Services Reference and Guide */
/* (SC31-8609) publication. */
/* */
/* Parameters: */
/* none. */
/* */
/* Example: */
/* CALL PGM(REINIT) */
/* */
/* */
/* Note: This program assumes the device to use is */
/* already identified either by defaulting to the CRPO1 */
/* device or by being explicitly named using the */
/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* Use these commands to compile this program on the system: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (REINIT) SRCFILE(SAMPLE) */
/* CRTPGM PGM(REINIT) MODULE(REINIT) BNDSRVPGM(QCCA/CSUACFC) */
/* */
/* Note: Authority to the CSUACFC service program in the */
/* QCCA library is assumed. */
/* */
/* The Common Cryptographic Architecture (CCA) verb used is */
/* Cryptographic_Facilitiess_Control (CSUACFC). */
/* */
J R R e e T */
#include "csucincl.h" /* header file for CCA Cryptographic */
/* Service Provider */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
J R R e */
/* standard return codes */
R R e T */
#tdefine ERROR -1
#define OK 0
#tdefine WARNING 4
jtdefine TOKENSIZE 8 /* number of bytes in random token */

int main(int argc, char xargv[])

]

long return_code
long reason_code = 0;
long exit_data_length
char exit_data[4];

char rule_array[2][8];
long rule_array_count

1l
(o]
1l
N

1l
N

/* fields unique to this sample program

R L
long verb_data_length = TOKENSIZE;

char verb_data[TOKENSIZE];

char verb_data2[TOKENSIZE];

int i;

/* set keywords in the rule array

224 IBMi: Cryptography

____*/
____*/

*/

memcpy (rule_array, "ADAPTER1RQ-TOKEN",16) ;
/* get a random token from the card - returned in verb_data

CSUACFC(&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *)rule_array,
&verb_data_length,
(char x)verb_data);

if ((return_code == OK) | (return_code == WARNING))

printf("Random token was successfully returned.\n");
printf("Return/reason codes ");

printf("%1ld/%ld\n\n", return_code, reason_code);

/* get the one's complement of token and store in verb_data2.

/* operate on one byte at a time
for(i = 0; i < TOKENSIZE; i++)
1

verb_data2[i] = ~verb_data[i];
3

/* change keyword in rule array
memcpy (&rule_array[1],"RQ-REINT",8);
/* invoke the verb to reset the card
CSUACFC(&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *)rule_array,
&verb_data_length,
verb_data2);
if ((return_code == OK) | (return_code == WARNING))
1
printf("card successfully cleared/reset.\n");
printf("Return/reason codes ");

printf("%1ld/%ld\n\n", return_code, reason_code);

*/

*/
*/

x/

*/

return(0K);

3

else

i
printf("An error occurred while clearing the card");
printf("card.\n Return/");
printf("reason codes %1d/%ld\n\n", return_code, reason_code);
return(ERROR) ;

?

¥

else

printf("An error occurred while getting the random token.\n");

printf("Return/reason codes ");
printf("%1ld/%ld\n\n", return_code, reason_code);

return (ERROR) ;
3

Cryptography 225

Example: ILE RPG program for reinitializing your Cryptographic Coprocessor

Change this IBM i ILE RPG program example to suit your needs for reinitializing your Cryptographic
Coprocessor.

Note: Read the “Code license and disclaimer information” on page 234 for important legal information.

If you choose to use the program example that is provided, change it to suit your specific needs. For
security reasons, IBM recommends that you individualize these program examples rather than using the
default values provided.

D* REINIT

D*x Clear the card (reset to manufactured state).

Dx COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

Dx This material contains programming source code for your

Dx consideration. These example has not been thoroughly

Dx tested under all conditions. IBM, therefore, cannot

Dx guarantee or imply reliability, serviceability, or function

Dx of these programs. All programs contained herein are

Dx provided to you "AS IS". THE IMPLIED WARRANTIES OF

D+ MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Dx ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
Dx these programs and files.

D*

Dx*

Dx Note: Input format is more fully described in Chapter 2 of
Dx* IBM CCA Basic Services Reference and Guide
Dx (SC31-8609) publication.

Dx

Dx Parameters:

Dx* char * new time 16 characters

Dx

D* Example:

D CALL PGM(REINIT)

Dx

Dx Use these commands to compile this program on the system:
D* CRTRPGMOD MODULE(REINIT) SRCFILE(SAMPLE)
D* CRTPGM PGM(REINIT) MODULE(REINIT)

Dx BNDSRVPGM (QCCA/CSUACFC)

Dx

Dx Note: Authority to the CSUACFC service program in the
D* QCCA library is assumed.

Dx

Dx The Common Cryptographic Architecture (CCA) verbs used are
Dx Cryptographic_Facilty_Control (CSUACFC)

Dx
Dxkkkkkkkhhhkkkkhhhhkkhkhhhkkkhhhhkkkhhhhkkkhhhhkkkhhkhkkxkhkhkkx
D AL E L L L L L LI L L EEEE
D* Declare variables for CCA SAPI calls

D= = = === == m e e e e
Dx ** Return code

DRETURNCODE S 9B 0

Dx *% Reason code

DREASONCODE S 9B 0

D* *% Exit data length
DEXITDATALEN S 9B 0

Dx ** Exit data

DEXITDATA S 4

D* *% Rule array count
DRULEARRAYCNT S 9B 0

D* *% Rule array

DRULEARRAY S 16

Dx *% Verb data length
DVERBDATALEN S 9B 0O

Dx *%x Verb data

DVERBDATA S

Dx

) L
Dx Declares for calculating one's complement

D e
DBUFFER DS

DAL 1 2

DA2 3 4

DA3 5 6

226 IBMi: Cryptography

DA4 7 8

D*

DWORKBUFF DS

DINT4 1 4B 0O

DINT2 3 4

Dx

Dx

D ||

Dx Prototype for Cryptographic_Facilty_Control (CSUACFC)

D ||
DCSUACFC PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DVRBDTALEN 9B 0

DVRBDTA 8

D*

D e LG E L
D* *% Declares for sending messages to the

D* **x job log using the QMHSNDPM API

D e e
DMSG S 75 DIM(3) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(64)

D DS

DMSGTEXT 1 80

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(' D)
DMESSAGEFILE S 21 INZ (' D)
DMSGKEY S 4 INZ(')

DMSGTYPE S 10 INZ('*xINFO ")
DSTACKENTRY S 10 INZ('*)
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

Cx

C ||
Cx START OF PROGRAM *
Cx *
Cx *
(0 R e R T *
Cx Set the keyword in the rule array *
(e e *
© MOVEL "ADAPTER1' RULEARRAY

© MOVE 'RQ-TOKEN' RULEARRAY

© Z-ADD 2 RULEARRAYCNT

(08 R e e *
Cx Set the verb data length to 8 *
(O e e *
© Z-ADD 8 VERBDATALEN

C ||
Cx Call Cryptographic Facilty Control SAPI */
[0 3 R R R R R R B E R R S T T S S 2
© CALLP CSUACFC (RETURNCODE :

C REASONCODE :

© EXITDATALEN:

© EXITDATA:

C RULEARRAYCNT :

© RULEARRAY :

© VERBDATALEN:

C VERBDATA)
Ch-mmmmmmmmmm e e e - - - *

Cx Check the return code =*

Chmmmmmmmmmmmmmmmmmmme e *

© RETURNCODE IFGT 4

Cx* Ko mmmmm e e m o *

Cx * Send error message *

Cx R *

© MOVEL MSG (1) MSGTEXT

© MOVE RETURNCODE FAILRETC

© MOVE REASONCODE FAILRSNC

© EXSR SNDMSG

C RETURN

© ENDIF

Cx

Cx R L T T *

Cx * Send success message for the 1st step *

Cx R *

Cryptography 227

C MOVEL MSG(2) MSGTEXT

C EXSR SNDMSG

Cx*

(08 *
Cx Set the keyword in the rule array for 2nd step *
(0 e L R *
© MOVE 'RQ-REINT' RULEARRAY

C*

(0 e L R *
Cx Convert the token into the one's complement of it *
(0 e *
C MOVE VERBDATA BUFFER

© Z-ADD 0 INT4

C MOVE Al INT2

C EVAL INT4 = 65535 - INT4

© MOVE INT2 Al

C MOVE A2 INT2

C EVAL INT4 = 65535 - INT4

© MOVE INT2 A2

C MOVE A3 INT2

C EVAL INT4 = 65535 - INT4

© MOVE INT2 A3

C MOVE Ad INT2

C EVAL INT4 = 65535 - INT4

© MOVE INT2 Ad

C MOVE BUFFER VERBDATA

Cx*

C ||

Cx Call Cryptographic Facilty Control SAPI
Chhhkkhkhkhkhhkhkhhkhkhhhkhkhhhkhkhhkhkhhhkhhhhkhkhhkhkhhhkhhhhkhkhhkhkhkhhkhkhhkkhkkhkkixkhkkx

© CALLP CSUACFC (RETURNCODE :
C REASONCODE :
C EXITDATALEN:
© EXITDATA:

C RULEARRAYCNT :
C RULEARRAY :

© VERBDATALEN:
C VERBDATA)

(0 R *

Cx Check the return code =*

Ckmmmmmmmmmmmmm e emem oo *

C RETURNCODE IFGT 4

Cx R *

Cx * Send error message *

Cx L *

© MOVEL MSG (1) MSGTEXT

© MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FAILRSNC

© EXSR SNDMSG

Cx

C ELSE

Cx R *

Cx * Send success message *

Cx R *

© MOVE MSG(3) MSGTEXT

© EXSR SNDMSG

Cx

© ENDIF

C SETON

Cx

C ||

C*x Subroutine to send a message
Chhhkkhkhkhhhkhkhhkhkhkhhkhhhhkhkhhkhkhhhkhkhhhkhkhhkhkhhhkhhhkhkhkhhkhkhkhkhkhkhhkkhkkkkrxkkkx

C SNDMSG BEGSR

C CALL "QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY
C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

**

CSUACFC failed with return/reason codes 9999/9999.

Random token was successfully returned.

The Cryptographic Coprocessor successfully cleared/reset.

228 IBMi: Cryptography

*/

LR

Using the Hardware Service Manager

Hardware service manager is a tool for displaying and working with the IBM i system hardware from both
a logical and a packaging viewpoint, an aid for debugging input/output (I/0) processors and devices, and
is also used to reinitialize the Cryptographic Coprocessor (set it back to an un-initialized state).

When the Cryptographic Coprocessor is re-initialized, the Cryptographic Coprocessor Licensed Internal
Code is reloaded into the Coprocessor. Some but not all program temporary fixes (PTFs) for the
Coprocessor licensed internal code may require the use of hardware service manager to activate them.
This extra step is included to allow you to prepare for recovery because reloading certain segments of the
licensed internal code will cause any configuration data including master keys, retained RSA private keys,
roles, and profiles to be lost.

There may be situations where the Cryptographic Coprocessor must be reset back to an unintialized
state. For example, if the Coprocessor is not configured correctly, there could be a scenario where

the Coprocessor cannot perform any useful function and cannot be corrected using the Cryptographic
Coprocessor configuration utility or a user-written application. Another example is if the passwords for
the administrative profiles are forgotten and no other profile uses a role that is authorized to change
passwords.

Hardware service manager is found in System Service Tools. To use the Hardware service manager,
proceed as follows:

1. Use the Start System Service Tools (STRSST) CL command by typing STRSST at the CL command line
and pressing enter.

The System Service Tools Signon display should be shown.

Start Service Tools (STRSST) Sign On

SYSTEM: RCHSYS01
Type choice, press Enter.

Service tools user
Service tools password . . .

F3=Exit F9=Change Password F12=Cancel

2. Enter the service tools user profile name and password.
The System Service Tools display should appear.

System Service Tools (SST)
Select one of the following:

Start a service tool

Work with active service tools
Work with disk units

Work with diskette data recovery
Work with system partitions

Work with system capacity

CURhWNE

Selection
1

F3=Exit F10=Command entzry F12=Cancel

Cryptography 229

3. Select 1 to start a service tool and press Enter.
The Start a Service Tool display will be shown.

Start a Service Tool
Warning: Incorrect use of this service tool can cause damage
to data in this system. Contact your service representative
for assistance.

Select one of the following:

1. Product activity log
2. Trace Licensed Internal Code
3. Work with communications trace
4. Display/Alter/Dump
5. Licensed Internal Code log
6. Main storage dump manager
7. Hardware service manager
Selection
7
F3=Exit F12=Cancel F16=SST menu

4. Select 7 to start Hardware Service Manager.
The Hardware Service Manager screen display shows the menu of available options.

Hardware Service Manager
Attention: This utility is provided for service representative use only.

System unit : 9406-270 10-E67BA
Release : V6R1 (1)

Select one of the following:

1. Packaging hardware resources (systems, frames, cards,...)

2. Logical hardware resources (buses, IOPs, controllers,...)

3. Locate resource by resource name

4. Failed and non-reporting hardware resouzrces

5. System power control network (SPCN)

6. Work with service action log

7. Display label location work sheet

8. Device Concurrent Maintenance

9. Work with resources containing cache battery packs
Selection

2

F3=Exit F6=Print configuration F9=Display card gap information
F10=Display resources requiring attention F12=Cancel

5. Select 2 to work with logical hardware resources.

230 IBMi: Cryptography

Logical Hardware

Resources
Select one of the following:

System bus resouzrces
Processor resources

Main storage resources
High-speed link resources

rwN PR

Selection
1

F3=Exit F6=Print configuration

F12=Cancel

6. From the Logical Hardware Resources display, select 1 to show system bus resources.

Logical Hardware Resources on System Bus

System bus(es) to work with
Subset by . ..

Type options, press Enter.
2=Change detail 4=Remove
8=Associated packaging resource(s)

Opt Description Type-Model
_ HSL I/O Bridge 28DA-
Bus Expansion Adapter 28DA-
_ System Bus 28DA-
_ Multi-Adapter Bridge 28DA-
_ Bus Expansion Adapter 28DA-
= System Bus 28DA-
= Multi-adapter Bridge 28DA-

F3=Exit F5=Refresh
F9=Failed resources
F1l1=Display serial/part numbers

F6=Print

5=Display detail

Status

Operational
Operational
Operational
Operational
Operational
Operational
Operational

. *ALL *ALL, *SPD, %PCI, 1-511
. *CRP *ALL, *STG, *WS, *CMN, *CRP

6=1/0 Debug
9=Resources associated with IOP

Resource
Name

BC13

BCCO2

LBO1

PCIO1D

BCCO7

LBO6

PCIO2D

More. ..

F8=Include non-reporting resources
F10=Non-reporting resources
F12=Cancel

7. Page down until you see the IOP that contains the Cryptographic Coprocessor. Type 9 next to the IOP.
Otherwise, filter the list by typing *CRP for the Subset by field and then type 9 next to the IOP that

contains the Cryptographic Coprocessor.

You should then see the Logical Hardware Resources Associated with IOP display.

Logical Hardware Resources Associated with IOP

Type options, press enter.

2=Change detail 4=Remove 5=Display detail
7=Verify 8=Associated packaging
Opt Description Type-Model
Virtual IOP 4764-001
Cryptography Adapter 4764-001
6 Cryptography Device 4764-001
F3=Exit F5=Refresh F6=Print

F9=Failed resources
F11=Display serial/part numbers

resource(s)

Status

Operational
Operational
Operational

6=I/0 Debug

Resource
Name
CMB0O4
CRPCTLOL
CRPO4

F8=Include non-reporting resources
F10=Non-reporting resources
F12=Cancel

Cryptography 231

8. Type 6 next to the cryptography device that you want to reinitialize, and then press Enter.

Select Cryptography Debug Function
Select one of the following:

1. Reinitialize Flash Memory
2. Select IOP Debug Function

Selection
1

F3=Exit F12=Cancel

9. Select 1 to reinitialize flash memory (reload the Cryptographic Coprocessor Licensed Internal Code).
A confirmation screen will be displayed. If you are applying a PTF ensure that you have taken the
necessary precautions regarding your encrypted data and keys, and have a backup of the master key.
Press Enter to continue.

Reinitialize Flash Memory Function
DANGER:
Performing this initialization of the flash memory on the cryptography
device will cause ALL key information stored on the device to be
DESTROYED. This will cause all data encrypted using this device to be
rendered unusable.

WARNING:

Pexforming this initialization of the flash memory on the cryptography
device will take an estimated 10 minutes.

Press Enter to proceed.

F3=Exit F12=Cancel

The following display shows the status of the reinitialization and is updated until the reinitialization is
completed.

232 IBMi: Cryptography

Reinitialize Flash Memory Status

Flash memory reinitialization in progress...

Estimated time: 10.0 minutes

Elapsed time: 2.5 minutes

When reinitialization is complete, a message will be displayed.

Select Cryptography Debug Function
Select one of the following:

1. Reinitialize Flash Memory
2. Select IOP Debug Function

Selection

F3=Exit F12=Cancel
Reinitialization of cryptography device was successful.

After reinitialization is complete, exit all the way out of system service tools by pressing function key F3
on each screen as necessary.

Related concepts

Reinitializing the Cryptographic Coprocessor

If you set up your Cryptographic Coprocessor incorrectly, you can end up with an unusable configuration
with which you cannot perform any cryptographic functions and cannot use any of the APIs to recover.
For example, you can configure it such that you have no role authorized to set the master key and no role
authorized to change or create new roles or profiles. You can call the hardware command for reinitializing
the card by using the Cryptographic_Facility_Control (CSUACFC) SAPI.

Related information for Cryptography

This topic provides information about product manuals and Web sites that relate to the IBM i
Cryptography topic collection. You can view or print any of the PDFs.

The following resources provide additional information relating to cryptographic concepts or hardware:

Cryptography 233

Manuals

« IBM PClIe Cryptographic Coprocessor documentation library & (http://www.ibm.com/security/
cryptocards/pcieccd/library) contains the CCA 7.3x Basic Services Manual and other related
documentation for the 4769 Cryptographic Coprocessor. IBM PCIe Cryptographic Coprocessor

documentation library £ (http://www.ibm.com/security/cryptocards/pciecc2/library) contains the CCA
5.6x Basic Services Manual for the 4767 Cryptographic Coprocessor. These downloadable PDF
documents are intended for systems and applications analysts and application programmers who will
evaluate or create CCA programs.

« The CCA Basic Services Manual is intended for systems and applications analysts and application
programmers who will evaluate or create programs for the IBM Common Cryptographic Architecture

(CCA) support. Go to the IBM Cryptographic Coprocessor Library-'-i} for a downloadable PDF of this
manual.

Web site

« The IBM Cryptographic hardware<&¥ (http://www.ibm.com/security/cryptocards) contains information
about the 4769 PClIe Cryptographic Coprocessor hardware solution.

Other information
 Protecting IBM i data with encryption

Related concepts

4769 Cryptographic Coprocessor

IBM offers Cryptographic Coprocessors, which are available on a variety of system models. Cryptographic
Coprocessors contain hardware engines, which perform cryptographic operations used by IBM i
application programs and IBM i SSL transactions.

Related reference

PDF file for Cryptography
To view and print a PDF file of the Cryptography topic collection.

Code license and disclaimer information

IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS PROGRAM
DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT, REGARDING THE PROGRAM OR
TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR ANY OF
THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL
DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT
APPLY TO YOU.

234 IBMi: Cryptography

http://www.ibm.com/security/cryptocards/pciecc4/library
http://www.ibm.com/security/cryptocards/pciecc4/library
http://www.ibm.com/security/cryptocards/pciecc4/library
http://www.ibm.com/security/cryptocards/pciecc2/library
http://www.ibm.com/security/cryptocards/pciecc2/library
http://www.ibm.com/security/cryptocards/pciecc2/library
http://www.ibm.com/security/cryptocards/pciecc2/library.shtml
http://www.ibm.com/security/cryptocards
http://www.ibm.com/servers/enable/site/education/abstracts/efbe_abs.html

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law
IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N

Rochester, MN 55901

U.S.A.

© Copyright IBM Corp. 1998, 2015 235

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

AlLIBM prices shown are IBM's suggested retalil prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform

for which the sample programs are written. These examples have not been thoroughly tested under

all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information

This Cryptography publication documents intended Programming Interfaces that allow the customer to
write programs to obtain the services of IBM i.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be

236 Notices

trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Java and all Java-based trademarks and logos are trademarks of Oracle, Inc. in the United States, other
countries, or both.

Other product and service names might be trademarks of IBM or other companies.

Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS

ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 237

http://www.ibm.com/legal/copytrade.shtml

238 IBMi: Cryptography

Product Number: 5770-SS1

	Contents
	Cryptography
	What's new for IBM i 7.3
	PDF file for Cryptography
	Cryptography concepts
	Cryptographic services key management
	Managing master keys
	Loading and setting master keys
	Loading and setting auxiliary storage pool master key
	Loading and setting save/restore master key
	Testing master keys
	Clearing master keys
	Saving and restoring master keys

	Managing cryptographic keystore files
	Creating a new keystore file
	Adding an existing keystore file
	Translating keystore files
	Viewing translation status of keystore files
	Distributing keys
	Managing key records
	Adding a new key record
	Exporting a key record
	Extracting a public key
	Viewing a key record's attributes
	Deleting a key record

	4769 Cryptographic Coprocessors
	Cryptographic hardware concepts
	Features
	Scenarios: Cryptographic Coprocessor
	Scenario: Protecting private keys with cryptographic hardware
	Scenario: Writing an IBM i application to use the Cryptographic Coprocessor
	Scenario: Enhancing system SSL performance by using the 4769 Cryptographic Coprocessor

	Planning for the Cryptographic Coprocessor
	Requirements
	Secure access
	Object authorities that are required for SAPI

	Configuring the Cryptographic Coprocessor
	Creating a device description
	Naming files to keystore file
	Creating and defining roles and profiles
	Example: ILE C program for creating roles and profiles for your Coprocessor
	Example: ILE C program for enabling all access control points in the default role for your Coprocessor
	Example: ILE RPG program for creating roles or profiles for your Coprocessor
	Example: ILE RPG program for enabling all access control points in the default role for your Coprocessor
	Example: ILE C program for changing an existing profile for your Coprocessor
	Example: ILE RPG program for changing an existing profile for your Coprocessor

	Setting the environment ID and clock
	Example: ILE C program for setting the environment ID on your Coprocessor
	Example: ILE RPG program for setting the environment ID on your Coprocessor
	Example: ILE C program for setting the clock on your Coprocessor
	Example: ILE RPG program for setting the clock on your Coprocessor

	Loading a function control vector
	Example: ILE C program for loading a function control vector for your Cryptographic Coprocessor
	Example: ILE RPG program for loading a function control vector for your Coprocessor
	Example: ILE C program for clearing a function control vector from your Coprocessor
	Example: ILE RPG program for clearing a function control vector from your Coprocessor

	Loading and setting a master key
	Example: ILE C program for loading a master key into your Cryptographic Coprocessor
	Example: ILE RPG program for loading a master key into your Cryptographic Coprocessor
	Example: ILE C program for re-encrypting keys for your Cryptographic Coprocessor

	Configuring the Cryptographic Coprocessor for use with DCM and SSL
	Configuring the Cryptographic Coprocessor for use with IBM i applications

	Migrating to the Cryptographic Coprocessor
	Managing the Cryptographic Coprocessor
	Logging on or off of the Cryptographic Coprocessor
	Example: ILE C program for logging on to your Cryptographic Coprocessor
	Example: ILE RPG program for logging on to your Cryptographic Coprocessor
	Example: ILE C program for logging off of your Cryptographic Coprocessor
	Example: ILE RPG program for logging off of your Cryptographic Coprocessor

	Query status or request information
	Example: Querying the status of your Cryptographic Coprocessor
	Example: Requesting information from your Cryptographic Coprocessor

	Initializing a keystore file
	Example: ILE C program for initializing a keystore for your Cryptographic Coprocessor
	Example: ILE RPG program for initializing a keystore for your Cryptographic Coprocessor

	Creating AES, DES, and PKA keys
	Example: Creating a DES key with your Cryptographic Coprocessor
	Example: Creating a PKA key with your Cryptographic Coprocessor

	Encrypting or decrypting a file
	Example: Encrypting data with your Cryptographic Coprocessor

	Working with PINs
	Example: Working with PINs on your Cryptographic Coprocessor

	Generating and verifying a digital signature
	Example: Signing a file with your Cryptographic Coprocessor
	Example: Verifying a digital signature with your Cryptographic Coprocessor

	Managing multiple Cryptographic Coprocessors
	Example: ILE C program for allocating a Coprocessor
	Example: ILE RPG program for allocating a Coprocessor
	Example: ILE C program for deallocating a Coprocessor
	Example: ILE RPG program for deallocating a Coprocessor

	Cloning master keys
	Example: ILE C program for setting the min and max values for master key shares in your Cryptographic Coprocessor
	Example: ILE RPG program for setting the min and max values for master key shares in your Cryptographic Coprocessor
	Example: ILE C program for generating a retained key pair for cloning master keys
	Example: ILE RPG program for generating a retained key pair for cloning master keys
	Example: ILE C program for registering a public key hash
	Example: ILE RPG program for registering a public key hash
	Example: ILE C program for registering a public key certificate
	Example: ILE RPG program for registering a public key certificate
	Example: ILE C program for certifying a public key token
	Example: ILE RPG program for certifying a public key token
	Example: ILE C program for obtaining a master key share
	Example: ILE RPG program for obtaining a master key share
	Example: ILE C program for installing a master key share
	Example: ILE RPG program for installing a master key share
	Example: ILE C program for listing retained keys
	Example: ILE RPG program for listing retained keys
	Example: ILE C program for deleting retained keys
	Example: ILE RPG program for deleting retained keys

	Troubleshooting the Cryptographic Coprocessor
	Reinitializing the Cryptographic Coprocessor
	Example: ILE C program for reinitializing the Cryptographic Coprocessor
	Example: ILE RPG program for reinitializing your Cryptographic Coprocessor

	Using the Hardware Service Manager

	Related information for Cryptography

	Notices
	Programming interface information
	Trademarks
	Terms and conditions

