IBMi
7.2

Programming
IBM Developer Kit for Java

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
491.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.

© Copyright International Business Machines Corporation 1998, 2013.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

IBM Developer Kit for Java.....ccccceieiieiieiieiieieiiiiiiiieiiesiesieiiasiecsscsssssssssssssassassanes 4

What's NEW fOr IBM i 7.3 ittt ettt et st st e st e sat e s be e s ae e st e esbe e sabe e be e saaeesbeesabesnteessaesaseensaesssesnsens 1
PDF file for IBM Developer Kit fOr JAVA.......ciiiciiiiciieccieeceee ettt e te e st e e va e s aa e e s bae s araeeensaeas 2
Installing and CONTIGUNING JAVA......cicciiiiiiiiicie ettt ettt e te e s te e e te e e e atee e s atee s abeeeenbaeennsaeenneeas 2
Installing Java ON YOUEN IBM i SEBIVETciicuiieeiieieieeeectteeeiteeectteeeiteeestaeeessaeeesaeessseeessasesnseaeanseeesseessnees 2
Considerations for using IBM Technology for Java Virtual Maching........ccccoeeveeeciiieecieeecciieccieeens 4
Installing a licensed program with the Restore Licensed Program command.........cccccceevveriveennnen. 5
Support for multiple Java Development KitS (JDKS)...cccuieeiieeeiieeeiieeeeieeecieeeeteeeeveeeevee e vee e 6
INStAlling JAVA EXEENSIONS. ..cciicieeieieeeeiee et e et e et e ee e e eete e eetteeeerte e e steeessteeessteesesteeeessessasteesansasannes 7
Downloading and installing Java PACKAZES.ccueecciieeiiieeiiee ettt e e et cre e e sae e e aae e e aaeeenaee s 7
Running your first Hello World Java program..........ecceieeeieeieieeeeieeeeieeeeieeeeteeseveessseeessaesssaessnsaeenns 8
Creating, compiling, and running a HelloWorld Java program......c.ccceceeeecieeeeireeeecieeescieeeesieeeesvneeessneeens 9
Mapping a NEtWOIK Ve t0 YOUE SEIVETcccciiiecieeecieeeeieeeeteeeeiee e e rteeesteeesteeestaeesataeesntaeesssasesnsaeanns 10
Creating and editing Java SOUICE fIlES...ccuiiiiiiiiciie ettt et te e e e te e e e ae e e s bae e eatae e e 11
Customizing your IBM i SEIVEr fOr JAVA USAZE....cccuteeiireeiiieeiieeeiieeeiseeesteeesseeessseesssseesssseesssssesssseessnses 12
Y= Mol F= 11y o = U o D SR 12
JAVA SYSTEM PrOPEITIES. .. uiiiictiieecieecciee et ertee et e e te e et eeseatee s stee s ssee e ssaesssaesessaeeasseeansseeansseeensseanns 14
SystemDefault.properties filB.. ... e e e e e 14

List Of Java SYStEM ProPertiEs......ui i iii ettt et rre e e ee e s eate e e ree e e eree e eaee e eneeeennes 15
INtErNAtiONALIZATION. c..iiiiiiiecteete ettt sttt st e e st e s be e rae s te e aaesareebaenaes 19
TimMe ZONE CONTIGUIATION. ... eiii ittt e e et e e et e e s ate e s nbe e e abee e nsee s nraeenseean 20

Java CharaCter @NCOTINGS. ...cccuvieiiiiecciee ettt e ecte e ectte e eete e et e e sebeeesebaeesbaeesbeeesabeeessaessnssesssesennes 20
File.encoding values and IBM i CCSID......ccieeiuiiieiiieeeiieeeiteeeereeeeteeeeteeesreeessaeesnsseessaessnsasanns 21

Default file.eNCOING VALUES......ccccuiiieiieeceee ettt ettt etre e et e e e stre e sbae e ebae e sbaeesraeeenes 26
Examples: Creating an internationalized Java program........ccccecceeeecieeeeiieeeccieeeeceeeeieeeereeeesee e 26
Release-to-release CoOMPAtiDIlity........cccueeieiiiicie et re e e ae e st e e e eareeenes 27
Database acCess from JaVa PrOSIaMS.c.uieccieeeiieeeireeeiteeeireeeitteeeisreeessseeensseesssseesssssesssssessssesesssesssssnen 27
Accessing your IBM i database with the Java IDBC driVer......cccecccueeeiciieecciieeciee et 27
Getting started With IDBC........vi ettt e e te e e te e e e te e s st e e eesteesestaeeentaesnntaeanns 28

TYPES OFf IDBC AIIVEIS...uiiiiiiieeiieeecitee ettt e ettt e e ctte e e stre e e sta e e e eate e e taeessaeesasaeeensaeessseessseessseesnsseenn 28

[2 O =Y [V 1T =Y =Y o} AT 29

] O (U o o - Y TS 30

Setting up INDI for the Java eXamMPLeS......uiiccieeeiieeeiecere e re e sre e e e ree e e e e e e naeeas 35
CONNECTIONS. .t iteeiteeteeste st et e et et este e be e st e s beesaaesbeesaaesabeesbaesaseenbaesabeenbeesasesnsaesssesnsaenssesnseensaesns 35

JaVA DIVEIMANAZET CLASS..uiiiiiieieiieieieeeeieeerte e eeteeeeteeesteeseteeessteeesssaeeesteeessseesssseesassesenssaeanns 36

JIDBC driver CONNECLION PrOPEITIES......viicciiiiecieieciteeecee e et e ectee e esre e etee e etreesbaeesraeessaeesnsaeennes 38

Using DataSources With UDBDataSOUICE.......uiiiciieeciiecieecte ettt e vee e bee e vee e 46
DataSOUICE PrOPEITIES. ciicuiiiieiieeeieeecteeeerteeeereeeetee e e tee e e teeeeteeeeteeestaeestaeesssaeessseeesnseessnsasannes 49

JVM Properties fOr IDBC......uuiiiiiieeiiieeiee et e ettt e e rteeeste e e teeesaseeesaee s sseesssseesassaesnsseeanssesennsassnnees 51
DatabaseMetaData INtEIfaCe. ...civiiiiiiiiiiieieerte ettt st sr e s be e be e sbe e be e sabesbeesaneens 53
Example: Returning a list of tables using the DatabaseMetaData interface.......c.ccceeeevveennen. 58

Example: Using metadata ResultSets that have more than one column........cccoeceeveieeieennenne 59

AV W CyCol=Y o) o o T 60

Java SQLEXCEPLION CLASS...uuiiiciieicieecctiee et ettt e ettt e eete e eetre e eette e s ate e s ateessteessteessaeesseeesseeennns 60
SOLWAINING. ..eeieteeeectieeecte et e ettt e e ste e et e e e taee e ttee e abee e abae e sbee e ssaeanssaeaassaeaassaeanssaeasnsasannseeennsnes 62
DataTruncation and Silent trUNCAtION......ccciirierciirrte et san e s reenes 63

JIDBC traNSACTIONS. c.veirieeiteerieeiteertte et esteeteeseeetesstee s tessbeesseessbaesseesssaenseesaseensaesaseenbeessseesaesssesnses 66

JIDBC autO-COMMIT MOTE..cc.uiiiiiiiiiieieeite ettt ettt sreesreesbeesbeesabeebeesaaesbeesanessseensnesnsesnses 66
Transaction iSOLAtioN LEVELS.....c.cuiiiiiiiieieeeeteee e sr e s re e sanesae e e 67

ST 12T oo 2 TSRS 69

JIDBC distributed tranSaCtioNS.....civiiecieiiiiriecrieerte sttt et e st et e st e e sbe e saessbeestaesbeesbeesaseebee e 70

Example: Using JTA to handle a transSaction.......ucueeveieeiriieneiienniee st sve e 72

Example: Multiple connections that work on a transaction.........ccceeeeeeecciieeeieccieeeeeecieee s 74
Example: Using a connection with multiple transactions......c.cccceeceeiniieeniieeenieecieceeeeen 76
Example: Suspended RESUIISELS......cui ittt e e e rre e e e e e e e e 78
Example: ENding @ tranSactioN... .o iiieriiieeiiessitessite st ssiee s siee s siee s iee s s aee s saaessneesssneas 80
Example: Suspending and resuming a tranSactioN.......c.ceecveerriieenniieeenieeeesieeesieeeseeeeseeessaeees 82
Y =N (T 0 T=T) A o 1= TP 84
) =Y =T 00T 0] o] o] [T o3 -SSR 84
e oL T=Ta IS] =Y (T 1T a1 -SSRt 87
LOE= 1101 E=R] €= N (T 0 aT=T) £ OO 93
R TU 1L ST= £ PRSP 100
RESULSEt CharaCleriStICS. uiiiiiiiiieiriie ittt ettt et st e s re e s ssee e s sataesssteessseaesnns 100
(010 £=To] g 04T 1V/=T 1 0[] o | SO TR PP ORI PP 106
Retrieving RESULISET data....ccuiiiciiiiieicieecie ettt see e sbe e sate e saee e sraeesans 108
Changing RESULLSETS. ...iiiiiiiiiiieiriie ettt ettt s e e st e e e s e e e sbe e e s baeessbeeesaseessaseeenn 110
Creating RESUILSEES. . iiiiiii ittt ee e s ree s sbee e s e e e s be e s sbeeesbaeesaseessanens 114
Example: ReSUIESEt INTEIACE. ..iii it e e et e e s e ae e e e e eanes 116
D] = 0% e]] 1=Tox i oTe o] 11 oY =S PTRPTP 117
Using DataSource support for 0bject POOLING.......cocvueiriiiiiiiieiiiee et ssee e 117
ConnectionPoolDataSoUrCe PrOPEITIES. . cuiiiciieeeeectieeeeccrteee e eecter e e e e errr e e e eearre e e e e raeeeeeeansees 119
DataSource-based statement POOLING.....cocuiiiiiiiiiiiiieeeee e s s 121
Building your own connection POOLING.......coccuiiiiiiiiriiiiniieeete et sae e aee s 123
[SF ol o U Yo Ta F=) (Y ST SSRNE 124
Statement DAtCh UPAate.. i e et e e e e ebaee e e 124
PreparedStatement batCh UPdate......cooceiiiii e 125
JDBC BatChUpdateEXCEPION..iii it ettt ettt e e ree e e e et e e e e e nae e e e senbaeeeeennnnes 126
Blocked iNSErts With JDBUC......ccocuiiiiiieiiieeriieessiee st e ssiteessee e ssieeeseseeesssteessseeessseaessneeesansaesans 127
FANe V=Y aTor=Te la P €= T Y o 1= UP RSN 128
Writing code that USES BLOBS........iiiiiieieiieceiteceite sttt ettt s e e s aa e s sba e e sabaeessaeens 130
Writing code that USES CLOBS......ciiiiiiiiieciecctee ettt see e s see e s saee e ssaeeesnee 134
Writing code that Uses DatalinKs........ccueivcieiiiieiiiieiciecreee e 138
EXAMPLE: DISTINCT 1Y PES..utiiiiieciiiie ettt e e e et e e e et e e s e e rbe e e e e eeabeeee s e nsteeeesensaneenann 139
IDBEC ROWSETS. ..ttt ettt ettt ettt e e sttt e e st e e s e s et e e e e e nreeeeeeanneeee s e aneteeeeannnaeeeennneaeas 140
ROWSET CharaCteriStiCS. . ouviiieiieiiiieiriie ettt ettt e st e st e e s s be e e s be e e sbaeessbaeesasaeean 140
DB2CaChEAROWSET.....ciieiieieiieeeite ettt ettt s e e s s te e s s ba e e ssba e s ssbeeesasaeesnsaeesnseeenns 141
DB2JADCROWSET....ci ittt ettt ettt sttt e s te e s s e e e s bee e sbee s sbaeesabaeesabaeesbaeessaeenns 158
Performance tips for the Native JIDBC AliVET.....cc.uuiieieeciieee ettt eeree e e etre e e eate e e s e 162
Accessing databases using DB2 SOQLJ SUPPOI.....cciiiiiiriieinieeiiieessieessieessseessseessseessseessseessssees 164
Structured Query Language for Java Profiles.......uiiiiiiiieiiiiiiiiesiee st saee e 165
The structured query language for Java (SQLJ) translator (SOlj)..cceecveeeeerveecieenieeceecee e, 166
Precompiling SQL statements in a profile using the DB2 SQLJ profile customizer, db2profc... 167
Printing the contents of DB2 SQLJ profiles (db2profp and profp).....cccceceeecieeveecceeneeseeeeene 171
SQLJ profile auditor installer (Profdb).......u e e e e 172
Converting a serialized profile instance to Java class format using the SQLJ profile
CONVErSION 0OL (PrOfCONV)...ii i iiiiciiie ettt ettt et e e et e e be e e ab e e e baeeeabee e nreeeeaneas 173
Embedding SQL statements in your Java appliCation.........ccecveeerrieeniieriniieennieesreesseeesseee e 173
Host variables in Structured Query Language for Java......cccceceeeeiieeniieennieeeseeeseeeeseee e 175
Example: Embedding SQL Statements in your Java application........cccecveervieeriveesiveeninnenn. 175
Compiling and running SOLJ PrOgramsS....c.ueeeceeeerreerireesireessieessreesseeesseeessseesssseessssnssssssessens 177
JAVA SOL FOUTINES ceeiiiiiiii ettt eeeecer e e e e e e e eesee e asbbaeaaaeeeeeeeeseseassssssaaseeseeeeeesessanssrrsenreees 179
USING JAVA SOL FOULINES...eiiiiiiiiieiiciieesciteesciteesete e seiteestteesetteesbeeesseeesseeesseessaseeesaseessaseessaseessans 179
Setting up your SyStem t0 USE SQLJ....iiiiiiiieiiiieieeetecete ettt 181
Y =) (o= Te [o] foTot=To LT =Y SRS 181
TN o T =T =Y (T) 4 =Y SR 182
DB2GENERAL parameter STYLE. ... ittt et e e e rae e e s ra e e e e 183
Restrictions on Java Stored ProCEAUIES.uuviiecciiieeececieee e eecttre e e eerre e e e e crre e e s eerreeeeeeneaeeeeeas 185
Java user-defined scalar FUNCIIONS.....c.uiiiiiiirecce e s s s 185
Restrictions on Java user-defined fUNCLIONS........coiiviiiiiiiiiiiee e 190

Java user-defined table fUNCHIONS........ooii i 190

SQLJ procedures that manipulate JAR fileS..... e 192
SQLIINSTALL _JAR. .ttt et estte e tessveesteesveeste s beessee s beessseesseesseesnsesseessseenseesnseenseesssenn 192
SQLI.REMOVE_JAR.....oioeeeeeeeteeste et e ste e teestee e te e steessae s teesseesasa e saesnseesseessseesseesssesseesssesseanns 193
SQLI.REPLACE_JAR. .. ettt et e steeete et e e te e ste e stae s ste e ssaeesteessaessteesseesntaeseesnseenseesnsesnsnanns 194
SQLI.UPDATEJARINFO......ccctiiiieecieeeteeteestesteesteeetessseeste e seesseesseesseesnseessessssssnsessssessseessenans 196
SQLI.RECOVERJIAR.....ce ettt stte et e stee et e te e ste e teesntessbeesseesseessseenseesssesnseassnesnseanseeans 197
SQLI.REFRESH_CLASSES......c o ticieeteectte et estteeie et esetessteesseesaeesseessaeenseesssesnseesssesnsessssesnsenns 198

Parameter passing conventions for Java stored procedures and UDFs.......cccccceveveeriieercnennane 199

Java with other programming LlANGUAEES.ccvtiviiiiriiieiriteeree ettt e st e st essbee s s bee s s beeesbeessaseessanens 200
Native methods and the Java Native INterface......ccccvvciiieiieiniieicieccte ettt 201

Getting started with Java native Methods. ... 201

ILE native Methods fOr JAVA....ccciicieiiiieieciee ettt ettt ettt e s sbe e s sbe e s s e e s s beessareas 203
Teraspace storage model native methods for Java........cceeceeieviieieieeinieecriecceee e 204
Strings iN ILE Native MethOdS.....cii ittt s 205
Example: ILE native method fOr Java.....cc ettt e veee e e 206

PASE for i native Methods fOr JAVA.......ccuiiiiiiiiiiicieccieccteeeee et sba e sbaeesaee 207
Example: IBM PASE for i native method for Java.......cceeveeeciieei et 207

Managing native Method lIDraries. ... s s 208

Java native methods and threads CONSIAErations........ccovcvveiriieiriieiniie et 210

JaVA INVOCATION AP ..eiiiiieiiiee ettt e s saee e st e e st e e sbee e s bee e sabeeesaneeesaseessseessseessnses 211

INVOCATION APT fUNCHIONS.c..tiiieitieeiieeete ettt e s e s e e s saee e s saee e ssaeaesnaeaesneas 212

Support for multiple Java virtual MaChiNES.......c.uiiiiiieee e 213

Example: Java INVOCATION APL......cco ettt eetre e e esee e s e cbtee e e e ebaee e s e e saaeeeseennteeesennenns 213

Using java.lang. RUNtIME.EXEC()...uuiiieeieieieeieeste et erteeee et eseeesteesree s teesreesnteeseesrseeseessseenseenseesnsenn 216

Example: Calling another Java program with java.lang.Runtime.exec()......ccceccevvvervveeveereennnen. 216

Example: Calling a CL program with java.lang.Runtime.eXec()......cccvvvverreereeeceeneeeieeseeeeeeeen 217

Example: Calling a CL command with java.lang.Runtime.eXec()......ccceeeerverrceerveerienneesieeseene 218

INterproCess COMMUNICATIONS.uuiiiiciieieecciiee e ecctte e e e eete e e e ee e e e s eesbteeeeeesseeeeeeanseeeeesensseseesennseneeeann 219

Using sockets for interprocess COMMUNICATION.ciiicuieiiiieiriieente et eeieeesee s eee e see e s seeessaeeas 219
Example: Using sockets for interprocess communiCation.......coccueevieeeriieennieesnieesseeesseeenns 220

Using input and output streams for interprocess communiCation.......cccocceevrveernieenniieessiieesseeens 222
Example: Using input and output streams for interprocess communication.........cccceeeveenne 222

Example: Calling Java from ILE C...covcuiiiiciiiieieeeiieeeiieceiee ettt sr e sire e saae e saae e ssaeee s 223

Example: Calling Java from RPG.......ccoiciiiiiiiiiiiieieiteerieessieessieesstee s ste e s seeesseeessseessseessasaesnnns 224

Y= o - (o o o TS 224
NEWER-To] o] (o1 £ Ua Lo IF= o] o] L Tot=1 o] o [-7S USSR 225
JaVA VIFTUAL MACIINE ...ttt ettt te e s st e s st e e s sbe e esabeessabaessasaesnneeas 225
JaVa JAR aNd ClaSS fILES..uuiiiiiiiiiiiiicieeete ettt st e s e st e s ate e s sabe e s are e s abeesaraenan 227
JAVA TNTEAAS ettt sttt et e st e st e e s bt e e s b te e st e e e nte e s nte e e atae s ateesanraanan 228
N AT W DoAY Lo o] =Y o S SRS 229

AV AV 7= Y aTod=Te I (o] o] o 3SR 230
Java classes, packages, and dir€CIONES.uiiviiiiiiieirie ettt e s sbe e s sbe e s sreeesaeeas 230
Java-related files iN The IFS. ... e s e e s ae e s ab e e s aeesnaeas 232
Java file authorities in the integrated file SYSTEML. ..ot 232
RUNNing Java in @ batCh JOD. .. 233

Running your Java application on a host that does not have a GUIL.......coccvvvviiiiiiinniieenniee e 234
Native Abstract WindowWing TOOLKIt.....c.ueiriiiiiiieiiiiei ittt ettt stee s s sbe e s sbe e s saeeas 234

SeleCting an AWT MOGE....ccuiiiiiiiiiieeeieesrtte ettt et e s te e s st e s sbe e s s beessabeesssbaessssaessssaessssessnnee 234
Using AWT in normal mode with full GUL SUPPOIt....cccuiiiriiiiniieinieecteeeee e 235
Verifying your AWT CONTIZUIAtION....ciiciiiiiiiiiriieeriteeet ettt s e e be e e bae e baessvae s 240

Y= LYol U1 1 2SS 240
Changes to adopted authority iN IBM i 7.2 c...iiiiiiiieieteceeeeete sttt s 241
Examples: Adopted authority alterNatives........cocceiiie it e e 242

JAVA SECUITY MOUELcei ittt e e ee s ree e e e e et e e e e e e nbeeeesesnbeeeeeeanssaneessnnssneessnnns 254
Java Cryptography EXTENSION...cccuiiiiiieiieeccieeeie ettt st s sttt e s sate e ssabe e ssbe e ssabeessssaessseesnnsaeas 255

Using hardware Cryptography.. .. ittt be e s ssbe e s saba e s sasae s 256
Key pairs and hardware UtIlIZatioN........cccuieeeeicciiie et e e eree e e e naee e e e 257

JaVa SECUIE SOCKET EXEENSION .. it e e e s e e e e e e e e e e e e e e e e e e ee e e rssbaa b ans 257

Preparing your system for secure sockets layer SUPPOIt......ccccvivevieiiivieiisieeisieeeree e 258
Changing your Java code to use SOCKET fACTONES.iiviiiiriieiicieeeiee et see e 259
Examples: Changing your Java code to use server socket factories.....c.ccccevvveirreeerneeeennnen. 259
Examples: Changing your Java code to use client socket factories.......cccoceevevieeincieenecieennns 261
Changing your Java code to use secure SOCKETS layer.....ccivriiiiriieiniieiiieeeie e 262
Examples: Changing your Java server to use secure sockets layer......ccccvvviernvienniieenneeenn. 262
Examples: Changing your Java client to use secure sockets layer......cccvvvevrieereneeenneeennnen. 264
Selecting @ digital COrtifiCAtO. ..iiiiiiiiiiirite e s et e s essabeessaeee s 265
Using the digital certificate when running your Java application........cccecceeveieenieeeniieeeseeeennen. 266
Using Java Secure SOCKET EXTENSION......iiiiiiiiiiieiriee et ceiee st e st e s te e s see e s ste e s eeessaeeessneaesnnee 267
Configuring your server t0 SUPPOIT JSSEoiiiviiiiiiieiiiieieieecsieeeseeesssieesseeesssaeessseeessreesnans 267

Using the native IBM i JSSE ProVIer . ..c.iiieieiieiieiieeieieeseieesseeessieesseeessseeessaeeessseesssneeesans 271
Examples: IBM Java Secure Sockets EXtENSION......ccuiiiiiiciiiie ettt e e e e 283

Java Authentication and AuthOoriZation SEIVICE......cuvuiiiiiiniereee e 286
Java Authentication and Authorization Service (JAAS) 1.0 ...ooiieieiieeeeeeee e 287
IBM Java Generic Security SErvICE (JGSS)...iiiiiiiieiiieecieeectee et e e eteeeete e e te e e eabee e aee e nreeeeasaeeenns 318
€1 Y0 g od=T o) {7 PRt 319
JGSS principals and CredentialS........icceiee e e e e e e 320

JGSS context establiSHMENT.......cii e s e 324

JGSS message protection and EXChange.....c.uiiviiiirciiiirieeeie ettt re e sae e 324
Resource Cleanup and FELEASE.uii ittt cectee e crre e e et e e e s e sber e e s e earee e s e e naaeeeaeas 324
SECUNIEY MECNANISIMNS. ... tiiieieectiee e cciee et e e eeree e e e ettr e e e e s sbeeeeeesabeeeeeeasseeaeesassenesssanssnneesanns 324
Configuring your server t0 USE IBM JGSS.....coiciiiiiiiiiiieesiesetes et siee e saee s ssae e s saee s saee e 325
Configuring your IBM i 10 USE JGSS.......uiiiiiiiiiiieniiteniieeeriee st e ssieesseessreessveessbeessbaessans 325

L C S o1 70V T =1 o U 325

USINE @ SECUNTY MANAEET . utiiiiieiiieeriteeriieeriteeseieessteesseeessseeesssseessseesssseessseesssseesssseessssees 326
RUNNING IBM JGSS apPliCatiONS.cccuuiiiiciiiiiiieeiite sttt ettt s st e e s be e s e s s be e s sabee e sans 328
Obtaining Kerberos credentials and creating secret Keys.......oocccvvvveeinvieinvieeinsieesnsieeessieeens 328

The Kinit and KEab t001S......coiiiiiiieieeec e s aa e 329

JAAS Kerberos Login iNtEITACE.....cicuiiiiiii ettt ee e s ee s s re e e saeas 330
Configuration and POLICY fIlES.....iiiiiiiiiiiiiee e e s 332
Developing IBM JGSS appliCatiONS.....cccciiieiieiiiieiiiieeniteeesiteesitesssieessreeessreessseesssaeessaesssaeenas 334
IBM JGSS application programming STEPS......cceiirieeirvieeiriieeesieessieesseeesseeessneeessseesssseesssnes 335

Using JAAS with your JGSS appliCation......cucieeiiiieirieenieeesieessiee st ssreesseee st e ssreesseee s 340

JGSS AEDUBEING. . eeiitieiiiieeiie ettt ettt et e st e e s bt e e s bee e s bteesbaeesbaeesabaessnsaeessaesssaeesnsaeennns 341
Samples: IBM Java Generic Security Service (JGSS).....uuiuiiirieecieeecieeecteeeeieeeecteeeecreeesereee e 342
Viewing the IBM JGSS SAMPLES......uiiiiiiiriiieiieeeitesrit ettt ettt e s e s be e s sbeesssbeessaneas 343
Samples: Downloading and viewing Javadoc information for the IBM JGSS samples......... 347
Samples: Downloading and running the sample JGSS Programs.......ccceecveeerveeerniieessieeesnnees 347

IBM JGSS Javadoc reference information........ucueeveieeiniieieiieniecssiee st 350
TUNING Java Program PeITOMMANCE.iiiciiiecieeerit ettt ettt et e s see e s siee e s sabeessateessaeeessaseessaseesnnsens 351
Java Zarbage COLLECTION....ciciiiieiie ittt st e s te e s st e e s s ateesssteessateessstaessnsaesnssaesnns 351
Java Native Method Invocation performance considerations.......ccceccueeeeeeciieeeeeciiiee e eccreee e 352
Java exception performance CONSIAEratioNS........cccccueieiiecciiiee e e eecrrre e e reee e e e ree e e e eanees 353
Java profiling performManCe TOO0LS....cuuiiiiiiieiiieie ettt sare e s sae e e s saee e sseeesaeae s 353
Java Virtual Maching ToOL INTerfaCe. ...ttt 354
Collecting Java performanCe data......ccueueeiriiiiriieieiie sttt e s e s re e s sbe e s s be e s s beessbaessssaeens 354
NNV Wotolaa] = YaTe 3= YaTe I oo] L3N PUUSRR 355
Y- (o Yo K- T o UL (1Ll AT S PP 355
Standard Java toOolS and ULILITIES.....ueieiiiieiieeeeeeete e s s 356
IBM Java t00LS and ULILITIES...ueiirieeiieeicieecciee sttt ee e saee e st e seaee e seree e seaeeesneaesane 359

N ATl a1V 2q= 1Y o Lo SR 359
Additional Java t00ls and ULILITIES.....ccuiiiiiiiiiiieeiteccieeete ettt essareesaeee s 359

CL commands that are supported by JAVa.......cccccuiieeeiciiieee et e e e et re e s s naaee e 359
Debugging Java programs ON IBM Q...i.iiiciiiiiiiiiniieceieessite st sstee st e s ste e s ste e ssre e s sseessasaessssaessssaesnnns 360
Debugging Java programs using IBM i DEDUZEET.......cuvuiiiriiiiiiiieirieeeriteseeessiee e e sve e vee e 360
System debugging for IBM Technology fOr Java.......ucuiieiierrieeniiieerieeesee st sve e 361

vi

[BLT 0T =0T o 1=T = L { o] s 1< F TP PP 363

Initial debugging displays for Java programsS.......ccevveeriieerniieenniieessieesseesssreessreessveessans 364

SEtHING DrEAKPOINTS. ..ttt ettt s s te e s st e e s ste e s s ee e s sateessateesnneeesans 365

Stepping through Java ProgramsS. ... ettt st see e s see e s seeessaeeessseaesnes 366
Evaluating variables in Java ProSramS.......cceieeeeirieeiniieeenieeesieesseeesseeesseeessseesssseesssneesssnes 366
Debugging Java and native method Programs.......ccccevveeiriieinreeinieeeree e e e s seee s 367

Using the QIBM_CHILD_JOB_SNDINQMSG environment variable for debug........cccccceeveuueennnen. 367
Debugging Java classes loaded through a custom class loader......cocccevvcieiriieiniiennciennieeeene 368
DEDUZEING SEIVLIETS..utiiiiiiiiiii ettt ettt e s s e e s s be e s sabe e s sabe e s sabaessseeesnseaesnnes 368

Java Platform Debugger ArChitECIUIE.......iiiiiiirec e s s e s saee s 369
FINAING MEMOIY LEAKS....uiiiiiieieiiee ettt et e seate e s sbe e e sbee e sbaeesbeeesaseeesseeesane 370
Using the Generate JVM DUMP COMMEANG..cccuiiiiiiiiiiiieniiternieessieessieeesreessaeessbeesssseesssseesssneesssnes 370

N Y= N 6o Te [l o e L g o] L= USSRt 371
TroubleShOOting JAVA PrOZIramS......ciicueeirieeiriee ittt ssteeseteeesteesseeessteesssteessseeessseeessseesssseesssseessnseesssees 484
[T 013 €= L Lo o =T PR PR OPPROPPPPROPPPRINE 484
Finding job logs for Java problem analySiS.......cuiiiiiiriieiniieiriee e sriee s e ssee e sseeesseeesseeessseeesnnee 484
Collecting data for Java problem analySiS........cuiiiieiriieeiiiie it e e e ssee e seeeessreeessneeesane 485
ApPplying Program tEMPOrary fIXES....ucuiiiiiieriiierrieeerie ettt et e st e s be e s e e s s beessbeessabeessasaessans 486
Getting support for Java 0N IBM Q..ciiiii ittt sttt e sste e s sbe e s be e s sbeesnasee s 487
Related INTOrMATION .. .uiiiiee ettt e s st e e st e s s b e e e s b e e e s beeessbeeesaseeesaseeesnnens 488
Java Naming and DireCtory INtErfaCe. ...t iciiiiiiee ettt 488
JAVAMEIL ettt ettt et e ettt e s bt e e e b et e e b et e e b et e e beeeebe e e e baeeeraeeerreean 488
YN o 10N Y=Y oV o T TSP 489

[\ 0] { L =1 - TR > X |

Programming interface iNfOrmMation. ... s aees 492
= o (=100 =T OO OO URROPPRRRPRRNt 492
BT g 0TS TaTo oteTaTe L1 AT] o T3 PR 493

vii

IBM Developer Kit for Java

@
<
Ao

JAVA

IBM Developer Kit for Java™ is optimized for use in the IBM® i environment. It uses the compatibility of
Java programming and user interfaces, so you can develop your own IBM i applications.

IBM Developer Kit for Java allows you to create and run Java programs on your IBM i server. IBM
Developer Kit for Java is a compatible implementation of the Oracle America, Inc. Java Technology, so we
assume that you are familiar with their Java Development Kit (JDK) documentation. To make it easier for
you to work with their information and ours, we provide links to Oracle America, Inc.'s information.

If for any reason our links to Oracle America, Inc. Java Development Kit documentation do not work, refer
to their HTML reference documentation for the information that you need. You can find this information on

the World Wide Web at The Source for Java Technology-'-ﬁ.

Note: Read the “Code license and disclaimer information” on page 489 for important legal information.

What's new for IBMi 7.3

Read about new or significantly changed information for the IBM Developer Kit for Java topic collection.
The following changes have been made to IBM Developer Kit for Java in IBMi 7.3:
« The licensed program for IBM Developer Kit for Java is 5770-JV1.

Customers still using Classic Java should refer to “Considerations for using IBM Technology for Java
Virtual Machine” on page 4 before upgrading to IBM Technology for Java.

« The following topics have been updated to reflect the supported options of 5770-JV1 at IBM i 7.3:
— “Support for multiple Java Development Kits (JDKs)” on page 6

— “Installing Java on your IBM i server” on page 2

— “List of Java system properties” on page 15

« PASE for i now enforces stack execution disable protection.

To improve system security, the default behavior for PASE for i programs has changed so that
instructions run from memory areas (stack, heap, and shared memory) of a process are blocked. IBM
Technology for Java JIT generated code is created in memory areas. A PASE for i program that calls the
INI_CreateJavaVM() API needs to follow the instructions in PASE for i What's new for IBMi 7.3 to
mark the program as needing to allow program execution from memory areas.

« Additional documentation about IBM Technology for Java can be found on the IBM Center for Java
Technology Developer Web site.

The IBM Technology for Java JVM is based on the AIX® version of the IBM Center for Java Technology
Developer Kit. The IBM Center for Java Technology Developer Kits have common documentation

that applies to all supported platforms. Within that common documentation there exits sections that
document platform differences. When IBM i platform documentation does not exit the AIX version

of the documentation should be used. See the IBM Center for Java Technology Developer Diagnostic

Guide*® for additional information.

How to see what's new or changed

To help you see where technical changes have been made, this information uses:

© Copyright IBM Corp. 1998, 2013 1

http://www.oracle.com/technetwork/java/index.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/
http://www.ibm.com/developerworks/java/jdk/diagnosis/

« The ¥ image to mark where new or changed information begins.
« The €image to mark where new or changed information ends.

To find other information about what's new or changed this release, see the Memo to users.

PDF file for IBM Developer Kit for Java

You can view and print a PDF file of this information.

To view or download the PDF version of this document, select IBM Developer Kit for Java (about 1925
KB).

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF link in your browser.

2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free
copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html)-'-if}.

Installing and configuring Java

If you have not yet used Java on your IBM i server, follow these steps to install it, configure it, and practice
running a simple Hello World Java program.

“What's new for IBM i 7.3” on page 1
Read about new or significantly changed information for the IBM Developer Kit for Java topic collection.

“Customizing your IBM i server for Java usage” on page 12
After you install Java on your server, you can customize your server.

“Downloading and installing Java packages” on page 7
Use this information to download, install, and use Java packages more effectively on the IBM i platform.

“Release-to-release compatibility” on page 27
This topic describes considerations when you are moving Java applications from an earlier release to the

most current release.

Installing Java on your IBM i server

Installing IBM Developer Kit for Java allows you to create and run Java programs on your system. The
Java Virtual Machine (JVM) included in IBM Developer Kit for Java is the IBM Technology for Java Virtual
Machine and is available in both 32-bit and 64-bit versions.

IBM Technology for Java Virtual Machine is included in licensed program 5770-JV1. Licensed program
5770-JV1 is shipped with the system CDs. To access the IBM Technology for Java option, perform the
following steps:
1. Enter the Go Licensed Program (GO LICPGM) command and select Option 10 (Display)
2. If you do not see this licensed program listed, then perform the following steps:

a) Enter the GO LICPGM command on the command line.

b) Select Option 11 (Install licensed program).

¢) Choose Option 1 (Install) for licensed program (LP) 5770-JV1 *BASE, and select the option that you
want to install.

2 IBMi: IBM Developer Kit for Java

http://www.adobe.com/products/acrobat/readstep.html

3. Load the latest Java PTF group. This step is optional although recommended. For more information,
see “Applying program temporary fixes” on page 486.
4. Set the JAVA_HOME environment variable to the home directory of the Java Development Kit that you
want to use. At a command line, enter one of the following commands:
a) ADDENVVAR ENVVAR(JAVA_HOME) VALUE('/QOpenSys/QIBM/ProdData/JavaVM/
jdk80/32bit")
b) ADDENVVAR ENVVAR(JAVA_HOME) VALUE('/QOpenSys/QIBM/ProdData/JavaVM/
jdk80/64bit")
c) ADDENVVAR ENVVAR(JAVA_HOME) VALUE('/QOpenSys/QIBM/ProdData/JavaVM/
jdk71/32bit")
d) ADDENVVAR ENVVAR(JAVA_HOME) VALUE('/QOpenSys/QIBM/ProdData/JavaVM/
jdk71/64bit")
e) ADDENVVAR ENVVAR(JAVA_HOME) VALUE('/QOpenSys/QIBM/ProdData/JavaVM/
jdk70/32bit")

f) ADDENVVAR ENVVAR(JAVA_HOME) VALUE('/QOpenSys/QIBM/ProdData/JavaVM/
idk70/64bit")

If you are unsure what JVM you currently using, you can check using the following methods. If you see
IBM J9 VMin the result, you are using IBM Technology for Java.

« Look in the job log for the job containing the JVM. There will be a message that states what JVM you are
using.

« As part of the Java command you are using to run your application, add -showversion. You will see
one additional line that shows the JVM you are using.

« From gsh or gp2term, run java -version.

Related concepts

“Customizing your IBM i server for Java usage” on page 12

After you install Java on your server, you can customize your server.
Related tasks

Running your first Hello World Java program
This topic will help you to run your first Java program.

Creating, compiling, and running a HelloWorld Java program
Creating the simple Hello World Java program is a great place to start when becoming familiar with the
IBM Developer Kit for Java.

Mapping a network drive to your server
To map a network drive, complete the following steps.

“Running your first Hello World Java program” on page 8
This topic will help you to run your first Java program.

Related reference

Creating and editing Java source files

You can create and edit Java source files in a number of ways: using IBM i Access for Windows, on a
workstation, with EDTF, and with SEU.

Related information

Licensed program releases and sizes

IBM Developer Kit for Java 3

Considerations for using IBM Technology for Java Virtual Machine

Be aware of these considerations when using IBM Technology for Java Virtual Machine.

Java Native Interface considerations

If you have integrated language environment (ILE) programs that use Java Native Interface (JNI)
functions, you must compile these programs with teraspace storage enabled. Because teraspace storage
is not enabled by default, it is likely that you need to recompile. This is necessary because the Java object
is in PASE for i storage, which is mapped on top of teraspace storage, and a teraspace storage pointer

is returned. Also, the JNI functions, such as GetxxxArrayRegion, have a parameter to a buffer where the
data is placed. This pointer must point to teraspace storage to enable the IJNI function in PASE for i to
copy the data into this storage. If you have not compiled your program with teraspace storage enabled,
you will receive the escape message MCH4443 (Invalid storage model for target program
LOADLIB).

Adopted authority
Adopted authority for Java programs is not supported by IBM Technology for Java Virtual Machine.

Diagnostic messages and files

When ILE native methods encounter problems, you will see messages in the job log. When IBM
Technology for Java Virtual Machine or PASE for i native methods encounter problems, they will dump
diagnostic files into the IFS. There are several types of these "core files," including core. *.dmp,
javacore.*.txt, Snapx.trc,and heapdump.*.phd. The files range in size from tens of KB up to
hundreds of MB. In most cases, more severe problems produce larger files. The larger files can quickly
and quietly consume large amounts of IFS space. Despite the space these files consume, they are useful
for debugging purposes. When possible, you should preserve these files until the underlying problem has
been resolved.

For more information, see Advanced control of dump agents-'-ﬁ' in the Java Diagnostics Guide.

Migration considerations

When migrating from the Classic JVM, which was the default 64-bit virtual machine that existed in IBM

i 6.1, to the 32-bit version of IBM Technology for Java, consider that there may be limitations when

using the 32-bit environment. For example, the amount of addressable memory is much smaller. In 32-bit
mode, the Java object heap cannot grow much larger than 3 gigabytes. You will also be limited to running
approximately 1000 threads. If your application requires more than 1000 threads or a Java object heap
larger than 3 gigabytes use the 64-bit version of IBM Technology for Java. See “Support for multiple Java
Development Kits (JDKs)” on page 6 for more information.

Table 1 on page 4 shows the levels of Java Developer Kit, which is also referred to as Classic Java, and
the suggested IBM Technology for Java replacement.

Note: IBM recommends Java SE 71 when migrating from Java Developer Kit 1.4 or 5.0.

Table 1. Classic Java levels and the suggested IBM Technology for Java replacement.

Then possible IBM Technology for Java

If you are using classic Java version: replacements include:

Java Developer Kit 1.4 (5761-3V1 option 6) Java SE 8 32 bit (5770-JV1 option 16)

Java SE 8 64 bit (5770-JV1 option 17)
Java SE 71 32 bit (5770-3V1 option 14)
Java SE 71 64 bit (5770-3V1 option 15)
Java SE 7 32 bit (5770-JV1 option 14)
Java SE 7 64 bit (5770-JV1 option 15)

4 IBM i: IBM Developer Kit for Java

http://publib.boulder.ibm.com/infocenter/javasdk/v5r0/topic/com.ibm.java.doc.diagnostics.50/diag/tools/dumpagents_options.html

Table 1. Classic Java levels and the suggested IBM Technology for Java replacement. (continued)

If you are using classic Java version: replacements include:

Then possible IBM Technology for Java

Java Developer Kit 5.0 (5761-JV1option 7) Java SE 8 32 bit (5770-JV1 option 16)

Java SE 8 64 bit (5770-JV1 option 17)
Java SE 71 32 bit (5770-3V1 option 14)
Java SE 71 64 bit (5770-3V1 option 15)
Java SE 7 32 bit (5770-3V1 option 14)
Java SE 7 64 bit (5770-JV1 option 15)

Java Developer Kit 6 (5761-3V1option 10) Java SE 8 32 bit (5770-JV1 option 16)

Java SE 8 64 bit (5770-3V1 option 17)
Java SE 71 32 bit (5770-3V1 option 14)
Java SE 71 64 bit (5770-3V1 option 15)
Java SE 7 32 bit (5770-3V1 option 14)
Java SE 7 64 bit (5770-3V1 option 15)

Related concepts
“Release-to-release compatibility” on page 27

This topic describes considerations when you are moving Java applications from an earlier release to the
most current release.

Installing a licensed program with the Restore Licensed Program command

The programs listed in the Install Licensed Programs display are those supported by the LICPGM
installation when your server was new. Occasionally, new programs become available which are not listed
as licensed programs on your server. If this is the case with the program you want to install, you must use
the Restore Licensed Program (RSTLICPGM) command to install it.

To install a licensed program with the Restore Licensed Program (RSTLICPGM) command, follow these
steps:

1.
2.

Put the tape or CD-ROM containing the licensed program in the appropriate drive.
On the IBM i command line, type:

RSTLICPGM
and press the Enter key.

The Restore Licensed Program (RSTLICPGM) display appears.

. In the Product field, type the ID number of the licensed program you want to install.
. In the Device field, specify your install device.

Note: If you are installing from a tape drive, the device ID is usually in the format TAPxx, where xx is a
number, like 01.

. Keep the default settings for the other parameters in the Restore Licensed Program display. Press the

Enter key.

. More parameters appear. Keep these default settings also. Press the Enter key. The program begins

installing.

When the licensed program is finished installing, the Restore Licensed Programs display appears again.

IBM Developer Kit for Java 5

Support for multiple Java Development Kits (JDKs)

The IBM i platform supports multiple versions of the Java Development Kits (JDKs) and the Java 2
Platform, Standard Edition.

Note: In this documentation, depending on the context, the term JDK refers to any supported version of
the JDK or the Java 2 Platform, Standard Edition (J2SE). Usually, the context in which JDK occurs includes
a reference to the specific version and release number.

IBM i supports using multiple JDKs simultaneously, but only through multiple Java virtual machines. A
single Java virtual machine runs one specified JDK. You can run one Java virtual machine per job.

Find the JDK that you are using or want to use, and select the coordinating option to install. See
“Installing Java on your IBM i server” on page 2 to install more than one JDK at one time.

When using IBM Technology for Java, you select which 5770-JV1 option to run (and therefore which
JDK/bit mode) by setting the JAVA_HOME environment variable. Once a Java virtual machine is up and
running, changing the JAVA_HOME environment variable has no effect.

The following table lists the supported options for this release.

5770-JV1 options JAVA_HOME

Option 16 - IBM Technology for Java 8 32- /Q0penSys/QIBM/ProdData/JavaVM/jdk80/32bit
bit
Option 17- IBM Technology for Java 8 64-bit | /QOpenSys/QIBM/ProdData/JavaVM/jdk80/64bit

Option 14 - IBM Technology for Java 71 /QO0penSys/QIBM/ProdData/JavaVM/jdk71/32bit
32-bit /Q0penSys/QIBM/ProdData/JavaVM/jdk70/32bit
Option 14 - IBM Technology for Java 7

32-bit

Option 15 - IBM Technology for Java 71 /Q0penSys/QIBM/ProdData/JavaVM/jdk71/64bit
64-bit /QOpenSys/QIBM/ProdData/JavaVM/jdk70/64bit
Option 15 - IBM Technology for Java 7

64-bit

The default IDK chosen in this multiple JDK environment depends on which 5770-JV1 Options are
installed. The following table gives some examples. You can access IBM Technology for Java JDKs by
setting the JAVA_HOME environment variable, or by specifying a fully qualified path to the Java tool or
utility located in the JDK you want to use.

Install Enter Result

All supported options are installed | java QIBMHello 8.0 32-bit is used
Option 14 (7&7.1 32-bit) and java QIBMHello 7.1 32-bit is used
Option 15(7&7.1 64-bit)

Note: If you install only one JDK, the default JDK is the one you installed. If you install more than one
JDK, the following order of precedence determines the default JDK:

1. Option 16 - IBM Technology for Java 8.0 32-bit
2. Option 17 - IBM Technology for Java 8.0 64-bit
3. Option 14 - IBM Technology for Java 7.1 32-bit
4. Option 15 - IBM Technology for Java 7.1 64-bit
5. Option 14 - IBM Technology for Java 7.0 32-bit
6. Option 15 - IBM Technology for Java 7.0 64-bit

6 IBM i: IBM Developer Kit for Java

Installing Java extensions

Extensions are packages of Java classes that you can use to extend the functionality of the core platform.
Extensions are packaged in one or more ZIP files or JAR files, and are loaded into the Java virtual machine
by an extension class loader.

The extension mechanism allows the Java virtual machine to use the extension classes in the same way
that the virtual machine uses the system classes. The extension mechanism also provides a way for you to
retrieve extensions from specified Uniform Resource Locators (URLs) when they are not already installed
in the Java 2 Platform, Standard Edition (J2SE).

Some JAR files for extensions are shipped with IBM i. If you would like to install one of these extensions,
enter this command:

ADDLNK OBJ('/QIBM/ProdData/Javad00/ext/extensionToInstall.jar"')
NEWLNK('/QIBM/UserData/Java400/ext/extensionToInstall.jar')
LNKTYPE (*xSYMBOLIC)

Where
extensionToInstall.jar
is the name of the ZIP or JAR file that contains the extension that you want to install.

Note: JAR files of extensions not provided by IBM may be placed in the /QIBM/UserData/Java400/ext
directory.

When you create a link or add a file to an extension in the /QIBM/UserData/Java400/ext directory, the list
of files that the extension class loader searches changes for every Java virtual machine that is running on
your server. If you do not want to impact the extension class loaders for other Java virtual machines on
your server, but you still want to create a link to an extension or install an extension not shipped by IBM
with the server, follow these steps:

1. Create a directory to install the extensions. Use either the Make Directory (MKDIR) command from the
IBM i command line or the mkdixr command from the Qshell Interpreter.

2. Place the extension JAR file in the directory created.

3. Add the new directory to the java.ext.dirs property. You can add the new directory to the java.ext.dirs
property by using the PROP field of the JAVA command from the IBM i command line.

If the name of your new directory is /home/username/ext, the name of your extension file is
extensionTolnstall.jar, and the name of your Java program is Hello, then the commands that you enter
should look like this:

MKDIR DIR('/home/username/ext')

CPY 0BJ('/productA/extensionToInstall.jar') TODIR('/home/username/ext') or
copy the file to /home/username/ext using FTP (file transfer protocol).

JAVA Hello PROP((java.ext.dirs '/home/username/ext'))

Downloading and installing Java packages
Use this information to download, install, and use Java packages more effectively on the IBM i platform.
Packages with graphical user interfaces

Java programs used with graphical user interface (GUI) require the use of a presentation device with
graphical display capabilities. For example, you can use a personal computer, technical workstation,

or network computer. You can use Native Abstract Windowing Toolkit (NAWT) to provide your Java
applications and servlets with the full capability of the Java 2 Platform, Standard Edition (J2SE) Abstract
Windowing Toolkit (AWT) graphics functions. For more information, see Native Abstract Windowing
Toolkit (NAWT).

Case sensitivity and integrated file system

IBM Developer Kit for Java 7

Integrated file system provides file systems, which are both case-sensitive and those that are not with
regard to file names. QOpenSys is an example of a case-sensitive file system within the integrated file
system. Root, '/, is an example of a case-insensitive file system. For more information, see the Integrated
file system topic.

Even though a JAR or class may be located in a file system which is not case-sensitive, Java is still a
case-sensitive language. While wrklnk '/home/Hello.class' andwrklnk '/home/hello.class'
produce the same results, JAVA CLASS(Hello) and JAVA CLASS(hello) are calling different classes.

ZIP file handling
ZIP files, like JAR files, contain a set of Java classes. ZIP files are treated the same way as JAR files.
Java extensions framework

In J2SE, extensions are packages of Java classes that you can use to extend the functionality of the core
platform. An extension or application is packaged in one or more JAR files. The extension mechanism
allows the Java virtual machine to use the extension classes in the same way that the virtual machine
uses the system classes. The extension mechanism also provides a way for you to retrieve extensions
from specified URLs when they are not already installed in the J2SE or Java 2 Runtime Environment,
Standard Edition.

See “Installing Java extensions” on page 7 for information about installing extensions.

Running your first Hello World Java program
This topic will help you to run your first Java program.
You can get your Hello World Java program up and running in either of these ways:

1. You can simply run the Hello World Java program that was shipped with the IBM Developer Kit for
Java.

To run the program that is included, perform the following steps:

a) Check that the IBM Developer Kit for Java is installed by entering the Go Licensed Program (GO
LICPGM) command. Then, select option 10 (Displayed installed licensed programs). Verify that
licensed program 5770-JV1 *BASE and at least one of the options are listed as installed.

b) Enter java QIBMHello on the IBM i Main Menu command line. Press Enter to run the Hello World
Java program.

c) If the IBM Developer Kit for Java was installed correctly, QIBMHel1lo appears in the Java Shell
Display. Press F3 (Exit) or F12 (Exit) to return to the command entry display.

d) If the Hello World class does not run, check to see that the installation was completed successfully,
or see “Getting support for Java on IBM i” on page 487 for service information.

2. You can also run your own Hello Java program. For more information about how to create your own
Hello Java program, see “Creating, compiling, and running a HelloWorld Java program” on page 9.

Related tasks

Installing Java on your IBM i server

Installing IBM Developer Kit for Java allows you to create and run Java programs on your system. The
Java Virtual Machine (JVM) included in IBM Developer Kit for Java is the IBM Technology for Java Virtual
Machine and is available in both 32-bit and 64-bit versions.

Creating, compiling, and running a HelloWorld Java program
Creating the simple Hello World Java program is a great place to start when becoming familiar with the
IBM Developer Kit for Java.

Mapping a network drive to your server
To map a network drive, complete the following steps.

Related reference
Creating and editing Java source files

8 IBMi: IBM Developer Kit for Java

You can create and edit Java source files in a number of ways: using IBM i Access for Windows, on a
workstation, with EDTF, and with SEU.

Creating, compiling, and running a HelloWorld Java program

Creating the simple Hello World Java program is a great place to start when becoming familiar with the
IBM Developer Kit for Java.

To create, compile, and run your own Hello World Java program, perform the following steps:

1.
2.

Map a network drive to your system.
Create a directory on your server for your Java applications.
a) On the command line, type:

CRTDIR DIR('/mydir")

where mydir is the name of the directory you are creating.

Press the Enter key.

. Create the source file as an American Standard Code for Information Interchange (ASCII) text file in

the integrated file system. You can either use an integrated development environment (IDE) product or
a text-based editor such as Windows Notepad to code your Java application.

a) Name your text file HelloWorld. java.
b) Make sure that your file contains this source code:

class HelloWorld {
public static void main (String args[]) 1
System.out.println("Hello World");

ky

. Compile the source file.

a) Enter the Start Qshell (STRQSH) command to start the Qshell Interpreter.

b) Use the change directory (cd) command to change the current directory to the integrated file
system directory that contains the HelloWoxrld. java file.

c) Enter javac followed by the name of the file as you have it saved on your disk. For example, enter
javac HelloWorld.java.

. Set the file authorities on the class file in the integrated file system.
. Run the class file.

a) Ensure that your Java classpath is set up correctly.

b) On the Qshell command line, type java followed by HelloWoxrld to run your HelloWorld.class
with the Java virtual machine. For example, enter java HelloWozrld. You can also use the Run
Java (RUNJVA) command on your system to run HelloWorld.class:

RUNJVA CLASS(HelloWorld)

c) "Hello Woxrld" prints to your screen if everything was entered correctly. If running in the Qshell
environment, the shell prompt (by default, a $) appears, indicating that the Qshell is ready for
another command.

d) Press F3 (Exit) or F12 (Disconnect) to return to the command entry display.

Related tasks
Installing Java on your IBM i server

Installing IBM Developer Kit for Java allows you to create and run Java programs on your system. The
Java Virtual Machine (JVM) included in IBM Developer Kit for Java is the IBM Technology for Java Virtual
Machine and is available in both 32-bit and 64-bit versions.

Running your first Hello World Java program

This topic will help you to run your first Java program.

Mapping a network drive to your server

IBM Developer Kit for Java 9

To map a network drive, complete the following steps.

Related reference

Creating and editing Java source files
You can create and edit Java source files in a number of ways: using IBM i Access for Windows, on a
workstation, with EDTF, and with SEU.

“Mapping a network drive to your server” on page 10
To map a network drive, complete the following steps.

“Creating and editing Java source files” on page 11
You can create and edit Java source files in a number of ways: using IBM i Access for Windows, on a
workstation, with EDTF, and with SEU.

“Java classpath” on page 12

The Java virtual machine uses the Java classpath to find classes during runtime. Java commands and
tools also use the classpath to locate classes. The default system classpath, the CLASSPATH environment
variable, and the classpath command parameter all determine what directories are searched when
looking for a particular class.

“Java file authorities in the integrated file system” on page 232
To run or debug a Java program, the class file, JAR file, or ZIP file needs to have read authority (*R).
Directories need read and execute authorities (*RX).

Run Java (RUNJVA) command

Mapping a network drive to your server
To map a network drive, complete the following steps.

1. Make sure that you have IBM i Access for Windows installed on your server and on your workstation.
For more information on how to install and configure IBM i Access for Windows, see Installing IBM
i Access for Windows. You must have a connection configured for the server before you can map a
network drive.

2. Open Windows Explorer:

a) Right-click the Start button on your Windows taskbar.
b) Click Explore in the menu.
3. Select Map Network Drive from the Tools menu.
4. Select the drive that you want to use to connect to your server.

5. Type the path name to your server. For example, \\MYSERVER where MYSERVER is the name of your
server.

6. Check the Reconnect at logon box if it is blank.
7. Click OK to finish.

Your mapped drive now appears in the All Folders section of Windows Explorer.

Related tasks

Installing Java on your IBM i server

Installing IBM Developer Kit for Java allows you to create and run Java programs on your system. The
Java Virtual Machine (JVM) included in IBM Developer Kit for Java is the IBM Technology for Java Virtual
Machine and is available in both 32-bit and 64-bit versions.

Running your first Hello World Java program
This topic will help you to run your first Java program.

Creating, compiling, and running a HelloWorld Java program
Creating the simple Hello World Java program is a great place to start when becoming familiar with the
IBM Developer Kit for Java.

Related reference
Creating and editing Java source files

10 IBMi: IBM Developer Kit for Java

You can create and edit Java source files in a number of ways: using IBM i Access for Windows, on a
workstation, with EDTF, and with SEU.

Creating and editing Java source files

You can create and edit Java source files in a number of ways: using IBM i Access for Windows, on a
workstation, with EDTF, and with SEU.

With IBM i Access for Windows

Java source files are American Standard Code for Information Interchange (ASCII) text files in the
integrated file system.

You can create and edit a Java source file with IBM i Access for Windows and a workstation-based editor.

On a workstation

You can create a Java source file on a workstation. Then, transfer the file to the integrated file system by
using file transfer protocol (FTP).

To create and edit Java source files on a workstation:
1. Create the ASCII file on the workstation by using the editor of your choice.
2. Connect to your server with FTP.

3. Transfer the source file to your directory in the integrated file system as a binary file, so that the file
remains in ASCII format.

With EDTF

You can edit files from any file system using the Edit File (EDTF) CL command. It is an editor that is similar
to the Source Entry Utility (SEU) for editing stream files or database files. See the Edit File (EDTF) CL
command for information.

If you use the EDTF command to create a new stream file, the file will tagged with an extended binary-
coded decimal interchange code (EBCDIC) coded character set identifier (CCSID). Java files need to be
tagged with an ASCII CCSID. You can use the Qshell utility touch to create an empty stream file with the
an ASCII CCSID and then use the EDTF command to edit the file. For example, to create an empty stream
file /tmp/Test.java with an ASCII CCSID of 819, use the following command:

QSH CMD('touch -C 819 /tmp/Test.java')

With Source Entry Utility
You can create a Java source file as a text file by using source entry utility (SEU).
To create a Java source file as a text file by using SEU, perform the following steps:

1. Create a source file member by using SEU.

2. Use the Copy To Stream File (CPYTOSTMF) command to copy the source file member to an integrated
file system stream file, while converting the data to ASCII.

If you need to make changes to the source code, change the database member by using SEU and copy the
file again.

For information about storing files, see “Java-related files in the IFS” on page 232.

Related tasks
Installing Java on your IBM i server

IBM Developer Kit for Java 11

Installing IBM Developer Kit for Java allows you to create and run Java programs on your system. The
Java Virtual Machine (JVM) included in IBM Developer Kit for Java is the IBM Technology for Java Virtual
Machine and is available in both 32-bit and 64-bit versions.

Running your first Hello World Java program
This topic will help you to run your first Java program.

Creating, compiling, and running a HelloWorld Java program
Creating the simple Hello World Java program is a great place to start when becoming familiar with the
IBM Developer Kit for Java.

Mapping a network drive to your server
To map a network drive, complete the following steps.

Customizing your IBM i server for Java usage

After you install Java on your server, you can customize your server.

Java classpath

The Java virtual machine uses the Java classpath to find classes during runtime. Java commands and
tools also use the classpath to locate classes. The default system classpath, the CLASSPATH environment
variable, and the classpath command parameter all determine what directories are searched when
looking for a particular class.

The java.ext.dirs property determines the classpath for the extensions that are loaded. See “Installing
Java extensions” on page 7 for more information.

The default bootstrap classpath is system-defined, and you should not change it. On your server, the
default bootstrap classpath specifies where to find the classes that are part of the IBM Developer Kit for
Java, and other system classes.

The java.endorsed.dirs property is a standard way to override endorsed versions of Java classes by adding

JAR files to the bootstrap classpath. See Java Endorsed Standards Override Mechanism“¥ for more
information.

To find any other classes on the system, specify the classpath to search by using the CLASSPATH
environment variable or the classpath parameter. The classpath parameter that is used on a tool or
command overrides the value that is specified in the CLASSPATH environment variable.

You can work with the CLASSPATH environment variable using the Work with Environment Variable
(WRKENVVAR) command. From the WRKENVVAR display, you can add or change the CLASSPATH
environment variable. The Add Environment Variable (ADDENVVAR) command and Change Environment
Variable (CHGENVVAR) command either add or change the CLASSPATH environment variable.

The value of the CLASSPATH environment variable is a list of path names, separated by colons (:), which
are searched to find a particular class. A path name is a sequence of zero or more directory names.
These directory names are followed by the name of the directory, the ZIP file, or the JAR file that is to be
searched in the integrated file system. The components of the path name are separated by the slash (/)
character. Use a period (.) to indicate the current working directory.

You can set the CLASSPATH variable in the Qshell environment by using the export utility that is available
using the Qshell Interpreter.

These commands add the CLASSPATH variable to your Qshell environment and set it to the value " . : /
myclasses.zip:/Product/classes”

« This command sets the CLASSPATH variable in the Qshell environment:

export -s CLASSPATH=.:/myclasses.zip:/Product/classes

* This command sets the CLASSPATH variable from the command line:

12 IBMi: IBM Developer Kit for Java

http://download.oracle.com/javase/6/docs/technotes/guides/standards/

ADDENVVAR ENVVAR(CLASSPATH) VALUE(".:/myclasses.zip:/Product/classes")

The J2SE searches the bootstrap classpath first, then the extension directories, then the classpath. The
search order for J2SE, using the previous example above, is:

1. The bootstrap classpath, which is in the sun.boot.class.path property,

2. The extension directories, which is in the java.ext.dirs property,

3. The current working directory,

4. The myclasses.zip file that is located in the "root" (/) file system,

5. The classes directory in the Product directory in the "root" (/) file system.

Some Java tools and commands contain a classpath parameter in which a list of path names can be
specified. The parameter has the same syntax as the CLASSPATH environment variable. The following list
shows some of the tools and commands for which the classpath parameter can be specified:

« java command in Qshell

« javac tool

- javah tool

« javap tool

« javadoc tool

« rmic tool

« Run Java (RUNJVA) command

For more information about these commands, see “Java commands and tools” on page 355. If you use

the classpath parameter with any of these command or tools, it ignores the CLASSPATH environment
variable.

You can override the CLASSPATH environment variable by using the java.class.path property. You can
change the java.class.path property, as well as other properties, by using the SystemDefault.properties
file. The values in the SystemDefault.properties files override the CLASSPATH environment variable. For
information about the SystemDefault.properties file, see the “SystemDefault.properties file” on page 14.

The -Xbootclasspath option and the java.endorsed.dirs property also affects what directories the system
searches when looking for classes. Using -Xbootclasspath/a:path appends path to the default bootstrap

classpath, /p:path prepends path to the bootstrap classpath, and :path replaces the bootstrap classpath
with path. JAR files located in the directories specified for the java.endorsed.dirs property are prepended
to the bootstrap classpath.

Note: Be careful when you specify -Xbootclasspath because unpredictable results occur when a system
class cannot be found or is incorrectly replaced by a user-defined class. Therefore, you should allow the
system default classpath to be searched before any user-specified classpath.

See “Java system properties” on page 14 for information about how to determine the environment in
which Java programs run.

For more information, see the Program and CL Command APIs or the Integrated file system.

Related concepts

Java system properties

Java system properties determine the environment in which you run your Java programs. They are similar
to system values or environment variables in IBM i.

Internationalization

IBM Developer Kit for Java 13

You can customize your Java programs for a specific region of the world by creating internationalized Java
program. By using time zones, locales, and character encoding, you can ensure that your Java program
reflects the correct time, place, and language.

Java system properties

Java system properties determine the environment in which you run your Java programs. They are similar
to system values or environment variables in IBM i.

Starting an instance of a Java virtual machine (JVM) sets the values for the system properties that affect
that JVM.

You can choose to use the default values for Java system properties or you can specify values for them by
using the following methods:

« Adding parameters to the command line (or the Java Native Interface (JNI) invocation API) when you
start the Java program

« Using the QIBM_JAVA_PROPERTIES_FILE job-level environment variable to point to a specific
properties file. For example:

ADDENVVAR ENVVAR(QIBM_JAVA_PROPERTIES_FILE)
VALUE (/QIBM/userdata/java400/mySystem.properties)

« Creating a SystemDefault.properties file that you create in your user.home directory
« Using the /QIBM/userdata/java400/SystemDefault.properties file
IBM i and the JVM determine the values for Java system properties by using the following order of
precedence:
1. Command line or INI invocation API
2. QIBM_JAVA_PROPERTIES_FILE environment variable
3. user.home SystemDefault.properties file
4. /[QIBM/UserData/Java400/SystemDefault.properties
5. Default system property values

Related concepts

Java classpath

The Java virtual machine uses the Java classpath to find classes during runtime. Java commands and
tools also use the classpath to locate classes. The default system classpath, the CLASSPATH environment
variable, and the classpath command parameter all determine what directories are searched when
looking for a particular class.

Internationalization

You can customize your Java programs for a specific region of the world by creating internationalized Java
program. By using time zones, locales, and character encoding, you can ensure that your Java program
reflects the correct time, place, and language.

SystemDefault.properties file

The SystemDefault.properties file is a standard Java properties file that enables you to specify default
properties of your Java environment.

This file may be used to send in both JVM properties and JVM options. Previously only JVM properties
were supported. To also allow JVM options, the first line of the file must contain "#AllowOptions" or
else everything will be treated as a JVM property.

The SystemDefault.properties file that resides in your home directory takes priority over the
SystemDefault.properties file that resides in the /QIBM/UserData/Java400 directory.

Properties that you set in the /YourUserHome/SystemDefault.properties file affect only the
following specific Java virtual machines:

14 IBMi: IBM Developer Kit for Java

- JVMs that you start without specifying a different user.home property
« JVMs that others users start by specifying the property user.home = /YourUserHome/

Example: SystemDefault.properties file

The following example sets several Java properties and options:

#AllowOptions

#Comments start with pound sign
propl=12345

-Dprop2

-Dprop3=abcd

-Xmx200m

prop4=value

-Xnojit

The Java properties and options above affects the JVM in the following way:

« There are four properties: propl, prop2, prop3, and prop4.
- The max heap size is 200 MB.
e The JIT will not be used.

If the #A11owOptions line is removed from the example above, then the JVM would contain six
properties: propl, -Dprop2, -Dprop3, -Xms200m, prop4, and -Xnojit.
List of Java system properties

Java system properties determine the environment in which the Java programs run. They are like system
values or environment variables in IBM i.

Starting a Java virtual machine (JVM) sets the system properties for that instance of the JVM. For more
information about how to specify values for Java system properties, see the following pages:

« “Java system properties” on page 14

« “SystemDefault.properties file” on page 14

For more information about Java system properties, see “JSSE for Java system properties” on page 269

The following table lists the Java system properties for the supported IBM Technology for Java (5770-
JV1) options. For each property, the table lists the name of the property and either the default values that
apply or a brief description. The table indicates which system properties have different values in different
versions of the Java 2 Platform, Standard Edition (J2SE). When the column that lists the default values
does not indicate different versions of the J2SE, all supported versions of the J2SE use that default value.

Note: Not all properties are listed. Only properties that are set uniquely for IBM i are listed.

Java property Default value

file.encoding Defaults based on default language ID and country ID of the job.

Maps the coded character set identifier (CCSID) to the corresponding ISO ASCII
CCSID. Also, sets the file.encoding value to the Java value that represents the
ISO ASCII CCSID.

The file.encoding value must be specified on JVM startup, and should not be
changed at runtime.

See “File.encoding values and IBM i CCSID” on page 21 for a description of how
the default is chosen, and a table that shows the relationship between possible
file.encoding values and the closest matching CCSID.

i50s.crypto.device Specifies the cryptographic device to use. If this property is not set, the default device
CRPO1 is used.

i50s.crypto.keystore Specifies the CCA keystore file to use. If this property is not set, the keystore file
named in the cryptographic device description is used.

IBM Developer Kit for Java 15

Java property

Default value

java.compiler

IBM Technology for Java compiler level. This property is used for output only.

java.ext.dirs

Java SE 8 32bit(default):
» /Q0penSys/QIBM/ProdData/JavaVM/jdk80/32bit/jre/lib/ext
« /QIBM/UserData/Javad00/ext

Java SE 80 64bit:

« /Q0penSys/QIBM/ProdData/JavaVM/jdk80/64bit/jre/lib/ext
« /QIBM/UserData/Javad400/ext

Java SE 71 32bit:

» /Q0penSys/QIBM/ProdData/JavaVM/jdk71/32bit/jre/lib/ext
« /QIBM/UserData/Javad00/ext

Java SE 71 64bit:

« /Q0penSys/QIBM/ProdData/JavaVM/jdk71/64bit/jre/lib/ext
« /QIBM/UserData/Javad00/ext

Java SE 7 32bit:

« /Q0penSys/QIBM/ProdData/JavaVM/jdk70/32bit/jre/lib/ext
« /QIBM/UserData/Javad400/ext

Java SE 7 64bit:

« /Q0penSys/QIBM/ProdData/JavaVM/jdk70/64bit/jre/lib/ext
« /QIBM/UserData/Javad00/ext

java.home

Java SE 8 32bit: /Q0penSys/QIBM/ProdData/JavaVM/jdk80/32bit/jre
Java SE 8 64bit: /Q0penSys/QIBM/ProdData/JavaVM/jdk80/64bit/jre
Java SE 71 32bit: /Q0penSys/QIBM/ProdData/JavaVM/jdk71/32bit/jre
Java SE 71 64bit: /Q0penSys/QIBM/ProdData/JavaVM/jdk71/64bit/jre
Java SE 7 32bit: /Q0penSys/QIBM/ProdData/JavaVM/jdk70/32bit/jre
Java SE 7 64bit: /Q0penSys/QIBM/ProdData/JavaVM/jdk70/64bit/jre

This property is used for output only. See “Support for multiple Java Development
Kits (JDKs)” on page 6 for details.

java.library.path

This property is used for locating native method libraries for the application as well as
internal JVM native libraries. The default value is obtained from the concatenation of
two lists: the IBM i library list and the paths specified for the LIBPATH environment
variable. For more information, see “Managing native method libraries” on page 208.

java.net.preferIPv4Stack

« false (no's) - default value
« true

On dual stack machines, system properties are provided for setting the preferred
protocol stack (IPv4 or IPv6) as well as the preferred address family types (inet4
or inet6). IPv6 stack is preferred by default, because on a dual-stack machine IPvé
socket can talk to both IPv4 and IPv6 peers. This setting can be changed with this
property.

For more information, see the Networking IPv6 User Guide.

16 IBMi: IBM Developer Kit for Java

http://java.sun.com/j2se/1.5.0/docs/guide/net/ipv6_guide/index.html

Java property

Default value

java.net.preferIPv6Addresses

. true
« false (no's) (default value)

Even though IPvé6 is available on the operating system, the default preference is to
prefer an IPv4-mapped address over an IPv6 address. This property controls whether
IPv6 (true) or IPv4 (false) addresses are used.

For more information, see the Networking IPv6 User Guide.

java.use.policy

true

java.vendor

IBM Corporation

java.vendor.url

http://www.ibm.com

java.vm.name

IBMJ9 VM

java.vm.specification.name

Java Virtual Machine Specification

java.vm.specification.vendor

Oracle America, Inc.

java.vm.specification.version

1.0

java.vm.vendor

IBM Corporation

java.vm.version

« JavaSE 7: 2.6
» JavaSE 71:2.7
« JavaSE8:2.8

os.arch ppc/ppcbsd
0s.name 0S/400°
os.version

V7R3MO (default value)

Obtains the IBM i release level from the Retrieve Product Information application
programming interface (API).

0s400.certificateContainer

Directs Java secure sockets layer (SSL) support to use the specified certificate
container for the Java program that was started and the property that was specified.
If you specify the 0s400. secureApplication system property, this system
property is ignored. For example, enter -Dos400.certificateContainer=/
home/username/mykeyfile.kdb or any other keyfile in the integrated file system.

0s400.certificateLabel

You can specify this system property in conjunction with the
0s400.certificateContainer system property. This property lets you select
which certificate in the specified container you want secure sockets layer (SSL)

to use. For example, enter -Dos400.certificatelabel=myCert, where myCert
is the label name that you assign to the certificate through the Digital Certificate
Manager (DCM) when you create or import the certificate.

0s400.child.stdio.convert

Controls the data conversion for stdin, stdout, and stderr in Java. Data conversion
between ASCII data and Extended Binary Coded Decimal Interchange Code (EBCDIC)
data occurs by default in the Java virtual machine. Using this property to turn on

and turn off these conversions only affects child processes that this process starts by
using the Runtime.exec () in which the command being run is a command based on
Java.

This property value becomes the default value for 0s400.stdio.convertinthe
child processes. See “Values for 0s400.stdio.convert and 0s400.child.stdio.convert
system properties” on page 19.

0s400.display.properties

If this value is set to 'true’, then all of the Java Virtual Machine properties are printed
to standard out. No other values are recognized.

IBM Developer Kit for Java 17

http://java.sun.com/j2se/1.5.0/docs/guide/net/ipv6_guide/index.html

Java property

Default value

0s400.file.create.auth,
0s400.dir.create.auth

These properties specify authorities assigned to files and directories. Specifying the
properties without any values or with unsupported values results in a public authority
of *NONE.

You can specify 0s400.file.create.auth=RWX or
0s400.dir.create.auth=RWX, where R=read, W=write, and X=execute. Any
combination of these authorities is valid.

0s400.job.file.encoding

This property is used for output only. It lists the character encoding equivalent to the
job CCSID of the IBM i job the JVM is running in.

0s400.secureApplication

Associates the Java program that starts when using this system property
(0s400.secureApplication) with the registered secure application name. You can
view registered secure application names by using the Digital Certificate Manager
(DCM).

0s400.security.properties

Allows full control over which java.security file you use. When you specify this
property, the J2SE does not use any other java.security files, including the J2SE
specific java.security default.

0s400.stderr

Allows mapping stderr to a file or socket. See “0s400.stdin, 0s400.stdout, and
0s400.stderr system property values” on page 19.

0s400.stdin

Allows mapping stdin to a file or socket. See “0s400.stdin, 0s400.stdout, and
0s400.stderr system property values” on page 19.

0s400.stdin.allowed

Specifies whether stdin is allowed (1) or not allowed (0). The default value is 1 for
interactive jobs and 0 for a batch jobs.

0s400.stdio.convert

Allows control of the data conversion for stdin, stdout, and stderr in Java. Data
conversion occurs by default in the Java virtual machine to convert ASCII data
to or from EBCDIC. You can turn these conversions on or off with this property,
which affects the current Java program. See “Values for 0s400.stdio.convert and
0s400.child.stdio.convert system properties” on page 19.

For Java programs started using the Runtime.exec () method, see
0s400.child.stdio.convert.

0s400.stdout

Allows mapping stdout to a file or socket. See default values.

0s400.xrun.option

This property can be used in place of the -Xxrun option on the java command to run
an agent program during JVM startup.

0s400.vm.inputargs

This property is used for output only. It will display the arguments that the JVM
received as inputs. This property can be useful for debugging what was specified on
JVM startup.

user.timezone

= The JVM selects the value for this property by using the QTIMZON value for the
current job. The name in the 'Alternate Name' field of this object is the value
used for this property. The value in the 'Alternate Name' field must be at least 3
characters in length, or it will not be used.

- If the 'Alternate Name' field in the QTIMZON object is less than 3 characters in
length, the JVM will attempt to find a matching GMT value based on the current
system offset. Example: A QTIMZON object with an empty Alternate Name field and
an offset of -5 would result in setting user.timezone=GMT-5.

« If a value still has not been found, the JVM defaults user.timezone to Universal
Time Coordinate (UTC).

For more information, see Time zone IDs that can be specified for the user.timezone
property in the WebSphere® Software Information Center.

Related concepts

“Customizing your IBM i server for Java usage” on page 12

18 IBMi: IBM Developer Kit for Java

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.base.iseries.doc/info/iseries/ae/rrun_svr_timezones.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.base.iseries.doc/info/iseries/ae/rrun_svr_timezones.html

After you install Java on your server, you can customize your server.

Values for 0s400.stdio.convert and 0s400.child.stdio.convert system properties
The following tables show the system values for the 0s400.stdio.convert and
0s400.child.stdio.convexrt system properties.

Table 2. System values for 0s400.stdio.convert

Value Description

Y (default) All stdio converts to or from the file.encoding value to job CCSID during
read or write.

N No stdio conversion is performed during read or write.

Table 3. System values for 0s400.child.stdio.convert

Value Description
N (default) No stdio conversion is performed during read or write.
Y All stdio converts to or from the £ile.encoding value to job CCSID during

read or write.

0s400.stdin, 0s400.stdout, and 0s400.stderr system property values
The following table shows the system values for 0s400.stdin, 0s400.stdout, and 0s400.stderr system

properties.

Value Example name |Description Example

File SomeFileName | SomeFileName is an absolute file:/OIBM/UserData/
path or a path relative to the Jav.aAOO/Output file
current directory. '

Port HostName Port address port:myhost:2000

Port TCPAddress Port address port:1.1.11.111:2000

Internationalization

You can customize your Java programs for a specific region of the world by creating internationalized Java
program. By using time zones, locales, and character encoding, you can ensure that your Java program
reflects the correct time, place, and language.

Related concepts

Java classpath

The Java virtual machine uses the Java classpath to find classes during runtime. Java commands and
tools also use the classpath to locate classes. The default system classpath, the CLASSPATH environment
variable, and the classpath command parameter all determine what directories are searched when
looking for a particular class.

Java system properties

Java system properties determine the environment in which you run your Java programs. They are similar
to system values or environment variables in IBM i.

IBM i globalization

Java Internationalization

IBM Developer Kit for Java 19

http://www.oracle.com/technetwork/java/javase/tech/intl-139810.html

Time zone configuration

When you have Java programs that are sensitive to time zones, you should configure the time zone on
your system so that your Java programs use the correct time.

The simplest method for configuring time zone is to set the QTIMZON system value to one of the *TIMZON
objects provided by IBMi. To correctly determine the local time, the Java virtual machine (JVM) requires
that both the QUTCOFFSET system value and the user.timezone Java system property be set properly.
Setting the QTIMZON system value does both of these for you. The TIMZON objects contain an alternate
long name that specifies the Java user.timezone value that will be used, so you should select the
QTIMZON value that contains the appropriate alternate name. For example, TIMZON object QNO600CST2
contains the alternate name America/Chicago and provides the correct time support for the United States
Central time zone.

Note: The user.timezone system property setting provided by the QTIMZON system value can

be overridden by specifying the user.timezone value explicitly on the command line orin the
SystemDefault.properties file. This allows each Java job to have its own unique user.timezone value so
that multiple time zones can be supported on the same system.

Related concepts

Java character encodings
Java programs can convert data in different formats, enabling your applications to transfer and use
information from many kinds of international character sets.

Related reference

Examples: Creating an internationalized Java program

If you need to customize a Java program for a specific region of the world, you can create an
internationalized Java program with Java locales.

IBM i system value: QTIMZON

Work with Time Zone Desc (WRKTIMZON) CL command

TimeZone Javadoc reference information

Java character encodings

Java programs can convert data in different formats, enabling your applications to transfer and use
information from many kinds of international character sets.

Internally, the Java virtual machine (JVM) always operates with data in Unicode. However, all data
transferred into or out of the JVM is in a format matching the file.encoding property. Data read into the
JVM is converted from file.encoding to Unicode and data sent out of the JVM is converted from Unicode to
file.encoding.

Data files for Java programs are stored in the integrated file system. Files in the integrated file system
are tagged with a coded character set identifier (CCSID) that identifies the character encoding of the data
contained in the file.

When data is read by a Java program, it is expected to be in the character encoding matching
file.encoding. When data is written to a file by a Java program, it is written in a character encoding
matching file.encoding. This also applies to Java source code files (.java files) processed by the javac
command and to data sent and received through Transmission Control Protocol/Internet Protocol
(TCP/IP) sockets using the java.net package.

Data read from or written to System.in, System.out, and System.err are handled differently than data read
from or written to other sources when they are assigned to stdin, stdout, and stderr. Since stdin, stdout,
and stderr are normally attached to EBCDIC devices on the IBM i server, a conversion is performed by the
JVM on the data to convert from the normal character encoding of file.encoding to a CCSID matching the
IBMijob CCSID. When System.in, System.out, or System.err are redirected to a file or socket and are not
directed to stdin, stdout, or stderr, this additional data conversion is not performed and the data remains
in a character encoding matching file.encoding.

When data must be read into or written from a Java program in a character encoding other than
file.encoding, the program can use the Java IO classes java.io.InputStreamReader, java.io.FileReader,

20 IBMi: IBM Developer Kit for Java

http://docs.oracle.com/javase/8/docs/api/java/util/TimeZone.html

java.io.OutputStreamReader, and java.io.FileWriter. These Java classes allow specifying a file.encoding
value that takes precedence over the default file.encoding property currently in use by the JVM.

Data to or from the DB2° database converts to or from the CCSID of the IBM i database through the JDBC
APIs .

Data that is transferred to or from other programs through Java Native Interface does not get converted.

Related concepts

Time zone configuration

When you have Java programs that are sensitive to time zones, you should configure the time zone on
your system so that your Java programs use the correct time.

Related reference
Examples: Creating an internationalized Java program

If you need to customize a Java program for a specific region of the world, you can create an
internationalized Java program with Java locales.

File.encoding values and IBM i CCSID
This table shows the relation between possible file.encoding values and the closest matching IBM i
coded character set identifier (CCSID).

For more information regarding £ile.encoding support, see Supported encodings by Oracle. ¥

file.encoding CCSI |Description
D
ASCII 367 | American Standard Code for Information Interchange
Bigh 950 | 8-bit ASCII T-Chinese BIG-5
Big5_HKSCS 950 |Bigh_HKSCS
Bigh_Solaris 950 Bigh with seven additional Hanzi ideograph character mappings for the
Solaris zh_TW.BIG5 locale
CNS11643 964 Chinese National Character Set for traditional Chinese
Cp037 037 IBM EBCDIC US, Canada, Netherlands
Cp273 273 IBM EBCDIC Germany, Austria
Cp277 277 IBM EBCDIC Denmark, Norway
Cp278 278 IBM EBCDIC Finland, Sweden
Cp280 280 |IBM EBCDIC Italy
Cp284 284 IBM EBCDIC Spanish, Latin America
Cp285 285 IBM EBCDIC UK
Cp297 297 IBM EBCDIC France
Cp420 420 IBM EBCDIC Arabic
Cp4d24 424 IBM EBCDIC Hebrew
Cp437 437 | 8-bit ASCII US PC
Cp500 500 IBM EBCDIC International
Cp737 737 8-bit ASCII Greek MS-DOS
Cp775 775 8-bit ASCII Baltic MS-DOS
Cp838 838 |IBM EBCDIC Thailand

IBM Developer Kit for Java 21

http://download.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

file.encoding CCSI |Description
D
Cp850 850 8-bit ASCII Latin-1 Multinational
Cp852 852 | 8-bit ASCII Latin-2
Cp855 855 8-bit ASCII Cyrillic
Cp856 0 8-bit ASCII Hebrew
Cp857 857 | 8-bit ASCII Latin-5
Cp860 860 | 8-bit ASCII Portugal
Cp861 861 | 8-bit ASCII Iceland
Cp862 862 | 8-bit ASCII Hebrew
Cp863 863 8-bit ASCII Canada
Cp864 864 8-bit ASCII Arabic
Cp865 865 8-bit ASCII Denmark, Norway
Cp866 866 | 8-bit ASCII Cyrillic
Cp868 868 | 8-bit ASCII Urdu
Cp869 869 | 8-bit ASCII Greek
Cp870 870 |IBM EBCDIC Latin-2
Cp871 871 IBM EBCDIC Iceland
Cp874 874 | 8-bit ASCII Thailand
Cp875 875 |IBM EBCDIC Greek
Cp918 918 |IBM EBCDIC Urdu
Cp921 921 | 8-bit ASCII Baltic
Cp922 922 8-bit ASCII Estonia
Cp930 930 IBM EBCDIC Japanese Extended Katakana
Cp933 933 IBM EBCDIC Korean
Cp935 935 IBM EBCDIC Simplified Chinese
Cp937 937 IBM EBCDIC Traditional Chinese
Cp939 939 IBM EBCDIC Japanese Extended Latin
Cp942 942 8-bit ASCII Japanese
Cp942C 942 Variant of Cp942
Cp943 943 Japanese PC data mixed for open env
Cp943C 943 Japanese PC data mixed for open env
Cp948 948 8-bit ASCII IBM Traditional Chinese
Cp949 944 | 8-bit ASCII Korean KSC5601
Cp949C 949 Variant of Cp949
Cp950 950 8-bit ASCII T-Chinese BIG-5
Cp964 964 EUC Traditional Chinese

22 IBMi: IBM Developer Kit for Java

file.encoding CCSI |Description
D
Cp970 970 EUC Korean
Cpl1006 1006 |ISO 8-bit Urdu
Cpl1025 1025 |IBM EBCDIC Cyrillic
Cpl1026 1026 |IBM EBCDIC Turkey
Cpl1046 1046 |8-bit ASCII Arabic
Cp1097 1097 |IBM EBCDIC Farsi
Cp1098 1098 | 8-bit ASCII Farsi
Cpl112 1112 |IBM EBCDIC Baltic
Cpl122 1122 |IBM EBCDIC Estonia
Cpl123 1123 |IBM EBCDIC Ukraine
Cpli24 0 ISO 8-bit Ukraine
Cpl140 1140 |Variant of Cp037 with Euro character
Cpl141 1141 |Variant of Cp273 with Euro character
Cpl142 1142 | Variant of Cp277 with Euro character
Cpl143 1143 | Variant of Cp278 with Euro character
Cpl144 1144 | Variant of Cp280 with Euro character
Cpl145 1145 |Variant of Cp284 with Euro character
Cpl14é6 1146 |Variant of Cp285 with Euro character
Cp1147 1147 |Variant of Cp297 with Euro character
Cpl148 1148 | Variant of Cp500 with Euro character
Cpl149 1149 | Variant of Cp871 with Euro character
Cp1250 1250 | MS-Win Latin-2
Cpl251 1251 | MS-Win Cyrillic
Cpl252 1252 | MS-Win Latin-1
Cpl1253 1253 | MS-Win Greek
Cpl254 1254 | MS-Win Turkish
Cpl255 1255 | MS-Win Hebrew
Cpl256 1256 | MS-Win Arabic
Cpl1257 1257 | MS-Win Baltic
Cpl258 1251 [MS-Win Russian
Cpl381 1381 | 8-bit ASCII S-Chinese GB
Cp1383 1383 | EUC Simplified Chinese
Cp33722 3372 |EUC Japanese
2
EUC_CN 1383 | EUC for Simplified Chinese

IBM Developer Kit for Java 23

file.encoding CCSI |Description
D
EUC_JP 5050 |EUC for Japanese
EUC_JP_LINUX 0 JISX 0201, 0208, EUC encoding Japanese
EUC_KR 970 EUC for Korean
EUC_TW 964 EUC for Traditional Chinese
GB2312 1381 | 8-bit ASCII S-Chinese GB
GB18030 1392 |Simplified Chinese, PRC standard
GBK 1386 |[New simplified Chinese 8-bit ASCII 9
ISCII91 806 ISCII91 encoding of Indic scripts
ISO02022CN 965 ISO 2022 CN, Chinese (conversion to Unicode only)
ISO02022_CN_CNS 965 CNS11643inISO 2022 CN form, Traditional Chinese (conversion from
Unicode only)
1S02022_CN_GB 1383 [GB2312inISO 2022 CN form, Simplified Chinese (conversion from Unicode
only)
ISO2022CN_CNS 965 7-bit ASCII for Traditional Chinese
ISO2022CN_GB 1383 | 7-bit ASCII for Simplified Chinese
1S020223P 5054 | 7-bit ASCII for Japanese
ISO02022KR 2554 | 7-bit ASCII for Korean
6
1S08859_1 819 ISO 8859-1 Latin Alphabet No. 1
1S08859_2 912 |ISO 8859-2 IS0 Latin-2
1S08859_3 0 ISO 8859-3 ISO Latin-3
1S08859_4 914 ISO 8859-4 IS0 Latin-4
IS08859_5 915 |ISO 8859-51SO0 Latin-5
IS08859_6 1089 |ISO 8859-6 IS0 Latin-6 (Arabic)
1S08859_7 813 ISO 8859-7 ISO Latin-7 (Greek/Latin)
1S08859_8 916 [ISO 8859-81SO0 Latin-8 (Hebrew)
1S08859_9 920 ISO 8859-9 ISO Latin-9 (ECMA-128, Turkey)
1S08859_13 0 Latin Alphabet No. 7
I1S08859_15 923 |1S08859_15
I1S08859_15_FDIS 923 ISO 8859-15, Latin alphabet No. 9
ISO-8859-15 923 IS0 8859-15, Latin Alphabet No. 9
JI1S0201 897 Japanese industry standard X0201
JIS0208 5052 |[Japanese industry standard X0208
JIS0212 0 Japanese industry standard X0212
JISAutoDetect 0 Detects and converts from Shift-JIS, EUC-JP, ISO 2022 JP (conversion to

Unicode only)

24 IBMi: IBM Developer Kit for Java

file.encoding CCSI |Description
D
Johab 0 Korean composition Hangul encoding (full)
K018_R 878 | Cyrillic
KSC5601 949 8-bit ASCII Korean
MacArabic 1256 |Macintosh Arabic
MacCentralEurope 1282 | Macintosh Latin-2
MacCroatian 1284 | Macintosh Croatian
MacCyrillic 1283 [Macintosh Cyrillic
MacDingbat 0 Macintosh Dingbat
MacGreek 1280 | Macintosh Greek
MacHebrew 1255 | Macintosh Hebrew
Maclceland 1286 | Macintosh Iceland
MacRoman 0 Macintosh Roman
MacRomania 1285 [Macintosh Romania
MacSymbol 0 Macintosh Symbol
MacThai 0 Macintosh Thai
MacTurkish 1281 | Macintosh Turkish
MacUkraine 1283 | Macintosh Ukraine
MS874 874 | MS-Win Thailand
MS932 943 Windows Japanese
MS936 936 Windows Simplified Chinese
MS949 949 | Windows Korean
MS950 950 |Windows Traditional Chinese
MS950_HKSCS NA Windows Traditional Chinese with Hong Kong S.A.R. of China extensions
SJIS 932 8-bit ASCII Japanese
TIS620 874 | Thaiindustry standard 620
US-ASCII 367 American Standard Code for Information Interchange
UTF8 1208 |UTF-8
UTF-16 1200 |Sixteen-bit UCS Transformation Format, byte order identified by an optional
byte-order mark
UTF-16BE 1200 |[Sixteen-bit Unicode Transformation Format, big-endian byte order
UTF-16LE 1200 |[Sixteen-bit Unicode Transformation Format, little-endian byte order
UTF-8 1208 [Eight-bit UCS Transformation Format
Unicode 1348 | UNICODE, UCS-2
8
UnicodeBig 1348 |[Same as Unicode
8

IBM Developer Kit for Java 25

file.encoding CCSI | Description

D
UnicodeBigUnmarked Unicode with no byte-order mark
Unicodelittle Unicode with little-endian byte order
UnicodelLittleUnmarked Unicodelittle with no byte-order mark

For default values, see Default file.encoding values.

Default file.encoding values
This table shows how the file.encoding value is set based on the PASE for i coded character set
identifier (CCSID) when the Java virtual machine starts.

Note: The PASE for i CCSID is set based on the job language ID and country ID. For more information
about how PASE for i determines what CCSID to use, see IBM PASE for i Locales.

PASE for i CCSID Default file.encoding Description

813 1S08859_7 Latin-7 (Greek/Latin)

819 IS08859_1 Latin-1

874 TIS620 Thai

912 1S08859 2 Latin-2 (Czech/Czech Republic,
Croatian/Croatia, Hungarian/
Hungary, Polish/Poland)

915 IS08859_5 Cyrillic 8-bit (Bulgaria)

916 1S08859_8 Hebrew (Israel)

920 1S08859_9 Latin-5 (Turkey extended)

921 Cp921 Baltic 8-bit (Lithuanian/Lithuania,
Latvian/Latvia)

922 Cp922 Estonia ISO-8

923 I1S08859_15 Latin-9

1046 Cpl046 Windows Arabic

1089 IS08859_6 Arabic

1208 UTF-8 Eight-bit UCS Transformation
Format

1252 Cpl252 Windows Latin-1

Examples: Creating an internationalized Java program

If you need to customize a Java program for a specific region of the world, you can create an
internationalized Java program with Java locales.

Creating an internationalized Java program involves several tasks:

1. Isolate the locale-sensitive code and data. For example, strings, dates, and numbers in your program.
2. Set or get the locale using the Locale class.

3. Format dates and numbers to specify a locale if you do not want to use the default locale.

4. Create resource bundles to handle strings and other locale-sensitive data.

26 IBMi: IBM Developer Kit for Java

Review the following examples, which offer ways to help you complete the tasks required to create an
internationalized Java program:

« “Example: Internationalization of dates using the java.util.DateFormat class” on page 373

« “Example: Internationalization of numeric display using the java.util.NumberFormat class” on page 373

- “Example: Internationalization of locale-specific data using the java.util.ResourceBundle class” on page
374

Related concepts

Time zone configuration

When you have Java programs that are sensitive to time zones, you should configure the time zone on
your system so that your Java programs use the correct time.

Java character encodings
Java programs can convert data in different formats, enabling your applications to transfer and use
information from many kinds of international character sets.

Release-to-release compatibility

This topic describes considerations when you are moving Java applications from an earlier release to the
most current release.

You should take into account the following compatibility issues when running Java applications in the
current release:

- IBM Technology for Java only supports JVMTI interfaces from PASE for i. As a result, JVMTI agents will
need to be ported to PASE for i.

- When using PASE for i native methods, the architecture of the native code needs to match the
architecture of the JVM. That is, object binaries need to be compiled as 32-bit binaries for a 32-bit
JVM, or as 64-bit binaries for a 64-bit JVM. This also applies to agents, such as user-provided JVMTI
agents.

« The Java system property, java.version, is not recognized as an input property for the IBM
Technology for Java JVM. In prior releases, the Classic JVM was available which honored the
java.vezrsion Java system property as input for determining which JDK to use. Beginning in IBM i
7.1, the IBM Technology for Java is the only available JVM and it requires the environment variable
JAVA_HOME to be specified to determine which JDK to use.

« In the Classic JVM, the Java method System. getenv () would return the value of the appropriate ILE
environment variable. In IBM Technology for Java, this will instead return the PASE for i environment
variable. This may cause issues where the user sets an environment variable in an ILE native method
and expects a later call to System. getenv () to retrieve it. In general, the user needs to be aware that
ILE and PASE for i have their own disjoint sets of environment variables.

 Support for direct processing stopped in IBMi 6.1. In IBMi 7.1, the Java program commands will
continue to be supported, but only when using them to target a previous release. See the Release-to-
release compatibility section for IBM i 6.1 for additional information. From i 7.2, all java program
commands are no longer supported.

Related concepts

“What's new for IBM i 7.3” on page 1
Read about new or significantly changed information for the IBM Developer Kit for Java topic collection.

Database access from Java programs

Java programs can access database files in several ways.

Accessing your IBM i database with the Java JDBC driver

The Java JDBC driver, also known as the "native" driver, provides programmatic access to IBM i database
files. Using the Java Database Connectivity (JDBC) API, applications written in the Java language can

IBM Developer Kit for Java 27

https://www.ibm.com/docs/en/ssw_ibm_i_73/rzaha/rtrcomp.htm
https://www.ibm.com/docs/en/ssw_ibm_i_73/rzaha/rtrcomp.htm

access JDBC database functions with embedded Structured Query Language (SQL), run SQL statements,
retrieve results, and propagate changes back to the database. The JDBC API can also be used to interact
with multiple data sources in a distributed, heterogeneous environment.

The SQL99 Command Language Interface (CLI), on which the JDBC API is based, is the basis for
ODBC. JDBC provides a natural and easy-to-use mapping from the Java programming language to the
abstractions and concepts defined in the SQL standard.

Oracle JDBC documentation
Native JDBC Driver FAQs
JDBC 4.0 API Specification

Getting started with JDBC

The Java Database Connectivity (JDBC) driver shipped with Java on IBM i is called the IBM Developer Kit
for Java JDBC driver. This driver is also commonly known as the native JDBC driver.

To select which JDBC driver suits your needs, consider the following suggestions:

« Programs running directly on a server where the database resides should use the native JDBC driver for
performance. This includes most servlet and JavaServer Pages (JSP) solutions, and applications written
to run locally on a system.

« Programs that must connect to a remote IBM i server, use IBM Toolbox for Java JDBC classes. The
IBM Toolbox for Java JDBC driver is a robust implementation of JDBC and is provided as part of IBM
Toolbox for Java. Being pure Java, the IBM Toolbox for Java JDBC driver is trivial to set up for clients
and requires little server setup.

« Programs that run on a IBM i server and need to connect to a remote, non-IBM i database use the
native JDBC driver and set up a Distributed Relational Database Architecture™ (DRDA) connection to
that remote server.

Types of JDBC drivers

This topic defines the Java Database Connectivity (JDBC) driver types. Driver types are used to categorize
the technology used to connect to the database. A JDBC driver vendor uses these types to describe how
their product operates. Some JDBC driver types are better suited for some applications than others.

Type 1

Type 1 drivers are "bridge" drivers. They use another technology such as Open Database Connectivity
(ODBC) to communicate with a database. This is an advantage because ODBC drivers exist for many
Relational Database Management System (RDBMS) platforms. The Java Native Interface (JNI) is used to
call ODBC functions from the JDBC driver.

A Type 1 driver needs to have the bridge driver installed and configured before JDBC can be used with it.
This can be a serious drawback for a production application. Type 1 drivers cannot be used in an applet
since applets cannot load native code.

Type 2

Type 2 drivers use a native API to communicate with a database system. Java native methods are used to
invoke the API functions that perform database o