
IBM i
7.3

Connecting to IBM i
IBM i Access Client Solutions - Windows
Application Package: Programming

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
513.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.
© Copyright International Business Machines Corporation 2013, 2021.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Programming...1
PDF file for Windows Application Package: Programming..1
C/C++ APIs... 1

C/C++ APIs overview..1
API groups, header files, import libraries, and DLLs..1
Programmer's Toolkit..3

Install the Programmer's Toolkit.. 4
Launch the Programmer's Toolkit... 4

IBM i name formats for connection APIs... 4
OEM, ANSI, and Unicode considerations... 5

Use a single API type...6
Use mixed API types... 7
Write a generic Windows Application Package application... 7

Return codes and error messages..7
Return codes that correspond to operating system errors.. 8
Return codes ...9
Component-specific return codes.. 15

Administration APIs... 23
Administration APIs list..24

cwbAD_GetClientVersion...24
cwbAD_GetProductFixLevel.. 25
cwbAD_IsComponentInstalled.. 25

Example: Administration APIs... 28
Communications and Security APIs.. 32

System object attributes.. 33
System object attributes list... 34

Communications and security: Create and delete APIs.. 37
cwbCO_CreateSystem..37
cwbCO_CreateSystemLike...38
cwbCO_DeleteSystem..39

Communications and security: Connect and disconnect APIs..39
cwbCO_Connect...39
cwbCO_Disconnect.. 41
cwbCO_GetConnectTimeout...42
cwbCO_GetPersistenceMode.. 43
cwbCO_IsConnected..44
cwbCO_SetConnectTimeout...45
cwbCO_SetPersistenceMode.. 45
cwbCO_Verify...46

Communication and security: Security validation and data APIs... 48
cwbCO_ChangePassword... 48
cwbCO_GetDefaultUserMode.. 49
cwbCO_GetFailedSignons...50
cwbCO_GetPasswordExpireDate..51
cwbCO_GetPrevSignonDate...52
cwbCO_GetPromptMode... 53
cwbCO_GetSignonDate... 54
cwbCO_GetUserIDEx..55
cwbCO_GetValidateMode... 56
cwbCO_GetWindowHandle... 56
cwbCO_HasSignedOn..57

 iii

cwbCO_SetDefaultUserMode.. 58
cwbCO_SetPassword..59
cwbCO_SetPromptMode... 60
cwbCO_SetUserIDEx..61
cwbCO_SetWindowHandle... 62
cwbCO_SetValidateMode... 63
cwbCO_Signon...64
cwbCO_VerifyUserIDPassword.. 65

Communications and security: Get and set attribute APIs... 67
cwbCO_CanModifyDefaultUserMode... 67
cwbCO_CanModifyIPAddress.. 67
cwbCO_CanModifyIPAddressLookupMode.. 68
cwbCO_CanModifyPersistenceMode... 69
cwbCO_CanModifyPortLookupMode... 70
cwbCO_CanModifyUseSecureSockets...70
cwbCO_GetDescription... 71
cwbCO_GetHostCCSID..72
cwbCO_GetHostVersionEx...73
cwbCO_GetIPAddress..74
cwbCO_GetIPAddressLookupMode..74
cwbCO_GetPortLookupMode...75
cwbCO_GetSystemName... 76
cwbCO_IsSecureSockets... 77
cwbCO_SetIPAddress..77
cwbCO_SetIPAddressLookupMode..78
cwbCO_SetPortLookupMode...80
cwbCO_UseSecureSockets...81

Defines for cwbCO_Service...82
Differences between cwbCO_Signon and cwbCO_VerifyUserIDPassword.......................... 83
Similarities between cwbCO_Signon and cwbCO_VerifyUserIDPassword...........................83
Communications: Create and delete APIs... 83

cwbCO_CreateSysListHandle.. 83
cwbCO_CreateSysListHandleEnv..84
cwbCO_DeleteSysListHandle.. 85
cwbCO_GetNextSysName... 85
cwbCO_GetSysListSize... 87

Communications: System information APIs.. 87
cwbCO_GetActiveConversations..87
cwbCO_GetConnectedSysName.. 88
cwbCO_GetDefaultSysName...89
cwbCO_IsSystemConfigured.. 90
cwbCO_IsSystemConfiguredEnv..90
cwbCO_IsSystemConnected...91

Communications: Configured environments information..92
cwbCO_GetActiveEnvironment.. 92
cwbCO_GetEnvironmentName.. 93
cwbCO_GetNumberOfEnvironments... 94

Communications: Environment and connection information..94
cwbCO_CanConnectNewSystem.. 94
cwbCO_CanModifyEnvironmentList... 95
cwbCO_CanModifySystemList.. 95
cwbCO_CanModifySystemListEnv..96
cwbCO_CanSetActiveEnvironment... 96

Example: Using communications APIs.. 97
IBM i Data Queues APIs...106

Data queues..107
Ordering data queue messages... 107
Work with data queues...107

iv

Typical use of data queues...108
Data Queues: Create, delete, and open APIs.. 109

cwbDQ_CreateEx.. 109
cwbDQ_DeleteEx.. 110
cwbDQ_OpenEx...112

Data Queues: Accessing data queues APIs... 114
cwbDQ_AsyncRead.. 114
cwbDQ_Cancel...115
cwbDQ_CheckData.. 116
cwbDQ_Clear...117
cwbDQ_Close...118
cwbDQ_GetLibName..118
cwbDQ_GetQueueAttr... 119
cwbDQ_GetQueueName... 120
cwbDQ_GetSysName..120
cwbDQ_Peek... 121
cwbDQ_Read... 122
cwbDQ_Write...123

Data Queues: Attributes APIs.. 124
cwbDQ_CreateAttr..124
cwbDQ_DeleteAttr..125
cwbDQ_GetAuthority... 125
cwbDQ_GetDesc.. 126
cwbDQ_GetForceToStorage.. 127
cwbDQ_GetKeySize..127
cwbDQ_GetMaxRecLen... 128
cwbDQ_GetOrder.. 129
cwbDQ_GetSenderID..129
cwbDQ_SetAuthority... 130
cwbDQ_SetDesc.. 131
cwbDQ_SetForceToStorage.. 131
cwbDQ_SetKeySize..132
cwbDQ_SetMaxRecLen... 133
cwbDQ_SetOrder.. 133
cwbDQ_SetSenderID..134

Data Queues: Read and write APIs.. 135
cwbDQ_CreateData..135
cwbDQ_DeleteData..135
cwbDQ_GetConvert..136
cwbDQ_GetData.. 137
cwbDQ_GetDataAddr..137
cwbDQ_GetDataLen..138
cwbDQ_GetKey...139
cwbDQ_GetKeyLen.. 139
cwbDQ_GetRetDataLen... 140
cwbDQ_GetRetKey.. 141
cwbDQ_GetRetKeyLen... 141
cwbDQ_GetSearchOrder... 142
cwbDQ_GetSenderInfo... 143
cwbDQ_SetConvert..144
cwbDQ_SetData.. 144
cwbDQ_SetDataAddr..145
cwbDQ_SetKey...146
cwbDQ_SetSearchOrder... 146

Example: Using Data Queues APIs.. 147
Data transformation and National Language Support (NLS) APIs..148

Data transformation APIs...148
Data transformation API list... 149

 v

Example: Using data transformation APIs... 165
National Language Support (NLS) APIs... 166

Coded character sets.. 167
General NLS APIs list.. 167
Conversion NLS APIs list...173
Dialog-box NLS API list... 185
Example: NLS APIs..191

System Objects APIs..193
System objects attributes.. 194

Advanced Function Printing..194
Align Page..194
Allow Direct Print.. 194
Authority..194
Authority to Check...195
Automatically End Writer.. 195
Back Margin Offset Across..195
Back Margin Offset Down..195
Backside Overlay Library Name..196
Backside Overlay Name.. 196
Back Overlay offset across..196
Back Overlay Offset Down.. 196
Characters per Inch.. 197
Code Page..197
Coded Font Name..197
Coded Font Library Name... 197
Copies..197
Copies left to Produce...198
Current page..198
Data Format...198
Data Queue Library Name...198
Data Queue Name... 199
Date File Opened...199
User Specified DBCS Data...199
DBCS Extension Characters..199
DBCS Character Rotation.. 199
DBCS Characters per Inch.. 200
DBCS SO/SI Spacing... 200
Defer Write.. 200
Degree of Page Rotation... 200
Delete File After Sending.. 201
Destination Option.. 201
Destination Type... 201
Device Class.. 201
Device Model... 202
Device Type... 202
Display any File... 202
Drawer for Separators...202
Ending Page...202
File Separators.. 203
Fold Records..203
Font Identifier... 203
Form Feed..203
Form Type..204
Form Type Message Option.. 204
Front Margin Offset Across... 204
Front Margin Offset Down... 204
Front Overlay Library Name.. 205
Front Overlay Name.. 205

vi

Front Overlay Offset Across.. 205
Front Overlay Offset Down..205
Graphic Character Set... 205
Hardware Justification..206
Hold Spool File.. 206
Initialize the writer.. 206
Internet Address... 206
Job Name.. 207
Job Number...207
Job Separators.. 207
Job User...207
Last Page Printed.. 207
Length of Page...208
Library Name... 208
Lines Per Inch..208
Manufacturer Type and Model.. 208
Maximum Spooled Output Records..209
Measurement Method...209
Message Help.. 209
Message ID..209
Message Queue Library Name.. 210
Message Queue... 210
Message Reply...210
Message Text...210
Message Type..211
Message Severity.. 211
Number of Bytes to Read/Write..211
Number of Files... 211
Number of Writers Started to Queue..212
Object Extended Attribute.. 212
Open time commands...212
Operator Controlled.. 212
Order of Files On Queue..213
Output Priority...213
Output Queue Library Name... 213
Output Queue Name... 213
Output Queue Status.. 213
Overflow Line Number.. 214
Pages Per Side...214
Pel Density...214
Point Size... 214
Print Fidelity.. 215
Print on Both Sides..215
Print Quality...215
Print Sequence.. 215
Print Text... 216
Printer..216
Printer Device Type... 216
Printer File Library Name.. 216
Printer File Name.. 216
Printer Queue.. 217
Record Length... 217
Remote System... 217
Replace Unprintable Characters...217
Replacement Character.. 218
Resource library name.. 218
Resource name..218
Resource object type.. 218

 vii

Restart Printing... 218
Save Spooled File..219
Seek Offset.. 219
Seek Origin.. 219
Send Priority..219
Separator page.. 220
Source Drawer...220
Spool SCS.. 220
Spool the Data...220
Spooled File Name.. 220
Spooled File Number.. 221
Spooled File Status... 221
Spooled Output Schedule... 221
Starting Page... 221
Text Description.. 222
Time File Opened.. 222
Total Pages.. 222
Transform SCS to ASCII.. 222
Unit of Measure... 223
User Comment.. 223
User Data...223
User defined data..223
User defined object library..223
User defined object name...224
User defined object type...224
User defined option(s).. 224
User driver program.. 224
User driver program library...225
User driver program name.. 225
User ID...225
User ID Address.. 225
User transform program library.. 226
User transform program name... 226
VM/MVS Class... 226
When to Automatically End Writer..226
When to End Writer... 226
When to Hold File..227
Width of Page.. 227
Workstation Customizing Object Name..227
Workstation Customizing Object Library.. 227
Writer Job Name... 228
Writer Job Number..228
Writer Job Status...228
Writer Job User Name...228
Writer Starting Page.. 228
Network Print Server Object Attributes..229

List APIs.. 231
cwbOBJ_CloseList..231
cwbOBJ_CreateListHandle.. 232
cwbOBJ_DeleteListHandle.. 233
cwbOBJ_GetListSize... 234
cwbOBJ_OpenList.. 235
cwbOBJ_ResetListAttrsToRetrieve...235
cwbOBJ_ResetListFilter...236
cwbOBJ_SetListAttrsToRetrieve... 237
cwbOBJ_SetListFilter... 238
cwbOBJ_SetListFilterWithSplF... 241

Object APIs... 241

viii

cwbOBJ_CopyObjHandle... 242
cwbOBJ_DeleteObjHandle...242
cwbOBJ_GetObjAttr..243
cwbOBJ_GetObjAttrs... 247
cwbOBJ_GetObjHandle... 248
cwbOBJ_GetObjHandleFromID.. 249
cwbOBJ_GetObjID.. 250
cwbOBJ_RefreshObj..251
cwbOBJ_SetObjAttrs... 252

Parameter object APIs... 254
cwbOBJ_CopyParmObjHandle.. 254
cwbOBJ_CreateParmObjHandle..255
cwbOBJ_DeleteParmObjHandle..256
cwbOBJ_GetParameter... 256
cwbOBJ_SetParameter... 257

Writer job APIs..258
cwbOBJ_EndWriter..258
cwbOBJ_StartWriter... 259

Output queues APIs... 261
cwbOBJ_HoldOutputQueue...261
cwbOBJ_PurgeOutputQueue.. 261
cwbOBJ_ReleaseOutputQueue.. 263

AFP resource APIs..263
cwbOBJ_CloseResource... 263
cwbOBJ_CreateResourceHandle..264
cwbOBJ_DisplayResource...265
cwbOBJ_OpenResource... 266
cwbOBJ_OpenResourceForSplF..267
cwbOBJ_ReadResource... 269
cwbOBJ_SeekResource... 270

APIs for new spooled files..271
cwbOBJ_CloseNewSplF... 271
cwbOBJ_CloseNewSplFAndGetHandle...272
cwbOBJ_CreateNewSplF... 272
cwbOBJ_GetSplFHandleFromNewSplF...275
cwbOBJ_WriteNewSplF... 276

APIs for reading spooled files.. 276
cwbOBJ_CloseSplF..276
cwbOBJ_OpenSplF.. 277
cwbOBJ_ReadSplF.. 278
cwbOBJ_SeekSplF.. 279

APIs for manipulating spooled files... 280
cwbOBJ_CallExitPgmForSplF.. 280
cwbOBJ_CreateSplFHandle.. 281
cwbOBJ_CreateSplFHandleEx.. 282
cwbOBJ_DeleteSplF..283
cwbOBJ_DisplaySplF... 284
cwbOBJ_HoldSplF.. 285
cwbOBJ_IsViewerAvailable.. 286
cwbOBJ_MoveSplF.. 287
cwbOBJ_ReleaseSplF... 288
cwbOBJ_SendNetSplF... 288
cwbOBJ_SendTCPSplF... 290

APIs for handling spooled file messages...291
cwbOBJ_AnswerSplFMsg... 291
cwbOBJ_GetSplFMsgAttr...292

APIs for analyzing spooled file data...294
cwbOBJ_AnalyzeSplFData...294

 ix

Server program APIs.. 295
cwbOBJ_DropConnections...295
cwbOBJ_GetNPServerAttr...295
cwbOBJ_SetConnectionsToKeep..297

Example: Using system objects APIs...297
Remote Command/Distributed Program Call APIs... 299

Typical use of Remote Command/Distributed Program Call APIs.. 300
Remote Command/Distributed Program Call: Access remote command APIs list.................... 301

cwbRC_GetClientCCSID... 301
cwbRC_GetHostCCSID... 302
cwbRC_StartSysEx..303
cwbRC_StopSys.. 304

Remote Command/Distributed Program Call: Run APIs list... 305
cwbRC_RunCmd...305

Remote Command/Distributed Program Call: Access programs APIs list................................. 306
cwbRC_AddParm.. 306
cwbRC_CallPgm.. 307
cwbRC_CreatePgm.. 308
cwbRC_DeletePgm.. 309
cwbRC_GetLibName..310
cwbRC_GetParm.. 311
cwbRC_GetParmCount... 312
cwbRC_GetPgmName..312
cwbRC_SetLibName..313
cwbRC_SetParm.. 314
cwbRC_SetPgmName..315

Example: Using Remote Command/Distributed Program Call APIs... 316
Serviceability APIs... 318

History log and trace files...319
Error handles.. 320
Typical use of Serviceability APIs.. 320
Serviceability APIs list: Writing to history log..320

cwbSV_CreateMessageTextHandle.. 320
cwbSV_DeleteMessageTextHandle.. 321
cwbSV_LogMessageText... 322
cwbSV_SetMessageClass..322
cwbSV_SetMessageComponent... 323
cwbSV_SetMessageProduct... 324

Serviceability APIs list: Writing trace data...325
cwbSV_CreateTraceDataHandle... 325
cwbSV_DeleteTraceDataHandle... 326
cwbSV_LogTraceData..326
cwbSV_SetTraceComponent...327
cwbSV_SetTraceProduct...328

Serviceability API list: Writing trace points..328
cwbSV_CreateTraceAPIHandle...328
cwbSV_CreateTraceSPIHandle... 329
cwbSV_DeleteTraceAPIHandle...330
cwbSV_DeleteTraceSPIHandle...331
cwbSV_LogAPIEntry... 331
cwbSV_LogAPIExit.. 332
cwbSV_LogSPIEntry..333
cwbSV_LogSPIExit.. 334
cwbSV_SetAPIComponent... 335
cwbSV_SetAPIProduct..335
cwbSV_SetSPIComponent..336
cwbSV_SetSPIProduct.. 337

Serviceability API list: Reading service files.. 338

x

cwbSV_ClearServiceFile..338
cwbSV_CloseServiceFile... 338
cwbSV_CreateServiceRecHandle... 339
cwbSV_DeleteServiceRecHandle... 340
cwbSV_GetComponent... 340
cwbSV_GetDateStamp.. 341
cwbSV_GetMaxRecordSize... 342
cwbSV_GetMessageText... 343
cwbSV_GetProduct..343
cwbSV_GetRecordCount... 344
cwbSV_GetServiceFileName...345
cwbSV_GetServiceType...346
cwbSV_GetTimeStamp..347
cwbSV_GetTraceData..348
cwbSV_GetTraceAPIData..348
cwbSV_GetTraceAPIID..349
cwbSV_GetTraceAPIType..350
cwbSV_GetTraceSPIData.. 351
cwbSV_GetTraceSPIID..352
cwbSV_GetTraceSPIType..352
cwbSV_OpenServiceFile... 353
cwbSV_ReadNewestRecord..354
cwbSV_ReadNextRecord.. 355
cwbSV_ReadOldestRecord... 356
cwbSV_ReadPrevRecord...356

Serviceability API list: Retrieving message text.. 357
cwbSV_CreateErrHandle...357
cwbSV_DeleteErrHandle...358
cwbSV_GetErrClass...358
cwbSV_GetErrClassIndexed... 359
cwbSV_GetErrCount..360
cwbSV_GetErrFileName..361
cwbSV_GetErrFileNameIndexed.. 362
cwbSV_GetErrLibName... 363
cwbSV_GetErrLibNameIndexed... 364
cwbSV_GetErrSubstText... 365
cwbSV_GetErrSubstTextIndexed..366
cwbSV_GetErrText...368
cwbSV_GetErrTextIndexed... 369

Example: Using Serviceability APIs... 370
System Object Access (SOA) APIs...371

SOA objects...371
System object views... 372
Typical use of System Object Access APIs.. 372

Display a customized list of system objects...372
Display the Properties view for a system object.. 374
Access and update data for system objects...376

System Object Access programming considerations.. 379
About System Object Access errors... 379
System Object Access application profiles.. 379
Manage IBM i communications sessions for application programs...................................... 379

System Object Access APIs List...380
CWBSO_CloseList.. 381
CWBSO_CopyObjHandle... 382
CWBSO_CreateErrorHandle.. 383
CWBSO_CreateListHandle...383
CWBSO_CreateListHandleEx.. 385
CWBSO_CreateObjHandle...386

 xi

CWBSO_CreateParmObjHandle.. 387
CWBSO_DeleteErrorHandle.. 387
CWBSO_DeleteListHandle...388
CWBSO_DeleteObjHandle...389
CWBSO_DeleteParmObjHandle.. 389
CWBSO_DisallowListActions.. 390
CWBSO_DisallowListFilter.. 391
CWBSO_DisplayErrMsg... 391
CWBSO_DisplayList..392
CWBSO_DisplayObjAttr... 393
CWBSO_GetErrMsgText... 394
CWBSO_GetListSize..395
CWBSO_GetObjAttr..396
CWBSO_GetObjHandle... 398
CWBSO_OpenList.. 399
CWBSO_ReadListProfile...400
CWBSO_RefreshObj..401
CWBSO_ResetParmObj... 402
CWBSO_SetListFilter... 402
CWBSO_SetListProfile... 403
CWBSO_SetListSortFields.. 404
CWBSO_SetListTitle... 405
CWBSO_SetObjAttr..406
CWBSO_SetParameter... 407
CWBSO_WaitForObj..408
CWBSO_WriteListProfile...409
SOA attribute special values...410

Database programming... 423
.NET provider..423
OLE DB provider... 424
IBM i Access ODBC.. 425

IBM i Access ODBC driver-specific details.. 426
ODBC 3.x API notes.. 426
Connection string keywords... 432
Version and release changes in the ODBC driver behavior..453
ODBC API restrictions and unsupported functions..453
Signon dialog behavior..454
ODBC data types and how they correspond to Db2 for i database types............................. 455
Working with the XML data type .. 457
Large objects (LOBs) considerations.. 458
Connection and statement attributes...460
Connection pooling... 466
SQLPrepare and SQLNativeSQL escape sequences and scalar functions.............................466
Distributed transaction support..467
Cursor behavior notes...467
Extended dynamic disabled error...468
SQLTables Description.. 469
Handle long-running queries.. 469
Isolation level considerations...469

ODBC performance...470
Performance-tuning ODBC... 470
Performance considerations of common end-user tools.. 473
SQL performance.. 475
ODBC support for multiple row statements... 483
Catalog functions.. 484
Exit programs.. 485
SQL and External procedures... 502

IBM i Access database APIs.. 509

xii

ActiveX programming.. 509

Notices..513
Programming interface information..514
Trademarks.. 514
Terms and conditions.. 515

 xiii

xiv

Windows Application Package: Programming
IBM® i Access Client Solutions - Windows Application Package is an optional package that is part of IBM i
Access Client Solutions. It contains the middleware, database providers, and programming APIs that were
previously part of the 7.1 version of IBM i Access for Windows.

As an application developer, explore this topic to reference and use technical programming information,
tools, and techniques available with the Windows Application Package.

This information includes programming concepts, capabilities, and examples that are useful when writing
applications to access IBM i resources. Using this topic, client/server applications are developed and
tailored to the needs of your business. Various programming techniques are described so you can
connect, manage, and take advantage of the rich functions provided by the server. You can access this
information by selecting from the topics listed below.

Note: To launch features from a Windows PC, select Start > All Programs > IBM i Access Client
Solutions, and select the component.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

PDF file for Windows Application Package: Programming
You can view and print a PDF file of this information.

To view or download the PDF version of this document, select IBM i Access Client Solutions - Windows
Application Package: Programming.

Saving PDF files
To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).
2. Click the option that saves the PDF locally.
3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

C/C++ APIs
C/C++ application programming interfaces (APIs) are used to access IBM i resources.

These APIs are intended primarily for C/C++ programmers. They are also called from other languages that
support calling C-style APIs.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510 .

C/C++ APIs overview
See the following topics for C/C++ APIs overview information.

API groups, header files, import libraries, and DLLs
Access interface definition files for all C/C++ API groups in the Programmer's Toolkit.

For each C/C++ API group, the table below provides:

• Links to the API documentation
• Required interface definition (header) files, where applicable

© Copyright IBM Corp. 2013, 2021 1

• Associated import library files, where applicable
• Associated Dynamic Link Library (DLL) files

How to access header files in the Toolkit:
1. Find the Programmer's Toolkit icon in your program directory and launch it. If it is not displayed in the

program directory, install the Toolkit.
2. In the left navigation panel, select the appropriate API group.
3. Select the C/C++ APIs subtopic in the left navigation panel.
4. In the right display panel, find the header (.h) file and select it.

Note: In addition to interface descriptions and definitions, the API group topics in the Toolkit include links
to other information resources.

About import libraries:
The import libraries that are shipped with the Programmer's Toolkit were built with the Microsoft Visual
C++ compiler. As a result, they are in the Common Object File Format (COFF). Some compilers, such as
Borland's C compiler, do not support COFF. To access the C/C++ APIs from these compilers, you must
create Object Model Format (OMF) import libraries by using the IMPLIB tool. For example:

implib cwbdq.lib %windir%\system32\cwbdq.dll

Table 1. C/C++ API groups, header files, library files, and DLL files

API group Header file Import library DLL

Administration cwbad.h cwbapi.lib cwbad.dll

Communications and
Security

cwbcosys.h
cwbco.h
cwb.h

cwbapi.lib cwbco.dll

Data Queues cwbdq.h cwbapi.lib cwbdq.dll

Data transformation cwbdt.h cwbapi.lib cwbdt.dll

National language
support

(General NLS)

cwbnl.h cwbapi.lib cwbnl.dll

National language
support

(Conversion NLS)

cwbnlcnv.h cwbapi.lib cwbcore.dll

National language
support

(Dialog-box NLS)

cwbnldlg.h cwbapi.lib cwbnldlg.dll

IBM i objects cwbobj.h cwbapi.lib cwbobj.dll

ODBC sql.h
sqlext.h
sqltypes.h
sqlucode.h

odbc32.lib odbc32.dll

2 IBM i: Windows Application Package: Programming

Table 1. C/C++ API groups, header files, library files, and DLL files (continued)

API group Header file Import library DLL

Database APIs
(Optimized SQL)

Note: These APIs
are no longer being
enhanced.

cwbdb.h cwbapi.lib cwbdb.dll

OLE DB Provider ad400.h
da400.h

cwbzzodb.dll

See the OLE DB Section of the
Microsoft Web Site for more
information

Remote Command/
Distributed Program
Call

cwbrc.h cwbapi.lib cwbrc.dll

Serviceability cwbsv.h cwbapi.lib cwbsv.dll

System Object Access cwbsoapi.h cwbapi.lib cwbsoapi.dll

Related reference
OEM, ANSI, and Unicode considerations
Most of the C/C++ APIs that accept string parameters exist in three forms: OEM, ANSI, or Unicode.
Use a single API type
To restrict your application to a particular type of API, you must define one, and only one preprocessor
definition.

Programmer's Toolkit
Find header files and complete information to develop applications.

The Programmer's Toolkit is an installable component of the Windows Application Package product and
is the primary source of information needed to develop applications. This includes programming with
ActiveX Automation Objects, ADO/OLE DB, .NET, and Java™. The Programmer's Toolkit contains links to
header files, sample programs, and complete documentation.

Notes:

• No portion of the Toolkit or the Windows Application Package product may be redistributed with the
resulting applications.

• By using the code examples, you agree to the terms of the “Code license and disclaimer information” on
page 510

.

The Programmer's Toolkit consists of two parts:

• The Programmer's Toolkit component, which includes:

– Online help information for the Toolkit and other online help for the product.
– C/C++ header files
– C import libraries
– ActiveX automation type libraries

• Programmer's Toolkit Web site which includes sample applications and tools that are useful for
developing applications. The site is updated regularly. Check it periodically for new information.

Windows Application Package: Programming 3

https://msdn.microsoft.com/library/ms722784%28VS.85%29.aspx
https://msdn.microsoft.com/library/ms722784%28VS.85%29.aspx

Install the Programmer's Toolkit
The Programmer's Toolkit is installed as a feature of the Windows Application Package.

To add or remove the Programmer's Toolkit and other features of the product, use the Add or Remove
Programs in your PC Control Panel.

1. Select Start > Control Panel > Add or Remove Programs > IBM i Access Client Solutions > Change
2. Follow the instructions on the screen, selecting the Modify button.
3. Click the feature name (Programmer's Toolkit) and choose one of these, as appropriate:

• This feature will be installed on local hard drive. (To install a feature)
• This feature, and all subfeatures, will be installed on local hard drive.

(To install features.)
• This feature will not be available. (To remove a feature.)

4. Click Install to modify the features that are installed and continue through the Install wizard until it
completes.

Related reference
ActiveX programming
ActiveX automation is a programming technology that is defined by Microsoft and is supported by the IBM
i Access Client Solutions product.

Launch the Programmer's Toolkit
The Programmer's Toolkit is launched as a feature of the IBM i Access Client Solutions product.

1. Install the Programmer's Toolkit feature on your personal computer.
2. Select Start > Programs > IBM i Access Client Solutions > Programmer's Toolkit

Note: The Toolkit icon appears only after you have installed the Programmer's Toolkit on your personal
computer.

Related reference
ActiveX programming
ActiveX automation is a programming technology that is defined by Microsoft and is supported by the IBM
i Access Client Solutions product.

IBM i name formats for connection APIs
APIs that take an IBM i name as a parameter, accept the name in the three different formats.

The valid formats are:

• Fully Qualified Domain Name (FQDN) (myibmi.example.com)
• Unqualified system host name (myibmi)
• IP address (192.0.2.1, 2001:db8::1)

Related reference
Administration APIs
These APIs provide functions that access information about the code that is installed on the PC.
Communications and Security APIs
The Communications and Security topic shows you how to use application programming interfaces (APIs)
IBM i Data Queues APIs
Use product Data Queues application programming interfaces (APIs) to provide easy access to IBM i
data queues. Data queues allow you to create client/server applications that do not require the use of
communications APIs.
Data transformation APIs
Product data transformation application programming interfaces (APIs) enable your client/server
applications to transform IBM i numeric data between the system and the PC formats. Transformation

4 IBM i: Windows Application Package: Programming

may be required when you send and receive IBM i numeric data to and from the system. Data
transformation APIs support transformation of many numeric formats.
National Language Support (NLS) APIs
National Language Support APIs enable your applications to get and save (query and change) product
settings that are relevant to different language versions.
System Objects APIs
System objects application programming interfaces (APIs) allow you to work with print-related objects
that are on the system. These APIs make it possible to work with IBM i spooled files, writer jobs, output
queues, printers, and more.
Remote Command/Distributed Program Call APIs
The Remote Command/Distributed Program Call APIs allow the PC application programmer to access IBM
i functions. User program and system commands are called without requiring an emulation session. A
single IBM i program serves commands and programs, so only one system job is started for both.
System Object Access (SOA) APIs
System Object Access enables you to view and manipulate system objects through a graphical user
interface.

OEM, ANSI, and Unicode considerations
Most of the C/C++ APIs that accept string parameters exist in three forms: OEM, ANSI, or Unicode.

The generic version of the C/C++ APIs follows the same form as the default OEM version. Only a single
name for each function appears in this information, but there are three different system entry points. For
example:

cwbNL_GetLang();

 compiles to:

cwbNL_GetLang(); //CWB_OEM or undefined

 or:

cwbNL_GetLangA(); //CWB_ANSI defined

 or:

cwbNL_GetLangW(); //CWB_UNICODE defined

Table 2. API types, name formats, and pre-processor definition

API type API name format (if it exists) Pre-processor definition

OEM cwbXX_xxx None (may specify CWB_OEM
explicitly)

ANSI cwbXX_xxxA CWB_ANSI

UNICODE cwbXX_xxxW CWB_UNICODE

Note:

• Data transformation APIs (cwbDT_xxx) do not follow the "A" and "W" suffix conventions. The generic
version of the APIs uses "String" as part of the function name. The ANSI/OEM version uses "ASCII" as
part of the function name. The Unicode version uses "Wide" as part of the function name. There is no
difference between OEM and ANSI character sets in cwbDT_xxx APIs, which handle numeric strings.
Therefore, ANSI and OEM versions of the relevant APIs are the same. For example:

cwbDT_HexToString();

 compiles to:

cwbDT_HexToASCII(); //CWB_UNICODE not defined

Windows Application Package: Programming 5

 or:

cwbDT_HexToWide(); //CWB_UNICODE defined

Select the related link to the data transformation cwbdt.h header file for more details.
• For Unicode APIs that take a buffer and a length for passing strings (for example,

cwbCO_GetUserIDExW), the length is treated as the number of bytes. It is not treated as the number of
characters.

Related reference
Administration APIs
These APIs provide functions that access information about the code that is installed on the PC.
Communications and Security APIs
The Communications and Security topic shows you how to use application programming interfaces (APIs)
IBM i Data Queues APIs
Use product Data Queues application programming interfaces (APIs) to provide easy access to IBM i
data queues. Data queues allow you to create client/server applications that do not require the use of
communications APIs.
Data transformation APIs
Product data transformation application programming interfaces (APIs) enable your client/server
applications to transform IBM i numeric data between the system and the PC formats. Transformation
may be required when you send and receive IBM i numeric data to and from the system. Data
transformation APIs support transformation of many numeric formats.
National Language Support (NLS) APIs
National Language Support APIs enable your applications to get and save (query and change) product
settings that are relevant to different language versions.
System Objects APIs
System objects application programming interfaces (APIs) allow you to work with print-related objects
that are on the system. These APIs make it possible to work with IBM i spooled files, writer jobs, output
queues, printers, and more.
Remote Command/Distributed Program Call APIs
The Remote Command/Distributed Program Call APIs allow the PC application programmer to access IBM
i functions. User program and system commands are called without requiring an emulation session. A
single IBM i program serves commands and programs, so only one system job is started for both.
API groups, header files, import libraries, and DLLs
Access interface definition files for all C/C++ API groups in the Programmer's Toolkit.

Use a single API type
To restrict your application to a particular type of API, you must define one, and only one preprocessor
definition.

The preprocessor definition is as follows:

• CWB_OEM_ONLY
• CWB_ANSI_ONLY
• CWB_UNICODE_ONLY

For example, when writing a pure ANSI application, you specify both CWB_ANSI_ONLY and CWB_ANSI.
Refer to the individual Programmer's Toolkit header files for details of the preprocessor definition and
API names. Select the related link below for the API groups, header files, import libraries, and DLLs topic
collection for more information.

Related reference
API groups, header files, import libraries, and DLLs

6 IBM i: Windows Application Package: Programming

Access interface definition files for all C/C++ API groups in the Programmer's Toolkit.

Use mixed API types
You can mix ANSI, OEM, and Unicode APIs by using explicit API names.

For example, you can write an ANSI application by specifying the CWB_ANSI preprocessor definition, but
still call a Unicode version of an API by using the "W" suffix.

Write a generic Windows Application Package application
Generic Windows Application Package applications allow maximum portability because the same source
code can be compiled for OEM, ANSI, and Unicode.

Generic applications are built by specifying different preprocessor definitions, and by using the generic
version of the APIs (the ones without the "A" or "W" suffixes). Following is a short list of guidelines for
writing a generic application:

• Instead of including the usual <string.h> for manipulating strings, include <TCHAR.H>.
• Use generic data types for characters and strings. Use 'TCHAR' for 'char' in your source code.
• Use the _TEXT macro for literal characters and strings. For example, TCHAR A[]=_TEXT("A Generic
String").

• Use generic string manipulation functions. For example, use _tcscpy instead of strcpy.
• Be especially careful when using the 'sizeof' operator - always remember that a Unicode character

occupies two bytes. When determining the number of characters in a generic TCHAR array A, instead of
the simple sizeof(A), use sizeof(A)/sizeof(TCHAR).

• Use proper preprocessor definitions for compilation. When compiling your source for Unicode in Visual
C++, you should also use the preprocessor definitions UNICODE and _UNICODE. Instead of defining
_UNICODE in the MAK file, you may want to define it at the beginning of your source code as:

#ifdef UNICODE
 #define _UNICODE
#endif

For a complete description of these guidelines, see the following resources:

1. Richter, J. Advanced Windows: The Developer's Guide to the Win32 API for Windows NT 3.5 and
Windows 95, Microsoft Press, Redmond, WA, 1995.

2. Kano, Nadine Developing International Software for Windows 95 and Windows NT: a handbook for
software design, Microsoft Press, Redmond, WA, 1995.

3. Microsoft Support Knowledge Base articles (See related links.)
4. MSDN Library (See related links.)

Related information
Microsoft Support
MSDN Library

Return codes and error messages
The C/C++ application programming interfaces (APIs) support the return of an integer return code on
most functions. The return codes indicate how the function completed.

IBM i error messages:
Some messages are also logged on the system. These messages begin with PWS or IWS. To display a
specific PWSxxxx or IWSxxxx message, type the appropriate command at the command line prompt,
where xxxx is the number of the message:

DSPMSGD RANGE(IWSxxxx) MSGF(QIWS/QIWSMSG)

DSPMSGD RANGE(PWSxxxx) MSGF(QIWS/QIWSMSG)

Windows Application Package: Programming 7

https://support.microsoft.com
https://msdn.microsoft.com/library/default.aspx

Return codes that correspond to operating system errors
There is a relationship between return codes and system error messages.

0 CWB_OK
 Successful completion.
1 CWB_INVALID_FUNCTION
 Function not supported.
2 CWB_FILE_NOT_FOUND
 File not found.
3 CWB_PATH_NOT_FOUND
 Path not found.
4 CWB_TOO_MANY_OPEN_FILES
 The system cannot open the file.
5 CWB_ACCESS_DENIED
 Access is denied.
6 CWB_INVALID_HANDLE
 The list handle is not valid.
8 CWB_NOT_ENOUGH_MEMORY
 Insufficient memory, may have failed to allocate a temporary buffer.
15 CWB_INVALID_DRIVE
 The system cannot find the drive specified.
18 CWB_NO_MORE_FILES
 No more files are found.
21 CWB_DRIVE_NOT_READY
 The device is not ready.
31 CWB_GENERAL_FAILURE
 General error occurred.
32 CWB_SHARING_VIOLATION
 The process cannot access the file because it is being used by
 another process.
33 CWB_LOCK_VIOLATION
 The process cannot access the file because another process has
 locked a portion of the file.
38 CWB_END_OF_FILE
 End of file has been reached.
50 CWB_NOT_SUPPORTED
 The network request is not supported.
53 CWB_BAD_NETWORK_PATH
 The network path was not found.
54 CWB_NETWORK_BUSY
 The network is busy.
55 CWB_DEVICE_NOT_EXIST
 The specified network resource or device is no longer available.
59 CWB_UNEXPECTED_NETWORK_ERROR
 An unexpected network error occurred.
65 CWB_NETWORK_ACCESS_DENIED
 Network access is denied.
80 CWB_FILE_EXISTS
 The file exists.
85 CWB_ALREADY_ASSIGNED
 The local device name is already in use.
87 CWB_INVALID_PARAMETER
 A parameter is invalid.
88 CWB_NETWORK_WRITE_FAULT
 A write fault occurred on the network.
110 CWB_OPEN_FAILED
 The system cannot open the device or file specified.
111 CWB_BUFFER_OVERFLOW
 Not enough room in the output buffer. Use *bufferSize to determine
 the correct size.
112 CWB_DISK_FULL
 There is not enough space on the disk.
115 CWB_PROTECTION_VIOLATION
 Access is denied.
124 CWB_INVALID_LEVEL
 The system call level is not correct.
142 CWB_BUSY_DRIVE
 The system cannot perform a JOIN or SUBST at this time.
252 CWB_INVALID_FSD_NAME
 The device name is incorrect.
253 CWB_INVALID_PATH
 The network path specified is incorrect.

8 IBM i: Windows Application Package: Programming

Return codes
There are global and specific IBM i Access return codes.

Global return codes
There are global return codes.

4000 CWB_USER_CANCELLED_COMMAND
 Command cancelled by user.
4001 CWB_CONFIG_ERROR
 A configuration error has occurred.
4002 CWB_LICENSE_ERROR
 A license error has occurred.
4003 CWB_PROD_OR_COMP_NOT_SET
 Internal error due to failure to properly register and use a
 product or component.
4004 CWB_SECURITY_ERROR
 A security error has occurred.
4005 CWB_GLOBAL_CFG_FAILED
 The global configuration attempt failed.
4006 CWB_PROD_RETRIEVE_FAILED
 The product retrieve failed.
4007 CWB_COMP_RETRIEVE_FAILED
 The computer retrieve failed.
4008 CWB_COMP_CFG_FAILED
 The computer configuration failed.
4009 CWB_COMP_FIX_LEVEL_UPDATE_FAILED
 The computer fix level update failed.
4010 CWB_INVALID_API_HANDLE
 Invalid request handle.
4011 CWB_INVALID_API_PARAMETER
 Invalid parameter specified.
4012 CWB_HOST_NOT_FOUND
 The server is inactive or does not exist.
4013 CWB_NOT_COMPATIBLE
 IBM i Access program or function not at correct level.
4014 CWB_INVALID_POINTER
 A pointer is NULL.
4015 CWB_SERVER_PROGRAM_NOT_FOUND
 The server application not found.
4016 CWB_API_ERROR
 General API failure.
4017 CWB_CA_NOT_STARTED
 IBM i Access program has not been started.
4018 CWB_FILE_IO_ERROR
 Record could not be read.
4019 CWB_COMMUNICATIONS_ERROR
 A communications error occurred.
4020 CWB_RUNTIME_CONSTRUCTOR_FAILED
 The C Run-time contstructor failed.
4021 CWB_DIAGNOSTIC
 Unexpected error. Record the message number and data in the
 message and contact IBM Support.
4022 CWB_COMM_VERSION_ERROR
 Data queues will not run with this version of communications.
4023 CWB_NO_VIEWER
 The viewer support for the IBM i Access function was not installed.
4024 CWB_MODULE_NOT_LOADABLE
 A filter DLL was not loadable.
4025 CWB_ALREADY_SETUP
 Object has already been set up.
4026 CWB_CANNOT_START_PROCESS
 Attempt to start process failed. See other error code(s).
4027 CWB_NON_REPRESENTABLE_UNICODE_CHAR
 One or more input UNICODE characters have no representation in the
 code page that is being used.
8998 CWB_UNSUPPORTED_FUNCTION
 The function is unsupported.
8999 CWB_INTERNAL_ERROR
 An internal error occurred.

Related reference
Communications and Security APIs

Windows Application Package: Programming 9

The Communications and Security topic shows you how to use application programming interfaces (APIs)

Specific return codes
There are specific return codes.

Security return codes
There are security return codes.

8001 CWB_UNKNOWN_USERID
8002 CWB_WRONG_PASSWORD
8003 CWB_PASSWORD_EXPIRED
8004 CWB_INVALID_PASSWORD
8006 CWB_INCORRECT_DATA_FORMAT
8007 CWB_GENERAL_SECURITY_ERROR
8011 CWB_USER_PROFILE_DISABLED
8013 CWB_USER_CANCELLED
8014 CWB_INVALID_SYSNAME
8015 CWB_INVALID_USERID
8016 CWB_LIMITED_CAPABILITIES_USERID
8019 CWB_INVALID_TP_ON_HOST
8022 CWB_NOT_LOGGED_ON
8026 CWB_EXIT_PGM_ERROR
8027 CWB_EXIT_PGM_DENIED_REQUEST
8050 CWB_TIMESTAMPS_NOT_SET
8051 CWB_KERB_CLIENT_CREDENTIALS_NOT_FOUND
8052 CWB_KERB_SERVICE_TICKET_NOT_FOUND
8053 CWB_KERB_SERVER_CANNOT_BE_CONTACTED
8054 CWB_KERB_UNSUPPORTED_BY_HOST
8055 CWB_KERB_NOT_AVAILABLE
8056 CWB_KERB_SERVER_NOT_CONFIGURED
8057 CWB_KERB_CREDENTIALS_NOT_VALID
8058 CWB_KERB_MAPPED_USERID_FAILURE
8059 CWB_KERB_MAPPED_USERID_SUCCESS
8070 CWB_PROFILE_TOKEN_INVALID
8071 CWB_PROFILE_TOKEN_MAXIMUM
8072 CWB_PROFILE_TOKEN_NOT_REGENERABLE
8257 CWB_PW_TOO_LONG
8258 CWB_PW_TOO_SHORT
8259 CWB_PW_REPEAT_CHARACTER
8260 CWB_PW_ADJACENT_DIGITS
8261 CWB_PW_CONSECUTIVE_CHARS
8262 CWB_PW_PREVIOUSLY_USED
8263 CWB_PW_DISALLOWED_CHAR
8264 CWB_PW_NEED_NUMERIC
8266 CWB_PW_MATCHES_OLD
8267 CWB_PW_NOT_ALLOWED
8268 CWB_PW_CONTAINS_USERID
8270 CWB_PW_LAST_INVALID_PWD
8271 CWB_PW_STAR_NONE
8272 CWB_PW_QPWDVLDPGM

Communications return codes
There are communications return codes.

8400 CWB_INV_AFTER_SIGNON
8401 CWB_INV_WHEN_CONNECTED
8402 CWB_INV_BEFORE_VALIDATE
8403 CWB_SECURE_SOCKETS_NOTAVAIL
8404 CWB_RESERVED1
8405 CWB_RECEIVE_ERROR
8406 CWB_SERVICE_NAME_ERROR
8407 CWB_GETPORT_ERROR
8408 CWB_SUCCESS_WARNING
8409 CWB_NOT_CONNECTED
8410 CWB_DEFAULT_HOST_CCSID_USED
8411 CWB_USER_TIMEOUT
8412 CWB_SSL_JAVA_ERROR
8413 CWB_USER_TIMEOUT_SENDRCV
8414 CWB_FIPS_UNAVAILABLE

10 IBM i: Windows Application Package: Programming

Configuration return codes
There are configuration return codes.

8500 CWB_RESTRICTED_BY_POLICY
8501 CWB_POLICY_MODIFY_MANDATED_ENV
8502 CWB_POLICY_MODIFY_CURRENT_ENV
8503 CWB_POLICY_MODIFY_ENV_LIST
8504 CWB_SYSTEM_NOT_FOUND
8505 CWB_ENVIRONMENT_NOT_FOUND
8506 CWB_ENVIRONMENT_EXISTS
8507 CWB_SYSTEM_EXISTS
8508 CWB_NO_SYSTEMS_CONFIGURED
8580 CWB_CONFIGERR_RESERVED_START
8599 CWB_CONFIGERR_RESERVED_END

Automation Object return codes
There are Automation Object return codes.

8600 CWB_INVALID_METHOD_PARM
8601 CWB_INVALID_PROPERTY_PARM
8602 CWB_INVALID_PROPERTY_VALUE
8603 CWB_OBJECT_NOT_INITIALIZED
8604 CWB_OBJECT_ALREADY_INITIALIZED
8605 CWB_INVALID_DQ_ORDER
8606 CWB_DATA_TRANSFER_REQUIRED
8607 CWB_UNSUPPORTED_XFER_REQUEST
8608 CWB_ASYNC_REQUEST_ACTIVE
8609 CWB_REQUEST_TIMED_OUT
8610 CWB_CANNOT_SET_PROP_NOW
8611 CWB_OBJ_STATE_NO_LONGER_VALID

WINSOCK return codes
There are WINSOCK return codes.

10024 CWB_TOO_MANY_OPEN_SOCKETS
10035 CWB_RESOURCE_TEMPORARILY_UNAVAILABLE
10038 CWB_SOCKET_OPERATION_ON_NON_SOCKET
10047 CWB_PROTOCOL_NOT_INSTALLED
10050 CWB_NETWORK_IS_DOWN
10051 CWB_NETWORK_IS_UNREACHABLE
10052 CWB_NETWORK_DROPPED_CONNECTION_ON_RESET
10053 CWB_SOFTWARE_CAUSED_CONNECTION_ABORT
10054 CWB_CONNECTION_RESET_BY_PEER
10055 CWB_NO_BUFFER_SPACE_AVAILABLE
10057 CWB_SOCKET_IS_NOT_CONNECTED
10058 CWB_CANNOT_SEND_AFTER_SOCKET_SHUTDOWN
10060 CWB_CONNECTION_TIMED_OUT
10061 CWB_CONNECTION_REFUSED
10064 CWB_HOST_IS_DOWN
10065 CWB_NO_ROUTE_TO_HOST
10091 CWB_NETWORK_SUBSYSTEM_IS_UNAVAILABLE
10092 CWB_WINSOCK_VERSION_NOT_SUPPORTED
11001 CWB_HOST_DEFINITELY_NOT_FOUND
 The system name was not found during TCP/IP
 address lookup.
11002 CWB_HOST_NOT_FOUND_BUT_WE_ARE_NOT_SURE
 The system name was not found during TCP/IP
 address lookup.
11004 CWB_VALID_NAME_BUT_NO_DATA_RECORD
 The service name was not found in the local
 SERVICES file.

SSL return codes
There are SSL return codes.

Key Database error codes

20001 - An unknown error occurred.
20002 - An asn.1 encoding/decoding error occurred.
20003 - An error occurred while initializing asn.1 encoder/decoder.
20004 - An asn.1 encoding/decoding error occurred because of an out-of-range
 index or nonexistent optional field.
20005 - A database error occurred.
20006 - An error occurred while opening the database file.

Windows Application Package: Programming 11

20007 - An error occurred while re-opening the database file.
20008 - Database creation failed.
20009 - The database already exists.
20010 - An error occurred while deleting the database file.
20011 - Database has not been opened.
20012 - An error occurred while reading the database file.
20013 - An error occurred while writing data to the database file.
20014 - A database validation error occurred.
20015 - An invalid database version was encountered.
20016 - An invalid database password was encountered.
20017 - An invalid database file type was encountered.
20018 - The database has been corrupted.
20019 - An invalid password was encountered or the database is not valid.
20020 - A database key entry integrity error occurred.
20021 - A duplicate key already exists in the database.
20022 - A duplicate key already exists in the database (Record ID).
20023 - A duplicate key already exists in the database (Label).
20024 - A duplicate key already exists in the database (Signature).
20025 - A duplicate key already exists in the database (Unsigned Certificate).
20026 - A duplicate key already exists in the database (Issuer and Serial Number).
20027 - A duplicate key already exists in the database (Subject Public Key Info).
20028 - A duplicate key already exists in the database (Unsigned CRL).
20029 - The label has been used in the database.
20030 - A password encryption error occurred.
20031 - An LDAP related error occurred.
20032 - A cryptographic error occurred.
20033 - An encryption/decryption error occurred.
20034 - An invalid cryptographic algorithm was found.
20035 - An error occurred while signing data.
20036 - An error occurred while verifying data.
20037 - An error occurred while computing digest of data.
20038 - An invalid cryptographic parameter was found.
20039 - An unsupported cryptographic algorithm was encountered.
20040 - The specified input size is greater than the supported modulus size.
20041 - An unsupported modulus size was found
20042 - A database validation error occurred.
20043 - Key entry validation failed.
20044 - A duplicate extension field exists.
20045 - The version of the key is wrong
20046 - A required extension field does not exist.
20047 - The validity period does not include today or does not fall within its
 issuer's validity period.
20048 - The validity period does not include today or does not fall within its
 issuer's validity period.
20049 - An error occurred while validating validity private key usage extension.
20050 - The issuer of the key was not found.
20051 - A required certificate extension is missing.
20052 - The key signature validation failed.
20053 - The key signature validation failed.
20054 - The root key of the key is not trusted.
20055 - The key has been revoked.
20056 - An error occurred while validating authority key identifier extension.
20057 - An error occurred while validating private key usage extension.
20058 - An error occurred while validating subject alternative name extension.
20059 - An error occurred while validating issuer alternative name extension.
20060 - An error occurred while validating key usage extension.
20061 - An unknown critical extension was found.
20062 - An error occurred while validating key pair entries.
20063 - An error occurred while validating CRL.
20064 - A mutex error occurred.
20065 - An invalid parameter was found.
20066 - A null parameter or memory allocation error was encountered.
20067 - Number or size is too large or too small.
20068 - The old password is invalid.
20069 - The new password is invalid.
20070 - The password has expired.
20071 - A thread related error occurred.
20072 - An error occurred while creating threads.
20073 - An error occurred while a thread was waiting to exit.
20074 - An I/O error occurred.
20075 - An error occurred while loading CMS.
20076 - A cryptography hardware related error occurred.
20077 - The library initialization routine was not successfully called.
20078 - The internal database handle table is corrupted.
20079 - A memory allocation error occurred.
20080 - An unrecognized option was found.
20081 - An error occurred while getting time information.
20082 - Mutex creation error occurred.
20083 - An error occurred while opening message catalog.
20084 - An error occurred while opening error message catalog.
20085 - An null file name was found.
20086 - An error occurred while opening files, check for file existence and permissions.

12 IBM i: Windows Application Package: Programming

20087 - An error occurred while opening files to read.
20088 - An error occurred while opening files to write.
20089 - There is no such file.
20090 - The file cannot be opened because of its permission setting.
20091 - An error occurred while writing data to files.
20092 - An error occurred while deleting files.
20093 - Invalid Base64-encoded data was found.
20094 - An invalid Base64 message type was found.
20095 - An error occurred while encoding data with Base64 encoding rule.
20096 - An error occurred while decoding Base64-encoded data.
20097 - An error occurred while getting a distinguished name tag.
20098 - The required common name field is empty.
20099 - The required country name field is empty.
20100 - An invalid database handle was found.
20101 - The key database does not exist.
20102 - The request key pair database does not exist.
20103 - The password file does not exist.
20104 - The new password is identical to the old one.
20105 - No key was found in the key database.
20106 - No request key was found.
20107 - No trusted CA was found
20108 - No request key was found for the certificate.
20109 - There is no private key in the key database
20110 - There is no default key in the key database.
20111 - There is no private key in the key record.
20112 - There is no certificate in the key record.
20113 - There is no CRL entry.
20114 - An invalid key database file name was found.
20115 - An unrecognized private key type was found.
20116 - An invalid distinguished name input was found.
20117 - No key entry was found that has the specified key label.
20118 - The key label list has been corrupted.
20119 - The input data is not valid PKCS12 data.
20120 - The password is invalid or the PKCS12 data has been corrupted or been
 created with later version of PKCS12.
20121 - An unrecognized key export type was found.
20122 - An unsupported password-based encryption algorithm was found.
20123 - An error occurred while converting the keyring file to a CMS key database.
20124 - An error occurred while converting the CMS key database to a keyring file.
20125 - An error occurred while creating a certificate for the certificate request.
20126 - A complete issuer chain cannot be built.
20127 - Invalid WEBDB data was found.
20128 - There is no data to be written to the keyring file.
20129 - The number of days that you entered extends beyond the permitted validity period.
20130 - The password is too short; it must consist of at least characters.
20131 - A password must contain at least one numeric digit.
20132 - All characters in the password are either alphabetic or numeric characters.
20133 - An unrecognized or unsupported signature algorithm was specified.
20134 - An invalid key database type was specified.
20135 - The secondary key database is currently a secondary key database to another
 primary key database.
20136 - The key database does not have a secondary key database associated with it.
20137 - A cryptographic token with label cannot be found.
20138 - A cryptographic token password was not specified but is required.
20139 - A cryptographic token password was specified but is not required.
20140 - The cryptographic module cannot be loaded. Cryptographic token support will
 not be available.
20141 - The function is not supported for cryptographic tokens.
20142 - The cryptographic token function failed.

SSL error codes

25001 - The handle is not valid.
25002 - The dynamic link library is not available.
25003 - An internal error occurred.
25004 - Main memory is insufficient to perform the operation.
25005 - The handle is not in a valid state for operation.
25006 - The key label is not found.
25007 - The certificate is not available.
25008 - Certificate validation error.
25009 - Error processing cryptography.
25010 - Error validating ASN fields in certificate.
25011 - Error connecting to LDAP server.
25012 - Internal unknown error. Report problem to service.
25101 - An error occurred processing the cipher.
25102 - I/O error reading key file.
25103 - Key file has an invalid internal format. Re-create key file.
25104 - Key file has two entries with the same key. Use iKeyman to remove the duplicate key.
25105 - Key file has two entries with the same label. Use iKeyman to remove the duplicate label.
25106 - The key file password is used as an integrity check. Either the key file has
 become corrupted or the password ID is incorrect.

Windows Application Package: Programming 13

25107 - The default key in the key file has an expired certificate. Use iKeyman to remove
 certificates that are expired.
25108 - There was an error loading one of the dynamic link libraries.
25109 - A connection is trying to be made after environment has been closed.
25201 - The key file could not be initialized.
25202 - Unable to open the key file. Either the path was specified incorrectly or the file
 permissions did not allow the file to be opened.
25203 - Unable to generate a temporary key pair.
25204 - A User Name object was specified that is not found.
25205 - A Password used for an LDAP query is not correct.
25206 - An index into the Fail Over list of LDAP servers was not correct.
25301 - An error occurred on close.
25401 - The system date was set to an invalid value.
25402 - Neither SSLV2 nor SSLV3 is enabled.
25403 - The required certificate was not received from partner.
25404 - The received certificate was formatted incorrectly.
25405 - The received certificate type was not supported.
25406 - An IO error occurred on a data read or write.
25407 - The specified label in the key file could not be found.
25408 - The specified key-file password is incorrect. The key file could not be
 used. The key file may also be corrupt.
25409 - In a restricted cryptography environment, the key size is too long to be supported.
25410 - An incorrectly formatted SSL message was received from the partner.
25411 - The message authentication code (MAC) was not successfully verified.
25412 - The operation is unsupported.
25413 - The received certificate contained an incorrect signature.
25414 - The server certificate is not trusted. This usually occurs when you have
 not downloaded the certificate authority for the server certificate. Use the
 Digital Certificate Manager to obtain the certificate authority and
 use the PC IBM Key Management utility to place the certificate authority in
 your local key database. See CWBCO1050 for additional information
25415 - The remote system information is not valid.
25416 - Access denied.
25417 - The self-signed certificate is not valid.
25418 - The read failed.
25419 - The write failed.
25420 - The partner closed the socket before the protocol completed. This could mean the
 partner is configured for SSL Client Authentication and no client certificate was
 sent to the partner.
25421 - The specified V2 cipher is not valid.
25422 - The specified V3 cipher is not valid.
25425 - The handle could not be created.
25426 - Initialization failed.
25427 - When validating a certificate, unable to access the specified LDAP directory.
25428 - The specified key did not contain a private key.
25429 - A failed attempt was made to load the specified PKCS11 shared library.
25430 - The PKCS #11 driver failed to find the token specified by the caller.
25431 - The PKCS #11 token is not present in the slot.
25432 - The password/pin to access the PKCS #11 token is invalid.
25433 - The SSL header received was not a properly SSLV2 formatted header.
25434 - Unable to access the hardware-based cryptographic service provider (CSP).
25435 - Attribute setting conflict
25436 - The requested function is not supported on the platform that the application is running
25437 - An IPv6 connection is detected
25438 - Incorrect value is returned from the reset session type callback function
25501 - The buffer size is negative or 0.
25502 - Used with non-blocking I/O.
25601 - SSLV3 is required for reset_cipher, and the connection uses SSLV2.
25602 - An invalid ID was specified for the function call.
25701 - The function call has an invalid ID.
25702 - The attribute has a negative length, which is invalid.
25703 - The enumeration value is invalid for the specified enumeration type.
25704 - Invalid parameter list for replacing the SID cache routines.
25705 - When setting a numeric attribute, the specified value is invalid for the
 specific attribute being set.
25706 - Conflicting parameters have been set for additional certificate validation.
25707 - The cipher spec included an AES cipher spec that is not supported on the
 system of execution.
25708 - The length of the peer ID is incorrect. It must be less than or equal to 16 bytes

14 IBM i: Windows Application Package: Programming

Component-specific return codes
There are return codes for the API type.

Administration APIs return code
There is an administration return code.

6001 CWBAD_INVALID_COMPONENT_ID
 The component ID is invalid.

Related reference
Administration APIs
These APIs provide functions that access information about the code that is installed on the PC.

Communications APIs return codes
There are communications API return codes.

6001 CWBCO_END_OF_LIST
 The end of system list has been reached. No system name was returned.
6002 CWBCO_DEFAULT_SYSTEM_NOT_DEFINED
 The setting for the default system has not been defined.
6003 CWBCO_DEFAULT_SYSTEM_NOT_CONFIGURED
 The default system is defined, but no connection to it is
 configured.
6004 CWBCO_SYSTEM_NOT_CONNECTED
 The specified system is not currently connected in the current process.
6005 CWBCO_SYSTEM_NOT_CONFIGURED
 The specified system is not currently configured.
6007 CWBCO_INTERNAL_ERROR
 Internal error.
6008 CWBCO_NO_SUCH_ENVIRONMENT
 The specified environment does not exist.

Related reference
Communications and Security APIs
The Communications and Security topic shows you how to use application programming interfaces (APIs)

Database APIs return codes
There are database APIs return codes.

Note: See the database APIs topic for important information regarding database APIs.

6001 CWBDB_CANNOT_CONTACT_SERVER
 An error was encountered which prevented the Data Access server from
 being started.
6002 CWBDB_ATTRIBUTES_FAILURE
 An error was encountered during attempt to set the Data Access
 server attributes.
6003 CWBDB_SERVER_ALREADY_STARTED
 An attempt to start the Data Access server was made while a valid
 server was running. Stop the server before restarting it.
6004 CWBDB_INVALID_DRDA_PKG_SIZE
 The valid submitted for the DRDA package size was invalid.
6005 CWBDB_REQUEST_MEMORY_ALLOCATION_FAILURE
 A memory allocation attempt by a request handle failed.
6006 CWBDB_REQUEST_INVALID_CONVERSION
 A Request handle failed in an attempt to convert data.
6007 CWBDB_SERVER_NOT_ACTIVE
 The Data Access server is not started. It must be started before
 continuing.
6008 CWBDB_PARAMETER_ERROR
 Attempt to set a parameter failed. Re-try. If error persists, there
 may be a lack of available memory.
6009 CWBDB_CLONE_CREATION_ERROR
 Could not create a clone request.
6010 CWBDB_INVALID_DATA_FORMAT_FOR_CONNECTION
 The data format object was not valid for this connection.
6011 CWBDB_DATA_FORMAT_IN_USE
 The data format object is already being used by another request.
6012 CWBDB_INVALID_DATA_FORMAT_FOR_DATA
 The data format object does not match the format of the data.
6013 CWBDB_STRING_ARG_TOO_LONG
 The string provided was too long for the parameter.
6014 CWBDB_INVALID_INTERNAL_ARG

Windows Application Package: Programming 15

 Invalid internally generated argument (not user supplied).
6015 CWBDB_INVALID_NUMERIC_ARG
 Value of numeric argument is invalid.
6016 CWBDB_INVALID_ARG
 Value of argument is invalid.
6017 CWBDB_STMT_NOT_SELECT
 The statement provided was not a SELECT statement. This call requires
 a SELECT statement.
6018 CWBDB_STREAM_FETCH_NOT_COMPLETE
 The connection is in stream fetch mode. Cannot perform desired
 operation until stream fetch has ended.
6019 CWBDB_STREAM_FETCH_NOT_ACTIVE
 The connection is not in stream fetch mode and must be in order to
 perform the desired operation.
6020 CWBDB_MISSING_DATA_PROCESSOR
 Pointer to data processor in request object is null.
6021 CWBDB_ILLEGAL_CLONE_REQUEST_TYPE
 Cannot create a clone of an attributes request.
6022 CWBDB_UNSOLICITED_DATA
 Data were received from the server, but none were requested.
6023 CWBDB_MISSING_DATA
 Data were requested from the server, but not all were received.
6024 CWBDB_PARM_INVALID_BITSTREAM
 Bitstream within a parameter is invalid.
6025 CWBDB_CONSISTENCY_TOKEN_ERROR
 The data format used to interpret the data from the system does not
 match the data returned.
6026 CWBDB_INVALID_FUNCTION
 The function is invalid for this type of request.
6027 CWBDB_FORMAT_INVALID_ARG
 A parameter value passed to the API was not valid.
6028 CWBDB_INVALID_COLUMN_POSITION
 The column position passed to the API was not valid.
6029 CWBDB_INVALID_COLUMN_TYPE
 The column type passed to the API was not valid.
6030 CWBDB_ROW_VECTOR_NOT_EMPTY
 Invalid or corrupted format handle.
6031 CWBDB_ROW_VECTOR_EMPTY
 Invalid or corrupted format handle.
6032 CWBDB_MEMORY_ALLOCATION_FAILURE
 An error occurred while attempting to allocate memory.
6033 CWBDB_INVALID_CONVERSION
 An invalid type conversion was attempted.
6034 CWBDB_DATASTREAM_TOO_SHORT
 The data stream received from the host was too short.
6035 CWBDB_SQL_WARNING
 The database server received a warning from an SQL operation.
6036 CWBDB_SQL_ERROR
 The database server received an error from an SQL operation.
6037 CWBDB_SQL_PARAMETER_WARNING
 The database server received a warning about a parameter used in an
 SQL operation.
6038 CWBDB_SQL_PARAMETER_ERROR
 The database server received an error about a parameter used in an
 SQL operation.
6039 CWBDB_LIST_SERVER_WARNING
 The database server returned a warning from a catalog operation.
6040 CWBDB_LIST_SERVER_ERROR
 The database server returned an error from a catalog operation.
6041 CWBDB_LIST_PARAMETER_WARNING
 The database server returned a warning about a parameter used in a
 catalog operation.
6042 CWBDB_LIST_PARAMETER_ERROR
 The database server returned an error about a parameter used in a
 catalog operation.
6043 CWBDB_NDB_FILE_SERVER_WARNING
 The database server returned a warning from a file processing
 operation.
6044 CWBDB_NDB_FILE_SERVER_ERROR
 The database server returned an error from a file processing operation.
6045 CWBDB_FILE_PARAMETER_WARNING
 The database server returned a warning about a parameter used in a
 file processing operation.
6046 CWBDB_FILE_PARAMETER_ERROR
 The database server returned an error about a parameter used in a
 file processing operation.
6047 CWBDB_GENERAL_SERVER_WARNING
 The database server returned a general warning.
6048 CWBDB_GENERAL_SERVER_ERROR
 The database server returned a general error.
6049 CWBDB_EXIT_PROGRAM_WARNING
 The database server returned a warning from an exit program.

16 IBM i: Windows Application Package: Programming

6050 CWBDB_EXIT_PROGRAM_ERROR
 The database server returned an error from an exit program.
6051 CWBDB_DATA_BUFFER_TOO_SMALL
 Target data buffer is smaller than source buffer.
6052 CWBDB_NL_CONVERSION_ERROR
 Received error back from PiNlConverter.
6053 CWBDB_COMMUNICATIONS_ERROR
 Received a communications error during processing.
6054 CWBDB_INVALID_ARG_API
 Value of argument is invalid - API level.
6055 CWBDB_MISSING_DATA_HANDLER
 Data handler not found in data handler list.
6056 CWBDB_REQUEST_DATASTREAM_NOT_VALID
 Invalid datastream in catalog request.
6057 CWBDB_SERVER_UNABLE
 Server incapable of performing desired function.

The following return codes are returned by the
cwbDB_StartServerDetailed API:

6058 CWBDB_WORK_QUEUE_START_ERROR
 Unable to start server because of client work queue problem.
6059 CWBDB_WORK_QUEUE_CREATE_ERROR
 Unable to start server because of client work queue problem.
6060 CWBDB_INITIALIZATION_ERROR
 Unable to start server because of client initialization problem.
6061 CWBDB_SERVER_ATTRIBS_ERROR
 Unable to start server because of server attribute problem.
6062 CWBDB_CLIENT_LEVEL_ERROR
 Unable to start server because of set client level problem.
6063 CWBDB_CLIENT_LFC_ERROR
 Unable to start server because of set client language feature
 code problem.
6064 CWBDB_CLIENT_CCSID_ERROR
 Unable to start server because of set client CCSID problem.
6065 CWBDB_TRANSLATION_INDICATOR_ERROR
 Unable to start server because of set translation indicator error.
6066 CWBDB_RETURN_SERVER_ATTRIBS_ERROR
 Unable to start server because of return server attribute problem.
6067 CWBDB_SERVER_ATTRIBS_REQUEST
 Unable to start server because of missing server attributes request
 object.
6068 CWBDB_RETURN_ATTRIBS_ERROR
 Unable to start server because of return attribute problem.
6069 CWBDB_SERVER_ATTRIBS_MISSING
 Unable to start server because returned server attributes too short
 (missing data).
6070 CWBDB_SERVER_LFC_CONVERSION_ERROR
 Unable to start server because of data conversion error on server
 language feature code field of server attributes.
6071 CWBDB_SERVER_LEVEL_CONVERSION_ERROR
 Unable to start server because of data conversion error on server
 functional level field of server attributes.
6072 CWBDB_SERVER_LANGUAGE_TABLE_ERROR
 Unable to start server because of data conversion error on server
 language table ID field of server attributes.
6073 CWBDB_SERVER_LANGUAGE_LIBRARY_ERROR
 Unable to start server because of data conversion error on server
 language library ID field of server attributes.
6074 CWBDB_SERVER_LANGUAGE_ID_ERROR
 Unable to start server because of data conversion error on server
 language ID field of server attributes.
6075 CWBDB_COMM_DEQUEUE_ERROR
 Unable to start server because of communications error.
6076 CWBDB_COMM_ENQUEUE_ERROR
 Unable to start server because of communications error.
6077 CWBDB_UNSUPPORTED_COLUMN_TYPE
 An unsupported column type was found in the data.
6078 CWBDB_SERVER_IN_USE
 A connection to the database server for the given connection
 handle is already being used by another connection handle which
 was created with the same system object handle.
6079 CWBDB_SERVER_REL_DB_CONVERSION_ERROR
 Unable to start server because of data conversion error on
 server relational DB field of server attributes. There is no
 message or help text for this return code.
6080 CWBDB_SERVER_FUNCTION_NOT_AVAILABLE
 This function is not available on this version of the host server.
6081 CWBDB_FUNCTION_NOT_VALID_AFTER_CONNECT
 This function is not valid after connecting to the host server.
6082 CWBDB_INVALID_INITIAL_REL_DB_NAME
 The initial relational DB name (IASP) was invalid.

Windows Application Package: Programming 17

6099 CWBDB_LAST_STREAM_CHUNK
 Stream fetch complete.
 NOTE: Informational, not an error. There is not a message or help text
 for this return code.

Related reference
IBM i Access database APIs
Use other technologies for functions that were provided by the IBM i Access proprietary C/C++ Database
APIs, that are no longer being enhanced.

Data Queues APIs return codes
There are data queues API return codes.

6000 CWBDQ_INVALID_ATTRIBUTE_HANDLE
 Invalid attributes handle.
6001 CWBDQ_INVALID_DATA_HANDLE
 Invalid data handle.
6002 CWBDQ_INVALID_QUEUE_HANDLE
 Invalid queue handle.
6003 CWBDQ_INVALID_READ_HANDLE
 Invalid data queue read handle.
6004 CWBDQ_INVALID_QUEUE_LENGTH
 Invalid maximum record length for a data queue.
6005 CWBDQ_INVALID_KEY_LENGTH
 Invalid key length.
6006 CWBDQ_INVALID_ORDER
 Invalid queue order.
6007 CWBDQ_INVALID_AUTHORITY
 Invalid queue authority.
6008 CWBDQ_INVALID_QUEUE_TITLE
 Queue title (description) is too long or cannot be converted.
6009 CWBDQ_BAD_QUEUE_NAME
 Queue name is too long or cannot be converted.
6010 CWBDQ_BAD_LIBRARY_NAME
 Library name is too long or cannot be converted.
6011 CWBDQ_BAD_SYSTEM_NAME
 System name is too long or cannot be converted.
6012 CWBDQ_BAD_KEY_LENGTH
 Length of key is not correct for this data queue or key length is
 greater than 0 for a LIFO or FIFO data queue.
6013 CWBDQ_BAD_DATA_LENGTH
 Length of data is not correct for this data queue. Either the data
 length is zero or it is greater than the maximum allowed.
6014 CWBDQ_INVALID_TIME
 Wait time is not correct.
6015 CWBDQ_INVALID_SEARCH
 Search order is not correct.
6016 CWBDQ_DATA_TRUNCATED
 Returned data was truncated.
6017 CWBDQ_TIMED_OUT
 Wait time has expired and no data has been returned.
6018 CWBDQ_REJECTED_USER_EXIT
 Command rejected by user exit program.
6019 CWBDQ_USER_EXIT_ERROR
 Error in user exit program or invalid number of exit programs.
6020 CWBDQ_LIBRARY_NOT_FOUND
 Library not found on system.
6021 CWBDQ_QUEUE_NOT_FOUND
 Queue not found on system.
6022 CWBDQ_NO_AUTHORITY
 No authority to library or data queue.
6023 CWBDQ_DAMAGED_QUEUE
 Data queue is in an unusable state.
6024 CWBDQ_QUEUE_EXISTS
 Data queue already exists.
6025 CWBDQ_INVALID_MESSAGE_LENGTH
 Invalid message length - exceeds queue maximum record length.
6026 CWBDQ_QUEUE_DESTROYED
 Queue destroyed while waiting to read or peek a record.
6027 CWBDQ_NO_DATA
 No data was received.
6028 CWBDQ_CANNOT_CONVERT
 Data cannot be converted for this data queue. The data queue
 can be used but data cannot be converted between ASCII and EBCDIC.
 The convert flag on the data object will be ignored.
6029 CWBDQ_QUEUE_SYNTAX
 Syntax of the data queue name is incorrect. Queue name must follow
 system object syntax. First character must be alphabetic and all

18 IBM i: Windows Application Package: Programming

 following characters alphanumeric.
6030 CWBDQ_LIBRARY_SYNTAX
 Syntax of the library name is incorrect. Library name must follow
 system object syntax. First character must be alphabetic and all
 following characters alphanumeric.
6031 CWBDQ_ADDRESS_NOT_SET
 Address not set. The data object was not set with cwbDQ_SetDataAddr(),
 so the address cannot be retrieved. Use cwbDQ_GetData() instead of
 cwbDQ_GetDataAddr().
6032 CWBDQ_HOST_ERROR
 Host error occurred for which no return code is defined. See the
 error handle for the message text.
6033 CWBDQ_INVALID_SYSTEM_HANDLE
 System handle is invalid.
6099 CWBDQ_UNEXPECTED_ERROR
 Unexpected error.

Related reference
IBM i Data Queues APIs
Use product Data Queues application programming interfaces (APIs) to provide easy access to IBM i
data queues. Data queues allow you to create client/server applications that do not require the use of
communications APIs.

National Language Support APIs return codes
There are NLS API return codes.

6101 CWBNL_ERR_CNV_UNSUPPORTED
 An attempt was made to convert character data from a code page to
 another code page but this conversion is not supported.
6102 CWBNL_ERR_CNV_TBL_INVALID
 A conversion table is in a format that is not recognized.
6103 CWBNL_ERR_CNV_TBL_MISSING
 An attempt was made to use a conversion table, but the table was not
 found.
6104 CWBNL_ERR_CNV_ERR_GET
 A code page conversion table was being retrieved from the server
 when an error occurred.
6105 CWBNL_ERR_CNV_ERR_COMM
 A code page conversion table was being retrieved from the server
 when a communications error occurred.
6106 CWBNL_ERR_CNV_ERR_SERVER
 A code page conversion table was being retrieved from the server
 when a server error occurred.
6107 CWBNL_ERR_CNV_ERR_STATUS
 While converting character data from one code page to another, some
 untranslatable characters were encountered.
6108 CWBNL_ERROR_CONVERSION_INCOMPLETE_MULTIBYTE_INPUT_CHARACTER
 While converting character data an incomplete multibyte character
 was found.
6109 CWBNL_ERR_CNV_INVALID_SISO_STATUS
 The SISO parameter is incorrect.
6110 CWBNL_ERR_CNV_INVALID_PAD_LENGTH
 The pad length parameter is incorrect.

The following return codes are for language APIs:

6201 CWBNL_ERR_STR_TBL_INVALID
 Message file not in a recognized format. It has been corrupted.
6202 CWBNL_ERR_STR_TBL_MISSING
 Message file could not be found.
6203 CWBNL_ERR_STR_NOT_FOUND
 The message file is missing a message.
6204 CWBNL_ERR_NLV_NO_CONFIG
 The language configuration is missing.
6205 CWBNL_ERR_NLV_NO_SUBDIR
 The language subdirectory is missing.
6206 CWBNL_DEFAULT_HOST_CCSID_USED
 A default server CCSID (500) is used.

The following return codes are for locale APIs:

6301 CWBNL_ERR_LOC_TBL_INVALID
6302 CWBNL_ERR_LOC_TBL_MISSING
6303 CWBNL_ERR_LOC_NO_CONFIG
6304 CWBNL_ERR_LOC_NO_LOCPATH

Windows Application Package: Programming 19

System Object APIs return codes
There are system object API return codes.

6000 CWBOBJ_RC_HOST_ERROR
 Host error occurred. Text may be in errorHandle.
6001 CWBOBJ_RC_INVALID_TYPE
 Incorrect object type.
6002 CWBOBJ_RC_INVALID_KEY
 Incorrect key.
6003 CWBOBJ_RC_INVALID_INDEX
 Bad index to list.
6004 CWBOBJ_RC_LIST_OPEN
 The list is already opened.
6005 CWBOBJ_RC_LIST_NOT_OPEN
 The list has not been opened.
6006 CWBOBJ_RC_SEEKOUTOFRANGE
 Seek offset is out of range.
6007 CWBOBJ_RC_SPLFNOTOPEN
 Spooled file has not been opened.
6007 CWBOBJ_RC_RSCNOTOPEN
 Resource has not been opened.
6008 CWBOBJ_RC_SPLFENDOFFILE
 End of file was reached.
6008 CWBOBJ_RC_ENDOFFILE
 End of file was reached.
6009 CWBOBJ_RC_SPLFNOMESSAGE
 The spooled file is not waiting on a message.
6010 CWBOBJ_RC_KEY_NOT_FOUND
 The parameter list does not contain the specified key.
6011 CWBOBJ_RC_NO_EXIT_PGM
 No exit program registered.
6012 CWBOBJ_RC_NOHOSTSUPPORT
 Host does not support function.

Related reference
System Objects APIs
System objects application programming interfaces (APIs) allow you to work with print-related objects
that are on the system. These APIs make it possible to work with IBM i spooled files, writer jobs, output
queues, printers, and more.

Remote Command/Distributed Program Call APIs return codes
There are Remote command and distributed program call API return codes.

6000 CWBRC_INVALID_SYSTEM_HANDLE
 Invalid system handle.
6001 CWBRC_INVALID_PROGRAM
 Invalid program handle.
6002 CWBRC_SYSTEM_NAME
 System name is too long or cannot be converted.
6003 CWBRC_COMMAND_STRING
 Command string is too long or cannot be converted.
6004 CWBRC_PROGRAM_NAME
 Program name is too long or cannot be converted.
6005 CWBRC_LIBRARY_NAME
 Library name is too long or cannot be converted.
6006 CWBRC_INVALID_TYPE
 Invalid parameter type specified.
6007 CWBRC_INVALID_PARM_LENGTH
 Invalid parameter length.
6008 CWBRC_INVALID_PARM
 Invalid parameter specified.
6009 CWBRC_TOO_MANY_PARMS
 Attempt to add too many parameters to a program.
6010 CWBRC_INDEX_RANGE_ERROR
 Index is out of range for this program.
6011 CWBRC_REJECTED_USER_EXIT
 Command rejected by user exit program.
6012 CWBRC_USER_EXIT_ERROR
 Error in user exit program.
6013 CWBRC_COMMAND_FAILED
 Command failed.
6014 CWBRC_PROGRAM_NOT_FOUND
 Program not found or could not be accessed.
6015 CWBRC_PROGRAM_ERROR
 Error occurred when calling the program.
6016 CWBRC_COMMAND_TOO_LONG

20 IBM i: Windows Application Package: Programming

 Command string is too long.
6099 CWBRC_UNEXPECTED_ERROR
 Unexpected error.

Related reference
Remote Command/Distributed Program Call APIs
The Remote Command/Distributed Program Call APIs allow the PC application programmer to access IBM
i functions. User program and system commands are called without requiring an emulation session. A
single IBM i program serves commands and programs, so only one system job is started for both.

Security APIs return codes
There are security API return codes.

6000 CWBSY_UNKNOWN_USERID
 User ID does not exist.
6002 CWBSY_WRONG_PASSWORD
 Password is not correct for specified user ID.
6003 CWBSY_PASSWORD_EXPIRED
 Password has expired.
6004 CWBSY_INVALID_PASSWORD
 One or more characters in the password are not valid or the password
 is too long.
6007 CWBSY_GENERAL_SECURITY_ERROR
 A general security error occurred. The user profile does not have a
 password or the password validation program found an error in the
 password.
6009 CWBSY_INVALID_PROFILE
 The server user profile is not valid.
6011 CWBSY_USER_PROFILE_DISABLED
 The IBM i user profile (user ID) has been set to disabled.
6013 CWBSY_USER_CANCELLED
 The user cancelled from the user ID/password prompt.
6015 CWBSY_INVALID_USERID
 One or more characters in the user ID is not valid or the user ID is
 too long.
6016 CWBSY_UNKNOWN_SYSTEM
 The system specified is unknown.
6019 CWBSY_TP_NOT_VALID
 The PC could not validate the IBM i security server. This could
 indicate tampering with the IBM supplied security server program on
 the system.
6022 CWBSY_NOT_LOGGED_ON
 There is no user currently logged on for the specified system.
6025 CWBSY_SYSTEM_NOT_CONFIGURED
 The system specified in the security object has not been configured.
6026 CWBSY_NOT_VERIFIED
 The user ID and password defined in the object has not yet been
 verified. You must verify using cwbSY_VerifyUserIDPwd API.
6255 CWBSY_INTERNAL_ERROR
 Internal error. Contact IBM Service.

The following return codes are for change password APIs:

6257 CWBSY_PWD_TOO_LONG
 The new password contains too many characters. The maximum number of
 characters allowed is defined by the system value, QPWDMAXLEN.
6258 CWBSY_PWD_TOO_SHORT
 The new password does not contain enough characters. The minimum
 number of characters allowed is defined by the system value,
 QPWDMINLEN.
6259 CWBSY_PWD_REPEAT_CHARACTER
 The new password contains a character used more than once. The IBM i
 configuration (system value QPWDLMTREP) does not allow passwords to
 contain a repeat character.
6260 CWBSY_PWD_ADJACENT_DIGITS
 The new password contains two numbers next to each other. The IBM i
 configuration (system value QPWDLMTAJC) does not allow passwords to
 contain consecutive digits.
6261 CWBSY_PWD_CONSECUTIVE_CHARS
 The new password contains a character repeated consecutively. The
 IBM i configuration (system value QPWDLMTREP) does not allow a
 password to contain a character repeated consecutively.
6262 CWBSY_PWD_PREVIOUSLY_USED
 The new password matches a previously used password. The IBM i
 configuration (system value QPWDRQDDIF) requires new passwords to be
 different than any previous password.
6263 CWBSY_PWD_DISALLOWED_CHAR
 The new password uses an installation disallowed character. IBM i

Windows Application Package: Programming 21

 configuration (system value QPWDLMTCHR) restricts certain characters
 from being used in new passwords.
6264 CWBSY_PWD_NEED_NUMERIC
 The new password must contain a number. The IBM i configuration
 (system value QPWDRQDDGT) requires new passwords contain one or more
 numeric digits.
6266 CWBSY_PWD_MATCHES_OLD
 The new password matches an old password in one or more character
 positions. The server configuration (system value QPWDPOSDIF) does
 not allow the same character to be in the same position as a
 previous password.
6267 CWBSY_PWD_NOT_ALLOWED
 The password was rejected.
6268 CWBSY_PWD_MATCHES_USERID
 The password matches the user ID.
6269 CWBSY_PWD_PRE_V3
 The old password was created on a pre-V3 system which used a
 different encryption technique. Password must be changed manually on
 the server.
6270 CWBSY_LAST_INVALID_PASSWORD
 The next invalid will disable the user profile.

Related reference
Communications and Security APIs
The Communications and Security topic shows you how to use application programming interfaces (APIs)

Serviceability APIs return codes
There are serviceability API return codes.

6000 CWBSV_INVALID_FILE_TYPE
 Unusable file type passed-in.
6001 CWBSV_INVALID_RECORD_TYPE
 Unusable record type passed-in.
6002 CWBSV_INVALID_EVENT_TYPE
 Unusable event type detected.
6003 CWBSV_NO_ERROR_MESSAGES
 No error messages associated with error handle.
6004 CWBSV_ATTRIBUTE_NOT_SET
 Attribute not set in current message.
6005 CWBSV_INVALID_MSG_CLASS
 Unusable message class passed-in.
6006 CWBSV_LOG_NOT_STARTED
 The requested log could not be started.

Related reference
Serviceability APIs
The Serviceability application programming interfaces (APIs) allow you to log service file messages and
events within your program.

System Object Access APIs return codes
There are SOA API return codes.

0 CWBSO_NO_ERROR
 No error occurred.
1 CWBSO_ERROR_OCCURRED
 An error occurred. Use error handle for more information.
2 CWBSO_LOW_MEMORY
 Not enough memory is available for the request.
3 CWBSO_BAD_LISTTYPE
 The value specified for type of list is not valid.
4 CWBSO_BAD_HANDLE
 The handle specified is not valid.
5 CWBSO_BAD_LIST_HANDLE
 The list handle specified is not valid.
6 CWBSO_BAD_OBJ_HANDLE
 The object handle specified is not valid.
7 CWBSO_BAD_PARMOBJ_HANDLE
 The parameter object handle specified is not valid.
8 CWBSO_BAD_ERR_HANDLE
 The error handle specified is not valid.
9 CWBSO_BAD_LIST_POSITION
 The position in list specified does not exist.
10 CWBSO_BAD_ACTION_ID
 An action ID specified is not valid for the type of list.

22 IBM i: Windows Application Package: Programming

11 CWBSO_NOT_ALLOWED_NOW
 The action requested is not allowed at this time.
12 CWBSO_BAD_INCLUDE_ID
 The filter ID specified is not valid for this list.
13 CWBSO_DISP_MSG_FAILED
 The request to display the message failed.
14 CWBSO_GET_MSG_FAILED
 The error message text could not be retrieved.
15 CWBSO_BAD_SORT_ID
 A sort ID specified is not valid for the type of list.
16 CWBSO_INTERNAL_ERROR
 An internal processing error occurred.
17 CWBSO_NO_ERROR_MESSAGE
 The error handle specified contains no error message.
18 CWBSO_BAD_ATTRIBUTE_ID
 The attribute key is not valid for this object.
19 CWBSO_BAD_TITLE
 The title specified is not valid.
20 CWBSO_BAD_FILTER_VALUE
 The filter value specified is not valid.
21 CWBSO_BAD_PROFILE_NAME
 The profile name specified is not valid.
22 CWBSO_DISPLAY_FAILED
 The window could not be created.
23 CWBSO_SORT_NOT_ALLOWED
 Sorting is not allowed for this type of list.
24 CWBSO_CANNOT_CHANGE_ATTR
 Attribute is not changeable at this time.
25 CWBSO_CANNOT_READ_PROFILE
 Cannot read from the specified profile file.
26 CWBSO_CANNOT_WRITE_PROFILE
 Cannot write to the specified profile file.
27 CWBSO_BAD_SYSTEM_NAME
 The system name specified is not a valid system name.
28 CWBSO_SYSTEM_NAME_DEFAULTED
 No system name was specified on the "CWBSO_CreateListHandle" call
 for the list.
29 CWBSO_BAD_FILTER_ID
 The filter ID specified is not valid for the type of list.

Related reference
System Object Access (SOA) APIs
System Object Access enables you to view and manipulate system objects through a graphical user
interface.
About System Object Access errors
System Object Access APIs use return codes to report error conditions.

Administration APIs
These APIs provide functions that access information about the code that is installed on the PC.

Administration APIs allow you to determine:

• The product version and service level
• The install status of individual features
• The install status of System i® Navigator plug-ins

Administration APIs required files:
Header file Import library Dynamic Link Library

cwbad.h cwbapi.lib cwbad.dll

Programmer's Toolkit:
The Programmer's Toolkit provides Administration APIs documentation, access to the cwbad.h header
file, and links to sample programs. To access this information, open the Programmer's Toolkit and select
Client Information > C/C++ APIs.

Windows Application Package: Programming 23

Administration APIs topics:
Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

Related reference
Administration APIs return code
There is an administration return code.
IBM i name formats for connection APIs
APIs that take an IBM i name as a parameter, accept the name in the three different formats.
OEM, ANSI, and Unicode considerations
Most of the C/C++ APIs that accept string parameters exist in three forms: OEM, ANSI, or Unicode.

Administration APIs list
The following APIs are used with product Administration.

cwbAD_GetClientVersion
Use the cwbAD_GetClientVersion command.

Purpose
Get the version of the product that currently is installed on a PC.

Syntax

unsigned int CWB_ENTRY cwbAD_GetClientVersion(
 unsigned long *version
 unsigned long *release
 unsigned long *modificationLevel);

Parameters
unsigned long *version - output

Pointer to a buffer where the version level of the product is returned.
unsigned long *release - output

Pointer to a buffer where the release level of the product is returned.
unsigned long *modificationLevel - output

Pointer to a buffer where the modification level of the product is returned.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
One or more pointer parameters are null.

Usage
If the return code is not CWB_OK, the values in version, release, and modificationLevel are meaningless.

24 IBM i: Windows Application Package: Programming

cwbAD_GetProductFixLevel
Use the cwbAD_GetProductFixLevel command.

Purpose
Returns the current product fix level.

Syntax

unsigned int CWB_ENTRY cwbAD_GetProductFixLevel(
 char *szBuffer
 unsigned long *ulBufLen);

Parameters
char *szBuffer - output

Buffer into which the product fix level string will be written.
unsigned long * ulBufLen - input/output

Size of szBuffer, including space for the NULL terminator. On output, will contain the length of the fix
level string, including the terminating NULL.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Buffer overflow. The required length is returned in ulBufLen.

CWB_INVALID_POINTER
Invalid pointer.

Usage
Returns the fix level of the product. Returns an empty string if fixes have not been applied.

cwbAD_IsComponentInstalled
Product components are called features. Use this API to identify installed features of the product.

Purpose
Indicates whether a specific product feature is installed.

Syntax

unsigned long CWB_ENTRY cwbAD_IsComponentInstalled(
 unsigned long ulComponentID,
 cwb_Boolean *bIndicator);

Parameters
unsigned long ulComponentID - input

Must be set to one of the following component IDs:
CWBAD_COMP_SSL

Secure Sockets Layer

Windows Application Package: Programming 25

CWBAD_COMP_SSL_128_BIT
Secure Sockets Layer 128 bit

Note: This constant is defined to be the same as CWBAD_COMP_SSL.

CWB_COMP_BASESUPPORT
Product required programs

CWBAD_COMP_OPTIONAL_COMPS
Product optional features

CWBAD_COMP_DIRECTORYUPDATE
Directory Update

CWBAD_COMP_IRC
Incoming Remote Command

CWBAD_COMP_OUG
User's Guide

CWBAD_COMP_OPNAV
System i Navigator

CWBAD_COMP_DATA_ACCESS
Data Access

CWBAD_COMP_DATA_TRANSFER
Data Transfer

CWBAD_COMP_DT_BASESUPPORT
Data Transfer Base Support

CWBAD_COMP_DT_EXCEL_ADDIN
Data Transfer Excel Add-in

CWBAD_COMP_DT_WK4SUPPORT
Data Transfer WK4 file support

CWBAD_COMP_ODBC
ODBC

CWBAD_COMP_OLEDB
OLE DB Provider

CWBAD_COMP_MP
.NET Data Provider

CWBAD_COMP_AFP_VIEWER
AFP Workbench Viewer

CWBAD_COMP_JAVA_TOOLBOX
Java Toolbox

CWBAD_COMP_PC5250
PC5250 Display and Printer Emulator

PC5250 Display and Printer Emulator subcomponents:

• CWBAD_COMP_PC5250_BASE_KOREAN
• CWBAD_COMP_PC5250_PDFPDT_KOREAN
• CWBAD_COMP_PC5250_BASE_SIMPCHIN
• CWBAD_COMP_PC5250_PDFPDT_SIMPCHIN
• CWBAD_COMP_PC5250_BASE_TRADCHIN
• CWBAD_COMP_PC5250_PDFPDT_TRADCHIN
• CWBAD_COMP_PC5250_BASE_STANDARD
• CWBAD_COMP_PC5250_PDFPDT_STANDARD
• CWBAD_COMP_PC5250_FONT_ARABIC

26 IBM i: Windows Application Package: Programming

• CWBAD_COMP_PC5250_FONT_BALTIC
• CWBAD_COMP_PC5250_FONT_LATIN2
• CWBAD_COMP_PC5250_FONT_CYRILLIC
• CWBAD_COMP_PC5250_FONT_GREEK
• CWBAD_COMP_PC5250_FONT_HEBREW
• CWBAD_COMP_PC5250_FONT_LAO
• CWBAD_COMP_PC5250_FONT_THAI
• CWBAD_COMP_PC5250_FONT_TURKISH
• CWBAD_COMP_PC5250_FONT_VIET
• CWBAD_COMP_PC5250_FONT_HINDI

CWBAD_COMP_PRINTERDRIVERS
Printer Drivers

CWBAD_COMP_AFP_DRIVER
AFP printer driver

CWBAD_COMP_SCS_DRIVER
SCS printer driver

CWBAD_COMP_OP_CONSOLE
Operations Console

CWBAD_COMP_TOOLKIT
Programmer's Toolkit

CWBAD_COMP_TOOLKIT_BASE
Headers, Libraries, and Documentation

CWBAD_COMP_EZSETUP
EZ Setup

CWBAD_COMP_TOOLKIT_JAVA_TOOLS
Programmer's Toolkit Tools for Java

CWBAD_COMP_SCREEN_CUSTOMIZER_ENABLER
Screen Customizer Enabler

CWBAD_COMP_OPNAV_BASESUPPORT
System i Navigator Base Support

CWBAD_COMP_OPNAV_BASE_OPS
System i Navigator Basic Operations

CWBAD_COMP_OPNAV_JOB_MGMT
System i Navigator Job Management

CWBAD_COMP_OPNAV_SYS_CFG
System i Navigator System Configuration

CWBAD_COMP_OPNAV_NETWORK
System i Navigator Networks

CWBAD_COMP_OPNAV_SECURITY
System i Navigator Security

CWBAD_COMP_OPNAV_USERS_GROUPS
System i Navigator Users and Groups

CWBAD_COMP_OPNAV_DATABASE
System i Navigator Database

CWBAD_COMP_OPNAV_BACKUP
System i Navigator Backup

CWBAD_COMP_OPNAV_APP_DEV
System i Navigator Application Development

Windows Application Package: Programming 27

CWBAD_COMP_OPNAV_APP_ADMIN
System i Navigator Application Administration

CWBAD_COMP_OPNAV_FILE_SYSTEMS
System i Navigator File Systems

CWBAD_COMP_OPNAV_MGMT_CENTRAL
System i Navigator Management Central

CWBAD_COMP_OPNAV_MGMT_COMMANDS
System i Navigator Management Central - Commands

CWBAD_COMP_OPNAV_MGMT_PACK_PROD
System i Navigator Management Central - Packages and Products

CWBAD_COMP_OPNAV_MGMT_MONITORS
System i Navigator Management Central - Monitors

CWBAD_COMP_OPNAV_LOGICAL_SYS
System i Navigator Logical Systems

CWBAD_COMP_OPNAV_ADV_FUNC_PRES
System i Navigator Advanced Function Presentation

cwb_Boolean *bIndicator - output
Will contain CWB_TRUE if the component is installed. Will return CWB_FALSE if the component is not
installed. Will not be set if an error occurs.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Invalid pointer.

CWB_INVALID_COMPONENT_ID
The component ID is invalid for this release.

Example: Administration APIs
This example demonstrates how an application might use Administration APIs.

In this example, the APIs are used to get and display:

• The current product Version/Release/Modification level
• The current service pack (fix) level
• The features that currently are installed on the PC

The user then is allowed to enter System i Navigator plug-in names, and is informed whether the plug-in is
installed.

Usage notes:
Include cwbad.h *

Link with cwbapi.lib

Example
#include <windows.h>
#include <stdio.h>

#include "cwbad.h"

28 IBM i: Windows Application Package: Programming

/*
 * This is the highest numbered component ID known (it is
 * the ID of the last component defined in cwbad.h).
 */
#define LAST_COMPID_WE_KNOW_ABOUT (CWBAD_COMP_SSL)

/*
 * Array of component names, taken from comments for component IDs
 * in cwbad.h, so human-readable component descriptions are displayed .
 * In the compDescr array, the component ID for a component must match
 * the index in the array of that component's description.
 *
 * For a blank or unknown component name, a string is provided to display
 * an indication that the component ID is unknown, and what that ID is.
 */
static char* compDescr[LAST_COMPID_WE_KNOW_ABOUT + 1] = {
 "", // #0 is not used
 "Required programs",
 "Optional Features",
 "Directory Update",
 "Incoming Remote Command",
 "", // not used,
 "Online User's Guide",
 "System i Navigator",
 "Data Access",
 "Data Transfer",
 "Data Transfer Base Support",
 "Data Transfer Excel Add-in",
 "Data Transfer WK4 file support",
 "ODBC",
 "OLE DB Provider",
 "AFP Workbench Viewer",
 "IBM i Java Toolbox",
 "5250 Display and Printer Emulator",
 "Printer Drivers",
 "AFP printer driver",
 "SCS printer driver",
 "IBM i Operations Console",
 "IBM i Access Programmer's Toolkit",
 "Headers, Libraries, and Documentation",
 "", // not used,
 "", // not used,
 "Java Toolkit",
 "Screen customizer",
 ".NET Data Provider",
 "", //-------------#29
 "", "", "", "", "", // #30-34
 "", "", "", "", "", // #35-39
 "", "", "", "", "", // #40-44
 "", "", "", "", "", // #45-49
 "", "", "", "", "", // not #50-54
 "", "", "", "", "", // #55-59
 "", "", "", "", "", // #60-64
 "", "", "", "", "", // #65-69
 "", "", "", "", "", // used #70-74
 "", "", "", "", "", // #75-79
 "", "", "", "", "", // #80-84
 "", "", "", "", "", // #85-89
 "", "", "", "", "", // #90-94
 "", "", "", "", "", //------------ #95-99
 "System i Navigator Base Support",
 "System i Navigator Basic Operations",
 "System i Navigator Job Management",
 "System i Navigator System Configuration",
 "System i Navigator Networks",
 "System i Navigator Security",
 "System i Navigator Users and Groups",
 "System i Navigator Database",
 "", // not used #108
 "System i Navigator Backup",
 "System i Navigator Application Development",
 "System i Navigator Application Administrat",
 "System i Navigator File Systems",
 "System i Navigator Management Central",
 "System i Navigator Management Central - Commands",
 "System i Navigator Management Central - Packages and Products",
 "System i Navigator Management Central - Monitors",
 "System i Navigator Logical Systems",
 "System i Navigator Advanced Function Presentation",
 "", //-------------#119
 "", "", "", "", "", // not #120-124

Windows Application Package: Programming 29

 "", "", "", "", "", // #125-129
 "", "", "", "", "", // #130-134
 "", "", "", "", "", // used #135-139
 "", "", "", "", "", // #140-144
 "", "", "", "", "", //------------ #145-149
 "PC5250: BASE_KOREAN",
 "PC5250: PDFPDT_KOREAN",
 "PC5250: BASE_SIMPCHIN",
 "PC5250: PDFPDT_SIMPCHIN",
 "PC5250: BASE_TRADCHIN",
 "PC5250: PDFPDT_TRADCHIN",
 "PC5250: BASE_STANDARD",
 "PC5250: PDFPDT_STANDARD",
 "PC5250: FONT_ARABIC",
 "PC5250: FONT_BALTIC",
 "PC5250: FONT_LATIN2",
 "PC5250: FONT_CYRILLIC",
 "PC5250: FONT_GREEK",
 "PC5250: FONT_HEBREW",
 "PC5250: FONT_LAO",
 "PC5250: FONT_THAI",
 "PC5250: FONT_TURKISH",
 "PC5250: FONT_VIET",
 "PC5250: FONT_HINDI",
 "", //------------ #169
 "", "", "", "", "", // #170-174
 "", "", "", "", "", // not #175-179
 "", "", "", "", "", // #180-184
 "", "", "", "", "", // used #185-189
 "", "", "", "", "", // #190-194
 "", "", "", "", "", //------------ #195-199
 "Secure Sockets Layer (SSL)" } ; // last one defined
static char unknownComp[] = "unknown, ID= ";
static char* pInsertID = &(unknownComp[12]); // insert ID here!

/**
 * Show the IBM i Access for Windows Version/Release/Modification level
 **/
void showCA_VRM()
{
 ULONG caVer, caRel, caMod;
 UINT rc;
 char fixlevelBuf[MAX_PATH];
 ULONG fixlevelBufLen = sizeof(fixlevelBuf);

 printf("IBM i Access level installed:\n\n");

 rc = cwbAD_GetClientVersion(&caVer, &caRel, &caMod);
 if (rc != CWB_OK)
 {
 printf(" Error %u occurred when calling cwbAD_GetClientVersion()\n\n",
 rc);
 }
 else
 {
 printf(" Version %lu, Release %lu, Modification %lu\n\n",
 caVer, caRel, caMod);

 printf("IBM i Access service pack level installed:\n\n");
 rc = cwbAD_GetProductFixLevel(fixlevelBuf, &fixlevelBufLen);
 if (rc != CWB_OK)
 {
 printf(" Error %u occurred when calling "
 "cwbAD_GetProduceFixLevel()\n\n", rc);
 }
 else if (fixlevelBuf[0] == '\0') // empty, no service packs applied
 {
 printf(" None\n\n");
 }
 else
 {
 printf(" %s\n\n", fixlevelBuf);
 }
 }
}

/**

30 IBM i: Windows Application Package: Programming

 * Call IBM i Access for Windows API to determine if the component is installed,
 * and pass back:
 * NULL if the component is not installed or an error occurs,
 * OR
 * A string indicating the component name is unknown if the
 * component ID is higher than we know about OR the component
 * description is blank,
 * OR
 * The human-readable component description if known.
 **/
char* isCompInstalled(ULONG compID)
{
 cwb_Boolean bIsInstalled;
 char* pCompName;

 UINT rc = cwbAD_IsComponentInstalled(compID, &bIsInstalled);

 /*
 * Case 1: Error OR component not installed, return NULL to
 * indicate not installed.
 */
 if ((rc != CWB_OK) || (bIsInstalled == CWB_FALSE))
 {
 pCompName = NULL;
 }

 /*
 * Case 2: Component IS installed, but its name is not known,
 * return component name unknown string.
 */
 else if ((compID > LAST_COMPID_WE_KNOW_ABOUT) ||
 (compDescr[compID][0] == '\0'))
 {
 pCompName = unknownComp;
 sprintf(pInsertID, "%lu", compID);
 }

 /*
 * Case 3: Component IS installed, and a name is known, return it
 */
 else
 {
 pCompName = compDescr[compID];
 }

 return pCompName;
}

/**
 * List the IBM i Access Client Solutions features that currently are installed.
 **/
void showCA_CompInstalled()
{
 ULONG compID;
 char* compName;

 printf("IBM i Access features installed:\n\n");

 /*
 * Try all known features, plus a bunch more in case some
 * have been added (via service pack).
 */
 for (compID = 0;
 compID < (LAST_COMPID_WE_KNOW_ABOUT + 50);
 compID++)
 {
 compName = isCompInstalled(compID);
 if (compName != NULL)
 {
 printf(" %s\n", compName);
 }
 }

 printf("\n");
}

/**
 * MAIN PROGRAM BODY

Windows Application Package: Programming 31

 **/
void main(void)
{
 UINT rc;
 char pluginName[MAX_PATH];
 cwb_Boolean bPluginInstalled;

 printf("=======================================\n");
 printf("IBM i Access What's Installed Reporter\n");
 printf("=======================================\n\n");

 showCA_VRM();
 showCA_CompInstalled();

 /*
 * Allow user to ask by name what plug-ins are installed.
 */
 while (TRUE) /* REMINDER: requires a break to exit the loop! */
 {
 printf("Enter plug-in to check for, or DONE to quit:\n");
 gets(pluginName);
 if (stricmp(pluginName, "DONE") == 0)
 {
 break; /* exit from the while loop, DONE at user's request */
 }

 rc = cwbAD_IsOpNavPluginInstalled(pluginName, &bPluginInstalled);
 if (rc == CWB_OK)
 {
 if (bPluginInstalled == CWB_TRUE)
 {
 printf("The plug-in '%s' is installed.\n\n", pluginName);
 }
 else
 {
 printf("The plug-in '%s' is NOT installed.\n\n", pluginName);
 }
 }
 else
 {
 printf(
 "Error %u occurred when calling cwbAD_IsOpNavPluginInstalled.\n\n",
 rc);
 }
 } // end while (TRUE)

 printf("\nEnd of program.\n\n");
}

Communications and Security APIs
The Communications and Security topic shows you how to use application programming interfaces (APIs)

You can use these APIs to:

• Get, use, and delete an IBM i system object. Various product APIs require a system object. It holds
information about connecting to, and validating IBM i security objects including user ID, password, and
signon date and time .

• Obtain information about environments and connections that are configured in the system list when
you use product functions. The system list is a list of all currently configured environments, and of
systems within those environments. The system list is stored and managed "per user," and is not
available to other users.

Note: It is not necessary for you to explicitly configure new systems to add them to the system list. They
are added automatically when you connect to a new system.

32 IBM i: Windows Application Package: Programming

Communications and Security APIs required files:
Header file Import library Dynamic Link

Library

System object APIs System list APIs cwbapi.lib cwbco.dll

cwbcosys.h cwbco.h

Programmer's Toolkit:
The Programmer's Toolkit provides Communications and Security documentation, access to the cwbco.h
and cwbcosys.h header files, and links to sample programs. To access this information, open the
Programmer's Toolkit and select Communications and Security > C/C++ APIs.

Communications and Security topics:
Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

Related reference
Communications APIs return codes
There are communications API return codes.
Security APIs return codes
There are security API return codes.
Global return codes
There are global return codes.
IBM i name formats for connection APIs
APIs that take an IBM i name as a parameter, accept the name in the three different formats.
OEM, ANSI, and Unicode considerations
Most of the C/C++ APIs that accept string parameters exist in three forms: OEM, ANSI, or Unicode.

System object attributes
System object attributes, on the IBM i platform, affect the behavior of signing on and communicating with
the system represented by the system object.

Most attributes are not changeable after a successful signon has occurred using either cwbCO_Signon or
cwbCO_Connect. The only two attributes that are changeable after a successful signon are the Window
Handle and the Connect Timeout attributes. Calling an API to change the value of other attributes, after a
successful signon, fails with return code CWB_INV_AFTER_SIGNON.

Some values and the ability to change them may be controlled via policies. Policies are controls that
a systems administrator can set up to mandate default attribute values, and to prohibit changes to
attributes. The default values that are specified in the System object attributes list topic (link below) are
used under the following conditions:

• If policies do not specify or suggest different values
• If a value for such an attribute has not been configured explicitly for the system that is named in the

system list

If an attribute's default value may be set by policy, this also is noted. If changing an attribute's value can
be prohibited by policy, then:

• An API is provided to check for the attribute's modifiability.
• A specific return code is provided by the attribute's set method if the set fails because of such a policy.

Related reference
cwbCO_Signon

Windows Application Package: Programming 33

Use the cwbCO_Signon command.
cwbCO_Connect
Use the cwbCO_Connect command.

System object attributes list
Following is a list of IBM i descriptions, requirements, and considerations of system object attributes.

Also listed with each attribute are:

• The APIs that you can use to get and to set it
• What its default value is when the system object is created

Note: The attributes' settings apply ONLY to the system object for which they are set, NOT to any other
system objects, even if other system objects have the same system name.

IBM i name:
The system with which to communicate, as defined by this instance of the system object. This can be
set only at the time cwbCO_CreateSystem or cwbCO_CreateSystemLike is called. Note that the system
name is used as the unique identifier when validating security information for a specific user ID: If
two different system objects contain different system names that represent the same physical unit,
the user ID and password require separate validation for the two system objects. For example, this
applies if the system names "SYS1" and "SYS1.ACME.COM" represent the same IBM i unit. This may
result in double prompting, and the use of different default user IDs when connecting.

Get by using cwbCO_GetSystemName

Default:
There is no default, since this is explicitly set when the system object is created.

Description
Description of the configured IBM i connection.

Set using System i Navigator.

Retrieve using cwbCO_GetDescription

The description is stored with each system object, and never changed for that system object. If the
description is changed using System i Navigator, system objects for that system that existed before
the change was made are not changed. Only new system objects will contain the new description.

Default:
Blank. This may be overridden by policies.

User ID:
The IBM i user ID that is used the system.

Get by using cwbCO_GetUserIDEx

Set by using cwbCO_SetUserIDEx

Default:
The first time that you connect to the system which is named in the system object, you might be
prompted:

• To specify a default user ID
• To specify that the default user ID should be the same as your Windows user ID
• That no default will be used

On subsequent connection attempts, the default user ID that is used will depend on which option
you chose when prompted during the first connection attempt.

Password:
The IBM i password used to signon to the system.

Set by using cwbCO_SetPassword

34 IBM i: Windows Application Package: Programming

Default:
Blank (no password set) if the user ID that is set in the system object never has signed on to the
system that is named in the system object. If a previous successful signon or connection has been
made to the system that is named in the system object, that password may be used for the next
signon or connection attempt. The system will no longer cache a password in the product volatile
password cache if the password comes in through the cwbCO_SetPassword() API. Previously, this
would have gone into the volatile (i.e. session) password cache.

Default user mode:
Controls behavior that is associated with the default user ID, including where to obtain it and whether
to use it. If it is not set (if the value is CWBCO_DEFAULT_USER_MODE_NOT_SET), the user may be
prompted to choose which behavior is desired at the time a signon is attempted.

Get by using cwbCO_GetDefaultUserMode

Set by using cwbCO_SetDefaultUserMode

Check for modify restriction by using cwbCO_CanModifyDefaultUserMode

Default:
CWBCO_DEFAULT_USER_MODE_NOT_SET

Note: The default may be overridden by policies.

Prompt mode:
Controls prompting for user ID and password. See the declaration comments for
cwbCO_SetPromptMode for possible values and for associated behaviors.

Get by using cwbCO_GetPromptMode

Set by using cwbCO_SetPromptMode

Default:
CWBCO_PROMPT_IF_NECESSARY

Window handle:
The window handle of the calling application. If this is set, any prompting that does relate to IBM i
signon will use the window handle, and will be modal to the associated window. This means that the
prompt never will be hidden UNDER the main application window if its handle is associated with the
system object. If no window handle is set, the prompt might be hidden behind the main application
window, if one exists.

Get by using cwbCO_GetWindowHandle

Set by using cwbCO_SetWindowHandle

Default:
NULL (not set)

Validate mode:
Specifies, when validating user ID and password, whether IBM i communication to perform
this validation actually occurs. See the declaration comments for cwbCO_SetValidateMode and
cwbCO_GetValidateMode for possible values and for associated behaviors.

Get by using cwbCO_GetValidateMode

Set by using cwbCO_SetValidateMode

Default:
CWBCO_VALIDATE_IF_NECESSARY

Use Secure Sockets:
Specifies whether sockets are used to authenticate the system and to encrypt data that is sent
and received. There are some cases where secure sockets cannot be used (for example, when the
software support for Secure Sockets has not been installed on the PC). Accordingly, an application
or user request for secure sockets use may fail, either at the time the cwbCO_UseSecureSockets

Windows Application Package: Programming 35

API is called, or at connect time. If no such failure occurs, then secure sockets is being used, and
cwbCO_IsSecureSockets will return CWB_TRUE.

Get by using cwbCO_IsSecureSockets

Set by using cwbCO_UseSecureSockets

Check for modify restriction by using cwbCO_CanModifyUseSecureSockets

Default:
Whatever has been configured in the IBM i the System List will be used for this system. If no
IBM i configuration for this system exists, or if the configuration specifies to use the IBM i Access
default, then secure sockets will not be used (CWB_FALSE).

Note: The default may be overridden by policies.

Port lookup mode:
Specifies how to retrieve the remote port for an IBM i host service. It specifies whether to look it up
locally (on the PC), on the IBM i host, or to simply use the default ("standard") port for the specified
service. If local lookup is selected, the standard TCP/IP method of lookup in the SERVICES file on
the PC is used. If server lookup is specified, a connection to the IBM i mapper is made to retrieve
the port number by lookup from the IBM i service table. If either the local or server lookup method
fails, then connecting to the service will fail. For more information and for possible values, see the API
declaration for cwbCO_SetPortLookupMode.

Get by using cwbCO_GetPortLookupMode

Set by using cwbCO_SetPortLookupMode

Check for modify restriction by using cwbCO_CanModifyPortLookupMode

Default:
Whatever has been configured for this system in the IBM i List is used. If no IBM i configuration
exists for this system, the default is CWBCO_PORT_LOOKUP_SERVER.

Note: The default may be overridden by policies.

Persistence mode:
Specifies whether the system named in this system object may be added to the IBM i List
(if not already in the list) once a successful call to cwbCO_Connect has completed. See
cwbCO_SetPersistenceMode for more information and for possible values.

Get by using cwbCO_GetPersistenceMode

Set by using cwbCO_SetPersistenceMode

Check for modify restriction by using cwbCO_CanModifyPersistenceMode

Default:
CWBCO_MAY_MAKE_PERSISTENT

Note: The default may be overridden by policies.

Connect timeout
Specifies the wait time for the completion of a connection attempt. This setting does not
affect how long the TCP/IP communications stack will wait before giving up. The TCP/IP
communications stack might timeout before the IBM i Access connection timeout has expired. See
cwbCO_SetConnectTimeout for more information and possible values. This value may be changed for
a system object at any time.

get using cwbCO_GetConnectTimeout

set using cwbCO_SetConnectTimeout

Default:
CWBCO_CONNECT_TIMEOUT_DEFAULT

Note: The default may be overridden by policies.

36 IBM i: Windows Application Package: Programming

Communications and security: Create and delete APIs
These APIs are used for creating and deleting an IBM i object

cwbCO_CreateSystem
Use the cwbCO_CreateSystem command.

Purpose
Create a new system object and return a handle to it that can be used with subsequent calls. The system
object has many attributes that can be set or retrieved. See “System object attributes” on page 33 for
more information.

Syntax

UINT CWB_ENTRY cwbCO_CreateSystem(
 LPCSTR systemName,
 cwbCO_SysHandle *system);

Parameters
LPCSTR systemName - input

Pointer to a buffer that contains the NULL-terminated IBM i name. This can be its host name, or the
IBM i dotted-decimal IP address itself. It must not be zero length and must not contain blanks. If the
name specified is not a valid IBM i host name or IP address string (in the form "nnn.nnn.nnn.nnn"),
any connection attempt or security validation attempt will fail.

cwbCO_SysHandle *system - output
The system object handle is returned in this parameter.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_POINTER
One of the pointer parameters is NULL.

CWB_INVALID_SYSNAME
The system name is not valid.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from creating a system object for a system not already defined
in the System List.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage that is being used.

Usage
When you are done using the system object, you must call cwbCO_DeleteSystem to free resources
the system object is using. If you want to create a system object that is like one you already have, use
cwbCO_CreateSystemLike.

Related reference
Typical use of Remote Command/Distributed Program Call APIs

Windows Application Package: Programming 37

An application that uses the Remote Command/Distributed Program Call function uses objects.

cwbCO_CreateSystemLike
Use the cwbCO_CreateSystemLike command.

Purpose
Create a new system object that is similar to a given system object. You may either provide a specific
system name for the new system object, or specify NULL to use the given system object's name. All
attributes of the given system object are copied into the new one, with the following exceptions:

• User ID
• Password
• System name, if a different one is specified
• IP address, when the system names are different.

See “System object attributes list” on page 34 for a list of system object attributes.

Syntax

UINT CWB_ENTRY cwbCO_CreateSystemLike(
 cwbCO_SysHandle systemToCopy,
 LPCSTR systemName
 cwbCO_SysHandle *system);

Parameters
cwbCO_SysHandle systemToCopy - input

Handle that was returned by a previous call to either cwbCO_CreateSystem or
cwbCO_CreateSystemLike. It is the IBM i identification. This is the object that will be "copied."

LPCSTR systemName - input
Pointer to a buffer that contains the NULL-terminated IBM i name to use in the new system object.
If NULL or the empty string is passed, the name from the given system object is copied into the new
system object. If a system name is specified, it can be the host name, or the IBM i dotted-decimal IP
address. If the name that is specified is not a valid IBM i host name or IP address string (in the form
"nnn.nnn.nnn.nnn"), any connection attempt or security validation attempt will fail.

cwbCO_SysHandle *newSystem - output
The system object handle of the new system object is returned in this parameter.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
A pointer that is supplied to the API is not valid.

CWB_INVALID_SYSNAME
The system name is not valid.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from creating a system object for a system not already defined
in the System List.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage that is being used.

38 IBM i: Windows Application Package: Programming

Usage
When you are done using the new system object, you must call cwbCO_DeleteSystem to free resources
that the system object is using.

The state of the new system object might not be the same as that of the given system object, since user
ID and password validation has not been performed yet for the new one. Also, the new system object has
no connections associated with it, whereas the given system object may. Because of this, even though you
might not be able to change attributes of the given system object because of its state, you might be able
to change the attributes of the new system object because of its possibly different state.

cwbCO_DeleteSystem
Use the cwbCO_DeleteSystem command.

Purpose
Deletes the system object that is specified by its handle, and frees all resources the system object has
used.

Syntax

UINT CWB_ENTRY cwbCO_DeleteSystem(
 cwbCO_SysHandle system);

Parameters
cwbCO_SysHandle system - input

Handle that was returned by a previous call to either cwbCO_CreateSystem or
cwbCO_CreateSystemLike. It is the IBM i identification.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

Usage
Before the system object resources are freed, if there are any connections that were made using
the specified system object, they will be ended, forcefully if necessary. To determine if there are
active connections, call cwbCO_IsConnected. If you want to know whether disconnecting any existing
connections was successful, call cwbCO_Disconnect explicitly before calling this API.

Communications and security: Connect and disconnect APIs
These APIs support IBM i connection and disconnection, and other related behaviors.

cwbCO_Connect
Use the cwbCO_Connect command.

Purpose
Connect to the specified IBM i host service.

Windows Application Package: Programming 39

Syntax

UINT CWB_ENTRY cwbCO_Connect(
 cwbCO_SysHandle system,
 cwbCO_Service service,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification that will be used for the connection.

cwbCO_Service service - input
The IBM i service for the connection. Valid values are those listed in “Defines for cwbCO_Service” on
page 82, except for the values CWBCO_SERVICE_ANY and CWBCO_SERVICE_ALL. Only one service
may be specified for this API, unlike for cwbCO_Disconnect, which can disconnect multiple services at
once.

cwbSV_ErrHandle errorHandle - input/output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetErrText
API. If the parameter is set to zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_SERVICE_NAME_ERROR
The service identifier is not a valid value, or was a combination of values (only a single value is allowed
for this API).

CWB_CONNECTION_TIMED_OUT
It took too long to find the system, so the attempt timed out.

CWB_CONNECTION_REFUSED
The system refused to accept our connection attempt.

CWB_NETWORK_IS_DOWN
A network error occurred, or TCP/IP is not configured correctly on the PC.

CWB_NETWORK_IS_UNREACHABLE
The network segment to which the system is connected currently is not reachable from the segment
to which the PC is connected.

CWB_USER_TIMEOUT
The connect timeout value associated with the system object expired before the connection attempt
completed, so we stopped waiting.

CWB_FIPS_UNAVAILABLE
This connection is configured for SSL and FIPS-compliant mode is enabled, however, SSL cannot be
used because FIPS support is not available. For recovery information, see message CWBCO1060,
using the following path:

Start > Programs > IBM i Access Client Solutions > User's Guide > Messages > IBM i Access
Client Solutions messages > CWBCO1060

Note: Other return codes may be commonly returned as the result of a failed security validation attempt.
See the list of common return codes in the comments for cwbCO_Signon.

40 IBM i: Windows Application Package: Programming

Usage
If the IBM i signon has not yet occurred, the signon will be performed first when cwbCO_Connect
is called. If you want the signon to occur at a separate time, call cwbCO_Signon first, then call
cwbCO_Connect at a later time. For more information about signon and its behavior, see comments for
cwbCO_Signon. If the signon attempt fails, a connection to the specified service will not be established.

If the system as named in the specified system object does not exist in the System List, and the system
object Persistence Mode is set appropriately, then when cwbCO_Connect or cwbCO_Signon is first
successfully called, the system, as named in the system object, is added to the System List. For more
information about the Persistence Mode, see the comments for cwbCO_SetPersistenceMode.

If a connection to the specified service already exists, no new connection will be established, and
CWB_OK will be returned. Each time this API is successfully called, the usage count for the connection to
the specified service will be incremented.

Each time cwbCO_Disconnect is called for the same service, the usage count will be decremented.
When the usage count reaches zero, the actual connection is ended.

Therefore, it is VERY IMPORTANT that for every call to the cwbCO_Connect API there is a later paired
call to the cwbCO_Disconnect API, so that the connection can be ended at the appropriate time.
The alternative is to call the cwbCO_Disconnect API, specifying CWBCO_SERVICE_ALL, which will
disconnect all existing connections to ALL services made through the specified system object, and reset
all usage counts to 0.

If the return code is CWB_USER_TIMEOUT, you may want to increase the connect timeout value for
this system object, by calling cwbCO_SetConnectTimeout, and try connecting again. If you want IBM
i Access to not give up until the TCP/IP communication stack itself does, set the connect timeout to
CWBCO_CONNECT_TIMEOUT_NONE, and try connecting again.

Related reference
System object attributes
System object attributes, on the IBM i platform, affect the behavior of signing on and communicating with
the system represented by the system object.

cwbCO_Disconnect
Use the cwbCO_Disconnect command.

Purpose
Disconnect from the specified IBM i host service.

Syntax

UINT CWB_ENTRY cwbCO_Disconnect(
 cwbCO_SysHandle system,
 cwbCO_Service service,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbCO_SysHandle system - input

Handle that was returned by a previous call to either cwbCO_CreateSystem or
cwbCO_CreateSystemLike. It the IBM i identification used for the disconnect.

cwbCO_Service service - input
The IBM i service for disconnect. Valid values are those listed at the start of this file, except for the
value CWBCO_SERVICE_ANY. If CWBCO_SERVICE_ALL is specified, the connections to ALL connected
services will be ended, and all connection usage counts reset back to zero.

Windows Application Package: Programming 41

cwbSV_ErrHandle errorHandle - input/output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetErrText
API. If the parameter is set to zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_SERVICE_NAME_ERROR
The service identifier is invalid.

CWB_NOT_CONNECTED
The single service was not connected.

Usage
This function should be called when a connection that is established by using cwbCO_Connect no longer
is needed.

If any service specified cannot be disconnected, the return code will indicate this error. If more than one
error occurs, only the first one will be returned as the API return code.

Usage otes for individual service disconnect:
This function will cause the usage count for this system object's specified service to be decremented,
and may or may not end the actual connection. For more information, read the Usage notes for the
cwbCO_Connect API.

Disconnecting a service that is not currently connected results in CWB_NOT_CONNECTED.

An individual service is gracefully disconnected.

Usage notes for CWBCO_SERVICE_ALL:
The return code CWB_NOT_CONNECTED is not returned when CWBCO_SERVICE_ALL is specified,
regardless of the number of connected services.

IBM i disconnect message might be generated when requesting that all active services be
disconnected.

cwbCO_GetConnectTimeout
Use the cwbCO_GetConnectTimeout command.

Purpose
This function gets, for the specified system object, the connection timeout value, in seconds, currently
set.

Syntax

UINT CWB_ENTRY cwbCO_GetConnectTimeout(
 cwbCO_SysHandle system,
 PULONG timeout);

42 IBM i: Windows Application Package: Programming

Parameters
cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification.

PULONG timeout - output
Returns the timeout value, in seconds. This value will be from CWBCO_CONNECT_TIMEOUT_MIN to
CWBCO_CONNECT_TIMEOUT_MAX, or will be CWBCO_CONNECT_TIMEOUT_NONE if no connection
timeout is desired.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The timeout pointer is NULL.

Usage
None.

cwbCO_GetPersistenceMode
Use the cwbCO_GetPersistenceMode command.

Purpose
This function gets, for the specified system object, if the system it represents, along with its attributes,
will be added to the System List (if not already in the list) once a successful signon has occurred.

Syntax

UINT CWB_ENTRY cwbCO_GetPersistenceMode(
 cwbCO_SysHandle system,
 cwbCO_PersistenceMode *mode);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
is the IBM i identification.

cwbCO_PersistenceMode * mode - output
Returns the persistence mode. See comments for cwbCO_SetPersistenceMode for possible values
and their meanings.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

Windows Application Package: Programming 43

CWB_INVALID_POINTER
The mode pointer is NULL.

Usage
None.

cwbCO_IsConnected
Use the cwbCO_IsConnected command.

Purpose
Find out if any, and how many, IBM i connections are using the specified system object currently exist.

Syntax

UINT CWB_ENTRY cwbCO_IsConnected(
 cwbCO_SysHandle system,
 cwbCO_Service service,
 PULONG numberOfConnections);

Parameters
cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification.

cwbCO_Service service - input
The service to check for a connection. Any of the cwbCO_Service values listed in “Defines
for cwbCO_Service” on page 82 are valid. To find out if ANY service is connected, specify
CWBCO_SERVICE_ANY. To find out how many services are connected using this system object,
specify CWBCO_SERVICE_ALL.

PULONG numberOfConnections - output
Used to return the number of connections active for the service(s) that are specified. If the service
specified is not CWBCO_SERVICE_ALL, the value returned will be either 0 or 1, since there can be at
most one active connection per service per system object. If CWBCO_SERVICE_ALL is specified, this
could be from zero to the possible number of services, since one connection per service might be
active.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion, all services specified are connected, or if CWBCO_SERVICE_ANY is specified,
at least one service is connected.

CWB_NOT_CONNECTED
If a single service was specified, that service is not connected. If the value CWBCO_SERVICE_ANY
was specified, there are NO active connections. If the value CWBCO_SERVICE_ALL was specified,
there is at least one service that is NOT connected.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_SERVICE_NAME_ERROR
The service identifier is invalid.

CWB_INVALID_POINTER
The numberOfConnections parameter is NULL.

44 IBM i: Windows Application Package: Programming

Usage
If CWBCO_SERVICE_ALL was specified and CWB_NOT_CONNECTED is returned, there may be some
active connections, and the count of active connections still will be passed back. To find out how many
connections through the specified system object exist, call this API and specify CWBCO_SERVICE_ALL.
If the return code is either CWB_OK or CWB_NOT_CONNECTED, the number of connections that exist is
stored in numberOfConnections.

cwbCO_SetConnectTimeout
Use the cwbCO_SetConnectTimeout command.

Purpose
This function sets, for the specified system object, the wait time, in seconds that the product waits before
giving up on a connection attempt and returning an error.

Syntax

UINT CWB_ENTRY cwbCO_SetConnectTimeout(
 cwbCO_SysHandle system,
 ULONG timeout);

Parameters
cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification.

ULONG timeout - input
Specifies the connection timeout value, in seconds. The value must be from
CWBCO_CONNECT_TIMEOUT_MIN to CWBCO_CONNECT_TIMEOUT_MAX, or if no timeout is
desired, use CWBCO_CONNECT_TIMEOUT_NONE. If the value is below the minimum,
then CWBCO_CONNECT_TIMEOUT_MIN will be used; if it is above the maximum,
CWBCO_CONNECT_TIMEOUT_MAX will be used.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

Usage
If no timeout value has been suggested by policy, and none has been explicitly set using this API, the
connect timeout used is CWBCO_CONNECT_TIMEOUT_DEFAULT.

cwbCO_SetPersistenceMode
Use the cwbCO_SetPersistenceMode command.

Purpose
This function sets for the specified system object if the system it represents (as named in the system
object), along with its attributes, may be added to the System List (if not already in the list) once a signon
successfully has occurred.

Windows Application Package: Programming 45

Syntax

UINT CWB_ENTRY cwbCO_SetPersistenceMode(
 cwbCO_SysHandle system,
 cwbCO_PersistenceMode mode);

Parameters
cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification.

cwbCO_PersistenceMode mode - input
Specifies the persistence mode. Possible values are:
CWBCO_MAY_MAKE_PERSISTENT

If the system that is named in the specified system object is not yet in the System List, add it
to the list once a successful signon has completed. This will make the system, as defined by this
system object, available for selection by this AND other applications running, now or in the future,
on this personal computer (until the system is deleted from this list).

CWBCO_MAY_NOT_MAKE_PERSISTENT
The system that is named in the specified system object (along with its attributes) may NOT be
added to the System List.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_PARAMETER
The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon successfully has occurred by using the specified system object, so this setting no longer may
be changed.

Usage
This API cannot be used after a successful signon has occurred for the specified system object. A signon
has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system
object.

If the system as named in the system object already is in the System List, this setting has no effect.

cwbCO_Verify
Use the cwbCO_Verify command.

Purpose
Verifies that a connection can be made to a specific IBM i host service.

46 IBM i: Windows Application Package: Programming

Syntax

UINT CWB_ENTRY cwbCO_Verify(
 cwbCO_SysHandle system,
 cwbCO_Service service,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbCO_SysHandle system - input

Handle previously returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification whose connectability isverified.

cwbCO_Service service - input
The IBM i service whose connectability is verified. Valid values are those listed in “Defines for
cwbCO_Service” on page 82, except for the value CWBCO_SERVICE_ANY. To verify connectability
of ALL services, specify CWBCO_SERVICE_ALL.

cwbSV_ErrHandle errorHandle - input/output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetErrText
API. If the parameter is set to zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_SERVICE_NAME_ERROR
The service identifier is invalid.

CWB_USER_TIMEOUT
The connect timeout value associated with the system object expired before the connection
verification attempt completed, so we stopped waiting.

CWB_COMMUNICATIONS_ERROR
An error occurred attempting to verify a connection to the service.

Usage
This API does not require user ID and password to be set, nor will it cause a signon to occur, thus it will
never prompt for this information. It does not change the state of the system object in any way.

If a connection to any specified service already exists, no new connection will be established, and
connectability will be considered verified for that service.

If CWBCO_SERVICE_ALL is specified for verification, the return code will be CWB_OK only if ALL services
can be connected to. If any one verification attempt fails, the return code will be that from the first failure,
although verification of the other services still will be attempted.

Since this API does not establish a usable connection, it automatically will disconnect when the
verification is complete; therefore, do NOT call cwbCO_Disconnect to end the connection.

Windows Application Package: Programming 47

Communication and security: Security validation and data APIs
These IBM i APIs provide security validation and data.

cwbCO_ChangePassword
Use the cwbCO_ChangePassword command.

Purpose
Changes the password of the specified IBM i user from a specified old to a specified new value. This API
does NOT use the user ID and password that currently are set in the given system object, nor does it
change these values.

Syntax

UINT CWB_ENTRY cwbCO_ChangePassword(
 cwbCO_SysHandle system,
 LPCSTR userID,
 LPCSTR oldPassword,
 LPCSTR newPassword,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. This is the
IBM i identification.

LPCSTR userID - input
A pointer to an ASCIIZ string that contains the user ID. The maximum length is
CWBCO_MAX_USER_ID + 1 characters, including the null terminator.

LPCSTR oldPassword - input
A pointer to a buffer which contains the old password. The maximum length is
CWBCO_MAX_PASSWORD + 1 bytes, including the null terminator.

LPCSTR newPassword - input
A pointer to a buffer which contains the new password. The maximum length is
CWBCO_MAX_PASSWORD + 1 bytes, including the null terminator.

cwbSV_ErrHandle errorHandle - input/output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetErrText
API. If the parameter is set to zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
A pointer parameter is NULL.

CWB_GENERAL_SECURITY_ERROR
A general security error occurred. The user profile does not have a password or the password
validation program found an error in the password.

CWB_INVALID_PASSWORD
One or more characters in the new password is invalid or the password is too long.

48 IBM i: Windows Application Package: Programming

CWB_INVALID_USERID
One or more characters in the user ID is invalid or the user ID is too long.

CWB_UNKNOWN_USERID
The supplied user ID is not known to this system.

CWB_WRONG_PASSWORD
Password is not correct.

CWB_USER_PROFILE_DISABLED
The user ID has been disabled.

CWB_PW_TOO_LONG
New password longer than maximum accepted length.

CWB_PW_TOO_SHORT
New password shorter than minimum accepted length.

CWB_PW_REPEAT_CHARACTER
New password contains a character used more than once.

CWB_PW_ADJACENT_DIGITS
New password has adjacent digits.

CWB_PW_CONSECUTIVE_CHARS
New password contains a character repeated consecutively.

CWB_PW_PREVIOUSLY_USED
New password was previously used.

CWB_PW_DISALLOWED_CHAR
New password uses an installation-disallowed character.

CWB_PW_NEED_NUMERIC
New password must contain at least one numeric.

CWB_PW_MATCHES_OLD
New password matches old password in one or more character positions.

CWB_PW_NOT_ALLOWED
New password exists in a dictionary of disallowed passwords.

CWB_PW_CONTAINS_USERID
New password contains user ID as part of the password.

CWB_PW_LAST_INVALID_PWD
The next invalid password will disable the user profile.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage
Valid password lengths depend on the current setting of the IBM i password level. Password levels 0 and
1 allow passwords up to 10 characters in length. Password levels 2 and 3 allow passwords up to 128
characters in length.

cwbCO_GetDefaultUserMode
Use the cwbCO_GetDefaultUserMode command.

Purpose
This function gets, for the specified system object, the default user mode that currently is set.

Windows Application Package: Programming 49

Syntax

UINT CWB_ENTRY cwbCO_GetDefaultUserMode(
 cwbCO_SysHandle system,
 cwbCO_DefaultUserMode *mode);

Parameters
cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. This is the
IBM i identification.

cwbCO_DefaultUserMode * mode - output
Returns the default user mode for this system object. See comments for
cwbCO_SetDefaultUserMode for the list of possible values and their meanings.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The mode pointer is NULL.

Usage
None.

cwbCO_GetFailedSignons
Use the cwbCO_GetFailedSignons command.

Purpose
Retrieves the number of unsuccessful security validation attempts since the last successful attempt.

Syntax

UINT CWB_ENTRY cwbCO_GetFailedSignons(
 cwbCO_SysHandle system,
 PUSHORT numberFailedAttempts);

Parameters
cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification.

PUSHORT numberFailedAttempts - output
A pointer to a short that will contain the number of failed logon attempts if this call is successful.

Return Codes
The following list shows common return values.

50 IBM i: Windows Application Package: Programming

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The numberFailedAttempts pointer is NULL.

CWB_INV_BEFORE_VALIDATE
The user ID and password that were set in the specified system object have not been validated yet, so
this information is not available.

Usage
You successfully must have called cwbCO_VerifyUserIDPassword, cwbCO_Signon, or
cwbCO_Connect before using this API. If you want to ensure that the value that is returned is
recent, you either must call cwbCO_VerifyUserIDPassword explicitly, or set the Validate Mode to
CWBCO_VALIDATE_ALWAYS before you call cwbCO_Signon or cwbCO_Connect.

cwbCO_GetPasswordExpireDate
Use the cwbCO_GetPasswordExpireDate command.

Purpose
Retrieves the date and time the password expires for the IBM i user ID, for the system that is specified by
the system object.

Syntax

UINT CWB_ENTRY cwbCO_GetPasswordExpireDate(
 cwbCO_SysHandle system,
 cwb_DateTime *expirationDateTime);

Parameters
cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification.

cwb_DateTime * expirationDateTime - output
A pointer to a structure that contains the date and time at which the password will expire for the
current user ID, in the following format:

Bytes Content

1 - 2 Year (Example: 1998 = 0x07CF)

3 Month (January = 0x01)

4 Day (First day = 0x01;31st day = 0x1F)

5 Hour (Midnight = 0x00;23rd hour = 0x17)

6 Minute (On the hour = 0x00; 59th minute = 0x3B)

7 Second (On the minute = 0x00; 59th second = 0x3B)

8 One-hundredth of a second (on the second = 0x00; maximum = 0x63)

Note: On a given day, the maximum time is 23 hours, 59 minutes, and 59.99 seconds. Midnight is 0
hours, 0 minutes, and 0.0 seconds on the following day.

Windows Application Package: Programming 51

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The pointer to the cwb_DateTime structure is NULL.

CWB_INV_BEFORE_VALIDATE
The user ID and password that were set in the specified system object have not been validated (so
the password expire date is not available), or validation has occurred and the user profile password
expiration interval is set to *NOMAX.

Usage
You successfully must have called cwbCO_VerifyUserIDPassword, cwbCO_Signon, or
cwbCO_Connect before using this API. If you want to ensure that the value that is returned is
recent, you either must call cwbCO_VerifyUserIDPassword explicitly, or set the Validate Mode to
CWBCO_VALIDATE_ALWAYS before you call cwbCO_Signon or cwbCO_Connect.

If the user profile password expiration interval is set to *NOMAX, a password expire date does not exist.
To detect this case, first validate the user ID and password as noted above, and then, if successful, call
cwbCO_GetPasswordExpireDate. A return code of CWBCO_INV_BEFORE_VALIDATE means that the
password expiration interval is set to *NOMAX.

cwbCO_GetPrevSignonDate
Use the cwbCO_GetPrevSignonDate command.

Purpose
Retrieves the date and time of the previous successful security validation.

Syntax

UINT CWB_ENTRY cwbCO_GetPrevSignonDate(
 cwbCO_SysHandle system,
 cwb_DateTime *signonDateTime);

Parameters
cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification.

cwb_DateTime * signonDateTime - output
A pointer to a structure that contains the date and time at which the previous signon occurred, in the
following format:

Bytes Content

1 - 2 Year (Example: 1998 = 0x07CF)

3 Month (January = 0x01)

4 Day (First day = 0x01;31st day = 0x1F)

5 Hour (Midnight = 0x00;23rd hour = 0x17)

52 IBM i: Windows Application Package: Programming

Bytes Content

6 Minute (On the hour = 0x00; 59th minute = 0x3B)

7 Second (On the minute = 0x00; 59th second = 0x3B)

8 One-hundredth of a second (on the second = 0x00; maximum = 0x63)

Note: On a given day, the maximum time is 23 hours, 59 minutes, and 59.99 seconds. Midnight is 0
hours, 0 minutes, and 0.0 seconds on the following day.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The pointer to the cwb_DateTime structure is NULL.

CWB_INV_BEFORE_VALIDATE
The user ID and password that were set in the specified system object have not been validated yet, so
this information is not available.

Usage
You successfully must have called cwbCO_VerifyUserIDPassword, cwbCO_Signon, or
cwbCO_Connect before using this API. If you want to ensure that the value that is returned is
recent, you either must call cwbCO_VerifyUserIDPassword explicitly, or set the Validate Mode to
CWBCO_VALIDATE_ALWAYS before you call cwbCO_Signon or cwbCO_Connect.

cwbCO_GetPromptMode
Use the cwbCO_GetPromptMode command.

Purpose
This function gets, for the specified system object, the prompt mode that currently is set.

Syntax

UINT CWB_ENTRY cwbCO_GetPromptMode(
 cwbCO_SysHandle system,
 cwbCO_PromptMode *mode);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLikeIt
is the IBM i identification.

cwbCO_PromptMode * mode - output
Returns the prompt mode. See comments for cwbCO_SetPromptMode for possible values and their
meanings.

Return Codes
The following list shows common return values.

Windows Application Package: Programming 53

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The mode pointer is NULL.

Usage
None.

cwbCO_GetSignonDate
Use the cwbCO_GetSignonDate command.

Purpose
Retrieves the date and time of the current successful security validation.

Syntax

UINT CWB_ENTRY cwbCO_GetSignonDate(
 cwbCO_SysHandle system,
 cwb_DateTime *signonDateTime);

Parameters
cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification.

cwb_DateTime * signonDateTime - output
A pointer to a structure that will contain the date and time at which the current signon occurred, in the
following format:

Bytes Content

1 - 2 Year (Example: 1998 = 0x07CF)

3 Month (January = 0x01)

4 Day (First day = 0x01;31st day = 0x1F)

5 Hour (Midnight = 0x00;23rd hour = 0x17)

6 Minute (On the hour = 0x00; 59th minute = 0x3B)

7 Second (On the minute = 0x00; 59th second = 0x3B)

8 One-hundredth of a second (on the second = 0x00; maximum = 0x63)

Note: On a given day, the maximum time is 23 hours, 59 minutes, and 59.99 seconds. Midnight is 0
hours, 0 minutes, and 0.0 seconds on the following day.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

54 IBM i: Windows Application Package: Programming

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The pointer to the cwb_DateTime structure is NULL.

CWB_INV_BEFORE_VALIDATE
The user ID and password set in the specified system object have not been validated yet, so this
information is not available.

Usage
You successfully must have called cwbCO_VerifyUserIDPassword, cwbCO_Signon, or
cwbCO_Connect before using this API. If you want to ensure that the value returned is recent,
you must either call cwbCO_VerifyUserIDPassword explicitly, or set the Validate Mode to
CWBCO_VALIDATE_ALWAYS before you call cwbCO_Signon or cwbCO_Connect.

cwbCO_GetUserIDEx
Use the cwbCO_GetUserIDEx command.

Purpose
This function gets the current user ID that is associated with a specified system object. This is the user ID
that is being used for IBM i connection.

Syntax

UINT CWB_ENTRY cwbCO_GetUserIDEx(
 cwbCO_SysHandle system,
 LPSTR userID,
 PULONG length);

Parameters
cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification.

LPSTR userID - output
Pointer to a buffer that will contain the NULL-terminated user ID. The user ID will be at most
CWBCO_MAX_USER_ID characters long.

PULONG length - input/output
Pointer to the length of the userID buffer. If the buffer is too small to hold the user ID, including space
for the terminating NULL, the size of the buffer needed will be filled into this parameter.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
One of the pointer parameters passed in is NULL.

CWB_BUFFER_OVERFLOW
The userID buffer is not large enough to hold the entire user ID name.

Windows Application Package: Programming 55

Usage
The IBM i user ID might or might not have been validated yet. To make sure it has been, call
cwbCO_Signon or cwbCO_Connect before calling this API.

If no user ID has been set and a signon has not occurred for the system object, the returned user ID will
be the empty string, even if an IBM i default user ID is configured.

cwbCO_GetValidateMode
Use the cwbCO_GetValidateMode command.

Purpose
This function gets, for the specified system object, the validate mode currently set.

Syntax

UINT CWB_ENTRY cwbCO_GetValidateMode(
 cwbCO_SysHandle system,
 cwbCO_ValidateMode *mode);

Parameters
cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification.

cwbCO_ValidateMode * mode - output
Returns the validate mode. See comments for cwbCO_SetValidateMode for possible values and
their meanings.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The mode pointer is NULL.

Usage
None.

cwbCO_GetWindowHandle
Use the cwbCO_GetWindowHandle command.

Purpose
This function gets, for the specified system object, the window handle, if any, that currently is associated
with it.

Syntax

UINT CWB_ENTRY cwbCO_GetWindowHandle(

56 IBM i: Windows Application Package: Programming

 cwbCO_SysHandle system,
 HWND *windowHandle);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike It
is the IBM i identification.

HWND * pWindowHandle - output
Returns the window handle associated with the system object, or NULL if no window handle is
associated with it.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The windowHandle pointer is NULL.

Usage
None.

cwbCO_HasSignedOn
Use the cwbCO_HasSignedOn command.

Purpose
Returns an indication of whether the specified system object has "signed on" (whether the user ID and
password have been validated at some point in the life of the specified system object).

Syntax

UINT CWB_ENTRY cwbCO_HasSignedOn(
 cwbCO_SysHandle system,
 cwb_Boolean *signedOn);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike It
is the IBM i identification.

cwb_Boolean * signedOn - output
A pointer to a cwb_Boolean into which is stored the indication of "signed-on-ness." If the specified
system object has signed on, it will be set to CWB_TRUE, otherwise it will be set to CWB_FALSE. (On
error it will be set to CWB_FALSE as well.)

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

Windows Application Package: Programming 57

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The signedOn pointer is NULL.

Usage
A returned indication of CWB_TRUE does not mean that the user ID and password have been validated
within a certain time period, but only that since the system object's creation, a signon has occurred. That
signon might not have caused or included an IBM i connection and security validation flow. This means
that, even if CWB_TRUE is returned, the next call to the system object that requires a successful signon
might connect and attempt to re-validate the user ID and password, and that validation, and hence the
signon, might fail. The signedOn indicator reflects the results of the most-recent user ID and password
validation. If user ID and password validation (signon) has occurred successfully at one time, but since
then this validation has failed, signedOn is set to CWB_FALSE.

cwbCO_SetDefaultUserMode
Use the cwbCO_SetDefaultUserMode command.

Purpose
This function sets, for the specified system object, the behavior with respect to any configured default
user ID.

Syntax

UINT CWB_ENTRY cwbCO_SetDefaultUserMode(
 cwbCO_SysHandle system,
 cwbCO_DefaultUserMode mode);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
is the IBM i identification.

cwbCO_DefaultUserMode mode - input
Specifies what will be done with the default user ID. Possible values are:
CWBCO_DEFAULT_USER_MODE_NOT_SET

No default user mode is currently in use. When this mode is active, and the Prompt Mode setting
does not prohibit prompting, the user will be prompted at signon or connect time to select which
of the remaining default user modes should be used from then on. The signon or connect cannot
succeed until one of these other mode values is selected. Setting the Default User Mode back to
this value will cause the prompt to appear the next time a default user ID is needed by System
Access.

CWBCO_DEFAULT_USER_USE
When no user ID has explicitly been set (by using cwbCO_SetUserIDEx) and a signon is to occur,
use the IBM i default user ID that is configured for the system, as named in the system object.

CWBCO_DEFAULT_USER_IGNORE
Specifies never to use a default user ID. When a signon takes place and no user ID has explicitly
been set for this system object instance, the user will be prompted to enter a user ID if the Prompt
Mode allows it (see cwbCO_SetPromptMode comments), and no initial value for the user ID will
be filled in the prompt.

CWBCO_DEFAULT_USER_USEWINLOGON
The user ID that is used when logging on to Windows will be used as the default if no user ID
explicitly has been set for this system object (by using cwbCO_SetUserIDEx).

58 IBM i: Windows Application Package: Programming

CWBCO_DEFAULT_USER_USE_KERBEROS
The kerberos principal created when logging into a Windows domain will be used as the default if
no user ID has explicitly been set for this system object (using cwbCO_SetUserIDEx).

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_PARAMETER
The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon successfully has occurred by using the specified system object, so this setting no longer may
be changed.

CWB_KERB_NOT_AVAILABLE
Kerberos security package is not available on this version of Windows.

Usage
This API cannot be used after a successful signon has occurred for the specified system object. A signon
has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system
object. The default user mode set with this API will be ignored if a user ID has been set explicitly with the
cwbCO_SetUserIDEx API.

Error code CWB_KERB_NOT_AVAILABLE will be returned if you attempt to set
CWBCO_DEFAULT_USER_USE_KERBEROS on a Windows platform that does not support Kerberos.

cwbCO_SetPassword
Use the cwbCO_SetPassword command.

Purpose
This function sets the password to associate with the specified system object. This password is used for
an IBM i connection with either the cwbCO_Signon or cwbCO_Connect call, and when a user ID is set
with the cwbCO_SetUserIDEx call.

Syntax

UINT CWB_ENTRY cwbCO_SetPassword(
 cwbCO_SysHandle system,
 LPCSTR password);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
is the IBM i identification.

LPCSTR password - input
A pointer to a buffer that contains the NULL-terminated password. The maximum length is
CWBCO_MAX_PASSWORD + 1 bytes in length, including the NULL terminator.

Windows Application Package: Programming 59

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The password pointer is NULL.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage that is being used.

CWB_INV_AFTER_SIGNON
Signon successfully has occurred by using the specified system object, so this setting no longer may
be changed.

Usage
This API cannot be used after a successful signon has occurred for the specified system object. A signon
has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system
object. A password set with this API will not be used unless a corresponding user ID has been set with
cwbCO_SetUserIDEx.

Valid password lengths depend on the current setting of the IBM i password level. Password levels 0 and
1 allow passwords up to 10 characters in length. Password levels 2 and 3 allow passwords up to 128
characters in length.

cwbCO_SetPromptMode
Use the cwbCO_SetPromptMode command.

Purpose
This function sets, for the specified system object, the prompt mode, which specifies when and if the user
should be prompted for user ID and password, or other information, when a signon is performed.

Syntax

UINT CWB_ENTRY cwbCO_SetPromptMode(
 cwbCO_SysHandle system,
 cwbCO_PromptMode mode);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
is the IBM i identification.

cwbCO_PromptMode - input
Specifies the prompt mode. Possible values are:
CWBCO_PROMPT_IF_NECESSARY

Prompting occurs if either the user ID or password are not explicitly set or cannot be retrieved
from the persistent configuration for this system, from the password cache (if enabled), or by
some other means.

If the Default User Mode is set, and if IBM i prompting has not occurred for the default user ID,
IBM i prompting occurs for it at cwbCO_Connect or cwbCO_Signon time

60 IBM i: Windows Application Package: Programming

CWBCO_PROMPT_ALWAYS
Prompting always happens when a signon is to occur for the specified system object, even if
a successful IBM i signon, using the same user ID to the same system has occurred, using a
different system object. Since a signon occurs only once for a system object, this means that
exactly one prompt per system object occurs. Additional explicit signon calls do nothing (including
prompt). See two exceptions to using this mode in the usage notes below.

CWBCO_PROMPT_NEVER
Prompting never occurs for the user ID and password, or for the default user ID. When this mode
is used, a call to any API that requires a signon for completion (for example, cwbCO_Signon
or cwbCO_Connect) will fail if either the user ID or password are not set and cannot be
programmatically retrieved (from the IBM i password cache). This mode is used when either

• The product is running on a PC that is unattended or for some other reason cannot support
end-user interaction.

• The application itself is prompting for or otherwise fetching the user ID and password, and
explicitly setting them by using cwbCO_SetUserIDEx and cwbCO_SetPassword.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_PARAMETER
The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon successfully has occurred by using the specified system object, so this setting no longer may
be changed.

Usage
This API cannot be used after a successful signon has occurred for the specified system object. A signon
has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system
object. Setting the prompt mode to CWBCO_PROMPT_ALWAYS will not prompt the user in the following
two cases:

• A user ID and password explicitly have been set with the cwbCO_setUserIDEx and
cwbCO_SetPassword APIs.

• Use Windows logon info (CWBCO_DEFAULT_USER_USEWINLOGON) has been set with the
cwbCO_SetDefaultUserMode API.

cwbCO_SetUserIDEx
Use the cwbCO_SetUserIDEx command.

Purpose
This function sets the user ID to associate with the specified system object. This user ID is used on the
IBM i connection with either the cwbCO_Signon or cwbCO_Connect call.

Syntax

UINT CWB_ENTRY cwbCO_SetUserIDEx(

Windows Application Package: Programming 61

 cwbCO_SysHandle system,
 LPCSTR userID);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
is the IBM i identification.

LPCSTR userID - input
Pointer to a buffer that contains the NULL-terminated user ID. The user ID must not be longer than
CWBCO_MAX_USER_ID characters, not including the terminating NULL character.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The userID pointer is NULL.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage that is being used.

CWB_INV_AFTER_SIGNON
Signon successfully has occurred by using the specified system object, so this setting no longer may
be changed.

Usage
This API cannot be used after a successful signon has occurred for the specified system object. A
signon has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this
system object. Setting a user ID explicitly with this API will cause any default user mode set with the
cwbCO_SetDefaultUserMode API to be ignored.

cwbCO_SetWindowHandle
Use the cwbCO_SetWindowHandle command.

Purpose
This function sets, for the specified system object, the window handle to use if any prompting is to be
done that is associated with the system object (for example, prompting for user ID and password). When
so set (to a non-NULL window handle), such a prompt would appear 'modal' to the main application
window and therefore never would get hidden behind that window.

Syntax

UINT CWB_ENTRY cwbCO_SetWindowHandle(
 cwbCO_SysHandle system,
 HWND windowHandle);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
is the IBM i identification.

62 IBM i: Windows Application Package: Programming

HWND windowHandle - input
Specifies the window handle to associate with the system object. If NULL, no window handle is
associated with the system object.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

Usage
This API may be used any time to change the window handle for the specified system object, even after a
successful signon.

cwbCO_SetValidateMode
Use the cwbCO_SetValidateMode command.

Purpose
This function sets, for the specified system object, the validate mode, which affects behavior when
validating the user ID and password.

Syntax

UINT CWB_ENTRY cwbCO_SetValidateMode(
 cwbCO_SysHandle system,
 cwbCO_ValidateMode mode);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
is the IBM i identification.

cwbCO_ValidateMode mode - input
Specifies the validate mode. Possible values are:
CWBCO_VALIDATE_IF_NECESSARY

If validation of this IBM i user ID has occurred from this PC within the last 24 hours, and the
validation was successful, then use the results of the last validation and do not connect to validate
at this time. There might be other scenarios where re-validation occurs. Re-validation occurs as
needed.

CWBCO_VALIDATE_ALWAYS
IBM i communication to validate user ID and password occurs every time this validation is
requested or required. Setting this mode forces the validation to occur (when the system object is
not signed on yet). Once a system object is signed on, this setting is ignored.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

Windows Application Package: Programming 63

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_PARAMETER
The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon has successfully occurred using the specified system object, so this setting no longer may be
changed.

Usage
This API cannot be used after a successful signon has occurred for the specified system object. A signon
has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system
object.

cwbCO_Signon
Use the cwbCO_Signon command.

Purpose
Use the user ID and password to sign on the user to the system that is represented by the IBM i specified
object.

Note: Passing an incorrect password on the cwbCO_Signon API increments the invalid signon attempts
counter for the specified user. The user profile is disabled if sufficient invalid passwords are sent to the
host.

Syntax

UINT CWB_ENTRY cwbCO_Signon(
 cwbCO_SysHandle system,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
is the IBM i identification.

cwbSV_ErrHandle errorHandle - input/output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetErrText
API. If the parameter is set to zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_UNKNOWN_USERID
The supplied user ID is not known to this system.

CWB_WRONG_PASSWORD
Password is not correct.

64 IBM i: Windows Application Package: Programming

CWB_PASSWORD_EXPIRED
Password has expired.

CWB_USER_PROFILE_DISABLED
The user ID has been disabled.

CWB_INVALID_PASSWORD
One or more characters in the password is invalid or the password is too long.

CWB_INVALID_USERID
One or more characters in the user ID is invalid or the user ID is too long.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR
General API failure.

CWB_USER_CANCELLED
The user cancelled the signon process.

Other return codes commonly may be returned as a result of a failed attempt to connect to the signon
server. For a list of such return codes, see comments for cwbCO_Connect.

Usage
Both IBM i prompting for user password and actual IBM i contact during user validation are influenced by
current system object settings, such as user ID, password, Prompt Mode, Default User Mode, and Validate
Mode. See declarations for the get/set APIs of these attributes for more information. If the IBM i name
in the specified system object does not exist in the System List, and the system object Persistence Mode
is set appropriately, then when cwbCO_Connect or cwbCO_Signon first is called successfully, the IBM i
name that is in the system object, is added to the System List.

For more information about the Persistence Mode, see the comments for cwbCO_SetPersistenceMode.
If successful, and IBM i password caching is enabled, the password is stored for the resulting user ID in
the PC's IBM i password cache.

See also:

• “Differences between cwbCO_Signon and cwbCO_VerifyUserIDPassword” on page 83
• “Similarities between cwbCO_Signon and cwbCO_VerifyUserIDPassword” on page 83

Related reference
System object attributes
System object attributes, on the IBM i platform, affect the behavior of signing on and communicating with
the system represented by the system object.

cwbCO_VerifyUserIDPassword
Use the cwbCO_VerifyUserIDPassword command.

Purpose
This function verifies the correctness of the IBM i user ID and password, on the system represented by
the specified system object. If the user ID and password are correct, it also retrieves data related to
signon attempts and password expiration.

Note: Passing an incorrect password on the cwbCO_VerifyUserIDPassword API increments the invalid
signon attempts counter for the specified user. The user profile is disabled if sufficient invalid passwords
are sent to the host.

Syntax

UINT CWB_ENTRY cwbCO_VerifyUserIDPassword(
 cwbCO_SysHandle system,

Windows Application Package: Programming 65

 LPCSTR userID,
 LPCSTR password,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
is the IBM i identification.

LPCSTR userID - input
Pointer to a buffer that contains the NULL-terminated user ID, which must not exceed
CWBCO_MAX_USER_ID characters in length, not including the terminating NULL.

LPCSTR password - input
A pointer to a buffer that contains the NULL-terminated password. The maximum length is
CWBCO_MAX_PASSWORD + 1 bytes in length, including the NULL terminator.

cwbSV_ErrHandle errorHandle - input/output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetErrText
API. If the parameter is set to zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
A pointer supplied to the API is not valid.

CWB_UNKNOWN_USERID
The supplied user ID is not known to this system.

CWB_WRONG_PASSWORD
Password is not correct.

CWB_PASSWORD_EXPIRED
Password has expired.

CWB_USER_PROFILE_DISABLED
The user ID has been disabled.

CWB_INVALID_PASSWORD
One or more characters in the password is invalid or the password is too long.

CWB_INVALID_USERID
One or more characters in the user ID is invalid or the user ID is too long.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate a temporary buffer.

CWB_API_ERROR
General API failure.

Usage
Valid password lengths depend on the current setting of the IBM i password level. Password levels 0 and
1 allow passwords up to 10 characters in length. Password levels 2 and 3 allow passwords up to 128
characters in length.

See “Differences between cwbCO_Signon and cwbCO_VerifyUserIDPassword” on page 83 and
“Similarities between cwbCO_Signon and cwbCO_VerifyUserIDPassword” on page 83.

66 IBM i: Windows Application Package: Programming

Communications and security: Get and set attribute APIs
Use the product APIs to get and set other system object attributes, or determine if the attributes are
restricted by policies.

cwbCO_CanModifyDefaultUserMode
Use the cwbCO_CanModifyDefaultUserMode command.

Purpose
Indicates whether the default user mode for the specified system object may be modified.

Syntax

UINT CWB_ENTRY cwbCO_CanModifyDefaultUserMode(
 cwbCO_SysHandle system,
 cwb_Boolean *canModify);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
is the IBM iidentification.

cwb_Boolean *canModify - output
Set to CWB_TRUE if this mode may be modified, otherwise set to CWB_FALSE.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The canModify pointer is NULL.

Usage
This value may not be modified if policy settings prohibit its modification, or if a successful signon or
connection that is using the specified system object already has occurred. In these cases, canModify
will be set to CWB_FALSE. The results returned from this API are correct only at the time of the call.

If policy settings are changed or a signon or connection is performed using this system object, the results
of this API could become incorrect. This must be considered and managed, especially in a multi-threaded
application.

cwbCO_CanModifyIPAddress
Use the cwbCO_CanModifyIPAddress command.

Purpose
Indicates whether IP Address that is used to connect may be modified for this system object.

Syntax

UINT CWB_ENTRY cwbCO_CanModifyIPAddress(

Windows Application Package: Programming 67

 cwbCO_SysHandle system,
 cwb_Boolean *canModify);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
is the IBM i identification.

cwb_Boolean *canModify - output
Set to CWB_TRUE if the IP Address may be modified, otherwise set to CWB_FALSE.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The canModify pointer is NULL.

Usage
This value may not be modified if policy settings prohibit its modification, or if a successful signon
or connection by using the specified system object already has occurred. In these cases, canModify
will be set to CWB_FALSE. This value may not be modified if the IP Address Lookup Mode is not
CWBCO_IPADDR_LOOKUP_NEVER, and policy settings prohibit modification of the IP Address Lookup
Mode. In that case, canModify will be set to CWB_FALSE. The results returned from this API are correct
only at the time of the call. If policy settings are changed or a signon or connection is performed using
this system object, the results of this API could become incorrect. This must be considered and managed,
especially in a multi-threaded application.

cwbCO_CanModifyIPAddressLookupMode
Use the cwbCO_CanModifyIPAddressLookupMode command.

Purpose
Indicates whether the IP Address Lookup Mode may be modified for this system object.

Syntax

UINT CWB_ENTRY cwbCO_CanModifyIPAddressLookupMode(
 cwbCO_SysHandle system,
 cwb_Boolean *canModify);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
is the IBM i identification.

cwb_Boolean *canModify - output
Set to CWB_TRUE if this mode may be modified, otherwise set to CWB_FALSE.

Return Codes
The following list shows common return values.

68 IBM i: Windows Application Package: Programming

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The canModify pointer is NULL.

Usage
This value may not be modified if policy settings prohibit its modification, or if a successful signon or
connection using the specified system object already has occurred. In these cases, canModify will be set
to CWB_FALSE. The results returned from this API are correct only at the time of the call.

If policy settings are changed or a signon or connection is performed using this system object, the results
of this API could become incorrect. This must be considered and managed, especially in a multi-threaded
application.

cwbCO_CanModifyPersistenceMode
Use the cwbCO_CanModifyPersistenceMode command.

Purpose
Indicates whether persistence mode for the specified system object may be modified.

Syntax

UINT CWB_ENTRY cwbCO_CanModifyPersistenceMode(
 cwbCO_SysHandle system,
 cwb_Boolean *canModify);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
is the IBM i identification.

cwb_Boolean *canModify - output
Set to CWB_TRUE if this mode may be modified, otherwise set to CWB_FALSE.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The canModify pointer is NULL.

Usage
This value may not be modified if policy settings prohibit its modification, or if a successful signon or
connection by using the specified system object has already occurred. In these cases, canModify will
be set to CWB_FALSE. The results returned from this API are correct only at the time of the call. If policy
settings are changed or a signon or connection is performed using this system object, the results of

Windows Application Package: Programming 69

this API could become incorrect. This must be considered and managed, especially in a multi-threaded
application.

cwbCO_CanModifyPortLookupMode
Use the cwbCO_CanModifyPortLookupMode command.

Purpose
Indicates whether the port lookup mode for the specified system object may be modified.

Syntax

UINT CWB_ENTRY cwbCO_CanModifyPortLookupMode(
 cwbCO_SysHandle system,
 cwb_Boolean *canModify);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
is the IBM i identification.

cwb_Boolean *canModify - output
Set to CWB_TRUE if this mode may be modified, otherwise set to CWB_FALSE.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The canModify pointer is NULL.

Usage
This value may not be modified if policy settings prohibit its modification, or if a successful signon or
connection by using the specified system object already has occurred. In these cases, canModify will be
set to CWB_FALSE. The results returned from this API are correct only at the time of the call. If policy
settings are changed or a signon or connection is performed using this system object, the results of
this API could become incorrect. This must be considered and managed, especially in a multi-threaded
application.

cwbCO_CanModifyUseSecureSockets
Use the cwbCO_CanModifyUseSecureSockets command.

Purpose
Indicates whether the secure sockets use setting may be modified for this system object.

Syntax

UINT CWB_ENTRY cwbCO_CanModifyUseSecureSockets(
 cwbCO_SysHandle system,
 cwb_Boolean *canModify);

70 IBM i: Windows Application Package: Programming

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
is the IBM i identification.

cwb_Boolean *canModify - output
Set to CWB_TRUE if the secure sockets use setting may be modified, otherwise set to CWB_FALSE.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The canModify pointer is NULL.

Usage
This value may not be modified if policy settings prohibit its modification, or if a successful signon or
connection using the specified system object has already occurred. In these cases, canModify will be set
to CWB_FALSE. The results returned from this API are correct only at the time of the call. If policy settings
are changed or a signon or connection is performed using this system object, the results of this API could
become incorrect. This must be considered and managed, especially in a multi-threaded application.

cwbCO_GetDescription
Use the cwbCO_GetDescription command.

Purpose
This function gets the text description associated with a specified system object.

Syntax

UINT CWB_ENTRY cwbCO_GetDescription(
 cwbCO_SysHandle system,
 LPSTR description,
 PULONG length);

Parameters
cwbCO_SysHandle system - input

Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification.

LPSTR description - output
Pointer to a buffer that will contain the NULL-terminated description. The description will be at most
CWBCO_MAX_SYS_DESCRIPTION characters long, not including the terminating NULL.

PULONG length - input/output
Pointer to the length of the description buffer. If the buffer is too small to hold the description,
including space for the terminating NULL, the size of the buffer needed will be filled into this
parameter.

Return Codes
The following list shows common return values.

Windows Application Package: Programming 71

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
One of the pointer parameters passed in is NULL.

CWB_BUFFER_OVERFLOW
The description buffer is not large enough to hold the entire description.

cwbCO_GetHostCCSID
Use the cwbCO_GetHostCCSID command.

Purpose
Returns the IBM i associated CCSID that is represented by the user ID that is in the system object, that
was in use when the signon to the system occurred.

Syntax

UINT CWB_ENTRY cwbCO_GetHostCCSID(
 cwbCO_SysHandle system,
 PULONG pCCSID);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
is the IBM i identification.

PULONG pCCSID - output
The host CCSID is copied into here if successful.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
the CCSID pointer is NULL.

CWB_DEFAULT_HOST_CCSID_USED
Host CCSID 500 is returned because this API is unable to determine the host CCSID appropriate for
the user ID as set in the system object.

CWB_USER_TIMEOUT
CWB_SSL_JAVA_ERROR
CWB_USER_TIMEOUT_SENDRCV

Usage
This API does not make or require an active connection to the host system to retrieve the associated
CCSID value. However, it does depend on a prior successful connection to the host system by using the
same user ID as is set in the specified system object. This is because the CCSID that is returned is the one

72 IBM i: Windows Application Package: Programming

from the specific user profile, NOT the IBM i default CCSID. To retrieve a host CCSID without requiring a
user ID, call cwbNL_GetHostCCSID.

cwbCO_GetHostVersionEx
Use the cwbCO_GetHostVersionEx command.

Purpose
Get the version and release level of the host.

Syntax

UINT CWB_ENTRY cwbCO_GetHostVersionEx(
 cwbCO_SysHandle system,
 PULONG version,
 PULONG release);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
is the IBM i identification.

PULONG version - output
Pointer to a buffer where the version level of the system is returned.

PULONG release - output
Pointer to a buffer where the release level of the system is returned.

Return Codes
The following list shows common return values:

CWB_OK
Successful Completion.

CWB_NOT_CONNECTED
The system has never been connected to when using the currently active environment.

CWB_INVALID_POINTER
One of the pointers passed in is NULL.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate a temporary buffer.

Usage
The host version is retrieved and saved whenever an IBM i connection is made. If an IBM i connection
does not exist in the currently-active environment, this information is not available, and the error code
CWB_NOT_CONNECTED is returned. If you know that a successful IBM i connection was made, it is
likely that the version and release levels returned are current. If you want to make sure that the values
are available and have been recently retrieved, call cwbCO_Signon or cwbCO_Connect for this system
object first, then call cwbCO_GetHostVersionEx.

Windows Application Package: Programming 73

cwbCO_GetIPAddress
Use the cwbCO_GetIPAddress command.

Purpose
This function gets the IBM i IP address represented by the specified system object. This is the IP
address that was used on the IBM i connection (or was set some other way, such as by using
cwbCO_SetIPAddress), and will be used for later connections, when using the specified system object.

Syntax

UINT CWB_ENTRY cwbCO_GetIPAddress(
 cwbCO_SysHandle system,
 LPSTR IPAddress,
 PULONG length);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned by cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is
the IBM i identification.

LPSTR IPAddress - output
Pointer to a buffer that will contain the NULL-terminated IP address in dotted-decimal notation (in the
form "nnn.nnn.nnn.nnn" where each "nnn" is in the range of from 0 to 255).

PULONG length - input/output
Pointer to the length of the IPAddress buffer. If the buffer is too small to hold the output, including
room for the terminating NULL, the size of the buffer needed will be filled into this parameter and
CWB_BUFFER_OVERFLOW will be returned.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
One of the input pointers is NULL.

CWB_BUFFER_OVERFLOW
The IPAddress buffer is not large enough to hold the entire IPAddress string.

Usage
None.

cwbCO_GetIPAddressLookupMode
Use the cwbCO_GetIPAddressLookupMode command.

Purpose
This function gets the indication of when, if ever, dynamic lookup occurs for the IBM i IP address
represented by the specified system object.

74 IBM i: Windows Application Package: Programming

Syntax

UINT CWB_ENTRY cwbCO_GetIPAddressLookupMode(
 cwbCO_SysHandle system,
 cwbCO_IPAddressLookupMode *mode);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned by cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is
the IBM i identification.

cwbCO_IPAddressLookupMode * mode - output
Returns the IP address lookup mode that currently is in use. See comments for
“cwbCO_SetIPAddressLookupMode” on page 78 for possible values and their meanings.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The mode pointer is NULL.

Usage
None.

cwbCO_GetPortLookupMode
Use the cwbCO_GetPortLookupMode command.

Purpose
This function gets, for the specified system object, the mode or method by which host service ports are
looked up when they are needed to establish an IBM i service connection.

Syntax

UINT CWB_ENTRY cwbCO_GetPortLookupMode(
 cwbCO_SysHandle system,
 cwbCO_PortLookupMode *mode);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned by cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is
the IBM i identification.

cwbCO_PortLookupMode * mode - output
Returns the host service port lookup mode. See comments for cwbCO_SetPortLookupMode for
possible values and their meanings.

Return Codes
The following list shows common return values.

Windows Application Package: Programming 75

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The mode pointer is NULL.

Usage
None.

cwbCO_GetSystemName
Use the cwbCO_GetSystemName command.

Purpose
This function gets the IBM i name that is associated with the specified system object.

Syntax

UINT CWB_ENTRY cwbCO_GetSystemName(
 cwbCO_SysHandle system,
 LPSTR sysName,
 PULONG length);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
is the IBM i identification.

LPSTR sysName - output
Pointer to a buffer that will contain the NULL-terminated system name. The name will be
CWBCO_MAX_SYS_NAME characters long at most, not including the terminating NULL.

PULONG length - input/output
Pointer to the length of the sysName buffer. If the buffer is too small to hold the system name,
including room for the terminating NULL, the size of the buffer needed will be filled into this parameter
and CWB_BUFFER_OVERFLOW will be returned.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
One of the pointer parameters passed in is NULL.

CWB_BUFFER_OVERFLOW
The sysName buffer is not large enough to hold the entire system name.

Usage
None.

76 IBM i: Windows Application Package: Programming

cwbCO_IsSecureSockets
Use the cwbCO_IsSecureSockets command.

Purpose
This function gets (for the specified system object) whether Secure Sockets is being used (if connected),
or would be attempted (if not currently connected) for a connection.

Syntax

UINT CWB_ENTRY cwbCO_IsSecureSockets(
 cwbCO_SysHandle system,
 cwb_Boolean *inUse);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
is the IBM i identification..

cwb_Boolean * inUse - output
Returns whether IBM i Access is using, or will try to use, secure sockets for communication:
CWB_TRUE

IS in use or would be if connections active.
CWB_FALSE

NOT in use, would not try to use it.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The inUse pointer is NULL.

Usage
This flag is an indication of which attempts are tried for future communications. If CWB_TRUE is returned,
then any IBM i attempt to communicate that cannot be performed using secure sockets will fail.

Although with limitations, the product enforces Federal Information Processing Standards (FIPS)
compliance when SSL is used, this API does not return an indication of whether FIPS compliance is on
or off. The only way to verify that FIPS-compliance is on or off is to visually inspect the FIPS compliance
checkbox in Properties. For more information about FIPS and its use, see the User's Guide that is installed
with the product.

cwbCO_SetIPAddress
Use the cwbCO_SetIPAddress command.

Purpose
This function sets, for the specified system object, the IP address that will be used for the
IBM i connection. It also changes the IP Address Lookup Mode for the system object to

Windows Application Package: Programming 77

CWBCO_IPADDR_LOOKUP_NEVER. These changes will NOT affect any other system object that exists
or is created later.

Syntax

UINT CWB_ENTRY cwbCO_SetIPAddress(
 cwbCO_SysHandle system,
 LPCSTR IPAddress);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
is the IBM i identification.

LPCSTR IPAddress - input
Specifies the IP address as a character string, in dotted-decimal notation ("nnn.nnn.nnn.nnn"), where
each "nnn" is a decimal value ranging from 0 to 255. The IPAddress must not be longer than
CWBCO_MAX_IP_ADDRESS characters, not including the terminating NULL character.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_PARAMETER
The IPAddress parameter does not contain a valid IP address.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon has successfully occurred by using the specified system object, so this setting no longer may
be changed.

Usage
This API cannot be used after a successful signon has occurred for the specified system object. A signon
has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system
object.

Use this API to force use of a specific IP address whenever any connection is made using the specified
system object. Since the IP Address Lookup Mode is set to NEVER lookup the IP address, the address
specified always will be used, unless before a connect or signon occurs, the IP Address Lookup Mode is
changed by calling cwbCO_SetIPAddressLookupMode.

cwbCO_SetIPAddressLookupMode
Use the cwbCO_SetIPAddressLookupMode command.

Purpose
This function sets, for the specified system object, when dynamic lookup occurs for the IBM i IP address
when a connection is to be made for the system represented by the specified system object. If the system
name that is specified when cwbCO_CreateSystem or cwbCO_CreateSystemLike was called is an
actual IP address, this setting is ignored, because the product never needs to lookup the address.

78 IBM i: Windows Application Package: Programming

Syntax

UINT CWB_ENTRY cwbCO_SetIPAddressLookupMode(
 cwbCO_SysHandle system,
 cwbCO_IPAddressLookupMode mode);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
is the IBM i identification.

cwbCO_IPAddressLookupMode mode - input
Specifies when the dynamic address lookup can occur. Possible values are:
CWBCO_IPADDR_LOOKUP_ALWAYS

Every time a connection is to occur, dynamically lookup the IBM i IP address.
CWBCO_IPADDR_LOOKUP_1HOUR

Lookup the IP address dynamically if it has been at least one hour since the last lookup for this
system.

CWBCO_IPADDR_LOOKUP_1DAY
Lookup the IP address dynamically if it has been at least one day since the last lookup for this
system.

CWBCO_IPADDR_LOOKUP_1WEEK
Lookup the IP address dynamically if it has been at least one week since the last lookup for this
system.

CWBCO_IPADDR_LOOKUP_NEVER
Never dynamically lookup the IBM i IP address of this system. Always use the IP address that was
last used on this PC for the system.

CWBCO_IPADDR_LOOKUP_AFTER_STARTUP
Lookup the IP address dynamically if Windows has been re-started since the last lookup for this
system.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_PARAMETER
The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon has successfully occurred by using the specified system object, so this setting no longer may
be changed.

Usage
This API cannot be used after a successful signon has occurred for the specified system object. A signon
has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system
object.

Setting this to a value other than CWB_IPADDR_LOOKUP_ALWAYS could shorten the IBM i connection
time, since the dynamic lookup might cause network traffic and take many seconds to complete. If the

Windows Application Package: Programming 79

dynamic lookup is not performed, there is a risk that the IBM i IP address has changed and a connection
either fails or a connection is made to the wrong system.

cwbCO_SetPortLookupMode
Use the cwbCO_SetPortLookupMode command.

Purpose
This function sets, for the specified system object, how a host server port lookup will be done.

Syntax

UINT CWB_ENTRY cwbCO_SetPortLookupMode(
 cwbCO_SysHandle system,
 cwbCO_PortLookupMode mode);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned by cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is
the IBM i identification.

cwbCO_PortLookupMode mode - input
Specifies port lookup method. Possible values are:
CWBCO_PORT_LOOKUP_SERVER

Lookup of a host server port is done by contacting the IBM i host server mapper each time the
connection of a service is to be made when one does not yet exist. The server mapper returns the
port number that is then used to connect to the desired IBM i service.

CWBCO_PORT_LOOKUP_LOCAL
Lookup of a host server port will be done by lookup in the SERVICES file on the PC itself.

CWBCO_PORT_LOOKUP_STANDARD
The standard port is used to connect to the desired service. The standard port is the port that is
set by default for a given host server and is used, if there are not any changes made to the IBM i
services table for that service.

The latter two modes eliminate the IBM i mapper connection and its associated delay, network traffic,
and load on the system.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_PARAMETER
The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon has successfully occurred by using the specified system object, so this setting no longer may
be changed.

80 IBM i: Windows Application Package: Programming

Usage
This API cannot be used after a successful signon has occurred for the specified system object. A signon
has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system
object.

Use CWBCO_PORT_LOOKUP_SERVER to be most certain of the accuracy of the port number for a service;
however, this requires an extra connection to the server mapper on the system every time a new
connection to a service is to be made.

Use CWBCO_PORT_LOOKUP_STANDARD to achieve the best performance, although if the system
administrator has changed the ports of any IBM i host service in the service table on that system, this
mode will not work.

Use CWBCO_PORT_LOOKUP_LOCAL for best performance when the port for an IBM i Access host service
has been changed on the system represented by the system object. For this to work, entries for each host
service port must be added to a file on the PC named SERVICES. Each such entry must contain first the
standard name of the host service (for example, "as-rmtcmd" without the quotes) followed by spaces and
the port number for that service. The SERVICES file is located in a subdirectory under the Windows install
directory called system32\drivers\etc.

cwbCO_UseSecureSockets
Use the cwbCO_UseSecureSockets command.

Purpose
Specifies that all IBM i communication to the system represented by the system object must either use
secure sockets or must not use secure sockets.

Syntax

UINT CWB_ENTRY cwbCO_UseSecureSockets(
 cwbCO_SysHandle system,
 cwb_Boolean useSecureSockets);

Parameters
cwbCO_SysHandle system - input

Handle that previously was returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It
identifies the IBM i system.

cwb_Boolean useSecureSockets - input
Specifies whether to require secure sockets use when communicating with the system that the
specified system object handle represents. Use the appropriate value:
CWB_TRUE

Require secure sockets use for communication
CWB_FALSE

Do not use secure sockets for communication
CWB_USER_TIMEOUT

The connect timeout value associated with the system object expired before the connection
verification attempt completed, so we stopped waiting.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

Windows Application Package: Programming 81

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_SECURE_SOCKETS_NOTAVAIL
Secure sockets is not available. It may not be installed on the PC, prohibited for this user, or not
available on the IBM i system.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon has successfully occurred by using the specified system object, so this setting no longer may
be changed.

Usage
Even if a connection to the specified service already exists for the given system object, a new connection
is attempted. The attributes of the given system object, such as whether to use secure sockets, are
used for this connection attempt. It is therefore possible that connection verification may fail given the
passed system object, but might succeed to the same system given a system object whose attributes
are set differently. The most obvious example of this is where secure sockets use is concerned, since
the non-secure-sockets version of the service may be running on the system, while the secure-sockets
version of the service might not be running, or vice-versa.

At the time this API is called, the product might not detect that Secure Sockets is available for use at IBM i
connection time. Even if CWB_SECURE_SOCKETS_NOTAVAIL is NOT returned, it might be determined at a
later time that secure sockets is not available.

Although with limitations, the product enforces Federal Information Processing Standards (FIPS)
compliance when SSL is used, this API does not return an indication of whether FIPS compliance is on
or off. The only way to verify that FIPS-compliance is on or off is to visually inspect the FIPS compliance
checkbox in product Properties. For more information about FIPS and its use, see the product User's
Guide that is installed with the product.

Defines for cwbCO_Service
The following values define cwbCO_Service.

• CWBCO_SERVICE_CENTRAL
• CWBCO_SERVICE_NETFILE
• CWBCO_SERVICE_NETPRINT
• CWBCO_SERVICE_DATABASE
• CWBCO_SERVICE_ODBC
• CWBCO_SERVICE_DATAQUEUES
• CWBCO_SERVICE_REMOTECMD
• CWBCO_SERVICE_SECURITY
• CWBCO_SERVICE_DDM
• CWBCO_SERVICE_WEB_ADMIN
• CWBCO_SERVICE_TELNET
• CWBCO_SERVICE_MGMT_CENTRAL
• CWBCO_SERVICE_ANY
• CWBCO_SERVICE_ALL

82 IBM i: Windows Application Package: Programming

Differences between cwbCO_Signon and cwbCO_VerifyUserIDPassword
Following are listed some of the significant differences between the cwbCO_Signon and
cwbCO_VerifyUserIDPassword commands..

• cwbCO_VerifyUserIDPassword requires that a user ID and password be passed-in (system object
values for these will NOT be used), and will not prompt for this information. cwbCO_Signon may use
prompting, depending on other system object settings, and in that case will use whatever values are
supplied by the user for user ID and password in its validation attempt.

• Since cwbCO_VerifyUserIDPassword never will prompt for user ID and password, these settings
in the specified system object will not be changed as a result of that call. A call to cwbCO_Signon,
however, may change the user ID or password of the system object as the result of possible prompting
for this information.

• cwbCO_VerifyUserIDPassword ALWAYS will result in an IBM i connection being established to
perform user ID and password validation, and to retrieve current values (such as date and time of last
successful signon) related to signon attempts. cwbCO_Signon, however, might not connect to validate
the user ID and password, but instead may use recent results of a previous validation. This is affected
by recency of previous validation results as well as by the Validation Mode attribute of the given system
object.

• The password is cached in the IBM i password cache only in the case of the successful completion of
cwbCO_Signon, never as the result of a call to cwbCO_VerifyUserIDPassword.

• cwbCO_VerifyUserIDPassword NEVER will set the system object state to 'signed on', whereas a
successful cwbCO_Signon WILL change the state to 'signed on'. This is important because when a
system object is in a 'signed on' state, most of its attributes may no longer be changed.

Similarities between cwbCO_Signon and cwbCO_VerifyUserIDPassword
The following information illustrates the similarities between cwbCO_Signon and
cwbCO_VerifyUserIDPassword commands.

Both APIs, when using a connection to validate the user ID and password, also retrieve current data
related to signon attempts. This data then can be retrieved by using the following APIs:

• cwbCO_GetSignonDate
• cwbCO_GetPrevSignonDate
• cwbCO_GetPasswordExpireDate
• cwbCO_GetFailedSignons

Communications: Create and delete APIs
Use these product APIs to create a list of configured systems, either in the currently active environment or
in a different environment. Retrieve the number of entries in the list, and each entry in succession.

cwbCO_CreateSysListHandle
Use the cwbCO_CreateSysListHandle command.

Purpose
Creates a handle to a list of configured system names in the active environment.

Syntax

unsigned int CWB_ENTRY cwbCO_CreateSysListHandle(
 cwbCO_SysListHandle *listHandle,
 cwbSV_ErrHandle errorHandle);

Windows Application Package: Programming 83

Parameters
cwbCO_SysListHandle *listHandle - output

Pointer to a list handle that will be passed back on output. This handle is needed for other calls using
the list.

cwbSV_ErrorHandle errorHandle - input
If the API call fails, the message object that is associated with this handle will be filled in with
message text that describes the error. If this parameter is zero, no messages will be available.

Return Codes
The following list shows common return values:

CWB_OK
Successful Completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_POINTER
Pointer to the list handle is NULL.

Usage
cwbCO_DeleteSysListHandle must be called to free resources that are allocated with this API.

cwbCO_CreateSysListHandleEnv
Use the cwbCO_CreateSysListHandleEnv command.

Purpose
Creates a handle to list of configured system names of the specified environment.

Syntax

unsigned int CWB_ENTRY cwbCO_CreateSysListHandleEnv(
 cwbCO_SysListHandle *listHandle,
 cwbSV_ErrHandle errorHandle,
 LPCSTR pEnvironment);

Parameters
cwbCO_SysListHandle *listHandle - output

Pointer to a list handle that will be passed back on output. This handle is needed for other calls that
are using the list.

cwbSV_ErrorHandle errorHandle - input
If the API call fails, the message object that is associated with this handle will be filled in with
message text that describes the error. If this parameter is zero, no messages will be available.

LPCSTR pEnvironment
Pointer to a string containing the desired environment name. If pEnvironment is the NULL pointer, or
points to the NULL string ("\0"), the system list of the current active environment is returned.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

84 IBM i: Windows Application Package: Programming

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_INVALID_POINTER
Pointer to the list handle is NULL.

CWBCO_NO_SUCH_ENVIRONMENT
The specified environment does not exist.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage
cwbCO_DeleteSysListHandle must be called to free resources allocated with this API.

cwbCO_DeleteSysListHandle
Use the cwbCO_DeleteSysListHandle command.

Purpose
Deletes a handle to a list of configured system names. This must be called when you are finished using the
system name list.

Syntax

unsigned int CWB_ENTRY cwbCO_DeleteSysListHandle(
 cwbCO_SysListHandle listHandle);

Parameters
cwbCO_SysListHandle - listHandle

A handle to the system name list to delete.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

Usage
Use this API to delete the list created with the cwbCO_CreateSysListHandle or
cwbCO_CreateSysListHandleEnv API.

cwbCO_GetNextSysName
Use the cwbCO_GetNextSysName command.

Purpose
Get the name of the next system from a list of systems.

Windows Application Package: Programming 85

Syntax

unsigned int CWB_ENTRY cwbCO_GetNextSysName(
 cwbCO_SysListHandle listHandle,
 char *systemName,
 unsigned long bufferSize,
 unsigned long *needed);

Parameters
cwbCO_SysListHandle handleList - input

Handle to a list of systems.
char *systemName - output

Pointer to a buffer that will contain the system name. This buffer should be large enough to hold at
least CWBCO_MAX_SYS_NAME + 1 characters, including the terminating NULL character.

unsigned long bufferSize - input
Size of the buffer pointed to by systemName.

unsigned long *needed - output
Number of bytes needed to hold entire system name.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
Pointer to system name or pointer to buffer size needed is NULL. Check messages in the History Log to
determine which are NULL.

CWB_BUFFER_OVERFLOW
Not enough room in output buffer to hold entire system name. Use *needed to determine the correct
size. No error message is logged to the History Log since the caller is expected to recover from this
error and continue.

CWBCO_END_OF_LIST
The end of the system list has been reached. No system name was returned.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR
General API failure.

Usage
If the system list passed in was created using the API cwbCO_CreateSystemListHandle, then the
system returned is configured in the currently active environment, unless between these API calls the
user has removed it or switched to a different environment. If cwbCO_CreateSysListHandleEnv was
called to create the system list, then the system returned is configured in the environment passed to that
API, unless the user has since removed it.

86 IBM i: Windows Application Package: Programming

cwbCO_GetSysListSize
Use the cwbCO_GetSysListSize command.

Purpose
Gets the number of system names in the list.

Syntax

unsigned int CWB_ENTRY cwbCO_GetSysListSize(
 cwbCO_SysListHandle listHandle,
 unsigned long *listSize);

Parameters
cwbCO_SysListHandle listHandle - input

Handle of the list of systems.
unsigned long *listSize - output

On output this will be set to the number of systems in the list.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
Pointer to the list size is NULL.

Usage
None.

Communications: System information APIs
Use these product APIs to obtain information about individual systems that are configured or connected
in the current process. Unless the environment name is passed as a parameter, these APIs work only with
the currently active environment.

cwbCO_GetActiveConversations
Use the cwbCO_GetActiveConversations command.

Purpose
Get the number of active conversations of the system.

Syntax

int CWB_ENTRY cwbCO_GetActiveConversations(
 LPCSTR systemName);

Windows Application Package: Programming 87

Parameters
LPCSTR systemName - input

Pointer to a buffer that contains the system name.

Return Codes
The number of active conversations, if any, is returned. If the systemName pointer is NULL, points to
an empty string, the system is not currently connected, or system name contains one or more Unicode
characters which cannot be converted, 0 will be returned.

Usage
This API returns the number of conversations that are active for the specified system within the CURRENT
PROCESS ONLY. There may be other conversations active within other processes running on the PC.

cwbCO_GetConnectedSysName
Use the cwbCO_GetConnectedSysName command.

Purpose
Get the name of the connected system corresponding to the index.

Syntax

unsigned int CWB_ENTRY cwbCO_GetConnectedSysName(
 char *systemName,
 unsigned long *bufferSize,
 unsigned long index);

Parameters
char *systemName - output

Pointer to a buffer that will contain the system name. This buffer should be large enough to hold at
least CWBCO_MAX_SYS_NAME + 1 characters, including the terminating NULL character.

unsigned long * bufferSize - input/output
input

Size of the buffer pointed to by *systemName.
output

Size of buffer needed.
unsigned long index

Indicates which connected system to retrieve the name for. The first connected system's index is 0,
the second index is 1, and so on.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
Pointer to system name or pointer to buffer size needed is NULL. Check messages in the History Log to
determine which are NULL.

88 IBM i: Windows Application Package: Programming

CWB_BUFFER_OVERFLOW
Not enough room in output buffer to hold entire system name. Use *bufferSize to determine the
correct size. No error message is logged to the History Log since the caller is expected to recover from
this error and continue.

CWBCO_END_OF_LIST
The end of connected system list has been reached. No system name was returned.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR
General API failure.

Usage
Connections for which system names can be retrieved are those within the current process only.

cwbCO_GetDefaultSysName
Use the cwbCO_GetDefaultSysName command.

Purpose
Get the name of the default system in the active environment.

Syntax

unsigned int CWB_ENTRY cwbCO_GetDefaultSysName(
 char *defaultSystemName,
 unsigned long bufferSize,
 unsigned long *needed,
 cwbSV_ErrHandle errorHandle);

Parameters
char *defaultSystemName - output

Pointer to a buffer that will contain the NULL-terminated system name. This buffer should be large
enough to hold at least CWBCO_MAX_SYS_NAME + 1 characters, including the terminating NULL
character.

unsigned long bufferSize - input
Size of input buffer.

unsigned long *needed - output
Number of bytes needed to hold entire system name including the terminating NULL.

cwbSV_ErrorHandle errorhandle - input
If the API call fails, the message object associated with this handle will be filled in with message text
that describes the error. If this parameter is zero, no messages will be available.

Return Codes
The following list shows common return values:

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
Pointer to the system name or pointer to buffer size needed is NULL. Check messages in the History
Log to determine which are NULL.

Windows Application Package: Programming 89

CWB_BUFFER_OVERFLOW
Not enough room in output buffer to hold the entire system name. Use *needed to determine the
correct size. No error message is logged to the History Log since the caller is expected to recover from
this error and continue.

CWBCO_DEFAULT_SYSTEM_NOT_DEFINED
The setting for the default system has not been defined in the active environment.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR
General API failure.

Usage
None.

cwbCO_IsSystemConfigured
Use the cwbCO_IsSystemConfigured command.

Purpose
Check if the input system is configured in the environment currently in use.

Syntax

cwb_Boolean CWB_ENTRY cwbCO_IsSystemConfigured(
 LPCSTR systemName);

Parameters
LPCSTR systemName - input

Pointer to a buffer that contains the system name.

Return Codes
The following list shows common return values:

CWB_TRUE:
System is configured.

CWB_FALSE:
System is not configured, systemName is NULL, or system name contains one or more Unicode
characters that cannot be converted.

Usage
None

cwbCO_IsSystemConfiguredEnv
Use the cwbCO_IsSystemConfiguredEnv command.

Purpose
Check if the input system is configured in the environment specified.

90 IBM i: Windows Application Package: Programming

Syntax

cwb_Boolean CWB_ENTRY cwbCO_IsSystemConfiguredEnv(
 LPCSTR systemName,
 LPCSTR pEnvironment);

Parameters
LPCSTR systemName - input

Pointer to a buffer that contains the system name.
LPCSTR pEnvironment - input

Pointer to a buffer that contains the environment name. If pEnvironment is NULL, or if it points to an
empty string, the environment currently in use is checked.

Return Codes
The following list shows common return values:

CWB_TRUE:
System is configured.

CWB_FALSE:
System is not configured, systemName is NULL, or system name contains one or more Unicode
characters that cannot be converted.

Usage
None

cwbCO_IsSystemConnected
Use the cwbCO_IsSystemConnected command.

Purpose
Check if the input system is currently connected.

Syntax

cwb_Boolean CWB_ENTRY cwbCO_IsSystemConnected(
 LPCSTR systemName);

Parameters
LPCSTR systemName - input

Pointer to a buffer that contains the system name.

Return Codes
The following list shows common return values.

CWB_TRUE:
System is connnected.

CWB_FALSE:
System is not connected, systemName is NULL, or system name contains one or more Unicode
characters that cannot be converted.

Windows Application Package: Programming 91

Usage
This API indicates connection status within the current process only. The system may be connected within
a different process, but this has no effect on the output of this API.

Communications: Configured environments information
Use these product APIs to obtain the names of environments that have been configured.

cwbCO_GetActiveEnvironment
Use the cwbCO_GetActiveEnvironment command.

Purpose
Get the name of the environment currently active.

Syntax

unsigned int CWB_ENTRY cwbCO_GetActiveEnvironment(
 char *environmentName,
 unsigned long *bufferSize);

Parameters
char *environmentName - output

Pointer to a buffer into which will be copied the name of the active environment, if the buffer
that is passed is large enough to hold it. The buffer should be large enough to hold at least
CWBCO_MAX_ENV_NAME + 1 characters, including the terminating NULL character.

unsigned long * bufferSize - input/output
input

Size of the buffer pointed to by *environmentName.
output

Size of buffer needed.

Return Codes
The following list shows common return values:

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
One or more pointer parameters are NULL.

CWB_BUFFER_OVERFLOW
Not enough room in output buffer to hold entire environment name. Use *bufferSize to determine the
correct size. No error message is logged to the History Log since the caller is expected to recover from
this error and continue.

CWBCO_NO_SUCH_ENVIRONMENT
No environments have been configured, so there is no active environment.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR
General API failure.

92 IBM i: Windows Application Package: Programming

Usage
None.

cwbCO_GetEnvironmentName
Use the cwbCO_GetEnvironmentName command.

Purpose
Get the name of the environment corresponding to the index.

Syntax

unsigned int CWB_ENTRY cwbCO_GetEnvironmentName(
 char *environmentName,
 unsigned long *bufferSize,
 unsigned long index);

Parameters
char *environmentName - output

Pointer to a buffer that will contain the environment name. This buffer should be large enough to hold
at least CWBCO_MAX_ENV_NAME + 1 characters, including the terminating NULL character.

unsigned long * bufferSize - input/output
input

Size of the buffer pointed to by *environmentName.
output

Size of buffer needed, if the buffer provided was too small.
unsigned long index - input

0 corresponds to the first environment.

Return Codes
The following list shows common return values:

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
One or more pointer parameters are NULL.

CWB_BUFFER_OVERFLOW
Not enough room in output buffer to hold entire environment name. Use *bufferSize to determine the
correct size. No error message is logged to the History Log since the caller is expected to recover from
this error and continue.

CWBCO_END_OF_LIST
The end of the environments list has been reached. No environment name was returned.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR
General API failure.

Usage
None.

Windows Application Package: Programming 93

cwbCO_GetNumberOfEnvironments
Use the cwbCO_GetNumberOfEnvironments command.

Purpose
Get the number of IBM i Access environments that exist. This includes both the active and all non-active
environments.

Syntax

unsigned int CWB_ENTRY cwbCO_GetNumberOfEnvironments(
 unsigned long *numberOfEnv);

Parameters
unsigned long *numberOfEnv - output

On output this will be set to the number of environments.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
The numberOfEnv pointer parameter is NULL.

Usage
None.

Communications: Environment and connection information
Use these product APIs to determine if the calling application can modify environments and connection
information.

cwbCO_CanConnectNewSystem
Use the cwbCO_CanConnectNewSystemcommand.

Purpose
Indicates whether the user may connect to a system not currently configured in the System List within the
active environment.

Syntax

cwb_Boolean CWB_ENTRY cwbCO_CanConnectNewSystem();

Parameters
None

Return Codes
The following list shows common return values:

94 IBM i: Windows Application Package: Programming

CWB_TRUE
Can connect to systems not already configured.

CWB_FALSE
Cannot connect to systems not already configured.

Usage
If this API returns CWB_FALSE, a call to cwbCO_CreateSystem with a system name not currently
configured will fail, as will various other product APIs that take system name as a parameter.

cwbCO_CanModifyEnvironmentList
Use the cwbCO_CanModifyEnvironmentList command.

Purpose
Indicates whether the user can create/remove/rename environments.

Syntax

cwb_Boolean CWB_ENTRY cwbCO_CanModifyEnvironmentList();

Parameters
None

Return Codes
The following list shows common return values.

CWB_TRUE
Can create/remove/rename/delete environments.

CWB_FALSE
Cannot create/remove/rename/delete environments.

Usage
This API indicates whether environments can be manipulated. To see if systems within an environment
may be manipulated, use the cwbCO_CanModifySystemList and cwbCO_CanModifySystemListEnv
APIs.

cwbCO_CanModifySystemList
Use the cwbCO_CanModifySystemList command.

Purpose
Indicates whether the user can add/remove/delete systems within the active environment. Note that
systems "suggested" by the administrator via policies cannot be removed.

Syntax

cwb_Boolean CWB_ENTRY cwbCO_CanModifySystemList();

Parameters
None

Windows Application Package: Programming 95

Return Codes
The following list shows common return values:

CWB_TRUE
Can modify system list.

CWB_FALSE
Cannot modify system list.

Usage
This API indicates whether systems within the active environment can be manipulated. To see if
environments can be manipulated see the cwbCO_CanModifyEnvironmentList API.

cwbCO_CanModifySystemListEnv
Use the cwbCO_CanModifySystemListEnv command.

Purpose
Indicates whether the user can add/remove/delete systems within an input environment. Note that
systems "suggested" by the administrator via policies cannot be removed.

Syntax

cwb_Boolean CWB_ENTRY cwbCO_CanModifySystemListEnv(
 char *environmentName);

Parameters
char *environmentName - input

Pointer to a string that contains the desired environment name. If this pointer is NULL, or if it points to
an empty string, the currently active environment is used.

Return Codes
The following list shows common return values:

CWB_TRUE
Can modify system list.

CWB_FALSE
Cannot modify system list, or an error occurred, such as having been passed a non-existent
environment name.

Usage
This API indicates whether systems within an environment can be manipulated. To see if environments
can be manipulated see the cwbCO_CanModifyEnvironmentList API.

cwbCO_CanSetActiveEnvironment
Use the cwbCO_CanSetActiveEnvironment command.

Purpose
Indicates whether the user can set an environment to be the active environment.

96 IBM i: Windows Application Package: Programming

Syntax

cwb_Boolean CWB_ENTRY cwbCO_CanSetActiveEnvironment();

Parameters
None

Return Codes
The following list shows common return values:

CWB_TRUE
Can set the active environment.

CWB_FALSE
Cannot set the active environment.

Usage
None

Example: Using communications APIs
The example program below shows the use of communications APIs to retrieve and display the names of
the default (managing) system, along with all the systems that are configured in the active environment.

/***
*
* Module:
* GETSYS.C
*
* Purpose:
* This module is used to demonstrate how an application might use the
* Communication API's. In this example, these APIs are used to get
* and display the list of all configured systems. The user can then
* select one, and that system's connection properties (the attributes
* of the created system object) are displayed. All Client Access
* services are then checked for connectabliity, and the results displayed.
*
* Usage notes:
*
* Include CWBCO.H, CWBCOSYS.H, and CWBSV.H
* Link with CWBAPI.LIB
*
* IBM grants you a nonexclusive license to use this as an example
* from which you can generate similar function tailored to your own
* specific needs. This sample is provided in the form of source
* material which you may change and use.
* If you change the source, it is recommended that you first copy the
* source to a different directory. This will ensure that your changes
* are preserved when the tool kit contents are changed by IBM.
*
* DISCLAIMER
* ----------
*
* This sample code is provided by IBM for illustrative purposes only.
* These examples have not been thoroughly tested under all conditions.
* IBM, therefore, cannot guarantee or imply reliability,
* serviceability, or function of these programs. All programs
* contained herein are provided to you "AS IS" without any warranties
* of any kind. ALL WARRANTIES, INCLUDING BUT NOT LIMITED TO THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, ARE EXPRESSLY DISCLAIMED.
*
* Your license to this sample code provides you no right or licenses to
* any IBM patents. IBM has no obligation to defend or indemnify against
* any claim of infringement, including but not limited to: patents,
* copyright, trade secret, or intellectual property rights of any kind.
*
*

Windows Application Package: Programming 97

*
*
*
* COPYRIGHT
* ---------
* 5770-XE1 (C) Copyright IBM CORP. 1996, 2009
* All rights reserved.
* US Government Users Restricted Rights -
* Use, duplication or disclosure restricted
* by GSA ADP Schedule Contract with IBM Corp.
* Licensed Material - Property of IBM
*
*
***/

#include <windows.h>
#include <stdio.h>

#include "cwbsv.h" /* Service APIs for retrieving any FAILURE messages */
#include "cwbco.h" /* Comm APIs for enumerating systems configured */
#include "cwbcosys.h" /* Comm APIs for creating and using system objects */

#define SUCCESS (0)
#define FAILURE (1)

/*
 * Arrays of attribute description strings, for human-readable
 * display of these values.
 */
char* valModeStr[2] = { "CWBCO_VALIDATE_IF_NECESSARY" ,
 "CWBCO_VALIDATE_ALWAYS" } ;

char* promptModeStr[3] = { "CWBCO_PROMPT_IF_NECESSARY" ,
 "CWBCO_PROMPT_ALWAYS" ,
 "CWBCO_PROMPT_NEVER" } ;

char* dfltUserModeStr[5] = { "CWBCO_DEFAULT_USER_MODE_NOT_SET" ,
 "CWBCO_DEFAULT_USER_USE" ,
 "CWBCO_DEFAULT_USER_IGNORE" ,
 "CWBCO_DEFAULT_USER_USEWINLOGON",
 "CWBCO_DEFAULT_USER_USE_KERBEROS" } ;

char* IPALModeStr[6] = { "CWBCO_IPADDR_LOOKUP_ALWAYS" ,
 "CWBCO_IPADDR_LOOKUP_1HOUR" ,
 "CWBCO_IPADDR_LOOKUP_1DAY" ,
 "CWBCO_IPADDR_LOOKUP_1WEEK" ,
 "CWBCO_IPADDR_LOOKUP_NEVER" ,
 "CWBCO_IPADDR_LOOKUP_AFTER_STARTUP" } ;

char* portLookupModeStr[3] = { "CWBCO_PORT_LOOKUP_SERVER" ,
 "CWBCO_PORT_LOOKUP_LOCAL" ,
 "CWBCO_PORT_LOOKUP_STANDARD" } ;

char* cwbBoolStr[2] = { "False", "True" } ;

/* NOTE! The corresponding service CONSTANT integers start
 * at 1, NOT at 0; that is why the dummy "FAILURE" value
 * was added at position 0.
 */
char* serviceStr[15] = { "CWBCO_SERVICE_THISISABADSERVICE!",
 "CWBCO_SERVICE_CENTRAL" ,
 "CWBCO_SERVICE_NETFILE" ,
 "CWBCO_SERVICE_NETPRINT" ,
 "CWBCO_SERVICE_DATABASE" ,
 "CWBCO_SERVICE_ODBC" ,
 "CWBCO_SERVICE_DATAQUEUES" ,
 "CWBCO_SERVICE_REMOTECMD" ,
 "CWBCO_SERVICE_SECURITY" ,
 "CWBCO_SERVICE_DDM" ,
 "", /* not used */
 "", /* not used */
 "CWBCO_SERVICE_WEB_ADMIN" ,
 "CWBCO_SERVICE_TELNET" ,
 "CWBCO_SERVICE_MGMT_CENTRAL" } ;

/*
 * Node in a singly-linked list to hold a pointer
 * to a system name. Note that the creator of an

98 IBM i: Windows Application Package: Programming

 * instance of this node must allocate the space to
 * hold the system name himself, only a pointer is
 * supplied here.
 */
typedef struct sysListNodeStruct SYSLISTNODE, *PSYSLISTNODE;
struct sysListNodeStruct
{
 char* sysName;
 cwbCO_SysHandle hSys;
 PSYSLISTNODE next;
} ;

/**
 * Add a system name to the list of configured systems we will keep around.
 **/
UINT addSystemToList(
 char* sysName,
 SYSLISTNODE** ppSysList)
{
 SYSLISTNODE* pNewSys;
 char* pNewSysName;

 pNewSys = (SYSLISTNODE*) malloc (sizeof(SYSLISTNODE));
 if (pNewSys == NULL)
 {
 return FAILURE;
 }

 pNewSysName = (char*) malloc (strlen(sysName) + 1);
 if (pNewSysName == NULL)
 {
 free (pNewSys);
 return FAILURE;
 }

 strcpy(pNewSysName, sysName);
 pNewSys->sysName = pNewSysName;
 pNewSys->hSys = 0; /* delay creating sys object until needed */
 pNewSys->next = *ppSysList;
 *ppSysList = pNewSys;

 return SUCCESS;
}

/**
 * Clear the list of system names and clean up used storage.
 **/
void clearList(SYSLISTNODE* pSysList)
{
 PSYSLISTNODE pCur, pNext;

 pCur = pSysList;

 while (pCur != NULL)
 {
 pNext = pCur->next;
 free (pCur->sysName);
 free (pCur);
 pCur = pNext;
 }
}

/**
 * Retrieve and display Client Access FAILURE messages.
 **/
void reportCAErrors(cwbSV_ErrHandle hErrs)
{
 ULONG msgCount;
 UINT apiRC;
 UINT i;
 char msgText[200]; /* 200 is big enuf to hold most msgs */
 ULONG bufLen = sizeof(msgText); /* holds size of msgText buffer */
 ULONG lenNeeded; /* to hold length of buf needed */

 apiRC = cwbSV_GetErrCount(hErrs, &msgCount);
 if (CWB_OK != apiRC)
 {

Windows Application Package: Programming 99

 printf("Failed to get message count, cwbSV_GetErrCount rc=%u\n", apiRC);
 if ((CWB_INVALID_POINTER == apiRC) ||
 (CWB_INVALID_HANDLE == apiRC))
 {
 printf(" --> likely a programming FAILURE!\n");
 }
 return;
 }

 bufLen = sizeof(msgText);
 for (i=1; i<=msgCount; i++)
 {
 apiRC = cwbSV_GetErrTextIndexed(hErrs, i, msgText, bufLen, &lenNeeded);
 if ((CWB_OK == apiRC) ||
 (CWB_BUFFER_OVERFLOW == apiRC)) /* if truncated, that's ok */
 {
 printf("CA FAILURE #%u: %s\n", i, msgText);
 }
 else
 {
 printf("CA FAILURE #%u unuvailable, cwbSV_GetErrTextIndexed rc=%u\n",
 i, apiRC);
 }
 }
}

/**
 * Build the list of systems as it is currently configured in Client
 * Access.
 **/
UINT buildSysList(
 SYSLISTNODE** ppSysList)
{
 cwbSV_ErrHandle hErrs;
 cwbCO_SysListHandle hList;
 char sysName[CWBCO_MAX_SYS_NAME + 1];
 ULONG bufSize = sizeof(sysName);
 ULONG needed;
 UINT apiRC;
 UINT myRC = SUCCESS;
 UINT rc = SUCCESS;

 /* Create a FAILURE handle so that, in case of FAILURE, we can
 * retrieve and display the messages (if any) associated with
 * the failure.
 */
 apiRC = cwbSV_CreateErrHandle(&hErrs);
 if (CWB_OK != apiRC)
 {
 /* Failed to create a FAILURE handle, use NULL instead.
 * This means we'll not be able to get at FAILURE messages.
 */
 hErrs = 0;
 }

 apiRC = cwbCO_CreateSysListHandle(&hList, hErrs);
 if (CWB_OK != apiRC)
 {
 printf("Failure to get a handle to the system list.\n");
 reportCAErrors(hErrs);
 myRC = FAILURE;
 }

 /* Get each successive system name and add the system to our
 * internal list for later use.
 */
 while ((CWB_OK == apiRC) && (myRC == SUCCESS))
 {
 apiRC = cwbCO_GetNextSysName(hList, sysName, bufSize, &needed);

 /* Note that since the sysName buffer is as large as it will
 * ever need to be, we don't check specifically for the return
 * code CWB_BUFFER_OVERFLOW. We could instead choose to use a
 * smaller buffer, and if CWB_BUFFER_OVERFLOW were returned,
 * allocate one large enough and call cwbCO_GetNextSysName
 * again.
 */
 if (CWB_OK == apiRC)
 {
 myRC = addSystemToList(sysName, ppSysList);
 if (myRC != SUCCESS)

100 IBM i: Windows Application Package: Programming

 {
 printf("Failure to add the next system name to the list.\n");
 }
 }
 else if (CWBCO_END_OF_LIST != apiRC)
 {
 printf("Failed to get the next system name.\n");
 myRC = FAILURE;
 }
 } /* end while (to build a list of system names) */

 /*
 * Free the FAILURE handle if one was created
 */
 if (hErrs != 0) /* (non-NULL if it was successfully created) */
 {
 apiRC = cwbSV_DeleteErrHandle(hErrs);
 if (CWB_INVALID_HANDLE == apiRC)
 {
 printf("Failure: FAILURE handle invalid, could not delete!\n");
 myRC = FAILURE;
 }
 }

 return myRC;
}

/**
 * Get a system object given an index into our list of systems.
 **/
UINT getSystemObject(
 UINT sysNum,
 SYSLISTNODE* pSysList,
 cwbCO_SysHandle* phSys)
{
 SYSLISTNODE* pCur;
 UINT myRC=0, apiRC;

 pCur = pSysList;
 for (; sysNum > 1; sysNum--)
 {
 /* We have come to the end of the list without finding
 * the system requested, break out of loop and set FAILURE rc.
 */
 if (NULL == pCur)
 {
 myRC = FAILURE;
 break;
 }

 pCur = pCur->next;
 }

 /* If we're at a real system node, continue
 */
 if (NULL != pCur)
 {
 /* We're at the node/sysname of the user's choice. If no
 * Client Access "system object" has yet been created for this
 * system, create one. Pass back the one for the selected system.
 */
 if (0 == pCur->hSys)
 {
 apiRC = cwbCO_CreateSystem(pCur->sysName, &(pCur->hSys));
 if (CWB_OK != apiRC)
 {
 printf(
 "Failed to create system object, cwbCO_CreateSystem rc = %u\n",
 apiRC);
 myRC = FAILURE;
 }
 }
 *phSys = pCur->hSys;
 }

 return myRC;
}

/**

Windows Application Package: Programming 101

 * Allow the user to select a system from the list we have.
 **/
UINT selectSystem(
 UINT* pNumSelected,
 SYSLISTNODE* pSysList,
 BOOL refreshList)
{
 UINT myRC = SUCCESS;
 SYSLISTNODE* pCur;
 UINT sysNum, numSystems;
 char choiceStr[20];

 /* If the user wants the list refreshed, clear any existing list
 * so we can rebuilt it from scratch.
 */
 if (refreshList)
 {
 clearList(pSysList);
 pSysList = NULL;
 }

 /* If the list of system names is NULL (no list exists), build
 * the list of systems using Client Access APIs.
 */
 if (NULL == pSysList)
 {
 myRC = buildSysList(&pSysList);
 if (SUCCESS != myRC)
 {
 *pNumSelected = 0;
 printf("Failed to build sys list, cannot select a system.\n");
 }
 }

 if (SUCCESS == myRC)
 {
 printf("-- \n");
 printf("The list of systems configured is as follows:\n");
 printf("-- \n");
 for (sysNum = 1, pCur = pSysList;
 pCur != NULL;
 sysNum++, pCur = pCur->next)
 {
 printf(" %u) %s\n", sysNum, pCur->sysName);
 }
 numSystems = sysNum - 1;

 printf("Enter the number of the system of your choice:\n");
 gets(choiceStr);
 *pNumSelected = atoi(choiceStr);

 if (*pNumSelected > numSystems)
 {
 printf("Invalid selection, there are only %u systems configured.\n",numSystems);
 *pNumSelected = 0;
 myRC = FAILURE;
 }
 }

 return myRC;
}

/**
 * Display a single attribute and its value, or a failing return code
 * if one occurred when trying to look it up.
 **/
void dspAttr(
 char* label,
 char* attrVal,
 UINT lookupRC,
 cwb_Boolean* pCanBeModified,
 UINT canBeModifiedRC)
{
 if (CWB_OK == lookupRC)
 {
 printf("%25s : %-30s ", label, attrVal);
 if (CWB_OK == canBeModifiedRC)
 {
 if (pCanBeModified != NULL)
 {

102 IBM i: Windows Application Package: Programming

 printf("%s\n", cwbBoolStr[*pCanBeModified]);
 }
 else
 {
 printf("(N/A)\n");
 }
 }
 else
 {
 printf("(Error, rc=%u)\n", canBeModifiedRC);
 }
 }
 else
 {
 printf("%30s : (Error, rc=%u)\n", label, lookupRC);
 }
}

/**
 *
 * Load the host/version string into the buffer specified. The
 * buffer passed in must be at least 7 bytes long! A pointer to
 * the buffer itself is passed back so that the output from this
 * function can be used directly as a parameter.
 *
 **/
char* hostVerModeDescr(
 ULONG ver,
 ULONG rel,
 char* verRelBuf)
{
 char* nextChar = verRelBuf;

 if (verRelBuf != NULL)
 {
 *nextChar++ = 'v';
 if (ver < 10)
 {
 *nextChar++ = '0' + (char)ver;
 }
 else
 {
 *nextChar++ = '?';
 *nextChar++ = '?';
 }

 *nextChar++ = 'r';
 if (rel < 10)
 {
 *nextChar++ = '0' + (char)rel;
 }
 else
 {
 *nextChar++ = '?';
 *nextChar++ = '?';
 }

 *nextChar = '\0';
 }

 return verRelBuf;
}

/**
 * Display all attributes of the system whose index in the passed list
 * is passed in.
 **/
void dspSysAttrs(
 SYSLISTNODE* pSysList,
 UINT sysNum)
{
 cwbCO_SysHandle hSys;
 UINT rc;
 char sysName[CWBCO_MAX_SYS_NAME + 1];
 char IPAddr[CWBCO_MAX_IP_ADDRESS + 1];
 ULONG bufLen, IPAddrLen;
 ULONG IPAddrBufLen;
 UINT apiRC, apiRC2;

Windows Application Package: Programming 103

 cwbCO_ValidateMode valMode;
 cwbCO_DefaultUserMode dfltUserMode;
 cwbCO_PromptMode promptMode;
 cwbCO_PortLookupMode portLookupMode;
 cwbCO_IPAddressLookupMode IPALMode;
 ULONG ver, rel;
 char verRelBuf[10];
 ULONG verRelBufLen;
 cwb_Boolean isSecSoc;
 cwb_Boolean canModify;

 IPAddrBufLen = sizeof(IPAddr);
 verRelBufLen = sizeof(verRelBuf);

 rc = getSystemObject(sysNum, pSysList, &hSys);
 if (rc == FAILURE)
 {
 printf("Failed to get system object for selected system.\n");
 return;
 }

 printf("\n\n");
 printf("---\n");
 printf(" S y s t e m A t t r i b u t e s \n");
 printf("---\n");
 printf("\n");
 printf("%25s : %-30s %s\n", "Attribute", "Value", "Modifiable");
 printf("%25s : %-30s %s\n", "---------", "-----", "----------");
 printf("\n");

 apiRC = cwbCO_GetSystemName(hSys, sysName, &bufLen);
 dspAttr("System Name", sysName, apiRC, NULL, 0);

 apiRC = cwbCO_GetIPAddress(hSys, IPAddr, &IPAddrLen);
 dspAttr("IP Address", IPAddr, apiRC, NULL, 0);

 apiRC = cwbCO_GetHostVersionEx(hSys, &ver, &rel);
 dspAttr("Host Version/Release",
 hostVerModeDescr(ver, rel, verRelBuf), apiRC, NULL, 0);

 apiRC = cwbCO_IsSecureSockets(hSys, &isSecSoc);
 apiRC2 = cwbCO_CanModifyUseSecureSockets(hSys, &canModify);
 dspAttr("Secure Sockets In Use", cwbBoolStr[isSecSoc],
 apiRC, &canModify, apiRC2);

 apiRC = cwbCO_GetValidateMode(hSys, &valMode);
 canModify = CWB_TRUE;
 dspAttr("Validate Mode", valModeStr[valMode], apiRC,
 &canModify, 0);

 apiRC = cwbCO_GetDefaultUserMode(hSys, &dfltUserMode);
 apiRC2 = cwbCO_CanModifyDefaultUserMode(hSys, &canModify);
 dspAttr("Default User Mode", dfltUserModeStr[dfltUserMode], apiRC,
 &canModify, apiRC2);

 apiRC = cwbCO_GetPromptMode(hSys, &promptMode);
 canModify = CWB_TRUE;
 dspAttr("Prompt Mode", promptModeStr[promptMode], apiRC,
 &canModify, 0);

 apiRC = cwbCO_GetPortLookupMode(hSys, &portLookupMode);
 apiRC2 = cwbCO_CanModifyPortLookupMode(hSys, &canModify);
 dspAttr("Port Lookup Mode", portLookupModeStr[portLookupMode], apiRC,
 &canModify, apiRC2);

 apiRC = cwbCO_GetIPAddressLookupMode(hSys, &IPALMode);
 apiRC2 = cwbCO_CanModifyIPAddressLookupMode(hSys, &canModify);
 dspAttr("IP Address Lookup Mode", IPALModeStr[IPALMode], apiRC,
 &canModify, apiRC2);

 printf("\n\n");
}

/**
 * Display connectability to all Client Access services that are
 * possible to connect to.
 **/
void dspConnectability(
 PSYSLISTNODE pSysList,
 UINT sysNum)

104 IBM i: Windows Application Package: Programming

{
 UINT rc;
 UINT apiRC;
 cwbCO_Service service;
 cwbCO_SysHandle hSys;

 rc = getSystemObject(sysNum, pSysList, &hSys);
 if (rc == FAILURE)
 {
 printf("Failed to get system object for selected system.\n");
 }
 else
 {
 printf("\n\n");
 printf("---\n");
 printf(" S y s t e m S e r v i c e s S t a t u s \n");
 printf("---\n");
 for (service=(cwbCO_Service)1;
 service <= CWBCO_SERVICE_MGMT_CENTRAL;
 service++)
 {
 apiRC = cwbCO_Verify(hSys, service, 0); // 0=no err handle
 printf(" Service '%s': ", serviceStr[service]);
 if (apiRC == CWB_OK)
 {
 printf("CONNECTABLE\n");
 }
 else
 {
 printf("CONNECT TEST FAILED, rc = %u\n", apiRC);
 }
 }
 }

 printf("\n");
}

/**
 * MAIN PROGRAM BODY
 **/
void main(void)
{
 PSYSLISTNODE pSysList = NULL;
 UINT numSelected;
 UINT rc;
 char choiceStr[10];
 UINT choice;

 rc = buildSysList(&pSysList);
 if (SUCCESS != rc)
 {
 printf("Failure to build the system list, exiting.\n\n");
 exit(FAILURE);
 }

 do
 {
 printf("Select one of the following options:\n");
 printf(" (1) Display current system attributes\n");
 printf(" (2) Display service connectability for a system\n");
 printf(" (3) Refresh the list of systems\n");
 printf(" (9) Quit\n");
 gets(choiceStr);
 choice = atoi(choiceStr);
 switch (choice)
 {
 // ---- Display current system attributes ---------------
 case 1 :
 {
 rc = selectSystem(&numSelected, pSysList, FALSE);
 if (SUCCESS == rc)
 {
 dspSysAttrs(pSysList, numSelected);
 }

 break;
 }

 // ---- Display service connectability for a system -----
 case 2 :

Windows Application Package: Programming 105

 {
 rc = selectSystem(&numSelected, pSysList, FALSE);
 if (SUCCESS == rc)
 {
 dspConnectability(pSysList, numSelected);
 }

 break;
 }

 // ---- Refresh the list of systems ---------------------
 case 3 :
 {
 clearList(pSysList);
 pSysList = NULL;
 rc = buildSysList(&pSysList);
 break;
 }

 // ---- Quit --
 case 9 :
 {
 printf("Ending the program!\n");
 break;
 }

 default :
 {
 printf("Invalid choice. Please make a different selection.\n");
 }
 }
 } while (choice != 9);

 /* Cleanup the list, we're done */
 clearList(pSysList);
 pSysList = NULL;

 printf("\nEnd of program.\n\n");
}

IBM i Data Queues APIs
Use product Data Queues application programming interfaces (APIs) to provide easy access to IBM i
data queues. Data queues allow you to create client/server applications that do not require the use of
communications APIs.

IBM i Data Queues APIs required files:
Header file Import library Dynamic Link Library

cwbdq.h cwbapi.lib cwbdq.dll

Programmer's Toolkit:
The Programmer's Toolkit provides Data Queues documentation, access to the cwbdq.h header file, and
links to sample programs. To access this information, open the Programmer's Toolkit and select Data
Queues > C/C++ APIs.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

Related reference
Data Queues APIs return codes
There are data queues API return codes.
IBM i name formats for connection APIs
APIs that take an IBM i name as a parameter, accept the name in the three different formats.
OEM, ANSI, and Unicode considerations

106 IBM i: Windows Application Package: Programming

Most of the C/C++ APIs that accept string parameters exist in three forms: OEM, ANSI, or Unicode.

Data queues
A data queue is an IBM i object.

Benefits of using data queues:
Data queues provide many benefits to PC developers and IBM i applications developers, including:

• They are a fast and efficient means of IBM i communication.
• They have low system overhead and require very little setup.
• They are efficient because a single data queue can be used by a batch job to service several interactive

jobs.
• The contents of a data queue message are free-format (fields are not required), providing flexibility that

is not provided by other system objects.
• Access data queues through an IBM i API and through CL commands, which provides a straight-forward

means of developing client/server applications.

Ordering data queue messages
There are three ways to designate the order of messages on an IBM i data queue.

LIFO
Last in, first out. The last message (newest) placed on the data queue will be the first message taken
off of the queue.

FIFO
First in, first out. The first message (oldest) placed on the data queue will be the first message taken
off of the queue.

KEYED
Each message on the data queue has a key associated with it. A message can be taken off of the
queue only by requesting the key with which it is associated.

Work with data queues
You can work with data queues by using IBM i CL commands or callable programming interfaces. Access
to data queues is available to all IBM i applications regardless of the programming language in which the
application is written.

Use the following IBM i interfaces to work with data queues:

IBM i commands:
CRTDTAQ

Creates a data queue and stores it in a specified library
DLTDTAQ

Deletes the specified data queue from the system

IBM i application programming interfaces:
QSNDDTAQ

Send a message (record) to the specified data queue
QRCVDTAQ

Read a message (record) to the specified data queue
QCLRDTAQ

Clear all messages from the specified data queue

Windows Application Package: Programming 107

QMHQRDQD
Retrieve a data queue description

QMHRDQM
Retrieve an entry from a data queue without removing the entry

Typical use of data queues
A data queue is a powerful program-to-program interface. Programmers who are familiar with IBM i
programming are accustomed to using queues. Data queues simply represent a method that is used to
pass information to another program.

Because this interface does not require communications programming, use it either for synchronous or for
asynchronous (disconnected) processing.

Develop host applications and PC applications by using any supported language. For example, a host
application could use RPG while a PC application might use C++. The queue is there to obtain input from
one side and to pass input to the other.

The following example shows how data queues might be used:

• A PC user might take telephone orders all day, and key each order into a program, while the program
places each request on IBM i data queue.

• A partner program (either a PC program or an IBM i program) monitors the data queue and pulls
information from queue. This partner program could be simultaneously running, or started after peak
user hours.

• It may or may not return input to the initiating PC program, or it may place something on the queue for
another PC or IBM i program.

• Eventually the order is filled, the customer is billed, the inventory records are updated, and information
is placed on the queue for the PC application to direct a PC user to call the customer with an expected
ship date.

Objects
An application that uses the data queue function uses four objects. Each of these objects is identified to
the application through a handle. The objects are:

Queue object:
This object represents the IBM i data queue.

Attribute:
This object describes the IBM i data queue.

Data:
Use these objects to write records to, and to read records from, the IBM i data queue.

Read object:
Use this object only with the asynchronous read APIs. It uniquely identifies a request to read a record
from the IBM i data queue. This handle is used on subsequent calls to check if the data has been
returned. See thecwbDQ_AsyncRead API for more information.

Related reference
cwbDQ_AsyncRead

108 IBM i: Windows Application Package: Programming

Use the cwbDQ_AsyncRead command.

Data Queues: Create, delete, and open APIs
Use these IBM i APIs in conjunction with the cwbCO_SysHandle System Object handle.

cwbDQ_CreateEx
Use the cwbDQ_CreateEx command.

Purpose
Create an IBM i data queue object. After the object is created it can be opened using the cwbDQ_OpenEx
API. It will have the attributes that you specify in the attributes handle.

Syntax

unsigned int CWB_ENTRY cwbDQ_CreateEx(
 cwbCO_SysHandle sysHandle,
 const char *queue,
 const char *library,
 cwbDQ_Attr queueAttributes,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbCO_SysHandle sysHandle - input

Handle to a system object
const char * queue - input

Pointer to the data queue name contained in an ASCIIZ string.
const char * library - input

Pointer to the library name contained in an ASCIIZ string. If this pointer is NULL then the current
library will be used (set library to "*CURLIB").

cwbDQ_Attr queueAttributes - input
Handle to the attributes for the data queue.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetErrText
API. If the parameter is set to zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_COMMUNICATIONS_ERROR
A communications error occurred.

CWB_SERVER_PROGRAM_NOT_FOUND
IBM i application not found.

CWB_HOST_NOT_FOUND
System inactive or does not exist.

CWB_INVALID_POINTER
Bad or null pointer.

CWB_SECURITY_ERROR
A security error has occurred.

Windows Application Package: Programming 109

CWB_LICENSE_ERROR
A license error has occurred.

CWB_CONFIG_ERROR
A configuration error has occurred.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

CWBDQ_BAD_QUEUE_NAME
Queue name is incorrect.

CWBDQ_BAD_LIBRARY_NAME
Library name is incorrect.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBDQ_USER_EXIT_ERROR
Error in user exit program.

CWBDQ_USER_EXIT_ERROR
Error in user exit program.

CWBDQ_LIBRARY_NOT_FOUND
Library not found on system.

CWBDQ_NO_AUTHORITY
No authority to library.

CWBDQ_QUEUE_EXISTS
Queue already exists.

CWBDQ_QUEUE_SYNTAX
Queue syntax is incorrect.

CWBDQ_LIBRARY_SYNTAX
Library syntax is incorrect.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the code page being used.

CWB_API_ERROR
General API failure.

CWB_INVALID_HANDLE
Invalid system handle.

Usage
This function requires that you have previously issued the following APIs:

• cwbDQ_CreateSystem
• cwbDQ_CreateAttr
• cwbDQ_SetMaxRecLen

cwbDQ_DeleteEx
Use the cwbDQ_DeleteEx command.

Purpose
Remove all data from an IBM i data queue and delete the data queue object.

110 IBM i: Windows Application Package: Programming

Syntax

unsigned int CWB_ENTRY cwbDQ_DeleteEx(
 cwbCO_SysHandle sysHandle
 const char *queue,
 const char *library,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbCO_SysHandle - input

Handle to a system object.
const char * queue - input

Pointer to the data queue name contained in an ASCIIZ string.
const char * library - input

Pointer to the library name contained in an ASCIIZ string. If this pointer is NULL then the current
library will be used (set library to "*CURLIB").

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetErrText
API. If the parameter is set to zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_COMMUNICATIONS_ERROR
A communications error occurred.

CWB_SERVER_PROGRAM_NOT_FOUND
IBM i application not found.

CWB_HOST_NOT_FOUND
System is inactive or does not exist.

CWB_INVALID_POINTER
Bad or null pointer.

CWB_SECURITY_ERROR
A security error has occurred.

CWB_LICENSE_ERROR
A license error has occurred.

CWB_CONFIG_ERROR
A configuration error has occurred.

CWBDQ_BAD_QUEUE_NAME
Queue name is too long.

CWBDQ_BAD_LIBRARY_NAME
Library name is too long.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBDQ_USER_EXIT_ERROR
Error in user exit program.

CWBDQ_LIBRARY_NOT_FOUND
Library not found on system.

Windows Application Package: Programming 111

CWBDQ_QUEUE_NOT_FOUND
Queue not found on system.

CWBDQ_NO_AUTHORITY
No authority to queue.

CWBDQ_QUEUE_SYNTAX
Queue syntax is incorrect.

CWBDQ_LIBRARY_SYNTAX
Library syntax is incorrect.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the code page being used.

CWB_API_ERROR
General API failure.

CWB_INVALID_HANDLE
Invalid system handle.

Usage
This function requires that you previously have issued cwbCO_CreateSystem.

cwbDQ_OpenEx
Use the cwbDQ_OpenEx command.

Purpose
Start a connection to the specified data queue. This will start an IBM i conversation. If the connection is
not successful, a non-zero handle will be returned.

Syntax

unsigned int CWB_ENTRY cwbDQ_OpenEx(
 cwbCO_SysHandle sysHandle
 const char *queue,
 const char *library,
 cwbDQ_QueueHandle *queueHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbCO_SysHandle sysHandle - input

Handle to a system object.
const char * queue - input

Pointer to the data queue name contained in an ASCIIZ string.
const char * library - input

Pointer to the library name that is contained in an ASCIIZ string. If this pointer is NULL, the library list
will be used (set library to "*LIBL").

cwbDQ_QueueHandle * queueHandle - output
Pointer to a cwbDQ_QueueHandle where the handle will be returned. This handle should be used in all
subsequent calls.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetErrText
API. If the parameter is set to zero, no messages will be retrieved.

112 IBM i: Windows Application Package: Programming

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_COMMUNICATIONS_ERROR
A communications error occurred.

CWB_SERVER_PROGRAM_NOT_FOUND
IBM i application is not found.

CWB_HOST_NOT_FOUND
System is inactive or does not exist.

CWB_COMM_VERSION_ERROR
Data Queues will not run with this version of communications.

CWB_INVALID_POINTER
Bad or null pointer.

CWB_SECURITY_ERROR
A security error has occurred.

CWB_LICENSE_ERROR
A license error has occurred.

CWB_CONFIG_ERROR
A configuration error has occurred.

CWBDQ_BAD_QUEUE_NAME
Queue name is too long.

CWBDQ_BAD_LIBRARY_NAME
Library name is too long.

CWBDQ_BAD_SYSTEM_NAME
System name is too long.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBDQ_USER_EXIT_ERROR
Error in user exit program.

CWBDQ_LIBRARY_NOT_FOUND
Library not found on system.

CWBDQ_QUEUE_NOT_FOUND
Queue not found on system.

CWBDQ_NO_AUTHORITY
No authority to queue or library.

CWBDQ_DAMAGED_QUE
Queue is in unusable state.

CWBDQ_CANNOT_CONVERT
Data cannot be converted for this queue.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the code page being used.

CWB_API_ERROR
General API failure.

CWB_INVALID_HANDLE
Invalid system handle.

Windows Application Package: Programming 113

Usage
This function requires that you previously have issued cwbCO_CreateSystem.

Data Queues: Accessing data queues APIs
After the cwbDQ_Open API is used to create a connection to a specific IBM i data queue, these other APIs
are called to utilize it. Use the cwbDQ_Close API when the connection no longer is needed.

cwbDQ_AsyncRead
Use the cwbDQ_AsyncRead command.

Purpose
Read a record from the IBM i data queue object that is identified by the specified handle. The AsyncRead
will return control to the caller immediately. This call is used in conjunction with the CheckData API.
When a record is read from a data queue, it is removed from the data queue. If the data queue is empty
for more than the specified wait time, the read is aborted, and the CheckData API returns a value of
CWBDQ_TIMED_OUT. You may specifying a wait time from 0 to 99,999 (in seconds) or forever (-1). A wait
time of zero causes the CheckData API to return a value of CWBDQ_TIMED_OUT on its initial call if there
is no data in the data queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_AsyncRead(
 cwbDQ_QueueHandle queueHandle,
 cwbDQ_Data data,
 signed long waitTime,
 cwbDQ_ReadHandle *readHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbDQ_QueueHandle queueHandle - input

Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the IBM i data
queue object.

cwbDQ_Data data - input
The data object to be read from the IBM i data queue.

signed long waitTime - input
Length of time in seconds to wait for data, if the data queue is empty. A wait time of -1 indicates to
wait forever.

cwbDQ_ReadHandle * readHandle - output
Pointer to where the cwbDQ_ReadHandle will be written. This handle will be used in subsequent calls
to the cwbDQ_CheckData API.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetErrText
API. If the parameter is set to zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_TIME
Invalid wait time.

114 IBM i: Windows Application Package: Programming

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

CWBDQ_INVALID_SEARCH
Invalid search order.

Usage
This function requires that you have previously issued the following APIs:

• cwbDQ_Open or cwbDQ_OpenEx
• cwbDQ_CreateData

Related concepts
Typical use of data queues
A data queue is a powerful program-to-program interface. Programmers who are familiar with IBM i
programming are accustomed to using queues. Data queues simply represent a method that is used to
pass information to another program.

cwbDQ_Cancel
Use the cwbDQ_Cancel command.

Purpose
Cancel a previously issued AsyncRead. This will end the read on the IBM i data queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_Cancel(
 cwbDQ_ReadHandle readHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbDQ_ReadHandle readHandle - input

The handle that was returned by the AsyncRead API.
cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetErrText
API. If the parameter is set to zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_READ_HANDLE
Invalid read handle.

Usage
This function requires that you have previously issued the following APIs:

• cwbDQ_Open or cwbDQ_OpenEx
• cwbDQ_CreateData
• cwbDQ_AsyncRead

Windows Application Package: Programming 115

cwbDQ_CheckData
Use the cwbDQ_CheckData command.

Purpose
Check if data was returned from a previously issued AsyncRead API. This API can be issued multiple
times for a single AsyncRead call. It will return 0 when the data actually has been returned.

Syntax

unsigned int CWB_ENTRY cwbDQ_CheckData(
 cwbDQ_ReadHandle readHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbDQ_ReadHandle readHandle - input

The handle that was returned by the AsyncRead API.
cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetErrText
API. If the parameter is set to zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_READ_HANDLE
Invalid read handle.

CWBDQ_DATA_TRUNCATED
Data truncated.

CWBDQ_TIMED_OUT
Wait time expired and no data returned.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBDQ_QUEUE_DESTROYED
Queue was destroyed.

CWBDQ_NO_DATA
No data.

CWBDQ_CANNOT_CONVERT
Unable to convert data.

Usage
This function requires that you have previously issued the following APIs:

• cwbDQ_Open or cwbDQ_OpenEx
• cwbDQ_CreateData
• cwbDQ_AsyncRead

If a time limit was specified on the AsyncRead, this API will return CWBDQ_NO_DATA until
data is returned (return code will be CWB_OK), or the time limit expires (return code will be
CWBDQ_TIMED_OUT).

116 IBM i: Windows Application Package: Programming

cwbDQ_Clear
Use the cwbDQ_Clear command.

Purpose
Remove all messages from the IBM i data queue object that is identified by the specified handle. If the
queue is keyed, messages for a particular key may be removed by specifying the key and key length.
These values should be set to NULL and zero, respectively, if you want to clear all messages from the
queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_Clear(
 cwbDQ_QueueHandle queueHandle,
 unsigned char *key,
 unsigned short keyLength,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbDQ_QueueHandle queueHandle - input

Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the IBM i data
queue object.

unsigned char * key - input
Pointer to the key. The key may contain embedded NULLs, so it is not an ASCIIZ string.

unsigned short keyLength - input
Length of the key in bytes.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetErrText
API. If the parameter is set to zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

CWBDQ_BAD_KEY_LENGTH
Length of key is not correct.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

Usage
This function requires that you have previously issued:

• cwbDQ_Open or cwbDQ_OpenEx

Windows Application Package: Programming 117

cwbDQ_Close
Use the cwbDQ_Close command.

Purpose
End the connection with the IBM i data queue object that is identified by the specified handle. This will
end the IBM i conversation.

Syntax

unsigned int CWB_ENTRY cwbDQ_Close(
 cwbDQ_QueueHandle queueHandle);

Parameters
cwbDQ_QueueHandle queueHandle - input

Handle that was returned by a previous call to the cwbDQ_Open or cwbDQ_OpenEx function. This
identifies the IBM i data queue object.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

Usage
This function requires that you previously issued the following APIs:

• cwbDQ_Open or cwbDQ_OpenEx

cwbDQ_GetLibName
Use the cwbDQ_GetLibName command.

Purpose
Retrieve the library name used with the cwbDQ_Open API.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetLibName(
 cwbDQ_QueueHandle queueHandle,
 char *libName);

Parameters
cwbDQ_QueueHandle queueHandle - input

Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the IBM i data
queue object.

char * libName - output
Pointer to a buffer where the library name will be written.

118 IBM i: Windows Application Package: Programming

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

Usage
This function requires that you have previously issued cwbDQ_Open.

cwbDQ_GetQueueAttr
Use the cwbDQ_GetQueueAttr command.

Purpose
Retrieve the attributes of the IBM i data queue object that is identified by the specified handle. A handle
to the data queue attributes will be returned. The attributes then can be retrieved individually.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetQueueAttr(
 cwbDQ_QueueHandle queueHandle,
 cwbDQ_Attr queueAttributes,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbDQ_QueueHandle queueHandle - input

Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the IBM i data
queue object.

cwbDQ_Attr queueAttributes - input/output
The attribute object. This was the output from the cwbDQ_CreateAttr call. The attributes will be
filled in by this function, and you should call the cwbDQ_DeleteAttr function to delete this object
when you have retrieved the attributes from it.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetErrText
API. If the parameter is set to zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

Usage
This function requires that you have previously issued the following APIs:

• cwbDQ_Open or cwbDQ_OpenEx

Windows Application Package: Programming 119

• cwbDQ_CreateAttr

cwbDQ_GetQueueName
Use the cwbDQ_GetQueueName command.

Purpose
Retrieve the queue name used with the cwbDQ_Open API.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetQueueName(
 cwbDQ_QueueHandle queueHandle,
 char *queueName);

Parameters
cwbDQ_QueueHandle queueHandle - input

Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the IBM i data
queue object.

char * queueName - output
Pointer to a buffer where the queue name will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

Usage
This function requires that you have previously issued cwbDQ_Open.

cwbDQ_GetSysName
Use the cwbDQ_GetSysName command.

Purpose
Retrieve the system name that is used with the cwbDQ_Open API.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetSysName(
 cwbDQ_QueueHandle queueHandle,
 char *systemName);

Parameters
cwbDQ_QueueHandle queueHandle - input

Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the IBM i data
queue object.

char *systemName - output
Pointer to a buffer where the system name will be written.

120 IBM i: Windows Application Package: Programming

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

Usage
This function requires that you previously have issued cwbDQ_Open or cwbDQ_OpenEx.

cwbDQ_Peek
Use the cwbDQ_Peek command.

Purpose
Read a record from the IBM i data queue object that is identified by the specified handle. When a record
is peeked from a data queue, it remains in the data queue. You may wait for a record if the data queue
is empty by specifying a wait time from 0 to 99,999 or forever (-1). A wait time of zero will return
immediately if there is no data in the data queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_Peek(
 cwbDQ_QueueHandle queueHandle,
 cwbDQ_Data data,
 signed long waitTime,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbDQ_QueueHandle queueHandle - input

Handle that was returned by a previous call to the cwbDQ_Open API. This identifies the IBM i data
queue object.

cwbDQ_Data data - input
The data object to be read from the IBM i data queue.

signed long waitTime - input
Length of time in seconds to wait for data, if the data queue is empty. A wait time of -1 indicates to
wait forever.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetErrText
API. If the parameter is set to zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_TIME
Invalid wait time.

Windows Application Package: Programming 121

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

CWBDQ_INVALID_SEARCH
Invalid search order.

CWBDQ_DATA_TRUNCATED
Data truncated.

CWBDQ_TIMED_OUT
Wait time expired and no data returned.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBDQ_QUEUE_DESTROYED
Queue was destroyed.

CWBDQ_CANNOT_CONVERT
Unable to convert data.

Usage
This function requires that you have previously issued cwbDQ_Open or cwbDQ_OpenEx and
cwbDQ_CreateData.

cwbDQ_Read
Use the cwbDQ_Read command.

Purpose
Read a record from the IBM i data queue object that is identified by the specified handle. When a record
is read from a data queue, it is removed from the data queue. You may wait for a record if the data
queue is empty by specifying a wait time from 0 to 99,999 or forever (-1). A wait time of zero will return
immediately if there is no data in the data queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_Read(
 cwbDQ_QueueHandle queueHandle,
 cwbDQ_Data data,
 long waitTime,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbDQ_QueueHandle queueHandle - input

Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the IBM i data
queue object.

cwbDQ_Data data - input
The data object to be read from the IBM i data queue.

long waitTime - input
Length of time in seconds to wait for data, if the data queue is empty. A wait time of -1 indicates to
wait forever.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetErrText
API. If the parameter is set to zero, no messages will be retrieved.

122 IBM i: Windows Application Package: Programming

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_TIME
Invalid wait time.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

CWBDQ_INVALID_SEARCH
Invalid search order.

CWBDQ_DATA_TRUNCATED
Data truncated.

CWBDQ_TIMED_OUT
Wait time expired and no data returned.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBDQ_QUEUE_DESTROYED
Queue was destroyed.

CWBDQ_CANNOT_CONVERT
Unable to convert data.

Usage
This function requires that you have previously issued cwbDQ_Open and cwbDQ_CreateData.

cwbDQ_Write
Use the cwbDQ_Write command.

Purpose
Write a record to the IBM i data queue object that is identified by the specified handle.

Syntax

unsigned int CWB_ENTRY cwbDQ_Write(
 cwbDQ_QueueHandle queueHandle,
 cwbDQ_Data data,
 cwb_Boolean commit,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbDQ_QueueHandle queueHandle - input

Handle that was returned by a previous call to the cwbDQ_Open or cwbDQ_OpenEx functions. This
identifies the IBM i data queue object.

cwbDQ_Data data - input
The data object to be written to the IBM i data queue.

cwb_Boolean commit - input
This flag is no longer used and is ignored.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetErrText
API. If the parameter is set to zero, no messages will be retrieved.

Windows Application Package: Programming 123

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_BAD_DATA_LENGTH
Length of data is not correct.

CWBDQ_INVALID_MESSAGE_LENGTH
Invalid message length.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBDQ_CANNOT_CONVERT
Unable to convert data.

Usage
This function requires that you previously have issued cwbDQ_Open or cwbDQ_OpenEx, and
cwbDQ_CreateData.

Data Queues: Attributes APIs
Use these APIs to declare attributes of an IBM i data queue. The attribute object is used when creating a
data queue or when obtaining the data queue attributes.

cwbDQ_CreateAttr
Use the cwbDQ_CreateAttr command.

Purpose
Create a data queue attribute object. The handle returned by this API can be used to set the
specific attributes you want for a data queue prior to using it as input for the cwbDQ_Create or
cwbDQ_CreateEx APIs. It also may be used to examine specific attributes of a data queue after using it
as input for the cwbDQ_GetQueueAttr API.

Syntax

cwbDQ_Attr CWB_ENTRY cwbDQ_CreateAttr(void);

Parameters
None

Return Codes
The following list shows common return values.

cwbDQ_Attr — A handle to a cwbDQ_Attr object.
Use this handle to obtain and set attributes. After creation, an attribute object will have the default
values of:

• Maximum Record Length - 1000
• Order - FIFO
• Authority - LIBCRTAUT

124 IBM i: Windows Application Package: Programming

• Force to Storage - FALSE
• Sender ID - FALSE
• Key Length - 0

Usage
None

cwbDQ_DeleteAttr
Use the cwbDQ_DeleteAttr command.

Purpose
Delete the data queue attributes.

Syntax

unsigned int CWB_ENTRY cwbDQ_DeleteAttr(
 cwbDQ_Attr queueAttributes);

Parameters
cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage
None

cwbDQ_GetAuthority
Use the cwbDQ_GetAuthority command.

Purpose
Get the attribute for the authority that other users will have to the data queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetAuthority(
 cwbDQ_Attr queueAttributes,
 unsigned short *authority);

Parameters
cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

Windows Application Package: Programming 125

unsigned short * authority - output
Pointer to an unsigned short to where the authority will be written. This value will be one of the
following defined types:

• CWBDQ_ALL
• CWBDQ_EXCLUDE
• CWBDQ_CHANGE
• CWBDQ_USE
• CWBDQ_LIBCRTAUT

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage
None

cwbDQ_GetDesc
Use the cwbDQ_GetDesc command.

Purpose
Get the attribute for the description of the data queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetDesc(
 cwbDQ_Attr queueAttributes,
 char *description);

Parameters
cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.
char * description - output

Pointer to a 51 character buffer where the description will be written. The description is an ASCIIZ
string.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

126 IBM i: Windows Application Package: Programming

Usage
None

cwbDQ_GetForceToStorage
Use the cwbDQ_GetForceToStorage command.

Purpose
Get the attribute for whether records will be forced to auxiliary storage when they are enqueued.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetForceToStorage(
 cwbDQ_Attr queueAttributes,
 cwb_Boolean *forceToStorage);

Parameters
cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.
cwb_Boolean * forceToStorage - output

Pointer to a Boolean where the force-to-storage indicator will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage
None

cwbDQ_GetKeySize
Use the cwbDQ_GetKeySize command.

Purpose
Get the attribute for the key size in bytes.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetKeySize(
 cwbDQ_Attr queueAttributes,
 unsigned short *keySize);

Parameters
cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

Windows Application Package: Programming 127

unsigned short * keySize - output
Pointer to an unsigned short where the key size will written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage
None

cwbDQ_GetMaxRecLen
Use the cwbDQ_GetMaxRecLen command.

Purpose
Get the maximum record length for the data queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetMaxRecLen(
 cwbDQ_Attr queueAttributes,
 unsigned long *maxRecordLength);

Parameters
cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a call to cwbDQ_CreateAttr.
unsigned long * maxRecordLength - output

Pointer to an unsigned long where the maximum record length will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage
None

128 IBM i: Windows Application Package: Programming

cwbDQ_GetOrder
Use the cwbDQ_GetOrder command.

Purpose
Get the attribute for the queue order. If the order is CWBDQ_SEQ_LIFO, the last record written is the first
record read (Last In First Out). If the order is CWBDQ_SEQ_FIFO, the first record written is the first record
read (First In First Out). If the order is CWBDQ_SEQ_KEYED, the order in which records are read from
the data queue depends on the value of the search order attribute of the data object and the key value
specified for the cwbDQ_SetKey API. If multiple records contain the key that satisfies the search order, a
FIFO scheme is used among those records.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetOrder(
 cwbDQ_Attr queueAttributes,
 unsigned short *order);

Parameters
cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.
unsigned short * order - output

Pointer to an unsigned short where the order will be written. Possible values are:

• CWBDQ_SEQ_LIFO
• CWBDQ_SEQ_FIFO
• CWBDQ_SEQ_KEYED

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage
None

cwbDQ_GetSenderID
Use the cwbDQ_GetSenderID command.

Purpose
Get the attribute for whether information about the sender is kept with each record on the queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetSenderID(
 cwbDQ_Attr queueAttributes,
 cwb_Boolean *senderID);

Windows Application Package: Programming 129

Parameters
cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes that are returned by a previous call to cwbDQ_CreateAttr.
cwb_Boolean * senderID - output

Pointer to a Boolean where the sender ID indicator will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage
None

cwbDQ_SetAuthority
Use the cwbDQ_SetAuthority command.

Purpose
Set the attribute for the authority that other users will have to the data queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_SetAuthority(
 cwbDQ_Attr queueAttributes,
 unsigned short authority);

Parameters
cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.
unsigned short authority - input

Authority that other users on the system have to access the data queue. Use one of the following
defined types for authority:

• CWBDQ_ALL
• CWBDQ_EXCLUDE
• CWBDQ_CHANGE
• CWBDQ_USE
• CWBDQ_LIBCRTAUT

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

130 IBM i: Windows Application Package: Programming

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

CWBDQ_INVALID_AUTHORITY
Invalid queue authority.

Usage
None

cwbDQ_SetDesc
Use the cwbDQ_SetDesc command.

Purpose
Set the attribute for the description of the data queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_SetDesc(
 cwbDQ_Attr queueAttributes,
 char *description);

Parameters
cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.
char * description - input

Pointer to an ASCIIZ string that contains the description for the data queue. The maximum length for
the description is 50 characters.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

CWBDQ_INVALID_QUEUE_TITLE
Queue title is too long.

Usage
None

cwbDQ_SetForceToStorage
Use the cwbDQ_SetForceToStorage command.

Purpose
Set the attribute for whether records will be forced to auxiliary storage when they are enqueued.

Windows Application Package: Programming 131

Syntax

unsigned int CWB_ENTRY cwbDQ_SetForceToStorage(
 cwbDQ_Attr queueAttributes,
 cwb_Boolean forceToStorage);

Parameters
cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.
cwb_Boolean forceToStorage - input

Boolean indicator of whether each record is forced to auxiliary storage when it is enqueued.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage
None

cwbDQ_SetKeySize
Use the cwbDQ_SetKeySize command.

Purpose
Set the attribute for the key size in bytes.

Syntax

unsigned int CWB_ENTRY cwbDQ_SetKeySize(
 cwbDQ_Attr queueAttributes,
 unsigned short keySize);

Parameters
cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.
unsigned short keySize - input

Size in bytes of the key. This value should be zero if the order is LIFO or FIFO, and between 1 and 256
for KEYED.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_KEY_LENGTH
Invalid key length.

132 IBM i: Windows Application Package: Programming

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage
None

cwbDQ_SetMaxRecLen
Use the cwbDQ_SetMaxRecLen command.

Purpose
Set the maximum record length for the data queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_SetMaxRecLen(
 cwbDQ_Attr queueAttributes,
 unsigned long maxRecordLength);

Parameters
cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.
unsigned long maxLength - input

Maximum length for a data queue record. This value must be between 1 and 31744.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

CWBDQ_INVALID_QUEUE_LENGTH
Invalid queue record length.

Usage
None

cwbDQ_SetOrder
Use the cwbDQ_SetOrder command.

Purpose
Set the attribute for the queue order. If the order is CWBDQ_SEQ_LIFO, the last record written is the first
record read (Last In First Out). If the order is CWBDQ_SEQ_FIFO, the first record written is the first record
read (First In First Out). If the order is CWBDQ_SEQ_KEYED, the order in which records are read from
the data queue depends on the value of the search order attribute of the data object and the key value
specified for the cwbDQ_SetKey API. If multiple records contain the key that satisfies the search order, a
FIFO scheme is used among those records.

Windows Application Package: Programming 133

Syntax

unsigned int CWB_ENTRY cwbDQ_SetOrder(
 cwbDQ_Attr queueAttributes,
 unsigned short order);

Parameters
cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.
unsigned short order - input

Order in which new entries will be enqueued. Use one of the following defined types for order:

• CWBDQ_SEQ_LIFO
• CWBDQ_SEQ_FIFO
• CWBDQ_SEQ_KEYED

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

CWBDQ_INVALID_ORDER
Invalid queue order.

Usage
None

cwbDQ_SetSenderID
Use the cwbDQ_SetSenderID command.

Purpose
Set the attribute for whether information about the sender is kept with each record on the queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_SetSenderID(
 cwbDQ_Attr queueAttributes,
 cwb_Boolean senderID);

Parameters
cwbDQ_Attr queueAttributes - input

Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.
cwb_Boolean senderID - input

Boolean indicator of whether information about the sender is kept with record on the queue.

Return Codes
The following list shows common return values.

134 IBM i: Windows Application Package: Programming

CWB_OK
Successful completion.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage
None

Data Queues: Read and write APIs
Use these product APIs for writing to and reading from a data queue

cwbDQ_CreateData
Use the cwbDQ_CreateData command.

Purpose
Create the data object. This data object can be used for both reading and writing data to a data queue.

Syntax

cwbDQ_Data CWB_ENTRY cwbDQ_CreateData(void);

Parameters
None

Return Codes
The following list shows common return values.

cwbDQ_Data — A handle to the data object
After creation, a data object will have the default values of:

• data - NULL and length 0
• key - NULL and length 0
• sender ID info - NULL
• search order - NONE
• convert - FALSE

Usage
None

cwbDQ_DeleteData
Use the cwbDQ_DeleteData command.

Purpose
Delete the data object.

Windows Application Package: Programming 135

Syntax

unsigned int CWB_ENTRY cwbDQ_DeleteData(
 cwbDQ_Data data);

Parameters
cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage
None

cwbDQ_GetConvert
Use the cwbDQ_GetConvert command.

Purpose
Get the value of the convert flag for a data handle. The convert flag determines if data sent to and
recieved from the host is CCSID converted (for example, between ASCII and EBCDIC).

Syntax

unsigned int CWB_ENTRY cwbDQ_GetConvert(
 cwbDQ_Data data,
 cwb_Boolean *convert);

Parameters
cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.
cwb_Boolean * convert - output

Pointer to a Boolean where the convert flag will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

136 IBM i: Windows Application Package: Programming

Usage
None

cwbDQ_GetData
Use the cwbDQ_GetData command.

Purpose
Get the data attribute of the data object.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetData(
 cwbDQ_Data data,
 unsigned char *dataBuffer);

Parameters
cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.
unsigned char * data - output

Pointer to the data. The data may contain embedded NULLs, so it is not an ASCIIZ string.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage
None

cwbDQ_GetDataAddr
Use the cwbDQ_GetDataAddr command.

Purpose
Get the address of the location of the data buffer.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetDataAddr(
 cwbDQ_Data data,
 unsigned char **dataBuffer);

Parameters
cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

Windows Application Package: Programming 137

unsigned char * * data - output
Pointer to where the buffer address will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

CWBDQ_ADDRESS_NOT_SET
Address not set with cwbDQ_SetDataAddr.

Usage
Use this function to retrieve the address of the location where the data is stored. The data address must
be set with the cwbDQ_SetDataAddr API, otherwise, the return code CWBDQ_ADDRESS_NOT_SET will
be returned.

cwbDQ_GetDataLen
Use the cwbDQ_GetDataLen command.

Purpose
Get the data length attribute of the data object. This is the total length of the data object. To obtain the
length of data that was read, use the cwbDQ_GetRetDataLen API.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetDataLen(
 cwbDQ_Data data,
 unsigned long *dataLength);

Parameters
cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.
unsigned long * dataLength - output

Pointer to an unsigned long where the length of the data will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

138 IBM i: Windows Application Package: Programming

Usage
None

cwbDQ_GetKey
Use the cwbDQ_GetKey command.

Purpose
Get the key attribute of the data object, previously set by the cwbDQ_SetKey API. This is the key that is
used for writing data to a keyed data queue. Along with the search order, this key is also used to read data
from a keyed data queue. The key that is associated with the record retrieved can be obtained by calling
the cwbDQ_GetRetKey API.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetKey(
 cwbDQ_Data data,
 unsigned char *key);

Parameters
cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.
unsigned char * key - output

Pointer to the key. The key may contain embedded NULLS, so it is not an ASCIIZ string.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage
None

cwbDQ_GetKeyLen
Use the cwbDQ_GetKeyLen command.

Purpose
Get the key length attribute of the data object.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetKeyLen(
 cwbDQ_Data data,
 unsigned short *keyLength);

Windows Application Package: Programming 139

Parameters
cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.
unsigned short * keyLength - output

Pointer to an unsigned short where the length of the key will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage
None

cwbDQ_GetRetDataLen
Use the cwbDQ_GetRetDataLen command.

Purpose
Get the length of data that was returned. The returned data length will be zero until a cwbDQ_Read or
cwbDQ_Peek API is called.Then it will have the length of the data that actually was returned.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetRetDataLen(
 cwbDQ_Data data,
 unsigned long *retDataLength);

Parameters
cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.
unsigned long * retDataLength - output

Pointer to an unsigned long where the length of the data returned will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage
None

140 IBM i: Windows Application Package: Programming

cwbDQ_GetRetKey
Use the cwbDQ_GetRetKey command.

Purpose
Get the returned key of the data object. This is the key that is associated with the messages that are
retrieved from a keyed data queue. If the search order is a value other than CWBDQ_EQUAL, this key may
be different than the key that is used to retrieve the message.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetRetKey(
 cwbDQ_Data data,
 unsigned char *key);

Parameters
cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.
unsigned char * retKey - output

Pointer to the returned key. The key may contain embedded NULLs, so it is not an ASCIIZ string.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage
None

cwbDQ_GetRetKeyLen
Use the cwbDQ_GetRetKeyLen command.

Purpose
Get the returned key length attribute of the data object. This is the length of the key that is returned by the
cwbDQ_GetKey API.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetRetKeyLen(
 cwbDQ_Data data,
 unsigned short *retKeyLength);

Parameters
cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

Windows Application Package: Programming 141

unsigned short * retKeyLength - output
Pointer to an unsigned short where the length of the key will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage
None

cwbDQ_GetSearchOrder
Use the cwbDQ_GetSearchOrder command.

Purpose
Get the search order of the open attributes. The search order is used when reading or peeking a keyed
data queue to identify the relationship between the key of the record to retrieve and the key value
specified on the cwbDQ_SetKey API. If the data queue order attribute is not CWBDQ_SEQ_KEYED, this
property is ignored.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetSearchOrder(
 cwbDQ_Data data,
 unsigned short *searchOrder);

Parameters
cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.
unsigned short * searchOrder - output

Pointer to an unsigned short where the order will be written. Possible values are:

• CWBDQ_NONE
• CWBDQ_EQUAL
• CWBDQ_NOT_EQUAL
• CWBDQ_GT_OR_EQUAL
• CWBDQ_GREATER
• CWBDQ_LT_OR_EQUAL
• CWBDQ_LESS

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

142 IBM i: Windows Application Package: Programming

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage
None

cwbDQ_GetSenderInfo
Use the cwbDQ_GetSenderInfo command.

Purpose
Get the Sender Information attribute of the open attributes. This information only is available if the
senderID attribute of the Data Queue was set on creation.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetSenderInfo(
 cwbDQ_Data data,
 unsigned char *senderInfo);

Parameters
cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.
unsigned char * senderInfo - output

Pointer to a 36 character buffer where the sender information will be written. This buffer contains:

• Job Name (10 bytes)
• User Name (10 bytes)
• Job ID (6 bytes)
• User Profile (10 bytes)

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage
None

Windows Application Package: Programming 143

cwbDQ_SetConvert
Use the cwbDQ_SetConvert command.

Purpose
Set the convert flag. If the flag is set, all data being written will be converted from PC CCSID (for example,
ASCII) to host CCSID (for example, EBCDIC), and all data being read will be converted from host CCSID
(for example, EBCDIC) to PC CCSID (for example, ASCII). Default behavior is no conversion of data.

Syntax

unsigned int CWB_ENTRY cwbDQ_SetConvert(
 cwbDQ_Data data,
 cwb_Boolean convert);

Parameters
cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.
cwb_Boolean convert - input

Flag indicating if data written to and read from the queue will be CCSID converted.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage
None

cwbDQ_SetData
Use the cwbDQ_SetData command.

Purpose
Set the data and data length attributes of the data object. The default is to have no data with zero length.
This function will make a copy of the data.

Syntax

unsigned int CWB_ENTRY cwbDQ_SetData(
 cwbDQ_Data data,
 unsigned char *dataBuffer,
 unsigned long dataLength);

Parameters
cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.
unsigned char * dataBuffer - input

Pointer to the data. The data may contain embedded NULLS, so it is not an ASCIIZ string.

144 IBM i: Windows Application Package: Programming

unsigned long dataLength - input
Length of the data in bytes.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

CWBDQ_BAD_DATA_LENGTH
Length of data is not correct.

Usage
Use this function if you want to write a small amount of data or you do not want to manage the memory
for the data in your application. Data will be copied and this may affect your application's performance.

cwbDQ_SetDataAddr
Use the cwbDQ_SetDataAddr command.

Purpose
Set the data and data length attributes of the data object. The default is to have no data with zero length.
This function will not copy the data.

Syntax

unsigned int CWB_ENTRY cwbDQ_SetDataAddr(
 cwbDQ_Data data,
 unsigned char *dataBuffer,
 unsigned long dataLength);

Parameters
cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.
unsigned char * dataBuffer - input

Pointer to the data. The data may contain embedded NULLS, so it is not an ASCIIZ string.
unsigned long dataLength - input

Length of the data in bytes.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Windows Application Package: Programming 145

CWBDQ_BAD_DATA_LENGTH
Length of data is not correct.

Usage
This function is better for large amounts of data, or if you want to manage memory in your application.
Data will not be copied so performance will be improved.

cwbDQ_SetKey
Use the cwbDQ_SetKey command.

Purpose
Set the key and key length attributes of the data attributes. This is the key that is used for writing data to a
keyed data queue. In addition to the search order, this key is used to read data from a keyed data queue.
The default is to have no key with zero length; this is the correct value for a non-keyed (LIFO or FIFO) data
queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_SetKey(
 cwbDQ_Data data,
 unsigned char *key,
 unsigned short keyLength);

Parameters
cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.
unsigned char * key - input

Pointer to the key. The key may contain embedded NULLS, so it is not an ASCIIZ string.
unsigned short keyLength - input

Length of the key in bytes.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

CWBDQ_BAD_KEY_LENGTH
Length of key is not correct.

Usage
None

cwbDQ_SetSearchOrder
Use the cwbDQ_SetSearchOrder command.

Purpose
Set the search order of the open attributes. The default is no search order. If the cwbDQ_SetKey API is
called, the search order is changed to equal. Use this API to set it to something else. The search order
is used when reading or peeking a keyed data queue to identify the relationship between the key of

146 IBM i: Windows Application Package: Programming

the record to retrieve and the key value specified on the cwbDQ_SetKey API. If the data queue order
attribute is not CWBDQ_SEQ_KEYED, this property is ignored.

Syntax

unsigned int CWB_ENTRY cwbDQ_SetSearchOrder(
 cwbDQ_Data data,
 unsigned short searchOrder);

Parameters
cwbDQ_Data data - input

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.
unsigned short searchOrder - input

Order to use when reading from a keyed queue. Possible values are:

• CWBDQ_NONE
• CWBDQ_EQUAL
• CWBDQ_NOT_EQUAL
• CWBDQ_GT_OR_EQUAL
• CWBDQ_GREATER
• CWBDQ_LT_OR_EQUAL
• CWBDQ_LESS

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

CWBDQ_INVALID_SEARCH
Invalid search order.

Usage
None

Example: Using Data Queues APIs
The following example illustrates using IBM i data queues APIs.

// Sample Data Queues application

#ifdef UNICODE
 #define _UNICODE
 #define CWB_UNICODE
#endif
#include <windows.h>

// Include the necessary DQ Classes
#include <stdlib.h>
#include <iostream>
#include "cwbdq.h"

using namespace std;
/**/

void main()
{

Windows Application Package: Programming 147

 cwbDQ_Attr queueAttributes;
 cwbDQ_QueueHandle queueHandle;
 cwbDQ_Data queueData;

 // Create an attribute object
 if ((queueAttributes = cwbDQ_CreateAttr()) == 0)
 return;

 // Set the maximum record length to 100
 if (cwbDQ_SetMaxRecLen(queueAttributes,
 100) != 0)
 return;

 // Set the order to First-In-First-Out
 if (cwbDQ_SetOrder(queueAttributes, CWBDQ_SEQ_FIFO) != 0)
 return;

 // obtain a handle to the system
 cwbCO_SysHandle system = NULL;
 if(cwbCO_CreateSystem(TEXT("SYSNAMEXXX"),&system) != 0)
 return;

 // Create the data queue DTAQ in library QGPL on system SYS1
 if (cwbDQ_CreateEx(system,
 TEXT("DTAQX"),
 TEXT("QGPL"),
 queueAttributes,
 NULL) != 0)
 return;

 // Delete the attributes
 if (cwbDQ_DeleteAttr(queueAttributes) != 0)
 return;

 // Open the data queue
 if (cwbDQ_OpenEx(system,
 TEXT("DTAQ"),
 TEXT("QGPL"),
 &queueHandle,
 NULL) != 0)

 return;

 // Create a data object
 if ((queueData = cwbDQ_CreateData()) == 0)
 return;

 // Set the data length and the data
 if (cwbDQ_SetData(queueData, (unsigned char*)"Test Data!", 10) != 0)
 return;

 // Write the data to the data queue
 if (cwbDQ_Write(queueHandle, queueData, CWB_TRUE, NULL) != 0)
 return;

 // Delete the data object
 if (cwbDQ_DeleteData(queueData) != 0)
 return;

 // Close the data queue
 if (cwbDQ_Close(queueHandle) != 0)
 return;

}

Data transformation and National Language Support (NLS) APIs
Use Data Transformation and National Language Support (NLS) APIs to enable your applications to
transform product data.

Data transformation APIs
Product data transformation application programming interfaces (APIs) enable your client/server
applications to transform IBM i numeric data between the system and the PC formats. Transformation

148 IBM i: Windows Application Package: Programming

may be required when you send and receive IBM i numeric data to and from the system. Data
transformation APIs support transformation of many numeric formats.

Data transformation APIs required files:
Header file Import library Dynamic Link Library

cwbdt.h cwbapi.lib cwbdt.dll

Programmer's Toolkit:
The Programmer's Toolkit provides data transformation documentation, access to the cwbdt.h header file,
and links to sample programs. To access this information, open the Programmer's Toolkit and select Data
Manipulation > C/C++ APIs.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

Related reference
IBM i name formats for connection APIs
APIs that take an IBM i name as a parameter, accept the name in the three different formats.
OEM, ANSI, and Unicode considerations
Most of the C/C++ APIs that accept string parameters exist in three forms: OEM, ANSI, or Unicode.

Data transformation API list
The following data transformation APIs are listed alphabetically.

Note: Data transformation APIs that accept strings are provided in Unicode versions. In these
APIs, "ASCII" is replaced by "Wide" (for example, cwbDT_ASCII11ToBin4 has a Unicode version:
cwbDT_Wide11ToBin4). These APIs are indicated in the table that follows. The Unicode versions have
different syntax, parameters and return values than their ASCII counterparts.

cwbDT_ASCII11ToBin4
Use the cwbDT_ASCII11ToBin4 command.

Purpose
Translates (exactly) 11 ASCII numeric characters to a 4-byte integer stored most significant byte first.
(The source string is not expected to be zero-terminated.) This function can be used for translating ASCII
numeric data to the IBM i integer format.

Unicode version
cwbDT_Wide11ToBin4

Syntax

unsigned int CWB_ENTRY cwbDT_ASCII11ToBin4(
 char *target,
 char *source);

Parameters
char * target - output

Pointer to the target (4 byte integer).
char * source - input

Pointer to the source (11 byte ASCII).

Windows Application Package: Programming 149

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

CWB_BUFFER_OVERFLOW
Overflow error.

other
Offset of the first untranslated character plus one.

Usage
The target data will be stored with the Most Significant Byte first. This is the IBM i format that the system
uses and is the opposite of the format that is used by the Intel x86 processors. Valid formats for the ASCII
source data are as follows:

• [blankspaces][sign][blankspaces][digits] or
• [sign][blankspaces][digits][blankspaces]

Examples:

 " + 123"
 "- 123 "
 " +123 "
 " 123"
 " -123"
 "+123 "

cwbDT_ASCII6ToBin2
Use the cwbDT_ASCII6ToBin2 command.

Purpose
Translates (exactly) 6 ASCII numeric characters to a 2-byte integer stored most significant byte first.
(The source string is not expected to be zero-terminated.) This function can be used for translating ASCII
numeric data to the IBM i integer format.

Unicode version
cwbDT_Wide6ToBin2

Syntax

unsigned int CWB_ENTRY cwbDT_ASCII6ToBin2(
 char *target,
 char *source);

Parameters
char * target - output

Pointer to the target (2 byte integer).
char * source - input

Pointer to the source (6 byte ASCII).

150 IBM i: Windows Application Package: Programming

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

CWB_BUFFER_OVERFLOW
Overflow error.

other
Offset of the first untranslated character plus one.

Usage
The target data will be stored with the Most Significant Byte first. This is the IBM i format that the system
uses and is the opposite of the format that is used by Intel x86 processors. Valid formats for the ASCII
source data are as follows:

• [blankspaces][sign][blankspaces][digits] or
• [sign][blankspaces][digits][blankspaces]

Examples:

 " + 123"
 "- 123 "
 " +123 "
 " 123"
 " -123"
 "+123 "

cwbDT_ASCIIPackedToPacked
Use the cwbDT_ASCIIPackedToPacked command.

Purpose
Translates data from ASCII packed format to packed decimal. This function can be used for translating
data from ASCII files to the IBM i format

Unicode version
None.

Syntax

unsigned int CWB_ENTRY cwbDT_ASCIIPackedToPacked(
 char *target,
 char *source,
 unsigned long length);

Parameters
char * target - output

Pointer to the target data.
char * source - input

Pointer to the source data.
unsigned long length - input

Number of bytes of source data to translate.

Windows Application Package: Programming 151

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other
Offset of the first untranslated character plus one.

Usage
The caller must make sure that there is adequate space to hold the target information. This function
checks that each half-byte of the packed decimal data is in the range of 0 to 9. The only exception is the
last half-byte which contains the sign indicator (which can be 0x3 or 0xb).

cwbDT_ASCIIToHex
Use the cwbDT_ASCIIToHex command.

Purpose
Translates data from ASCII (hex representation) to binary. One byte is stored in the target for each two
bytes in the source.

Unicode version
cwbDT_WideToHex

Syntax

unsigned int CWB_ENTRY cwbDT_ASCIIToHex(
 char *target,
 char *source,
 unsigned long length);

Parameters
char * target - output

Pointer to the target data.
char * source - input

Pointer to the source (ASCII hex) data.
unsigned long length - input

Number of bytes of source data to translate/2.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other
Offset of the first untranslated character plus one.

152 IBM i: Windows Application Package: Programming

Usage
For 'length' bytes of source data 'length'/2 bytes of target data will be stored. The caller must make sure
that there is adequate space to hold the target information.

cwbDT_ASCIIToPacked
Use the cwbDT_ASCIIToPacked command.

Purpose
Translates ASCII numeric data to packed decimal format. This function can be used for translating ASCII
text data for use on the IBM i platform.

Unicode version
cwbDT_WideToPacked

Syntax

unsigned int CWB_ENTRY cwbDT_ASCIIToPacked(
 char *target,
 char *source,
 unsigned long length,
 unsigned long decimalPosition);

Parameters
char * target - output

Pointer to the target data.
char * source - input

Pointer to the source data. Must be zero terminated.
unsigned long length - input

Number of bytes of target data to translate.
unsigned long decimalPosition - input

Position of the decimal point.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

CWB_BUFFER_OVERFLOW
Overflow error.

CWB_NOT_ENOUGH_MEMORY
Unable to allocate temporary memory.

other
Offset of the first untranslated character plus one.

Usage
The caller must make sure that there is adequate space to hold the target information. The sign half-
byte will be set to 0xd to indicate a negative number and hex 0xc to indicate a positive number. 0 <=
decimalPosition < (length * 2). Valid formats for the ASCII numeric data are as follows:

Windows Application Package: Programming 153

• [blankspaces][sign][blankspaces][digits] or
• [sign][blankspaces][digits][blankspaces] or
• [sign][digits][.digits][blankspaces] or
• [blankspaces][sign][digits][.digits][blankspaces]

Examples:

 " + 123\0"
 "- 123 \0"
 " +123 \0"
 " 123\0"
 " -12.3\0"
 "+1.23 \0"

cwbDT_ASCIIToZoned
Use the cwbDT_ASCIIToZoned command.

Purpose
Translates ASCII numeric data to EBCDIC zoned decimal format. This function can be used for translating
ASCII text data for use on the IBM i platform.

Unicode version
cwbDT_WideToZoned

Syntax

unsigned int CWB_ENTRY cwbDT_ASCIIToZoned(
 char *target,
 char *source,
 unsigned long length,
 unsigned long decimalPosition);

Parameters
char * target - output

Pointer to the target data.
char * source - input

Pointer to the source data. Must be zero terminated.
unsigned long length - input

Number of bytes of target data to translate.
unsigned long decimalPosition - input

Position of the decimal point.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

CWB_BUFFER_OVERFLOW
Overflow error.

154 IBM i: Windows Application Package: Programming

CWB_NOT_ENOUGH_MEMORY
Unable to allocate temporary memory.

other
Offset of the first untranslated character plus one.

Usage
The caller must make sure that there is adequate space to hold the information. The sign half-byte will be
set to 0xd to indicate a negative number and hex 0xc to indicate a positive number. 0 <= decimalPosition
<= length. Valid formats for the ASCII numeric data are as follows:

• [blankspaces][sign][blankspaces][digits] or
• [sign][blankspaces][digits][blankspaces] or
• [sign][digits][.digits][blankspaces] or
• [blankspaces][sign][digits][.digits][blankspaces]

Examples:

 " + 123\0"
 "- 123 \0"
 " +123 \0"
 " 123\0"
 " -12.3\0"
 "+1.23 \0"

cwbDT_ASCIIZonedToZoned
Use the cwbDT_ASCIIZonedToZoned command.

Purpose
Translates data from ASCII zoned decimal format to EBCDIC zoned decimal. This function can be used for
translating data from ASCII files for use on the IBM i platform.

Unicode version
None.

Syntax

unsigned int CWB_ENTRY cwbDT_ASCIIZonedToZoned(
 char *target,
 char *source,
 unsigned long length);

Parameters
char * target - output

Pointer to the target data.
char * source - input

Pointer to the source data.
unsigned long length - input

Number of bytes of source data to translate.

Return Codes
The following list shows common return values.

Windows Application Package: Programming 155

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other
Offset of the first untranslated character plus one.

Usage
The left half of each byte (0x3) in the ASCII zoned decimal format will be converted to 0xf in the left
half-byte of the EBCDIC zoned data except for the last byte (sign). This function checks that the left half of
each byte in the ASCII zoned decimal data must be 0x3 except for the last byte. The high half of the last
byte must be 0x3 or 0xb. The right half of each byte in the ASCII zoned decimal data must be in the range
0-9.

cwbDT_Bin2ToASCII6
Use the cwbDT_Bin2ToASCII6 command.

Purpose
Translates a 2-byte integer stored most significant byte first to (exactly) 6 ASCII numeric characters. (The
target will not be zero terminated.) This function can be used for translating IBM i numeric data to ASCII.

Unicode version
cwbDT_Bin2ToWide6

Syntax

unsigned int CWB_ENTRY cwbDT_Bin2ToASCII6(
 char *target,
 char *source);

Parameters
char * target - output

Pointer to the target (6 byte) area.
char * source - input

Pointer to the source (2 byte integer).

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

Usage
The source data is assumed to be stored with the Most significant Byte first. This is the IBM i format that
the system uses and is the opposite of the format used by the Intel x86 processes.

156 IBM i: Windows Application Package: Programming

cwbDT_Bin2ToBin2
Use the cwbDT_Bin2ToBin2 command.

Purpose
Reverses the order of bytes in a 2-byte integer. This function can be used for translating a 2-byte integer
to or from the IBM i format.

Unicode version
None.

Syntax

unsigned int CWB_ENTRY cwbDT_Bin2ToBin2(
 char *target,
 char *source);

Parameters
char * target - output

Pointer to the target (2 byte integer).
char * source - input

Pointer to the source (2 byte integer).

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

Usage
The source data and the target data must not overlap. The following example shows the result of the
translation:

• Source data: 0x1234
• Target data: 0x3412

cwbDT_Bin4ToASCII11
Use the cwbDT_Bin4ToASCII11 command.

Purpose
Translates a 4-byte integer stored most significant byte first to (exactly) 11 ASCII numeric characters.
(The target will not be zero terminated.) This function can be used for translating IBM i numeric data to
ASCII.

Unicode version
cwbDT_Bin4ToWide11

Windows Application Package: Programming 157

Syntax

unsigned int CWB_ENTRY cwbDT_Bin4ToASCII11(
 char *target,
 char *source);

Parameters
char * target - output

Pointer to the target (11 byte) area.
char * source - input

Pointer to the source (4 byte integer).

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

Usage
The source data is assumed to be stored with the Most Significant Byte first. This is the IBM i format that
the system uses and is the opposite of the format used by the Intel x86 processors.

cwbDT_Bin4ToBin4
Use the cwbDT_Bin4ToBin4 command.

Purpose
Reverses the order of bytes in a 4-byte integer. This function can be used for translating a 4-byte integer
to or from the IBM i format.

Unicode version
None.

Syntax

unsigned int CWB_ENTRY cwbDT_Bin4ToBin4(
 char *target,
 char *source);

Parameters
char * target - output

Pointer to the target (4 byte integer).
char * source - input

Pointer to the source (4 byte integer).

Return Codes
The following list shows common return values.

158 IBM i: Windows Application Package: Programming

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

Usage
The source data and the target data must not overlap. The following example shows the result of the
translation:

• Source data: 0x12345678
• Target data: 0x78563412

cwbDT_EBCDICToEBCDIC
Use the cwbDT_EBCDICToEBCDIC command.

Purpose
'Translates' (copies unless character value less than 0x40 is encountered) EBCDIC data to EBCDIC.

Unicode version
None.

Syntax

unsigned int CWB_ENTRY cwbDT_EBCDICToEBCDIC(
 char *target,
 char *source,
 unsigned long length);

Parameters
char * target - output

Pointer to the target data.
char * source - input

Pointer to the source data.
unsigned long length - input

Number of bytes of target data to translate.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other
Offset of the first untranslated character plus one.

Usage
The caller must make sure that there is adequate space to hold the target information.

Windows Application Package: Programming 159

cwbDT_HexToASCII
Use the cwbDT_HexToASCII command.

Purpose
Translates binary data to the ASCII hex representation. Two ASCII characters are stored in the target for
each byte of source data.

Unicode version
cwbDT_HexToWide

Syntax

unsigned int CWB_ENTRY cwbDT_HexToASCII(
 char *target,
 char *source,
 unsigned long length);

Parameters
char * target - output

Pointer to the target (ASCII hex) data.
char * source - input

Pointer to the source data.
unsigned long length - input

Number of bytes of source data to translate.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

Usage
For 'length' bytes of source data 'length'*2 bytes of target data will be stored. The caller must make sure
that there is adequate space to hold the target information.

cwbDT_PackedToASCII
Use the cwbDT_PackedToASCII command.

Purpose
Translates data from packed decimal format to ASCII numeric data. This function can be used for
translating IBM i data from the system for use in ASCII text format.

Unicode version
cwbDT_PackedToWide

160 IBM i: Windows Application Package: Programming

Syntax

unsigned int CWB_ENTRY cwbDT_PackedToASCII(
 char *target,
 char *source,
 unsigned long length,
 unsigned long decimalPosition);

Parameters
char * target - output

Pointer to the target data.
char * source - input

Pointer to the source data.
unsigned long length - input

Number of bytes of source data to translate.
unsigned long decimalPosition - input

Position of the decimal point.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other
Offset of the first untranslated character plus one.

Usage
The caller must make sure that there is adequate space to hold the target information. This function
checks that each half-byte of the packed decimal data is in the range of 0 to 9. The only exception is the
last half-byte which contains the sign indicator. 0 <= decimalPosition < (length * 2).

cwbDT_PackedToASCIIPacked
Use the cwbDT_PackedToASCIIPacked command.

Purpose
Translates data from packed decimal format to ASCII packed format. This function can be used for
translating IBM i data from the system for use in ASCII format.

Unicode version
None.

Syntax

unsigned int CWB_ENTRY cwbDT_PackedToASCIIPacked(
 char *target,
 char *source,
 unsigned long length);

Windows Application Package: Programming 161

Parameters
char * target - output

Pointer to the target data.
char * source - input

Pointer to the source data.
unsigned long length - input

Number of bytes of source data to translate.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other
Offset of the first untranslated character plus one.

Usage
The caller must make sure that there is adequate space to hold the target information. This function
checks that each half-byte of the packed decimal data is in the range of 0 to 9. The only exception is the
last half-byte which contains the sign indicator (which can be 0-9, 0xd, or 0xb).

cwbDT_PackedToPacked
Use the cwbDT_PackedToPacked command.

Purpose
Translates packed decimal data to packed decimal. This function can be used for transferring IBM i data
from the system to no-conversion files and back.

Unicode version
None.

Syntax

unsigned int CWB_ENTRY cwbDT_PackedToPacked(
 char *target,
 char *source,
 unsigned long length);

Parameters
char * target - output

Pointer to the target data.
char * source - input

Pointer to the source data.
unsigned long length - input

Number of bytes of source data to translate.

Return Codes
The following list shows common return values.

162 IBM i: Windows Application Package: Programming

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other
Offset of the first untranslated character plus one.

Usage
The caller must make sure that there is adequate space to hold the target information. This function
checks that each half-byte of the packed decimal data is in the range of 0 to 9. The only exception is the
last half-byte which contains the sign indicator.

cwbDT_ZonedToASCII
Use the cwbDT_ZonedToASCII command.

Purpose
Translates EBCDIC zoned decimal data to ASCII numeric format. This function can be used for translating
IBM i data from the system for use in ASCII text format.

Unicode version
cwbDT_ZonedToWide

Syntax

unsigned int CWB_ENTRY cwbDT_ZonedToASCII(
 char *target,
 char *source,
 unsigned long length,
 unsigned long decimalPosition);

Parameters
char * target - output

Pointer to the target data.
char * source - input

Pointer to the source data.
unsigned long length - input

Number of bytes of source data to translate.
unsigned long decimalPosition - input

Position of the decimal point.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

CWB_BUFFER_OVERFLOW
Overflow error.

other
Offset of the first untranslated character plus one.

Windows Application Package: Programming 163

Usage
The caller must make sure that there is adequate space to hold the target information. The high half of
the last byte of the zoned data indicates the sign of the number. If the high half-byte is 0xb or 0xd, then
a negative number is indicated. Any other value indicates a positive number. This function checks that the
high half of each byte of zoned data must be 0xf except for the last byte. The low half of each byte of
zoned data must be in the range 0-9. 0 <= decimalPosition < length.

cwbDT_ZonedToASCIIZoned
Use the cwbDT_ZonedToASCIIZoned command.

Purpose
Translates data from EBCDIC zoned decimal format to ASCII zoned decimal format. This function can be
used for translating IBM i data from the system for use in ASCII files.

Unicode version
None.

Syntax

unsigned int CWB_ENTRY cwbDT_ZonedToASCIIZoned(
 char *target,
 char *source,
 unsigned long length);

Parameters
char * target - output

Pointer to the target data.
char * source - input

Pointer to the source data.
unsigned long length - input

Number of bytes of source data to translate.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other
Offset of the first untranslated character plus one.

Usage
The caller must make sure that there is adequate space to hold the target information. The left half-byte
(0xf) in the EBCDIC zoned decimal data will be converted to 0x3 in the left half-byte of the ASCII zoned
decimal data except for the last byte (sign). The high half of the last byte of the EBCDIC zoned decimal
data indicates the sign of the number. If the high half-byte is 0xb or 0xb then a negative number is
indicated, any other value indicates a positive number. This function checks that the high half of each byte
of EBCDIC zoned decimal data must be 0xf except for the last byte. The low half of each byte of EBCDIC
zoned decimal data must be in the range 0-9.

164 IBM i: Windows Application Package: Programming

cwbDT_ZonedToZoned
Use the cwbDT_ZonedToZoned command.

Purpose
Translates data from zoned decimal format to zoned decimal. This function can be used for translating
IBM i data from the system for use in no-conversion files and vice-versa.

Unicode version
None.

Syntax

unsigned int CWB_ENTRY cwbDT_ZonedToZoned(
 char *target,
 char *source,
 unsigned long length);

Parameters
char * target - output

Pointer to the target data.
char * source - input

Pointer to the source data.
unsigned long length - input

Number of bytes of source data to translate.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other
Offset of the first untranslated character plus one.

Usage
The caller must make sure that there is adequate space to hold the target information. The high half of
the last byte of the zoned data indicates the sign of the number. If the high half-byte is 0xb or 0xb then a
number is indicated, any other value indicates a positive number. This function checks that the high half of
each byte of zoned data must be 0xf except for the last byte. The low half of each byte of zoned data must
be in the range 0-9.

Example: Using data transformation APIs
This example illustrates using data transformation APIs.

/***/
/* Sample Data Transform Program using cwbDT_Bin4ToBin4 to reverse */
/* the order of bytes in a 4-byte integer. */
/***/

#include <iostream>
using namespace std;
#include "cwbdt.h"

Windows Application Package: Programming 165

void main()
{
 unsigned int returnCode;
 long source,
 target;

 cout << "Enter source number:\n";

 while (cin >> source) {
 cout << "Source in Dec = " << dec << source;
 cout << "\nSource in Hex = " << hex << source << '\n';
 if (((returnCode = cwbDT_Bin4ToBin4((char *)&target,(char *)&source)) == CWB_OK)) {
 cout << "Target in Dec = " << dec << target;
 cout << "\nTarget in Hex = " << hex << target << '\n';
 } else {
 cout << "Conversion failed, Return code = " << returnCode << '\n' ;
 }; /* endif */
 cout << "\nEnter source number:\n";

 }; /* endwhile */

}

National Language Support (NLS) APIs
National Language Support APIs enable your applications to get and save (query and change) product
settings that are relevant to different language versions.

Through NLS, the product supports many national languages. NLS allows users to work on a system in
the language of their choice. The support also ensures that the data that is sent to and received from
the system appears in the form and order that is expected. By supporting many different languages, the
system operates as intended, from both a linguistic and a cultural point of view.

All IBM i functions use a common set of program code, regardless of which language you use on the
system. For example, the IBM i program code on a U.S. English language version and the IBM i program
code on a Spanish language version are identical. Different sets of textual data are used, however, for
different languages. Textual data is a collective term for menus, displays, lists, prompts, options, Online
help information, and messages. This means that you see Help for the description of the function key
for Online help information on a U.S. English system, while you see Ayuda on a Spanish system. Using
the same program code with different sets of textual data allows the system to support more than one
language on a single system.

You can add convenient functions into your product applications, including the capability to:

• Select from a list of installed national languages.
• Convert character data from one code page to another. This permits computers that use different code

pages, such as personal computers and the IBM i operating system, to share information.
• Automatically replace the translatable text (caption and control names) within dialog boxes. This

expands the size of the controls according to the text that is associated with them. The size of the
dialog-box frame also is adjusted automatically.

Note: It is essential to build National Language Support considerations into the design of the program
right from the start. It is much harder to add NLS or DBCS support after a program has been designed or
coded.

NLS APIs required files:
NLS API type Header file Import library Dynamic Link Library

General cwbnl.h cwbapi.lib cwbnl.dll

Conversion cwbnlcnv.h cwbcore.dll

Dialog-box cwbnldlg.h cwbnldlg.dll

166 IBM i: Windows Application Package: Programming

Programmer's Toolkit:
The Programmer's Toolkit provides NLS documentation, access to the NLS APIs header files, and
links to sample programs. To access this information, open the Programmer's Toolkit and select Data
Manipulation > C/C++ APIs.

Related reference
IBM i name formats for connection APIs
APIs that take an IBM i name as a parameter, accept the name in the three different formats.
OEM, ANSI, and Unicode considerations
Most of the C/C++ APIs that accept string parameters exist in three forms: OEM, ANSI, or Unicode.

Coded character sets
The product uses character encoding schemes.

Graphic characters are printable or displayable symbols, such as letters, numbers, and punctuation
marks. A collection of graphic characters is called a graphic-character set, and often simply a character
set.

Each language requires its own graphic-character set to be printed or displayed properly. Characters are
encoded according to a code page, which is a table that assigns graphic and control characters to specific
values called code points.

Code pages are classified into many types according to the encoding scheme. Two important encoding
schemes for the IBM i Access Family are the Host and PC code pages. Unicode also is becoming an
important encoding scheme. Unicode is a 16-bit worldwide character encoding scheme that is gaining
popularity on both the Host and the personal computer.

• Host code pages are encoded in accordance with IBM Standard of Extended BCD Interchange Code
(EBCDIC) and usually used by S/390® and on the IBM i platform.

• PC Code pages are encoded based on ANSI X3.4, ASCII and usually used by IBM Personal Computers.

General NLS APIs list
Use general NLS APIs.

This product is translated into many languages. One or more of these languages can be installed on the
personal computer. The following general NLS APIs allow an application to:

• Get a list of installed languages
• Get the current language setting
• Save the language setting

cwbNL_FindFirstLang
Use the cwbNL_FindFirstLang command.

Purpose
Returns the first available language.

Syntax

unsigned int CWB_ENTRY cwbNL_FindFirstLang(
 char *mriBasePath,
 char *resultPtr,
 unsigned short resultLen,
 unsigned short *requiredLen,
 unsigned long *searchHandle,
 cwbSV_ErrHandle errorHandle);

Windows Application Package: Programming 167

Parameters
char * mriBasePath - input

Pointer to the mriBasePath, for example C:\Program Files\IBM\ClientAccess. If NULL, the
mriBasePath of the product is used.

char * resultPtr - output
Pointer to the buffer to contain the result.

unsigned short resultLen - input
Length of the result buffer. Recommended size is CWBNL_MAX_LANG_SIZE.

unsigned short * requiredLen - output
Actual length of the result. If requiredLen > resultLen, the return value will be
CWB_BUFFER_OVERFLOW.

unsigned long * searchHandle - output
Search handle to be passed on subsequent calls to cwbNL_FindNextLang.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with
the cwbSV_CreateErrHandle() API The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_FILE_NOT_FOUND
File not found.

CWB_PATH_NOT_FOUND
Path not found.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

Usage
The result buffer will contain a language.

cwbNL_FindNextLang
Use the cwbNL_FindNextLang command.

Purpose
Returns the next available language.

Syntax

unsigned int CWB_ENTRY cwbNL_FindNextLang(
 char *resultPtr,
 unsigned short resultLen,

168 IBM i: Windows Application Package: Programming

 unsigned short *requiredLen,
 unsigned long *searchHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
char * resultPtr - output

Pointer to the buffer to contain the result.
unsigned short resultLen - input

Length of the result buffer. Recommended size is CWBNL_MAX_LANG_SIZE.
unsigned short * requiredLen - output

Actual length of the result. If requiredLen > resultLen, the return value will be
CWB_BUFFER_OVERFLOW.

unsigned long * searchHandle - output
Search handle to be passed on subsequent calls to cwbNL_FindNextLang.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with
the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NO_MORE_FILES
No more files are found.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

Usage
The result buffer will contain a language.

cwbNL_GetLang
Use the cwbNL_GetLang command.

Purpose
Get the current language setting.

Syntax

unsigned int CWB_ENTRY cwbNL_GetLang(
 char *mriBasePath,
 char *resultPtr,
 unsigned short resultLen,
 unsigned short *requiredLen,
 cwbSV_ErrHandle errorHandle);

Windows Application Package: Programming 169

Parameters
char * mriBasePath - input

Pointer to the mriBasePath, for example C:\Program Files\IBM\ClientAccess. If NULL, the
mriBasePath of the product is used.

char * resultPtr - output
Pointer to the buffer to contain the result.

unsigned short resultLen - input
Length of the result buffer. Recommended size is CWBNL_MAX_LANG_SIZE.

unsigned short * requiredLen - output
Actual length of the result. If requiredLen > resultLen, the return value will be
CWB_BUFFER_OVERFLOW.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with
the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_BUFFER_OVERFLOW
Buffer too small to contain result.

Usage
The result buffer will contain the name of the language subdirectory. This language subdirectory
contains the language-specific files. This language subdirectory name also can be passed to
cwbNL_GetLangName.

cwbNL_GetLangName
Use the cwbNL_GetLangName command.

Purpose
Return the descriptive name of a language setting.

Syntax

unsigned int CWB_ENTRY cwbNL_GetLangName(
 char *lang,
 char *resultPtr,
 unsigned short resultLen,
 unsigned short *requiredLen,
 cwbSV_ErrHandle errorHandle);

170 IBM i: Windows Application Package: Programming

Parameters
char * lang - input

Address of the ASCIIZ string representing the language.
char * resultPtr - output

Pointer to the buffer to contain the result.
unsigned short resultLen - input

Length of the result buffer. Recommended size is CWBNL_MAX_NAME_SIZE.
unsigned short * requiredLen - output

Actual length of the result. If requiredLen > resultLen, the return value will be
CWB_BUFFER_OVERFLOW.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with
the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

Usage
The language must be a value returned from one of the following APIs:

• cwbNL_GetLang
• cwbNL_FindFirstLang
• cwbNL_FindNextLang

cwbNL_GetLangPath
Use the cwbNL_GetLangPath command.

Purpose
Return the complete path for language files.

Syntax

unsigned int CWB_ENTRY cwbNL_GetLangPath(
 char *mriBasePath,
 char *resultPtr,
 unsigned short resultLen,
 unsigned short *requiredLen,
 cwbSV_ErrHandle errorHandle);

Windows Application Package: Programming 171

Parameters
char * mriBasePath - input

Pointer to the mriBasePath, for example C:\Program Files\IBM\ClientAccess. If NULL, the
mriBasePath of the product is used.

char * resultPtr - output
Pointer to the buffer to contain the result.

unsigned short resultLen - input
Length of the result buffer. Recommended size is CWBNL_MAX_PATH_SIZE.

unsigned short * requiredLen - output
Actual length of the result. If requiredLen > resultLen, the return value will be
CWB_BUFFER_OVERFLOW.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with
the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_PATH_NOT_FOUND
Path not found.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

Usage
The result buffer will contain the complete path of the language subdirectory. Language files should be
loaded from this path.

cwbNL_SaveLang
Use the cwbNL_SaveLang command.

Purpose
Save the language setting in the product registry.

Syntax

unsigned int CWB_ENTRY cwbNL_SaveLang(
 char *lang,
 cwbSV_ErrHandle errorHandle);

172 IBM i: Windows Application Package: Programming

Parameters
char * lang - input

Address of the ASCIIZ string representing the language.
cwbSV_ErrHandle errorHandle - input

Any returned messages will be written to this object. It is created with
the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage
The language must be a value returned from one of the following APIs:

• cwbNL_GetLang
• cwbNL_FindFirstLang
• cwbNL_FindNextLang

The following APIs are affected by this call:

• cwbNL_GetLang
• cwbNL_GetLangPath

Conversion NLS APIs list
This topic describes the conversion NLS APIs.

The following conversion NLS APIs allow applications to:

• Convert character data from one code page to another
• Determine the current code page setting
• Determine the last CCSID setting
• Convert code page values to and from code character set identifiers (CCSID)

cwbNL_CCSIDToCodePage
Use the cwbNL_CCSIDToCodePage command.

Purpose
Map CCSIDs to code pages.

Syntax

unsigned int CWB_ENTRY cwbNL_CCSIDToCodePage(
 unsigned long CCSID,
 unsigned long *codePage,
 cwbSV_ErrHandle errorHandle);

Windows Application Package: Programming 173

Parameters
unsigned long CCSID - input

CCSID to convert to a code page.
unsigned long * codePage - output

The resulting code page.
cwbSV_ErrHandle errorHandle - output

Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage
None

cwbNL_CodePageToCCSID
Use the cwbNL_CodePageToCCSID command.

Purpose
Map code pages to CCSIDs.

Syntax

unsigned int CWB_ENTRY cwbNL_CodePageToCCSID(
 unsigned long codePage,
 unsigned long *CCSID,
 cwbSV_ErrHandle errorHandle);

Parameters
unsigned long codePage - input

Code page to convert to a CCSID.
unsigned long * CCSID - output

The resulting CCSID.
cwbSV_ErrHandle errorHandle - output

Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API. If
the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

174 IBM i: Windows Application Package: Programming

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage
None

cwbNL_Convert
Use the cwbNL_Convert command.

Purpose
Convert strings by using a previously opened converter.

Syntax

unsigned int CWB_ENTRY cwbNL_Convert(
 cwbNL_Converter theConverter,
 unsigned long sourceLength,
 unsigned long targetLength,
 char *sourceBuffer,
 char *targetBuffer,
 unsigned long *numberOfErrors,
 unsigned long *firstErrorIndex,
 unsigned long *requiredLen,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbNL_Converter theConverter - output

Handle to the previously opened converter.
unsigned long sourceLength - input

Length of the source buffer.
unsigned long targetLength - input

Length of the target buffer. If converting from an ASCII code page that contains DBCS characters, note
that the resulting data could contain shift-out and shift-in bytes. Therefore, the targetBuffer may need
to be larger than the sourceBuffer.

char *sourceBuffer - input
Buffer containing the data to convert.

char *targetBuffer - output
Buffer to contain the converted data.

unsigned long *numberOfErrors - output
Contains the number of characters that could not be converted properly.

unsigned long *firstErrorIndex - output
Contains the offset of the first character in the source buffer that could not be converted properly.

unsigned long *requiredLen - output
Actual length of the result. If requiredLen > resultLen, the return value will be
CWB_BUFFER_OVERFLOW.

Windows Application Package: Programming 175

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

Usage
None

cwbNL_ConvertCodePages
Use the cwbNL_ConvertCodePages command.

Comments
cwbNL_ConvertCodePages is no longer supported. See cwbNL_ConvertCodePagesEx.

cwbNL_ConvertCodePagesEx
Use the cwbNL_ConvertCodePagesEx command.

Purpose
Convert strings from one code page to another. This API combines the following three converter APIs for
the default conversion:

• cwbNL_CreateConverterEx
• cwbNL_Convert
• cwbNL_DeleteConverter

Syntax

unsigned int CWB_ENTRY cwbNL_ConvertCodePagesEx(
 unsigned long sourceCodePage,
 unsigned long targetCodePage,
 unsigned long sourceLength,
 unsigned long targetLength,
 char *sourceBuffer,
 char *targetBuffer,
 unsigned long *numberOfErrors,
 unsigned long *positionOfFirstError,
 unsigned long *requiredLen,
 cwbSV_ErrHandle errorHandle);

176 IBM i: Windows Application Package: Programming

Parameters
unsigned long sourceCodePage - input

Code page of the data in the source buffer.
unsigned long targetCodePage - input

Code page to which the data should be converted.
unsigned long sourceLength - input.

Length of the source buffer
unsigned long targetLength - input.

Length of the target buffer
char *sourceBuffer - input

Buffer containing the data to convert.
char *targetBuffer - output

Buffer to contain the converted data.
unsigned long *numberOfErrors - output

Contains the number of characters that could not be converted properly.
unsigned long *positionOfFirstError - output

Contains the offset of the first character in the source buffer that could not be converted properly.
unsigned long *requiredLen - output

Actual length of the result. If requiredLen > resultLen, the return value will be
CWB_BUFFER_OVERFLOW.

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWBNL_ERR_CNV_UNSUPPORTED
An error occurred while attempting to convert the characters. No conversion was done. The most
common reason is that a conversion table is missing. Conversion tables are either installed with the
product, or retrieved from the default system when needed. There may have been some problem
communicating with the default system.

CWBNL_ERR_CNV_ERR_STATUS
This return code is used to indicate that while the requested conversion is supported, and the
conversion completed, there were some characters that did not convert properly. Either the source
buffer contained null characters, or the characters do not exist in the target code page. Applications
can choose to ignore this return code or treat it as a warning.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage
The following values may be specified on the sourceCodePage and the targetCodePage parameters:

Windows Application Package: Programming 177

Value Meaning

CWBNL_CP_UNICODE_F200 UCS2 Version 1.1 UNICODE

CWBNL_CP_UNICODE UCS2 Current Version UNICODE

CWBNL_CP_AS400 IBM i host code page

CWBNL_CP_CLIENT_OEM OEM client code page

CWBNL_CP_CLIENT_ANSI ANSI client code page

CWBNL_CP_CLIENT_UNICODE UNICODE client code page

CWBNL_CP_UTF8 UCS transformation form, 8–bit format

CWBNL_CP_CLIENT Generic client code page. Default is
CWBNL_CP_CLIENT_OEM. CWBNL_CP_CLIENT is
set to CWBNL_CP_CLIENT_ANSI when CWB_ANSI
is defined, to CWBNL_CP_CLIENT_UNICODE
when CWB_UNICODE is defined and to
CWBNL_CP_CLIENT_OEM when CWB_OEM is
defined.

CWBNL_CP_UTF16BE UTF-16 (Big-Endian)

CWBNL_CP_UTF16LE UTF-16 (Little-Endian)

CWBNL_CP_UTF16 CWBNL_CP_UTF16BE or CWBNL_CP_UTF16LE,
depending on the platform

CWBNL_CP_UTF32BE UTF-32 (Big-Endian)

CWBNL_CP_UTF32LE UTF-34 (Little-Endian)

CWBNL_CP_UTF32 CWBNL_CP_UTF32BE or CWBNL_CP_UTF32LE,
depending on the platform

cwbNL_CreateConverter
Use the cwbNL_CreateConverter command.

Comments
cwbNL_CreateConverter is no longer supported. See cwbNL_CreateConverterEx.

Purpose
Create a cwbNL_Converter to be used on subsequent calls to cwbNL_Convert().

Syntax

unsigned int CWB_ENTRY cwbNL_CreateConverter(
 unsigned long sourceCodePage,
 unsigned long targetCodePage,
 cwbNL_Converter *theConverter,
 cwbSV_ErrHandle errorHandle,
 unsigned long shiftInShiftOutStatus,
 unsigned long padLength,
 char *pad);

Parameters
unsigned long sourceCodePage - input

Code page of the source data.

178 IBM i: Windows Application Package: Programming

unsigned long targetCodePage - input
Code page to which the data should be converted.

cwbNL_Converter * theConverter - output
The newly created converter.

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API.
If the parameter is set to zero, no messages will be retrievable.

unsigned long shiftInShiftOutStatus - input
Indicates whether the shift-in and shift-out bytes are part of the input or output data. 0 - False, no
shift-in and shift-out bytes are part of the data string. 1 - True, shift-in and shift-out characters are
part of the data string.

unsigned long padLength - input
Length of pad characters. 0 - No pad characters for this conversion request 1 - 1 byte of pad character.
This is valid only if the target code page is either SBCS or DBCS code page 2 - 2 bytes of pad
characters. This is valid only if the code page is not a single-byte code page.

char * pad - input
The character or characters for padding.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWBNL_ERR_CNV_UNSUPPORTED
An error occurred while attempting to convert the characters. No conversion was done. The most
common reason is that a conversion table is missing. Conversion tables are either installed with the
product, or retrieved from the default system when needed. There may have been some problem
communicating with the default system.

CWBNL_ERR_CNV_ERR_STATUS
This return code is used to indicate that while the requested conversion is supported, and the
conversion completed, there were some characters that did not convert properly. Either the source
buffer contained null characters, or the characters do not exist in the target code page. Applications
can choose to ignore this return code or treat it as a warning.

CWBNL_ERR_CNV_INVALID_SISO_STATUS
Invalid SISO parameter.

CWBNL_ERR_CNV_INVALID_PAD_LENGTH
Invalid Pad Length parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage
The following values may be specified on the sourceCodePage and the targetCodePage parameters:

Value Meaning

CWBNL_CP_UNICODE_F200 UCS2 Version 1.1 UNICODE

CWBNL_CP_UNICODE UCS2 Current Version UNICODE

Windows Application Package: Programming 179

Value Meaning

CWBNL_CP_AS400 IBM i host code page

CWBNL_CP_CLIENT_OEM OEM client code page

CWBNL_CP_CLIENT_ANSI ANSI client code page

CWBNL_CP_CLIENT_UNICODE UNICODE client code page

CWBNL_CP_UTF8 UCS transformation form, 8–bit format

CWBNL_CP_CLIENT Generic client code page. Default is
CWBNL_CP_CLIENT_OEM. CWBNL_CP_CLIENT is set to
CWBNL_CP_CLIENT_ANSI when CWB_ANSI is defined,
to CWBNL_CP_CLIENT_UNICODE when CWB_UNICODE
is defined and to CWBNL_CP_CLIENT_OEM when
CWB_OEM is defined.

CWBNL_CP_UTF16BE UTF-16 (Big-Endian)

CWBNL_CP_UTF16LE UTF-16 (Little-Endian)

CWBNL_CP_UTF16 CWBNL_CP_UTF16BE or CWBNL_CP_UTF16LE,
depending on the platform

CWBNL_CP_UTF32BE UTF-32 (Big-Endian)

CWBNL_CP_UTF32LE UTF-34 (Little-Endian)

CWBNL_CP_UTF32 CWBNL_CP_UTF32BE or CWBNL_CP_UTF32LE,
depending on the platform

Instead of calling cwbNL_ConvertCodePagesEx multiple times with the same code pages:

• cwbNL_ConvertCodePagesEx(850, 500, ...);
• cwbNL_ConvertCodePagesEx(850, 500, ...);
• cwbNL_ConvertCodePagesEx(850, 500, ...);

It is more efficient to create a converter and use it multiple times:

• cwbNL_CreateConverter(850, 500, &conv, ...);
• cwbNL_Convert(conv, ...);
• cwbNL_Convert(conv, ...);
• cwbNL_Convert(conv, ...);
• cwbNL_DeleteConverter(conv, ...);

cwbNL_CreateConverterEx
Use the cwbNL_CreateConverterEx command.

Purpose
Create a cwbNL_Converter to be used on subsequent calls to cwbNL_Convert().

Syntax

unsigned int CWB_ENTRY cwbNL_CreateConverterEx(
 unsigned long sourceCodePage,
 unsigned long targetCodePage,
 cwbNL_Converter *theConverter,
 cwbSV_ErrHandle errorHandle,
 unsigned long shiftInShiftOutStatus,
 unsigned long padLength,
 char *pad);

180 IBM i: Windows Application Package: Programming

Parameters
unsigned long sourceCodePage - input

Code page of the source data.
unsigned long targetCodePage - input

Code page to which the data should be converted.
cwbNL_Converter * theConverter - output

The newly created converter.
cwbSV_ErrHandle errorHandle - output

Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API.
If the parameter is set to zero, no messages will be retrievable.

unsigned long shiftInShiftOutStatus - input
Indicates whether the shift-in and shift-out bytes are part of the input or output data. 0 - False, no
shift-in and shift-out bytes are part of the data string. 1 - True, shift-in and shift-out characters are
part of the data string.

unsigned long padLength - input
Length of pad characters. 0 - No pad characters for this conversion request 1 - 1 byte of pad character.
This is valid only if the target code page is either SBCS or DBCS code page 2 - 2 bytes of pad
characters. This is valid only if the code page is not a single-byte code page.

char * pad - input
The character or characters for padding.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWBNL_ERR_CNV_UNSUPPORTED
An error occurred while attempting to convert the characters. No conversion was done. The most
common reason is that a conversion table is missing. Conversion tables are either installed with the
product, or retrieved from the default system when needed. There may have been some problem
communicating with the default system.

CWBNL_ERR_CNV_ERR_STATUS
This return code is used to indicate that while the requested conversion is supported, and the
conversion completed, there were some characters that did not convert properly. Either the source
buffer contained null characters, or the characters do not exist in the target code page. Applications
can choose to ignore this return code or treat it as a warning.

CWBNL_ERR_CNV_INVALID_SISO_STATUS
Invalid SISO parameter.

CWBNL_ERR_CNV_INVALID_PAD_LENGTH
Invalid Pad Length parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage
The following values may be specified on the sourceCodePage and the targetCodePage parameters:

Windows Application Package: Programming 181

Value Meaning

CWBNL_CP_UNICODE_F200 UCS2 Version 1.1 UNICODE

CWBNL_CP_UNICODE UCS2 Current Version UNICODE

CWBNL_CP_AS400 IBM i host code page

CWBNL_CP_CLIENT_OEM OEM client code page

CWBNL_CP_CLIENT_ANSI ANSI client code page

CWBNL_CP_CLIENT_UNICODE UNICODE client code page

CWBNL_CP_UTF8 UCS transformation form, 8–bit format

CWBNL_CP_CLIENT Generic client code page. Default is
CWBNL_CP_CLIENT_OEM. CWBNL_CP_CLIENT is set to
CWBNL_CP_CLIENT_ANSI when CWB_ANSI is defined,
to CWBNL_CP_CLIENT_UNICODE when CWB_UNICODE
is defined and to CWBNL_CP_CLIENT_OEM when
CWB_OEM is defined.

CWBNL_CP_UTF16BE UTF-16 (Big-Endian)

CWBNL_CP_UTF16LE UTF-16 (Little-Endian)

CWBNL_CP_UTF16 CWBNL_CP_UTF16BE or CWBNL_CP_UTF16LE,
depending on the platform

CWBNL_CP_UTF32BE UTF-32 (Big-Endian)

CWBNL_CP_UTF32LE UTF-34 (Little-Endian)

CWBNL_CP_UTF32 CWBNL_CP_UTF32BE or CWBNL_CP_UTF32LE,
depending on the platform

Instead of calling cwbNL_ConvertCodePagesEx multiple times with the same code pages:

• cwbNL_ConvertCodePagesEx(850, 500, ...);
• cwbNL_ConvertCodePagesEx(850, 500, ...);
• cwbNL_ConvertCodePagesEx(850, 500, ...);

It is more efficient to create a converter and use it multiple times:

• cwbNL_CreateConverterEx(850, 500, &conv, ...);
• cwbNL_Convert(conv, ...);
• cwbNL_Convert(conv, ...);
• cwbNL_Convert(conv, ...);
• cwbNL_DeleteConverter(conv, ...);

cwbNL_DeleteConverter
Use the cwbNL_DeleteConverter command.

Purpose
Delete a cwbNL_Converter.

Syntax

unsigned int CWB_ENTRY cwbNL_DeleteConverter(
 cwbNL_Converter theConverter,
 cwbSV_ErrHandle errorHandle);

182 IBM i: Windows Application Package: Programming

Parameters
cwbNL_Converter theConverter - input

A previously created converter.
cwbSV_ErrHandle errorHandle - output

Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle0 API. The messages may be retrieved with the cwbSV_GetErrText API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Invalid handle.

Usage
None

cwbNL_GetCodePage
Use the cwbNL_GetCodePage command.

Purpose
Get the current code page of the client system.

Syntax

unsigned int CWB_ENTRY cwbNL_GetCodePage(
 unsigned long *codePage,
 cwbSV_ErrHandle errorHandle);

Parameters
unsigned long * codePage - output

Returns the current code page of the client system or the OEM code page character conversion
override value, if one is specified on the Language tab of the IBM i Access Family Properties dialog.

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

Windows Application Package: Programming 183

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage
None

cwbNL_GetANSICodePage
Use the cwbNL_GetANSICodePage command.

Purpose
Get the current ANSI code page of the client system.

Syntax

unsigned int CWB_ENTRY cwbNL_GetANSICodePage(
 unsigned long *codePage,
 cwbSV_ErrHandle errorHandle);

Parameters
unsigned long * codePage - output

Returns the current ANSI code page of the client system or the ANSI code page character conversion
override value, if one is specified on the Language tab of the IBM i Access Family Properties dialog.

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage
None

cwbNL_GetHostCCSID
Use the cwbNL_GetHostCCSID command.

Purpose
Returns the associated CCSID of a given host system or the managing system or the EBCDIC code page
character conversion override value, if one is specified on the Language tab of the product Properties
dialog.

184 IBM i: Windows Application Package: Programming

Syntax

unsigned long CWB_ENTRY cwbNL_GetHostCCSID(
 char * system,
 unsigned long * CCSID);

Parameters
char * system - input

The name of the host system. If NULL, the managing system is used.
unsigned * CCSID - output

Length of the result buffer.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWBNL_DEFAULT_HOST_CCSID_USED
Host CCSID 500 is returned

Usage
This API does not make or require an active connection to the host system to retrieve the associated
CCSID value. However, it does depend on a prior successful connection to the host system. If no prior
successful connection was made to the host system, the API determines the most appropriate associated
host CCSID by using an internal mapping table.

Dialog-box NLS API list
Dialog-box NLS APIs are interfaces that are used to manipulate the translatable text within dialog boxes.

The following dialog-box NLS APIs allow applications to:

• Replace translatable text with a dialog box
• Expand dialog-box controls according to the text

Usage notes
This module works ONLY on the following kinds of dialog-box controls:

• Static text
• Button
• Group box
• Edit box
• Check box
• Radio button

It does NOT work on complex controls such as Combo box.

Windows Application Package: Programming 185

cwbNL_CalcControlGrowthXY
Use the cwbNL_CalcControlGrowthXY command.

Purpose
Routine to calculate the growth factor of an individual control within a dialog box.

Syntax

unsigned int CWB_ENTRY cwbNL_CalcControlGrowthXY(
 HWND windowHandle,
 HDC hDC,
 float* growthFactorX,
 float* growthFactorY);

Parameters
HWND windowHandle - input

Window handle of the control for which to calculate the growth factor.
HDC hDC - input

Device context. Used by GetTextExtentPoint32 to determine extent needed for the translated
string in the control.

float* growthFactorX - output
+/- growth to the width needed to contain the string for the control.

float* growthFactorY - output
+/- growth to the height needed to contain the string for the control.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion

Usage
It is assumed that the translated text has been loaded into the control prior to calling this function. A
control that does not contain text will return a 1.00 growth factor. This means that it does not need to
change size.

cwbNL_CalcDialogGrowthXY
Use the cwbNL_CalcDialogGrowthXY command.

Purpose
Routine to calculate the growth factor of a dialog box. All of the controls within the dialog box will looked
at to determine how much the dialog-box size needs to be adjusted.

Syntax

unsigned int CWB_ENTRY cwbNL_CalcDialogGrowthXY(
 HWND windowHandle,
 float* growthFactorX,
 float* growthFactorY);

186 IBM i: Windows Application Package: Programming

Parameters
HWND windowHandle - input

Window handle of the dialog box for which to calculate the growth factor.
float* growthFactorX - output

+/- growth to the width needed to contain the string for all of the controls in the dialog box.
float* growthFactorY - output

+/- growth to the height needed to contain the string for all of the controls in the dialog box.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion

Usage
It is assumed that the translated text has been loaded into the controls prior to calling this function.

cwbNL_GrowControlXY
Use the cwbNL_GrowControlXY command.

Purpose
Routine to grow an individual control within a dialog box.

Syntax

unsigned int CWB_ENTRY cwbNL_GrowControlXY(
 HWND windowHandle,
 HWND parentWindowHandle,
 float growthFactorX,
 float growthFactorY,
 cwb_Boolean growAllControls);

Parameters
HWND windowHandle - input

Window handle of the control to be resized.
HWND parentWindowHandle - input

Window handle of the dialog box that contains the controls.
float growthFactorX - input

Multiplication factor for growing the width of the control. 1.00 = Stay same size. 1.50 = 1 1/2 times
original size.

float growthFactorY - input
Multiplication factor for growing the height of the control. 1.00 = Stay same size. 1.50 = 1 1/2 times
original size.

cwb_Boolean growAllControls - input
CWB_TRUE = All controls will be resized by the growthFactor. CWB_FALSE = Only controls with text
will be resized.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion

Windows Application Package: Programming 187

Usage
Care should be used to not pass in a growth factor that will cause a control to not fit on the physical
display.

cwbNL_GrowDialogXY
Use the cwbNL_GrowDialogXY command.

Purpose
Internal routine to growth the dialog box and its controls proportionally based off of a growth factor that is
input.

Syntax

unsigned int CWB_ENTRY cwbNL_GrowDialogXY(
 HWND windowHandle,
 float growthFactorX,
 float growthFactorY,
 cwb_Boolean growAllControls);

Parameters
HWND windowHandle - input

Window handle of the window owning the controls.
float growthFactorX - input

Multiplication factor for growing the dialog box, ie. 1.00 = Stay same size, 1.50 = 1 1/2 times original
size.

float growthFactorY - input
Multiplication factor for growing the dialog box, ie. 1.00 = Stay same size, 1.50 = 1 1/2 times original
size.

cwb_Boolean growAllControls - input
CWB_TRUE = All controls will be resized by the growthFactor, CWB_FALSE = Only controls with text
will be resized.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

Usage
It is assumed that the translated text has been loaded into the controls prior to calling this function. The
dialog-box frame will not be allowed to grow larger than the desktop window size.

cwbNL_LoadDialogStrings
Use the cwbNL_LoadDialogStrings command.

Purpose
This routine will control the replacement of translatable text within a dialog box. This includes dialog
control text as well as the dialog-box caption.

188 IBM i: Windows Application Package: Programming

Syntax

unsigned int CWB_ENTRY cwbNL_LoadDialogStrings(
 HINSTANCE MRIHandle,
 HWND windowHandle,
 int nCaptionID,
 USHORT menuID,
 HINSTANCE menuLibHandle,
 cwb_Boolean growAllControls);

Parameters
HINSTANCE MRIHandle - input

Handle of the module containing the strings for the dialog.
HWND windowHandle - input

Window handle of the dialog box.
int nCaptionID - input

ID of the caption string for the dialog box
USHORT menuID - input

ID of the menu for the dialog box.
HINSTANCE menuLibHandle - input

Handle of the module containing the menu for the dialog.
cwb_Boolean growAllControls - input

CWB_TRUE = All controls will be resized by the growthFactor CWB_FALSE = Only controls with text
will be resized.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWBNL_DLG_MENU_LOAD_ERROR
Could not load the menu.

CWBNL_DLG_INVALID_HANDLE
Incorrect MRIHandle.

Usage
This process begins by enumerating, replacing the text of, and horizontally adjusting, all dialog controls
within the dialog box, and finally right-adjusting the dialog box itself, relative to the adjusted controls
therein. These adjustments are made only if the current window extents do not fully encompass the
expansion space required for the text or all controls. After all of the text substitution has been completed,
if a menu ID has been passed, it will be loaded and attached to the dialog box. It is suggested that
this routine is called for every dialog-box procedure as the first thing done during the INITDLG message
processing.

cwbNL_LoadMenu
Use the cwbNL_LoadMenu command.

Purpose
This routine will control the loading of the given menu from a module and replacing the translatable text
within the menu.

Windows Application Package: Programming 189

Syntax

HWND CWB_ENTRY cwbNL_LoadMenu(
 HWND windowHandle,
 HINSTANCE menuResourceHandle,
 USHORT menuID,
 HINSTANCE MRIHandle);

Parameters
HWND windowHandle - input

Window handle of the dialog box that contains the menu.
HINSTANCE menuResourceHandle - input

Handle of the resource dll containing the menu.
USHORT menuID - input

ID of the menu for the dialog box.
HINSTANCE MRIHandle - input

Handle of the resource dll containing the strings for the menu.

Return Codes
The following list shows common return values.

HINSTANCE
Handle of the menu.

Usage
None

cwbNL_LoadMenuStrings
Use the cwbNL_LoadMenuStrings command.

Purpose
This routine will control the replacement of translatable text within a menu.

Syntax

unsigned int CWB_ENTRY cwbNL_LoadMenuStrings(
 HWND WindowHandle,
 HINSTANCE menuHandle,
 HINSTANCE MRIHandle);

Parameters
HWND windowHandle - input

Window handle of the dialog box that contains the menu.
HMODULE menuHandle - input

Handle of the menu for the dialog.
HMODULE MRIHandle - input

Handle of the resource DLL containing the strings for the menu.

Return Codes
The following list shows common return values.

190 IBM i: Windows Application Package: Programming

CWB_OK
Successful Completion

Usage
None

cwbNL_SizeDialog
Use the cwbNL_SizeDialog command.

Purpose
This routine will control the sizing of the dialog box and its child controls. The expansion amount is based
off of the length of the text extent and the length of each control. The growth of the dialog box and its
controls will be proportional. By setting the growAllControls to FALSE, only controls with text will expand
or contract. This allows the programmer the flexibility of non-translatable fields to remain the same size.
This may be appropriate for dialogs that contain drop-down lists, combo-boxes, or spin buttons.

Syntax

unsigned int CWB_ENTRY cwbNL_SizeDialog(
 HWND windowHandle,
 cwb_Boolean growAllControls);

Parameters
HWND windowHandle - input

Window handle of the window owning the controls.
cwb_Boolean growAllControls - input

CWB_TRUE = All controls will be resized by the growthFactor, CWB_FALSE = Only controls with text
will be resized.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion

Usage
This routine assumes that the translated text has already been loaded into the dialog-box controls. If the
text has not been loaded into the controls, use cwbNL_LoadDialog.

Example: NLS APIs
This example illustrates using NLS APIs.

/* National Language Support Code Snippet */
/* Used to demonstrate how the APIs would be run. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "CWBNL.H"
#include "CWBNLCNV.H"
#include "CWBSV.H"

cwbSV_ErrHandle errhandle;

/* Return the message text associated with the top-level */
/* error identified by the error handle provided. Since */

Windows Application Package: Programming 191

/* all APIs that fail use the error handle, this was moved */
/* into a separate routine. */
void resolveErr(cwbSV_ErrHandle errhandle)
{
 static unsigned char buf[BUFSIZ];
 unsigned long retlen;
 unsigned int rc;

 if ((rc = cwbSV_GetErrText(errhandle, (char*)buf, (unsigned long) BUFSIZ, &retlen)) !=
CWB_OK)
 printf("cwbSV_GetErrText() Service API failed with return code 0x%x.\n", rc);
 else
 printf("%s\n", (char *) buf);
}

void main(void){

 /* define some variables
 -------------------- */
 int SVrc = 0;
 int NLrc = 0;
 char *myloadpath = "";
 char *resultPtr;
 char *mylang;
 unsigned short resultlen;
 unsigned short reqlen;
 unsigned long searchhandle;
 unsigned long codepage;
 unsigned long trgtpage;
 char *srcbuf = "Change this string";
 char *trgtbuf;
 unsigned long srclen;
 unsigned long trgtlen;
 unsigned long nmbrerrs;
 unsigned long posoferr;
 unsigned long rqdlen;
 unsigned long ccsid;

 /* Create an error message object and return a handle to */
 /* it. This error handle can be passed to APIs that */
 /* support it. If an error occurs, the error handle can */
 /* be used to retrieve the message text associated with */
 /* the API error. */
 SVrc = cwbSV_CreateErrHandle(&errhandle);
 if (SVrc != CWB_OK) {
 printf("cwbSV_CreateErrHandle failed with return code %d.\n", SVrc);
 }

 /* Retreive the current language setting. */
 resultlen = CWBNL_MAX_LANG_SIZE+1;
 resultPtr = (char *) malloc(resultlen * sizeof(char));
 NLrc = cwbNL_GetLang(myloadpath, resultPtr, resultlen, &reqlen, errhandle);
 if (NLrc != CWB_OK) {
 if (NLrc == CWB_BUFFER_OVERFLOW)
 printf("GetLang buffer too small, recommended size %d.\n", reqlen);
 resolveErr(errhandle);
 }
 printf("GetLang API returned %s.\n", resultPtr);
 mylang = (char *) malloc(resultlen * sizeof(char));
 strcpy(mylang, resultPtr);

 /* Retrieve the descriptive name of a language setting. */
 resultlen = CWBNL_MAX_NAME_SIZE+1;
 resultPtr = (char *) realloc(resultPtr, resultlen * sizeof(char));
 NLrc = cwbNL_GetLangName(mylang, resultPtr, resultlen, &reqlen, errhandle);
 if (NLrc != CWB_OK) {
 if (NLrc == CWB_BUFFER_OVERFLOW)
 printf("GetLangName buffer too small, recommended size %d.\n", reqlen);
 resolveErr(errhandle);
 }
 printf("GetLangName API returned %s.\n", resultPtr);

 /* Return the complete path for language files. */
 resultlen = CWBNL_MAX_PATH_SIZE+1;
 resultPtr = (char *) realloc(resultPtr, resultlen * sizeof(char));
 NLrc = cwbNL_GetLangPath(myloadpath, resultPtr, resultlen, &reqlen, errhandle);
 if (NLrc != CWB_OK) {
 if (NLrc == CWB_BUFFER_OVERFLOW)
 printf("GetLangPath buffer too small, recommended size %d.\n", reqlen);
 resolveErr(errhandle);
 }

192 IBM i: Windows Application Package: Programming

 printf("GetLangPath API returned %s.\n", resultPtr);

 /* Get the code page of the current process. */
 NLrc = cwbNL_GetCodePage(&codepage, errhandle);
 if (NLrc != CWB_OK) {
 resolveErr(errhandle);
 }
 printf("GetCodePage API returned %u.\n", codepage);

 /* Convert strings from one code page to another. This */
 /* API combines three converter APIs for the default */
 /* conversion. The three converter APIs it combines are: */
 /* cwbNL_CreateConverterEx */
 /* cwbNL_Convert */
 /* cwbNL_DeleteConverter */
 srclen = strlen(srcbuf) + 1;
 trgtlen = srclen;
 trgtpage = 437;
 trgtbuf = (char *) malloc(trgtlen * sizeof(char));
 printf("String to convert is %s.\n",srcbuf);
 NLrc = cwbNL_ConvertCodePagesEx(codepage, trgtpage, srclen,
 trgtlen, srcbuf, trgtbuf, &nmbrerrs, &posoferr, &rqdlen,
 errhandle);
 if (NLrc != CWB_OK) {
 resolveErr(errhandle);
 printf("number of errors detected is %u.\n", nmbrerrs);
 printf("location of first error is %u.\n", posoferr);
 }
 printf("ConvertCodePagesEx API returned %s.\n", trgtbuf);

 /* Map a code page to the corresponding CCSID. */
 NLrc = cwbNL_CodePageToCCSID(codepage, &ccsid, errhandle);
 if (NLrc != CWB_OK) {
 resolveErr(errhandle);
 }
 printf("CodePageToCCSID returned %u.\n", ccsid);

 cwbSV_DeleteErrHandle(errhandle);

}

System Objects APIs
System objects application programming interfaces (APIs) allow you to work with print-related objects
that are on the system. These APIs make it possible to work with IBM i spooled files, writer jobs, output
queues, printers, and more.

By using System Objects APIs, you can write workstation applications that are customized for the user's
environment. For example, you can write an application to manage spooled files for a single user, or for all
users across a network of IBM i operating systems. This includes holding, releasing, changing attributes
of, deleting, sending, retrieving and answering messages for the spooled files.

System Objects APIs required files:
Header file Import library Dynamic Link Library

cwbobj.h cwbapi.lib cwbobj.dll

Programmer's Toolkit:
The Programmer's Toolkit provides System Objects documentation, access to the cwbobj.h header file,
and links to sample programs. To access this information, open the Programmer's Toolkit and select IBM i
Operations > C/C++ APIs.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

Related reference
System Object APIs return codes

Windows Application Package: Programming 193

There are system object API return codes.
IBM i name formats for connection APIs
APIs that take an IBM i name as a parameter, accept the name in the three different formats.
OEM, ANSI, and Unicode considerations
Most of the C/C++ APIs that accept string parameters exist in three forms: OEM, ANSI, or Unicode.

System objects attributes
Network Print Server objects have attributes. The Network Print Server supports the following attributes.
Refer to the data stream description for each object/action to determine the attributes that are supported
for that combination.

Advanced Function Printing
Use this Advanced Function Printing API with this product.

Key
CWBOBJ_KEY_AFP

ID
0x000A

Type
char[11]

Description
Indicates whether this spooled file uses AFP resources external to the spooled file. Valid values are
*YES and *NO.

Align Page
Use the Align Page API with this product.

Key
CWBOBJ_KEY_ALIGN

ID
0x000B

Type
char[11]

Description
Indicates whether a forms alignment message is sent prior to printing this spooled file. Valid values
are *YES, *NO.

Allow Direct Print
Use this Allow Direct Print API with this product.

Key
CWBOBJ_KEY_ALWDRTPRT

ID
0x000C

Type
char[11]

Description
Indicates whether the printer writer allows the printer to be allocated to a job that prints directly to a
printer. Valid values are *YES, *NO.

Authority
Use this Authority API with this product.

Key
CWBOBJ_KEY_AUT

194 IBM i: Windows Application Package: Programming

ID
0x000D

Type
char[11]

Description
Specifies the authority that is given to users who do not have specific authority to the output queue.
Valid values are *USE, *ALL, *CHANGE, *EXCLUDE, *LIBCRTAUT.

Authority to Check
Use this Authority to Check API with this product.

Key
CWBOBJ_KEY_AUTCHK

ID
0x000E

Type
char[11]

Description
Indicates what type of authorities to the output queue allow the user to control all the files on the
output queue. Valid values are *OWNER, *DTAAUT.

Automatically End Writer
Use this Automatically End Writer API with this product.

Key
CWBOBJ_KEY_AUTOEND

ID
0x0010

Type
char[11]

Description
Specifies if the writer should be automatically ended. Valid values are *NO, *YES.

Back Margin Offset Across
Use this Back Margin Offset Across API with this product.

Key
CWBOBJ_KEY_BACKMGN_ACR

ID
0x0011

Type
float

Description
For the back side of a piece of paper, it specifies, how far in from the left side of the page printing
starts. The special value *FRONTMGN will be encoded as -1.

Back Margin Offset Down
Use this Back Margin Offset Down API with this product.

Key
CWBOBJ_KEY_BACKMGN_DWN

ID
0x0012

Type
float

Windows Application Package: Programming 195

Description
For the back side of a piece of paper, it specifies, how far down from the top of the page printing
starts. The special value *FRONTMGN will be encoded as -1.

Backside Overlay Library Name
Use this Backside Overlay Library Name API with this product.

Key
CWBOBJ_KEY_BKOVRLLIB

ID
0x0013

Type
char[11]

Description
The name of the library that contains the back overlay. If the back overlay name field has a special
value, this library field will be blank.

Backside Overlay Name
Use this Backside Overlay Name API with this product.

Key
CWBOBJ_KEY_BKOVRLAY

ID
0x0014

Type
char[11]

Description
The name of the back overlay. Valid special values include *FRONTMGN.

Back Overlay offset across
Use this Back Overlay offset across API with this product.

Key
CWBOBJ_KEY_BKOVL_ACR

ID
0x0016

Type
float

Description
The offset across from the point of origin where the overlay is printed.

Back Overlay Offset Down
Use this Back Overlay Offset Down API with this product.

Key
CWBOBJ_KEY_BKOVL_DWN

ID
0x0015

Type
float

Description
The offset down from the point of origin where the overlay is printed.

196 IBM i: Windows Application Package: Programming

Characters per Inch
Use this Characters per Inch API with this product.

Key
CWBOBJ_KEY_CPI

ID
0x0017

Type
float

Description
The number of characters per horizontal inch.

Code Page
Use this Code Page API with this product.

Key
CWBOBJ_KEY_CODEPAGE

ID
0x0019

Type
char[11]

Description
The mapping of graphic characters to code points for this spooled file. If the graphic character set
field contains a special value, this field may contain a zero (0).

Coded Font Name
Use this Coded Font Name API with this product.

Key
CWBOBJ_KEY_CODEDFNT

ID
0x001A

Type
char[11]

Description
The name of the coded font. A coded font is an AFP resource that is composed of a character set and a
code page. Special values include *FNTCHRSET.

Coded Font Library Name
Use this Coded Font Library Name API with this product.

Key
CWBOBJ_KEY_CODEDFNTLIB

ID
0x0018

Type
char[11]

Description
The name of the library that contains the coded font. This field may contain blanks if the coded font
name field has a special value.

Copies
Use this Copies API with this product.

Key
CWBOBJ_KEY_COPIES

Windows Application Package: Programming 197

ID
0x001C

Type
long

Description
The total number of copies to be produced for this spooled file.

Copies left to Produce
Use this Copies left to Produce API with this product.

Key
CWBOBJ_KEY_COPIESLEFT

ID
0x001D

Type
long

Description
The remaining number of copies to be produced for this spooled file.

Current page
Use this Current page API with this product.

Key
CWBOBJ_KEY_CURPAGE

ID
0x001E

Type
long

Description
Current page that is being written by the writer job.

Data Format
Use this Data Format API with this product.

Key
CWBOBJ_KEY_DATAFORMAT

ID
0x001F

Type
char[11]

Description
Data format. Valid values are *RCDDATA, *ALLDATA.

Data Queue Library Name
Use this Data Queue Library Name API with this product.

Key
CWBOBJ_KEY_DATAQUELIB

ID
0x0020

Type
char[11]

Description
The name of the library that contains the data queue.

198 IBM i: Windows Application Package: Programming

Data Queue Name
Use this Data Queue Name API with this product.

Key
CWBOBJ_KEY_DATAQUE

ID
0x0021

Type
char[11]

Description
Specifies the name of the data queue that is associated with the output queue.

Date File Opened
Use this Date File Opened API with this product.

Key
CWBOBJ_KEY_DATE

ID
0x0022

Type
char[8]

Description
The date the spooled file was opened. The date is encoded in a character string with the following
format, C YY MM DD.

User Specified DBCS Data
Use this User Specified DBCS Data API with this product.

Key
CWBOBJ_KEY_DBCSDATA

ID
0x0099

Type
char[11]

Description
Whether the spooled file contains double-byte character set (DBCS) data. Valid values are *NO and
*YES.

DBCS Extension Characters
Use this DBCS Extension Characters API with this product.

Key
CWBOBJ_KEY_DBCSEXTENSN

ID
0x009A

Type
char[11]

Description
Whether the system is to process the DBCS extension characters. Valid values are *NO and *YES.

DBCS Character Rotation
Use this DBCS Character Rotation API with this product.

Key
CWBOBJ_KEY_DBCAROTATE

Windows Application Package: Programming 199

ID
0x009B

Type
char[11]

Description
Whether the DBCS characters are rotated 90 degrees counterclockwise before printing. Valid values
are *NO and *YES.

DBCS Characters per Inch
Use this DBCS Characters per Inch API with this product.

Key
CWBOBJ_KEY_DBCSCPI

ID
0x009C

Type
long

Description
The number of double-byte characters to be printed per inch. Valid values are -1, -2, 5, 6, and 10. The
value *CPI is encoded as -1. The value *CONDENSED is encoded as -2.

DBCS SO/SI Spacing
Use this DBCS SO/SI Spacing API with this product.

Key
CWBOBJ_KEY_DBCSSISO

ID
0x009D

Type
char[11]

Description
Determines the presentation of shift-out and shift-in characters when printed. Valid values are *NO,
*YES, and *RIGHT.

Defer Write
Use this Defer Write API with this product.

Key
CWBOBJ_KEY_DFR_WRITE

ID
0x0023

Type
char[11]

Description
Whether print data is held in system buffers before being sent to the printer. Valid values are *YES,
*NO.

Degree of Page Rotation
Use this Degree of Page Rotation API with this product.

Key
CWBOBJ_KEY_PAGRTT

ID
0x0024

200 IBM i: Windows Application Package: Programming

Type
long

Description
The degree of rotation of the text on the page, with respect to the way the form is loaded into the
printer. Valid values are -1, -2, -3, 0, 90, 180, 270. The value *AUTO is encoded as -1, the value *DEVD
is encoded as -2, and the value *COR is encoded as -3.

Delete File After Sending
Use the Delete File After Sending API with this product.

Key
CWBOBJ_KEY_DELETESPLF

ID
0x0097

Type
char[11]

Description
Delete the spooled file after sending? Valid values are *NO and *YES.

Destination Option
Use the Destination Option API with this product.

Key
CWBOBJ_KEY_DESTOPTION

ID
0x0098

Type
char[129]

Description
Destination option. A text string that allows the user to pass options to the receiving system.

Destination Type
Use the Destination Type API with this product.

Key
CWBOBJ_KEY_DESTINATION

ID
0x0025

Type
char[11]

Description
Destination type. Valid values are *OTHER, *AS400, *PSF2.

Device Class
Use the Device Class API with this product.

Key
CWBOBJ_KEY_DEVCLASS

ID
0x0026

Type
char[11]

Description
The device class.

Windows Application Package: Programming 201

Device Model
Use the Device Model API with this product.

Key
CWBOBJ_KEY_DEVMODEL

ID
0x0027

Type
char[11]

Description
The model number of the device.

Device Type
Use the Device Type API with this product.

Key
CWBOBJ_KEY_DEVTYPE

ID
0x0028

Type
char[11]

Description
The device type.

Display any File
Use the Display any File API with this product.

Key
CWBOBJ_KEY_DISPLAYANY

ID
0x0029

Type
char[11]

Description
Whether users who have authority to read this output queue can display the output data of any output
file on this queue, or only the data in their own files. Valid values are *YES, *NO, *OWNER.

Drawer for Separators
Use the Drawer for Separators API with this product.

Key
CWBOBJ_KEY_DRWRSEP

ID
0x002A

Type
long

Description
Identifies the drawer from which the job and file separator pages are to be taken. Valid values are -1,
-2, 1, 2, 3. The value *FILE is encoded as -1, and the value *DEVD is encoded as -2.

Ending Page
Use the Ending Page API with this product.

Key
CWBOBJ_KEY_ENDPAGE

202 IBM i: Windows Application Package: Programming

ID
0x002B

Type
long

Description
The page number at which to end printing the spooled file. Valid values are 0 or the ending page
number. The value *END is encoded as 0.

File Separators
Use the File Separators API with this product.

Key
CWBOBJ_KEY_FILESEP

ID
0x002C

Type
long

Description
The number of file separator pages that are placed at the beginning of each copy of the spooled file.
Valid values are -1, or the number of separators. The value *FILE is encoded as -1.

Fold Records
Use this Fold Records API with this product.

Key
CWBOBJ_KEY_FOLDREC

ID
0x002D

Type
char[11]

Description
Whether records that exceed the printer forms width are folded (wrapped) to the next line. Valid
values are *YES, *NO.

Font Identifier
Use this Font Identifier API with this product.

Key
CWBOBJ_KEY_FONTID

ID
0x002E

Type
char[11]

Description
The printer font that is used. Valid special values include *CPI and *DEVD.

Form Feed
Use the Form Feed API with this product.

Key
CWBOBJ_KEY_FORMFEED

ID
0x002F

Type
char[11]

Windows Application Package: Programming 203

Description
The manner in which forms feed to the printer. Valid values are *CONT, *CUT, *AUTOCUT, *DEVD.

Form Type
Use the Form Type API with this product.

Key
CWBOBJ_KEY_FORMTYPE

ID
0x0030

Type
char[11]

Description
The type of form to be loaded in the printer to print this spooled file.

Form Type Message Option
Use the Form Type Message Option API with this product.

Key
CWBOBJ_KEY_FORMTYPEMSG

ID
0x0043

Type
char[11]

Description
Message option for sending a message to the writer's message queue when the current form type is
finished. Valid values are *MSG, *NOMSG, *INFOMSG, *INQMSG.

Front Margin Offset Across
Use the Front Margin Offset Across API with this product.

Key
CWBOBJ_KEY_FTMGN_ACR

ID
0x0031

Type
float

Description
For the front side of a piece of paper, it specifies, how far in from the left side of the page printing
starts. The special value *DEVD is encoded as -2.

Front Margin Offset Down
Use the Front Margin Offset Down API with this product.

Key
CWBOBJ_KEY_FTMGN_DWN

ID
0x0032

Type
float

Description
For the front side of a piece of paper, it specifies, how far down from the top of the page printing
starts. The special value *DEVD is encoded as -2.

204 IBM i: Windows Application Package: Programming

Front Overlay Library Name
Use the Front Overlay Library Name API with this product.

Key
CWBOBJ_KEY_FTOVRLLIB

ID
0x0033

Type
char[11]

Description
The name of the library that contains the front overlay. This field may be blank if the front overlay
name field contains a special value.

Front Overlay Name
Use the Front Overlay Name API with this product.

Key
CWBOBJ_KEY_FTOVRLAY

ID
0x0034

Type
char[11]

Description
The name of the front overlay. Valid special values include *NONE.

Front Overlay Offset Across
Use the Front Overlay Offset Across API with this product.

Key
CWBOBJ_KEY_FTOVL_ACR

ID
0x0036

Type
float

Description
The offset across from the point of origin where the overlay is printed.

Front Overlay Offset Down
Use the Front Overlay Offset Down API with this product.

Key
CWBOBJ_KEY_FTOVL_DWN

ID
0x0035

Type
float

Description
The offset down from the point of origin where the overlay is printed.

Graphic Character Set
Use the Graphic Character Set API with this product.

Key
CWBOBJ_KEY_CHAR_ID

Windows Application Package: Programming 205

ID
0x0037

Type
char[11]

Description
The set of graphic characters to be used when printing this file. Valid special values include *DEVD,
*SYSVAL, and *JOBCCSID.

Hardware Justification
Use the Hardware Justification API with this product.

Key
CWBOBJ_KEY_JUSTIFY

ID
0x0038

Type
long

Description
The percentage that the output is right justified. Valid values are 0, 50, 100.

Hold Spool File
Use the Hold Spool File API with this product.

Key
CWBOBJ_KEY_HOLD

ID
0x0039

Type
char[11]

Description
Whether the spooled file is held. Valid values are *YES, *NO.

Initialize the writer
Use the Initialize the writer API with this product.

Key
CWBOBJ_KEY_WTRINIT

ID
0x00AC

Type
char[11]

Description
The user can specify when to initialize the printer device. Valid values are *WTR, *FIRST, *ALL.

Internet Address
Use the Internet Address API with this product.

Key
CWBOBJ_KEY_INTERNETADDR

ID
0x0094

Type
char[16]

Description
The internet address of the receiving system.

206 IBM i: Windows Application Package: Programming

Job Name
Use the Job Name API with this product.

Key
CWBOBJ_KEY_JOBNAME

ID
0x003B

Type
char[11]

Description
The name of the job that created the spooled file.

Job Number
Use the Job Number API with this product.

Key
CWBOBJ_KEY_JOBNUMBER

ID
0x003C

Type
char[7]

Description
The number of the job that created the spooled file.

Job Separators
Use the Job Separators API with this product.

Key
CWBOBJ_KEY_JOBSEPRATR

ID
0x003D

Type
long

Description
The number of job separators to be placed at the beginning of the output for each job having spooled
files on this output queue. Valid values are -2, 0-9. The value *MSG is encoded as -2. Job separators
are specified when the output queue is created.

Job User
Use the Job User API with this product.

Key
CWBOBJ_KEY_USER

ID
0x003E

Type
char[11]

Description
The name of the user that created the spooled file.

Last Page Printed
Use the Last Page Printed API with this product.

Key
CWBOBJ_KEY_LASTPAGE

Windows Application Package: Programming 207

ID
0x003F

Type
long

Description
The number of the last printed page is the file if printing ended before the job completed processing.

Length of Page
Use the Length of Page API with this product.

Key
CWBOBJ_KEY_PAGELEN

ID
0x004E

Type
float

Description
The length of a page. Units of measurement are specified in the measurement method attribute.

Library Name
Use the Library Name API with this product.

Key
CWBOBJ_KEY_LIBRARY

ID
0x000F

Type
char[11]

Description
The name of the library.

Lines Per Inch
Use the Lines Per Inch API with this product.

Key
CWBOBJ_KEY_LPI

ID
0x0040

Type
float

Description
The number of lines per vertical inch in the spooled file.

Manufacturer Type and Model
Use the Manufacturer Type and Model API with this product.

Key
CWBOBJ_KEY_MFGTYPE

ID
0x0041

Type
char[21]

Description
Specifies the manufacturer, type, and model when transforming print data from SCS to ASCII.

208 IBM i: Windows Application Package: Programming

Maximum Spooled Output Records
Use the Maximum Spooled Output Records API with this product.

Key
CWBOBJ_KEY_MAXRECORDS

ID
0x0042

Type
long

Description
The maximum number of records allowed in this file at the time this file was opened. The value
*NOMAX is encoded as 0.

Measurement Method
Use the Measurement Method API with this product.

Key
CWBOBJ_KEY_MEASMETHOD

ID
0x004F

Type
char[11]

Description
The measurement method that is used for the length of page and width of page attributes. Valid
values are *ROWCOL, *UOM.

Message Help
Use the Message Help API with this product.

Key
CWBOBJ_KEY_MSGHELP

ID
0x0081

Type
char(*)

Description
The message help, which is sometimes known as second-level text, can be returned by a "retrieve
message" request. The system limits the length to 3000 characters (English version must be 30 %
less to allow for translation).

Message ID
Use the Message ID API with this product.

Key
CWBOBJ_KEY_MESSAGEID

ID
0x0093

Type
char[8]

Description
The message ID.

Windows Application Package: Programming 209

Message Queue Library Name
Use the Message Queue Library Name API with this product.

Key
CWBOBJ_KEY_MSGQUELIB

ID
0x0044

Type
char[11]

Description
The name of the library that contains the message queue.

Message Queue
Use the Message Queue API with this product.

Key
CWBOBJ_KEY_MSGQUE

ID
0x005E

Type
char[11]

Description
The name of the message queue that the writer uses for operational messages.

Message Reply
Use the Message Reply API with this product.

Key
CWBOBJ_KEY_MSGREPLY

ID
0x0082

Type
char[133]

Description
The message reply. Text string to be provided by the client which answers a message of type "inquiry".
In the case of message retrieved, the attribute value is returned by the server and contains the
default reply which the client can use. The system limits the length to 132 characters. Should be
null-terminated due to variable length.

Message Text
Use the Message Text API with this product.

Key
CWBOBJ_KEY_MSGTEXT

ID
0x0080

Type
char[133]

Description
The message text, that is sometimes known as first-level text, can be returned by a "retrieve
message" request. The system limits the length to 132 characters.

210 IBM i: Windows Application Package: Programming

Message Type
Use the Message Type API with this product.

Key
CWBOBJ_KEY_MSGTYPE

ID
0x008E

Type
char[3]

Description
The message type, a 2-digit, EBCDIC encoding. Two types of messages indicate whether one can
"answer" a "retrieved" message: '04' Informational messages convey information without asking for a
reply (may require a corrective action instead), '05' Inquiry messages convey information and ask for a
reply.

Message Severity
Use the Message Severity API with this product.

Key
CWBOBJ_KEY_MSGSEV

ID
0x009F

Type
long

Description
Message severity. Values range from 00 to 99. The higher the value, the more severe or important the
condition.

Number of Bytes to Read/Write
Use the Number of Bytes to Read/Write API with this product.

Key
CWBOBJ_KEY_NUMBYTES

ID
0x007D

Type
long

Description
The number of bytes to read for a read operation, or the number of bytes to write for a write operation.
The object action determines how to interpret this attribute.

Number of Files
Use the Number of Files API with this product.

Key
CWBOBJ_KEY_NUMFILES

ID
0x0045

Type
long

Description
The number of spooled files that exist on the output queue.

Windows Application Package: Programming 211

Number of Writers Started to Queue
Use the Number of Writers Started to Queue API with this product.

Key
CWBOBJ_KEY_NUMWRITERS

ID
0x0091

Type
long

Description
The number of writer jobs started to the output queue.

Object Extended Attribute
Use the Object Extended Attribute API with this product.

Key
CWBOBJ_KEY_OBJEXTATTR

ID
0x000B1

Type
char[11]

Description
An "extended" attribute used by some objects like font resources. This value shows up via the WRKOBJ
and DSPOBJD IBM i commands. The title on an IBM i screen may just indicate "Attribute". In the
case of object types of font resources, for example, common values are CDEPAG, CDEFNT, and
FNTCHRSET.

Open time commands
Use the Open time commands API with this product.

Key
CWBOBJ_KEY_OPENCMDS

ID
0x00A0

Type
char[11]

Description
Specifies whether the user wants SCS open time commands to be inserted into datastream prior to
spool file data. Valid values are *YES, *NO.

Operator Controlled
Use the Operator Controlled API with this product.

Key
CWBOBJ_KEY_OPCNTRL

ID
0x0046

Type
char[11]

Description
Whether users with job control authority are allowed to manage or control the spooled files on this
queue. Valid values are *YES, *NO.

212 IBM i: Windows Application Package: Programming

Order of Files On Queue
Use the Order of Files On Queue API with this product.

Key
CWBOBJ_KEY_ORDER

ID
0x0047

Type
char[11]

Description
The order of spooled files on this output queue. Valid values are *FIFO, *JOBNBR.

Output Priority
Use the Output Priority API with this product.

Key
CWBOBJ_KEY_OUTPTY

ID
0x0048

Type
char[11]

Description
The priority of the spooled file. The priority ranges from 1 (highest) to 9 (lowest). Valid values are 0-9,
where 0 represents *JOB.

Output Queue Library Name
Use the Output Queue Library Name API with this product.

Key
CWBOBJ_KEY_OUTQUELIB

ID
0x0049

Type
char[11]

Description
The name of the library that contains the output queue.

Output Queue Name
Use the Output Queue Name API with this product.

Key
CWBOBJ_KEY_OUTQUE

ID
0x004A

Type
char[11]

Description
The name of the output queue.

Output Queue Status
Use the Output Queue Status API with this product.

Key
CWBOBJ_KEY_OUTQUESTS

Windows Application Package: Programming 213

ID
0x004B

Type
char[11]

Description
The status of the output queue. Valid values are RELEASED, HELD.

Overflow Line Number
Use the Overflow Line Number API with this product.

Key
CWBOBJ_KEY_OVERFLOW

ID
0x004C

Type
long

Description
The last line to be printed before the data that is being printed overflows to the next page.

Pages Per Side
Use the Pages Per Side API with this product.

Key
CWBOBJ_KEY_MULTIUP

ID
0x0052

Type
long

Description
The number of logical pages that print on each side of each physical page when the file is printed.
Valid values are 1, 2, 4.

Pel Density
Use the Pel Density API with this product.

Key
CWBOBJ_KEY_PELDENSITY

ID
0x00B2

Type
char[2]

Description
For font resources only, this value is an encoding of the number of pels ("1" represents a pel size
of 240, "2" represents a pel size of 320). Additional values may become meaningful as the system
defines them.

Point Size
Use the Point Size API with this product.

Key
CWBOBJ_KEY_POINTSIZE

ID
0x0053

Type
float

214 IBM i: Windows Application Package: Programming

Description
The point size in which this spooled file's text is printed. The special value *NONE will be encoded as
0.

Print Fidelity
Use the Print Fidelity API with this product.

Key
CWBOBJ_KEY_FIDELITY

ID
0x0054

Type
char[11]

Description
The kind of error handling that is performed when printing. Valid values are *ABSOLUTE, *CONTENT.

Print on Both Sides
Use the Print on Both Sides API with this product.

Key
CWBOBJ_KEY_DUPLEX

ID
0x0055

Type
char[11]

Description
How the information prints. Valid values are *FORMDF, *NO, *YES, *TUMBLE.

Print Quality
Use the Print Quality API with this product.

Key
CWBOBJ_KEY_PRTQUALITY

ID
0x0056

Type
char[11]

Description
The print quality that is used when printing this spooled file. Valid values are *STD, *DRAFT, *NLQ,
*FASTDRAFT.

Print Sequence
Use the Print Sequence API with this product.

Key
CWBOBJ_KEY_PRTSEQUENCE

ID
0x0057

Type
char[11]

Description
Print sequence. Valid values are *NEXT.

Windows Application Package: Programming 215

Print Text
Use the Print Text API with this product.

Key
CWBOBJ_KEY_PRTTEXT

ID
0x0058

Type
char[31]

Description
The text that is printed at the bottom of each page of printed output and on separator pages. Valid
special values include *BLANK and *JOB.

Printer
Use the Printer API with this product.

Key
CWBOBJ_KEY_PRINTER

ID
0x0059

Type
char[11]

Description
The name of the printer device.

Printer Device Type
Use the Printer Device Type API with this product.

Key
CWBOBJ_KEY_PRTDEVTYPE

ID
0x005A

Type
char[11]

Description
The printer data stream type. Valid values are *SCS, *IPDS(*), *USERASCII, *AFPDS.

Printer File Library Name
Use the Printer File Library Name API with this product.

Key
CWBOBJ_KEY_PRTRFILELIB

ID
0x005B

Type
char[11]

Description
The name of the library that contains the printer file.

Printer File Name
Use the Printer File Name API with this product.

Key
CWBOBJ_KEY_PRTRFILE

216 IBM i: Windows Application Package: Programming

ID
0x005C

Type
char[11]

Description
The name of the printer file.

Printer Queue
Use the Printer Queue API with this product.

Key
CWBOBJ_KEY_RMTPRTQ

ID
0x005D

Type
char[129]

Description
The name of the destination printer queue when sending spooled files via SNDTCPSPLF (LPR).

Record Length
Use the Record Length API with this product.

Key
CWBOBJ_KEY_RECLENGTH

ID
0x005F

Type
long

Description
Record length.

Remote System
Use the Remote System API with this product.

Key
CWBOBJ_KEY_RMTSYSTEM

ID
0x0060

Type
char[256]

Description
Remote system name. Valid special values include *INTNETADR.

Replace Unprintable Characters
Use the Replace Unprintable Characters API with this product.

Key
CWBOBJ_KEY_RPLUNPRT

ID
0x0061

Type
char[11]

Description
Whether characters that cannot be printed are to be replaced with another character. Valid values are
*YES or *NO.

Windows Application Package: Programming 217

Replacement Character
Use the Replacement Character API with this product.

Key
CWBOBJ_KEY_RPLCHAR

ID
0x0062

Type
char[2]

Description
The character that replaces any unprintable characters.

Resource library name
Use the Resource library name API with this product.

Key
CWBOBJ_KEY_RSCLIB

ID
0x00AE

Type
char[11]

Description
The name of the library that contains the external AFP (Advanced Function Print) resource.

Resource name
Use the Resource name API with this product.

Key
CWBOBJ_KEY_RSCNAME

ID
0x00AF

Type
char[11]

Description
The name of the external AFP resource.

Resource object type
Use the Resource object type API with this product.

Key
CWBOBJ_KEY_RSCTYPE

ID
0x00B0

Type
Long

Description
A numerical, bit encoding of external AFP resource object type. Values are 0x0001, 0x0002, 0x0004,
0x0008, 0x0010 corresponding to *FNTRSC, *FORMDF, *OVL, *PAGSEG, *PAGDFN, respectively.

Restart Printing
Use the Restart Printing API with this product.

Key
CWBOBJ_KEY_RESTART

218 IBM i: Windows Application Package: Programming

ID
0x0063

Type
long

Description
Restart printing. Valid values are -1, -2, -3, or the page number to restart at. The value *STRPAGE is
encoded as -1, the value *ENDPAGE is encoded as -2, and the value *NEXT is encoded as -3.

Save Spooled File
Use the Save Spooled File API with this product.

Key
CWBOBJ_KEY_SAVESPLF

ID
0x0064

Type
char[11]

Description
Whether the spooled file is to be saved after it is written. Valid values are *YES, *NO.

Seek Offset
Use the Seek Offset API with this product.

Key
CWBOBJ_KEY_SEEKOFF

ID
0x007E

Type
long

Description
Seek offset. Allows both positive and negative values relative to the seek origin.

Seek Origin
Use the Seek Origin API with this product.

Key
CWBOBJ_KEY_SEEKORG

ID
0x007F

Type
long

Description
Valid values include 1 (beginning or top), 2 (current), and 3 (end or bottom).

Send Priority
Use the Send Priority API with this product.

Key
CWBOBJ_KEY_SENDPTY

ID
0x0065

Type
char[11]

Description
Send priority. Valid values are *NORMAL, *HIGH.

Windows Application Package: Programming 219

Separator page
Use the Separator page API with this product.

Key
CWBOBJ_KEY_SEPPAGE

ID
0x00A1

Type
char[11]

Description
Allows a user the option of printing a banner page. Valid values are *YES or *NO.

Source Drawer
Use the Source Drawer API with this product.

Key
CWBOBJ_KEY_SRCDRWR

ID
0x0066

Type
long

Description
The drawer to be used when the automatic cut sheet feed option is selected. Valid values are -1, -2,
1-255. The value *E1 is encode as -1, and the value *FORMDF is encoded as -2.

Spool SCS
Use the Spool SCS API with this product.

Key
CWBOBJ_KEY_SPLSCS

ID
0x00AD

Type
Long

Description
Determines how SCS data is used during create spool file. Valid values are -1, 0, 1, or the page
number. The value *ENDPAGE is encoded as -1. For the value 0, printing starts on page 1. For the
value 1, the entire file prints.

Spool the Data
Use the Spool the Data API with this product.

Key
CWBOBJ_KEY_SPOOL

ID
0x0067

Type
char[11]

Description
Whether the output data for the printer device is spooled. Valid values are *YES, *NO.

Spooled File Name
Use the Spooled File Name API with this product.

Key
CWBOBJ_KEY_SPOOLFILE

220 IBM i: Windows Application Package: Programming

ID
0x0068

Type
char[11]

Description
The name of the spooled file.

Spooled File Number
Use the Spooled File Number API with this product.

Key
CWBOBJ_KEY_SPLFNUM

ID
0x0069

Type
long

Description
The spooled file number.

Spooled File Status
Use the Spooled File Status API with this product.

Key
CWBOBJ_KEY_SPLFSTATUS

ID
0x006A

Type
char[11]

Description
The status of the spooled file. Valid values are *CLOSED, *HELD, *MESSAGE, *OPEN, *PENDING,
*PRINTER, *READY, *SAVED, *WRITING.

Spooled Output Schedule
Use the Spooled Output Schedule API with this product.

Key
CWBOBJ_KEY_SCHEDULE

ID
0x006B

Type
char[11]

Description
Specifies, for spooled files only, when the spooled file is available to the writer. Valid values are
*IMMED, *FILEEND, *JOBEND.

Starting Page
Use the Starting Page API with this product.

Key
CWBOBJ_KEY_STARTPAGE

ID
0x006C

Type
long

Windows Application Package: Programming 221

Description
The page number at which to start printing the spooled file. Valid values are -1, 0, 1, or the page
number. The value *ENDPAGE is encoded as -1. For the value 0, printing starts on page 1. For the
value 1, the entire file prints.

Text Description
Use the Text Description API with this product.

Key
CWBOBJ_KEY_DESCRIPTION

ID
0x006D

Type
[51]

Description
Text to describe an instance of an IBM i object.

Time File Opened
Use the Time File Opened API with this product.

Key
CWBOBJ_KEY_TIMEOPEN

ID
0x006E

Type
char[7]

Description
The time this spooled file was opened. The time is encoded in a character 0x0005 with the following
format, HH MM SS.

Total Pages
Use the Total Pages API with this product.

Key
CWBOBJ_KEY_PAGES

ID
0x006F

Type
long

Description
The number of pages that are contained in a spooled file.

Transform SCS to ASCII
Use the Transform SCS to ASCII API with this product.

Key
CWBOBJ_KEY_SCS2ASCII

ID
0x0071

Type
char[11]

Description
Whether the print data is to be transformed from SCS to ASCII. Valid values are *YES, *NO.

222 IBM i: Windows Application Package: Programming

Unit of Measure
Use the Unit of Measure API with this product.

Key
CWBOBJ_KEY_UNITOFMEAS

ID
0x0072

Type
char[11]

Description
The unit of measure to use for specifying distances. Valid values are *CM, *INCH.

User Comment
Use the User Comment API with this product.

Key
CWBOBJ_KEY_USERCMT

ID
0x0073

Type
char[101]

Description
The 100 characters of user-specified comment that describe the spooled file.

User Data
Use the User Data API with this product.

Key
CWBOBJ_KEY_USERDATA

ID
0x0074

Type
char[11]

Description
The 10 characters of user-specified data that describe the spooled file. Valid special values include
*SOURCE.

User defined data
Use the User defined data API with this product.

Key
CWBOBJ_KEY_USRDFNDTA

ID
0x00A2

Type
char[]

Description
User defined data to be utilized by user applications or user specified programs that process spool
files. All characters are acceptable. Max size is 255.

User defined object library
Use the User defined object library API with this product.

Key
CWBOBJ_KEY_USRDFNOBJLIB

Windows Application Package: Programming 223

ID
0x00A4

Type
char[11]

Description
User defined object library to search by user applications that process spool files.

User defined object name
Use the User defined object name API with this product.

Key
CWBOBJ_KEY_USRDFNOBJ

ID
0x00A5

Type
char[11]

Description
User defined object name to be utilized by user applications that process spool files.

User defined object type
Use the User defined object type API with this product.

Key
CWBOBJ_KEY_USRDFNOBJTYP

ID
0x00A6

Type
char[11]

Description
User defined object type pertaining to the user defined object.

User defined option(s)
Use the User defined option(s) API with this product.

Key
CWBOBJ_KEY_USEDFNOPTS

ID
0x00A3

Type
char[*]

Description
User defined options to be utilized by user applications that process spool files. Up to 4 options may
be specifies, each value is length char(10). All characters are acceptable.

User driver program
Use the User driver program API with this product.

Key
CWBOBJ_KEY_USRDRVPGMDTA

ID
0x00A9

Type
char[11]

224 IBM i: Windows Application Package: Programming

Description
User data to be used with the user driver program. All characters are acceptable. Maximum size is
5000 characters.

User driver program library
Use the User driver program library API with this product.

Key
CWBOBJ_KEY_USRDRVPGMLIB

ID
0x00AA

Type
char[11]

Description
User defined library to search for driver program that processes spool files.

User driver program name
Use the User driver program name API with this product.

Key
CWBOBJ_KEY_USRDRVPGM

ID
0x00AB

Type
char[11]

Description
User defined program name that processes spool files.

User ID
Use the User ID API with this product.

Key
CWBOBJ_KEY_TOUSERID

ID
0x0075

Type
char[9]

Description
User ID to which the spooled file is sent.

User ID Address
Use the User ID Address API with this product.

Key
CWBOBJ_KEY_TOADDRESS

ID
0x0076

Type
char[9]

Description
Address of user to whom the spooled file is sent.

Windows Application Package: Programming 225

User transform program library
Use the User transform program library API with this product.

Key
CWBOBJ_KEY_USRTFMPGMLIB

ID
0x00A7

Type
char[11]

Description
User defined library search for transform program.

User transform program name
Use the User transform program name API with this product.

Key
CWBOBJ_KEY_USETFMPGM

ID
0x00A8

Type
char[11]

Description
User defined transform program name that transforms spool file data before it is processed by the
driver program.

VM/MVS Class
Use the VM/MVS Class API with this product.

Key
CWBOBJ_KEY_VMMVSCLASS

ID
0x0077

Type
char[2]

Description
VM/MVS class. Valid values are A-Z and 0-9.

When to Automatically End Writer
Use the When to Automatically End Writer API with this product.

Key
CWBOBJ_KEY_WTRAUTOEND

ID
0x0078

Type
char[11]

Description
When to end the writer if it is to be ended automatically. Valid values are *NORDYF, *FILEEND.
Attribute Automatically end writer must be set to *YES.

When to End Writer
Use the When to End Writer API with this product.

Key
CWBOBJ_KEY_WTREND

226 IBM i: Windows Application Package: Programming

ID
0x0090

Type
char[11]

Description
When to end the writer. Valid value are *CNTRLD, *IMMED, and *PAGEEND. This is different from when
to automatically end the writer.

When to Hold File
Use the When to Hold File API with this product.

Key
CWBOBJ_KEY_HOLDTYPE

ID
0x009E

Type
char[11]

Description
When to hold the spooled file. Valid values are *IMMED, and *PAGEEND.

Width of Page
Use the Width of Page API with this product.

Key
CWBOBJ_KEY_PAGEWIDTH

ID
0x0051

Type
float

Description
The width of a page. Units of measurement are specified in the measurement method attribute.

Workstation Customizing Object Name
Use the Workstation Customizing Object Name API with this product.

Key
CWBOBJ_KEY_WSCUSTMOBJ

ID
0x0095

Type
char[11]

Description
The name of the workstation customizing object.

Workstation Customizing Object Library
Use the Workstation Customizing Object Library API with this product.

Key
CWBOBJ_KEY_WSCUSTMOBJL

ID
0x0096

Type
char[11]

Description
the name of the library that contains the workstation customizing object.

Windows Application Package: Programming 227

Writer Job Name
Use the Writer Job Name API with this product.

Key
CWBOBJ_KEY_WRITER

ID
0x0079

Type
char[11]

Description
The name of the writer job.

Writer Job Number
Use the Writer Job Number API with this product.

Key
CWBOBJ_KEY_WTRJOBNUM

ID
0x007A

Type
char[7]

Description
The writer job number.

Writer Job Status
Use the Writer Job Status API with this product.

Key
CWBOBJ_KEY_WTRJOBSTS

ID
0x007B

Type
char[11]

Description
The status of the writer job. Valid values are STR, END, JOBQ, HLD, MSGW.

Writer Job User Name
Use the Writer Job User Name API with this product.

Key
CWBOBJ_KEY_WTRJOBUSER

ID
0x007C

Type
char[11]

Description
The name of the user that started the writer job.

Writer Starting Page
Use the Writer Starting Page API with this product.

Key
CWBOBJ_KEY_WTRSTRPAGE

ID
0x008F

228 IBM i: Windows Application Package: Programming

Type
long

Description
Specifies the page number of the first page to print from the first spooled file when the writer job
starts. This is only valid if the spooled file name is also specified when the writer starts.

Network Print Server Object Attributes
The follow list is for object attributes for the network print server when using this product.

NPS Attribute Default Value
Use the NPS Attribute Default Value API with this product.

Key
CWBOBJ_KEY_ATTRDEFAULT

ID
0x0083

Type
dynamic

Description
Default value for the attribute.

NPS Attribute High Limit
Use the NPS Attribute High Limit API with this product.

Key
CWBOBJ_KEY_ATTRMAX

ID
0x0084

Type
dynamic

Description
High limit of the attribute value.

NPS Attribute ID
Use the NPS Attribute ID API with this product.

Key
CWBOBJ_KEY_ATTRID

ID
0x0085

Type
long

Description
ID of the attribute.

NPS Attribute Low Limit
Use the NPS Attribute Low Limit API with this product.

Key
CWBOBJ_KEY_ATTRMIN

ID
0x0086

Type
dynamic

Description
Low limit of the attribute value.

Windows Application Package: Programming 229

NPS Attribute Possible Value
Use the NPS Attribute Possible Value API with this product.

Key
CWBOBJ_KEY_ATTRPOSSIBL

ID
0x0087

Type
dynamic

Description
Possible value for the attribute. More than one NPS possible value instance may be present in a code
point.

NPS Attribute Text Description
Use the NPS Attribute Text Description API with this product.

Key
CWBOBJ_KEY_ATTRDESCRIPT

ID
0x0088

Type
char(*)

Description
Text description that provides a name for the attribute.

NPS Attribute Type
Use the NPS Attribute Type API with this product.

Key
CWBOBJ_KEY_ATTRTYPE

ID
0x0089

Type
long

Description
The type of the attribute. Valid values are the types that are defined by the Network Print Server.

NPS CCSID
Use the NPS CCSID API with this product.

Key
CWBOBJ_KEY_NPSCCSID

ID
0x008A

Type
long

Description
CCSID that the Network Print Server expects that all strings will be encoded in.

NPS Object
Use the NPS Object API with this product.

Key
CWBOBJ_KEY_NPSOBJECT

ID
0x008B

230 IBM i: Windows Application Package: Programming

Type
long

Description
Object ID. Valid values are the objects that are defined by the Network Print Server.

NPS Object Action
Use the NPS Object Action API with this product.

Key
CWBOBJ_KEY_NPSACTION

ID
0x008C

Type
long

Description
Action ID. Valid values are the actions that are defined by the Network Print Server.

NPS Level
Use the NPS Level API with this product.

Key
CWBOBJ_KEY_NPSLEVEL

ID
0x008D

Type
char[7]

Description
The version, release, and modification level of the Network Print Server. This attribute is a character
string encoded as VXRYMY (ie. "V3R1M0") where

 X is in (0..9)
 Y is in (0..9,A..Z)

List APIs
The following APIs pertain to List objects. The APIs are listed alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_CloseList
Use the cwbOBJ_CloseList API with this product.

Purpose
Closes an opened list.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CloseList(
 cwbOBJ_ListHandle listHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ListHandle listHandle - input

Handle of the list to be closed. This list must be opened.

Windows Application Package: Programming 231

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated list handle.

CWBOBJ_RC_LIST_NOT_OPEN
The list isn't open.

Usage
Closing the list frees the memory used by the list to hold its items. Any object handles gotten with
cwbOBJ_GetObjHandle() API should be released before closing the list to free resources. These
handles are no longer valid.

cwbOBJ_CreateListHandle
Use the cwbOBJ_CreateListHandle API with this product.

Purpose
Allocates a handle for a list of objects. After a list handle has been allocated, the filter criteria may be set
for the list with the cwbOBJ_SetListFilter() API, the list may be built with the cwbOBJ_OpenList()
API, etc. cwbOBJ_DeleteListHandle() should be called to deallocated this list handle and free any
resources used by it.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CreateListHandle(
 const char *systemName,
 cwbOBJ_ListType type,
 cwbOBJ_ListHandle *listHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
const char *systemName - input

Pointer to the system name contained in ASCIIZ string
cwbOBJ_ListType type - input

Type of list to allocate (eg. spooled file list, output queue list, etc).
cwbOBJ_ListHandle *listHandle - output

Pointer to a list handle that will be passed back on output. This handle is needed for other calls using
the list.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

232 IBM i: Windows Application Package: Programming

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage that is being used.

CWB_API_ERROR
General API failure.

Usage
Caller must call cwbOBJ_DeleteListHandle when done using this list handle. Typical calling sequence
for retrieving a list of objects would be:

1. cwbOBJ_CreateListHandle()
2. cwbOBJ_SetListFilter() { repeated as needed }
3. cwbOBJ_OpenList()
4. cwbOBJ_GetListSize() to get the size of the list.
5. For n=0 to list size - 1 cwbOBJ_GetObjHandle for list item in position n do something with the object
cwbOBJ_DeleteObjHandle()

6. cwbOBJ_CloseList() - You may go back to step 2 here.
7. cwbOBJ_DeleteListHandle()

cwbOBJ_DeleteListHandle
Use the cwbOBJ_DeleteListHandle API with this product.

Purpose
Deallocates a list handle that was previously allocated with the cwbOBJ_CreateListHandle() API.
This will free any resources associated with the list.

Syntax

unsigned int CWB_ENTRY cwbOBJ_DeleteListHandle(
 cwbOBJ_ListHandle listHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ListHandle listHandle - input

List handle that will be deleted.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

Windows Application Package: Programming 233

CWB_INVALID_HANDLE
List handle not found.

Usage
If the list associated with this handle is opened, this call will close it. If there are opened handles to
objects in this list, they will no longer be valid. After this call returns successfully, the list handle is no
longer valid.

cwbOBJ_GetListSize
Use the cwbOBJ_GetListSize API with this product.

Purpose
Get the size of an opened list.

Syntax

unsigned int CWB_ENTRY cwbOBJ_GetListSize(
 cwbOBJ_ListHandle listHandle,
 unsigned long *size,
 cwbOBJ_List_Status *listStatus,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ListHandle listHandle - input

Handle of the list to get the size of. This list must be opened.
unsigned long *size - output

On output, this will be set to the current size of the list.
cwbOBJ_List_Status *listStatus - output

Optional, may be NULL. This will always be CWBOBJ_LISTSTS_COMPLETED for lists opened
synchronously.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated list handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_LIST_NOT_OPEN
The list isn't open.

Usage
None

234 IBM i: Windows Application Package: Programming

cwbOBJ_OpenList
Use the cwbOBJ_OpenList API with this product.

Purpose
Open the list. This actually builds the list. Caller must call the cwbOBJ_ClostList() API when done
with the list to free resources. After the list is opened, the caller may use other APIs on the list to do
things such as get the list size and get object handles to items in the list.

Syntax

unsigned int CWB_ENTRY cwbOBJ_OpenList(
 cwbOBJ_ListHandle listHandle,
 cwbOBJ_List_OpenType openType,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ListHandle listHandle - input

Handle of the list to open.
cwbOBJ_List_OpenType openHandle - input

Manner in which to open the list. Must be set to CWBOBJ_LIST_OPEN_SYNCH
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated list handle.

CWBOBJ_RC_LIST_OPEN
The list is already open.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_NOHOSTSUPPORT
Host doesn't support this type of list.

Usage
None

cwbOBJ_ResetListAttrsToRetrieve
Use the cwbOBJ_ResetListAttrsToRetrieve API with this product.

Purpose
Resets the list attributes to retrieve information to its default list.

Windows Application Package: Programming 235

Syntax

unsigned int CWB_ENTRY cwbOBJ_ResetListAttrsToRetrieve(
 cwbOBJ_ListHandle listHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ListHandle listHandle - input

List handle to reset.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion

CWB_INVALID_HANDLE
Handle is not an allocated list handle.

Usage
Use this call to reset the list handle's list of attributes to retrieve after calling
cwbOBJ_SetListAttrsToRetrieve().

cwbOBJ_ResetListFilter
Use the cwbOBJ_ResetListFilter API with this product.

Purpose
Resets the filter on a list to what it was when the list was first allocated (the default filter).

Syntax

unsigned int CWB_ENTRY cwbOBJ_ResetListFilter(
 cwbOBJ_ListHandle listHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ListHandle listHandle - input

Handle of the list to have its filter reset.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

236 IBM i: Windows Application Package: Programming

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not allocated list handle.

Usage
The list must be closed and reopened for the change to take affect.

cwbOBJ_SetListAttrsToRetrieve
Use the cwbOBJ_SetListAttrsToRetrieve API with this product.

Purpose
An optional function that may be applied to list handle before the list is opened. The purpose of doing this
is to improve efficiency by allowing the cwbOBJ_OpenList() API to retrieve just the attributes of each
object that the application will be using.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SetListAttrsToRetrieve(
 cwbOBJ_ListHandle listHandle,
 unsigned long numKeys,
 const cwbOBJ_KeyID *keys,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ListHandle listHandle - input

List handle to apply the list of attribute keys to.
unsigned long numKeys - input

The number of keys pointed to by the 'keys' parameter. May be 0, which means that no attributes are
needed for objects in the list.

const cwbOBJ_KeyID *keys - input
An array of numKeys keys that are the IDs of the attributes to be retrieved for each object in the list
when the list is opened.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated list handle.

CWB_INVALID_PARAMETER
Invalid parameter specified.

Windows Application Package: Programming 237

Usage
This call is used to provide a clue to the cwbOBJ_OpenList() API as to what attributes the application is
interested in for the objects that are listed. Using this information, the cwbOBJ_OpenList() API can be
more efficient. The attribute keys that are valid in the 'keys' list depend on type of object being listed (set
on cwbOBJ_CreateListHandle()) Call cwbOBJ_ResetListAttrsToRetrieve() to reset the list to
its default list of keys.

cwbOBJ_SetListFilter
Use the cwbOBJ_SetListFilter API with this product.

Purpose
Sets filters for the list. This filter is applied the next time cwbOBJ_OpenList() is called.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SetListFilter(
 cwbOBJ_ListHandle listHandle,
 cwbOBJ_KeyID key,
 const char *value,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ListHandle listHandle - input

List handle that this filter will be applied to.
cwbOBJ_KeyID key - input

The id of the filtering field to be set.
const void *value - input

The value this field should be set to.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
List handle not found.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage
The value of key will determine the type that is pointed to value. The length of value is determined by its
type. The following filters may be set against these list types Spooled File Lists:

• CWBOBJ_LIST_SPLF:

– CWBOBJ_KEY_USER

238 IBM i: Windows Application Package: Programming

Specifies which user's spooled files are to be listed. May be a specific user ID or one of these special
values: *ALL - all users. *CURRENT - list spooled files for the current user only. *CURRENT is the
default.

– CWBOBJ_KEY_OUTQUELIB

Specifies which libraries to search for output queues in. May be a specific name or one of these
special values: "" - if the OUTQUEUE key word is *ALL, this combination will search all output queue
on the system. *CURLIB - the current library *LIBL - the library list *LIBL is the default if the OUTQUE
filter is not *ALL. "" is the default if the OUTQU filter is set to *ALL.

– CWBOBJ_KEY_OUTQUE

Specifies which output queues to search for spooled files on May be a specific name or the special
value *ALL. *ALL is the default.

– CWBOBJ_KEY_FORMTYPE

Specifies which spooled files are listed by the form type attribute that they have. May be a specific
name or one of these special values: *ALL - spooled files with any form type are listed. *STD - spooled
files with the form type of *STD are listed *ALL is the default.

– CWBOBJ_KEY_USERDATA

Specifies which spooled files are listed by the user data that they have. May be a specific value or one
of these special values: *ALL - spooled files with any user data value are listed. *ALL is the default.

Output Queue Lists:

• CWBOBJ_LIST_OUTQ:

– CWBOBJ_KEY_OUTQUELIB

Specifies which libraries to search for output queues in. May be a specific name, a generic name or
any of these special values: *ALL - all libraries *ALLUSER - all user-defined libraries, plus libraries
containing user data and having names starting with Q *CURLIB - the current library *LIBL - the
library list *USRLIBL - the user portion o the library list. *LIBL is the default.

– - CWBOBJ_KEY_OUTQUE

Specifies which output queues to list. May be a specific name, a generic name or *ALL. *ALL is the
default.

Printer Device Description Lists:

• CWBOBJ_LIST_PRTD:

– CWBOBJ_KEY_PRINTER

Specifies which printer device to list. May be a specific name, a generic name or *ALL. *ALL is the
default.

Printer File Lists:

• CWBOBJ_LIST_PRTF:

– CWBOBJ_KEY_PRTRFILELIB

Specifies which libraries to search for printer files in. May be a specific name, a generic name or any
of these special values:

- *ALL - all libraries
- *ALLUSER - all user-defined libraries, plus libraries containing user data and having names starting

with Q
- *CURLIB - the current library
- *LIBL - the library list
- *USRLIBL - the user portion o the library list.
- *ALL is the default.

Windows Application Package: Programming 239

– CWBOBJ_KEY_PRTRFILE

Specifies which printer files to list. May be a specific name, a generic name or *ALL. *ALL is the
default.

Writer Job Lists:

• CWBOBJ_LIST_WTR:

– CWBOBJ_KEY_WRITER

Specifies which writer jobs to list. May be a specific name, a generic name or *ALL. *ALL is the default.
– CWBOBJ_KEY_OUTQUELIB & CWBOBJ_KEY_OUTQUE

These filters are used together to get a list of writers active to a particular output queue. If the
OUTQUE key is specified the WRITER key is ignored. (all writers for the specified output queue are
listed). If the OUTQUE key is specified and the OUTQUELIB isn't, the OUTQUEULIB will default to
*LIBL - the system library list. The default is for neither of these to be specified.

Library Lists:

• CWBOBJ_LIST_LIB:

– CWBOBJ_KEY_LIBRARY

Specifies which libraries to list. May be a specific name, a generic name or any of these special
values:

- *ALL - all libraries
- *CURLIB - the current library
- *LIBL - the library list
- *USRLIBL - the user portion o the library list.
- *USRLIBL is the default.

• CWBOBJ_LIST_RSC:

– Resources can be lists in a spooled file (lists all of the external AFP resources used by this
spooled file) or in a library or set of libraries. To list resources for a spooled file, use the
cwbOBJ_SetListFilterWithSplF API along with the SetListFilter API for the RSCTYPE and
RSCNAME attributes.

- CWBOBJ_KEY_RSCLIB

Specifies which libraries to search for resources in. This filter is ignored if the list is filter by spooled
file (for example, SetListFilterWithSplF). May be a specific name, a generic name or any of
these special values:

• *ALL - all libraries
• *ALLUSR - All user-defined libraries, plus libraries containing user data and having names starting

with Q.
• *CURLIB - the current library
• *LIBL - the library list
• *USRLIBL - the user portion o the library list.
• *LIBL is the default.

- CWBOBJ_KEY_RSCNAME

Specifies which resources to list by name. May be a specific name, a generic name or *ALL.

*ALL is the default.
- CWBOBJ_KEY_RESCTYPE

Specifies which type of resources to list. May be any combination of the following bits logically OR'd
together:

240 IBM i: Windows Application Package: Programming

• CWBOBJ_AFPRSC_FONT
• CWBOBJ_AFPRSC_FORMDEF
• CWBOBJ_AFPRSC_OVERLAY
• CWBOBJ_AFPRSC_PAGESEG
• CWBOBJ_AFPRSC_PAGEDEF

cwbOBJ_SetListFilterWithSplF
Use the cwbOBJ_SetListFilterWithSplF API with this product.

Purpose
Sets filter for a list to a spooled file. For listing resources this limits the resources returned by the openList
to those used by the spooled file.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SetListFilterWithSplF(
 cwbOBJ_ListHandle listHandle,
 cwbOBJ_ObjHandle splFHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ListHandle listHandle - input

List handle that this filter will be applied to.
cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to filter on.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBOBJ_RC_INVALID_TYPE
Incorrect type of list.

CWB_INVALID_HANDLE
List handle not found or bad spooled file handle.

Usage
Filtering by spooled file is used when listing AFP resources so the list type must be CWBOBJ_LIST_RSC.
If you filter resources based on a spooled file you cannot also filter based on a library or libraries. The
resource library filter will be ignored if both are specified. Resetting a list filter will also reset the spooled
file filter to nothing.

Object APIs
The following APIs pertain to Objects. The APIs are listed alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

Windows Application Package: Programming 241

cwbOBJ_CopyObjHandle
Use the cwbOBJ_CopyObjHandle API with this product.

Purpose
Creates a duplicate handle to an object. Use this API to get another handle to the same IBM i object. This
new handle will be valid until the cwbOBJ_DeleteObjHandle() API has been called to release it.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CopyObjHandle(
 cwbOBJ_ObjHandle objectHandle,
 cwbOBJ_ObjHandle *newObjectHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle objectHandle - input

Handle of the object to copy.
cwbOBJ_ObjHandle *newObjectHandle - output

Upon successful competition of this call, this handle will contain the new object handle.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

Usage
If you have a handle to an object in a list and wish to maintain a handle to that object after the list
has been close this API allows you to do that. cwbOBJ_DeleteObjHandle() must be called to release
resources for this handle.

cwbOBJ_DeleteObjHandle
Use the cwbOBJ_DeleteObjHandle API with this product.

Purpose
Releases a handle to an object.

Syntax

unsigned int CWB_ENTRY cwbOBJ_DeleteObjHandle(
 cwbOBJ_ObjHandle objectHandle,
 cwbSV_ErrHandle errorHandle);

242 IBM i: Windows Application Package: Programming

Parameters
cwbOBJ_ObjHandle objectHandle - input

Handle of the object to release.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

Usage
None

cwbOBJ_GetObjAttr
Use the cwbOBJ_GetObjAttr API with this product.

Purpose
Get an attribute of an object.

Syntax

unsigned int CWB_ENTRY cwbOBJ_GetObjAttr(
 cwbOBJ_ObjHandle objectHandle,
 cwbOBJ_KeyID key,
 void *buffer,
 unsigned long bufLen,
 unsigned long *bytesNeeded,
 cwbOBJ_DataType *keyType,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle objectHandle - input

Handle of the object to get the attribute for.
cwbOBJ_KeyID key - input

Identifying key of the attribute to retrieve. The CWBOBJ_KEY_XXX constants define the key ids. The
type of object pointed to by objectHandle determine which keys are valid.

void *buffer - output
The buffer that will hold the attribute value, if this call returns successfully. The value of the key
determines what type of data will be put into pBuffer. The type is also returned to the *keyType
parameter, if provided.

unsigned long bufLen - input
The length of the buffer pointed to by pBuffer.

unsigned long *bytesNeeded - output
On output, this will be the number of bytes needed to hold result.

Windows Application Package: Programming 243

cwbOBJ_DataType *keyType - output
Optional, may be NULL. On output this will contain the type of data used to represent this attribute
and what is stored at *buffer.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

CWB_BUFFER_OVERFLOW
Buffer too small.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_KEY
Key isn't valid.

CWB_API_ERROR
General API failure.

Usage
The following attributes may be retrieved for these object types:

• CWBOBJ_LIST_SPLF:

CWBOBJ_KEY_AFP - AFP resources used
CWBOBJ_KEY_ALIGN - Align page
CWBOBJ_KEY_BKMGN_ACR - Back margin across
CWBOBJ_KEY_BKMGN_DWN - Back margin down
CWBOBJ_KEY_BKOVRLLIB - Back overlay library name
CWBOBJ_KEY_BKOVRLAY - Back overlay name
CWBOBJ_KEY_BKOVL_ACR - Back overlay offset across
CWBOBJ_KEY_BKOVL_DWN - Back overlay offset down
CWBOBJ_KEY_CPI - Characters per inch
CWBOBJ_KEY_CODEDFNTLIB - Coded font library name
CWBOBJ_KEY_CODEDFNT - Coded font
CWBOBJ_KEY_COPIES - Copies (total)
CWBOBJ_KEY_COPIESLEFT - Copies left to produce
CWBOBJ_KEY_CURPAGE - Current page
CWBOBJ_KEY_DATE - Date file was opened
CWBOBJ_KEY_PAGRTT - Degree of page rotation
CWBOBJ_KEY_ENDPAGE - Ending page
CWBOBJ_KEY_FILESEP - File separators
CWBOBJ_KEY_FOLDREC - Wrap text to next line
CWBOBJ_KEY_FONTID - Font identifier to use (default)
CWBOBJ_KEY_FORMFEED - Form feed
CWBOBJ_KEY_FORMTYPE - Form type
CWBOBJ_KEY_FTMGN_ACR - Front margin across
CWBOBJ_KEY_FTMGN_DWN - Front margin down
CWBOBJ_KEY_FTOVRLLIB - Front overlay library name
CWBOBJ_KEY_FTOVRLAY - Front overlay
CWBOBJ_KEY_FTOVL_ACR - Front overlay offset across
CWBOBJ_KEY_FTOVL_DWN - Front overlay offset down
CWBOBJ_KEY_CHAR_ID - Graphic character set
CWBOBJ_KEY_JUSTIFY - Hardware justification
CWBOBJ_KEY_HOLD - Hold the spool file
CWBOBJ_KEY_JOBNAME - Name of the job that created file
CWBOBJ_KEY_JOBNUMBER - Number of the job that created file

244 IBM i: Windows Application Package: Programming

CWBOBJ_KEY_USER - Name of the user that created file
CWBOBJ_KEY_LASTPAGE - Last page that printed
CWBOBJ_KEY_LPI - Lines per inch
CWBOBJ_KEY_MAXRECORDS - Maximum number of records allowed
CWBOBJ_KEY_OUTPTY - Output priority
CWBOBJ_KEY_OUTQUELIB - Output queue library name
CWBOBJ_KEY_OUTQUE - Output queue
CWBOBJ_KEY_OVERFLOW - Overflow line number
CWBOBJ_KEY_PAGELEN - Page length
CWBOBJ_KEY_MEASMETHOD - Measurement method
CWBOBJ_KEY_PAGEWIDTH - Page width
CWBOBJ_KEY_MULTIUP - Logical pages per physical side
CWBOBJ_KEY_POINTSIZE - The default font's point size
CWBOBJ_KEY_FIDELITY - The error handling when printing
CWBOBJ_KEY_DUPLEX - Print on both sides of paper
CWBOBJ_KEY_PRTQUALITY - Print quality
CWBOBJ_KEY_PRTTEXT - Text printed at bottom of each page
CWBOBJ_KEY_PRTDEVTYPE - Printer dev type (data stream type)
CWBOBJ_KEY_PRTRFILELIB - Printer file library
CWBOBJ_KEY_PRTRFILE - Printer file
CWBOBJ_KEY_RECLENGTH - Record length
CWBOBJ_KEY_RPLUNPRT - Replace unprintable characters
CWBOBJ_KEY_RPLCHAR - Character to replace unprintables
CWBOBJ_KEY_RESTART - Where to restart printing at
CWBOBJ_KEY_SAVESPLF - Save file after printing
CWBOBJ_KEY_SRCDRWR - Source drawer
CWBOBJ_KEY_SPOOLFILE - Spool file name
CWBOBJ_KEY_SPLFNUM - Spool file number
CWBOBJ_KEY_SPLFSTATUS - Spool file status
CWBOBJ_KEY_STARTPAGE - Starting page to print
CWBOBJ_KEY_TIME - Time spooled file was opened at
CWBOBJ_KEY_PAGES - Number of pages in spool file
CWBOBJ_KEY_UNITOFMEAS - Unit of measure
CWBOBJ_KEY_USERCMT - User comment
CWBOBJ_KEY_USERDATA - User data
CWBOBJ_KEY_USRDFNDTA - User defined data
CWBOBJ_KEY_USRDFNOPTS - User defined options
CWBOBJ_KEY_USRDFNOBJ - User defined object
CWBOBJ_KEY_USRDFNOBJLIB- User defined object library
CWBOBJ_KEY_USRDFNOBJTYP- User defined object type

• CWBOBJ_LIST_OUTQ:

CWBOBJ_KEY_AUTHCHCK - authority to check
CWBOBJ_KEY_DATAQUELIB - data queue library
CWBOBJ_KEY_DATAQUE - data queue
CWBOBJ_KEY_DESCRIPTION - text description
CWBOBJ_KEY_DISPLAYANY - users can display any file on queue
CWBOBJ_KEY_JOBSEPRATR - number of job separators
CWBOBJ_KEY_NUMFILES - total spooled files on output queue
CWBOBJ_KEY_NUMWRITERS - number of writers started to queue
CWBOBJ_KEY_OPCNTRL - operator controlled
CWBOBJ_KEY_ORDER - order on queue (sequence)
CWBOBJ_KEY_OUTQUELIB - output queue library name
CWBOBJ_KEY_OUTQUE - output queue
CWBOBJ_KEY_OUTQUESTS - output queue status
CWBOBJ_KEY_PRINTER - printer
CWBOBJ_KEY_SEPPAGE - print banner page
CWBOBJ_KEY_USRDFNDTA - user defined data
CWBOBJ_KEY_USRDFNOBJ - user defined object
CWBOBJ_KEY_USRDFNOBJLIB- user defined object library
CWBOBJ_KEY_USRDFNOBJTYP- user defined object type
CWBOBJ_KEY_USRDFNOPTS - user defined options
CWBOBJ_KEY_USRDRVPGM - user driver program
CWBOBJ_KEY_USRDRVPGMLIB- user driver program library
CWBOBJ_KEY_USRDRVPGMDTA- user driver program data
CWBOBJ_KEY_USRTFMPGM - user data transform program
CWBOBJ_KEY_USRTFMPGMLIB- user data transform program library
CWBOBJ_KEY_WRITER - writer job name
CWBOBJ_KEY_WTRJOBNUM - writer job number
CWBOBJ_KEY_WTRJOBSTS - writer job status
CWBOBJ_KEY_WTRJOBUSER - writer job user

• CWBOBJ_LIST_PRTD:

CWBOBJ_KEY_AFP - AFP resources used
CWBOBJ_KEY_CODEPAGE - code page
CWBOBJ_KEY_DEVCLASS - device class
CWBOBJ_KEY_DEVMODEL - device model
CWBOBJ_KEY_DEVTYPE - device type

Windows Application Package: Programming 245

CWBOBJ_KEY_DRWRSEP - drawer to use for separators
CWBOBJ_KEY_FONTID - font identifier
CWBOBJ_KEY_FORMFEED - form feed
CWBOBJ_KEY_CHAR_ID - graphic character set
CWBOBJ_KEY_MFGTYPE - manufacturer's type & model
CWBOBJ_KEY_MSGQUELIB - message queue library
CWBOBJ_KEY_MSGQUE - message queue
CWBOBJ_KEY_POINTSIZE - default font's point size
CWBOBJ_KEY_PRINTER - printer
CWBOBJ_KEY_PRTQUALITY - print quality
CWBOBJ_KEY_DESCRIPTION - text description
CWBOBJ_KEY_SCS2ASCII - transform SCS to ASCII
CWBOBJ_KEY_USRDFNDTA - user defined data
CWBOBJ_KEY_USRDFNOPTS - user defined options
CWBOBJ_KEY_USRDFNOBJLIB- user defined object library
CWBOBJ_KEY_USRDFNOBJ - user defined object
CWBOBJ_KEY_USRDFNOBJTYP- user defined object type
CWBOBJ_KEY_USRTFMPGMLIB- user data transform
 program library
CWBOBJ_KEY_USRTFMPGM - user data transform program
CWBOBJ_KEY_USRDRVPGMDTA- user driver program data
CWBOBJ_KEY_USRDRVPGMLIB- user driver program library
CWBOBJ_KEY_USRDRVPGM - user driver program

• CWBOBJ_LIST_PRTF:

CWBOBJ_KEY_ALIGN - align page
CWBOBJ_KEY_BKMGN_ACR - back margin across
CWBOBJ_KEY_BKMGN_DWN - back margin down
CWBOBJ_KEY_BKOVRLLIB - back side overlay library
CWBOBJ_KEY_BKOVRLAY - back side overlay name
CWBOBJ_KEY_BKOVL_DWN - back overlay offset down
CWBOBJ_KEY_BKOVL_ACR - back overlay offset across
CWBOBJ_KEY_CPI - characters per inch
CWBOBJ_KEY_CODEDFNTLIB - coded font library name
CWBOBJ_KEY_CODEPAGE - code page
CWBOBJ_KEY_CODEDFNT - coded font
CWBOBJ_KEY_COPIES - copies (total)
CWBOBJ_KEY_DBCSDATA - contains DBCS character set data
CWBOBJ_KEY_DBCSEXTENSN - process DBCS extension
 characters
CWBOBJ_KEY_DBCSROTATE - rotate DBCS characters
CWBOBJ_KEY_DBCSCPI - DBCS CPI
CWBOBJ_KEY_DBCSSISO - DBCS SI/SO positioning
CWBOBJ_KEY_DFR_WRITE - defer write
CWBOBJ_KEY_PAGRTT - degree of page rotation
CWBOBJ_KEY_ENDPAGE - ending page number to print
CWBOBJ_KEY_FILESEP - number of file separators
CWBOBJ_KEY_FOLDREC - wrap text to next line
CWBOBJ_KEY_FONTID - Font identifier to use (default)
CWBOBJ_KEY_FORMFEED - type of paperfeed to be used
CWBOBJ_KEY_FORMTYPE - name of the form to be used
CWBOBJ_KEY_FTMGN_ACR - front margin across
CWBOBJ_KEY_FTMGN_DWN - front margin down
CWBOBJ_KEY_FTOVRLLIB - front side overlay library
CWBOBJ_KEY_FTOVRLAY - front side overlay name
CWBOBJ_KEY_FTOVL_ACR - front overlay offset across
CWBOBJ_KEY_FTOVL_DWN - front overlay offset down
CWBOBJ_KEY_CHAR_ID - graphic character set for this file
CWBOBJ_KEY_JUSTIFY - hardware justification
CWBOBJ_KEY_HOLD - hold the spool file
CWBOBJ_KEY_LPI - lines per inch
CWBOBJ_KEY_MAXRCDS - maximum number of records allowed
CWBOBJ_KEY_OUTPTY - output priority
CWBOBJ_KEY_OUTQUELIB - output queue library
CWBOBJ_KEY_OUTQUE - output queue
CWBOBJ_KEY_OVERFLOW - overflow line number
CWBOBJ_KEY_LINES_PAGE - page length in lines per page
CWBOBJ_KEY_PAGELEN - page length in Units of Measurement
CWBOBJ_KEY_MEASMETHOD - measurement method
 (*ROWCOL or *UOM)
CWBOBJ_KEY_CHAR_LINE - page width in characters per line
CWBOBJ_KEY_PAGEWIDTH - width of page in Units of Measure
CWBOBJ_KEY_MULTIUP - logical pages per physical side
CWBOBJ_KEY_POINTSIZE - the default font's point size
CWBOBJ_KEY_FIDELITY - the error handling when printing
CWBOBJ_KEY_DUPLEX - print on both sides of paper
CWBOBJ_KEY_PRTQUALITY - print quality
CWBOBJ_KEY_PRTTEXT - text printed at bottom of each page
CWBOBJ_KEY_PRINTER - printer device name
CWBOBJ_KEY_PRTDEVTYPE - printer dev type (data stream type)

246 IBM i: Windows Application Package: Programming

CWBOBJ_KEY_PRTRFILELIB - printer file library
CWBOBJ_KEY_PRTRFILE - printer file
CWBOBJ_KEY_RPLUNPRT - replace unprintable characters
CWBOBJ_KEY_RPLCHAR - character to replace unprintables
CWBOBJ_KEY_SAVE - save spooled file after printing
CWBOBJ_KEY_SRCDRWR - source drawer
CWBOBJ_KEY_SPOOL - spool the data
CWBOBJ_KEY_SCHEDULE - when available to the writer
CWBOBJ_KEY_STARTPAGE - starting page to print
CWBOBJ_KEY_DESCRIPTION - text description
CWBOBJ_KEY_UNITOFMEAS - unit of measure
CWBOBJ_KEY_USERDATA - user data
CWBOBJ_KEY_USRDFNDTA - User defined data
CWBOBJ_KEY_USRDFNOPTS - User defined options
CWBOBJ_KEY_USRDFNOBJLIB- User defined object library
CWBOBJ_KEY_USRDFNOBJ - User defined object
CWBOBJ_KEY_USRDFNOBJTYP- User defined object type

• CWBOBJ_LIST_WTR:

CWBOBJ_KEY_WRITER - writer job name
CWBOBJ_KEY_WTRJOBNUM - writer job number
CWBOBJ_KEY_WTRJOBSTS - writer job status
CWBOBJ_KEY_WTRJOBUSER - writer job user

• CWBOBJ_LIST_LIB:

CWBOBJ_KEY_LIBRARY - the library name
CWBOBJ_KEY_DESCRIPTION - description of the library

• CWBOBJ_LIST_RSC:

CWBOBJ_KEY_RSCNAME - resource name
CWBOBJ_KEY_RSCLIB - resource library
CWBOBJ_KEY_RSCTYPE - resource object type
CWBOBJ_KEY_OBJEXTATTR - object extended attribute
CWBOBJ_KEY_DESCRIPTION - description of the resource
CWBOBJ_KEY_DATE - date object was last modified
CWBOBJ_KEY_TIME - time object was last modified

cwbOBJ_GetObjAttrs
Use the cwbOBJ_GetObjAttrs API with this product.

Purpose
Get several attributes of an object.

Syntax

unsigned int CWB_ENTRY cwbOBJ_GetObjAttrs(
 cwbOBJ_ObjHandle objectHandle,
 unsigned long numAttrs,
 cwbOBJ_GetObjAttrParms *getAttrParms,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle objectHandle - input

Handle of the object to get the attribute for.
unsigned long numAttrs - input

number of attributes to retrieve
cwbOBJ_GetObjAttrParms *getAttrParms - input

an array of numAttrs elements that for each attribute to retrieve gives the attribute key (id), the buffer
where to store the value for that attribute and the size of the buffer

Windows Application Package: Programming 247

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

CWB_BUFFER_OVERFLOW
Buffer too small.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_KEY
Key isn't valid.

CWB_API_ERROR
General API failure.

Usage
See the Usage notes in cwbOBJ_GetObjAttr to see which attribute are valid for the various types of
objects.

cwbOBJ_GetObjHandle
Use the cwbOBJ_GetObjHandle API with this product.

Purpose
Get list object. This call gets a handle to an object in an opened list. The handle returned must be released
with the cwbOBJ_DeleteObjHandle when the caller is done with it to release resources. The handle
returned is only valid while the list is opened.

Syntax

unsigned int CWB_ENTRY cwbOBJ_GetObjHandle(
 cwbOBJ_ListHandle listHandle,
 unsigned long ulPosition,
 cwbOBJ_ObjHandle *objectHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ListHandle listHandle - input

Handle of the list to get the object handle from. This list must be opened.
unsigned long ulPosition - input

The position within the list of the object to get a handle for. It is 0 based. Valid values are 0 to the
number of objects in the list - 1. You can use cwbOBJ_GetListSize() to get the size of the list.

cwbOBJ_ObjHandle *objectHandle - output
On return, this will contain the handle of the object.

248 IBM i: Windows Application Package: Programming

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated list handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_LIST_NOT_OPEN
The list isn't open.

CWBOBJ_RC_INVALID_INDEX
The ulPosition is out of range.

Usage
None

cwbOBJ_GetObjHandleFromID
Use the cwbOBJ_GetObjHandleFromID API with this product.

Purpose
Regenerate an object handle from it's binary ID and type. cwbOBJ_DeleteObjHandle() must be called
to free resources when you are done using the object handle.

Syntax

unsigned int CWB_ENTRY cwbOBJ_GetObjHandleFromID(
 void *idBuffer,
 unsigned long bufLen,
 cwbOBJ_ObjType objectType,
 cwbOBJ_ObjHandle *objectHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
void *idBuffer - input

The buffer that holds the id of this object.
unsigned long bufLen - input

The length of the data pointed to by pIDBuffer.
cwbOBJ_ObjType type - input

Type of object this ID is for. This must match the type of object the ID was taken from.
cwbOBJ_ObjHandle *objectHandle - output

If this call returns successfully, this will be the handle to the object. This handle should be released
with the cwbOBJ_DeleteObjHandle() API when done using it.

Windows Application Package: Programming 249

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWBOBJ_RC_INVALID_TYPE
objectType is not correct.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage
None

cwbOBJ_GetObjID
Use the cwbOBJ_GetObjID API with this product.

Purpose
Get the id of an object. This is the data the uniquely identifies this object on the server. The data gotten is
not readable and is binary. It can be passed back on the cwbOBJ_GetObjHandleFromID() API to get a
handle back to that object.

Syntax

unsigned int CWB_ENTRY cwbOBJ_GetObjID(
 cwbOBJ_ObjHandle objectHandle,
 void *idBuffer,
 unsigned long bufLen,
 unsigned long *bytesNeeded,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle objectHandle - input

Handle of the object to get the ID from.
void *idBuffer - output

The buffer that will hold the ID of this object.
unsigned long bufLen - input

The length of the buffer pointed to by pIDBuffer.
unsigned long *bytesNeeded - output

On output, this will be the number of bytes needed to hold the ID.

250 IBM i: Windows Application Package: Programming

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

CWB_BUFFER_OVERFLOW
Buffer too small.

Usage
None

cwbOBJ_RefreshObj
Use the cwbOBJ_RefreshObj API with this product.

Purpose
Refreshes the object with the latest IBM i information. This will ensure the attributes returned for the
object are up to date.

Syntax

unsigned int CWB_ENTRY cwbOBJ_RefreshObj(
 cwbOBJ_ObjHandle objectHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle objectHandle - input

Handle of the object to be refreshed.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

Windows Application Package: Programming 251

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage
The following object types may be refreshed:

• CWBOBJ_LIST_SPLF (spooled files)
• CWBOBJ_LIST_PRTF (printer files)
• CWBOBJ_LIST_OUTQ (output queues)
• CWBOBJ_LIST_PRTD (printer devices)
• CWBOBJ_LIST_WTR (writers)

Example: Assume listHandle points to a spooled file list with at least one entry in it.

cwbOBJ_ObjHandle splFileHandle;
ulRC = cwbOBJ_GetObjHandle(listHandle,
0,
&splFileHandle,
NULL);
if (ulRC == CWB_OK)
{
 ulRC = cwbOBJ_RefreshObj(splFileHandle);

 get attributes for object

 ulRC = cwbOBJ_DeleteObjHandle(splFileHandle);
}

cwbOBJ_SetObjAttrs
Use the cwbOBJ_SetObjAttrs API with this product.

Purpose
Change the attributes of the object on the server.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SetObjAttrs(
 cwbOBJ_ObjHandle objectHandle,
 cwbOBJ_ParmHandle parmListHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle objectHandle - input

Handle to the object that is to be changed.
cwbOBJ_ParmHandle parmListHandle - input

Handle to the parameter object which contains the attributes that are to be modified for the object.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

252 IBM i: Windows Application Package: Programming

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage
The following objects allow these attributes to be changed:

• CWBOBJ_LIST_SPLF (spooled files):

CWBOBJ_KEY_ALIGN - Align page
CWBOBJ_KEY_BKOVRLLIB - Back overlay library name
CWBOBJ_KEY_BKOVRLAY - Back overlay
CWBOBJ_KEY_BKOVL_ACR - Back overlay offset across
CWBOBJ_KEY_BKOVL_DWN - Back overlay offset down
CWBOBJ_KEY_COPIES - Copies
CWBOBJ_KEY_ENDPAGE - Ending page
CWBOBJ_KEY_FILESEP - File separators
CWBOBJ_KEY_FORMFEED - Form feed
CWBOBJ_KEY_FORMTYPE - Form type
CWBOBJ_KEY_FTOVRLLIB - Front overlay library name
CWBOBJ_KEY_FTOVRLAY - Front overlay
CWBOBJ_KEY_FTOVL_ACR - Front overlay offset across
CWBOBJ_KEY_FTOVL_DWN - Front overlay offset down
CWBOBJ_KEY_OUTPTY - Output priority
CWBOBJ_KEY_OUTQUELIB - Output queue library name
CWBOBJ_KEY_OUTQUE - Output queue
CWBOBJ_KEY_MULTIUP - Logical number of pages per side
CWBOBJ_KEY_FIDELITY - Print fidelity
CWBOBJ_KEY_DUPLEX - Print on both sides
CWBOBJ_KEY_PRTQUALITY - Print quality
CWBOBJ_KEY_PRTSEQUENCE - Print sequence
CWBOBJ_KEY_PRINTER - Printer
CWBOBJ_KEY_RESTART - Where to restart printing at
CWBOBJ_KEY_SAVESPLF - Save spooled file after printing
CWBOBJ_KEY_SCHEDULE - When spooled file available
CWBOBJ_KEY_STARTPAGE - Starting page
CWBOBJ_KEY_USERDATA - User data
CWBOBJ_KEY_USRDFNDTA - User defined data
CWBOBJ_KEY_USRDFNOPTS - User defined options
CWBOBJ_KEY_USRDFNOBJLIB - User defined object library
CWBOBJ_KEY_USRDFNOBJ - User defined object
CWBOBJ_KEY_USRDFNOBJTYP - User defined object type

• CWBOBJ_LIST_PRTF (printer files):

CWBOBJ_KEY_ALIGN - Align page
CWBOBJ_KEY_BKMGN_ACR - Back margin offset across
CWBOBJ_KEY_BKMGN_DWN - Back margin offset down
CWBOBJ_KEY_BKOVRLLIB - Back overlay library name
CWBOBJ_KEY_BKOVRLAY - Back overlay
CWBOBJ_KEY_BKOVL_ACR - Back overlay offset across
CWBOBJ_KEY_BKOVL_DWN - Back overlay offset down
CWBOBJ_KEY_CPI - Characters Per Inch
CWBOBJ_KEY_CODEPAGE - Code page
CWBOBJ_KEY_CODEDFNTLIB - Coded font library name
CWBOBJ_KEY_CODEDFNT - Coded font name
CWBOBJ_KEY_COPIES - Copies
CWBOBJ_KEY_DBCSDATA - Contains DBCS Data
CWBOBJ_KEY_DBCSEXTENSN - Process DBCS Extension characters
CWBOBJ_KEY_DBCSROTATE - DBCS character rotation
CWBOBJ_KEY_DBCSCPI - DBCS CPI
CWBOBJ_KEY_DBCSSISO - DBCS SO/SI spacing
CWBOBJ_KEY_DFR_WRITE - Defer writing
CWBOBJ_KEY_ENDPAGE - Ending page
CWBOBJ_KEY_FILESEP - File Separators(*FILE not
 allowed)
CWBOBJ_KEY_FOLDREC - Fold records
CWBOBJ_KEY_FONTID - Font identifier
CWBOBJ_KEY_FORMFEED - Form feed
CWBOBJ_KEY_FORMTYPE - Form type
CWBOBJ_KEY_FTMGN_ACR - Front margin offset across

Windows Application Package: Programming 253

CWBOBJ_KEY_FTMGN_DWN - Front margin offset down
CWBOBJ_KEY_FTOVRLLIB - Front overlay library name
CWBOBJ_KEY_FTOVRLAY - Front overlay
CWBOBJ_KEY_FTOVL_ACR - Front overlay offset across
CWBOBJ_KEY_FTOVL_DWN - Front overlay offset down
CWBOBJ_KEY_CHAR_ID - Graphic character set ID
CWBOBJ_KEY_JUSTIFY - Hardware Justification
CWBOBJ_KEY_HOLD - Hold spooled file
CWBOBJ_KEY_LPI - Lines per inch
CWBOBJ_KEY_MAXRECORDS - Maximum spooled file records
CWBOBJ_KEY_OUTPTY - Output priority
CWBOBJ_KEY_OUTQUELIB - Output queue library name
CWBOBJ_KEY_OUTQUE - Output queue
CWBOBJ_KEY_OVERFLOW - Overflow line number
CWBOBJ_KEY_PAGELEN - Page Length
CWBOBJ_KEY_MEASMETHOD - Measurement method
CWBOBJ_KEY_PAGEWIDTH - Page width
CWBOBJ_KEY_MULTIUP - Logical number of pages per side
CWBOBJ_KEY_POINTSIZE - The default font's point size
CWBOBJ_KEY_FIDELITY - Print fidelity
CWBOBJ_KEY_DUPLEX - Print on both sides
CWBOBJ_KEY_PRTQUALITY - Print quality
CWBOBJ_KEY_PRTTEXT - Print text
CWBOBJ_KEY_PRINTER - Printer
CWBOBJ_KEY_PRTDEVTYPE - Printer Device Type
CWBOBJ_KEY_RPLUNPRT - Replace unprintable characters
CWBOBJ_KEY_RPLCHAR - Replacement character
CWBOBJ_KEY_SAVESPLF - Save spooled file after printing
CWBOBJ_KEY_SRCDRWR - Source drawer
CWBOBJ_KEY_SPOOL - Spool the data
CWBOBJ_KEY_SCHEDULE - When spooled file available
CWBOBJ_KEY_STARTPAGE - Starting page
CWBOBJ_KEY_DESCRIPTION - Text description
CWBOBJ_KEY_UNITOFMEAS - Unit of measure
CWBOBJ_KEY_USERDATA - User data
CWBOBJ_KEY_USRDFNDTA - User defined data
CWBOBJ_KEY_USRDFNOPTS - User defined options
CWBOBJ_KEY_USRDFNOBJLIB - User defined object library
CWBOBJ_KEY_USRDFNOBJ - User defined object
CWBOBJ_KEY_USRDFNOBJTYP - User defined object type

• CWBOBJ_LIST_OUTQ (output queues):
• CWBOBJ_LIST_PRTD (printer devices):
• CWBOBJ_LIST_WTR (writers):
• CWBOBJ_LIST_LIB (libraries):

– NONE

Parameter object APIs
The following APIs pertain to Parameter objects. The APIs are listed alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_CopyParmObjHandle
Use the cwbOBJ_CopyParmObjHandle API with this product.

Purpose
Creates a duplicate parameter list object. All attribute keys and values in the parameter list object will be
copied to the new parameter list object.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CopyParmObjHandle(
 cwbOBJ_ParmHandle parmListHandle,
 cwbOBJ_ParmHandle *newParmListHandle,
 cwbSV_ErrHandle errorHandle);

254 IBM i: Windows Application Package: Programming

Parameters
cwbOBJ_ParmHandle parmListHandle - input

Handle of the parameter list object to copy.
cwbOBJ_ParmHandle *newParmListHandle - output

Upon successful competition of this call, this handle will contain the new parameter list object handle.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

Usage
The cwbOBJ_DeleteParmObjectHandle API must be called to free resources allocated by this call.

cwbOBJ_CreateParmObjHandle
Use the cwbOBJ_CreateParmObjHandle API with this product.

Purpose
Allocate a parameter list object handle. The parameter list object can be used to hold a list of parameters
that can be passed in on other APIs.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CreateParmObjHandle(
 cwbOBJ_ParmHandle *parmListHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ParmHandle *parmListHandle - output

Handle of the parameter object.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Windows Application Package: Programming 255

Usage
The cwbOBJ_DeleteParmObjectHandle API must be called to free resources allocated by this call.

cwbOBJ_DeleteParmObjHandle

Purpose
Deallocate a parameter list object handle and free the resources used by it.

Syntax

unsigned int CWB_ENTRY cwbOBJ_DeleteParmObjHandle(
 cwbOBJ_ParmHandle parmListHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ParmHandle parmListHandle - input

Handle of the parameter object.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not a parameter object handle.

Usage
After this call returns successfully, the parmListHandle is no longer valid.

cwbOBJ_GetParameter
Use the cwbOBJ_GetParameter API with this product.

Purpose
Gets the value of a parameter in a parameter list object.

Syntax

unsigned int CWB_ENTRY cwbOBJ_GetParameter(
 cwbOBJ_ParmHandle parmListHandle,
 cwbOBJ_KeyID key,
 void *buffer,
 unsigned long bufLen,
 unsigned long *bytesNeeded,
 cwbOBJ_DataType *keyType,
 cwbSV_ErrHandle errorHandle);

256 IBM i: Windows Application Package: Programming

Parameters
cwbOBJ_ParmHandle parmListHandle - input

Handle of the parameter object.
cwbOBJ_KeyID key - input

The id of the parameter to set.
void *buffer - output

The buffer that will hold the attribute value. If this call returns successfully. The value of the key
determines what type of data will be put into pBuffer. The type is also returned to the *keyType
parameter, if provided.

unsigned long bufLen - input
The length of the buffer pointed to by buffer.

unsigned long *bytesNeeded - output
On output, this will be the number of bytes needed to hold result.

cwbOBJ_DataType *keyType - output
Optional, may be NULL. On output this will contain the type of data used to represent this attribute
and what is stored at *buffer.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

CWB_BUFFER_OVERFLOW
Buffer too small.

CWBOBJ_RC_KEY_NOT_FOUND
Key isn't specified in parameter list.

CWB_API_ERROR
General API failure.

Usage
None

cwbOBJ_SetParameter
Use the cwbOBJ_SetParameter API with this product.

Purpose
Sets the value of a parameter in a parameter list object.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SetParameter(
 cwbOBJ_ParmHandle parmListHandle,
 cwbOBJ_KeyID key,

Windows Application Package: Programming 257

 const void *value,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ParmHandle parmListHandle - input

Handle of the parameter object.
cwbOBJ_KeyID key - input

The id of the parameter to set.
void *value - input

The value to set the parameter to. The type that value points to is determined by the value of key.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not a parameter object handle.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage
None

Writer job APIs
The following APIs pertain to Writer job. The APIs are listed alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_EndWriter
Use the cwbOBJ_EndWriter API with this product.

Purpose
Ends an IBM i writer job.

Syntax

unsigned int CWB_ENTRY cwbOBJ_EndWriter(
 cwbOBJ_ObjHandle writerHandle,
 cwbOBJ_ParmHandle *parmListHandle,
 cwbSV_ErrHandle errorHandle);

258 IBM i: Windows Application Package: Programming

Parameters
cwbOBJ_ObjHandle writerHandle - input

Handle of the writer job to be stopped. This handle can be obtained by either listing writers and
getting the writer handle from that list or from starting a writer and asking for the writer handle to be
returned.

cwbOBJ_ParmHandle *parmListHandle - input
Optional. A pointer to a valid parameter list object handle that contains parameters for ending the
writer.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage
After this calls returns successfully, cwbOBJ_DeleteObjHandle() should be called to release the
writerHandle. The following parameter key's may be set in the pParmListHandl object:

• CWBOBJ_KEY_WTREND - When to end the writer. May be any these special values:

– *CNTRLD - end the writer after the current file is done printing.
– *IMMED - end the writer immediately
– *PAGEEND - end the writer at the end of the current page.

cwbOBJ_StartWriter
Use the cwbOBJ_StartWriter API with this product.

Purpose
Starts an IBM i writer job.

Syntax

unsigned int CWB_ENTRY cwbOBJ_StartWriter(
 cwbOBJ_ObjHandle *printerHandle,
 cwbOBJ_ObjHandle *outputQueueHandle,
 cwbOBJ_ParmHandle *parmListHandle,
 cwbOBJ_ObjHandle *writerHandle,
 cwbSV_ErrHandle errorHandle);

Windows Application Package: Programming 259

Parameters
cwbOBJ_ObjHandle *printerHandle - input

Required. A pointer to a valid printer object handle that identifies which printer this writer is to be
started to.

cwbOBJ_ObjHandle *outputQueueHandle - input
Optional. A pointer to a valid output queue object handle that identifies which output queue this writer
is to be started from. If the parmListHandle is also specified and contains the CWBOBJ_KEY_OUTQUE
parameter key, this parameter is ignored.

cwbOBJ_ParmHandle *parmListHandle - input
Optional. A pointer to a valid parameter list object handle that contains parameters for starting the
writer.

cwbOBJ_ObjHandle *writerHandle - output
Optional. A pointer to a writer object handle that will be filled in upon successful return from this API.
If this parameter is specified, the caller must call cwbOBJ_DeleteObjHandle() to release resources
allocated for this writer handle.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle() API. The messages may be retrieved through the cwbSV_GetErrText() API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage
Calling this API causes the writer job to be submitted to run. The writer job may fail to start even though
this API returns successfully (the job may be successfully submitted, but fail to start). This is the behavior
of the IBM i STRPRTWTR command. The following parameter keys may be set in the parmListHandle
object:

CWBOBJ_KEY_ALIGN - Align page
CWBOBJ_KEY_ALWDRTPRT - Allow direct printing
CWBOBJ_KEY_AUTOEND - Automatically end writer (*YES,*NO)
CWBOBJ_KEY_DRWRSEP - Drawer to use for separators
CWBOBJ_KEY_FILESEP - Number of file separators
CWBOBJ_KEY_FORMTYPE - Name of the form to be used
CWBOBJ_KEY_JOBNAME - Name of the job that created file
CWBOBJ_KEY_JOBNUMBER - Number of the job that created file
CWBOBJ_KEY_USER - Name of the user that created file
CWBOBJ_KEY_FORMTYPEMSG - Form type message option
CWBOBJ_KEY_MSGQUELIB - Message queue library
CWBOBJ_KEY_MSGQUE - Message queue name
CWBOBJ_KEY_OUTQUELIB - Output queue library
CWBOBJ_KEY_OUTQUE - Output queue
CWBOBJ_KEY_SPOOLFILE - Spool file name
CWBOBJ_KEY_SPLFNUM - Spool file number
CWBOBJ_KEY_WTRSTRPAGE - Page to start the writer on
CWBOBJ_KEY_WTREND - When to end the writer

260 IBM i: Windows Application Package: Programming

CWBOBJ_KEY_WRITER - Writer job name
CWBOBJ_KEY_WTRINIT - When to initialize the printer device

Output queues APIs
The following APIs pertain to Output queues. The APIs are listed alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_HoldOutputQueue
Use the cwbOBJ_HoldOutputQueue API with this product.

Purpose
Holds an IBM i output queue.

Syntax

unsigned int CWB_ENTRY cwbOBJ_HoldOutputQueue(
 cwbOBJ_ObjHandle queueHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle queueHandle - input

Handle of the output queue to be held.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not a valid queue handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage
None

cwbOBJ_PurgeOutputQueue
Use the cwbOBJ_PurgeOutputQueue API with this product.

Purpose
Purges spooled files on an IBM i output queue.

Windows Application Package: Programming 261

Syntax

unsigned int CWB_ENTRY cwbOBJ_PurgeOutputQueue(
 cwbOBJ_ObjHandle queueHandle,
 cwbOBJ_ParmHandle *parmListHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle queueHandle - input

Handle of the output queue to be purged.
cwbOBJ_ParmHandle * parmListHandle - input

Optional. A pointer to a valid parameter list object handle that contains parameters for purging the
output queue.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage
The parameters specified in parmListHandle, if provided, will specify which spooled files are purged. If
parmListHandle is NULL, all spooled files for the current user are purged. The following parameter key's
may be set in the parmListHandle object:

• CWBOBJ_KEY_USER

which user's spooled files to purge. May be a specific user ID, "*ALL" or "*CURRENT". "*CURRENT" is the
default.

• CWBOBJ_KEY_FORMTYPE

which spooled files to purge base on what formtype they have. May be a specific formtype, "*ALL" or
"*STD". "*ALL" is the default.

• CWBOBJ_KEY_USERDATA

which spooled files to purge base on what userdata they have. May be a specific value or "*ALL". "*ALL"
is the default.

262 IBM i: Windows Application Package: Programming

cwbOBJ_ReleaseOutputQueue
Use the cwbOBJ_ReleaseOutputQueue API with this product.

Purpose
Releases an IBM i output queue.

Syntax

unsigned int CWB_ENTRY cwbOBJ_ReleaseOutputQueue(
 cwbOBJ_ObjHandle queueHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle queueHandle - input

Handle of the output queue to be released.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not a valid queue handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage
None

AFP resource APIs
Use the AFP resource APIs with this product.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_CloseResource
Use the cwbOBJ_CloseResource API with this product.

Purpose
Closes an AFP Resource object that was previously opened for reading.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CloseResource(

Windows Application Package: Programming 263

 cwbOBJ_ObjHandle resourceHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle resourceHandle - input

Handle of the resource to be closed.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid resource handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_RSCNOTOPEN
Resource not opened.

CWBOBJ_RC_SPLFNOTOPEN
Spooled file not open.

Usage
If the handle for the resource was obtained via a call to the cwbOBJ_OpenResourceForSplF() API,
then this api will delete the handle for you (the handle was dynamically allocated for you when you
opened the resource and this call deallocates it).

cwbOBJ_CreateResourceHandle
Use the cwbOBJ_CreateResourceHandle API with this product.

Purpose
Create a resource handle for a particular AFP resource on a specified system.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CreateResourceHandle(
 const char *systemName,
 const char *resourceName,
 const char *resourceLibrary,
 cwbOBJ_AFPResourceType resourceType,
 cwbOBJ_ObjHandle *objectHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
const char *systemName - input

Pointer to the system name contained in an ASCIIZ string.

264 IBM i: Windows Application Package: Programming

const char *resourceName - input
Pointer to the name of the AFP resource.

const char *resourceLibrary - input
Pointer to the name of the IBM i library that contains the resource.

cwbOBJ_AFPResourceType resourceType - input
Specifies what type of resource this is. Must be one of the following:

• CWBOBJ_AFPRSC_FONT
• CWBOBJ_AFPRSC_FORMDEF
• CWBOBJ_AFPRSC_OVERLAY
• CWBOBJ_AFPRSC_PAGESEG
• CWBOBJ_AFPRSC_PAGEDEF

cwbOBJ_ObjHandle *objectHandle - output
On output this will contain the resource handle.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the code page being used.

CWB_API_ERROR
General API failure.

Usage
Use this API to get a handle to a resource if you know the name library and type of resource. If you don't
know either of these or want to choose from a list, use the list APIs to list AFP resources instead. This API
does no checking of the AFP resource on the host. The first time this handle is used to retrieve data for the
resource, a host error will be encountered if the resource file doesn't exist.

cwbOBJ_DisplayResource
Use the cwbOBJ_DisplayResource API with this product.

Purpose
Displays the specified AFP resource to the user.

Syntax

unsigned int CWB_ENTRY cwbOBJ_DisplayResource(
 cwbOBJ_ObjHandle resourceHandle,
 const char *view,

Windows Application Package: Programming 265

 const unsigned long flags,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle resourceHandle - input

Handle of the AFP Resource object. It must be an overlay or a pagesegment type of resource.
const char *view - input

Optional, may be NULL. If specified, it is a pointer to an ASCIIZ string that specifies the view to use
when invoking the AFP viewer. There are two predefined views shipped with the viewer: LETTER (8.5"
x 11") and SFLVIEW (132 column). Users may also add their own.

const unsigned long flags - input
Any of following bits may be set: CWBOBJ_DSPSPLF_WAIT - instructs this call to wait until the viewer
process has successfully opened the resource before returning. If this bit is 0, this API will return after
it starts the viewer process. If it is 1, this API will wait for the viewer to get the resource open before
returning. All other bits must be set to 0.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate a temporary buffer.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

CWB_NO_VIEWER
The viewer support for ClientAccess/400 was not installed.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the code page that is being used.

CWB_API_ERROR
General API failure.

CWBOBJ_RC_INVALID_TYPE
The handle given for resourceHandle is not a handle to an overlay or pagesegment resource.

Usage
Use this API to bring up the AFP viewer on the specified AFP resource. The type of the resource must be
an overlay or a pagesegment. A return code of CWB_NO_VIEWER means that the viewer component was
not installed on the workstation.

cwbOBJ_OpenResource
Use the cwbOBJ_OpenResource API with this product.

Purpose
Opens an AFP resource object for reading.

266 IBM i: Windows Application Package: Programming

Syntax

unsigned int CWB_ENTRY cwbOBJ_OpenResource(
 cwbOBJ_ObjHandle resourceHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle resourceHandle - input

Handle of the AFP resource file to be opened for reading.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid resource handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_NOHOSTSUPPORT
Host doesn't support working with resources.

Usage
The resource should be closed with the cwbOBJ_CloseResource() API when done reading from it.

cwbOBJ_OpenResourceForSplF
Use the cwbOBJ_OpenResourceForSplF API with this product.

Purpose
Opens an AFP Resource object for reading for a spooled file that is already opened for reading. The API is
useful if you are reading an AFP Spooled file and run into an external AFP Resource that you need to read.
By using this API you can open that resource for reading without having to first list the resource.

Syntax

unsigned int CWB_ENTRY cwbOBJ_OpenResourceForSplF(
 cwbOBJ_ObjHandle splFHandle,
 const char *resourceName,
 const char *resourceLibrary,
 unsigned long resourceType,
 const char *reserved,
 cwbOBJ_ObjHandle *resourceHandle,
 cwbSV_ErrHandle errorHandle);

Windows Application Package: Programming 267

Parameters
cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file that is already opened for reading and that the resource is opened against.
The same system conversation (and same system instance of the network print server program) is
used for reading the resource and spooled file.

const char *resourceName - input
Pointer to the name of the AFP Resource in an ASCIIZ string.

const char *resourceLibrary - input
Optional, may be NULL. Pointer to the IBM i library of the AFP Resource in an ASCIIZ string. If no
library is specified, the library list of the spooled file is used to search for the resource.

unsigned long resourceType - input
An unsigned long integer with one of the following bits on:

• CWBOBJ_AFPRSC_FONT
• CWBOBJ_AFPRSC_FORMDEF
• CWBOBJ_AFPRSC_OVERLAY
• CWBOBJ_AFPRSC_PAGESEG
• CWBOBJ_AFPRSC_PAGEDEF

Specifies what type of resource to open.
const char *reserved -

Reserved, must be NULL.
cwbOBJ_OBJHandle *resourceHandle - output

Pointer to an OBJHandle that on successful return will contain the dynamically allocated resource
handle that can be used to read, seek and eventually close the resource.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_FILE_NOT_FOUND
The resource wasn't found.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_INVALID_HANDLE
Handle is not valid resource handle.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_SPLFNOTOPEN
The spooled file is not opened.

CWBOBJ_RC_NOHOSTSUPPORT
Host doesn't support working with resources.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the code page being used.

268 IBM i: Windows Application Package: Programming

CWB_API_ERROR
General API failure.

Usage
This call, if successful, will generate a temporary resource handle and return it in the
resourceHandle parameter. This handle will be deleted automatically when the caller calls the
cwbOBJ_CloseResource() API with it.

The resource should be closed with the cwbOBJ_CloseResource()) API when done reading from it.

cwbOBJ_ReadResource
Use the cwbOBJ_ReadResource API with this product.

Purpose
Reads bytes from the current read location.

Syntax

unsigned int CWB_ENTRY cwbOBJ_ReadResource(
 cwbOBJ_ObjHandle resourceHandle,
 char *bBuffer,
 unsigned long bytesToRead,
 unsigned long *bytesRead,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle resourceHandle - input

Handle of the AFP resource object to be read from.
char *buffer - input

Pointer to buffer to hold the bytes read from the resource.
unsigned long bytesToRead - input

Maximum number of bytes to read. The number read may be less than this.
unsigned long *bytesRead - output

Number of bytes actually read.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_RSCNOTOPEN
Resource file has not been opened yet.

Windows Application Package: Programming 269

CWBOBJ_RC_ENDOFFILE
The end of file was read.

Usage
The cwbOBJ_OpenResource() API must be called with this resource handle before this API is called OR
the handle must be retrieved with a call to the cwbOBJ_OpenResourceForSplF() API. If the end of file
is reached when reading, the return code will be CWBOBJ_RC_ENDOFFILE and bytesRead will contain the
actual number of bytes read.

cwbOBJ_SeekResource
Use the cwbOBJ_SeekResource API with this product.

Purpose
Moves the current read position on a resource that is open for reading.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SeekResource(
 cwbOBJ_ObjHandle resourceHandle,
 cwbOBJ_SeekOrigin seekOrigin,
 signed long seekOffset,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle resourceHandle - input

Handle of the AFP resource file to be seeked.
cwbOBJ_SeekOrigin seekOrigin - input

Where to seek from. Valid values are:

• CWBOBJ_SEEK_BEGINNING - seek from the beginning of file
• CWBOBJ_SEEK_CURRENT - seek from the current read position
• CWBOBJ_SEEK_ENDING - seek from the end of the file

signed long seekOffset - input
Offset (negative or positive) from the seek origin in bytes to move the current read pointer to.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWB_INVALID_PARAMETER
Invalid parameter specified.

270 IBM i: Windows Application Package: Programming

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_RSCNOTOPEN
Resource has not been opened yet.

CWBOBJ_RC_SEEKOUTOFRANGE
Seek offset out of range.

Usage
The cwbOBJ_OpenResource() API must be called with this resource handle before this API is called OR
the handle must be retrieved with a call to the cwbOBJ_OpenResourceForSplF() API.

APIs for new spooled files
The following APIs pertain to working with new spooled files. The APIs are listed alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_CloseNewSplF
Use the cwbOBJ_CloseNewSplF API with this product.

Purpose
Closes a newly created spooled file.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CloseNewSplF(
 cwbOBJ_ObjHandle newSplFHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle newSplFHandle - input

New spooled file handle. This is the handle passed back on the cwbOBJ_CreateNewSplF() API.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage
Once a spooled file is closed, you can no longer write to it.

Windows Application Package: Programming 271

cwbOBJ_CloseNewSplFAndGetHandle
Use the cwbOBJ_CloseNewSplFAndGetHandle API with this product.

Purpose
Closes a newly created spooled file and returns a handle to it.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CloseNewSplFAndGetHandle(
 cwbOBJ_ObjHandle newSplFHandle,
 cwbOBJ_ObjHandle *splFHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle newSplFHandle - input

New spooled file handle. This is the handle passed back on the cwbOBJ_CreateNewSplF() API.
cwbOBJ_ObjHandle *splFHandle - output

Pointer to an object handle that, upon successful, completion of this call, will hold the spooled file
handle. This handle may be used with other APIs that take a spooled file handle as input.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage
The handle returned in splFHandle must be released with the cwbOBJ_DeleteObjHandle() API in
order to free resources.

cwbOBJ_CreateNewSplF
Use the cwbOBJ_CreateNewSplF API with this product.

Purpose
Creates a new IBM i spooled file.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CreateNewSplF(
 const char *systemName,
 cwbOBJ_ParmHandle *parmListHandle,

272 IBM i: Windows Application Package: Programming

 cwbOBJ_ObjHandle *printerFileHandle,
 cwbOBJ_ObjHandle *outputQueueHandle,
 cwbOBJ_ObjHandle *newSplFHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
const char *systemName - input

Pointer to the system name contained in ASCIIZ string
cwbOBJ_ParmHandle *parmListHandle - input

Optional. A pointer to a valid parameter list object handle that contains parameters for creating the
spooled file. Parameters set in this list override what is in the printer file and the *outputQueueHandle
parameter.

cwbOBJ_ObjHandle *printerFileHandle - input
Optional. A pointer to a valid printer file object handle that references the printer file to be used when
creating this spooled file. The printer file must exist on the same system that this spooled file is being
created on.

cwbOBJ_ObjHandle *outputQueueHandle - input
Optional. A pointer to a valid output queue object handle that references the output queue that
this spooled file should be created on. The output queue must exist on the same system that this
spooled file is being created on. If the output queue is set in the *parmListHandle parameter (with
CWBOBJ_KEY_OUTQUELIB & CWBOBJ_KEY_OUTQUE) it will override the output queue specified by
this output queue handle.

cwbOBJ_ObjHandle *newSplFHandle - output
A pointer to a object handle that will be filled in upon successful completion of this call with the newly
created spooled file handle. This handle is needed to write data into and close the new spooled file.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage
If the parmListHandle is NULL, or doesn't specify an attribute, the attribute is taken from the printer
file used. If the output queue is specified with the *parmListHandle, this will override what is specified
in the *outputQueueHandle parameter. If the output queue is not specified (not in the *parmListHandle
AND outputQueueHandle is NULL), the output queue used is taken from the printer file. If the printer

Windows Application Package: Programming 273

file is not specified (printerFileHandle is NULL), the server will use the default network print printer file,
*LIBL/QNPSPRTF. The following parameter keys may be set in the pParmListHandl object:

CWBOBJ_KEY_ALIGN - Align page
CWBOBJ_KEY_BKOVRLLIB - Back overlay library name
CWBOBJ_KEY_BKOVRLAY - Back overlay
CWBOBJ_KEY_BKOVL_ACR - Back overlay offset across
CWBOBJ_KEY_BKOVL_DWN - Back overlay offset down
CWBOBJ_KEY_CPI - Characters Per Inch
(1)CWBOBJ_KEY_CODEPAGE - Code page
CWBOBJ_KEY_COPIES - Copies
CWBOBJ_KEY_DBCSDATA - Contains DBCS Data
CWBOBJ_KEY_DBCSEXTENSN - Process DBCS Extension
 characters
CWBOBJ_KEY_DBCSROTATE - DBCS character rotation
CWBOBJ_KEY_DBCSCPI - DBCS CPI
CWBOBJ_KEY_DBCSSISO - DBCS SO/SI spacing
CWBOBJ_KEY_DFR_WRITE - Defer writing
CWBOBJ_KEY_ENDPAGE - Ending page
(2)CWBOBJ_KEY_FILESEP - File Separators
CWBOBJ_KEY_FOLDREC - Fold records
CWBOBJ_KEY_FONTID - Font identifier
CWBOBJ_KEY_FORMFEED - Form feed
CWBOBJ_KEY_FORMTYPE - Form type
CWBOBJ_KEY_FTOVRLLIB - Front overlay library name
CWBOBJ_KEY_FTOVRLAY - Front overlay
CWBOBJ_KEY_FTOVL_ACR - Front overlay offset across
CWBOBJ_KEY_FTOVL_DWN - Front overlay offset down
(1)CWBOBJ_KEY_CHAR_ID - Graphic character set ID
CWBOBJ_KEY_JUSTIFY - Hardware Justification
CWBOBJ_KEY_HOLD - Hold spooled file
CWBOBJ_KEY_LPI - Lines per inch
CWBOBJ_KEY_MAXRECORDS - Maximum spooled file records
CWBOBJ_KEY_OUTPTY - Output priority
CWBOBJ_KEY_OUTQUELIB - Output queue library name
CWBOBJ_KEY_OUTQUE - Output queue
CWBOBJ_KEY_OVERFLOW - Overflow line number
CWBOBJ_KEY_PAGELEN - Page length
CWBOBJ_KEY_MEASMETHOD - Measurement method
CWBOBJ_KEY_PAGEWIDTH - Page width
CWBOBJ_KEY_MULTIUP - Logical number of pages
 per side
CWBOBJ_KEY_POINTSIZE - The default font's point size
CWBOBJ_KEY_FIDELITY - Print fidelity
CWBOBJ_KEY_DUPLEX - Print on both sides
CWBOBJ_KEY_PRTQUALITY - Print quality
CWBOBJ_KEY_PRTTEXT - Print text
CWBOBJ_KEY_PRINTER - Printer device name
CWBOBJ_KEY_PRTDEVTYPE - Printer device type
CWBOBJ_KEY_RPLUNPRT - Replace unprintable characters
CWBOBJ_KEY_RPLCHAR - Replacement character
CWBOBJ_KEY_SAVESPLF - Save spooled file after
 printing
CWBOBJ_KEY_SRCDRWR - Source drawer
CWBOBJ_KEY_SPOOL - Spool the data
CWBOBJ_KEY_SPOOLFILE - Spool file name
CWBOBJ_KEY_SCHEDULE - When spooled file available
CWBOBJ_KEY_STARTPAGE - Starting page
CWBOBJ_KEY_UNITOFMEAS - Unit of measure
CWBOBJ_KEY_USERCMT - User comment (100 chars)
CWBOBJ_KEY_USERDATA - User data (10 chars)
CWBOBJ_KEY_SPLSCS - Spool SCS Data
CWBOBJ_KEY_USRDFNDTA - User defined data
(3)CWBOBJ_KEY_USRDFNOPTS - User defined options
CWBOBJ_KEY_USRDFNOBJLIB - User defined object library
CWBOBJ_KEY_USRDFNOBJ - User defined object
CWBOBJ_KEY_USRDFNOBJTYP - User defined object type

Note:

1. Code page and graphic character set are dependent on each other. If you specify one of these, you
must specify the other.

2. The special value of *FILE is not allowed when using this attribute to create a new spooled file.
3. Up to 4 user defined options may be specified.

274 IBM i: Windows Application Package: Programming

cwbOBJ_GetSplFHandleFromNewSplF
Use the cwbOBJ_GetSplFHandleFromNewSplF API with this product.

Purpose
Uses a new spooled file handle to generate a spooled file handle. See notes below about using this API on
a new spool file that was created with data type automatic.

Syntax

unsigned int CWB_ENTRY cwbOBJ_GetSplFHandleFromNewSplF(
 cwbOBJ_ObjHandle newSplFHandle,
 cwbOBJ_ObjHandle *splFHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle newSplFHandle - input

New spooled file handle. This is the handle passed back on the cwbOBJ_CreateNewSplF() API.
cwbOBJ_ObjHandle *splFHandle - output

Pointer to an object handle that, upon successful completion of this call, will hold the spooled file
handle. This handle may be used with other APIs that take a spooled file handle as input.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_SPLFNOTOPEN
Spooled file hasn't been created on the host yet.

Usage
The handle returned in splFHandle must be released with the cwbOBJ_DeleteObjHandle() API in
order to free resources.

If you are using automatic data typing for the spooled file (the attribute of CWBOBJ_KEY_PRTDEVTYPE
was set to *AUTO or or wasn't specified on the cwbOBJ_CreateNewSplF() API) then creation of the
spooled file will be delayed until sufficient data has been written to the spooled file to determine the type
of the data (*SCS, *AFPDS or *USERASCII). If the new spooled file is in this state when you call this API,
the return code will be CWBOBJ_RC_SPLFNOTOPEN.

Windows Application Package: Programming 275

cwbOBJ_WriteNewSplF
Use the cwbOBJ_WriteNewSplF API with this product.

Purpose
Writes data into a newly created spooled file.

Syntax

unsigned int CWB_ENTRY cwbOBJ_WriteNewSplF(
 cwbOBJ_ObjHandle newSplFHandle,
 const char *data,
 unsigned long dataLen,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle newSplFHandle - input

New spooled file handle. This is the handle passed back on the cwbOBJ_CreateNewSplF() API.
const char *data - input

Pointer to the data buffer that will be written into the spooled file.
unsigned long ulDataLen - input

Length of the data to be written.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage
None

APIs for reading spooled files
The following APIs pertain to reading spooled files. The APIs are listed alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_CloseSplF
Use the cwbOBJ_CloseSplF API with this product.

Purpose
Closes an IBM i spooled file that was previously opened for reading.

276 IBM i: Windows Application Package: Programming

Syntax

unsigned int CWB_ENTRY cwbOBJ_CloseSplF(
 cwbOBJ_ObjHandle splFHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be closed.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage
None

cwbOBJ_OpenSplF
Use the cwbOBJ_OpenSplF API with this product.

Purpose
Opens an IBM i spooled file for reading.

Syntax

unsigned int CWB_ENTRY cwbOBJ_OpenSplF(
 cwbOBJ_ObjHandle splFHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be opened for reading.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Windows Application Package: Programming 277

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage
The spooled file should be closed with the cwbOBJ_CloseSplF() API when done reading from it.

cwbOBJ_ReadSplF
Use the cwbOBJ_ReadSplF API with this product.

Purpose
Reads bytes from the current read location.

Syntax

unsigned int CWB_ENTRY cwbOBJ_ReadSplF(
 cwbOBJ_ObjHandle splFHandle,
 char *bBuffer,
 unsigned long bytesToRead,
 unsigned long *bytesRead,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be read from.
char *buffer - input

Pointer to buffer to hold the bytes read from the spooled file.
unsigned long bytesToRead - input

Maximum number of bytes to read. The number read may be less than this.
unsigned long *bytesRead - output

Number of bytes actually read.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

278 IBM i: Windows Application Package: Programming

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_SPLFNOTOPEN
Spooled file has not been opened yet.

CWBOBJ_RC_SPLFENDOFFILE
The end of file was read.

Usage
The cwbOBJ_OpenSplF() API must be called with this spooled fil handle before this API is called. If the
end of file is reached when reading, the return code will be CWBOBJ_SPLF_ENDOFFILE and bytesRead
will contain the actual number of bytes read.

cwbOBJ_SeekSplF
Use the cwbOBJ_SeekSplF API with this product.

Purpose
Moves the current read position on a spooled file that is open for reading.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SeekSplF(
 cwbOBJ_ObjHandle splFHandle,
 cwbOBJ_SeekOrigin seekOrigin,
 signed long seekOffset,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be closed.
cwbOBJ_SeekOrigin seekOrigin - input

Where to seek from. Valid values are:

• CWBOBJ_SEEK_BEGINNING - seek from the beginning of file
• CWBOBJ_SEEK_CURRENT - seek from the current read position
• CWBOBJ_SEEK_ENDING - seek from the end of the file

signed long seekOffset - input
Offset (negative or positive) from the seek origin in bytes to move the current read pointer to.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Windows Application Package: Programming 279

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_SPLFNOTOPEN
Spooled file has not been opened yet.

CWBOBJ_RC_SEEKOUTOFRANGE
Seek offset out of range.

Usage
The cwbOBJ_OpenSplF() API must be called with this spooled file handle before this API is called.

APIs for manipulating spooled files
The following APIs pertain to manipulating spooled files. The APIs are listed alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_CallExitPgmForSplF
Use the cwbOBJ_CallExitPgmForSplF API with this product.

Purpose
Instructs the IBM i Access Netprint server program, QNPSERVR, to call down its exit program chain
passing this spooled file's ID and some application specified data as parameters.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CallExitPgmForSplF(
 cwbOBJ_ObjHandle splFHandle,
 void *data,
 unsigned long dataLen,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be passes as a parameter to the exit programs.
void *data - input

Pointer to a block of date that will be passed to the exit programs. The format of this data is exit
program specific.

unsigned long dataLen - input
length of data pointed to by pData.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

280 IBM i: Windows Application Package: Programming

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_TYPE
Handle is not a spooled file handle.

CWBOBJ_RC_NO_EXIT_PGM
No exit program is registered with the Network Print server.

Usage
This is a way for a client program to communicate with its server portion to do processing of spooled files.
All IBM i exit programs registered with the QNPSERVR program are called, so it is up to the client program
and exit program to architect the format of the data in *data such that the exit program can recognize it.
See the IBM i 'Guide to Programming for Print' for information on the interface between the QNPSERVR
server program and the exit programs.

cwbOBJ_CreateSplFHandle
Use the cwbOBJ_CreateSplFHandle API with this product.

Purpose
Create a spooled file handle for a particular spooled file on a specified system.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CreateSplFHandle(
 const char *systemName,
 const char *jobName,
 const char *jobNumber,
 const char *jobUser,
 const char *splFName,
 const unsigned long splFNumber,
 cwbOBJ_ObjHandle *objectHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
const char *systemName - input

Pointer to the system name contained in an ASCIIZ string.
const char *jobName - input

Pointer to the name of the IBM i job that created the spooled file in an ASCIIZ string.
const char *jobNumber - input

Pointer to the number of the IBM i job that created the spooled file in an ASCIIZ string.
const char *jobNumber - input

Pointer to the user of the IBM i job that created the spooled file in an ASCIIZ string.
const char *splFName - input

Pointer to the name of the spooled file in an ASCIIZ string.
const unsigned long splFNumber - input

The number of the spooled file.
cwbOBJ_ObjHandle *objectHandle - output

On output this will contain the spooled file handle.

Windows Application Package: Programming 281

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage
This API does no checking of the spooled file on the host. The first time this handle is used to retrieve
data for the spooled file, a host error will be encountered if the spooled file doesn't exist.

cwbOBJ_CreateSplFHandleEx
Use the cwbOBJ_CreateSplFHandleEx API with this product.

Purpose
Create a spooled file handle for a particular spooled file on a specified system.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CreateSplFHandleEx(
 const char *systemName,
 const char *jobName,
 const char *jobNumber,
 const char *jobUser,
 const char *splFName,
 const unsigned long splFNumber,
 const char *createdSystem,
 const char *createdDate,
 const char *createdTime,
 cwbOBJ_ObjHandle *objectHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
const char *systemName - input

Pointer to the system name contained in an ASCIIZ string.
const char *jobName - input

Pointer to the name of the IBM i job that created the spooled file in an ASCIIZ string.
const char *jobNumber - input

Pointer to the number of the IBM i job that created the spooled file in an ASCIIZ string.
const char *jobNumber - input

Pointer to the user of the IBM i job that created the spooled file in an ASCIIZ string.

282 IBM i: Windows Application Package: Programming

const char *splFName - input
Pointer to the name of the spooled file in an ASCIIZ string.

const unsigned long splFNumber - input
The number of the spooled file.

const char *createdSystem - input
Pointer to the name of the system the spooled file was created on in an ASCIIZ string.

const char *createdDate - input
Pointer to the date the spooled file was created in an ASCIIZ string.

const char *createdTime - input
Pointer to the time the spooled file was created in an ASCIIZ string.

cwbOBJ_ObjHandle *objectHandle - output
On output this will contain the spooled file handle.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage
This API does not check the spooled file on the host. The first time this handle is used to retrieve data for
the spooled file, a host error will be encountered if the spooled file doesn't exist.

cwbOBJ_DeleteSplF
Use the cwbOBJ_DeleteSplF API with this product.

Purpose
Delete an IBM i spooled file.

Syntax

unsigned int CWB_ENTRY cwbOBJ_DeleteSplF(
 cwbOBJ_ObjHandle splFHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be deleted.

Windows Application Package: Programming 283

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_TYPE
Handle is not a spooled file handle.

Usage
After this calls returns successfully, cwbOBJ_DeleteObjHandle() should be called to release the
splFHandle.

cwbOBJ_DisplaySplF
Use the cwbOBJ_DisplaySplF API with this product.

Purpose
Displays the specified spooled file to the user.

Syntax

unsigned int CWB_ENTRY cwbOBJ_DisplaySplF(
 cwbOBJ_ObjHandle splFHandle,
 const char *view,
 const unsigned long flags,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle splFHandle - input

Handle of the parameter object.
const char *view - input

Optional, may be NULL. If specified it is a pointer to an ASCIIZ string that specifies the view to use
when invoking the spooled file viewer. The are two predefined views shipped with the viewer:

1. LETTER (8.5" x 11")
2. SFLVIEW (132 column)

Users may also add their own.
const unsigned long flags - input

Any of following bits may be set: CWBOBJ_DSPSPLF_WAIT - instructs this call to wait until the viewer
process has successfully opened the spooled file before returning. If this bit is 0, this API will return
after it starts the viewer process. If it is 1, this API will wait for the viewer to get the spooled file open
before returning. All other bits must be set to 0.

284 IBM i: Windows Application Package: Programming

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

CWB_NO_VIEWER
The viewer support for ClientAccess/400 was not installed.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage
Use this API to bring up the AFP viewer on the specified spooled file. The AFP viewer can view AFP data,
SCS data and plain ASCII text data. A return code of CWB_NO_VIEWER means that the viewer component
was not installed on the workstation.

cwbOBJ_HoldSplF
Use the cwbOBJ_HoldSplF API with this product.

Purpose
Holds a spooled file.

Syntax

unsigned int CWB_ENTRY cwbOBJ_HoldSplF(
 cwbOBJ_ObjHandle splFHandle,
 cwbOBJ_ParmHandle *parmListHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be held.
cwbOBJ_ParmHandle *parmListHandle - input

Optional. A pointer to a valid parameter list object handle that contains parameters for holding the
spooled file.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Windows Application Package: Programming 285

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_TYPE
Handle is not a spooled file handle.

Usage
The following parameter key may be set in the parmListHandle object:

• CWBOBJ_KEY_HOLDTYPE

what type of hold to do. May be "*IMMED" or "*PAGEEND". "*IMMED" is the default.

cwbOBJ_IsViewerAvailable
Use the cwbOBJ_IsViewerAvailable API with this product.

Purpose
Checks if the spooled file viewer is available.

Syntax

unsigned int CWB_ENTRY cwbOBJ_IsViewerAvailable(
 cwbSV_ErrHandle errorHandle);

Parameters
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion (viewer is installed).

CWB_NO_VIEWER
Viewer not installed.

Usage
Use this function to test for the presence of the viewer on the workstation. If the viewer is installed this
function will return CWB_OK. If the viewer is not available, the function will return CWB_NO_VIEWER and

286 IBM i: Windows Application Package: Programming

the errorHandle parameter (if provided) will contain an appropriate error message. Using this function,
applications can check for viewer support without calling the cwbOBJ_DisplaySplF() API.

cwbOBJ_MoveSplF
Use the cwbOBJ_MoveSplF API with this product.

Purpose
Moves an IBM i spooled file to another output queue or to another position on the same output queue.

Syntax

unsigned int CWB_ENTRY cwbOBJ_MoveSplF(
 cwbOBJ_ObjHandle splFHandle,
 cwbOBJ_ObjHandle *targetSplFHandle,
 cwbOBJ_ObjHandle *outputQueueHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be moved.
cwbOBJ_ObjHandle *targetSplFHandle - input

Optional. The handle of another spooled file on the same system, that specifies the spooled file to
move this spooled file after. If this is specified, *outputQueueHandle is not used.

cwbOBJ_ObjHandle *outputQueueHandle - input
Optional. The handle of an output queue on the same system that specifies which output queue to
move the spooled file to. The spooled file will be moved to the first position on this queue. This
parameter is ignored if targetSplFHandle is specified.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_TYPE
Handle is not a spooled file handle.

Usage
If both targetSplFHandle and outputQueueHandle are NULL, the spooled file will be moved to the first
position on the current output queue.

Windows Application Package: Programming 287

cwbOBJ_ReleaseSplF
Use the cwbOBJ_ReleaseSplF API with this product.

Purpose
Releases a spooled file.

Syntax

unsigned int CWB_ENTRY cwbOBJ_ReleaseSplF(
 cwbOBJ_ObjHandle splFHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be released.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_TYPE
Handle is not a spooled file handle.

Usage
None

cwbOBJ_SendNetSplF
Use the cwbOBJ_SendNetSplF API with this product.

Purpose
Sends a spooled file to another user on the same system or to a remote system on the network.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SendNetSplF(
 cwbOBJ_ObjHandle splFHandle,
 cwbOBJ_ParmHandle parmListHandle,
 cwbSV_ErrHandle errorHandle);

288 IBM i: Windows Application Package: Programming

Parameters
cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be sent.
cwbOBJ_ParmHandle parmListHandle - input

Required. A handle of a parameter list object that contains the parameters for sending the spooled
file.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid.

CWB_INVALID_PARAMETER
invalid parameter specified.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_TYPE
Handle is not a spooled file handle.

Usage
The equivalent of a send net spooled file (SNDNETSPLF) command will be issued against the spooled file.
The following parameter key's MUST be set in the parmListHandl object:

• CWBOBJ_KEY_TOUSERID

Specifies user ID to send the spooled file to.
• CWBOBJ_KEY_TOADDRESS

Specifies the remote system to send the spooled file to. "*NORMAL" is the default.

The following parameter key's may be set in the parmListHandle object:

• CWBOBJ_KEY_DATAFORMAT

Specifies the data format in which to transmit the spooled file. May be "*RCDDATA" or "*ALLDATA".
"*RCDDATA" is the default.

• CWBOBJ_KEY_VMMVSCLASS

Specifies the VM/MVS SYSOUT class for distributions sent to a VM host system or to an MVS™ host
system. May be "A" to "Z" or "0" to "9". "A" is the default.

• CWBOBJ_KEY_SENDPTY

Specifies the queueing priority used for this spooled file when it is being routed through a snad network.
May be "*NORMAL" or "*HIGH". "*NORMAL" is the default.

Windows Application Package: Programming 289

cwbOBJ_SendTCPSplF
Use the cwbOBJ_SendTCPSplF API with this product.

Purpose
Sends a spooled file to be printed on a remote system. This is the IBM i version of the TCP/IP LPR
command.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SendTCPSplF(
 cwbOBJ_ObjHandle splFHandle,
 cwbOBJ_ParmHandle parmListHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to be sent.
cwbOBJ_ParmHandle parmListHandle - input

Required. A handle of a parameter list object that contains the parameters for sending the spooled
file.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_TYPE
Handle is not a spooled file handle.

CWBOBJ_KEY_SEPPAGE
Specifies wether or not to print the separator page.

CWBOBJ_KEY_USRDTATFMLIB
Specifies the name of the user data transform library.

CWBOBJ_KEY_USRDTATFM
Specifies the name of the user data transform.

Usage
The equivalent of an IBM i send TCP/IP spooled file (SNDTCPSPLF) command is issued against
the spooled file. The following parameter key's MUST be set in the parmListHandl object:

290 IBM i: Windows Application Package: Programming

• CWBOBJ_KEY_RMTSYSTEM

Specifies the remote system to which the print request is sent. May be a remote system name or
"*INTNETADR".

• CWBOBJ_KEY_RMTPRTQ

Specifies the name of the destination print queue.

The following parameter key's may be set in the parmListHandle object:

• CWBOBJ_KEY_DELETESPLF

Specifies whether to delete the spooled file after it has been successfully sent. May be "*NO" or "*YES".
"*NO" is the default.

• CWBOBJ_KEY_DESTOPTION

Specifies a destination-dependant option. These options will be sent to the remote system with the
spooled file.

• CWBOBJ_KEY_DESTINATION

Specifies the type of system to which the spooled file is being sent. When sending to other IBM i types,
this value should be "*AS/400". May also be "*OTHER", "*PSF/2". "*OTHER" is the default.

• CWBOBJ_KEY_INTERNETADDR

Specifies the internet address of the receiving system.
• CWBOBJ_KEY_MFGTYPE

Specifies the manufacturer, type and model when transforming print data for SCS to ASCII.
• CWBOBJ_KEY_SCS2ASCII

Specifies wether the print data is to be transformed for SCS to ASCII. May be "*NO" or "*YES". "*NO" is
the default.

• CWBOBJ_KEY_WSCUSTMOBJ

Specifies the name of the workstation customizing object.
• CWBOBJ_KEY_WSCUSTMOBJL

Specifies the name of the workstation customizing object library.

APIs for handling spooled file messages
The following APIs pertain to handling spooled file messages. The APIs are listed alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_AnswerSplFMsg
Use the cwbOBJ_AnswerSplFMsg API with this product.

Purpose
Answer the message that the spooled file is waiting on.

Syntax

unsigned int CWB_ENTRY cwbOBJ_AnswerSplFMsg(
 cwbOBJ_ObjHandle splFHandle,
 char *msgAnswer,
 cwbSV_ErrHandle errorHandle);

Windows Application Package: Programming 291

Parameters
cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file to answer the message for.
const char *msgAnswer - input

Pointer to a ASCIIZ string that contains the answer for the message.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not valid spooled file handle.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle

CWBOBJ_RC_INVALID_TYPE
Handle is not a spooled file handle.

CWBOBJ_RC_SPLFNOMESSAGE
The spooled file isn't waiting on a message.

Usage
None

cwbOBJ_GetSplFMsgAttr
Use the cwbOBJ_GetSplFMsgAttr API with this product.

Purpose
Retrieves an attribute of a message that's associated with a spooled file.

Syntax

unsigned int CWB_ENTRY cwbOBJ_GetSplFMsgAttr(
 cwbOBJ_ObjHandle splFHandle,
 cwbOBJ_KeyID key,
 void *buffer,
 unsigned long bufLen,
 unsigned long *bytesNeeded,
 cwbOBJ_DataType *keyType,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbOBJ_ObjHandle splFHandle - input

Handle of the spooled file.
cwbOBJ_KeyID key - input

Identifying key of the attribute to retrieve. The CWBOBJ_KEY_XXX constants define the key ids.

292 IBM i: Windows Application Package: Programming

void *buffer - output
The buffer that will hold the attribute value, if this call returns successfully. The value of the key
determines what type of data will be put into pBuffer. The type is also returned to the *keyType
parameter, if provided.

unsigned long bufLen - input
The length of the buffer pointed to by pBuffer.

unsigned long *bytesNeeded - output
On output, this will be the number of bytes needed to hold result.

cwbOBJ_DataType *keyType - output
Optional, may be NULL. On output this will contain the type of data used to represent this attribute
and what is stored at *buffer.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

CWB_BUFFER_OVERFLOW
Buffer too small.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_KEY
Key isn't valid.

CWBOBJ_RC_SPLFNOMESSAGE
The spooled file isn't waiting on a message.

CWB_API_ERROR
General API failure.

Usage
The following keys are valid:

CWBOBJ_KEY_MSGTEXT - Message text
CWBOBJ_KEY_MSGHELP - Message help text
CWBOBJ_KEY_MSGREPLY - Message reply
CWBOBJ_KEY_MSGTYPE - Message type
CWBOBJ_KEY_MSGID - Message ID
CWBOBJ_KEY_MSGSEV - Message severity
CWBOBJ_KEY_DATE - Message date
CWBOBJ_KEY_TIME - Message time

Message formatting characters will appear in the message text and should be used as follows:

&N
Force the text to a new line indented to column 2. If the text is longer than 1 line, the next lines should
be indented to column 4 until the end of text or another format control character is found.

Windows Application Package: Programming 293

&P
Force the text to a new line indented to column 6. If the text is longer than 1 line, the next lines should
be indented to column 4 until the end of text or another format control character is found.

&B
Force the text to a new line indented to column 4. If the text is longer than 1 line, the next lines should
be indented to column 6 until the end of text or another format control character is found.

APIs for analyzing spooled file data
The following APIs pertain to analyzing spooled file data. The APIs are listed alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_AnalyzeSplFData
Use the cwbOBJ_AnalyzeSplFData API with this product.

Purpose
Analyze data for a spooled file and give a best guess as to what the data type is.

Syntax

unsigned int CWB_ENTRY cwbOBJ_AnalyzeSplFData(
 const char *data,
 unsigned long bufLen,
 cwbOBJ_SplFDataType *dataType,
 cwbSV_ErrHandle errorHandle);

Parameters
const char *data - input

pointer to data to be analyzed.
unsigned long bufLen - input

The length of the buffer pointed to by data.
cwbOBJ_SplFDataType *dataType - output

On output this will contain the data type. If the data type can not be determined, it defaults to
CWBOBJ_DT_USERASCII.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_PARAMETER
Invalid parameter specified.

Usage
This uses the same routine that is used during the creation of spooled files that don't have a data type
specified or have a data type of *AUTO specified. The result defaults to *USERASCII if it can not be
determined.

294 IBM i: Windows Application Package: Programming

Server program APIs
The following APIs pertain to server programs. The APIs are listed alphabetically.

Note: When working with handles in the following APIs, 0 never will be returned as a valid handle.

cwbOBJ_DropConnections
Use the cwbOBJ_DropConnections API with this product.

Purpose
Drops all unused conversations to all systems for the network print server for this process.

Syntax

unsigned int CWB_ENTRY cwbOBJ_DropConnections(
 cwbSV_ErrHandle errorHandle);

Parameters
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

Usage
The CWBOBJ.DLL maintains a pool of available conversations to the network print server for use on the
APIs. These conversations normally time out after not having been used for 10 to 20 minutes and are
then dropped. This API allows the application to clean up the pool of conversations immediately without
waiting for the timeout. It can also be used at the end of the process to make sure that any conversations
are terminated. This API will drop all connections to all servers for this process that are not "in use." In
use connections include those with open spooled files on them (for creating or reading from).

cwbOBJ_GetNPServerAttr
Use the cwbOBJ_GetNPServerAttr API with this product.

Purpose
Get an attribute of the QNPSERVR program on a specified system.

Syntax

unsigned int CWB_ENTRY cwbOBJ_GetNPServerAttr(
 const char *systemName,
 cwbOBJ_KeyID key,
 void *buffer,
 unsigned long bufLen,
 unsigned long *bytesNeeded,

Windows Application Package: Programming 295

 cwbOBJ_DataType *keyType,
 cwbSV_ErrHandle errorHandle);

Parameters
const char *systemName - input

Pointer to the system name contained in an ASCIIZ string.
cwbOBJ_KeyID key - input

Identifying key of the attribute to retrieve.
void *buffer - output

The buffer that will hold the attribute value. If this call returns successfully. The value of the key
determines what type of data will be put into pBuffer. The type is also returned to the *keyType
parameter, if provided.

unsigned long bufLen - input
The length of the buffer pointed to by pBuffer.

unsigned long *bytesNeeded - output
On output, this will be the number of bytes needed to hold result.

cwbOBJ_DataType *keyType - output
Optional, may be NULL. On output this will contain the type of data used to represent this attribute
and what is stored at *buffer.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_BUFFER_OVERFLOW
Buffer too small.

CWB_INVALID_PARAMETER
Invalid parameter specified.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_KEY
Key isn't valid.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage
The following attributes may be retrieved from the QNPSERVR program:

• CWBOBJ_KEY_NPSCCSID - Server CCSID
• CWBOBJ_KEY_NPSLEVEL - Server code level

296 IBM i: Windows Application Package: Programming

cwbOBJ_SetConnectionsToKeep
Use the cwbOBJ_SetConnectionsToKeep API with this product.

Purpose
Set the number of connections that should be left active for a particular system. Normally, the cwbobj.dll
will time out and drop connections after they have not been used for a while. With this API you can force it
to leave open a certain number of connections for this system.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SetConnectionsToKeep(
 const char *systemName
 unsigned int connections
 cwbSV_ErrHandle errorHandle);

Parameters
const char *systemName - input

Pointer to the system name contained in ASCIIZ string.
unsigned int connections - input

The number to of connections to keep open.
cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle() API. The messages may be retrieved through the
cwbSV_GetErrText() API. If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_PARAMETER
Invalid parameter specified.

Usage
The default number of connections left open per system is 0. The connections are made per process, so
this API only affects connections under the process it is called under. Setting the number of connections
to be left open does not open any new connections.

Example: Using system objects APIs
The following example shows a typical calling sequence for retrieving a list of spooled files.

/**/
/* List all spooled files for the current user and */
/* display them to the user. */
/**/

 #ifdef UNICODE
 #define _UNICODE
 #endif
 #include <windows.h>

 #include <stdio.h>
 #include "CWBOBJ.H"
main(int argc, char *argv[], char *envp[])
{
 cwbOBJ_ListHandle listHandle;
 cwbOBJ_ObjHandle splFHandle;

Windows Application Package: Programming 297

 unsigned int ulRC;
 unsigned long ulListSize, ulObjPosition, ulBytesNeeded;
 cwbOBJ_KeyID keysWanted[] = { CWBOBJ_KEY_SPOOLFILE,
 CWBOBJ_KEY_USER };
 unsigned long ulNumKeysWanted = sizeof(keysWanted)/sizeof(*keysWanted);
 char szSplFName[11];
 char szUser[11];

 ulRC = cwbOBJ_CreateListHandle(_TEXT("ANYAS400"),
 CWBOBJ_LIST_SPLF,
 &listHandle,
 0);
 if (ulRC == CWB_OK)
 {

 /* Set up the filter for the list to be opened with */
 /* NOTE: this is just for example, the user defaults */
 /* to *CURRENT, so this isn't really needed. */

 cwbOBJ_SetListFilter(listHandle, CWBOBJ_KEY_USER,
 _TEXT("*CURRENT"), 0);

 /* Optionally call to cwbOBJ_SetListAttrsToRetrieve to*/
 /* make walking the list faster */
 ulRC = cwbOBJ_SetListAttrsToRetrieve(listHandle,
 ulNumKeysWanted,
 keysWanted,
 0);

 /* open the list - this will build the list of spooled*/
 /* files. */
 ulRC = cwbOBJ_OpenList(listHandle,
 CWBOBJ_LIST_OPEN_SYNCH,
 0);
 if (ulRC == CWB_OK)
 {
 /* Get the number of items that are in the list */
 ulRC = cwbOBJ_GetListSize(listHandle,
 &ulListSize,
 (cwbOBJ_List_Status *)0,
 0);
 if (ulRC == CWB_OK)
 {

 /* walk through the list of items, displaying */
 /* each item to the user */

 ulObjPosition = 0;
 while (ulObjPosition < ulListSize)
 {
 /***/
 /* Get a handle to the next spooled file in*/
 /* the list. This handle is valid while */
 /* the list is open. If you want to */
 /* maintain a handle to the spooled file */
 /* after the list is closed, you could call*/
 /* cwbOBJ_CopyObjHandle() after this call. */
 /***/
 ulRC = cwbOBJ_GetObjHandle(listHandle,
 ulObjPosition,
 &splFHandle,
 0);
 if (ulRC == CWB_OK)
 {

 /**/
 /* call cwbOBJ_GetObjAttr() to get info */
 /* about this spooled file. May also */
 /* call spooled file specific APIs */
 /* with this handle, such as */
 /* cwbOBJ_HoldSplF(). */
 /**/

 ulRC = cwbOBJ_GetObjAttr(splFHandle,
 CWBOBJ_KEY_SPOOLFILE,
 (void *)szSplFName,
 sizeof(szSplFName),
 &ulBytesNeeded,
 NULL,
 0);
 if (ulRC == CWB_OK)
 {

298 IBM i: Windows Application Package: Programming

 ulRC = cwbOBJ_GetObjAttr(splFHandle,
 CWBOBJ_KEY_USER,
 (void *)szUser,
 sizeof(szUser),
 &ulBytesNeeded,
 NULL,
 0);
 if (ulRC == CWB_OK)
 {
 printf("%3u: %11s %s\n",
 ulObjPosition, szSplFName, szUser);
 } else {
 /* ERROR on GetObjAttr! */
 }
 } else {
 /* ERROR on GetObjAttr! */
 }
 /* free this object handle */
 cwbOBJ_DeleteObjHandle(splFHandle, 0);
 } else {
 /* ERROR on GetObjHandle! */
 }
 ulObjPosition++;
 }
 } else {
 /* ERROR on GetListSize! */
 }
 cwbOBJ_CloseList(listHandle, 0);
 } else {
 /* ERROR on OpenList! */
 }

 cwbOBJ_DeleteListHandle(listHandle, 0);
 }

Remote Command/Distributed Program Call APIs
The Remote Command/Distributed Program Call APIs allow the PC application programmer to access IBM
i functions. User program and system commands are called without requiring an emulation session. A
single IBM i program serves commands and programs, so only one system job is started for both.

Remote Command APIs:
The Remote Command application programming interfaces (APIs) enable your PC application to start
non-interactive IBM i commands and to receive completion messages from these commands. The IBM i
command can send up to ten reply messages.

Distributed Program Call API:
The Distributed Program Call API allows your PC application to call any IBM i program or command. Input,
output and in/out parameters are handled through this function. If the program runs correctly, the output
and the in/out parameters will contain the data returned by the IBM i program that was called. If the
program fails to run correctly on the system, the program can send up to ten reply messages.

Remote Command/Distributed Program Call APIs required files:
Header file Import library Dynamic Link Library

cwbrc.h cwbapi.lib cwbrc.dll

Programmer's Toolkit:
The Programmer's Toolkit provides Remote Command and Distributed Program Call documentation,
access to the cwbrc.h header file, and links to sample programs. To access this information, open the
Programmer's Toolkit and select either Remote Command or Distributed Program Call > C/C++ APIs.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

Windows Application Package: Programming 299

Related reference
Remote Command/Distributed Program Call APIs return codes
There are Remote command and distributed program call API return codes.
IBM i name formats for connection APIs
APIs that take an IBM i name as a parameter, accept the name in the three different formats.
OEM, ANSI, and Unicode considerations
Most of the C/C++ APIs that accept string parameters exist in three forms: OEM, ANSI, or Unicode.

Typical use of Remote Command/Distributed Program Call APIs
An application that uses the Remote Command/Distributed Program Call function uses objects.

Each of these objects are identified to the application through a handle:

System object
This is an IBM i identification. The handle to the system object is provided to the StartSysEx function
to identify the system on which the commands or APIs will be run.

Command request object
This represents an IBM i request. Commands can be run and programs can be called on this object.

Note: The Command Request object previously was known as the "system object" in this product.

Program object
This represents the IBM i program. Parameters can be added, and the program can be sent to the
system to run the program.

There is not a separate object for commands. The command string is sent directly to the command
request.

An application that uses the Remote Command/Distributed Program Call APIs first creates a system
object by calling the cwbCO_CreateSystem function. This function returns a handle to the system object.
This handle then is used with the cwbRC_StartSysEx function to start an IBM i conversation. The
cwbRC_StartSysEx function returns a handle to the command request. Use the command request
handle to call programs or to run commands. The APIs that are associated with the command request
object are:

• cwbRC_StartSysEx
• cwbRC_CallPgm
• cwbRC_RunCmd
• cwbRC_StopSys

A command is a character string that is to be run on the IBM i platform. Because it is a simple object (a
character string) no additional object will need to be created in order to run a command. The command
string simply is a parameter on the cwbRC_RunCmd API.

A program is a complex object that is created with the cwbRC_CreatePgm API, which requires the
program name and the library name as parameters. The handle that is returned by this function can
have 0 to 35 parameters associated with it. Parameters are added with the cwbRC_AddParm function.
Parameters types can be input, output, or input/output. These parameters need to be in a format with
which the IBM i program can work (that is, one for which no data transform or data conversion will occur).
When all of the parameters have been added, the program handle is used with the cwbRC_CallPgm API
on the command request object. The APIs that are associated with the program object are:

• cwbRC_AddParm
• cwbRC_CreatePgm
• cwbRC_DeletePgm
• cwbRC_GetLibName
• cwbRC_GetParm
• cwbRC_GetParmCount

300 IBM i: Windows Application Package: Programming

• cwbRC_GetPgmName
• cwbRC_SetLibName
• cwbRC_SetParm
• cwbRC_SetPgmName

Related reference
cwbCO_CreateSystem
Use the cwbCO_CreateSystem command.
cwbRC_StartSysEx
Use the cwbRC_StartSysEx API with this product.
cwbRC_CallPgm
Use the cwbRC_CallPgm API with this product.
cwbRC_RunCmd
Use the cwbRC_RunCmd API with this product.
cwbRC_StopSys
Use the cwbRC_StopSys API with this product.
cwbRC_CreatePgm
Use the cwbRC_CreatePgm API with this product.
cwbRC_AddParm
Use the cwbRC_AddParm API with this product.
cwbRC_GetParmCount
Use the cwbRC_GetParmCount API with this product.
cwbRC_GetParm
Use the cwbRC_GetParm API with this product.
cwbRC_GetPgmName
Use the cwbRC_GetPgmName API with this product.
cwbRC_GetLibName
Use the cwbRC_GetLibName API with this product.
cwbRC_SetParm
Use the cwbRC_SetParm API with this product.
cwbRC_SetPgmName
Use the cwbRC_SetPgmName API with this product.
cwbRC_SetLibName
Use the cwbRC_SetLibName API with this product.
cwbRC_DeletePgm
Use the cwbRC_DeletePgm API with this product.

Remote Command/Distributed Program Call: Access remote command APIs
list
Access the IBM i remote command server program. The request handle is used to run commands and to
call programs. The APIs are listed alphabetically.

cwbRC_GetClientCCSID
Use the cwbRC_GetClientCCSID API with this product.

Purpose
Get the coded character set identifier (CCSID) associated with the current process. This CCSID along with
the host CCSID can be used to convert EBCDIC data returned by some IBM i program to ASCII data that
can be used in client applications.

Windows Application Package: Programming 301

Syntax

unsigned int CWB_ENTRY cwbRC_GetClientCCSID(
 cwbRC_SysHandle system,
 unsigned long *clientCCSID);

Parameters
cwbRC_SysHandle system - input

Handle that was returned by a previous call to the cwbRC_StartSysEx function. It is the IBM i
identification.

unsigned long * clientCCSID - output
Pointer to an unsigned long where the client CCSID will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or NULL pointer.

CWBRC_INVALID_SYSTEM_HANDLE
Invalid system handle.

Usage
See related APIs in the CWBNLCNV.H file.

cwbRC_GetHostCCSID
Use the cwbRC_GetHostCCSID API with this product.

Purpose
Get the coded character set identifier (CCSID) associated with the IBM i job. This CCSID along with the
client CCSID can be used to convert EBCDIC data returned by some IBM i programs to ASCII data that can
be used in client applications.

Syntax

unsigned int CWB_ENTRY cwbRC_GetHostCCSID(
 cwbRC_SysHandle system,
 unsigned long *hostCCSID);

Parameters
cwbRC_SysHandle system - input

Handle that was returned by a previous call to the cwbRC_StartSysEx function. It is the IBM i
identification.

unsigned long * hostCCSID - output
Pointer to an unsigned long where the host CCSID will be written.

Return Codes
The following list shows common return values.

302 IBM i: Windows Application Package: Programming

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or NULL pointer.

CWBRC_INVALID_SYSTEM_HANDLE
Invalid system handle.

Usage
See related APIs in the CWBNLCNV.H file.

cwbRC_StartSysEx
Use the cwbRC_StartSysEx API with this product.

Purpose
This function starts a conversation with the specified system. If the conversation is successfully started,
a handle is returned. Use this handle with all subsequent calls to issue commands or call programs.
When the conversation no longer is needed, use the handle with the cwbRC_StopSys API to end the
conversation. The cwbRC_StartSysEx API may be called multiple times within an application. If the
same system object handle is used on StartSysEx calls, only one IBM i conversation is started. If you want
multiple conversations to be active, you must call StartSysEx multiple times, specifying different system
object handles.

Syntax

unsigned int CWB_ENTRY cwbRC_StartSysEx(
 const cwbCO_SysHandle systemObj,
 cwbRC_SysHandle *request);

Parameters
const cwbCO_SysHandle systemObj - input

Handle to an existing system object of the system on which you want programs and commands to be
run.

cwbRC_SysHandle *request - output
Pointer to a cwbRC_SysHandle where the handle of the command request will be returned.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_COMMUNICATIONS_ERROR
A communications error occurred.

CWB_SERVER_PROGRAM_NOT_FOUND
The IBM i application is not found.

CWB_HOST_NOT_FOUND
The system is inactive or does not exist.

CWB_SECURITY_ERROR
A security error has occurred.

CWB_LICENSE_ERROR
A license error has occurred.

Windows Application Package: Programming 303

CWB_CONFIG_ERROR
A configuration error has occurred.

CWBRC_SYSTEM_NAME
System name is too long.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage
None.

Related reference
Typical use of Remote Command/Distributed Program Call APIs
An application that uses the Remote Command/Distributed Program Call function uses objects.

cwbRC_StopSys
Use the cwbRC_StopSys API with this product.

Purpose
This function stops a conversation with the system specified by the handle. This handle can no longer be
used to issue program calls or commands.

Syntax

unsigned int CWB_ENTRY cwbRC_StopSys(
 cwbRC_SysHandle system);

Parameters
cwbRC_SysHandle system - input

Handle that was returned by a previous call to the cwbRC_StartSysEx function. It is the IBM i
identification.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBRC_INVALID_SYSTEM_HANDLE
Invalid system handle.

Usage
None

Related reference
Typical use of Remote Command/Distributed Program Call APIs

304 IBM i: Windows Application Package: Programming

An application that uses the Remote Command/Distributed Program Call function uses objects.

Remote Command/Distributed Program Call: Run APIs list
Use these APIs to run an IBM i command. The APIs are listed alphabetically.

cwbRC_RunCmd
Use the cwbRC_RunCmd API with this product.

Purpose
Issues the command on the system identified by the handle. The return code will indicate success or
failure of the command. Additional messages can be returned by using the message handle that is
returned.

Syntax

unsigned int CWB_ENTRY cwbRC_RunCmd(
 cwbRC_SysHandle system,
 const char *commandString,
 cwbSV_ErrHandle msgHandle);

Parameters
cwbRC_SysHandle system - input

Handle that was returned by a previous call to the cwbRC_StartSysEx function. It is the IBM i
identification.

const char *commandString - input
Pointer to a string that contains the command that is issued. This is an ASCIIZ string.

cwbSV_ErrHandle msgHandle - output
Any IBM i returned messages are written to this object. It is created with
the cwbSV_CreateErrHandle API. The messages may be retrieved through the
cwbSV_GetErrTextIndexed API. If the parameter is set to zero, no messages will be retrieved.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or NULL pointer.

CWBRC_INVALID_SYSTEM_HANDLE
Invalid system handle.

CWBRC_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBRC_USR_EXIT_ERROR
Error in user exit program.

CWBRC_COMMAND_FAILED
Command failed.

CWBRC_COMMAND_TOO_LONG
Command string is too long.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

Windows Application Package: Programming 305

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage
None

Related reference
Typical use of Remote Command/Distributed Program Call APIs
An application that uses the Remote Command/Distributed Program Call function uses objects.

Remote Command/Distributed Program Call: Access programs APIs list
Use these APIs to access programs and their parameters.

cwbRC_AddParm
Use the cwbRC_AddParm API with this product.

Purpose
Add a parameter to the program that is identified by the handle. This function should be called once for
each parameter that is to be added to the program. When the program is called the parameters will be in
the same order that they are added using this function.

Syntax
unsigned int CWB_ENTRY cwbRC_AddParm(
 cwbRC_PgmHandle program,
 unsigned short type,
 unsigned long length,
 const unsigned char *parameter);

Parameters
cwbRC_PgmHandle program - input

Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program
object.

unsigned short type - input
The type of parameter this is. Use one of the defined parameter types: CWBRC_INPUT,
CWBRC_OUTPUT, CWBRC_INOUT. If you want to automatically convert between local CCSID and
host CCSID, add the appropriate convert flag to this field with a bitwise, or use one of the defined
parameter types:

• CWBRC_TEXT_CONVERT
• CWBRC_TEXT_CONVERT_INPUT
• CWBRC_TEXT_CONVERT_OUTPUT

The last two types are intended for use with CWBRC_INOUT when conversion is only needed in one
direction.

unsigned long length - input
The length of the parameter. If this is an CWBRC_OUTPUT parameter, the length should be the length
of the buffer where the returned parameter will be written.

const unsigned char * parameter - input
Pointer to a buffer that will contain: the value if the type is CWBRC_INPUT or CWBRC_INOUT, or the
place where the returned parameter is to be written if the type is CWBRC_OUTPUT or CWBRC_INOUT.

306 IBM i: Windows Application Package: Programming

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBRC_INVALID_PROGRAM
Invalid program handle.

CWBRC_INVALID_TYPE
Invalid type specified.

CWBRC_INVALID_PARM_LENGTH
Invalid parameter length.

CWBRC_INVALID_PARM
Invalid parameter.

Usage
Parameter data is assumed to be binary. No conversion will be performed on the parameter data unless
one of the conversion flags is set. For example:

cwbRC_AddParm(hPgm,
CWBRC_INOUT | CWBRC_TEXT_CONVERT_OUTPUT,
bufferSize,
buffer);

will use the buffer as is to send to the host, and will convert the output (eg to ASCII) before putting the
result into the buffer.

Related reference
Typical use of Remote Command/Distributed Program Call APIs
An application that uses the Remote Command/Distributed Program Call function uses objects.

cwbRC_CallPgm
Use the cwbRC_CallPgm API with this product.

Purpose
Calls the program identified by the handle. The return code will indicate the success or failure of the
program. Additional messages can be returned by using the message handle that is returned.

Syntax

unsigned int CWB_ENTRY cwbRC_CallPgm(
 cwbRC_SysHandle system,
 cwbRC_PgmHandle program,
 cwbSV_ErrHandle msgHandle);

Parameters
cwbRC_SysHandle system - input

Handle that was returned by a previous call to the cwbRC_StartSysEx function. It is the IBM i
identification.

cwbRC_PgmHandle program - input
Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program
object. object.

Windows Application Package: Programming 307

cwbSV_ErrHandle msgHandle - output
Any returned messages will be written to this object. It is created with
the cwbSV_CreateErrHandle API. The messages may be retrieved through the
cwbSV_GetErrTextIndexed API. If the parameter is set to zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_COMMUNICATIONS_ERROR
A communications error occurred.

CWBRC_INVALID_SYSTEM_HANDLE
Invalid system handle.

CWBRC_INVALID_PROGRAM
Invalid program handle.

CWBRC_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBRC_USER_EXIT_ERROR
Error in user exit program.

CWBRC_PROGRAM_NOT_FOUND
Program not found.

CWBRC_PROGRAM_ERROR
Error when calling program.

Usage
None

Related reference
Typical use of Remote Command/Distributed Program Call APIs
An application that uses the Remote Command/Distributed Program Call function uses objects.

cwbRC_CreatePgm
Use the cwbRC_CreatePgm API with this product.

Purpose
This function creates a program object given a program and library name. The handle that is returned can
be used to add parameters to the program and then call the program.

Syntax

unsigned int CWB_ENTRY cwbRC_CreatePgm(
 const char *programName,
 const char *libraryName,
 cwbRC_PgmHandle *program);

Parameters
const char *programName - input

Pointer to an ASCIIZ string that contains the name of the program that you want to call. The name is
uppercased unless enclosed in double quotes.

308 IBM i: Windows Application Package: Programming

const char *libraryName - input
Pointer to an ASCIIZ string that contains the name of the library where the program resides. The name
is uppercased unless enclosed in double quotes.

cwbRC_PgmHandle * program - output
Pointer to a cwbRC_PgmHandle where the handle of the program will be returned.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or NULL pointer.

CWBRC_PROGRAM_NAME
Program name is too long.

CWBRC_LIBRARY_NAME
Library name is too long.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage
You should create a separate IBM i program object for each program you want to call on the system.
You can use the functions described in this file to change the values of the parameters being sent to the
program, but cannot change the number of parameters being sent.

Related reference
Typical use of Remote Command/Distributed Program Call APIs
An application that uses the Remote Command/Distributed Program Call function uses objects.

cwbRC_DeletePgm
Use the cwbRC_DeletePgm API with this product.

Purpose
This function deletes the program object that is identified by the handle provided.

Syntax

unsigned int CWB_ENTRY cwbRC_DeletePgm(
 cwbRC_PgmHandle program);

Parameters
cwbRC_PgmHandle program - input

Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program
object.

Windows Application Package: Programming 309

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBRC_INVALID_PROGRAM
Invalid program handle.

Usage
None.

Related reference
Typical use of Remote Command/Distributed Program Call APIs
An application that uses the Remote Command/Distributed Program Call function uses objects.

cwbRC_GetLibName
Use the cwbRC_GetLibName API with this product.

Purpose
Get the name of the library that was used when creating this program object.

Syntax

unsigned int CWB_ENTRY cwbRC_GetLibName(
 cwbRC_PgmHandle program,
 char *libraryName);

Parameters
cwbRC_PgmHandle program - input

Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program
object.

char * libraryName - output
Pointer to a ten character buffer where the name of the library will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or NULL pointer.

CWBRC_INVALID_PROGRAM
Invalid program handle.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate the temporary buffer.

CWB_API_ERROR
General API failure.

Usage
None

310 IBM i: Windows Application Package: Programming

Related reference
Typical use of Remote Command/Distributed Program Call APIs
An application that uses the Remote Command/Distributed Program Call function uses objects.

cwbRC_GetParm
Use the cwbRC_GetParm API with this product.

Purpose
Retrieve the parameter identified by the index. The index will range from 0 to the total number of
parameters - 1. This number can be obtained by calling the cwbRC_GetParmCount API.

Syntax

unsigned int CWB_ENTRY cwbRC_GetParm(
 cwbRC_PgmHandle program,
 unsigned short index,
 unsigned short *type,
 unsigned long *length,
 unsigned char **parameter);

Parameters
cwbRC_PgmHandle handle - input

Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program
object.

unsigned short index - input
The number of the specific parameter in this program that should be retrieved. This index is zero-
based.

unsigned short * type - output
Pointer to the type of parameter this is. The value will be one of the defined parameter types:

• CWBRC_INPUT
• CWBRC_OUTPUT
• CWBRC_INOUT

unsigned long * length - input
Pointer to the length of the parameter.

unsigned char * * parameter - output
Pointer to a buffer that will contain the address of the actual parameter.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or NULL pointer.

CWBRC_INVALID_PROGRAM
Invalid program handle.

CWBRC_INDEX_RANGE_ERROR
Index is out of range.

Usage
None

Windows Application Package: Programming 311

Related reference
Typical use of Remote Command/Distributed Program Call APIs
An application that uses the Remote Command/Distributed Program Call function uses objects.

cwbRC_GetParmCount
Use the cwbRC_GetParmCount API with this product.

Purpose
Get the number of parameters for this program object.

Syntax

unsigned int CWB_ENTRY cwbRC_GetParmCount(
 cwbRC_PgmHandle program,
 unsigned short *count);

Parameters
cwbRC_PgmHandle handle - input

Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program
object.

unsigned short * count - output
Pointer to an unsigned short where the parameter count will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or NULL pointer.

CWBRC_INVALID_PROGRAM
Invalid program handle.

Usage
None

Related reference
Typical use of Remote Command/Distributed Program Call APIs
An application that uses the Remote Command/Distributed Program Call function uses objects.

cwbRC_GetPgmName
Use the cwbRC_GetPgmName API with this product.

Purpose
Get the name of the program that was used when creating this program.

Syntax

unsigned int CWB_ENTRY cwbRC_GetPgmName(
 cwbRC_PgmHandle program,
 char *programName);

312 IBM i: Windows Application Package: Programming

Parameters
cwbRC_PgmHandle program - input

Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program
object.

char * programName - output
Pointer to a ten character buffer where the name of the program will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or NULL pointer.

CWBRC_INVALID_PROGRAM
Invalid program handle.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate the temporary buffer.

CWB_API_ERROR
General API failure.

Usage
None

Related reference
Typical use of Remote Command/Distributed Program Call APIs
An application that uses the Remote Command/Distributed Program Call function uses objects.

cwbRC_SetLibName
Use the cwbRC_SetLibName API with this product.

Purpose
Set the name of the library for this program object.

Syntax

unsigned int CWB_ENTRY cwbRC_SetLibName(
 cwbRC_PgmHandle program,
 const char *libraryName);

Parameters
cwbRC_PgmHandle program - input

Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program
object.

const char *libraryName - input
Pointer to an ASCIIZ string that contains the name of the library where the program resides.

Return Codes
The following list shows common return values.

Windows Application Package: Programming 313

CWB_OK
Successful completion.

CWBRC_INVALID_PROGRAM
Invalid program handle.

CWBRC_LIBRARY_NAME
Library name is too long.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage
Use this function to change the name of the name of the library that contains the program you want to
call. This function should not be used to call a different program with different parameters.

Related reference
Typical use of Remote Command/Distributed Program Call APIs
An application that uses the Remote Command/Distributed Program Call function uses objects.

cwbRC_SetParm
Use the cwbRC_SetParm API with this product.

Purpose
Set the parameter value identified by the index. The index will range from 0 to the total number of
parameters - 1. This number can be obtained by calling the cwbRC_GetParmCount API. Note that this
function is to be used to change a parameter. Use cwbRC_AddParm to create the parameter.

Syntax

unsigned int CWB_ENTRY cwbRC_SetParm(
 cwbRC_PgmHandle program,
 unsigned short index,
 unsigned short type,
 unsigned long length,
 const unsigned char *parameter);

Parameters
cwbRC_PgmHandle handle - input

Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program
object.

unsigned short index - input
The number of the specific parameter in this program that should be changed. This index is zero-
based.

unsigned short type - input
The type of parameter this is. Use one of the defined parameter types:

• CWBRC_INPUT
• CWBRC_OUTPUT
• CWBRC_INOUT

314 IBM i: Windows Application Package: Programming

If you want to automatically convert between local CCSID and host CCSID, add the appropriate
convert flag to this field with a bitwise-OR. Use one of the defined parameter types:

• CWBRC_TEXT_CONVERT
• CWBRC_TEXT_CONVERT_INPUT
• CWBRC_TEXT_CONVERT_OUTPUT

The latter two are intended for use with CWBRC_INOUT when conversion is only needed in one
direction.

unsigned long length - input
The length of the parameter. If this is an CWBRC_OUT parameter, the length should be the length of
the buffer where the returned parameter will be written.

const unsigned char * parameter - input
Pointer to a buffer that will contain the value if the type is CWBRC_INPUT or CWBRC_INOUT, or the
place where the return parameter is to be written if the type is CWBRC_OUTPUT or CWBRC_INOUT.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBRC_INVALID_PROGRAM
Invalid program handle.

CWBRC_INVALID_TYPE
Invalid type specified.

CWBRC_INVALID_PARM_LENGTH
Invalid parameter length.

CWBRC_INVALID_PARM
Invalid parameter.

Usage
Parameter data is assumed to be binary. No conversion will be performed on the parameter data unless
one of the conversion flags is set. For example:

 cwbRC_SetParm(hPgm,
 CWBRC_INOUT | CWBRC_TEXT_CONVERT_OUTPUT,
 bufferSize,
 buffer);

will use the buffer as is to send to the host, and will convert the output (for example, to ASCII) before
putting the result into the buffer.

Related reference
Typical use of Remote Command/Distributed Program Call APIs
An application that uses the Remote Command/Distributed Program Call function uses objects.

cwbRC_SetPgmName
Use the cwbRC_SetPgmName API with this product.

Purpose
Set the name of the program for this program object.

Windows Application Package: Programming 315

Syntax

unsigned int CWB_ENTRY cwbRC_SetPgmName(
 cwbRC_PgmHandle program,
 const char *programName);

Parameters
cwbRC_PgmHandle program - input

Handle that was returned by a previous call to the cwbRC_CreatePgm API. It identifies the program
object.

const char *programName - input
Pointer to an ASCIIZ string that contains the name of the program that you want to call.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBRC_INVALID_PROGRAM
Invalid program handle.

CWBRC_PROGRAM_NAME
Program name is too long.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage
Use this function to change the name of the program that you want to call. This function should not be
used to change the program object to call a different program with different parameters.

Related reference
Typical use of Remote Command/Distributed Program Call APIs
An application that uses the Remote Command/Distributed Program Call function uses objects.

Example: Using Remote Command/Distributed Program Call APIs
This example illustrates using remote Command/Distributed Program Call APIs.

#ifdef UNICODE
 #define _UNICODE
#endif
#include <windows.h>

// Include the necessary RC/DPC Classes
#include <stdlib.h>
#include <iostream>
using namespace std;
#include <TCHAR.H>
#include "cwbrc.h"
#include "cwbcosys.h"
/**/

void main()
{
 cwbCO_SysHandle system;
 cwbRC_SysHandle request;

316 IBM i: Windows Application Package: Programming

 cwbRC_PgmHandle program;

 // Create the system object
 if ((cwbCO_CreateSystem("SystemName",&system)) != CWB_OK)
 return;

 // Start the system
 if ((cwbRC_StartSysEx(system,&request)) != CWB_OK)
 return;

 // Call the command to create a library
 char* cmd1 = "CRTLIB LIB(RCTESTLIB) TEXT('RC TEST LIBRARY')";
 if ((cwbRC_RunCmd(request, cmd1, 0)) != CWB_OK)
 return;

 cout << "Created Library" << endl;

 // Call the command to delete a library
 char* cmd2 = "DLTLIB LIB(RCTESTLIB)";
 if ((cwbRC_RunCmd(request, cmd2, 0)) != CWB_OK)
 return;

 cout << "Deleted Library" << endl;

 // Create a program object to create a user space
 if (cwbRC_CreatePgm(_TEXT("QUSCRTUS"),
 _TEXT("QSYS"),
 &program) != CWB_OK)
 return;

 // Add the parameters
 // name is DPCTESTSPC/QGPL
 unsigned char name[20] = {0xC4,0xD7,0xC3,0xE3,0xC5,0xE2,0xE3,0xE2,0xD7,0xC3,
 0xD8,0xC7,0xD7,0xD3,0x40,0x40,0x40,0x40,0x40,0x40};

 // extended attribute is not needed
 unsigned char attr[10] = {0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40};

 // initial size is 100 bytes
 unsigned long size = 0x64000000;

 // initial value is blank
 unsigned char init = 0x40;

 // public authority is CHANGE
 unsigned char auth[10] = {0x5C,0xC3,0xC8,0xC1,0xD5,0xC7,0xC5,0x40,0x40,0x40};

 // description is DPC TEMP SPACE
 unsigned char desc[50] = {0xC4,0xD7,0xC3,0x40,0xE3,0xC5,0xD4,0xD7,0x40,0xE2,
 0xD7,0xC1,0xC3,0xC5,0x40,0x40,0x40,0x40,0x40,0x40,
 0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,
 0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,
 0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40};

 if (cwbRC_AddParm(program, CWBRC_INPUT, 20, name) != CWB_OK)
 return;

 if (cwbRC_AddParm(program, CWBRC_INPUT, 10, attr) != CWB_OK)
 return;

 if (cwbRC_AddParm(program, CWBRC_INPUT, 4, (unsigned char*)&size) != CWB_OK)
 return;

 if (cwbRC_AddParm(program, CWBRC_INPUT, 1, &init) != CWB_OK)
 return;

 if (cwbRC_AddParm(program, CWBRC_INPUT, 10, auth) != CWB_OK)
 return;

 if (cwbRC_AddParm(program, CWBRC_INPUT, 50, desc) != CWB_OK)
 return;

 // Call the program
 if (cwbRC_CallPgm(request, program, 0) != CWB_OK)
 return;

 cout << "Created User Space" << endl;

 // Delete the program
 if (cwbRC_DeletePgm(program) != CWB_OK)
 return;

Windows Application Package: Programming 317

 // Create a program object to delete a user space
 if (cwbRC_CreatePgm(_TEXT("QUSDLTUS"),
 _TEXT("QSYS"),
 &program) != CWB_OK)
 return;

 // Add the parameters
 // error code structure will not be used
 unsigned long err = 0x00000000;

 if (cwbRC_AddParm(program, CWBRC_INPUT, 20, name) != CWB_OK)
 return;

 if (cwbRC_AddParm(program, CWBRC_INOUT, 4, (unsigned char*)&err) != CWB_OK)
 return;

 // Call the program
 if (cwbRC_CallPgm(request, program, 0) != CWB_OK)
 return;

 // Delete the program
 if (cwbRC_DeletePgm(program) != CWB_OK)
 return;

 cout << "Deleted User Space" << endl;

 // Stop the system
 if (cwbRC_StopSys(request) != CWB_OK)
 return;

 // Delete the system object
 if (cwbCO_DeleteSystem(system) != CWB_OK)
 return;

}

Serviceability APIs
The Serviceability application programming interfaces (APIs) allow you to log service file messages and
events within your program.

A set of APIs allows you to read the records from the service files that are created. These APIs allow you
to write a customized service-file browser.

The following general categories of Serviceability API functions are provided:

• Writing message text to the History log
• Writing Trace entries to the Trace file
• Reading service files
• Retrieving message text that is associated with error handles

Why you should use Serviceability APIs:
The Serviceability APIs provide an efficient means of adding message logging and trace points to your
code. Incorporate these functions into programs that are shipped as part of your product, and use them
to help debug programs that are under development. The file structure supports multiple programs (that
are identified by unique product and component strings) logging to the same files simultaneously. This
provides a complete picture of logging activity on the client workstation.

Serviceability APIs required files:
Header file Import library Dynamic Link Library

cwbsv.h cwbapi.lib cwbsv.dll

318 IBM i: Windows Application Package: Programming

Programmer's Toolkit:
The Programmer's Toolkit provides Serviceability documentation, access to the cwbsv.h header file, and
links to sample programs. To access this information, open the Programmer's Toolkit and select Error
Handling > C/C++ APIs.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

Related reference
Serviceability APIs return codes
There are serviceability API return codes.

History log and trace files
History logs and trace files allow you to log information about your product programs.

History log:
The log functions allow you to write message text to the product History Log. The message text needs to
be displayable ASCII character data.

Product programs log messages to the product History Log. Messages also are logged by the DLLs that are
supplied with the product.

The History Log is a file where message text strings are logged through the cwbSV_LogMessageText
API. The log provides a history of activity that has taken place on the client workstation.

Trace files:
The trace functions allow you to log low-level events that occur as your program runs. For example, you
can track various return codes that were received from calling other functions. If your program is sending
and receiving data, you may want to log the significant fields of the data (for example, function byte or
bytes, and data length) to aid in debugging if something goes wrong. Use the Detailed data trace function
(cwbSV_LogTraceData) to accomplish this.

Another form of trace, the Entry Point trace function, allows you to track entry into and exit from your
routines. Two different types of entry point trace points are defined:

API trace point:
Use the API (application programming interface) trace point to track entry and exit from routines that
you externalize to other programs.

SPI trace point:
Use the SPI (system programming interface) trace point to track entry and exit from key internal
routines of the program that you want to trace.

The key piece of information that is provided on the APIs is a one-byte eventID. It allows you to identify
which API or SPI is being entered or exited. Data such as input values can be traced on entry, as well as
tracing output values on exit from a routine. These trace functions are intended to be used in pairs (for
example, cwbSV_LogAPIEntry and cwbSV_LogAPIExit) in the routines that utilize them. These types
of trace points provide a record of flow of control through the code.

The procedural APIs described in this topic each contain Entry/Exit API trace points. When one of these
procedural APIs is called, entry and exit trace points are logged to the Entry Point trace file if tracing is
active. The Entry/Exit SPI trace logs internal calling sequences. The Detailed data trace function logs data
which is useful in debugging problems.

The following types of traces are supported:

Detailed (Data):
Allows you to trace a buffer of information at a point in your code via the cwbSV_LogTraceData API.
This buffer can be a mixture of ASCII and/or binary values (for example, C-struct). The data is logged
in binary form.

Windows Application Package: Programming 319

Entry/Exit (API):
A specialized form of trace which allows you to trace entry into and exit from your externalized
routines via the cwbSV_LogAPIEntry and cwbSV_LogAPIExit APIs.

Entry/Exit (SPI):
A specialized form of trace that allows you to trace entry into and exit from your key internal routines
by using the cwbSV_LogSPIEntry and cwbSV_LogSPIExit APIs.

Error handles
The product error handle functions allow you to create an error handle (cwbSV_CreateErrHandle) to
use with product APIs that support it.

If an error occurs (a non-zero return code) on an API call, you can call other error handle functions to
retrieve information such as:

• The number of error messages (cwbSV_GetErrCount) that are associated with the return code
• The message text (cwbSV_GetErrTextIndexed) for each of the error messages

Typical use of Serviceability APIs
Typical uses of serviceability APIs include history logs and error handles.

History log:
Serviceability APIs provide a tracking mechanism for activity that is taking place on the client workstation.
As a result, you can use the message-logging APIs to log messages to the product History Log. Examples
of messages to log include an indication that your application was started, and other significant events.
For example, a log message may indicate that a file successfully was transferred to the system, a
database query failed for some reason, or that a job was submitted for printing.

The product and component strings that you provide when you are using the Serviceability APIs allow
your messages and events to be distinguished from other entries in the service files. The recommended
hierarchy is to define a product ID, with one or many component IDs defined under it.

Error handles:
Use the error-handle parameter for C/C++ APIs to retrieve message text that is associated with a failure
return code. This enables your application to display the message text, instead of providing your own text
for the set of Access return codes.

Serviceability APIs list: Writing to history log
Use these APIs to write message text to a history log

cwbSV_CreateMessageTextHandle
Use the cwbSV_CreateMessageTextHandle API with this product.

Purpose
This function creates a message text object and returns a handle to it. This message handle can be used
in your program to write message text to the currently active history log. The message text is supplied in a
buffer passed on the cwbSV_LogMessageText() call.

Syntax

unsigned int CWB_ENTRY cwbSV_CreateMessageTextHandle(
 char *productID,
 char *componentID,
 cwbSV_MessageTextHandle *messageTextHandle);

320 IBM i: Windows Application Package: Programming

Parameters
char * productID - input

Points to a null-terminated string that contains a product identifier to be used on this message entry.
Parameter is optional, if null, no productID is set. NOTE: A maximum of CWBSV_MAX_PRODUCT_ID
characters will be logged for the product ID. Larger strings will be truncated.

char * componentID - input
Points to a null-terminated string that contains a component identifier to be used on this
message entry. Parameter is optional, if null, no componentID is set. NOTE: A maximum of
CWBSV_MAX_COMP_ID characters will be logged for the component ID. Larger strings will be
truncated.

cwbSV_MessageTextHandle * messageTextHandle - input/output
Pointer to a cwbSV_MessageTextHandle where the handle will be returned. This handle should be
used in subsequent calls to the message text functions.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory to create handle.

Usage
It is recommended that you set a unique product ID and component ID in the message handle before
using it to log message text. These ID's will distinguish your messages from other messages in the history
log.

cwbSV_DeleteMessageTextHandle
Use the cwbSV_DeleteMessageTextHandle API with this product.

Purpose
This function deletes the message text object that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_DeleteMessageTextHandle(
 cwbSV_MessageTextHandle messageTextHandle);

Parameters
cwbSV_MessageTextHandle messageTextHandle - input

Handle that was returned by a previous call to the cwbSV_CreateMessageTextHandle() function.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Unusable handle passed in on request.

Windows Application Package: Programming 321

Usage
This call should be made when the handle is no longer needed.

cwbSV_LogMessageText
Use the cwbSV_LogMessageText API with this product.

Purpose
This function will log the supplied message text to the currently active history log. The product and
component ID's set in the entry will be written along with the date and time of the when the text was
logged.

Syntax

unsigned int CWB_ENTRY cwbSV_LogMessageText(
 cwbSV_MessageTextHandle messageTextHandle,
 char *messageText,
 unsigned long messageTextLength);

Parameters
cwbSV_MessageTextHandle messageTextHandle - input

Handle that was returned by a previous call to cwbSV_CreateMessageTextHandle().
char * messageText - input

Points to a buffer that contains the message text you want to log.
unsigned long messageTextLength - input

Specifies the number of bytes in the message text buffer to log for this message entry.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Unusable handle passed in on request.

Usage
None

cwbSV_SetMessageClass
Use the cwbSV_SetMessageClass API with this product.

Purpose
This function allows setting of the message class (severity) to associate with the message being written to
the history log.

Syntax
unsigned int CWB_ENTRY cwbSV_SetMessageClass(
 cwbSV_MessageTextHandle messageTextHandle,
 cwbSV_MessageClass messageClass);

322 IBM i: Windows Application Package: Programming

Parameters
cwbSV_MessageTextHandle messageTextHandle - input

Handle that was returned by a previous call to cwbSV_CreateMessageTextHandle().
cwbSV_MessageClass messageClass - input

One of the following:

• CWBSV_CLASS_INFORMATIONAL
• CWBSV_CLASS_WARNING
• CWBSV_CLASS_ERROR

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Unusable handle passed in on request.

CWBSV_INVALID_MSG_CLASS
Invalid message class passed in.

Usage
This value should be set before calling the corresponding log function, "cwbSV_LogMessageText()".

cwbSV_SetMessageComponent
Use the cwbSV_SetMessageComponent API with this product.

Purpose
This function allows setting of a unique component identifier in the message handle that is provided.
Along with setting the product ID (see cwbSV_SetMessageProduct), this call should be used to distinguish
your message entries from other product's entries in the history log.

Syntax

unsigned int CWB_ENTRY cwbSV_SetMessageComponent(
 cwbSV_MessageTextHandle messageTextHandle,
 char *componentID);

Parameters
cwbSV_MessageTextHandle messageTextHandle - input

Handle that was returned by a previous call to cwbSV_CreateMessageTextHandle().
char * componentID - input

Points to a null-terminated string that contains a component identifier to be used on this message
entry. NOTE: A maximum of CWBSV_MAX_COMP_ID characters will be logged for the component ID.
Larger strings will be truncated.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

Windows Application Package: Programming 323

CWB_INVALID_HANDLE
Unusable handle passed in on request.

Usage
This value should be set before calling the corresponding log function, "cwbSV_LogMessageData()". The
suggested hierarchy is that you would define a product ID with one or many components that are defined
under it.

cwbSV_SetMessageProduct
Use the cwbSV_SetMessageProduct API with this product.

Purpose
This function allows setting of a unique product identifier in the message handle that is provided.
Along with setting the component ID (see cwbSV_SetMessageComponent), this call should be used to
distinguish your message entries from other product's entries in the history log.

Syntax

unsigned int CWB_ENTRY cwbSV_SetMessageProduct(
 cwbSV_MessageTextHandle messageTextHandle,
 char *productID);

Parameters
cwbSV_MessageTextHandle messageTextHandle - input

Handle that was returned by a previous call to cwbSV_CreateMessageTextHandle().
char * productID - input

Points to a null-terminated string that contains a product identifier to be used on this message entry.
NOTE: A maximum of CWBSV_MAX_PRODUCT_ID characters will be logged for the product ID. Larger
strings will be truncated.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Unusable handle passed in on request.

Usage
This value should be set before calling the corresponding log function, "cwbSV_LogMessageData()". The
suggested hierarchy is that you would define a product ID with one or many components that are defined
under it.

324 IBM i: Windows Application Package: Programming

Serviceability APIs list: Writing trace data
Use these APIs to write trace data to a detail trace file

cwbSV_CreateTraceDataHandle
Use the cwbSV_CreateTraceDataHandle API with this product.

Purpose
This function creates a trace data object and returns a handle to it. This trace handle can be used in your
program to log trace information to trace files. The trace information is supplied in a buffer passed on
cwbSV_LogTraceData() calls.

Syntax

unsigned int CWB_ENTRY cwbSV_CreateTraceDataHandle(
 char *productID,
 char *componentID,
 cwbSV_TraceDataHandle *traceDataHandle);

Parameters
char * productID - input

Points to a null-terminated string that contains a product identifier to be used on this message entry.
Parameter is optional, if null, no productID is set. NOTE: A maximum of CWBSV_MAX_PRODUCT_ID
characters will be logged for the product ID. Larger strings will be truncated.

char * componentID - input
Points to a null-terminated string that contains a component identifier to be used on this
message entry. Parameter is optional, if null, no componentID is set. NOTE: A maximum of
CWBSV_MAX_COMP_ID characters will be logged for the component ID. Larger strings will be
truncated.

cwbSV_TraceDataHandle * traceDataHandle - input/output
Pointer to a cwbSV_TraceDataHandle where the handle will be returned. This handle should be used
in subsequent calls to the trace data functions.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory to create handle.

Usage
It is recommended that you set a unique product ID and component ID in the trace data handle before
using it to log trace entries. These ID's will distinguish your trace entries from other entries in the trace
file.

Windows Application Package: Programming 325

cwbSV_DeleteTraceDataHandle
Use the cwbSV_DeleteTraceDataHandle API with this product.

Purpose
This function deletes the trace data object that is identified by the trace handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_DeleteTraceDataHandle(
 cwbSV_TraceDataHandle traceDataHandle);

Parameters
cwbSV_TraceDataHandle traceDataHandle - input

Handle that was returned by a previous call to the cwbSV_CreateTraceDataHandle() function.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
This call should be made when the handle is no longer needed.

cwbSV_LogTraceData
Use the cwbSV_LogTraceData API with this product.

Purpose
This function will log the supplied trace data to the currently active trace file. The product and component
ID's set in the entry will be written along with the date and time of the when the data was logged.

Syntax

unsigned int CWB_ENTRY cwbSV_LogTraceData(
 cwbSV_TraceDataHandle traceDataHandle,
 char *traceData,
 unsigned long traceDataLength);

Parameters
cwbSV_TraceDataHandle traceDataHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceDataHandle().
char * traceData - input

Points to a buffer that contains the trace data you want to log. The buffer can contain binary data
because the length parameter is used in determining the amount to trace.

unsigned long traceDataLength - input
Specifies the number of bytes in the trace data buffer to log for this trace entry.

326 IBM i: Windows Application Package: Programming

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
None

cwbSV_SetTraceComponent
Use the cwbSV_SetTraceComponent API with this product.

Purpose
This function allows setting of a unique component identifier in service entry that is provided. Along with
setting the product ID (see cwbSV_SetTraceProduct), this call should be used to distinguish your trace
entries from other product's entries in the trace file.

Syntax

unsigned int CWB_ENTRY cwbSV_SetTraceComponent(
 cwbSV_TraceDataHandle traceDataHandle,
 char *componentID);

Parameters
cwbSV_TraceDataHandle traceDataHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceDataHandle().
char * componentID - input

Points to a null-terminated string that contains a component identifier to be used on this trace entry.
NOTE: A maximum of CWBSV_MAX_COMP_ID characters will be logged for the component ID. Larger
strings will be truncated.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
This value should be set before calling the corresponding log function, "cwbSV_LogTraceData()". The
suggested hierarchy is that you would define a product ID with one or many components that are defined
under it.

Windows Application Package: Programming 327

cwbSV_SetTraceProduct
Use the cwbSV_SetTraceProduct API with this product.

Purpose
This function allows setting of a unique product identifier in the trace handle that is provided. Along with
setting the component ID (see cwbSV_SetTraceComponent), this call should be used to distinguish your
trace entries from other product's entries in the trace file.

Syntax

unsigned int CWB_ENTRY cwbSV_SetTraceProduct(
 cwbSV_TraceDataHandle traceDataHandle,
 char *productID);

Parameters
cwbSV_TraceDataHandle traceDataHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceDataHandle().
char * productID - input

Points to a null-terminated string that contains a product identifier to be used on this trace entry.
NOTE: A maximum of CWBSV_MAX_PRODUCT_ID characters will be logged for the product ID. Larger
strings will be truncated.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
This value should be set before calling the corresponding log function, cwbSV_LogTraceData. The
suggested hierarchy is that you would define a product ID with one or many components that are defined
under it.

Serviceability API list: Writing trace points
Use these APIs to write trace points to an entry/exit trace file

cwbSV_CreateTraceAPIHandle
Use the cwbSV_CreateTraceAPIHandle API with this product.

Purpose
This function creates a trace API object and returns a handle to it. This trace API handle can be used in
your program to log entry to and exit from your API entry points.

Syntax

unsigned int CWB_ENTRY cwbSV_CreateTraceAPIHandle(
 char *productID,
 char *componentID,
 cwbSV_TraceAPIHandle *traceAPIHandle);

328 IBM i: Windows Application Package: Programming

Parameters
char * productID - input

Points to a null-terminated string that contains a product identifier to be used on this message entry.
Parameter is optional, if null, no productID is set. NOTE: A maximum of CWBSV_MAX_PRODUCT_ID
characters will be logged for the product ID. Larger strings will be truncated.

char * componentID - input
Points to a null-terminated string that contains a component identifier to be used on this
message entry. Parameter is optional, if null, no componentID is set. NOTE: A maximum of
CWBSV_MAX_COMP_ID characters will be logged for the component ID. Larger strings will be
truncated.

cwbSV_TraceAPIHandle * traceAPIHandle - input/output
Pointer to a cwbSV_TraceAPIHandle where the handle will be returned. This handle should be used in
subsequent calls to the trace API functions.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory to create handle.

Usage
It is recommended that you set a unique product ID and component ID in the trace data handle before
using it to log trace entries. These ID's will distinguish your trace entries from other entries in the trace
file.

cwbSV_CreateTraceSPIHandle
Use the cwbSV_CreateTraceSPIHandle API with this product.

Purpose
This function creates a trace SPI object and returns a handle to it. This trace SPI handle can be used in
your program to log entry to and exit from your SPI entry points.

Syntax

unsigned int CWB_ENTRY cwbSV_CreateTraceSPIHandle(
 char *productID,
 char *componentID,
 cwbSV_TraceSPIHandle *traceSPIHandle);

Parameters
char * productID - input

Points to a null-terminated string that contains a product identifier to be used on this message entry.
Parameter is optional, if null, no productID is set. NOTE: A maximum of CWBSV_MAX_PRODUCT_ID
characters will be logged for the product ID. Larger strings will be truncated.

char * componentID - input
Points to a null-terminated string that contains a component identifier to be used on this
message entry. Parameter is optional, if null, no componentID is set. NOTE: A maximum of

Windows Application Package: Programming 329

CWBSV_MAX_COMP_ID characters will be logged for the component ID. Larger strings will be
truncated.

cwbSV_TraceSPIHandle * traceSPIHandle - input/output
Pointer to a cwbSV_TraceSPIHandle where the handle will be returned. This handle should be used in
subsequent calls to the trace SPI functions.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory to create handle.

Usage
It is recommended that you set a unique product ID and component ID in the trace data handle before
using it to log trace entries. These ID's will distinguish your trace entries from other entries in the trace
file.

cwbSV_DeleteTraceAPIHandle
Use the cwbSV_DeleteTraceAPIHandle API with this product.

Purpose
This function deletes the trace API object that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_DeleteTraceAPIHandle(
 cwbSV_TraceAPIHandle traceAPIHandle);

Parameters
cwbSV_TraceAPIHandle traceAPIHandle - input

Handle that was returned by a previous call to the cwbSV_CreateTraceAPIHandle() function.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
This call should be made when the handle is no longer needed.

330 IBM i: Windows Application Package: Programming

cwbSV_DeleteTraceSPIHandle
Use the cwbSV_DeleteTraceSPIHandle API with this product.

Purpose
This function deletes the trace SPI object that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_DeleteTraceSPIHandle(
 cwbSV_TraceSPIHandle traceSPIHandle);

Parameters
cwbSV_TraceSPIHandle traceSPIHandle - input

Handle that was returned by a previous call to the cwbSV_CreateTraceSPIHandle() function.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
This call should be made when the handle is no longer needed.

cwbSV_LogAPIEntry
Use the cwbSV_LogAPIEntry API with this product.

Purpose
This function will log an API entry point to the currently active entry/exit trace file. The product and
component ID's set in the entry will be written along with the date and time of the when the data was
logged. The apiID, along with any optional data that is passed on the request, will also be logged.

Syntax

unsigned int CWB_ENTRY cwbSV_LogAPIEntry(
 cwbSV_TraceAPIHandle traceAPIHandle,
 unsigned char apiID,
 char *apiData,
 unsigned long apiDataLength);

Parameters
cwbSV_TraceAPIHandle traceAPIHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceAPIHandle().
unsigned char apiID - input

A unique one-byte code that will distinguish this API trace point from others that are logged by your
program. Definition of these codes are left up to the caller of this API. The recommended approach
is to use the defined range (0x00 - 0xFF) for each unique component in your product (that is, start at
0x00 for each component)

Windows Application Package: Programming 331

char * apiData - input
Points to a buffer that contains additional data (for example, input parameter values from your caller)
that you want to log along with this entry point. Parameter is optional, it is ignored if the address is
NULL or the data length is zero. This buffer can contain binary data because the length parameter is
used in determining the amount to trace.

unsigned long apiDataLength - input
Specifies the number of bytes in the API data buffer to log for this trace entry.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
This call should allows be used in conjunction with a corresponding "cwbSV_LogAPIExit()". It is
recommended that these calls would be put at the beginning and end of an API routine that you write. The
other method would be to use these log functions around calls to external routines that are not written by
you.

cwbSV_LogAPIExit
Use the cwbSV_LogAPIExit API with this product.

Purpose
This function will log an API exit point to the currently active entry/exit trace file. The product and
component ID's set in the entry will be written along with the date and time of the when the data was
logged. The API ID, along with any optional data that is passed on the request, will also be logged.

Syntax

unsigned int CWB_ENTRY cwbSV_LogAPIExit(
 cwbSV_TraceAPIHandle traceAPIHandle,
 unsigned char apiID,
 char *apiData,
 unsigned long apiDataLength);

Parameters
cwbSV_TraceAPIHandle traceAPIHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceAPIHandle().
unsigned char apiID - input

A unique one-byte code that will distinguish this API trace point from others that are logged by your
program. Definition of these codes are left up to the caller of this API. The recommended approach
is to use the defined range (0x00 - 0xFF) for each unique component in your product (that is, start at
0x00 for each component)

char * apiData - input
Points to a buffer that contains additional data (for example, output parameter values passed back
to your caller) that you want to log along with this exit point. Parameter is optional, it is ignored if
the address is NULL or the data length is zero. This buffer can contain binary data because the length
parameter is used in determining the amount to trace.

332 IBM i: Windows Application Package: Programming

unsigned long apiDataLength - input
Specifies the number of bytes in the API data buffer to log for this trace entry.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
This call should allows be used in conjunction with a corresponding "cwbSV_LogAPIEntry()". It is
recommended that these calls would be put at the beginning and end of an API routine that you write. The
other method would be to use these log functions around calls to external routines that are not written by
you.

cwbSV_LogSPIEntry
Use the cwbSV_LogSPIEntry API with this product.

Purpose
This function will log an SPI entry point to the currently active entry/exit trace file. The product and
component ID's set in the entry will be written along with the date and time of the when the data was
logged. The spiID, along with any optional data that is passed on the request, will also be logged.

Syntax

unsigned int CWB_ENTRY cwbSV_LogSPIEntry(
 cwbSV_TraceSPIHandle traceSPIHandle,
 unsigned char spiID,
 char *spiData,
 unsigned long spiDataLength);

Parameters
cwbSV_TraceSPIHandle traceSPIHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceSPIHandle().
unsigned char spiID - input

A unique one-byte code that will distinguish this SPI trace point from others that are logged by your
program. Definition of these codes are left up to the caller of this API. The recommended approach
is to use the defined range (0x00 - 0xFF) for each unique component in your product (that is, start at
0x00 for each component)

char * spiData - input
Points to a buffer that contains additional data (for example, input parameter values from your caller)
that you want to log along with this entry point. Parameter is optional, it is ignored if the address is
NULL or the data length is zero. This buffer can contain binary data because the length parameter is
used in determining the amount to trace.

unsigned long spiDataLength - input
Specifies the number of bytes in the SPI data buffer to log for this trace entry.

Return Codes
The following list shows common return values.

Windows Application Package: Programming 333

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
IHandle is not valid.

Usage
This call should allows be used in conjunction with a corresponding "cwbSV_LogSPIExit()". It is
recommended that these calls would be put at the beginning and end of an API routine that you write. The
other method would be to use these log functions around calls to external routines that are not written by
you.

cwbSV_LogSPIExit
Use the cwbSV_LogSPIExit API with this product.

Purpose
This function will log an SPI exit point to the currently active entry/exit trace file. The product and
component ID's set in the entry will be written along with the date and time of the when the data was
logged. The spiID, along with any optional data that is passed on the request, will also be logged.

Syntax

unsigned int CWB_ENTRY cwbSV_LogSPIExit(
 cwbSV_TraceSPIHandle traceSPIHandle,
 unsigned char spiID,
 char *spiData,
 unsigned long spiDataLength);

Parameters
cwbSV_TraceSPIHandle traceSPIHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceSPIHandle().
unsigned char spiID - input

A unique one-byte code that will distinguish this SPI trace point from others that are logged by your
program. Definition of these codes are left up to the caller of this API. The recommended approach
is to use the defined range (0x00 - 0xFF) for each unique component in your product (that is, start at
0x00 for each component)

char * spiData - input
Points to a buffer that contains additional data (for example, output parameter values passed back
to your caller) that you want to log along with this exit point. Parameter is optional, it is ignored if
the address is NULL or the data length is zero. This buffer can contain binary data because the length
parameter is used in determining the amount to trace.

unsigned long spiDataLength - input
Specifies the number of bytes in the SPI data buffer to log for this trace entry.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

334 IBM i: Windows Application Package: Programming

Usage
This call should allows be used in conjunction with a corresponding "cwbSV_LogSPIEntry()". It is
recommended that these calls would be put at the beginning and end of an API routine that you write. The
other method would be to use these log functions around calls to external routines that are not written by
you.

cwbSV_SetAPIComponent
Use the cwbSV_SetAPIComponent API with this product.

Purpose
This function allows setting of a unique component identifier in trace entry that is provided. Along with
setting the product ID (see cwbSV_SetAPIProduct), this call should be used to distinguish your trace
entries from other product's entries in the trace file.

Syntax

unsigned int CWB_ENTRY cwbSV_SetAPIComponent(
 cwbSV_TraceAPIHandle traceAPIHandle,
 char *componentID);

Parameters
cwbSV_TraceAPIHandle traceAPIHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceAPIHandle().
char * componentID - input

Points to a null-terminated string that contains a component identifier to be used on this trace entry.
NOTE: A maximum of CWBSV_MAX_COMP_ID characters will be logged for the component ID. Larger
strings will be truncated.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
This value should be set before calling the corresponding log functions, "cwbSV_LogAPIEntry()" and
"cwbSV_LogAPIExit(). The suggested hierarchy is that you would define a product ID with one or many
features that are defined under it.

cwbSV_SetAPIProduct
Use the cwbSV_SetAPIProduct API with this product.

Purpose
This function allows setting of a unique product identifier in the trace handle that is provided. Along with
setting the component ID (see cwbSV_SetAPIComponent), this call should be used to distinguish your
trace entries from other product's entries in the trace file.

Windows Application Package: Programming 335

Syntax

unsigned int CWB_ENTRY cwbSV_SetAPIProduct(
 cwbSV_TraceAPIHandle traceAPIHandle,
 char *productID);

Parameters
cwbSV_TraceAPIHandle traceAPIHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceAPIHandle().
char * productID - input

Points to a null-terminated string that contains a product identifier to be used on this trace entry.
NOTE: A maximum of CWBSV_MAX_PRODUCT_ID characters will be logged for the product ID. Larger
strings will be truncated.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
This value should be set before calling the corresponding log functions, "cwbSV_LogAPIEntry()" and
"cwbSV_LogAPIExit(). The suggested hierarchy is that you would define a product ID with one or many
components that are defined under it.

cwbSV_SetSPIComponent
Use the cwbSV_SetSPIComponent API with this product.

Purpose
This function allows setting of a unique component identifier in trace entry that is provided. Along with
setting the product ID (see cwbSV_SetSPIProduct), this call should be used to distinguish your trace
entries from other product's entries in the trace file.

Syntax

unsigned int CWB_ENTRY cwbSV_SetSPIComponent(
 cwbSV_TraceSPIHandle traceSPIHandle,
 char *componentID);

Parameters
cwbSV_TraceSPIHandle traceSPIHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceSPIHandle().
char * componentID - input

Points to a null-terminated string that contains a component identifier to be used on this trace entry.
NOTE: A maximum of CWBSV_MAX_COMP_ID characters will be logged for the component ID. Larger
strings will be truncated.

336 IBM i: Windows Application Package: Programming

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
This value should be set before calling the corresponding log functions, "cwbSV_LogAPIEntry()" and
"cwbSV_LogAPIExit(). The suggested hierarchy is that you would define a product ID with one or many
components that are defined under it.

cwbSV_SetSPIProduct
Use the cwbSV_SetSPIProduct API with this product.

Purpose
This function allows setting of a unique product identifier in the trace handle that is provided. Along with
setting the component ID (see cwbSV_SetSPIComponent), this call should be used to distinguish your
trace entries from other product's entries in the trace file.

Syntax

unsigned int CWB_ENTRY cwbSV_SetSPIProduct(
 cwbSV_TraceSPIHandle traceSPIHandle,
 char *productID);

Parameters
cwbSV_TraceSPIHandle traceSPIHandle - input

Handle that was returned by a previous call to cwbSV_CreateTraceSPIHandle().
char * productID - input

Points to a null-terminated string that contains a product identifier to be used on this trace entry.
NOTE: A maximum of CWBSV_MAX_PRODUCT_ID characters will be logged for the product ID. Larger
strings will be truncated.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
This value should be set before calling the corresponding log functions, "cwbSV_LogAPIEntry()" and
"cwbSV_LogAPIExit(). The suggested hierarchy is that you would define a product ID with one or many
components that are defined under it.

Windows Application Package: Programming 337

Serviceability API list: Reading service files
Use these APIs to read service files, service file records, and service file header information. Additionally,
you can read history log service records, detail trace file service records, and entry/exit trace file service
records.

cwbSV_ClearServiceFile
Use the cwbSV_ClearServiceFile API with this product.

Purpose
Clears the service file that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_ClearServiceFile(
 cwbSV_ServiceFileHandle serviceFile,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbSV_ServiceFileHandle serviceFileHandle - input

Handle that was returned by a previous call to the cwbSV_OpenServiceFile() function.
cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_FILE_IO_ERROR
File could not be cleared.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
None

cwbSV_CloseServiceFile
Use the cwbSV_CloseServiceFile API with this product.

Purpose
Closes the service file identified by the handle provided.

Syntax

unsigned int CWB_ENTRY cwbSV_CloseServiceFile(
 cwbSV_ServiceFileHandle serviceFile,
 cwbSV_ErrHandle errorHandle);

338 IBM i: Windows Application Package: Programming

Parameters
cwbSV_ServiceFileHandle serviceFileHandle - input

Handle that was returned by a previous call to the cwbSV_OpenServiceFile() function.
cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_FILE_IO_ERROR
File could not be closed.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
None

cwbSV_CreateServiceRecHandle
Use the cwbSV_CreateServiceRecHandle API with this product.

Purpose
This function creates a service record object and returns a handle to it.

Syntax

unsigned int CWB_ENTRY cwbSV_CreateServiceRecHandle(
 cwbSV_ServiceRecHandle *serviceRecHandle);

Parameters
cwbSV_ServiceRecHandle * serviceRecHandle - input/output

Pointer to a cwbSV_ServiceRecordHandle where the handle will be returned. This handle should be
used in subsequent calls to the service record functions.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed as handle address.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory to create handle.

Usage
This handle can be used in your program to read records from an open service file and extract information
from the record.

Windows Application Package: Programming 339

cwbSV_DeleteServiceRecHandle
Use the cwbSV_DeleteServiceRecHandle API with this product.

Purpose
This function deletes the service record object that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_DeleteServiceRecHandle(
 cwbSV_ServiceRecHandle serviceRecHandle);

Parameters
cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
This call should be made when the handle is no longer needed.

cwbSV_GetComponent
Use the cwbSV_GetComponent API with this product.

Purpose
Returns the component ID value for the service record object that is identified by the handle provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetComponent(
 cwbSV_ServiceRecHandle serviceRecHandle,
 char *componentID,
 unsigned long componentIDLength,
 unsigned long *returnLength);

Parameters
cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.
char * componentID - input/output

Pointer to a buffer that will receive the component ID that is stored in the record that is identified by
the handle.

unsigned long componentIDLength - input
Length of the receive buffer passed in. It should include space for the ending null character. If the
buffer is too small, the value will be truncated, and CWB_BUFFER_OVERFLOW and returnLength will
be set. NOTE: The recommended size is CWBSV_MAX_COMP_ID.

340 IBM i: Windows Application Package: Programming

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
The service record handle needs to be filled in by a call to a "read" function before calling this routine,
otherwise a NULL string will be returned. This function is valid for all service record types.

cwbSV_GetDateStamp
Use the cwbSV_GetDateStamp API with this product.

Purpose
Returns the date stamp (in localized format) for the service record that is identified by the handle that is
provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetDateStamp(
 cwbSV_ServiceRecHandle serviceRecHandle,
 char *dateStamp,
 unsigned long dateStampLength,
 unsigned long *returnLength);

Parameters
cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.
char * dateStamp - input/output

Pointer to a buffer that will receive the datestamp that is stored in the record that is identified by the
handle.

unsigned long dateStampLength - input
Length of the receive buffer passed in. It should include space for the ending null character. If the
buffer is too small, the value will be truncated, and CWB_BUFFER_OVERFLOW and returnLength will
be set. NOTE: The recommended size is CWBSV_MAX_DATE_VALUE.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes
The following list shows common return values.

Windows Application Package: Programming 341

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
The service record handle needs to be filled in by a call to a "read" function before calling this routine,
otherwise a NULL string will be returned. This function is valid for all service record types.

cwbSV_GetMaxRecordSize
Use the cwbSV_GetMaxRecordSize API with this product.

Purpose
Returns the size (in bytes) of the largest record in the service file that is identified by the file handle that is
provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetMaxRecordSize(
 cwbSV_ServiceFileHandle serviceFile,
 unsigned long *maxRecordSize);

Parameters
cwbSV_ServiceFileHandle serviceFileHandle - input

Handle that was returned by a previous call to the cwbSV_OpenServiceFile function.
unsigned long * recordCount - input/output

Pointer to variable that receives the size of the largest record in the file.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
None

342 IBM i: Windows Application Package: Programming

cwbSV_GetMessageText
Use the cwbSV_GetMessageText API with this product.

Purpose
Returns the message text portion of the service record object that is identified by the handle that is
provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetMessageText(
 cwbSV_ServiceRecHandle serviceRecHandle,
 char *messageText,
 unsigned long messageTextLength,
 unsigned long *returnLength);

Parameters
cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.
char * messageText - input/output

Pointer to a buffer that will receive the message text that is stored in the record that is identified by
the handle.

unsigned long messageTextLength - input
Length of the receive buffer passed in. If the buffer is too small, the value will be truncated, and
CWB_BUFFER_OVERFLOW and returnLength will be set.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output data
if the receive buffer is too small.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_INVALID_RECORD_TYPE
Type is not CWBSV_MESSAGE_REC.

Usage
If the record type is not CWBSV_MESSAGE_REC, a return code of CWBSV_INVALID_RECORD_TYPE will be
returned. (note: cwbSV_GetServiceType() returns the current record type)

cwbSV_GetProduct
Use the cwbSV_GetProduct API with this product.

Purpose
Returns the product ID value for the service record object that is identified by the handle that is provided.

Windows Application Package: Programming 343

Syntax

unsigned int CWB_ENTRY cwbSV_GetProduct(
 cwbSV_ServiceRecHandle serviceRecHandle,
 char *productID,
 unsigned long productIDLength,
 unsigned long *returnLength);

Parameters
cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.
char * productID - input/output

Pointer to a buffer that will receive the product ID that is stored in the record that is identified by the
handle.

unsigned long productIDLength - input
Length of the receive buffer passed in. It should include space for the ending null character. If the
buffer is too small, the value will be truncated, and CWB_BUFFER_OVERFLOW and returnLength will
be set. NOTE: The recommended size is CWBSV_MAX_PRODUCT_ID.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
The service record handle needs to be filled in by a call to a "read" function before calling this routine,
otherwise a NULL string will be returned. This function is valid for all service record types.

cwbSV_GetRecordCount
Use the cwbSV_GetRecordCount API with this product.

Purpose
Returns the total numbers of records in the service file that is identified by the file handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetRecordCount(
 cwbSV_ServiceFileHandle serviceFile,
 unsigned long *recordCount);

344 IBM i: Windows Application Package: Programming

Parameters
cwbSV_ServiceFileHandle serviceFileHandle - input

Handle that was returned by a previous call to the cwbSV_OpenServiceFile function.
unsigned long * recordCount - input/output

Pointer to variable that receives the total number of records in the file.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
None

cwbSV_GetServiceFileName
Use the cwbSV_GetServiceFileName API with this product.

Purpose
Returns the fully-qualified path and file name of where the service records are being logged to for a
particular file type.

Syntax

unsigned int CWB_ENTRY cwbSV_GetServiceFileName(
 cwbSV_ServiceFileType serviceFileType,
 char *fileName,
 unsigned long fileNameLength,
 unsigned long *returnLength);

Parameters
cwbSV_ServiceFileType serviceFileType - input

Value indicating which service file name you want returned. - CWBSV_HISTORY_LOG -
CWBSV_PROBLEM_LOG - CWBSV_DETAIL_TRACE_FILE - CWBSV_ENTRY_EXIT_TRACE_FILE

char * fileName - input/output
Pointer to a buffer that will receive the service file name associated with the one that was requested.

unsigned long fileNameLength - input
Length of the receive buffer passed in. It should include space for the ending null character. If the
buffer is too small, the value will be truncated, and CWB_BUFFER_OVERFLOW and returnLength will
be set. NOTE: The recommended size is CWBSV_MAX_FILE_PATH.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes
The following list shows common return values.

Windows Application Package: Programming 345

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWBSV_INVALID_FILE_TYPE
Unusable file type passed-in.

Usage
The filename string returned could be used as input to the cwbSV_OpenServiceFile() routine.

cwbSV_GetServiceType
Use the cwbSV_GetServiceType API with this product.

Purpose
Returns the type of record (trace, message, entry/exit, and so forth) for the service record that is identified
by the handle that is provided. Note: The service record needs to be filled in by a call to a "read" function
before calling this function.

Syntax

unsigned int CWB_ENTRY cwbSV_GetServiceType(
 cwbSV_ServiceRecHandle serviceRecHandle,
 cwbSV_ServiceRecType *serviceType,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.
cwbSV_ServiceRecType * serviceType - output

Pointer to a cwbSV_ServiceRecType where the serviceType will be returned. - CWBSV_MESSAGE_REC
- CWBSV_PROBLEM_REC - CWBSV_DATA_TRACE_REC - CWBSV_API_TRACE_REC -
CWBSV_SPI_TRACE_REC

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_INVALID_RECORD_TYPE
Unusable record type detected.

346 IBM i: Windows Application Package: Programming

Usage
The service record handle needs to be filled in by a call to a "read" function before calling this routine,
otherwise CWBSV_INVALID_RECORD_TYPE will be returned.

cwbSV_GetTimeStamp
Use the cwbSV_GetTimeStamp API with this product.

Purpose
Returns the timestamp (in localized format) for the service record that is identified by the handle that is
provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetTimeStamp(
 cwbSV_ServiceRecHandle serviceRecHandle,
 char *timeStamp,
 unsigned long timeStampLength,
 unsigned long *returnLength);

Parameters
cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.
char * timeStamp - input/output

Pointer to a buffer that will receive the timestamp that is stored in the record that is identified by the
handle.

unsigned long timeStampLength - input
Length of the receive buffer passed in. It should include space for the ending null character. If the
buffer is too small, the value will be truncated, and CWB_BUFFER_OVERFLOW and returnLength will
be set. NOTE: The recommended size is CWBSV_MAX_TIME_VALUE.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
The service record handle needs to be filled in by a call to a "read" function before calling this routine,
otherwise a NULL string will be returned. This function is valid for all service record types.

Windows Application Package: Programming 347

cwbSV_GetTraceData
Use the cwbSV_GetTraceData API with this product.

Purpose
Returns the trace data portion of the service record object that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetTraceData(
 cwbSV_ServiceRecHandle serviceRecHandle,
 char *traceData,
 unsigned long traceDataLength,
 unsigned long *returnLength);

Parameters
cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.
char * traceData - input/output

Pointer to a buffer that will receive the trace data that is stored in the record that is identified by the
handle. Note: The data that is returned is binary. Hence, it is NOT returned as an ASCIIZ string.

unsigned long traceDataLength - input
Length of the receive buffer passed in. If the buffer is too small, the value will be truncated, and
CWB_BUFFER_OVERFLOW and returnLength will be set.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output data
if the receive buffer is too small.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_INVALID_RECORD_TYPE
Type is not CWBSV_DATA_TRACE_REC.

Usage
If the record type is not CWBSV_TRACE_DATA_REC, a return code of CWBSV_INVALID_RECORD_TYPE will
be returned. (note: cwbSV_GetServiceType() returns the current record type)

cwbSV_GetTraceAPIData
Use the cwbSV_GetTraceAPIData API with this product.

Purpose
Returns the API trace data portion of the service record that is identified by the handle that is provided.

348 IBM i: Windows Application Package: Programming

Syntax

unsigned int CWB_ENTRY cwbSV_GetTraceAPIData(
 cwbSV_ServiceRecHandle serviceRecHandle,
 char *apiData,
 unsigned long apiDataLength,
 unsigned long *returnLength);

Parameters
cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.
char * apiData - input/output

Pointer to a buffer that will receive the API trace data that is stored in the record that is identified by
the handle. Note: The data that is returned is binary. Hence, it is NOT returned as an ASCIIZ string.

unsigned long apiDataLength - input
Length of the receive buffer passed in. If the buffer is too small, the value will be truncated, and
CWB_BUFFER_OVERFLOW and returnLength will be set.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output data
if the receive buffer is too small.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_INVALID_RECORD_TYPE
Type is not CWBSV_API_TRACE_REC.

Usage
If the record type is not CWBSV_API_TRACE_REC, a return code of CWBSV_INVALID_RECORD_TYPE will
be returned. (note: cwbSV_GetServiceType() returns the current record type)

cwbSV_GetTraceAPIID
Use the cwbSV_GetTraceAPIID API with this product.

Purpose
Returns the API event ID of the service record object that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetTraceAPIID(
 cwbSV_ServiceRecHandle serviceRecHandle,
 char *apiID);

Windows Application Package: Programming 349

Parameters
cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.
char * apiID - input/output

Pointer to one-byte field that receives the API event ID.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_INVALID_RECORD_TYPE
Type is not CWBSV_API_TRACE_REC.

Usage
If the record type is not CWBSV_API_TRACE_REC, a return code of CWBSV_INVALID_RECORD_TYPE will
be returned. (note: cwbSV_GetServiceType() returns the current record type)

cwbSV_GetTraceAPIType
Use the cwbSV_GetTraceAPIType API with this product.

Purpose
Returns the API event type of the service record object that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetTraceAPIType(
 cwbSV_ServiceRecHandle serviceRecHandle,
 cwbSV_EventType *eventType,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.
cwbSV_EventType * eventType - output

Pointer to a cwbSV_EventType where the eventType will be returned. - CWBSV_ENTRY_POINT -
CWBSV_EXIT_POINT

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

350 IBM i: Windows Application Package: Programming

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_INVALID_RECORD_TYPE
Type is not CWBSV_API_TRACE_REC.

CWBSV_INVALID_EVENT_TYPE
Unusable event type detected.

Usage
If the record type is not CWBSV_API_TRACE_REC, a return code of CWBSV_INVALID_RECORD_TYPE will
be returned. (note: cwbSV_GetServiceType() returns the current record type)

cwbSV_GetTraceSPIData
Use the cwbSV_GetTraceSPIData API with this product.

Purpose
Returns the SPI trace data portion of the service record that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetTraceSPIData(
 cwbSV_ServiceRecHandle serviceRecHandle,
 char *spiData,
 unsigned long spiDataLength,
 unsigned long *returnLength);

Parameters
cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.
char * spiData - input/output

Pointer to a buffer that will receive the SPI trace data that is stored in the record that is identified by
the handle. Note: The data that is returned is binary. Hence, it is NOT returned as an ASCIIZ string.

unsigned long spiDataLength - input
Length of the receive buffer passed in. If the buffer is too small, the value will be truncated, and
CWB_BUFFER_OVERFLOW and returnLength will be set.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output data
if the receive buffer is too small.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

Windows Application Package: Programming 351

CWBSV_INVALID_RECORD_TYPE
Type is not CWBSV_SPI_TRACE_REC.

Usage
If the record type is not CWBSV_SPI_TRACE_REC, a return code of CWBSV_INVALID_RECORD_TYPE will
be returned. (note: cwbSV_GetServiceType() returns the current record type)

cwbSV_GetTraceSPIID
Use the cwbSV_GetTraceSPIID API with this product.

Purpose
Returns the SPI event ID of the service record object that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetTraceSPIID(
 cwbSV_ServiceRecHandle serviceRecHandle,
 char *spiID);

Parameters
cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.
char * spiID - input/output

Pointer to one-byte field that receives the SPI event ID.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_INVALID_RECORD_TYPE
Type is not CWBSV_SPI_TRACE_REC.

Usage
If the record type is not CWBSV_SPI_TRACE_REC, a return code of CWBSV_INVALID_RECORD_TYPE will
be returned. (note: cwbSV_GetServiceType() returns the current record type)

cwbSV_GetTraceSPIType
Use the cwbSV_GetTraceSPIType API with this product.

Purpose
Returns the SPI event type of the service record object that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetTraceSPIType(

352 IBM i: Windows Application Package: Programming

 cwbSV_ServiceRecHandle serviceRecHandle,
 cwbSV_EventType *eventType,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle() function.
cwbSV_EventType * eventType - output

Pointer to a cwbSV_EventType where the eventType will be returned. - CWBSV_ENTRY_POINT -
CWBSV_EXIT_POINT

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_INVALID_RECORD_TYPE
Type is not CWBSV_SPI_TRACE_REC.

CWBSV_INVALID_EVENT_TYPE
Unusable event type detected.

Usage
If the record type is not CWBSV_SPI_TRACE_REC, a return code of CWBSV_INVALID_RECORD_TYPE will
be returned. (note: cwbSV_GetServiceType() returns the current record type)

cwbSV_OpenServiceFile
Use the cwbSV_OpenServiceFile API with this product.

Purpose
Opens the specified service file for READ access (history log, trace file, and so forth) and returns a handle
to it.

Syntax

unsigned int CWB_ENTRY cwbSV_OpenServiceFile(
 char *serviceFileName,
 cwbSV_ServiceFileHandle *serviceFileHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
char * serviceFileName - input

Points to a buffer that contains the fully-qualified name (for example, c:\path\filename.ext) of the
service file to open.

Windows Application Package: Programming 353

cwbSV_ServiceFileHandle * serviceFileHandle - input/output
Pointer to a cwbSV_ServiceFileHandle where the handle will be returned. This handle should be used
in subsequent calls to the service file functions.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed as handle address.

CWB_FILE_IO_ERROR
File could not be opened.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory to create handle.

Usage
None

cwbSV_ReadNewestRecord
Use the cwbSV_ReadNewestRecord API with this product.

Purpose
Reads the newest record in the service file into the record handle that is provided. Subsequent calls
can be made to retrieve the information that is stored in this record (for example, GetProduct(),
GetDateStamp(), and so forth). Note: This record is the one with the newest time and date stamp in
the file.

Syntax

unsigned int CWB_ENTRY cwbSV_ReadNewestRecord(
 cwbSV_ServiceFileHandle serviceFileHandle,
 cwbSV_ServiceRecHandle serviceRecHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbSV_ServiceFileHandle serviceFileHandle - input

Handle that was returned by a previous call to the cwbSV_OpenServiceFile function.
cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.
cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

354 IBM i: Windows Application Package: Programming

CWB_OK
Successful completion.

CWB_END_OF_FILE
End of file has been reached.

CWB_FILE_IO_ERROR
Record could not be read.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
This read would be used as a "priming-type" read before issuing a series of cwbSV_ReadPrevRecord()
calls until the end-of-file indicator is returned.

cwbSV_ReadNextRecord
Use the cwbSV_ReadNextRecord API with this product.

Purpose
Reads the next record in the service file into the record handle that is provided. Subsequent calls can be
made to retrieve the information that is stored in this record (for example, GetProduct(), GetDateStamp(),
and so forth).

Syntax

unsigned int CWB_ENTRY cwbSV_ReadNextRecord(
 cwbSV_ServiceFileHandle serviceFileHandle,
 cwbSV_ServiceRecHandle serviceRecHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbSV_ServiceFileHandle serviceFileHandle - input

Handle that was returned by a previous call to the cwbSV_OpenServiceFile function.
cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.
cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_END_OF_FILE
End of file has been reached.

CWB_FILE_IO_ERROR
Record could not be read.

CWB_INVALID_HANDLE
Handle is not valid.

Windows Application Package: Programming 355

Usage
This read would normally be used once the priming read, "ReadOldestRecord()" is performed.

cwbSV_ReadOldestRecord
Use the cwbSV_ReadOldestRecord API with this product.

Purpose
Reads the oldest record in the service file into the record handle that is provided. Subsequent calls can be
made to retrieve the information that is stored in this record (for example, GetProduct(), GetDateStamp(),
and so forth). Note: This record is the one with the oldest time and date stamp in the file.

Syntax

unsigned int CWB_ENTRY cwbSV_ReadOldestRecord(
 cwbSV_ServiceFileHandle serviceFileHandle,
 cwbSV_ServiceRecHandle serviceRecHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbSV_ServiceFileHandle serviceFileHandle - input

Handle that was returned by a previous call to the cwbSV_OpenServiceFile function.
cwbSV_ServiceRecHandle serviceRecHandle - input

Handle that was returned by a previous call to the cwbSV_CreateServiceRecHandle function.
cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_END_OF_FILE
End of file has been reached.

CWB_FILE_IO_ERROR
Record could not be read.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
This read would be used as a "priming-type" read before issuing a series of cwbSV_ReadNextRecord()
calls until the end-of-file indicator is returned.

cwbSV_ReadPrevRecord
Use the cwbSV_ReadPrevRecord API with this product.

Purpose
Reads the previous record in the service file into the record handle that is provided. Subsequent
calls can be made to retrieve the information that is stored in this record (for example, GetProduct(),
GetDateStamp(), and so forth).

356 IBM i: Windows Application Package: Programming

Syntax

unsigned int CWB_ENTRY cwbSV_ReadPrevRecord(
 cwbSV_ServiceFileHandle serviceFileHandle,
 cwbSV_ServiceRecHandle serviceRecHandle,
 cwbSV_ErrHandle errorHandle);

Parameters
cwbSV_ServiceFileHandle serviceFileHandle - input

Handle that was returned by a previous call to the cwbSV_OpenServiceFile function.
V_ServiceRecHandle serviceRecHandle -input Handle that was returned by a previous call to the
cwbSV_CreateServiceRecHandle function.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the cwbSV_CreateErrHandle
API. The messages may be retrieved through the cwbSV_GetErrText API. If the parameter is set to
zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_END_OF_FILE
End of file has been reached.

CWB_FILE_IO_ERROR
Record could not be read.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
This read would normally be used once the priming read, "ReadNewestRecord()" is performed.

Serviceability API list: Retrieving message text
Use these APIs to retrieve message text associated with error handles.

cwbSV_CreateErrHandle
Use the cwbSV_CreateErrHandle API with this product.

Purpose
This function creates an error message object and returns a handle to it. This error handle can be passed
to APIs that support it. If an error occurs on one of these APIs, the error handle can be used to retrieve
the error messages text that is associated with the API error.

Syntax

unsigned int CWB_ENTRY cwbSV_CreateErrHandle(
 cwbSV_ErrHandle *errorHandle);

Windows Application Package: Programming 357

Parameters
cwbSV_ErrHandle *errorHandle - input/output

Pointer to a cwbSV_ErrHandle where the handle will be returned.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed as handle address.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory to create handle.

Usage
None

cwbSV_DeleteErrHandle
Use the cwbSV_DeleteErrHandle API with this product.

Purpose
This function deletes the error message object that is identified by the handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_DeleteErrHandle(
 cwbSV_ErrHandle errorHandle);

Parameters
cwbSV_ErrHandle errorHandle - output

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() function.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Handle is not valid.

Usage
This call should be made when the handle is no longer needed.

cwbSV_GetErrClass
Use the cwbSV_GetErrClass API with this product.

Purpose
Returns the message class associated with the top-level (most recent) error that is identified by the error
handle that is provided.

358 IBM i: Windows Application Package: Programming

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrClass(
 cwbSV_ErrHandle errorHandle,
 unsigned long *errorClass);

Parameters
cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() function.
unsigned long * errorClass - output

Pointer to a variable that will receive the error class that is stored in the error that is identified by the
handle.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_NO_ERROR_MESSAGES
No error messages associated with error handle.

Usage
None

cwbSV_GetErrClassIndexed
Use the cwbSV_GetErrClassIndexed API with this product.

Purpose
Returns the message class associated with the error index provided. An index value of 1 will retrieve the
lowest-level (for example, the oldest) message that is associated with the error handle. An index value
of "cwbSV_GetErrCount()'s returned errorCount" will retrieve the top-level (for example, the most recent)
message associated with the error handle.

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrClassIndexed(
 cwbSV_ErrHandle errorHandle,
 unsigned long errorIndex,
 unsigned long *errorClass);

Parameters
cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() function.
unsigned long errorIndex - input

Index value that indicates which error text to return if multiple errors are associated with the error
handle.

Windows Application Package: Programming 359

unsigned long * errorClass - output
Pointer to a variable that will receive the error class that is stored in the error that is identified by the
index.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_NO_ERROR_MESSAGES
No error messages associated with error handle.

Usage
Valid index values are from 1 to cwbSV_GetErrCount()'s return value. Index values less than 1 act as if 1
was passed. Index values greater than cwbSV_GetErrCount() act as if errorCount was passed.

cwbSV_GetErrCount
Use the cwbSV_GetErrCount API with this product.

Purpose
Returns the number of messages associated with the error handle provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrCount(
 cwbSV_ErrHandle errorHandle,
 unsigned long *errorCount);

Parameters
cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() function.
unsigned long * errorCount - input/output

Pointer to variable that receives the number of messages associated with this error handle. If zero is
returned, no errors are associated with the error handle.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

360 IBM i: Windows Application Package: Programming

Usage
None

cwbSV_GetErrFileName
Use the cwbSV_GetErrFileName API with this product.

Purpose
Returns the message file name for the top-level (the. most recent) message added to the error handle
provided. This message attribute only pertains to IBM i messages. The file name is the name of the IBM i
message file that contains the message.

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrFileName(
 cwbSV_ErrHandle errorHandle,
 char *fileName,
 unsigned long fileNameLength,
 unsigned long *returnLength);

Parameters
cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() API.
char * fileName - input/output

Pointer to a buffer that will receive the message file name stored in the error identified by the handle.
The value returned is an ASCIIZ string.

unsigned long fileNameLength - input
Length of the receive buffer passed in. It should include space for the terminating null character. If the
buffer is too small, the value will be truncated and CWB_BUFFER_OVERFLOW and returnLength will
be set. NOTE: The recommended size is CWBSV_MAX_MSGFILE_NAME.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Invalid handle.

CWBSV_NO_ERROR_MESSAGES
No messages are in the error handle.

CWBSV_ATTRIBUTE_NOT_SET
Attribute not set in current message.

Windows Application Package: Programming 361

Usage
IBM i messages are sometimes added to the error handle when using the cwbRC_CallPgm() and
cwbRC_RunCmd() API's. In these cases, you can use this API to retrieve the message file name for the
IBM i messages contained in the error handle. If there is no message file name attribute for the message,
return code CWBSV_ATTRIBUTE_NOT_SET will be returned.

cwbSV_GetErrFileNameIndexed
Use the cwbSV_GetErrFileNameIndexed API with this product.

Purpose
Returns the message file name for the message identified by the index provided. This message attribute
only pertains to IBM i returned messages. The file name is the name of the IBM i message file containing
the message.

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrFileNameIndexed(
 cwbSV_ErrHandle errorHandle,
 unsigned long index,
 char *fileName,
 unsigned long fileNameLength,
 unsigned long *returnLength);

Parameters
cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() API.
unsigned long index - input

Index value indicating which message file name to return if multiple errors are associated with the
error handle. The valid index range is from 1 to the number of messages contained in the error handle.
The number of messages can be obtained by calling the cwbSV_GetErrCount() API.

char * fileName - input/output
Pointer to a buffer that will receive the message file name stored in the error identified by the index.
The value returned is an ASCIIZ string.

unsigned long fileNameLength - input
Length of the receive buffer passed in. It should include space for the terminating null character. If the
buffer is too small, the value will be truncated and CWB_BUFFER_OVERFLOW and returnLength will
be set. NOTE: The recommended size is CWBSV_MAX_MSGFILE_NAME.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Invalid handle.

362 IBM i: Windows Application Package: Programming

CWBSV_NO_ERROR_MESSAGES
No messages are in the error handle.

CWBSV_ATTRIBUTE_NOT_SET
Attribute not set in current message.

Usage
IBM i messages are sometimes added to the error handle when using the cwbRC_CallPgm() and
cwbRC_RunCmd() API's. In these cases, you can use this API to retrieve the message file name for
the IBM i messages contained in the error handle. If there is no message file name attribute for the
message, return code CWBSV_ATTRIBUTE_NOT_SET will be returned. An index value of 1 works with the
lowest-level (i.e. oldest) message in the error handle. An index value equal to the count returned by the
cwbSV_GetErrCount() API works with the top-level (i.e. most recent) message in the error handle. Index
values less than 1 act as if 1 was passed in. Index values greater than the number of messages contained
in the error handle act as if the returned count value from the cwbSV_GetErrCount() API was passed in.

cwbSV_GetErrLibName
Use the cwbSV_GetErrLibName API with this product.

Purpose
Returns the message file library name for the top-level (i.e. most recent) message added to the error
handle provided. This message attribute only pertains to IBM i returned messages. The library name is the
name of the IBM i library containing the message file for the message.

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrLibName(
 cwbSV_ErrHandle errorHandle,
 char *libraryName,
 unsigned long libraryNameLength,
 unsigned long *returnLength);

Parameters
cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() API.
char * libraryName - input/output

Pointer to a buffer that will receive the message file library name stored in the error identified by the
handle. The value returned is an ASCIIZ string.

unsigned long libraryNameLength - input
Length of the receive buffer passed in. It should include space for the terminating null character. If the
buffer is too small, the value will be truncated and CWB_BUFFER_OVERFLOW and returnLength will
be set. NOTE: The recommended size is CWBSV_MAX_MSGFILE_LIBR.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

Windows Application Package: Programming 363

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Invalid handle.

CWBSV_NO_ERROR_MESSAGES
No messages are in the error handle.

CWBSV_ATTRIBUTE_NOT_SET
Attribute not set in current message.

Usage
IBM i messages may be added to the error handle when using the cwbRC_CallPgm() and
cwbRC_RunCmd() API's. In these cases, you can use this API to retrieve the message file library name for
the IBM i messages contained in the error handle. If there is no message file library name attribute for the
message, return code CWBSV_ATTRIBUTE_NOT_SET will be returned.

cwbSV_GetErrLibNameIndexed
Use the cwbSV_GetErrLibNameIndexed API with this product.

Purpose
Returns the message file library name for the message identified by the index provided. This message
attribute only pertains to IBM i returned messages. The library name is the name of the IBM i library
containing the message file for the message.

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrLibNameIndexed(
 cwbSV_ErrHandle errorHandle,
 unsigned long index,
 char *libraryName,
 unsigned long libraryNameLength,
 unsigned long *returnLength);

Parameters
cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() API.
unsigned long index - input

Index value indicating which message file library name to return if multiple errors are associated with
the error handle. The valid index range is from 1 to the number of messages contained in the error
handle. The number of messages can be obtained by calling the cwbSV_GetErrCount() API.

char * libraryName - input/output
Pointer to a buffer that will receive the message file library name stored in the error identified by the
index. The value returned is an ASCIIZ string.

unsigned long libraryNameLength - input
Length of the receive buffer passed in. It should include space for the terminating null character. If the
buffer is too small, the value will be truncated and CWB_BUFFER_OVERFLOW and returnLength will
be set. NOTE: The recommended size is CWBSV_MAX_MSGFILE_LIBR.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes
The following list shows common return values.

364 IBM i: Windows Application Package: Programming

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Invalid handle.

CWBSV_NO_ERROR_MESSAGES
No messages are in the error handle.

CWBSV_ATTRIBUTE_NOT_SET
Attribute not set in current message.

Usage
IBM i messages are sometimes added to the error handle when using the cwbRC_CallPgm() and
cwbRC_RunCmd() API's. In these cases, you can use this API to retrieve the message file library name for
the IBM i messages contained in the error handle. If there is no message file library name attribute for the
message, return code CWBSV_ATTRIBUTE_NOT_SET will be returned. An index value of 1 works with the
lowest-level (i.e. oldest) message in the error handle. An index value equal to the count returned by the
cwbSV_GetErrCount() API works with the top-level (i.e. most recent) message in the error handle. Index
values less than 1 act as if 1 was passed in. Index values greater than the number of messages contained
in the error handle act as if the returned count value from the cwbSV_GetErrCount() API was passed in.

cwbSV_GetErrSubstText
Use the cwbSV_GetErrSubstText API with this product.

Purpose
Returns the message substitution data for the top-level (the most recent) message identified by the error
handle provided. This message attribute only pertains to IBM i returned messages. The substitution data
are inserted into the substitution variable fields defined for the message.

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrSubstText(
 cwbSV_ErrHandle errorHandle,
 char *substitutionData,
 unsigned long substitutionDataLength,
 unsigned long *returnLength);

Parameters
cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() API.
char * substitutionData - input/output

Pointer to a buffer that will receive the substitution data for the message identified by the handle.
NOTE: The data returned is binary, hence it is NOT returned as an ASCIIZ string. Any character strings
contained in the substitution data are returned as EBCDIC values.

unsigned long substitutionDataLength - input
Length of the receive buffer passed in. If the buffer is too small, the value will be truncated and
CWB_BUFFER_OVERFLOW and returnLength will be set.

Windows Application Package: Programming 365

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
data if the receive buffer is too small. It will also be set to the actual number of bytes of output data
returned upon successful completion.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Invalid handle.

CWBSV_NO_ERROR_MESSAGES
No messages are in the error handle.

CWBSV_ATTRIBUTE_NOT_SET
Attribute not set in current message.

Usage
IBM i messages may be added to the error handle when using the cwbRC_CallPgm() and
cwbRC_RunCmd() API's. In these cases, you can use this API to retrieve the substitution data for the
IBM i messages contained in the error handle. If there is no substitution data for the message, return code
CWBSV_ATTRIBUTE_NOT_SET will be returned. Use the returnLength parameter to determine the actual
number of bytes returned in the substitution data when the return code is CWB_OK. The substitution data
returned on this API could be used on a subsequent host retrieve message API call (QSYS/QMHRTVM)
to retrieve the format of the substitution data or to return secondary help text with the substitution data
added in. Host API's are called using the cwbRC_CallPgm() API.

cwbSV_GetErrSubstTextIndexed
Use the cwbSV_GetErrSubstTextIndexed API with this product.

Purpose
Returns the message substitution data for the message identified by the index provided. This message
attribute only pertains to IBM i returned messages. The substitution data is the data inserted into the
substitution variable fields defined for the message.

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrSubstTextIndexed(
 cwbSV_ErrHandle errorHandle,
 unsigned long index,
 char *substitutionData,
 unsigned long substitutionDataLength,
 unsigned long *returnLength);

Parameters
cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() API.

366 IBM i: Windows Application Package: Programming

unsigned long index - input
Index value indicating which substitution data to return if multiple errors are associated with the error
handle. The valid index range is from 1 to the number of messages contained in the error handle. The
number of messages can be obtained by calling the cwbSV_GetErrCount() API.

char * substitutionData - input/output
Pointer to a buffer that will receive the substitution data stored in the error identified by the index.
Note: The data returned is binary, hence it is NOT returned as an ASCIIZ string. Any character strings
contained in the substitution data are returned as EBCDIC values.

unsigned long substitutionDataLength - input
Length of the receive buffer passed in. If the buffer is too small, the value will be truncated and
CWB_BUFFER_OVERFLOW and returnLength will be set.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
data if the receive buffer is too small. It will also be set to the actual number of bytes of output data
returned upon successful completion.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Invalid handle.

CWBSV_NO_ERROR_MESSAGES
No messages are in the error handle.

CWBSV_ATTRIBUTE_NOT_SET
Attribute not set in current message.

Usage
IBM i messages may be added to the error handle when using the cwbRC_CallPgm() and
cwbRC_RunCmd() API's. In these cases, you can use this API to retrieve the substitution data for
the IBM i messages contained in the error handle. If there is no substitution data for the message,
return code CWBSV_ATTRIBUTE_NOT_SET will be returned. An index value of 1 works with the lowest-
level (i.e. oldest) message in the error handle. An index value equal to the count returned by the
cwbSV_GetErrCount() API works with the top-level (i.e. most recent) message in the error handle. Index
values less than 1 act as if 1 was passed in. Index values greater than the number of messages contained
in the error handle act as if the returned count value from the cwbSV_GetErrCount() API was passed in.
Use the returnLength parameter to determine the actual number of bytes returned in the substitution
data when the return code is CWB_OK. The substitution data returned on this API could be used on a
subsequent host retrieve message API call (QSYS/QMHRTVM) to retrieve the format of the substitution
data or to return secondary help text with the substitution data added in. Host API's are called using the
cwbRC_CallPgm() API.

Windows Application Package: Programming 367

cwbSV_GetErrText
Use the cwbSV_GetErrText API with this product.

Purpose
Returns the message text associated with the top-level (for example, the most recent) error that is
identified by the error handle that is provided.

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrText(
 cwbSV_ErrHandle errorHandle,
 char *errorText,
 unsigned long errorTextLength,
 unsigned long *returnLength);

Parameters
cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() function.
char * errorText - input/output

Pointer to a buffer that will receive the error message text that is stored in the error that is identified
by the handle.

unsigned long errorTextLength - input
Length of the receive buffer passed in. It should include space for the ending null character. If the
buffer is too small, the value will be truncated, and CWB_BUFFER_OVERFLOW and returnLength will
be set.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_NO_ERROR_MESSAGES
No error messages associated with error handle.

Usage
None

368 IBM i: Windows Application Package: Programming

cwbSV_GetErrTextIndexed
Use the cwbSV_GetErrTextIndexed API with this product.

Purpose
Returns the message text associated with the error index provided. An index value of 1 will retrieve the
lowest-level (for example, the oldest) message that is associated with the error handle. An index value
of "cwbSV_GetErrCount()'s returned errorCount" will retrieve the top-level (for example, the most recent)
message associated with the error handle.

Syntax

unsigned int CWB_ENTRY cwbSV_GetErrTextIndexed(
 cwbSV_ErrHandle errorHandle,
 unsigned long errorIndex,
 char *errorText,
 unsigned long errorTextLength,
 unsigned long *returnLength);

Parameters
cwbSV_ErrHandle errorHandle - input

Handle that was returned by a previous call to the cwbSV_CreateErrHandle() function.
unsigned long errorIndex - input

Index value that indicates which error text to return if multiple errors are associated with the error
handle.

char * errorText - input/output
Pointer to a buffer that will receive the error message text that is stored in the error that is identified
by the index.

unsigned long errorTextLength - input
Length of the receive buffer passed in. It should include space for the ending null character. If the
buffer is too small, the value will be truncated, and CWB_BUFFER_OVERFLOW and returnLength will
be set.

unsigned long * returnLength - input/output
Optional, may be NULL. A return address to store the number of bytes needed to hold the output
string if the receive buffer is too small.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_INVALID_HANDLE
Handle is not valid.

CWBSV_NO_ERROR_MESSAGES
No error messages associated with error handle.

Usage
Valid index values are from 1 to cwbSV_GetErrCount()'s return value. Index values less than 1 act as if 1
was passed. Index values greater than cwbSV_GetErrCount() act as if errorCount was passed.

Windows Application Package: Programming 369

Example: Using Serviceability APIs
The following example uses the Serviceability APIs to log a message string to the product History Log.
Before running this program, start the product Diagnostics History log.

#include <stdio.h>
#include <string.h>
#include "CWBSV.H"

unsigned int logMessageText(char *msgtxt)
/* Write a message to the active message log. */
{
 cwbSV_MessageTextHandle messageTextHandle;
 unsigned int rc;

 /* Create a handle to a message text object, so that we may write */
 /* message text to the active message log. */
 if ((rc = cwbSV_CreateMessageTextHandle("ProductID", "ComponentID",
 &messageTextHandle)) != CWB_OK)
 return(rc);

 /* Log the supplied message text to the active message log. */
 rc = cwbSV_LogMessageText(messageTextHandle, msgtxt, strlen(msgtxt));

 /* Delete the message text object identified by the handle provided.*/
 cwbSV_DeleteMessageTextHandle(messageTextHandle);

 return(rc);
}

unsigned int readMessageText(char **bufptr, cwbSV_ErrHandle errorHandle)
/* Read a message from the active message log. */
{
 cwbSV_ServiceFileHandle serviceFileHandle;
 cwbSV_ServiceRecHandle serviceRecHandle;
 static char buffer[BUFSIZ];
 unsigned int rc;

 /* Retrieve the fully-qualified path and file name of the active */
 /* message log. */
 if ((rc = cwbSV_GetServiceFileName(CWBSV_HISTORY_LOG, buffer, BUFSIZ,
 NULL)) != CWB_OK)
 return(rc);

 /* Open the active message log for READ access and return a handle */
 /* to it. */
 if ((rc = cwbSV_OpenServiceFile(buffer, &serviceFileHandle, errorHandle))
 != CWB_OK)
 return(rc);

 /* Create a service record object and return a handle to it. */
 if ((rc = cwbSV_CreateServiceRecHandle(&serviceRecHandle)) != CWB_OK) {
 cwbSV_CloseServiceFile(serviceFileHandle, 0);
 return(rc);
 }

 /* Read the newest record in the active message log into the */
 /* record handle provided. */
 if ((rc = cwbSV_ReadNewestRecord(serviceFileHandle, serviceRecHandle,
 errorHandle)) != CWB_OK) {
 cwbSV_DeleteServiceRecHandle(serviceRecHandle);
 cwbSV_CloseServiceFile(serviceFileHandle, 0);
 return(rc);
 }

 /* Retrieve the message text portion of the service record object */
 /* identified by the handle provided. */
 if ((rc = cwbSV_GetMessageText(serviceRecHandle, buffer, BUFSIZ, NULL))
 == CWB_OK || rc == CWB_BUFFER_OVERFLOW) {
 *bufptr = buffer;
 rc = CWB_OK;
 }

 /* Delete the service record object identified by the */
 /* handle provided. */
 cwbSV_DeleteServiceRecHandle(serviceRecHandle);

 /* Close the active message log identified by the handle provided.*/
 cwbSV_CloseServiceFile(serviceFileHandle, errorHandle);

370 IBM i: Windows Application Package: Programming

 return(rc);
}

void main(int argc, char *argv[])
{
 cwbSV_ErrHandle errorHandle;
 char *msgtxt = NULL, errbuf[BUFSIZ];
 unsigned int rc;

 /* Write a message to the active message log. */
 if (logMessageText("Sample message text") != CWB_OK)
 return;

 /* Create an error message object and return a handle to it. */
 cwbSV_CreateErrHandle(&errorHandle);

 /* Read a message from the active message log. */
 if (readMessageText(&msgtxt, errorHandle) != CWB_OK) {
 if ((rc = cwbSV_GetErrText(errorHandle, errbuf, BUFSIZ, NULL)) ==
 CWB_OK || rc == CWB_BUFFER_OVERFLOW)
 fprintf(stdout, "%s\n", errbuf);
 }
 else if (msgtxt)
 fprintf(stdout, "Message text: \"%s\"\n", msgtxt);

 /* Delete the error message object identified by the */
 /* handle provided. */
 cwbSV_DeleteErrHandle(errorHandle);
}

System Object Access (SOA) APIs
System Object Access enables you to view and manipulate system objects through a graphical user
interface.

System Object Access application programming interfaces (APIs) provide direct access to object
attributes. For example, to obtain the number of copies for a given spool file, you can call a series of
SOA APIs, and change the value as needed.

System Object Access APIs for required files:
Interface definition file Import library Dynamic Link Library

cwbsoapi.h cwbapi.lib cwbsoapi.dll

Programmer's Toolkit:
The Programmer's Toolkit provides System Object Access documentation, access to the cwbsoapi.h
header file, and links to sample programs. To access this information, open the Programmer's Toolkit and
select IBM i Operations > C/C++ APIs.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

Related reference
System Object Access APIs return codes
There are SOA API return codes.
IBM i name formats for connection APIs
APIs that take an IBM i name as a parameter, accept the name in the three different formats.

SOA objects
Use System Object Access to view and to manipulate the following IBM i objects.

You can view and manipulate these objects:
• Jobs

Windows Application Package: Programming 371

• Printers
• Printed output
• Messages
• Spooled files

You only can manipulate these objects:
• Users and groups
• TCP/IP interfaces
• TCP/IP routes
• Ethernet lines
• Token-ring lines
• Hardware resources
• Software resources
• Libraries in QSYS

System object views
Two types of system object views are provided.

List view:
Displays a customizable graphical list view of the selected system objects. The user can perform a
variety of actions on one or more objects.

Properties view:
Displays a detailed graphical view of the attributes of a specific system object. The user can view all
attributes if desired, and make changes to those attributes that are changeable.

Typical use of System Object Access APIs
Three summaries for and examples of System Object Access API usage are provided below.

Each example is presented twice; a typical sequence of API calls is shown in summary form, and then
an actual C-language sample program is presented. The summary indicates which APIs are required (R)
and which are optional (O). Normally, additional code would be required to check for and handle errors on
each function call; this has been omitted for illustration purposes.

Display a customized list of system objects
In this example, a list of IBM i spool file objects is created. After setting the desired sort and filter
criteria, the list is displayed to the user, with the user interface customized so that certain user actions are
disabled.

When the user is finished viewing the list, the filter criteria are saved in the application profile and the
program exits.

Display a customized list of system objects (summary)

 (O) cwbRC_StartSys Start an IBM i conversation

 (R) CWBSO_CreateListHandle Create a list of system objects

 (O) CWBSO_SetListProfile Set name of application

 (O) CWBSO_ReadListProfile Load application preferences

 (O) CWBSO_SetListFilter Set list filter criteria

 (O) CWBSO_SetListSortFields Set list sort criteria

 (O) CWBSO_DisallowListFilter Do not allow user to change filter criteria

372 IBM i: Windows Application Package: Programming

 (O) CWBSO_DisallowListActions Disallow selected list actions

 (O) CWBSO_SetListTitle Set title of list

 (R) CWBSO_CreateErrorHandle Create an error object

 (R) CWBSO_DisplayList Display the customized list

 (O) CWBSO_DisplayErrMsg Display error message if error occurred

 (O) CWBSO_WriteListProfile Save list filter criteria

 (R) CWBSO_DeleteErrorHandle Delete error object

 (R) CWBSO_DeleteListHandle Delete list

 (O) cwbRC_StopSys End IBM i conversation

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

Sample program: Display a customized list of system objects
Use this sample program to display IBM i objects.

#ifdef UNICODE
 #define _UNICODE
#endif
#include <windows.h> // Windows APIs and datatypes
#include "cwbsoapi.h" // System Object Access APIs
#include "cwbrc.h" // IBM i DPC APIs
#include "cwbun.h" // IBM i Navigator APIs

#define APP_PROFILE "APPPROF" // Application profile name

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdLine, int nCmdShow)
{
MSG msg; // Message structure
HWND hWnd; // Window handle
cwbRC_SysHandle hSystem; // System handle
CWBSO_LIST_HANDLE hList = CWBSO_NULL_HANDLE; // List handle
CWBSO_ERR_HANDLE hError = CWBSO_NULL_HANDLE; // Error handle
cwbCO_SysHandle hSystemHandle; // System object handle
unsigned int rc; // System Object Access return codes

unsigned short sortIDs[] = { CWBSO_SFL_SORT_UserData,
 CWBSO_SFL_SORT_Priority };
 // Array of sort IDs
unsigned short actionIDs[] = { CWBSO_ACTN_PROPERTIES };
 // Array of action IDs

//**
// Start a conversation with IBM i SYSNAME. Specify
// application name APPNAME.
//**
cwbUN_GetSystemHandle((char *)"SYSNAME", (char *)"APPNAME", &hSystemHandle);

cwbRC_StartSysEx(hSystemHandle, &hSystem);

//***
// Create a list of spooled files. Set desired sort/filter criteria.

// Create a list of spooled files on system SYSNAME
CWBSO_CreateListHandleEx(hSystemHandle,
 CWBSO_LIST_SFL,
 &hList);

// Identify the name of the application profile
CWBSO_SetListProfile(hList, APP_PROFILE);

// Create an error handle
CWBSO_CreateErrorHandle(&hError);

// Load previous filter criteria
CWBSO_ReadListProfile(hList, hError);

Windows Application Package: Programming 373

// Only show spooled files on printer P3812 for user TLK
CWBSO_SetListFilter(hList, CWBSO_SFLF_DeviceFilter, "P3812");
CWBSO_SetListFilter(hList, CWBSO_SFLF_UserFilter, "TLK");

// Sort by 'user specified data', then by 'output priority'
CWBSO_SetListSortFields(hList, sortIDs, sizeof(sortIDs) / sizeof(short));

//***
// Customize the UI by disabling selected UI functions. Set the list title.
//***

// Do not allow users to change list filter
CWBSO_DisallowListFilter(hList);

// Do not allow the 'properties' action to be selected
CWBSO_DisallowListActions(hList, actionIDs, sizeof(actionIDs) / sizeof(short));

// Set the string that will appear in the list title bar
CWBSO_SetListTitle(hList, "Application Title");

//***
// Display the list.
//***

// Display the customized list of spooled files
rc = CWBSO_DisplayList(hList, hInstance, nCmdShow, &hWnd, hError);

// If an error occurred, display a message box
if (rc == CWBSO_ERROR_OCCURRED)
 CWBSO_DisplayErrMsg(hError);
else
{
 // Dispatch messages for the list window
 while(GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 // List window has been closed - save filter criteria in application profile
 CWBSO_WriteListProfile(hList, hError);
}

//***
// Processing complete - clean up and exit.
//***

// Clean up handles
CWBSO_DeleteErrorHandle(hError);
CWBSO_DeleteListHandle(hList);

// End the conversation started by EHNDP_StartSys
cwbRC_StopSys(hSystem);

//**
// Return from WinMain.
//**

return rc;
}

Display the Properties view for a system object
A list object for a list of IBM i spool files is created. After setting the desired filter criteria, the list is
opened, and a handle to the first object in the list is obtained. A properties view that shows the attributes
for this object is displayed to the user.

Display the properties view for an object (Summary)
(O) cwbRC_StartSys Start an IBM i conversation

(R) CWBSO_CreateListHandle Create a list of system objects

(O) CWBSO_SetListFilter Set list filter criteria

(R) CWBSO_CreateErrorHandle Create an error object

(R) CWBSO_OpenList Open the list (builds an IBM i list)

374 IBM i: Windows Application Package: Programming

(O) CWBSO_DisplayErrMsg Display error message if error occurred

(O) CWBSO_GetListSize Get number of objects in the list

(R) CWBSO_GetObjHandle Get an object from the list

(R) CWBSO_DisplayObjAttr Display the properties view for the object

(R) CWBSO_DeleteObjHandle Delete the object

(O) CWBSO_CloseList Close the list

(R) CWBSO_DeleteErrorHandle Delete error object

(R) CWBSO_DeleteListHandle Delete list

(O) cwbRC_StopSys End IBM i conversation

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

Sample program: Display the Properties view of an object
Use this sample program to display property views.

#ifdef UNICODE
 #define _UNICODE
#endif
#include <windows.h> // Windows APIs and datatypes
#include "cwbsoapi.h" // System Object Access APIs
#include "cwbrc.h" // IBM i DPC APIs
#include "cwbun.h" // IBM i Navigator APIs

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdLine, int nCmdShow)
{
MSG msg; // Message structure
HWND hWnd; // Window handle
cwbRC_SysHandle hSystem; // System handle
CWBSO_LIST_HANDLE hList = CWBSO_NULL_HANDLE; // List handle
CWBSO_ERR_HANDLE hError = CWBSO_NULL_HANDLE; // Error handle
CWBSO_OBJ_HANDLE hObject = CWBSO_NULL_HANDLE; // Object handle
cwbCO_SysHandle hSystemHandle; // System object handle
unsigned long listSize = 0; // List size
unsigned short listStatus = 0; // List status
unsigned int rc; // System Object Access return codes

//***
// Start a conversation with IBM i SYSNAME. Specify
// application name APPNAME.
//**

cwbUN_GetSystemHandle((char *)"SYSNAME", (char *)"APPNAME", &hSystemHandle);

cwbRC_StartSysEx(hSystemHandle, &hSystem);

//***
// Create a list of spooled files. Set desired filter criteria.
//***

// Create a list of spooled files on system SYSNAME
CWBSO_CreateListHandleEx(hSystemHandle,
 CWBSO_LIST_SFL,
 &hList);

// Only include spooled files on printer P3812 for user TLK
CWBSO_SetListFilter(hList, CWBSO_SFLF_DeviceFilter, "P3812");
CWBSO_SetListFilter(hList, CWBSO_SFLF_UserFilter, "TLK");

//***
// Open the list.
//***

// Create an error handle
CWBSO_CreateErrorHandle(&hError);

// Open the list of spooled files

Windows Application Package: Programming 375

rc = CWBSO_OpenList(hList, hError);
// If an error occurred, display a message box
if (rc == CWBSO_ERROR_OCCURRED)
 CWBSO_DisplayErrMsg(hError);
else
{
 //***
 // Display the properties of the first object in the list
 //***

 // Get the number of objects in the list
 CWBSO_GetListSize(hList, &listSize, &listStatus, hError);

 if (listSize > 0)
 {
 // Get the first object in the list
 CWBSO_GetObjHandle(hList, 0, &hObject, hError);

 // Display the properties window for this object
 CWBSO_DisplayObjAttr(hObject, hInstance, nCmdShow, &hWnd, hError);

 // Dispatch messages for the properties window
 while(GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 // Properties window has been closed - delete object handle
 CWBSO_DeleteObjHandle(hObject);
 }
}

//***
// Processing complete - clean up and exit.
//***

// Close the list
CWBSO_CloseList(hList, hError);

// Clean up handles
CWBSO_DeleteErrorHandle(hError);
CWBSO_DeleteListHandle(hList);

// End the conversation started by EHNDP_StartSys
cwbRC_StopSys(hSystem);

//**
// Return from WinMain.
//**

return rc;
}

Access and update data for system objects
A list object for IBM i spool files is created. After setting the desired filter criteria, the list is opened. A
parameter object is created which will be used to change the output priority for each spooled file in the
list.

After storing the desired output priority value of "9" in the parameter object, a loop is entered. Each object
in the list is examined in turn, and if a spooled file is found to have more than 10 pages then its output
priority is changed.

In this example, all spooled files for device P3812 that have 10 or more pages have their output priority
changed to 9 so that they will not print before smaller files.

Access and update data for system objects (Summary)
(R) CWBSO_CreateListHandle Create a list of system objects

(O) CWBSO_SetListFilter Set list filter criteria

(R) CWBSO_CreateErrorHandle Create an error object

(R) CWBSO_OpenList Open the list (automatically starts

376 IBM i: Windows Application Package: Programming

 an IBM i conversation)

(O) CWBSO_DisplayErrMsg Display error message if error occurred

(R) CWBSO_CreateParmObjHandle Create a parameter object

(R) CWBSO_SetParameter Set new value for object attribute
 or attributes

(R) CWBSO_WaitForObj Wait until first object is available

. . . Loop through all objects

.

. (R) CWBSO_GetObjHandle Get an object from the list

.

. (R) CWBSO_GetObjAttr Read data for a particular attribute

.

. (R) CWBSO_SetObjAttr Update an IBM i attribute

.

. (R) CWBSO_DeleteObjHandle Clean up object handle

.

. (R) CWBSO_WaitForObj Wait for next object in list

.

..............

(R) CWBSO_DeleteParmObjHandle Delete the parameter object

(O) CWBSO_CloseList Close the list

(R) CWBSO_DeleteErrorHandle Delete error object

(R) CWBSO_DeleteListHandle Delete list (automatically ends the
 IBM i conversation)

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

Sample program: Access and update data for system objects
Use this sample program that updates system objects.

#include <windows.h> // Windows APIs and datatypes
#include <stdlib.h> // For atoi
#include "cwbsoapi.h" // System Object Access APIs

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdLine, int nCmdShow)
{
CWBSO_LIST_HANDLE hList = CWBSO_NULL_HANDLE; // List handle
CWBSO_ERR_HANDLE hError = CWBSO_NULL_HANDLE; // Error handle
CWBSO_PARMOBJ_HANDLE hParmObject = CWBSO_NULL_HANDLE; // Parm object
CWBSO_OBJ_HANDLE hObject = CWBSO_NULL_HANDLE; // Object handle
unsigned int rc, setRC; // System Object Access return codes
unsigned long bytesNeeded = 0; // Bytes needed
unsigned short errorIndex = 0; // Error index (SetObjAttr)
char szString[100]; // Buffer for formatting
int totalPages = 0; // Total pages
int i = 0; // Loop counter
int nNbrChanged = 0; // Count of changed objects

MessageBox(GetFocus(), "Start of Processing", "PRIORITY", MB_OK);

//**
// Create a list of spooled files. Set desired filter criteria.
//**

// Create a list of spooled files on system SYSNAME
CWBSO_CreateListHandle("SYSNAME",
 "APPNAME",
 CWBSO_LIST_SFL,
 &hList);

// Only include spooled files for device P3812
CWBSO_SetListFilter(hList, CWBSO_SFLF_DeviceFilter, "P3812");

//***
// Open the list.
//***

Windows Application Package: Programming 377

// Create an error handle
CWBSO_CreateErrorHandle(&hError);

// Open the list of spooled files
rc = CWBSO_OpenList(hList, hError);

// If an error occurred, display a message box
if (rc == CWBSO_ERROR_OCCURRED)
 CWBSO_DisplayErrMsg(hError);
else
{
 //***
 // Set up to change output priority for all objects in the list.
 //***

 // Create a parameter object to hold the attribute changes
 CWBSO_CreateParmObjHandle(&hParmObject);

 // Set the parameter to change the output priority to '9'
 CWBSO_SetParameter(hParmObject,
 CWBSO_SFL_OutputPriority,
 "9",
 hError);

 //**
 // Loop through the list, changing the output priority for any
 // files that have more than 10 total pages. Loop will
 // terminate when CWBSO_WaitForObj
 // returns CWBSO_BAD_LIST_POSITION, indicating that there
 // are no more objects in the list.
 //**

 // Wait for first object in the list
 rc = CWBSO_WaitForObj(hList, i, hError);

 // Loop through entire list
 while (rc == CWBSO_NO_ERROR)
 {
 // Get the list object at index i
 CWBSO_GetObjHandle(hList, i, &hObject, hError);

 // Get the total pages attribute for this spooled file
 CWBSO_GetObjAttr(hObject,
 CWBSO_SFL_TotalPages,
 szString,
 sizeof(szString),
 &bytesNeeded,;
 hError);

 totalPages = atoi(szString);

 // Update the output priority if necessary
 if (totalPages > 10)
 {
 // Change the spool file's output priority to '9'
 setRC = CWBSO_SetObjAttr(hObject, hParmObject, &errorIndex, hError);
 if (setRC == CWBSO_NO_ERROR)
 nNbrChanged++;
 }

 // Delete the object handle
 CWBSO_DeleteObjHandle(hObject);

 // Increment list item counter
 i++;

 // Wait for next list object
 rc = CWBSO_WaitForObj(hList, i, hError);

 } /* end while */

 // Parameter object no longer needed
 CWBSO_DeleteParmObjHandle(hParmObject);

 } /* end if */

// Display the number of spooled files that had priority changed
wsprintf (szString, "Number of spool files changed: %d", nNbrChanged);
MessageBox(GetFocus(), szString, "PRIORITY", MB_OK);

378 IBM i: Windows Application Package: Programming

//**
// Processing complete - clean up and exit.
//**

// Close the list
CWBSO_CloseList(hList,hError);

// Clean up handles
CWBSO_DeleteErrorHandle(hError);
CWBSO_DeleteListHandle(hList);

//**
// Return from WinMain.
//**

return 0;
}

System Object Access programming considerations
See the following topics for important SOA programming considerations.

About System Object Access errors
System Object Access APIs use return codes to report error conditions.

Check for errors on each function call. In addition, certain APIs incorporate a handle to an “error object”
in their interface. The error object is used to provide additional information for errors which occurred
during the processing of a request. Often these errors are encountered while interacting with the IBM i
operating system, in which case the error object will contain the error message text.

If a function call returns CWBSO_ERROR_OCCURRED then the error object will have been filled in
with information that describe the error. CWBSO_GetErrMsgText may be used to retrieve the error
message text. The message will have been translated into the language that is specified for the user's
execution environment. Alternatively, the error message may be displayed to the user directly by calling
CWBSO_DisplayErrMsg.

For internal processing errors, error objects automatically log an entry in the System Object Access log file
soa.log, in the product install directory. This file is English only and is intended for use by IBM personnel
for problem analysis.

Related reference
System Object Access APIs return codes
There are SOA API return codes.

System Object Access application profiles
Use application profiles.

By default, user-specified list filter criteria are not saved to disk. System Object Access provides APIs for
the following.

• Requesting the use of an application-specific registry key for loading the filter data from the registry into
a given list object

• Saving the data for a particular list object in the registry

The data is saved by IBM i name, and within system name by object type. To read or write profile data, a
system name must be specified on the CWBSO_CreateListHandle call for the list object.

Manage IBM i communications sessions for application programs
System Object Access APIs communicate with the system through the use of one or more client/server
conversations.

Because it often takes several seconds to establish a conversation, your application may experience
delays when a list first is opened. This topic explains how to control and manage the initiation of
conversations so that the performance impact on application programs is minimized.

Windows Application Package: Programming 379

The default behavior of System Object Access may be summarized as follows:

• If no conversation has been established with the IBM i object that is identified on the
CWBSO_CreateListHandleEx API, a conversation automatically will be started when the list is
opened or displayed. If a connection is not already established to the specified system, a dialog box will
appear prompting the user for the appropriate UserID and password.

• If another instance of the application program starts, the above process repeats itself. No conversation
sharing occurs between application programs that run in different processes (that is, with different
instance handles).

• When the application program deletes the last System Object Access list, the IBM i conversation is
automatically ended (Note that CWBSO_CloseList does not end the IBM i conversation).

A System Object Access conversation may be started using the cwbRC_StartSysEx API. This API
accepts an IBM i object as a parameter, and returns a system handle. Save this handle for later use on the
cwbRC_StopSys API, when the application is terminating and it is time to end the IBM i conversation.

When the cwbRC_StartSysEx API is called, the application is blocked until the conversation is
established. Therefore, it is good practice to inform the user that a connection is about to be attempted
immediately before the call. On return, the conversation will have been initiated, and System Object
Access list processing will use this conversation instead of starting a new one.

When cwbRC_StartSysEx is used in this way, the last list to be deleted will not end the conversation.
You must call cwbRC_StopSys explicitly before you exit the application.

System Object Access APIs List
The following System Object Access APIs are listed alphabetically.

SOA enablers:
System Object Access also includes enablers (APIs), which applications can use to access data in system
objects or to request graphical lists and attribute views of the object data. The APIs for manipulating lists
of objects must be called in the correct order. The basic flow is as follows:

CreateErrorHandle -- Creates a handle to an "error" object
 to be passed to other APIs
CreateListHandle -- Instantiates a list object on the client
OpenList -- Builds IBM i list associated with client
 list
(Manipulate the list and its objects using various generic
 and subclass APIs)
CloseList -- Closes list and release IBM i resource
DeleteListHandle -- Destroys list object on the client

The CWBSO_CreateListHandle API must be called to create a list before any other list APIs are called.
The CWBSO_CreateListHandle API returns a list handle to the caller. The list handle must be passed as
input to all other list APIs.

After the list is allocated, the CWBSO_SetListFilter API can be called to change the filter criteria for
the list. CWBSO_SetListFilter is optional; if it is not called, the list will be built with the default filter
criteria. Similarly, the CWBSO_SetListSortFields API can be called to define the attributes on which
the list will be sorted. If it is not called the list will not be sorted.

The CWBSO_OpenList API must be called to build the list of objects. This results in a request that is
sent to the system. The list is built on the system, and some or all of the objects (records) in the list are
buffered down to the list on the client. Although all objects in the list are not necessarily cached on the
client, the APIs behave as if they are. Once the CWBSO_OpenList API is called successfully, the following
APIs can be called:

CWBSO_GetObjHandle
Retrieves a handle to a specific object in the list. The object handle can then be used to manipulate
the specific object.

380 IBM i: Windows Application Package: Programming

CWBSO_DeleteObjHandle
Releases the handle returned by CWBSO_GetObjHandle.

CWBSO_DisplayList
Displays the spreadsheet view of the list.

CWBSO_GetListSize
Retrieves the number of objects in the list.

CWBSO_CloseList
Closes the IBM i list and destroys all client objects in the list. All object handles returned
by CWBSO_GetListObject no longer are valid after the list is closed. After the list is closed,
the APIs in this list cannot be called until the CWBSO_OpenList API is called again. The
CWBSO_DeleteListHandle API should be called to destroy the list object.

CWBSO_CloseList
Use the CWBSO_CloseList API with this product.

Purpose
Closes the list of objects and frees up IBM i allocated resources.

Syntax

unsigned int CWB_ENTRY CWBSO_CloseList(
 CWBSO_LIST_HANDLE listHandle,
 CWBSO_ERR_HANDLE errorHandle);

Parameters
CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error that was returned by a previous call to CWBSO_CreateErrorHandle. When the
value that is returned by this API is CWBSO_ERROR_OCCURRED, the error handle may be used to
retrieve the error message text or display the error to the user.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_ERROR_OCCURRED
An error occurred. Use the error handle for more information.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

Usage
CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by
CWBSO_CreateListHandle must be passed as input to this API. CWBSO_CreateErrorHandle must
be called prior to calling this API. The error handle that is returned by CWBSO_CreateErrorHandle

Windows Application Package: Programming 381

must be passed as input to this API. The list must currently be open. The list is opened by calling
CWBSO_OpenList. This API does not end the IBM i conversation. To end the conversation, the list must
be deleted using CWBSO_DeleteListHandle.

CWBSO_CopyObjHandle
Use the CWBSO_CopyObjHandle API with this product.

Purpose
Creates a new instance of an object and returns a handle to the new instance. This does not create a new
system object. It merely creates an additional instance of a system object on the client. Object handles
that are returned by CWBSO_GetObjHandle are always destroyed when the list that contains the object
is closed. This API allows the creation of an instance of the object that will persist after the list is closed.
The object instance that was created by this API is kept in sync with the object in the list. In other words,
if one of the objects is changed, the changes will be apparent in the other object.

Syntax

unsigned int CWB_ENTRY CWBSO_CopyObjHandle(
 CWBSO_OBJ_HANDLE objectHandle,
 CWBSO_OBJ_HANDLE far* lpNewObjectHandle);

Parameters
CWBSO_OBJ_HANDLE objectHandle - input

A handle to an object that was returned by a previous call to CWBSO_GetObjHandle or
CWBSO_CopyObjHandle.

CWBSO_OBJ_HANDLE far* lpNewObjectHandle - output
A long pointer to a handle which is set to a new handle for the same sytem object. This handle may be
used with any other API that accepts an object handle with the exception that some APIs only operate
on specific types of objects.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_BAD_OBJ_HANDLE
The object handle that is specified is not valid.

Usage
CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be called prior to calling this API. The object
handle that is returned by CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be passed as input
to this API. When the object is no longer needed, the calling program is responsible for doing the
following:

• Call CWBSO_DeleteObjHandle to free up resources that are allocated on the client.

382 IBM i: Windows Application Package: Programming

CWBSO_CreateErrorHandle
Use the CWBSO_CreateErrorHandle API with this product.

Purpose
Creates an error handle. An error handle is used to contain error messages that are returned from other
APIs. The error handle may be used to display the error in a dialog or retrieve the associated error
message text.

Syntax

unsigned int CWB_ENTRY CWBSO_CreateErrorHandle(
 CWBSO_ERR_HANDLE far* lpErrorHandle);

Parameters
CWBSO_ERR_HANDLE far* lpErrorHandle - output

A long pointer to a handle which will be set to the handle for an error.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

Usage
When the error handle is no longer needed, the calling program is responsible for doing the following:

• Call CWBSO_DeleteErrorHandle to free up resources that are allocated on the client.

CWBSO_CreateListHandle
Use the CWBSO_CreateListHandle API with this product.

Purpose
Creates a new list and returns a handle to the list.

Syntax

unsigned int CWB_ENTRY CWBSO_CreateListHandle(
 char far* lpszSystemName,
 char far* lpszApplicationName,
 CWBSO_LISTTYPE type,
 CWBSO_LIST_HANDLE far* lpListHandle);

Parameters
char far* lpszSystemName - input

The IBM i name on which the list is built. The name that is specified must be a configured system. If
the client is not currently connected to the system, an IBM i connection is established when the list is
opened. If NULL is specified for the system name, the current IBM i Access default system is used.

Windows Application Package: Programming 383

char far* lpszApplicationName - input
A character string that identifies the application that will be interacting with the list. The maximum
length of this string is 10 characters, excluding the NULL terminator.

CWBSO_LISTTYPE type - input
The type of list to be built. Specify one of the following:
CWBSO_LIST_JOB

List of jobs.
CWBSO_LIST_SJOB

List of server jobs.
CWBSO_LIST_SJOB

List of server jobs.
CWBSO_LIST_MSG

List of messages.
CWBSO_LIST_PRT

List of printers.
CWBSO_LIST_SFL

List of spooled files.
CWBSO_LIST_IFC

List interfaces.
CWBSO_LIST_ELN

List Ethernet lines.
CWBSO_LIST_TLN

List token-ring lines.
CWBSO_LIST_HWL

List hardware resources.
CWBSO_LIST_SW

List software products.
CWBSO_LIST_RTE

List TCP/IP route.
CWBSO_LIST_PRF

List user profiles.
CWBSO_LIST_SMP

List libraries in QSYS.
CWBSO_LIST_HANDLE far* lpListHandle - output

A long pointer to a handle that will be set to the handle for the newly created list. This handle may be
used with any other API that accepts a list handle.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LISTTYPE
The value that is specified for type of list is not valid.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_BAD_SYSTEM_NAME
The system name that is specified is not a valid IBM i name.

384 IBM i: Windows Application Package: Programming

Usage
When the list is no longer needed, the calling program is responsible for doing the following:

• Call CWBSO_DeleteListHandle to free up resources that are allocated on the client.

CWBSO_CreateListHandleEx
Use the CWBSO_CreateListHandleEx API with this product.

Purpose
Creates a new list and returns a handle to the list.

Syntax

unsigned int CWB_ENTRY CWBSO_CreateListHandleEx(
 cwbCO_SysHandle systemObjectHandle,
 CWBSO_LISTTYPE type,
 CWBSO_LIST_HANDLE far* lpListHandle);

Parameters
cwbCO_SysHandle systemObjectHandle - input

A handle to the system object that represents the system on which the list will be built. This IBM i
handle must be for a configured system.

CWBSO_LISTTYPE
The type of list to be built. Specify one of the following:
CWBSO_LIST_JOB

List of jobs.
CWBSO_LIST_SJOB

List of server jobs.
CWBSO_LIST_SJOB

List of server jobs.
CWBSO_LIST_MSG

List of messages.
CWBSO_LIST_PRT

List of printers.
CWBSO_LIST_SFL

List of spooled files.
CWBSO_LIST_IFC

List interfaces.
CWBSO_LIST_ELN

List Ethernet lines.
CWBSO_LIST_TLN

List token-ring lines.
CWBSO_LIST_HWL

List hardware resources.
CWBSO_LIST_SW

List software products.
CWBSO_LIST_RTE

List TCP/IP route.
CWBSO_LIST_PRF

List user profiles.

Windows Application Package: Programming 385

CWBSO_LIST_SMP
List libraries in QSYS.

CWBSO_LIST_HANDLE far* lpListHandle - output
A long pointer to a handle that will be set to the handle for the newly created list. This handle may be
used with any other API that accepts a list handle.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LISTTYPE
The value that is specified for type of list is not valid.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_BAD_SYSTEM_NAME
The system name that is specified is not a valid IBM i name.

Usage
When the list is no longer needed, the calling program is responsible for doing the following:

• Call CWBSO_DeleteListHandle to free up resources that are allocated on the client.

CWBSO_CreateObjHandle
Use the CWBSO_CreateObjHandle API with this product.

Purpose
Creates a new object handle and returns a handle to the object. Use this API to access remote object that
do not conform to the list format.

Syntax

unsigned int CWB_ENTRY CWBSO_CreateObjHandle(
 char far* lpszSystemName,
 char far* lpszApplicationName,
 CWBSO_OBJTYPE type,
 CWBSO_OBJ_HANDLE far* lpObjHandle);

Parameters
char far* lpszSystemName - input

The name of the system on which the object is built. The name that is specified must be a configured
system. If the client is not currently connected, an IBM i connection is established when the list is
opened. If NULL is specified for the system name, the current IBM i default system is used.

char far* lpszApplicationName - input
A character string that identifies the application that will be interacting with the list. The maximum
length of this string is 10 characters, excluding the NULL terminator.

CWBSO_OBJTYPE type - input
The type of object to be built. Specify the following:

• CWBSO_OBJ_TCIPATTR - TCP/IP attributes

386 IBM i: Windows Application Package: Programming

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_BAD_SYSTEM_NAME
The system name that is specified is not a valid IBM i name.

Usage
When the list is no longer needed, the calling program is responsible for doing the following:

• Call CWBSO_DeleteObjHandle to free up resources that are allocated on the client.

CWBSO_CreateParmObjHandle
Use the CWBSO_CreateParmObjHandle API with this product.

Purpose
Creates a parameter object and returns a handle to the object. A parameter object contains a set of
parameter IDs and values which may be passed as input to other APIs.

Syntax

unsigned int CWB_ENTRY CWBSO_CreateParmObjHandle(
 CWBSO_PARMOBJ_HANDLE far* lpParmObjHandle);

Parameters
CWBSO_PARMOBJ_HANDLE far* lpParmObjHandle - output

A long pointer to a handle which will be set to the handle for the new parameter object.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

Usage
When the parameter object is no longer needed, the calling program is responsible for doing the
following:

• Call CWBSO_DeleteParmObjHandle to free up resources that are allocated on the client.

CWBSO_DeleteErrorHandle
Use the CWBSO_DeleteErrorHandle API with this product.

Purpose
Deletes an error handle and frees up resources allocated on the client.

Windows Application Package: Programming 387

Syntax

unsigned int CWB_ENTRY CWBSO_DeleteErrorHandle(
 CWBSO_ERR_HANDLE errorHandle);

Parameters
CWBSO_ERR_HANDLE errorHandle - input

An error handle that is returned by a previous call to CWBSO_CreateErrorHandle.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

Usage
CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that is returned
by CWBSO_CreateErrorHandle must be passed as input to this API.

CWBSO_DeleteListHandle
Use the CWBSO_DeleteListHandle API with this product.

Purpose
Deletes the list of objects and frees up resources allocated on the client.

Syntax

unsigned int CWB_ENTRY CWBSO_DeleteListHandle(
 CWBSO_LIST_HANDLE listHandle);

Parameters
CWBSO_LIST_HANDLE listHandle - input

A handle to a list that is returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

Usage
CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by
CWBSO_CreateListHandle must be passed as input to this API.

388 IBM i: Windows Application Package: Programming

CWBSO_DeleteObjHandle
Use the CWBSO_DeleteObjHandle API with this product.

Purpose
Deletes an object handle returned from a previous call to CWBSO_GetObjHandle or
CWBSO_CopyObjHandle.

Syntax

unsigned int CWB_ENTRY CWBSO_DeleteObjHandle(
 CWBSO_OBJ_HANDLE objectHandle);

Parameters
CWBSO_OBJ_HANDLE objectHandle - input

A handle to an object that is returned by a previous call to CWBSO_GetObjHandle or
CWBSO_CopyObjHandle.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_OBJ_HANDLE
The object handle that is specified is not valid.

Usage
CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be called prior to calling this API. The object
handle that is returned by CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be passed as input
to this API.

CWBSO_DeleteParmObjHandle
Use the CWBSO_DeleteParmObjHandle API with this product.

Purpose
Deletes a parameter object handle and frees up resources allocated on the client.

Syntax

unsigned int CWB_ENTRY CWBSO_DeleteParmObjHandle(
 CWBSO_PARMOBJ_HANDLE parmObjHandle);

Parameters
CWBSO_PARMOBJ_HANDLE parmObjHandle - input

A handle to a parameter object that is returned by a previous call to CWBSO_CreateParmObjHandle.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

Windows Application Package: Programming 389

CWBSO_BAD_PARMOBJ_HANDLE
The parameter object handle that is specified is not valid.

Usage
CWBSO_CreateParmObjHandle must be called prior to calling this API. The parameter object handle
that is returned by CWBSO_CreateParmObjHandle must be passed as input to this API.

CWBSO_DisallowListActions
Use the CWBSO_DisallowListActions API with this product.

Purpose
Sets actions the user is not allowed to perform on objects in a list. This affects the actions available when
the list is displayed by calling CWBSO_DisplayList. Disallowed actions do not appear in the menu bar,
tool bar, or object pop-up menus. This API can only be called once for a list, and it must be called prior to
displaying the list.

Syntax

unsigned int CWB_ENTRY CWBSO_DisallowListActions(
 CWBSO_LIST_HANDLE listHandle,
 unsigned short far* lpusActionIDs,
 unsigned short usCount);

Parameters
CWBSO_LIST_HANDLE listHandle - input

A handle to a list that is returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

unsigned short far* lpusActionIDs - input
A long pointer to an array of action identifier values These values identify which actions the user will
not be allowed to perform. The valid values for this parameter depend on the type of objects in the
list. See the appropriate header files for the valid values:

• cwbsojob.h
• cwbsomsg.h
• cwbsoprt.h
• cwbsosfl.h

unsigned short usCount - input
The number of action identifier values specified.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_ACTION_ID
An action ID specified is not valid for the type of list.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

390 IBM i: Windows Application Package: Programming

CWBSO_NOT_ALLOWED_NOW
The action that was requested is not allowed at this time.

Usage
CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by
CWBSO_CreateListHandle must be passed as input to this API.

CWBSO_DisallowListFilter
Use the CWBSO_DisallowListFilter API with this product.

Purpose
Sets the list to disallow the user from changing the filter values for the list. This disables the
INCLUDE choice from the VIEW pull-down menu when the list is displayed. The list is displayed by
calling CWBSO_DisplayList. This API is only meaningful for lists which are displayed by using the
CWBSO_DisplayList API. This API can only be called once for a list, and it must be called prior to
displaying the list.

Syntax

unsigned int CWB_ENTRY CWBSO_DisallowListFilter(
 CWBSO_LIST_HANDLE listHandle);

Parameters
CWBSO_LIST_HANDLE listHandle - input

A handle to a list that is returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

Usage
CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by
CWBSO_CreateListHandle must be passed as input to this API.

CWBSO_DisplayErrMsg
Use the CWBSO_DisplayErrMsg API with this product.

Purpose
Displays an error message in a dialog box. This API should only be called when
CWBSO_ERROR_OCCURRED is the return value from a call to another API. In this case, there is an error
message that is associated with the error handle.

Windows Application Package: Programming 391

Syntax

unsigned int CWB_ENTRY CWBSO_DisplayErrMsg(
 CWBSO_ERR_HANDLE errorHandle);

Parameters
CWBSO_ERR_HANDLE errorHandle - input

A handle to an error.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_NO_ERROR_MESSAGE
The error handle that is specified contains no error message.

CWBSO_DISP_MSG_FAILED
The request to display the message failed.

Usage
CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that is returned
by CWBSO_CreateErrorHandle must be passed as input to this API.

CWBSO_DisplayList
Use the CWBSO_DisplayList API with this product.

Purpose
Displays the list in a window. From this window, the user is allowed to perform actions on the objects in
the list.

Syntax

unsigned int CWB_ENTRY CWBSO_DisplayList(
 CWBSO_LIST_HANDLE listHandle,
 HINSTANCE hInstance,
 int nCmdShow,
 HWND far* lphWnd ,
 CWBSO_ERR_HANDLE errorHandle);

Parameters
CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

HINSTANCE hInstance - input
The program instance passed to the calling program's WinMain procedure.

int nCmdShow - input
The show window parameter passed to the calling program's WinMain procedure. Alternatively, any of
the constants defined for the Windows API ShowWindow() may be used.

392 IBM i: Windows Application Package: Programming

HWND far* lphWnd - output
A long pointer to a window handle. This will be set to the handle of the window in which the list is
displayed.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object. If an error occurs that there is error text for, this handle may be used to
retreive the error message text or display the error to the user.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_DISPLAY_FAILED
The window could not be created.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED
An error occurred. Use error handle for more information.

Usage
CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by
CWBSO_CreateListHandle must be passed as input to this API. CWBSO_CreateErrorHandle must
be called prior to calling this API. The error handle that is returned by CWBSO_CreateErrorHandle
must be passed as input to this API. It is not necessary to call CWBSO_OpenList or CWBSO_CloseList
when using this API. CWBSO_DisplayList handles both the opening and closing of the list. Your
program must have a message loop to receive the Windows messages that will be sent during the use of
the system object list.

This API only applies to the following list types: Jobs, Messages, Printers, Printer Output, and Spooled
Files.

CWBSO_DisplayObjAttr
Use the CWBSO_DisplayObjAttr API with this product.

Purpose
Displays the attributes window for an object. From this window, the user is allowed to view the object
attributes and change attributes that are changeable.

Syntax

unsigned int CWB_ENTRY CWBSO_DisplayObjAttr(
 CWBSO_OBJ_HANDLE objectHandle,
 HINSTANCE hInstance,
 int nCmdShow,
 HWND far* lphWnd ,
 CWBSO_ERR_HANDLE errorHandle);

Windows Application Package: Programming 393

Parameters
CWBSO_OBJ_HANDLE objectHandle - input

A handle to an object that was returned by a previous call to CWBSO_GetObjHandle or
CWBSO_CopyObjHandle.

HINSTANCE hInstance - input
The program instance passed to the calling program's WinMain procedure.

int nCmdShow - input
The show window parameter passed to the calling program's WinMain procedure. Alternatively, any of
the constants defined for the Windows API ShowWindow() may be used.

HWND far* lphWnd - output
A long pointer to a window handle. This will be set to the handle of the window in which the object
attributes are displayed.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object. If an error occurs that there is error text for, this handle may be used to
retrieve the error message and message help.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_OBJ_HANDLE
The object handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_DISPLAY_FAILED
The window could not be created.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED
An error occurred. Use error handle for more information.

Usage
CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be called prior to calling this API. The object
handle that is returned by CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be passed as input
to this API. CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that is
returned by CWBSO_CreateErrorHandle must be passed as input to this API. Your program must have
a message loop to receive the Windows messages that will be sent during the use of the system object
attributes window.

This API only applies to the following list types: Jobs, Messages, Printers, Printer Output, and Spooled
Files.

CWBSO_GetErrMsgText
Use the CWBSO_GetErrMsgText API with this product.

Purpose
Retrieves the message text from an error handle. This API should only be called when
CWBSO_ERROR_OCCURRED is the return value from a call to another API. In this case there is an error
message associated with the error handle.

394 IBM i: Windows Application Package: Programming

Syntax

unsigned int CWB_ENTRY CWBSO_GetErrMsgText(
 CWBSO_ERR_HANDLE errorHandle ,
 char far* lpszMsgBuffer ,
 unsigned long ulBufferLength,
 unsigned long far* lpulBytesNeeded);

Parameters
CWBSO_ERR_HANDLE errorHandle - input

A handle to an error object. If an error occurs that there is error text for, this handle may be used to
retreive the error message and message help.

char far* lpszMsgBuffer - output
A long pointer to the output buffer where the message text will be placed. The message text that is
returned by this API will be translated text. The output buffer is not changed when the return code is
not set to CWBSO_NO_ERROR.

unsigned long ulBufferLength - input
The size, in bytes, of the output buffer argument.

unsigned long far* lpulBytesNeeded - output
A long pointer to an unsigned long that will be set to the number of bytes needed to place the entire
message text in the output buffer. When this value is less than or equal to the size of output buffer
that is specified, the entire message text is placed in the output buffer. When this value is greater than
the size of output buffer that is specified, the output buffer contains a null string. The output buffer is
not changed beyond the bytes that are needed for the message text. This value is set to zero when the
return code is not set to CWBSO_NO_ERROR.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_NO_ERROR_MESSAGE
The error handle that is specified contains no error message.

CWBSO_GET_MSG_FAILED
The error message text could not be retrieved.

Usage
CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that is returned
by CWBSO_CreateErrorHandle must be passed as input to this API. For IBM i errors, the message text
is in the language that is specified for the user's execution environment. All other message text are in the
language that is specified in the Windows Control Panel on the user's personal computer.

CWBSO_GetListSize
Use the CWBSO_GetListSize API with this product.

Purpose
Retrieves the number of objects in a list.

Windows Application Package: Programming 395

Syntax

unsigned int CWB_ENTRY CWBSO_GetListSize(
 CWBSO_LIST_HANDLE listHandle,
 unsigned long far* lpulSize,
 unsigned short far* lpusStatus,
 CWBSO_ERR_HANDLE errorHandle);

Parameters
CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

unsigned long far* lpulSize - output
A long pointer to an unsigned long that will be set to the number of entries currently in the list. If the
list status indicates that the list is complete, this value represents the total number of objects for the
list. If the list status indicates that the list is not completely built, this value represents the number
of objects currently available from the host and a subsequent call to this API may indicate that more
entries are available.

unsigned short far* lpusStatus - output
A long pointer to an unsigned short that will be set to indicate whether the list is completely built. The
value will be set to 0 if the list is not completely built or it will be set to 1 if the list is completely built.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object. If an error occurs that there is error text for, this handle may be used to
retrieve the error message and message help.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED
An error occurred. Use error handle for more information.

Usage
CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by
CWBSO_CreateListHandle must be passed as input to this API. CWBSO_CreateErrorHandle must
be called prior to calling this API. The error handle that is returned by CWBSO_CreateErrorHandle
must be passed as input to this API. The list must currently be open. The list is opened by calling
CWBSO_OpenList. If CWBSO_CloseList is called to close a list, CWBSO_OpenList must be called again
before this API can be called.

CWBSO_GetObjAttr
Use the CWBSO_GetObjAttr API with this product.

Purpose
Retrieves the value of an attribute from an object.

396 IBM i: Windows Application Package: Programming

Syntax

unsigned int CWB_ENTRY CWBSO_GetObjAttr(
 CWBSO_OBJ_HANDLE objectHandle,
 unsigned short usAttributeID,
 char far* lpszBuffer,
 unsigned long ulBufferLength,
 unsigned long far* lpulBytesNeeded,
 CWBSO_ERR_HANDLE errorHandle);

Parameters
CWBSO_OBJ_HANDLE objectHandle - input

A handle to an object that was returned by a previous call to CWBSO_GetObjHandle or
CWBSO_CopyObjHandle.

unsigned short usAttributeID - input
The identifier of the attribute to be retrieved. The valid values for this parameter depend on the type of
object. See the appropriate header files for the valid values:

• cwbsojob.h
• cwbsomsg.h
• cwbsoprt.h
• cwbsosfl.h

char far* lpszBuffer - output
A long pointer to the output buffer where the attribute value will be placed. The value that is returned
by this API is NOT a translated string. For instance, *END would be returned instead of Ending page
for the ending page attribute of a spooled file. See “SOA attribute special values” on page 410 for
information on special values that may be returned for each type of object. The output buffer is not
changed when the return code is not set to CWBSO_NO_ERROR.

unsigned long ulBufferLength - input
The size, in bytes, of the output buffer argument.

unsigned long far* lpulBytesNeeded - output
A long pointer to an unsigned long that will be set to the number of bytes needed to place the entire
attribute value in the output buffer. When this value is less than or equal to the size of output buffer
that is specified, the entire attribute value is placed in the output buffer. When this value is greater
than the size of output buffer that is specified, the output buffer contains a null string. The output
buffer is not changed beyond the bytes that are needed for the attribute value. This value is set to zero
when the return code is not set to CWBSO_NO_ERROR.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object. If an error occurs that there is error text for, this handle may be used to
retrieve the error message and message help.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_OBJ_HANDLE
The object handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_BAD_ATTRIBUTE_ID
The attribute key is not valid for this object.

Windows Application Package: Programming 397

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED
An error occurred. Use error handle for more information.

Usage
CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be called prior to calling this API. The object
handle that is returned by CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be passed as input
to this API. CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that is
returned by CWBSO_CreateErrorHandle must be passed as input to this API.

CWBSO_GetObjHandle
Use the CWBSO_GetObjHandle API with this product.

Purpose
Gets a handle to an object in a list. The object handle that is returned by this API is valid until the list is
closed or until the object handle is deleted. The object handle may be used to call the following APIs:

• CWBSO_CopyObjHandle
• CWBSO_DeleteObjHandle
• CWBSO_DisplayObjAttr
• CWBSO_GetObjAttr
• CWBSO_RefreshObj
• CWBSO_SetObjAttr
• CWBSO_WaitForObj

Syntax

unsigned int CWB_ENTRY CWBSO_GetObjHandle(
 CWBSO_LIST_HANDLE listHandle,
 unsigned long ulPosition,
 CWBSO_OBJ_HANDLE far* lpObjectHandle,
 CWBSO_ERR_HANDLE errorHandle);

Parameters
CWBSO_LIST_HANDLE listHandle - input

A handle to a list that is returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

unsigned long ulPosition - input
The position of the object within the list for which a handle is needed. NOTE: The first object in a list is
considered position 0.

CWBSO_OBJ_HANDLE far* lpObjectHandle - output
A long pointer to a handle which is set to the handle for the IBM i object. This handle may be used
with any other API that accepts an object handle with the exception that some APIs only operate on
specific types of objects.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object. If an error occurs that there is error text for, this handle may be used to
retrieve the error message and message help.

Return Codes
The following list shows common return values.

398 IBM i: Windows Application Package: Programming

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_BAD_LIST_POSITION
The position in list that is specified is not valid.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED
An error occurred. Use error handle for more information.

Usage
CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by
CWBSO_CreateListHandle must be passed as input to this API. CWBSO_CreateErrorHandle must
be called prior to calling this API. The error handle that is returned by CWBSO_CreateErrorHandle
must be passed as input to this API. The list must currently be open. The list is opened by calling
CWBSO_OpenList. If CWBSO_CloseList is called to close a list, CWBSO_OpenList must be called
again before this API can be called. You cannot access an object by using this API until that object
has been included in the list. For example, if you issue this API to get the object in position 100
immediately after calling CWBSO_OpenList, the object may not immediately available. In such instances,
use CWBSO_WaitForObj to wait until an object is available. The object handle that is returned by this API
must be deleted by a subsequent call to CWBSO_DeleteObjHandle.

CWBSO_OpenList
Use the CWBSO_OpenList API with this product.

Purpose
Opens the list. A request is sent to the system to build the list.

Syntax

unsigned int CWB_ENTRY CWBSO_OpenList(
 CWBSO_LIST_HANDLE listHandle,
 CWBSO_ERR_HANDLE errorHandle);

Parameters
CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error that was returned by a previous call to CWBSO_CreateErrorHandle. When the
value that is returned by this API is CWBSO_ERROR_OCCURRED, the error handle may be used to
retrieve the error message text or display the error to the user.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

Windows Application Package: Programming 399

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED
An error occurred. Use the error for more information.

Usage
CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by
CWBSO_CreateListHandle must be passed as input to this API. CWBSO_CreateErrorHandle must
be called prior to calling this API. The error handle that is returned by CWBSO_CreateErrorHandle
must be passed as input to this API. When the list is no longer needed, the calling program is responsible
for doing the following:

• Call CWBSO_CloseList to close the list and free allocated resources.
• Call CWBSO_DeleteListHandle to free up resources that are allocated on the client.

CWBSO_ReadListProfile
Use the CWBSO_ReadListProfile API with this product.

Purpose
Reads the filter information for the list from the Windows Registry. The application name must have been
set using the CWBSO_SetListProfile API. This API should be called prior to opening the list by using
the CWBSO_OpenList or CWBSO_DisplayList APIs.

Syntax

unsigned int CWB_ENTRY CWBSO_ReadListProfile(
 CWBSO_LIST_HANDLE listHandle,
 CWBSO_ERR_HANDLE errorHandle);

Parameters
CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object that was created by a previous call to CWBSO_CreateErrorHandle.
When the value that is returned by this API is CWBSO_ERROR_OCCURRED, the error handle may be
used to retrieve the error message text or display the error to the user.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

400 IBM i: Windows Application Package: Programming

CWBSO_SYSTEM_NAME_DEFAULTED
No system name was specified on the CWBSO_CreateListHandle call for the list.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED
An error occurred. Use the error handle for more information.

Usage
CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by
CWBSO_CreateListHandle must be passed as input to this API. CWBSO_SetListProfile must be
called prior to calling this API. This API has no effect on a list that has been opened. In order for the filter
criteria in the profile to take effect, the list must be opened after calling this API.

CWBSO_RefreshObj
Use the CWBSO_RefreshObj API with this product.

Purpose
Refreshes an object's IBM i attributes. Refreshes all open System Object Access views of the object.

Syntax

unsigned int CWB_ENTRY CWBSO_RefreshObj(
 CWBSO_OBJ_HANDLE objectHandle,
 HWND hWnd ,
 CWBSO_ERR_HANDLE errorHandle);

Parameters
CWBSO_OBJ_HANDLE objectHandle - input

A handle to an object that was returned by a previous call to CWBSO_GetObjHandle or
CWBSO_CopyObjHandle.

HWND hWnd - input
Handle of window to receive the focus after the refresh is complete. This parameter may be NULL. If
this API is being called from an application window procedure, then the current window handle should
be supplied. Otherwise, focus will shift to the most recently opened System Object Access window if
one is open.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object. If an error occurs that there is error text for, this handle may be used to
retrieve the error message and message help.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_OBJ_HANDLE
The object handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

Windows Application Package: Programming 401

CWBSO_ERROR_OCCURRED
An error occurred. Use error handle for more information.

Usage
CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be called prior to calling this API. The object
handle that is returned by CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be passed as input
to this API. CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that is
returned by CWBSO_CreateErrorHandle must be passed as input to this API.

CWBSO_ResetParmObj
Use the CWBSO_ResetParmObj API with this product.

Purpose
Resets a parameter object to remove any attribute values from the object.

Syntax

unsigned int CWB_ENTRY CWBSO_ResetParmObj(
 CWBSO_PARMOBJ_HANDLE parmObjHandle);

Parameters
CWBSO_PARMOBJ_HANDLE parmObjHandle - input

A handle to a parameter object that was returned by a previous call to
CWBSO_CreateParmObjHandle.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_PARMOBJ_HANDLE
The parameter object handle is not valid.

Usage
CWBSO_CreateParmObjHandle must be called prior to calling this API. The parameter object handle
that is returned by CWBSO_CreateParmObjHandle must be passed as input to this API.

CWBSO_SetListFilter
Use the CWBSO_SetListFilter API with this product.

Purpose
Sets a filter value for a list. Depending on the type of list, various filter values may be set. The filter values
control which objects will be included in the list when the list is built by a call to CWBSO_OpenList.

Syntax

unsigned int CWB_ENTRY CWBSO_SetListFilter(
 CWBSO_LIST_HANDLE listHandle,
 unsigned short usFilterID,
 char far* lpszValue);

402 IBM i: Windows Application Package: Programming

Parameters
CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

unsigned short usFilterID - input
The filter identifier specifies which portion of the filter to set. The valid values for this parameter
depend on the type of objects in the list. See the appropriate header files for the valid values:

• cwbsojob.h
• cwbsomsg.h
• cwbsoprt.h
• cwbsosfl.h

char far* lpszValue - input
The value for the filter attribute. If multiple items are specified, they must be separated by commas.
Filter value items that specify system object names must be in uppercase. Qualified object names
must be in the form of library/object. Qualified job names must be in the form of job-number/user/
job-name. Filter value items specifying special values (beginning with asterisk) must be specified in
upper case. See “SOA attribute special values” on page 410 for information on the special values that
may be supplied for each type of object.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_FILTER_ID
The filter ID specified is not valid for the type of list.

Usage
CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by
CWBSO_CreateListHandle must be passed as input to this API. This API has no effect on a list that has
been opened. In order for the filter criteria to take effect, the list must be opened after calling this API.
Caution should be used when requesting complex filters as list performance may be adversely affected.

CWBSO_SetListProfile
Use the CWBSO_SetListProfile API with this product.

Purpose
Sets the profile name by adding the application name into the Windows Registry. Use
CWBSO_ReadListProfile to read the filter information from the Registry prior to displaying a list. Use
CWBSO_WriteListProfile to write the updated filter information to the Registry before deleting the
list. If this API is not called, CWBSO_ReadListProfile and CWBSO_WriteListProfile will have no
effect.

Syntax

unsigned int CWB_ENTRY CWBSO_SetListProfile(
 CWBSO_LIST_HANDLE listHandle,
 char far* lpszKey);

Windows Application Package: Programming 403

Parameters
CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or to
CWBSO_CreateListHandleEx.

char far* lpszKey - input
A long pointer to a string that will be used as the key in the Windows Registry for the list. This name
could be the name of the application.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_PROFILE_NAME
The profile name that is specified is not valid.

Usage
CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by
CWBSO_CreateListHandle must be passed as input to this API.

CWBSO_SetListSortFields
Use the CWBSO_SetListSortFields API with this product.

Purpose
Sets the sort criteria for a list. The sort criteria determines the order objects will appear in the list when
the list is built by a call to CWBSO_OpenList. This API is only valid for lists of jobs and lists of spooled
files. This API is not allowed for lists of messages and lists of printers.

Syntax

unsigned int CWB_ENTRY CWBSO_SetListSortFields(
 CWBSO_LIST_HANDLE listHandle,
 unsigned short far* lpusSortIDs,
 unsigned short usCount);

Parameters
CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

unsigned short far* lpusSortIDs - input
A long pointer to an array of sort column identifiers. The sort IDs specified will replace the current sort
criteria for the list. The valid values for this parameter depend on the type of objects in the list. See
the appropriate header files for the valid values:

• cwbsojob.h
• cwbsosfl.h

Note: If multiple sort IDs are specified, the order in which they appear in the array defines the order in
which sorting will take place.

404 IBM i: Windows Application Package: Programming

unsigned short usCount - input
The number of sort column identifiers specified.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_SORT_ID
A sort ID specified is not valid for the type of list.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_SORT_NOT_ALLOWED
Sorting is not allowed for this type of list.

Usage
CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by
CWBSO_CreateListHandle must be passed as input to this API. This API has no effect on a list that has
been opened. In order for the sort criteria to take effect, the list must be opened after calling this API.
Caution should be used when requesting complex sorts as list performance may be adversely affected.

CWBSO_SetListTitle
Use the CWBSO_SetListTitle API with this product.

Purpose
Sets the title for a list. The title is displayed in the title bar of the window when the list is displayed by a
call to CWBSO_DisplayList.

Syntax

unsigned int CWB_ENTRY CWBSO_SetListTitle(
 CWBSO_LIST_HANDLE listHandle ,
 char far* lpszTitle);

Parameters
CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

char far* lpszTitle - input
A long pointer to a string to be used for the list title. The length of the string must be less than or equal
to 79.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

Windows Application Package: Programming 405

CWBSO_BAD_TITLE
The title that is specified is not valid.

Usage
CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by
CWBSO_CreateListHandle must be passed as input to this API.

CWBSO_SetObjAttr
Use the CWBSO_SetObjAttr API with this product.

Purpose
Sets the value of one or more attributes of an object.

Syntax

unsigned int CWB_ENTRY CWBSO_SetObjAttr(
 CWBSO_OBJ_HANDLE objectHandle,
 CWBSO_PARMOBJ_HANDLE parmObjHandle,
 unsigned short far* lpusErrorIndex,
 CWBSO_ERR_HANDLE errorHandle);

Parameters
CWBSO_OBJ_HANDLE objectHandle - input

A handle to an object that was returned by a previous call to CWBSO_GetObjHandle or
CWBSO_CopyObjHandle.

CWBSO_PARMOBJ_HANDLE parmObjHandle - input
A handle to a parameter object that was returned by a previous call to
CWBSO_CreateParmObjHandle. The parameter object contains the attributes that are to be
changed for the object.

unsigned short far* lpusErrorIndex - output
If an error occurred, this value will be set to the index of the parameter item that caused the error. The
first parameter item is 1. This value will be set to 0 if none of the parameter items were in error.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object. If an error occurs that there is error text for, this handle may be used to
retrieve the error message and message help.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_OBJECT_HANDLE
The object handle that is specified is not valid.

CWBSO_BAD_PARMOBJ_HANDLE
The parameter object handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_CANNOT_CHANGE_ATTRIBUTE
Attribute is not changeable at this time.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

406 IBM i: Windows Application Package: Programming

CWBSO_ERROR_OCCURRED
An error occurred. Use error handle for more information.

Usage
CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be called prior to calling this API. The object
handle that is returned by CWBSO_GetObjHandle or CWBSO_CopyObjHandle must be passed as input
to this API. CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that is
returned by CWBSO_CreateErrorHandle must be passed as input to this API.

CWBSO_SetParameter
Use the CWBSO_SetParameter API with this product.

Purpose
Sets the value of an attribute of an object. Multiple calls may be made to this API prior to calling
CWBSO_SetObjAttr. This allows you to change several attributes for a specific object with one call to
CWBSO_SetObjAttr.

Syntax

unsigned int CWB_ENTRY CWBSO_SetParameter(
 CWBSO_PARMOBJ_HANDLE parmObjHandle,
 unsigned short usAttributeID,
 char far* lpszValue,
 CWBSO_ERR_HANDLE errorHandle);

Parameters
CWBSO_PARMOBJ_HANDLE parmObjHandle - input

A handle to a parameter object that was returned by a previous call to
CWBSO_CreateParmObjHandle.

unsigned short usAttributeID - input
The attribute ID for the parameter to be set. The valid values for this parameter depend on the type of
object. See the appropriate header files for the valid values:

• cwbsojob.h
• cwbsomsg.h
• cwbsoprt.h
• cwbsosfl.h

char far* lpszValue - input
A long pointer to an attribute value. Note that only ASCIIZ strings are accepted. Binary values must be
converted to strings by using the appropriate library function. See “SOA attribute special values” on
page 410 for information on the special values that may be supplied for each type of object.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object. If an error occurs that there is error text for, this handle may be used to
retreive the error message and message help.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_PARMOBJ_HANDLE
The parameter object handle that is specified is not valid.

Windows Application Package: Programming 407

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED
An error occurred. Use error handle for more information.

Usage
CWBSO_CreateParmObjHandle must be called prior to calling this API. The parameter object
handle that is returned by CWBSO_CreateParmObjHandle must be passed as input to this API.
CWBSO_CreateErrorHandle must be called prior to calling this API. The error handle that is returned
by CWBSO_CreateErrorHandle must be passed as input to this API. Calling this API does NOT update
an IBM i object's attributes. You must call CWBSO_SetObjAttr to actually update the IBM i attribute
value or values for the specified object.

CWBSO_WaitForObj
Use the CWBSO_WaitForObj API with this product.

Purpose
Waits until an object is available in a list that is being built asynchronously.

Syntax

unsigned int CWB_ENTRY CWBSO_WaitForObj(
 CWBSO_LIST_HANDLE listHandle,
 unsigned long ulPosition,
 CWBSO_ERR_HANDLE errorHandle);

Parameters
CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

unsigned long ulPosition - input
The position of the desired object within the list. NOTE: The first object in a list is considered position
0.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object. If an error occurs that there is error text for, this handle may be used to
retrieve the error message and message help.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_BAD_LIST_POSITION
The position in list that is specified does not exist.

408 IBM i: Windows Application Package: Programming

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

CWBSO_ERROR_OCCURRED
An error occurred. Use error handle for more information.

Usage
CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by
CWBSO_CreateListHandle must be passed as input to this API. CWBSO_CreateErrorHandle must
be called prior to calling this API. The error handle that is returned by CWBSO_CreateErrorHandle
must be passed as input to this API.

CWBSO_WriteListProfile
Use the CWBSO_WriteListProfile API with this product.

Purpose
Writes the filter information for the list to the specified key in the Windows registry. The key name
must previously have been set using the CWBSO_SetListProfile API. This API should be called
before deleting the list. This saves any filter criteria that was changed by the user during the
CWBSO_DisplayList API. Filter information is saved in the registry by the system and by type of list. For
example, if your application accesses objects from two different systems, and displays all four types of
lists, you would have eight different sections in the registry that specify filter information.

Syntax

unsigned int CWB_ENTRY CWBSO_WriteListProfile(
 CWBSO_LIST_HANDLE listHandle,
 CWBSO_ERR_HANDLE errorHandle);

Parameters
CWBSO_LIST_HANDLE listHandle - input

A handle to a list that was returned by a previous call to CWBSO_CreateListHandle or
CWBSO_CreateListHandleEx.

CWBSO_ERR_HANDLE errorHandle - input
A handle to an error object that was created by a previous call to CWBSO_CreateErrorHandle.
When the value that is returned by this API is CWBSO_ERROR_OCCURRED, the error handle may be
used to retrieve the error message text or display the error to the user.

Return Codes
The following list shows common return values.

CWBSO_NO_ERROR
No error occurred.

CWBSO_BAD_LIST_HANDLE
The list handle that is specified is not valid.

CWBSO_BAD_ERR_HANDLE
The error handle that is specified is not valid.

CWBSO_SYSTEM_NAME_DEFAULTED
No system name was specified on the CWBSO_CreateListHandle call for the list.

CWBSO_LOW_MEMORY
Not enough memory is available for the request.

Windows Application Package: Programming 409

CWBSO_ERROR_OCCURRED
An error occurred. Use the error for more information.

Usage
CWBSO_CreateListHandle must be called prior to calling this API. The list handle that is returned by
CWBSO_CreateListHandle must be passed as input to this API. CWBSO_SetListProfile must be
called prior to calling this API.

SOA attribute special values
The topics listed below provide a description of special values that are returned by CWBSO_GetObjAttr,
and specified on CWBSO_SetObjAttr, for each type of object. In addition, any special values that are
specified on CWBSO_SetListFilter for each type of list object are discussed.

Special considerations:
• For attributes that are numeric, it is common practice for IBM i APIs to return negative numeric values

to indicate which special value (if any) an object attribute contains. System Object Access automatically
maps these negative numbers to their corresponding special value string. For example, the Retrieve
Spooled File Attributes (QUSRSPLA) API returns "-1" for page rotation if output reduction is
performed automatically. CWBSO_GetObjAttr returns “*AUTO”.

• Some list filter criteria accept multiple values. For example, it is possible to filter a list of printers on
multiple printer names. In such cases, commas should separate the supplied values.

Where to find additional information about attribute special values:
See the IBM i Application programming interfaces topic in the IBM i Information Center.

Job attributes
System Object Access uses the List Job (QUSLJOB) and Retrieve Job Information
(QUSRJOBI) IBM i APIs to retrieve attributes for jobs.

The possible special values are the same as those that are documented in the IBM i APIs: Work
Management APIs topic in the IBM i Information Center. The following special value mappings are not
documented explicitly:

CWBSO_JOB_CpuTimeUsed
If the field is not large enough to hold the actual result, QUSRJOBI returns -1. System Object Access
returns “++++”.

CWBSO_JOB_MaxCpuTimeUsed,

CWBSO_JOB_MaxTemporaryStorage,

CWBSO_JOB_DefaultWaitTime
If the value is *NOMAX, QUSRJOBI returns -1. System Object Access returns “*NOMAX”.

CWBSO_SetListFilter accepts all special values that are supported by the List Job (QUSLJOB)
API.

Message attributes
System Object Access uses the List Nonprogram Messages (QMHLSTM) IBM i API to retrieve
attributes for messages.

The possible special values are the same as those that are documented in the IBM i APIs: Message
Handling APIs topic in the IBM i Information Center.

CWBSO_SetListFilter accepts the special values that are supported by the List Nonprogram
Messages (QMHLSTM) API for Severity Criteria. In addition, a 10-character user name may be supplied,

410 IBM i: Windows Application Package: Programming

by specifying the CWBSO_MSGF_UserName filter ID. “*CURRENT” may be used to obtain a list of
messages for the current user.

Printer attributes
System Object Access uses IBM i APIs to retrieve attributes for printer objects.

A printer is a “logical” object that is actually a combination of a device description, a writer, and an output
queue. The attributes and their possible values are as follows.

CWBSO_PRT_AdvancedFunctionPrinting
Whether the printer device supports Advanced Function Printing (AFP).
*NO

The printer device does not support Advanced Function Printing.
*YES

The printer device supports Advanced Function Printing.
CWBSO_PRT_AllowDirectPrinting

Whether the printer writer allows the printer to be allocated to a job that prints directly to a printer.
*NO

Direct printing is not allowed
*YES

Direct printing is allowed.
CWBSO_PRT_BetweenCopiesStatus

Whether the writer is between copies of a multiple copy spooled file. The possible values are Y (yes)
or N (no).

CWBSO_PRT_BetweenFilesStatus
Whether the writer is between spooled files. The possible values are Y (yes) or N (no).

CWBSO_PRT_ChangesTakeEffect
The time at which the pending changes to the writer take effect. Possible values are:
*NORDYF

When all the current eligible files are printed.
*FILEEND

When the current spooled file is done printing.
blank

No pending changes to the writer.
CWBSO_PRT_CopiesLeftToProduce

The number of copies that are left to be printed. This field is set to 0 when no file is printing.
CWBSO_PRT_CurrentPage

The page number in the spooled file that the writer is currently processing. The page number shown
may be lower or higher than the actual page number being printed because of buffering done by the
system. This field is set to 0 when no spooled file is printing.

CWBSO_PRT_Description
The text description of the printer device.

CWBSO_PRT_DeviceName
The name of the printer device.

CWBSO_PRT_DeviceStatus
The status of the printer device. Possible values are the same as the device status that is returned by
the Retrieve Configuration Status (QDCRCFGS) API.

CWBSO_PRT_EndAutomatically
When to end the writer if it is to end automatically.
*NORDYF

When no files are ready to print on the output queue from which the writer is selecting files to be
printed.

Windows Application Package: Programming 411

*FILEEND
When the current spooled file has been printed.

*NO
The writer will not end, but it will wait for more spooled files.

CWBSO_PRT_EndPendingStatus
Whether an End Writer (ENDWTR) command has been issued for this writer. Possible values are:
N

No ENDWTR command was issued.
I

*IMMED: The writer ends as soon as its output buffers are empty.
C

*CNTRLD: The writer ends after the current copy of the spooled file has been printed.
P

*PAGEEND: The writer ends at the end of the page.
CWBSO_PRT_FileName

The name of the spooled file that the writer is currently processing. This field is blank when no file is
printing.

CWBSO_PRT_FileNumber
The number of the spooled file that the writer is currently processing. This field is set to 0 when no
spooled file is printing.

CWBSO_PRT_FormsAlignment
The time at which the forms alignment message will be sent. Possible values are:
*WTR

The writer determines when the message is sent.
*FILE

Control of the page alignment is specified by each file.
CWBSO_PRT_FormType

The type of form that is being used to print the spooled file. Possible values are:
*ALL

The writer is started with the option to print all spooled files of any form type.
*FORMS

The writer is started with the option to print all the spooled files with the same form type before
using a different form type.

*STD
The writer is started with the option to print all the spooled files with a form type of *STD.

form type name
The writer is started with the option to print all the spooled files with the form type you specified.

CWBSO_PRT_FormTypeNotification
Message option for sending a message to the message queue when this form is finished. Possible
values are:
*MSG

A message is sent to the message queue.
*NOMSG

No message is sent to the message queue.
*INFOMSG

An informational message is sent to the message queue.
*INQMSG

An inquiry message is sent to the message queue.

412 IBM i: Windows Application Package: Programming

CWBSO_PRT_HeldStatus
Whether the writer is held. The possible values are Y (yes) or N (no).

CWBSO_PRT_HoldPendingStatus
Whether a Hold Writer (HLDWTR) command has been issued for this writer. Possible values are:
N

No HLDWTR command was issued.
I

*IMMED: The writer is held as soon as its output buffers are empty.
C

*CNTRLD: The writer is held after the current copy of the file has been printed.
P

*PAGEEND: The writer is held at the end of the page.
CWBSO_PRT_JobName

The name of the job that created the spooled file which the writer is currently processing. This field is
blank when no spooled file is printing.

CWBSO_PRT_JobNumber
The number of the job that created the spooled file which the writer currently is processing. This field
is blank when no spooled file is printing.

CWBSO_PRT_MessageKey
The key to the message that the writer is waiting for a reply. This field will be blank when the writer is
not waiting for a reply to an inquiry message.

CWBSO_PRT_MessageQueueLibrary
The name of the library that contains the message queue.

CWBSO_PRT_MessageQueueName
The name of the message queue that this writer uses for operational messages.

CWBSO_PRT_MessageWaitingStatus
Whether the writer is waiting for a reply to an inquiry message. The possible values are Y (yes) or N
(no).

CWBSO_PRT_NextFormType
The name of the next form type to be printed. Possible values are:
*ALL

The writer is changed with the option to print all spooled files of any form type.
*FORMS

The writer is changed with the option to print all the spooled files with the same form type before
using a different form type.

*STD
The writer is changed with the option to print all the spooled files with a form type of *STD.

form type name
The writer is changed with the option to print all the spooled files with the form type name you
specified.

blank
No change has been made to this writer.

CWBSO_PRT_NextFormTypeNotification
The message option for sending a message to the message queue when the next form type is finished.
Possible values are:
*MSG

A message is sent to the message queue.
*NOMSG

No message is sent to the message queue.

Windows Application Package: Programming 413

*INFOMSG
An informational message is sent to the message queue.

*INQMSG
An inquiry message is sent to the message queue.

blank
No change is pending.

CWBSO_PRT_NextOutputQueueLibrary
The name of the library that contains the next output queue. This field is blank if no changes have
been made to the writer.

CWBSO_PRT_NextOutputQueueName
The name of the next output queue to be processed. This field is blank if no changes have been made
to the writer.

CWBSO_PRT_NextSeparatorDrawer
This value indicates the drawer from which to take the separator pages if there is a change to the
writer. Possible values are:
*FILE

Separator pages print from the same drawer that the spooled file prints from. If you specify a
drawer different from the spooled file that contains colored or different type paper, the page
separator is more identifiable.

*DEVD
Separator pages print from the separator drawer that is specified in the printer device description.

empty string
No pending change to the writer.

1
The first drawer.

2
The second drawer.

3
The third drawer.

CWBSO_PRT_NextSeparators
The next number of separator pages to be printed when the change to the writer takes place. Possible
values are:
*FILE

The number of separator pages is specified by each file.
empty string

No pending change to the writer.
number of separators

The number of separator pages to be printed.
CWBSO_PRT_NumberOfSeparators

The number of separator pages to be printed. Possible values are:
*FILE

The number of separator pages is specified by each file.
Number of separators

The number of separator pages to be printed.
CWBSO_PRT_OnJobQueueStatus

Whether the writer is on a job queue and, therefore, is not currently running. The possible values are Y
(yes) or N (no).

CWBSO_PRT_OutputQueueLibrary
The name of the library that contains the output queue from which spooled files are selected for
printing.

414 IBM i: Windows Application Package: Programming

CWBSO_PRT_OutputQueueName
The name of the output queue from which spooled files are being selected for printing.

CWBSO_PRT_OutputQueueStatus
The status of the output queue from which spooled files are being selected for printing. Possible
values are:
H

The output queue is held.
R

The output queue is released.
CWBSO_PRT_PrinterDeviceType

The type of the printer that is being used to print the spooled file. Valid values are:
*SCS

SNA (Systems Network Architecture) character stream
*IPDS

Intelligent Printer Data Stream
CWBSO_PRT_SeparatorDrawer

Identifies the drawer from which the job and file separator pages are to be taken. Possible values are:
*FILE

The separator page prints from the same drawer that the file is printed from. If you specify a
drawer different from the file that contains colored or different type paper, the page separator is
more identifiable.

*DEVD
The separator pages will print from the separator drawer that is specified in the printer device
description.

1
The first drawer.

2
The second drawer.

3
The third drawer.

CWBSO_PRT_StartedByUser
The name of the user that started the writer.

CWBSO_PRT_Status
The overall status of the logical printer. This field is derived from the printer device status (from
the Retrieve Configuration Status QDCRCFGS API), the output queue status (from the
List Printer and Writer Status and the XPF macro) and writer status (from the Retrieve Writer
Information, QSPRWTRI, API). Possible values are:
1

Unavailable
2

Powered off or not yet available
3

Stopped
4

Message waiting
5

Held
6

Stop (pending)

Windows Application Package: Programming 415

7
Hold (pending)

8
Waiting for printer

9
Waiting to start

10
Printing

11
Waiting for printer output

12
Connect pending

13
Powered off

14
Unusable

15
Being serviced

999
Unknown

CWBSO_PRT_TotalCopies
The total number of copies to be printed.

CWBSO_PRT_TotalPages
The total number of pages in the spooled file. Possible values are:
number

The number of pages in the spooled file.
0

No spooled file is printing.
CWBSO_PRT_User

The name of the user who created the spooled file that the writer is currently processing. This field is
blank when no file is printing.

CWBSO_PRT_UserSpecifiedData
The user-specified data that describe the file that the writer is currently processing. This field is blank
when no file is printing.

CWBSO_PRT_WaitingForDataStatus
Whether the writer has written all the data that is currently in the spooled file and is waiting for more
data. Possible values are:
N

The writer is not waiting for more data.
Y

The writer has written all the data currently in the spooled file and is waiting for more data. This
condition occurs when the writer is producing an open spooled file with SCHEDULE(*IMMED) that
is specified.

CWBSO_PRT_WaitingForDeviceStatus
Whether the writer is waiting to get the device from a job that is printing directly to the printer.
N

The writer is not waiting for the device.
Y

The writer is waiting for the device

416 IBM i: Windows Application Package: Programming

CWBSO_PRT_WriterJobName
The job name of the printer writer.

CWBSO_PRT_WriterJobNumber
The job number of the printer writer.

CWBSO_PRT_WriterJobUser
The name of the system user.

CWBSO_PRT_WriterStarted
Indication of whether a writer is started for this printer. Possible values are:
0

No writer is started
1

Writer is started
CWBSO_PRT_WriterStatus

The status of the writer for this printer. Possible values are:
X'01'

Started
X'02'

Ended
X'03'

On job queue
X'04'

Held
X'05'

Waiting on message
CWBSO_PRT_WritingStatus

Whether the printer writer is in writing status. The possible values are:
Y

The writer is in writing status.
N

The writer is not in writing status.
S

The writer is writing the file separators.

System Object Access accepts a comma-separated list of printer names. Up to 100 printer names may be
specified. Supply a special value of “*ALL” to request a list of all IBM i printers.

Printer output attributes
System Object Access uses the List Spooled Files (QUSLSPL) and Retrieve Spooled File
Attributes (QUSRSPLA) IBM i APIs to retrieve attributes for printer output.

The possible special values are the same as those that are documented in the IBM i APIs: Spooled
File APIs topic in the IBM i Information Center. The following special value mappings are not explicitly
documented:

CWBSO_SFL_StartingPage
If the ending page value is to be used, QUSRSPLA returns -1. System Object Access returns
“*ENDPAGE”.

CWBSO_SFL_EndingPage
If the last page is to be the ending page, QUSRSPLA returns 0 or 2147483647. System Object Access
returns “*END”.

CWBSO_SFL_MaximumRecords
If there is no maximum, QUSRSPLA returns 0. System Object Access returns “*NOMAX”.

Windows Application Package: Programming 417

CWBSO_SFL_PageRotation
If no rotation is done, QUSRSPLA returns 0. System Object Access returns “*NONE”.

An undocumented API is used to retrieve the printer device name or names for a spooled file. The
attribute and its possible values are described below.

CWBSO_SFL_DeviceNames
The name of the printer device that will print the file. If the printer output is assigned to more than one
printer device, this field contains all of the printer names in the group of printers. Possible values are:
printer name

The name of the printer to which the printer output is assigned.
list of printer names

The names of the printers in the group to which the printer output is assigned. Commas will
separate the printer names.

empty string
The printer output is not assigned to a printer or group of printers.

CWBSO_SetListFilter accepts all special values that are supported by the List Spooled Files
(QUSLSPL) API.

TCP/IP interfaces attributes
System Object Access uses the IBM i API List Network Interfaces (QtocLstNetIfc) to retrieve
attributes for TCP/IP interfaces.

To retrieve attributes used by System Object Access for TCP/IP interfaces use one of the following APIs.

• Change IPv4 Interface (QTOCC4IF) API

– This API is documented by a program temporary fix (PTF). For the PTF details, enter SI17284 in the
search function on the following page:

- Product Service Packs (http://www.ibm.com/servers/eserver/iseries/access/casp.htm)
• List Network Interfaces (QtocLstNetIfc) API

Ethernet lines attributes
You can find information about Ethernet lines in the Configuration APIs topic.

See the General Configuration APIs topic in the IBM i Information Center.

Token-ring lines attributes
You can find information about token-ring lines in the Configuration APIs topic.

See the General Configuration APIs topic in the IBM i Information Center.

Hardware resources attributes
You can find information about hardware resources in the Hardware Resource APIs topic.

See the Hardware Resource APIs topic in the IBM i Information Center.

Software products attributes
You can find information about software products in the Software Product APIs topic.

See the Software Product APIs topic in the IBM i Information Center.

TCP/IP routes attributes
System Object Access uses the IBM i API TCP/IP route (QTOCRTEU) to retrieve attributes for TCP/IP
routes.

The possible special values are:

CWBSO_RTE_TCPIPNetworkName
CWBSO_RTE_InternetAddress

418 IBM i: Windows Application Package: Programming

CWBSO_RTE_BinaryInternetAddress
*RTVxxxLST only - The list of routes returned immediately will follow the I/O Variable header. The
interface structure will repeat for each route returned.

CWBSO_RTE_SubnetMask
CWBSO_RTE_BinarySubnetMask

*RTVxxxLST only - The list of routes returned immediately will follow the I/O Variable header. The
interface structure will repeat for each route returned.

CWBSO_RTE_NextHopAddress
CWBSO_RTE_BinaryNextHop

*RTVxxxLST only - The list of routes returned immediately will follow the I/O Variable header. The
interface structure will repeat for each route returned.

CWBSO_RTE_BindingInterface
CWBSO_RTE_BinaryBindingIP

*RTVxxxLST only - The list of routes returned immediately will follow the I/O Variable header. The
interface structure will repeat for each route returned.

CWBSO_RTE_MaximumTransmissionUnit
CWBSO_RTE_TypeOfService

• 1=Normal
• 2=Minmum delay
• 3=Maximum throughput
• 4=Maximum reliability
• 5=Minimum cost

CWBSO_RTE_RoutePrecedence
CWBSO_RTE_RIPMetric
CWBSO_RTE_RIPRedistribution

• 1=Yes
• 2=No

CWBSO_RTE_PPPProfile
Not valid for *xxxRTE

CWBSO_RTE_PPPCallerUserid
Not valid for *xxxRTE

CWBSO_RTE_PPPCallerIP
Not valid for *xxxRTE

CWBSO_RTE_ApplicationDefined

Users and groups attributes
Use this list to identify valid IBM i users and groups special values.

• CWBSO_USR_ProfileName
• CWBSO_USR_ProfileOrGroupIndicator
• CWBSO_USR_GroupHasMembers
• CWBSO_USR_TextDescription
• CWBSO_USR_PreviousSignonDate
• CWBSO_USR_PreviousSignonTime
• CWBSO_USR_SignonAttemptsNotValid
• CWBSO_USR_Status
• CWBSO_USR_PasswordChangeDate

Windows Application Package: Programming 419

• CWBSO_USR_NoPasswordIndicator
• CWBSO_USR_PasswordExpirationInterval
• CWBSO_USR_DatePasswordExpires
• CWBSO_USR_DaysUntilPasswordExpires
• CWBSO_USR_SetPasswordToExpire
• CWBSO_USR_DisplaySignonInformation
• CWBSO_USR_UserClassName
• CWBSO_USR_AllObjectAccess
• CWBSO_USR_SecurityAdministration
• CWBSO_USR_JobControl
• CWBSO_USR_SpoolControl
• CWBSO_USR_SaveAndRestore
• CWBSO_USR_SystemServiceAccess
• CWBSO_USR_AuditingControl
• CWBSO_USR_SystemConfiguration
• CWBSO_USR_GroupProfileName
• CWBSO_USR_Owner
• CWBSO_USR_GroupAuthority
• CWBSO_USR_LimitCapabilities
• CWBSO_USR_GroupAuthorityType
• CWBSO_USR_SupplementalGroups
• CWBSO_USR_AssistanceLevel
• CWBSO_USR_CurrentLibraryName
• CWBSO_USR_InitialMenuName
• CWBSO_USR_InitialMenuLibraryName
• CWBSO_USR_InitialProgramName
• CWBSO_USR_InitialProgramLibraryName
• CWBSO_USR_LimitDeviceSessions
• CWBSO_USR_KeyboardBuffering
• CWBSO_USR_MaximumAllowedStorage
• CWBSO_USR_StorageUsed
• CWBSO_USR_HighestSchedulingPriority
• CWBSO_USR_JobDescriptionName
• CWBSO_USR_JobDescriptionNameLibrary
• CWBSO_USR_AccountingCode
• CWBSO_USR_MessageQueueName
• CWBSO_USR_MessageQueueLibraryName
• CWBSO_USR_MessageQueueDeliveryMethod
• CWBSO_USR_MessageQueueSeverity
• CWBSO_USR_OutputQueue
• CWBSO_USR_OutputQueueLibrary
• CWBSO_USR_PrintDevice
• CWBSO_USR_SpecialEnvironment

420 IBM i: Windows Application Package: Programming

• CWBSO_USR_AttentionKeyHandlingProgramName
• CWBSO_USR_AttentionKeyHandlingProgramLibrary
• CWBSO_USR_LanguageID
• CWBSO_USR_CountryID
• CWBSO_USR_CharacterCodeSetID
• CWBSO_USR_ShowParameterKeywords
• CWBSO_USR_ShowAllDetails
• CWBSO_USR_DisplayHelpOnFullScreen
• CWBSO_USR_ShowStatusMessages
• CWBSO_USR_DoNotShowStatusMessages
• CWBSO_USR_ChangeDirectionOfRollkey
• CWBSO_USR_SendMessageToSpoolFileOwner
• CWBSO_USR_SortSequenceTableName
• CWBSO_USR_SortSequenceTableLibraryName
• CWBSO_USR_DigitalCertificateIndicator
• CWBSO_USR_CharacterIDControl
• CWBSO_USR_ObjectAuditValue
• CWBSO_USR_CommandUsage
• CWBSO_USR_ObjectCreation
• CWBSO_USR_ObjectDeletion
• CWBSO_USR_JobTasks
• CWBSO_USR_ObjectManagement
• CWBSO_USR_OfficeTasks
• CWBSO_USR_ProgramAdoption
• CWBSO_USR_SaveAndRestoreTasks
• CWBSO_USR_SecurityTasks
• CWBSO_USR_ServiceTasks
• CWBSO_USR_SpoolManagement
• CWBSO_USR_SystemManagement
• CWBSO_USR_OpticalTasks
• CWBSO_USR_UserIDNumber
• CWBSO_USR_GroupIDNumber
• CWBSO_USR_DoNotSetAnyJobAttributes
• CWBSO_USR_UseSystemValue
• CWBSO_USR_CodedCharacterSetID
• CWBSO_USR_DateFormat
• CWBSO_USR_DateSeparator
• CWBSO_USR_SortSequenceTable
• CWBSO_USR_TimeSeparator
• CWBSO_USR_DecimalFormat
• CWBSO_USR_HomeDirectoryDelimiter
• CWBSO_USR_HomeDirectory
• CWBSO_USR_Locale

Windows Application Package: Programming 421

• CWBSO_USR_IndirectUser
• CWBSO_USR_PrintCoverPage
• CWBSO_USR_MailNotification
• CWBSO_USR_UserID
• CWBSO_USR_LocalDataIndicator
• CWBSO_USR_UserAddress
• CWBSO_USR_SystemName
• CWBSO_USR_SystemGroup
• CWBSO_USR_UserDescription
• CWBSO_USR_FirstName
• CWBSO_USR_PreferredName
• CWBSO_USR_MiddleName
• CWBSO_USR_LastName
• CWBSO_USR_FullName
• CWBSO_USR_JobTitle
• CWBSO_USR_CompanyName
• CWBSO_USR_DepartmentName
• CWBSO_USR_NetworkUserID
• CWBSO_USR_PrimaryTelephoneNumber
• CWBSO_USR_SecondaryTelephoneNumber
• CWBSO_USR_FaxNumber
• CWBSO_USR_Location
• CWBSO_USR_BuildingNumber
• CWBSO_USR_OfficeNumber
• CWBSO_USR_MailingAddress
• CWBSO_USR_MailingAddress2
• CWBSO_USR_MailingAddress3
• CWBSO_USR_MailingAddress4
• CWBSO_USR_CCMailAddress
• CWBSO_USR_CCMailComment
• CWBSO_USR_MailServerFrameworkServiceLevel
• CWBSO_USR_PreferredAddressFieldName
• CWBSO_USR_PreferredAddressProductID
• CWBSO_USR_PreferredAddressTypeValue
• CWBSO_USR_PreferredAddressTypeName
• CWBSO_USR_PreferredAddress
• CWBSO_USR_ManagerCode
• CWBSO_USR_SMTPUserID
• CWBSO_USR_SMTPDomain
• CWBSO_USR_SMTPRoute
• CWBSO_USR_GroupMemberIndicator

Note: The following attributes are meaningful only when Lotus Notes® is installed on the IBM i platform.

• CWBSO_USR_NotesServerName

422 IBM i: Windows Application Package: Programming

• CWBSO_USR_NotesCertifierID
• CWBSO_USR_MailType
• CWBSO_USR_NotesMailFileName
• CWBSO_USR_CreateMailFiles
• CWBSO_USR_NotesForwardingAddress
• CWBSO_USR_SecurityType
• CWBSO_USR_LicenseType
• CWBSO_USR_MinimumNotesPasswordLength
• CWBSO_USR_UpdateExistingNotesUser
• CWBSO_USR_NotesMailServer
• CWBSO_USR_LocationWhereUserIDIsStored
• CWBSO_USR_ReplaceExistingNotesID
• CWBSO_USR_NotesComment
• CWBSO_USR_NotesUserLocation
• CWBSO_USR_UserPassword
• CWBSO_USR_NotesUserPassword
• CWBSO_USR_NotesCertifierPassword
• CWBSO_USR_ShortName

Libraries in QSYS attributes
You can find information about libraries in QSYS in the Object APIs topic.

See the Object APIs topic in the IBM i Information Center.

Database programming
There are multiple programming interfaces for accessing database files.

Some of the common interfaces allow you to write a single application to access both IBM i and non-IBM i
databases. You can use Structured Query Language (SQL) to access Db2® for i database files. You can also
use stored procedures and record-level access interfaces for access to single records within a file.

The topics below provide information on the interfaces that are supported. Also, see the Db2 for i SQL
Reference topic collection in the IBM i Information Center to access the Db2 for i SQL Programming book
for additional details.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

Related information
DB2 for i SQL Reference

.NET provider
.NET provider allows .NET managed programs to access the IBM i database files using SQL.

.NET support is known by any of the following:

• Managed Provider
• Db2 for IBM i .NET Provider
• IBM.Data.DB2.iSeries data provider

Regardless of the name that is referenced, this data provider allows development and support .NET
applications to access SQL data on IBM i. It consists of a set of classes and data types that provide

Windows Application Package: Programming 423

access to connection, command, DataAdapter, and DataReader functions as defined and supported by the
ADO.NET architectural model.

The IBM.Data.DB2.iSeries data provider complements the existing OLE DB database providers. It
allows you to use Visual Basic and C# to develop your .NET client/server applications. You can use
the Programmer's Toolkit along with this provider to make development of your .NET Windows client PC
applications quicker and easier.

The Managed Provider follows the .NET Framework specifications for managed code, including the
requirement to have the .NET Framework already installed on your PC. Once the framework is installed,
see the User's Guide for information on installing or removing an product feature.

See Microsoft Web site for the architecture and details on Microsoft's .NET Framework, ADO.NET,
Windows Installer, GAC, the CLR, and specifications for managed code.

To access technical details:
• The Db2 for IBM i .NET Provider Technical Reference, which is shipped with this product, provides

complete documentation of the Managed Provider's support. To access this information, use this path:
Start > Programs > IBM i Access Client Solutions > Programmer's Toolkit > .NET Provider Technical
Reference.

• Technical information about the .NET Provider is also available in Visual Studio by filtering on "IBM i
Access".

.NET framework

See Microsoft Web site for the architecture and details on Microsoft's .NET Framework, ADO.NET,
Windows Installer, GAC, the CLR, and specifications for managed code.

To install Programmer's Toolkit :
• You can optionally install the Programmer's Toolkit when you install this product or you can run a
modified setup after the product is already installed. See Programmer's Toolkit.

Other .NET information resources:

• IBM i Access .NET Provider Web site

• IBM Redbook Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET. SG24-6440

OLE DB provider
Supports record-level access and SQL access to IBM i database files. Use the ActiveX Data Objects (ADO)
and the OLE DB interfaces to take advantage of this support.

The OLE DB Providers, along with the Programmer's Toolkit, make IBM i client/server application
development quick and easy from the Windows client PC. The OLE DB Provider component gives IBM
i programmers record-level access interfaces to IBM i logical and physical Db2 for i database files. In
addition, they provide support for SQL, data queues, programs, and commands.

ADO and OLE DB standards provide programmers with consistent interfaces to IBM i data and services.
All three of the providers (the IBMDA400, the IBMDASQL, and the IBMDARLA) handle all IBM i-to-PC
and data type-to-data type conversions.

To install OLE DB Provider:
See the topics in the User's Guide on installing and removing features to install this provider.

Note: The OLE DB Provider is not installed if the computer does not have MDAC 2.5 or later
installed, before installing the product. MDAC can be downloaded from the Microsoft Web site:
www.microsoft.com/data/doc.htm.

424 IBM i: Windows Application Package: Programming

http://www.msdn.com
https://msdn.microsoft.com
http://www.ibm.com/systems/power/software/i/access/windows/dotnet.html
http://www.redbooks.ibm.com/abstracts/sg246440.html

To access OLE DB Technical Reference:
The OLE DB Technical Reference, which is shipped with the product, provides complete
documentation of OLE DB Provider support. To access this information, select Start > Programs >
IBM i Access > Programmer's Toolkit > OLE DB Provider Technical Reference.

To install Programmer's Toolkit:
See the topics in the User's Guide on installing and removing features to install this toolkit.

Other OLE DB information resources:

• IBM i Access OLE DB Support Web site.

Related reference
ActiveX programming
ActiveX automation is a programming technology that is defined by Microsoft and is supported by the IBM
i Access Client Solutions product.

IBM i Access ODBC
ODBC is a common database interface that uses SQL as its database access language. An ODBC driver is
supported by IBM i Access products to provide support for this interface.

What is ODBC?
ODBC stands for open database connectivity. It consists of:

• A well-defined set of functions (application programming interfaces)
• Standards for SQL syntax (that are recommended but not imposed)
• Error codes
• Data types

The application programming interfaces provide a rich set of functions to connect to a database
management system, run SQL statements and to retrieve data. Also included are functions to interrogate
the SQL catalog of the database and the capabilities of the driver.

ODBC drivers return standard error codes and translate data types to a common (ODBC) standard. ODBC
allows the application developer to obtain integrated database error information, and to avoid some of the
most complex problems that are involved with making applications portable.

What you can do with ODBC:
Use ODBC to:

• Send SQL requests to the database management system (DBMS).
• Use the same program to access different database management system (DBMS) products without

recompiling.
• Create an application that is independent of the data communications protocol.
• Handle data in a format convenient to the application.

The flexibility of ODBC APIs allows you to use them in transaction-based, line-of-business applications
(where the SQL is predefined) and also in query tools (where the select statement is created at run time).

Structured Query Language (SQL):
SOL is a standardized language for defining and manipulating data in a relational database. In accordance
with the relational model of data, the database is perceived as a set of tables, relationships are
represented as values in tables, and data is retrieved by specifying a result table that can be derived
from one or more base tables. The ODBC API uses dynamic SQL to interact with the database. Dynamic
SQL allows the SQL statements to be constructed and executed when the ODBC application is executed.

Windows Application Package: Programming 425

http://www.ibm.com/systems/i/software/access/windows/oledb/

For more information on SQL, see the Db2 for IBM i SQL Reference book. View an HTML online version
of the book, or print a PDF version, from the Db2 for IBM i SQL Reference topic collection, in the IBM i
Information Center. See the related links below.

IBM i Access ODBC topics:
Note: The information linked to from this page applies to the 32-bit ODBC driver support, the 64-bit ODBC
driver support, and the IBM i Access ODBC driver support.

You can find documentation on the ODBC standard by searching for ODBC at the Microsoft Web site.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

Related information
DB2 for i SQL Reference
Microsoft Web site

IBM i Access ODBC driver-specific details
Learn about implementations issues when using IBM i Access ODBC APIs.

Choose from the following topics for information regarding implementation of ODBC APIs.

Note: For a description and work-around for several problems that can occur when using the IBM i Access
ODBC driver with Microsoft's ADO interface, search the Software Knowledge Base, using ADO Stored
Procedure Calls with MSDASQL as a search string.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

Related reference
Example: Run CL commands that use SQL stored procedures and ODBC
Stored procedure support provides a means to run IBM i Control Language (CL) commands by using the
SQL CALL statement.
Related information
IBM SupportFor a description and work-around for several problems that can occur when using the IBM
i Access ODBC driver support with Microsoft's ADO interface, search the IBM Support page using ADO
Stored Procedure Calls with MSDASQL as a search string.

ODBC 3.x API notes
The following table lists IBM i Access ODBC 3.x APIs by their associated task and identifies
considerations for each API.

Notes:

• The IBM i Access ODBC Driver is a Unicode driver; however, ANSI applications will still continue to work
with it. The ODBC Driver Manager will handle converting an ANSI ODBC API call to the wide version
before calling the IBM i Access ODBC Driver. To write a Unicode application, you must call the wide
version for some of these APIs. When writing an application to the wide ODBC interface, you need to
know whether the length for each API is defined as character, in bytes, or if the length is not applicable.
Refer to the 'Type' column in the following table for this information.

• For more details on how these APIs work, search for ODBC at the Microsoft Web site.

Type API Description Other considerations

Connecting to a data source

Note: For information on how the connection APIs prompt signon dialogs see “Signon dialog behavior” on page 454. .Also see connection pooling for
more information.

426 IBM i: Windows Application Package: Programming

http://www.microsoft.com/
https://www.ibm.com/mysupport

Type API Description Other considerations

N/A SQLAllocHandle Obtains an environment
and connection handle. One
environment handle is used for
one or more connections. May also
allocate a statement or a descriptor
handle.

Char SQLConnect Connects to a specific data source
name with a specific user ID and
password.

There is an option to control whether this API prompts a signon
dialog when the user ID and password are not specified. This
option can be set from the Connection options dialog on the
General tab of the DSN.

Char SQLDriverConnect Connects to a specific driver by
connection string or requests that
the Driver Manager and driver
display connection dialogs for the
user.

Uses all keywords. Only DSN is required. Other values are
optional. Refer to “Connection string keywords” on page 432 for
more information.

Char SQLBrowseConnect Returns successive levels of
connection attributes and valid
attribute values. When a value has
been specified for each connection
attribute, connects to the data
source.

To make a connection attempt the SYSTEM keyword and either
the DSN or DRIVER keywords must be specified. All the other
keywords are optional. Note, the PWD keyword is not returned
in the output string for security purposes. Refer to “Connection
string keywords” on page 432 for more implementation issues.

Get information regarding a driver or data source

Byte SQLGetInfo Returns information about a specific
driver and data source.

Special attributes returned differently based on attributes and
keywords.The information that is returned by SQLGetInfo can
vary depending on which keywords and attributes are in use. The
InfoType options that are affected are:

• SQL_CATALOG_NAME_SEPARATOR – By default a period is
returned. If the connection string keyword NAM is set to 1,
a comma is returned.

• SQL_CURSOR_COMMIT_BEHAVIOR,
SQL_CURSOR_ROLLBACK_BEHAVIOR – By default
SQL_CB_PRESERVE is returned. If the connection attribute
CWB_ATTR_PRESERVE_CURSORS is set, SQL_CB_DELETE is
returned.

• SQL_DATA_SOURCE_READ_ONLY – By default N is returned. If
the connection string keyword CONNTYPE is set to 0 then Y is
returned.

• SQL_IDENTIFIER_QUOTE_CHAR – By default a double-quote
mark is returned. If the application in use is MS QUERY
(MSQRY32) then a single blank is returned.

• SQL_IDENTIFIER_CASE – By default SQL_IC_UPPER is
returned. If the connection string keyword DEBUG has the
option 2 set then SQL_IC_MIXED is rteurned.

• SQL_MAX_QUALIFIER_NAME_LEN – By default 18 is returned.
If the connection string keyword DEBUG has option 8 set, then
0 is returned.

• SQL_DRIVER_VER - Returns the version of the driver in the
format of VV.RR.SSST, where,

– VV represents the version of the IBM i Access product.

– RR is the release identifier of the IBM i Access product.

– SSS is the number of the service pack that has been
applied to the IBM i Access product, and

– T is the version of the test fix that has been applied for an
ODBC driver problem, otherwise, it is 0.

Windows Application Package: Programming 427

Type API Description Other considerations

N/A SQLGetTypeInfo Returns information about
supported data types.

Different result data types can be seen when running to different
IBM i versions. For example, the DECFLOAT data type is only in
the result set when running to V6R1 or later servers.

The "LONG VARCHAR" data type is not returned in the result set.
This is due to problems that were seen with some applications
expecting to specify a length with this type. "LONG VARCHAR FOR
BIT DATA" and "LONG VARGRAPHIC" are also not returned for
similar reasons.

In the TYPE_NAME column, when a data type requires a value
to be in parentheses, the parentheses are included in the data
type name. However the parentheses are omitted when the
parentheses would end up at the end of the data type string.
In the following string example, the "CHAR" data type is followed
by parenthesis while the "DATA" data type is not followed by
parentheses: "CHAR() FOR BIT DATA".

The setting for the connection string keyword GRAPHIC affects
whether the driver returns graphic (DBCS) data types as
supported types or not.

See “ODBC data types and how they correspond to Db2 for i
database types” on page 455 for more information.

Set and retrieve driver attributes

Note: Refer to “Connection and statement attributes” on page 460 for details on driver-specific connection and statement attributes applicable to
the following APIs.

Byte SQLSetConnectAttr Sets a connection option.

Byte SQLGetConnectAttr Returns the value of a connection
option.

N/A SQLSetEnvAttr Sets an environment option.

N/A SQLGetEnvAttr Returns the value of an environment
option.

Byte SQLSetStmtAttr Sets a statement option. The SQL_ATTR_PARAMSET_SIZE,
SQL_ATTR_ROW_ARRAY_SIZE, SQL_DESC_ARRAY_SIZE, and
SQL_ROWSET_SIZE attributes support up to 32767 rows.

SELECT statements that contain the FOR FETCH ONLY
or FOR UPDATE clause override the current setting
of SQL_ATTR_CONCURRENCY attribute. An error is not
returned during the SQLExecute or SQLExecDirect if the
SQL_ATTR_CONCURRENCY setting conflicts with the clause in
the SQL statement.

The following are not supported:

• SQL_ATTR_ASYNC_ENABLE

• SQL_ATTR_RETRIEVE_DATA

• SQL_ATTR_SIMULATE_CURSOR

• SQL_ATTR_USE_BOOKMARKS

• SQL_ATTR_FETCH_BOOKMARK_PTR

• SQL_ATTR_KEYSET_SIZE

Setting SQL_ATTR_MAX_ROWS is supported, however, it only
impacts performance for static cursors. The full result set is still
built with other cursor types even if this option is set. Using the
FETCH FIRST x ROWS ONLY clause in your SQL query may work
better since it reduces the amount of work the server does.This
API has been extended to also contain the cursor row count for
the following two result set types:

• stored procedure array result sets

• static cursor result sets

Byte SQLGetStmtAttr Returns the value of a statement
option.

The following are not supported:

• SQL_ATTR_ASYNC_ENABLE

• SQL_ATTR_RETRIEVE_DATA

• SQL_ATTR_SIMULATE_CURSOR

• SQL_ATTR_USE_BOOKMARKS

• SQL_ATTR_FETCH_BOOKMARK_PTR

Set and retrieve descriptor fields

428 IBM i: Windows Application Package: Programming

Type API Description Other considerations

Byte SQLGetDescField Returns a piece of information from
a descriptor.

Char SQLGetDescRec Returns several pieces of
information from a descriptor.

Byte SQLSetDescField Sets a descriptor field. Can not set descriptor fields for an
IRD other than SQL_DESC_ARRAY_STATUS_PTR and
SQL_DESC_ROWS_PROCESSED_PTR.

Does not support named parameters.

Char SQLSetDescRec Sets several options for a descriptor.

N/A SQLCopyDesc Copies information from one
descriptor to another descriptor.

SQLCopyDesc does not support named parameters.

Prepare SQL requests

Char SQLPrepare Prepares an SQL statement for later
processing.

Packages are created the first time a SQL statement is prepared
for that Connection. This results in the first prepare taking slightly
longer to complete than it would normally take. If there are any
problems with a pre-existing package the first prepare may return
an error depending on the setting for the package as specified in
the DSN setup GUI. On the Package tab of the DSN setup GUI are
default package settings. These settings are used when package
settings have not already been customized for that application.
Note, these are not global settings

By default, the driver sends SQL statement text to the host in the
EBCDIC CCSID associated with your job. Set the UNICODESQL
keyword to 1 or 2 to enable the driver to send SQL statement
text to the host in Unicode. Note that when sending Unicode
SQL statements the driver generates a different package name to
avoid collisions with existing packages that contain EBCDIC SQL
statements. Setting the connection string keyword UNICODESQL
allows an application to specify Unicode data for literals in the
SQL statement.

See SQL Statement Considerations for several SQL statements
that are not recommended to be prepared and executed.

For information on which escape sequences and scalar functions
the driver supports see “SQLPrepare and SQLNativeSQL escape
sequences and scalar functions” on page 466.

Byte SQLBindParameter Assigns storage for a parameter in
an SQL statement.

Data conversions are made directly from the C type that is
specified to the actual host parameter (column) data type.

The SQL data type and column size that are specified are ignored.

Conversions that involve character data convert directly from the
client codepage to the column CCSID.

Although IBM i supports default parameters for procedures
(IBM i 7.1 and up) and functions (IBM i 7.2 and up),
SQL_DEFAULT_PARAM is only supported for using default column
values in INSERT and UPDATE statements.

A driver-specific value, CWB_UNASSIGNED, can be specified for
the indicator value on an INSERT or UPDATE statement to cause
database to treat the statement as if there was no parameter
marker. In this case, the column is not updated if the statement
is an UPDATE and the default value is used if the statement is
an INSERT. This enables applications to code a generic INSERT
or UPDATE statement, but selectively choose which columns are
affected by the call of that statement.

Char SQLGetCursorName Returns the cursor name associated
with a statement handle.

The driver will upper case all cursor names without double-
quotes around the name.

Windows Application Package: Programming 429

Type API Description Other considerations

Char SQLSetCursorName Specifies a cursor name. The cursor name is converted to capital letters if it is
not entered in quotes. Cursor names that are entered
in quotes are not converted. For example, myCursorName
becomes MYCURSORNAME while "myCursorName" is treated
as myCursorName, with a length of 14 since the quotes are
included in the length.

The driver supports only these characters in cursor names: "",a-
z, A-Z, 0-9, or _. No error will be returned by SQLSetCursorName
if an invalid name is entered, however, an error will be returned
later when trying to use an invalid name.

The maximum cursor name is 128 characters, including the
leading and trailing double quotes if they exist, and must be in
characters that can be translated from UNICODE to ANSI.

If an application wishes to use a DRDA connection through ODBC
then they will have the following restrictions:

• Cursor name changes are not allowed during the DRDA
connection.

• Cursor names will be changed by the driver and should be
checked via SQLGetCursorName after the cursor is open. (after
SQLExecute or SQLExecDirect).

Submit requests

N/A SQLExecute Runs a prepared statement. SQLExecute is affected by the settings of several of the
connection string keywords such as PREFETCH, CONNTYPE, CMT,
and LAZYCLOSE. Refer to “Connection string keywords” on page
432 for descriptions of these keywords.

Char SQLExecDirect Runs a statement. See SQLPrepare and SQLExecute.

Char SQLNativeSQL Returns the text of an SQL
statement as translated by the
driver.

Char SQLDescribeParam Returns the description for a
specific parameter in a statement.

N/A SQLNumParams Returns the number of parameters
in a statement.

N/A SQLParamData Returns the storage value assigned
to a parameter for which data will
be sent at run time (useful for long
data values).

Byte SQLPutData Send part or all of a data value for
a parameter (useful for long data
values).

Retrieve results and related information

N/A SQLRowCount Returns the number of rows that
are affected by an insert, update, or
delete request.

This API has been extended to also contain the cursor row count
for a result set using a static cursor or an array result set.

N/A SQLNumResultCols Returns the number of columns in
the result set.

Char SQLDescribeCol Describes a column in the result set.

Byte SQLColAttribute Describes attributes of a column in
the result set.

Byte SQLBindCol Assigns storage for a result column
and specifies the data type.

N/A SQLExtendedFetch Returns rows in the result set.
This is a supported 2.x ODBC API.
However, new applications should
use SQLFetchScroll API instead.

Uses the value of the statement attribute SQL_ROWSET_SIZE
instead of SQL_ATTR_ROW_ARRAY_SIZE for the rowset size.

You can only use SQLExtendedFetch in combination with
SQLSetPos and SQLGetData if the row size is 1.

SQL_FETCH_BOOKMARK is not supported.

The result set for catalog APIs (such as SQLTables
and SQLColumns) is forward only and read only. When
SQLExtendedFetch is used with result sets generated by catalog
APIs, no scrolling is allowed.

N/A SQLFetch Returns rows in the result set.

430 IBM i: Windows Application Package: Programming

Type API Description Other considerations

N/A SQLFetchScroll Returns rows in the result set. Can
be used with scrollable cursors.

Does not support the fetch orientation of
SQL_FETCH_BOOKMARK because the driver does not support
bookmarks.

Byte SQLGetData Returns part or all of one column of
one row of a result set (useful for
long data values).

SQLGetData can only be used with single row fetches. Errors are
reported by SQLGetData if the row array size is larger than one.

N/A SQLSetPos Positions a cursor within a fetched
block of data.

SQL_UPDATE, SQL_DELETE, SQL_ADD are unsupported options
for Operations parameter.

SQL_LOCK_EXCLUSIVE, SQL_LOCK_UNLOCK are unsupported
options for the LockType parameter.

N/A SQLBulkOperations Performs bulk insertions and bulk
bookmark operations, including
update, delete, and fetch by
bookmark.

The driver does not support SQLBulkOperations.

N/A SQLMoreResults Determines whether there are more
result sets available and if so,
initializes processing for the next
result set.

Byte SQLGetDiagField Returns a piece of diagnostic
information.

Char SQLGetDiagRec Returns additional error or status
information.

Get data source system table information

Char SQLColumnPrivileges Returns a list of columns and
associated privileges for one or
more tables.

Char SQLColumns Returns a list of information on
columns in one or more tables.

Char SQLForeignKeys Returns a list of column names that
comprise foreign keys, if they exist
for a specified table.

Char SQLProcedureColumns Returns the list of input and
output parameters for the specified
procedures.

Char SQLProcedures Returns the list of procedure names
stored in a specific data source.

Char SQLSpecialColumns Retrieves information about the
optimal set of columns that uniquely
identifies a row in a specified table.
It also retrieves information about
the columns that are automatically
updated when any value in the row
is updated by a transaction.

If called with the SQL_BEST_ROWID option, returns all indexed
columns of that table.

Char SQLStatistics Retrieves statistics about a single
table and the list of indexes that are
associated with the table.

When SQLStatistics is used to retrieve information about a
derived key index, the COLUMN_NAME result set column returns
the expression that represents the derived key index.

If the WHERE clause was used when creating the index, the
Where expression is returned in FILTER_CONDITION result set
column.

Char SQLTables Returns a list of schemas, tables, or
table types in the data source.

See “SQLTables Description” on page 469

Char SQLTablePrivileges Returns a list of tables and the
privileges that are associated with
each table.

Char SQLPrimaryKeys Returns the list of column name or
names that comprise the primary
key for a table.

Clean up a statement

N/A SQLFreeStmt Ends statement processing and
closes the associated cursor, and
discards pending results.

Windows Application Package: Programming 431

Type API Description Other considerations

N/A SQLCloseCursor Closes a cursor that is open on the
statement handle.

N/A SQLCancel Cancels an SQL statement. Not all queries can be cancelled. This is recommended only for
long running queries. For more information, see “Handle long-
running queries” on page 469.

N/A SQLEndTran Commits or rolls back a transaction. For information regarding commitment control, see Commitment
control considerations.

Terminate a connection

N/A SQLDisconnect Closes the connection.

N/A SQLFreeHandle Releases resources associated with
handles.

Related reference
ODBC API restrictions and unsupported functions
The way in which some functions are implemented in the IBM i Access ODBC Driver does not meet the
specifications in the Microsoft ODBC Software Development Kit Programmer's Reference.
Related information
Microsoft Web site

SQL Statement Considerations
Identify SQL statements to avoid when using ODBC with IBM i Access functions.

There are several SQL statements that are not recommended to be prepared and executed. Examples of
these are:

• SET TRANSACTION
• SET SCHEMA
• SET PATH
• COMMIT
• ROLLBACK
• CONNECT TO
• DISCONNECT ALL

For these statements, you can accomplish the same behavior in other ways through ODBC. For example,
if you turn off autocommit for the ODBC connection, you can use the SQLEndTran option instead of
attempting to execute a COMMIT or ROLLBACK statement.

Note that the SET SESSION AUTHORIZATION SQL statement changes the user that is in control of that
connection which leads to unpredictable behavior when used in combination with ODBC connection
pooling. The recommended way to use the SET SESSION AUTHORIZATION statement, through ODBC, is
to free all open statement handles except for the SET SESSION AUTHORIZATION on which is it to run.
Once SET SESSION AUTHORIZATION is run, you should free the statement handle.

Connection string keywords
The IBM i Access support for the ODBC driver has many connection string keywords that are used to
change the behavior of the ODBC connection.

These same keywords and their values are stored when an ODBC data source is setup. When an ODBC
application makes a connection, any keywords specified in the connection string override the values
specified in the ODBC data source.

Choose from the following tables for more information on the connection string keywords that are
recognized by the IBM i Access support for the ODBC driver. The Connection String keyword in
the Keyword column can be used on the connection strings passed to SQLBrowseConnect and
SQLDriverConnect. The ODBC.INI keyword in the Keyword column can be set at the data source name

432 IBM i: Windows Application Package: Programming

http://www.microsoft.com/

(DSN) level in the ODBC.INI file. On Windows, the ODBC.INI information is stored in the registry. On
Linux®, the ODBC.INI information is stored in the odbc.ini file under /etc for System DSNs and the
$HOME/.odbc.ini file for User DSNs.

Table 3. IBM i Access ODBC connection string keywords for General properties

Keyword Description

Connection String: DSN Specifies the name of the ODBC data source that you want to use
for the connection.

Connection String: DRIVER Specifies the name of the ODBC driver that you want to use.

Note: This should not be used if the DSN property has been
specified.

Possible values:

• IBM i Access ODBC Driver
• iSeries Access ODBC DriverNote 1

• Client Access ODBC Driver (32-bit)Note 1

Connection String: PWD

ODBC.INI: Password

Specifies the password for the IBM i user ID for the connection.

Connection String: SIGNONNote 2

ODBC.INI: SignonNote 2
Specifies what default user ID to use if the connection cannot be
completed with the current user ID and password information.

Possible values:

• 0 = Use Windows user name
• 1 = Use default user ID
• 2 = None
• 3 = Use IBM i Navigator default
• 4 = Use Kerberos principal

Default: 3

Connection String: SSLNote 2

ODBC.INI: SSLNote 2
Specifies whether a Secure Sockets Layer (SSL) connection is used
to communicate with the server.

Possible values:

• 0 = Encrypt only the password
• 1 = Encrypt all client/server communication

Default: 0

Connection String: SYSTEM

ODBC.INI: System

Specifies the IBM i system name to connect. For more information,
see IBM i name formats for ODBC Connection APIs.

Connection String: UID

ODBC.INI: UserID

Specifies the user ID for the IBM i connection.

Windows Application Package: Programming 433

Table 4. IBM i Access ODBC connection string keywords for Server properties

Keyword Description

Connection String: CMT

ODBC.INI: CommitMode
Specifies the default transaction isolation level.

Possible values:

• 0 = Commit immediate (*NONE)
• 1 = Read committed (*CS)
• 2 = Read uncommitted (*CHG)
• 3 = Repeatable read (*ALL)
• 4 = Serializable (*RR)

Default: 2

Connection String: CONNTYPE

ODBC.INI: ConnectionType
Specifies the level of database access for the connection.

Possible values:

• 0 = Read/Write (all SQL statements allowed)
• 1 = Read/Call (SELECT and CALL statements allowed)
• 2 = Read-only (SELECT statements only)

Default: 0

Connection String: DATABASE

ODBC.INI: Database
Specifies the IBM i relational database (RDB) name to connect.

Special values for this option include specifying an empty-string
or *SYSBAS. An empty-string indicates to use the user-profile's
default setting for database. Specifying *SYSBAS will connect a
user to the SYSBAS database (RDB name).

Default: empty-string

434 IBM i: Windows Application Package: Programming

Table 4. IBM i Access ODBC connection string keywords for Server properties (continued)

Keyword Description

Connection String: DBQ

ODBC.INI: DefaultLibraries
Specifies the IBM i libraries to add to the server job's library list as
well as the default library used to resolve unqualified names. The
libraries can be delimited by commas or spaces and *USRLIBL may
be used as a place holder for the server job's current library list.
If *USRLIBL is not specified, the specified libraries will replace the
server job's current library list. The number of libraries supported is
75; any libraries that exceed the limit are ignored.

The first library specified will be also be used to set the CURRENT
SCHEMA special register. This value is used by SQL for resolving
unqualified objects such as tables and views. When in System
Naming mode, this will have the effect of disabling use of the
library list for unqualified SQL names, although the library list
may still be used for other purposes. To disable setting CURRENT
SCHEMA, add a leading comma before any libraries.

Default: QGPL

Examples:

If UID=myuser;DBQ=mylib,mylib2,mylib3 is specified, then
CURRENT SCHEMA special register is set to MYLIB and the library
list would be MYLIB, MYLIB2, and MYLIB3.

If UID=myuser;DBQ=,mylib,mylib2,mylib3;NAM=1 is
specified, then CURRENT SCHEMA special register is set to *LIBL
and the library list would be MYLIB, MYLIB2, and MYLIB3.

If UID=myuser;DBQ=,mylib,mylib2,mylib3;NAM=0 is
specified, then CURRENT SCHEMA special register is set to
MYUSER and the library list would be MYLIB, MYLIB2, and MYLIB3.

If UID=myuser;DBQ=mylib,*USRLIBL,mylib2 is specified,
then CURRENT SCHEMA special register is set to MYLIB and the
library list would be MYLIB, <existing user portion of the library
list>, and MYLIB2.

Connection String: MAXDECPREC

ODBC.INI:
MaximumDecimalPrecision

Specifies the maximum precision of decimal data that will be
returned.

Possible values: 31 or 63

Default: 31

Connection String: MAXDECSCALE

ODBC.INI: MaximumDecimalScale
Specifies the maximum scale used in arithmetic calculations
involving decimal data. This value must be less than the value of
MAXDECPREC.

Possible values: 0 - 63

Default: 31

Connection String: MINDIVSCALE

ODBC.INI: MinimumDivideScale
Specifies the minimum scale used in arithmetic calculations
involving decimal data.

Possible values: 0 - 9

Default: 0

Windows Application Package: Programming 435

Table 4. IBM i Access ODBC connection string keywords for Server properties (continued)

Keyword Description

Connection String: NAM

ODBC.INI: Naming
Specifies the naming convention used when referring to tables. For
more information, refer to Naming conventions in the DB2® for i
SQL reference.

Possible values:

• 0 = *SQL
• 1 = *SYS

Default: 0

Table 5. IBM i Access ODBC connection string keywords for the Data types properties

Keyword Description

Connection String: DFT

ODBC.INI: DateFormat
Specifies the date format used in date literals within SQL
statements.

Possible values:

• 0 = yy/dd (*JUL)
• 1 = mm/dd/yy (*MDY)
• 2 = dd/mm/yy (*DMY)
• 3 = yy/mm/dd (*YMD)
• 4 = mm/dd/yyyy (*USA)
• 5 = yyyy-mm-dd (*ISO)
• 6 = dd.mm.yyyy (*EUR)
• 7 = yyyy-mm-dd (*JIS)

Default: 5

Connection String: DSP

ODBC.INI: DateSeparator
Specifies the date separator used in date literals within SQL
statements.

Note: This property has no effect unless the DateFormat
property is set to 0 (*JUL), 1 (*MDY), 2 (*DMY), or 3 (*YMD).

Possible values:

• 0 = "/" (forward slash)
• 1 = "-" (dash)
• 2 = "." (period)
• 3 = "," (comma)
• 4 = " " (blank)

Default: 1

436 IBM i: Windows Application Package: Programming

Table 5. IBM i Access ODBC connection string keywords for the Data types properties (continued)

Keyword Description

Connection String: DEC

ODBC.INI: Decimal
Specifies the decimal separator used in numeric literals within
SQL statements.

Possible values:

• 0 = "." (period)
• 1 = "," (comma)

Default: 0

Connection String:
DECFLOATERROROPTION

ODBC.INI: DecfloatErrorOption

Specifies whether a warning or data mapping error is reported
when encountering an error with the decimal floating point data
type. If not provided, the server attribute value is unchanged.

Possible values:

• 0 = Report decimal floating point error as a data mapping error
• 1 = Report decimal floating point error as a warning

Default: 0

Connection String:
DECFLOATROUNDMODE

ODBC.INI: DecFloatRoundMode

Specifies the rounding mode, when rounding is allowed for a
result.

Possible values:

• 0 = ROUND_HALF_EVEN - round to nearest digit. If equidistant,
round to the nearest even digit.

• 1 = ROUND_HALF_UP - round to nearest digit. If equidistant,
round up.

• 2 = ROUND_DOWN - round to nearest lower digit. This is the
same as truncation.

• 3 = ROUND_CEILING - round towards +infinity.
• 4 = ROUND_FLOOR - round towards -infinity.
• 5 = ROUND_HALF_DOWN - round to nearest digit. If

equidistant, round down.
• 6 = ROUND_UP - round to nearest higher digit.

Default: 0

Connection String:
MAPDECIMALFLOATDESCRIBE

ODBC.INI:
MapDecimalFloatDescribe

Specify the format for the results of a DECFLOAT operation.

Possible values:

• 1 = SQL_ VARCHAR
• 3 = SQL_ DOUBLE

Default: 1

Windows Application Package: Programming 437

Table 5. IBM i Access ODBC connection string keywords for the Data types properties (continued)

Keyword Description

Connection String: TFT

ODBC.INI: TimeFormat
Specifies the time format used in time literals within SQL
statements.

Possible values:

• 0 = hh:mm:ss (*HMS)
• 1 = hh:mm AM/PM (*USA)
• 2 = hh.mm.ss (*ISO)
• 3 = hh.mm.ss (*EUR)
• 4 = hh:mm:ss (*JIS)

Default: 0

Connection String: TSP

ODBC.INI: TimeSeparator
Specifies the time separator used in time literals within SQL
statements.

Note: This property has no effect unless the TimeFormat
property is set to 0 (*HMS).

Possible values:

• 0 = ":" (colon)
• 1 = "." (period)
• 2 = "," (comma)
• 3 = " " (blank)

Default: 0

Connection String: TSFT

ODBC.INI: TimestampFormat
Specifies the format of TIMESTAMP values when converted
to SQL_C_CHAR by the driver. For more information, refer to
String representations of datetime values in the DB2 for i SQL
reference.

Possible values:

• 0 = yyyy-mm-dd hh:mm:ss.[n...] (*ISO)
• 1 = yyyy-mm-dd.hh.mm.ss.[n...](*IBM)

Default: 0

Connection String:
XMLCURIMPPARSE

ODBC.INI: XMLCurrentImplicitParse

Specifies the XMLPARSE option to use for the connection. This
attribute indicates how whitespace in serialized XML data should
be handled by DB2 when the data is implicitly parsed without
validation.

Possible values:

• 0 = Strip whitespace
• 1 = Preserve whitespace

Default: 0

438 IBM i: Windows Application Package: Programming

Table 5. IBM i Access ODBC connection string keywords for the Data types properties (continued)

Keyword Description

Connection String:
XMLDECLARATION

ODBC.INI: XMLDeclarationFormat

Specifies the XML Declaration to return with XML columns that
are returned in result sets.

This is a bit-flag value. Any of the possible values can be added
together to calculate a combined value.

Possible values:

• 0 = No declarations or byte order marks (BOMs) are added to
the output buffer.

• 1 = A byte order mark (BOM) in the appropriate endianness
is prepended to the output buffer if the target encoding is
UTF-16.

• 2 = A minimal XML declaration is generated, containing only
the XML version.

• 4 = An encoding attribute that identifies the target encoding
is added to any generated XML declaration. Therefore, this
setting only has effect when the setting of 2 is also included
when computing the value of this attribute.

Default: 7

Table 6. IBM i Access ODBC connection string keywords for the Package properties

Keyword Description

Connection String: DFTPKGLIB

ODBC.INI: DefaultPkgLibrary
Specifies the library for the SQL package.

Note: This property has no effect unless the XDYNAMIC property is
set to 1.

Default: QGPL

Windows Application Package: Programming 439

Table 6. IBM i Access ODBC connection string keywords for the Package properties (continued)

Keyword Description

Connection String: PKG

ODBC.INI: DefaultPackage
Specifies how the extended dynamic (package) support will behave.

Note: This property has no effect unless the XDYNAMIC property is
set to 1.

Possible values: A/DEFAULT(IBM),x,0,y,z,0

Values for x option:

• 1 = Use (Use the package, but do not put any more SQL statements
into the package)

• 2 = Use/Add (Use the package and add new SQL statements into
the package)

Values for y option:

• 0 = Return an error (SQL_ERROR) to the application when an SQL
package error occurs

• 1 = Return a warning (SQL_SUCCESS_WITH_INFO) to the
application when an SQL package error occurs

• 2 = Return success (SQL_SUCCESS) to the application when an
SQL package error occurs

Values for z option:

• 0 = Do not cache SQL package in memory
• 1 = Cache SQL package in memory, possibly reducing the amount

of communication to the server

Default: A/DEFAULT(IBM),2,0,1,0,512

Connection String: XDYNAMIC

ODBC.INI: ExtendedDynamic
Specifies whether to use extended dynamic (package) support.

Extended dynamic support provides a mechanism for caching
dynamic SQL statements on the server. The first time a particular
SQL statement is run, it is stored in a SQL package on the server.
On subsequent runs of the same SQL statement, the server can skip
a significant part of the processing by using information stored in
the SQL package. For more information, see “Use Extended Dynamic
SQL” on page 473.

Possible values:

• 0 = Disable extended dynamic support
• 1 = Enable extended dynamic support

Default: 1

440 IBM i: Windows Application Package: Programming

Table 7. IBM i Access ODBC connection string keywords for Performance properties

Keyword Description

Connection String:
BLOCKFETCH

ODBC.INI: BlockFetch

Specifies whether or not internal blocking will be done on fetches of
1 row. When set, the driver will try to optimize the fetching of records
when one record is requested by the application. Multiple records
will be retrieved and stored by the driver for later retrieval by the
application. When an application requests another row, the driver will
not need to send another flow to the host database to get it. If not set,
blocking will be used according to the application's ODBC settings for
that particular statement. For more information on setting this option
see the fine-tuning record blocking topic.

Possible values:

• 0 = Use ODBC settings for blocking
• 1 = Use blocking with a fetch of 1 row

Default: 1

Connection String: BLOCKSIZE

ODBC.INI: BlockSizeKB
Specifies the block size (in kilobytes) that is retrieved on FETCH
requests and then cached on the client. This property has no effect
unless the BLOCKFETCH property is 1. Larger block sizes reduce
the frequency of communication to the server, and therefore may
increase performance.

Possible values: 1 – 8192

Default: 256

Connection String:
COMPRESSION

ODBC.INI:
AllowDataCompression

Specifies whether to compress data sent to and from the server. In
most cases, data compression improves performance due to less data
being transmitted between the driver and the server.

Possible values:

• 0 = Disable compression
• 1 = Enable compression

Default: 1

Connection String:
CONCURRENCY

ODBC.INI: Concurrency

Specifies whether to override the ODBC concurrency setting by
opening all cursors as updateable.

Note: In the following two cases, setting this option has no effect:

1. When building a SELECT SQL statement the FOR FETCH ONLY
or FOR UPDATE clause can be added. If either of these clauses
are present in a SQL statement the ODBC driver will honor the
concurrency that is associated with the clause.

2. Catalog result sets are always read-only.

Possible values:

• 0 = Use ODBC concurrency settings
• 1 = Open all cursors as updateable

Default: 0

Windows Application Package: Programming 441

Table 7. IBM i Access ODBC connection string keywords for Performance properties (continued)

Keyword Description

Connection String:
CURSORSENSITIVITY

ODBC.INI: CursorSensitivity

Specifies the cursor sensitivity to use when opening cursors. This
option applies to all forward-only and dynamic cursors that are
opened on the same connection. Static cursors are always insensitive.

Possible values:

• 0 - Unspecified/Asensitive
• 1 = Insensitive
• 2 = Sensitive

Connection String:
EXTCOLINFO

ODBC.INI: ExtendedColInfo

The extended column information affects what the
SQLGetDescField and SQLColAttribute APIs return as
Implementation Row Descriptor (IRD) information. The extended
column information is available after the SQLPrepare API has been
called. The information that is returned is:

• SQL_DESC_AUTO_UNIQUE_VALUE
• SQL_DESC_BASE_COLUMN_NAME
• SQL_DESC_BASE_TABLE_NAME and SQL_DESC_TABLE_NAME
• SQL_DESC_LABEL
• SQL_DESC_SCHEMA_NAME
• SQL_DESC_SEARCHABLE
• SQL_DESC_UNNAMED
• SQL_DESC_UPDATABLE

Note: the driver sets the SQL_DESC_AUTO_UNIQUE_VALUE flag only
if a column is an identity column with the ALWAYS option over a
numeric data type (such as integer). Refer to the Db2 for i SQL
Reference for details on identity columns.

Possible values:

• 0 = Do not retrieve extended column information
• 1 = Retrieve extended column information

Default: 0

Connection String: LAZYCLOSE

ODBC.INI: LazyClose
Specifies whether to delay closing cursors until subsequent requests.
This will increase overall performance by reducing the total number of
requests.

Note: This option can cause problems due to the cursors still holding
locks on the result set rows after the close request.

Possible values:

• 0 = Close all cursors immediately
• 1 = Delay closing of cursors until the next request

Default: 0

442 IBM i: Windows Application Package: Programming

Table 7. IBM i Access ODBC connection string keywords for Performance properties (continued)

Keyword Description

Connection String:
MAXFIELDLEN

ODBC.INI: MaxFieldLength

Specifies the maximum LOB (large object) size (in kilobytes) that
can be retrieved as part of a result set. LOBs that are larger than
this threshold will be retrieved in pieces using extra communication
to the server. Larger LOB thresholds will reduce the frequency of
communication to the server, but will download more LOB data, even
if it is not used. Smaller LOB thresholds may increase frequency of
communication to the server, but they will only download LOB data as
it is needed.

Notes:

• Setting this property to 0 forces the driver to always retrieve the
LOB values with additional communication flows.

• Setting this property larger than 15360 KB has no effect. Anything
larger than 15360 KB is retrieved in pieces from the server.
Retrieving the data in pieces reduces the amount of memory
needed, at any given time, on the client.

Possible values: 0 — 2097152

•
•

Default: 32

Connection String: PREFETCH

ODBC.INI: PreFetch
Specifies whether to prefetch data upon executing a SELECT
statement. This increases performance when accessing the initial
rows.

Possible values:

• 0 = Do not prefetch data
• 1 = Prefetch data

Default: 1

Connection String: QRYSTGLMT

ODBC.INI: QueryStorageLimit
Specifies storage limit for a query. If the estimated storage usage
exceeds the specified storage limit in the parameter, the query is not
executed.

Possible values:

• *NOMAX = No Query Limit
• 0 - 2147352578

Default: *NOMAX

Windows Application Package: Programming 443

Table 7. IBM i Access ODBC connection string keywords for Performance properties (continued)

Keyword Description

Connection String:
QUERYOPTIMIZEGOAL

ODBC.INI: QueryOptimizeGoal

Specifies the optimization goal for queries. This parameter
corresponds to the QAQQINI option called OPTIMIZATION_GOAL. For
more information, refer to the QAQQINI option in the Db2 for i SQL
Reference.

Possible values:

• 0 = Use the goal of *ALLIO if extended dynamic support is enabled,
otherwise use the *FIRSTIO goal.

• 1 = *FIRSTIO - Return the first block of data as fast as possible.
• 2 = *ALLIO - Optimize as if the complete result set will be read by

the application.

Default: 0

Connection String:
QUERYTIMEOUT

ODBC.INI: QueryTimeout

Specifies whether the driver will disable support for the query timeout
attribute, SQL_ATTR_QUERY_TIMEOUT. If disabled, SQL queries will
run until they finish.

Possible values:

• 0 = Disable support for the query timeout attribute
• 1 = Allow the query timeout attribute to be set

Default: 1

Table 8. IBM i Access ODBC connection string keywords for the Language properties

Keyword Description

Connection String:
LANGUAGEID

ODBC.INI: LanguageID

Specifies a 3-character language id to use for selection of a sort
sequence. This property has no effect unless the SORTTYPE property
is set to 2.

Possible values: AFR, ARA, BEL, BGR, CAT, CHS, CHT, CSY, DAN, DES,
DEU, ELL, ENA, ENB, ENG, ENP, ENU, ESP, EST, FAR, FIN, FRA, FRB,
FRC, FRS, GAE, HEB, HRV, HUN, ISL, ITA, ITS, JPN, KOR, LAO, LVA,
LTU, MKD, NLB, NLD, NON, NOR, PLK, PTB, PTG, RMS, ROM, RUS, SKY,
SLO, SQI, SRB, SRL, SVE, THA, TRK, UKR, URD, VIE

Default: ENU

Connection String:
SORTTABLE

ODBC.INI: SortTable

Specifies the library and file name of a sort sequence table stored on
the system. This property has no effect unless the SORTTYPE property
is set to 3.

Connection String: SORTTYPE

ODBC.INI: SortSequence
Specifies how the server sorts records before sending them to the
client.

Possible values:

• 0 or 1 = Sort based on hexadecimal values
• 2 = Sort based on the language set in LANGUAGEID property
• 3 = Sort based on the sort sequence table set in the SORTTABLE

property

Default: 0

444 IBM i: Windows Application Package: Programming

Table 8. IBM i Access ODBC connection string keywords for the Language properties (continued)

Keyword Description

Connection String:
SORTWEIGHT

ODBC.INI: SortWeight

Specifies how the server treats case while sorting records. This
property has no effect unless the SORTTYPE property is set to 2.

Possible values:

• 0 = Shared-Weight (uppercase and lowercase characters sort as the
same character)

• 1 = Unique-Weight (uppercase and lowercase characters sort as
different characters)

Default: 0

Table 9. IBM i Access ODBC connection string keywords for the Catalog properties

Keyword Description

Connection String:
CATALOGOPTIONS

ODBC.INI: CatalogOptions

Specifies one or more options to affect how catalog APIs return
information. This is a bit-flag value. Any of the possible values can be
added together to calculate a combined value.

Possible values:

• 1 = Return information about aliases in the SQLColumns result set.
• 2 = Return result set information for SQLTablePrivileges and

SQLColumnPrivileges.

Default: 3

Connection String: LIBVIEW

ODBC.INI: LibraryView
Specifies the set of libraries to be searched when returning information
when using wildcards with catalog APIs. In most cases, use the default
library list or default library option as searching all the libraries on the
server will take a long time.

Possible values:

• 0 = Use default library list
• 1 = All libraries on the server
• 2 = Use default library only

Default: 0

Connection String: REMARKS

ODBC.INI: ODBCRemarks
Specifies the source of the text for REMARKS columns in catalog API
result sets.

Possible values:

• 0 = IBM i object description
• 1 = SQL object comment

Default: 0

Windows Application Package: Programming 445

Table 9. IBM i Access ODBC connection string keywords for the Catalog properties (continued)

Keyword Description

Connection String:
SEARCHPATTERN

ODBC.INI: SearchPattern

Specifies whether the driver will interprets string search patterns
and underscores in the library and table names as wildcards (search
patterns). By default, % is treated as an 'any number of characters'
wildcard, and _ is treated as a 'single character' wildcard.

Possible values:

• 0 = Do not treat search patterns as wildcards
• 1 = Treat search patterns as wildcards

Default: 1

Table 10. IBM i Access ODBC connection string keywords for Conversion properties

Keyword Description

Connection String:
ALLOWUNSCHAR

ODBC.INI:
AllowUnsupportedChar

Specifies whether or not to suppress error messages which occur when
characters that can not be converted (because they are unsupported) are
detected.

Possible values:

• 0 = Report error messages when characters can not be converted
• 1 = Suppress error messages when characters can not be converted

Default: 0

Connection String: CCSID

ODBC.INI: CCSID
Specifies a codepage to override the default client codepage setting with.

Possible values: Client codepage setting or 0 (use default client
codepage setting)

Default: 0

Connection String:
GRAPHIC

ODBC.INI: Graphic

This property affects the handling of the graphic (DBCS) data types of
GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, and DBCLOB that have a
CCSID other than Unicode. This property affects two different behaviors:

1. Whether the length of a graphic field is reported as a character count
or as a byte count by the SQLDescribeCol API.

2. Whether graphic fields are reported as a supported type in the
SQLGetTypeInfo result set

Possible values:

• 0 = Report character count, report as not supported
• 1 = Report character count, report as supported
• 2 = Report byte count, report as not supported
• 3 = Report byte count, report as supported

Default: 0

446 IBM i: Windows Application Package: Programming

Table 10. IBM i Access ODBC connection string keywords for Conversion properties (continued)

Keyword Description

Connection String:
HEXPARSEROPT

ODBC.INI: HexParserOpt

Specifies how SQL hexadecimal constants will be interpreted in SQL
statements.

Possible values:

• 0 = Treat hexadecimal constants as character data
• 1 = Treat hexadecimal constants as binary data

Default: 0

Connection String:
TRANSLATE

ODBC.INI: ForceTranslation

Specifies whether or not to convert binary data (CCSID 65535) to text.

Possible values:

• 0 = Do not convert binary data to text
• 1 = Convert binary data to text

Default: 0

Connection String:
TRIMCHAR

ODBC.INI: TrimCharFields

Specifies whether or not to trim trailing spaces (padding) from fixed-
length CHAR and GRAPHIC fields in EBCDIC, UTF-8, and UTF-16
columns. Variable-length fields such as VARCHAR and VARGRAPHIC are
unaffected.

Possible values:

• 0 = Do not trim trailing spaces
• 1 = Trim trailing spaces

Default: 0

Connection String:
UNICODESQL

ODBC.INI: UnicodeSQL

Specifies whether or not to send Unicode SQL statements to the server.

Possible values:

• 0 = Send EBCDIC SQL statements to the server
• 1 = Send UCS-2 Unicode SQL statements to the server in UCS-2

Default: 0

Connection String:
XLATEDLLNote 2

ODBC.INI:
TranslationDLLNote 2

Specifies the full path name of the DLL to be used by the ODBC driver to
translate the data that is passed between the ODBC driver and the server.
The DLL is loaded when a connection is established.

Connection String:
XLATEOPTNote 2

ODBC.INI:
TranslationOptionNote 2

Specifies a 32-bit integer translation option that is passed to the
translation DLL. This parameter is optional. The meaning of this option
depends on the translation DLL that is being used. Refer to the
documentation provided with the translation DLL for more information.
This option is not used unless the XLATEDLL property is set.

Default: 0

Windows Application Package: Programming 447

Table 11. IBM i Access ODBC connection string keywords for Diagnostic properties

Keyword Description

Connection String:
QAQQINILIB

ODBC.INI: QAQQINILibrary

Specifies a query options file library. When a query options file library is
specified the driver will issue the command CHGQRYA passing the library
name for the QRYOPTLIB parameter. The command is issued immediately
after the connection is established. This option should only be used when
debugging problems or when recommended by support as enabling it will
adversely affect performance.

Connection String:
SQDIAGCODE

ODBC.INI: SQDiagCode

Specifies Db2 for i SQL diagnostic options to be set. Use only as directed
by your technical support provider.

Connection String: TRACE

ODBC.INI: Trace
Specifies one or more trace options. These options should only be used
when debugging problems or when recommended by support as they will
adversely affect performance.

This is a bit-flag value. Any of the possible values can be added together to
calculate a combined value.

Possible values:

• 0 = No tracing
• 2 = Enable Database Monitor
• 4 = Enable the Start Debug (STRDBG) command
• 8 = Print job log at disconnect
• 16 = Enable job trace
• 32 = Enable database host server trace

Default: 0

Table 12. IBM i Access ODBC connection string keywords for other properties

Keyword Description

Connection String: ALWAYSCALCLEN

ODBC.INI: AlwaysCalculateResultLength
Specifies whether or not to allow the driver to return
SQL_NO_TOTAL (-4) for result lengths from SQLGetData
or whether to always calculate the actual result length.
When doing non-trivial conversions from/to UTF-8,
UTF-16, or mixed EBCDIC, the driver has no way to know
how long the actual conversion will be without doing it. As
an optimization, the ODBC specification allows the driver
to return SQL_NO_TOTAL instead, but some applications
and middleware do not handle this value correctly, leading
to defects. Enabling this option prevents the driver from
returning this value at the cost of having to do extra
rounds of conversion.

Possible values:

• 0 = Allow SQL_NO_TOTAL to be returned when the
result length calculation is non-trivial

• 1 = Require the result length to always be calculated at
the cost of performance

Default: 0

448 IBM i: Windows Application Package: Programming

Table 12. IBM i Access ODBC connection string keywords for other properties (continued)

Keyword Description

Connection String: ALLOWPROCCALLS

ODBC.INI: AllowProcCalls
Specifies whether stored procedures can be called when
the connection attribute, SQL_ATTR_ACCESS_MODE, is
set to SQL_MODE_READ_ONLY.

Possible values:

• 0 = Do not allow stored procedures to be called
• 1 = Allow stored procedures to be called

Default: 0

Connection String:
CONCURRENTACCESSRESOLUTION

ODBC.INI: ConcurrentAccessResolution

Contains the preference for concurrent access resolution.
This property identifies how a row lock conflict should
be handled when it is encountered. This property only
applies to read-only queries with isolation level CS.

Possible values:

• 0 = Use Server Setting
• 1 = Use Currently Committed Rows
• 2 = Wait for Outcome
• 3 = Skip Locks

Default: 0

Connection String: DB2SQLSTATES

ODBC.INI: DB2SQLStates
Specifies whether or not to return ODBC-defined SQL
States or DB2 SQL States. Refer to the Db2 for i SQL
Reference for more details on the DB2 SQL States. This
option should be used only if you have the ability to
change the ODBC application's source code. If not, you
should leave this option set to 0 as most applications are
coded only to handle the ODBC-defined SQL States.

Possible values:

• 0 = Return ODBC-defined SQLStates
• 1 = Return DB2 SQL States

Default: 0

Windows Application Package: Programming 449

Table 12. IBM i Access ODBC connection string keywords for other properties (continued)

Keyword Description

Connection String: DATETIMETOCHAR

ODBC.INI: ConvertDateTimeToChar
Specifies one or more options on how date, time, and
timestamp data types are reported to an application.
This option supports cases in which date values such as
24:00:00 are used.

This is a bit-flag value. Any of the possible values can be
added together to calculate a combined value.

Possible values:

• 0 = Map the DATE, TIME, and TIMESTAMP data
types as SQL_TYPE_DATE, SQL_TYPE_TIME, and
SQL_TYPE_TIMESTAMP

• 1 = Map DATE data type as SQL_CHAR
• 2 = Map TIME data type as SQL_CHAR
• 4 = Map TIMESTAMP data type as SQL_CHAR

Default: 0

ODBC.INI: DBCSNoTruncError Specifies whether or not to report a DBCS string
conversion overflow error as an ODBC truncation error.

Possible values:

• 0 = Report DBCS string conversion overflow error as
ODBC truncation error

• 1 = Ignore truncation error

Default: 0

450 IBM i: Windows Application Package: Programming

Table 12. IBM i Access ODBC connection string keywords for other properties (continued)

Keyword Description

Connection String: DEBUG

ODBC.INI: Debug
Specifies one or more debug options. This is a bit-flag
value. Any of the possible values can be added together to
calculate a combined value.

Possible values:

• 2 = Return SQL_IC_MIXED for the
SQL_IDENTIFIER_CASE option of SQLGetInfo

• 4 = Store all SELECT statements in the package
• 8 = Return zero for the

SQL_MAX_QUALIFIER_NAME_LEN option of
SQLGetInfo

• 16 = Add positioned UPDATEs / DELETEs into packages
• 32 = Convert static cursors to dynamic cursors
• 64 = Send the entire column size worth of data for

variable length fields (VARCHAR, VARGRAPHIC, BLOB,
etc.) Note, set this option with caution as this can have
an adverse impact on performance.

• 128 = Subtract one from the SQLBindParameter
sourcelength if the last character in the buffer is a null-
terminator character.

• 256 = Ignore data decimal errors
• 512 = Ignore cast warnings (SQL0402) for scrollable

cursors
• 1024 = Disable variable length compression
• 2048 = Return no support for SQL_CVT_DATE when

calling the SQLGetInfo's SQL_CONVERT_TIMESTAMP
option.

• 32768 = If the result of a query results in a column
being divided by 0, return a NULL value instead of an
error.

Default: 0

Windows Application Package: Programming 451

Table 12. IBM i Access ODBC connection string keywords for other properties (continued)

Keyword Description

Connection String: TRUEAUTOCOMMIT

ODBC.INI: TrueAutoCommit
Specifies how to handle autocommit support. In past
ODBC drivers, turning autocommit on resulted in
the server running under the *NONE isolation level.
Now autocommit can run under any isolation level.
Applications that require strict conformance to the SQL
specification should use setting 1. Note that this setting
requires that all files be journaled. Setting 0 offers better
performance for most applications. See the SQL reference
for further information on Transaction Isolation levels.

Possible values:

• 0 = run autocommit under the *NONE isolation level
• 1 = run autocommit under the isolation level that

is set for the connection. The connection's isolation
level is set using the SQLSetConnectAttr API and the
SQL_ATTR_TXN_ISOLATION option.

Default: 0

Connection String: NEWPWD

ODBC.INI: NewPassword

Specifies a new password used to change the current
user's IBM i password. This option is only honored if set
by an application. When using this option, the UID and
PWD keywords should also be specified.

Connection String: XALCS

ODBC.INI: XALooselyCoupledSupport
Specifies whether locks are shared between loosely
coupled distributed transaction branches.

Possible values:

• 0 = Locks are not shared
• 1 = Locks are shared

Default: 1

Connection String: XALOCKTIMEOUT

ODBC.INI: XALockTimeout
Specifies the maximum amount of time (in seconds) that
a distributed transaction waits on a lock request before
timing out.

Possible values:

• 0 = Use the default system setting
• 0 – 999999999 = the number of seconds to wait

Default: 0

Connection String: XATXNTIMEOUT

ODBC.INI: XATransactionTimeout
Specifies the amount of time (in seconds) that a
distributed transaction waits before timing out.

Possible values:

• 0 = Wait indefinitely for the transaction to finish
• 0 – 999999999 = the number of seconds to wait

Default: 0

452 IBM i: Windows Application Package: Programming

Note 1: Driver name is only registered on Windows and is deprecated and will no longer be registered in a
future release. Users are advised to switch to the IBM i Access ODBC Driver driver name. To migrate
existing DSNs to the new driver name, the cwbodbcreg tool can be used.

Note 2: The keyword is only supported on Windows.

Related reference
Fine-tune record-blocking
Record-blocking is a technique that significantly reduces the number of network flows and therefore
improves performance when using IBM i Access ODBC driver.

Version and release changes in the ODBC driver behavior
This topic describes new features supported by different versions of the ODBC driver and corresponding
IBM i release.

The following list describes some of the important changes for 7.1:
New support include the following when using the ODBC driver to access 7.2 IBM i data:

• Extended timestamp precision

New support include the following when using the ODBC driver to access 7.1 IBM i data:

• XML data type
• 128-byte schema names
• Multiple-row UPDATE, DELETE, and MERGE statements
• Concurrent Access Resolution support

The following list describes some of the important changes for V6R1:
New support include the following when using the ODBC driver to access V6R1 System i data:

• SQL query storage limits
• ODBC application and QZDASOINIT system jobs association
• 128-byte cursor names
• Decimal Floating Point (DECFLOAT) data type
• Additional stored procedure date and time formats

The following list describes some of the important changes for V5R4:
There are several new features available when using the ODBC driver to access V5R4 System i data.
These features include the following.

• Support for 128-byte column names
• Support for longer SQL statements (commands can be up to 2,097,152 bytes or 1,048,576 characters

long)
• Support for passing an IBM Enterprise Workload Manager (eWLM) correlator to the i5/OS host
• Improved support for table and column names that are not all uppercase
• Enhanced distributed transaction support for loosely coupled transactions
• A Linux 64-bit ODBC driver

ODBC API restrictions and unsupported functions
The way in which some functions are implemented in the IBM i Access ODBC Driver does not meet the
specifications in the Microsoft ODBC Software Development Kit Programmer's Reference.

The table below describes some global restrictions and unsupported functions. See “ODBC 3.x API notes”
on page 426 for a list of individual APIs and their associated considerations.

Windows Application Package: Programming 453

Table 13. Limitations of ODBC API functions

Function Description

Global considerations No asynchronous processes are supported. However, SQLCancel can be
called, from a different thread (in a multi-threaded application), to cancel
a long running query.

Translation DLLs are only called when converting data from buffers.

SQLSetScrollOptions (2x
API)

SQL_CONCUR_ROWVER, SQL_CONCUR_VALUES are unsupported options for
Concurrency parameter.

The SQL_SCROLL_KEYSET_DRIVEN is mapped to SQL_SCROLL_DYNAMIC by
the driver.

Related reference
ODBC 3.x API notes
The following table lists IBM i Access ODBC 3.x APIs by their associated task and identifies
considerations for each API.

Signon dialog behavior
You have control over your signon dialog, userid, and password prompting.

The signon dialog behavior is based on how your data source is set up and which ODBC API (SQLConnect,
SQLDriverConnect, SQLBrowseConnect) your application uses to connect.

When configuring an ODBC data source there are two options which can influence the signon dialog
behavior. These are both located on the dialog you get after clicking Connection Options on the General
tab of the DSN Setup GUI.

Note: On the DSN setup GUI there is an option which controls whether or not a dialog prompting for
signon information is allowed or not. An application that calls SQLConnect in a 3-tier environment should
always choose 'Never prompt for SQLConnect'. This 3-tier application also needs to make sure it specifies
the userid and password when calling SQLConnect.

• In the Default user ID section you can specify which default user ID to use:

– Use Windows user name
– Use the user ID specified below
– None
– Use the IBM iNavigator default
– Use Kerberos principal

• In the Signon dialog prompting section you can specify if the signon dialog should be prompted if your
application uses the SQLConnect ODBC API.

When coding your application you have total control over how the userid, password, and signon dialog
prompting will behave. The userid and password that is used is figured out in the following order:

1. Userid / Password arguments specified by the application.

• The SQLConnect API accepts userid and password arguments.
• The SQLDriverConnect and SQLBrowseConnect APIs accept the UID, PWD, and SIGNON connection

string keywords.
2. GUI setting for Default user ID

The signon dialog prompting depends on which ODBC API is used by the application to
connect. SQLConnect prompts the signon dialog if needed unless the GUI setting for Signon
dialog prompting says to never prompt. SQLDriverConnect prompts the signon dialog according
to the value of the DriverCompletion. A setting of SQL_DRIVER_NOPROMPT will prevent any
signon dialogs from being prompted. A setting of SQL_DRIVER_PROMPT, SQL_DRIVER_COMPLETE

454 IBM i: Windows Application Package: Programming

or SQL_DRIVER_COMPLETE_REQUIRED will prompt the signon dialog if needed. SQLBrowseConnect
prompts the signon dialog if needed.

ActiveX Data Objects (ADO) prompting
When coding your ODBC application using ActiveX Data Objects (ADO) the default behavior for prompting
is adPromptNever. To prompt differently, set the Prompt property on the Connection object prior to
calling the Connection's Open method. For example, the following ADO code would result in prompting
only as needed. Adding the SIGNON, UID, or PWD keywords allow you to have more control over the
amount of prompting.

Dim conn As New ADODB.Connection
conn.Properties("Prompt") = adPromptComplete
conn.Open "Provider = MSDASQL;DSN=myODBCDSN;

ODBC data types and how they correspond to Db2 for i database types
The IBM i Access support for the ODBC driver maps data types between ODBC types and Db2 for i data
types.

The following table shows the default mappings of the supported data types. Choose the related link
below, to the Db2 for i database types, for more information on data types.

Table 14. Data Type Mapping for Db2 for i database types

Db2 for i Database Type 3.x ODBC Data Type

BIGINT SQL_BIGINT

BINARY SQL_BINARY

BLOB SQL_LONGVARBINARY

BOOLEAN SQL_BIT

CHAR SQL_CHAR

CHAR CCSID 65535 SQL_BINARY

CHAR FOR BIT DATA SQL_BINARY

CLOB SQL_LONGVARCHAR

DATALINK SQL_VARCHAR

DATE SQL_DATE

DBCLOB SQL_LONGVARCHAR

DBCLOB CCSID 1200 SQL_WLONGVARCHAR

DBCLOB CCSID 13488 SQL_WLONGVARCHAR

DECFLOAT SQL_VARCHAR

DECIMAL SQL_DECIMAL

DOUBLE SQL_DOUBLE

FLOAT SQL_FLOAT

GRAPHIC SQL_CHAR

GRAPHIC CCSID 1200 SQL_WCHAR

GRAPHIC CCSID 13488 SQL_WCHAR

INTEGER SQL_INTEGER

Windows Application Package: Programming 455

Table 14. Data Type Mapping for Db2 for i database types (continued)

Db2 for i Database Type 3.x ODBC Data Type

LONG VARCHAR SQL_VARCHAR

LONG VARCHAR FOR BIT DATA SQL_VARBINARY

LONG VARGRAPHIC SQL_VARCHAR

LONG VARGRAPHIC CCSID 1200 SQL_WVARCHAR

LONG VARGRAPHIC CCSID 13488 SQL_WVARCHAR

NCHAR SQL_WCHAR

NCLOB SQL_WLONGVARCHAR

NUMERIC SQL_NUMERIC

NVARCHAR SQL_WVARCHAR

REAL SQL_REAL

ROWID SQL_VARBINARY

SMALLINT SQL_SMALLINT

TIME SQL_TYPE_TIME

TIMESTAMP SQL_TYPE_TIMESTAMP

VARBINARY SQL_VARBINARY

VARCHAR SQL_VARCHAR

VARCHAR FOR BIT DATA SQL_VARBINARY

VARCHAR CCSID 65535 SQL_VARBINARY

VARGRAPHIC SQL_VARCHAR

VARGRAPHIC CCSID 1200 SQL_WVARCHAR

VARGRAPHIC CCSID 13488 SQL_WVARCHAR

XML SQL_LONGVARCHAR

Implementation notes:

• All conversions in the Microsoft ODBC Software Development Kit Programmer's Reference Version 3.5
are supported for these ODBC SQL data types.

• Call the ODBC API SQLGetTypeInfo to learn more about each of these data types.
• The database type of VARCHAR will be changed to LONG VARCHAR by the database if the column size

that is specified is larger than 255.
• The ODBC driver does not support any of the interval SQL data types.
• 2.x ODBC applications use the SQL_DATE, SQL_TIME, and SQL_TIMESTAMP defines in place of the

SQL_TYPE_DATE, SQL_TYPE_TIME, and SQL_TYPE_TIMESTAMP defines.
• UTF-16 data which are the data types with a CCSID of 1200 or 13488 report to ODBC 2.x applications

as SQL_CHAR, SQL_VARCHAR, and SQL_LONGVARCHAR instead of SQL_WCHAR, SQL_WVARCHAR, and
SQL_WLONGVARCHAR.

• LOBs (BLOB, CLOB, and DBCLOB) up to 2 GB in size are supported. For more information on LOBs and
datalinks choose the related link below, to the Large Objects (LOBs) considerations topic collection.

• Note that to retrieve decimal fields with large precision successfully you must bind the column as
SQL_C_CHAR. The structure that stores SQL_C_NUMERIC data can hold up to 38 digits.

456 IBM i: Windows Application Package: Programming

Related reference
Large objects (LOBs) considerations
Use LOBs with IBM i Access ODBC to store and access large text documents.
Related information
DB2 for i database types

Working with the XML data type
These conventions can help you handle various aspects of using the XML data type in Db2 for iODBC
functions.

XML data handling in ODBC applications

Db2 for i ODBC applications can retrieve and store XML data using the SQL_XML data type. This data
type corresponds to the native XML data type of the Db2 for i database, which is used to define columns
that store well-formed XML documents. The SQL_XML type can be bound to the following C types:
SQL_C_BINARY, SQL_VARBINARY, SQL_C_CHAR, SQL_VARCHAR, SQL_C_WCHAR, andSQL_WVARCHAR.
Using binary types, however, instead of character types, is recommended to avoid possible data loss or
corruption resulting from CCSID conversion when character types are used. To store XML data in an XML
column, bind a binary (SQL_C_BINARY or SQL_VARBINARY) or character (SQL_C_CHAR, SQL_VARCHAR,
SQL_C_WCHAR, or SQL_VARWCHAR) buffer that contains the XML value to the SQL_XML SQL type and
execute the INSERT or UPDATE SQL statements. To retrieve XML data from the database, bind the
result set to a binary (SQL_C_BINARY or SQL_VARBINARY) or character (SQL_C_CHAR, SQL_VARCHAR,
SQL_C_WCHAR, or SQL_WVARCHAR) type. Use character types with caution because of encoding issues.
When an XML value is retrieved into an application data buffer, the Db2 for i server performs an implicit
serialization on the XML value to convert it from its internal form to the serialized string form. For
character typed buffers, the XML value is implicitly serialized to the application CCSID associated with
the character type. By default, an XML declaration is included in the output serialized string. This default
behavior can be changed by setting the SQL_ATTR_XML_DECLARATION connection attribute.

XML column inserts and updates in ODBC applications

When you update or insert data into XML columns of a table, the input data must be in the serialized
string format. For XML data, when you use SQLBindParameter() to bind parameter markers to input data
buffers, you can specify the data type of the input data buffer as SQL_C_BINARY, SQL_VARBINARY,
SQL_C_CHAR, SQL_VARCHAR_, SQL_C_WCHAR, or SQL_VARCHAR. When you bind a data buffer that
contains XML data as SQL_C_BINARY or SQL_VARBINARY, Db2 for i ODBC processes the XML data as
internally encoded data. This method is preferred because it avoids the added processing and potential
data loss of character conversion when character types are used. When you bind a data buffer that
contains XML data as SQL_C_CHAR, SQL_VARCHAR, SQL_C_WCHAR, or SQL_WVARCHAR, Db2 for i ODBC
processes the XML data as externally encoded data.

Db2 for i ODBC determines the encoding of the data as follows:

• If the C type is SQL_C_WCHAR or SQL_WVARCHAR, ODBC assumes that the data is encoded as in
UTF-16.

• If the C type is SQL_C_CHAR or SQL_C_VARCHAR, ODBC assumes that the data is encoded in the
client's encoding.

The following example shows how to update XML data in an XML column using the recommended
SQL_C_BINARY type.

char xmlBuffer[10240];
integer length;

// Assume a table named dept has been created with the following statement:
// CREATE TABLE dept (id CHAR(8), deptdoc XML)

// xmlBuffer contains an internally encoded XML document that is to replace
// the existing XML document
length = strlen (xmlBuffer);
SQLPrepare (hStmt, "UPDATE dept SET deptdoc = ? WHERE id = '001'", SQL_NTS);
SQLBindParameter (hStmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_XML, 0, 0,
 xmlBuffer, 10240, &length); SQLExecute (hStmt);

Windows Application Package: Programming 457

XML data retrieval in ODBC applications

When you select data from XML columns in a table, the output data is in the serialized string format.
For XML data, when you use SQLBindCol() API to bind columns in a query result set to application
variables, you can specify the data type of the application variables as SQL_C_BINARY, SQL_VARBINARY,
SQL_C_CHAR, SQL_VARCHAR, SQL_C_WCHAR, or SQL_WVARCHAR. When retrieving a result set from
an XML column, it is recommended that you bind your application variable to the SQL_C_BINARY or
SQL_VARBINARY type. Binding to character types can result in possible data loss resulting from CCSID
conversion. Data loss can occur when characters in the source code page cannot be represented in the
target code page. Binding your variable to the binary types avoids these issues. XML data is returned to
the application as internally encoded data.

ODBC determines the encoding of the data as follows:

• If the C type is SQL_C_BINARY or SQL_VARBINARY, Db2 for i ODBC returns the data in the encoding of
the column.

• If the C type is SQL_C_CHAR or SQL_VARCHAR, Db2 for i ODBC returns the data in the client's encoding.
• If the C type is SQL_C_WCHAR or SQL_WVARCHAR, Db2 for i ODBC returns the data in UTF-16.

The database server performs an implicit serialization of the data before returning it to the application.
You can explicitly serialize the XML data to a specific data type by calling the XMLSERIALIZE function.
Implicit serialization is recommended, however, because explicitly serializing to character types with
XMLSERIALIZE can introduce encoding issues.

The following example shows how to retrieve XML data from an XML column into a binary application
variable.

char xmlBuffer[10240];
// xmlBuffer is used to hold the retrieved XML document
integer length;

// Assume a table named dept has been created with the following statement:
// CREATE TABLE dept (id CHAR(8), deptdoc XML)

length = sizeof (xmlBuffer);
SQLExecute (hStmt, "SELECT deptdoc FROM dept WHERE id='001'", SQL_NTS);
SQLBindCol (hStmt, 1, SQL_C_BINARY, xmlBuffer, &length, NULL);
SQLFetch (hStmt);
SQLCloseCursor (hStmt);
// xmlBuffer now contains a valid XML document encoded in UTF-8

Large objects (LOBs) considerations
Use LOBs with IBM i Access ODBC to store and access large text documents.

Large objects (LOBs):
Large object (LOB) data types allow applications to store large data objects as strings. The ODBC
driver can access LOBs that are up to 2 GB in size.
When uploading large LOB data fields to the server, it is recommended that you use the
SQLParamData and SQLPutData APIs. The SQLPutData API sends the LOB data to the server as it
is received and reduces the amount of memory needed on the client.
LOB data types:

BLOB
Binary large data objects

CLOB
Single-byte large character data objects

DBCLOB
Double-byte character large data objects

To view an example that uses the BLOB data type:
See the Example: Use the BLOB data type topic below.

458 IBM i: Windows Application Package: Programming

For more information on LOBs:
See the Using large objects topic under the Using the Object-Relational Capabilities heading in
the SQL Programming Concepts topic in the IBM i Information Center.

DataLinks:
DataLink data types allow you to store many types of data in a database. Data is stored as a uniform
resource locator (URL). The URL points to an object, which might be an image file, sound file, text file,
and so forth.
For more information on DataLinks:

See the the Using DataLinks topic under the Processing special data types heading in the SQL
Programming Concepts topic in the i5/OS Information Center.

Related reference
ODBC data types and how they correspond to Db2 for i database types
The IBM i Access support for the ODBC driver maps data types between ODBC types and Db2 for i data
types.
Related information
SQL Programming Concepts

Example: Use the BLOB data type
This is an example of using Db2 for IBM i BLOB data type with ODBC.

The following is a partial C program that uses the BLOB data type:

BOOL params = TRUE; // TRUE if you want to use parameter markers
SQLINTEGER char_len = 10, blob_len = 400;
SQLCHAR szCol1[21], szCol2[400], szRecCol1[21], szRecCol2[400];
SQLINTEGER cbCol1, cbCol2;
SQLCHAR stmt[2048];

// Create a table with a character column and a BLOB column
rc = SQLExecDirect(hstmt, "CREATE TABLE TABBLOB(COL1 CHAR(10), COL2 BLOB(400))", SQL_NTS);

strcpy(szCol1, "1234567890");
if (!params) // no parameter markers
{
 strcpy(szCol2, "414243444546"); // 0x41 = 'A', 0x42 = 'B', 0x43 = 'C', ...
 wsprintf(stmt, "INSERT INTO TABBLOB VALUES('%s', BLOB(x'%s'))", szCol1, szCol2);
}
else
{
 strcpy(szCol2, "ABCDEF"); // 'A' = 0x41, 'B' = 0x42, 'C' = 0x43, ...
 strcpy(stmt, "INSERT INTO TABBLOB VALUES(?,?)");
}

// Prepare the 'Insert' statement
rc = SQLPrepare(hstmt, stmt, SQL_NTS);

// Bind the parameter markers
if (params) // using parameter markers
{
 cbCol1 = char_len;
 rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
 char_len, 0, szCol1, char_len + 1, &cbCol1);

 cbCol2 = 6;
 rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_LONGVARBINARY,
 blob_len, 0, szCol2, blob_len, &cbCol2);
}

// Execute the 'Insert' statement to put a row of data into the table
rc = SQLExecute(hstmt);

// Prepare and Execute a 'Select' statement
rc = SQLExecDirect(hstmt, "SELECT * FROM TABBLOB", SQL_NTS);

// Bind the columns
rc = SQLBindCol(hstmt, 1, SQL_C_CHAR, szRecCol1, char_len + 1,
&cbCol1);
rc = SQLBindCol(hstmt, 2, SQL_C_BINARY, szRecCol2, blob_len, &cbCol2);

// Fetch the first row
rc = SQLFetch(hstmt);

Windows Application Package: Programming 459

szRecCol2[cbCol2] = '\0';

// At this point szRecCol1 should contain the data "1234567890"
// szRecCol2 should contain the data 0x414243444546 or "ABCDEF"

Connection and statement attributes
The IBM i Access ODBC specification defines several connection and statement attributes.

This ODBC specification is extended with several IBM i Access customized attributes, that are described
in the following 2 tables.

Table 15. Customized connection attributes

Attribute Description

CWB_ATTR_PRESERVE_CURSORS Controls the cursor commit behavior and cursor
rollback behavior.

Data type: SQLUINTEGER

Possible values:

• CWB_CB_DELETE - SQL_CB_DELETE is returned
for SQLGetInfo's SQL_CURSOR_COMMIT_BEHAVIOR
and SQL_CURSOR_ROLLBACK_BEHAVIOR options.

• CWB_CB_PRESERVE - SQL_CB_PRESERVE
is returned for SQLGetInfo's
SQL _CURSOR_COMMIT_BEHAVIOR and
SQL_CURSOR_ROLLBACK_BEHAVIOR options.

Default: CWB_CB_PRESERVE

CWB_ATTR_INFO_USERID Specifies the Client User ID string that is sent to the
host database. This attribute is set after connected to a
database.

Data type: SQLCHAR

Possible values: Any string with a length of 255 or
fewer characters.

Note: This attribute can also be specified using the
CLIENTUSERID connection string keyword.

CWB_ATTR_INFO_WRKSTNNAME Specifies the Work Station Name string that is sent to
the host database.

Data type: SQLCHAR

Possible values: Any string with a length of 255 or
fewer characters.

Note: This attribute can also be specified using the
CLIENTWRKSTNNAME connection string keyword.

CWB_ATTR_INFO_APPLNAME Specifies the Application Name string that is sent to the
host database.

Data type: SQLCHAR

Possible values: Any string with a length of 255 or
fewer characters.

Note: This attribute can also be specified using the
CLIENTAPPLNAME connection string keyword.

460 IBM i: Windows Application Package: Programming

Table 15. Customized connection attributes (continued)

Attribute Description

CWB_ATTR_INFO_ACCTSTR Specifies the Accounting ID string that is sent to the
host database.

Data type: SQLCHAR

Possible values: Any string with a length of 255 or
fewer characters.

Note: This attribute can also be specified using the
CLIENTACCTSTR connection string keyword.

CWB_ATTR_INFO_PROGRAMID Specifies the Program ID string that is sent to the host
database.

Data type: SQLCHAR

Possible values: Any string with a length of 255 or
fewer characters.

Note: This attribute can also be specified using the
CLIENTPROGRAMID connection string keyword.

CWB_ATTR_PACKAGE_LIBRARY Specifies the default package library to be used. This
should be set prior to preparing a statement on the
connection.

Data type: SQLCHAR

Possible values: Any string with a length of 10 or fewer
characters.

Note: This attribute can also be specified using the
DFTPKGLIB connection string keyword.

CWB_ATTR_PACKAGE_NAME Specifies the package name to be used. This should be
set prior to preparing a statement on the connection.

Data type: SQLCHAR

Possible values: Any string with a length of 10 or fewer
characters.

Note: This attribute can also be specified using the
PKG connection string keyword.

CWB_ATTR_SERVER_JOB_CCSIDNote 1 Returns the job CCSID for the server job associated
with the ODBC connection. By default, SQL statements
will be sent to the host in this CCSID.

Data type: SQLUINTEGER

Windows Application Package: Programming 461

Table 15. Customized connection attributes (continued)

Attribute Description

CWB_ATTR_DIVIDE_BY_ZERO Specifies whether or not dividing a value by zero should
return an error for data in a particular cell in the result
set.

Data type: SQLUINTEGER

Possible values:

• CWB_DIVIDE_BY_ZERO_ERROR - A cell in a result
set that contains a value calculated by dividing by
zero will be returned as an error.

• CWB_DIVIDE_BY_ZERO_NULL - A cell in a result set
that contains a value calculated by dividing by zero
will be returned as a NULL value. No error will be
returned.

Default: CWB_DIVIDE_BY_ZERO_ERROR

Note: This attribute can also be specified using the
divide by zero option of the DEBUG connection string
keyword.

CWB_ATTR_DATA_COMPRESSION Specifies whether to compress data sent to and from
the server. In most cases, data compression improves
performance due to less data being transmitted
between the driver and the server.

Data type: SQLUINTEGER

Possible values:

• CWB_COMPRESSION_OFF = compression off
• CWB_COMPRESSION_ON = compression on

Default: CWB_COMPRESSION_OFF

Note: This attribute can also be specified using the
COMPRESSION connection string keyword.

CWB_ATTR_TRIM_CHAR_FIELDSNote 2 Specifies whether or not to trim trailing spaces
from data returned from CHAR fields. When
CWB_DELETE_BLANKS is specified, CHAR fields will
appear like VARCHAR fields as VARCHAR fields are
always trimmed of trailing spaces.

Data type: SQLUINTEGER

Possible values:

• CWB_PRESERVE_BLANKS - don't trim CHAR fields
• CWB_DELETE_BLANKS - trim CHAR fields

Default: CWB_PRESERVE_BLANKS

462 IBM i: Windows Application Package: Programming

Table 15. Customized connection attributes (continued)

Attribute Description

CWB_ATTR_JOB_INFONote 1 Returns a character string containing information about
the prestart job that the ODBC connection is using.

Data type: SQLCHAR

Possible values: A string with length of 26 characters
in the following format:

• 10 character job name (padded with blanks as
necessary),

• 10 character user (padded with blanks as necessary),
• 6 character job number

CWB_ATTR_EWLM_CORRELATORNote 2 Specifying this attribute allows you to tie your
application with the eWLM support (Enterprise
Workload Manager).

Data type: A pointer to a buffer containing the IBM
Enterprise Workload Manager (eWLM) correlator.

CWB_ATTR_CONCURRENT_ACCESS_RESOLUT
ION

Specifies how conflicting row locks encountered in the
transaction should be handled. This only applies to
read-only queries with isolation level CS.

Data type: SQLUINTEGER

Possible values:

• CWB_CC_USE_SERVER_VALUE - Use server setting
• CWB_CC_USE_CURRENTLY_COMMITTED - Use

Currently Committed Rows
• CWB_CC_WAIT_FOR_OUTCOME - Wait for Outcome
• CWB_CC_SKIP_LOCKED_DATA - Skip Locks

Default: CWB_CC_USE_SERVER_VALUE

Note: This attribute can also be specified using the
CONCURRENTACCESSRESOLUTION connection string
keyword.

CWB_ATTR_XA_TXN_TIMEOUT Specifies the amount of time (in seconds) that a
distributed transaction waits before timing out. A value
of 0 indicates to wait indefinitely for the transaction to
finish.

Data type: SQLUINTEGER

Possible values: 0 – 999999999

Default: 0

Note: This attribute can also be specified using the
XATXNTIMEOUT connection string keyword.

Windows Application Package: Programming 463

http://publib.boulder.ibm.com/infocenter/eserver/v1r2/index.jsp?topic=/ewlminfo/eicaakickoff.htm
http://publib.boulder.ibm.com/infocenter/eserver/v1r2/index.jsp?topic=/ewlminfo/eicaakickoff.htm

Table 15. Customized connection attributes (continued)

Attribute Description

CWB_ATTR_XA_LOCK_TIMEOUT Specifies the maximum amount of time (in seconds)
that a distributed transaction waits on a lock request
before timing out. A value of 0 indicates to use the
default system settings.

Data type: SQLUINTEGER

Possible values: 0 – 999999999

Default: 0

Note: This attribute can also be specified using the
XALOCKTIMEOUT connection string keyword.

CWB_ATTR_XA_RMID An integer value that specifies the RMID to use for XA
transaction work. This can be set at anytime. The RMID
that is set must be unique for the process. If this value
is set to 0, it indicates that any current XA transaction
work has been completed for this connection.

Data type: SQLINTEGER

Default: 0

CWB_ATTR_XA_DLL_NAMENote 1 A character string that identifies the IBM i Access
driver to call into for XA calls. This string is only valid
if the CWB_ATTR_XA_RMID connection attribute has
been set. This string is set after the connection is
established.

Data type: SQLCHAR

Default: empty-string

464 IBM i: Windows Application Package: Programming

Table 15. Customized connection attributes (continued)

Attribute Description

CWB_ATTR_XML_DECLARATION Specifies what type of XML declaration should be
included with XML columns returned in result sets.

Data type: SQLUINTEGER

Possible values:

• CWB_XML_NO_DECLARATION - No declarations or
byte order marks (BOMs) are added to the output
buffer.

• CWB_XML_INCLUDE_BYTE_ORDER_MARK -A byte
order mark (BOM) in the appropriate endianness is
prepended to the output buffer if the target encoding
is UTF-16.

• CWB_XML_INCLUDE_DECLARATION - A minimal
XML declaration is generated, containing only the
XML version.

• CWB_XML_BOM_AND_DECLARATION - Sets
both CWB_XML_INCLUDE_BYTE_ORDER_MARK and
CWB_XML_INCLUDE_DECLARATION.

• CWB_XML_ENCODING_IN_DECLARATION - An
encoding attribute that identifies the target encoding
is added to any generated XML declaration.
Therefore, this setting only has effect when the
setting of 2 is also included when computing the
value of this attribute.

• CWB_XML_FULL_DECLARATION - Sets
both CWB_XML_INCLUDE_DECLARATION and
CWB_XML_ENCODING_IN_DECLARATION.

• CWB_XML_BOM_AND_FULL_DECLARATION -
Sets CWB_XML_INCLUDE_BYTE_ORDER_MARK,
CWB_XML_INCLUDE_DECLARATION, and
CWB_XML_ENCODING_IN_DECLARATION.

Default: CWB_XML_BOM_AND_FULL_DECLARATION

Note: This attribute can also be specified using the
XMLDECLARATION connection string keyword.

CWB_ATTR_XML_STRIP_WHITESPACE Specifies whether whitespace in serialized XML data
should be stripped or preserved by DB2 when the data
is implicitly parsed without validation.

Data type: SQLUINTEGER

Possible values:

• CWB_XML_STRIP_WHITESPACE - Strip whitespace
• CWB_XML_PRESERVE_WHITESPACE - Preserve

whitespace

Default: CWB_XML_STRIP_WHITESPACE

Note: This attribute can also be specified using the
XMLCURIMPPARSE connection string keyword.

Windows Application Package: Programming 465

Table 15. Customized connection attributes (continued)

Attribute Description

Note 1: This attribute is only valid with SQLGetConnectAttr.

Note 2: This attribute is only valid with SQLSetConnectAttr.

Table 16. Customized statement attributes

Attribute Description

CWB_ATTR_NUM_RESULT_SETSNote 1 Returns how many result sets are available to be
fetched. This is useful when a stored procedure has
been called and an application wants to know how
many result sets the stored procedure generated.

Data type: SQLUINTEGER

CWB_ATTR_DATA_COMPRESSION Allows compression to be turned on an off at the
statement level.

Data type: SQLUINTEGER

Possible values:

• CWB_COMPRESSION_OFF = compression off,
• CWB_COMPRESSION_ON = compression on

Default: Inherited from the connection handle, which
defaults to CWB_COMPRESSION_OFF.

CWB_ATTR_POS_OF_SYNTAX_ERRORNote 1 Returns the offset into a SQL statement at which a
SQL syntax error has occurred. This will be set when
SQLExecute or SQLExecDirect returns a SQL_ERROR
return code.

Data type: SQLUINTEGER

Note 1: This attribute is only valid with SQLGetStatementAttr.

Connection pooling
Connection pooling is supported on an IBM i Access ODBC connections.

Connection pooling refers to the behavior where IBM i Access ODBC connections are left open after the
application has requested to disconnect them. Connections that are in the pool can be reused by the
same application avoiding the time consuming operation of creating a brand new connection.

To get an application to use connection pooling support with the IBM i Access ODBC driver refer to the
following documents:

• When using ODBC Windows, refer to the MSDN Driver Manager Connection Pooling document.
• When using unixODBC on Linux, refer to the unixODBC ODBC Connection pooling document.

Related information
Microsoft Web site

SQLPrepare and SQLNativeSQL escape sequences and scalar functions
The IBM i Access ODBC support includes escape sequences and scalar functions.

ODBC has escape sequences and scalar functions that are used to avoiding having to code directly to the
syntax of a particular DBMS's version of SQL.

466 IBM i: Windows Application Package: Programming

https://msdn.microsoft.com/library/ms716319%28v=vs.85%29.aspx
http://www.unixodbc.org/doc/conn_pool.html
https://www.microsoft.com

See Microsoft's ODBC specification on how to use escape sequences. The following ODBC escape
sequences are supported by the ODBC driver.

Escape sequences:
• d
• t
• ts
• escape
• oj
• call
• ?=call – This escape sequence should be used when trying to take advantage of the Db2 for IBM i

support for return values from a procedure. The parameter marker will need to be bound as an output
parameter using the SQLBindParameter API. Note, at this time procedures can only return values of
type integer.

Distributed transaction support
Distributed transactions allow an IBM i Access ODBC application to coordinate units of work across
multiple databases.

There are two different interfaces into the ODBC driver that allow one to complete a distributed
transaction. The two interfaces are MTS (Microsoft Transaction Server) and XA API support. Both of these
interfaces are affected by the setting of the XALOCKTIMEOUT and XATXNTIMEOUT connection string
settings.

MTS
For more information on MTS refer to Introducing Microsoft Transaction Server.

XA API support
Refer to the CWB_ATTR_XA_TXN_TIMEOUT, CWB_ATTR_XA_LOCK_TIMEOUT, CWB_ATTR_XA_RMID, and
CWB_ATTR_XA_DLL_NAME connection attributes on the Connection and statement attributes page
for a description of some of the relevant options for getting the XA support to work. Note, that the
CWB_ATTR_XA_LOCK_TIMEOUT and CWB_ATTR_XA_TXN_TIMEOUT connection attributes do the same
thing as the XALOCKTIMEOUT and XATXNTIMEOUT connection string settings.

Note:

• xa_open is only called by the application for recovery purposes. When connecting through the ODBC
API SQLConnect or SQLDriverConnect the xa_open is done automatically if the RMID was set via the
CWB_ATTR_XA_RMID connection attribute.

• The connection attribute SQL_ATTR_AUTOCOMMIT must be set as SQL_AUTOCOMMIT_ON.
• If an application wishes to start an XA transaction and then do some non-XA transaction work, one must

set the RMID to 0 to indicate to the driver that the XA work is completed.
• To do XA recovery an application calls xa_open with a string of:

SYSTEM=mySystem;UID=myUserID;PWD="myPassword";DATABASE=myDatabase; – replacing
mySystem with your system name, myUserID with your user ID on that system, and myPassword with
that user ID's password. Note that the string must be specified exactly as shown. Alternatively you can
specify just SYSTEM=mySystem;.

Cursor behavior notes
Cursor behaviors can affect how data is fetched when working with the IBM i Access ODBC driver.

Cursor types can be set via SQLSetStmtAttr with the SQL_ATTR_CURSOR_TYPE option.

Windows Application Package: Programming 467

https://msdn.microsoft.com/library/aa480405.aspx

Cursor types:
• SQL_CURSOR_FORWARD_ONLY - All catalog result sets use this type of cursor. When a catalog result

set has been generated the cursor type will be automatically changed to this.
• SQL_CURSOR_KEYSET_DRIVEN - mapped to SQL_CURSOR_STATIC.
• SQL_CURSOR_DYNAMIC - supported.
• SQL_CURSOR_STATIC -supported if the statement allows it.

Note: Procedure result set cursors are opened in the procedure, therefore setting the cursor type with
SQLSetStmtAttr will not affect the cursor type. See Stored procedure result sets for more information on
procedure result sets.

The following factors can affect the concurrency of the cursor:

• If the SQL statement contains the "FOR UPDATE" clause the value for SQL_ATTR_CONCURRENCY will
be set to SQL_CONCUR_LOCK.

• If the CONCURRENCY keyword / DSN setting is set to 1 (checked) then if the SQL statement does not
have "FOR FETCH ONLY" clause in it the ODBC driver will lock records from the result set.

Rowset size:
The ODBC driver maps the value of SQL_ROWSET_SIZE and SQL_ATTR_ROW_ARRAY_SIZE to the same
value.

When there are LOBs in a result set there is a chance that locators may be used by the driver. Locators are
internal handles to LOB fields. Locators are used when the setting for the MAXFIELDLEN connection
option has a smaller value than the size of a LOB column in the result set. Locators can improve
performance in some cases as the driver only gets the data the application asks for. The downside
of locators is that there is some extra communication needed with the server. When locators are not
used the driver will download more LOB data even if it is not used. It is strongly encouraged that the
COMPRESSION connection option be enabled if locators are not being used. See Connection String
keywords descriptions for more details on the MAXFIELDLEN keyword

SQLGetData can only be used for accessing data from single row fetches. Calling SQLGetData on a
multiple row fetch is not supported.

Result set row counts:
There are several options that your application can use to determine the row count before fetching data:

• You can set the cursor type to SQL_CURSOR_STATIC.
• If your application uses ADO, you can use client-side cursors.
• Your application can use the COUNT() function by calling SELECT COUNT(*) FROM MYTABLE prior to

running the actual query.

Extended dynamic disabled error
The IBM i Access ODBC driver displays the Extended dynamic support disabled message when a SQL
package is unusable. To correct the problem, choose one of the following options:

1. Delete the SQL package on the system so that when you run your application the package will be
created with your default package settings

2. Change the SQL default library connection string setting to match the setting that is saved with the SQL
package

3. Switch theReturn code for unusable package ODBC DSN setting to Ignore or Warning. Alternatively, you
can get this same behavior by setting the PKG connection string setting.

4. Disable the XDYNAMIC connection string setting.

468 IBM i: Windows Application Package: Programming

SQLTables Description
There are multiple considerations when using IBM i Access ODBC driver SQLTables API.

• The CatalogName parameter is ignored, with or without wildcards, since the catalog name is always the
relational database name. The only time the catalog name value matters is when it must be an empty
string to generate a list of libraries for the server.

You must specify table names for the TableName parameter exactly as you would when creating a SQL
statement. In other words, you must capitalize the table name unless you created the table name with
double quotes around the table name. If you created the table with double quotes around the table
name, you need to specify the TableName parameter as it appears in quotes, matching the case of the
letters.

• The "Library view" option on the Catalog tab of the DSN setup GUI only affects this API when you
choose the combination that attempts to retrieve the list of libraries for that server. It does not allow
you to generate a result set based on a search through multiple libraries for specific tables.

• The "Object description type" option on the Catalog tab of the DSN setup GUI affects the output you get
in the "RESULTS" column of the result set when getting a list of tables.

• If you have a string with mixed '_' and '_' then if SQL_ATTR_METADATA_ID is SQL_FALSE then we'll
treat the first '_' as an actual '_', but the '_' will be treated as the wildcard. If SQL_ATTR_METADATA_ID
is SQL_TRUE then the first '_' will be treated like an actual '_' and the '_' will also be treated like an
actual '_'. The driver will internally convert the second '_' to a '_'.

• In order to use the wildcard character underscore (_) as a literal precede it with a backlash (\). For
example, to search for only MY_TABLE (not MYATABLE, MYBTABLE, etc...) you need to specify the search
string as MY_TABLE.

Specifiying '\%' in a name is invalid, as the IBM i operating system does not allow an actual '%' in a
library or table name.

When queried for the list of libraries, the driver returns the TABLE_CAT and REMARKS fields as
meaningful data.

The ODBC specification says to return everything, except the TABLE_SCHEM as nulls.

Handle long-running queries
There are a number of ways to limit the amount of time a query runs with the IBM i Access ODBC driver.
Listed below are a couple of options which can be enabled in ODBC.

1. An application can set the SQL_ATTR_QUERY_TIMEOUT connection attribute to specify the maximum
amount of time a query can run. Note, the query will not start if the SQL Optimizer determines
that the amount of time needed to process the query will exceed the SQL_ATTR_QUERY_TIMEOUT
value. If the estimated amount of time exceeds the value of the SQL_ATTR_QUERY_TIMEOUT
attribute, an SQL0666 SQLCODE will be returned to the application.The default value for
SQL_ATTR_QUERY_TIMEOUT is 0 which indicates that the query will run until completion.

2. An application can call the SQLCancel API. To do this an application needs to be multi-threaded.
While the long running query is running on one thread, another thread calls SQLCancel using the same
statement handle.

Isolation level considerations
Run IBM i Access ODBC autocommit support to different isolation (commit) levels.

IBM i allows you to run ODBC autocommit support to use other isolation levels than just *NONE.

By specifying an isolation level something other than *NONE, you can run autocommit under a different
isolation level. Be aware that an autocommit commitment levels other than *NONE require that you make
additional other changes and that it changes the behavior of some functions, like eliminating the ability to
update non-journaled files. For more information, see the Isolation level topic in the SQL Reference.

The connection string keyword TRUEAUTOCOMMIT allows an application to control whether or not
to run autocommit under the *NONE isolation level or the SQL_ATTR_TXN_ISOLATION setting. If
TRUEAUTOCOMMIT is set to 1 in the SQLDriverConnect connection string then the application will run

Windows Application Package: Programming 469

autocommit using the SQL_ATTR_TXN_ISOLATION setting. If TRUEAUTOCOMMIT is not set, the default
value of 0 is used. The default behavior will run autocommit using the *NONE isolation level.

Related information
SQL Reference Isolation level

ODBC performance
See any of the following IBM i Access ODBC performance topics.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

Performance-tuning ODBC
A key consideration for Db2 for i Access ODBC application developers is achieving maximum
performance from client/server applications.

The following topics explore client/server performance issues in general, and address the performance
implications of ODBC with popular query tools and development environments:

Introduction to server performance
The performance characteristics of any computing environment are described in the following terms.

Response time
The amount of time that is required for a request to be processed

Utilization
The percentage of resources that are used when processing requests

Throughput
The volume of requests (per unit of time) that are being processed

Capacity
The maximum amount of throughput that is possible

Typically, response time is the critical performance issue for users of a server. Utilization frequently
is important to the administrators of a server. Maximum throughput is indicative of the performance
bottleneck, and may not be a concern. While all of these characteristics are interrelated, the following
summarizes server performance:

• Every computing server has a bottleneck that governs performance: throughput.
• When server utilization increases, response time degrades.

In many servers, capacity is considerable, and is not an issue with users. In others, it is the primary
performance concern. Response time is critical. One of the most important questions for administrators
is: How much can the server be degraded (by adding users, increasing utilization) before users begin
objecting?

Introduction to client/server performance
The performance characteristics of a client/server environment are different than those of centralized
environments.

This is because client/server applications are split between the client and the server. The client and server
communicate by sending and receiving requests and messages. This model is far different than that for a
centralized environment. In that environment, a program calls the CPU, and the memory and disk drives
are fully dedicated.

Instead, when a client requests processing time and data from the server, it transmits the request on
the network. The request travels to the server and waits in a queue until the server is able to process
it. The performance characteristics of this type of architecture degrade exponentially as the number of
requests increase. In other words, response times increase gradually as more requests are made, but
then increase dramatically at some point, which is known as the "knee of the curve." This concept is
illustrated by the following graph:

470 IBM i: Windows Application Package: Programming

It is important to determine this point at which performance begins to degrade significantly. The point can
vary with every client/server installation.

The following is a suggested guideline for client/server operations: Communicate with the server only
when necessary, and in as few data transmissions as possible. Opening a file and reading one record at a
time often results in problems for client-server projects and tools.

Performance architecture of the ODBC driver
For the IBM i Access ODBC driver, all of the internal data flows between the client and the server are
chained together, and transmitted only when needed.

This reduces server utilization because communications-layer resources are allocated only once.
Response times improve correspondingly.

These types of enhancements are transparent to the user. However, there are some enhancements which
are configurable on the IBM i Access ODBC Setup dialog. Look at the online help on the Performance tab
of the setup GUI or refer to the Performance options on the Connection String keywords descriptions for
more information.

Select a stringent level of commitment control
There are some important considerations when choosing to use IBM i Access ODBC commitment control.

Do not use commitment control unnecessarily. The overhead that is associated with locking not only
increases utilization, but also reduces concurrency. However, if your application is not read-only,
commitment control might be required.

A common alternative is to use optimistic locking. Optimistic locking involves issuing explicit UPDATEs by
using a WHERE clause that uniquely determines a particular record. Optimistic locking ensures that the
record does not change after it is retrieved.

Many third-party tools use this approach, which is why they often require a unique index to be defined for
updatable tables. This allows the record update to be made by fully qualifying the entire record contents.
Consider the following example:

 UPDATE table SET C1=new_val1, C2=new_val2, C2=new_val3
 WHERE C1=old_val1 AND C2=old_val2 AND C3=old_val3

In the 6.1 release, Db2 for i added 'ROW CHANGE TIMESTAMP' support. This allows an application
to create a table with a ROW CHANGE TIMESTAMP column, which can be used together with a ROW
CHANGE expression and the RID function to guarantee row uniqueness without the need to cache all the
columns for each of the rows that might be subsequently changed. This is a better solution for optimistic

Windows Application Package: Programming 471

locking, in that it does not require row locks to be maintained and it does not require caching of every
column value in the row to be updated. See the following example:

 /*Add a row change timestamp column (called 'RCT' in this example)*/
 /* to the table when it is created */
 CREATE TABLE TABLEX (col1 int,..., RCT GENERATED ALWAYS FOR
 EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP NOT NULL);
 :
 /*Add the ROW CHANGE TOKEN expression and the RID function to the */
 /* select list of the query (note : a ROW CHANGE expression which */
 /*specifies the TIMESTAMP or the column itself can also be used */
 /*in the query. See the SQL Reference for more details). */
 /* Note that locks on the rows read by the query do not need to be*/
 /* held. */
 SELECT ROW CHANGE TOKEN FOR tablex,RID(tablex),col1,....,
 FROM TABLEX WHERE ...
 :
 /* For each row, cache away just the value from the ROW CHANGE */
 /* TOKEN and the value for the result of the RID function. */
 /* When a row qualifies to be updated, just the ROW CHANGE */
 /* TOKEN value and the RID()function value need to be specified in*/
 /* the criteria for the UPDATE. */
UPDATE table SET Col1=new_val1, Col2=new_val2,... WHERE ROW CHANGE
 TOKEN for tablex = <saved value> and RID(tablex) = <saved RID value>
 :

If the UPDATE statement returns a 'row not found' error, this indicates that the row you attempted to
update has been updated or deleted since the time it was read. See the SQL Reference for more details on
ROW CHANGE expression and the RID() function.

If commitment control is required, use the lowest level of record locking possible. For example, use
*CHG: over *CS when possible, and never use *ALL when *CS provides what you require.

Related information
Commitment control
DB2 for i SQL Reference

Fine-tune record-blocking
Record-blocking is a technique that significantly reduces the number of network flows and therefore
improves performance when using IBM i Access ODBC driver.

It does this by returning a block of multiple rows from the server on the first FETCH request for a cursor.
Subsequent FETCH requests are retrieved from the local block of rows, rather then going to the server
each time. This technique dramatically increases performance when it is properly used. The default
settings should be sufficient for most situations.

A change to one of the record-blocking parameters can make a significant difference when the
performance of your environment is approaching the exponential threshold that is illustrated in
“Introduction to client/server performance” on page 470. For example, assume that an environment
has n decision-support clients doing some amount of work with large queries, typically returning 1 MB of
data.

At the opposite extreme is a scenario where users consistently ask for large amounts of data, but typically
never examine more than a few rows. The overhead of returning 32KB of rows when only a few are
needed could degrade performance. Setting the BLOCKSIZE or BlockSizeKB connection string keyword to
a lower value, setting the BLOCKFETCH connection string keyword to 0 (Use ODBC blocking) or disabling
record blocking altogether, might actually increase performance.

It is important to note that, as always in client/server, performance results may vary. You might make
changes to these parameters and not realize any difference. This may indicate that your performance
bottleneck is not the client request queue at the server. This parameter gives you one more tool to use
when your users start objecting.

Related reference
Connection string keywords

472 IBM i: Windows Application Package: Programming

The IBM i Access support for the ODBC driver has many connection string keywords that are used to
change the behavior of the ODBC connection.

Use Extended Dynamic SQL
Use the IBM i extended dynamic capability to improve performance of your ODBC applications.

Traditional SQL interfaces used an embedded SQL approach. SQL statements were placed directly in an
application's source code, along with high-level language statements written in C, COBOL, RPG, and other
programming languages. The source code then was precompiled, which translated the SQL statements
into code that the subsequent compile step could process. This method is referred to as static SQL. One
performance advantage to this approach is that SQL statements were optimized at the time the high-level
program was compiled, rather than at runtime while the user was waiting.

ODBC, however, is a call level interface (CLI) that uses a different approach. Using a CLI, SQL statements
are passed to the database management system (DBMS) within a parameter of a runtime API. Because
the text of the SQL statement is never known until runtime, the optimization step must be performed each
time an SQL statement is run. This approach commonly is referred to as dynamic SQL.

The use of this feature (which is enabled by default) not only can improve response times, but can
improve dramatically server utilization. This is because optimizing SQL queries can be costly, and
performing this step only once is always advantageous. This works well with a unique feature of Db2
for i. Unlike other DBMSs, it ensures that statements which are stored in packages are kept up-to-date in
terms of optimization, without administrator intervention. Even if a statement was prepared for the first
time weeks or months ago, Db2 for i automatically regenerates the access plan when it determines that
sufficient database changes require reoptimization.

For more information on packages and the types of SQL statements stored in them, see the SQL packages
topic in the IBM i Information Center.

Related information
SQL packages

Performance considerations of common end-user tools
Several tools can help tune your IBM i Access ODBC driver environment.

Having an ODBC driver that is optimally tuned is only part of the performance equation. The other part is
the tools that are used; whether they are used simply to query the data, or to build complex programs.

Some of the more common tools include:

• Crystal Services Crystal Reports Professional
• Cognos® Impromptu
• Gupta SQL Windows
• IBM Visualizer for Windows
• Microsoft Access
• Microsoft Internet Information Server
• Microsoft SQL Server
• Microsoft Visual Basic
• Powersoft PowerBuilder
• Microsoft Visual Studio

There are many more tools available than are on this list, and every tool in the marketplace has its own
strengths, weaknesses, and performance characteristics. But most have one thing in common: support for
ODBC database servers. However, because ODBC serves as a common denominator for various database
management systems, and because there are subtle differences from one ODBC driver to the next, many
tool providers write to the more common ODBC and SQL interfaces. By doing this, they avoid taking
advantage of a unique characteristic of a particular database server. This may ease programming efforts,
but it often degrades overall performance.

Windows Application Package: Programming 473

Examples: Common tool behaviors that degrade ODBC performance
The following examples demonstrate performance problems that are associated with writing SQL and IBM
i Access ODBC calls that do NOT take advantage of a unique feature of a particular ODBC driver or the
server database management system.

Example: Query tool A
This example illustrates using IBM i Access ODBC bound columns to retrieve information faster.

Query Tool A makes the following ODBC calls to process SELECT statements:

 SQLExecDirect("SELECT * FROM table_name")

 WHILE there_are_rows_to_fetch DO

 SQLFetch()
 FOR every_column DO
 SQLGetData(COLn)
 END FOR
 ...process the data

 END WHILE

This tool does not make use of ODBC bound columns, which can help performance. A faster way to
process this is as follows:

 SQLExecDirect("SELECT * FROM table_name")
 FOR every_column DO
 SQLBindColumn(COLn)
 END FOR

 WHILE there_are_rows_to_fetch DO
 SQLFetch()
 ...process the data
 END WHILE

If a table contained one column, there would be little difference between the two approaches. But for a
table with a 100 columns, you end up with 100 times as many ODBC calls in the first example, for every
row fetched. You also can optimize the second scenario because the target data types specified by the tool
will not change from one FETCH to the next, like they could change with each SQLGetData call.

Example: Query tool B
This example illustrates using one allocation statement for the entire IBM i Access ODBC call.

Query tool B allows you to update a spreadsheet of rows and then send the updates to the database. It
makes the following ODBC calls:

 FOR every_row_updated DO

 SQLAllocHandle(SQL_HANDLE_STMT)
 SQLExecDirect("UPDATE...SET COLn='literal'...WHERE COLn='oldval'...")
 SQLFreeHandle(SQL_HANDLE_STMT)

 END LOOP

The first thing to note is that the tool performs a statement allocation-and-drop for every row. Only
one allocate statement is needed. This change would save the overhead of creating and destroying a
statement handle for every operation. Another performance concern is the use of SQL with literals instead
of with parameter markers. The SQLExecDirect() call causes an SQLPrepare and SQLExecute every time.
A faster way to perform this operation would be as follows:

 SQLAllocHandle(SQL_HANDLE_STMT)
 SQLPrepare("UPDATE...SET COL1=?...WHERE COL1=?...")
 SQLBindParameter(new_column_buffers)
 SQLBindParameter(old_column_buffers)
 FOR every_row_updated DO

 ...move each rows data into the SQLBindParameter buffers
 SQLExecute()
 SQLFreeHandle(SQL_HANDLE_STMT)

474 IBM i: Windows Application Package: Programming

 END LOOP

These sets of ODBC calls will outperform the original set by a large factor when you are using the IBM i
Access ODBC driver. The server CPU utilization will decrease to 10 percent of what it was, which pushes
the scaling threshold out a lot farther.

Example: Query tool C
In this example, the complex decision support-type queries ended up making the IBM i Access ODBC
query run longer.

Query tool C allows complex decision support-type queries to be made by defining complex query criteria
with a point-and-click interface. You might end up with SQL that looks like this for a query:

 SELECT A.COL1, B.COL2, C.COL3 , etc...
 FROM A, B, C, etc...
 WHERE many complex inner and outer joins are specified

That you did not have to write this complex query is advantageous, but beware that your tool may not
actually process this statement. For example, one tool might pass this statement directly to the ODBC
driver, while another splits up the query into many individual queries, and processes the results at the
client, like this:

 SQLExecDirect("SELECT * FROM A")
 SQLFetch() all rows from A
 SQLExecDirect("SELECT * FROM B")
 SQLFetch() all rows from B

 Process the first join at the client

 SQLExecDirect("SELECT * FROM C")
 SQLFetch() all rows from C

 Process the next join at the client
 .
 .
 .
 And so on...

This approach can lead to excessive amounts of data being passed to the client, which will adversely
affect performance. In one real-world example, a programmer thought that a 10-way inner/outer join was
being passed to ODBC, with four rows being returned. What actually was passed, however, was 10 simple
SELECT statements and all the FETCHes associated with them. The net result of four rows was achieved
only after 81,000 ODBC calls were made by the tool. The programmer initially thought that ODBC was
responsible for the slow performance, until the ODBC trace was revealed.

SQL performance
Good application design includes the efficient use of machine resources. In the IBM i Access ODBC
environment, to run in a manner that is acceptable to the end user, an application program must be
efficient in operation, and must run with adequate response time.

SQL performance general considerations
Get answers to the when, what, and how questions when designing your ODBC environment.

Performance of SQL in application programs is important to ALL server users, because inefficient usage of
SQL can waste server resources.

The primary goal in using SQL is to obtain the correct results for your database request, and in a timely
manner.

Before you start designing for performance, review the following considerations:

When to consider performance:

• SQL Tables with over 10,000 rows - Performance impact: noticeable
• SQL Tables with over 100,000 rows - Performance impact: concern

Windows Application Package: Programming 475

• When repetitively using complex queries
• When using multiple work stations with high transaction rates

What resource to optimize:

• I/O usage
• CPU usage
• Effective usage of indexes
• OPEN/CLOSE performance
• Concurrency (COMMIT)

How to design for performance:

• Database design:

– Table structure
– Indexes
– Table data management
– Journal management

• Application design:

– Structure of programs involved
• Program design:

– Coding practices
– Performance monitoring

The SQL Reference book contains additional information. You can view an HTML online version of the
book, or print a PDF version, from the Db2 for i SQL Reference topic in the IBM i Information Center.

Related information
DB2 for i SQL Reference

Database design
Use the following topics to determine what tables you require in your Db2 for IBM i database and to
understand the relationship between those tables.

Normalization
Normalization should be considered when designing Db2 for i database tables and schemas.

Several available design methods allow you to design technically correct databases, and effective
relational database structure. Some of these methods are based on a design approach called
normalization. Normalization refers to the reduction or elimination of storing redundant data.

The primary objective of normalization is to avoid problems that are associated with updating redundant
data.

However, this design approach of normalization (for example, 3NF–3rd Normal Form), may result in
large numbers of tables. If there are numerous table join operations, SQL performance may be reduced.
Consider overall SQL performance when you design databases. Balance the amount of redundant data
with the number of tables that are not fully normalized.

The following graphic illustrates that the proportion of redundant data to the number of tables affects
performance:

476 IBM i: Windows Application Package: Programming

Figure 1. Balancing redundant data and number of tables

Minimize the use of code tables when little is gained from their use. For example, an employee table
contains a JOBCODE column, with data values 054, 057, and so forth. This table must be joined with
another table to translate the codes to Programmer, Engineer, and so on. The cost of this join could be
quite high compared to the savings in storage and potential update errors resulting from redundant data.

For example:

Windows Application Package: Programming 477

Figure 2. Normalized data form

478 IBM i: Windows Application Package: Programming

Figure 3. Redundant data form

The set level (or mass operation) nature of SQL significantly lessens the danger of a certain redundant
data form. For example, the ability to update a set of rows with a single SQL statement greatly reduces
this risk. In the following example, the job title Engineer must be changed to Technician for all rows that
match this condition.

Use SQL to update JOBTITLE:

 UPDATE EMPLOYEE
 SET JOBTITLE = "Technician"
 WHERE JOBTITLE = "Engineer"

Table size
The size of the tables that your application program accesses has a significant impact on the performance
of the ODBC application program.

Consider the following:

Large row length:
For sequentially accessed tables that have a large row length because of many columns (100 or
more), you may improve performance by dividing the tables into several smaller ones, or by creating
a view. This assumes that your application is not accessing all of the columns. The main reason for
the better performance is that I/O may be reduced because you will get more rows per page. Splitting
the table will affect applications that access all of the columns because they will incur the overhead of
joining the table back together again. You must decide where to split the table based on the nature of
the application and frequency of access to various columns.

Large number of rows:
If a table has a large number of rows and the queries that access the table always specify a WHERE
clause, create an index over the columns that are used in the WHERE clause. The index will allow
the Db2 for i optimizer to use the index to access the table. The use of indexes is very important for
achieving the best possible performance.

Related reference
Optimizer

Windows Application Package: Programming 479

The optimizer is an important part of the Db2 for i database engine because it makes the key decisions for
good database performance. Its main objective is to find the most efficient access path to the Db2 for i
data.
Use indexes
The use of indexes can improve significantly the performance of your IBM i Access ODBC applications.

Use indexes
The use of indexes can improve significantly the performance of your IBM i Access ODBC applications.

The Db2 for i query optimizer uses indexes for performance optimization, and in some cases, is able to
read all necessary data to satisfy a query from an index. See the related link for more information on the
Optimizer.

Indexes are created in five different ways:

• CREATE INDEX (in SQL)
• CRTPF, with key
• CRTLF, with key
• CRTLF, as join logical file
• CRTLF, with select/omit specifications, without a key, and without dynamic selection (DYNSLT).

Indexes are used to enable row selection by means of index-versus-table scanning, which is usually
slower. Table scanning sequentially processes all rows in a table. If a permanent index is available,
building a temporary index can be avoided. Indexes are required for:

• Join tables
• ORDER BY
• GROUP BY

Indexes will be created, if no permanent index exists.

Manage the number of indexes to minimize the extra server cost of maintaining the indexes during update
operations. Below are general rules for particular types of tables:

Primarily read-only tables:
Create indexes over columns as needed. Consider creating an index only if a table is greater than
approximately 1,000 rows or is going to be used with ORDER BY, GROUP BY, or join processing. Index
maintenance could be costlier than occasionally scanning the entire table.

Primarily read-only table, with low update rate:
Create indexes over columns as needed. Avoid building indexes over columns that are updated
frequently. INSERT, UPDATE, DELETE, as well as these statements in a MERGE statement, will cause
maintenance to all indexes related to the table.

High update-rate tables:
Avoid creating many indexes. An example of a table that has a high update rate is a logging or a history
table.

Related reference
Optimizer
The optimizer is an important part of the Db2 for i database engine because it makes the key decisions for
good database performance. Its main objective is to find the most efficient access path to the Db2 for i
data.
Table size

480 IBM i: Windows Application Package: Programming

The size of the tables that your application program accesses has a significant impact on the performance
of the ODBC application program.

Match attributes of join fields
For Db2 for i , columns used to join tables should have the same attributes.

Columns in tables that are joined should have identical attributes: the same column length, same data
type (character, numeric), and so forth. Nonidentical attributes result in temporary indexes being built,
even though indexes over corresponding columns may exist.

In the following example, join will build a temporary index and ignore an existing one:

 SELECT EMPNO, LASTNAME, DEPTNAME
 FROM TEMPL, TDEPT
 WHERE TEMPL.DEPTNO = TDEPT.DEPTNO

Optimizer
The optimizer is an important part of the Db2 for i database engine because it makes the key decisions for
good database performance. Its main objective is to find the most efficient access path to the Db2 for i
data.

Query optimization is a trade-off between the time spent to select a query implementation and the time
spent to run it. Query optimization must handle the following distinct user needs:

• Quick interactive response
• Efficient use of total-machine resources

In deciding how to access data, the optimizer does the following:

• Determines possible implementations
• Picks the optimal implementation for running of the SQL statement

Related reference
Use indexes
The use of indexes can improve significantly the performance of your IBM i Access ODBC applications.
Table size
The size of the tables that your application program accesses has a significant impact on the performance
of the ODBC application program.

Cost estimation
At runtime, the Db2 for i optimizer chooses an optimal access method for the query by calculating an
implementation cost based on the current state of the tables referenced in the query and any access
paths (indexes) which are available.

The optimizer models the access cost of each of the following:

• Reading rows directly from the table (dataspace scan processing)
• Reading rows through an access path (using either key selection or key positioning)
• Creating an access path directly from the dataspace
• Creating an access path from an existing access path (index-from-index)

Windows Application Package: Programming 481

• Using the query sort routine (if conditions are satisfied)

The cost of a particular method is the sum of:

• The start-up cost
• The cost associated with the given optimization mode. The OPTIMIZE FOR n ROWS clause indicates to

the optimizer the optimization goal to be achieved. The optimizer can optimize SQL queries with one of
two goals:

1. Minimize the time required to retrieve the first buffer of rows from the table. This goal biases the
optimization towards not creating an index.

Note: This is the default if you do not use OPTIMIZE FOR n ROWS.

Either a data scan or an existing index is preferred. This mode can be specified by:

– The OPTIMIZE FOR n ROWS allowing the users to specify the number of rows they expect to
retrieve from the query.

The optimizer using this value to determine the percentage of rows that will be returned and
optimizes accordingly. A small value instructs the optimizer to minimize the time required to
retrieve the first n rows.

2. Minimize the time to process the whole query assuming that all selected rows are returned to the
application. This does not bias the optimizer to any particular access method. Specify this mode by
using OPTIMIZE FOR n ROWS, which allows the users to specify the number of rows they expect to
retrieve from the query.

The optimizer uses this value to determine the percentage of rows that will be returned and
optimizes accordingly. A value greater than or equal to the expected number of resulting rows
instructs the optimizer to minimize the time required to run the entire query.

• The cost of any access path creations.
• The cost of the expected number of page faults to read the rows and the cost of processing the

expected number of rows.

Page faults and number of rows processed may be predicted by statistics the optimizer obtains from the
database objects, including:

– Table size
– Row size
– Index size
– Key size

A weighted measure of the expected number of rows to process. This is based on what the relational
operators in the row selection predicates (default filter factors) are likely to retrieve:

– 10% for equal
– 33% for less-than, greater-than, less-than-equal-to, or greater-than-equal-to
– 90% for not equal
– 25% for BETWEEN range
– 10% for each IN list value

Key range estimate is a method that the optimizer uses to gain more accurate estimates of the number
of expected rows that are selected from one or more selection predicates. The optimizer estimates
by applying the selection predicates against the left-most keys of an existing index. The default filter
factors then can be further refined by the estimate based on the key range. If the left-most keys in an
index match columns that are used in row-selection predicates, use that index to estimate the number
of keys that match the selection criteria. The estimate of the number of keys is based on the number
of pages and key density of the machine index. It is performed without actually accessing the keys. Full
indexes over columns that are used in selection predicates can significantly help optimization.

482 IBM i: Windows Application Package: Programming

Optimizer decision-making rules
In performing its function, the Db2 for i optimizer uses a general set of guidelines to choose the best
method for accessing the database tables.

The optimizer does the following:

• Determines the default filter factor for each predicate in the selection clause.
• Extracts attributes of the table from internally stored information.
• Performs an estimate key range to determine the true filter factor of the predicates when the selection

predicates match the left-most keys of an index.
• Determines the cost of creating an index over a table if an index is required.
• Determines the cost of using a sort routine if selection conditions apply and an index is required.
• Determines the cost of dataspace scan processing if an index is not required.
• For each index available, in the order of most recently created to oldest, the optimizer does the

following until its time limit is exceeded:

– Extracts attributes of the index from internally stored statistics.
– Determines if the index meets the selection criteria.
– Determines the cost of using the index using the estimated page faults and the predicate filter factors

to help determine the cost.
– Compares the cost of using this index with the previous cost (current best).
– Selects the cheapest one.
– Continues to search for best index until time out or no more indexes.

The time limit factor controls how much time is spent choosing an implementation. It is based on how
much time has been spent and the current best implementation cost found. Dynamic SQL queries are
subject to optimizer time restrictions. Static SQL queries optimization time is not limited.

For small tables, the optimizer spends little time in query optimization. For large tables, the optimizer
considers more indexes. Generally, the optimizer considers five or six indexes (for each table of a join)
before running out of optimization time.

ODBC support for multiple row statements
Db2 for IBM i and ODBC supports multiple row operations on INSERT, UPDATE, DELETE, and MERGE
statements using the technique described below. This example shows how to use the multiple row
INSERT statement in ODBC to insert multiple rows into a Db2 for i table.

The multiple row INSERT statement provides a means to insert multiple rows with a single SQLExecute
request. From a performance standpoint, it provides the best way to populate a table, at times providing a
tenfold performance improvement over the next best method.

The three forms of INSERT statements that can be executed from ODBC are:

• INSERT with VALUES using constants
• INSERT with VALUES using parameter markers
• multiple row INSERT

The INSERT with VALUES using constants statement is the least efficient method of performing inserts.
For each request, a single INSERT statement is sent to the server where it is prepared, the underlying
table is opened, and the record is written.

Example:

 INSERT INTO TEST.TABLE1 VALUES('ENGINEERING',10,'JONES','BOB')

The INSERT with VALUES using parameter markers statement performs better than the statement that
uses constants. This form of the INSERT statement allows for the statement to be prepared only once and

Windows Application Package: Programming 483

then reused on subsequent executions of the statement. It also allows the table on the server to remain
open, thus removing the overhead of opening and closing the file for each insert.

Example:

 INSERT INTO TEST.TABLE1 VALUES (?, ?, ?, ?)

The multiple row INSERT statement most efficiently performs inserts into a table when multiple rows can
be cached on the client and sent at once. The advantages with multiple row INSERT are:

• The data for multiple rows is sent in one communication request rather than one request per row.
• The server has an optimized path built into the database support for multiple row INSERT statements.

Example:

 INSERT INTO TEST.TABLE1 ? ROWS VALUES (?, ?, ?, ?)

The INSERT statement has additional syntax that identifies it as a multiple row INSERT. This optional
syntax, the "? ROWS" clause, indicates that an additional parameter will be specified for this INSERT
statement. It also indicates that the parameter will contain a row count that determines how many rows
will be sent for that execution of the statement. The number of rows must be specified by means of the
SQLSetStmtAttr API. Note that this extra clause is not needed; a multiple row INSERT statement can
also run by preparing a INSERT with VALUES form of the statement with parameter markers, setting the
row count on the SQLSetStmtAttr API, and then executing the statement.

To view examples of the APIs used from a C program for multiple row statements , see the multiple row
insert and multiple row fetch C example topic.

Catalog functions
Catalog functions return information about the Db2 for i database objects with which you are working.

To process ODBC SQLTables requests, logical files are built over the server cross reference file
QADBXREF in library QSYS. QADBXREF is a database file for database-maintained cross-reference
information that is part of the dictionary function for the server.

The following are the actions for SQLTables when TableType is set to the following:

NULL
Selects all LOGICAL and PHYSICAL files, including SQL SQL TABLES and VIEWS.

TABLE
Selects all PHYSICAL files, including SQL TABLES that are not server files (cross reference or data
dictionary).

VIEW
Selects all LOGICAL files, including SQL VIEWS that are not server files (cross reference or data
dictionary).

SYSTEM TABLE
Selects all PHYSICAL and LOGICAL files, including SQL VIEWS that are either server files or data
dictionary files.

TABLE, VIEW
Selects all LOGICAL and PHYSICAL files, including SQL TABLES and VIEWS that are not server files or
data dictionary files.

Non-relational files (files with more than one format) are not selected. Also not selected are indexes, flat
files and IDDU-defined files.

The result sets returned by the catalog functions are ordered by table type. In addition to the TABLE and
VIEW types, the system has the data source-specific type identifiers of PHYSICAL and LOGICAL files. The
PHYSICAL type is handled as a TABLE, and the LOGICAL type is handled as a VIEW.

484 IBM i: Windows Application Package: Programming

To process ODBC SQLColumns requests, a logical file is built over the server cross-reference file
QADBIFLD in the QSYS library. This logical file selects all relational database files except for indexes.
QADBIFLD is a database file for database-maintained cross-reference information that is part of the
dictionary function for the server. Specifically, this includes database file column and field information.

For additional information:
The Appendix of the SQL Reference book contains additional information. View an HTML online version
of the book, or print a PDF version, from the Db2 for i SQL Reference topic in the IBM i Information
Center.

Related information
DB2 for i SQL Reference

Exit programs
There are requirements when calling an IBM i Access ODBC exit program.

An exit program is a program to which control is passed from a calling program. When you specify an exit
program, the servers pass the following two parameters to the exit program before running your request:

• A 1-byte return code value.
• A structure containing information about your request. This structure is different for each of the exit

points.

These two parameters allow the exit program to determine whether your request is allowed. If the exit
program sets the return code to X'F0', the server rejects the request. If the return code is set to anything
else, the server allows the request.

The same program can be used for multiple exit points. The program can determine what function is being
called by looking at the data in the second parameter structure.

Use the Work with Registration Information (WRKREGINF) command to add your exit
programs to the database exit points.

The database server has five different exit points defined:

QIBM_QZDA_INIT
called at server initiation

QIBM_QZDA_NDB1
called for native database requests

QIBM_QZDA_SQL1
called for SQL requests

QIBM_QZDA_SQL2
called for SQL requests

QIBM_QZDA_ROI1
called for retrieving object information requests and SQL catalog functions

Note: This exit point is called less often than in V5R1 and earlier Client Access ODBC drivers. If you
have an exit program that uses this exit point, verify that it still works as intended.

Examples: User exit programs
The following examples do not show all of the programming considerations or techniques. Review the
examples before you begin IBM i Access ODBC application design and coding.

Example: ILE C/400 user exit program for exit point QIBM_QZDA_INIT
The following ILE C/400 program handles IBM i Access ODBC security by rejecting requests from certain
users. It can be used as a shell for developing exit programs tailored for your operating environment.

/**/
/* Sample Exit Program */
/* */
/* Exit Point Name : QIBM_QZDA_INIT */
/* */
/* Description : The following ILE C Language program */

Windows Application Package: Programming 485

/* handles ODBC security by rejecting */
/* requests from users who use ODBC and */
/* signon using a user profile of 'GUEST'. */
/* It can be used as a shell program */
/* for developing exit programs tailored */
/* for your environment. */
/**/
#include <stdio.h>
#include <string.h>
#include <ezdaep.h> /* ZDA exit program formats */
main(int argc, char *argv[])
 {
 Qzda_Init_Format_t input; /* input format */

 /**/
 /* Copy format parameter to local storage */
 /**/
 memcpy(&input,(Qzda_Init_Format_t *) argv[2],
 sizeof(Qzda_Init_Format_t));

 /**/
 /* If user profile is 'GUEST' and interface type is 'ODBC' */
 /* reject the connection. */
 /**/
 if (memcmp(input.User_Profile,"GUEST ",10)==0 &&
 memcmp(input.Interface_Type,"ODBC",4) == 0)
 /**/
 /* Reject the connection. */
 /**/
 strcpy(argv[1],"0");
 else
 /**/
 /* Allow the connection. */
 /**/
 strcpy(argv[1],"1");
 return;
 }

Example: CL user exit program for exit point QIBM_QZDA_INIT
The following Control Language program handles IBM i Access ODBC security by rejecting requests
from certain users. It can be used as a shell for developing exit programs tailored for your operating
environment.

/* */
/* @@ss1s@@ Servers - Sample Exit Program */
/* */
/* Exit Point Name : QIBM_QZDA_INIT */
/* */
/* Description : The following Control Language program */
/* handles ODBC security by rejecting */
/* requests from certain users. */
/* It can be used as a shell for developing */
/* exit programs tailored for your */
/* operating environment. */
/* */
PGM PARM(&STATUS &REQUEST)

/* */
/* Program call parameter declarations */
/* */
 DCL VAR(&STATUS) TYPE(*CHAR) LEN(1) /* Accept/Reject indicator */
 DCL VAR(&REQUEST) TYPE(*CHAR) LEN(34) /* Parameter structure */

/* */
/* Parameter declares */
/* */
 DCL VAR(&USER) TYPE(*CHAR) LEN(10) /* User profile name calling server*/
 DCL VAR(&SRVID) TYPE(*CHAR) LEN(10) /* database server value (*SQL) */
 DCL VAR(&FORMAT) TYPE(*CHAR) LEN(8) /* Format name (ZDAI0100) */
 DCL VAR(&FUNC) TYPE(*CHAR) LEN(4) /* function being preformed (0) */

/* */
/* Extract the various parameters from the structure */
/* */
 CHGVAR VAR(&USER) VALUE(%SST(&REQUEST 1 10))
 CHGVAR VAR(&SRVID) VALUE(%SST(&REQUEST 11 10))
 CHGVAR VAR(&FORMAT) VALUE(%SST(&REQUEST 21 8))
 CHGVAR VAR(&FUNC) VALUE(%SST(&REQUEST 28 4))

486 IBM i: Windows Application Package: Programming

/*--
 --*/

/* */
/* Begin main program */
/* */

 /* set return code to allow the request. */
 CHGVAR VAR(&STATUS) VALUE('1')

 /* if user name is GUEST set return code to reject the request. */
 IF (&USER *EQ 'GUEST') THEN(+
 CHGVAR VAR(&STATUS) VALUE('0'))

EXIT:
ENDPGM

Example: ILE C/400 Program for exit point QIBM_QZDA_SQL1
The following ILE C/400 program will reject any UPDATE request for user GUEST. It can be used as a shell
for developing IBM i Access ODBC exit programs tailored for your operating environment.

/*--
 * @@ss1s@@ Servers - Sample Exit Program
 *
 * Exit Point Name : QIBM_QZDA_SQL1
 *
 * Description : The following ILE C/400 program will
 * reject any UPDATE request for user GUEST.
 * It can be used as a shell for developing
 * exit programs tailored for your
 * operating environment.
 *
 * Input : A 1-byte return code value
 * X'F0' server rejects the request
 * anything else server allows the request
 * Structure containing information about the
 * request. The format used by this program
 * is ZDAQ0100.
 --/
/*--
 * Includes
 --/
#include <string.h> /* string functions */
#include <stdio.h> /* standard IO functions */
#include <ctype.h> /* type conversion functions */
/*==
 * Start of mainline executable code
 ==/
main(int argc, char *argv[])
{
 long i;
 _Packed struct zdaq0100 {
 char name[10];
 char servid[10];
 char fmtid[8];
 long funcid;
 char stmtname[18];
 char cursname[18];
 char prepopt[2];
 char opnattr[2];
 char pkgname[10];
 char pkglib[10];
 short drdaind;
 char commitf;
 char stmttxt[512];
 } *sptr, stx;

/*--
 --*/
 /* initialize return variable to indicate ok status */
 strncpy(argv[1],"1",1);

 /**/
 /* Address parameter structure for @@sqll@@ exit program and move local */
 /* parameters into local variables. */
 /* (note : this is not necessary to evaluate the arguments passed in). */
 /**/
 sptr = (_Packed struct zdaq0100 *) argv[2];

Windows Application Package: Programming 487

 strncpy(stx.name, sptr->name, 10);
 strncpy(stx.servid, sptr->servid, 10);
 strncpy(stx.fmtid, sptr->fmtid, 8);
 stx.funcid = sptr->funcid;
 strncpy(stx.stmtname, sptr->stmtname, 18);
 strncpy(stx.cursname, sptr->cursname, 18);
 strncpy(stx.opnattr, sptr->opnattr, 2);
 strncpy(stx.prepopt, sptr->prepopt, 2);
 strncpy(stx.pkglib, sptr->pkglib, 10);
 strncpy(stx.pkgname, sptr->pkgname, 10);
 stx.drdaind = sptr->drdaind;
 stx.commitf = sptr->commitf;
 strncpy(stx.stmttxt, sptr->stmttxt, 512);

 /**/
 /* check for user GUEST and an UPDATE statement */
 /* if found return an error */
 /**/
 if (! (strncmp(stx.name, "GUEST ", 10)))
 {
 for (i=0; i<6; i++)
 stx.stmttxt[i] = toupper(stx.stmttxt[i]);

 if (! strncmp(stx.stmttxt, "UPDATE", 6))
 /* Force error out of @@sqll@@ user exit pgm */
 strncpy(argv[1], "0", 1);
 else;
 }
 return;
} /* End of mainline executable code */

/*--
 --*/

 /* initialize return variable to indicate ok status */
 strncpy(argv[1],"1",1);

 /**/
 /* Address parameter structure for @@sqll@@ exit program and move local */
 /* parameters into local variables. */
 /* (note : this is not necessary to evaluate the arguments passed in). */
 /**/
 sptr = (_Packed struct zdaq0100 *) argv[2];

 strncpy(stx.name, sptr->name, 10);
 strncpy(stx.servid, sptr->servid, 10);
 strncpy(stx.fmtid, sptr->fmtid, 8);
 stx.funcid = sptr->funcid;
 strncpy(stx.stmtname, sptr->stmtname, 18);
 strncpy(stx.cursname, sptr->cursname, 18);
 strncpy(stx.opnattr, sptr->opnattr, 2);
 strncpy(stx.prepopt, sptr->prepopt, 2);
 strncpy(stx.pkglib, sptr->pkglib, 10);
 strncpy(stx.pkgname, sptr->pkgname, 10);
 stx.drdaind = sptr->drdaind;
 stx.commitf = sptr->commitf;
 strncpy(stx.stmttxt, sptr->stmttxt, 512);

 /**/
 /* check for user GUEST and an UPDATE statement */
 /* if found return an error */
 /**/
 if (! (strncmp(stx.name, "GUEST ", 10)))
 {
 for (i=0; i<6; i++)
 stx.stmttxt[i] = toupper(stx.stmttxt[i]);

 if (! strncmp(stx.stmttxt, "UPDATE", 6))
 /* Force error out of @@sqll@@ user exit pgm */
 strncpy(argv[1], "0", 1);
 else;
 }
 return;
} /* End of mainline executable code */

488 IBM i: Windows Application Package: Programming

Example: ILE C/400 program for exit point QIBM_QZDA_ROI1
The following ILE C/400 program logs all requests for catalog functions to the ZDALOG file in QGPL.
It can be used as a shell for developing IBM i Access ODBC exit programs tailored for your operating
environment.

/*--
 * @@ss1s@@ Servers - Sample Exit Program
 *
 * Exit Point Name : QIBM_QZDA_ROI1
 *
 * Description : The following ILE C/400 program logs all
 * requests for catalog functions to the
 * ZDALOG file in QGPL.
 * It can be used as a shell for developing
 * exit programs tailored for your
 * operating environment.
 *
 * Input : A 1-byte return code value
 * X'F0' server rejects the request
 * anything else server allows the request
 * Structure containing information about the
 * request. The format used by this program
 * is ZDAR0100.
 *
 * Dependencies : The log file must be created using the
 * following command:
 * CRTPF FILE(QGPL/ZDALOG) RCDLEN(132)
 --/
/*--
 * Includes
 --/
#include <recio.h> /* record IO functions */
#include <string.h> /* string functions */
/*--
 * User Types
 --/
typedef struct { /* Exit Point QIBM_QZDA_ROI1 format ZDAR0100 */
 char User_profile_name[10]; /* Name of user profile calling server*/
 char Server_identifier[10]; /* database server value (*RTVOBJINF) */
 char Exit_format_name[8]; /* User exit format name (ZDAR0100) */
 long Requested_function; /* function being preformed */
 char Library_name[20]; /* Name of library */
 char Database_name[36]; /* Name of relational database */
 char Package_name[20]; /* Name of package */
 char File_name[256]; /* Name of file */
 char Member_name[20]; /* Name of member */
 char Format_name[20]; /* Name of format */
} ZDAR0100_fmt_t;

/*--
 --*/

/*==
 * Start of mainline executable code
 ==/
int main (int argc, char *argv[])
{
 _RFILE *file_ptr; /* pointer to log file */
 char output_record[132]; /* output log file record */
 ZDAR0100_fmt_t input; /* input format record */
 /* set return code to allow the request. */
 memcpy(argv[1], "1", 1);

 /* open the log file for writing to the end of the file */
 if ((file_ptr = _Ropen("QGPL/ZDALOG", "ar")) == NULL)
 {
 /* open failed */
 return;
 }

 /* copy input parm into structure */
 memcpy(&input, (ZDAR0100_fmt_t *)argv[2], 404);

 switch /* Create the output record based on requested function */
 (input.Requested_function)
 {
 case 0X1800: /* Retrieve library information */
 sprintf(output_record,
 "%10.10s retrieved library %20.20s",
 input.User_profile_name, input.Library_name);

Windows Application Package: Programming 489

 break;
 case 0X1801: /* Retrieve relational database information */
 sprintf(output_record,
 "%10.10s retrieved database %36.36s",
 input.User_profile_name, input.Database_name);
 break;
 case 0X1802: /* Retrieve @@sqll@@ package information */
 sprintf(output_record,
 "%10.10s retrieved library %20.20s package %20.20s",
 input.User_profile_name, input.Library_name,
 input.Package_name);
 break;
 case 0X1803: /* Retrieve @@sqll@@ package statement information */
 sprintf(output_record,
 "%10.10s retrieved library %20.20s package %20.20s statement info",
 input.User_profile_name, input.Library_name,
 input.Package_name);
 break;
/*--
 --*/

 case 0X1804: /* Retrieve file information */
 sprintf(output_record,
 "%10.10s retrieved library %20.20s file %40.40s",
 input.User_profile_name, input.Library_name, input.File_name);
 break;
 case 0X1805: /* Retrieve file member information */
 sprintf(output_record,
 "%10.10s retrieved library %20.20s member %20.20s file %40.40s",
 input.User_profile_name, input.Library_name,
 input.Member_name, input.File_name);
 break;
 case 0X1806: /* Retrieve record format information */
 sprintf(output_record,
 "%10.10s retrieved library %20.20s format %20.20s file %40.40s",
 input.User_profile_name, input.Library_name,
 input.Format_name, input.File_name);
 break;
 case 0X1807: /* Retrieve field information */
 sprintf(output_record,
 "%10.10s retrieved field info library %20.20s file %40.40s",
 input.User_profile_name, input.Library_name, input.File_name);
 break;
 case 0X1808: /* Retrieve index information */
 sprintf(output_record,
 "%10.10s retrieved index info library %20.20s file %40.40s",
 input.User_profile_name, input.Library_name, input.File_name);
 break;
 case 0X180B: /* Retrieve special column information */
 sprintf(output_record,
 "%10.10s retrieved column info library %20.20s file %40.40s",
 input.User_profile_name, input.Library_name, input.File_name);
 break;
 default : /* Unknown requested function */
 sprintf(output_record, "Unknown requested function");
 break;
 } /* end switch statement */

 /* write the output record to the file */
 _Rwrite(file_ptr, &output_record, 132);

 /* close the log file */
 _Rclose (file_ptr);

} /* End of mainline executable code */

Exit program parameter formats
The exit points for native database and retrieving object information have two formats that are defined:
QIBM_QZDA_SQL1 and QIBM_QZDA_SQL2. Depending on the type of IBM i database function that is
requested, one of the formats is used.

The QIBM_QZDA_SQL2 exit point is defined to run an exit point for certain SQL requests that are received
for the database server. This exit point takes precedence over the QIBM_QZDA_SQL1 exit point. If a
program is registered for the QIBM_QZDA_SQL2 exit point, it will be called, and a program for the
QIBM_QZDA_SQL1 exit point will not be called.

490 IBM i: Windows Application Package: Programming

Functions that cause the exit program to be called
• Prepare
• Open
• Execute
• Connect
• Create package
• Clear package
• Delete package
• Return package information
• Stream fetch
• Execute immediate
• Prepare and describe
• Prepare and execute or prepare and open
• Open and fetch
• Execute or open

Parameter fields for exit point QIBM_QZDA_SQL2 format ZDAQ0200
The following table shows parameter fields and their descriptions for the IBM i database exit program
called at exit point QIBM_QZDA_SQL2 with the ZDAQ0200 format.

Table 17. Exit point QIBM_QZDA_SQL2 format ZDAQ0200

Offset

Type Field DescriptionDec Hex

0 0 CHAR(10) User profile name The name of the user profile that is
calling the server.

10 A CHAR(10) Server identifier The value is *SQLSRV for this exit point.

20 14 CHAR(8) Format name The user exit format name being used.
For QIBM_QZDA_SQL1, the format name
is ZDAQ0100.

Windows Application Package: Programming 491

Table 17. Exit point QIBM_QZDA_SQL2 format ZDAQ0200 (continued)

Offset

Type Field DescriptionDec Hex

28 1C BINARY(4) Requested function The function being performed.

This field contains one of the following:

• X'1800' - Prepare
• X'1803' - Prepare and describe
• X'1804' - Open/describe
• X'1805' - Execute
• X'1806' - Execute immediate
• X'1809' - Connect
• X'180C' - Stream fetch
• X'180D' - Prepare and execute
• X'180E' - Open and fetch
• X'180F' - Create package
• X'1810' - Clear package
• X'1811' - Delete package
• X'1812' - Execute or open
• X'1815' - Return package information

32 20 CHAR(18) Statement name Name of the statement used for the
prepare or execute functions.

50 32 CHAR(18) Cursor name Name of the cursor used for the open
function.

68 44 CHAR(2) Prepare option Option used for the prepare function.

70 46 CHAR(2) Open attributes Option used for the open function.

72 48 CHAR(10) Extended dynamic
package name

Name of the extended dynamic package.

82 52 CHAR(10) Package library
name

Name of the library for extended
dyanmic SQL package.

92 5C BINARY(2) DRDA indicator • 0 - Connected to local RDB
• 1 - Connected to remote RDB

94 5E CHAR(1) Commitment
control level

• 'A' - Commit *ALL
• 'C' - Commit *CHANGE
• 'N' - Commit *NONE
• 'S' - Commit *CS (cursor stability)

492 IBM i: Windows Application Package: Programming

Table 17. Exit point QIBM_QZDA_SQL2 format ZDAQ0200 (continued)

Offset

Type Field DescriptionDec Hex

95 5F CHAR(10) Default SQL
collection

Name of the default SQL schema used
by the IBM i Database Server. If the
actual default SQL schema name is
greater than 10 bytes, the following
special value will be passed, indicating
that the default SQL schema name
should be obtained from the ‘Extended
default SQL Schema' field:

• *EXTDSCHMA

Note: The Extended Default SQL Schema
field will always be set, even if length is
less than 10. Users can always refer to
that field to get the Default SQL Schema
name.

105 69 CHAR(1) Naming Mode • '0' - SQL naming
• '1' - System naming

106 6A CHAR(2) Reserved Reserved for future parameters.

108 6C BINARY(4) Offset to the
extended cursor
name

The offset in this structure to the
extended cursor name

112 70 BINARY(4) Length of the
extended cursor
name

Length, in bytes, of the extended cursor
name

116 74 BINARY(4) Offset to the
Extended Default
SQL Schema

The offset in this structure to the
Extended Default SQL Schema.

120 78 BINARY(4) Length of the
Extended default
SQL Schema

Length, in bytes, of the Extended Default
SQL Schema.

124 7C CHAR(110) Reserved Reserved for future parameters.

234 EA BINARY(4) SQL statement text
length

Length of SQL statement text in the
field that follows. The length can be a
maximum of 2 MB (2,097,152 bytes).

238 EE CHAR(*) SQL statement text Entire SQL statement.

* * CHAR(*) Extended Cursor
Name

The extended cursor name.

* * CHAR(*) Extended Schema
Name

The extended schema name.

Note: This format is defined by member EZDAEP in files H, QRPGSRC, QRPGLESRC, QCBLSRC and
QCBLLESRC in library QSYSINC.

The QIBM_QZDA_INIT exit point is defined to run an exit program at server initiation. If a program is
defined for this exit point, it is called each time the database server is initiated.

Windows Application Package: Programming 493

Parameter fields for exit point QIBM_QZDA_INIT format ZDAI0100
The following table shows parameter fields and their descriptions for the IBM i database exit program
called at exit point QIBM_QZDA_INIT using the ZDAI0100 format.

Table 18. Exit point QIBM_QZDA_INIT format ZDAI0100

Offset

Type Field DescriptionDec Hex

0 0 CHAR(10) User profile name The name of the user profile that is
calling the server.

10 A CHAR(10) Server identifier The value is *SQL for this exit point.

20 14 CHAR(8) Format name The user exit format name being used.
For QIBM_QZDA_INIT the format name
is ZDAI0100.

28 1C BINARY(4) Requested function The function being performed.

The only valid value for this exit point is
0.

32 20 CHAR(63) Interface type The interface type passed from the
application that is calling the server.

95 5F CHAR(127) Interface name The interface name passed from the
application that is calling the server.

222 DE CHAR(63) Interface level The interface level passed from the
application that is calling the server.

Note: This format is defined by member EZDAEP in files H, QRPGSRC, QRPGLESRC, QCBLSRC and
QCBLLESRC in library QSYSINC.

The QIBM_QZDA_NDB1 exit point is defined to run an exit program for native database requests for the
database server. Two formats are defined for this exit point.

Functions that use format ZDAD0100:
• Create source physical file
• Create database file, based on existing file
• Add, clear, delete database file member
• Override database file
• Delete database file override
• Delete file

Note: Format ZDAD0200 is used when a request is received to add libraries to the library list.

Parameter fields for exit point QIBM_QZDA_NDB1 format ZDAD0100
The following table shows parameter fields and their descriptions for the IBM i database exit program
called at exit point QIBM_QZDA_NDB1 using the ZDAD0100 format.

494 IBM i: Windows Application Package: Programming

Table 19. Exit point QIBM_QZDA_NDB1 format ZDAD0100

Offset

Type Field DescriptionDec Hex

0 0 CHAR(10) User profile name The name of the user profile that is
calling the server.

10 A CHAR(10) Server identifier For this exit point the value is *NDB.

20 14 CHAR(8) Format name The user exit format name being used.

For the following functions, the format
name is ZDAD0100.

28 1C BINARY(4) Requested
function

The function being performed.

This field contains one of the following:

• X'1800' - Create source physical file
• X'1801' - Create database file, based

on existing file
• X'1802' - Add database file member
• X'1803' - Clear database file member
• X'1804' - Delete database file

member
• X'1805' - Override database file
• X'1806' - Delete database file override
• X'1807' - Create save file
• X'1808' - Clear save file
• X'1809' - Delete file

32 20 CHAR(128) File name Name of the file used for the requested
function.

160 A0 CHAR(10) Library name Name of the library that contains the
file.

170 AA CHAR(10) Member name Name of the member to be added,
cleared, or deleted.

180 B4 CHAR(10) Authority Authority to the created file

190 BE CHAR(128) Based on file name Name of the file to use when creating a
file based on an existing file.

318 13E CHAR(10) Based on library
name

Name of the library containing the based
on file

328 148 CHAR(10) Override file name Name of the file to be overridden

338 152 CHAR(10) Override library
name

Name of the library that contains the file
to be overridden

348 15C CHAR(10) Override member
name

Name of the member to be overridden

Note: This format is defined by member EZDAEP in files H, QRPGSRC, QRPGLESRC, QCBLSRC and
QCBLLESRC in library QSYSINC.

Windows Application Package: Programming 495

Parameter fields for exit point QIBM_QZDA_NDB1 format ZDAD0200
The following table shows parameter fields and their descriptions for the IBM i database exit program
called at exit point QIBM_QZDA_NDB1 by using the ZDAD0200 format.

Table 20. Exit point QIBM_QZDA_NDB1 format ZDAD0200

Offset

Type Field DescriptionDec Hex

0 0 CHAR(10) User profile name The name of the user profile that is
calling the server.

10 A CHAR(10) Server identifier For this exit point the value is *NDB.

20 14 CHAR(8) Format name The user exit format name being used.
For the add to library list function the
format name is ZDAD0200.

28 1C BINARY(4) Requested function The function being performed.

• X'180C' - Add library list

32 20 BINARY(4) Number of libraries The number of libraries (the next field)

36 24 CHAR(10) Library name The library names for each library

Note: This format is defined by member EZDAEP in files H, QRPGSRC, QRPGLESRC, QCBLSRC and
QCBLLESRC in library QSYSINC.

The QIBM_QZDA_SQL1 exit point is defined to run an exit point for certain SQL requests that are received
for the database server. Only one format is defined for this exit point.

Functions that use format ZDAD0200:
• Prepare
• Open
• Execute
• Connect
• Create package
• Clear package
• Delete package
• Execute immediate
• Prepare and describe
• Prepare and execute or prepare and open
• Open and fetch
• Execute or open

496 IBM i: Windows Application Package: Programming

Parameter fields for exit point QIBM_QZDA_SQL1 format ZDAQ0100
The following table shows parameter fields and their descriptions for the IBM i database exit program
called at exit point QIBM_QZDA_SQL1 using the ZDAQ0100 format.

Table 21. Exit point QIBM_QZDA_SQL1 format ZDAQ0100

Offset

Type Field DescriptionDec Hex

0 0 CHAR(10) User profile name The name of the user profile that is
calling the server.

10 A CHAR(10) Server identifier For this exit point the value is *SQLSRV.

20 14 CHAR(8) Format name The user exit format name being used.
For QIBM_QZDA_SQL1 the format name
is ZDAQ0100.

28 1C BINARY(4) Requested
function

The function being performed.

This field contains one of the following:

• X'1800' - Prepare
• X'1803' - Prepare and describe
• X'1804' - Open/Describe
• X'1805' - Execute
• X'1806' - Execute immediate
• X'1809' - Connect
• X'180D' - Prepare and execute or

prepare and open
• X'180E' - Open and fetch
• X'180F' - Create package
• X'1810' - Clear package
• X'1811' - Delete package
• X'1812' - Execute or open
• X'1815' - Return package information

32 20 CHAR(18) Statement name Name of the statement used for the
prepare or execute functions.

50 32 CHAR(18) Cursor name Name of the cursor used for the open
function.

68 44 CHAR(2) Prepare option Option used for the prepare function.

70 46 CHAR(2) Open attributes Option used for the open function.

72 48 CHAR(10) Extended dynamic
package name

Name of the extended dynamic SQL
package.

82 52 CHAR(10) Package library
name

Name of the library for extended
dynamic SQL package.

92 5C BINARY(2) DRDA indicator • 0 - Connected to local RDB
• 1 - Connected to remote RDB

Windows Application Package: Programming 497

Table 21. Exit point QIBM_QZDA_SQL1 format ZDAQ0100 (continued)

Offset

Type Field DescriptionDec Hex

94 5E CHAR(1) Commitment
control level

• 'A' - Commit *ALL
• 'C' - Commit *CHANGE
• 'N' - Commit *NONE
• 'S' - Commit *CS (cursor stability)

95 5F CHAR(512) First 512 bytes of
the SQL statement
text

First 512 bytes of the SQL statement

Note: This format is defined by member EZDAEP in files H, QRPGSRC, QRPGLESRC, QCBLSRC and
QCBLLESRC in library QSYSINC.

The QIBM_QZDA_ROI1 exit point is defined to run an exit program for the requests that retrieve
information about certain objects for the database server. It is also used for SQL catalog functions.

This exit point has two formats defined.

Objects for which format ZDAR0100 is used to retrieve information:

• Field (or column)
• File (or table)
• File member
• Index
• Library (or collection)
• Record format
• Relational database (or RDB)
• Special columns
• SQL package
• SQL package statement

Objects for which format ZDAR0200 is used to retrieve information:

• Foreign keys
• Primary keys

Parameter fields for exit point QIBM_QZDA_ROI1 format ZDAR0100
The following table shows parameter fields and their descriptions for the IBM i database exit program
called at exit point QIBM_QZDA_ROI1 using the ZDAR0100 format.

Table 22. Exit point QIBM_QZDA_ROI1 format ZDAR0100

Offset

Type Field DescriptionDec Hex

0 0 CHAR(10) User profile name The name of the user profile that is
calling the server.

10 A CHAR(10) Server identifier For the database server the value is
*RTVOBJINF.

498 IBM i: Windows Application Package: Programming

Table 22. Exit point QIBM_QZDA_ROI1 format ZDAR0100 (continued)

Offset

Type Field DescriptionDec Hex

20 14 CHAR(8) Format name The user exit format name being used.
For the following functions, the format
name is ZDAR0100.

28 1C BINARY(4) Requested
function

The function being performed.

This field contains one of the following:

• X'1800' - Retrieve library information
• X'1801' - Retrieve relational database

information
• X'1802' - Retrieve SQL package

information
• X'1803' - Retrieve SQL package

statement information
• X'1804' - Retrieve file information
• X'1805' - Retrieve file member

information
• X'1806' - Retrieve record format

information
• X'1807' - Retrieve field information
• X'1808' - Retrieve index information
• X'180B' - Retrieve special column

information

32 20 CHAR(20) Schema name The Schema or search pattern
used when retrieving information
about schemas, packages, package
statements, files, members, record
formats, fields, indexes, and special
columns. If schema name length or
search pattern length is greater than
20, the following special value will
be passed, indicating that the schema
name should be obtained from the
‘Extended Schema name' field:

• *EXTDSCHMA

Note: The Extended schema name field
will always be set, even if length is less
than 20. Users can always refer to that
field to get the schema name.

52 34 CHAR(36) Relational
database name

The relational database name or
search pattern used to retrieve RDB
information.

88 58 CHAR(20) Package name The package name or search pattern
used to retrieve package or package
statement information.

Windows Application Package: Programming 499

Table 22. Exit point QIBM_QZDA_ROI1 format ZDAR0100 (continued)

Offset

Type Field DescriptionDec Hex

108 6C CHAR(256) File name (SQL
alias name)

The file name or search pattern
used to retrieve file, member, record
format, field, index, or special column
information.

364 16C CHAR(20) Member name The member name or search
pattern used to retrieve file member
information.

384 180 CHAR(20) Format name The format name or search pattern used
to retrieve record format information.

404 194 CHAR(256) Extended Schema
Name

Extended Schema name or search
pattern used.

Note: This format is defined by member EZDAEP in files H, QRPGSRC, QRPGLESRC, QCBLSRC and
QCBLLESRC in library QSYSINC.

Parameter fields for exit point QIBM_QZDA_ROI1 format ZDAR0200
The following table shows parameter fields and their descriptions for the IBM i database exit program
called at exit point QIBM_QZDA_ROI1 using the ZDAR0200 format.

Table 23. Exit point QIBM_QZDA_ROI1 format ZDAR0200

Offset

Type Field DescriptionDec Hex

0 0 CHAR(10) User profile name The name of the user profile that is
calling the server.

10 A CHAR(10) Server identifier For the database server the value is
*RTVOBJINF.

20 14 CHAR(8) Format name The user exit format name being used.
For the following functions, the format
name is ZDAR0200.

28 1C BINARY(4) Requested function The function being performed.

This field contains one of the following:

• X'1809' - Retrieve foreign key
information

• X'180A' - Retrieve primary key
information

500 IBM i: Windows Application Package: Programming

Table 23. Exit point QIBM_QZDA_ROI1 format ZDAR0200 (continued)

Offset

Type Field DescriptionDec Hex

32 20 CHAR(10) Primary key table
schema name

The name of the schema that contains
the primary key table used when
retrieving primary and foreign key
information. When the name is greater
than 10 bytes, the following special
value will be passed, indicating that the
primary key table schema name should
be obtained from the ‘primary key table
extended schema name' field:

• *EXTDSCHMA

Note: The ‘Primary key table extended
schema name' field will always be
set,even if length is less than 10. Users
can always refer to that field to get the
schema name.

42 2A CHAR(128) Primary key table
name (alias name)

The name of the table that contains
the primary key used when retrieving
primary or foreign key information.

170 AA CHAR(10) Foreign key table
schema name

The name of the schema that contains
the foreign key table used when
retrieving foreign key information. When
the name is greater than 10 bytes, the
following special value will be passed,
indicating that the foreign key table
schema name should be obtained from
the ‘foreign key table extended schema
name' field:

• *EXTDSCHMA

Note: The ‘Foreign key table extended
schema name' field will always be set,
even if length is less than 10. Users
can always refer to that field to get the
schema name.

180 64 CHAR(128) Foreign key table
name (alias name)

The name of the table that contains the
foreign key used when retrieving foreign
key information.

308 134 CHAR(128) Primary key table
extended schema
name

The name of the schema that contains
the primary key table used when
retrieving primary key information

436 1B4 CHAR(128) Foreign key table
extended schema
name

The name of the schema that contains
the foreign key table used when
retrieving foreign key information

Note: This format is defined by member EZDAEP in files H, QRPGSRC, QRPGLESRC, QCBLSRC and
QCBLLESRC in library QSYSINC.

Windows Application Package: Programming 501

SQL and External procedures
SQL and external procedures are supported on IBM i for database access.

Procedures are, in general, any program that can be executed using an SQL CALL statement. They are
commonly used in client/server applications, especially in the area of online transaction processing
(OLTP), since they can provide performance, transaction-integrity and security benefits. In Db2 for i ,
procedures can be written in SQL procedure language or in a number of external programming languages,
such as ILE RPG or ILE COBOL. For information regarding specific SQL statements that are used in the
examples of these procedures, see the Db2 for i SQL Reference topic collection in the IBM i Information
Center.

The illustration below shows an application where one transaction consists of four separate I/O
operations, each that requires an SQL statement to be processed. In the client/server environment, this
requires a minimum of eight messages between the server and the client, as shown. This can represent
significant overhead, especially where the communication speed is slow (for example over a dial-up line),
or where the turnaround speed for the connection is slow (for example over a satellite link).

Figure 4. Client/server application without stored procedure

The following illustration shows the same transaction by a stored procedure on the server. As illustrated,
the communications traffic has been reduced to a single message pair. There are additional benefits. For
example, the procedure can arrange to send back only the data that is absolutely required (for example,
just a few characters from a long column). A Db2 for i stored procedure can be any IBM i program, and
does not have to use SQL for data access.

502 IBM i: Windows Application Package: Programming

Figure 5. Client/server application with stored procedure

Related information
DB2 for i SQL Reference

Procedure result sets
You can scroll IBM i SQL procedure result sets.

An application can have scrollable result sets returned from a procedure executed using an SQL CALL
statement. To take advantage of this support, make the following two changes.

1. Create the procedure with the cursor defined as scrollable.
a) This is done by adding the SCROLL keyword into the cursor declaration inside the procedure

definition.
In the following two examples, the stored procedure returns a scrollable result set while the second
one does not.

• CREATE PROCEDURE MYLIB.SCROLLSP () RESULT SETS 1 LANGUAGE SQL
sqlproc: begin
DECLARE CUR1 SCROLL CURSOR FOR
SELECT * FROM QIWS.QCUSTCDT;
OPEN CUR1;
SET RESULT SETS CURSOR CUR1;
end

• CREATE PROCEDURE MYLIB.NOSCROLLSP () RESULT SETS 1 LANGUAGE SQL
sqlproc: begin
DECLARE CUR1 CURSOR FOR
SELECT * FROM QIWS.QCUSTCDT;
OPEN CUR1;
SET RESULT SETS CURSOR CUR1;
end

2. Code the application using ODBC to ask for a scrollable cursor type.
a) Call the SQLSetStmtAttr API.
b) Set the SQL_ATTR_CURSOR_TYPE option to SQL_CURSOR_DYNAMIC.

If an attempt is made to scroll backwards with a procedure that did not specify a scrollable cursor,
several different problems can occur. In most cases an error is returned from the server indicating
scrolling is invalid, and in some cases incorrect data is returned.

Windows Application Package: Programming 503

Even if the procedure returns multiple result sets, you can only use one cursor type. ODBC either
returns an error or ignores the cursor type when a different cursor type is specified for the second
result set. To use a scrollable result set as one of the result sets, the application needs to set the
cursor type to be scrollable as defined above.

Any attempts to use a result set cursor as an updateable cursor will return an error or be ignored.
Procedure result sets are read-only.

Cursor sensitivity may not be honored with procedure result sets, since the cursor was opened
when the procedure was run. Cursor sensitivity is controlled by the way the cursor is defined when
creating the procedure.

Examples: Stored procedures
View examples of Db2 for IBM i procedures.

Example: Run CL commands that use SQL stored procedures and ODBC
Stored procedure support provides a means to run IBM i Control Language (CL) commands by using the
SQL CALL statement.

Use CL commands when:

• Performing an override for files
• Initiating debug
• Using other commands that can affect the performance of subsequent SQL statements
• Doing other environmental setup for an application

The following examples show cases where an IBM i CL command is run by using the CALL statement
which calls the program designed for running CL commands from SQL. That program (QCMDEXC in library
QSYS2) expects two parameters:

1. A string that contains the command text to execute
2. An integer that contains the length of the command text

The parameters must include these attributes for the command to be interpreted properly.

In the following example, a C program on the PC is going to run an OVRDBF command that is 65 characters
long (including embedded blanks). The text of the OVRDBF command is as follows:

 OVRDBF FILE(TESTER) TOFILE(JMBLIB/TESTER) MBR(NO2) OVRSCOPE(*JOB)

The code for performing this command by using ODBC APIs is as follows:

 HSTMT hstmt;
SQLCHAR stmt[301];

rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
strcpy(stmt,"CALL QSYS2.QCMDEXC('OVRDBF FILE(TESTER) TOFILE(MYLIB/");
strcat(stmt,"TESTER) MBR(NO2) OVRSCOPE(*JOB)',64)");
rc = SQLExecDirect(hstmt, stmt, SQL_NTS);

Statements now run against file MYLIB/TESTER will reference member NO2 rather than the first member.

Another CL command that is useful to run against a database server job is the STRDBG command. You do
not have to call a stored procedure to run this command, though. There is an option on the Diagnostic tab
of the DSN setup GUI on the Diagnostic tab that will automatically run the STRDBG command during the
connection attempt.

Related concepts
IBM i Access ODBC driver-specific details

504 IBM i: Windows Application Package: Programming

Learn about implementations issues when using IBM i Access ODBC APIs.

Example: Stored procedure calls from Visual Basic with return values
The following example of Visual Basic source code shows how to call an Db2 for IBM i procedure and then
retrieve the returned values into Visual Basic variables.

Visual Basic is able to call external functions that are found in a DLL. Since all ODBC drivers are DLLs,
Visual Basic can be used to code directly to the ODBC APIs. By coding directly to the ODBC APIs a Visual
Basic application can call a Db2 for IBM i procedure and return result values.

'***
'* *
'* Because of the way Visual Basic stores and manages the String data *
'* type, it is recommended that you use an array of Byte data type *
'* instead of a String variable on the SQLBindParameter API. *
'* *
'***

Dim sTemp As String
Custnum As Integer
Dim abCustname(34) As Byte
Dim abAddress(34) As Byte
Dim abCity(24) As Byte
Dim abState(1) As Byte
Dim abPhone(14) As Byte
Dim abStatus As Byte
Dim RC As Integer
Dim nullx As Long 'Used to pass null pointer, not pointer to null
Dim lpSQL_NTS As Long 'Used to pass far pointer to SQL_NTS
Static link(7) As Long 'Used as an array of long pointers to the size
 'each parameter which will be bound

 '***
 '* *
 '* Initialize the variables needed on the API calls *
 '* *
 '***

link(1) = 6
link(2) = Ubound(abCustname) +1
link(3) = Ubound(abAddress) +1
link(4) = Ubound(abCity) +1
link(5) = Ubound(abState) +1
link(6) = Ubound(abPhone) +1
link(7) = 1

RC = 0
nullx = 0
lpSQL_NTS = SQL_NTS ' -3 means passed as sz string

'***
'* *
'* Create an IBM i procedure. This will define the *
'* procedure's name, parameters, and how each parameter is passed. *
'* Note: This information is stored in the server catalog tables and *
'* and only needs to be executed one time for the life of the stored *
'* procedure. It normally would not be run in the client application. *
'* *
'***

sTemp = "Create Procedure Storedp2 (:Custnum in integer, "
sTemp = sTemp & ":Custname out char(35), :Address out char(35),"
sTemp = sTemp & ":City out char(25), :State out char(2),"
sTemp = sTemp & ":Phone out char(15), :Status out char(1))
sTemp = sTemp & "(External name rastest.storedp2 language cobol General)"

RC = SQLExecDirect(Connection.hstmt, sTemp, Len(sTemp))

'Ignore error assuming that any error would be from procedure already
'created.

'***
'* *
'* Prepare the call of the procedure to the system. *
'* For best performance, prepare the statement only one time and

Windows Application Package: Programming 505

'* execute many times.
'* *
'***

sTemp = "Call storedp2(?, ?, ?, ?, ?, ?, ?)"
RC = SQLPrepare(Connection.hstmt, sTemp, Len(sTemp))

If (RC <> SQL_SUCCESS) Then
 DescribeError Connection.hdbc, Connection.hstmt
 frmMain.Status.Caption = "Error on SQL_Prepare " & RTrim$(Tag)
End If

'***
'* *
'* Bind all of the columns passed to the procedure. This will *
'* set up the variable's data type, input/output characteristics, *
'* length, and initial value. *
'* The SQLDescribeParam API can optionally be used to retrieve the
'* parameter types.
'* *
'* To properly pass an array of byte to a stored procedure and receive *
'* an output value back, you must pass the first byte ByRef. *
'* *
'***

RC = SQLBindParameter(Connection.hstmt, 1, SQL_PARAM_INPUT, SQL_C_SHORT, _
 SQL_NUMERIC, 6, 0, Custnum, 6, link(1))

RC = SQLBindParameter(Connection.hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_CHAR, _
 SQL_CHAR, 35, 0, abCustname(0), UBound(abCustname)+1, link(2))
RC = SQLBindParameter(Connection.hstmt, 3, SQL_PARAM_OUTPUT, SQL_C_CHAR, _
 SQL_CHAR, 35, 0, abAddress(0), UBound(abAddress)+1, link(3))
RC = SQLBindParameter(Connection.hstmt, 4, SQL_PARAM_OUTPUT, SQL_C_CHAR, _
 SQL_CHAR, 25, 0, abCity(0), UBound(abCity)+1, link(4))
RC = SQLBindParameter(Connection.hstmt, 5, SQL_PARAM_OUTPUT, SQL_C_CHAR, _
 SQL_CHAR, 2, 0, abState(0), UBound(abState)+1, link(5))
RC = SQLBindParameter(Connection.hstmt, 6, SQL_PARAM_OUTPUT, SQL_C_CHAR, _
 SQL_CHAR, 15, 0, abPhone(0), UBound(abPhone)+1, link(6))
RC = SQLBindParameter(Connection.hstmt, 7, SQL_PARAM_OUTPUT, SQL_C_CHAR, _
 SQL_CHAR, 1, 0, abStatus, 1, link(7))

'***
'* *
'* The Prepare and Bind only needs to be execute once. The Stored
'* procedure can now be called multiple times by just changing the data
'* *
'***
Do While

'***
'* Read in a customer number *
'* *
'***

Custnum = Val(input.text)

'***
'* *
'* Execute the call of the procedure to the system. *
'* *
'***

RC = SQLExecute(Connection.hstmt)
frmMain.Status.Caption = "Ran Stored Proc" & RTrim$(Tag)

If (RC <> SQL_SUCCESS) Then
 DescribeError Connection.hdbc, Connection.hstmt
 frmMain.Status.Caption = "Error on Stored Proc Execute " & RTrim$(Tag
End If

'***
'* *
'* Set text labels to display the output data *
'* You must convert the array of Byte back to a String
'* *
'***

lblCustname = StrConv(abCustname(), vbUnicode)
lblAddress = StrConv(abAddress(), vbUnicode)

506 IBM i: Windows Application Package: Programming

lblCity = StrConv(abCity(), vbUnicode)
lblState = StrConv(abState(), vbUnicode)
lblPhone = StrConv(abPhone(), vbUnicode)
lblStatus = StrConv(abStatus(), vbUnicode)

Loop

Example: Call an IBM i stored procedure by using Visual Basic
The Visual Basic programming examples listed below show an IBM i procedure call being prepared.

Two statements are shown:

1. A statement for the creation of the procedure
2. A statement to prepare the call

Create the procedure only once. The definition that it provides is available to ODBC applications, and any
other application that can run SQL statements.

Because of the way Visual Basic stores and manages the String data type, using an array of Byte data type
instead of a String variable is recommended for the following parameter types:

• Input/output parameters
• Output parameters
• Any parameter that contains binary data (rather then standard ANSI characters)
• Any input parameter that has a variable address which is set once, but referred to many times

The last case would be true for the if the application made multiple calls to SQLExecute, while modifying
Parm1 between each call. The following Visual Basic functions assist in converting strings and arrays of
byte:

Public Sub Byte2String(InByte() As Byte, OutString As String)
 'Convert array of byte to string
 OutString = StrConv(InByte(), vbUnicode)
End Sub

Public Function String2Byte(InString As String, OutByte() As Byte) As Boolean
 'vb byte-array / string coercion assumes Unicode string
 'so must convert String to Byte one character at a time
 'or by direct memory access
 'This function assumes Lower Bound of array is 0

 Dim I As Integer
 Dim SizeOutByte As Integer
 Dim SizeInString As Integer

 SizeOutByte = UBound(OutByte) + 1
 SizeInString = Len(InString)

 'Verify sizes if desired

 'Convert the string
 For I = 0 To SizeInString - 1
 OutByte(I) = AscB(Mid(InString, I + 1, 1))
 Next I
 'If size byte array > len of string pad with Nulls for szString
 If SizeOutByte > SizeInString Then 'Pad with Nulls
 For I = SizeInString To UBound(OutByte)
 OutByte(I) = 0
 Next I
 End If

 String2Byte = True
End Function

Public Sub ViewByteArray(Data() As Byte, Title As String)
 'Display message box showing hex values of byte array

 Dim S As String
 Dim I As Integer
 On Error GoTo VBANext

 S = "Length: " & Str(UBound(Data) - LBound(Data) + 1) & " Data (in hex):"
 For I = LBound(Data) To UBound(Data)
 If (I Mod 8) = 0 Then

Windows Application Package: Programming 507

 S = S & " " 'add extra space every 8th byte
 End If
 S = S & Hex(Data(I)) & " "
 VBANext:
 Next I
 MsgBox S, , Title

End Sub

Example: Call CL command using SQL CALL statement
It is possible to run IBM i commands by using an SQL CALL statement. The two examples that are
provided here apply to ODBC programs.

Simply call Execute Command (QCMDEXC) to run the command. The process is easy, simply provide
the command string and the length of the command string as parameters on the CALL statement. Use the
Remote Command API as an alternative.

The first example enables the powerful SQL tracing facility that writes data into the joblog for the job
running the SQL (in this case, the server job).

The second example allows a member other than the first of a multi-member file to be accessed using
SQL. You cannot create a multi-member file through CREATE TABLE. However, the following example
shows you how to access a member other than the first of a multi-member file that is created through
DDS:

 Dim hStmt As Long

 rc = SQLAllocHandle(SQL_HANDLE_STMT, ghDbc, hStmt)
 If rc <> SQL_SUCCESS Then
 Call DspSQLError(SQL_HANDLE_DBC, ghDbc, "Problem: Allocating Debug Statement Handle")
 End If

 ' Note that the string within single quotes 'STRDBG UPDPROD(*YES)' is exactly 20 bytes
 cmd = "call qsys2.qcmdexc('STRDBG UPDPROD(*YES)',20)"

 ' Put the system job in debug mode
 rc = SQLExecDirect(hStmt, cmd, SQL_NTS)
 If rc <> SQL_SUCCESS Then
 Call DspSQLError(SQL_HANDLE_STMT, hStmt, "Problem: Start Debug")
 End If

 rc = SQLAllocHandle(SQL_HANDLE_STMT, ghDbc, ovrhstmt)
 If rc <> SQL_SUCCESS Then
 Call DspSQLError(SQL_HANDLE_DBC, ghDbc, "Problem: Allocating Override Statement
Handle")
 End If

 ' Note that the string within single quotes 'OVRDBF FILE(BRANCH)... OVRSCOPE(*JOB)'
 is exactly 68 bytes
 cmd = "call qsys.qcmdexc('OVRDBF FILE(BRANCH) TOFILE(HOALIB/BRANCH) MBR(FRANCE)
 OVRSCOPE(*JOB)',68)"

 ' Override the IBM i file to point to the 'france' member
 rc = SQLExecDirect(hStmt, cmd, SQL_NTS)
 If rc <> SQL_SUCCESS Then
 Call DspSQLError(SQL_HANDLE_STMT, hStmt, "File Override")
 End If

Tips: Run and call IBM i procedures
Use these tips for running and calling Db2 for IBM i procedures.

Running an IBM i procedure
ODBC provides a standard interface for calling database procedures. The implementation of database
procedures differs significantly across various databases. This simple example follows the recommended
approach for running an IBM i procedure.

1. Set up a CREATE PROCEDURE statement for the procedure and create it. The creation of the
procedure defines the procedure and only needs to be done once. The definition that it provides is
available to all applications which run against the database, including ODBC applications.

508 IBM i: Windows Application Package: Programming

2. Prepare the CALL statement to call the procedure.
3. Bind the parameters of the procedure, indicating whether each parameter is to be used for input to the

procedure, output from the procedure, or input/output.
4. Call the procedure.

Calling IBM i procedures using Visual Basic
Use care in coding the SQLBindParameter functions. Never use Visual Basic strings as a buffer when
binding either columns (SQLBindCol) or parameters (SQLBindParameter). Instead, use byte arrays,
which–unlike strings–will not be moved around in memory. See “Example: Call an IBM i stored procedure
by using Visual Basic” on page 507 for more information.

Pay careful attention to the data types that are involved. There may be subtle differences with those that
you use with, for instance, a SELECT statement. Also, ensure that you have an adequately sized buffer for
output and input/output parameters. The way that you code the IBM i procedure can affect performance
significantly. Whenever possible, avoid closing the program with exit() in C language and with SETON
LR in RPG languages. Preferably, use RETRN or return, but you may need to re-initialize variables on each
call, and by-pass file opens.

IBM i Access database APIs
Use other technologies for functions that were provided by the IBM i Access proprietary C/C++ Database
APIs, that are no longer being enhanced.

The IBM i Access proprietary C/C++ Database APIs provided support for IBM i database and catalog
functions, in addition to SQL access to IBM i database files.

See other topic collections for details on the following technologies that continue to provide the functions
of these deprecated APIs:

• NET Framework Classes
• ADO/OLE DB
• ODBC
• JDBC
• Database Transfer
• ActiveX automation objects

Related reference
Database APIs return codes
There are database APIs return codes.

ActiveX programming
ActiveX automation is a programming technology that is defined by Microsoft and is supported by the IBM
i Access Client Solutions product.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

IBM i Access Client Solutions provides the following methods for accessing IBM i resources by using
ActiveX automation:
Automation objects:

These objects provide support for:

• Accessing IBM i data queues
• Calling IBM i application programming interfaces and user programs
• Managing IBM i connections and validating security
• Running IBM i CL commands

Windows Application Package: Programming 509

• Performing data-type and code-page conversions
• Performing database transfers

IBM i Access Client Solutions OLE DB provider:
Call the OLE DB Provider, by using Microsoft's ActiveX Data Objects (ADO), to access the following IBM
i resources:

• The IBM i database, through record-level access
• The IBM i database, through SQL
• SQL stored procedures
• Data queues
• Programs
• CL commands

Custom controls:
ActiveX custom controls are provided for:

• IBM i data queues
• IBM i CL commands
• IBM i names for previously connected systems

Programmer's Toolkit:
For detailed information on ActiveX, see the ActiveX topic in the Programmer's Toolkit. It includes
complete documentation of ADO and ActiveX automation objects, and links to ActiveX information
resources.
How to access the ActiveX topic:

1. Ensure that the Programmer's Toolkit is installed (see Install the Programmer's Toolkit).
2. Launch the Programmer's Toolkit (see Launch the Programmer's Toolkit).
3. Select the Overview topic.
4. Select Programming Technologies.
5. Select ActiveX.

Related tasks
Install the Programmer's Toolkit
The Programmer's Toolkit is installed as a feature of the Windows Application Package.
Launch the Programmer's Toolkit
The Programmer's Toolkit is launched as a feature of the IBM i Access Client Solutions product.
Related reference
OLE DB provider
Supports record-level access and SQL access to IBM i database files. Use the ActiveX Data Objects (ADO)
and the OLE DB interfaces to take advantage of this support.

Code license and disclaimer information
IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS PROGRAM
DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT, REGARDING THE PROGRAM OR
TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR ANY OF
THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

510 IBM i: Windows Application Package: Programming

1. LOSS OF, OR DAMAGE TO, DATA;
2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR
3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT
APPLY TO YOU.

Windows Application Package: Programming 511

512 IBM i: Windows Application Package: Programming

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 2013, 2021 513

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Programming interface information
This IBM i Access publication documents intended Programming Interfaces that allow the customer to
write programs to obtain the services of IBM i.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

514 Notices

http://www.ibm.com/legal/copytrade.shtml

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Oracle, Inc. in the United States, other
countries, or both.

Other product and service names might be trademarks of IBM or other companies.

Terms and conditions
Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 515

516 IBM i: Windows Application Package: Programming

IBM®

Product Number: 5770-XJ1

	Contents
	Programming
	PDF file for Windows Application Package: Programming
	C/C++ APIs
	C/C++ APIs overview
	API groups, header files, import libraries, and DLLs
	Programmer's Toolkit
	Install the Programmer's Toolkit
	Launch the Programmer's Toolkit

	IBM i name formats for connection APIs
	OEM, ANSI, and Unicode considerations
	Use a single API type
	Use mixed API types
	Write a generic Windows Application Package application

	Return codes and error messages
	Return codes that correspond to operating system errors
	Return codes
	Global return codes
	Specific return codes
	Security return codes
	Communications return codes
	Configuration return codes
	Automation Object return codes
	WINSOCK return codes
	SSL return codes

	Component-specific return codes
	Administration APIs return code
	Communications APIs return codes
	Database APIs return codes
	Data Queues APIs return codes
	National Language Support APIs return codes
	System Object APIs return codes
	Remote Command/Distributed Program Call APIs return codes
	Security APIs return codes
	Serviceability APIs return codes
	System Object Access APIs return codes

	Administration APIs
	Administration APIs list
	cwbAD_GetClientVersion
	cwbAD_GetProductFixLevel
	cwbAD_IsComponentInstalled

	Example: Administration APIs

	Communications and Security APIs
	System object attributes
	System object attributes list

	Communications and security: Create and delete APIs
	cwbCO_CreateSystem
	cwbCO_CreateSystemLike
	cwbCO_DeleteSystem

	Communications and security: Connect and disconnect APIs
	cwbCO_Connect
	cwbCO_Disconnect
	cwbCO_GetConnectTimeout
	cwbCO_GetPersistenceMode
	cwbCO_IsConnected
	cwbCO_SetConnectTimeout
	cwbCO_SetPersistenceMode
	cwbCO_Verify

	Communication and security: Security validation and data APIs
	cwbCO_ChangePassword
	cwbCO_GetDefaultUserMode
	cwbCO_GetFailedSignons
	cwbCO_GetPasswordExpireDate
	cwbCO_GetPrevSignonDate
	cwbCO_GetPromptMode
	cwbCO_GetSignonDate
	cwbCO_GetUserIDEx
	cwbCO_GetValidateMode
	cwbCO_GetWindowHandle
	cwbCO_HasSignedOn
	cwbCO_SetDefaultUserMode
	cwbCO_SetPassword
	cwbCO_SetPromptMode
	cwbCO_SetUserIDEx
	cwbCO_SetWindowHandle
	cwbCO_SetValidateMode
	cwbCO_Signon
	cwbCO_VerifyUserIDPassword

	Communications and security: Get and set attribute APIs
	cwbCO_CanModifyDefaultUserMode
	cwbCO_CanModifyIPAddress
	cwbCO_CanModifyIPAddressLookupMode
	cwbCO_CanModifyPersistenceMode
	cwbCO_CanModifyPortLookupMode
	cwbCO_CanModifyUseSecureSockets
	cwbCO_GetDescription
	cwbCO_GetHostCCSID
	cwbCO_GetHostVersionEx
	cwbCO_GetIPAddress
	cwbCO_GetIPAddressLookupMode
	cwbCO_GetPortLookupMode
	cwbCO_GetSystemName
	cwbCO_IsSecureSockets
	cwbCO_SetIPAddress
	cwbCO_SetIPAddressLookupMode
	cwbCO_SetPortLookupMode
	cwbCO_UseSecureSockets

	Defines for cwbCO_Service
	Differences between cwbCO_Signon and cwbCO_VerifyUserIDPassword
	Similarities between cwbCO_Signon and cwbCO_VerifyUserIDPassword
	Communications: Create and delete APIs
	cwbCO_CreateSysListHandle
	cwbCO_CreateSysListHandleEnv
	cwbCO_DeleteSysListHandle
	cwbCO_GetNextSysName
	cwbCO_GetSysListSize

	Communications: System information APIs
	cwbCO_GetActiveConversations
	cwbCO_GetConnectedSysName
	cwbCO_GetDefaultSysName
	cwbCO_IsSystemConfigured
	cwbCO_IsSystemConfiguredEnv
	cwbCO_IsSystemConnected

	Communications: Configured environments information
	cwbCO_GetActiveEnvironment
	cwbCO_GetEnvironmentName
	cwbCO_GetNumberOfEnvironments

	Communications: Environment and connection information
	cwbCO_CanConnectNewSystem
	cwbCO_CanModifyEnvironmentList
	cwbCO_CanModifySystemList
	cwbCO_CanModifySystemListEnv
	cwbCO_CanSetActiveEnvironment

	Example: Using communications APIs

	IBM i Data Queues APIs
	Data queues
	Ordering data queue messages
	Work with data queues
	Typical use of data queues
	Data Queues: Create, delete, and open APIs
	cwbDQ_CreateEx
	cwbDQ_DeleteEx
	cwbDQ_OpenEx

	Data Queues: Accessing data queues APIs
	cwbDQ_AsyncRead
	cwbDQ_Cancel
	cwbDQ_CheckData
	cwbDQ_Clear
	cwbDQ_Close
	cwbDQ_GetLibName
	cwbDQ_GetQueueAttr
	cwbDQ_GetQueueName
	cwbDQ_GetSysName
	cwbDQ_Peek
	cwbDQ_Read
	cwbDQ_Write

	Data Queues: Attributes APIs
	cwbDQ_CreateAttr
	cwbDQ_DeleteAttr
	cwbDQ_GetAuthority
	cwbDQ_GetDesc
	cwbDQ_GetForceToStorage
	cwbDQ_GetKeySize
	cwbDQ_GetMaxRecLen
	cwbDQ_GetOrder
	cwbDQ_GetSenderID
	cwbDQ_SetAuthority
	cwbDQ_SetDesc
	cwbDQ_SetForceToStorage
	cwbDQ_SetKeySize
	cwbDQ_SetMaxRecLen
	cwbDQ_SetOrder
	cwbDQ_SetSenderID

	Data Queues: Read and write APIs
	cwbDQ_CreateData
	cwbDQ_DeleteData
	cwbDQ_GetConvert
	cwbDQ_GetData
	cwbDQ_GetDataAddr
	cwbDQ_GetDataLen
	cwbDQ_GetKey
	cwbDQ_GetKeyLen
	cwbDQ_GetRetDataLen
	cwbDQ_GetRetKey
	cwbDQ_GetRetKeyLen
	cwbDQ_GetSearchOrder
	cwbDQ_GetSenderInfo
	cwbDQ_SetConvert
	cwbDQ_SetData
	cwbDQ_SetDataAddr
	cwbDQ_SetKey
	cwbDQ_SetSearchOrder

	Example: Using Data Queues APIs

	Data transformation and National Language Support (NLS) APIs
	Data transformation APIs
	Data transformation API list
	cwbDT_ASCII11ToBin4
	cwbDT_ASCII6ToBin2
	cwbDT_ASCIIPackedToPacked
	cwbDT_ASCIIToHex
	cwbDT_ASCIIToPacked
	cwbDT_ASCIIToZoned
	cwbDT_ASCIIZonedToZoned
	cwbDT_Bin2ToASCII6
	cwbDT_Bin2ToBin2
	cwbDT_Bin4ToASCII11
	cwbDT_Bin4ToBin4
	cwbDT_EBCDICToEBCDIC
	cwbDT_HexToASCII
	cwbDT_PackedToASCII
	cwbDT_PackedToASCIIPacked
	cwbDT_PackedToPacked
	cwbDT_ZonedToASCII
	cwbDT_ZonedToASCIIZoned
	cwbDT_ZonedToZoned

	Example: Using data transformation APIs

	National Language Support (NLS) APIs
	Coded character sets
	General NLS APIs list
	cwbNL_FindFirstLang
	cwbNL_FindNextLang
	cwbNL_GetLang
	cwbNL_GetLangName
	cwbNL_GetLangPath
	cwbNL_SaveLang

	Conversion NLS APIs list
	cwbNL_CCSIDToCodePage
	cwbNL_CodePageToCCSID
	cwbNL_Convert
	cwbNL_ConvertCodePages
	cwbNL_ConvertCodePagesEx
	cwbNL_CreateConverter
	cwbNL_CreateConverterEx
	cwbNL_DeleteConverter
	cwbNL_GetCodePage
	cwbNL_GetANSICodePage
	cwbNL_GetHostCCSID

	Dialog-box NLS API list
	cwbNL_CalcControlGrowthXY
	cwbNL_CalcDialogGrowthXY
	cwbNL_GrowControlXY
	cwbNL_GrowDialogXY
	cwbNL_LoadDialogStrings
	cwbNL_LoadMenu
	cwbNL_LoadMenuStrings
	cwbNL_SizeDialog

	Example: NLS APIs

	System Objects APIs
	System objects attributes
	Advanced Function Printing
	Align Page
	Allow Direct Print
	Authority
	Authority to Check
	Automatically End Writer
	Back Margin Offset Across
	Back Margin Offset Down
	Backside Overlay Library Name
	Backside Overlay Name
	Back Overlay offset across
	Back Overlay Offset Down
	Characters per Inch
	Code Page
	Coded Font Name
	Coded Font Library Name
	Copies
	Copies left to Produce
	Current page
	Data Format
	Data Queue Library Name
	Data Queue Name
	Date File Opened
	User Specified DBCS Data
	DBCS Extension Characters
	DBCS Character Rotation
	DBCS Characters per Inch
	DBCS SO/SI Spacing
	Defer Write
	Degree of Page Rotation
	Delete File After Sending
	Destination Option
	Destination Type
	Device Class
	Device Model
	Device Type
	Display any File
	Drawer for Separators
	Ending Page
	File Separators
	Fold Records
	Font Identifier
	Form Feed
	Form Type
	Form Type Message Option
	Front Margin Offset Across
	Front Margin Offset Down
	Front Overlay Library Name
	Front Overlay Name
	Front Overlay Offset Across
	Front Overlay Offset Down
	Graphic Character Set
	Hardware Justification
	Hold Spool File
	Initialize the writer
	Internet Address
	Job Name
	Job Number
	Job Separators
	Job User
	Last Page Printed
	Length of Page
	Library Name
	Lines Per Inch
	Manufacturer Type and Model
	Maximum Spooled Output Records
	Measurement Method
	Message Help
	Message ID
	Message Queue Library Name
	Message Queue
	Message Reply
	Message Text
	Message Type
	Message Severity
	Number of Bytes to Read/Write
	Number of Files
	Number of Writers Started to Queue
	Object Extended Attribute
	Open time commands
	Operator Controlled
	Order of Files On Queue
	Output Priority
	Output Queue Library Name
	Output Queue Name
	Output Queue Status
	Overflow Line Number
	Pages Per Side
	Pel Density
	Point Size
	Print Fidelity
	Print on Both Sides
	Print Quality
	Print Sequence
	Print Text
	Printer
	Printer Device Type
	Printer File Library Name
	Printer File Name
	Printer Queue
	Record Length
	Remote System
	Replace Unprintable Characters
	Replacement Character
	Resource library name
	Resource name
	Resource object type
	Restart Printing
	Save Spooled File
	Seek Offset
	Seek Origin
	Send Priority
	Separator page
	Source Drawer
	Spool SCS
	Spool the Data
	Spooled File Name
	Spooled File Number
	Spooled File Status
	Spooled Output Schedule
	Starting Page
	Text Description
	Time File Opened
	Total Pages
	Transform SCS to ASCII
	Unit of Measure
	User Comment
	User Data
	User defined data
	User defined object library
	User defined object name
	User defined object type
	User defined option(s)
	User driver program
	User driver program library
	User driver program name
	User ID
	User ID Address
	User transform program library
	User transform program name
	VM/MVS Class
	When to Automatically End Writer
	When to End Writer
	When to Hold File
	Width of Page
	Workstation Customizing Object Name
	Workstation Customizing Object Library
	Writer Job Name
	Writer Job Number
	Writer Job Status
	Writer Job User Name
	Writer Starting Page
	Network Print Server Object Attributes
	NPS Attribute Default Value
	NPS Attribute High Limit
	NPS Attribute ID
	NPS Attribute Low Limit
	NPS Attribute Possible Value
	NPS Attribute Text Description
	NPS Attribute Type
	NPS CCSID
	NPS Object
	NPS Object Action
	NPS Level

	List APIs
	cwbOBJ_CloseList
	cwbOBJ_CreateListHandle
	cwbOBJ_DeleteListHandle
	cwbOBJ_GetListSize
	cwbOBJ_OpenList
	cwbOBJ_ResetListAttrsToRetrieve
	cwbOBJ_ResetListFilter
	cwbOBJ_SetListAttrsToRetrieve
	cwbOBJ_SetListFilter
	cwbOBJ_SetListFilterWithSplF

	Object APIs
	cwbOBJ_CopyObjHandle
	cwbOBJ_DeleteObjHandle
	cwbOBJ_GetObjAttr
	cwbOBJ_GetObjAttrs
	cwbOBJ_GetObjHandle
	cwbOBJ_GetObjHandleFromID
	cwbOBJ_GetObjID
	cwbOBJ_RefreshObj
	cwbOBJ_SetObjAttrs

	Parameter object APIs
	cwbOBJ_CopyParmObjHandle
	cwbOBJ_CreateParmObjHandle
	cwbOBJ_DeleteParmObjHandle
	cwbOBJ_GetParameter
	cwbOBJ_SetParameter

	Writer job APIs
	cwbOBJ_EndWriter
	cwbOBJ_StartWriter

	Output queues APIs
	cwbOBJ_HoldOutputQueue
	cwbOBJ_PurgeOutputQueue
	cwbOBJ_ReleaseOutputQueue

	AFP resource APIs
	cwbOBJ_CloseResource
	cwbOBJ_CreateResourceHandle
	cwbOBJ_DisplayResource
	cwbOBJ_OpenResource
	cwbOBJ_OpenResourceForSplF
	cwbOBJ_ReadResource
	cwbOBJ_SeekResource

	APIs for new spooled files
	cwbOBJ_CloseNewSplF
	cwbOBJ_CloseNewSplFAndGetHandle
	cwbOBJ_CreateNewSplF
	cwbOBJ_GetSplFHandleFromNewSplF
	cwbOBJ_WriteNewSplF

	APIs for reading spooled files
	cwbOBJ_CloseSplF
	cwbOBJ_OpenSplF
	cwbOBJ_ReadSplF
	cwbOBJ_SeekSplF

	APIs for manipulating spooled files
	cwbOBJ_CallExitPgmForSplF
	cwbOBJ_CreateSplFHandle
	cwbOBJ_CreateSplFHandleEx
	cwbOBJ_DeleteSplF
	cwbOBJ_DisplaySplF
	cwbOBJ_HoldSplF
	cwbOBJ_IsViewerAvailable
	cwbOBJ_MoveSplF
	cwbOBJ_ReleaseSplF
	cwbOBJ_SendNetSplF
	cwbOBJ_SendTCPSplF

	APIs for handling spooled file messages
	cwbOBJ_AnswerSplFMsg
	cwbOBJ_GetSplFMsgAttr

	APIs for analyzing spooled file data
	cwbOBJ_AnalyzeSplFData

	Server program APIs
	cwbOBJ_DropConnections
	cwbOBJ_GetNPServerAttr
	cwbOBJ_SetConnectionsToKeep

	Example: Using system objects APIs

	Remote Command/Distributed Program Call APIs
	Typical use of Remote Command/Distributed Program Call APIs
	Remote Command/Distributed Program Call: Access remote command APIs list
	cwbRC_GetClientCCSID
	cwbRC_GetHostCCSID
	cwbRC_StartSysEx
	cwbRC_StopSys

	Remote Command/Distributed Program Call: Run APIs list
	cwbRC_RunCmd

	Remote Command/Distributed Program Call: Access programs APIs list
	cwbRC_AddParm
	cwbRC_CallPgm
	cwbRC_CreatePgm
	cwbRC_DeletePgm
	cwbRC_GetLibName
	cwbRC_GetParm
	cwbRC_GetParmCount
	cwbRC_GetPgmName
	cwbRC_SetLibName
	cwbRC_SetParm
	cwbRC_SetPgmName

	Example: Using Remote Command/Distributed Program Call APIs

	Serviceability APIs
	History log and trace files
	Error handles
	Typical use of Serviceability APIs
	Serviceability APIs list: Writing to history log
	cwbSV_CreateMessageTextHandle
	cwbSV_DeleteMessageTextHandle
	cwbSV_LogMessageText
	cwbSV_SetMessageClass
	cwbSV_SetMessageComponent
	cwbSV_SetMessageProduct

	Serviceability APIs list: Writing trace data
	cwbSV_CreateTraceDataHandle
	cwbSV_DeleteTraceDataHandle
	cwbSV_LogTraceData
	cwbSV_SetTraceComponent
	cwbSV_SetTraceProduct

	Serviceability API list: Writing trace points
	cwbSV_CreateTraceAPIHandle
	cwbSV_CreateTraceSPIHandle
	cwbSV_DeleteTraceAPIHandle
	cwbSV_DeleteTraceSPIHandle
	cwbSV_LogAPIEntry
	cwbSV_LogAPIExit
	cwbSV_LogSPIEntry
	cwbSV_LogSPIExit
	cwbSV_SetAPIComponent
	cwbSV_SetAPIProduct
	cwbSV_SetSPIComponent
	cwbSV_SetSPIProduct

	Serviceability API list: Reading service files
	cwbSV_ClearServiceFile
	cwbSV_CloseServiceFile
	cwbSV_CreateServiceRecHandle
	cwbSV_DeleteServiceRecHandle
	cwbSV_GetComponent
	cwbSV_GetDateStamp
	cwbSV_GetMaxRecordSize
	cwbSV_GetMessageText
	cwbSV_GetProduct
	cwbSV_GetRecordCount
	cwbSV_GetServiceFileName
	cwbSV_GetServiceType
	cwbSV_GetTimeStamp
	cwbSV_GetTraceData
	cwbSV_GetTraceAPIData
	cwbSV_GetTraceAPIID
	cwbSV_GetTraceAPIType
	cwbSV_GetTraceSPIData
	cwbSV_GetTraceSPIID
	cwbSV_GetTraceSPIType
	cwbSV_OpenServiceFile
	cwbSV_ReadNewestRecord
	cwbSV_ReadNextRecord
	cwbSV_ReadOldestRecord
	cwbSV_ReadPrevRecord

	Serviceability API list: Retrieving message text
	cwbSV_CreateErrHandle
	cwbSV_DeleteErrHandle
	cwbSV_GetErrClass
	cwbSV_GetErrClassIndexed
	cwbSV_GetErrCount
	cwbSV_GetErrFileName
	cwbSV_GetErrFileNameIndexed
	cwbSV_GetErrLibName
	cwbSV_GetErrLibNameIndexed
	cwbSV_GetErrSubstText
	cwbSV_GetErrSubstTextIndexed
	cwbSV_GetErrText
	cwbSV_GetErrTextIndexed

	Example: Using Serviceability APIs

	System Object Access (SOA) APIs
	SOA objects
	System object views
	Typical use of System Object Access APIs
	Display a customized list of system objects
	Sample program: Display a customized list of system objects

	Display the Properties view for a system object
	Sample program: Display the Properties view of an object

	Access and update data for system objects
	Sample program: Access and update data for system objects

	System Object Access programming considerations
	About System Object Access errors
	System Object Access application profiles
	Manage IBM i communications sessions for application programs

	System Object Access APIs List
	CWBSO_CloseList
	CWBSO_CopyObjHandle
	CWBSO_CreateErrorHandle
	CWBSO_CreateListHandle
	CWBSO_CreateListHandleEx
	CWBSO_CreateObjHandle
	CWBSO_CreateParmObjHandle
	CWBSO_DeleteErrorHandle
	CWBSO_DeleteListHandle
	CWBSO_DeleteObjHandle
	CWBSO_DeleteParmObjHandle
	CWBSO_DisallowListActions
	CWBSO_DisallowListFilter
	CWBSO_DisplayErrMsg
	CWBSO_DisplayList
	CWBSO_DisplayObjAttr
	CWBSO_GetErrMsgText
	CWBSO_GetListSize
	CWBSO_GetObjAttr
	CWBSO_GetObjHandle
	CWBSO_OpenList
	CWBSO_ReadListProfile
	CWBSO_RefreshObj
	CWBSO_ResetParmObj
	CWBSO_SetListFilter
	CWBSO_SetListProfile
	CWBSO_SetListSortFields
	CWBSO_SetListTitle
	CWBSO_SetObjAttr
	CWBSO_SetParameter
	CWBSO_WaitForObj
	CWBSO_WriteListProfile
	SOA attribute special values
	Job attributes
	Message attributes
	Printer attributes
	Printer output attributes
	TCP/IP interfaces attributes
	Ethernet lines attributes
	Token-ring lines attributes
	Hardware resources attributes
	Software products attributes
	TCP/IP routes attributes
	Users and groups attributes
	Libraries in QSYS attributes

	Database programming
	.NET provider
	OLE DB provider
	IBM i Access ODBC
	IBM i Access ODBC driver-specific details
	ODBC 3.x API notes
	SQL Statement Considerations

	Connection string keywords
	Version and release changes in the ODBC driver behavior
	ODBC API restrictions and unsupported functions
	Signon dialog behavior
	ODBC data types and how they correspond to Db2 for i database types
	Working with the XML data type
	Large objects (LOBs) considerations
	Example: Use the BLOB data type

	Connection and statement attributes
	Connection pooling
	SQLPrepare and SQLNativeSQL escape sequences and scalar functions
	Distributed transaction support
	Cursor behavior notes
	Extended dynamic disabled error
	SQLTables Description
	Handle long-running queries
	Isolation level considerations

	ODBC performance
	Performance-tuning ODBC
	Introduction to server performance
	Introduction to client/server performance
	Performance architecture of the ODBC driver
	Select a stringent level of commitment control
	Fine-tune record-blocking
	Use Extended Dynamic SQL

	Performance considerations of common end-user tools
	Examples: Common tool behaviors that degrade ODBC performance
	Example: Query tool A
	Example: Query tool B
	Example: Query tool C

	SQL performance
	SQL performance general considerations
	Database design
	Normalization
	Table size
	Use indexes
	Match attributes of join fields

	Optimizer
	Cost estimation
	Optimizer decision-making rules

	ODBC support for multiple row statements
	Catalog functions
	Exit programs
	Examples: User exit programs
	Example: ILE C/400 user exit program for exit point QIBM_QZDA_INIT
	Example: CL user exit program for exit point QIBM_QZDA_INIT
	Example: ILE C/400 Program for exit point QIBM_QZDA_SQL1
	Example: ILE C/400 program for exit point QIBM_QZDA_ROI1

	Exit program parameter formats
	Parameter fields for exit point QIBM_QZDA_SQL2 format ZDAQ0200
	Parameter fields for exit point QIBM_QZDA_INIT format ZDAI0100
	Parameter fields for exit point QIBM_QZDA_NDB1 format ZDAD0100
	Parameter fields for exit point QIBM_QZDA_NDB1 format ZDAD0200
	Parameter fields for exit point QIBM_QZDA_SQL1 format ZDAQ0100
	Parameter fields for exit point QIBM_QZDA_ROI1 format ZDAR0100
	Parameter fields for exit point QIBM_QZDA_ROI1 format ZDAR0200

	SQL and External procedures
	Procedure result sets
	Examples: Stored procedures
	Example: Run CL commands that use SQL stored procedures and ODBC
	Example: Stored procedure calls from Visual Basic with return values
	Example: Call an IBM i stored procedure by using Visual Basic
	Example: Call CL command using SQL CALL statement
	Tips: Run and call IBM i procedures

	IBM i Access database APIs

	ActiveX programming

	Notices
	Programming interface information
	Trademarks
	Terms and conditions

