IBMi
7.3

Connecting to IBM i
IBM i Access Client Solutions - Windows
Application Package: Programming

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
513.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.

© Copyright International Business Machines Corporation 2013, 2021.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Programming......cccciieiieiieiieiieieniieiinniesiosiosiosiossasssscssssssssssssssssssssssasssssassssssssssssnssnssd

PDF file for Windows Application Package: Programming.........cccceeeecieeeeiieeeieeeecieeeeieeeeisneeesneesssasesssneens 1
(OF 1 0% oy AN o £SO 1
(o7 L0 N o K o) VZ=] V=1 RO 1
API groups, header files, import libraries, and DLLS........ccccueiecieeiicieeeciie e e eevee e e eeee e 1
oLl = Lo ol a1 o Koo L] USSR 3
Install the Programmer's TOOIKit........eecueeeciieeiiie ettt ettt sare e s e e ae e e saraeens 4
Launch the Programmer's TOOLKit......cueieciieecieeccie ettt et et e aee e ae e e 4

IBM i name formats for CONNECHION APIS.....c.uueiiiiiiiiieieieeee ettt eerree e eestaeeeeenasreeas 4
OEM, ANSI, and Unicode CONSIAEIAtiONS......uvviiiieireieeieirieeeeeeireeeeeerireeeeceeireeeeeeetreeeeeensrreeeeenssreeeees 5
ORIy (o] LN Y o B Y o T TSRS 6

USE MIXEA AP Y PES. ittt ettt e e ete e e te e e te e e ate e s ate e senteeesteessteeeseeesseeesneeesnnens 7

Write a generic Windows Application Package application.........ccecveeecieeeicieeeiieeccieeeciee e 7
RetUrn COAES and EITOr MESSAZES...uuiiiireieiieeeeieeeetreeeteeesiteeeeteeeeseeessseeesseeesseeessasassesesssssssssessnns 7
Return codes that correspond to operating SYyStemM ErrorS......cuieccieeeecieecciieeeiee e eeiee e 8
RETUIN COUBS ..nnnttiiieeeiieie ettt et e e eettae e e eeebaeeeeeeabeesesssbaaeesenassaseesenssareesenssrneeenn 9
Component-SPeCiIfiC rFETUIM COUES....cccuiiiiiiieeiieeeee et et re e e s e e e e e e naeeas 15
AAMUNISTIATION APIS...uviiiiieiiieeeeeeieee ettt eeetreeeeeestbee et e erbeeeeesessbeeeeeessbaeeeeessasseesesssaseesessseseessssressennn 23
AdMINISTIATION APIS LiStuuuuiiiiiiiiiieiieiiiiec ettt eeeree e eritre e e eeerreeeeesareeeesesbeeseeessreseeesnssessesan 24

(o1 To) Y D L=y o O B =] o VAT s Ko Y o PR 24

(o111 o). D CT=N ol b o Yo [V okt o e B I =2 VA = TR 25
cWbAD_TsComponentINStalled. ettt svre e e 25
Example: Administration APIS.......cocie ettt e e te e e e tee e e tee e s teeesbeeesntaeesnsaeesnsasennes 28
Communications and SECUILY APIS......ccciiieeiieeeieeeee et e tee e et e e s e e e s baeeebaeeestaeeesaeeensaeean 32
SyStEM 0DJECT AttIIDULES....eiiieiiecee e e et e e e e e araeean 33
System 0bjeCt attriDULES LiSt...iiiciii e e e e 34
Communications and security: Create and delete APIS.........ccceeecieeecieeciieeecee e 37
CWDCO _CLEaT S Y ST oM. ittt e e ctte e et e e e te e e ebae e s bae e ebaeesbaeessaeenaes 37
CWDCO _CxeateSy STemMLIKe ettt e e e ree e be e e e e e e aee e e neas 38
CWDOCO _DE LTS Y STOM ittt ctte e e tte e e ta e e ebre e s bae e sbaeesbaeesaraeennns 39
Communications and security: Connect and disSCoONNECt APIS.......cceeeceeeeciieeeiee e 39
(o117 01 oL 0 I 0'e)] Y=o N 39

(o110] O O I D =Yo7 0] a1 aL=T it sPPREE RN 41

(o170 1O O IR CT=Y = 0F0] Y aL=T okt sl s K1 11T YUt e 42

[o1T oo O I CT=Y ol 2 =5 h R =Y a Vo1 =1 1 (o [T TR 43

(o117 01O O I = 0'e a1 aY=Tok u{ =1 IR 44

(o110 O O IR Y=Y o 0F0] oY aL=T okt sl s X1 11T YU it e 45
CWDCO _SetPerSisStenNCEMOUC ..ot e e e e e e e s s sasanes 45

T3 oL L Y= s s Y 2R 46
Communication and security: Security validation and data APIS........cccceeeieeeceeecceecccee e 48
CWDOCO_ChangePasSSWOT .. cccciiiiiieciee ettt ettt e et e s ae e s aa e e ssaa e e s sase e e asaesnreean 48

(o111 o O O I CT=Y o DN k=1 U B s o U E=Y = n L Fo o [T 49

(o3 o] oL I 1oy ol o= T =T ST = LY K= TS 50
cWbCO_GetPasSWOTdEXPITeDate. et e e 51
CWDOCO _GEtPIeVSigNoNDate. ettt e e te e et e e e naeeeans 52
CWDOCO _GEtPTOMPEMOUE. .ottt e e e ree e s ree e e aae e ereeeenaeas 53

(o3 o oL OB 1oy T X ={a ol o] DN f =TSSP 54

(o1 1o O O L=y U= 0 ol 1] 5 R 55

(o1 o O O I CT=y Y= B Ko F= T =] ([Yo [T 56

(o1 1o o O I CT=% u Tl X Yo Lo X L& =W a Yo I =T 56
CWDOCO _HASSIZNEUODN....ciiciieecieecee ettt et e e e et e e et e e e saae e e sbe e e aaeeensee s nsaeenseesnnsaeannsnas 57

CWHCO_SetDeTaUltUSETMOUE ...ttt e e e e e e e e e snnranes 58

CWHCO _ S BT PASSWOT . uuiiiiiiiieiiiiiecccirtteeee e e e e e e e s e e e asbabarereeeeeeeesessnssssrarerreeeeeens 59
(o311 oY OO JRST=N f o o] 1T o k(o Yo =SSR 60
CWDCO _SETUSETIDE X uuiuiiiiiiiiiiiiiiiciittteeeeeee e eeeeecarrrerer e e e e e e s e s e asssasarereeeeeeeesesssnssssrarerreeeeeees 61
CWHCO _SetWIiNAOWHANALE....uiiiiieeeieeeeeee et et et e e e e saare e e senabaeeeseennnes 62
(o3 O O IS T=N sV W A e F= Ty o= o Y =TRSOOSR 63
Lo 10 0 TS T = 3 Vo T o PO RSP 64
CWDhCO_VerifyUsSeTIDPaSSWOT . ccoiiiccieeeciiee et et e ettt e ectte e etteeeeteeeeeteeeebaeesebaeessaeesasaaeanns 65
Communications and security: Get and set attribute APIS........cccviviiicciieee e 67
cwbCO_CanModifyDefaultUSeTMOde.. ...ttt e 67
CWDCO_CanNMOdi Ty TP AAUTESS. .oi ittt e tee et e e e e et e e ae e e araeeans 67
cwbCO_CanModifyIPAddressSLoOKUPMOE......cocciiiciiiecieeceeeeee ettt 68
cwWbCO_CanModifyPersistenCeMode.. ..t 69
cWbCO_CanModifyPortLooKUPMOUE. ...ttt et ettt e 70
cWbCO_CanModifylUseSecUreSOoCKEtS. ottt 70
(031 o] O O I CT=N f DYk s o) s Ko] o FORU OO SRRRURR 71
CWDCO _GETHOSTCCSTID i iiiiieciieeeeeeeeee ettt e e e e e e e e e e abrbrerreeeeeeeesessenssssasseeeeeaeeeessennnns 72
CWHCO _GEtHOSTVETSIONEX i iiiiiiiiieeeieee ettt et e e e e e s seabae e e s s saee e s sensaaeeeeens 73
(o]0 O 1=y i N o Yo [b o TSN 74
CWhCO_GetIPAddIesSSLOOKUPMOUE...iii ettt ettt tee e e et e e e e e e e baee e e 74
CWHCO_GEtPOTTLOOKUPMOUE...iii i iiiee ettt et e e et e e e e e e e e s e rae e e e e e naeeeeeennns 75
CWHOCO _GELTSYSTEMNAME......iiii ettt e e e e arre e e e e bt e e e e enbteee e senntaeeeeenseneas 76
CWDC 0 _ TS S CUT SO CKET S ittt e e et eeeee e e e e e e e e e seseessssesaeeeeeeeeeeesensnnnes 77
(o] o Lo O ST =Y i o Yo [b o TSP 77
CWhCO_SetIPAddIesSLOOKUPMOUE...iii ettt ettt et e e e e e e e baee e e 78
CWHCO _SetPOTTLOOKUPMOUE. ..iii i iiiee ettt et e e et e e e e e e s e baee e e e e saeeeeeennns 80
CWHCO _USESECUTESOCKE TS oottt e e e e e s e e ararae e e eee s 81
DEfiNES fOr CWDCO _SEIVICE.....cii ittt e et eeee e reeeeeeeeseessssssseseeeeeeeesseesnnsnnses 82
Differences between cwbCO_Signon and cwbCO_VerifyUserIDPassword........cocevvverunene 83
Similarities between cwbCO_Signon and cwbhCO_VerifyUserIDPassword.........cccccemvercuenne 83
Communications: Create and delete APIS.......cuii ettt re et e s e s reeessee s 83
CWhCO_CreateSysSLisStHANALE ettt et et e 83
cWbCO_CreateSySLiStHANALEENV. .. ettt e e ea 84
CWhCO_DeleteSysSLisStHANALE . ettt e 85
CWHOCO _GEENEXTSY SNAME .ottt e e e e e e e e ee e e e e abeeeeeesnsaeeeeesnseeeeeennes 85
CWDC0 Gt SY S LA ST I Z O ittt et e e e et e et e et e e e ab e e e areeeenreaan 87
Communications: System information APIS.........ueei i e e e e e ree e e 87
o3[o] (O I CT=N of - You s AVZ=T 00] o RVAT sf=Y= s Ko] £ TR 87
CWhCO_GetConnNeCTeAdSYSNAME.......uiiiee ettt ceree et e e e et rr e e e e eare e e e s e abaeeesennraeeeeenns 88
CWHCO _GetDeTaUl TSy SNAME...ci it et e et e e et e e s e e e e e e e s raeeeeeeanns 89
CWhCO_IsSystemConNTigUTE. e 90
cWhbCO_IsSystemConTigUuTedENV. ..ttt 90
CWDhCO _TSSYStemMCONNECTE. iiii ettt e e et e e e e e e e e e e baee e s eeasaeeeeeennns 91
Communications: Configured environments iNfOrmMation........cccccueevcieiriieeniieencieeseee e 92
(o3[o1 O{ I CT=N o :You s AVZ=1 =1 1 RVt afe) 111 =1 1 TR 92
CWHCO_GEtENVITONMENTNAME. . .uviiiiieieeeee ettt ettt e e e e e e s e eara e e e e eenbaeeeessnnnees 93
cWhCO_GetNUmMbeTOLENVITONMENTS vttt e eeaee e e e e eanees 94
Communications: Environment and connection information........ccocceeveviericiieeiciieencieencieesceeenne 94
CWhCO_CanConneCTNEWSY STOM ... e e e et e e e e eare e e e e e b e e e e s e araeeeeenas 94
cwbCO_CanModifyEnvironmentList. e 95
cWbCO_CanModifySyStemList. ettt et e 95
cWbCO_CanModifySyStemLiSTENV. .ottt e ea 96
cWhCO_CanSetACtiVEENVITONMEN T . .uuiii et e e 96
Example: Using comMmMUNICAtIONS APIS.......uiiiiiiiiiiierieeeiiee st essiteessireessiaeessaeeesssaeesssaeessseaesseeens 97
IBM i DAt QUEUES APIS..ccoiiiiiiiiieeciiiiteie e e eeeecerrere e e e e e e e e eeeesassbabaeseeeeeseeesessassssssaeeseseessesenssnnseres 106
D=1 = o [=TT SRR 107
Ordering data QUEUE MESSAZES. ..ccuiiitirrieeriieeriteersteessieeseeeesssteesseeesssseessseessssessssesssssesssssassne 107

WOIK With data QUEUES ... ettt e et e e e e ate e e s s e nte e e e sesabaeeeeeeasaeeeeesnseesessnnes 107

TYPICAl USE OF LA QUEBUES....ueiiiectiiee ettt e e ree e e s et re e e e s ente e e e e enbeeeesesnseseeesnnsseneeans 108

Data Queues: Create, delete, and OPeN APIS........ciii et e e e 109
CWOD0 LT BATEE X ittt iiieciiteiieieee ettt e e e e ee e e et e e e e e eeeeeeeeesssssbseaeeeseseeeseseassssnranns 109
CWODO DB ETEEX i iiiiiicitteiieieee ettt et e e eeeee s te e e e e e e e e eeee s sbsbaeaeeeeeeeesseseasssssnranns 110
[o3 1101 D10 0 oY= o =5 S 112

Data Queues: Accessing data QUEUES APIS......cciivcieiriieiriieeeiieesiieessieeesseeessveeessreessssnesssvaeesane 114
CWODQ _ASYNCREAM. . ittt e e ree e e e et te e e e s e nte e e e senbaeeeeesnseeeeeeenreneenan 114
(o1T 0] 010 0= Y [ed =X IS U TSRO 115
CWODO _CRECKD AT A uueiiiiiiiiiiieecctttte e e e e e e e e bab e e e e e e e eeeee s sssbarerareeeeeeeesann 116
CWEHDQ _C L BaAT e uiiiiiiiee ittt e e e e e e e e e se e e sssbaaeeeseeeeeeeesessssasseasesseseesseenannssnres 117
(o11T 01010 O3 Ko 1= TSSO PTTURRRRRRROR 118
T3 o] D10 I 1=y of M]\ =1 11 =TSR 118
CWHD0 _GETOUBUEBA T T it e e e e e s e e e s s babaeereeeeeeeesennnes 119
CWODO _GETQUEBUENAME. ... i ettt e e e eeee e raae e e e e eeeeseeeeesssbssaeseeeeeeeessannnns 120
CWODQ _GEESYSNAME.....iiiieciieee ettt e e e e e e te e e e e e aste e e s e nsteeeesensbaeeesennssneesennnnes 120
T3] 10O o =Y=] SO SOUOPUURRN 121
CWODO _REAM. ... ettt e e eeee e e e e e e e e e see s ssssbbaeeeeeeeessessassnsssrasareseeeeessennnns 122
T3 o] 01O T s Iy =R 123

Data QUEUES: AttrIDULES APIS....ccii ittt e e e e e e e e e e e e e seesssssrearaereeeeeeas 124
To1 T 1010 I O - N <Y 2 s s USRI 124
o]] 0L LY =y <Y i s USSR 125
(03101010 I CT=N of XUkl Yo s i iy 2O USRS 125
CWDD0 G DS Currrriiieeiie ittt e e e e et e e ee e bbbt aeaeeeeeeeseseasssssraeareeeeeeessennnnnes 126
CWDODQ _GEtFOTCETOSTOT AR it iiitieiitieteeete ettt ssaee e s saee e s saae e s saeas 127
CWDOD0 GO K EY SaZ B ittt ettt e et e et e e et e e s ste e e abee e sbeeessaeenseeensaeans 127
CWODO _GEEMAXRECLEN ..ttt eeee et e e e e e e e seeeseasssasaeereeeeeeessennns 128
CWODO _GETOTUET ittt e e ee et e e e e e e e e e s e s asasaeaeeeseeeesseseassssssrenns 129
CWODO _GEESENUETID.cuuuuiiiiieeiiiiieeecrttree e eeeeecrrrer e e e e e e e e s e eassbsbaaeeeeeeeeeesessnsssresrerseseens 129
[o31T[o] 1O Y=Y of AUkl Yo s i 2SR 130
CWDD0 ST DS Curtiriiiiiiii ittt e e e e e e e e se e bb bbb e aereeeeeseseassssssraeareeaeaeeesennnnnes 131
CWDDQ _SEtFOTCETOSTOTAEE ittt s e re e s saee e s saae e s e 131
CWDD0 SOt KEY SaZ B ittt ettt et e et e et e e et e e e sbe e e atee e sbeeeessaeenseeennreaans 132
CWHDO _SETMAXRECLEN ..ttt ee et e e e e e e e s eeeesassbabaereeeeeeeeesennes 133
CWOD0 _ ST 0T URT ittt ee e e e e e e e e e e e e s sssbseaeeeseeeeeseseasssssnrenns 133
CWODO _SEESENUETID.cuuuuiiieiieeiiieeecciitttee e e e e e e e e e e s e s sssbebaaeeeeeeeeeesesssssssssrerseeeens 134

Data Queues: REA aNd WHITE APIS... .. ettt e e e e e e eeessabrareeeeeeeeeeenns 135
o] o101 I O T <Y D - N - DTSSR 135
(ol] 0L L =y =Y F- N - DTSRRI 135
To1 T 1010 I CT=% o 010 AV =T o of OO 136
(oAl D O =y ol D= of= VTSSO 137
(o] 10 O I 1=y ol D= =V Yo [s TR RPN 137
oo 10 O I 1=y ol D= o= Y= o DO 138
(o311 o1 D10 1= f (= 2SR 139
(o301 D10 7= o (= =Y o 1SR 139
CWODO _GETRETEDATALEN ettt e e e e e e e e eeesababrear e e e e e e e s e e e nsnnsnnes 140
(o3 o] D1 1= ol 2= o 1= 2SR 141
CWODQ _GETRETKEY LEN. ittt e e et e e s e et e e e s e eabte e e s s nteeeeeensaneeaeas 141
CWHDO _GEtTS AT CNOTUET ..t i ettt e eee e e e e e e e e seesasabaaeeeereeeeeees 142
CWOD0 _GEESENAETINT O ittt e e e e e e e e re e e e e e e e e s e e e ssnnsnnns 143
CWBD0 _ S BT CONVET T ittt e e e e e e e r e e e e e e e e see s sssssaseeeeeeeeeeesesnnnes 144
(oo D O Y=Y ol D= of= VRSO TUURN 144
(o110 O I TN ol D= o=V Yo [s TR RPN 145
(o301 D10 ST = f (= 2SR 146
CWHD0 _SEtS AT CNOTUET .. ittt e e e e e e e e e e e asarareearreeeeeees 146

Example: Using Data QUEUES APIS.....coouiiiiiieiieeiieessieeseieesseeesseeessieeeseateessseeessseeessseeessneeesane 147

Data transformation and National Language Support (NLS) APIS.....ccccceeeviervieeneesieeeeseeeeeeseeens 148

Data transfOrmMation APIS. .. .o ittt ctee e e e eete e e s ee e e e s e e baeeeeesnsbee e e e e nseeaeesanseeneeeannnes 148

Data transformation APT liST.......ueie ettt e e et e e s e aree e e e aae e e e s e naaeeeeean 149

Example: Using data transformation APIS........ccoecieiiiieiiiieiniiessee st ssee s siee s siee s svee s 165

National Language SUPPOrt (NLS) APIS.....cceiiceeceeeieeeesieesteesreesteesreesseesseesseessseesseeesseesseesnsens 166
(006 To [=Ta ol aF- L= Lot 1] o] T PSPPSRI 167
GENEIAL NLS APIS LiST...uiiiiiiiiiiiieiiieesrite sttt e st e st e s re e s st e s s bee s sbeessbeeesbeeessseesssseeesnsens 167
CoNVEISION NLS APIS LiSt.iiiciiiicieiiiieeiiiee sttt seee s ssite s ste e siee s sree e saee s sbeessbaeessaessaseessnnens 173
Dialog-bOX NLS APT LISt ..iiiiiiieiiiieiiiiesiieessitessieessteesseeesseeesssseesssseesssseesssseesssseesssseessnseesas 185
EXQMPLE: NLS APIS...eiiiieciiiee ettt e eecttee e e e e ttee e s e s easee e e e e nstaeesseansaeeesesnssaeeesennsaneeeannsennens 191

YA (=T AT O] o =Tox =30 A i KT SRN 193

SySTEM 0DJECES AtTIDULES. . .ciiiiiiee e e e e re e s e e ba e e e s ennees 194
Advanced FUNCTION PriNTING......coviiiiiiiiieiiieeieeecie st s e e st e ssiee s sateessaeeessseeessaeessseesssnens 194
FAN L= d g T = Y= (TP PSPPI 194
ALLOW DiIFECE PriNteciieiiiee ittt sttt see s stte s tee st e s s te e s sbe e e sabaeesabeessasaeesasaessnsaesnnes 194
AUTNOTITY ettt ettt cee e e e et e e e et e e e e seataeeeseessseeeeeenbeeeeeeanseeaeeaansseneeeaanseneannn 194
FAN T oYl Y (o T O 3 Y=Y ol SRRt 195
FAN Ty oY aa =N A ot LY =g o I = R 195
BaCk Margin OffSEt ACIOSS...ccicuiiiiiiiiiiieiiitessite et esste st e s st e s s e s s bee s s beeessbeessbeeesseeesanens 195
Back Margin OffSEt DOWN....coccuiiirciieieiieeeiteeete ettt ettt see e e sbe e e s saae e s sbeeesbaeessaeesseeesasanens 195
Backside Overlay Library NamMe......ceu i ciiiie ettt e s e ectee e e e eevte e e s sentee e s s nnae e e s eennneeas 196
Backside OVErlay NAME.....cccuiiii ittt ettt e e e e tee e e s e stte e e e e snbeeeesenbeaeeeeesseeessennes 196
Back OVerlay OffSET @CI0SS...uiiiiiciiieiiciiiie ettt e et e e e e re e e e e e eabe e e e e s seeeeeeennsaneas 196
Back Overlay OffSEt DOWN..ccc..ueiiie ettt ettt e et e eectere e e eteee e s e e abee e e s senstaee e senseeeesennssneenaan 196
(0] g F= U= Vot £=Y S 01T ol ol o TS 197
(006 Ta [l o= T= LT PP SPRTR 197
(076Ta [=Ta [o7 0} f N F=Y0 0 L= TP PPPRRUPPRRRPPON 197
Coded FONt LIbrary NAME... ...ttt e eeeeee e e eeevre e e e e be e e e seabeee e s eensaaeeesensaneesennnenes 197
[07] oY1= USSRt 197
(070] o1 [T L=Y i (o N o oY LU Lol TSRS 198
(000 4 =T A o F= V=L OO USSP PUPPPP 198
DAta FOIMIAT. . ittt ettt ettt e ettt e e sttt e e s e et e e s e nr e e e e seareeeeeeenreeeeeeannee 198
Data QUEUE Library NaME.. .. iieee ettt e ettt e rtee e e e rtree e s e sre e e e e e nbe e e e e enbeee e e e nbaaeeeeensenneas 198
Data QUEUE NAMIE...ceiiiiiiiiiieiieieeeeeeeeeeeeeeeeeeeeeeeeeeeesarssrs i —aaasesaseeeeeeesesesssssssssssssssssnnnnnnnnnnn 199
B =T T LN @] o T=Y g =Y o RS US 199
User SPeCified DBCS Datal...iiicccieeeeieciiieeeeeiieeeeeeciteeeseerteeessesaeeessssnseeeesssnseesssesnsesessssnssessenan 199
DBCS EXTENSION CharaClers...cccuuiiiciieeiiieeiieeecteeesiie sttt e s see e s saeessae e s sbeessaaeessaeeessasnesnanas 199
DBCS Character ROTAtION.....ciciiiieiieieiieeeite sttt s e e s saee e s aee e s aee e ssaee e snaeaesnneaas 199
DBCS Characters Per INCh .. ittt rre e e e rre e e s e eare e e e s nte e e e s e nsaeeeaean 200
DBCS SO/ST SPACING...tttiitttieitieieititeeiteesiteessiteesssteessraeesssteesasaeesssaeesssseesssseesssseesssssesssesessseeenn 200
B L] g TP 200
Degree Of Page ROTATION.....ciciiiiiieiiiteree sttt ettt e st essabe e s sbe e s e e ssabaessabeesnaseeeas 200
Delete File After SENAING......uiiiiieieiie ettt ettt see e s te e s s e e s sbe e s sbe e s saeaesnaeas 201
DY (1 =Y o] A @]] o] o TR 201
LTS (1= Y o] N Y/ o 1TSS 201
DEVICE CLaSS..uuuiiiiuiieiiiieieiteieiteseitessrt e e st e s s bt e e sbeeesbe e e s baeesabaeesssaeesasaeeasseeesssaeeassaeessseeennsaeenn 201
DEVICE MOUEL ..uiiiiiiiiiiieectee ettt ettt e st e e s st e e s sbeessbeesaseee s sbaesnsaesanraenn 202
LYot Y o = TSR 202
1T o] =NV A= 10 VA T =SSRt 202
BT o (o TR o X U= (o] TSR 202
g [l Y=g =Y 1= T PP 202
e ER YT 0T U= (o TSR 203
(o]l 2L ol] o [T SR U PPTRPR 203
(oY a1l e 1=Y 01 1)1 =T OO PPUPPRRRUPRROE 203
FOIM FEE. ittt sttt e s te e st e e s e e e s bee e sabee e sabeeesabeeesasaeesaseessaseessnses 203
o] T 1Y/ o 1= PPN 204
FOrm Type MeESSAZE OPTION....iiiiiiiiiiieieiieeeieecette et et e st e e sbe e s ste e s sbeesssbeesssaessseessssaeenns 204
Front Margin OffSEt ACIOSS. .uucuuiiieiieiriieeriteeriteseite st e st e st e s s e e s s baessaseessbaeessbaeessseessaseens 204
Front Margin OffSEt DOWN....ccuuiieciieieiieeeiteeeite et ette et e e etee s s ae e s s be e e sbaeesbaessabaeesasaesssaeenns 204
Front Overlay Library NaME... ..ottt eecttee e e evee e s e e cbee e e e vree e s e e nsaeeessnnnaeaeesnnns 205

Front OVErlay NAME...co ettt e e e eetre e s s e nte e e e s esaste e e e sennbaneeeesnseeeeeeennsenaanan 205

Front OVerlay OffSEt ACIOSS.....uuiiii ittt e eectiee e e e ctee e e eetee e e e e erere e s esabee e e s enseeeeseensteaeeeessanesaans 205

Front Overlay OffSEt DOWN......uiiii e ccceee et eertee s e cteee e e e e ree e e s enbee e e s esnsraeeesenssaneasennes 205
LCT =Y o] Aol O o F= T = Tt £ Y=Y SR 205
Hardware JUSTITICAtION....cii ittt e s s saee e s saae e s aaeesnaeas 206
(o] o IR o Yo Yo T I w1 LTSS 206
INITIAliZE The W ittt st e s s te e s sare e s s sbe e s s sbeessnseesnee 206
INtEINET AQAIESS. ... iiiiiieecte ettt e s e e s bee e s bee e s beeessaeeesseeesseaesnnes 206
JOD NBMIE .ttt et e s tte e st e e s bt e e s ate e s aee e s bte e s bt e e s rteesntaesntaesaneaesan 207
0[] o 38 N U2 0] o= SO PP 207
Lo o T=T o X 1= (o TS 207
[0 o N Y=Y O U 207
Last PAgE PriNTEd...cciiiieiiiieieeeeiee ettt sttt sttt e st e s s te e s sbe e s sabe e s ssteeesabaessabaeesssaesnns 207
[T =3 eI oYl o= V=L T OO 208
I o] = U YA N F= o 1TSS 208
=Tl T g ol o FO RS OTPTP 208
Manufacturer TYPe and MOUEL....ccccuriiie et e et e e e e e b e e e e raeeeeeeas 208
Maximum Spooled OULPUL RECOIAS........uuiiiieiiiee ettt e et e e rae e e e eaae s 209
MeasuremMENT METNOM.....cii i e st e s saee e s aee e saneas 209
MESSAEE HELP . eteiiiieieieeete ettt st e s eat e e s sae e e s b be e s ateesbeeessbe e s nteesnteesneaenn 209
MESSAZE ID ... ittt ettt et e ettt e e st e e e b bt e e e e e bt e e e e e rr e e e e e e nneeeeeeanees 209
Message QUEUE LIDrary NamME.....cuiiiciiiiiiieiiieeeciee sttt e ssee e ssiee e sateessaeeesssteesseaessssaesneaess 210
MESSAZE QUEUE. ...ttt ettt ettt e e ettt e e e e ettt e e e e et e e e e e sbt e e e e s nseeeeeenneteessanseeeeeaansnaeesnn 210
MESSALEE REPLY..uuiiiiiiiiiiei ittt eee e s ee e st e e s bee e s bee e sbee e sbee e sbee e sbeeesbaeesreeenareas 210
MESSAZE TOXL. .. eeeiiee ittt ettt ettt ettt e ettt e e e e eee e e e e s ree e e e s nbe e e e e sane et e e s nebae e s nneeeesannneeas 210
=TT Yo oI Y o = TP O T PSP P PR PUPPRRPP 211
MESSALEE SEVETTTY..eiiiuiiiiiiieiiite ittt ettt et e st e s et e s s et e s sateesssteesssteesssteesssteessseeesanseessssaesssseesns 211
Number of Bytes t0 REAU/WITE.ccc..uriiee ettt et e e et e e e rree e e e e naae e e e eanes 211
NUMDEE OF FIlES.ciiiiiiiiiieeciee ettt sttt s s e s st e s st e e e s e e e s baeesabaeessbaessasens 211
Number of Writers Start@d 10 QUEUE.......eeeiiiii ittt e e e e sarraae e e e 212
Object EXtended AttriDULE.......uiii et e e e e e e e e e s s ree e e s e reeeeeennnes 212
OPEN tiME COMMEANGS.....ttieeieeiieiieieiieeeeeertteeeeeesrreeeeeesteeeeseasteeeesesssasesseassaeessensseeessenssneesanns 212
(0] o1 =X (o] g 0e] a1 {fo] 1 F=T o FU SRS 212
Order Of FIlES ON QUEUE....uueiiiii ettt eeecrrree e e e e e e e e e s essssbbreaeeeeeeeeessesassnsssssrereeseens 213
(@101 o TUL T] o 12 USSR 213
Output QUEUE Library NAME.......cuuiii ittt e e e tr e e s e tr e e e e e raee e e e earanee s 213
OULPUL QUEUE NAMB. .. ettt re e e e e s e e e e e e e e e e e e e e e s e e se s s assssaaraeeeeeaesessassnnnenes 213
OULPUL QUEUE STATUS..ciiiiiii et e e e e e e et e e e e e e e s e s e e s assraaaeeeaeeseesesnnnnes 213
OVErflow LN NUMDET . ..ciiiiieiecctte ettt s st e st essate e sseeessseaesans 214
PaBES PO SIUB..ciiiiiie ittt et e e st e s ee e s ate e s rte e st e e s reeeseneaesaneeesaneaenan 214
PEL D ENSITY .. utiieeieiiiiee ettt e e ctte e e e e ce e e e e te e e e s e tr e e e seebeeeeeeestaeeeeeabaeeeeaanbaaaeeearraeeeeenraeaeeaanns 214
01) AT T PSPPSR 214
T 0L o 11 13 SR 215
Print 0N BOth SIES..c.uuiiiiiiieieeceeete e sae e s e e e s bae e sbaeesnaae s 215
PIINT QUALITY . eeeeeeiiieee ettt e e e ee e e e e et e e e s e bae e e e s e sbeeeeeenbteeeeennsreaeeeasraneeeannnes 215
T AL AT =T LU =Y o Yot R UER USSRt 215
T) S = PR 216
T) (T PP 216
e e L =T LYot =T Y o= 216
Printer File LIDrary NaME.... ..ottt eectte e s e eevte e e s eeate e e s s nra e e s s enraee s s e snsaaeeesennsenas 216
PrINTEE FIle NAM..ciiiiieeeiiecte ettt et s e e s be e e s ba e e s baeesbaeesaseeesaseeenn 216
P INEEI QUEBUE. ..ottt e et et e e e et b b e e e e eeeeeesesssssssbassaeseeeeeesesassssssseseneaeeaens 217
RECOTA LENGEN...eiiiiiiiieeeeeete ettt s ee e s e st e s e e e s ate e saae e saaeesneaesneens 217
=T aT0) (ST (=Y o 1 UUUPRRRN 217
Replace Unprintable CharaCers.... .. iiiei ittt eetee e s ree e e e abee e e s e ereee e s e eannes 217
=T o ot=Ta =T) B O T = Toa = RN 218
RESOUICE LIDFary NAME...ci i ciieee ettt e e e e et e e e e et e e e s e bt eeeseeasaaeeseensaeeesennnenns 218
RESOUICE NAMIE...ciitie ettt ettt e ettt e e e e et e e e e ae et e e s e bb e e e e s sssteeeeenneeeeeeanseaeeeanneaeas 218
Yo 1N (ot= N o] o] [T o1 4] o 1= TSRSt 218

vii

viii

RESTAI PrINTING. . .viiiiiiiiieeieiee ettt sttt se e s eate e saee e s ate e sesteessteesseeessnteesnsseessseeesans 218

ST V] oY) 1=To I o1 1R 219
Y=L QO £ PRSPPI 219
SEEK OFIZIN . tteiictieeieieeeeieesete e sete e sttt e sttt e sttt e sebteesabteesseeessteesseeesseessseeesaseeesaseessnseessasaeesnn 219
Y= Lo I ST] o) 47T 219
SY=T oL V- Lde] g o 1= V=L O OO PRSP PPPPPRRRRPP 220
SOUICE DIFAWET ..ttt ettt ettt ettt e sttt e e sttt e e s e e se e e e e e e asteeeseaseeeeeesasseeeeesnneeeeenanne 220
Y010 1o] B 035 TSR 220
Yoo o I { g 1=TN D | - VUSSRt 220
Yoo] t=Te I AT E= T (=T =S 220
Yoo] t=Te I AT E= T (N 1U 0 0] o 1T SR 221
Yoo] =Te [AT TS €= U SR 221
Yoo To]=Te WO IU] 41U} AT ol aT=Te L] L= SR 221
Y = LAl o= o= V= (TSRS P PP RURPR 221
LD S B I=ETod])] o TSR 222
Bl A EE R] 0= =T PSR 222
TOTAL PaBES. . tiieiiiieiiteeit ettt ettt ettt e sttt e st e e et e e s abe e st ba e s be e e abe e e e abaeenaree e abaeenanes 222
TranSfOrmM SCS 10 ASCIL...ciiiiiiiiiieieiee ettt ettt e st e e sbe e s ssbee s sbeessbaeessbaessnseessssaeanns 222
UNIT Of MBASUIE...eiiiiiiieiie ettt ettt sttt e st e s s be e s s te e s s abeessabeessstaessstaesassaesnssaesnnes 223
USEI COMIMENT ...ttt ettt ettt e e e ettt e e s et e e s e abe e e e s e e nreeessenaseeeeseannbaeeeenannes 223
O ET= DL\ - T TSP TPPPRRRPPPP 223
(11T o [T 1T =T o £ - D PP 223
OET=Y e 1=) 1T T=Te o] oJ[=Ton d 1 o] =1 /8 SR 223
OET=Y e 1<) 1T T=Te o] oJ[=Tot f =T =TT 224
O ET=Y e 1=) 1T =Te o] o T[T ot dh 4] o 1= TSR 224
User defin@d OPtioN(S) .. ittt ettt e e e te e e ate e e te e e steeeeateeeesteeeenteaeans 224
(01T e Y=Yl o] {oY =1 = o O U PRSPSPRPPR 224
User driver Program LIDIary ...ttt e s ee e s saee e ssaeeesneeesans 225
USEr driver PrOSram NAMIE. . cuieieieereieereteeseitesssreessseessseessseesssseesssseeessseesssseesssseesssseesssseeens 225
USEE ID ittt ettt ettt ettt ettt e e ettt e e sttt e e s e st e e e e e e nbt e e e e e ane e e e e e nee e e e e e nreee e e e nneeaeeaaan 225
USEE ID AQAIESS. e iiieiiiieieiiee ettt ete sttt e st e e st e s s ae e s s abae s sbeessbaessabaesssteessaseesnssaesnnsens 225
User transform program LIDrary ...t s 226
User transform Program NAME.ueucueeeeieereieeseieessieesseeesseeessseessseesssseessseessseesssseessssees 226
VIM/MVS ClaSS.uunniiiiiiiiiiiieeeeeeeeeeeee e e e e s e e e s e e e e e e e eeeeeee s e e e es e e s s s s aa s s s sessessesaesnannnes 226
When to Automatically ENG WITET......cei ettt vtee e e sree e e e e eaae e e e enns 226
AT Aol = g AT 1 =T S PP 226
AL e L] A Kol o] Lo I T L= T TR TTTPTR 227
Wi OF Pae..iiiiiiiiiiiieeie ettt sttt sttt e s eate e s st e e sbte e ssteessteessteessseesnnseesan 227
Workstation Customizing ObjeCt NaMe.....cccueiivieiiiieiiieireeecee st sae e 227
Workstation Customizing ObjJecCt LIDrary.....cccocceeirieeiiieiiiieeciee et 227
WHEEE JOD NAM ..ttt et e s st e e s sate e s sate e s sataessstaessssaesnns 228
WEHEEE JOD NUMDET ...iiiiie ettt e s e s ae e s s e e s s aaeessaeas 228
WHIEEE JOD STATUS...eiiieiiiicieece et s b e e s bae e s saae e s be e e sasaeesseaeen 228
WELEr JOD USEI NAME...iiiiiiiiiieetecete ettt e s e e sbee e s ate e ssaeeesnaeeesanas 228
WEHEEE STAITING Page..ciiciii ittt ettt ettt are e s te e st e e sbee e sbee s sbeeesaseessseessasens 228
Network Print Server Object AttriDULES. ... e e 229
I3 Y TP 231
Fo311 010 = 10 H O N Y=Y =] Hix 3 R 231
(o311 o10]= 10 B 0% of=Y= N =Y B =y of = F=1 o [1 1 TR 232
(o311 o102 I I D LN M=y =Y B =y of = =Y o [TR 233
(o311 o102 0 J CT=g o e =3y s T4 < T 234
(o310 101 0 B 0T o T=T o s = oSO 235
CWhOBIJ _ReSetLisStATtISTORETIIEVE e 235
(o311 o102 0 I 2= = o W gy of i = o 236
(o111 o102 I IRST=Y of M K Y o s o oY Y b o K = V2 =Y 237
(o310 10 1= 10 BRSY=Y of s K=y of s o o 238
cWbOBJ_SetListFilterWithSplF. e e e 241
(0] o =103 72X o =TSRSS 241

CWDOBI _COPYODTHANALE. ittt et et e et e e e e be e e rae e earaas 242

CWDhOBJ_DeleteObTHANALE ...ttt et ettt e e re e e be e e nns 242
(310101 N A CT=N o0 o By - s s U TR 243
CWDOBT _GEt 0D J AT TS e ettt e e 247
CWDOBI _GEtODTHANALE ottt et e et e et e et e e e st e e e nteeeenaeeaans 248
cWbOBJ_GetObFHaANAIEFTOMID.. ...ttt et aee e e aee e e e e e 249
(310101 0 B CT=N o0 o Ty 1 TSRS 250
CWDOBI _RETTESNOD et ettt e e e ree e e ree e e 251
CWDOBT St 0D AT LTS ettt et e e e 252
L= g 1] =Yoo 0T T=Tot Y o SR 254
cWbOBJ_CopyParmObTHANALE. ..ottt et e e eeeareeeas 254
cwWbOBJ_CreateParmObFHANALE ...ttt ettt e e 255
cwWbOBJ_DeleteParmObFHANALE ...ttt e e e e an 256
CWDOB I G PATAME TR T . e e e e e e e e ee e bear e e e e e e e seeeesannsenes 256
CWDOB I ST P AT AME TR T et e e e e e e e e e b e ar e e e e e e e s e e e sannsanes 257
LA L =T To] o T AN o SRS 258
T3 110102 30 I =1 Yo 1 iy of = R 258
(oA 101 S N] = U A A 1 (] USRI 259
OULPUL QUEBUES APIS. . ettt e e e e e s e s e e e e e e e e e s se e aasaaaeaeeeeeaeseensnnssssrnnnaeeeans 261
CWHOBJ _HOLdOULPULQUEUE.....eeiiiee ettt ettt e e ette e e e are e e e e e ba e e e e e nraee e e e e nnees 261
CWhOBJ _PUTZEOULPULTQUEUE. ..ottt s e s saae e s 261
CWbOBJ_Re1eaSe0ULtPULTQUEUE ...ttt eeree e e e e e e e e e e e ae e s e e naaeeas 263
AFP FESOUICE APIS....eeiiiietee ettt et e e e et e e e sttt e e e s ne e e e s e neteesseaseeeeeesnraeeeesanne 263
CWDOB I _CI 0SB RESOUT R cciiiiiieiitiretieeeeeee e eeeecarrer e e e e e e s eseesaabareeereeeeseeesesssnssssssearreeeeeens 263
CWhOBJ _CreateReSOUTCEHANALE ...ttt e e e eraeaees 264
CWDOBI _DiSPlayRESOUTCE...uuiiiciieeeiieeceee et et e etee e tee e e tee e e te e e e beeeebeeeeabeeeensaeeensaaeennes 265
(o3 o10 = N I 0T o 1= g Y R =Y Yo LUl o SR 266
CWbhOBJ _OpPENRESOUTCEFOTSPL ..ottt e e e e e e e e e s e enree e e e eanns 267
CWHOB I _ REAURE S OUT C B ettt e e eeeccbrrr e e e e e e s e e e seessssbseareeseseeesesensnnsssnes 269
CWDOB I S EEKRE S OUT C B ittt ittt e eeeeeeerrre e e e e e e s e e e eeessssbsaareeeeseeesessasnsssnes 270
APIS fOr NEW SPOOLEA fIlES....nneiiieee et e e e e ar e e e e ate e e e s nbae e e e eenreaeeas 271
CWDOOBJ _CLOSENEWSPLF ...ttt et e e s be e e e e ebae e e e e e sree e e e ennrnns 271
cwbOBJ_CloseNewSplFANAGEetHANALE ..t 272
CWDOOBI _CreateNEWSPLF . ittt et e e e et e e e e et ee e e s e eaate e e e eennraeeeeennraneeas 272
cwbOBJ_GetSplFHaNdLeFTomMNEWSPLF ...t veee e 275
CWDOBI _IWTIEENEWS L .ttt et ee e e te e et e e e at e e eesteeeentaeeenseaeenseeanns 276
APIs for reading SPOOLEd fIlES.....uiiiiiiiiiieieie et sttt sra e e naee 276
[o3 o101 = 0 B O W 11 =1 o A SRRSOt 276
(o3 o10 1= 0 B0 0 1T o 1S o 2 I SR 277
(o3 o10 1= 0 I £ == T IS o J SR 278
(o3 o10 1= N BT =TT S o J SR 279
APIs for manipulating SpPo0Lled fileS.......cuiiiiiiiiieeeee e 280
CWhOBJ _CallEXItPEMFOISPLF ..ottt et e e e n 280
CWDhOBJ _CreateSpPlFHANALE .o ettt e e e e e e e e e e e nrae e e 281
CWbOBJ _CreateSplFHANALEEX ettt e e e 282
(o3 oT0 1= 0 D= T = =1 o J SR 283
CWDOBI _DISPLaySPLF . ittt et e et e et e e e e e bt e e e bee e e seeeebeeeenseeaenseeeenneas 284
[o3 o101 = N - To T e IS o 2 SRR 285
(o3[o10 = 0 I Y VA =Y =T o V2= T = o 2 =R 286
[o3 o101 = 0 N Fo NV =N o J SR 287
CWBOOBI _REIEASESP L .ttt ee e et e e s e s e e e e s e nbte e e s s nteeeeeennaneeaeas 288
(o3 o10 = I IS Y=T o e 11 TN o] o T SRS 288
(o3 o101 = N Y=Y oL I I OS] o T SRR 290
APIs for handling spooled file MESSAZES.uuiiviiiiciiiiciee ettt seee e seee e seree e sreeesane 291
CWDOBI _ANSWELSPLFMS S eiiiiiiiiiiieiiiieeete ettt ettt et e st e s be e s s be e s s be e s sate e s s aeaesnaeaas 291
CWHOBI _GEESPLFMSEA LT . iiiiiiiiiciiecete ettt ee e e s e e e s bae e s beeessaeens 292
APIs for analyzing spooled file data......cccciiiriieriiiiniieeeece e s s 294
CWDBOBI _ANAlyZESP LD i ieciiiee ettt e e e s et e e e e e ae e e e e raee e e e nraes 294

SEIVEE PrOZrAM APIS. ...ttt ettt e ettt e e ettt e e e e et e e e s bt e e s s e eee e s e seeeeeesanreeeeenn 295

CWDOBI _DTOPCONNECTIONS ittt ettt et e tee et e et e e re e e e bee e e areeeenreeenns 295
CWHOBI GNP S eIV T AT T e e s e e 295
CWbOBJ _SetConNNECtioNSTOKEEP i ettt ettt e et e e et e e e teeeentaeenes 297
Example: Using system ObJECTS APILS.....coociiiiiiiiiieieieectee ettt be e 297
Remote Command/Distributed Program Call APIS........cccciiviiiiiiieiiiieeniecsteesee et siee s 299
Typical use of Remote Command/Distributed Program Call APIS.......cccccccevvveeinieeinieeinieeeen. 300
Remote Command/Distributed Program Call: Access remote command APIs list..........cc....... 301
T3 o] 2O 1=y of O s =Y o {0 04 1 301
CWHORC _GETHOSTCCSTID ... iieciitteeeieeee ettt e e e e e eeeeeaaabreae e e e e eeeeseeeessssssaesreeeeeeessennnns 302

(o1 o] R RS o= T) V7= = USSRt 303
(o301 R 3 ao T o 11T PN 304
Remote Command/Distributed Program Call: Run APIS LiSt......cccccvvvieiriieiniieineeeseeesee e, 305
CWEORC _RUNCMA. ...ttt ettt e eeeeearae e e e e e e e s eeessssasaaeeeeeeeeessessssssssseerseeeeses 305
Remote Command/Distributed Program Call: Access programs APIS liSt.......cccecceeirveeirvieennnne. 306
CWBORC _AAAP AT M. cuieiiiiiiiiiieeeccttteeeee et e e e e e e e ee bbb st aeeeeeeeeeeeseasssssssaeaeeseeseessennnnses 306
(o1 o S O 08 B R = 1 OO STSPRTSPRR 307
(o1 o] S O O oY= =Y o= || SRS SPRTPPR 308
CWDORC _DELETEPEM. ittt e s aee e st e e s saee e ssaeee s aaaesneas 309

T3 o) 2O 1=y of W]\ =1 11 =TSR 310

(ol T | = OO 1=y ol =T | TR USRI 311
CWHORC _GETPATMCOUNT ..ottt e e e e e e e s e e e sasssebaeeeeeeeeeeesennnes 312
CWORC _GE TP GMNAME. ..ciiiiiiiiiieiiee ettt sttt et esete e s saee e ssbteessteessabeesssbeesssaesnseesansaesas 312

o3 o) S O Y=y o W]\ =1 11 =TSR 313
CWBORC ST P AT M. e et e e e e e e e e e e ees e aasbsraeaeeeeeeeeesennnnes 314
CWORC _SETPGMNAME. ..ci i uiiiiiieiiciee ettt sttt et ete e s saee e sssee e s steesabeesssbaesnsaesnseesnnsaesas 315
Example: Using Remote Command/Distributed Program Call APIS.......ccccccevvvveiriieenrieennieennne 316
SEIVICEADILITY APIS e ittt tre e et ee e e e e ee e e e e ebte e e e s e nteeeeseenstaeeeeenbeeeeeennbaaeeeennres 318
HISTOry L0g and traCe fIlES...uuii ittt be e s s be e s s be e e saeeas 319
T o] gl o=V a T LSOO PP 320
Typical use Of Serviceability APIS........uiiii et e e ree e e et e e e s e aee e e s e anees 320
Serviceability APIs list: Writing t0 hiStOry LOZ.....occuviiriiiiniiiieieccsiecee e 320
cWbSV_CreateMessageTextHaANALE.......covviiiriiieieceecee et s 320
cwWbSV_DeleteMessageTeXtHaNdLe....coocuiiriiiiiiiiiceececte e sae e 321
CWDSV _LOEMESSAZETEX .. vtiieiiiiritiiesiittesite e st e s sttt e s site e sbeeesssee e s seaessseaessstaessasaesnssaesnssnesnsees 322
CWDSVY _SEIMESSAZECLASS. . eiiurieieiieiriie ittt et s st e st e s ste e s ateessateessaseesssbeesssseesnnsaesas 322
CWDhSV_SetMessageComMPONENT.......ciiiiirieirieeeite et esiee e ee e sbee e ssbee e ssreeessaeesssaeeessseeesnnens 323
CWDSV_SetMESSaZEPIOTUCT......ciiiciiiiiee ettt ee s e s e e s e e s sbeeesanees 324
Serviceability APIs list: Writing trace data.......coecieieiieiiiieeeiieerie e 325
cWhSV_CreateTraceDataHaANALEcoii it e e e e e e arnees 325
cWhSV_DeleteTraceDataHandle.......cccuuvrvieiiiiiiiiieieccceeeeee e ar e 326
CWDSVY _LOZTIaCEDATA. eiiuveeieiieicieeieiee sttt st e sete e s te e ssate e s ate e seaeeesenteeseseeessnteesseeesaseeesans 326

oAt o VST N = (o =T 0o g a o ToT aT=Y 3 | S5 RR 327
CWDHSV _SeITIraCEPIOUUCT. ...ttt e e e e e e e e s e e nasseaeeereeeeeeeesennnns 328
Serviceability APT list: Writing traCe POINtS.....cciivcieiriiiiiiieceee et ee e s 328
CWDHSV_CreateTraCAPTIHANGLE.uvvveeieiie et e e e e e r e e e e e e eean 328
CWDHSV_CreateTraCeSPIHANGLE.uvvieiiiiieee e e e e ee e eeeeeeeee e 329
CWhSV_DeleteTraCeAPTHANALE.......cco et e e e e e e e sanaanees 330
CWDHSV_DeleteTraCeSPIHANULE......uviieii ettt e e e e e e eeeeanes 331
CWDSV _LOBAPIENTIY ..ottt ettt ettt s et e st e s ae e ssabe e s ssbe e s sbeessabaeesaseessasaesnanes 331
CWDSV_LOGAPIEXIT. .. .iiiiciiiieiiieieiieieiteeeite st e st e s st e s s bt e s stee s sabaessbeessbeessssaessnsaessssaesssaesnnes 332
CWDSY _LOGSPIENTIY.cciiiiiiiciieiiiieeete e ettt site s sree s st e e st e e sbe e s s teessbaessabaessabeessssaessasaesnssaesnssnas 333
CWDSVY _LOGSPIEXIT..cutiiiiuiiiiiiieiiitesiiee st e st e ssiteessateessseeesssteesssteessseeessssaesassaesssseesssseessnseenas 334
CWDSV_SEtAPICOMPONENT......utiiie ittt eecrtee e e et e e e e etee e e s e ssteeeeeesbeeeesenseeeeeennsseneenns 335
CWDOSY _SETAPIPIOGUCT.....ciii ittt e ee e e e e e e e e e eeesssssabaeereeeeeeeesennns 335
CWDSV_SEtSPICOMPONENT...cci i tiieeeeeciiee e e ecir e ecee e e eeetee e e e e rree e s e enbeeeessnbeeeeseesseeeesesnseneenan 336
CWDOSY _SEISPIPIOTUCT .. uvvtieeiiiei ittt e e e e e e e e bae e e e e e e e sesenassssaseseeeeeeas 337

Serviceability API list: Reading SErviCe fileS.....uuuiiiiiiiiiiiieriieeeieeeee et 338

CWDSY _ClEAISEIVICEFILE. .uuutiiiiiiiii ittt e e e e e e e e aaba e e e e e eeeeseseessssraeaeeeees 338

CWDSY _ClOSESEIVICEFILE. ...ttt e e e e e e e e eesssbbeaeeeseeeeeesesannnsnns 338
CWDhSV_CreateServiCERECHANLE.......uevieeie e e e e e e e eeaas 339
CWhSV_DeleteServicERECHANALE. ...t e e e e e e e sennnnes 340

oAt NV CT=1 { 60T 1 o] oY) 3 =1 o} S5 SR 340

LoAT L o Y VA CT=Y A DY (=3 =Ly Yo TSR 341
CWDHSV_GEIMAXRECOIUSIZE.uuuueiiiiiiiiieeeccttteeee e e e e e e e e e e s sababaeaeeeseeeeeseessssssssseens 342
CWDSY _GEIMESSAZETEX . eeicutiiieiieiiieeiiieeseiee st e ssteessteessreessteesssteesssteesssteesssseesssseessssaesnnes 343
CWDOSY _GEEIPIOQUCT ..o ittt eee e e e e e e e e e ee s easssasaeaeeeeeeeeesesssnnsssnens 343
CWDHSY_GEIRECOIACOUNT..ceiiiiiiiiieecctitttee e e e e e e e s eesaababaerereeeeeeesesssanssssseareeeeeeeas 344
CWDHSY_GetSerVICEFILENAME...ciiii ittt e e ee e b e e e e e e e e seesessnssssaenees 345

AT RV CT=Y Y=Y VAot =Y Y o 1= TR 346
oAt VA C 1=yl T 4115 =Y 1] o J S 347
oo YV € 1= L = Tol] B | €= RO 348
CWHSY _GetTraCEAPIDATA.ccc ettt e e eeee et e e e e e e e e e eeessssraaaeeeeeeeeesenennnes 348
CWDOSV _GEETIaCEAPTID. ...ttt e e e ee e e e e e e eeeeseeesssssssaeeeeeeeeseesannnnnes 349

LoAT R A 1=yl N - Tol=Y Y o Y o 1= TSR 350
CWDOSY _GetTraCESPIDAtA. eiiiiiiiiieeeciiirtieeee e e e e e e e e e s eessssraerereeeeeeeeesesnssssseaeeeeeeeens 351
CWDSY _GEITIACESPIID.....ciiiieeectiriteieee et e e e e e e e eeeeeabararereeeeeeeeesessssssseseereeeesssessnnnns 352

AT N A 1=yl N = Tol=N] ol L Y/ o1 TSR 352
CWDSY _OPENSEIVICEFILE. . uiiiiitiiee ettt e e e e e a e e e e e bt ae e e e e enraeeae s 353
CWDHSV_REAANEWESTRECOIU. .. uuvviiiiiiiiiiiieicciiitteee e eeeeeecrrrreee e e e e e e eeeeeassraeeeeeseesessesennnnnnes 354
CWDHSV _REAANEXIRECOIU. . uuuviiiiiiiiiiiiieecitittteee et e e e e e e e e e e seasarreseeeseseeeseseesnssssenns 355
CWDHSV_REAAOLIAESTRECONU....uuieieiiiieiiie ittt e e e e s e e eeabrrarereeeeeeeeesesssssraens 356
CWDHSV_REAAPIEVRECOIT.cuuiiiiiiiiiiectititeeeee et e e et e e e eeeababaereeeeeeeeesesessssssrsesreeeeeeens 356
Serviceability API list: Retrieving MesSage tEXT. ittt 357
CWDHSV _CreateEIrTHANGALE. ... ettt e e e e e e e assarae e e e eeeeeesenanes 357
CWDHSV _DElEtEEITHANALE...uueeeeeeeieee ettt e e e e e e e e s e e asssseaeeeeeees 358
oAVl AV 1= 4 = O F= 1Y TSR 358
CWDHSV_GEtEITClasSINAEXE. . .uuueeeeiiiiiiieeeciteeeee et e e e e e e e eeeeabbraeereeeeeeeeseessnnsreens 359
oAVl YV 1= 4 = 6o TN o | SRS URURRR 360
CWDOSY _GEEEITFILENAMIE. ... ettt eeeeetrr e e e e e e e e e sabsbaeaeeeseeeeseeesansnnnes 361
CWDhSV_GetErrFileNameINAEXEM......coouiiiiiieieeieee ettt e e e e e e e e e e ennasnees 362
(oA LV CT=1 4 =] o]\ F= T £ =TRSO SRR 363
CWDHSV_GetErrLIDNAmMEINAEXEU.uuuirieiieiiieiiieeecctttteeee e e e e e e e e e s e e sarsaseeeeeeeens 364
CWDSY GEEEITSUDSITEX L uueiiiiiiiiiiiiieiciiitteee e ee ettt e e e e e e e e sesssssbreareeeeeeeseeeseesnsssseaneeees 365
CWDHSV_GetErrSUDSITEXTINAEXEU.uvvriiiiiiieeieieeeccitteee e e e e e eeeeesararreereeeeeee s 366
oAV YV CT=] = L= OO RTTO 368
CWDOSV_GEtEMTTeXtINAEXE. ittt e e e e e e e e esbaraaaeeeeeeeeesenn 369
Example: Using Serviceability APIS......cciiiiiieiiiieiiieeseieeseieessieessieesseeesseeessseesseeessssaesssseesnne 370
System Object ACCESS (SOA) APIS ... ettt cte e eette e e eate e e ette e seteeesesaeesbeeesasseesaseaeanns 371
Y @7 0] o[Tox 3SR 371
)Y £ C= T I o] T[Tt AR oSSR 372
Typical use of System ODbJeCt ACCESS APIS ..o i e e e e e reeee s 372
Display a customized list of System ObJECES.....uuiiiicciieeeeeeee e 372
Display the Properties view for a system ObJECt......ccivcciiieiieciiee e 374
Access and update data for SyStem ObJECES......uviiiciiiie i 376
System Object Access programming CONSIAErationS......ccucvueeievieeriieeriiieernieersieeseeeeseeeeseneeesans 379
AbOUL SYStEM ObJECT ACCESS BITOIS. . uuieeieeciiieeeeeiiteeeeeetteeeeeesteeeeeesreeeeeesseeeesesssesesesssseeeeas 379
System Object Access application Profiles.......uuiieeiccciiieeecceee e 379
Manage IBM i communications sessions for application programs.........cceeceevrveersiveernneenn. 379
System ObjJeCt ACCESS APIS LiSt...uiiiieciiieeececiiie e ecciteee et e e e ctee e e e sree e e e esaree e e s sennraeeesennseneseennnes 380
(08123 O O Ko T = s 5= 381
CWBSO _COPYODTHANALE .ottt ettt tee et e e te e et e e eeateeeentaeeenteeeenseeanns 382
CIWBSO_CreateETTOTHANULE. ...ttt e e e e e e r e e e e e e e e eennn 383
(0011123 O I 05 =T= s =] W Ry of 5 F= Vg o 1 383
CWBSO_CreateliSTHANALEEX ittt ettt e eeaae e ee e e e e e nnnes 385
CWBSO _CreateObTHANALE ..ottt et e re e e e ba e e e bae e e aeeeenaeann 386

xi

CWBSO_CreateParmObTHANALE ..ottt e 387

CIWBSO_DeleteETTOTHANULE. ...ttt e e e e e e e e e e e e e e e e eennn 387
(08|23 O I D L NN =Y W Ry of £ F= Vg o 1 388
CWBSO _DeleteObTHANALE ..ottt ettt ettt e e ere e e e ta e e s e e e e seeaesaeaan 389
CWBSO_DeleteParmObTHANALE ... ettt et e 389
(0111123 O IO 3= WA N T M=y of Yol s Ko] KRR 390
(001123 O 3= W YT =g ol e B I o s R 391
CIWBSO _DiSPLayYETIMSE..uiiiiiicieeieeetteeteecteeete et esteeteesaee e steesre e saeesseeeteesseesneeensaesneeenseenns 391
CWBSO _DaiSPlay it ittt ettt tee e e tte e e aee e ebe e e e ree e e bee e e neeeenneas 392
CWBSO _DisSpPlayOb At T et ettt et e e e e et 393
CIWBSO _GEEtETTMS G T X T uniiiieieie ettt ettt ettt e e et e e st e e e e ee e e e e e e e enneeas 394
(0812 O 1= of e =g s s 2 T 395
1= T CT= 0o N e RSP 396
CWBSO0 _GEtODTHANAL G ..ttt et e e ee et e e et e e e bee e e beeeebaeeensaeeenseas 398
CIWBSO _0PENLIAST ittt et e et e e e bee e e bee e e beeesbeeesbaeesaseeesseeesasaaeanns 399
(0811123 O I S T=T=Yo N s K3y f o o e =T RRR 400
CIWBSO _RETTESNOD T eiiiciiie ettt ettt e et e et e e aae e e ate e e sbeeensee e nseeenseaans 401
CWBSO _RESETPATMOD T . ettt et et e et e e ree e ae e e e beeeenbaeeenneas 402
(08123 O RS T=N o M=y ol e B I of = R 402
(081123 O RS- of B g o o oo T TR 403
(011123 O JRST=Y of M =g oo b f e =0 e £ 404
(O] TS T o e = I =PRSS 405
(1SS O TS T= 0o N e SRR 406
(0 R OIS Y =l ot T o= 111 = U PURPRRURRRNE 407
CIWBSO ATt FOT 0D g uiieeiieeeeiee ettt e e et e et e et e e e st e e e aaee s asee e sseesnseeenseaennseeans 408
(0811123 O I e Iy =Y W = o o e 0 409
SOA attribute SPECIAL VALUES.....cei ettt e e e e te e e e e e rae e s s e ensaee e e enanes 410
Database PrOSIaMMUNG.....ciccuiiiiiiereieeriieersteesereessteessreesseeesasseessseeesssseesassaesasseesssseesssseessseessseesssseesns 423
BN I o 07T =Y ST 423
(O]I S B3 oY/ T [= T USSR 424
IBM i ACCESS ODBC...cciiiiiiiieieiieeeiteeeite ettt s e e st e e s bt e s s be e e sataessbeessaseeessbaeesssaessasaeesasaesssaeennee 425
IBM i Access ODBC driver-specific detailS.......cciecciiieeieciieee ettt eeveee e e eree e 426
ODBEC 3.X APT NOTES...eeiieiieeeeetee ettt ettt e ettt e e et e e e st e e e e s et e e s s mseteesesaseeeeseenneeennn 426
ConNECtion STHNG KEYWOITS.....uviieiiiieiieerieesite ettt see e st e s see e s be e s saeeessaeeessaseessanas 432
Version and release changes in the ODBC driver BEhavior.......cccceevieeieiieeieiieeiniieesrieeseieeenne 453
ODBC API restrictions and unsupported fUNCHIONS.........cccuiieiiiiciiee e 453

ST FetaleTa e -1 (oY= 3 oT=1 s F- 1V o] SRR 454
ODBC data types and how they correspond to Db2 for i database types.......ccoveeeeevveennne 455
Working with the XML data tyPe coeeeee ittt 457
Large objects (LOBS) CONSIAEIAtiONS.....ccuveceeeieeceeeieecieesee et eseesteesteeseeesreesaeeseeesaeeeeeeeeas 458
Connection and statement attribULES.....c.iii i 460
CONNECTION POOLING....viiiciiiiiieeiiee ettt et e st eseiteeseree e sebteeseseeesseeesesteesasteesseassaseessaseessans 466
SQLPrepare and SQLNativeSQL escape sequences and scalar functions........ccceecvveeeeennneen. 466
Distributed tranSaction SUPPOI.....iii ettt et cecrree e e e rree e s e erre e e e e esabee e e e s sreeeseenseneas 467
(OL0 Yol il o T=] s -\ o ol aTo] =TT 467
Extended dynamic diSabled ErTOr..... ..ttt e e e e e vaee e e 468

SO I F- o] (T D I=Y Yol T o) { o] o TSR 469
Handle loNg-TUNNING QUETIES.......uiiiiiiiiiee ittt site e srte e sstee e site e ssbae e ssbeeessaeessaeessaeesnns 469
Isolation level CONSIAEIatioNS. ...uiiicieiirieeree ettt ettt e s sbe e s re e s see e s s aeessaseessaeas 469
(O8] 2] O o 1= o1 2 1 =12 (ol = TSR 470
Performance-tuning ODBC........ciuciiiriiiieiieeie et esree e ssiie e ssee e s siee e s see e ssare e ssaaeessaeeessnseesnaeeas 470
Performance considerations of common end-user toO0lS........ccccvvevieievieiniieinsieeeee e 473

S O I 01T {015 3 1 =13 Vot OSSR 475
ODBC support for multiple row StatemMeENtS......ceeieciiiiiicciee e 483
(0F=1 = 1o] =8 1] od { o] o[- TSP P PP 484

D qh o] o T={ =10 s 1< J PSPPI 485
SOL and EXTErNal PrOCEAUIES.......uviiiiecieeee ettt e eecttee e e e ctree e e e esaaee e e e sareeee s s sraeessensaaeseennssneas 502

IBM i ACCESS database APIS......cooo oot e e e e e e e e e e ee e e e e eee e bbb saeseeseeseeaeaeaeneees 509

ACTIVEX PrOSIraMIMING. . cicuveeiereereieeraieerateessteesareesateessseesssseesssesssseessseesssseesssseessssessssseesssseesssseessssaesns 509

[\ 0] o =Y - TR o 3 B

Programming interface iNfOrmMation. ... e s e saees 514
= e (=100 =T OO O OO PRRRUPRRRNt 514
BT g 0TS TaTo oo TaTe L1 A To] o T3PPSR 515

xiii

xiv

Windows Application Package: Programming

IBM® i Access Client Solutions - Windows Application Package is an optional package that is part of IBM i
Access Client Solutions. It contains the middleware, database providers, and programming APIs that were
previously part of the 7.1 version of IBM i Access for Windows.

As an application developer, explore this topic to reference and use technical programming information,
tools, and techniques available with the Windows Application Package.

This information includes programming concepts, capabilities, and examples that are useful when writing
applications to access IBM i resources. Using this topic, client/server applications are developed and
tailored to the needs of your business. Various programming techniques are described so you can
connect, manage, and take advantage of the rich functions provided by the server. You can access this
information by selecting from the topics listed below.

Note: To launch features from a Windows PC, select Start > All Programs > IBM i Access Client
Solutions, and select the component.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

PDF file for Windows Application Package: Programming

You can view and print a PDF file of this information.

To view or download the PDF version of this document, select IBM i Access Client Solutions - Windows
Application Package: Programming.

Saving PDF files
To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).
2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.

4. Click Save.

C/C++ APIs

C/C++ application programming interfaces (APIs) are used to access IBM i resources.

These APIs are intended primarily for C/C++ programmers. They are also called from other languages that
support calling C-style APIs.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510 .

C/C++ APIs overview

See the following topics for C/C++ APIs overview information.

API groups, header files, import libraries, and DLLs
Access interface definition files for all C/C++ API groups in the Programmer's Toolkit.
For each C/C++ API group, the table below provides:

« Links to the API documentation
« Required interface definition (header) files, where applicable

© Copyright IBM Corp. 2013, 2021 1

« Associated import library files, where applicable
« Associated Dynamic Link Library (DLL) files

How to access header files in the Toolkit:

1. Find the Programmer's Toolkit icon in your program directory and launch it. If it is not displayed in the
program directory, install the Toolkit.

2. In the left navigation panel, select the appropriate API group.
3. Select the C/C++ APIs subtopic in the left navigation panel.
4. In the right display panel, find the header (.h) file and select it.

Note: In addition to interface descriptions and definitions, the API group topics in the Toolkit include links
to other information resources.

About import libraries:

The import libraries that are shipped with the Programmer's Toolkit were built with the Microsoft Visual
C++ compiler. As a result, they are in the Common Object File Format (COFF). Some compilers, such as
Borland's C compiler, do not support COFF. To access the C/C++ APIs from these compilers, you must
create Object Model Format (OMF) import libraries by using the IMPLIB tool. For example:

implib cwbhdq.lib %windir%\system32\cwbdq.dll

Table 1. C/C++ API groups, header files, library files, and DLL files
API group Header file Import library DLL
Administration cwbad.h cwbapi.lib cwbad.dll
(Slommunications and cwhbcosys.h cwbapi.lib cwbco.dll
Security cwbco.h
cwb.h
Data Queues cwbdg.h cwbapi.lib cwbdq.dll
Data transformation cwhbdt.h cwbapi.lib cwbdt.dll
National language cwbnl.h cwbapi.lib cwbnl.dll
support
(General NLS)
National language cwbnlenv.h cwbapi.lib cwhbcore.dll
support
(Conversion NLS)
National language cwbnldlg.h cwbapi.lib cwbnldlg.dll
support
(Dialog-box NLS)
IBM i objects cwbobj.h cwbapi.lib cwbobj.dll
ODBC sqlL.h odbc32.lib odbc32.dll
sqlext.h
sqltypes.h
sqlucode.h

2 IBMi: Windows Application Package: Programming

Table 1. C/C++ API groups, header files, library files, and DLL files (continued)

API group Header file Import library DLL

Database APIs cwbdb.h cwbapi.lib cwbdb.dll

(Optimized SQL)

Note: These APIs

are no longer being

enhanced.

OLE DB Provider ad400.h cwbzzodb.dll

da400.h See the OLE DB Section of the

Microsoft Web Site"® for more
information

Remote Command/ cwbrc.h cwbapi.lib cwbrc.dll

Distributed Program

call

Serviceability cwbsv.h cwbapi.lib cwbsv.dll

System Object Access | cwbsoapi.h cwbapi.lib cwbsoapi.dll

Related reference

OEM, ANSI, and Unicode considerations
Most of the C/C++ APIs that accept string parameters exist in three forms: OEM, ANSI, or Unicode.

Use a single API type
To restrict your application to a particular type of API, you must define one, and only one preprocessor
definition.

Programmer's Toolkit
Find header files and complete information to develop applications.

The Programmer's Toolkit is an installable component of the Windows Application Package product and
is the primary source of information needed to develop applications. This includes programming with
ActiveX Automation Objects, ADO/OLE DB, .NET, and Java™. The Programmer's Toolkit contains links to
header files, sample programs, and complete documentation.

Notes:

« No portion of the Toolkit or the Windows Application Package product may be redistributed with the
resulting applications.

« By using the code examples, you agree to the terms of the “Code license and disclaimer information” on
page 510

The Programmer's Toolkit consists of two parts:

« The Programmer's Toolkit component, which includes:

Online help information for the Toolkit and other online help for the product.
C/C++ header files
C import libraries

ActiveX automation type libraries

« Programmer's Toolkit Web site which includes sample applications and tools that are useful for
developing applications. The site is updated regularly. Check it periodically for new information.

Windows Application Package: Programming 3

https://msdn.microsoft.com/library/ms722784%28VS.85%29.aspx
https://msdn.microsoft.com/library/ms722784%28VS.85%29.aspx

Install the Programmer's Toolkit
The Programmer's Toolkit is installed as a feature of the Windows Application Package.

To add or remove the Programmer's Toolkit and other features of the product, use the Add or Remove
Programs in your PC Control Panel.

1. Select Start > Control Panel > Add or Remove Programs > IBM i Access Client Solutions > Change
2. Follow the instructions on the screen, selecting the Modify button.

3. Click the feature name (Programmer's Toolkit) and choose one of these, as appropriate:

e This feature will be installed on local hard drive. (Toinstall a feature)

« This feature, and all subfeatures, will be installed on local haxd drive.
(To install features.)
« This feature will not be available. (To remove a feature.)

4. Click Install to modify the features that are installed and continue through the Install wizard until it
completes.

Related reference

ActiveX programming

ActiveX automation is a programming technology that is defined by Microsoft and is supported by the IBM
i Access Client Solutions product.

Launch the Programmer's Toolkit
The Programmer's Toolkit is launched as a feature of the IBM i Access Client Solutions product.

1. Install the Programmer's Toolkit feature on your personal computer.

2. Select Start > Programs > IBM i Access Client Solutions > Programmer's Toolkit
Note: The Toolkit icon appears only after you have installed the Programmer's Toolkit on your personal
computer.

Related reference

ActiveX programming
ActiveX automation is a programming technology that is defined by Microsoft and is supported by the IBM
i Access Client Solutions product.

IBM i name formats for connection APIs

APIs that take an IBM i name as a parameter, accept the name in the three different formats.
The valid formats are:

« Fully Qualified Domain Name (FQDN) (myibmi.example.com)

« Unqualified system host name (myibmi)

« IP address (192.0.2.1, 2001:dbh8::1)

Related reference

Administration APIs
These APIs provide functions that access information about the code that is installed on the PC.

Communications and Security APIs
The Communications and Security topic shows you how to use application programming interfaces (APIs)

IBM i Data Queues APIs

Use product Data Queues application programming interfaces (APIs) to provide easy access to IBM i
data queues. Data queues allow you to create client/server applications that do not require the use of
communications APIs.

Data transformation APIs
Product data transformation application programming interfaces (APIs) enable your client/server
applications to transform IBM i numeric data between the system and the PC formats. Transformation

4 IBMi: Windows Application Package: Programming

may be required when you send and receive IBM i numeric data to and from the system. Data
transformation APIs support transformation of many numeric formats.

National Language Support (NLS) APIs
National Language Support APIs enable your applications to get and save (query and change) product
settings that are relevant to different language versions.

System Objects APIs

System objects application programming interfaces (APIs) allow you to work with print-related objects
that are on the system. These APIs make it possible to work with IBM i spooled files, writer jobs, output
gueues, printers, and more.

Remote Command/Distributed Program Call APIs

The Remote Command/Distributed Program Call APIs allow the PC application programmer to access IBM
i functions. User program and system commands are called without requiring an emulation session. A
single IBM i program serves commands and programs, so only one system job is started for both.

System Object Access (SOA) APIs
System Object Access enables you to view and manipulate system objects through a graphical user
interface.

OEM, ANSI, and Unicode considerations
Most of the C/C++ APIs that accept string parameters exist in three forms: OEM, ANSI, or Unicode.
The generic version of the C/C++ APIs follows the same form as the default OEM version. Only a single
name for each function appears in this information, but there are three different system entry points. For
example:
cwbNL_GetLang();
compiles to:
cwbNL_GetLang(); //CWB_OEM or undefined
or:
cwbNL_GetLangA(); //CWB_ANSI defined
or:

cwbNL_GetLangW () ; //CWB_UNICODE defined

Table 2. API types, name formats, and pre-processor definition
API type API name format (if it exists) Pre-processor definition
OEM cWhXX_xxx None (may specify CWB_OEM
explicitly)
ANSI CWhXX_xxxA CWB_ANSI
UNICODE CWhXX_xxxW CWB_UNICODE
Note:

« Data transformation APIs (cwbDT_xxx) do not follow the "A" and "W" suffix conventions. The generic
version of the APIs uses "String" as part of the function name. The ANSI/OEM version uses "ASCII" as
part of the function name. The Unicode version uses "Wide" as part of the function name. There is no
difference between OEM and ANSI character sets in cwbDT_xxx APIs, which handle numeric strings.
Therefore, ANSI and OEM versions of the relevant APIs are the same. For example:

cwbDT_HexToString();

compiles to:

cwbDT_HexToASCII(); //CWB_UNICODE not defined

Windows Application Package: Programming 5

or:

cwbDT_HexToWide() ; //CWB_UNICODE defined

Select the related link to the data transformation cwbdt.h header file for more details.
« For Unicode APIs that take a buffer and a length for passing strings (for example,

cwhCO_GetUserIDExW), the length is treated as the number of bytes. It is not treated as the number of
characters.

Related reference

Administration APIs
These APIs provide functions that access information about the code that is installed on the PC.

Communications and Security APIs
The Communications and Security topic shows you how to use application programming interfaces (APIs)

IBM i Data Queues APIs

Use product Data Queues application programming interfaces (APIs) to provide easy access to IBM i
data queues. Data queues allow you to create client/server applications that do not require the use of
communications APIs.

Data transformation APIs

Product data transformation application programming interfaces (APIs) enable your client/server
applications to transform IBM i numeric data between the system and the PC formats. Transformation
may be required when you send and receive IBM i numeric data to and from the system. Data
transformation APIs support transformation of many numeric formats.

National Language Support (NLS) APIs
National Language Support APIs enable your applications to get and save (query and change) product
settings that are relevant to different language versions.

System Objects APIs

System objects application programming interfaces (APIs) allow you to work with print-related objects
that are on the system. These APIs make it possible to work with IBM i spooled files, writer jobs, output
queues, printers, and more.

Remote Command/Distributed Program Call APIs

The Remote Command/Distributed Program Call APIs allow the PC application programmer to access IBM
i functions. User program and system commands are called without requiring an emulation session. A
single IBM i program serves commands and programs, so only one system job is started for both.

API groups, header files, import libraries, and DLLs
Access interface definition files for all C/C++ API groups in the Programmer's Toolkit.

Use a single API type
To restrict your application to a particular type of API, you must define one, and only one preprocessor
definition.

The preprocessor definition is as follows:
« CWB_OEM_ONLY

« CWB_ANSI_ONLY

« CWB_UNICODE_ONLY

For example, when writing a pure ANSI application, you specify both CWB_ANSI_ONLY and CWB_ANSI.
Refer to the individual Programmer's Toolkit header files for details of the preprocessor definition and
API names. Select the related link below for the API groups, header files, import libraries, and DLLs topic
collection for more information.

Related reference
API groups, header files, import libraries, and DLLs

6 IBM i: Windows Application Package: Programming

Access interface definition files for all C/C++ API groups in the Programmer's Toolkit.

Use mixed API types
You can mix ANSI, OEM, and Unicode APIs by using explicit API names.

For example, you can write an ANSI application by specifying the CWB_ANSI preprocessor definition, but
still call a Unicode version of an API by using the "W" suffix.

Write a generic Windows Application Package application
Generic Windows Application Package applications allow maximum portability because the same source
code can be compiled for OEM, ANSI, and Unicode.

Generic applications are built by specifying different preprocessor definitions, and by using the generic

version of the APIs (the ones without the "A" or "W" suffixes). Following is a short list of guidelines for

writing a generic application:

« Instead of including the usual <string.h> for manipulating strings, include <TCHAR.H>.

« Use generic data types for characters and strings. Use 'TCHAR' for 'char' in your source code.

« Use the _TEXT macro for literal characters and strings. For example, TCHAR A[]=_TEXT("A Generic
String").

« Use generic string manipulation functions. For example, use _tcscpy instead of strcpy.

 Be especially careful when using the 'sizeof' operator - always remember that a Unicode character
occupies two bytes. When determining the number of characters in a generic TCHAR array A, instead of
the simple sizeof(A), use sizeof(A)/sizeof (TCHAR).

« Use proper preprocessor definitions for compilation. When compiling your source for Unicode in Visual
C++, you should also use the preprocessor definitions UNICODE and _UNICODE. Instead of defining
_UNICODE in the MAK file, you may want to define it at the beginning of your source code as:

#ifdef UNICODE
#tdefine _UNICODE
#endif

For a complete description of these guidelines, see the following resources:

1. Richter, J. Advanced Windows: The Developer's Guide to the Win32 API for Windows NT 3.5 and
Windows 95, Microsoft Press, Redmond, WA, 1995.

2. Kano, Nadine Developing International Software for Windows 95 and Windows NT: a handbook for
software design, Microsoft Press, Redmond, WA, 1995.

3. Microsoft Support Knowledge Base articles (See related links.)
4. MSDN Library (See related links.)
Related information

Microsoft Support
MSDN Library

Return codes and error messages

The C/C++ application programming interfaces (APIs) support the return of an integer return code on
most functions. The return codes indicate how the function completed.

IBM i error messages:

Some messages are also logged on the system. These messages begin with PWS or IWS. To display a
specific PWSxxxx or IWSxxxx message, type the appropriate command at the command line prompt,
where xxxx is the number of the message:

DSPMSGD RANGE (IWSxxxx) MSGF(QIWS/QIWSMSG)
DSPMSGD RANGE (PWSxxxx) MSGF (QIWS/QIWSMSG)

Windows Application Package: Programming 7

https://support.microsoft.com
https://msdn.microsoft.com/library/default.aspx

Return codes that correspond to operating system errors
There is a relationship between return codes and system error messages.

CWB_OK
Successful completion.
CWB_INVALID_FUNCTION
Function not supported.
CWB_FILE_NOT_FOUND
File not found.
CWB_PATH_NOT_FOUND
Path not found.
CWB_TOO_MANY_OPEN_FILES
The system cannot open the file.
CWB_ACCESS_DENIED
Access is denied.
CWB_INVALID_HANDLE
The list handle is not valid.
CWB_NOT_ENOUGH_MEMORY
Insufficient memory, may have failed to allocate a temporary buffer.
CWB_INVALID_DRIVE
The system cannot find the drive specified.
CWB_NO_MORE_FILES
No more files are found.
CWB_DRIVE_NOT_READY
The device is not ready.
CWB_GENERAL_FAILURE
General error occurred.
CWB_SHARING_VIOLATION
The process cannot access the file because it is being used by
another process.
33 CWB_LOCK_VIOLATION
The process cannot access the file because another process has
locked a portion of the file.

o o o b W N P O

w w N =2
N PP 00 O

38 CWB_END_OF _FILE

End of file has been reached.
50 CWB_NOT_SUPPORTED

The network request is not supported.
53 CWB_BAD_NETWORK_PATH

The network path was not found.
54 CWB_NETWORK_BUSY

The network is busy.
55 CWB_DEVICE_NOT_EXIST

The specified network resource or device is no longer available.
59 CWB_UNEXPECTED_NETWORK_ERROR

An unexpected network error occurred.
65 CWB_NETWORK_ACCESS_DENIED

Network access is denied.

80 CWB_FILE_EXISTS

The file exists.
85 CWB_ALREADY_ASSIGNED

The local device name is already in use.
87 CWB_INVALID_PARAMETER

A parameter is invalid.
88 CWB_NETWORK_WRITE_FAULT

A write fault occurred on the network.
110 CWB_OPEN_FAILED

The system cannot open the device or file specified.
111 CWB_BUFFER_OVERFLOW

Not enough room in the output buffer. Use xbufferSize to determine
the correct size.

112 CWB_DISK_FULL

There is not enough space on the disk.
115 CWB_PROTECTION_VIOLATION

Access is denied.
124 CWB_INVALID_LEVEL

The system call level is not correct.
142 CWB_BUSY_DRIVE

The system cannot perform a JOIN or SUBST at this time.
252 CWB_INVALID_FSD_NAME

The device name is incorrect.
253 CWB_INVALID_PATH

The network path specified is incorrect.

8 IBMi: Windows Application Package: Programming

Return codes
There are global and specific IBM i Access return codes.

Global return codes
There are global return codes.

4000 CWB_USER_CANCELLED_COMMAND
Command cancelled by user.
4001 CWB_CONFIG_ERROR
A configuration error has occurred.
4002 CWB_LICENSE_ERROR
A license error has occurred.
4003 CWB_PROD_OR_COMP_NOT_SET
Internal error due to failure to properly register and use a
product or component.
4004 CWB_SECURITY_ERROR
A security error has occurred.
4005 CWB_GLOBAL_CFG_FAILED
The global configuration attempt failed.
4006 CWB_PROD_RETRIEVE_FAILED
The product retrieve failed.
4007 CWB_COMP_RETRIEVE_FAILED
The computer retrieve failed.
4008 CWB_COMP_CFG_FAILED
The computer configuration failed.
4009 CWB_COMP_FIX_LEVEL_UPDATE_FAILED
The computer fix level update failed.
4010 CWB_INVALID_API_HANDLE
Invalid request handle.
4011 CWB_INVALID_API_PARAMETER
Invalid parameter specified.
4012 CWB_HOST_NOT_FOUND
The server is inactive or does not exist.
4013 CWB_NOT_COMPATIBLE
IBM i Access program or function not at correct level.
4014 CWB_INVALID_POINTER
A pointer is NULL.
4015 CWB_SERVER_PROGRAM_NOT_FOUND
The server application not found.
4016 CWB_API_ERROR
General API failure.
4017 CWB_CA_NOT_STARTED
IBM i Access program has not been started.
4018 CWB_FILE_IO_ERROR
Record could not be read.
4019 CWB_COMMUNICATIONS_ERROR
A communications error occurred.
4020 CWB_RUNTIME_CONSTRUCTOR_FAILED
The C Run-time contstructor failed.
4021 CWB_DIAGNOSTIC
Unexpected error. Record the message number and data in the
message and contact IBM Support.
4022 CWB_COMM_VERSION_ERROR
Data queues will not run with this version of communications.
4023 CWB_NO_VIEWER
The viewer support for the IBM i Access function was not installed.
4024 CWB_MODULE_NOT_LOADABLE
A filter DLL was not loadable.
4025 CWB_ALREADY_SETUP
Object has already been set up.
4026 CWB_CANNOT_START_PROCESS
Attempt to start process failed. See other error code(s).
4027 CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input UNICODE characters have no representation in the
code page that is being used.
8998 CWB_UNSUPPORTED_FUNCTION
The function is unsupported.
8999 CWB_INTERNAL_ERROR
An internal error occurred.

Related reference
Communications and Security APIs

Windows Application Package: Programming 9

The Communications and Security topic shows you how to use application programming interfaces (APIs)

Specific return codes
There are specific return codes.

Security return codes
There are security return codes.

8001 CWB_UNKNOWN_USERID
8002 CWB_WRONG_PASSWORD

8003 CWB_PASSWORD_EXPIRED

8004 CWB_INVALID_PASSWORD

8006 CWB_INCORRECT_DATA_FORMAT

8007 CWB_GENERAL_SECURITY_ERROR

8011 CWB_USER_PROFILE_DISABLED

8013 CWB_USER_CANCELLED

8014 CWB_INVALID_SYSNAME

8015 CWB_INVALID_USERID

8016 CWB_LIMITED_CAPABILITIES_USERID
8019 CWB_INVALID_TP_ON_HOST

8022 CWB_NOT_LOGGED_ON

8026 CWB_EXIT_PGM_ERROR

8027 CWB_EXIT_PGM_DENIED_REQUEST

8050 CWB_TIMESTAMPS_NOT_SET

8051 CWB_KERB_CLIENT_CREDENTIALS_NOT_FOUND
8052 CWB_KERB_SERVICE_TICKET_NOT_FOUND
8053 CWB_KERB_SERVER_CANNOT_BE_CONTACTED
8054 CWB_KERB_UNSUPPORTED_BY_HOST

8055 CWB_KERB_NOT_AVAILABLE

8056 CWB_KERB_SERVER_NOT_CONFIGURED
8057 CWB_KERB_CREDENTIALS_NOT_VALID
8058 CWB_KERB_MAPPED_USERID_FAILURE
8059 CWB_KERB_MAPPED_USERID_SUCCESS
8070 CWB_PROFILE_TOKEN_INVALID

8071 CWB_PROFILE_TOKEN_MAXIMUM

8072 CWB_PROFILE_TOKEN_NOT_REGENERABLE
8257 CWB_PW_TOO_LONG

8258 CWB_PW_TOO_SHORT

8259 CWB_PW_REPEAT_CHARACTER

8260 CWB_PW_ADJACENT_DIGITS

8261 CWB_PW_CONSECUTIVE_CHARS

8262 CWB_PW_PREVIOUSLY_USED

8263 CWB_PW_DISALLOWED_CHAR

8264 CWB_PW_NEED_NUMERIC

8266 CWB_PW_MATCHES_OLD

8267 CWB_PW_NOT_ALLOWED

8268 CWB_PW_CONTAINS_USERID

8270 CWB_PW_LAST_INVALID_PWD

8271 CWB_PW_STAR_NONE

8272 CWB_PW_QPWDVLDPGM

Communications return codes
There are communications return codes.

8400 CWB_INV_AFTER_SIGNON

8401 CWB_INV_WHEN_CONNECTED

8402 CWB_INV_BEFORE_VALIDATE
8403 CWB_SECURE_SOCKETS_NOTAVAIL
8404 CWB_RESERVED1

8405 CWB_RECEIVE_ERROR

8406 CWB_SERVICE_NAME_ERROR

8407 CWB_GETPORT_ERROR

8408 CWB_SUCCESS_WARNING

8409 CWB_NOT_CONNECTED

8410 CWB_DEFAULT_HOST_CCSID_USED
8411 CWB_USER_TIMEOUT

8412 CWB_SSL_JAVA_ERROR

8413 CWB_USER_TIMEOUT_SENDRCV
8414 CWB_FIPS_UNAVAILABLE

10 IBMi: Windows Application Package: Programming

Configuration return codes
There are configuration return codes.

8500 CWB_RESTRICTED_BY_POLICY

8501 CWB_POLICY_MODIFY_MANDATED_ENV
8502 CWB_POLICY_MODIFY_CURRENT_ENV
8503 CWB_POLICY_MODIFY_ENV_LIST
8504 CWB_SYSTEM_NOT_FOUND

8505 CWB_ENVIRONMENT_NOT_FOUND
8506 CWB_ENVIRONMENT_EXISTS

8507 CWB_SYSTEM_EXISTS

8508 CWB_NO_SYSTEMS_CONFIGURED
8580 CWB_CONFIGERR_RESERVED_START
8599 CWB_CONFIGERR_RESERVED_END

Automation Object return codes
There are Automation Object return codes.

8600 CWB_INVALID_METHOD_PARM
8601 CWB_INVALID_PROPERTY_PARM

8602 CWB_INVALID_PROPERTY_VALUE
8603 CWB_OBJECT_NOT_INITIALIZED
8604 CWB_OBJECT_ALREADY_INITIALIZED
8605 CWB_INVALID_DQ_ORDER

8606 CWB_DATA_TRANSFER_REQUIRED

8607 CWB_UNSUPPORTED_XFER_REQUEST

8608 CWB_ASYNC_REQUEST_ACTIVE

8609 CWB_REQUEST_TIMED_OUT

8610 CWB_CANNOT_SET_PROP_NOW

8611 CWB_OBJ_STATE_NO_LONGER_VALID
WINSOCK return codes

There are WINSOCK return codes.

10024 CWB_TOO_MANY_OPEN_SOCKETS

10035 CWB_RESOURCE_TEMPORARILY_UNAVAILABLE

10038 CWB_SOCKET_OPERATION_ON_NON_SOCKET

10047 CWB_PROTOCOL_NOT_INSTALLED

10050 CWB_NETWORK_IS_DOWN

10051 CWB_NETWORK_IS_UNREACHABLE

10052 CWB_NETWORK_DROPPED_CONNECTION_ON_RESET

10053 CWB_SOFTWARE_CAUSED_CONNECTION_ABORT

10054 CWB_CONNECTION_RESET_BY_PEER

10055 CWB_NO_BUFFER_SPACE_AVAILABLE

10057 CWB_SOCKET_IS_NOT_CONNECTED

10058 CWB_CANNOT_SEND_AFTER_SOCKET_SHUTDOWN

10060 CWB_CONNECTION_TIMED_OUT

10061 CWB_CONNECTION_REFUSED

10064 CWB_HOST_IS_DOWN

10065 CWB_NO_ROUTE_TO_HOST

10091 CWB_NETWORK_SUBSYSTEM_IS_UNAVAILABLE

10092 CWB_WINSOCK_VERSION_NOT_SUPPORTED

11001 CWB_HOST_DEFINITELY_NOT_FOUND
The system name was not found during TCP/IP
address lookup.

11002 CWB_HOST_NOT_FOUND_BUT_WE_ARE_NOT_SURE
The system name was not found during TCP/IP
address lookup.

11004 CWB_VALID_NAME_BUT_NO_DATA_RECORD
The service name was not found in the local
SERVICES file.

SSL return codes
There are SSL return codes.

Key Database error codes

20001 - An unknown error occurred.

20002 - An asn.l1l encoding/decoding error occurred.

20003 - An error occurred while initializing asn.1 encoder/decoder.

20004 - An asn.l1 encoding/decoding error occurred because of an out-of-range
index or nonexistent optional field.

20005 - A database error occurred.

20006 - An error occurred while opening the database file.

Windows Application Package: Programming 11

20007 - An error occurred while re-opening the database file.
20008 - Database creation failed.

20009 - The database already exists.

20010 - An error occurred while deleting the database file.

20011 - Database has not been opened.

20012 - An error occurred while reading the database file.

20013 - An error occurred while writing data to the database file.
20014 - A database validation error occurred.

20015 - An invalid database version was encountered.

20016 - An invalid database password was encountered.

20017 - An invalid database file type was encountered.

20018 - The database has been corrupted.

20019 - An invalid password was encountered or the database is not valid.

20020 - A database key entry integrity error occurred.

20021 - A duplicate key already exists in the database.

20022 - A duplicate key already exists in the database (Record ID).

20023 - A duplicate key already exists in the database (Label).

20024 - A duplicate key already exists in the database (Signature).

20025 - A duplicate key already exists in the database (Unsigned Certificate).
20026 - A duplicate key already exists in the database (Issuer and Serial Number).
20027 - A duplicate key already exists in the database (Subject Public Key Info).
20028 - A duplicate key already exists in the database (Unsigned CRL).

20029 - The label has been used in the database.

20030 - A password encryption error occurred.

20031 - An LDAP related error occurred.

20032 - A cryptographic error occurred.

20033 - An encryption/decryption error occurred.

20034 - An invalid cryptographic algorithm was found.

20035 - An error occurred while signing data.

20036 - An error occurred while verifying data.

20037 - An error occurred while computing digest of data.

20038 - An invalid cryptographic parameter was found.

20039 - An unsupported cryptographic algorithm was encountered.

20040 - The specified input size is greater than the supported modulus size.

20041 - An unsupported modulus size was found

20042 - A database validation error occurred.

20043 - Key entry validation failed.

20044 - A duplicate extension field exists.

20045 - The version of the key is wrong

20046 - A required extension field does not exist.

20047 - The validity period does not include today or does not fall within its
issuer's validity period.

20048 - The validity period does not include today or does not fall within its
issuer's validity period.

20049 - An error occurred while validating validity private key usage extension.

20050 - The issuer of the key was not found.

20051 - A required certificate extension is missing.

20052 - The key signature validation failed.

20053 - The key signature validation failed.

20054 - The root key of the key is not trusted.

20055 - The key has been revoked.

20056 - An error occurred while validating authority key identifier extension.

20057 - An error occurred while validating private key usage extension.

20058 - An error occurred while validating subject alternative name extension.

20059 - An error occurred while validating issuer alternative name extension.

20060 - An error occurred while validating key usage extension.

20061 - An unknown critical extension was found.

20062 - An error occurred while validating key pair entries.

20063 - An error occurred while validating CRL.

20064 - A mutex error occurred.

20065 - An invalid parameter was found.

20066 - A null parameter or memory allocation error was encountered.

20067 - Number or size is too large or too small.

20068 - The old password is invalid.

20069 - The new password is invalid.

20070 - The password has expired.

20071 - A thread related error occurred.

20072 - An error occurred while creating threads.

20073 - An error occurred while a thread was waiting to exit.

20074 - An I/0 error occurred.

20075 - An error occurred while loading CMS.

20076 - A cryptography hardware related error occurred.

20077 - The library initialization routine was not successfully called.

20078 - The internal database handle table is corrupted.

20079 - A memory allocation error occurred.

20080 - An unrecognized option was found.

20081 - An error occurred while getting time information.

20082 - Mutex creation error occurred.

20083 - An error occurred while opening message catalog.

20084 - An error occurred while opening error message catalog.

20085 - An null file name was found.

20086 - An error occurred while opening files, check for file existence and permissions.

12 IBMi: Windows Application Package: Programming

20087 - An error occurred while opening files to read.

20088 - An error occurred while opening files to write.

20089 - There is no such file.

20090 - The file cannot be opened because of its permission setting.

20091 - An error occurred while writing data to files.

20092 - An error occurred while deleting files.

20093 - Invalid Baseb4-encoded data was found.

20094 - An invalid Base64 message type was found.

20095 - An error occurred while encoding data with Base64 encoding rule.

20096 - An error occurred while decoding Base64-encoded data.

20097 - An error occurred while getting a distinguished name tag.

20098 - The required common name field is empty.

20099 - The required country name field is empty.

20100 - An invalid database handle was found.

20101 - The key database does not exist.

20102 - The request key pair database does not exist.

20103 - The password file does not exist.

20104 - The new password is identical to the old one.

20105 - No key was found in the key database.

20106 - No request key was found.

20107 - No trusted CA was found

20108 - No request key was found for the certificate.

20109 - There is no private key in the key database

20110 - There is no default key in the key database.

20111 - There is no private key in the key record.

20112 - There is no certificate in the key recoxd.

20113 - There is no CRL entry.

20114 - An invalid key database file name was found.

20115 - An unrecognized private key type was found.

20116 - An invalid distinguished name input was found.

20117 - No key entry was found that has the specified key label.

20118 - The key label list has been corrupted.

20119 - The input data is not valid PKCS12 data.

20120 - The password is invalid or the PKCS12 data has been corrupted or been
created with later version of PKCS12.

20121 - An unrecognized key export type was found.

20122 - An unsupported password-based encryption algorithm was found.

20123 - An error occurred while converting the keyring file to a CMS key database.

20124 - An error occurred while converting the CMS key database to a keyring file.

20125 - An error occurred while creating a certificate for the certificate request.

20126 - A complete issuer chain cannot be built.

20127 - Invalid WEBDB data was found.

20128 - There is no data to be written to the keyring file.

20129 - The number of days that you entered extends beyond the permitted validity period.

20130 - The password is too short; it must consist of at least characters.

20131 - A password must contain at least one numeric digit.

20132 - All characters in the password are either alphabetic or numeric characters.

20133 - An unrecognized or unsupported signature algorithm was specified.

20134 - An invalid key database type was specified.

20135 - The secondary key database is currently a secondary key database to another
primary key database.

20136 - The key database does not have a secondary key database associated with it.

20137 - A cryptographic token with label cannot be found.

20138 - A cryptographic token password was not specified but is required.

20139 - A cryptographic token password was specified but is not required.

20140 - The cryptographic module cannot be loaded. Cryptographic token support will
not be available.

20141 - The function is not supported for cryptographic tokens.

20142 - The cryptographic token function failed.

SSL error codes

25001 - The handle is not valid.
25002 - The dynamic link library is not available.
25003 - An internal error occurred.
25004 - Main memory is insufficient to perform the operation.
25005 - The handle is not in a valid state for operation.
25006 - The key label is not found.
25007 - The certificate is not available.
25008 - Certificate validation error.
25009 - Error processing cryptography.
25010 - Error validating ASN fields in certificate.
25011 - Error connecting to LDAP server.
25012 - Internal unknown error. Report problem to service.
25101 - An error occurred processing the cipher.
25102 - I/0 error reading key file.
25103 - Key file has an invalid internal format. Re-create key file.
25104 - Key file has two entries with the same key. Use iKeyman to remove the duplicate key.
25105 - Key file has two entries with the same label. Use iKeyman to remove the duplicate label.
25106 - The key file password is used as an integrity check. Either the key file has
become corrupted or the password ID is incorrect.

Windows Application Package: Programming 13

25107 - The default key in the key file has an expired certificate. Use iKeyman to remove
certificates that are expired.

25108 - There was an error loading one of the dynamic link libraries.

25109 - A connection is trying to be made after environment has been closed.

25201 - The key file could not be initialized.

25202 - Unable to open the key file. Either the path was specified incorrectly or the file
permissions did not allow the file to be opened.

25203 - Unable to generate a temporary key pair.

25204 - A User Name object was specified that is not found.

25205 - A Password used for an LDAP query is not correct.

25206 - An index into the Fail Over list of LDAP servers was not correct.

25301 - An error occurred on close.

25401 - The system date was set to an invalid value.

25402 - Neither SSLV2 nor SSLV3 is enabled.

25403 - The required certificate was not received from partner.

25404 - The received certificate was formatted incorrectly.

25405 - The received certificate type was not supported.

25406 - An I0 error occurred on a data read or write.

25407 - The specified label in the key file could not be found.

25408 - The specified key-file password is incorrect. The key file could not be
used. The key file may also be corrupt.

25409 - In a restricted cryptography environment, the key size is too long to be supported.

25410 - An incorrectly formatted SSL message was received from the partner.

25411 - The message authentication code (MAC) was not successfully verified.

25412 - The operation is unsupported.

25413 - The received certificate contained an incorrect signature.

25414 - The server certificate is not trusted. This usually occurs when you have
not downloaded the certificate authority for the server certificate. Use the
Digital Certificate Manager to obtain the certificate authority and
use the PC IBM Key Management utility to place the certificate authority in
your local key database. See CWBC01050 for additional information

25415 - The remote system information is not valid.

25416 - Access denied.

25417 - The self-signed certificate is not valid.

25418 - The read failed.

25419 - The write failed.

25420 - The partner closed the socket before the protocol completed. This could mean the
partner is configured for SSL Client Authentication and no client certificate was
sent to the partner.

25421 - The specified V2 cipher is not valid.

25422 - The specified V3 cipher is not valid.

25425 - The handle could not be created.

25426 - Initialization failed.

25427 - When validating a certificate, unable to access the specified LDAP directory.

25428 - The specified key did not contain a private key.

25429 - A failed attempt was made to load the specified PKCS11 shared library.

25430 - The PKCS #11 driver failed to find the token specified by the caller.

25431 - The PKCS #11 token is not present in the slot.

25432 - The password/pin to access the PKCS #11 token is invalid.

25433 - The SSL header received was not a properly SSLV2 formatted header.

25434 - Unable to access the hardware-based cryptographic service provider (CSP).

25435 - Attribute setting conflict

25436 - The requested function is not supported on the platform that the application is running

25437 - An IPv6 connection is detected

25438 - Incorrect value is returned from the reset session type callback function

25501 - The buffer size is negative or 0.

25502 - Used with non-blocking I/O.

25601 - SSLV3 is required for reset_cipher, and the connection uses SSLV2.

25602 - An invalid ID was specified for the function call.

25701 - The function call has an invalid ID.

25702 - The attribute has a negative length, which is invalid.

25703 - The enumeration value is invalid for the specified enumeration type.

25704 - Invalid parameter list for replacing the SID cache routines.

25705 - When setting a numeric attribute, the specified value is invalid for the
specific attribute being set.

25706 - Conflicting parameters have been set for additional certificate validation.

25707 - The cipher spec included an AES cipher spec that is not supported on the
system of execution.

25708 - The length of the peer ID is incorrect. It must be less than or equal to 16 bytes

14 IBMi: Windows Application Package: Programming

Component-specific return codes
There are return codes for the API type.

Administration APIs return code
There is an administration return code.

6001 CWBAD_INVALID_COMPONENT_ID
The component ID is invalid.

Related reference

Administration APIs
These APIs provide functions that access information about the code that is installed on the PC.

Communications APIs return codes
There are communications API return codes.

6001 CWBCO_END_OF_LIST
The end of system list has been reached. No system name was returned.
6002 CWBCO_DEFAULT_SYSTEM_NOT_DEFINED
The setting for the default system has not been defined.
6003 CWBCO_DEFAULT_SYSTEM_NOT_CONFIGURED
The default system is defined, but no connection to it is
configured.
6004 CWBCO_SYSTEM_NOT_CONNECTED
The specified system is not currently connected in the current process.
6005 CWBCO_SYSTEM_NOT_CONFIGURED
The specified system is not currently configured.
6007 CWBCO_INTERNAL_ERROR
Internal error.
6008 CWBCO_NO_SUCH_ENVIRONMENT
The specified environment does not exist.

Related reference

Communications and Security APIs
The Communications and Security topic shows you how to use application programming interfaces (APIs)

Database APIs return codes
There are database APIs return codes.

Note: See the database APIs topic for important information regarding database APIs.

6001 CWBDB_CANNOT_CONTACT_SERVER
An error was encountered which prevented the Data Access server from
being started.
6002 CWBDB_ATTRIBUTES_FAILURE
An error was encountered during attempt to set the Data Access
server attributes.
6003 CWBDB_SERVER_ALREADY_STARTED
An attempt to start the Data Access server was made while a valid
server was running. Stop the server before restarting it.
6004 CWBDB_INVALID_DRDA_PKG_SIZE
The valid submitted for the DRDA package size was invalid.
6005 CWBDB_REQUEST_MEMORY_ALLOCATION_FAILURE
A memory allocation attempt by a request handle failed.
6006 CWBDB_REQUEST_INVALID_CONVERSION
A Request handle failed in an attempt to convert data.
6007 CWBDB_SERVER_NOT_ACTIVE
The Data Access server is not started. It must be started before
continuing.
6008 CWBDB_PARAMETER_ERROR
Attempt to set a parameter failed. Re-try. If error persists, there
may be a lack of available memory.
6009 CWBDB_CLONE_CREATION_ERROR
Could not create a clone request.
6010 CWBDB_INVALID_DATA_FORMAT_FOR_CONNECTION
The data format object was not valid for this connection.
6011 CWBDB_DATA_FORMAT_IN_USE
The data format object is already being used by another request.
6012 CWBDB_INVALID_DATA_FORMAT_FOR_DATA
The data format object does not match the format of the data.
6013 CWBDB_STRING_ARG_TOO_LONG
The string provided was too long for the parameter.
6014 CWBDB_INVALID_INTERNAL_ARG

Windows Application Package: Programming 15

6015
6016
6017

6018

6019

6020
6021
6022
6023
6024
6025

6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037

6038

6039
6040
6041

6042

6043

6044
6045

6046

6047
6048
6049

Invalid internally generated argument (not user supplied).
CWBDB_INVALID_NUMERIC_ARG

Value of numeric argument is invalid.
CWBDB_INVALID_ARG

Value of argument is invalid.
CWBDB_STMT_NOT_SELECT

The statement provided was not a SELECT statement. This call requires

a SELECT statement.
CWBDB_STREAM_FETCH_NOT_COMPLETE

The connection is in stream fetch mode. Cannot perform desired

operation until stream fetch has ended.
CWBDB_STREAM_FETCH_NOT_ACTIVE

The connection is not in stream fetch mode and must be in order to

perform the desired operation.
CWBDB_MISSING_DATA_PROCESSOR

Pointer to data processor in request object is null.
CWBDB_ILLEGAL_CLONE_REQUEST_TYPE

Cannot create a clone of an attributes request.
CWBDB_UNSOLICITED_DATA

Data were received from the server, but none were requested.
CWBDB_MISSING_DATA

Data were requested from the server, but not all were received.
CWBDB_PARM_INVALID_BITSTREAM

Bitstream within a parameter is invalid.
CWBDB_CONSISTENCY_TOKEN_ERROR

The data format used to interpret the data from the system does not

match the data returned.
CWBDB_INVALID_FUNCTION

The function is invalid for this type of request.
CWBDB_FORMAT_INVALID_ARG

A parameter value passed to the API was not valid.
CWBDB_INVALID_COLUMN_POSITION

The column position passed to the API was not valid.
CWBDB_INVALID_COLUMN_TYPE

The column type passed to the API was not valid.
CWBDB_ROW_VECTOR_NOT_EMPTY

Invalid or corrupted format handle.
CWBDB_ROW_VECTOR_EMPTY

Invalid or corrupted format handle.
CWBDB_MEMORY_ALLOCATION_FAILURE

An error occurred while attempting to allocate memory.
CWBDB_INVALID_CONVERSION

An invalid type conversion was attempted.
CWBDB_DATASTREAM_TOO_SHORT

The data stream received from the host was too short.
CWBDB_SOQL_WARNING

The database server received a warning from an SQL operation.
CWBDB_SQL_ERROR

The database server received an error from an SQL operation.
CWBDB_SQL_PARAMETER_WARNING

The database server received a warning about a parameter used in an

SQL operation.
CWBDB_SQL_PARAMETER_ERROR

The database server received an error about a parameter used in an

SQL operation.
CWBDB_LIST_SERVER_WARNING

The database server returned a warning from a catalog operation.
CWBDB_LIST_SERVER_ERROR

The database server returned an error from a catalog operation.
CWBDB_LIST_PARAMETER_WARNING

The database server returned a warning about a parameter used in a

catalog operation.
CWBDB_LIST_PARAMETER_ERROR

The database server returned an error about a parameter used in a

catalog operation.
CWBDB_NDB_FILE_SERVER_WARNING

The database server returned a warning from a file processing

operation.
CWBDB_NDB_FILE_SERVER_ERROR

The database server returned an error from a file processing operation.
CWBDB_FILE_PARAMETER_WARNING

The database server returned a warning about a parameter used in a

file processing operation.
CWBDB_FILE_PARAMETER_ERROR

The database server returned an error about a parameter used in a

file processing operation.
CWBDB_GENERAL_SERVER_WARNING

The database server returned a general warning.
CWBDB_GENERAL _SERVER_ERROR

The database server returned a general error.
CWBDB_EXIT_PROGRAM_WARNING

The database server returned a warning from an exit program.

16 IBMi: Windows Application Package: Programming

6050 CWBDB_EXIT_PROGRAM_ERROR

The database server returned an error from an exit program.
6051 CWBDB_DATA_BUFFER_TOO_SMALL

Target data buffer is smaller than source buffer.
6052 CWBDB_NL_CONVERSION_ERROR

Received error back from PiNlConverter.
6053 CWBDB_COMMUNICATIONS_ERROR

Received a communications error during processing.
6054 CWBDB_INVALID_ARG_API

Value of argument is invalid - API level.
6055 CWBDB_MISSING_DATA_HANDLER

Data handler not found in data handler list.
6056 CWBDB_REQUEST_DATASTREAM_NOT_VALID

Invalid datastream in catalog request.
6057 CWBDB_SERVER_UNABLE

Server incapable of performing desired function.

The following return codes are returned by the
cwbDB_StartServerDetailed API:

6058 CWBDB_WORK_QUEUE_START_ERROR
Unable to start server because of client work queue problem.
6059 CWBDB_WORK_QUEUE_CREATE_ERROR
Unable to start server because of client work queue problem.
6060 CWBDB_INITIALIZATION_ERROR
Unable to start server because of client initialization problem.
6061 CWBDB_SERVER_ATTRIBS_ERROR
Unable to start server because of server attribute problem.
6062 CWBDB_CLIENT_LEVEL_ERROR
Unable to start server because of set client level problem.
6063 CWBDB_CLIENT_LFC_ERROR
Unable to start server because of set client language feature
code problem.
6064 CWBDB_CLIENT_CCSID_ERROR
Unable to start server because of set client CCSID problem.
6065 CWBDB_TRANSLATION_INDICATOR_ERROR
Unable to start server because of set translation indicator error.
6066 CWBDB_RETURN_SERVER_ATTRIBS_ERROR
Unable to start server because of return server attribute problem.
6067 CWBDB_SERVER_ATTRIBS_REQUEST
Unable to start server because of missing server attributes request
object.
6068 CWBDB_RETURN_ATTRIBS_ERROR
Unable to start server because of return attribute problem.
6069 CWBDB_SERVER_ATTRIBS_MISSING
Unable to start server because returned server attributes too short
(missing data).
6070 CWBDB_SERVER_LFC_CONVERSION_ERROR
Unable to start server because of data conversion error on server
language feature code field of server attributes.
6071 CWBDB_SERVER_LEVEL_CONVERSION_ERROR
Unable to start server because of data conversion error on server
functional level field of server attributes.
6072 CWBDB_SERVER_LANGUAGE_TABLE_ERROR
Unable to start server because of data conversion error on server
language table ID field of server attributes.
6073 CWBDB_SERVER_LANGUAGE_LIBRARY_ERROR
Unable to start server because of data conversion error on server
language library ID field of server attributes.
6074 CWBDB_SERVER_LANGUAGE_ID_ERROR
Unable to start server because of data conversion error on server
language ID field of server attributes.
6075 CWBDB_COMM_DEQUEUE_ERROR
Unable to start server because of communications error.
6076 CWBDB_COMM_ENQUEUE_ERROR
Unable to start server because of communications error.
6077 CWBDB_UNSUPPORTED_COLUMN_TYPE
An unsupported column type was found in the data.
6078 CWBDB_SERVER_IN_USE
A connection to the database server for the given connection
handle is already being used by another connection handle which
was created with the same system object handle.
6079 CWBDB_SERVER_REL_DB_CONVERSION_ERROR
Unable to start server because of data conversion error on
server relational DB field of server attributes. There is no
message or help text for this return code.
6080 CWBDB_SERVER_FUNCTION_NOT_AVAILABLE
This function is not available on this version of the host server.
6081 CWBDB_FUNCTION_NOT_VALID_ AFTER_CONNECT
This function is not valid after connecting to the host server.
6082 CWBDB_INVALID_INITIAL_REL_DB_NAME
The initial relational DB name (IASP) was invalid.

Windows Application Package: Programming 17

6099 CWBDB_LAST_STREAM_CHUNK
Stream fetch complete.
NOTE: Informational, not an error. There is not a message or help text
for this return code.

Related reference

IBM i Access database APIs

Use other technologies for functions that were provided by the IBM i Access proprietary C/C++ Database
APIs, that are no longer being enhanced.

Data Queues APIs return codes
There are data queues API return codes.

6000 CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.
6001 CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.
6002 CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.
6003 CWBDQ_INVALID_READ_HANDLE
Invalid data queue read handle.
6004 CWBDQ_INVALID_QUEUE_LENGTH
Invalid maximum record length for a data queue.
6005 CWBDQ_INVALID_KEY_LENGTH
Invalid key length.
6006 CWBDQ_INVALID_ORDER
Invalid queue order.
6007 CWBDQ_INVALID_AUTHORITY
Invalid queue authority.
6008 CWBDQ_INVALID_QUEUE_TITLE
Queue title (description) is too long or cannot be converted.
6009 CWBDQ_BAD_QUEUE_NAME
Queue name is too long or cannot be converted.
6010 CWBDQ_BAD_LIBRARY_NAME
Library name is too long or cannot be converted.
6011 CWBDQ_BAD_SYSTEM_NAME
System name is too long or cannot be converted.
6012 CWBDQ_BAD_KEY_LENGTH
Length of key is not correct for this data queue or key length is
greater than 0 for a LIFO or FIFO data queue.
6013 CWBDQ_BAD_DATA_LENGTH
Length of data is not correct for this data queue. Either the data
length is zero or it is greater than the maximum allowed.
6014 CWBDQ_INVALID_TIME
Wait time is not correct.
6015 CWBDQ_INVALID_SEARCH
Search order is not correct.
6016 CWBDQ_DATA_TRUNCATED
Returned data was truncated.
6017 CWBDQ_TIMED_OUT
Wait time has expired and no data has been returned.
6018 CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.
6019 CWBDQ_USER_EXIT_ERROR
Error in user exit program or invalid number of exit programs.
6020 CWBDQ_LIBRARY_NOT_FOUND
Library not found on system.
6021 CWBDQ_QUEUE_NOT_FOUND
Queue not found on system.
6022 CWBDQ_NO_AUTHORITY
No authority to library or data queue.
6023 CWBDQ_DAMAGED_QUEUE
Data queue is in an unusable state.
6024 CWBDQ_QUEUE_EXISTS
Data queue already exists.
6025 CWBDQ_INVALID_MESSAGE_LENGTH
Invalid message length - exceeds queue maximum record length.
6026 CWBDQ_QUEUE_DESTROYED
Queue destroyed while waiting to read or peek a record.
6027 CWBDQ_NO_DATA
No data was received.
6028 CWBDQ_CANNOT_CONVERT
Data cannot be converted for this data queue. The data queue
can be used but data cannot be converted between ASCII and EBCDIC.
The convert flag on the data object will be ignored.
6029 CWBDQ_QUEUE_SYNTAX
Syntax of the data queue name is incorrect. Queue name must follow
system object syntax. First character must be alphabetic and all

18 IBMi: Windows Application Package: Programming

6030

6031

6032

6033
6099

following characters alphanumeric.

CWBDQ_LIBRARY_SYNTAX
Syntax of the library name is incorrect. Library name must follow
system object syntax. First character must be alphabetic and all
following characters alphanumeric.

CWBDQ_ADDRESS_NOT_SET
Address not set. The data object was not set with cwbDQ_SetDataAddz(),
so the address cannot be retrieved. Use cwbDQ_GetData() instead of
cwbDQ_GetDataAddr ().

CWBDQ_HOST_ERROR
Host error occurred for which no return code is defined. See the
error handle for the message text.

CWBDQ_INVALID_SYSTEM_HANDLE
System handle is invalid.

CWBDQ_UNEXPECTED_ERROR
Unexpected error.

Related reference
IBM i Data Queues APIs

Use product Data Queues application programming interfaces (APIs) to provide easy access to IBM i
data queues. Data queues allow you to create client/server applications that do not require the use of
communications APIs.

National Language Support APIs return codes
There are NLS API return codes.

6101

6102
6103

6104

6105

6106

6107

6108

6109
6110

CWBNL_ERR_CNV_UNSUPPORTED
An attempt was made to convert character data from a code page to
another code page but this conversion is not supported.
CWBNL_ERR_CNV_TBL_INVALID
A conversion table is in a format that is not recognized.
CWBNL_ERR_CNV_TBL_MISSING
An attempt was made to use a conversion table, but the table was not
found.
CWBNL_ERR_CNV_ERR_GET
A code page conversion table was being retrieved from the server
when an error occurred.
CWBNL_ERR_CNV_ERR_COMM
A code page conversion table was being retrieved from the server
when a communications error occurred.
CWBNL_ERR_CNV_ERR_SERVER
A code page conversion table was being retrieved from the server
when a server error occurred.
CWBNL_ERR_CNV_ERR_STATUS
While converting character data from one code page to another, some
untranslatable characters were encountered.
CWBNL_ERROR_CONVERSION_INCOMPLETE_MULTIBYTE_INPUT_CHARACTER
While converting character data an incomplete multibyte character
was found.
CWBNL_ERR_CNV_INVALID_SISO_STATUS
The SISO parameter is incorrect.
CWBNL_ERR_CNV_INVALID_PAD_LENGTH
The pad length parameter is incorrect.

The following return codes are for language APIs:

6201
6202
6203
6204
6205
6206

CWBNL_ERR_STR_TBL_INVALID
Message file not in a recognized format. It has been corrupted.
CWBNL_ERR_STR_TBL_MISSING
Message file could not be found.
CWBNL_ERR_STR_NOT_FOUND
The message file is missing a message.
CWBNL_ERR_NLV_NO_CONFIG
The language configuration is missing.
CWBNL_ERR_NLV_NO_SUBDIR
The language subdirectory is missing.
CWBNL_DEFAULT_HOST_CCSID_USED
A default server CCSID (500) is used.

The following return codes are for locale APIs:

6301
6302
6303
6304

CWBNL_ERR_LOC_TBL_INVALID
CWBNL_ERR_LOC_TBL_MISSING
CWBNL_ERR_LOC_NO_CONFIG
CWBNL_ERR_LOC_NO_LOCPATH

Windows Application Package: Programming 19

System Object APIs return codes
There are system object API return codes.

6000 CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.
6001 CWBOBJ_RC_INVALID_TYPE
Incorrect object type.
6002 CWBOBJ_RC_INVALID_KEY
Incorrect key.
6003 CWBOBJ_RC_INVALID_INDEX
Bad index to list.
6004 CWBOBJ_RC_LIST_OPEN
The list is already opened.
6005 CWBOBJ_RC_LIST_NOT_OPEN
The list has not been opened.
6006 CWBOBJ_RC_SEEKOUTOFRANGE
Seek offset is out of range.
6007 CWBOBJ_RC_SPLFNOTOPEN
Spooled file has not been opened.
6007 CWBOBJ_RC_RSCNOTOPEN
Resource has not been opened.
6008 CWBOBJ_RC_SPLFENDOFFILE
End of file was reached.
6008 CWBOBJ_RC_ENDOFFILE
End of file was reached.
6009 CWBOBJ_RC_SPLFNOMESSAGE
The spooled file is not waiting on a message.
6010 CWBOBJ_RC_KEY_NOT_FOUND
The parameter list does not contain the specified key.
6011 CWBOBJ_RC_NO_EXIT_PGM
No exit program registered.
6012 CWBOBJ_RC_NOHOSTSUPPORT
Host does not support function.

Related reference
System Objects APIs

System objects application programming interfaces (APIs) allow you to work with print-related objects
that are on the system. These APIs make it possible to work with IBM i spooled files, writer jobs, output

queues, printers, and more.

Remote Command/Distributed Program Call APIs return codes
There are Remote command and distributed program call API return codes.

6000 CWBRC_INVALID_SYSTEM_HANDLE
Invalid system handle.
6001 CWBRC_INVALID_PROGRAM
Invalid program handle.
6002 CWBRC_SYSTEM_NAME
System name is too long or cannot be converted.
6003 CWBRC_COMMAND_STRING
Command string is too long or cannot be converted.
6004 CWBRC_PROGRAM_NAME
Program name is too long or cannot be converted.
6005 CWBRC_LIBRARY_NAME
Library name is too long or cannot be converted.
6006 CWBRC_INVALID_TYPE
Invalid parameter type specified.
6007 CWBRC_INVALID_PARM_LENGTH
Invalid parameter length.
6008 CWBRC_INVALID_PARM
Invalid parameter specified.
6009 CWBRC_TOO_MANY_PARMS
Attempt to add too many parameters to a program.
6010 CWBRC_INDEX_RANGE_ERROR
Index is out of range for this program.
6011 CWBRC_REJECTED_USER_EXIT
Command rejected by user exit program.
6012 CWBRC_USER_EXIT_ERROR
Exrror in user exit program.
6013 CWBRC_COMMAND_FATILED
Command failed.
6014 CWBRC_PROGRAM_NOT_FOUND
Program not found or could not be accessed.
6015 CWBRC_PROGRAM_ERROR
Exrror occurred when calling the program.
6016 CWBRC_COMMAND_TOO_LONG

20 IBMi: Windows Application Package: Programming

Command string is too long.
6099 CWBRC_UNEXPECTED_ERROR
Unexpected error.

Related reference

Remote Command/Distributed Program Call APIs

The Remote Command/Distributed Program Call APIs allow the PC application programmer to access IBM
i functions. User program and system commands are called without requiring an emulation session. A
single IBM i program serves commands and programs, so only one system job is started for both.

Security APIs return codes
There are security API return codes.

6000 CWBSY_UNKNOWN_USERID
User ID does not exist.
6002 CWBSY_WRONG_PASSWORD
Password is not correct for specified user ID.
6003 CWBSY_PASSWORD_EXPIRED
Password has expired.
6004 CWBSY_INVALID_PASSWORD
One or more characters in the password are not valid or the password
is too long.
6007 CWBSY_GENERAL_SECURITY_ERROR
A general security error occurred. The user profile does not have a
password or the password validation program found an error in the
password.
6009 CWBSY_INVALID_PROFILE
The server user profile is not valid.
6011 CWBSY_USER_PROFILE_DISABLED
The IBM i user profile (user ID) has been set to disabled.
6013 CWBSY_USER_CANCELLED
The user cancelled from the user ID/password prompt.
6015 CWBSY_INVALID_USERID
One or more characters in the user ID is not valid or the user ID is
too long.
6016 CWBSY_UNKNOWN_SYSTEM
The system specified is unknown.
6019 CWBSY_TP_NOT_VALID
The PC could not validate the IBM i security server. This could
indicate tampering with the IBM supplied security server program on
the system.
6022 CWBSY_NOT_LOGGED_ON
There is no user currently logged on for the specified system.
6025 CWBSY_SYSTEM_NOT_CONFIGURED
The system specified in the security object has not been configured.
6026 CWBSY_NOT_VERIFIED
The user ID and password defined in the object has not yet been
verified. You must verify using cwbSY_VerifyUserIDPwd API.
6255 CWBSY_INTERNAL_ERROR
Internal error. Contact IBM Service.

The following return codes are for change password APIs:

6257 CWBSY_PWD_TOO_LONG
The new password contains too many characters. The maximum number of
characters allowed is defined by the system value, QPWDMAXLEN.

6258 CWBSY_PWD_TOO_SHORT
The new password does not contain enough characters. The minimum
number of characters allowed is defined by the system value,
QPWDMINLEN.

6259 CWBSY_PWD_REPEAT_CHARACTER
The new password contains a character used more than once. The IBM i
configuration (system value QPWDLMTREP) does not allow passwords to
contain a repeat character.

6260 CWBSY_PWD_ADJACENT_DIGITS
The new password contains two numbers next to each other. The IBM i
configuration (system value QPWDLMTAJC) does not allow passwords to
contain consecutive digits.

6261 CWBSY_PWD_CONSECUTIVE_CHARS
The new password contains a character repeated consecutively. The
IBM i configuration (system value QPWDLMTREP) does not allow a
password to contain a character repeated consecutively.

6262 CWBSY_PWD_PREVIOUSLY_USED
The new password matches a previously used password. The IBM i
configuration (system value QPWDRQDDIF) requires new passwords to be
different than any previous passwozrd.

6263 CWBSY_PWD_DISALLOWED_CHAR
The new password uses an installation disallowed character. IBM i

Windows Application Package: Programming 21

configuration (system value QPWDLMTCHR) restricts certain characters
from being used in new passwords.

6264 CWBSY_PWD_NEED_NUMERIC
The new password must contain a number. The IBM i configuration
(system value QPWDRQDDGT) requires new passwords contain one or more
numeric digits.

6266 CWBSY_PWD_MATCHES_OLD
The new password matches an old password in one or more character
positions. The server configuration (system value QPWDPOSDIF) does
not allow the same character to be in the same position as a
previous password.

6267 CWBSY_PWD_NOT_ALLOWED
The password was rejected.

6268 CWBSY_PWD_MATCHES_USERID
The password matches the user ID.

6269 CWBSY_PWD_PRE_V3
The old password was created on a pre-V3 system which used a
different encryption technique. Password must be changed manually on
the server.

6270 CWBSY_LAST_INVALID_PASSWORD
The next invalid will disable the user profile.

Related reference

Communications and Security APIs
The Communications and Security topic shows you how to use application programming interfaces (APIs)

Serviceability APIs return codes
There are serviceability API return codes.

6000 CWBSV_INVALID_FILE_TYPE
Unusable file type passed-in.
6001 CWBSV_INVALID_RECORD_TYPE
Unusable record type passed-in.
6002 CWBSV_INVALID_EVENT_TYPE
Unusable event type detected.
6003 CWBSV_NO_ERROR_MESSAGES
No error messages associated with error handle.
6004 CWBSV_ATTRIBUTE_NOT_SET
Attribute not set in current message.
6005 CWBSV_INVALID_MSG_CLASS
Unusable message class passed-in.
6006 CWBSV_LOG_NOT_STARTED
The requested log could not be started.

Related reference

Serviceability APIs

The Serviceability application programming interfaces (APIs) allow you to log service file messages and
events within your program.

System Object Access APIs return codes
There are SOA API return codes.

CWBSO_NO_ERROR

No error occurred.
CWBSO_ERROR_OCCURRED

An error occurred. Use error handle for more information.
CWBSO_LOW_MEMORY

Not enough memory is available for the request.
CWBSO_BAD_LISTTYPE

The value specified for type of list is not valid.
CWBSO_BAD_HANDLE

The handle specified is not valid.
CWBSO_BAD_LIST_HANDLE

The list handle specified is not valid.
CWBSO_BAD_0BJ_HANDLE

The object handle specified is not valid.
CWBSO_BAD_PARMOBJ_HANDLE

The parameter object handle specified is not valid.
CWBSO_BAD_ERR_HANDLE

The error handle specified is not valid.
CWBSO_BAD_LIST_POSITION

The position in list specified does not exist.
10 CWBSO_BAD_ACTION_ID
An action ID specified is not valid for the type of list.

O 00 N o g b~ W N P o

22 IBMi: Windows Application Package: Programming

11 CWBSO_NOT_ALLOWED_NOW
The action requested is not allowed at this time.
12 CWBSO_BAD_INCLUDE_ID
The filter ID specified is not valid for this list.
13 CWBSO_DISP_MSG_FAILED
The request to display the message failed.
14 CWBSO_GET_MSG_FAILED
The error message text could not be retrieved.
15 CWBSO_BAD_SORT_ID
A sort ID specified is not valid for the type of list.
16 CWBSO_INTERNAL_ERROR
An internal processing error occurred.
17 CWBSO_NO_ERROR_MESSAGE
The error handle specified contains no error message.
18 CWBSO_BAD_ATTRIBUTE_ID
The attribute key is not valid for this object.
19 CWBSO_BAD_TITLE
The title specified is not valid.
20 CWBSO_BAD_FILTER_VALUE
The filter value specified is not valid.
21 CWBSO_BAD_PROFILE_NAME
The profile name specified is not valid.
22 CWBSO_DISPLAY_FAILED
The window could not be created.
23 CWBSO_SORT_NOT_ALLOWED
Sorting is not allowed for this type of list.
24 CWBSO_CANNOT_CHANGE_ATTR
Attribute is not changeable at this time.
25 CWBSO_CANNOT_READ_PROFILE
Cannot read from the specified profile file.
26 CWBSO_CANNOT_WRITE_PROFILE
Cannot write to the specified profile file.
27 CWBSO_BAD_SYSTEM_NAME
The system name specified is not a valid system name.
28 CWBSO_SYSTEM_NAME_DEFAULTED
No system name was specified on the "CWBSO_CreatelListHandle" call
for the list.
29 CWBSO_BAD_FILTER_ID
The filter ID specified is not valid for the type of list.

Related reference

System Object Access (SOA) APIs

System Object Access enables you to view and manipulate system objects through a graphical user
interface.

About System Object Access errors
System Object Access APIs use return codes to report error conditions.

Administration APIs

These APIs provide functions that access information about the code that is installed on the PC.
Administration APIs allow you to determine:

« The product version and service level
« The install status of individual features
« The install status of System i® Navigator plug-ins

Administration APIs required files:

Header file Import library Dynamic Link Library
cwbad.h cwbapi.lib cwbad.dll

Programmer's Toolkit:

The Programmer's Toolkit provides Administration APIs documentation, access to the cwbad.h header
file, and links to sample programs. To access this information, open the Programmer's Toolkit and select
Client Information > C/C++ APIs.

Windows Application Package: Programming 23

Administration APIs topics:

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

Related reference

Administration APIs return code
There is an administration return code.

IBM i name formats for connection APIs
APIs that take an IBM i name as a parameter, accept the name in the three different formats.

OEM, ANSI, and Unicode considerations
Most of the C/C++ APIs that accept string parameters exist in three forms: OEM, ANSI, or Unicode.

Administration APIs list

The following APIs are used with product Administration.

cwbAD_GetClientVersion
Use the cwbAD_GetClientVersion command.

Purpose

Get the version of the product that currently is installed on a PC.

Syntax
unsigned int CWB_ENTRY cwbAD_GetClientVersion(
unsigned long *version
unsigned long *release
unsigned long *modificationLevel);

Parameters

unsigned long *version - output
Pointer to a buffer where the version level of the product is returned.

unsigned long *release - output
Pointer to a buffer where the release level of the product is returned.

unsigned long *modificationLevel - output
Pointer to a buffer where the modification level of the product is returned.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
One or more pointer parameters are null.

Usage

If the return code is not CWB_OK, the values in version, release, and modificationLevel are meaningless.

24 IBMi: Windows Application Package: Programming

cwbAD_GetProductFixLevel

Use the cwbAD_GetProductFixLevel command.

Purpose

Returns the current product fix level.
Syntax

unsigned int CWB_ENTRY cwbAD_GetProductFixLevel(
char *szBuffer
unsigned long *xulBuflLen) ;

Parameters

char xszBuffer - output
Buffer into which the product fix level string will be written.

unsigned long * ulBufLen - input/output
Size of szBuffer, including space for the NULL terminator. On output, will contain the length of the fix
level string, including the terminating NULL.

Return Codes

The following list shows common return values.

CWB_OK
Successful completion.

CWB_BUFFER_OVERFLOW
Buffer overflow. The required length is returned in ulBufLen.

CWB_INVALID_POINTER
Invalid pointer.

Usage

Returns the fix level of the product. Returns an empty string if fixes have not been applied.

cwbAD_IsComponentInstalled
Product components are called features. Use this API to identify installed features of the product.

Purpose

Indicates whether a specific product feature is installed.

Syntax
unsigned long CWB_ENTRY cwbAD_IsComponentInstalled/(
unsigned long ulComponentID,
cwb_Boolean *bIndicator);

Parameters

unsigned long ulComponentID - input
Must be set to one of the following component IDs:

CWBAD_COMP_SSL
Secure Sockets Layer

Windows Application Package: Programming 25

CWBAD_COMP_SSL_128_BIT
Secure Sockets Layer 128 bit

Note: This constant is defined to be the same as CWBAD_COMP_SSL.

CWB_COMP_BASESUPPORT

Product required programs
CWBAD_COMP_OPTIONAL_COMPS

Product optional features
CWBAD_COMP_DIRECTORYUPDATE

Directory Update
CWBAD_COMP_IRC

Incoming Remote Command
CWBAD_COMP_OUG

User's Guide
CWBAD_COMP_OPNAY

System i Navigator

CWBAD_COMP_DATA_ACCESS
Data Access

CWBAD_COMP_DATA_TRANSFER
Data Transfer

CWBAD_COMP_DT_BASESUPPORT
Data Transfer Base Support

CWBAD_COMP_DT_EXCEL_ADDIN
Data Transfer Excel Add-in

CWBAD_COMP_DT_WK4SUPPORT
Data Transfer WK4 file support

CWBAD_COMP_ODBC
ODBC

CWBAD_COMP_OLEDB
OLE DB Provider

CWBAD_COMP_MP
.NET Data Provider

CWBAD_COMP_AFP_VIEWER
AFP Workbench Viewer

CWBAD_COMP_JAVA_TOOLBOX
Java Toolbox

CWBAD_COMP_PC5250
PC5250 Display and Printer Emulator

PC5250 Display and Printer Emulator subcomponents:

« CWBAD_COMP_PC5250_BASE_KOREAN
- CWBAD_COMP_PC5250_PDFPDT_KOREAN

« CWBAD_COMP_PC5250_BASE_SIMPCHIN

« CWBAD_COMP_PC5250_PDFPDT_SIMPCHIN
« CWBAD_COMP_PC5250_BASE_TRADCHIN

« CWBAD_COMP_PC5250_PDFPDT_TRADCHIN
.« CWBAD_COMP_PC5250_BASE_STANDARD

« CWBAD_COMP_PC5250_PDFPDT_STANDARD
« CWBAD_COMP_PC5250_FONT_ARABIC

26 IBMi: Windows Application Package: Programming

« CWBAD_COMP_PC5250_FONT_BALTIC
« CWBAD_COMP_PC5250_FONT_LATIN2
« CWBAD_COMP_PC5250_FONT_CYRILLIC
« CWBAD_COMP_PC5250_FONT_GREEK

« CWBAD_COMP_PC5250_FONT_HEBREW
« CWBAD_COMP_PC5250_FONT_LAO

« CWBAD_COMP_PC5250_FONT_THAI

« CWBAD_COMP_PC5250_FONT_TURKISH
« CWBAD_COMP_PC5250_FONT_VIET

« CWBAD_COMP_PC5250_FONT_HINDI

CWBAD_COMP_PRINTERDRIVERS
Printer Drivers

CWBAD_COMP_AFP_DRIVER
AFP printer driver

CWBAD_COMP_SCS_DRIVER
SCS printer driver

CWBAD_COMP_OP_CONSOLE
Operations Console

CWBAD_COMP_TOOLKIT
Programmer's Toolkit

CWBAD_COMP_TOOLKIT_BASE
Headers, Libraries, and Documentation

CWBAD_COMP_EZSETUP
EZ Setup

CWBAD_COMP_TOOLKIT_JAVA_TOOLS
Programmer's Toolkit Tools for Java

CWBAD_COMP_SCREEN_CUSTOMIZER_ENABLER
Screen Customizer Enabler

CWBAD_COMP_OPNAV_BASESUPPORT
System i Navigator Base Support

CWBAD_COMP_OPNAV_BASE_OPS
System i Navigator Basic Operations

CWBAD_COMP_OPNAV_JOB_MGMT
System i Navigator Job Management

CWBAD_COMP_OPNAV_SYS_CFG
System i Navigator System Configuration

CWBAD_COMP_OPNAV_NETWORK
System i Navigator Networks

CWBAD_COMP_OPNAV_SECURITY
System i Navigator Security

CWBAD_COMP_OPNAV_USERS_GROUPS
System i Navigator Users and Groups

CWBAD_COMP_OPNAV_DATABASE
System i Navigator Database

CWBAD_COMP_OPNAV_BACKUP
System i Navigator Backup

CWBAD_COMP_OPNAV_APP_DEV
System i Navigator Application Development

Windows Application Package: Programming 27

CWBAD_COMP_OPNAV_APP_ADMIN
System i Navigator Application Administration

CWBAD_COMP_OPNAV_FILE_SYSTEMS
System i Navigator File Systems

CWBAD_COMP_OPNAV_MGMT_CENTRAL
System i Navigator Management Central

CWBAD_COMP_OPNAV_MGMT_COMMANDS
System i Navigator Management Central - Commands

CWBAD_COMP_OPNAV_MGMT_PACK_PROD
System i Navigator Management Central - Packages and Products

CWBAD_COMP_OPNAV_MGMT_MONITORS
System i Navigator Management Central - Monitors

CWBAD_COMP_OPNAV_LOGICAL_SYS
System i Navigator Logical Systems

CWBAD_COMP_OPNAV_ADV_FUNC_PRES
System i Navigator Advanced Function Presentation

cwb_Boolean *bIndicator - output
Will contain CWB_TRUE if the component is installed. Will return CWB_FALSE if the component is not
installed. Will not be set if an error occurs.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Invalid pointer.

CWB_INVALID_COMPONENT_ID
The component ID is invalid for this release.

Example: Administration APIs
This example demonstrates how an application might use Administration APIs.
In this example, the APIs are used to get and display:

« The current product Version/Release/Modification level
« The current service pack (fix) level
« The features that currently are installed on the PC

The user then is allowed to enter System i Navigator plug-in names, and is informed whether the plug-in is
installed.

Usage notes:
Include cwbad.h *

Link with cwbapi.lib

Example

#include <windows.h>
#include <stdio.h>

#include "cwbad.h"

28 IBMi: Windows Application Package: Programming

/

*
*
*

This is the highest numbered component ID known (it is
the ID of the last component defined in cwbad.h).

*/
#define LAST_COMPID_WE_KNOW_ABOUT

/

S

*
*
*
*
*
*
*
*
*
t

(CWBAD_COMP_SSL)

Array of component names, taken from comments for component IDs

in cwbad.h, so human-readable component descriptions are displayed
In the compDescr array, the component ID for a component must match
the index in the array of that component's description.

For a blank or unknown component name, a string is provided to display
an indication that the component ID is unknown, and what that ID is.

“Réquired programs",
"Optional Features",

atic charx compDescr[LAST_COMPID_WE_KNOW_ABOUT + 1] = {

"Directory Update",
"Incoming Remote Command",
""", // not used,
"Online User's Guide",
"System i Navigator",
"Data Access",
"Data Transfer",
"Data Transfer Base Support",
"Data Transfer Excel Add-in",
"Data Transfer WK4 file support”,

HODBCH’

"OLE DB Provider",
"AFP Workbench Viewer",

"IBM i Java Toolbox",

"5250 Display and Printer Emulator",
"Printer Drivers",
"AFP printer driver",

"SCS printer driver",

"IBM i Operations Console",

"IBM i Access Programmer's Toolkit",
"Headers,
""", // not used,

Libraries,

un
r

"Java Toolkit",

"Screen customizer",

// #0 is not used

and Documentation",

// not used,

".NET Data Provider",

’
’
r
’
’
r
’
’
r
’
’
un
r
’

’
un un

"System
"System
"System
"System
"System
"System
"System
"System
"System
"System
"System
"System
"System
"System
"System
"System
"System
"System

’
un un
r r

Navigator
Navigator
Navigator
Navigator
Navigator
Navigator
Navigator
Navigator

Navigator
Navigator
Navigator
Navigator
Navigator
Navigator
Navigator
Navigator
Navigator
Navigator

un un
r r r

#30-34
#35-39
#40-44
#45-49

not #50-54
#55-59
#60-64
#65-69

used #70-74
#75-79
1#80-84
1#85-89
#90-94

[[======------ 1#95-99

Base Suppozrt",

Basic Operations",

Job Management",

System Configuration",

Networks",

Security",

Users and Groups",

Database",

// not used 1108

Backup",

Application Development",

Application Administrat",

File Systems",

Management Central",

Management Central - Commands",

Management Central - Packages and Products",

Management Central - Monitors",

— e e e N N N N N N NN
— e e e N N N N N NN

Logical Systems",

Advanced Function Presentation",
[)/------------- #119
// not #120-124

Windows Application Package: Programming 29

uu’ uu’ uu’ uu’ uu’ // #125_129
HH' HH' HH' HH' HH' // #130_134
HH' HH' HH' HH' HH' // used #135_139
uu’ uu’ uu’ uu’ uu’ // {140-144
[T T T T (O TR TR T Y J145-149

"PC5250: BASE_KOREAN",
"PC5250: PDFPDT_KOREAN",
"PC5250: BASE_SIMPCHIN",
"PC5250: PDFPDT_SIMPCHIN",
"PC5250: BASE_TRADCHIN",
"PC5250: PDFPDT_TRADCHIN",
"PC5250: BASE_STANDARD",
"PC5250: PDFPDT_STANDARD",
"PC5250: FONT_ARABIC",
"PC5250: FONT_BALTIC",
"PC5250: FONT_LATIN2",
"PC5250: FONT_CYRILLIC",
"PC5250: FONT_GREEK",
"PC5250: FONT_HEBREW",
"PC5250: FONT_LAO",
"PC5250: FONT_THAI",
"PC5250: FONT_TURKISH",
"PC5250: FONT_VIET",
"PC5250: FONT_HINDI",
" VY GEEEEEEEEELT #169

// #170-174
// not #175-179
// #180-184
//
//

’

un un un un un
’

un un
’

nn nn
’

un un
’

o, we ' ' #190-194
HH’ HH’ HH’ HH’ HH’ // ____________ #195_199
"Secure Sockets Layer (SSL)" % ; // last one defined
"unknown, ID= "

& (unknownComp[12]); // insert ID here!

’
’
’

un un un

’

used #185-189

static char unknownComp[]
static charx pInsertID

/**
* Show the IBM i Access for Windows Version/Release/Modification level

void showCA_VRM()

1

ULONG caVer, caRel, caMod;

UINT rc;

char fixlevelBuf[MAX_PATH J;

ULONG fixlevelBuflLen = sizeof(fixlevelBuf);

printf("IBM i Access level installed:\n\n");

rc = cwbAD_GetClientVersion(&caVer, &caRel, &caMod);
if (rc != CWB_OK)
1
printf(" Error %u occurred when calling cwbAD_GetClientVersion()\n\n",
Ic);
3

else

printf(" Version %lu, Release %lu, Modification %lu\n\n",
caVer, caRel, caMod);

printf("IBM i Access service pack level installed:\n\n");
rc = cwbAD_GetProductFixLevel(fixlevelBuf, &fixlevelBuflLen);
if (rc != CWB_OK)

printf(" Error %u occurred when calling "
"cwbAD_GetProduceFixLevel ()\n\n", rc);

b

else if (fixlevelBuf[@] == '\@') // empty, no service packs applied
printf(" None\n\n");

else

printf(" %s\n\n", fixlevelBuf);

30 IBMi: Windows Application Package: Programming

Call IBM i Access for Windows API to determine if the component is installed,
and pass back:
NULL if the component is not installed or an error occurs,
OR
A string indicating the component name is unknown if the
component ID is higher than we know about OR the component
description is blank,
OR
The human-readable component description if known.

* ok K ok X ok Xk Ok *

charx isCompInstalled(ULONG compID)
i

cwb_Boolean bIsInstalled;
charx pCompName;

UINT rc = cwbAD_IsComponentInstalled(compID, &bIsInstalled);

/*
* Case 1: Error OR component not installed, return NULL to
* indicate not installed.

*/
if ((rc != CWB_OK) || (bIsInstalled == CWB_FALSE))
1

pCompName = NULL;

/*

* Case 2: Component IS installed, but its name is not known,
* return component name unknown string.

*/

else if ((compID > LAST_COMPID_WE_KNOW_ABOUT) ||

(compDescxr[compID J[0] == '\0@'))

pCompName = unknownComp;
sprintf(pInsertID, "%lu", compID);

/*
* Case 3: Component IS installed, and a name is known, return it
*/

else

pCompName = compDescr[compID];

return pCompName;

/**
* List the IBM i Access Client Solutions features that currently are installed.

void showCA_CompInstalled()
1

ULONG compID;
charx compName;

printf("IBM i Access features installed:\n\n");
/*

* Try all known features, plus a bunch more in case some
* have been added (via service pack).
*/
for (compID = O;
compID < (LAST_COMPID_WE_KNOW_ABOUT + 50);
compID++)

compName = isCompInstalled(compID);
if (compName != NULL)
{

printf(" %s\n", compName);
b
printf("\n");

R R R R S e S S e
* MAIN PROGRAM BODY

Windows Application Package: Programming 31

void main(void)

UINT IC;

char pluginName[MAX_PATH];

cwb_Boolean bPluginInstalled;

printf(" \n");
printf("IBM i Access What's Installed Reporter\n");
printf(" \n\n");

showCA_VRM() ;
showCA_CompInstalled();

/*

* Allow user to ask by name what plug-ins are installed.
*/
while (TRUE) /* REMINDER: requires a break to exit the loop! */
{
printf("Enter plug-in to check for, or DONE to quit:\n");
gets(pluginName);
if (stricmp(pluginName, "DONE") == 0)
{

break; /* exit from the while loop, DONE at user's request %/

¥

rc = cwbAD_IsOpNavPluginInstalled(pluginName, &bPluginInstalled);
if (rc == CWB_OK)

if (bPluginInstalled == CWB_TRUE)
t printf("The plug-in '%s' is installed.\n\n", pluginName);
else
printf("The plug-in '¥%s' is NOT installed.\n\n", pluginName);
%

else
printf(
"Error %u occurred when calling cwbAD_IsOpNavPluginInstalled.\n\n",
Ic);
k)
t // end while (TRUE)

printf("\nEnd of program.\n\n");

Communications and Security APIs
The Communications and Security topic shows you how to use application programming interfaces (APIs)
You can use these APIs to:

« Get, use, and delete an IBM i system object. Various product APIs require a system object. It holds
information about connecting to, and validating IBM i security objects including user ID, password, and
signon date and time .

« Obtain information about environments and connections that are configured in the system list when
you use product functions. The system list is a list of all currently configured environments, and of
systems within those environments. The system list is stored and managed "per user," and is not
available to other users.

Note: It is not necessary for you to explicitly configure new systems to add them to the system list. They
are added automatically when you connect to a new system.

32 IBMi: Windows Application Package: Programming

Communications and Security APIs required files:

Header file Import library Dynamic Link

Library
System object APIs System list APIs cwbapi.lib cwbco.dll
cwbcosys.h cwbco.h

Programmer's Toolkit:

The Programmer's Toolkit provides Communications and Security documentation, access to the cwbco.h
and cwbcosys.h header files, and links to sample programs. To access this information, open the
Programmer's Toolkit and select Communications and Security > C/C++ APIs.

Communications and Security topics:

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

Related reference

Communications APIs return codes
There are communications API return codes.

Security APIs return codes
There are security API return codes.

Global return codes
There are global return codes.

IBM i name formats for connection APIs
APIs that take an IBM i name as a parameter, accept the name in the three different formats.

OEM, ANSI, and Unicode considerations
Most of the C/C++ APIs that accept string parameters exist in three forms: OEM, ANSI, or Unicode.

System object attributes

System object attributes, on the IBM i platform, affect the behavior of signing on and communicating with
the system represented by the system object.

Most attributes are not changeable after a successful signon has occurred using either cwbCO_Signon or
cwbCO_Connect. The only two attributes that are changeable after a successful sighon are the Window
Handle and the Connect Timeout attributes. Calling an API to change the value of other attributes, after a
successful signon, fails with return code CWB_INV_AFTER_SIGNON.

Some values and the ability to change them may be controlled via policies. Policies are controls that

a systems administrator can set up to mandate default attribute values, and to prohibit changes to
attributes. The default values that are specified in the System object attributes list topic (link below) are
used under the following conditions:

« If policies do not specify or suggest different values

« If avalue for such an attribute has not been configured explicitly for the system that is named in the
system list

If an attribute's default value may be set by policy, this also is noted. If changing an attribute's value can
be prohibited by policy, then:

- An APl is provided to check for the attribute's modifiability.
« A specific return code is provided by the attribute's set method if the set fails because of such a policy.

Related reference
cwbCO_Signon

Windows Application Package: Programming 33

Use the cwbCO_Signon command.

cwbCO_Connect
Use the cwbCO_Connect command.

System object attributes list
Following is a list of IBM i descriptions, requirements, and considerations of system object attributes.

Also listed with each attribute are:

« The APIs that you can use to get and to set it
« What its default value is when the system object is created

Note: The attributes' settings apply ONLY to the system object for which they are set, NOT to any other
system objects, even if other system objects have the same system name.

IBMiname:
The system with which to communicate, as defined by this instance of the system object. This can be
set only at the time cwbCO_CreateSystem or cwbCO_CreateSystemLike is called. Note that the system
name is used as the unique identifier when validating security information for a specific user ID: If
two different system objects contain different system names that represent the same physical unit,
the user ID and password require separate validation for the two system objects. For example, this
applies if the system names "SYS1" and "SYS1.ACME.COM" represent the same IBM i unit. This may
result in double prompting, and the use of different default user IDs when connecting.

Get by using cwbCO_GetSystemName

Default:
There is no default, since this is explicitly set when the system object is created.

Description
Description of the configured IBM i connection.

Set using System i Navigator.

Retrieve using cwbCO_GetDescription

The description is stored with each system object, and never changed for that system object. If the
description is changed using System i Navigator, system objects for that system that existed before
the change was made are not changed. Only new system objects will contain the new description.

Default:
Blank. This may be overridden by policies.

User ID:
The IBM i user ID that is used the system.

Get by using cwbCO_GetUserIDEx
Set by using cwhCO_SetUserIDEx

Default:
The first time that you connect to the system which is named in the system object, you might be
prompted:

 To specify a default user ID
« To specify that the default user ID should be the same as your Windows user ID
« That no default will be used

On subsequent connection attempts, the default user ID that is used will depend on which option
you chose when prompted during the first connection attempt.

Password:
The IBM i password used to signon to the system.

Set by using cwbCO_SetPassword

34 IBMi: Windows Application Package: Programming

Default:
Blank (no password set) if the user ID that is set in the system object never has signed on to the
system that is named in the system object. If a previous successful sighon or connection has been
made to the system that is named in the system object, that password may be used for the next
signon or connection attempt. The system will no longer cache a password in the product volatile
password cache if the password comes in through the cwbCO_SetPassword() API. Previously, this
would have gone into the volatile (i.e. session) password cache.

Default user mode:
Controls behavior that is associated with the default user ID, including where to obtain it and whether
to use it. If it is not set (if the value is CWBCO_DEFAULT_USER_MODE_NOT_SET), the user may be
prompted to choose which behavior is desired at the time a signon is attempted.

Get by using cwbCO_GetDefaultUserMode
Set by using cwhCO_SetDefaultUserMode

Check for modify restriction by using cwbCO_CanModifyDefaultUserMode

Default:
CWBCO_DEFAULT _USER_MODE_NOT_SET

Note: The default may be overridden by policies.

Prompt mode:
Controls prompting for user ID and password. See the declaration comments for
cwbCO_SetPromptMode for possible values and for associated behaviors.

Get by using cwbCO_GetPromptMode

Set by using cwbCO_SetPromptMode

Default:
CWBCO_PROMPT_IF_NECESSARY

Window handle:
The window handle of the calling application. If this is set, any prompting that does relate to IBM i
signon will use the window handle, and will be modal to the associated window. This means that the
prompt never will be hidden UNDER the main application window if its handle is associated with the
system object. If no window handle is set, the prompt might be hidden behind the main application
window, if one exists.

Get by using cwbCO_GetWindowHandle
Set by using cwbCO_SetWindowHandle

Default:
NULL (not set)

Validate mode:
Specifies, when validating user ID and password, whether IBM i communication to perform
this validation actually occurs. See the declaration comments for cwbCO_SetValidateMode and
cwbCO_GetValidateMode for possible values and for associated behaviors.

Get by using cwbCO_GetValidateMode
Set by using cwbCO_SetValidateMode

Default:
CWBCO_VALIDATE_IF_NECESSARY

Use Secure Sockets:
Specifies whether sockets are used to authenticate the system and to encrypt data that is sent
and received. There are some cases where secure sockets cannot be used (for example, when the
software support for Secure Sockets has not been installed on the PC). Accordingly, an application
or user request for secure sockets use may fail, either at the time the cwbCO_UseSecureSockets

Windows Application Package: Programming 35

API is called, or at connect time. If no such failure occurs, then secure sockets is being used, and
cwbCO_IsSecureSockets will return CWB_TRUE.

Get by using cwbCO_IsSecureSockets

Set by using cwbCO_UseSecureSockets

Check for modify restriction by using cwbCO_CanModifyUseSecureSockets

Default:
Whatever has been configured in the IBM i the System List will be used for this system. If no
IBM i configuration for this system exists, or if the configuration specifies to use the IBM i Access
default, then secure sockets will not be used (CWB_FALSE).

Note: The default may be overridden by policies.

Port lookup mode:
Specifies how to retrieve the remote port for an IBM i host service. It specifies whether to look it up
locally (on the PC), on the IBM i host, or to simply use the default ("standard") port for the specified
service. If local lookup is selected, the standard TCP/IP method of lookup in the SERVICES file on
the PC is used. If server lookup is specified, a connection to the IBM i mapper is made to retrieve
the port number by lookup from the IBM i service table. If either the local or server lookup method
fails, then connecting to the service will fail. For more information and for possible values, see the API
declaration for cwbCQO_SetPortLookupMode.

Get by using cwbCO_GetPortLookupMode
Set by using cwbCO_SetPortLookupMode

Check for modify restriction by using cwbCO_CanModifyPortLookupMode

Default:
Whatever has been configured for this system in the IBM i List is used. If no IBM i configuration
exists for this system, the default is CWBCO_PORT_LOOKUP_SERVER.

Note: The default may be overridden by policies.

Persistence mode:
Specifies whether the system named in this system object may be added to the IBM i List
(if not already in the list) once a successful call to cwbCO_Connect has completed. See
cwbCQO_SetPersistenceMode for more information and for possible values.

Get by using cwbCO_GetPersistenceMode

Set by using cwbCO_SetPersistenceMode

Check for modify restriction by using cwbCO_CanModifyPersistenceMode

Default:
CWBCO_MAY_MAKE_PERSISTENT

Note: The default may be overridden by policies.

Connect timeout
Specifies the wait time for the completion of a connection attempt. This setting does not
affect how long the TCP/IP communications stack will wait before giving up. The TCP/IP
communications stack might timeout before the IBM i Access connection timeout has expired. See
cwbCO_SetConnectTimeout for more information and possible values. This value may be changed for
a system object at any time.

get using cwbCO_GetConnectTimeout

set using cwbCO_SetConnectTimeout

Default:
CWBCO_CONNECT_TIMEOUT_DEFAULT

Note: The default may be overridden by policies.

36 IBMi: Windows Application Package: Programming

Communications and security: Create and delete APIs

These APIs are used for creating and deleting an IBM i object

cwbCO_CreateSystem
Use the cwbCO_CreateSystem command.

Purpose

Create a new system object and return a handle to it that can be used with subsequent calls. The system
object has many attributes that can be set or retrieved. See “System object attributes” on page 33 for
more information.

Syntax

UINT CWB_ENTRY cwbCO_CreateSystem(
LPCSTR systemName,
cwbCO_SysHandle *system) ;

Parameters

LPCSTR systemName - input
Pointer to a buffer that contains the NULL-terminated IBM i name. This can be its host name, or the
IBM i dotted-decimal IP address itself. It must not be zero length and must not contain blanks. If the
name specified is not a valid IBM i host name or IP address string (in the form "nnn.nnn.nnn.nnn"),
any connection attempt or security validation attempt will fail.

cwbCO_SysHandle *system - output
The system object handle is returned in this parameter.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_POINTER
One of the pointer parameters is NULL.

CWB_INVALID_SYSNAME
The system name is not valid.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from creating a system object for a system not already defined
in the System List.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage that is being used.

Usage

When you are done using the system object, you must call cwbCO_DeleteSystem to free resources
the system object is using. If you want to create a system object that is like one you already have, use
cwbCO_CreateSystemLike.

Related reference
Typical use of Remote Command/Distributed Program Call APIs

Windows Application Package: Programming 37

An application that uses the Remote Command/Distributed Program Call function uses objects.

cwbCO_CreateSystemLike
Use the cwbCO_CreateSystemLike command.

Purpose

Create a new system object that is similar to a given system object. You may either provide a specific
system name for the new system object, or specify NULL to use the given system object's name. All
attributes of the given system object are copied into the new one, with the following exceptions:

« UserID
Password

- System name, if a different one is specified

IP address, when the system names are different.

See “System object attributes list” on page 34 for a list of system object attributes.

Syntax
UINT CWB_ENTRY cwbhCO_CreateSystemLike (
cwbCO_SysHandle systemToCopy,
LPCSTR systemName

cwbCO_SysHandle *system) ;

Parameters

cwbCO_SysHandle systemToCopy - input
Handle that was returned by a previous call to either cwbCO_CreateSystemor
cwbCO_CreateSystemLike. It is the IBMiidentification. This is the object that will be "copied."

LPCSTR systemName - input
Pointer to a buffer that contains the NULL-terminated IBM i name to use in the new system object.
If NULL or the empty string is passed, the name from the given system object is copied into the new
system object. If a system name is specified, it can be the host name, or the IBM i dotted-decimal IP
address. If the name that is specified is not a valid IBM i host name or IP address string (in the form
"nnn.nnn.nnn.nnn"), any connection attempt or security validation attempt will fail.

cwbCO_SysHandle *newSystem - output
The system object handle of the new system object is returned in this parameter.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
A pointer that is supplied to the API is not valid.

CWB_INVALID_SYSNAME
The system name is not valid.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from creating a system object for a system not already defined
in the System List.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage that is being used.

38 IBMi: Windows Application Package: Programming

Usage

When you are done using the new system object, you must call cwbCO_DeleteSystem to free resources
that the system object is using.

The state of the new system object might not be the same as that of the given system object, since user
ID and password validation has not been performed yet for the new one. Also, the new system object has
no connections associated with it, whereas the given system object may. Because of this, even though you
might not be able to change attributes of the given system object because of its state, you might be able
to change the attributes of the new system object because of its possibly different state.

cwbCO_DeleteSystem
Use the cwbCO_DeleteSystem command.

Purpose

Deletes the system object that is specified by its handle, and frees all resources the system object has
used.

Syntax

UINT CWB_ENTRY cwbhCO_DeleteSystem(
cwbCO_SysHandle system) ;

Parameters

cwbCO_SysHandle system - input
Handle that was returned by a previous call to either cwbCO_CreateSystemor
cwbCO_CreateSystemLike. It is the IBM i identification.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.
Usage

Before the system object resources are freed, if there are any connections that were made using

the specified system object, they will be ended, forcefully if necessary. To determine if there are

active connections, call cwbCO_IsConnected. If you want to know whether disconnecting any existing
connections was successful, call cwbCO_Disconnect explicitly before calling this API.

Communications and security: Connect and disconnect APIs

These APIs support IBM i connection and disconnection, and other related behaviors.

cwhCO_Connect
Use the cwbCO_Connect command.

Purpose

Connect to the specified IBM i host service.

Windows Application Package: Programming 39

Syntax

UINT CWB_ENTRY cwbCO_Connect(
cwbCO_SysHandle system,
cwbCO_Service service,
cwbSV_ErrHandle errorHandle);

Parameters

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification that will be used for the connection.

cwhbCO_Service service - input
The IBM i service for the connection. Valid values are those listed in “Defines for cwbCO_Service” on
page 82, except for the values CWBCO_SERVICE_ANY and CWBCO_SERVICE_ALL. Only one service
may be specified for this API, unlike for cwbCO_Disconnect, which can disconnect multiple services at
once.

cwbSV_ErrHandle errorHandle - input/output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetExrrText
API. If the parameter is set to zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_SERVICE_NAME_ERROR
The service identifier is not a valid value, or was a combination of values (only a single value is allowed
for this API).

CWB_CONNECTION_TIMED_OUT
It took too long to find the system, so the attempt timed out.

CWB_CONNECTION_REFUSED
The system refused to accept our connection attempt.

CWB_NETWORK_IS_DOWN
A network error occurred, or TCP/IP is not configured correctly on the PC.

CWB_NETWORK_IS_UNREACHABLE
The network segment to which the system is connected currently is not reachable from the segment
to which the PC is connected.

CWB_USER_TIMEOUT
The connect timeout value associated with the system object expired before the connection attempt
completed, so we stopped waiting.

CWB_FIPS_UNAVAILABLE
This connection is configured for SSL and FIPS-compliant mode is enabled, however, SSL cannot be
used because FIPS support is not available. For recovery information, see message CWBC01060,
using the following path:

Start > Programs > IBM i Access Client Solutions > User's Guide > Messages > IBM i Access
Client Solutions messages > CWBC01060

Note: Other return codes may be commonly returned as the result of a failed security validation attempt.
See the list of common return codes in the comments for cwbCO_Signon.

40 IBMi: Windows Application Package: Programming

Usage

If the IBM i signon has not yet occurred, the signon will be performed first when cwbCO_Connect

is called. If you want the signon to occur at a separate time, call cwbCO_Signon first, then call
cwbCO_Connect at a later time. For more information about signon and its behavior, see comments for
cwbCO_Signon. If the signon attempt fails, a connection to the specified service will not be established.

If the system as named in the specified system object does not exist in the System List, and the system
object Persistence Mode is set appropriately, then when cwbCO_Connect or cwbhCO_Signon is first
successfully called, the system, as named in the system object, is added to the System List. For more
information about the Persistence Mode, see the comments for cwbCO_SetPersistenceMode.

If a connection to the specified service already exists, no new connection will be established, and
CWB_OK will be returned. Each time this API is successfully called, the usage count for the connection to
the specified service will be incremented.

Each time cwbCO_Disconnect is called for the same service, the usage count will be decremented.
When the usage count reaches zero, the actual connection is ended.

Therefore, it is VERY IMPORTANT that for every call to the cwbCO_Connect API there is a later paired
call to the cwbCO_Disconnect API, so that the connection can be ended at the appropriate time.

The alternative is to call the cwbCO_Disconnect API, specifying CWBCO_SERVICE_ALL, which will
disconnect all existing connections to ALL services made through the specified system object, and reset
all usage counts to 0.

If the return code is CWB_USER_TIMEOUT, you may want to increase the connect timeout value for
this system object, by calling cwbCO_SetConnectTimeout, and try connecting again. If you want IBM
i Access to not give up until the TCP/IP communication stack itself does, set the connect timeout to
CWBCO_CONNECT_TIMEOUT_NONE, and try connecting again.

Related reference

System object attributes
System object attributes, on the IBM i platform, affect the behavior of signing on and communicating with
the system represented by the system object.

cwbhCO_Disconnect
Use the cwbCO_Disconnect command.

Purpose

Disconnect from the specified IBM i host service.

Syntax
UINT CWB_ENTRY cwbCO_Disconnect(
cwbCO_SysHandle system,
cwbCO_Service service,
cwbSV_ErrHandle errorHandle);

Parameters

cwbCO_SysHandle system - input
Handle that was returned by a previous call to either cwbCO_CreateSystemor
cwbCO_CreateSystemLike. It the IBM i identification used for the disconnect.

cwhbCO_Service service - input
The IBM i service for disconnect. Valid values are those listed at the start of this file, except for the
value CWBCO_SERVICE_ANY. If CWBCO_SERVICE_ALL is specified, the connections to ALL connected
services will be ended, and all connection usage counts reset back to zero.

Windows Application Package: Programming 41

cwbSV_ErrHandle errorHandle - input/output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetErrText
API. If the parameter is set to zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_SERVICE_NAME_ERROR
The service identifier is invalid.

CWB_NOT_CONNECTED
The single service was not connected.

Usage

This function should be called when a connection that is established by using cwbCO_Connect no longer
is needed.

If any service specified cannot be disconnected, the return code will indicate this error. If more than one
error occurs, only the first one will be returned as the API return code.

Usage otes for individual service disconnect:
This function will cause the usage count for this system object's specified service to be decremented,
and may or may not end the actual connection. For more information, read the Usage notes for the
cwbCO_Connect API.

Disconnecting a service that is not currently connected results in CWB_NOT_CONNECTED.
An individual service is gracefully disconnected.

Usage notes for CWBCO_SERVICE_ALL:
The return code CWB_NOT_CONNECTED is not returned when CWBCO_SERVICE_ALL is specified,
regardless of the number of connected services.

IBM i disconnect message might be generated when requesting that all active services be
disconnected.

cwbCO_GetConnectTimeout
Use the cwbCO_GetConnectTimeout command.

Purpose
This function gets, for the specified system object, the connection timeout value, in seconds, currently
set.
Syntax
UINT CWB_ENTRY cwbCO_GetConnectTimeout(
cwbCO_SysHandle system,
PULONG timeout);

42 IBMi: Windows Application Package: Programming

Parameters

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification.

PULONG timeout - output
Returns the timeout value, in seconds. This value will be from CWBCO_CONNECT_TIMEOUT_MIN to
CWBCO_CONNECT_TIMEOUT_MAX, or will be CWBCO_CONNECT_TIMEOUT_NONE if no connection
timeout is desired.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The timeout pointer is NULL.

Usage
None.

cwbhCO_GetPersistenceMode
Use the cwbCO_GetPersistenceMode command.

Purpose

This function gets, for the specified system object, if the system it represents, along with its attributes,
will be added to the System List (if not already in the list) once a successful signon has occurred.

Syntax

UINT CWB_ENTRY cwhCO_GetPersistenceMode (
cwhCO_SysHandle system,
cwbCO_PersistenceMode *mode);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemlLike. It
is the IBM i identification.

cwbCO_PersistenceMode * mode - output
Returns the persistence mode. See comments for cwbCO_SetPersistenceMode for possible values
and their meanings.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

Windows Application Package: Programming 43

CWB_INVALID_POINTER
The mode pointer is NULL.

Usage

None.

cwbhCO_IsConnected

Use the cwbCO_IsConnected command.

Purpose

Find out if any, and how many, IBM i connections are using the specified system object currently exist.

Syntax
UINT CWB_ENTRY cwbCO_IsConnected(
cwbCO_SysHandle system,
cwhCO_Service service,
PULONG numberOfConnections);

Parameters

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystemor cwbCO_CreateSystemLike. It is the
IBM i identification.

cwbCO_Service service - input
The service to check for a connection. Any of the cwbCQO_Service values listed in “Defines
for cwbCQO_Service” on page 82 are valid. To find out if ANY service is connected, specify
CWBCO_SERVICE_ANY. To find out how many services are connected using this system object,
specify CWBCO_SERVICE_ALL.

PULONG numberOfConnections - output
Used to return the number of connections active for the service(s) that are specified. If the service
specified is not CWBCO_SERVICE_ALL, the value returned will be either 0 or 1, since there can be at
most one active connection per service per system object. If CWBCO_SERVICE_ALL is specified, this
could be from zero to the possible number of services, since one connection per service might be
active.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion, all services specified are connected, or if CWBCO_SERVICE_ANY is specified,
at least one service is connected.

CWB_NOT_CONNECTED
If a single service was specified, that service is not connected. If the value CWBCO_SERVICE_ANY
was specified, there are NO active connections. If the value CWBCO_SERVICE_ALL was specified,
there is at least one service that is NOT connected.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_SERVICE_NAME_ERROR
The service identifier is invalid.

CWB_INVALID_POINTER
The numberOfConnections parameter is NULL.

44 IBM i: Windows Application Package: Programming

Usage

If CWBCO_SERVICE_ALL was specified and CWB_NOT_CONNECTED is returned, there may be some
active connections, and the count of active connections still will be passed back. To find out how many
connections through the specified system object exist, call this API and specify CWBCO_SERVICE_ALL.
If the return code is either CWB_OK or CWB_NOT_CONNECTED, the number of connections that exist is
stored in numberOfConnections.

cwbhCO_SetConnectTimeout
Use the cwbCO_SetConnectTimeout command.

Purpose

This function sets, for the specified system object, the wait time, in seconds that the product waits before
giving up on a connection attempt and returning an error.

Syntax
UINT CWB_ENTRY cwbCO_SetConnectTimeout(
cwbCO_SysHandle system,
ULONG timeout);

Parameters

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystemor cwbCO_CreateSystemLike. It is the
IBM i identification.

ULONG timeout - input
Specifies the connection timeout value, in seconds. The value must be from
CWBCO_CONNECT_TIMEOUT_MIN to CWBCO_CONNECT_TIMEOUT_MAX, or if no timeout is
desired, use CWBCO_CONNECT_TIMEOUT_NONE. If the value is below the minimum,
then CWBCO_CONNECT_TIMEOUT_MIN will be used; if it is above the maximum,
CWBCO_CONNECT_TIMEOUT_MAX will be used.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

Usage

If no timeout value has been suggested by policy, and none has been explicitly set using this API, the
connect timeout used is CWBCO_CONNECT_TIMEOUT_DEFAULT.

cwbhCO_SetPersistenceMode
Use the cwbCO_SetPersistenceMode command.

Purpose

This function sets for the specified system object if the system it represents (as named in the system
object), along with its attributes, may be added to the System List (if not already in the list) once a signon
successfully has occurred.

Windows Application Package: Programming 45

Syntax

UINT CWB_ENTRY cwbCO_SetPersistenceMode (
cwbCO_SysHandle system,
cwbCO_PersistenceMode mode);

Parameters

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification.

cwbCO_PersistenceMode mode - input
Specifies the persistence mode. Possible values are:

CWBCO_MAY_MAKE_PERSISTENT
If the system that is named in the specified system object is not yet in the System List, add it
to the list once a successful sighon has completed. This will make the system, as defined by this
system object, available for selection by this AND other applications running, now or in the future,
on this personal computer (until the system is deleted from this list).

CWBCO_MAY_NOT_MAKE_PERSISTENT
The system that is named in the specified system object (along with its attributes) may NOT be
added to the System List.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_PARAMETER
The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon successfully has occurred by using the specified system object, so this setting no longer may
be changed.

Usage

This API cannot be used after a successful sighon has occurred for the specified system object. A signon
has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system
object.

If the system as named in the system object already is in the System List, this setting has no effect.

cwbhCO_Verify

Use the cwbCO_Verify command.

Purpose

Verifies that a connection can be made to a specific IBM i host service.

46 IBMi: Windows Application Package: Programming

Syntax

UINT CWB_ENTRY cwhCO_Verify(
cwbCO_SysHandle system,
cwbCO_Service service,
cwbSV_ErrHandle errorHandle);

Parameters

cwbCO_SysHandle system - input
Handle previously returned from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification whose connectability isverified.

cwhbCO_Service service - input
The IBM i service whose connectability is verified. Valid values are those listed in “Defines for
cwbCO_Service” on page 82, except for the value CWBCO_SERVICE_ANY. To verify connectability
of ALL services, specify CWBCO_SERVICE_ALL.

cwbSV_ErrHandle errorHandle - input/output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetErrText
API. If the parameter is set to zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes
The following list shows common return values.
CWB_OK

Successful completion.
CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_SERVICE_NAME_ERROR
The service identifier is invalid.

CWB_USER_TIMEOUT
The connect timeout value associated with the system object expired before the connection
verification attempt completed, so we stopped waiting.

CWB_COMMUNICATIONS_ERROR
An error occurred attempting to verify a connection to the service.

Usage

This API does not require user ID and password to be set, nor will it cause a signon to occur, thus it will
never prompt for this information. It does not change the state of the system object in any way.

If a connection to any specified service already exists, no new connection will be established, and
connectability will be considered verified for that service.

If CWBCO_SERVICE_ALL is specified for verification, the return code will be CWB_OK only if ALL services
can be connected to. If any one verification attempt fails, the return code will be that from the first failure,
although verification of the other services still will be attempted.

Since this API does not establish a usable connection, it automatically will disconnect when the
verification is complete; therefore, do NOT call cwbCO_Disconnect to end the connection.

Windows Application Package: Programming 47

Communication and security: Security validation and data APIs

These IBM i APIs provide security validation and data.

cwbCO_ChangePassword
Use the cwbCO_ChangePassword command.

Purpose

Changes the password of the specified IBM i user from a specified old to a specified new value. This API
does NOT use the user ID and password that currently are set in the given system object, nor does it
change these values.

Syntax
UINT CWB_ENTRY cwbCO_ChangePasswoxrd (
cwhCO_SysHandle system,
LPCSTR userID,
LPCSTR oldPassword,
LPCSTR newPassword,
cwbSV_ErrHandle errorHandle) ;

Parameters

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystemor cwbCO_CreateSystemlLike. Thisis the
IBM i identification.

LPCSTR userID - input
A pointer to an ASCIIZ string that contains the user ID. The maximum length is
CWBCO_MAX_USER_ID + 1 characters, including the null terminator.

LPCSTR oldPassword - input
A pointer to a buffer which contains the old password. The maximum length is
CWBCO_MAX_PASSWORD + 1 bytes, including the null terminator.

LPCSTR newPassword - input
A pointer to a buffer which contains the new password. The maximum length is
CWBCO_MAX_PASSWORD + 1 bytes, including the null terminator.

cwbSV_ErrHandle errorHandle - input/output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetExrrText
API. If the parameter is set to zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
A pointer parameter is NULL.

CWB_GENERAL_SECURITY_ERROR
A general security error occurred. The user profile does not have a password or the password
validation program found an error in the password.

CWB_INVALID_PASSWORD
One or more characters in the new password is invalid or the password is too long.

48 IBM i: Windows Application Package: Programming

CWB_INVALID_USERID
One or more characters in the user ID is invalid or the user ID is too long.

CWB_UNKNOWN_USERID
The supplied user ID is not known to this system.

CWB_WRONG_PASSWORD
Password is not correct.

CWB_USER_PROFILE_DISABLED
The user ID has been disabled.

CWB_PW_TOO_LONG
New password longer than maximum accepted length.

CWB_PW_TOO_SHORT
New password shorter than minimum accepted length.

CWB_PW_REPEAT_CHARACTER
New password contains a character used more than once.

CWB_PW_ADJACENT_DIGITS
New password has adjacent digits.

CWB_PW_CONSECUTIVE_CHARS
New password contains a character repeated consecutively.

CWB_PW_PREVIOUSLY_USED
New password was previously used.
CWB_PW_DISALLOWED_CHAR
New password uses an installation-disallowed character.

CWB_PW_NEED_NUMERIC
New password must contain at least one numeric.

CWB_PW_MATCHES_OLD
New password matches old password in one or more character positions.

CWB_PW_NOT_ALLOWED

New password exists in a dictionary of disallowed passwords.
CWB_PW_CONTAINS_USERID

New password contains user ID as part of the password.

CWB_PW_LAST_INVALID_PWD
The next invalid password will disable the user profile.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.
Usage

Valid password lengths depend on the current setting of the IBM i password level. Password levels 0 and
1 allow passwords up to 10 characters in length. Password levels 2 and 3 allow passwords up to 128
characters in length.

cwbCO_GetDefaultUserMode

Use the cwbCO_GetDefaultUserMode command.

Purpose

This function gets, for the specified system object, the default user mode that currently is set.

Windows Application Package: Programming 49

Syntax

UINT CWB_ENTRY cwbCO_GetDefaultUserMode (
cwbCO_SysHandle system,
cwbCO_DefaultUserMode =*mode);

Parameters

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystemor cwbCO_CreateSystemLike. This is the
IBM i identification.

cwbhCO_DefaultUserMode * mode - output
Returns the default user mode for this system object. See comments for
cwbCO_SetDefaultUsexrMode for the list of possible values and their meanings.

Return Codes

The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The mode pointer is NULL.

Usage

None.

cwbhCO_GetFailedSignons
Use the cwbCO_GetFailedSignons command.

Purpose

Retrieves the number of unsuccessful security validation attempts since the last successful attempt.

Syntax
UINT CWB_ENTRY cwbCO_GetFailedSignons(
cwbCO_SysHandle system,
PUSHORT numberFailedAttempts);

Parameters

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification.

PUSHORT numberFailedAttempts - output
A pointer to a short that will contain the number of failed logon attempts if this call is successful.

Return Codes

The following list shows common return values.

50 IBMi: Windows Application Package: Programming

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The numberFailedAttempts pointer is NULL.

CWB_INV_BEFORE_VALIDATE
The user ID and password that were set in the specified system object have not been validated yet, so
this information is not available.

Usage

You successfully must have called cwbCO_VerifyUserIDPassword, cwbCO_Signon, or
cwbCO_Connect before using this API. If you want to ensure that the value that is returned is
recent, you either must call cwbCO_VerifyUserIDPasswoxrd explicitly, or set the Validate Mode to
CWBCO_VALIDATE_ALWAYS before you call cwbCO_Signon or cwbCO_Connect.

cwhCO_GetPasswordExpireDate

Use the cwbhCO_GetPasswordExpireDate command.

Purpose

Retrieves the date and time the password expires for the IBM i user ID, for the system that is specified by
the system object.

Syntax
UINT CWB_ENTRY cwhCO_GetPasswordExpireDate (
cwbCO_SysHandle system,
cwb_DateTime *expirationDateTime) ;

Parameters

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification.

cwb_DateTime * expirationDateTime - output
A pointer to a structure that contains the date and time at which the password will expire for the
current user ID, in the following format:

Bytes Content

1-2 Year (Example: 1998 = 0x07CF)

3 Month (January = 0x01)

4 Day (First day = 0x01;31st day = Ox1F)

5 Hour (Midnight = 0x00;23rd hour = 0x17)

6 Minute (On the hour = 0x00; 59th minute = 0x3B)

7 Second (On the minute = 0x00; 59th second = 0x3B)

8 One-hundredth of a second (on the second = 0x00; maximum = 0x63)

Note: On a given day, the maximum time is 23 hours, 59 minutes, and 59.99 seconds. Midnight is 0
hours, 0 minutes, and 0.0 seconds on the following day.

Windows Application Package: Programming 51

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The pointer to the cwb_DateTime structure is NULL.

CWB_INV_BEFORE_VALIDATE
The user ID and password that were set in the specified system object have not been validated (so
the password expire date is not available), or validation has occurred and the user profile password
expiration interval is set to *NOMAX.

Usage

You successfully must have called cwbCO_VerifyUserIDPassword, cwbCO_Signon, or
cwbCO_Connect before using this API. If you want to ensure that the value that is returned is
recent, you either must call cwbCO_VerifyUserIDPasswozrd explicitly, or set the Validate Mode to
CWBCO_VALIDATE_ALWAYS before you call cwbCO_Signon or cwbCO_Connect.

If the user profile password expiration interval is set to *“NOMAX, a password expire date does not exist.
To detect this case, first validate the user ID and password as noted above, and then, if successful, call
cwbCO_GetPasswordExpireDate. A return code of CWBCO_INV_BEFORE_VALIDATE means that the
password expiration interval is set to *NOMAX.

cwbCO_GetPrevSignonDate

Use the cwbCO_GetPrevSignonDate command.

Purpose

Retrieves the date and time of the previous successful security validation.

Syntax
UINT CWB_ENTRY cwbCO_GetPrevSignonDate (
cwbCO_SysHandle system,
cwb_DateTime *signonDateTime) ;

Parameters

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification.

cwb_DateTime * sighonDateTime - output
A pointer to a structure that contains the date and time at which the previous signon occurred, in the
following format:

Bytes Content

1-2 Year (Example: 1998 = 0x07CF)

3 Month (January = 0x01)

4 Day (First day = 0x01;31st day = Ox1F)

5 Hour (Midnight = 0x00;23rd hour = 0x17)

52 IBMi: Windows Application Package: Programming

Bytes Content

6 Minute (On the hour = 0x00; 59th minute = 0x3B)

7 Second (On the minute = 0x00; 59th second = 0x3B)

8 One-hundredth of a second (on the second = 0x00; maximum = 0x63)

Note: On a given day, the maximum time is 23 hours, 59 minutes, and 59.99 seconds. Midnight is 0
hours, 0 minutes, and 0.0 seconds on the following day.

Return Codes
The following list shows common return values.
CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The pointer to the cwb_DateTime structure is NULL.

CWB_INV_BEFORE_VALIDATE
The user ID and password that were set in the specified system object have not been validated yet, so
this information is not available.

Usage

You successfully must have called cwbCO_VerifyUserIDPassword, cwbCO_Signon, or
cwbCO_Connect before using this API. If you want to ensure that the value that is returned is
recent, you either must call cwbCO_VerifyUserIDPassword explicitly, or set the Validate Mode to
CWBCO_VALIDATE_ALWAYS before you call cwbCO_Signon or cwbCO_Connect.

cwbCO_GetPromptMode
Use the cwhCO_GetPromptMode command.

Purpose

This function gets, for the specified system object, the prompt mode that currently is set.

Syntax
UINT CWB_ENTRY cwhCO_GetPromptMode (
cwbCO_SysHandle system,
cwbCO_PromptMode *mode) ;

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemLikelt
is the IBM i identification.

cwbhCO_PromptMode * mode - output
Returns the prompt mode. See comments for cwbCO_SetPromptMode for possible values and their
meanings.

Return Codes

The following list shows common return values.

Windows Application Package: Programming 53

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The mode pointer is NULL.
Usage

None.

cwbCO_GetSignonDate
Use the cwbCO_GetSignonDate command.

Purpose

Retrieves the date and time of the current successful security validation.

Syntax
UINT CWB_ENTRY cwbCO_GetSignonDate (
cwhCO_SysHandle system,
cwb_DateTime *signonDateTime) ;

Parameters

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystemor cwbCO_CreateSystemLike. It is the
IBM i identification.

cwhb_DateTime * signonDateTime - output
A pointer to a structure that will contain the date and time at which the current signon occurred, in the
following format:

Bytes Content

1-2 Year (Example: 1998 = 0x07CF)

3 Month (January = 0x01)

4 Day (First day = 0x01;31st day = Ox1F)

5 Hour (Midnight = 0x00;23rd hour = 0x17)

6 Minute (On the hour = 0x00; 59th minute = 0x3B)

7 Second (On the minute = 0x00; 59th second = 0x3B)

8 One-hundredth of a second (on the second = 0x00; maximum = 0x63)

Note: On a given day, the maximum time is 23 hours, 59 minutes, and 59.99 seconds. Midnight is O
hours, 0 minutes, and 0.0 seconds on the following day.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

54 IBMi: Windows Application Package: Programming

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The pointer to the cwb_DateTime structure is NULL.

CWB_INV_BEFORE_VALIDATE
The user ID and password set in the specified system object have not been validated yet, so this
information is not available.

Usage

You successfully must have called cwbCO_VerifyUserIDPassword, cwbCO_Signon, or
cwbCO_Connect before using this API. If you want to ensure that the value returned is recent,
you must either call cwbCO_VerifyUserIDPasswoxrd explicitly, or set the Validate Mode to
CWBCO_VALIDATE_ALWAYS before you call cwbCO_Signon or cwbCO_Connect.

cwbCO_GetUserIDEx
Use the cwbCO_GetUserIDEx command.

Purpose

This function gets the current user ID that is associated with a specified system object. This is the user ID
that is being used for IBM i connection.

Syntax

UINT CWB_ENTRY cwbhCO_GetUserIDEx(
cwhCO_SysHandle system,
LPSTR userID,
PULONG length);

Parameters

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification.

LPSTR userID - output
Pointer to a buffer that will contain the NULL-terminated user ID. The user ID will be at most
CWBCO_MAX_USER_ID characters long.

PULONG length - input/output
Pointer to the length of the userID buffer. If the buffer is too small to hold the user ID, including space
for the terminating NULL, the size of the buffer needed will be filled into this parameter.

Return Codes
The following list shows common return values.
CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.
CWB_INVALID_POINTER
One of the pointer parameters passed in is NULL.

CWB_BUFFER_OVERFLOW
The userlID buffer is not large enough to hold the entire user ID name.

Windows Application Package: Programming 55

Usage

The IBM i user ID might or might not have been validated yet. To make sure it has been, call
cwbCO_Signon or cwhCO_Connect before calling this API.

If no user ID has been set and a signon has not occurred for the system object, the returned user ID will
be the empty string, even if an IBM i default user ID is configured.

cwbhCO_GetValidateMode
Use the cwbCO_GetValidateMode command.

Purpose

This function gets, for the specified system object, the validate mode currently set.
Syntax

UINT CWB_ENTRY cwbCO_GetValidateMode (
cwbCO_SysHandle system,
cwbCO_ValidateMode +*mode);

Parameters

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystemor cwbCO_CreateSystemLike. It is the
IBM i identification.

cwbCO_ValidateMode * mode - output
Returns the validate mode. See comments for cwbCO_SetValidateMode for possible values and
their meanings.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The mode pointeris NULL.

Usage

None.

cwbCO_GetWindowHandle

Use the cwbCO_GetWindowHandle command.

Purpose

This function gets, for the specified system object, the window handle, if any, that currently is associated
with it.

Syntax

UINT CWB_ENTRY cwbhCO_GetWindowHandle (

56 IBM i: Windows Application Package: Programming

cwbCO_SysHandle system,
HWND *windowHandle);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemLike It
is the IBM i identification.

HWND * pWindowHandle - output
Returns the window handle associated with the system object, or NULL if no window handle is
associated with it.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The windowHandle pointer is NULL.

Usage

None.

cwbCO_HasSignedOn
Use the cwbCO_HasSignedOn command.

Purpose

Returns an indication of whether the specified system object has "signed on" (whether the user ID and
password have been validated at some point in the life of the specified system object).

Syntax
UINT CWB_ENTRY cwbCO_HasSignedOn (
cwbCO_SysHandle system,
cwb_Boolean *signedOn);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemlLike It
is the IBM i identification.

cwb_Boolean * signedOn - output
A pointer to a cwb_Boolean into which is stored the indication of "signed-on-ness." If the specified
system object has signed on, it will be set to CWB_TRUE, otherwise it will be set to CWB_FALSE. (On
error it will be set to CWB_FALSE as well.)

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

Windows Application Package: Programming 57

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The signedOn pointer is NULL.

Usage

A returned indication of CWB_TRUE does not mean that the user ID and password have been validated
within a certain time period, but only that since the system object's creation, a signon has occurred. That
signon might not have caused or included an IBM i connection and security validation flow. This means
that, even if CWB_TRUE is returned, the next call to the system object that requires a successful signon
might connect and attempt to re-validate the user ID and password, and that validation, and hence the
signon, might fail. The sighedOn indicator reflects the results of the most-recent user ID and password
validation. If user ID and password validation (signon) has occurred successfully at one time, but since
then this validation has failed, sighedOn is set to CWB_FALSE.

cwbhCO_SetDefaultUserMode
Use the cwbCO_SetDefaultUserMode command.

Purpose

This function sets, for the specified system object, the behavior with respect to any configured default
user ID.

Syntax

UINT CWB_ENTRY cwbCO_SetDefaultUserMode (
cwbCO_SysHandle system,
cwbhCO_DefaultUserMode mode) ;

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemLike. It
is the IBM i identification.

cwbCO_DefaultUserMode mode - input
Specifies what will be done with the default user ID. Possible values are:

CWBCO_DEFAULT_USER_MODE_NOT_SET
No default user mode is currently in use. When this mode is active, and the Prompt Mode setting
does not prohibit prompting, the user will be prompted at signon or connect time to select which
of the remaining default user modes should be used from then on. The signon or connect cannot
succeed until one of these other mode values is selected. Setting the Default User Mode back to
this value will cause the prompt to appear the next time a default user ID is needed by System
Access.

CWBCO_DEFAULT_USER_USE
When no user ID has explicitly been set (by using cwbCO_SetUserIDEx) and a signon is to occur,
use the IBM i default user ID that is configured for the system, as named in the system object.

CWBCO_DEFAULT_USER_IGNORE
Specifies never to use a default user ID. When a signon takes place and no user ID has explicitly
been set for this system object instance, the user will be prompted to enter a user ID if the Prompt
Mode allows it (see cwbCO_SetPromptMode comments), and no initial value for the user ID will
be filled in the prompt.

CWBCO_DEFAULT_USER_USEWINLOGON
The user ID that is used when logging on to Windows will be used as the default if no user ID
explicitly has been set for this system object (by using cwbCO_SetUserIDEX).

58 IBM i: Windows Application Package: Programming

CWBCO_DEFAULT_USER_USE_KERBEROS
The kerberos principal created when logging into a Windows domain will be used as the default if
no user ID has explicitly been set for this system object (using cwbCO_SetUserIDEXx).

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_PARAMETER
The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon successfully has occurred by using the specified system object, so this setting no longer may
be changed.

CWB_KERB_NOT_AVAILABLE
Kerberos security package is not available on this version of Windows.

Usage

This API cannot be used after a successful sighon has occurred for the specified system object. A signon
has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system
object. The default user mode set with this API will be ignored if a user ID has been set explicitly with the
cwbCO_SetUserIDEx API.

Error code CWB_KERB_NOT_AVAILABLE will be returned if you attempt to set
CWBCO_DEFAULT_USER_USE_KERBEROS on a Windows platform that does not support Kerberos.

cwbhCO_SetPassword

Use the cwbCO_SetPassword command.

Purpose

This function sets the password to associate with the specified system object. This password is used for
an IBM i connection with either the cwbCO_Signon or cwbCO_Connect call, and when a user ID is set
with the cwbCO_SetUserIDEx call.

Syntax

UINT CWB_ENTRY cwbCO_SetPassword(
cwbCO_SysHandle system,
LPCSTR password);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemLike. It
is the IBM i identification.

LPCSTR password - input
A pointer to a buffer that contains the NULL-terminated password. The maximum length is
CWBCO_MAX_PASSWORD + 1 bytes in length, including the NULL terminator.

Windows Application Package: Programming 59

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.
CWB_INVALID_POINTER
The password pointer is NULL.
CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage that is being used.
CWB_INV_AFTER_SIGNON
Signon successfully has occurred by using the specified system object, so this setting no longer may
be changed.

Usage

This API cannot be used after a successful sighon has occurred for the specified system object. A signon
has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system
object. A password set with this API will not be used unless a corresponding user ID has been set with
cwbCO_SetUserIDEx.

Valid password lengths depend on the current setting of the IBM i password level. Password levels 0 and
1 allow passwords up to 10 characters in length. Password levels 2 and 3 allow passwords up to 128
characters in length.

cwbhCO_SetPromptMode
Use the cwhCO_SetPromptMode command.

Purpose

This function sets, for the specified system object, the prompt mode, which specifies when and if the user
should be prompted for user ID and password, or other information, when a signon is performed.

Syntax

UINT CWB_ENTRY cwhCO_SetPromptMode (
cwbCO_SysHandle system,
cwbCO_PromptMode mode) ;

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemLike. It
is the IBM i identification.

cwbCO_PromptMode - input
Specifies the prompt mode. Possible values are:

CWBCO_PROMPT_IF_NECESSARY
Prompting occurs if either the user ID or password are not explicitly set or cannot be retrieved
from the persistent configuration for this system, from the password cache (if enabled), or by
some other means.

If the Default User Mode is set, and if IBM i prompting has not occurred for the default user ID,
IBM i prompting occurs for it at cwbCO_Connect or cwbCO_Signon time

60 IBM i: Windows Application Package: Programming

CWBCO_PROMPT_ALWAYS
Prompting always happens when a signon is to occur for the specified system object, even if
a successful IBM i signon, using the same user ID to the same system has occurred, using a
different system object. Since a signon occurs only once for a system object, this means that
exactly one prompt per system object occurs. Additional explicit signon calls do nothing (including
prompt). See two exceptions to using this mode in the usage notes below.

CWBCO_PROMPT_NEVER
Prompting never occurs for the user ID and password, or for the default user ID. When this mode
is used, a call to any API that requires a signon for completion (for example, cwbCO_Signon
or cwbCO_Connect) will fail if either the user ID or password are not set and cannot be
programmatically retrieved (from the IBM i password cache). This mode is used when either

« The product is running on a PC that is unattended or for some other reason cannot support
end-user interaction.

« The application itself is prompting for or otherwise fetching the user ID and password, and
explicitly setting them by using cwbCO_SetUserIDEx and cwbCO_SetPasswozrd.

Return Codes
The following list shows common return values:
CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_PARAMETER
The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon successfully has occurred by using the specified system object, so this setting no longer may
be changed.

Usage

This API cannot be used after a successful signon has occurred for the specified system object. A signon
has occurred if either cwbCO_Signon or cwhCO_Connect has been called successfully for this system
object. Setting the prompt mode to CWBCO_PROMPT_ALWAYS will not prompt the user in the following
two cases:

« A user ID and password explicitly have been set with the cwbhCO_setUserIDEx and
cwbhCO_SetPassword APIs.

« Use Windows logon info (CWBCO_DEFAULT_USER_USEWINLOGON) has been set with the
cwbCO_SetDefaultUserMode API.

cwbhCO_SetUserIDEx
Use the cwbCO_SetUserIDEx command.

Purpose
This function sets the user ID to associate with the specified system object. This user ID is used on the
IBM i connection with either the cwbCO_Signon or cwbCO_Connect call.

Syntax

UINT CWB_ENTRY cwbCO_SetUserIDEx(

Windows Application Package: Programming 61

cwbCO_SysHandle system,
LPCSTR userID);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemLike. It
is the IBM i identification.

LPCSTR userID - input
Pointer to a buffer that contains the NULL-terminated user ID. The user ID must not be longer than
CWBCO_MAX_USER_ID characters, not including the terminating NULL character.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The userID pointer is NULL.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage that is being used.

CWB_INV_AFTER_SIGNON
Signon successfully has occurred by using the specified system object, so this setting no longer may
be changed.

Usage

This API cannot be used after a successful signon has occurred for the specified system object. A
signon has occurred if either cwbCO_Signon or cwhCO_Connect has been called successfully for this
system object. Setting a user ID explicitly with this API will cause any default user mode set with the
cwbCO_SetDefaultUsexrMode API to be ignored.

cwbCO_SetlWindowHandle

Use the cwbCO_SetWindowHandle command.

Purpose

This function sets, for the specified system object, the window handle to use if any prompting is to be
done that is associated with the system object (for example, prompting for user ID and password). When
so set (to a non-NULL window handle), such a prompt would appear 'modal' to the main application
window and therefore never would get hidden behind that window.

Syntax
UINT CWB_ENTRY cwhCO_SetWindowHandle (
cwbCO_SysHandle system,
HWND windowHandle);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemLike. It
is the IBM i identification.

62 IBMi: Windows Application Package: Programming

HWND windowHandle - input
Specifies the window handle to associate with the system object. If NULL, no window handle is
associated with the system object.

Return Codes
The following list shows common return values:
CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

Usage

This API may be used any time to change the window handle for the specified system object, even after a
successful signon.

cwhCO_SetValidateMode
Use the cwbCO_SetValidateMode command.

Purpose

This function sets, for the specified system object, the validate mode, which affects behavior when
validating the user ID and password.

Syntax

UINT CWB_ENTRY cwbCO_SetValidateMode (
cwbCO_SysHandle system,
cwbCO_ValidateMode mode);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemLike. It
is the IBM i identification.

cwbCO_ValidateMode mode - input
Specifies the validate mode. Possible values are:

CWBCO_VALIDATE_IF_NECESSARY
If validation of this IBM i user ID has occurred from this PC within the last 24 hours, and the
validation was successful, then use the results of the last validation and do not connect to validate
at this time. There might be other scenarios where re-validation occurs. Re-validation occurs as
needed.

CWBCO_VALIDATE_ALWAYS
IBM i communication to validate user ID and password occurs every time this validation is
requested or required. Setting this mode forces the validation to occur (when the system object is
not signed on yet). Once a system object is signed on, this setting is ignored.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

Windows Application Package: Programming 63

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_PARAMETER

The mode parameter is an invalid value.
CWB_RESTRICTED_BY_POLICY

A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon has successfully occurred using the specified system object, so this setting no longer may be
changed.

Usage

This API cannot be used after a successful sighon has occurred for the specified system object. A signon
has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system
object.

cwbhCO_Signon

Use the cwbCO_Signon command.

Purpose

Use the user ID and password to sign on the user to the system that is represented by the IBM i specified
object.

Note: Passing an incorrect password on the cwbCO_Signon API increments the invalid signhon attempts
counter for the specified user. The user profile is disabled if sufficient invalid passwords are sent to the

host.
Syntax
UINT CWB_ENTRY cwbCO_Signon(
cwbCO_SysHandle system,
cwbSV_ErrHandle errorHandle);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemLike. It
is the IBM i identification.

cwbSV_ErrHandle errorHandle - input/output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetExrrText
APL. If the parameter is set to zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes
The following list shows common return values:
CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_UNKNOWN_USERID
The supplied user ID is not known to this system.

CWB_WRONG_PASSWORD
Password is not correct.

64 IBMi: Windows Application Package: Programming

CWB_PASSWORD_EXPIRED
Password has expired.

CWB_USER_PROFILE_DISABLED
The user ID has been disabled.

CWB_INVALID_PASSWORD
One or more characters in the password is invalid or the password is too long.

CWB_INVALID_USERID
One or more characters in the user ID is invalid or the user ID is too long.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR
General API failure.

CWB_USER_CANCELLED
The user cancelled the signon process.

Other return codes commonly may be returned as a result of a failed attempt to connect to the signon
server. For a list of such return codes, see comments for cwbCO_Connect.

Usage

Both IBM i prompting for user password and actual IBM i contact during user validation are influenced by
current system object settings, such as user ID, password, Prompt Mode, Default User Mode, and Validate
Mode. See declarations for the get/set APIs of these attributes for more information. If the IBM i name

in the specified system object does not exist in the System List, and the system object Persistence Mode
is set appropriately, then when cwbCO_Connect or cwbCO_Signon first is called successfully, the IBM i
name that is in the system object, is added to the System List.

For more information about the Persistence Mode, see the comments for cwbCO_SetPersistenceMode.
If successful, and IBM i password caching is enabled, the password is stored for the resulting user ID in
the PC's IBM i password cache.

See also:

« “Differences between cwbhCO_Signon and cwbCO_VerifyUserIDPassword” on page 83

 “Similarities between cwbCO_Signon and cwbCO_VerifyUserIDPassword” on page 83

Related reference

System object attributes

System object attributes, on the IBM i platform, affect the behavior of signing on and communicating with
the system represented by the system object.

cwbCO_VerifyUserIDPassword

Use the cwbhCO_VerifyUserIDPassword command.

Purpose

This function verifies the correctness of the IBM i user ID and password, on the system represented by
the specified system object. If the user ID and password are correct, it also retrieves data related to
signon attempts and password expiration.

Note: Passing an incorrect password on the cwbCO_VerifyUserIDPassword API increments the invalid
signon attempts counter for the specified user. The user profile is disabled if sufficient invalid passwords
are sent to the host.

Syntax

UINT CWB_ENTRY cwhCO_VerifyUserIDPassword (
cwbCO_SysHandle system,

Windows Application Package: Programming 65

LPCSTR userID,
LPCSTR passwoxd,
cwbSV_ErrHandle errorHandle);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemlLike. It
is the IBM i identification.

LPCSTR userID - input
Pointer to a buffer that contains the NULL-terminated user ID, which must not exceed
CWBCO_MAX_USER_ID characters in length, not including the terminating NULL.

LPCSTR password - input
A pointer to a buffer that contains the NULL-terminated password. The maximum length is
CWBCO_MAX_PASSWORD + 1 bytes in length, including the NULL terminator.

cwbSV_ErrHandle errorHandle - input/output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetExrrText
API. If the parameter is set to zero, or if the errorHandle is invalid, no messages will be retrieved.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
A pointer supplied to the API is not valid.

CWB_UNKNOWN_USERID
The supplied user ID is not known to this system.

CWB_WRONG_PASSWORD
Password is not correct.

CWB_PASSWORD_EXPIRED
Password has expired.

CWB_USER_PROFILE_DISABLED
The user ID has been disabled.

CWB_INVALID_PASSWORD
One or more characters in the password is invalid or the password is too long.

CWB_INVALID_USERID
One or more characters in the user ID is invalid or the user ID is too long.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate a temporary buffer.

CWB_API_ERROR
General API failure.

Usage

Valid password lengths depend on the current setting of the IBM i password level. Password levels 0 and
1 allow passwords up to 10 characters in length. Password levels 2 and 3 allow passwords up to 128
characters in length.

See “Differences between cwbCO_Signon and cwbCO_VerifyUserIDPassword” on page 83 and
“Similarities between cwbCO_Signon and cwbCO_VerifyUserIDPassword” on page 83.

66 IBM i: Windows Application Package: Programming

Communications and security: Get and set attribute APIs

Use the product APIs to get and set other system object attributes, or determine if the attributes are
restricted by policies.

cwbCO_CanModifyDefaultUserMode
Use the cwbCO_CanModifyDefaultUserMode command.

Purpose

Indicates whether the default user mode for the specified system object may be modified.

Syntax
UINT CWB_ENTRY cwbCO_CanModifyDefaultUserMode (
cwhCO_SysHandle system,
cwb_Boolean *canModify);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemlLike. It
is the IBM iidentification.

cwb_Boolean *canModify - output
Set to CWB_TRUE if this mode may be modified, otherwise set to CWB_FALSE.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The canModify pointer is NULL.

Usage

This value may not be modified if policy settings prohibit its modification, or if a successful signon or
connection that is using the specified system object already has occurred. In these cases, canModify
will be set to CWB_FALSE. The results returned from this API are correct only at the time of the call.

If policy settings are changed or a signon or connection is performed using this system object, the results
of this API could become incorrect. This must be considered and managed, especially in a multi-threaded
application.

cwbCO_CanModifyIPAddress
Use the cwhCO_CanModifyIPAddress command.

Purpose

Indicates whether IP Address that is used to connect may be modified for this system object.
Syntax
UINT CWB_ENTRY cwhCO_CanModifyIPAddress(

Windows Application Package: Programming 67

cwbCO_SysHandle system,
cwb_Boolean *canModify);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemLike. It
is the IBM i identification.

cwb_Boolean *canModify - output
Set to CWB_TRUE if the IP Address may be modified, otherwise set to CWB_FALSE.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The canModify pointer is NULL.

Usage

This value may not be modified if policy settings prohibit its modification, or if a successful signon

or connection by using the specified system object already has occurred. In these cases, canModify

will be set to CWB_FALSE. This value may not be modified if the IP Address Lookup Mode is not
CWBCO_IPADDR_LOOKUP_NEVER, and policy settings prohibit modification of the IP Address Lookup
Mode. In that case, canModify will be set to CWB_FALSE. The results returned from this API are correct
only at the time of the call. If policy settings are changed or a signon or connection is performed using
this system object, the results of this API could become incorrect. This must be considered and managed,
especially in a multi-threaded application.

cwbCO_CanModifyIPAddressLookupMode
Use the cwbCO_CanModifyIPAddressLookupMode command.

Purpose
Indicates whether the IP Address Lookup Mode may be modified for this system object.

Syntax
UINT CWB_ENTRY cwbCO_CanModifyIPAddressLookupMode (
cwbCO_SysHandle system,
cwb_Boolean *canModify);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemlLike. It
is the IBM i identification.

cwb_Boolean *canModify - output
Set to CWB_TRUE if this mode may be modified, otherwise set to CWB_FALSE.

Return Codes

The following list shows common return values.

68 IBM i: Windows Application Package: Programming

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The canModify pointer is NULL.

Usage

This value may not be modified if policy settings prohibit its modification, or if a successful signon or
connection using the specified system object already has occurred. In these cases, canModify will be set
to CWB_FALSE. The results returned from this API are correct only at the time of the call.

If policy settings are changed or a signon or connection is performed using this system object, the results
of this API could become incorrect. This must be considered and managed, especially in a multi-threaded
application.

cwbCO_CanModifyPersistenceMode
Use the cwbhCO_CanModifyPersistenceMode command.

Purpose

Indicates whether persistence mode for the specified system object may be modified.

Syntax
UINT CWB_ENTRY cwbCO_CanModifyPersistenceMode (
cwbhCO_SysHandle system,
cwb_Boolean *canModify);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemlLike. It
is the IBM i identification.

cwb_Boolean *canModify - output
Set to CWB_TRUE if this mode may be modified, otherwise set to CWB_FALSE.

Return Codes
The following list shows common return values.
CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The canModify pointer is NULL.

Usage

This value may not be modified if policy settings prohibit its modification, or if a successful signon or
connection by using the specified system object has already occurred. In these cases, canModify will
be set to CWB_FALSE. The results returned from this API are correct only at the time of the call. If policy
settings are changed or a signon or connection is performed using this system object, the results of

Windows Application Package: Programming 69

this API could become incorrect. This must be considered and managed, especially in a multi-threaded
application.

cwbCO_CanModifyPortLookupMode
Use the cwbCO_CanModifyPortLookupMode command.

Purpose

Indicates whether the port lookup mode for the specified system object may be modified.

Syntax
UINT CWB_ENTRY cwbhCO_CanModifyPortLookupMode (
cwbCO_SysHandle system,
cwb_Boolean *canModify);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemlLike. It
is the IBM i identification.

cwb_Boolean *canModify - output
Set to CWB_TRUE if this mode may be modified, otherwise set to CWB_FALSE.

Return Codes
The following list shows common return values.
CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The canModify pointer is NULL.

Usage

This value may not be modified if policy settings prohibit its modification, or if a successful signon or
connection by using the specified system object already has occurred. In these cases, canModify will be
set to CWB_FALSE. The results returned from this API are correct only at the time of the call. If policy
settings are changed or a signon or connection is performed using this system object, the results of

this API could become incorrect. This must be considered and managed, especially in a multi-threaded
application.

cwhCO_CanModifyUseSecureSockets

Use the cwhCO_CanModifyUseSecureSockets command.

Purpose

Indicates whether the secure sockets use setting may be modified for this system object.

Syntax
UINT CWB_ENTRY cwhCO_CanModifyUseSecureSockets(
cwbCO_SysHandle system,
cwb_Boolean *canModify);

70 IBMi: Windows Application Package: Programming

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemLike. It
is the IBM i identification.

cwb_Boolean *canModify - output
Set to CWB_TRUE if the secure sockets use setting may be modified, otherwise set to CWB_FALSE.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The canModify pointer is NULL.

Usage

This value may not be modified if policy settings prohibit its modification, or if a successful signon or
connection using the specified system object has already occurred. In these cases, canModify will be set
to CWB_FALSE. The results returned from this API are correct only at the time of the call. If policy settings
are changed or a signon or connection is performed using this system object, the results of this API could
become incorrect. This must be considered and managed, especially in a multi-threaded application.

cwbCO_GetDescription
Use the cwbhCO_GetDescription command.

Purpose

This function gets the text description associated with a specified system object.
Syntax

UINT CWB_ENTRY cwbCO_GetDescription(
cwhCO_SysHandle system,
LPSTR description,
PULONG length);

Parameters

cwbCO_SysHandle system - input
Handle returned previously from cwbCO_CreateSystem or cwbCO_CreateSystemLike. It is the
IBM i identification.

LPSTR description - output
Pointer to a buffer that will contain the NULL-terminated description. The description will be at most
CWBCO_MAX_SYS_DESCRIPTION characters long, not including the terminating NULL.

PULONG length - input/output
Pointer to the length of the description buffer. If the buffer is too small to hold the description,
including space for the terminating NULL, the size of the buffer needed will be filled into this
parameter.

Return Codes

The following list shows common return values.

Windows Application Package: Programming 71

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE

Invalid system handle.
CWB_INVALID_POINTER

One of the pointer parameters passed inis NULL.

CWB_BUFFER_OVERFLOW
The description buffer is not large enough to hold the entire description.

cwbhCO_GetHostCCSID
Use the cwbCO_GetHostCCSID command.

Purpose

Returns the IBM i associated CCSID that is represented by the user ID that is in the system object, that
was in use when the signon to the system occurred.

Syntax
UINT CWB_ENTRY cwbCO_GetHostCCSID(
cwbCO_SysHandle system,
PULONG pCCSID);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemlLike. It
is the IBM i identification.

PULONG pCCSID - output
The host CCSID is copied into here if successful.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
the CCSID pointeris NULL.

CWB_DEFAULT_HOST_CCSID_USED
Host CCSID 500 is returned because this API is unable to determine the host CCSID appropriate for
the user ID as set in the system object.

CWB_USER_TIMEOUT
CWB_SSL_JAVA_ERROR
CWB_USER_TIMEOUT_SENDRCV

Usage

This API does not make or require an active connection to the host system to retrieve the associated
CCSID value. However, it does depend on a prior successful connection to the host system by using the
same user ID as is set in the specified system object. This is because the CCSID that is returned is the one

72 IBMi: Windows Application Package: Programming

from the specific user profile, NOT the IBM i default CCSID. To retrieve a host CCSID without requiring a
user ID, call cwbNL_GetHostCCSID.

cwbCO_GetHostVersionEx
Use the cwbCO_GetHostVersionEx command.

Purpose

Get the version and release level of the host.

Syntax
UINT CWB_ENTRY cwbCO_GetHostVersionEx(
cwbCO_SysHandle system,
PULONG version,
PULONG release);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemLike. It
is the IBM i identification.

PULONG version - output
Pointer to a buffer where the version level of the system is returned.

PULONG release - output
Pointer to a buffer where the release level of the system is returned.

Return Codes
The following list shows common return values:

CWB_OK
Successful Completion.

CWB_NOT_CONNECTED
The system has never been connected to when using the currently active environment.

CWB_INVALID_POINTER
One of the pointers passed in is NULL.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate a temporary buffer.

Usage

The host version is retrieved and saved whenever an IBM i connection is made. If an IBM i connection
does not exist in the currently-active environment, this information is not available, and the error code
CWB_NOT_CONNECTED is returned. If you know that a successful IBM i connection was made, it is
likely that the version and release levels returned are current. If you want to make sure that the values
are available and have been recently retrieved, call cwbCO_Signon or cwbCO_Connect for this system
object first, then call cwbCO_GetHostVersionEx.

Windows Application Package: Programming 73

cwbhCO_GetIPAddress
Use the cwbCO_GetIPAddress command.

Purpose

This function gets the IBM i IP address represented by the specified system object. This is the IP
address that was used on the IBM i connection (or was set some other way, such as by using
cwhCO_SetIPAddress), and will be used for later connections, when using the specified system object.

Syntax

UINT CWB_ENTRY cwbCO_GetIPAddress(
cwbCO_SysHandle system,
LPSTR IPAddress,
PULONG length);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned by cwbCO_CreateSystemor cwbCO_CreateSystemlLike. Itis
the IBM i identification.

LPSTR IPAddress - output
Pointer to a buffer that will contain the NULL-terminated IP address in dotted-decimal notation (in the
form "nnn.nnn.nnn.nnn" where each "nnn" is in the range of from 0 to 255).

PULONG length - input/output
Pointer to the length of the IPAddress buffer. If the buffer is too small to hold the output, including
room for the terminating NULL, the size of the buffer needed will be filled into this parameter and
CWB_BUFFER_OVERFLOW will be returned.

Return Codes

The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
One of the input pointers is NULL.

CWB_BUFFER_OVERFLOW
The IPAddress buffer is not large enough to hold the entire IPAddress string.

Usage

None.

cwbhCO_GetIPAddressLookupMode
Use the cwhCO_GetIPAddressLookupMode command.

Purpose

This function gets the indication of when, if ever, dynamic lookup occurs for the IBM i IP address
represented by the specified system object.

74 IBMi: Windows Application Package: Programming

Syntax

UINT CWB_ENTRY cwhCO_GetIPAddressLookupMode (
cwbCO_SysHandle system,
cwbCO_IPAddressLookupMode *mode) ;

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned by cwbCO_CreateSystemor cwbCO_CreateSystemlLike. Itis
the IBM i identification.

cwbCO_IPAddressLookupMode * mode - output
Returns the IP address lookup mode that currently is in use. See comments for
“cwbCO_SetIPAddressLookupMode” on page 78 for possible values and their meanings.

Return Codes

The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The mode pointer is NULL.

Usage
None.

cwhCO_GetPortLookupMode
Use the cwbhCO_GetPortLookupMode command.

Purpose

This function gets, for the specified system object, the mode or method by which host service ports are
looked up when they are needed to establish an IBM i service connection.

Syntax

UINT CWB_ENTRY cwhCO_GetPortLookupMode (
cwbCO_SysHandle system,
cwbCO_PortLookupMode *mode) ;

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned by cwbCO_CreateSystemor cwbCO_CreateSystemlLike. Itis
the IBM i identification.

cwbCO_PortLookupMode * mode - output
Returns the host service port lookup mode. See comments for cwbCO_SetPortLookupMode for
possible values and their meanings.

Return Codes

The following list shows common return values.

Windows Application Package: Programming 75

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The mode pointer is NULL.

Usage

None.

cwbCO_GetSystemName
Use the cwbhCO_GetSystemName command.

Purpose

This function gets the IBM i name that is associated with the specified system object.
Syntax

UINT CWB_ENTRY cwbCO_GetSystemName (
cwhCO_SysHandle system,
LPSTR sysName,
PULONG length);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemLike. It
is the IBM i identification.

LPSTR sysName - output
Pointer to a buffer that will contain the NULL-terminated system name. The name will be
CWBCO_MAX_SYS_NAME characters long at most, not including the terminating NULL.

PULONG length - input/output
Pointer to the length of the sysName buffer. If the buffer is too small to hold the system name,
including room for the terminating NULL, the size of the buffer needed will be filled into this parameter
and CWB_BUFFER_OVERFLOW will be returned.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
One of the pointer parameters passed in is NULL.

CWB_BUFFER_OVERFLOW
The sysName buffer is not large enough to hold the entire system name.

Usage

None.

76 IBM i: Windows Application Package: Programming

cwbhCO_IsSecureSockets
Use the cwbCO_IsSecureSockets command.

Purpose

This function gets (for the specified system object) whether Secure Sockets is being used (if connected),
or would be attempted (if not currently connected) for a connection.

Syntax

UINT CWB_ENTRY cwbCO_IsSecureSockets(
cwbCO_SysHandle system,
cwb_Boolean *inUse);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemLike. It
is the IBM i identification..

cwb_Boolean * inUse - output
Returns whether IBM i Access is using, or will try to use, secure sockets for communication:
CWB_TRUE
IS in use or would be if connections active.

CWB_FALSE
NOT in use, would not try to use it.

Return Codes
The following list shows common return values:
CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
The inUse pointer is NULL.

Usage

This flag is an indication of which attempts are tried for future communications. If CWB_TRUE is returned,
then any IBM i attempt to communicate that cannot be performed using secure sockets will fail.

Although with limitations, the product enforces Federal Information Processing Standards (FIPS)
compliance when SSL is used, this API does not return an indication of whether FIPS compliance is on

or off. The only way to verify that FIPS-compliance is on or off is to visually inspect the FIPS compliance
checkbox in Properties. For more information about FIPS and its use, see the User's Guide that is installed
with the product.

cwbhCO_SetIPAddress
Use the cwbCO_SetIPAddress command.

Purpose

This function sets, for the specified system object, the IP address that will be used for the
IBM i connection. It also changes the IP Address Lookup Mode for the system object to

Windows Application Package: Programming 77

CWBCO_IPADDR_LOOKUP_NEVER. These changes will NOT affect any other system object that exists
or is created later.

Syntax

UINT CWB_ENTRY cwhCO_SetIPAddress(
cwhCO_SysHandle system,
LPCSTR IPAddress);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemlLike. It
is the IBM i identification.

LPCSTR IPAddress - input
Specifies the IP address as a character string, in dotted-decimal notation ("nnn.nnn.nnn.nnn"), where
each "nnn" is a decimal value ranging from 0 to 255. The IPAddress must not be longer than
CWBCO_MAX_IP_ADDRESS characters, not including the terminating NULL character.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_PARAMETER
The IPAddress parameter does not contain a valid IP address.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon has successfully occurred by using the specified system object, so this setting no longer may
be changed.

Usage

This API cannot be used after a successful signhon has occurred for the specified system object. A signon
has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system
object.

Use this API to force use of a specific IP address whenever any connection is made using the specified
system object. Since the IP Address Lookup Mode is set to NEVER lookup the IP address, the address
specified always will be used, unless before a connect or signon occurs, the IP Address Lookup Mode is
changed by calling cwbCO_SetIPAddressLookupMode.

cwbhCO_SetIPAddressLookupMode
Use the cwbhCO_SetIPAddressLookupMode command.

Purpose

This function sets, for the specified system object, when dynamic lookup occurs for the IBM i IP address
when a connection is to be made for the system represented by the specified system object. If the system
name that is specified when cwbCO_CreateSystemor cwbCO_CreateSystemLike was called is an
actual IP address, this setting is ignored, because the product never needs to lookup the address.

78 IBM i: Windows Application Package: Programming

Syntax

UINT CWB_ENTRY cwhCO_SetIPAddressLookupMode (
cwbCO_SysHandle system,
cwbCO_IPAddressLookupMode mode);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemLike. It
is the IBM i identification.

cwbCO_IPAddressLookupMode mode - input
Specifies when the dynamic address lookup can occur. Possible values are:

CWBCO_IPADDR_LOOKUP_ALWAYS
Every time a connection is to occur, dynamically lookup the IBM i IP address.

CWBCO_IPADDR_LOOKUP_1HOUR
Lookup the IP address dynamically if it has been at least one hour since the last lookup for this
system.

CWBCO_IPADDR_LOOKUP_1DAY
Lookup the IP address dynamically if it has been at least one day since the last lookup for this
system.

CWBCO_IPADDR_LOOKUP_1WEEK
Lookup the IP address dynamically if it has been at least one week since the last lookup for this
system.

CWBCO_IPADDR_LOOKUP_NEVER
Never dynamically lookup the IBM i IP address of this system. Always use the IP address that was
last used on this PC for the system.

CWBCO_IPADDR_LOOKUP_AFTER_STARTUP
Lookup the IP address dynamically if Windows has been re-started since the last lookup for this
system.

Return Codes
The following list shows common return values:
CWB_OK

Successful completion.
CWB_INVALID_API_HANDLE

Invalid system handle.

CWB_INVALID_PARAMETER
The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon has successfully occurred by using the specified system object, so this setting no longer may
be changed.

Usage

This API cannot be used after a successful sighon has occurred for the specified system object. A signon
has occurred if either cwbCO_Signon or cwbCO_Connect has been called successfully for this system
object.

Setting this to a value other than CWB_IPADDR_LOOKUP_ALWAYS could shorten the IBM i connection
time, since the dynamic lookup might cause network traffic and take many seconds to complete. If the

Windows Application Package: Programming 79

dynamic lookup is not performed, there is a risk that the IBM i IP address has changed and a connection
either fails or a connection is made to the wrong system.

cwbhCO_SetPortLookupMode
Use the cwbCO_SetPortLookupMode command.

Purpose

This function sets, for the specified system object, how a host server port lookup will be done.
Syntax

UINT CWB_ENTRY cwhCO_SetPortLookupMode (
cwbCO_SysHandle system,
cwbhCO_PortLookupMode mode);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned by cwbCO_CreateSystemor cwbCO_CreateSystemlLike. Itis
the IBM i identification.

cwbCO_PortLookupMode mode - input
Specifies port lookup method. Possible values are:

CWBCO_PORT_LOOKUP_SERVER
Lookup of a host server port is done by contacting the IBM i host server mapper each time the
connection of a service is to be made when one does not yet exist. The server mapper returns the
port number that is then used to connect to the desired IBM i service.

CWBCO_PORT_LOOKUP_LOCAL
Lookup of a host server port will be done by lookup in the SERVICES file on the PC itself.

CWBCO_PORT_LOOKUP_STANDARD
The standard port is used to connect to the desired service. The standard port is the port that is
set by default for a given host server and is used, if there are not any changes made to the IBM i
services table for that service.

The latter two modes eliminate the IBM i mapper connection and its associated delay, network traffic,
and load on the system.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_PARAMETER
The mode parameter is an invalid value.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon has successfully occurred by using the specified system object, so this setting no longer may
be changed.

80 IBMi: Windows Application Package: Programming

Usage

This API cannot be used after a successful signon has occurred for the specified system object. A signon
has occurred if either cwbCO_Signon or cwhCO_Connect has been called successfully for this system
object.

Use CWBCO_PORT_LOOKUP_SERVER to be most certain of the accuracy of the port number for a service;
however, this requires an extra connection to the server mapper on the system every time a new
connection to a service is to be made.

Use CWBCO_PORT_LOOKUP_STANDARD to achieve the best performance, although if the system
administrator has changed the ports of any IBM i host service in the service table on that system, this
mode will not work.

Use CWBCO_PORT_LOOKUP_LOCAL for best performance when the port for an IBM i Access host service
has been changed on the system represented by the system object. For this to work, entries for each host
service port must be added to a file on the PC named SERVICES. Each such entry must contain first the
standard name of the host service (for example, "as-rmtcmd" without the quotes) followed by spaces and
the port number for that service. The SERVICES file is located in a subdirectory under the Windows install
directory called system32\drivers\etc.

cwbhCO_UseSecureSockets
Use the cwbCO_UseSecureSockets command.

Purpose

Specifies that all IBM i communication to the system represented by the system object must either use
secure sockets or must not use secure sockets.

Syntax

UINT CWB_ENTRY cwbCO_UseSecureSockets(
cwbCO_SysHandle system,
cwb_Boolean useSecureSockets);

Parameters

cwbCO_SysHandle system - input
Handle that previously was returned from cwbCO_CreateSystemor cwbCO_CreateSystemlLike. It
identifies the IBM i system.

cwb_Boolean useSecureSockets - input
Specifies whether to require secure sockets use when communicating with the system that the
specified system object handle represents. Use the appropriate value:

CWB_TRUE
Require secure sockets use for communication

CWB_FALSE
Do not use secure sockets for communication

CWB_USER_TIMEOUT
The connect timeout value associated with the system object expired before the connection
verification attempt completed, so we stopped waiting.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

Windows Application Package: Programming 81

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_SECURE_SOCKETS_NOTAVAIL
Secure sockets is not available. It may not be installed on the PC, prohibited for this user, or not
available on the IBM i system.

CWB_RESTRICTED_BY_POLICY
A policy exists that prohibits the user from changing this value.

CWB_INV_AFTER_SIGNON
Signon has successfully occurred by using the specified system object, so this setting no longer may
be changed.

Usage

Even if a connection to the specified service already exists for the given system object, a new connection
is attempted. The attributes of the given system object, such as whether to use secure sockets, are

used for this connection attempt. It is therefore possible that connection verification may fail given the
passed system object, but might succeed to the same system given a system object whose attributes
are set differently. The most obvious example of this is where secure sockets use is concerned, since
the non-secure-sockets version of the service may be running on the system, while the secure-sockets
version of the service might not be running, or vice-versa.

At the time this API is called, the product might not detect that Secure Sockets is available for use at IBM i
connection time. Even if CWB_SECURE_SOCKETS_NOTAVAIL is NOT returned, it might be determined at a
later time that secure sockets is not available.

Although with limitations, the product enforces Federal Information Processing Standards (FIPS)
compliance when SSL is used, this API does not return an indication of whether FIPS compliance is on
or off. The only way to verify that FIPS-compliance is on or off is to visually inspect the FIPS compliance
checkbox in product Properties. For more information about FIPS and its use, see the product User's
Guide that is installed with the product.

Defines for cwhCO_Service
The following values define cwbCO_Service.

« CWBCO_SERVICE_CENTRAL

« CWBCO_SERVICE_NETFILE

« CWBCO_SERVICE_NETPRINT

« CWBCO_SERVICE_DATABASE

« CWBCO_SERVICE_ODBC

. CWBCO_SERVICE_DATAQUEUES
« CWBCO_SERVICE_REMOTECMD
« CWBCO_SERVICE_SECURITY

. CWBCO_SERVICE_DDM

« CWBCO_SERVICE_WEB_ADMIN
« CWBCO_SERVICE_TELNET

« CWBCO_SERVICE_MGMT_CENTRAL
« CWBCO_SERVICE_ANY

« CWBCO_SERVICE_ALL

82 IBMi: Windows Application Package: Programming

Differences between cwhC0O_Signon and cwbCO_VerifyUsexIDPassword

Following are listed some of the significant differences between the cwbCO_Signon and
cwbCO_VerifyUserIDPassword commands..

« cwbCO_VerifyUserIDPassword requires that a user ID and password be passed-in (system object
values for these will NOT be used), and will not prompt for this information. cwbCO_Signon may use
prompting, depending on other system object settings, and in that case will use whatever values are
supplied by the user for user ID and password in its validation attempt.

« Since cwbCO_VerifyUserIDPasswoxd never will prompt for user ID and password, these settings
in the specified system object will not be changed as a result of that call. A call to cwbCO_Signon,
however, may change the user ID or password of the system object as the result of possible prompting
for this information.

e cwbCO_VerifyUserIDPassword ALWAYS will result in an IBM i connection being established to
perform user ID and password validation, and to retrieve current values (such as date and time of last
successful signon) related to signon attempts. cwbCO_Signon, however, might not connect to validate
the user ID and password, but instead may use recent results of a previous validation. This is affected
by recency of previous validation results as well as by the Validation Mode attribute of the given system
object.

« The password is cached in the IBM i password cache only in the case of the successful completion of
cwbCO_Signon, never as the result of a call to cwbCO_VerifyUserIDPasswoxrd.

« cwbCO_VerifyUserIDPassword NEVER will set the system object state to 'signed on', whereas a
successful cwbCO_Signon WILL change the state to 'signed on'. This is important because when a
system object is in a 'signed on' state, most of its attributes may no longer be changed.

Similarities between cwhCO_Signon and cwhCO_VerifyUserIDPasswoxd

The following information illustrates the similarities between cwbCO_Signon and
cwbCO_VerifyUserIDPassword commands.

Both APIs, when using a connection to validate the user ID and password, also retrieve current data
related to signon attempts. This data then can be retrieved by using the following APIs:

« cwbCO_GetSignonDate

« cwbCO_GetPrevSignonDate

« cwbCO_GetPasswordExpireDate
« cwbCO_GetFailedSignons

Communications: Create and delete APIs

Use these product APIs to create a list of configured systems, either in the currently active environment or
in a different environment. Retrieve the number of entries in the list, and each entry in succession.

cwbCO_CreateSysListHandle
Use the cwhCO_CreateSysListHandle command.

Purpose

Creates a handle to a list of configured system names in the active environment.
Syntax

unsigned int CWB_ENTRY cwhCO_CreateSyslListHandle(
cwbCO_SyslListHandle *listHandle,
cwbSV_ErrHandle errorHandle) ;

Windows Application Package: Programming 83

Parameters

cwbCO_SysListHandle *listHandle - output
Pointer to a list handle that will be passed back on output. This handle is needed for other calls using
the list.

cwbSV_ErrorHandle errorHandle - input
If the API call fails, the message object that is associated with this handle will be filled in with
message text that describes the error. If this parameter is zero, no messages will be available.

Return Codes
The following list shows common return values:

CWB_OK
Successful Completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_POINTER
Pointer to the list handle is NULL.

Usage

cwbCO_DeleteSyslListHandle must be called to free resources that are allocated with this API.

cwbCO_CreateSysListHandleEnv
Use the cwbCO_CreateSysListHandleEnv command.

Purpose

Creates a handle to list of configured system names of the specified environment.
Syntax

unsigned int CWB_ENTRY cwbCO_CreateSysListHandleEnv(
cwhCO_SyslListHandle xlistHandle,
cwbSV_ErrHandle errorHandle,
LPCSTR pEnvironment);

Parameters

cwbCO_SysListHandle *listHandle - output
Pointer to a list handle that will be passed back on output. This handle is needed for other calls that
are using the list.

cwbSV_ErrorHandle errorHandle - input
If the API call fails, the message object that is associated with this handle will be filled in with
message text that describes the error. If this parameter is zero, no messages will be available.

LPCSTR pEnvironment
Pointer to a string containing the desired environment name. If pEnvironment is the NULL pointer, or
points to the NULL string ("\0"), the system list of the current active environment is returned.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

84 IBMi: Windows Application Package: Programming

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_INVALID_POINTER
Pointer to the list handle is NULL.

CWBCO_NO_SUCH_ENVIRONMENT
The specified environment does not exist.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage

cwbCO_DeleteSyslListHandle must be called to free resources allocated with this API.

cwbCO_DeleteSysListHandle
Use the cwhCO_DeleteSysListHandle command.

Purpose

Deletes a handle to a list of configured system names. This must be called when you are finished using the
system name list.

Syntax

unsigned int CWB_ENTRY cwhCO_DeleteSyslListHandle(
cwhCO_SyslListHandle listHandle);

Parameters

cwbCO_SysListHandle - listHandle
A handle to the system name list to delete.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

Usage

Use this API to delete the list created with the cwbCO_CreateSysListHandle or
cwbCO_CreateSyslListHandleEnv API.

cwbCO_GetNextSysName
Use the cwbhCO_GetNextSysName command.

Purpose

Get the name of the next system from a list of systems.

Windows Application Package: Programming 85

Syntax

unsigned int CWB_ENTRY cwhCO_GetNextSysName (
cwbCO_SyslListHandle listHandle,

char *systemName,
unsigned long bufferSize,
unsigned long *needed) ;

Parameters

cwbCO_SysListHandle handlelist - input
Handle to a list of systems.

char *systemName - output
Pointer to a buffer that will contain the system name. This buffer should be large enough to hold at
least CWBCO_MAX_SYS_NAME + 1 characters, including the terminating NULL character.

unsigned long bufferSize - input
Size of the buffer pointed to by systemName.

unsigned long *needed - output
Number of bytes needed to hold entire system name.

Return Codes

The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
Pointer to system name or pointer to buffer size needed is NULL. Check messages in the History Log to
determine which are NULL.

CWB_BUFFER_OVERFLOW
Not enough room in output buffer to hold entire system name. Use *needed to determine the correct
size. No error message is logged to the History Log since the caller is expected to recover from this
error and continue.

CWBCO_END_OF_LIST
The end of the system list has been reached. No system name was returned.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR
General API failure.

Usage

If the system list passed in was created using the API cwbCO_CreateSystemlListHandle, then the
system returned is configured in the currently active environment, unless between these API calls the
user has removed it or switched to a different environment. If cwbCO_CreateSysListHandleEnv was
called to create the system list, then the system returned is configured in the environment passed to that
API, unless the user has since removed it.

86 IBMi: Windows Application Package: Programming

cwhCO_GetSysListSize
Use the cwbCO_GetSysListSize command.

Purpose

Gets the number of system names in the list.
Syntax

unsigned int CWB_ENTRY cwhCO_GetSysListSize(
cwbCO_SyslListHandle 1listHandle,
unsigned long *x1istSize);

Parameters

cwbCO_SysListHandle listHandle - input
Handle of the list of systems.

unsigned long *listSize - output
On output this will be set to the number of systems in the list.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_API_HANDLE
Invalid system handle.

CWB_INVALID_POINTER
Pointer to the list size is NULL.

Usage

None.

Communications: System information APIs

Use these product APIs to obtain information about individual systems that are configured or connected
in the current process. Unless the environment name is passed as a parameter, these APIs work only with
the currently active environment.

cwbhCO_GetActiveConversations
Use the cwbCO_GetActiveConversations command.

Purpose

Get the number of active conversations of the system.
Syntax

int CWB_ENTRY cwhCO_GetActiveConversations(
LPCSTR systemName) ;

Windows Application Package: Programming 87

Parameters

LPCSTR systemName - input
Pointer to a buffer that contains the system name.

Return Codes

The number of active conversations, if any, is returned. If the systemName pointer is NULL, points to
an empty string, the system is not currently connected, or system name contains one or more Unicode
characters which cannot be converted, 0 will be returned.

Usage

This API returns the number of conversations that are active for the specified system within the CURRENT
PROCESS ONLY. There may be other conversations active within other processes running on the PC.

cwbCO_GetConnectedSysName
Use the cwbhCO_GetConnectedSysName command.

Purpose

Get the name of the connected system corresponding to the index.

Syntax
unsigned int CWB_ENTRY cwbCO_GetConnectedSysName (
char *systemName,
unsigned long *bufferSize,
unsigned long index);

Parameters

char *systemName - output
Pointer to a buffer that will contain the system name. This buffer should be large enough to hold at
least CWBCO_MAX_SYS_NAME + 1 characters, including the terminating NULL character.

unsigned long * bufferSize - input/output

input

Size of the buffer pointed to by *systemName.
output

Size of buffer needed.

unsigned long index
Indicates which connected system to retrieve the name for. The first connected system's index is O,
the second index is 1, and so on.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
Pointer to system name or pointer to buffer size needed is NULL. Check messages in the History Log to
determine which are NULL.

88 IBMi: Windows Application Package: Programming

CWB_BUFFER_OVERFLOW
Not enough room in output buffer to hold entire system name. Use *bufferSize to determine the
correct size. No error message is logged to the History Log since the caller is expected to recover from
this error and continue.

CWBCO_END_OF_LIST
The end of connected system list has been reached. No system name was returned.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR
General API failure.

Usage

Connections for which system names can be retrieved are those within the current process only.

cwbCO_GetDefaultSysName

Use the cwbhCO_GetDefaultSysName command.

Purpose

Get the name of the default system in the active environment.

Syntax
unsigned int CWB_ENTRY cwbCO_GetDefaultSysName (
char *defaultSystemName,
unsigned long bufferSize,
unsigned long *needed,
cwbSV_ErrHandle errorHandle) ;

Parameters

char *defaultSystemName - output
Pointer to a buffer that will contain the NULL-terminated system name. This buffer should be large
enough to hold at least CWBCO_MAX_SYS_NAME + 1 characters, including the terminating NULL
character.

unsigned long bufferSize - input
Size of input buffer.

unsigned long *needed - output
Number of bytes needed to hold entire system name including the terminating NULL.

cwbSV_ErrorHandle errorhandle - input
If the API call fails, the message object associated with this handle will be filled in with message text
that describes the error. If this parameter is zero, no messages will be available.

Return Codes
The following list shows common return values:

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
Pointer to the system name or pointer to buffer size needed is NULL. Check messages in the History
Log to determine which are NULL.

Windows Application Package: Programming 89

CWB_BUFFER_OVERFLOW
Not enough room in output buffer to hold the entire system name. Use *needed to determine the
correct size. No error message is logged to the History Log since the caller is expected to recover from
this error and continue.

CWBCO_DEFAULT_SYSTEM_NOT_DEFINED
The setting for the default system has not been defined in the active environment.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR
General API failure.
Usage

None.

cwbhCO_IsSystemConfigured

Use the cwbCO_IsSystemConfigured command.

Purpose

Check if the input system is configured in the environment currently in use.
Syntax

cwb_Boolean CWB_ENTRY cwbCO_IsSystemConfigured(
LPCSTR systemName) ;

Parameters

LPCSTR systemName - input
Pointer to a buffer that contains the system name.

Return Codes
The following list shows common return values:

CWB_TRUE:
System is configured.

CWB_FALSE:
System is not configured, systemName is NULL, or system name contains one or more Unicode
characters that cannot be converted.

Usage

None

cwbCO_IsSystemConfiguredEnv
Use the cwhCO_IsSystemConfiguredEnv command.

Purpose

Check if the input system is configured in the environment specified.

90 IBM i: Windows Application Package: Programming

Syntax

cwh_Boolean CWB_ENTRY cwhCO_IsSystemConfiguredEnv(
LPCSTR systemName,
LPCSTR pEnvironment);

Parameters

LPCSTR systemName - input
Pointer to a buffer that contains the system name.

LPCSTR pEnvironment - input
Pointer to a buffer that contains the environment name. If pEnvironment is NULL, or if it points to an
empty string, the environment currently in use is checked.

Return Codes
The following list shows common return values:

CWB_TRUE:
System is configured.

CWB_FALSE:
System is not configured, systemName is NULL, or system name contains one or more Unicode
characters that cannot be converted.

Usage
None

cwhCO_IsSystemConnected
Use the cwbCO_IsSystemConnected command.

Purpose

Check if the input system is currently connected.
Syntax

cwb_Boolean CWB_ENTRY cwbCO_IsSystemConnected(
LPCSTR systemName) ;

Parameters

LPCSTR systemName - input
Pointer to a buffer that contains the system name.

Return Codes
The following list shows common return values.

CWB_TRUE:
System is connnected.

CWB_FALSE:
System is not connected, systemName is NULL, or system name contains one or more Unicode
characters that cannot be converted.

Windows Application Package: Programming 91

Usage

This API indicates connection status within the current process only. The system may be connected within
a different process, but this has no effect on the output of this API.

Communications: Configured environments information

Use these product APIs to obtain the names of environments that have been configured.

cwbCO_GetActiveEnvironment
Use the cwbCO_GetActiveEnvironment command.

Purpose

Get the name of the environment currently active.
Syntax

unsigned int CWB_ENTRY cwbCO_GetActiveEnvironment (
char *environmentName,
unsigned long xbufferSize);

Parameters

char *environmentName - output
Pointer to a buffer into which will be copied the name of the active environment, if the buffer
that is passed is large enough to hold it. The buffer should be large enough to hold at least
CWBCO_MAX_ENV_NAME + 1 characters, including the terminating NULL character.

unsigned long * bufferSize - input/output
input
Size of the buffer pointed to by *environmentName.

output
Size of buffer needed.

Return Codes
The following list shows common return values:
CWB_OK

Successful Completion.
CWB_INVALID_POINTER

One or more pointer parameters are NULL.

CWB_BUFFER_OVERFLOW
Not enough room in output buffer to hold entire environment name. Use *bufferSize to determine the
correct size. No error message is logged to the History Log since the caller is expected to recover from
this error and continue.

CWBCO_NO_SUCH_ENVIRONMENT
No environments have been configured, so there is no active environment.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR
General API failure.

92 IBMi: Windows Application Package: Programming

Usage

None.

cwbCO_GetEnvironmentName
Use the cwbCO_GetEnvironmentName command.

Purpose

Get the name of the environment corresponding to the index.

Syntax
unsigned int CWB_ENTRY cwbCO_GetEnvironmentName (
char *environmentName,
unsigned long *bufferSize,
unsigned long index);

Parameters

char *environmentName - output
Pointer to a buffer that will contain the environment name. This buffer should be large enough to hold
at least CWBCO_MAX_ENV_NAME + 1 characters, including the terminating NULL character.

unsigned long * bufferSize - input/output
input
Size of the buffer pointed to by *environmentName.

output
Size of buffer needed, if the buffer provided was too small.
unsigned long index - input
0 corresponds to the first environment.

Return Codes
The following list shows common return values:

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
One or more pointer parameters are NULL.

CWB_BUFFER_OVERFLOW
Not enough room in output buffer to hold entire environment name. Use *bufferSize to determine the
correct size. No error message is logged to the History Log since the caller is expected to recover from
this error and continue.

CWBCO_END_OF_LIST
The end of the environments list has been reached. No environment name was returned.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_API_ERROR
General API failure.

Usage

None.

Windows Application Package: Programming 93

cwbCO_GetNumberOfEnvironments
Use the cwbCO_GetNumberOfEnvironments command.

Purpose

Get the number of IBM i Access environments that exist. This includes both the active and all non-active
environments.

Syntax

unsigned int CWB_ENTRY cwhCO_GetNumberOfEnvironments(
unsigned long *number0fEnv) ;

Parameters

unsigned long *numberOfEnv - output
On output this will be set to the number of environments.

Return Codes

The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
The numberOfEnv pointer parameter is NULL.

Usage

None.

Communications: Environment and connection information

Use these product APIs to determine if the calling application can modify environments and connection
information.

cwbCO_CanConnectNewSystem
Use the cwbCO_CanConnectNewSystemcommand.

Purpose

Indicates whether the user may connect to a system not currently configured in the System List within the
active environment.

Syntax

cwb_Boolean CWB_ENTRY cwbCO_CanConnectNewSystem() ;

Parameters

None

Return Codes

The following list shows common return values:

94 IBM i: Windows Application Package: Programming

CWB_TRUE
Can connect to systems not already configured.

CWB_FALSE
Cannot connect to systems not already configured.
Usage

If this API returns CWB_FALSE, a call to cwbhCO_CreateSystem with a system name not currently
configured will fail, as will various other product APIs that take system name as a parameter.

cwbCO_CanModifyEnvironmentList
Use the cwhCO_CanModifyEnvironmentList command.

Purpose

Indicates whether the user can create/remove/rename environments.
Syntax

cwh_Boolean CWB_ENTRY cwhCO_CanModifyEnvironmentList();

Parameters

None

Return Codes
The following list shows common return values.

CWB_TRUE
Can create/remove/rename/delete environments.

CWB_FALSE
Cannot create/remove/rename/delete environments.

Usage

This API indicates whether environments can be manipulated. To see if systems within an environment
may be manipulated, use the cwbCO_CanModifySystemlList and cwbCO_CanModifySystemListEnv
APIs.

cwbCO_CanModifySystemList
Use the cwbhCO_CanModifySystemList command.

Purpose
Indicates whether the user can add/remove/delete systems within the active environment. Note that
systems "suggested" by the administrator via policies cannot be removed.

Syntax

cwb_Boolean CWB_ENTRY cwhCO_CanModifySystemlList();

Parameters

None

Windows Application Package: Programming 95

Return Codes
The following list shows common return values:

CWB_TRUE
Can modify system list.

CWB_FALSE
Cannot modify system list.

Usage

This API indicates whether systems within the active environment can be manipulated. To see if
environments can be manipulated see the cwbCO_CanModifyEnvironmentList API.

cwbCO_CanModifySystemListEnv
Use the cwhCO_CanModifySystemListEnv command.

Purpose

Indicates whether the user can add/remove/delete systems within an input environment. Note that
systems "suggested" by the administrator via policies cannot be removed.

Syntax

cwhb_Boolean CWB_ENTRY cwhCO_CanModifySystemListEnv (
char *environmentName) ;

Parameters

char *environmentName - input
Pointer to a string that contains the desired environment name. If this pointer is NULL, or if it points to
an empty string, the currently active environment is used.

Return Codes
The following list shows common return values:

CWB_TRUE
Can modify system list.

CWB_FALSE
Cannot modify system list, or an error occurred, such as having been passed a non-existent
environment name.

Usage

This API indicates whether systems within an environment can be manipulated. To see if environments
can be manipulated see the cwbCO_CanModifyEnvironmentList API.

cwbCO_CanSetActiveEnvironment
Use the cwbCO_CanSetActiveEnvironment command.

Purpose

Indicates whether the user can set an environment to be the active environment.

96 IBM i: Windows Application Package: Programming

Syntax

cwb_Boolean CWB_ENTRY cwbCO_CanSetActiveEnvironment();

Parameters

None

Return Codes
The following list shows common return values:

CWB_TRUE
Can set the active environment.

CWB_FALSE
Cannot set the active environment.

Usage

None

Example: Using communications APIs

The example program below shows the use of communications APIs to retrieve and display the names of
the default (managing) system, along with all the systems that are configured in the active environment.

/***

Module:
GETSYS.C

Purpose:
This module is used to demonstrate how an application might use the
Communication API's. 1In this example, these APIs are used to get
and display the list of all configured systems. The user can then
select one, and that system's connection properties (the attributes
of the created system object) are displayed. All Client Access
services are then checked for connectabliity, and the results displayed.

Usage notes:

Include CWBCO.H, CWBCOSYS.H, and CWBSV.H
Link with CWBAPI.LIB

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* IBM grants you a nonexclusive license to use this as an example

* from which you can generate similar function tailored to your own
* specific needs. This sample is provided in the form of source

* material which you may change and use.

* If you change the source, it is recommended that you first copy the
* source to a different directory. This will ensure that your changes
* are preserved when the tool kit contents are changed by IBM.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

DISCLAIMER

This sample code is provided by IBM for illustrative purposes only.
These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. All programs
contained herein are provided to you "AS IS" without any warranties
of any kind. ALL WARRANTIES, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, ARE EXPRESSLY DISCLAIMED.

Your license to this sample code provides you no right or licenses to
any IBM patents. 1IBM has no obligation to defend or indemnify against
any claim of infringement, including but not limited to: patents,
copyright, trade secret, or intellectual property rights of any kind.

Windows Application Package: Programming 97

COPYRIGHT
5770-XE1 (C) Copyright IBM CORP. 1996, 2009
All rights reserved.
US Government Users Restricted Rights -
Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Cozxp.
Licensed Material - Property of IBM

% ok ok k ok Xk ok F Kk ok X oF

||| /

#include <windows.h>

#include <stdio.h>

#include "cwbsv.h" /* Service APIs for retrieving any FAILURE messages */
#include "cwbco.h" /* Comm APIs for enumerating systems configured */
#include "cwbcosys.h" /* Comm APIs for creating and using system objects x*/

#define SUCCESS (0)
#define FAILURE (1)

/*
* Arrays of attribute description strings, for human-readable
* display of these values.

*
char* valModeStr[2] = { "CWBCO_VALIDATE_IF_NECESSARY" ,
"CWBCO_VALIDATE_ALWAYS" % ;

charx promptModeStr[3] = { "CWBCO_PROMPT_IF_NECESSARY" ,
"CWBCO_PROMPT_ALWAYS" ,
"CWBCO_PROMPT_NEVER" % ;

char* dfltUserModeStr[5] = { "CWBCO_DEFAULT_USER_MODE_NOT_SET" ,
"CWBCO_DEFAULT_USER_USE" ",
"CWBCO_DEFAULT_USER_IGNORE" ,
"CWBCO_DEFAULT_USER_USEWINLOGON",
"CWBCO_DEFAULT_USER_USE_KERBEROS" } ;

char* IPALModeStr[6] = § "CWBCO_IPADDR_LOOKUP_ALWAYS" ,
"CWBCO_IPADDR_LOOKUP_1HOUR" ,
"CWBCO_IPADDR_LOOKUP_1DAY"
"CWBCO_IPADDR_LOOKUP_1WEEK"
"CWBCO_IPADDR_LOOKUP_NEVER" ,
"CWBCO_IPADDR_LOOKUP_AFTER_STARTUP" % ;

charx portLookupModeStr[3] = { "CWBCO_PORT_LOOKUP_SERVER"
"CWBCO_PORT_LOOKUP_LOCAL" ,
"CWBCO_PORT_LOOKUP_STANDARD" % ;

charx cwbBoolStr[2] = § "False", "True" % ;

/* NOTE! The corresponding service CONSTANT integers start

* at 1, NOT at O; that is why the dummy "FAILURE" value

* was added at position 0.

*/

charx serviceStr[15] = { "CWBCO_SERVICE_THISISABADSERVICE!",
"CWBCO_SERVICE_CENTRAL"
"CWBCO_SERVICE_NETFILE"
"CWBCO_SERVICE_NETPRINT"
"CWBCO_SERVICE_DATABASE"
"CWBCO_SERVICE_ODBC" ,
"CWBCO_SERVICE_DATAQUEUES"
"CWBCO_SERVICE_REMOTECMD"
"CWBCO_SERVICE_SECURITY"
"CWBCO_SERVICE_DDM" ,
", /% not used *x/
"", /* not used */
"CWBCO_SERVICE_WEB_ADMIN"
"CWBCO_SERVICE_TELNET" ,
"CWBCO_SERVICE_MGMT_CENTRAL" % ;

/*
* Node in a singly-linked list to hold a pointer
* to a system name. Note that the creator of an

98 IBM i: Windows Application Package: Programming

* instance of this node must allocate the space to
* hold the system name himself, only a pointer is
* supplied here.

*
typedef struct syslListNodeStruct SYSLISTNODE, *PSYSLISTNODE;
struct syslListNodeStruct

{
charx sysName;
cwbCO_SysHandle hSys;
PSYSLISTNODE next;

& 8

/**
* Add a system name to the list of configured systems we will keep around.

UINT addSystemTolList(
charx sysName,
SYSLISTNODE** ppSyslList)

SYSLISTNODE* pNewSys;
charx pNewSysName;

pNewSys = (SYSLISTNODEx) malloc (sizeof(SYSLISTNODE));
if (pNewSys == NULL)
i

return FAILURE;
¥

pNewSysName = (charx) malloc (strlen(sysName) + 1);
if (pNewSysName == NULL)
i

free (pNewSys);
return FAILURE;

strcpy(pNewSysName, sysName);

pNewSys->sysName = pNewSysName;

pNewSys->hSys = 0; /* delay creating sys object until needed x/
pNewSys->next = %ppSyslList;

*ppSysList = pNewSys;

return SUCCESS;

* Clear the list of system names and clean up used storage.
**/
void clearlList(SYSLISTNODE* pSysList)
{
PSYSLISTNODE pCur, pNext;
pCur = pSyslList;
while (pCur != NULL)
{
pNext = pCur->next;
free (pCur->sysName);

free (pCur);
pCur = pNext;

|| /

void reportCAErrors(cwbSV_ErrHandle hErrs)
ULONG msgCount;
UINT apiRC;
UINT 1i;
char msgText[200]; /* 200 is big enuf to hold most msgs x/
ULONG bufLen = sizeof(msgText); /% holds size of msgText buffer */
ULONG lenNeeded; /* to hold length of buf needed */

apiRC = cwbSV_GetErrCount(hErrs, &msgCount);
if (CWB_OK != apiRC)
1

Windows Application Package: Programming 99

printf("Failed to get message count, cwbSV_GetErrCount rc=%u\n", apiRC);
if ((CWB_INVALID_POINTER == apiRC) |

(CWB_INVALID_HANDLE == apiRC))
printf(" --> likely a programming FAILURE!\n");
return;

%

bufLen = sizeof(msgText);
for (i=1; i<=msgCount; i++)

apiRC = cwbSV_GetErrTextIndexed(hErrs, i, msgText, buflen, &lenNeeded);
if ((CWB_OK == apiRC) ||
(CWB_BUFFER_OVERFLOW == apiRC)) /% if truncated, that's ok =*/
printf("CA FAILURE #%u: %s\n", i, msgText);
else

printf("CA FAILURE #%u unuvailable, cwbSV_GetErrTextIndexed rc=%u\n",
i, apiRC);

* Build the list of systems as it is currently configured in Client
* Access.

UINT buildSysList(
SYSLISTNODE** ppSysList)

1
cwbSV_ErrHandle hErzrs;
cwbCO_SyslListHandle hList;
char sysName[CWBCO_MAX_SYS_NAME + 1];
ULONG bufSize = sizeof(sysName);
ULONG needed;
UINT apiRC;
UINT myRC = SUCCESS;
UINT rc = SUCCESS;

/* Create a FAILURE handle so that, in case of FAILURE, we can
* retrieve and display the messages (if any) associated with
* the failure.

*/

apiRC = cwbSV_CreateErrHandle(&hErrs);

if (CWB_OK != apiRC)

1

/* Failed to create a FAILURE handle, use NULL instead.

* This means we'll not be able to get at FAILURE messages.
*/

hErrs = 0;

apiRC = cwhCO_CreateSyslListHandle(&hList, hErrs);
if (CWB_OK != apiRC)
{

printf("Failure to get a handle to the system list.\n");
reportCAErrors(hErrs);
myRC = FAILURE;

%

/* Get each successive system name and add the system to our
* 1internal list for later use.

*/

while ((CWB_OK == apiRC) && (myRC == SUCCESS))

{
apiRC = cwbCO_GetNextSysName(hList, sysName, bufSize, &needed);
/> Note that since the sysName buffer is as large as it will
* ever need to be, we don't check specifically for the return
* code CWB_BUFFER_OVERFLOW. We could instead choose to use a
* smaller buffer, and if CWB_BUFFER_OVERFLOW were returned,
* allocate one large enough and call cwbCO_GetNextSysName
* again.
*
if (CWB_OK == apiRC)

myRC = addSystemTolList(sysName, ppSysList);
if (myRC != SUCCESS)

100 IBM i: Windows Application Package: Programming

printf("Failure to add the next system name to the list.\n");

¥
else if (CWBCO_END_OF_LIST != apiRC)

printf("Failed to get the next system name.\n");
myRC = FAILURE;

¥
t /% end while (to build a list of system names) x/

/*
* Free the FAILURE handle if one was created

*
if (hExrs != 0) /* (non-NULL if it was successfully created) =/

1
apiRC = cwbSV_DeleteErrHandle(hErrs);
if (CWB_INVALID_HANDLE == apiRC)

printf("Failure: FAILURE handle invalid, could not delete!\n");
myRC = FAILURE;
3
3

return myRC;

UINT getSystemObject(
UINT sysNum,
SYSLISTNODE* pSysList,
cwhCO_SysHandlex phSys)

SYSLISTNODE* pCuz;
UINT myRC=0, apiRC;

pCur = pSyslist;
for (; sysNum > 1; sysNum--)

/* We have come to the end of the list without finding
* the system requested, break out of loop and set FAILURE rc.

*/
if (NULL == pCur)
myRC = FAILURE;
break;
pCur = pCur->next;
b
/* If we're at a real system node, continue
*/
if (NULL != pCur)
{
/* We're at the node/sysname of the user's choice. If no
* Client Access "system object" has yet been created for this
* system, create one. Pass back the one for the selected system.
*
if (@ == pCur->hSys)
{

apiRC = cwbCO_CreateSystem(pCur->sysName, &(pCur->hSys));
if (CWB_OK != apiRC)
{

printf(
"Failed to create system object, cwbCO_CreateSystem rc = %u\n",
apiRC);

myRC = FAILURE;

%
*phSys = pCur->hSys;

return myRC;

Windows Application Package: Programming 101

* Allow the user to select a system from the list we have.

UINT selectSystem(
UINT* pNumSelected,
SYSLISTNODEx pSyslList,
BOOL refreshlList)

UINT myRC = SUCCESS;
SYSLISTNODE* pCur;

UINT sysNum, numSystems;
char choiceStr[20];

/* If the user wants the list refreshed, clear any existing list
* so we can rebuilt it from scratch.

*/

if (refreshlList)

1

clearlList(pSyslList);
pSysList = NULL;
b

/* If the list of system names is NULL (no list exists), build
* the list of systems using Client Access APIs.

*/

if (NULL == pSyslList)

1

myRC = buildSyslList(&pSysList);
if (SUCCESS '= myRC)

*pNumSelected = 0;
printf("Failed to build sys list, cannot select a system.\n");

if (SUCCESS == myRC)

PELMEE(Yeoocccsscscoosssossosssosonssoosonosoosnoosog \n")
printf("The list of systems configured is as follows:\n")
PEREE(Teecceccosocscsosocossocscsosocsssosocosnosas \n")
for (sysNum = 1, pCur = pSyslList;

pCur != NULL;

sysNum++, pCur = pCur->next)

printf(" %u) %s\n", sysNum, pCur->sysName);
numSystems = sysNum - 1;

printf("Enter the number of the system of your choice:\n");
gets(choiceStr);
*pNumSelected = atoi(choiceStr);

if (*pNumSelected > numSystems)
1

printf("Invalid selection, there are only %u systems configured.\n",numSystems);
*pNumSelected = 0;
myRC = FAILURE;
%
b

return myRC;

* Display a single attribute and its value, or a failing return code
* 1if one occurred when trying to look it up.

void dspAttr(
charx label,
char* attrval,
UINT lookupRC,
cwb_Booleanx pCanBeModified,
UINT canBeModifiedRC)

if (CWB_OK == lookupRC)
1

printf("%25s : %-30s ", label, attrVal);
if (CWB_OK == canBeModifiedRC)
{

if (pCanBeModified != NULL)
{

102 IBM i: Windows Application Package: Programming

printf("%s\n", cwbBoolStr[xpCanBeModified]);
else

printf("(N/A)\n");

3
else
printf("(Error, rc=%u)\n", canBeModifiedRC);
¥
else

printf("%30s : (Error, rc=%u)\n", label, lookupRC);

/**

* Load the host/version string into the buffer specified. The
* buffer passed in must be at least 7 bytes long! A pointer to
* the buffer itself is passed back so that the output from this
* function can be used directly as a parameter.

*

charx hostVerModeDescr (
ULONG ver,
ULONG rel,
charx verRelBuf)

char*x nextChar = verRelBuf;

if (verRelBuf != NULL)
1
*nextChar++ = 'v';
if (ver < 10)
1

*nextChar++ = '0' + (char)ver;
¥
else
1
o1,

*nextChar++ o
I?I.
. ’

*nextChar++

3
*nextChar++ = 'r';

if (rel < 10)

*nextChar++

'0' + (char)rel;

else

1

1ol

*nextChar++ g
ia
2

*nextChar++

*nextChar = '\0';
3

return verRelBuf;

* Display all attributes of the system whose index in the passed list
* 1s passed in.

void dspSysAttrs(
SYSLISTNODE* pSysList,
UINT sysNum)

cwbCO_SysHandle hSys;

UINT zxc;

char sysName[CWBCO_MAX_SYS_NAME + 1];
char IPAddr[CWBCO_MAX_IP_ADDRESS + 1];
ULONG bufLen, IPAddrLen;

ULONG IPAddrBuflLen;

UINT apiRC, apiRC2;

Windows Application Package: Programming 103

cwbCO_ValidateMode valMode;

cwbCO_DefaultUserMode dfltUserMode;
cwbCO_PromptMode promptMode;
cwbCO_PortLookupMode portLookupMode;

cwbCO_IPAddressLookupMode IPALMode;
ULONG ver, rel;

char verRelBuf[10];

ULONG verRelBuflLen;

cwb_Boolean isSecSoc;

cwb_Boolean canModify;

IPAddrBuflLen = sizeof(IPAddr);
verRelBuflLen = sizeof(verRelBuf);

rc = getSystemObject(sysNum, pSysList, &hSys);
if (rc == FAILURE)
{

printf("Failed to get system object for selected system.\n");
return;

¥

printf("\n\n");

PEANtE (M- s s m e e e \n");
printf (" System Attributes \n");
PrANtE (M- mmm e m e oo \n");
printf("\n");

printf("%25s : %-30s %s\n", "Attribute", "Value", "Modifiable");
printf("%25s : %-30s %s\n", "--------- v, Meeae- b Mo T Y
printf("\n");

apiRC = cwbCO_GetSystemName(hSys, sysName, &buflLen);
dspAttr("System Name", sysName, apiRC, NULL, O);

apiRC = cwbCO_GetIPAddress(hSys, IPAddr, &IPAddrLen);
dspAttr("IP Address", IPAddr, apiRC, NULL, 0);

apiRC = cwbCO_GetHostVersionEx(hSys, &ver, &rel);
dspAttr("Host Version/Release",
hostVerModeDescr(ver, rel, verRelBuf), apiRC, NULL, 0);

apiRC = cwbCO_IsSecureSockets(hSys, &isSecSoc);

apiRC2 = cwhCO_CanModifyUseSecureSockets(hSys, &canModify);

dspAttr("Secure Sockets In Use", cwbBoolStr[isSecSoc],
apiRC, &canModify, apiRC2);

apiRC = cwbCO_GetValidateMode(hSys, &valMode);

canModify = CWB_TRUE;

dspAttr("Validate Mode", valModeStr[valMode], apiRC,
&canModify, 0);

apiRC = cwhCO_GetDefaultUserMode(hSys, &dfltUserMode);

apiRC2 = cwbCO_CanModifyDefaultUserMode(hSys, &canModify);

dspAttr("Default User Mode", dfltUserModeStr[dfltUserMode], apiRC,
&canModify, apiRC2);

apiRC = cwbCO_GetPromptMode(hSys, &promptMode);

canModify = CWB_TRUE;

dspAttr("Prompt Mode", promptModeStr[promptMode], apiRC,
&canModify, 0);

apiRC = cwbCO_GetPortLookupMode(hSys, &portLookupMode);

apiRC2 = cwbCO_CanModifyPortLookupMode(hSys, &canModify);

dspAttr("Port Lookup Mode", portLookupModeStr[portLookupMode], apiRC,
&canModify, apiRC2);

apiRC = cwhCO_GetIPAddressLookupMode(hSys, &IPALMode);

apiRC2 = cwbCO_CanModifyIPAddressLookupMode(hSys, &canModify);

dspAttr("IP Address Lookup Mode", IPALModeStr[IPALMode], apiRC,
&canModify, apiRC2);

printf("\n\n");

* Display connectability to all Client Access services that are
* possible to connect to.

void dspConnectability(
PSYSLISTNODE pSysList,
UINT sysNum)

104 IBM i: Windows Application Package: Programming

UINT zxc;

UINT apiRC;
cwbCO_Service service;
cwbCO_SysHandle hSys;

rc = getSystemObject(sysNum, pSysList, &hSys);
if (rc == FAILURE)
{

printf("Failed to get system object for selected system.\n");

else

1
printf("\n\n");
PEREE(" coceccsosccossocscsosocossocscsosocossocacnosocosoocaooons \n");
printf(" Systemnm Services Status \n");
o 1 il R \n");

for (service=(cwbCO_Service)l;
service <= CWBCO_SERVICE_MGMT_CENTRAL;
service++)

i
apiRC = cwbCO_Verify(hSys, service, 0); // 0=no err handle
printf(" Service '%s': ", serviceStr[service]);
if (apiRC == CWB_OK)
printf ("CONNECTABLE\n");
else
printf ("CONNECT TEST FAILED, rc = %u\n", apiRC);
3

¥
printf("\n");

* MAIN PROGRAM BODY
**/
void main(void)

PSYSLISTNODE pSyslList = NULL;
UINT numSelected;

UINT zxc;

char choiceStr[10];

UINT choice;

rc = buildSyslList(&pSysList);
if (SUCCESS != rc)

1
printf("Failure to build the system list, exiting.\n\n");
exit(FAILURE);

3

do

1
printf("Select one of the following options:\n");
printf(" (1) Display current system attributes\n");
printf(" (2) Display service connectability for a system\n");
printf(" (3) Refresh the list of systems\n");
printf(" (9) Quit\n");

gets(choiceStr);
choice = atoi(choiceStr);
switch (choice)

// ---- Display current system attributes ---------------
case 1 :

rc = selectSystem(&numSelected, pSyslList, FALSE);
if (SUCCESS == rc)

{
dspSysAttrs(pSysList, numSelected);
b
break;
b
// ---- Display service connectability for a system -----
case 2 :

Windows Application Package: Programming 105

rc = selectSystem(&numSelected, pSyslList, FALSE);
if (SUCCESS == zrc)
{

dspConnectability(pSysList, numSelected);

break;
¥
// ---- Refresh the list of systems ---------------------
case 3 :
clearList(pSyslList);
pSysList = NULL;
rc = buildSyslList(&pSysList);
break;
¥
J/ ---- Quit ------------ee -
case 9 :
printf("Ending the program!\n");
break;
3
default :

printf("Invalid choice. Please make a different selection.\n");

b
t while (choice != 9);
/* Cleanup the list, we're done x/
clearList(pSyslList);
pSysList = NULL;

printf("\nEnd of program.\n\n");

IBM i Data Queues APIs

Use product Data Queues application programming interfaces (APIs) to provide easy access to IBM i
data queues. Data queues allow you to create client/server applications that do not require the use of
communications APIs.

IBM i Data Queues APIs required files:

Header file Import library Dynamic Link Library

cwbdg.h cwbapi.lib cwbdq.dll

Programmer's Toolkit:

The Programmer's Toolkit provides Data Queues documentation, access to the cwbdq.h header file, and
links to sample programs. To access this information, open the Programmer's Toolkit and select Data
Queues > C/C++ APIs.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

Related reference

Data Queues APIs return codes
There are data queues API return codes.

IBM i name formats for connection APIs
APIs that take an IBM i name as a parameter, accept the name in the three different formats.

OEM, ANSI, and Unicode considerations

106 IBM i: Windows Application Package: Programming

Most of the C/C++ APIs that accept string parameters exist in three forms: OEM, ANSI, or Unicode.

Data queues

A data queue is an IBM i object.

Benefits of using data queues:
Data queues provide many benefits to PC developers and IBM i applications developers, including:

« They are a fast and efficient means of IBM i communication.
« They have low system overhead and require very little setup.

« They are efficient because a single data queue can be used by a batch job to service several interactive
jobs.

« The contents of a data queue message are free-format (fields are not required), providing flexibility that
is not provided by other system objects.

 Access data queues through an IBM i API and through CL commands, which provides a straight-forward
means of developing client/server applications.

Ordering data queue messages
There are three ways to designate the order of messages on an IBM i data queue.

LIFO
Last in, first out. The last message (newest) placed on the data queue will be the first message taken
off of the queue.

FIFO
First in, first out. The first message (oldest) placed on the data queue will be the first message taken
off of the queue.

KEYED
Each message on the data queue has a key associated with it. A message can be taken off of the
queue only by requesting the key with which it is associated.

Work with data queues

You can work with data queues by using IBM i CL commands or callable programming interfaces. Access
to data queues is available to all IBM i applications regardless of the programming language in which the
application is written.

Use the following IBM i interfaces to work with data queues:

IBM i commands:
CRTDTAQ
Creates a data queue and stores it in a specified library

DLTDTAQ
Deletes the specified data queue from the system

IBM i application programming interfaces:
QSNDDTAQ
Send a message (record) to the specified data queue

QRCVDTAQ
Read a message (record) to the specified data queue

QCLRDTAQ
Clear all messages from the specified data queue

Windows Application Package: Programming 107

QMHQRDQD
Retrieve a data queue description
QMHRDQM
Retrieve an entry from a data queue without removing the entry

Typical use of data queues

A data queue is a powerful program-to-program interface. Programmers who are familiar with IBM i
programming are accustomed to using queues. Data queues simply represent a method that is used to
pass information to another program.

Because this interface does not require communications programming, use it either for synchronous or for
asynchronous (disconnected) processing.

Develop host applications and PC applications by using any supported language. For example, a host
application could use RPG while a PC application might use C++. The queue is there to obtain input from
one side and to pass input to the other.

The following example shows how data queues might be used:

« A PC user might take telephone orders all day, and key each order into a program, while the program
places each request on IBM i data queue.

» A partner program (either a PC program or an IBM i program) monitors the data queue and pulls
information from queue. This partner program could be simultaneously running, or started after peak
user hours.

« It may or may not return input to the initiating PC program, or it may place something on the queue for
another PC or IBM i program.

« Eventually the order is filled, the customer is billed, the inventory records are updated, and information
is placed on the queue for the PC application to direct a PC user to call the customer with an expected
ship date.

Objects

An application that uses the data queue function uses four objects. Each of these objects is identified to
the application through a handle. The objects are:

Queue object:
This object represents the IBM i data queue.

Attribute:
This object describes the IBM i data queue.

Data:
Use these objects to write records to, and to read records from, the IBM i data queue.
Read object:
Use this object only with the asynchronous read APIs. It uniquely identifies a request to read a record

from the IBM i data queue. This handle is used on subsequent calls to check if the data has been
returned. See thecwbDQ_AsyncRead API for more information.

Related reference
cwbDQ_AsyncRead

108 IBM i: Windows Application Package: Programming

Use the cwbDQ_AsyncRead command.

Data Queues: Create, delete, and open APIs
Use these IBM i APIs in conjunction with the cwhCO_SysHandle System Object handle.

cwbDQ_CreateEx
Use the cwbDQ_CreateEx command.

Purpose

Create an IBM i data queue object. After the object is created it can be opened using the cwbDQ_OpenEx
API. It will have the attributes that you specify in the attributes handle.

Syntax
unsigned int CWB_ENTRY cwbDQ_CreateEx(
cwhCO_SysHandle sysHandle,
const char *queue,
const char *1library,
cwhDQ_Attr queueAttributes,
cwbSV_ErrHandle errorHandle) ;

Parameters

cwbCO_SysHandle sysHandle - input
Handle to a system object

const char * queue - input
Pointer to the data queue name contained in an ASCIIZ string.

const char * library - input
Pointer to the library name contained in an ASCIIZ string. If this pointer is NULL then the current
library will be used (set library to "*CURLIB").

cwbDQ_Attr queueAttributes - input
Handle to the attributes for the data queue.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetExrrText
API. If the parameter is set to zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_COMMUNICATIONS_ERROR
A communications error occurred.

CWB_SERVER_PROGRAM_NOT_FOUND
IBM i application not found.

CWB_HOST_NOT_FOUND

System inactive or does not exist.
CWB_INVALID_POINTER

Bad or null pointer.

CWB_SECURITY_ERROR
A security error has occurred.

Windows Application Package: Programming 109

CWB_LICENSE_ERROR
A license error has occurred.

CWB_CONFIG_ERROR
A configuration error has occurred.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

CWBDQ_BAD_QUEUE_NAME

Queue name is incorrect.
CWBDQ_BAD_LIBRARY_NAME

Library name is incorrect.
CWBDQ_REJECTED_USER_EXIT

Command rejected by user exit program.
CWBDQ_USER_EXIT_ERROR

Error in user exit program.
CWBDQ_USER_EXIT_ERROR

Error in user exit program.
CWBDQ_LIBRARY_NOT_FOUND

Library not found on system.
CWBDQ_NO_AUTHORITY

No authority to library.
CWBDQ_QUEUE_EXISTS

Queue already exists.
CWBDQ_QUEUE_SYNTAX

Queue syntax is incorrect.
CWBDQ_LIBRARY_SYNTAX

Library syntax is incorrect.
CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.
CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the code page being used.

CWB_API_ERROR
General API failure.

CWB_INVALID_HANDLE
Invalid system handle.

Usage

This function requires that you have previously issued the following APIs:

« cwbDQ_CreateSystem
« cwbDQ_CreateAttr
« cwbDQ_SetMaxReclLen

cwbDQ_DeleteEx

Use the cwbDQ_DeleteEx command.

Purpose

Remove all data from an IBM i data queue and delete the data queue object.

110 IBMi: Windows Application Package: Programming

Syntax

unsigned int CWB_ENTRY cwhDQ_DeleteEx(

cwbCO_SysHandle

const char
const char

cwbSV_ErrHandle

Parameters

cwbCO_SysHandle - input
Handle to a system object.

const char * queue - input

sysHandle
*queue,
*library,
errorHandle) ;

Pointer to the data queue name contained in an ASCIIZ string.

const char * library - input

Pointer to the library name contained in an ASCIIZ string. If this pointer is NULL then the current

library will be used (set library to "*CURLIB").

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetExrrText
API. If the parameter is set to zero, no messages will be retrieved.

Return Codes

The following list shows common return values.

CWB_OK
Successful completion.

CWB_COMMUNICATIONS_ERROR
A communications error occurred.

CWB_SERVER_PROGRAM_NOT_FOUND
IBM i application not found.

CWB_HOST_NOT_FOUND
System is inactive or does not exist.

CWB_INVALID_POINTER
Bad or null pointer.

CWB_SECURITY_ERROR
A security error has occurred.

CWB_LICENSE_ERROR
A license error has occurred.

CWB_CONFIG_ERROR
A configuration error has occurred.

CWBDQ_BAD_QUEUE_NAME
Queue name is too long.

CWBDQ_BAD_LIBRARY_NAME
Library name is too long.

CWBDQ_REJECTED_USER_EXIT

Command rejected by user exit program.

CWBDQ_USER_EXIT_ERROR
Error in user exit program.

CWBDQ_LIBRARY_NOT_FOUND
Library not found on system.

Windows Application Package: Programming 111

CWBDQ_QUEUE_NOT_FOUND
Queue not found on system.

CWBDQ_NO_AUTHORITY
No authority to queue.

CWBDQ_QUEUE_SYNTAX
Queue syntax is incorrect.

CWBDQ_LIBRARY_SYNTAX
Library syntax is incorrect.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory; may have failed to allocate temporary buffer.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the code page being used.

CWB_API_ERROR
General API failure.

CWB_INVALID_HANDLE
Invalid system handle.

Usage

This function requires that you previously have issued cwbCO_CreateSystem.

cwbDQ_OpenEx
Use the cwhDQ_OpenEx command.

Purpose

Start a connection to the specified data queue. This will start an IBM i conversation. If the connection is
not successful, a non-zero handle will be returned.

Syntax
unsigned int CWB_ENTRY cwhDQ_OpenEx(
cwbCO_SysHandle sysHandle
const char *queue,
const char *1library,
cwbDQ_QueueHandle *queueHandle,
cwbSV_ErrHandle errorHandle) ;

Parameters

cwbCO_SysHandle sysHandle - input
Handle to a system object.

const char * queue - input
Pointer to the data queue name contained in an ASCIIZ string.

const char * library - input
Pointer to the library name that is contained in an ASCIIZ string. If this pointer is NULL, the library list
will be used (set library to "*LIBL").

cwbDQ_QueueHandle * queueHandle - output
Pointer to a cwbDQ_QueueHandle where the handle will be returned. This handle should be used in all
subsequent calls.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetExrrText
API. If the parameter is set to zero, no messages will be retrieved.

112 IBMi: Windows Application Package: Programming

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_COMMUNICATIONS_ERROR
A communications error occurred.

CWB_SERVER_PROGRAM_NOT_FOUND
IBM i application is not found.

CWB_HOST_NOT_FOUND
System is inactive or does not exist.

CWB_COMM_VERSION_ERROR
Data Queues will not run with this version of communications.

CWB_INVALID_POINTER
Bad or null pointer.

CWB_SECURITY_ERROR
A security error has occurred.

CWB_LICENSE_ERROR
A license error has occurred.

CWB_CONFIG_ERROR
A configuration error has occurred.

CWBDQ_BAD_QUEUE_NAME
Queue name is too long.

CWBDQ_BAD_LIBRARY_NAME

Library name is too long.
CWBDQ_BAD_SYSTEM_NAME

System name is too long.
CWBDQ_REJECTED_USER_EXIT

Command rejected by user exit program.

CWBDQ_USER_EXIT_ERROR
Error in user exit program.

CWBDQ_LIBRARY_NOT_FOUND
Library not found on system.
CWBDQ_QUEUE_NOT_FOUND
Queue not found on system.
CWBDQ_NO_AUTHORITY
No authority to queue or library.
CWBDQ_DAMAGED_QUE
Queue is in unusable state.

CWBDQ_CANNOT_CONVERT
Data cannot be converted for this queue.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory; may have failed to allocate temporary buffer.
CWB_NON_REPRESENTABLE_UNICODE_CHAR

One or more input Unicode characters have no representation in the code page being used.

CWB_API_ERROR
General API failure.

CWB_INVALID_HANDLE
Invalid system handle.

Windows Application Package: Programming 113

Usage

This function requires that you previously have issued cwbCO_CreateSystem.

Data Queues: Accessing data queues APIs

After the cwbDQ_Open API is used to create a connection to a specific IBM i data queue, these other APIs
are called to utilize it. Use the cwbDQ_Close API when the connection no longer is needed.

cwbDQ_AsyncRead
Use the cwbDQ_AsyncRead command.

Purpose

Read a record from the IBM i data queue object that is identified by the specified handle. The AsyncRead
will return control to the caller immediately. This call is used in conjunction with the CheckData API.
When a record is read from a data queue, it is removed from the data queue. If the data queue is empty
for more than the specified wait time, the read is aborted, and the CheckData API returns a value of
CWBDQ_TIMED_OUT. You may specifying a wait time from 0 to 99,999 (in seconds) or forever (-1). A wait
time of zero causes the CheckData API to return a value of CWBDQ_TIMED_OUT on its initial call if there
is no data in the data queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_AsyncRead/(
cwbDQ_QueueHandle queueHandle,

cwbDQ_Data data,

signed long waitTime,
cwbDQ_ReadHandle *readHandle,
cwbSV_ErrHandle errorHandle) ;

Parameters

cwbDQ_QueueHandle queueHandle - input
Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the IBM i data
queue object.

cwbDQ_Data data - input
The data object to be read from the IBM i data queue.

signed long waitTime - input
Length of time in seconds to wait for data, if the data queue is empty. A wait time of -1 indicates to
wait forever.

cwbDQ_ReadHandle * readHandle - output
Pointer to where the cwbDQ_ReadHandle will be written. This handle will be used in subsequent calls
to the cwbDQ_CheckData API.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetExrrText
API. If the parameter is set to zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_TIME
Invalid wait time.

114 IBMi: Windows Application Package: Programming

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

CWBDQ_INVALID_SEARCH
Invalid search order.

Usage
This function requires that you have previously issued the following APIs:

« cwbDQ_Open or cwbDQ_OpenEx
« cwbDQ_CreateData

Related concepts

Typical use of data queues

A data queue is a powerful program-to-program interface. Programmers who are familiar with IBM i
programming are accustomed to using queues. Data queues simply represent a method that is used to
pass information to another program.

cwbDQ_Cancel
Use the cwbDQ_Cancel command.

Purpose

Cancel a previously issued AsyncRead. This will end the read on the IBM i data queue.
Syntax

unsigned int CWB_ENTRY cwbhDQ_Cancel(
cwbDQ_ReadHandle readHandle,
cwbSV_ErrHandle errorHandle) ;

Parameters

cwbDQ_ReadHandle readHandle - input
The handle that was returned by the AsyncRead APL.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetExrrText
API. If the parameter is set to zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_READ_HANDLE
Invalid read handle.

Usage
This function requires that you have previously issued the following APIs:

« cwbDQ_Open or cwbDQ_OpenEx
« cwbDQ_CreateData
« cwbDQ_AsyncRead

Windows Application Package: Programming 115

cwbDQ_CheckData

Use the cwbDQ_CheckData command.

Purpose

Check if data was returned from a previously issued AsyncRead API. This API can be issued multiple
times for a single AsyncRead call. It will return O when the data actually has been returned.

Syntax

unsigned int CWB_ENTRY cwhDQ_CheckData(
cwbDQ_ReadHandle readHandle,
cwbSV_ErrHandle errorHandle) ;

Parameters
cwbDQ_ReadHandle readHandle - input
The handle that was returned by the AsyncRead APL.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetExrrText
API. If the parameter is set to zero, no messages will be retrieved.

Return Codes

The following list shows common return values.
CWB_OK
Successful completion.

CWBDQ_INVALID_READ_HANDLE
Invalid read handle.

CWBDQ_DATA_TRUNCATED
Data truncated.

CWBDQ_TIMED_OUT
Wait time expired and no data returned.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBDQ_QUEUE_DESTROYED
Queue was destroyed.

CWBDQ_NO_DATA
No data.

CWBDQ_CANNOT_CONVERT
Unable to convert data.

Usage
This function requires that you have previously issued the following APIs:

» cwbDQ_Open or cwbDQ_OpenEx
« cwbDQ_CreateData
« cwbDQ_AsyncRead

If a time limit was specified on the AsyncRead, this API will return CWBDQ_NO_DATA until
data is returned (return code will be CWB_OK), or the time limit expires (return code will be
CWBDQ_TIMED_OUT).

116 IBMi: Windows Application Package: Programming

cwbDQ_Clear

Use the cwbDQ_Clear command.

Purpose

Remove all messages from the IBM i data queue object that is identified by the specified handle. If the
gueue is keyed, messages for a particular key may be removed by specifying the key and key length.
These values should be set to NULL and zero, respectively, if you want to clear all messages from the

queue.
Syntax
unsigned int CWB_ENTRY cwhDQ_Cleaxr(
cwbDQ_QueueHandle queueHandle,
unsigned char *key,
unsigned short keyLength,
cwbSV_ErrHandle errorHandle) ;

Parameters

cwbDQ_QueueHandle queueHandle - input

Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the IBM i data

queue object.
unsigned char * key - input

Pointer to the key. The key may contain embedded NULLs, so it is not an ASCIIZ string.

unsigned short keyLength - input
Length of the key in bytes.

cwbSV_ErrHandle errorHandle - output

Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetExrrText
API. If the parameter is set to zero, no messages will be retrieved.

Return Codes

The following list shows common return values.
CWB_OK

Successful completion.
CWBDQ_INVALID_QUEUE_HANDLE

Invalid queue handle.

CWBDQ_BAD_KEY_LENGTH
Length of key is not correct.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

Usage

This function requires that you have previously issued:

« cwbDQ_Open or cwbDQ_OpenEx

Windows Application Package: Programming 117

cwbDQ_Close

Use the cwbDQ_Close command.

Purpose

End the connection with the IBM i data queue object that is identified by the specified handle. This will
end the IBM i conversation.

Syntax

unsigned int CWB_ENTRY cwhDQ_Close(
cwbDQ_QueueHandle queueHandle);

Parameters

cwbDQ_QueueHandle queueHandle - input
Handle that was returned by a previous call to the cwbDQ_Open or cwbDQ_OpenEx function. This
identifies the IBM i data queue object.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

Usage
This function requires that you previously issued the following APIs:
« cwbDQ_Open or cwbDQ_OpenEx

cwbDQ_GetLibName
Use the cwbDQ_GetLibName command.

Purpose
Retrieve the library name used with the cwbDQ_Open APL.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetLibName (
cwbDQ_QueueHandle queueHandle,
char *1ibName) ;

Parameters

cwbDQ_QueueHandle queueHandle - input
Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the IBM i data
queue object.

char * libName - output
Pointer to a buffer where the library name will be written.

118 IBMi: Windows Application Package: Programming

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

Usage

This function requires that you have previously issued cwbDQ_Open.

cwbDQ_GetQueueAttr
Use the cwbDQ_GetQueueAttr command.

Purpose

Retrieve the attributes of the IBM i data queue object that is identified by the specified handle. A handle
to the data queue attributes will be returned. The attributes then can be retrieved individually.

Syntax

unsigned int CWB_ENTRY cwhDQ_GetQueueAttr(
cwbDQ_QueueHandle queueHandle,
cwbDQ_Attr queueAttributes,
cwbSV_ErrHandle errorHandle) ;

Parameters

cwbDQ_QueueHandle queueHandle - input
Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the IBM i data
queue object.

cwbDQ_Attr queueAttributes - input/output
The attribute object. This was the output from the cwbDQ_CreateAttr call. The attributes will be
filled in by this function, and you should call the cwbDQ_DeleteAttxr function to delete this object
when you have retrieved the attributes from it.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetExrrText
API. If the parameter is set to zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

Usage
This function requires that you have previously issued the following APIs:

« cwbDQ_Open or cwbDQ_OpenEx

Windows Application Package: Programming 119

« cwbDQ_CreateAttr

cwbDQ_GetQueueName
Use the cwbDQ_GetQueueName command.

Purpose

Retrieve the queue name used with the cwbDQ_Open API.
Syntax

unsigned int CWB_ENTRY cwbDQ_GetQueueName (
cwbDQ_QueueHandle queueHandle,
char *queueName) ;

Parameters

cwbDQ_QueueHandle queueHandle - input
Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the IBM i data
queue object.

char * queueName - output
Pointer to a buffer where the queue name will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

Usage
This function requires that you have previously issued cwbDQ_Open.

cwbDQ_GetSysName
Use the cwbDQ_GetSysName command.

Purpose

Retrieve the system name that is used with the cwbDQ_Open API.
Syntax

unsigned int CWB_ENTRY cwbDQ_GetSysName (
cwbDQ_QueueHandle queueHandle,
char *systemName) ;

Parameters

cwbDQ_QueueHandle queueHandle - input
Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the IBM i data
queue object.

char *systemName - output
Pointer to a buffer where the system name will be written.

120 IBMi: Windows Application Package: Programming

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

Usage

This function requires that you previously have issued cwbDQ_Open or cwhDQ_OpenEx.

cwbDQ_Peek
Use the cwbDQ_Peek command.

Purpose

Read a record from the IBM i data queue object that is identified by the specified handle. When a record
is peeked from a data queue, it remains in the data queue. You may wait for a record if the data queue
is empty by specifying a wait time from 0 to 99,999 or forever (-1). A wait time of zero will return
immediately if there is no data in the data queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_Peek(
cwbhDQ_QueueHandle queueHandle,

cwbDQ_Data data,
signed long waitTime,
cwbSV_ErrHandle errorHandle) ;

Parameters

cwbDQ_QueueHandle queueHandle - input
Handle that was returned by a previous call to the cwbDQ_Open API. This identifies the IBM i data
queue object.

cwbDQ_Data data - input
The data object to be read from the IBM i data queue.

signed long waitTime - input
Length of time in seconds to wait for data, if the data queue is empty. A wait time of -1 indicates to
wait forever.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetExrrText
API. If the parameter is set to zero, no messages will be retrieved.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_TIME
Invalid wait time.

Windows Application Package: Programming 121

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

CWBDQ_INVALID_SEARCH
Invalid search order.

CWBDQ_DATA_TRUNCATED
Data truncated.

CWBDQ_TIMED_OUT

Wait time expired and no data returned.
CWBDQ_REJECTED_USER_EXIT

Command rejected by user exit program.
CWBDQ_QUEUE_DESTROYED

Queue was destroyed.

CWBDQ_CANNOT_CONVERT
Unable to convert data.

Usage

This function requires that you have previously issued cwbDQ_Open or cwbDQ_OpenEx and
cwbDQ_CreateData.

cwbDQ_Read

Use the cwbDQ_Read command.

Purpose

Read a record from the IBM i data queue object that is identified by the specified handle. When a record
is read from a data queue, it is removed from the data queue. You may wait for a record if the data
gueue is empty by specifying a wait time from 0 to 99,999 or forever (-1). A wait time of zero will return
immediately if there is no data in the data queue.

Syntax

unsigned int CWB_ENTRY cwbDQ_Read(
cwbDQ_QueueHandle queueHandle,

cwbDQ_Data data,
long waitTime,
cwbSV_ErrHandle errorHandle) ;

Parameters

cwbDQ_QueueHandle queueHandle - input
Handle that was returned by a previous call to the cwbDQ_Open function. This identifies the IBM i data
gueue object.

cwbDQ_Data data - input
The data object to be read from the IBM i data queue.

long waitTime - input
Length of time in seconds to wait for data, if the data queue is empty. A wait time of -1 indicates to
wait forever.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetExrrText
APL. If the parameter is set to zero, no messages will be retrieved.

122 IBMi: Windows Application Package: Programming

Return Codes
The following list shows common return values.
CWB_OK

Successful completion.

CWBDQ_INVALID_TIME
Invalid wait time.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

CWBDQ_INVALID_SEARCH
Invalid search order.

CWBDQ_DATA_TRUNCATED
Data truncated.

CWBDQ_TIMED_OUT
Wait time expired and no data returned.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBDQ_QUEUE_DESTROYED
Queue was destroyed.

CWBDQ_CANNOT_CONVERT
Unable to convert data.

Usage

This function requires that you have previously issued cwbDQ_Open and cwbhDQ_CreateData.

cwbDQ_Write
Use the cwbDQ_Write command.

Purpose
Write a record to the IBM i data queue object that is identified by the specified handle.

Syntax

unsigned int CWB_ENTRY cwbDQ_Write(
cwbDQ_QueueHandle queueHandle,

cwbDQ_Data data,
cwb_Boolean commit,
cwbSV_ErrHandle errorHandle) ;

Parameters

cwbDQ_QueueHandle queueHandle - input
Handle that was returned by a previous call to the cwbDQ_Open or cwhDQ_OpenEx functions. This
identifies the IBM i data queue object.

cwbDQ_Data data - input
The data object to be written to the IBM i data queue.

cwb_Boolean commit - input
This flag is no longer used and is ignored.

cwbSV_ErrHandle errorHandle - output
Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved through the cwbSV_GetExrrText
API. If the parameter is set to zero, no messages will be retrieved.

Windows Application Package: Programming 123

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_BAD_DATA_LENGTH
Length of data is not correct.

CWBDQ_INVALID_MESSAGE_LENGTH
Invalid message length.

CWBDQ_INVALID_QUEUE_HANDLE
Invalid queue handle.

CWBDQ_REJECTED_USER_EXIT
Command rejected by user exit program.

CWBDQ_CANNOT_CONVERT
Unable to convert data.

Usage

This function requires that you previously have issued cwbDQ_Open or cwbDQ_OpenEx, and
cwbDQ_CreateData.

Data Queues: Attributes APIs

Use these APIs to declare attributes of an IBM i data queue. The attribute object is used when creating a
data queue or when obtaining the data queue attributes.

cwbDQ_CreateAttr
Use the cwbDQ_CreateAttr command.

Purpose

Create a data queue attribute object. The handle returned by this API can be used to set the

specific attributes you want for a data queue prior to using it as input for the cwhDQ_Create or
cwbDQ_CreateEx APIs. It also may be used to examine specific attributes of a data queue after using it
as input for the cwbDQ_GetQueueAttr API.

Syntax

cwbDQ_Attr CWB_ENTRY cwbDQ_CreateAttr(void);

Parameters

None

Return Codes

The following list shows common return values.

cwbDQ_Attr — A handle to a cwbDQ_Attr object.
Use this handle to obtain and set attributes. After creation, an attribute object will have the default
values of:

« Maximum Record Length - 1000
 Order - FIFO
 Authority - LIBCRTAUT

124 IBM i: Windows Application Package: Programming

« Force to Storage - FALSE
« Sender ID - FALSE
« Key Length -0

Usage

None

cwbDQ_DeleteAttr
Use the cwbDQ_DeleteAttr command.

Purpose

Delete the data queue attributes.
Syntax

unsigned int CWB_ENTRY cwbDQ_DeleteAttxr(
cwbDQ_Attr queueAttributes);

Parameters

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage

None

cwbDQ_GetAuthority
Use the cwbDQ_GetAuthority command.

Purpose

Get the attribute for the authority that other users will have to the data queue.

Syntax
unsigned int CWB_ENTRY cwbDQ_GetAuthority (
cwbDQ_Attr queueAttributes,
unsigned short *authority);

Parameters

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

Windows Application Package: Programming 125

unsigned short * authority - output
Pointer to an unsigned short to where the authority will be written. This value will be one of the
following defined types:

« CWBDQ_ALL

« CWBDQ_EXCLUDE

« CWBDQ_CHANGE

« CWBDQ_USE

« CWBDQ_LIBCRTAUT

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.
Usage

None

cwbDQ_GetDesc
Use the cwbDQ_GetDesc command.

Purpose

Get the attribute for the description of the data queue.

Syntax
unsigned int CWB_ENTRY cwbDQ_GetDesc(
cwhDQ_Attr queueAttributes,
char *description);

Parameters

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

char * description - output
Pointer to a 51 character buffer where the description will be written. The description is an ASCIIZ
string.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

126 IBM i: Windows Application Package: Programming

Usage

None

cwbDQ_GetForceToStorage
Use the cwbDQ_GetForceToStorage command.

Purpose

Get the attribute for whether records will be forced to auxiliary storage when they are enqueued.

Syntax
unsigned int CWB_ENTRY cwbDQ_GetForceToStorage (
cwhDQ_Attr queueAttributes,
cwb_Boolean xforceToStorage) ;

Parameters

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

cwhb_Boolean * forceToStorage - output
Pointer to a Boolean where the force-to-storage indicator will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage

None

cwbDQ_GetKeySize
Use the cwbDQ_GetKeySize command.

Purpose
Get the attribute for the key size in bytes.

Syntax
unsigned int CWB_ENTRY cwhDQ_GetKeySize(
cwbDQ_Attr queueAttributes,
unsigned short xkeySize);

Parameters

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

Windows Application Package: Programming 127

unsigned short * keySize - output
Pointer to an unsigned short where the key size will written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.
Usage

None

cwbDQ_GetMaxRecLen

Use the cwbDQ_GetMaxRecLen command.

Purpose

Get the maximum record length for the data queue.

Syntax
unsigned int CWB_ENTRY cwhDQ_GetMaxReclLen(
cwbDQ_Attr queueAttributes,
unsigned long *maxRecordLength) ;

Parameters

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a call to cwbDQ_CreateAttr.

unsigned long * maxRecordLength - output
Pointer to an unsigned long where the maximum record length will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage

None

128 IBM i: Windows Application Package: Programming

cwbDQ_GetOrder

Use the cwbDQ_GetOrder command.

Purpose

Get the attribute for the queue order. If the order is CWBDQ_SEQ_LIFO, the last record written is the first
record read (Last In First Out). If the order is CWBDQ_SEQ_FIFO, the first record written is the first record
read (First In First Out). If the order is CWBDQ_SEQ_KEYED, the order in which records are read from

the data queue depends on the value of the search order attribute of the data object and the key value
specified for the cwbDQ_SetKey API. If multiple records contain the key that satisfies the search order, a
FIFO scheme is used among those records.

Syntax
unsigned int CWB_ENTRY cwhDQ_GetOrdex(
cwbDQ_Attr queueAttributes,
unsigned short xorder) ;

Parameters

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

unsigned short * order - output
Pointer to an unsigned short where the order will be written. Possible values are:

« CWBDQ_SEQ_LIFO
. CWBDQ_SEQ_FIFO
. CWBDQ_SEQ_KEYED

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage

None

cwbDQ_GetSenderID
Use the cwbDQ_GetSenderID command.

Purpose

Get the attribute for whether information about the sender is kept with each record on the queue.

Syntax
unsigned int CWB_ENTRY cwbDQ_GetSenderID(
cwhDQ_Attr queueAttributes,
cwb_Boolean *senderID);

Windows Application Package: Programming 129

Parameters

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes that are returned by a previous call to cwhDQ_CreateAttr.

cwb_Boolean * senderID - output
Pointer to a Boolean where the sender ID indicator will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage

None

cwbDQ_SetAuthority
Use the cwbDQ_SetAuthority command.

Purpose

Set the attribute for the authority that other users will have to the data queue.

Syntax
unsigned int CWB_ENTRY cwbDQ_SetAuthority (
cwhDQ_Attr queueAttributes,
unsigned short authority);

Parameters

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

unsigned short authority - input
Authority that other users on the system have to access the data queue. Use one of the following
defined types for authority:

- CWBDQ_ALL

« CWBDQ_EXCLUDE

. CWBDQ_CHANGE

.« CWBDQ_USE

. CWBDQ_LIBCRTAUT

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

130 IBMi: Windows Application Package: Programming

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

CWBDQ_INVALID_AUTHORITY
Invalid queue authority.

Usage

None

cwbDQ_SetDesc
Use the cwbDQ_SetDesc command.

Purpose

Set the attribute for the description of the data queue.

Syntax
unsigned int CWB_ENTRY cwhDQ_SetDesc (
cwbDQ_Attr queueAttributes,
char *description);

Parameters

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

char * description - input
Pointer to an ASCIIZ string that contains the description for the data queue. The maximum length for
the description is 50 characters.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

CWBDQ_INVALID_QUEUE_TITLE
Queue title is too long.

Usage

None

cwbDQ_SetForceToStorage
Use the cwhDQ_SetForceToStorage command.

Purpose

Set the attribute for whether records will be forced to auxiliary storage when they are enqueued.

Windows Application Package: Programming 131

Syntax

unsigned int CWB_ENTRY cwhDQ_SetForceToStorage (
cwbDQ_Attr queueAttributes,
cwb_Boolean forceToStorage) ;

Parameters

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

cwb_Boolean forceToStorage - input
Boolean indicator of whether each record is forced to auxiliary storage when it is enqueued.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage

None

cwbDQ_SetKeySize
Use the cwbDQ_SetKeySize command.

Purpose
Set the attribute for the key size in bytes.

Syntax
unsigned int CWB_ENTRY cwbDQ_SetKeySize(
cwhDQ_Attr queueAttributes,
unsigned short keySize);

Parameters

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

unsigned short keySize - input
Size in bytes of the key. This value should be zero if the order is LIFO or FIFO, and between 1 and 256
for KEYED.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_KEY_LENGTH
Invalid key length.

132 IBMi: Windows Application Package: Programming

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage

None

cwbDQ_SetMaxRecLen

Use the cwbDQ_SetMaxRecLen command.

Purpose

Set the maximum record length for the data queue.

Syntax
unsigned int CWB_ENTRY cwbDQ_SetMaxRecLen (
cwbDQ_Attr queueAttributes,
unsigned long maxRecordLength);

Parameters

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

unsigned long maxLength - input
Maximum length for a data queue record. This value must be between 1 and 31744.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.
CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

CWBDQ_INVALID_QUEUE_LENGTH
Invalid queue record length.

Usage

None

cwbDQ_SetOrder
Use the cwbDQ_SetOrder command.

Purpose

Set the attribute for the queue order. If the order is CWBDQ_SEQ_LIFO, the last record written is the first
record read (Last In First Out). If the order is CWBDQ_SEQ_FIFO, the first record written is the first record
read (First In First Out). If the order is CWBDQ_SEQ_KEYED, the order in which records are read from

the data queue depends on the value of the search order attribute of the data object and the key value
specified for the cwbDQ_SetKey API. If multiple records contain the key that satisfies the search order, a
FIFO scheme is used among those records.

Windows Application Package: Programming 133

Syntax

unsigned int CWB_ENTRY cwhDQ_SetOrdexr(
cwbDQ_Attr queueAttributes,
unsigned short order) ;

Parameters

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

unsigned short order - input
Order in which new entries will be enqueued. Use one of the following defined types for order:

« CWBDQ_SEQ_LIFO
. CWBDQ_SEQ_FIFO
. CWBDQ_SEQ_KEYED

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

CWBDQ_INVALID_ORDER
Invalid queue order.

Usage

None

cwbDQ_SetSenderID
Use the cwbDQ_SetSenderID command.

Purpose

Set the attribute for whether information about the sender is kept with each record on the queue.

Syntax
unsigned int CWB_ENTRY cwbDQ_SetSenderID(
cwhDQ_Attr queueAttributes,
cwb_Boolean senderID);

Parameters

cwbDQ_Attr queueAttributes - input
Handle of the data queue attributes returned by a previous call to cwbDQ_CreateAttr.

cwb_Boolean senderID - input
Boolean indicator of whether information about the sender is kept with record on the queue.

Return Codes

The following list shows common return values.

134 IBMi: Windows Application Package: Programming

CWB_OK
Successful completion.

CWBDQ_INVALID_ATTRIBUTE_HANDLE
Invalid attributes handle.

Usage

None

Data Queues: Read and write APIs

Use these product APIs for writing to and reading from a data queue

cwbDQ_CreateData
Use the cwbDQ_CreateData command.

Purpose

Create the data object. This data object can be used for both reading and writing data to a data queue.
Syntax

cwbDQ_Data CWB_ENTRY cwbDQ_CreateData(void);

Parameters

None

Return Codes
The following list shows common return values.

cwbDQ_Data — A handle to the data object
After creation, a data object will have the default values of:

- data - NULL and length O
« key - NULL and length O
« sender ID info - NULL

- search order - NONE
 convert - FALSE

Usage

None

cwbDQ_DeleteData

Use the cwbDQ_DeleteData command.

Purpose
Delete the data object.

Windows Application Package: Programming 135

Syntax

unsigned int CWB_ENTRY cwhDQ_DeleteData(
cwbDQ_Data data);

Parameters

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage

None

cwbDQ_GetConvert
Use the cwbDQ_GetConvert command.

Purpose

Get the value of the convert flag for a data handle. The convert flag determines if data sent to and
recieved from the host is CCSID converted (for example, between ASCII and EBCDIC).

Syntax
unsigned int CWB_ENTRY cwbDQ_GetConvert(
cwbDQ_Data data,
cwb_Boolean *convert) ;

Parameters

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

cwb_Boolean * convert - output
Pointer to a Boolean where the convert flag will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

136 IBM i: Windows Application Package: Programming

Usage

None

cwbDQ_GetData
Use the cwbDQ_GetData command.

Purpose
Get the data attribute of the data object.

Syntax

unsigned int CWB_ENTRY cwbDQ_GetData(
cwbDQ_Data
unsigned char

Parameters
cwbDQ_Data data - input

data,
*dataBuffer);

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * data - output

Pointer to the data. The data may contain embedded NULLs, so it is not an ASCIIZ string.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage

None

cwbDQ_GetDataAddr
Use the cwbDQ_GetDataAddr command.

Purpose

Get the address of the location of the data buffer.
Syntax

unsigned int CWB_ENTRY cwhDQ_GetDataAddx(
cwbDQ_Data
unsigned char

Parameters
cwbDQ_Data data - input

data,
*xdataBuffer) ;

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

Windows Application Package: Programming 137

unsigned char * * data - output
Pointer to where the buffer address will be written.

Return Codes
The following list shows common return values.
CWB_OK

Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

CWBDQ_ADDRESS_NOT_SET
Address not set with cwbDQ_SetDataAddr.

Usage

Use this function to retrieve the address of the location where the data is stored. The data address must
be set with the cwbDQ_SetDataAddxr API, otherwise, the return code CWBDQ_ADDRESS_NOT_SET will
be returned.

cwbDQ_GetDatalLen
Use the cwbDQ_GetDatalLen command.

Purpose

Get the data length attribute of the data object. This is the total length of the data object. To obtain the
length of data that was read, use the cwbDQ_GetRetDatalen APL.

Syntax
unsigned int CWB_ENTRY cwbDQ_GetDatalen(
cwbDQ_Data data,
unsigned long *datalength);

Parameters

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned long * dataLength - output
Pointer to an unsigned long where the length of the data will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.
CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

138 IBM i: Windows Application Package: Programming

Usage
None

cwbDQ_GetKey
Use the cwbDQ_GetKey command.

Purpose

Get the key attribute of the data object, previously set by the cwbDQ_SetKey API. This is the key that is
used for writing data to a keyed data queue. Along with the search order, this key is also used to read data
from a keyed data queue. The key that is associated with the record retrieved can be obtained by calling
the cwbDQ_GetRetKey API.

Syntax
unsigned int CWB_ENTRY cwbDQ_GetKey (
cwbDQ_Data data,
unsigned char *key) ;

Parameters

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * key - output
Pointer to the key. The key may contain embedded NULLS, so it is not an ASCIIZ string.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.
Usage

None

cwbDQ_GetKeyLen
Use the cwbDQ_GetKeyLen command.

Purpose
Get the key length attribute of the data object.

Syntax
unsigned int CWB_ENTRY cwhDQ_GetKeylLen(
cwbDQ_Data data,
unsigned short xkeylLength) ;

Windows Application Package: Programming 139

Parameters

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbhDQ_CreateData.

unsigned short * keyLength - output
Pointer to an unsigned short where the length of the key will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.
Usage

None

cwbDQ_GetRetDatalLen
Use the cwbDQ_GetRetDatalLen command.

Purpose

Get the length of data that was returned. The returned data length will be zero untila cwbDQ_Read or
cwbDQ_Peek API s called.Then it will have the length of the data that actually was returned.

Syntax
unsigned int CWB_ENTRY cwbDQ_GetRetDatalen (
cwbDQ_Data data,
unsigned long *retDatalength);

Parameters

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned long * retDataLength - output
Pointer to an unsigned long where the length of the data returned will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage

None

140 IBM i: Windows Application Package: Programming

cwbDQ_GetRetKey
Use the cwbDQ_GetRetKey command.

Purpose

Get the returned key of the data object. This is the key that is associated with the messages that are
retrieved from a keyed data queue. If the search order is a value other than CWBDQ_EQUAL, this key may
be different than the key that is used to retrieve the message.

Syntax
unsigned int CWB_ENTRY cwhDQ_GetRetKey (
cwbDQ_Data data,
unsigned char *key) ;

Parameters

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * retKey - output
Pointer to the returned key. The key may contain embedded NULLs, so it is not an ASCIIZ string.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.
Usage

None

cwbDQ_GetRetKeyLen
Use the cwbDQ_GetRetKeylLen command.

Purpose

Get the returned key length attribute of the data object. This is the length of the key that is returned by the
cwbDQ_GetKey API.

Syntax
unsigned int CWB_ENTRY cwbDQ_GetRetKeyLen (
cwbDQ_Data data,
unsigned short *retKeylLength) ;

Parameters

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

Windows Application Package: Programming 141

unsigned short * retKeyLength - output
Pointer to an unsigned short where the length of the key will be written.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage
None

cwbDQ_GetSearchOrder
Use the cwbDQ_GetSearchOrder command.

Purpose

Get the search order of the open attributes. The search order is used when reading or peeking a keyed
data queue to identify the relationship between the key of the record to retrieve and the key value
specified on the cwbDQ_SetKey API. If the data queue order attribute is not CWBDQ_SEQ_KEYED, this
property is ignored.

Syntax
unsigned int CWB_ENTRY cwhDQ_GetSearchOrdexr(
cwbDQ_Data data,
unsigned short *xsearchOrder) ;

Parameters

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned short * searchOrder - output
Pointer to an unsigned short where the order will be written. Possible values are:

- CWBDQ_NONE

- CWBDQ_EQUAL

« CWBDQ_NOT_EQUAL

« CWBDQ_GT_OR_EQUAL
CWBDQ_GREATER

« CWBDQ_LT_OR_EQUAL
CWBDQ_LESS

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

142 IBM i: Windows Application Package: Programming

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage

None

cwbDQ_GetSenderInfo
Use the cwbDQ_GetSenderInfo command.

Purpose

Get the Sender Information attribute of the open attributes. This information only is available if the
senderID attribute of the Data Queue was set on creation.

Syntax

unsigned int CWB_ENTRY cwhDQ_GetSenderInfo(
cwbDQ_Data
unsigned char

Parameters
cwbDQ_Data data - input

data,
*senderInfo);

Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * senderInfo - output

Pointer to a 36 character buffer where the sender information will be written. This buffer contains:

« Job Name (10 bytes)

« User Name (10 bytes)
« Job ID (6 bytes)

« User Profile (10 bytes)

Return Codes

The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage

None

Windows Application Package: Programming 143

cwbDQ_SetConvert

Use the cwbDQ_SetConvert command.

Purpose

Set the convert flag. If the flag is set, all data being written will be converted from PC CCSID (for example,
ASCII) to host CCSID (for example, EBCDIC), and all data being read will be converted from host CCSID
(for example, EBCDIC) to PC CCSID (for example, ASCII). Default behavior is no conversion of data.

Syntax
unsigned int CWB_ENTRY cwhDQ_SetConvert(
cwbDQ_Data data,
cwb_Boolean convert) ;

Parameters

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

cwb_Boolean convert - input
Flag indicating if data written to and read from the queue will be CCSID converted.

Return Codes

The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Usage

None

cwbDQ_SetData
Use the cwbDQ_SetData command.

Purpose

Set the data and data length attributes of the data object. The default is to have no data with zero length.
This function will make a copy of the data.

Syntax
unsigned int CWB_ENTRY cwbDQ_SetData(
cwbDQ_Data data,
unsigned char *dataBuffer,
unsigned long datalength);

Parameters

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * dataBuffer - input
Pointer to the data. The data may contain embedded NULLS, so it is not an ASCIIZ string.

144 IBM i: Windows Application Package: Programming

unsigned long datalLength - input
Length of the data in bytes.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

CWBDQ_BAD_DATA_LENGTH
Length of data is not correct.

Usage

Use this function if you want to write a small amount of data or you do not want to manage the memory
for the data in your application. Data will be copied and this may affect your application's performance.

cwbDQ_SetDataAddr
Use the cwbDQ_SetDataAddr command.

Purpose

Set the data and data length attributes of the data object. The default is to have no data with zero length.
This function will not copy the data.

Syntax
unsigned int CWB_ENTRY cwbDQ_SetDataAddr(
cwbDQ_Data data,
unsigned char *dataBuffer,
unsigned long datalength);

Parameters

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * dataBuffer - input
Pointer to the data. The data may contain embedded NULLS, so it is not an ASCIIZ string.

unsigned long dataLength - input
Length of the data in bytes.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.
CWB_INVALID_POINTER
Bad or null pointer.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

Windows Application Package: Programming 145

CWBDQ_BAD_DATA_LENGTH
Length of data is not correct.

Usage

This function is better for large amounts of data, or if you want to manage memory in your application.
Data will not be copied so performance will be improved.

cwbDQ_SetKey
Use the cwbDQ_SetKey command.

Purpose

Set the key and key length attributes of the data attributes. This is the key that is used for writing data to a
keyed data queue. In addition to the search order, this key is used to read data from a keyed data queue.
The default is to have no key with zero length; this is the correct value for a non-keyed (LIFO or FIFO) data

gueue.
Syntax
unsigned int CWB_ENTRY cwbDQ_SetKey (
cwbDQ_Data data,
unsigned char *key,
unsigned short keyLength) ;

Parameters

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned char * key - input
Pointer to the key. The key may contain embedded NULLS, so it is not an ASCIIZ string.

unsigned short keyLength - input
Length of the key in bytes.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

CWBDQ_BAD_KEY_LENGTH
Length of key is not correct.
Usage

None

cwbDQ_SetSearchOrder
Use the cwbDQ_SetSearchOrder command.

Purpose

Set the search order of the open attributes. The default is no search order. If the cwbDQ_SetKey API is
called, the search order is changed to equal. Use this API to set it to something else. The search order
is used when reading or peeking a keyed data queue to identify the relationship between the key of

146 IBM i: Windows Application Package: Programming

the record to retrieve and the key value specified on the cwbDQ_SetKey APIL. If the data queue order
attribute is not CWBDQ_SEQ_KEYED, this property is ignored.

Syntax
unsigned int CWB_ENTRY cwbDQ_SetSearchOrder (
cwbDQ_Data data,
unsigned short searchOzrder) ;

Parameters

cwbDQ_Data data - input
Handle of the data object that was returned by a previous call to cwbDQ_CreateData.

unsigned short searchOrder - input
Order to use when reading from a keyed queue. Possible values are:

- CWBDQ_NONE

- CWBDQ_EQUAL

- CWBDQ_NOT_EQUAL

- CWBDQ_GT_OR_EQUAL
CWBDQ_GREATER

.« CWBDQ_LT_OR_EQUAL
« CWBDQ_LESS

Return Codes

The following list shows common return values.
CWB_OK
Successful completion.

CWBDQ_INVALID_DATA_HANDLE
Invalid data handle.

CWBDQ_INVALID_SEARCH
Invalid search order.

Usage

None

Example: Using Data Queues APIs

The following example illustrates using IBM i data queues APIs.

// Sample Data Queues application

#ifdef UNICODE
#tdefine _UNICODE
jtfdefine CWB_UNICODE

#endif

##include <windows.h>

// Include the necessary DQ Classes
#include <stdlib.h>

f##include <iostream>

#include "cwbdqg.h"

using namespace std;
/**/

void main()

Windows Application Package: Programming 147

cwhDQ_Attr queueAttributes;
cwbDQ_QueueHandle queueHandle;
cwbDQ_Data queueData;

// Create an attribute object
if ((queueAttributes = cwbDQ_CreateAttr()) == 0)
return;

// Set the maximum record length to 100
if (cwhDQ_SetMaxReclLen(queueAttributes,
100) != 0)
return;

// Set the order to First-In-First-Out
if (cwbDQ_SetOrder(queueAttributes, CWBDQ_SEQ_FIF0) != 0)
return;

// obtain a handle to the system

cwbCO_SysHandle system = NULL;

if(cwbhCO_CreateSystem(TEXT("SYSNAMEXXX"), 6 &system) != 0)
return;

// Create the data queue DTAQ in library QGPL on system SYS1
if (cwbDQ_CreateEx(system,
TEXT("DTAQX"),
TEXT("QGPL"),
queueAttributes,
NULL) != 0)
return;

// Delete the attributes
if (cwbDQ_DeleteAttr(queueAttributes) != 0)
return;

// Open the data queue
if (cwbDQ_OpenEx(system,
TEXT("DTAQ"),
TEXT("QGPL"),
&queueHandle,
NULL) != 0)

return;

// Create a data object
if ((queueData = cwbhDQ_CreateData()) == 0)
return;

// Set the data length and the data
if (cwbhDQ_SetData(queueData, (unsigned charx)"Test Data!", 10) != 0)
return;

// Write the data to the data queue
if (cwbDQ_Write(queueHandle, queueData, CWB_TRUE, NULL) != 0)
return;

// Delete the data object

if (cwbDQ_DeleteData(queueData) != 0)
return;

// Close the data queue

if (cwbhDQ_Close(queueHandle) != 0)
return;

Data transformation and National Language Support (NLS) APIs

Use Data Transformation and National Language Support (NLS) APIs to enable your applications to
transform product data.

Data transformation APIs

Product data transformation application programming interfaces (APIs) enable your client/server
applications to transform IBM i numeric data between the system and the PC formats. Transformation

148 IBM i: Windows Application Package: Programming

may be required when you send and receive IBM i numeric data to and from the system. Data
transformation APIs support transformation of many numeric formats.

Data transformation APIs required files:

Header file Import library Dynamic Link Library
cwbdt.h cwbapi.lib cwbdt.dll

Programmer's Toolkit:

The Programmer's Toolkit provides data transformation documentation, access to the cwbdt.h header file,
and links to sample programs. To access this information, open the Programmer's Toolkit and select Data
Manipulation > C/C++ APIs.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

Related reference
IBM i name formats for connection APIs
APIs that take an IBM i name as a parameter, accept the name in the three different formats.

OEM, ANSI, and Unicode considerations
Most of the C/C++ APIs that accept string parameters exist in three forms: OEM, ANSI, or Unicode.

Data transformation API list
The following data transformation APIs are listed alphabetically.

Note: Data transformation APIs that accept strings are provided in Unicode versions. In these

APIs, "ASCII" is replaced by "Wide" (for example, cwbDT_ASCII11ToBin4 has a Unicode version:
cwbDT_Widel1ToBin4). These APIs are indicated in the table that follows. The Unicode versions have
different syntax, parameters and return values than their ASCII counterparts.

cwbDT_ASCII11ToBin4
Use the cwbDT_ASCII11ToBin4 command.

Purpose

Translates (exactly) 11 ASCII numeric characters to a 4-byte integer stored most significant byte first.
(The source string is not expected to be zero-terminated.) This function can be used for translating ASCII
numeric data to the IBM i integer format.

Unicode version
cwbDT_WidellToBin4

Syntax

unsigned int CWB_ENTRY cwbDT_ASCII11ToBin4(
char xtarget,
char *source);

Parameters

char * target - output
Pointer to the target (4 byte integer).

char * source - input
Pointer to the source (11 byte ASCII).

Windows Application Package: Programming 149

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

CWB_BUFFER_OVERFLOW
Overflow error.

other
Offset of the first untranslated character plus one.

Usage

The target data will be stored with the Most Significant Byte first. This is the IBM i format that the system
uses and is the opposite of the format that is used by the Intel x86 processors. Valid formats for the ASCII
source data are as follows:

« [blankspaces][sign][blankspaces][digits] or
« [sign][blankspaces][digits][blankspaces]

Examples:

n + 123"
n_ 123 n
[+123 [
n 123"
n -123"
||+123 [

cwbDT_ASCII6ToBin2
Use the cwbDT_ASCII6ToBin2 command.

Purpose

Translates (exactly) 6 ASCII numeric characters to a 2-byte integer stored most significant byte first.
(The source string is not expected to be zero-terminated.) This function can be used for translating ASCII
numeric data to the IBM i integer format.

Unicode version
cwbDT_Wide6ToBin2

Syntax

unsigned int CWB_ENTRY cwbDT_ASCII6ToBin2(
char xtarget,
char *source);

Parameters

char * target - output
Pointer to the target (2 byte integer).

char * source - input
Pointer to the source (6 byte ASCII).

150 IBM i: Windows Application Package: Programming

Return Codes
The following list shows common return values.

CWB_OK

Successful Completion.
CWB_INVALID_POINTER

NULL pointer was passed by caller.
CWB_BUFFER_OVERFLOW

Overflow error.

other
Offset of the first untranslated character plus one.

Usage

The target data will be stored with the Most Significant Byte first. This is the IBM i format that the system
uses and is the opposite of the format that is used by Intel x86 processors. Valid formats for the ASCII

source data are as follows:

« [blankspaces][sign][blankspaces][digits] or
« [sign][blankspaces][digits][blankspaces]

Examples:

"4 123"
n_ 123 "
[+123 [
n 123"
n -123"
||+123 [

cwbDT_ASCIIPackedToPacked
Use the cwbDT_ASCIIPackedToPacked command.

Purpose

Translates data from ASCII packed format to packed decimal. This function can be used for translating

data from ASCII files to the IBM i format

Unicode version

None.
Syntax
unsigned int CWB_ENTRY cwbDT_ASCIIPackedToPacked(
char *target,
char *source,

unsigned long length);

Parameters

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data.
unsigned long length - input
Number of bytes of source data to translate.

Windows Application Package: Programming 151

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other
Offset of the first untranslated character plus one.

Usage

The caller must make sure that there is adequate space to hold the target information. This function
checks that each half-byte of the packed decimal data is in the range of 0 to 9. The only exception is the
last half-byte which contains the sign indicator (which can be 0x3 or 0xb).

cwbDT_ASCIIToHex
Use the cwbDT_ASCIIToHex command.

Purpose

Translates data from ASCII (hex representation) to binary. One byte is stored in the target for each two
bytes in the source.

Unicode version
cwbDT_WideToHex

Syntax
unsigned int CWB_ENTRY cwhDT_ASCIIToHex(
char *target,
char *source,

unsigned long length);

Parameters

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source (ASCII hex) data.

unsigned long length - input
Number of bytes of source data to translate/2.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other
Offset of the first untranslated character plus one.

152 IBM i: Windows Application Package: Programming

Usage

For 'length' bytes of source data 'length'/2 bytes of target data will be stored. The caller must make sure
that there is adequate space to hold the target information.

cwbDT_ASCIIToPacked
Use the cwbDT_ASCIIToPacked command.

Purpose

Translates ASCII numeric data to packed decimal format. This function can be used for translating ASCII
text data for use on the IBM i platform.

Unicode version
cwbDT_WideToPacked

Syntax
unsigned int CWB_ENTRY cwbDT_ASCIIToPacked (
char *target,
char *source,

unsigned long length,
unsigned long decimalPosition);

Parameters

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data. Must be zero terminated.

unsigned long length - input
Number of bytes of target data to translate.

unsigned long decimalPosition - input
Position of the decimal point.

Return Codes
The following list shows common return values.
CWB_OK

Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

CWB_BUFFER_OVERFLOW
Overflow error.

CWB_NOT_ENOUGH_MEMORY
Unable to allocate temporary memory.

other
Offset of the first untranslated character plus one.

Usage

The caller must make sure that there is adequate space to hold the target information. The sign half-
byte will be set to Oxd to indicate a negative number and hex Oxc to indicate a positive number. 0 <=
decimalPosition < (length * 2). Valid formats for the ASCII numeric data are as follows:

Windows Application Package: Programming 153

« [blankspaces][sign][blankspaces][digits] or

« [sign][blankspaces][digits][blankspaces] or

- [sign][digits][.digits][blankspaces] or

« [blankspaces][sign][digits][.digits][blankspaces]

Examples:

" + 123\0u
"_ 123 \0“
! +123 \o"
" 123\0u
! -12.3\0"
"+1.23 \O"

cwbDT_ASCIIToZoned
Use the cwbDT_ASCIIToZoned command.

Purpose

Translates ASCII numeric data to EBCDIC zoned decimal format. This function can be used for translating
ASCII text data for use on the IBM i platform.

Unicode version
cwbDT_WideToZoned

Syntax
unsigned int CWB_ENTRY cwbDT_ASCIIToZoned (
char *target,
char *source,

unsigned long length,
unsigned long decimalPosition);

Parameters

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data. Must be zero terminated.

unsigned long length - input
Number of bytes of target data to translate.

unsigned long decimalPosition - input
Position of the decimal point.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

CWB_BUFFER_OVERFLOW
Overflow error.

154 IBM i: Windows Application Package: Programming

CWB_NOT_ENOUGH_MEMORY
Unable to allocate temporary memory.

other
Offset of the first untranslated character plus one.

Usage

The caller must make sure that there is adequate space to hold the information. The sign half-byte will be
set to Oxd to indicate a negative number and hex Oxc to indicate a positive number. 0 <= decimalPosition
<= length. Valid formats for the ASCII numeric data are as follows:

« [blankspaces][sign][blankspaces][digits] or

« [sign][blankspaces][digits][blankspaces] or

- [sign][digits][.digits][blankspaces] or

« [blankspaces][sign][digits][.digits][blankspaces]

Examples:

" + 123\0u
"_ 123 \0“
1] +123 \0“
" 123\0u
! -12.3\0"
"+1.23 \o"

cwbDT_ASCIIZonedToZoned
Use the cwbDT_ASCIIZonedToZoned command.

Purpose

Translates data from ASCII zoned decimal format to EBCDIC zoned decimal. This function can be used for
translating data from ASCII files for use on the IBM i platform.

Unicode version

None.
Syntax
unsigned int CWB_ENTRY cwbDT_ASCIIZonedToZoned (
char *target,
char *source,

unsigned long length);

Parameters

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data.

unsigned long length - input
Number of bytes of source data to translate.

Return Codes

The following list shows common return values.

Windows Application Package: Programming 155

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other
Offset of the first untranslated character plus one.

Usage

The left half of each byte (0x3) in the ASCII zoned decimal format will be converted to 0xf in the left
half-byte of the EBCDIC zoned data except for the last byte (sign). This function checks that the left half of
each byte in the ASCII zoned decimal data must be 0x3 except for the last byte. The high half of the last
byte must be 0x3 or Oxb. The right half of each byte in the ASCII zoned decimal data must be in the range
0-9.

cwbDT_Bin2ToASCII6
Use the cwbDT_Bin2ToASCII6 command.

Purpose

Translates a 2-byte integer stored most significant byte first to (exactly) 6 ASCII numeric characters. (The
target will not be zero terminated.) This function can be used for translating IBM i numeric data to ASCII.

Unicode version
cwbDT_Bin2ToWide6b

Syntax

unsigned int CWB_ENTRY cwhDT_Bin2ToASCII6 (
char xtarget,
char xsource);

Parameters

char * target - output
Pointer to the target (6 byte) area.

char * source - input
Pointer to the source (2 byte integer).

Return Codes

The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

Usage

The source data is assumed to be stored with the Most significant Byte first. This is the IBM i format that
the system uses and is the opposite of the format used by the Intel x86 processes.

156 IBM i: Windows Application Package: Programming

cwbDT_Bin2ToBin2
Use the cwbDT_Bin2ToBin2 command.

Purpose

Reverses the order of bytes in a 2-byte integer. This function can be used for translating a 2-byte integer
to or from the IBM i format.

Unicode version

None.
Syntax

unsigned int CWB_ENTRY cwbDT_Bin2ToBin2(
char xtarget,
char *source);

Parameters

char * target - output
Pointer to the target (2 byte integer).

char * source - input
Pointer to the source (2 byte integer).

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

Usage

The source data and the target data must not overlap. The following example shows the result of the
translation:

 Source data: 0x1234
- Target data: 0x3412

cwbDT_Bin4ToASCII11
Use the cwbDT_Bin4ToASCII11 command.

Purpose

Translates a 4-byte integer stored most significant byte first to (exactly) 11 ASCII numeric characters.
(The target will not be zero terminated.) This function can be used for translating IBM i numeric data to
ASCII.

Unicode version
cwbDT_Bin4ToWidell

Windows Application Package: Programming 157

Syntax

unsigned int CWB_ENTRY cwhDT_Bin4ToASCII11(
char xtarget,
char xsource);

Parameters

char * target - output
Pointer to the target (11 byte) area.

char * source - input
Pointer to the source (4 byte integer).

Return Codes

The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

Usage

The source data is assumed to be stored with the Most Significant Byte first. This is the IBM i format that
the system uses and is the opposite of the format used by the Intel x86 processors.

cwbDT_Bin4ToBin4
Use the cwbDT_Bin4ToBin4 command.

Purpose
Reverses the order of bytes in a 4-byte integer. This function can be used for translating a 4-byte integer
to or from the IBM i format.

Unicode version

None.
Syntax

unsigned int CWB_ENTRY cwbDT_Bin4ToBin4(
char xtarget,
char *source);

Parameters

char * target - output
Pointer to the target (4 byte integer).

char * source - input
Pointer to the source (4 byte integer).

Return Codes

The following list shows common return values.

158 IBM i: Windows Application Package: Programming

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

Usage

The source data and the target data must not overlap. The following example shows the result of the

translation:

« Source data: 0x12345678
» Target data: 0x78563412

cwbDT_EBCDICToEBCDIC
Use the cwbDT_EBCDICToEBCDIC command.

Purpose

'Translates' (copies unless character value less than 0x40 is encountered) EBCDIC data to EBCDIC.

Unicode version

None.
Syntax
unsigned int CWB_ENTRY cwhDT_EBCDICToEBCDIC (
char *target,
char *source,

unsigned long length);

Parameters

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data.

unsigned long length - input
Number of bytes of target data to translate.

Return Codes

The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other
Offset of the first untranslated character plus one.

Usage

The caller must make sure that there is adequate space to hold the target information.

Windows Application Package: Programming 159

cwbDT_HexToASCII
Use the cwbDT_HexToASCII command.

Purpose

Translates binary data to the ASCII hex representation. Two ASCII characters are stored in the target for
each byte of source data.

Unicode version
cwbDT_HexToWide

Syntax
unsigned int CWB_ENTRY cwbDT_HexToASCII(
char *target,
char *source,

unsigned long length);

Parameters

char * target - output
Pointer to the target (ASCII hex) data.

char * source - input
Pointer to the source data.

unsigned long length - input
Number of bytes of source data to translate.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

Usage

For 'length' bytes of source data 'length'*2 bytes of target data will be stored. The caller must make sure
that there is adequate space to hold the target information.

cwbDT_PackedToASCII
Use the cwbDT_PackedToASCII command.

Purpose

Translates data from packed decimal format to ASCII numeric data. This function can be used for
translating IBM i data from the system for use in ASCII text format.

Unicode version
cwbDT_PackedToWide

160 IBM i: Windows Application Package: Programming

Syntax

unsigned int CWB_ENTRY cwhDT_PackedToASCII(
char *target,
char *source,
unsigned long length,

unsigned long decimalPosition);

Parameters

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data.

unsigned long length - input
Number of bytes of source data to translate.

unsigned long decimalPosition - input
Position of the decimal point.

Return Codes

The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other
Offset of the first untranslated character plus one.

Usage

The caller must make sure that there is adequate space to hold the target information. This function
checks that each half-byte of the packed decimal data is in the range of 0 to 9. The only exception is the
last half-byte which contains the sign indicator. 0 <= decimalPosition < (length * 2).

cwbDT_PackedToASCIIPacked
Use the cwbDT_PackedToASCIIPacked command.

Purpose

Translates data from packed decimal format to ASCII packed format. This function can be used for
translating IBM i data from the system for use in ASCII format.

Unicode version

None.
Syntax
unsigned int CWB_ENTRY cwbDT_PackedToASCIIPacked (
char *target,
char *source,

unsigned long length);

Windows Application Package: Programming 161

Parameters

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data.

unsigned long length - input
Number of bytes of source data to translate.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other
Offset of the first untranslated character plus one.

Usage

The caller must make sure that there is adequate space to hold the target information. This function
checks that each half-byte of the packed decimal data is in the range of 0 to 9. The only exception is the
last half-byte which contains the sign indicator (which can be 0-9, 0xd, or Oxb).

cwbDT_PackedToPacked
Use the cwbDT_PackedToPacked command.

Purpose

Translates packed decimal data to packed decimal. This function can be used for transferring IBM i data
from the system to no-conversion files and back.

Unicode version

None.
Syntax
unsigned int CWB_ENTRY cwbDT_PackedToPacked(
char *target,
char *source,

unsigned long length);

Parameters

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data.

unsigned long length - input
Number of bytes of source data to translate.

Return Codes

The following list shows common return values.

162 IBM i: Windows Application Package: Programming

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other
Offset of the first untranslated character plus one.

Usage

The caller must make sure that there is adequate space to hold the target information. This function
checks that each half-byte of the packed decimal data is in the range of 0 to 9. The only exception is the
last half-byte which contains the sign indicator.

cwbDT_ZonedToASCII
Use the cwbDT_ZonedToASCII command.

Purpose

Translates EBCDIC zoned decimal data to ASCII numeric format. This function can be used for translating
IBM i data from the system for use in ASCII text format.

Unicode version
cwbDT_ZonedToWide

Syntax
unsigned int CWB_ENTRY cwhDT_ZonedToASCII (
char *target,
char *source,

unsigned long length,
unsigned long decimalPosition);

Parameters

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data.

unsigned long length - input
Number of bytes of source data to translate.

unsigned long decimalPosition - input
Position of the decimal point.

Return Codes

The following list shows common return values.
CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

CWB_BUFFER_OVERFLOW
Overflow error.

other
Offset of the first untranslated character plus one.

Windows Application Package: Programming 163

Usage

The caller must make sure that there is adequate space to hold the target information. The high half of
the last byte of the zoned data indicates the sign of the number. If the high half-byte is Oxb or Oxd, then

a negative number is indicated. Any other value indicates a positive number. This function checks that the
high half of each byte of zoned data must be Oxf except for the last byte. The low half of each byte of
zoned data must be in the range 0-9. 0 <= decimalPosition < length.

cwbDT_ZonedToASCIIZoned
Use the cwbDT_ZonedToASCIIZoned command.

Purpose

Translates data from EBCDIC zoned decimal format to ASCII zoned decimal format. This function can be
used for translating IBM i data from the system for use in ASCII files.

Unicode version

None.
Syntax
unsigned int CWB_ENTRY cwbDT_ZonedToASCIIZoned (
char *target,
char *source,

unsigned long length);

Parameters

char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data.

unsigned long length - input
Number of bytes of source data to translate.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other
Offset of the first untranslated character plus one.

Usage

The caller must make sure that there is adequate space to hold the target information. The left half-byte
(Oxf) in the EBCDIC zoned decimal data will be converted to 0x3 in the left half-byte of the ASCII zoned
decimal data except for the last byte (sign). The high half of the last byte of the EBCDIC zoned decimal
data indicates the sign of the number. If the high half-byte is Oxb or Oxb then a negative number is
indicated, any other value indicates a positive number. This function checks that the high half of each byte
of EBCDIC zoned decimal data must be Oxf except for the last byte. The low half of each byte of EBCDIC
zoned decimal data must be in the range 0-9.

164 IBM i: Windows Application Package: Programming

cwbDT_ZonedToZoned
Use the cwbDT_ZonedToZoned command.

Purpose

Translates data from zoned decimal format to zoned decimal. This function can be used for translating
IBM i data from the system for use in no-conversion files and vice-versa.

Unicode version

None.
Syntax
unsigned int CWB_ENTRY cwbDT_ZonedToZoned (
char *target,
char *source,

unsigned long length);

Parameters
char * target - output
Pointer to the target data.

char * source - input
Pointer to the source data.
unsigned long length - input
Number of bytes of source data to translate.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

CWB_INVALID_POINTER
NULL pointer was passed by caller.

other
Offset of the first untranslated character plus one.

Usage

The caller must make sure that there is adequate space to hold the target information. The high half of
the last byte of the zoned data indicates the sign of the number. If the high half-byte is Oxb or Oxb then a
number is indicated, any other value indicates a positive number. This function checks that the high half of
each byte of zoned data must be Oxf except for the last byte. The low half of each byte of zoned data must
be in the range 0-9.

Example: Using data transformation APIs
This example illustrates using data transformation APIs.

AR R A R A A AR A A KR KR AR AR KRR A AR KR KRR K KA A /
/* Sample Data Transform Program using cwbDT_Bin4ToBin4 to reverse x/
/> the order of bytes in a 4-byte integer. */
A A A AR AR AR A A KKK AR AR KA KKK AR /

#include <iostream>
using namespace std;
#include "cwbdt.h"

Windows Application Package: Programming 165

void main()

unsigned int returnCode;
long source,
target;

cout << "Enter source number:\n";

while (cin >> souzrce) {
cout << "Source in Dec = << dec << source;
cout << "\nSource in Hex = " << hex << source << '\n';
if (((returnCode = cwbDT_Bin4ToBin4((char x)&target, (char *)&source)) == CWB_OK)) {

cout << "Target in Dec = " << dec << target;
cout << "\nTarget in Hex = " << hex << target << '\n';
t else §
cout << "Conversion failed, Return code = " << returnCode << '\n' ;

t; /*x endif =/
cout << "\nEnter source number:\n";

t; /* endwhile %/

National Language Support (NLS) APIs

National Language Support APIs enable your applications to get and save (query and change) product
settings that are relevant to different language versions.

Through NLS, the product supports many national languages. NLS allows users to work on a system in
the language of their choice. The support also ensures that the data that is sent to and received from
the system appears in the form and order that is expected. By supporting many different languages, the
system operates as intended, from both a linguistic and a cultural point of view.

AlLIBM i functions use a common set of program code, regardless of which language you use on the
system. For example, the IBM i program code on a U.S. English language version and the IBM i program
code on a Spanish language version are identical. Different sets of textual data are used, however, for
different languages. Textual data is a collective term for menus, displays, lists, prompts, options, Online
help information, and messages. This means that you see Help for the description of the function key
for Online help information on a U.S. English system, while you see Ayuda on a Spanish system. Using
the same program code with different sets of textual data allows the system to support more than one
language on a single system.

You can add convenient functions into your product applications, including the capability to:

« Select from a list of installed national languages.

« Convert character data from one code page to another. This permits computers that use different code
pages, such as personal computers and the IBM i operating system, to share information.

« Automatically replace the translatable text (caption and control names) within dialog boxes. This
expands the size of the controls according to the text that is associated with them. The size of the
dialog-box frame also is adjusted automatically.

Note: It is essential to build National Language Support considerations into the design of the program
right from the start. It is much harder to add NLS or DBCS support after a program has been designed or
coded.

NLS APIs required files:

NLS API type Header file Import library Dynamic Link Library
General cwbnl.h cwbapi.lib cwbnl.dll

Conversion cwbnlenv.h cwbcore.dll
Dialog-box cwbnldlg.h cwbnldlg.dll

166 IBM i: Windows Application Package: Programming

Programmer's Toolkit:

The Programmer's Toolkit provides NLS documentation, access to the NLS APIs header files, and
links to sample programs. To access this information, open the Programmer's Toolkit and select Data
Manipulation > C/C++ APlIs.

Related reference

IBM i name formats for connection APIs
APIs that take an IBM i name as a parameter, accept the name in the three different formats.

OEM, ANSI, and Unicode considerations
Most of the C/C++ APIs that accept string parameters exist in three forms: OEM, ANSI, or Unicode.

Coded character sets
The product uses character encoding schemes.

Graphic characters are printable or displayable symbols, such as letters, numbers, and punctuation
marks. A collection of graphic characters is called a graphic-character set, and often simply a character
set.

Each language requires its own graphic-character set to be printed or displayed properly. Characters are
encoded according to a code page, which is a table that assigns graphic and control characters to specific
values called code points.

Code pages are classified into many types according to the encoding scheme. Two important encoding
schemes for the IBM i Access Family are the Host and PC code pages. Unicode also is becoming an
important encoding scheme. Unicode is a 16-bit worldwide character encoding scheme that is gaining
popularity on both the Host and the personal computer.

« Host code pages are encoded in accordance with IBM Standard of Extended BCD Interchange Code
(EBCDIC) and usually used by S/390° and on the IBM i platform.

« PC Code pages are encoded based on ANSI X3.4, ASCII and usually used by IBM Personal Computers.

General NLS APIs list
Use general NLS APIs.

This product is translated into many languages. One or more of these languages can be installed on the
personal computer. The following general NLS APIs allow an application to:

- Get alist of installed languages
« Get the current language setting
« Save the language setting

cwbNL_FindFirstLang
Use the cwbNL_FindFirstLang command.

Purpose

Returns the first available language.

Syntax

unsigned int CWB_ENTRY cwbNL_FindFirstLang(
char *mriBasePath,
char *resultPtr,
unsigned short resultLen,
unsigned short *requiredLen,
unsigned long *searchHandle,
cwbSV_ErrHandle errorHandle);

Windows Application Package: Programming 167

Parameters

char * mriBasePath - input
Pointer to the mriBasePath, for example C:\Program Files\IBM\ClientAccess. If NULL, the
mriBasePath of the product is used.

char * resultPtr - output
Pointer to the buffer to contain the result.
unsigned short resultLen - input
Length of the result buffer. Recommended size is CWBNL_MAX_LANG_SIZE.

unsigned short * requiredLen - output
Actual length of the result. If requiredLen > resultLen, the return value will be
CWB_BUFFER_OVERFLOW.

unsigned long * searchHandle - output
Search handle to be passed on subsequent calls to cwbNL_FindNextLang.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with
the cwbSV_CreateExrrHandle () API The messages may be retrieved through the
cwbSV_GetErrText () APL If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_FILE_NOT_FOUND
File not found.

CWB_PATH_NOT_FOUND
Path not found.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

Usage

The result buffer will contain a language.

cwbNL_FindNextLang
Use the cwbNL_FindNextLang command.

Purpose

Returns the next available language.

Syntax

unsigned int CWB_ENTRY cwbNL_FindNextLang(
char *resultPtr,
unsigned short resultlLen,

168 IBM i: Windows Application Package: Programming

unsigned short *requiredLen,
unsigned long *searchHandle,
cwbSV_ErrHandle errorHandle);

Parameters

char * resultPtr - output
Pointer to the buffer to contain the result.

unsigned short resultLen - input
Length of the result buffer. Recommended size is CWBNL_MAX_LANG_SIZE.

unsigned short * requiredLen - output
Actual length of the result. If requiredLen > resultLen, the return value will be
CWB_BUFFER_OVERFLOW.

unsigned long * searchHandle - output
Search handle to be passed on subsequent calls to cwbNL_FindNextLang.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with
the cwbSV_CreateErrHandle () APIL The messages may be retrieved through the
cwbSV_GetErrText () APL If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NO_MORE_FILES
No more files are found.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

Usage

The result buffer will contain a language.

cwbNL_GetLang
Use the cwbNL_GetLang command.

Purpose

Get the current language setting.

Syntax
unsigned int CWB_ENTRY cwbNL_GetLang(
char *mriBasePath,
char *resultPtr,

unsigned short zresultlLen,
unsigned short xrequiredLen,
cwbSV_ErrHandle errorHandle);

Windows Application Package: Programming 169

Parameters

char * mriBasePath - input
Pointer to the mriBasePath, for example C:\Program Files\IBM\ClientAccess. If NULL, the
mriBasePath of the product is used.

char * resultPtr - output
Pointer to the buffer to contain the result.

unsigned short resultLen - input
Length of the result buffer. Recommended size is CWBNL_MAX_LANG_SIZE.

unsigned short * requiredLen - output
Actual length of the result. If requiredLen > resultLen, the return value will be
CWB_BUFFER_OVERFLOW.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with
the cwbSV_CreateErrHandle () APIL The messages may be retrieved through the
cwhSV_GetErrText () APL If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.
CWB_OK

Successful completion.

CWB_INVALID_HANDLE

Invalid handle.
CWB_INVALID_POINTER

NULL passed on output parameter.
CWB_NOT_ENOUGH_MEMORY

Insufficient memory.

CWB_BUFFER_OVERFLOW
Buffer too small to contain result.

Usage

The result buffer will contain the name of the language subdirectory. This language subdirectory
contains the language-specific files. This language subdirectory name also can be passed to
cwbNL_GetLangName.

cwbNL_GetLangName
Use the cwbNL_GetLangName command.

Purpose

Return the descriptive name of a language setting.

Syntax
unsigned int CWB_ENTRY cwbNL_GetLangName (
char *lang,
char *resultPtr,

unsigned short zresultlen,
unsigned short xrequiredLen,
cwbSV_ErrHandle errorHandle);

170 IBM i: Windows Application Package: Programming

Parameters
char * lang - input
Address of the ASCIIZ string representing the language.

char * resultPtr - output
Pointer to the buffer to contain the result.

unsigned short resultLen - input
Length of the result buffer. Recommended size is CWBNL_MAX_NAME_SIZE.

unsigned short * requiredLen - output
Actual length of the result. If requiredLen > resultLen, the return value will be
CWB_BUFFER_OVERFLOW.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with
the cwbSV_CreateErrHandle () APIL The messages may be retrieved through the
cwhSV_GetErrText () APL If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

Usage
The language must be a value returned from one of the following APIs:

e cwbNL_GetLang
« cwbNL_FindFirstlLang
e cwbNL_FindNextLang

cwbNL_GetLangPath
Use the cwbNL_GetLangPath command.

Purpose

Return the complete path for language files.

Syntax
unsigned int CWB_ENTRY cwbNL_GetLangPath(
char *mriBasePath,
char *resultPtr,

unsigned short resultlen,
unsigned short *requiredLen,
cwbSV_ErrHandle errorHandle);

Windows Application Package: Programming 171

Parameters

char * mriBasePath - input
Pointer to the mriBasePath, for example C:\Program Files\IBM\ClientAccess. If NULL, the
mriBasePath of the product is used.

char * resultPtr - output
Pointer to the buffer to contain the result.

unsigned short resultLen - input
Length of the result buffer. Recommended size is CWBNL_MAX_PATH_SIZE.

unsigned short * requiredLen - output
Actual length of the result. If requiredLen > resultLen, the return value will be
CWB_BUFFER_OVERFLOW.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with
the cwbSV_CreateErrHandle () APIL The messages may be retrieved through the
cwhSV_GetErrText () APL If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_PATH_NOT_FOUND
Path not found.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

Usage

The result buffer will contain the complete path of the language subdirectory. Language files should be
loaded from this path.

cwbNL_SavelLang
Use the cwbNL_Savelang command.

Purpose

Save the language setting in the product registry.
Syntax

unsigned int CWB_ENTRY cwbNL_Savelang(
char *lang,
cwbSV_ErrHandle errorHandle);

172 IBM i: Windows Application Package: Programming

Parameters
char * lang - input
Address of the ASCIIZ string representing the language.

cwbSV_ErrHandle errorHandle - input
Any returned messages will be written to this object. It is created with
the cwbSV_CreateErrHandle () APIL The messages may be retrieved through the
cwhSV_GetErrText () APL If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage

The language must be a value returned from one of the following APIs:
- cwbNL_GetlLang

e cwbNL_FindFirstlLang

e cwbNL_FindNextLang

The following APIs are affected by this call:

e cwbNL_GetLang
- cwbNL_GetLangPath

Conversion NLS APIs list
This topic describes the conversion NLS APIs.

The following conversion NLS APIs allow applications to:

« Convert character data from one code page to another

« Determine the current code page setting

« Determine the last CCSID setting

« Convert code page values to and from code character set identifiers (CCSID)

cwbNL_CCSIDToCodePage
Use the cwbNL_CCSIDToCodePage command.

Purpose
Map CCSIDs to code pages.

Syntax

unsigned int CWB_ENTRY cwbNL_CCSIDToCodePage (
unsigned long CCSID,
unsigned long =*codePage,
cwbSV_ErrHandle errorHandle);

Windows Application Package: Programming 173

Parameters

unsigned long CCSID - input
CCSID to convert to a code page.

unsigned long * codePage - output
The resulting code page.

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText APL.
If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage

None

cwbNL_CodePageToCCSID
Use the cwbNL_CodePageToCCSID command.

Purpose
Map code pages to CCSIDs.

Syntax

unsigned int CWB_ENTRY cwbNL_CodePageToCCSID (
unsigned long codePage,
unsigned long «CCSID,
cwbSV_ErrHandle errorHandle);

Parameters

unsigned long codePage - input
Code page to convert to a CCSID.

unsigned long * CCSID - output
The resulting CCSID.

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText API. If
the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

174 IBM i: Windows Application Package: Programming

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage

None

cwbNL_Convert
Use the cwbNL_Convert command.

Purpose

Convert strings by using a previously opened converter.
Syntax

unsigned int CWB_ENTRY cwbNL_Convert(
cwbNL_Converter theConverter,
unsigned long sourcelength,
unsigned long targetlength,
char *sourceBuffer,
char *targetBuffer,
unsigned long *numberOfErrors,
unsigned long *firstErrorIndex,
unsigned long *requiredLen,
cwbSV_ErrHandle errorHandle);

Parameters

cwbNL_Converter theConverter - output
Handle to the previously opened converter.

unsigned long sourceLength - input
Length of the source buffer.

unsigned long targetLength - input
Length of the target buffer. If converting from an ASCII code page that contains DBCS characters, note
that the resulting data could contain shift-out and shift-in bytes. Therefore, the targetBuffer may need
to be larger than the sourceBuffer.

char *sourceBuffer - input
Buffer containing the data to convert.

char *targetBuffer - output
Buffer to contain the converted data.

unsigned long *numberOfErrors - output
Contains the number of characters that could not be converted properly.

unsigned long *firstErrorIndex - output
Contains the offset of the first character in the source buffer that could not be converted properly.

unsigned long *requiredLen - output
Actual length of the result. If requiredLen > resultLen, the return value will be
CWB_BUFFER_OVERFLOW.

Windows Application Package: Programming 175

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText APL
If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_BUFFER_OVERFLOW
Output buffer too small, data truncated.

Usage

None

cwbNL_ConvertCodePages
Use the cwbNL_ConvertCodePages command.

Comments

cwbNL_ConvertCodePages is no longer supported. See cwbNL_ConvertCodePagesEx.

cwbNL_ConvertCodePagesEx
Use the cwbNL_ConvertCodePagesEx command.

Purpose

Convert strings from one code page to another. This API combines the following three converter APIs for
the default conversion:

« cwbNL_CreateConverterEx
« cwbNL_Convert
« cwbNL_DeleteConverter

Syntax

unsigned int CWB_ENTRY cwbNL_ConvertCodePagesEx(

unsigned long sourceCodePage,
unsigned long targetCodePage,
unsigned long sourcelength,
unsigned long targetlength,
char *sourceBuffer,
char *targetBuffer,
unsigned long *numberOfErrors,
unsigned long *positionOfFirstError,
unsigned long *requiredLen,
cwbSV_ErrHandle errorHandle);

176 IBM i: Windows Application Package: Programming

Parameters

unsigned long sourceCodePage - input
Code page of the data in the source buffer.

unsigned long targetCodePage - input
Code page to which the data should be converted.

unsigned long sourceLength - input.
Length of the source buffer

unsigned long targetLength - input.
Length of the target buffer

char *sourceBuffer - input
Buffer containing the data to convert.

char *targetBuffer - output
Buffer to contain the converted data.

unsigned long *numberOfErrors - output

Contains the number of characters that could not be converted properly.
unsigned long *positionOfFirstError - output

Contains the offset of the first character in the source buffer that could not be converted properly.
unsigned long *requiredLen - output

Actual length of the result. If requiredLen > resultLen, the return value will be
CWB_BUFFER_OVERFLOW.

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetExrrText APL.
If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWBNL_ERR_CNV_UNSUPPORTED
An error occurred while attempting to convert the characters. No conversion was done. The most
common reason is that a conversion table is missing. Conversion tables are either installed with the
product, or retrieved from the default system when needed. There may have been some problem
communicating with the default system.

CWBNL_ERR_CNV_ERR_STATUS
This return code is used to indicate that while the requested conversion is supported, and the
conversion completed, there were some characters that did not convert properly. Either the source
buffer contained null characters, or the characters do not exist in the target code page. Applications
can choose to ignore this return code or treat it as a warning.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage

The following values may be specified on the sourceCodePage and the targetCodePage parameters:

Windows Application Package: Programming 177

Value
CWBNL_CP_UNICODE_F200
CWBNL_CP_UNICODE
CWBNL_CP_AS400
CWBNL_CP_CLIENT_OEM
CWBNL_CP_CLIENT_ANSI
CWBNL_CP_CLIENT_UNICODE
CWBNL_CP_UTF8
CWBNL_CP_CLIENT

CWBNL_CP_UTF16BE
CWBNL_CP_UTF16LE
CWBNL_CP_UTF16

CWBNL_CP_UTF32BE
CWBNL_CP_UTF32LE
CWBNL_CP_UTF32

cwbNL_CreateConverter
Use the cwbNL_CreateConverter command.

Comments

Meaning

UCS2 Version 1.1 UNICODE

UCS2 Current Version UNICODE

IBM i host code page

OEM client code page

ANSI client code page

UNICODE client code page

UCS transformation form, 8—bit format

Generic client code page. Default is
CWBNL_CP_CLIENT_OEM. CWBNL_CP_CLIENT is
set to CWBNL_CP_CLIENT_ANSI when CWB_ANSI
is defined, to CWBNL_CP_CLIENT_UNICODE

when CWB_UNICODE is defined and to
CWBNL_CP_CLIENT_OEM when CWB_OEM is
defined.

UTF-16 (Big-Endian)
UTF-16 (Little-Endian)

CWBNL_CP_UTF16BE or CWBNL_CP_UTF16LE,
depending on the platform

UTF-32 (Big-Endian)
UTF-34 (Little-Endian)

CWBNL_CP_UTF32BE or CWBNL_CP_UTF32LE,
depending on the platform

cwbNL_CreateConverter is no longer supported. See cwbNL_CreateConverterEx.

Purpose

Create a cwbNL_Converter to be used on subsequent calls to cwbNL_Convert ().

Syntax

unsigned int CWB_ENTRY cwbNL_CreateConvertexr(
unsigned long
unsigned long
cwbNL_Converter
cwbSV_ErrHandle
unsigned long
unsigned long
char

Parameters

unsigned long sourceCodePage - input
Code page of the source data.

178 IBM i: Windows Application Package: Programming

sourceCodePage,
targetCodePage,
*theConverter,
errorHandle,
shiftInShiftOutStatus,
padLength,

*pad) ;

unsigned long targetCodePage - input
Code page to which the data should be converted.

cwbNL_Converter * theConverter - output
The newly created converter.

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText APL.
If the parameter is set to zero, no messages will be retrievable.

unsigned long shiftInShiftOutStatus - input
Indicates whether the shift-in and shift-out bytes are part of the input or output data. O - False, no
shift-in and shift-out bytes are part of the data string. 1 - True, shift-in and shift-out characters are
part of the data string.

unsigned long padLength - input
Length of pad characters. O - No pad characters for this conversion request 1 - 1 byte of pad character.
This is valid only if the target code page is either SBCS or DBCS code page 2 - 2 bytes of pad
characters. This is valid only if the code page is not a single-byte code page.

char * pad - input
The character or characters for padding.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWBNL_ERR_CNV_UNSUPPORTED
An error occurred while attempting to convert the characters. No conversion was done. The most
common reason is that a conversion table is missing. Conversion tables are either installed with the
product, or retrieved from the default system when needed. There may have been some problem
communicating with the default system.

CWBNL_ERR_CNV_ERR_STATUS
This return code is used to indicate that while the requested conversion is supported, and the
conversion completed, there were some characters that did not convert properly. Either the source
buffer contained null characters, or the characters do not exist in the target code page. Applications
can choose to ignore this return code or treat it as a warning.

CWBNL_ERR_CNV_INVALID_SISO_STATUS
Invalid SISO parameter.

CWBNL_ERR_CNV_INVALID_PAD_LENGTH
Invalid Pad Length parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage

The following values may be specified on the sourceCodePage and the targetCodePage parameters:
Value Meaning

CWBNL_CP_UNICODE_F200 UCS2 Version 1.1 UNICODE

CWBNL_CP_UNICODE UCS2 Current Version UNICODE

Windows Application Package: Programming 179

Value

CWBNL_CP_AS400
CWBNL_CP_CLIENT_OEM
CWBNL_CP_CLIENT_ANSI
CWBNL_CP_CLIENT_UNICODE
CWBNL_CP_UTF8
CWBNL_CP_CLIENT

Meaning

IBM i host code page

OEM client code page

ANSI client code page

UNICODE client code page

UCS transformation form, 8—bit format

Generic client code page. Default is
CWBNL_CP_CLIENT_OEM. CWBNL_CP_CLIENT is set to
CWBNL_CP_CLIENT_ANSI when CWB_ANSI is defined,
to CWBNL_CP_CLIENT_UNICODE when CWB_UNICODE
is defined and to CWBNL_CP_CLIENT_OEM when

CWB_OEM is defined.
UTF-16 (Big-Endian)
UTF-16 (Little-Endian)

CWBNL_CP_UTF16BE
CWBNL_CP_UTF16LE

CWBNL_CP_UTF16
depending on the platform

UTF-32 (Big-Endian)
UTF-34 (Little-Endian)

CWBNL_CP_UTF32BE
CWBNL_CP_UTF32LE

CWBNL_CP_UTF32
depending on the platform

CWBNL_CP_UTF16BE or CWBNL_CP_UTF16LE,

CWBNL_CP_UTF32BE or CWBNL_CP_UTF32LE,

Instead of calling cwbNL_ConvertCodePagesEx multiple times with the same code pages:

« cwbNL_ConvertCodePagesEx(850, 500, ...);

« cwbNL_ConvertCodePagesEx(850, 500, ...);

« cwbNL_ConvertCodePagesEx(850, 500, ...);

It is more efficient to create a converter and use it multiple times:
« cwbNL_CreateConverter(850, 500, &conv, ...);

« cwbNL_Convert(convy, ...);

« cwbNL_Convert(conv, ...);

« cwbNL_Convert(cony, ...);

« cwbNL_DeleteConverter(cony, ...);

cwbNL_CreateConverterEx
Use the cwbNL_CreateConverterEx command.

Purpose

Create a cwbNL_Converter to be used on subsequent calls to cwbNL_Convert ().
Syntax

unsigned int CWB_ENTRY cwbNL_CreateConverterEx(
unsigned long sourceCodePage,
unsigned long targetCodePage,
cwbNL_Converter *theConverter,
cwbSV_ErrHandle errorHandle,
unsigned long shiftInShiftOutStatus,
unsigned long padLength,
char *pad) ;

180 IBM i: Windows Application Package: Programming

Parameters

unsigned long sourceCodePage - input
Code page of the source data.

unsigned long targetCodePage - input
Code page to which the data should be converted.

cwbNL_Converter * theConverter - output
The newly created converter.

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetExrrText APIL.
If the parameter is set to zero, no messages will be retrievable.

unsigned long shiftInShiftOutStatus - input
Indicates whether the shift-in and shift-out bytes are part of the input or output data. O - False, no
shift-in and shift-out bytes are part of the data string. 1 - True, shift-in and shift-out characters are
part of the data string.

unsigned long padLength - input
Length of pad characters. 0 - No pad characters for this conversion request 1 - 1 byte of pad character.
This is valid only if the target code page is either SBCS or DBCS code page 2 - 2 bytes of pad
characters. This is valid only if the code page is not a single-byte code page.

char * pad - input
The character or characters for padding.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWBNL_ERR_CNV_UNSUPPORTED
An error occurred while attempting to convert the characters. No conversion was done. The most
common reason is that a conversion table is missing. Conversion tables are either installed with the
product, or retrieved from the default system when needed. There may have been some problem
communicating with the default system.

CWBNL_ERR_CNV_ERR_STATUS
This return code is used to indicate that while the requested conversion is supported, and the
conversion completed, there were some characters that did not convert properly. Either the source
buffer contained null characters, or the characters do not exist in the target code page. Applications
can choose to ignore this return code or treat it as a warning.

CWBNL_ERR_CNV_INVALID_SISO_STATUS
Invalid SISO parameter.

CWBNL_ERR_CNV_INVALID_PAD_LENGTH
Invalid Pad Length parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage

The following values may be specified on the sourceCodePage and the targetCodePage parameters:

Windows Application Package: Programming 181

Value
CWBNL_CP_UNICODE_F200
CWBNL_CP_UNICODE
CWBNL_CP_AS400
CWBNL_CP_CLIENT_OEM
CWBNL_CP_CLIENT_ANSI
CWBNL_CP_CLIENT_UNICODE
CWBNL_CP_UTF8
CWBNL_CP_CLIENT

CWBNL_CP_UTF16BE
CWBNL_CP_UTF16LE
CWBNL_CP_UTF16

CWBNL_CP_UTF32BE
CWBNL_CP_UTF32LE
CWBNL_CP_UTF32

Meaning

UCS2 Version 1.1 UNICODE

UCS2 Current Version UNICODE

IBM i host code page

OEM client code page

ANSI client code page

UNICODE client code page

UCS transformation form, 8—bit format

Generic client code page. Default is
CWBNL_CP_CLIENT_OEM. CWBNL_CP_CLIENT is set to
CWBNL_CP_CLIENT_ANSI when CWB_ANSI is defined,
to CWBNL_CP_CLIENT_UNICODE when CWB_UNICODE
is defined and to CWBNL_CP_CLIENT_OEM when
CWB_OEM is defined.

UTF-16 (Big-Endian)
UTF-16 (Little-Endian)

CWBNL_CP_UTF16BE or CWBNL_CP_UTF16LE,
depending on the platform

UTF-32 (Big-Endian)
UTF-34 (Little-Endian)

CWBNL_CP_UTF32BE or CWBNL_CP_UTF32LE,
depending on the platform

Instead of calling cwbNL_ConvertCodePagesEx multiple times with the same code pages:

« cwbNL_ConvertCodePagesEx(850, 500, ...);
« cwbNL_ConvertCodePagesEx(850, 500, ...);
« cwbNL_ConvertCodePagesEx(850, 500, ...);

It is more efficient to create a converter and use it multiple times:

« cwbNL_CreateConverterEx(850, 500, &conv, ...);

« cwbNL_Convert(cony, ...);
« cwbNL_Convert(conv, ...);
« cwbNL_Convert(cony, ...);

« cwbNL_DeleteConverter(cony, ...);

cwbNL_DeleteConverter

Use the cwbNL_DeleteConverter command.

Purpose

Delete a cwbNL_Converter.

Syntax

unsigned int CWB_ENTRY cwbNL_DeleteConvertex(

cwbNL_Converter theConverter,
cwbSV_ErrHandle errorHandle);

182 IBM i: Windows Application Package: Programming

Parameters

cwbNL_Converter theConverter - input
A previously created converter.

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandleO API. The messages may be retrieved with the cwbSV_GetExrxrText API.
If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Invalid handle.

Usage

None

cwbNL_GetCodePage
Use the cwbNL_GetCodePage command.

Purpose

Get the current code page of the client system.
Syntax

unsigned int CWB_ENTRY cwbNL_GetCodePage (
unsigned long =*codePage,
cwbSV_ErrHandle errorHandle);

Parameters

unsigned long * codePage - output
Returns the current code page of the client system or the OEM code page character conversion
override value, if one is specified on the Language tab of the IBM i Access Family Properties dialog.

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetExrrText APIL.
If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

Windows Application Package: Programming 183

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

Usage
None

cwbNL_GetANSICodePage
Use the cwbNL_GetANSICodePage command.

Purpose

Get the current ANSI code page of the client system.
Syntax

unsigned int CWB_ENTRY cwbNL_GetANSICodePage (
unsigned long =*codePage,
cwbSV_ErrHandle errorHandle);

Parameters

unsigned long * codePage - output
Returns the current ANSI code page of the client system or the ANSI code page character conversion
override value, if one is specified on the Language tab of the IBM i Access Family Properties dialog.

cwbSV_ErrHandle errorHandle - output
Handle to an error object. Any returned messages will be written to this object. It is created with the
cwbSV_CreateErrHandle API. The messages may be retrieved with the cwbSV_GetErrText APL.
If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
Invalid handle.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.
Usage

None

cwbNL_GetHostCCSID
Use the cwbNL_GetHostCCSID command.

Purpose

Returns the associated CCSID of a given host system or the managing system or the EBCDIC code page
character conversion override value, if one is specified on the Language tab of the product Properties
dialog.

184 IBM i: Windows Application Package: Programming

Syntax

unsigned long CWB_ENTRY cwbNL_GetHostCCSID(
char x system,
unsigned long % CCSID);

Parameters
char * system - input
The name of the host system. If NULL, the managing system is used.

unsigned * CCSID - output
Length of the result buffer.

Return Codes

The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_POINTER
NULL passed on output parameter.

CWBNL_DEFAULT_HOST_CCSID_USED
Host CCSID 500 is returned

Usage

This API does not make or require an active connection to the host system to retrieve the associated
CCSID value. However, it does depend on a prior successful connection to the host system. If no prior
successful connection was made to the host system, the API determines the most appropriate associated
host CCSID by using an internal mapping table.

Dialog-box NLS API list
Dialog-box NLS APIs are interfaces that are used to manipulate the translatable text within dialog boxes.
The following dialog-box NLS APIs allow applications to:

- Replace translatable text with a dialog box
« Expand dialog-box controls according to the text

Usage notes
This module works ONLY on the following kinds of dialog-box controls:

Static text
« Button

« Group bhox

« Edit box

« Check box

- Radio button

It does NOT work on complex controls such as Combo box.

Windows Application Package: Programming 185

cwbNL_CalcControlGrowthXY
Use the cwbNL_CalcControlGrowthXY command.

Purpose

Routine to calculate the growth factor of an individual control within a dialog box.
Syntax

unsigned int CWB_ENTRY cwbNL_CalcControlGrowthXY (
HWND windowHandle,
HDC hDC,
float* growthFactorX,
float* growthFactorY);

Parameters

HWND windowHandle - input
Window handle of the control for which to calculate the growth factor.

HDC hDC - input
Device context. Used by GetTextExtentPoint32 to determine extent needed for the translated
string in the control.

float* growthFactorX - output
+/- growth to the width needed to contain the string for the control.

float* growthFactorY - output
+/- growth to the height needed to contain the string for the control.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion

Usage

It is assumed that the translated text has been loaded into the control prior to calling this function. A
control that does not contain text will return a 1.00 growth factor. This means that it does not need to
change size.

cwbNL_CalcDialogGrowthXY
Use the cwbNL_CalcDialogGrowthXY command.

Purpose

Routine to calculate the growth factor of a dialog box. All of the controls within the dialog box will looked
at to determine how much the dialog-box size needs to be adjusted.

Syntax

unsigned int CWB_ENTRY cwbNL_CalcDialogGrowthXY (
HWND windowHandle,
float* growthFactorX,
float* growthFactozrY);

186 IBM i: Windows Application Package: Programming

Parameters

HWND windowHandle - input
Window handle of the dialog box for which to calculate the growth factor.

float* growthFactorX - output
+/- growth to the width needed to contain the string for all of the controls in the dialog box.

float* growthFactorY - output
+/- growth to the height needed to contain the string for all of the controls in the dialog box.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion

Usage

It is assumed that the translated text has been loaded into the controls prior to calling this function.

cwbNL_GrowControlXY
Use the cwbNL_GrowControlXY command.

Purpose

Routine to grow an individual control within a dialog box.

Syntax
unsigned int CWB_ENTRY cwbNL_GrowControlXY (
HWND windowHandle,
HWND parentWindowHandle,
float growthFactorX,
float growthFactory,

cwb_Boolean growAllControls);

Parameters
HWND windowHandle - input
Window handle of the control to be resized.

HWND parentWindowHandle - input
Window handle of the dialog box that contains the controls.

float growthFactorX - input
Multiplication factor for growing the width of the control. 1.00 = Stay same size. 1.50 =1 1/2 times
original size.

float growthFactorY - input
Multiplication factor for growing the height of the control. 1.00 = Stay same size. 1.50 =1 1/2 times
original size.

cwb_Boolean growAllControls - input
CWB_TRUE = All controls will be resized by the growthFactor. CWB_FALSE = Only controls with text
will be resized.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion

Windows Application Package: Programming 187

Usage
Care should be used to not pass in a growth factor that will cause a control to not fit on the physical
display.

cwbNL_GrowDialogXY
Use the cwbNL_GrowDialogXY command.

Purpose

Internal routine to growth the dialog box and its controls proportionally based off of a growth factor that is
input.

Syntax

unsigned int CWB_ENTRY cwbNL_GrowDialogXY (
HWND windowHandle,
float growthFactorX,
float growthFactorY,
cwb_Boolean growAllControls);

Parameters

HWND windowHandle - input
Window handle of the window owning the controls.

float growthFactorX - input
Multiplication factor for growing the dialog box, ie. 1.00 = Stay same size, 1.50 =1 1/2 times original
size.

float growthFactorY - input
Multiplication factor for growing the dialog box, ie. 1.00 = Stay same size, 1.50 =1 1/2 times original
size.

cwb_Boolean growAllControls - input
CWB_TRUE = All controls will be resized by the growthFactor, CWB_FALSE = Only controls with text
will be resized.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.

Usage

It is assumed that the translated text has been loaded into the controls prior to calling this function. The
dialog-box frame will not be allowed to grow larger than the desktop window size.

cwbNL_LoadDialogStrings
Use the cwbNL_LoadDialogStrings command.

Purpose

This routine will control the replacement of translatable text within a dialog box. This includes dialog
control text as well as the dialog-box caption.

188 IBM i: Windows Application Package: Programming

Syntax

unsigned int CWB_ENTRY cwbNL_LoadDialogStrings(
HINSTANCE MRIHandle,

HWND windowHandle,
int nCaptionID,
USHORT menuID,

HINSTANCE menulLibHandle,
cwb_Boolean growAllControls);

Parameters

HINSTANCE MRIHandle - input
Handle of the module containing the strings for the dialog.

HWND windowHandle - input
Window handle of the dialog box.
int nCaptionID - input
ID of the caption string for the dialog box

USHORT menulD - input
ID of the menu for the dialog box.

HINSTANCE menulLibHandle - input
Handle of the module containing the menu for the dialog.

cwhb_Boolean growAllControls - input
CWB_TRUE = All controls will be resized by the growthFactor CWB_FALSE = Only controls with text
will be resized.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion.
CWBNL_DLG_MENU_LOAD_ERROR
Could not load the menu.

CWBNL_DLG_INVALID_HANDLE
Incorrect MRIHandle.

Usage

This process begins by enumerating, replacing the text of, and horizontally adjusting, all dialog controls
within the dialog box, and finally right-adjusting the dialog box itself, relative to the adjusted controls
therein. These adjustments are made only if the current window extents do not fully encompass the
expansion space required for the text or all controls. After all of the text substitution has been completed,
if a menu ID has been passed, it will be loaded and attached to the dialog box. It is suggested that

this routine is called for every dialog-box procedure as the first thing done during the INITDLG message
processing.

cwbNL_LoadMenu
Use the cwbNL_LoadMenu command.

Purpose

This routine will control the loading of the given menu from a module and replacing the translatable text
within the menu.

Windows Application Package: Programming 189

Syntax

HWND CWB_ENTRY cwbNL_LoadMenu(
HWND windowHandle,
HINSTANCE menuResourceHandle,
USHORT menulD,
HINSTANCE MRIHandle);

Parameters

HWND windowHandle - input
Window handle of the dialog box that contains the menu.

HINSTANCE menuResourceHandle - input
Handle of the resource dll containing the menu.

USHORT menulD - input
ID of the menu for the dialog box.

HINSTANCE MRIHandle - input
Handle of the resource dll containing the strings for the menu.

Return Codes

The following list shows common return values.

HINSTANCE
Handle of the menu.

Usage

None

cwbNL_LoadMenuStrings
Use the cwbNL_LoadMenuStrings command.

Purpose

This routine will control the replacement of translatable text within a menu.
Syntax

unsigned int CWB_ENTRY cwbNL_LoadMenuStrings(
HWND WindowHandle,
HINSTANCE menuHandle,
HINSTANCE MRIHandle);

Parameters

HWND windowHandle - input
Window handle of the dialog box that contains the menu.

HMODULE menuHandle - input
Handle of the menu for the dialog.

HMODULE MRIHandle - input
Handle of the resource DLL containing the strings for the menu.

Return Codes

The following list shows common return values.

190 IBM i: Windows Application Package: Programming

CWB_OK
Successful Completion

Usage
None

cwbNL_SizeDialog
Use the cwbNL_SizeDialog command.

Purpose

This routine will control the sizing of the dialog box and its child controls. The expansion amount is based
off of the length of the text extent and the length of each control. The growth of the dialog box and its
controls will be proportional. By setting the growAllControls to FALSE, only controls with text will expand
or contract. This allows the programmer the flexibility of non-translatable fields to remain the same size.
This may be appropriate for dialogs that contain drop-down lists, combo-boxes, or spin buttons.

Syntax

unsigned int CWB_ENTRY cwbNL_SizeDialog(
HWND windowHandle,
cwb_Boolean growAllControls);

Parameters

HWND windowHandle - input
Window handle of the window owning the controls.

cwb_Boolean growAllControls - input
CWB_TRUE = All controls will be resized by the growthFactor, CWB_FALSE = Only controls with text
will be resized.

Return Codes
The following list shows common return values.

CWB_OK
Successful Completion

Usage

This routine assumes that the translated text has already been loaded into the dialog-box controls. If the
text has not been loaded into the controls, use cwbNL_LoadDialog.

Example: NLS APIs
This example illustrates using NLS APIs.

/* National Language Support Code Snippet */
/* Used to demonstrate how the APIs would be run. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "CWBNL.H"
f##include "CWBNLCNV.H"
f##include "CWBSV.H"

cwbSV_ErrHandle errhandle;

/* Return the message text associated with the top-level */
/* error identified by the error handle provided. Since */

Windows Application Package: Programming 191

/* all APIs that fail use the error handle, this was moved */
/* into a separate routine. */
void resolveErr(cwbhSV_ErrHandle errhandle)

static unsigned char buf[BUFSIZ 1];
unsigned long retlen;
unsigned int zrc;

if ((xc = cwbSV_GetErrText(errhandle, (charx)buf, (unsigned long) BUFSIZ, &retlen)) !=
CWB_OK)
printf("cwhSV_GetErrText() Service API failed with return code 0x%x.\n", xc);
else
printf("%s\n", (char %) buf);
3

void main(void){
/* define some variables

int SVrc = 0;

int NLrc = O;

char x*myloadpath = "";

char xresultPtr;

char x*mylang;

unsigned short resultlen;
unsigned short reqlen;
unsigned long searchhandle;
unsigned long codepage;
unsigned long trgtpage;
char *srcbuf = "Change this string";
char xtrgtbuf;

unsigned long srclen;
unsigned long trgtlen;
unsigned long nmbrerrs;
unsigned long posoferr;
unsigned long rqdlen;
unsigned long ccsid;

/* Create an error message object and return a handle to */

/* dit. This error handle can be passed to APIs that */
/* support it. If an error occurs, the error handle can */
/* be used to retrieve the message text associated with */
/* the API error. */

SVrc = cwbSV_CreateErrHandle(&errhandle);
if (SVrc != CWB_OK) f§
printf("cwbSV_CreateErrHandle failed with return code %d.\n", SVrc);

/* Retreive the current language setting. */
resultlen = CWBNL_MAX_LANG_SIZE+1;
resultPtr = (char %) malloc(resultlen * sizeof(char));
NLrc = cwbNL_GetLang(myloadpath, resultPtr, resultlen, &reqlen, errhandle);
if (NLxc != CWB_OK) £
if (NLrc == CWB_BUFFER_OVERFLOW)
printf("GetLang buffer too small, recommended size %d.\n", reqlen);
resolveErr(errhandle);

3

printf("GetLang API returned %s.\n", resultPtr);
mylang = (char %) malloc(resultlen % sizeof(char));
strcpy(mylang, resultPtr);

/* Retrieve the descriptive name of a language setting. */
resultlen = CWBNL_MAX_NAME_SIZE+1;
resultPtr = (char *) realloc(resultPtr, resultlen * sizeof(char));
NLrc = cwbNL_GetLangName(mylang, resultPtr, resultlen, ®len, errhandle);
if (NLrc !'= CWB_OK) {
if (NLxc == CWB_BUFFER_OVERFLOW)
printf("GetLangName buffer too small, recommended size %d.\n", reqlen);
resolveErr(errhandle);

%
printf("GetLangName API returned %s.\n", resultPtr);

/* Return the complete path for language files. */
resultlen = CWBNL_MAX_PATH_SIZE+1;
resultPtr = (char %) realloc(resultPtr, resultlen * sizeof(char));
NLrc = cwbNL_GetLangPath(myloadpath, resultPtr, resultlen, &reqlen, errhandle);
if (NLxc != CWB_OK) £
if (NLrc == CWB_BUFFER_OVERFLOW)
printf("GetLangPath buffer too small, recommended size %d.\n", reglen);
resolveErr(errhandle);

192 IBM i: Windows Application Package: Programming

printf("GetLangPath API returned %s.\n", resultPtr);

/* Get the code page of the current process. */
NLrc = cwbNL_GetCodePage (&codepage, errhandle);
if (NLrc != CWB_OK) %

resolveErr(errhandle);

%
printf("GetCodePage API returned %u.\n", codepage);

/* Convert strings from one code page to another. This */
/* API combines three converter APIs for the default */
/* conversion. The three converter APIs it combines are: «/
/* cwbNL_CreateConverterEx */
/* cwbNL_Convert */
/* cwbNL_DeleteConverter */

srclen = strlen(sxchuf) + 1;

trgtlen = szxclen;

trgtpage = 437;

trgtbuf = (char *) malloc(trgtlen * sizeof(char));

printf("String to convert is %s.\n", srchuf);

NLrc = cwbNL_ConvertCodePagesEx(codepage, trgtpage, srclen,
trgtlen, srcbuf, trgtbuf, &nmbrerrs, &posoferr, &rqdlen,
errhandle);

if (NLrc != CWB_OK) 1%

resolveErr(errhandle);
printf("number of errors detected is %u.\n", nmbrerrs);
printf("location of first error is %u.\n", posoferr);

b
printf("ConvertCodePagesEx API returned %s.\n", trgtbuf);
/* Map a code page to the corresponding CCSID. */
NLrc = cwbNL_CodePageToCCSID(codepage, &ccsid, errhandle);
if (NLrc != CWB_OK) 1%
resolveErr(errhandle);
b
printf("CodePageToCCSID returned %u.\n", ccsid);

cwbSV_DeleteErrHandle (errhandle);

System Objects APIs

System objects application programming interfaces (APIs) allow you to work with print-related objects
that are on the system. These APIs make it possible to work with IBM i spooled files, writer jobs, output
queues, printers, and more.

By using System Objects APIs, you can write workstation applications that are customized for the user's
environment. For example, you can write an application to manage spooled files for a single user, or for all
users across a network of IBM i operating systems. This includes holding, releasing, changing attributes
of, deleting, sending, retrieving and answering messages for the spooled files.

System Objects APIs required files:

Header file Import library Dynamic Link Library

cwbobj.h cwbapi.lib cwbobij.dll

Programmer's Toolkit:

The Programmer's Toolkit provides System Objects documentation, access to the cwbobj.h header file,
and links to sample programs. To access this information, open the Programmer's Toolkit and select IBM i
Operations > C/C++ APlIs.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 510.

Related reference
System Object APIs return codes

Windows Application Package: Programming 193

There are system object API return codes.

IBM i name formats for connection APIs
APIs that take an IBM i name as a parameter, accept the name in the three different formats.

OEM, ANSI, and Unicode considerations
Most of the C/C++ APIs that accept string parameters exist in three forms: OEM, ANSI, or Unicode.

System objects attributes

Network Print Server objects have attributes. The Network Print Server supports the following attributes.
Refer to the data stream description for each object/action to determine the attributes that are supported
for that combination.

Advanced Function Printing
Use this Advanced Function Printing API with this product.

Key
CWBOBJ_KEY_AFP

ID
0x000A

Type
char[11]

Description
Indicates whether this spooled file uses AFP resources external to the spooled file. Valid values are
*YES and *NO.

Align Page
Use the Align Page API with this product.

Key
CWBOBJ_KEY_ALIGN
ID
0x000B
Type
char[11]

Description
Indicates whether a forms alignment message is sent prior to printing this spooled file. Valid values
are *YES, *NO.

Allow Direct Print
Use this Allow Direct Print API with this product.

Key
CWBOBJ_KEY_ALWDRTPRT

ID
0x000C

Type
char[11]

Description
Indicates whether the printer writer allows the printer to be allocated to a job that prints directly to a
printer. Valid values are *YES, *NO.

Authority
Use this Authority API with this product.

Key
CWBOBJ_KEY_AUT

194 IBM i: Windows Application Package: Programming

ID
0x000D

Type
char[11]

Description
Specifies the authority that is given to users who do not have specific authority to the output queue.
Valid values are *USE, *ALL, *CHANGE, *EXCLUDE, *LIBCRTAUT.

Authority to Check
Use this Authority to Check API with this product.

Key
CWBOBJ_KEY_AUTCHK
ID
0x000E
Type
char[11]

Description
Indicates what type of authorities to the output queue allow the user to control all the files on the
output queue. Valid values are *OWNER, *DTAAUT.

Automatically End Writer
Use this Automatically End Writer API with this product.

Key
CWBOBJ_KEY_AUTOEND
ID
0x0010

Type
char[11]

Description
Specifies if the writer should be automatically ended. Valid values are *NO, *YES.

Back Margin Offset Across
Use this Back Margin Offset Across API with this product.

Key
CWBOBJ_KEY_BACKMGN_ACR
ID
0x0011
Type
float

Description
For the back side of a piece of paper, it specifies, how far in from the left side of the page printing
starts. The special value *FRONTMGN will be encoded as -1.

Back Margin Offset Down
Use this Back Margin Offset Down API with this product.

Key
CWBOBJ_KEY_BACKMGN_DWN

ID
0x0012

Type
float

Windows Application Package: Programming 195

Description
For the back side of a piece of paper, it specifies, how far down from the top of the page printing
starts. The special value *FRONTMGN will be encoded as -1.

Backside Overlay Library Name
Use this Backside Overlay Library Name API with this product.

Key
CWBOBJ_KEY_BKOVRLLIB

ID
0x0013
Type
char[11]

Description
The name of the library that contains the back overlay. If the back overlay name field has a special
value, this library field will be blank.

Backside Overlay Name
Use this Backside Overlay Name API with this product.

Key
CwWBOBJ_KEY_BKOVRLAY

ID
0x0014

Type
char[11]

Description
The name of the back overlay. Valid special values include *FRONTMGN.

Back Overlay offset across
Use this Back Overlay offset across API with this product.

Key
CWBOBJ_KEY_BKOVL_ACR

ID
0x0016

Type
float

Description
The offset across from the point of origin where the overlay is printed.

Back Overlay Offset Down
Use this Back Overlay Offset Down API with this product.

Key
CWBOBJ_KEY_BKOVL_DWN

ID
0x0015

Type
float

Description
The offset down from the point of origin where the overlay is printed.

196 IBM i: Windows Application Package: Programming

Characters per Inch
Use this Characters per Inch API with this product.

Key
CWBOBJ_KEY_CPI
1D
0x0017
Type
float
Description
The number of characters per horizontal inch.

Code Page
Use this Code Page API with this product.

Key
CWBOBJ_KEY_CODEPAGE
ID
0x0019
Type
char[11]
Description
The mapping of graphic characters to code points for this spooled file. If the graphic character set
field contains a special value, this field may contain a zero (0).

Coded Font Name
Use this Coded Font Name API with this product.

Key
CWBOBJ_KEY_CODEDFNT
1D
0x001A
Type
char[11]
Description
The name of the coded font. A coded font is an AFP resource that is composed of a character set and a
code page. Special values include *FNTCHRSET.

Coded Font Library Name
Use this Coded Font Library Name API with this product.

Key
CWBOBJ_KEY_CODEDFNTLIB

ID
0x0018

Type
char[11]

Description
The name of the library that contains the coded font. This field may contain blanks if the coded font
name field has a special value.

Copies
Use this Copies API with this product.

Key
CWBOBJ_KEY_COPIES

Windows Application Package: Programming 197

ID
0x001C

Type
long

Description
The total number of copies to be produced for this spooled file.

Copies left to Produce
Use this Copies left to Produce API with this product.

Key
CWBOBJ_KEY_COPIESLEFT

ID
0x001D

Type
long

Description
The remaining number of copies to be produced for this spooled file.

Current page
Use this Current page API with this product.

Key
CWBOBJ_KEY_CURPAGE

ID
0x001E

Type
long

Description
Current page that is being written by the writer job.

Data Format
Use this Data Format API with this product.

Key
CWBOBJ_KEY_DATAFORMAT

ID
0x001F

Type
char[11]

Description
Data format. Valid values are *RCDDATA, *ALLDATA.

Data Queue Library Name
Use this Data Queue Library Name API with this product.

Key
CWBOBJ_KEY_DATAQUELIB

ID
0x0020

Type
char[11]

Description
The name of the library that contains the data queue.

198 IBM i: Windows Application Package: Programming

Data Queue Name
Use this Data Queue Name API with this product.

Key
CWBOBJ_KEY_DATAQUE
ID
0x0021
Type
char[11]

Description
Specifies the name of the data queue that is associated with the output queue.

Date File Opened
Use this Date File Opened API with this product.

Key
CWBOBJ_KEY_DATE
ID
0x0022
Type
char[8]

Description
The date the spooled file was opened. The date is encoded in a character string with the following
format, C YY MM DD.

User Specified DBCS Data
Use this User Specified DBCS Data API with this product.

Key
CWBOBJ_KEY_DBCSDATA

ID
0x0099
Type
char[11]

Description
Whether the spooled file contains double-byte character set (DBCS) data. Valid values are *NO and
*YES.

DBCS Extension Characters
Use this DBCS Extension Characters API with this product.

Key
CWBOBJ_KEY_DBCSEXTENSN

ID
0x009A

Type
char[11]

Description
Whether the system is to process the DBCS extension characters. Valid values are *NO and *YES.

DBCS Character Rotation
Use this DBCS Character Rotation API with this product.

Key
CWBOBJ_KEY_DBCAROTATE

Windows Application Package: Programming 199

ID
0x009B

Type
char[11]

Description
Whether the DBCS characters are rotated 90 degrees counterclockwise before printing. Valid values
are *NO and *YES.

DBCS Characters per Inch
Use this DBCS Characters per Inch API with this product.

Key
CWBOBJ_KEY_DBCSCPI
ID
0x009C
Type
long

Description
The number of double-byte characters to be printed per inch. Valid values are -1, -2, 5, 6, and 10. The
value *CPI is encoded as -1. The value *CONDENSED is encoded as -2.

DBCS S0O/SI Spacing
Use this DBCS SO/SI Spacing API with this product.

Key
CWBOBJ_KEY_DBCSSISO
ID
0x009D
Type
char[11]

Description
Determines the presentation of shift-out and shift-in characters when printed. Valid values are *NO,
*YES, and *RIGHT.

Defer Write
Use this Defer Write API with this product.

Key
CWBOBJ_KEY_DFR_WRITE

ID
0x0023
Type
char[11]

Description
Whether print data is held in system buffers before being sent to the printer. Valid values are *YES,
*NO.

Degree of Page Rotation
Use this Degree of Page Rotation API with this product.

Key
CWBOBJ_KEY_PAGRTT

ID
0x0024

200 IBM i: Windows Application Package: Programming

Type
long

Description
The degree of rotation of the text on the page, with respect to the way the form is loaded into the
printer. Valid values are -1, -2, -3, 0, 90, 180, 270. The value *AUTO is encoded as -1, the value *DEVD
is encoded as -2, and the value *COR is encoded as -3.

Delete File After Sending
Use the Delete File After Sending API with this product.

Key
CWBOBJ_KEY_DELETESPLF
ID
0x0097
Type
char[11]

Description
Delete the spooled file after sending? Valid values are *NO and *YES.

Destination Option
Use the Destination Option API with this product.

Key
CWBOBJ_KEY_DESTOPTION
ID
0x0098

Type
char[129]

Description
Destination option. A text string that allows the user to pass options to the receiving system.

Destination Type
Use the Destination Type API with this product.

Key
CWBOBJ_KEY_DESTINATION

ID
0x0025

Type
char[11]

Description
Destination type. Valid values are *OTHER, *AS400, *PSF2.

Device Class
Use the Device Class API with this product.

Key
CWBOBJ_KEY_DEVCLASS

ID
0x0026

Type
char[11]

Description
The device class.

Windows Application Package: Programming 201

Device Model
Use the Device Model API with this product.

Key
CWBOBJ_KEY_DEVMODEL
ID
0x0027
Type
char[11]

Description
The model number of the device.

Device Type
Use the Device Type API with this product.

Key
CWBOBJ_KEY_DEVTYPE
ID
0x0028
Type
char[11]

Description
The device type.

Display any File
Use the Display any File API with this product.
Key

CWBOBJ_KEY_DISPLAYANY

ID
0x0029

Type
char[11]

Description
Whether users who have authority to read this output queue can display the output data of any output
file on this queue, or only the data in their own files. Valid values are *YES, *NO, *OWNER.

Drawer for Separators
Use the Drawer for Separators API with this product.

Key
CWBOBJ_KEY_DRWRSEP
ID
0x002A
Type
long

Description
Identifies the drawer from which the job and file separator pages are to be taken. Valid values are -1,
-2,1, 2, 3. The value *FILE is encoded as -1, and the value *DEVD is encoded as -2.

Ending Page
Use the Ending Page API with this product.

Key
CWBOBJ_KEY_ENDPAGE

202 IBM i: Windows Application Package: Programming

ID
0x002B

Type
long
Description

The page number at which to end printing the spooled file. Valid values are 0 or the ending page
number. The value *END is encoded as 0.

File Separators
Use the File Separators API with this product.

Key
CWBOBJ_KEY_FILESEP
ID
0x002C
Type
long

Description
The number of file separator pages that are placed at the beginning of each copy of the spooled file.
Valid values are -1, or the number of separators. The value *FILE is encoded as -1.

Fold Records
Use this Fold Records API with this product.

Key
CWBOBJ_KEY_FOLDREC

ID
0x002D
Type
char[11]

Description
Whether records that exceed the printer forms width are folded (wrapped) to the next line. Valid
values are *YES, *NO.

Font Identifier
Use this Font Identifier API with this product.

Key
CWBOBJ_KEY_FONTID

ID
0x002E

Type
char[11]

Description
The printer font that is used. Valid special values include *CPI and *DEVD.

Form Feed
Use the Form Feed API with this product.

Key
CWBOBJ_KEY_FORMFEED

ID
0x002F

Type
char[11]

Windows Application Package: Programming 203

Description
The manner in which forms feed to the printer. Valid values are *CONT, *CUT, *AUTOCUT, *DEVD.

Form Type
Use the Form Type API with this product.

Key
CWBOBJ_KEY_FORMTYPE

ID
0x0030

Type
char[11]
Description
The type of form to be loaded in the printer to print this spooled file.

Form Type Message Option
Use the Form Type Message Option API with this product.

Key
CWBOBJ_KEY_FORMTYPEMSG
ID
0x0043
Type
char[11]
Description
Message option for sending a message to the writer's message queue when the current form type is
finished. Valid values are *MSG, *NOMSG, *INFOMSG, *INQMSG.

Front Margin Offset Across
Use the Front Margin Offset Across API with this product.

Key
CWBOBJ_KEY_FTMGN_ACR
ID
0x0031
Type
float

Description
For the front side of a piece of paper, it specifies, how far in from the left side of the page printing
starts. The special value *DEVD is encoded as -2.

Front Margin Offset Down
Use the Front Margin Offset Down API with this product.

Key
CWBOBJ_KEY_FTMGN_DWN

ID
0x0032

Type
float

Description
For the front side of a piece of paper, it specifies, how far down from the top of the page printing
starts. The special value *DEVD is encoded as -2.

204 IBMi: Windows Application Package: Programming

Front Overlay Library Name
Use the Front Overlay Library Name API with this product.

Key
CWBOBJ_KEY_FTOVRLLIB

ID
0x0033
Type
char[11]

Description
The name of the library that contains the front overlay. This field may be blank if the front overlay
name field contains a special value.

Front Overlay Name
Use the Front Overlay Name API with this product.

Key
CWBOBJ_KEY_FTOVRLAY

ID
0x0034

Type
char[11]

Description
The name of the front overlay. Valid special values include *NONE.

Front Overlay Offset Across
Use the Front Overlay Offset Across API with this product.

Key
CWBOBJ_KEY_FTOVL_ACR

ID
0x0036

Type
float

Description
The offset across from the point of origin where the overlay is printed.

Front Overlay Offset Down
Use the Front Overlay Offset Down API with this product.

Key
CWBOBJ_KEY_FTOVL_DWN

ID
0x0035

Type
float

Description
The offset down from the point of origin where the overlay is printed.

Graphic Character Set
Use the Graphic Character Set API with this product.

Key
CWBOBJ_KEY_CHAR_ID

Windows Application Package: Programming 205

ID
0x0037

Type
char[11]

Description
The set of graphic characters to be used when printing this file. Valid special values include *DEVD,
*SYSVAL, and *JOBCCSID.

Hardware Justification
Use the Hardware Justification API with this product.

Key
CWBOBJ_KEY_JUSTIFY

ID
0x0038

Type
long

Description
The percentage that the output is right justified. Valid values are 0, 50, 100.

Hold Spool File
Use the Hold Spool File API with this product.

Key
CWBOBJ_KEY_HOLD

ID
0x0039

Type
char[11]

Description
Whether the spooled file is held. Valid values are *YES, *NO.

Initialize the writer
Use the Initialize the writer API with this product.

Key
CWBOBJ_KEY_WTRINIT

ID
0x00AC

Type
char[11]

Description
The user can specify when to initialize the printer device. Valid values are *WTR, *FIRST, *ALL.

Internet Address
Use the Internet Address API with this product.

Key
CWBOBJ_KEY_INTERNETADDR

ID
0x0094

Type
char[16]

Description
The internet address of the receiving system.

206 IBM i: Windows Application Package: Programming

Job Name
Use the Job Name API with this product.

Key
CWBOBJ_KEY_JOBNAME
ID
0x003B
Type
char[11]

Description
The name of the job that created the spooled file.

Job Number
Use the Job Number API with this product.

Key
CWBOBJ_KEY_JOBNUMBER
ID
0x003C
Type
char[7]

Description
The number of the job that created the spooled file.

Job Separators
Use the Job Separators API with this product.

Key
CWBOBJ_KEY_JOBSEPRATR
ID
0x003D
Type
long

Description
The number of job separators to be placed at the beginning of the output for each job having spooled
files on this output queue. Valid values are -2, 0-9. The value *MSG is encoded as -2. Job separators
are specified when the output queue is created.

Job User
Use the Job User API with this product.

Key
CWBOBJ_KEY_USER

ID
0x003E

Type
char[11]

Description
The name of the user that created the spooled file.

Last Page Printed
Use the Last Page Printed API with this product.

Key
CWBOBJ_KEY_LASTPAGE

Windows Application Package: Programming 207

ID
0x003F

Type
long

Description
The number of the last printed page is the file if printing ended before the job completed processing.

Length of Page
Use the Length of Page API with this product.
Key

CWBOBJ_KEY_PAGELEN

ID
0x004E

Type
float

Description
The length of a page. Units of measurement are specified in the measurement method attribute.

Library Name
Use the Library Name API with this product.

Key
CWBOBJ_KEY_LIBRARY

ID
0xO000F

Type
char[11]

Description
The name of the library.

Lines Per Inch
Use the Lines Per Inch API with this product.

Key
CWBOBJ_KEY_LPI

ID
0x0040

Type
float

Description
The number of lines per vertical inch in the spooled file.

Manufacturer Type and Model
Use the Manufacturer Type and Model API with this product.

Key
CWBOBJ_KEY_MFGTYPE

ID
0x0041

Type
char[21]

Description
Specifies the manufacturer, type, and model when transforming print data from SCS to ASCII.

208 IBM i: Windows Application Package: Programming

Maximum Spooled Output Records
Use the Maximum Spooled Output Records API with this product.

Key
CWBOBJ_KEY_MAXRECORDS
ID
0x0042
Type
long
Description
The maximum number of records allowed in this file at the time this file was opened. The value
*NOMAX is encoded as 0.

Measurement Method
Use the Measurement Method API with this product.

Key
CWBOBJ_KEY_MEASMETHOD
ID
0x004F
Type
char[11]
Description
The measurement method that is used for the length of page and width of page attributes. Valid
values are *ROWCOL, *UOM.

Message Help
Use the Message Help API with this product.

Key
CWBOBJ_KEY_MSGHELP
ID
0x0081

Type
char(*)

Description
The message help, which is sometimes known as second-level text, can be returned by a "retrieve
message" request. The system limits the length to 3000 characters (English version must be 30 %
less to allow for translation).

Message ID
Use the Message ID API with this product.

Key
CWBOBJ_KEY_MESSAGEID

ID
0x0093

Type
char[8]

Description
The message ID.

Windows Application Package: Programming 209

Message Queue Library Name
Use the Message Queue Library Name API with this product.

Key
CWBOBJ_KEY_MSGQUELIB
1D
0x0044
Type
char[11]
Description
The name of the library that contains the message queue.

Message Queue
Use the Message Queue API with this product.

Key
CWBOBJ_KEY_MSGQUE
ID
0x005E
Type
char[11]
Description
The name of the message queue that the writer uses for operational messages.

Message Reply
Use the Message Reply API with this product.

Key
CWBOBJ_KEY_MSGREPLY

ID
0x0082
Type
char[133]
Description
The message reply. Text string to be provided by the client which answers a message of type "inquiry".
In the case of message retrieved, the attribute value is returned by the server and contains the

default reply which the client can use. The system limits the length to 132 characters. Should be
null-terminated due to variable length.

Message Text
Use the Message Text API with this product.

Key
CWBOBJ_KEY_MSGTEXT
ID
0x0080

Type
char[133]

Description
The message text, that is sometimes known as first-level text, can be returned by a "retrieve
message" request. The system limits the length to 132 characters.

210 IBMi: Windows Application Package: Programming

Message Type
Use the Message Type API with this product.

Key
CWBOBJ_KEY_MSGTYPE

ID
0x008E

Type
char[3]

Description
The message type, a 2-digit, EBCDIC encoding. Two types of messages indicate whether one can
"answer" a "retrieved" message: '04' Informational messages convey information without asking for a
reply (may require a corrective action instead), '05' Inquiry messages convey information and ask for a
reply.

Message Severity
Use the Message Severity API with this product.

Key
CWBOBJ_KEY_MSGSEV
ID
0x009F
Type
long

Description
Message severity. Values range from 00 to 99. The higher the value, the more severe or important the
condition.

Number of Bytes to Read/Write
Use the Number of Bytes to Read/Write API with this product.

Key
CWBOBJ_KEY_NUMBYTES
ID
0x007D
Type
long

Description
The number of bytes to read for a read operation, or the number of bytes to write for a write operation.
The object action determines how to interpret this attribute.

Number of Files
Use the Number of Files API with this product.

Key
CWBOBJ_KEY_NUMFILES

ID
0x0045

Type
long

Description
The number of spooled files that exist on the output queue.

Windows Application Package: Programming 211

Number of Writers Started to Queue
Use the Number of Writers Started to Queue API with this product.

Key
CWBOBJ_KEY_NUMWRITERS

ID

0x0091
Type

long

Description
The number of writer jobs started to the output queue.

Object Extended Attribute
Use the Object Extended Attribute API with this product.

Key
CWBOBJ_KEY_OBJEXTATTR

ID
0x000B1
Type
char[11]
Description
An "extended" attribute used by some objects like font resources. This value shows up via the WRKOBJ
and DSPOBJD IBM i commands. The title on an IBM i screen may just indicate "Attribute". In the

case of object types of font resources, for example, common values are CDEPAG, CDEFNT, and
FNTCHRSET.

Open time commands
Use the Open time commands API with this product.

Key
CWBOBJ_KEY_OPENCMDS

1D
0x00A0
Type
char[11]
Description
Specifies whether the user wants SCS open time commands to be inserted into datastream prior to
spool file data. Valid values are *YES, *NO.

Operator Controlled
Use the Operator Controlled API with this product.

Key
CWBOBJ_KEY_OPCNTRL

ID
0x0046

Type
char[11]

Description
Whether users with job control authority are allowed to manage or control the spooled files on this
queue. Valid values are *YES, *NO.

212 IBMi: Windows Application Package: Programming

Order of Files On Queue
Use the Order of Files On Queue API with this product.

Key
CWBOBJ_KEY_ORDER

ID
0x0047
Type
char[11]

Description
The order of spooled files on this output queue. Valid values are *FIFO, *JOBNBR.

Output Priority
Use the Output Priority API with this product.

Key
CWBOBJ_KEY_OUTPTY

ID
0x0048
Type
char[11]

Description
The priority of the spooled file. The priority ranges from 1 (highest) to 9 (lowest). Valid values are 0-9,
where 0 represents *JOB.

Output Queue Library Name
Use the Output Queue Library Name API with this product.

Key
CWBOBJ_KEY_OUTQUELIB

ID
0x0049

Type
char[11]

Description
The name of the library that contains the output queue.

Output Queue Name
Use the Output Queue Name API with this product.

Key
CWBOBJ_KEY_OUTQUE

ID
0x004A

Type
char[11]

Description
The name of the output queue.

Output Queue Status
Use the Output Queue Status API with this product.

Key
CWBOBJ_KEY_OUTQUESTS

Windows Application Package: Programming 213

ID
0x004B

Type
char[11]
Description
The status of the output queue. Valid values are RELEASED, HELD.

Overflow Line Number
Use the Overflow Line Number API with this product.

Key
CWBOBJ_KEY_OVERFLOW
ID
0x004C
Type
long
Description
The last line to be printed before the data that is being printed overflows to the next page.

Pages Per Side
Use the Pages Per Side API with this product.

Key
CWBOBJ_KEY_MULTIUP
ID
0x0052
Type
long
Description
The number of logical pages that print on each side of each physical page when the file is printed.
Valid values are 1, 2, 4.

Pel Density
Use the Pel Density API with this product.

Key
CWBOBJ_KEY_PELDENSITY

ID
0x00B2
Type
char[2]
Description
For font resources only, this value is an encoding of the number of pels ("1" represents a pel size

of 240, "2" represents a pel size of 320). Additional values may become meaningful as the system
defines them.

Point Size
Use the Point Size API with this product.

Key
CWBOBJ_KEY_POINTSIZE

ID
0x0053

Type
float

214 IBMi: Windows Application Package: Programming

Description
The point size in which this spooled file's text is printed. The special value *NONE will be encoded as
0.

Print Fidelity
Use the Print Fidelity API with this product.

Key
CWBOBJ_KEY_FIDELITY

ID
0x0054
Type
char[11]

Description
The kind of error handling that is performed when printing. Valid values are *ABSOLUTE, *CONTENT.

Print on Both Sides
Use the Print on Both Sides API with this product.

Key
CWBOBJ_KEY_DUPLEX

ID
0x0055
Type
char[11]

Description
How the information prints. Valid values are *FORMDF, *NO, *YES, *TUMBLE.

Print Quality
Use the Print Quality API with this product.
Key
CWBOBJ_KEY_PRTQUALITY
ID
0x0056
Type
char[11]

Description
The print quality that is used when printing this spooled file. Valid values are *STD, *DRAFT, *NLQ,
*FASTDRAFT.

Print Sequence
Use the Print Sequence API with this product.

Key
CWBOBJ_KEY_PRTSEQUENCE

ID
0x0057

Type
char[11]

Description
Print sequence. Valid values are *NEXT.

Windows Application Package: Programming 215

Print Text
Use the Print Text API with this product.

Key
CWBOBJ_KEY_PRTTEXT
ID
0x0058

Type
char[31]

Description
The text that is printed at the bottom of each page of printed output and on separator pages. Valid
special values include *BLANK and *JOB.

Printer
Use the Printer API with this product.

Key
CWBOBJ_KEY_PRINTER
ID
0x0059

Type
char[11]

Description
The name of the printer device.

Printer Device Type
Use the Printer Device Type API with this product.

Key
CWBOBJ_KEY_PRTDEVTYPE

ID
0x005A

Type
char[11]

Description
The printer data stream type. Valid values are *SCS, *IPDS(*), *USERASCII, *AFPDS.

Printer File Library Name
Use the Printer File Library Name API with this product.

Key
CWBOBJ_KEY_PRTRFILELIB

ID
0x005B

Type
char[11]

Description
The name of the library that contains the printer file.

Printer File Name
Use the Printer File Name API with this product.

Key
CWBOBJ_KEY_PRTRFILE

216 IBMi: Windows Application Package: Programming

ID
0x005C

Type
char[11]

Description
The name of the printer file.

Printer Queue
Use the Printer Queue API with this product.

Key
CWBOBJ_KEY_RMTPRTQ

ID
0x005D
Type
char[129]

Description
The name of the destination printer queue when sending spooled files via SNDTCPSPLF (LPR).

Record Length
Use the Record Length API with this product.

Key
CWBOBJ_KEY_RECLENGTH

ID

0x005F
Type

long

Description
Record length.

Remote System
Use the Remote System API with this product.

Key
CWBOBJ_KEY_RMTSYSTEM

ID
0x0060
Type
char[256]

Description
Remote system name. Valid special values include *INTNETADR.

Replace Unprintable Characters
Use the Replace Unprintable Characters API with this product.

Key
CWBOBJ_KEY_RPLUNPRT

ID
0x0061

Type
char[11]

Description
Whether characters that cannot be printed are to be replaced with another character. Valid values are
*YES or *NO.

Windows Application Package: Programming 217

Replacement Character
Use the Replacement Character API with this product.

Key
CWBOBJ_KEY_RPLCHAR
ID
0x0062

Type
char[2]

Description
The character that replaces any unprintable characters.

Resource library name
Use the Resource library name API with this product.

Key
CWBOBJ_KEY_RSCLIB
ID
Ox00AE

Type
char[11]

Description
The name of the library that contains the external AFP (Advanced Function Print) resource.

Resource name
Use the Resource name API with this product.

Key
CWBOBJ_KEY_RSCNAME
ID
Ox00AF

Type
char[11]

Description
The name of the external AFP resource.

Resource object type
Use the Resource object type API with this product.

Key
CWBOBJ_KEY_RSCTYPE
ID
0x00BO

Type
Long

Description
A numerical, bit encoding of external AFP resource object type. Values are 0x0001, 0x0002, 0x0004,
0x0008, 0x0010 corresponding to *FNTRSC, *FORMDF, *OVL, *PAGSEG, *PAGDFN, respectively.

Restart Printing
Use the Restart Printing API with this product.

Key
CWBOBJ_KEY_RESTART

218 IBMi: Windows Application Package: Programming

ID
0x0063

Type
long

Description
Restart printing. Valid values are -1, -2, -3, or the page number to restart at. The value *STRPAGE is
encoded as -1, the value *ENDPAGE is encoded as -2, and the value *NEXT is encoded as -3.

Save Spooled File
Use the Save Spooled File API with this product.

Key
CWBOBJ_KEY_SAVESPLF
ID
0x0064

Type
char[11]

Description
Whether the spooled file is to be saved after it is written. Valid values are *YES, *NO.

Seek Offset
Use the Seek Offset API with this product.

Key
CWBOBJ_KEY_SEEKOFF

ID
0x007E

Type
long

Description
Seek offset. Allows both positive and negative values relative to the seek origin.

Seek Origin
Use the Seek Origin API with this product.

Key
CWBOBJ_KEY_SEEKORG

ID
0x007F

Type
long

Description
Valid values include 1 (beginning or top), 2 (current), and 3 (end or bottom).

Send Priority
Use the Send Priority API with this product.

Key
CWBOBJ_KEY_SENDPTY

ID
0x0065

Type
char[11]

Description
Send priority. Valid values are *NORMAL, *HIGH.

Windows Application Package: Programming 219

Separator page
Use the Separator page API with this product.

Key
CWBOBJ_KEY_SEPPAGE
ID
0x00A1

Type
char[11]
Description
Allows a user the option of printing a banner page. Valid values are *YES or *NO.

Source Drawer
Use the Source Drawer API with this product.
Key

CWBOBJ_KEY_SRCDRWR

ID
0x0066

Type
long

Description
The drawer to be used when the automatic cut sheet feed option is selected. Valid values are -1, -2,
1-255. The value *E1 is encode as -1, and the value *FORMDF is encoded as -2.

Spool SCS
Use the Spool SCS API with this product.

Key
CWBOBJ_KEY_SPLSCS
ID
0x00AD
Type
Long

Description
Determines how SCS data is used during create spool file. Valid values are -1, 0, 1, or the page
number. The value *ENDPAGE is encoded as -1. For the value 0, printing starts on page 1. For the
value 1, the entire file prints.

Spool the Data
Use the Spool the Data API with this product.

Key
CWBOBJ_KEY_SPOOL

ID
0x0067

Type
char[11]

Description

Whether the output data for the printer device is spooled. Valid values are *YES, *NO.
Spooled File Name
Use the Spooled File Name API with this product.

Key
CWBOBJ_KEY_SPOOLFILE

220 IBMi: Windows Application Package: Programming

ID
0x0068

Type
char[11]

Description
The name of the spooled file.

Spooled File Number
Use the Spooled File Number API with this product.

Key
CWBOBJ_KEY_SPLFNUM

ID

0x0069
Type

long

Description
The spooled file number.

Spooled File Status
Use the Spooled File Status API with this product.

Key
CWBOBJ_KEY_SPLFSTATUS
ID
0x006A
Type
char[11]

Description
The status of the spooled file. Valid values are *CLOSED, *HELD, *MESSAGE, *OPEN, *PENDING,
*PRINTER, *READY, *SAVED, *WRITING.

Spooled Output Schedule
Use the Spooled Output Schedule API with this product.

Key
CwWBOBJ_KEY_SCHEDULE

ID
0x006B
Type
char[11]

Description
Specifies, for spooled files only, when the spooled file is available to the writer. Valid values are
*IMMED, *FILEEND, *JOBEND.

Starting Page
Use the Starting Page API with this product.

Key
CWBOBJ_KEY_STARTPAGE

ID
0x006C

Type
long

Windows Application Package: Programming 221

Description
The page number at which to start printing the spooled file. Valid values are -1, 0, 1, or the page
number. The value *ENDPAGE is encoded as -1. For the value 0, printing starts on page 1. For the
value 1, the entire file prints.

Text Description
Use the Text Description API with this product.

Key
CWBOBJ_KEY_DESCRIPTION

ID

0x006D
Type

[51]

Description
Text to describe an instance of an IBM i object.

Time File Opened
Use the Time File Opened API with this product.

Key
CWBOBJ_KEY_TIMEOPEN

ID
0x006E
Type
char[7]

Description
The time this spooled file was opened. The time is encoded in a character 0x0005 with the following
format, HH MM SS.

Total Pages
Use the Total Pages API with this product.

Key
CWBOBJ_KEY_PAGES

ID
0x006F

Type
long

Description
The number of pages that are contained in a spooled file.

Transform SCS to ASCII
Use the Transform SCS to ASCII API with this product.

Key
CWBOBJ_KEY_SCS2ASCII

ID
0x0071

Type
char[11]

Description
Whether the print data is to be transformed from SCS to ASCII. Valid values are *YES, *NO.

222 IBMi: Windows Application Package: Programming

Unit of Measure
Use the Unit of Measure API with this product.

Key
CWBOBJ_KEY_UNITOFMEAS
ID
0x0072
Type
char[11]

Description
The unit of measure to use for specifying distances. Valid values are *CM, *INCH.

User Comment
Use the User Comment API with this product.
Key

CWBOBJ_KEY_USERCMT

ID
0x0073

Type
char[101]

Description
The 100 characters of user-specified comment that describe the spooled file.

User Data
Use the User Data API with this product.

Key
CWBOBJ_KEY_USERDATA
ID
0x0074
Type
char[11]

Description
The 10 characters of user-specified data that describe the spooled file. Valid special values include
*SOURCE.

User defined data
Use the User defined data API with this product.

Key
CWBOBJ_KEY_USRDFNDTA

ID
0x00A2

Type
charl]

Description
User defined data to be utilized by user applications or user specified programs that process spool
files. All characters are acceptable. Max size is 255.

User defined object library
Use the User defined object library API with this product.

Key
CWBOBJ_KEY_USRDFNOBJLIB

Windows Application Package: Programming 223

ID
0x00A4

Type
char[11]

Description
User defined object library to search by user applications that process spool files.

User defined object name
Use the User defined object name API with this product.

Key
CWBOBJ_KEY_USRDFNOBJ

ID
0x00A5
Type
char[11]

Description
User defined object name to be utilized by user applications that process spool files.

User defined object type
Use the User defined object type API with this product.

Key
CWBOBJ_KEY_USRDFNOBJTYP

ID
0x00A6
Type
char[11]

Description
User defined object type pertaining to the user defined object.

User defined option(s)
Use the User defined option(s) API with this product.

Key
CWBOBJ_KEY_USEDFNOPTS

ID
0x00A3
Type
char[*]

Description
User defined options to be utilized by user applications that process spool files. Up to 4 options may
be specifies, each value is length char(10). All characters are acceptable.

User driver program
Use the User driver program API with this product.

Key
CWBOBJ_KEY_USRDRVPGMDTA

ID
0x00A9

Type
char[11]

224 IBMi: Windows Application Package: Programming

Description
User data to be used with the user driver program. All characters are acceptable. Maximum size is
5000 characters.

User driver program library
Use the User driver program library API with this product.

Key
CWBOBJ_KEY_USRDRVPGMLIB

ID
Ox00AA

Type
char[11]

Description
User defined library to search for driver program that processes spool files.

User driver program name
Use the User driver program name API with this product.

Key
CWBOBJ_KEY_USRDRVPGM

ID
0x00AB

Type
char[11]

Description
User defined program name that processes spool files.

User ID
Use the User ID API with this product.

Key
CWBOBJ_KEY_TOUSERID

ID
0x0075

Type
char[9]

Description
User ID to which the spooled file is sent.

User ID Address
Use the User ID Address API with this product.

Key
CWBOBJ_KEY_TOADDRESS

ID
0x0076

Type
char[9]

Description
Address of user to whom the spooled file is sent.

Windows Application Package: Programming 225

User transform program library
Use the User transform program library API with this product.

Key
CWBOBJ_KEY_USRTFMPGMLIB
ID
0x00A7
Type
char[11]

Description
User defined library search for transform program.

User transform program name
Use the User transform program name API with this product.

Key
CWBOBJ_KEY_USETFMPGM
ID
0x00A8
Type
char[11]

Description
User defined transform program name that transforms spool file data before it is processed by the
driver program.

VM/MVS Class
Use the VM/MVS Class API with this product.

Key
CWBOBJ_KEY_VMMVSCLASS

ID
0x0077
Type
char[2]

Description
VM/MVS class. Valid values are A-Z and 0-9.

When to Automatically End Writer
Use the When to Automatically End Writer API with this product.

Key
CWBOBJ_KEY_WTRAUTOEND
ID
0x0078
Type
char[11]

Description
When to end the writer if it is to be ended automatically. Valid values are *NORDYF, *FILEEND.
Attribute Automatically end writer must be set to *YES.

When to End Writer
Use the When to End Writer API with this product.

Key
CWBOBJ_KEY_WTREND

226 IBMi: Windows Application Package: Programming

ID
0x0090

Type
char[11]

Description
When to end the writer. Valid value are *CNTRLD, *IMMED, and *PAGEEND. This is different from when
to automatically end the writer.

When to Hold File
Use the When to Hold File API with this product.

Key
CWBOBJ_KEY_HOLDTYPE

ID
0x009E

Type
char[11]

Description
When to hold the spooled file. Valid values are *IMMED, and *PAGEEND.

Width of Page
Use the Width of Page API with this product.
Key

CWBOBJ_KEY_PAGEWIDTH

ID
0x0051

Type
float

Description
The width of a page. Units of measurement are specified in the measurement method attribute.

Workstation Customizing Object Name
Use the Workstation Customizing Object Name API with this product.

Key
CWBOBJ_KEY_WSCUSTMOBJ

ID
0x0095

Type
char[11]

Description
The name of the workstation customizing object.

Workstation Customizing Object Library
Use the Workstation Customizing Object Library API with this product.

Key
CWBOBJ_KEY_WSCUSTMOBJL

ID
0x0096

Type
char[11]

Description
the name of the library that contains the workstation customizing object.

Windows Application Package: Programming 227

Writer Job Name
Use the Writer Job Name API with this product.

Key
CWBOBJ_KEY_WRITER

ID
0x0079

Type
char[11]

Description
The name of the writer job.

Writer Job Number
Use the Writer Job Number API with this product.

Key
CWBOBJ_KEY_WTRJOBNUM

ID
0x007A

Type
char([7]

Description
The writer job number.

Writer Job Status
Use the Writer Job Status API with this product.

Key
CWBOBJ_KEY_WTRJOBSTS

ID
0x007B

Type
char[11]

Description
The status of the writer job. Valid values are STR, END, JOBQ, HLD, MSGW.

Writer Job User Name
Use the Writer Job User Name API with this product.

Key
CWBOBJ_KEY_WTRJOBUSER

ID
0x007C

Type
char[11]

Description
The name of the user that started the writer job.

Writer Starting Page
Use the Writer Starting Page API with this product.

Key
CWBOBJ_KEY_WTRSTRPAGE

ID
0x008F

228 IBMi: Windows Application Package: Programming

Type
long

Description
Specifies the page number of the first page to print from the first spooled file when the writer job
starts. This is only valid if the spooled file name is also specified when the writer starts.

Network Print Server Object Attributes
The follow list is for object attributes for the network print server when using this product.

NPS Attribute Default Value
Use the NPS Attribute Default Value API with this product.

Key
CWBOBJ_KEY_ATTRDEFAULT

ID
0x0083

Type
dynamic

Description
Default value for the attribute.

NPS Attribute High Limit
Use the NPS Attribute High Limit API with this product.

Key
CWBOBJ_KEY_ATTRMAX

ID
0x0084

Type
dynamic

Description
High limit of the attribute value.

NPS Attribute ID
Use the NPS Attribute ID API with this product.

Key
CWBOBJ_KEY_ATTRID

ID
0x0085

Type
long

Description
ID of the attribute.

NPS Attribute Low Limit
Use the NPS Attribute Low Limit API with this product.

Key
CWBOBJ_KEY_ATTRMIN

ID
0x0086

Type
dynamic

Description
Low limit of the attribute value.

Windows Application Package: Programming 229

NPS Attribute Possible Value
Use the NPS Attribute Possible Value API with this product.

Key
CWBOBJ_KEY_ATTRPOSSIBL

ID
0x0087

Type
dynamic

Description
Possible value for the attribute. More than one NPS possible value instance may be present in a code
point.

NPS Attribute Text Description
Use the NPS Attribute Text Description API with this product.

Key
CWBOBJ_KEY_ATTRDESCRIPT

ID
0x0088

Type
char(*)

Description
Text description that provides a name for the attribute.

NPS Attribute Type
Use the NPS Attribute Type API with this product.

Key
CWBOBJ_KEY_ATTRTYPE

ID
0x0089

Type
long

Description
The type of the attribute. Valid values are the types that are defined by the Network Print Server.

NPS CCSID
Use the NPS CCSID API with this product.

Key
CWBOBJ_KEY_NPSCCSID

ID
0x008A

Type
long

Description
CCSID that the Network Print Server expects that all strings will be encoded in.

NPS Object
Use the NPS Object API with this product.

Key
CWBOBJ_KEY_NPSOBJECT

ID
0x008B

230 IBMi: Windows Application Package: Programming

Type
long

Description
Object ID. Valid values are the objects that are defined by the Network Print Server.

NPS Object Action
Use the NPS Object Action API with this product.

Key
CWBOBJ_KEY_NPSACTION

ID
0x008C

Type
long

Description
Action ID. Valid values are the actions that are defined by the Network Print Server.

NPS Level
Use the NPS Level API with this product.

Key
CWBOBJ_KEY_NPSLEVEL

ID
0x008D

Type
char[7]

Description
The version, release, and modification level of the Network Print Server. This attribute is a character
string encoded as VXRYMY (ie. "V3R1MO0") where

X is in (0..9)
Y is in (0..9,A..Z2)

List APIs
The following APIs pertain to List objects. The APIs are listed alphabetically.

Note: When working with handles in the following APIs, O never will be returned as a valid handle.

cwbOBJ_CloselList
Use the cwbOBJ_CloseList API with this product.

Purpose

Closes an opened list.
Syntax

unsigned int CWB_ENTRY cwbOBJ_Closelist(
cwbOBJ_ListHandle 1listHandle,
cwbSV_ErrHandle errorHandle) ;

Parameters

cwbOBJ_ListHandle listHandle - input
Handle of the list to be closed. This list must be opened.

Windows Application Package: Programming 231

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle () APIL The messages may be retrieved through the
cwbSV_GetErrText () APL If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated list handle.

CWBOBJ_RC_LIST_NOT_OPEN
The list isn't open.

Usage

Closing the list frees the memory used by the list to hold its items. Any object handles gotten with
cwbOBJ_GetObjHandle () API should be released before closing the list to free resources. These
handles are no longer valid.

cwb0OBJ_CreateListHandle
Use the cwbOBJ_CreateListHandle API with this product.

Purpose

Allocates a handle for a list of objects. After a list handle has been allocated, the filter criteria may be set
for the list with the cwbOBJ_SetListFilter () API, the list may be built with the cwbOBJ_OpenList ()
API, etc. cwbOBJ_DeletelListHandle () should be called to deallocated this list handle and free any
resources used by it.

Syntax
unsigned int CWB_ENTRY cwbOBJ_CreatelListHandle(
const char *systemName,
cwbOBJ_ListType type,
cwbOBJ_ListHandle =«listHandle,
cwbSV_ErrHandle errorHandle) ;

Parameters

const char *systemName - input
Pointer to the system name contained in ASCIIZ string

cwbOBJ_ListType type - input
Type of list to allocate (eg. spooled file list, output queue list, etc).
cwbOBJ_ListHandle *listHandle - output

Pointer to a list handle that will be passed back on output. This handle is needed for other calls using
the list.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle () APIL. The messages may be retrieved through the
cwbSV_GetErrText () APL If the parameter is set to zero, no messages will be retrievable.

232 IBMi: Windows Application Package: Programming

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage that is being used.

CWB_API_ERROR
General API failure.

Usage

Caller must call cwbOBJ_DeletelListHandle when done using this list handle. Typical calling sequence
for retrieving a list of objects would be:

1. cwbOBJ_CreatelListHandle ()
.cwbOBJ_SetListFilter () { repeated as needed }
. cwbOBJ_OpenList()

. cwb0OBJ_GetListSize () to get the size of the list.

. For n=0 to list size - 1 cwbOBJ_GetObjHandle for list item in position n do something with the object
cwbOBJ_DeleteObjHandle()

. cwb0OBJ_CloselList () - You may go back to step 2 here.
7. cwb0BJ_DeletelListHandle ()

g b W N

o

cwbOBJ_DeleteListHandle
Use the cwbOBJ_DeletelListHandle API with this product.

Purpose

Deallocates a list handle that was previously allocated with the cwbOBJ_CreatelListHandle () API.
This will free any resources associated with the list.

Syntax

unsigned int CWB_ENTRY cwbOBJ_DeletelListHandle(
cwbOBJ_ListHandle 1listHandle,
cwbSV_ErrHandle errorHandle) ;

Parameters

cwbOBJ_ListHandle listHandle - input
List handle that will be deleted.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle () APIL The messages may be retrieved through the
cwhSV_GetErrText () APL If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

Windows Application Package: Programming 233

CWB_INVALID_HANDLE
List handle not found.
Usage

If the list associated with this handle is opened, this call will close it. If there are opened handles to
objects in this list, they will no longer be valid. After this call returns successfully, the list handle is no
longer valid.

cwbOBJ_GetListSize
Use the cwbOBJ_GetListSize API with this product.

Purpose

Get the size of an opened list.
Syntax

unsigned int CWB_ENTRY cwbOBJ_GetListSize(
cwbOBJ_ListHandle listHandle,

unsigned long *size,
cwbOBJ_List_Status xlistStatus,
cwbSV_ErrHandle errorHandle) ;

Parameters

cwbOBJ_ListHandle listHandle - input

Handle of the list to get the size of. This list must be opened.
unsigned long *size - output

On output, this will be set to the current size of the list.
cwbOBJ_List_Status *listStatus - output

Optional, may be NULL. This will always be CWBOBJ_LISTSTS_COMPLETED for lists opened
synchronously.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle () APIL The messages may be retrieved through the
cwhSV_GetErrText () APL If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK

Successful completion.
CWB_NOT_ENOUGH_MEMORY

Insufficient memory.
CWB_INVALID_HANDLE

Handle is not an allocated list handle.
CWBOBJ_RC_HOST_ERROR

Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_LIST_NOT_OPEN
The list isn't open.

Usage

None

234 IBMi: Windows Application Package: Programming

cwbOBJ_OpenList
Use the cwbOBJ_OpenList API with this product.

Purpose

Open the list. This actually builds the list. Caller must call the cwb0BJ_ClostList () API when done
with the list to free resources. After the list is opened, the caller may use other APIs on the list to do
things such as get the list size and get object handles to items in the list.

Syntax
unsigned int CWB_ENTRY cwbhOBJ_OpenList(
cwbOBJ_ListHandle listHandle,
cwbOBJ_List_OpenType openType,
cwbSV_ErrHandle errorHandle) ;

Parameters

cwbOBJ_ListHandle listHandle - input
Handle of the list to open.

cwbOBJ_List_OpenType openHandle - input
Manner in which to open the list. Must be set to CWBOBJ_LIST_OPEN_SYNCH

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle () APIL The messages may be retrieved through the
cwbSV_GetErrText () APL If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated list handle.

CWBOBJ_RC_LIST_OPEN
The list is already open.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_NOHOSTSUPPORT
Host doesn't support this type of list.

Usage

None

cwbOBJ_ResetListAttrsToRetrieve
Use the cwbOBJ_ResetListAttrsToRetrieve API with this product.

Purpose

Resets the list attributes to retrieve information to its default list.

Windows Application Package: Programming 235

Syntax

unsigned int CWB_ENTRY cwhOBJ_ResetlListAttrsToRetrieve(
cwb0OBJ_ListHandle listHandle,
cwbSV_ErrHandle errorHandle) ;

Parameters

cwbOBJ_ListHandle listHandle - input
List handle to reset.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle () APIL The messages may be retrieved through the
cwbSV_GetErrText () APL If the parameter is set to zero, no messages will be retrievable.

Return Codes

The following list shows common return values.

CWB_OK
Successful completion

CWB_INVALID_HANDLE
Handle is not an allocated list handle.

Usage

Use this call to reset the list handle's list of attributes to retrieve after calling
cwbOBJ_SetlListAttrsToRetrieve().

cwbOBJ_ResetListFilter
Use the cwbOBJ_ResetListFilter API with this product.

Purpose

Resets the filter on a list to what it was when the list was first allocated (the default filter).
Syntax

unsigned int CWB_ENTRY cwbOBJ_ResetlListFilter(
cwbOBJ_ListHandle 1listHandle,
cwbSV_ErrHandle errorHandle) ;

Parameters

cwbOBJ_ListHandle listHandle - input
Handle of the list to have its filter reset.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle () APIL The messages may be retrieved through the
cwbSV_GetErrText () APL If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

236 IBMi: Windows Application Package: Programming

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not allocated list handle.

Usage

The list must be closed and reopened for the change to take affect.

cwb0OBJ_SetListAttrsToRetrieve
Use the cwbhOBJ_SetListAttrsToRetrieve API with this product.

Purpose

An optional function that may be applied to list handle before the list is opened. The purpose of doing this
is to improve efficiency by allowing the cwbOBJ_OpenList () API to retrieve just the attributes of each
object that the application will be using.

Syntax

unsigned int CWB_ENTRY cwhOBJ_SetlListAttrsToRetrieve(
cwbOBJ_ListHandle listHandle,

unsigned long numKeys,
const cwhOBJ_KeyID xkeys,
cwbSV_ErrHandle errorHandle) ;

Parameters

cwbOBJ_ListHandle listHandle - input
List handle to apply the list of attribute keys to.

unsigned long numKeys - input
The number of keys pointed to by the 'keys' parameter. May be 0, which means that no attributes are
needed for objects in the list.

const cwhOBJ_KeyID *keys - input
An array of numKeys keys that are the IDs of the attributes to be retrieved for each object in the list
when the list is opened.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle () API. The messages may be retrieved through the
cwbSV_GetErrText () APL If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.
CWB_OK

Successful completion

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated list handle.

CWB_INVALID_PARAMETER
Invalid parameter specified.

Windows Application Package: Programming 237

Usage

This call is used to provide a clue to the cwb0BJ_0OpenlList () API as to what attributes the application is
interested in for the objects that are listed. Using this information, the cwbOBJ_OpenList () API can be
more efficient. The attribute keys that are valid in the 'keys' list depend on type of object being listed (set
on cwbOBJ_CreatelListHandle()) Call cwbOBJ_ResetListAttrsToRetrieve() to reset the list to
its default list of keys.

cwbOBJ_SetListFilter
Use the cwbOBJ_SetListFilter API with this product.

Purpose
Sets filters for the list. This filter is applied the next time cwbOBJ_OpenList () is called.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SetlListFilter(
cwbOBJ_ListHandle 1listHandle,

cwb0OBJ_KeyID key,
const char *xvalue,
cwbSV_ErrHandle errorHandle) ;

Parameters

cwbOBJ_ListHandle listHandle - input
List handle that this filter will be applied to.

cwbOBJ_KeyID key - input
The id of the filtering field to be set.

const void *value - input
The value this field should be set to.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle () APIL The messages may be retrieved through the
cwbSV_GetErrText () APL If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_INVALID_HANDLE
List handle not found.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input Unicode characters have no representation in the codepage being used.

CWB_API_ERROR
General API failure.

Usage

The value of key will determine the type that is pointed to value. The length of value is determined by its
type. The following filters may be set against these list types Spooled File Lists:

« CWBOBJ_LIST_SPLF
- CWBOBJ_KEY_USER

238 IBMi: Windows Application Package: Programming

Specifies which user's spooled files are to be listed. May be a specific user ID or one of these special
values: *ALL - all users. *CURRENT - list spooled files for the current user only. *CURRENT is the
default.

CWBOBJ_KEY_OUTQUELIB
Specifies which libraries to search for output queues in. May be a specific name or one of these
special values: "" - if the OUTQUEUE key word is *ALL, this combination will search all output queue

on the system. *CURLIB - the current library *LIBL - the library list *LIBL is the default if the OUTQUE
filter is not *ALL. "" is the default if the OUTQU filter is set to *ALL.

CWBOBJ_KEY_OUTQUE

Specifies which output queues to search for spooled files on May be a specific name or the special
value *ALL. *ALL is the default.

CWBOBJ_KEY_FORMTYPE

Specifies which spooled files are listed by the form type attribute that they have. May be a specific

name or one of these special values: *ALL - spooled files with any form type are listed. *STD - spooled
files with the form type of *STD are listed *ALL is the default.

CWBOBJ_KEY_USERDATA

Specifies which spooled files are listed by the user data that they have. May be a specific value or one
of these special values: *ALL - spooled files with any user data value are listed. *ALL is the default.

Output Queue Lists:
« CWBOBJ_LIST_OUTQ:

CWBOBJ_KEY_OUTQUELIB

Specifies which libraries to search for output queues in. May be a specific name, a generic name or
any of these special values: *ALL - all libraries *ALLUSER - all user-defined libraries, plus libraries
containing user data and having names starting with Q *CURLIB - the current library *LIBL - the
library list *USRLIBL - the user portion o the library list. *LIBL is the default.

- CWBOBJ_KEY_OUTQUE

Specifies which output queues to list. May be a specific name, a generic name or *ALL. *ALL is the
default.

Printer Device Description Lists:
« CWBOBJ_LIST_PRTD:

CWBOBJ_KEY_PRINTER

Specifies which printer device to list. May be a specific name, a generic name or *ALL. *ALL is the
default.

Printer File Lists:
« CWBOBJ_LIST_PRTF:

CWBOBJ_KEY_PRTRFILELIB

Specifies which libraries to search for printer files in. May be a specific name, a generic name or any
of these special values:

- *ALL - all libraries

- *ALLUSER - all user-defined libraries, plus libraries containing user data and having names starting
with Q

- *CURLIB - the current library

- *LIBL - the library list

- *USRLIBL - the user portion o the library list.
- *ALL is the default.

Windows Application Package: Programming 239

- CWBOBJ_KEY_PRTRFILE

Specifies which printer files to list. May be a specific name, a generic name or *ALL. *ALL is the
default.

Writer Job Lists:
« CWBOBJ_LIST_WTR:
— CWBOBJ_KEY_WRITER

Specifies which writer jobs to list. May be a specific name, a generic name or *ALL. *ALL is the default.
— CWBOBJ_KEY_OUTQUELIB & CWBOBJ_KEY_OUTQUE

These filters are used together to get a list of writers active to a particular output queue. If the
OUTQUE key is specified the WRITER key is ignored. (all writers for the specified output queue are
listed). If the OUTQUE key is specified and the OUTQUELIB isn't, the OUTQUEULIB will default to
*LIBL - the system library list. The default is for neither of these to be specified.

Library Lists:
« CWBOBJ_LIST_LIB:
— CWBOBJ_KEY_LIBRARY

Specifies which libraries to list. May be a specific name, a generic name or any of these special
values:

*ALL - all libraries

*CURLIB - the current library

*LIBL - the library list

*USRLIBL - the user portion o the library list.
*USRLIBL is the default.

« CWBOBJ_LIST_RSC:

— Resources can be lists in a spooled file (lists all of the external AFP resources used by this
spooled file) or in a library or set of libraries. To list resources for a spooled file, use the
cwbOBJ_SetlListFilterWithSplF API along with the SetListFiltexr API for the RSCTYPE and
RSCNAME attributes.

CWBOBJ_KEY_RSCLIB

Specifies which libraries to search for resources in. This filter is ignored if the list is filter by spooled
file (for example, SetListFilterWithSplF). May be a specific name, a generic name or any of
these special values:

o *ALL - all libraries

« *ALLUSR - All user-defined libraries, plus libraries containing user data and having names starting
with Q.

e *CURLIB - the current library

« *LIBL - the library list

« *USRLIBL - the user portion o the library list.

- *LIBL is the default.

CWBOBJ_KEY_RSCNAME

Specifies which resources to list by name. May be a specific name, a generic name or *ALL.

*ALL is the default.
CWBOBJ_KEY_RESCTYPE

Specifies which type of resources to list. May be any combination of the following bits logically OR'd
together:

240 IBMi: Windows Application Package: Programming

- CWBOBJ_AFPRSC_FONT
- CWBOBJ_AFPRSC_FORMDEF
« CWBOBJ_AFPRSC_OVERLAY
- CWBOBJ_AFPRSC_PAGESEG
- CWBOBJ_AFPRSC_PAGEDEF

cwbOBJ_SetListFilterWithSplF
Use the cwbOBJ_SetListFilterWithSplF API with this product.

Purpose

Sets filter for a list to a spooled file. For listing resources this limits the resources returned by the openList
to those used by the spooled file.

Syntax

unsigned int CWB_ENTRY cwbOBJ_SetListFilterWithSplF(
cwbOBJ_ListHandle 1listHandle,
cwbOBJ_ObjHandle splFHandle,
cwbSV_ErrHandle errorHandle) ;

Parameters

cwbOBJ_ListHandle listHandle - input
List handle that this filter will be applied to.

cwbOBJ_ObjHandle splFHandle - input
Handle of the spooled file to filter on.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle () APIL The messages may be retrieved through the
cwbSV_GetErrText () APL If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWBOBJ_RC_INVALID_TYPE
Incorrect type of list.

CWB_INVALID_HANDLE
List handle not found or bad spooled file handle.

Usage

Filtering by spooled file is used when listing AFP resources so the list type must be CWBOBJ_LIST_RSC.
If you filter resources based on a spooled file you cannot also filter based on a library or libraries. The
resource library filter will be ignored if both are specified. Resetting a list filter will also reset the spooled
file filter to nothing.

Object APIs
The following APIs pertain to Objects. The APIs are listed alphabetically.

Note: When working with handles in the following APIs, O never will be returned as a valid handle.

Windows Application Package: Programming 241

cwbh0BJ_CopyObjHandle
Use the cwbhOBJ_CopyObjHandle API with this product.

Purpose

Creates a duplicate handle to an object. Use this API to get another handle to the same IBM i object. This
new handle will be valid until the cwbOBJ_DeleteObjHandle () API has been called to release it.

Syntax

unsigned int CWB_ENTRY cwbOBJ_CopyObjHandle(
cwbOBJ_ObjHandle objectHandle,
cwbOBJ_0ObjHandle xnewObjectHandle,
cwbSV_ErrHandle errorHandle) ;

Parameters

cwbOBJ_ObjHandle objectHandle - input
Handle of the object to copy.

cwbOBJ_ObjHandle *newObjectHandle - output
Upon successful competition of this call, this handle will contain the new object handle.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle () APIL The messages may be retrieved through the
cwbSV_GetErrText () APL If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

Usage

If you have a handle to an object in a list and wish to maintain a handle to that object after the list
has been close this API allows you to do that. cwbOBJ_DeleteObjHandle () must be called to release
resources for this handle.

cwbOBJ_DeleteObjHandle
Use the cwbOBJ_DeleteObjHandle API with this product.

Purpose

Releases a handle to an object.
Syntax

unsigned int CWB_ENTRY cwbOBJ_DeleteObjHandle(
cwbOBJ_0ObjHandle objectHandle,
cwbSV_ErrHandle errorHandle) ;

242 IBMi: Windows Application Package: Programming

Parameters

cwbOBJ_ObjHandle objectHandle - input
Handle of the object to release.

cwbSV_ErrHandle errorHandle - output

Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle () APIL The messages may be retrieved through the
cwhSV_GetErrText () APL If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.

CWB_OK
Successful completion.

CWB_NOT_ENOUGH_MEMORY
Insufficient memory.

CWB_INVALID_HANDLE
Handle is not an allocated object handle.

Usage

None

cwbOBJ_GetObjAttr

Use the cwbOBJ_GetObjAttr API with this product.

Purpose

Get an attribute of an object.
Syntax

unsigned int CWB_ENTRY cwbOBJ_GetObjAttxr(

cwb0BJ_0bjHandle

cwbOBJ_KeyID
void

unsigned long
unsigned long
cwb0OBJ_DataType
cwbSV_ErrHandle

Parameters

cwbOBJ_ObjHandle objectHandle - input
Handle of the object to get the attribute for.

cwbOBJ_KeyID key - input

objectHandle,
key,
xbuffer,
buflLen,
*bytesNeeded,
xkeyType,
errorHandle) ;

Identifying key of the attribute to retrieve. The CWBOBJ_KEY_XXX constants define the key ids. The
type of object pointed to by objectHandle determine which keys are valid.

void *buffer - output

The buffer that will hold the attribute value, if this call returns successfully. The value of the key
determines what type of data will be put into pBuffer. The type is also returned to the *keyType

parameter, if provided.

unsigned long bufLen - input
The length of the buffer pointed to by pBuffer.

unsigned long *bytesNeeded - output

On output, this will be the number of bytes needed to hold result.

Windows Application Package: Programming 243

cwbOBJ_DataType *keyType - output
Optional, may be NULL. On output this will contain the type of data used to represent this attribute
and what is stored at *buffer.

cwbSV_ErrHandle errorHandle - output
Optional, may be 0. Any returned messages will be written to this object. It is created
with the cwbSV_CreateErrHandle () APIL The messages may be retrieved through the
cwbSV_GetErrText () APL If the parameter is set to zero, no messages will be retrievable.

Return Codes
The following list shows common return values.
CWB_OK

Successful completion.

CWB_NOT_ENOUGH_MEMORY

Insufficient memory.
CWB_INVALID_HANDLE

Handle is not an allocated object handle.

CWB_BUFFER_OVERFLOW
Buffer too small.

CWBOBJ_RC_HOST_ERROR
Host error occurred. Text may be in errorHandle.

CWBOBJ_RC_INVALID_KEY
Key isn't valid.

CWB_API_ERROR
General API failure.

Usage
The following attributes may be retrieved for these object types:
- CWBOBJ_LIST_SPLF:

CWBOBJ_KEY_AFP - AFP resources used
CWBOBJ_KEY_ALIGN - Align page
CWBOBJ_KEY_BKMGN_ACR - Back margin across
CWBOBJ_KEY_BKMGN_DWN - Back margin down
CWBOBJ_KEY_BKOVRLLIB - Back overlay library name
CWBOBJ_KEY_BKOVRLAY - Back overlay name
CWBOBJ_KEY_BKOVL_ACR - Back overlay offset across
CWBOBJ_KEY_BKOVL_DWN - Back overlay offset down
CWBOBJ_KEY_CPI - Characters per inch
CWBOBJ_KEY_CODEDFNTLIB - Coded font library name
CWBOBJ_KEY_CODEDFNT - Coded font
CWBOBJ_KEY_COPIES - Copies (total)
CWBOBJ_KEY_COPIESLEFT - Copies left to produce
CWBOBJ_KEY_CURPAGE - Current page
CWBOBJ_KEY_DATE - Date file was opened
CWBOBJ_KEY_PAGRTT - Degree of page rotation
CWBOBJ_KEY_ENDPAGE - Ending page
CWBOBJ_KEY_FILESEP - File separators
CWBOBJ_KEY_FOLDREC - Wrap text to next line
CWBOBJ_KEY_FONTID - Font identifier to use (default)
CWBOBJ_KEY_FORMFEED - Form feed
CWBOBJ_KEY_FORMTYPE - Form type
CWBOBJ_KEY_FTMGN_ACR - Front margin across
CWBOBJ_KEY_FTMGN_DWN - Front margin down
CWBOBJ_KEY_FTOVRLLIB - Front overlay library name
CWBOBJ_KEY_FTOVRLAY - Front overlay
CWBOBJ_KEY_FTOVL_ACR - Front overlay offset across
CWBOBJ_KEY_FTOVL_DWN - Front overlay offset down
CWBOBJ_KEY_CHAR_ID - Graphic character set
CWBOBJ_KEY_JUSTIFY - Hardware justification
CWBOBJ_KEY_HOLD - Hold the spool file
CWBOBJ_KEY_JOBNAME - Name of the job that created file
CWBOBJ_KEY_JOBNUMBER - Number of the job that created file

244 IBMi: Windows Application Package: Programming

CWBOBJ_KEY_USER =
CWBOBJ_KEY_LASTPAGE -
CWBOBJ_KEY_LPI -
CWBOBJ_KEY_MAXRECORDS -
CWBOBJ_KEY_OUTPTY -
CWBOBJ_KEY_OUTQUELIB -
CWBOBJ_KEY_OUTQUE -
CWBOBJ_KEY_OVERFLOW -
CWBOBJ_KEY_PAGELEN -
CWBOBJ_KEY_MEASMETHOD -
CWBOBJ_KEY_PAGEWIDTH -
CWBOBJ_KEY_MULTIUP -
CWBOBJ_KEY_POINTSIZE -
CWBOBJ_KEY_FIDELITY -
CWBOBJ_KEY_DUPLEX -
CWBOBJ_KEY_PRTQUALITY -
CWBOBJ_KEY_PRTTEXT =
CWBOBJ_KEY_PRTDEVTYPE -
CWBOBJ_KEY_PRTRFILELIB -
CWBOBJ_KEY_PRTRFILE -
CWBOBJ_KEY_RECLENGTH -
CWBOBJ_KEY_RPLUNPRT -
CWBOBJ_KEY_RPLCHAR -
CWBOBJ_KEY_RESTART -
CWBOBJ_KEY_SAVESPLF -
CWBOBJ_KEY_SRCDRWR -
CWBOBJ_KEY_SPOOLFILE -
CWBOBJ_KEY_SPLFNUM -
CWBOBJ_KEY_SPLFSTATUS -
CWBOBJ_KEY_STARTPAGE -
CWBOBJ_KEY_TIME -
CWBOBJ_KEY_PAGES -
CWBOBJ_KEY_UNITOFMEAS -
CWBOBJ_KEY_USERCMT -
CWBOBJ_KEY_USERDATA -
CWBOBJ_KEY_USRDFNDTA -
CWBOBJ_KEY_USRDFNOPTS -
CWBOBJ_KEY_USRDFNOBJ -
CWBOBJ_KEY_USRDFNOBJLIB-
CWBOBJ_KEY_USRDFNOBJTYP-

. CWBOBJ_LIST_OUTOQ:

CWBOBJ_KEY_AUTHCHCK -
CWBOBJ_KEY_DATAQUELIB -
CWBOBJ_KEY_DATAQUE -
CWBOBJ_KEY_DESCRIPTION -
CWBOBJ_KEY_DISPLAYANY -
CWBOBJ_KEY_JOBSEPRATR -
CWBOBJ_KEY_NUMFILES -
CWBOBJ_KEY_NUMWRITERS -
CWBOBJ_KEY_OPCNTRL -
CWBOBJ_KEY_ORDER -
CWBOBJ_KEY_OUTQUELIB -
CWBOBJ_KEY_OUTQUE -
CWBOBJ_KEY_OUTQUESTS -
CWBOBJ_KEY_PRINTER -
CWBOBJ_KEY_SEPPAGE -
CWBOBJ_KEY_USRDFNDTA -
CWBOBJ_KEY_USRDFNOBJ -
CWBOBJ_KEY_USRDFNOBJLIB-
CWBOBJ_KEY_USRDFNOBJTYP-
CWBOBJ_KEY_USRDFNOPTS -
CWBOBJ_KEY_USRDRVPGM -
CWBOBJ_KEY_USRDRVPGMLIB-
CWBOBJ_KEY_USRDRVPGMDTA-
CWBOBJ_KEY_USRTFMPGM -
CWBOBJ_KEY_USRTFMPGMLIB-
CWBOBJ_KEY_WRITER -
CWBOBJ_KEY_WTRJOBNUM -
CWBOBJ_KEY_WTRJOBSTS -
CWBOBJ_KEY_WTRJOBUSER -

« CWBOBJ_LIST_PRTD:

CWBOBJ_KEY_AFP -
CWBOBJ_KEY_CODEPAGE -
CWBOBJ_KEY_DEVCLASS -
CWBOBJ_KEY_DEVMODEL -
CWBOBJ_KEY_DEVTYPE -

Name of the user that created file
Last page that printed

Lines per inch

Maximum number of records allowed
Output priority

Output queue library name

Output queue

Overflow line number

Page length

Measurement method

Page width

Logical pages per physical side

The default font's point size

The error handling when printing
Print on both sides of paper

Print quality

Text printed at bottom of each page
Printer dev type (data stream type)
Printer file library

Printer file

Record length

Replace unprintable characters
Character to replace unprintables
Where to restart printing at

Save file after printing

Source drawer

Spool file name

Spool file number

Spool file status

Starting page to print

Time spooled file was opened at
Number of pages in spool file

Unit of measure

User comment
User data
User defined
User defined
User defined
User defined
User defined

data

options

object

object library
object type

authority to check

data queue library

data queue

text description

users can display any file on queue
number of job separators

total spooled files on output queue
number of writers started to queue
operator controlled

order on queue (sequence)

output queue library name

output queue
output queue
printer
print banner
user defined
user defined
user defined
user defined object type
user defined options
user driver program
user driver program
user driver program
user data transform
user data transform
writer job name
writer job number
writer job status
writer job user

status

page

data

object

object library

library

data

program

program library

AFP resources used
code page

device class
device model
device type

Windows Application Package: Programming 245

CWBOBJ_KEY_DRWRSEP
CWBOBJ_KEY_FONTID
CWBOBJ_KEY_FORMFEED
CWBOBJ_KEY_CHAR_ID
CWBOBJ_KEY_MFGTYPE
CWBOBJ_KEY_MSGQUELIB
CWBOBJ_KEY_MSGQUE
CWBOBJ_KEY_POINTSIZE
CWBOBJ_KEY_PRINTER
CWBOBJ_KEY_PRTQUALITY

CWBOBJ_KEY_DESCRIPTION

CWBOBJ_KEY_SCS2ASCII
CWBOBJ_KEY_USRDFNDTA
CWBOBJ_KEY_USRDFNOPTS

CWBOBJ_KEY_USRDFNOBJLIB

CWBOBJ_KEY_USRDFNOBJ

CWBOBJ_KEY_USRDFNOBJTYP-
CWBOBJ_KEY_USRTFMPGMLIB-

CWBOBJ_KEY_USRTFMPGM

CWBOBJ_KEY_USRDRVPGMDTA-
CWBOBJ_KEY_USRDRVPGMLIB-

CWBOBJ_KEY_USRDRVPGM

« CWBOBJ_LIST_PRTF:

CWBOBJ_KEY_ALIGN
CWBOBJ_KEY_BKMGN_ACR
CWBOBJ_KEY_BKMGN_DWN
CWBOBJ_KEY_BKOVRLLIB
CWBOBJ_KEY_BKOVRLAY
CWBOBJ_KEY_BKOVL_DWN
CWBOBJ_KEY_BKOVL_ACR
CWBOBJ_KEY_CPI

CWBOBJ_KEY_CODEDFNTLIB

CWBOBJ_KEY_CODEPAGE
CWBOBJ_KEY_CODEDFNT
CWBOBJ_KEY_COPIES

CWBOBJ_KEY_DBCSDATA

CWBOBJ_KEY_DBCSEXTENSN

CWBOBJ_KEY_DBCSROTATE
CWBOBJ_KEY_DBCSCPI
CWBOBJ_KEY_DBCSSISO
CWBOBJ_KEY_DFR_WRITE
CWBOBJ_KEY_PAGRTT
CWBOBJ_KEY_ENDPAGE
CWBOBJ_KEY_FILESEP
CWBOBJ_KEY_FOLDREC
CWBOBJ_KEY_FONTID
CWBOBJ_KEY_FORMFEED
CWBOBJ_KEY_FORMTYPE
CWBOBJ_KEY_FTMGN_ACR
CWBOBJ_KEY_FTMGN_DWN
CWBOBJ_KEY_FTOVRLLIB
CWBOBJ_KEY_FTOVRLAY
CWBOBJ_KEY_FTOVL_ACR
CWBOBJ_KEY_FTOVL_DWN
CWBOBJ_KEY_CHAR_ID
CWBOBJ_KEY_JUSTIFY
CWBOBJ_KEY_HOLD
CWBOBJ_KEY_LPI
CWBOBJ_KEY_MAXRCDS
CWBOBJ_KEY_OUTPTY
CWBOBJ_KEY_OUTQUELIB
CWBOBJ_KEY_OUTQUE
CWBOBJ_KEY_OVERFLOW
CWBOBJ_KEY_LINES_PAGE
CWBOBJ_KEY_PAGELEN
CWBOBJ_KEY_MEASMETHOD

CWBOBJ_KEY_CHAR_LINE
CWBOBJ_KEY_PAGEWIDTH
CWBOBJ_KEY_MULTIUP
CWBOBJ_KEY_POINTSIZE
CWBOBJ_KEY_FIDELITY
CWBOBJ_KEY_DUPLEX
CWBOBJ_KEY_PRTQUALITY
CWBOBJ_KEY_PRTTEXT
CWBOBJ_KEY_PRINTER
CWBOBJ_KEY_PRTDEVTYPE

drawer to use for separators
font identifier

form feed

graphic character set
manufacturer's type & model
message queue library
message queue

default font's point size
printer

print quality

text description

transform SCS to ASCII

user defined data
user defined options
user defined object
user defined object
user defined object
user data transform
program library
user data transform
user driver program
user driver program
user driver program

library

type

program
data
library

align page

back margin across

back margin down

back side overlay library

back side overlay name

back overlay offset down

back overlay offset across
characters per inch

coded font library name

code page

coded font

copies (total)

contains DBCS character set data
process DBCS extension

characters

rotate DBCS characters

DBCS CPI

DBCS SI/SO positioning

defer write

degree of page rotation

ending page number to print
number of file separators

wrap text to next line

Font identifier to use (default)
type of paperfeed to be used

name of the form to be used

front margin across

front margin down

front side overlay library

front side overlay name

front overlay offset across

front overlay offset down

graphic character set for this file
hardware justification

hold the spool file

lines per inch

maximum number of records allowed
output priority

output queue library

output queue

overflow line number

page length in lines per page
page length in Units of Measurement
measurement method

(*ROWCOL or =UOM)

page width in characters per line
width of page in Units of Measure
logical pages per physical side
the default font's point size

the error handling when printing
print on both sides of paper
print quality

text printed at bottom of each page
printer device name

printer dev type (data stream type)

246 IBMi: Windows Application Package: Programming

CWBOBJ_KEY_PRTRFILELIB - printer file library

CWBOBJ_KEY_PRTRFILE - printer file

CWBOBJ_KEY_RPLUNPRT - replace unprintable characters
CWBOBJ_KEY_RPLCHAR - character to replace unprintables
CWBOBJ_KEY_SAVE - save spooled file after printing
CWBOBJ_KEY_SRCDRWR - source drawer

CWBOBJ_KEY_SPOOL - spool the data
CWBOBJ_KEY_SCHEDULE - when available to the writer
CWBOBJ_KEY_STARTPAGE - starting page to print

CWBOBJ_KEY_DESCRIPTION - text description
CWBOBJ_KEY_UNITOFMEAS - unit of measure
CWBOBJ_KEY_USERDATA - user data
CWBOBJ_KEY_USRDFNDTA - User defined data
CWBOBJ_KEY_USRDFNOPTS - User defined options
CWBOBJ_KEY_USRDFNOBJLIB- User defined object library
CWBOBJ_KEY_USRDFNOBJ - User defined object
CWBOBJ_KEY_USRDFNOBJTYP- User defined object type

« CWBOBJ_LIST WTR:

CWBOBJ_KEY_WRITER - writer job name
CWBOBJ_KEY_WTRJOBNUM - writer job number
CWBOBJ_KEY_WTRJOBSTS - writer job status

CWBOBJ_KEY_WTRJOBUSER - writer job user
« CWBOBJ_LIST_LIB:

CWBOBJ_KEY_LIBRARY - the library name
CWBOBJ_KEY_DESCRIPTION - description of the library

+ CWBOBJ_LIST_RSC:

CWBOBJ_KEY_RSCNAME - resource name
CWBOBJ_KEY_RSCLIB - resource library
CWBOBJ_KEY_RSCTYPE - resource object type
CWBOBJ_KEY_OBJEXTATTR - object extended attribute
CWBOBJ_KEY_DESCRIPTION - description of the resource
CWBOBJ_KEY_DATE - date object wa