IBMi
7.3

Database
Distributed database programming

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
381.

This edition applies to IBM i 7.3 (product number 5770-SS1) and to all subsequent releases and modifications until
otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor
does it run on CISC models.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.

© Copyright International Business Machines Corporation 1998, 2015.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Distributed database programming........cc.cccieiieiieiieiieiieiiiiecininienieniesiescecacscsseses 1

What's NEW fOr IBM i 7.3 ittt ettt et st st e st e sat e s be e s ae e st e esbe e sabe e be e saaeesbeesabesnteessaesaseensaesssesnsens 1
PDF file for Distributed database programming........cccueeecuieiiiiieiiiiie e e e ecreeesreeeereeeere e e abee s sseesnnreaens 1
DRDA QNd DDM OVEIVIEW....uviiiiiriiieieeniesieeseestessseessesssesssesssesssessssessseesssesssesssesssessssesssessssesssessssesssesssaes 2
DRDA OVEIVIEW.cuutieuieieeeeiersieesitessieestessseesaesssessseesssessseessesssasssesssessssesssessssesssessssessseessassssesssessssesssassns 2
Distributed relational database ProCeSSING.......ccuiiiceeiciee e e eree e s 2
REMOLE UNIT OF WOIK..eiuiiiiiiiiieieeeeeece ettt sttt e st e b st e e s ba e sateebaesaeaensaas 6
Distributed UNit OF WOTK....oicuiiiiiiiiiieeceect e et sbe e b be e sanesbae e 6

B] o TN (=T N =T o U]y SRR 7

Other distributed relational database terms and CONCEPLS......cccveeeevieeecieeccieeccee e 9
Distributed Relational Database Architecture SUPPOIt.......ccceieceeeecieeccee et 10
DRDA aNd CDRA SUPPOIM . .uiiiciiieeciieeecieeecteeeeteeseteeeeteesetteesesteeesstaessseesssssaessssessassessassssssseesssssessnns 10
Application requester driver PrOSraMIS. . ..cuiiccieeccieeeireeeireeeiteeeiteeesreeessseesssseesssseeessseesssseesssseenn 12
Distributed relational database 0N IBM i......cciiciiiiiiiiiiiienieneesresie et sre e e sae e sne e 12
Example: Spiffy Corporation distributed relational database.......c.cccocveevierieiniiniiinienniecseeneens 13
Spiffy organization and syStem Profile........ueeieeeciii e e 13
Business processes of the Spiffy Corporation Automobile Service.......ccocveeeeieeeccieeeciieeecneenn. 15
Distributed relational database administration for the Spiffy Corporation........ccccceeeuvveennneen. 15

DDM OVEIVIEW..etiuteeieeeiieesiteeteesieestessteeseessseesseessessseesssesssaesssesssessssesssessssessseesssesssessseesnseesseessesssessees 16
SYStEM COMPALIDILITY..veiieiieeeie et e e rte e e e te e e e te e e ebaeeebaeesnsaeeanes 18
OVErVIEW Of DDM FUNCHIONS....iiiiiiiiiiiiiiterie ettt st sr e s sbe e saa e s esbe e sbeesbaesateebaesaneensaenens 18
Y (ol D] oo o1 =T o £ TSSO 19
PArtS Of DDM..ciiiiiiiieeiie ettt ettt sttt e st s e e s te e st e sate e aeesabe e baesabesabeesasessbaesssesnbeensaesnseensaesnses 19
Parts Of DDM: SOUICE DDM.....uiiiiiiriiiiiiiniiesieesieesteesieesre st e stessteesaaessbeesssessseesssessseensessasesnseens 20

Parts Of DDM: Target DDM.....ouiii ettt ee e e tee e ae e s te e s abee s asaessnsasssasaeeensaessnseeean 20

Parts Of DDM: DDM filE..uuiiiiiiiiiiiiiiecitiieeste ettt st sieesve e sbe e saae s teesase s beesaaesasasnsaesnsaens 21
AdditioNal DDM CONCEPLS..uiiicuiieiiiieicieeeiteeeeteeecteeeetteeeetteesesteesesteesesteesessaesssteesassesssssesssseessassessnns 26
IBM i as the client system for DDM......cccuuii ittt et e e abae e 26

IBM i as the server system for DDM.......cocii ittt te e e te e e te e s sba e e eaee e 29
DDM-related j0bs and DDM CONVEISAtIONS.....c.civvverrieiriieriieeniesieeseesiteesieesreesseessessseesssesssesnes 31
Examples: Accessing multiple remote files With DDM......ccccvviiirieniiiineeniieneenieeieenee e eseee e 34
Example: Accessing files on multiple systems wWith DDM........ccocevvieinieniieinieeniieeneenieeesieennens 34
Example: Processing multiple requests for remote files with DDM.......cccccovvierieeniiriienneennenn 34

g F Lol a1 aY == TaTe le [=To] = (o TR 35
Planning and design fOr DRDA.......oo o ittt e eete e eetteeeette e s rteesestaesesteesasteesasteesnstaesssassnssesanns 35
Identifying your needs and expectations for a distributed relational database.........ccccceevveenuene 35
Data needs for distributed relational databases.........cceerviirreeniiiniienieieeeeceeee e 36
Distributed relational database capabilities.......ccceecieeeciiieciiicceece e 36

Goals and directions for a distributed relational database........c.cccevciirieiniienieinieenieineeniens 36
Designing the application, network, and data for a distributed relational database.................... 38
Tips: Designing distributed relational database applications.......ccccveveenvieriieiniieniiinieeniiennenn 38
Network considerations for a distributed relational database.........ccoceveeeniiirieinieenieineennen, 38

Data considerations for a distributed relational database.........cccocvvveircieniiiniiniieiniciieeees 39
Developing a management strategy for a distributed relational database........cccceveevvirveennnnns 40
General operations for a distributed relational database........cccccveeeieeecciiiecciiecceeccee e, 40
Security considerations for a distributed relational database.........ccccevveercieinieniiinieniennenns 41
Accounting for a distributed relational database...........cccveeeiiiiciiieciiiecceeeee e 42
Problem analysis for a distributed relational database........ccccceeeeieeeeiieecceeeceeeeee e, 42
Backup and recovery for a distributed relational database........cccecveeecieeeciieccieeccieeceeeee, 43
Planning and design fOr DDM.......uuiiciiiiciiecciie ettt eete e e e tee e e teeestae s etaeesntaeesnsaeesnsasessseaeensaeennes 43
Communications requirements for DDM in an APPC NETWOIK.......ccceeveervieineenieeriieeneenieeeneesnens 43

Configuring a communications network in @ TCP/IP NetWOIK.....ccccveviieerniieeiniieenrieecnieecsiee e 44

Security requiremMeNnts fFOr DDM......ooi it e e e see e e s e sre e e s e e ssae e e s e nnaeeeseennenns 44
File requiremMents fOr DDM......uii ittt ectre e e e e eestee e e e e are e e e e snbeeeeesenseaaeeeensenaenans 44
Program modification requirements fOr DDM......cccuiiiiiieiiiieniiienieensieessieessreessveessveessveesseee s 45
DDM architecture-related reStriCtIONS.....iiiiiiieiieerieeeieeee st see e s ee e s see s 45

IBM i client and server restrictions and considerations for DDM.......cccoccvevvvieencieeniveesinennnne 46
Non-IBM i target restrictions and considerations for DDM.........ccccovevieiriieeiiieeniieesiieesineenane 46

LN =YY= AU TSP 47
IBM i WOTK MaNaBemENT.....ciieiieieiieieiteesitte ettt esit e e st e e sbte e sttt e s baeesbaeesbaeesssaeessaeessseesnsseesseeesssseenn 48
Setting up your work management ENVIFONMENT......cciiiriiiiriieerie et e s ree e reeesaeeeas 48
APPC SUDSYSTEIMS...eeiiiiiiieeiecitiee e eectiee e e ectte e e e e erteeeesetteeeessssaeeeaessstaeeaeansteesesansesassansseneessnsseneeanns 49
O8N] 013V (T o 1SR 51
User databases on independent auxiliary sStorage pooLlS.........ccevveieiiiieiiiieinsieereeeeee e 51
Using the relational database dir€CTONY.....uii it saeeeas 52
Working with the relational database dir€CtOry......cueiviiiriiiiniiicee e 53
Adding an entry FOr SNA USAEE.....ciicuiiiriiiiriiieriieeerie et ssire e s et e s et essaeeessaeeessaeeessaeaessssaessaens 53
Adding an entry fOr TCP/IP USAEE....c.utiviiieriiieeiiiesiitessttessitessreessreessseessseessbeessseessaseessanes 54
Specifying a relational database alias NaME.....ccueivcieiiiiiiicee e 55
Adding an entry for an application reqUESEr driVET......ccuiivciiiiiieirieeeiee e 56

Using the WRKRDBDIRE COMMANT.....cutiiiiiiiiiiieiniieenieeesieeseieessieessreeeseeesssaesssseessssaessnsaesnnne 56

The *LOCAL Air€CTOIY ENTIY..ueii e eeiie ettt et et e tee e te e e e tee e e beeeeabeeeeseeeeseeaenseeeenneas 57
Directory entries for user databases on independent auxiliary storage pools.........cccecueeenneen. 58
Example: Setting up a relational database dir@CtOry.....cociiieviieriieeniieeeeeere e 58
SETEING UP SECUTMTY cuutiiiiiieiite ettt st s st e s s e e e st e e st e e e s bt e s s bt eessbeeesabeeessseeessseeesnseessneessnsees 61
SEHHING UP the TCP/IP SEIVET...ciiiiiiieiieeeite ettt ettt ettt s e s et e s ste e s sbe e s sbeessbaesssbaeesssaesssaeesssaesnnes 62
Setting up SQL packages for interactive SQL........cuvviiiriiiiniiieieiieieiee et eeree e e ssee e s see e s see e s seeesnaee 62
SETHING UP DDM fIlES ittt e st s st e s st e e e st a e e s sbaeesabaeesnsaeesabaeesasaeenn 63
Loading data into tables in a distributed relational database........ccccovveeirveiiniieiniiiinecec e, 63
Loading new data into the tables of a distributed relational database........cccccevvivieiriieirieennnnen. 64
Loading data into a table USING SOQL...cccuiiiiiiiiiieieiiecete sttt s e s sbe e e aee s 64
Manipulating data in tables and files using the IBM i query management function............... 64
Entering data, update tables, and make inquiries using data file utility......cccceveeirveiinciennnnen. 65
Moving data from one System t0 aNOTNErciiiciiiiieicee e s 65
Creating a user-written application Programe......c.ccovcieercieriiieeniiee e sireesee e see e sseeeessreeesane 65
Querying a database using interactive SQL.......cocviiirriiiiriieirieeeriee sttt seeeessee e s seee e 65
Querying remote systems using Db2 for i query management function........cceccceevveerrieennnne. 67
Copying files t0 and frOM TaPE.....uii it e e 67
Moving data between systems using copy file commands........ccoecveeriieerriieniieennieeneeeeenn 68
Transferring data over network using network file commands........ccccceeveiriveiniieennieeniiieenns 69
Moving a table using object save and restore COMMaNdS........cccvvveerrieerriieenieeenee e 69
Moving a database to IBM i from a system other than IBM i.......ccccovciiiriiiiniiiiniieceie e 70
Moving data from another IBM SYStEM......iiiviiiiiiiiiiiieceite ettt sree s see e s sreesnnee 70
Moving data from a NON-IBM SYSTEM..cc.uiiiiiiiieiieieiieeete et ee e s s essaee e saee s 71

ST =ToLU]) SRR 72
Elements of distributed relational database SECUNitY......ccceeciieeiccciiee e e 72
Elements of security in @n APPC NETWOIK.......ciii ittt eecreee e eete e e e e e e e e e bae e e e e ereaee s 74
APPN CONTIGUIAtION LISTS..iiiiuiiiiiiiiiiiieieiiteeie sttt ettt e e srre e s essabe e saae e saeeesssaessanenn 75
CoNVErsation LEVEL SECUNITY..ccuuiieeeeeciiee e et e e eciee e e ctee e e eeetre e e s e srte e e s eesseeesesnbaneesennsaneesennsens 75

DRDA server security in an APPC NETWOTK.......uuiiiiiciiee ettt e e 76
Elements of security in @ TCP/IP NETWOIK.....cciicciiieeieciiiee ettt eecrre e et e e e cvee e e e ereee e s e naaeeeea 78
Client security in @ TCP/IP NETWOIK......uiiiiicciiieecccieee ettt eecrree e ctte e e e e e e e e e e vae e e s eearaeeeeenns 79
Server security in @ TCP/IP NEIWOIK..ccuviiiieccceeee ettt e e e 86

(07e] a1 a1t d o] o Y=Y U) 4 VAN o] o (o Tod o] =T 88
SECUIE SOCKETS LAY uuiieiieciiiiee ittt e eectee e e eetee e e e ete e e e e e bteeeseessaee e e e ssteaeesanssaeeesanssanesssnnssnns 88
Internet Protocol SecuUrity ArChitECIUIE.cuii ittt e e e 89
Considerations for certain passwords being sent as clear teXt......ccccvvveerrieerrieennieeesceeennee 90

Lo] (=T aTe oo o A =Yo3 ot AT o 1T 90

DRDA and DDM server access control USing USer eXit Programs.......cucueeereeerrieeesseeessieeesneeesseeessnees 91

Server access control exit program parameter LiSt......ccoecveiecieiiiieiniieieee e eeee e 92

Example: DRDA and DDM server access control using user exit program......ccecceeeevveersveeessveeennns 95
DRDA and DDM server access control using function usage ID.......cccvcvevieiriieiniieeniieceieeesieeeseeeenn 96
(0] o] [=To1 G ¢=1 -V (=Te Y=Y ol U]) 4SS 98
DRDA: Authority to distributed relational database 0bjeCtS.......cccveviveciiieiicceee e, 99
DRDA: Programs that run under adopted authority for a distributed relational database.............. 100
Protection strategies in a distributed relational database........cccceevriiiiiiiiinieiirceccee e 101

JAY o] o] U Tor=Y i o] a e LAV =1 Vo] o] o aT=Y o S5 SRR 102
Application development FOr DRDAL......ooo et sectree e e eear e e s eeare e e e s e abeeeeseebseeeseessaneesenes 102
Programming considerations for a distributed relational database application........cccccceeuueee. 103
Naming of distributed relational database ObjectS........ccoeviiiriiiiriiiicee e 103
Connecting to a distributed relational database........ccoecueerevieiiiiiiiiiiiieiec e 104

SQL specific to distributed relational database and SQL CALL......ccoccciieeeecciieeeeeciieee e, 112
ENding DRDA UNItS OF WOTK....iiiiiiiiiiieiiieeieiee sttt ssteessee e sste e seate e sssee e ssseeessneeesneaesnnes 115
Stored procedures, user-defined functions, and commitment control..........ccccccveeeecvneennn. 115
Coded character SEt ideNtifIEr .. .c.iii it sre e s re e s s aaeeeas 115

Other DRDA data CONVEISION....cicitiiiiieriiiereieessieessteessteessaeeessseeessseeesssseesssseesssseesssseessnseesas 118
Preparing distributed relational database programs.......ccccvveeeiieeniieeiniieenreeeee e 118
Precompiling programs with SQL statements.......ccceiiiiiiiiieiiiieereeereecee e 119
Compiling an appliCation PrO8rami......ciccieeecieeeieeeiteeeriteesreeeseeesseeeessreeessraeesreeesseeessaeenane 121
Binding an appliCatioN...uieiciieiiieciee ettt e st e st s ee e s araesnnee 122
Testing aNd dEDUEEING.....ccociiiiiiei ettt ee e s ee e s be e s sbee s sbee s sbeeesans 123
WOrking With SQL PACKAZES...ccecuitiriiiiriieiniteieitessitessttessteessteessteessteesseeessseessssaessssaesssseessnes 125
Using the Create SQL Package (CRTSQLPKG) COMMANG.....ccccevvuerrreerierieenieeieeseeeveeseee e 125
Managing an SQL PACKAEBE. ...ciivvutiiriteiiiee ittt ettt sre s see e s sate e s sree s s ree e ssaee e ssaeessneeesnneas 126
Application development FOr DDM.... ..t cectree e e e sctee e e e s aree e e s eebte e e e senssaeeseenseaeesennnes 127
DDM IS AN SOL...uuuiiiiiiiiiiieeeieeeeeeciiteeee e e e e eeeeeearare e e e e e eeeseeessssssraeareeseeeeeseesasssrssssereeaeesennnn 127
Using language, utility, and application support for DDM.......ccccevvviiiirviiiiniieiniieenieeesieessieeenee 128
Programming language considerations for DDM.......ccccevviiiriiieiniiieiniiesnieeesieessieessveeeseneens 128

Utility considerations fOr DDM.....ii ittt ecee e eeree e e e e etere e s e s abe e e e s eabeeee s eesaaeeeeeas 136

IBM i Access Family considerations for DDM......cccuuieeiieciieeeccciieee et eeree e vae e e 140
Hierarchical file system API support fOr DDM.....ooiiuiiieiicciiiee ettt et e et e e e 142

UsiNg CL and DDS With DDM....iiicuiiiiiiiiiiiiesciee sttt e st e st e st e ssiteessaeeessseeesssteesssseesssseesnnseesas 144
DDM-sSPeCific CL COMMANGS.....uuiiiiieciiieeeeciiie e et e e ectee e e e e etee e e e eente e e s eenreeeesesnsseeeeeennseeeeean 144
DDM-related CL command CONSIAEratioNS.......ccueiveieeriieeriieeriieescieeseteesreeeseaeeessreeessseeesans 155
DDM-related CL parameter CONSIAEratioNS.........uuiiicciieeeeeciieeeeeeciee e e eecree e e e esrree e e eeasaeeeeenees 169
DDM-related CL cOMMAND LISTS......ciiiiiiiiiiieiiiieiritereite st ssie st e st essre e e s e e s baessbaessvaes 170

Data description specifications considerations for DDM.........ccoocciieiieciieeeeecciiieeeeecieee e 180

D] VY=Y o] o] i (== TV a o] 1 4/ R 182

DDM commands and ParamETerS.....uuuiiiccuieeieeciieeeeciite e e eectereeseertreeseessreeeesesnsaeeesessseessesssseeeeans 182
Subsets of DDM architecture supported by IBM i DDM.....ccocouiieiiccieeee et 182

DDM commands and OBDJECTES....ciiiiiiieeecciee ettt e e s e e s e e e aa e e e e nnes 185

=Y o o) 11 C= = U Vo] o Y2 214

IBM i-10-CICS considerations With DDM......cccciiiriiiiiiiiiniieeniieesieessie e ssee e see e s saeessee e s 215
IBM i languages, utilities, and licensed Programs......c.ccoeceeieieiniieeinieeesieeesieeesieeeseee e 215
Language considerations for IBMiand CICS........coociiirviiiiniiieiniiieinieeerieessreeesveesseeesseee e 219

Using DDM on IBM i versus other IBM SYSteMS......ccuiuiiiriieiiiieiiieenieessieessieessveessieessveessvees 226
IBMiand System/36 DDM differENCES....cci ettt 226
IBMiand System/38 DDM differENCES...cciiuiieei ettt vree e e 227

LAY L0 YL a1y £ =\ o] PO OO SRR SPRRUPRPRRPPPROE 228
Monitoring relational database aCtiVity......cucciiieiiiiriiii e 229

Working with jobs in a distributed relational database.........ccccovveiriiiiniiiiniiiiieceeen 229

Working with user jobs in a distributed relational database.........ccccoevueiviiiinniiiiniiiinecceeee, 230

Working with active jobs in a distributed relational database.......cccccccvvviiiniiiiniiinniienneeeeen, 231

Working with commitment definitions in a distributed relational database.........cccccecuvvrrunennnee. 232

Tracking request information with the job log of a distributed relational database................... 233

Locating distributed relational database JODS.......cciviriiiieiiiiniie e 234
OPErating reMOtE SYSTEIMS..c..uiiiiciiiriieeeiteeete sttt ertt e ettt essee e e ssbe e e s sbteesbaeesseeessaeessseessesessenesssnenn 236

vi

Displaying objects USed DY PrOZramsS....c.uiiciieiriieriieeriieessreessieesseteessreesseeessseeesssseesssseesssseesssseesas 237

Example: Displaying program refEreNCe......uiiicieiiiie ittt sae e s ae e s saee e s e 238
Dropping a collection from a distributed relational database........cccecceeivciiiniieiniiiinieee e, 239
Job accounting in a distributed relational database........ccccovcieiriiiiniiiinie e, 240
MaNAZING the TCP/IP SEIVET....ciiiiiiieieeiiiee ettt eete et e st e st e s s e e s s be e s s be e s s beesssbeeesabeessssaesssseessnseens 241

TCP/IP Server tErMINOLOZY.....ciicieiicieeiiieeriiee st e seite e sttt e setteessrteesbteesbeeeseaeeesaseeesseeesasneesaseassan 242

Establishing a connection OVEr TCP/IP.......ciiiiiiiiieiiiierniee sttt ssee s iee s see s e s s bee s s bee s sanes 243

The LISTENEr PrOSIaM.ciiciiiieiiiieite ettt ettt st e st e e sbe e e s beessbeeessbeeesabaeessbeeessseessssaessssaesns 243

Start TCP/IP Sexvexr (STRTCPSVR) CL COMMANG....cccceiiiiiiierciiiirierieenieeseeeveeseeeveenaeeas 244

S =T g LT =Ty ol AT T3 SR OPPR 244
Examples: Starting TCP/IP SEIVET......cucuiiiriieieieeieieeseieeseteessieesseeessteesseeesssteessseeessnseesnnes 244
End TCP/IP Sexrver (ENDTCPSVR) CL COMMANG....ccccciiiiieriiiiiesieecieereeeieeseeeeeeesveeeee e 244
ENd TCP/IP SEIrVEr reStIiCIIONS. ..ciiiiiiieeeeeeeeeeeee et e e e e e e e e e e e e ae e e e e e 245
Example: ENAING TCP/IP SEIVEN..iccuuiieiiieriiteriieescittesiteessieeessieeessaeeessieeessaseesssaesssseesnssesssasens 245
Starting the listener in System i NaVigator.....ocuiiieiriiienieeeie et ee e s see e s see e s 245
I A TCIET=T Y=L o] o ST 245
Subsystem descriptions and prestart job entries with DDM.......ccccceevciieeeccciiee e, 245

e EoTS] €= Y o] o SRR 245
Configuring the server Job SUDSYSIEML. .ottt 248
TAENTifYING SEIVET JODS oottt e e sbe e s s be e e sbae e sbaeesbaessasaeessaeeans 249
IBM i JOD NMAMIES...utiiiieciieee ettt e et e e e e te e e e et e e e e ateeeeseesstseeeeanstaeeesenrenessennssneesennsses 250
DiSPLayiNg SEIVET JODS..ciiuiiiiiiieiiite ettt st e st e s ete e s sateesssteesssbee s aseesssbeesantaesanreenas 250
Displaying the hiSTOrY LOZ....cucuiiiiiiiiiieeriiee ettt e s e s be e ssate e ssnbeesaeaeeas 251
Auditing the relational database dirECIONY.....cciii it 252
Operating considerations fOr DDM........ciiiciiiiiieiiiieieiteeeieesete s siee s seee st e s st e s sae e s saeessaeessaeaesnaeas 252
AcCeSSING fIleS WIth DD M. ...uiiiiiiiiiieieiee ettt sttt sste e s te e s te e s seeessateessteesnneassnnes 253
Types of files supported by IBM i DDM.......uiiiiiiciieee ettt e e e e ve e e e evaee e 253
Existence of DDM file and remote file......oociiiiiieiiiiiicecece et 253
Rules for specifying server system file names for DDM........ccovcveiiiieiiiiieeiiieensieesceeesieeenane 253
Examples: Accessing IBM i DDM remote files (IBM i-t0-IBM i)....cccoevirecieenieecieereeeie e 255
Example: Accessing System/36 DDM remote files IBM i-t0-IBM i)....ccccveveeveeecieenieernennee 257
Accessing Members With DDM......uiiiiieriiienieesieeeee ettt ste e s sre e s essbe e s be e s sabaessabeessaneas 257
Example: Accessing DDM remote members (IBM i only)....ccoccueeceenieeceeniecceesee e eseeeeens 257
Example: DDM file that opens a Specific MEMbDEr ... i e 258
Working with access methods fOr DDM.......ciiciiiiiiiiiiiieniienieesriee st e s et e s e e s sveessaee s 258
FAYolo=]) (=] o £ T PP 259
GV 1 (5] (o U] o F= N YRS 259

B =Y (=Te [= Tol o] o KT ORI 259
BLlOCKEd reCOrd PrOCESSING. ...ciiiiiiiiiieeieieereiee st e st e seteesesteeseseeesssteeseseeessseeesansesssseesssneeesans 259
Variable-length FECOMAS. ..ottt sbe e e sba e e sbae e saaeeens 259
Other DDM-related functions involving remote fileS.......uuiriiiriiiiiiieieecee e 260
Performing file management functions on remote SyStems.......ccccvvveeriieeriiieeniieeniieessieenns 260
Locking files and members for DDM.......iiiciiiiiieeiieeeies et essee e ssee e ssee s s saee e siee s ssaeeesneas 260
Controlling DDM CONVEISATIONS.......utiicieiiiteeiciteescteesiteessieessreeessrtesssbeessreessaeessseessaseessasens 260
Displaying DDM remote file information.......ccoccueiieieiiiieniieecees et 262
Displaying DDM remote file rECOIS....ccvuiiiiiiiiiiieiite sttt sttt e s saee e sseee s 262
Coded character set identifier With DDM.....ccccuiiiiiiiiiiiiiiieniteeste st ssvee e e svee e svee s 262
UET=Wo) ol o] =Yotdle L1534 51 oTUL 4o o PO SR 263
Use of object distribution With DDM......cccuuiiiiiciee ettt e e e e e e vaae e e 263
Canceling distributed data management WOrK........cceovciiiriieieiieinieccie e 263
End Job (ENDJOB) COMMANG....cccceiiiiiirieiieeiieesieeiteeseeeeteesseeeseesseessseesseesseesseesssesssessseenns 263
End Request (ENDRQS) COMMANd.....cccoiiiiiiieiieeeiie ettt et et tee e ree e 263
System/36 client and server considerations for DDM.......cccoccciieericciieee e ccieee e eecvree e e eeees 264
DDM-related differences between IBM i and System/36 files.....ccccecciieieeeciieeeeccciieee e, 264
System/36 client to IBM i server considerations for DDM.......cccccevvciiieeicccieeee e, 264
IBMi client to System/36 server considerations for DDM.......ccccceeevciiieeicccieeee e, 265
Override considerations to System/36 for DDM.......ccoccuiieeieciiiieeecciieee et e e 266
Personal computer client to IBM i server considerations for DDM........ccccccvviieeiecciieeeeccneeeeenns 267

Data availability and ProteCTiON........cceiiie e cte e e et e e e e e e e s et e e e e s e nrree e e enanreeas 268

Recovery support for a distributed relational database........cccceeciieeiicciiiee e e 269
Data recovery after disk failures for distributed relational databases......ccccccoceeeveciieeeiecinnennnn. 269
AUXILIArY STOTaZE POOLS.....viiiciiiieiiiirite ettt sttt e s ste e st e e s sate e ssateessseeesssteessseaessneeennns 270
Checksum protection in a distributed relational database........cccceccueeeiicciee e, 270
Mirrored protection for a distributed relational database........ccccoecciieiiecciie e, 270
Journal management for distributed relational databases.......cccccveveiriviiniieinniiennienseeeeee 270
f o (oo LYoo)V/=T Y SRR 271
Designing tables to reduce index rebuilding time......coociiieiieiiiieincieece e 272
System-managed access-path ProteCtion.........civvciiiiiiiieiieiceee e 273
Transaction recovery through commitment CONTroL......coovcviiirviiiiriiiirieieeceee e 273
Save and restore processing for a distributed relational database........cccecceeveveiricieiiicieeniiiennnne 277
Saving and restoring indexes in the distributed relational database environment............... 278
Saving and restoring security information in the distributed relational database
=Y a\ V2T o7 0 Y0 1 T=T 0) ST ROTRRPON 278
Saving and restoring SQL packages in the distributed relational database environment.... 278
Saving and restoring relational database direCtOries......occcvivviiirieiiniieinee et 279
Network redundancy considerations for a distributed relational database.......ccccccoveeeeecrireennneen. 281
Data redundancy in your distributed relational database Network.......cccceeeeecieeeiecciiiee e 283
e (o) g aF= Y ol PPN 284
Improving distributed relational database performance through the network......c.cccceeveirneennne. 285
Improving distributed relational database performance through the system......cccccoeiieiiiiennnen. 285
Performance considerations fOr DRDA.......ccuiiiiitiiiieiriee st csiee st ssre e seee e s see e ssateessateessseaessneeesnns 286
Factors that affect blocking fOr DRDA........uiiiiiiiiteeiteeete ettt s s e s ree s s saee e saeas 286
Factors that affect the size of DRDA query bloCKS.........uiviieciiiii e, 287
Performance considerations fOr DDM......cicciiiiciiiiiieiiiieesieeste e siee e ssiee s ssree s sseee s ssaeeesreeessraesssaessane 287
Batch file processing With DDM......ciiiiiiiiiiiiiienriteesite sttt ss e st e s s e e s be e s s ba e s sbaeesasaes 290
Interactive file processing With DDM.......ciiciiiiiiiiiiiieiiee ettt seee e ssaee e seree e saee e sneeesane 291
DDM conversation length CONSIAErationS.......ccuvivciiiiiiiiiiiierie et e s s 292
Examples: Application ProgrammMing.......ccceecieeirieeiiieesiieesseeessteessiteessieessereeessseesssseesssseessseessaseessssees 292
DRDA EXAMIPLES. .. tiiiieiecitie e ettt e e e et e e eecttee s e e ebteeeeeeesseeeeeeeaseeeessassaeeeaaasssaeseasnstaeeeeasbeeeeseansseaeeanasre 292
Example: Program defiNitioNS. ... iiiciieieieieie ettt stee st sae e s sre e s srae s sseaessasaeenane 293
DRDA example: ILE RPG PrOZIam.....cocciiircieieiieiiiieesiiteesiieeeseeessseessseeessseessssesssssessssessssnessnees 296
DRDA example: COBOL PrOZIamM.....ccucuieeiieeriiteriieeeseeeenseesssseessseessseesssseesssseessssesssssessssseessssees 303
DRDA example: C program using embedded SOL.........ccoevieiiriiiiiieeiiieeeieceieeesee e see s ssee e 311
DRDA eXample: JAVA PrOSIaM . i uieiceeerireerireeraeeessseeessseessseesssseesssseessseessseessssessssseesssseesssseesas 315
EXample: Program OULPUL......iciii et siee st ste e site s siee s siee s siee s saee s sbee s sreesssraessaseessasassnasens 321
DDM EXAMPLES. .. utiiieeieiiiieeeecciee e e e e ctte e e e et e e e e eeteeeesee s teeeseesbeeeeaenbaaeeaeansseseeeeasstneeseastaneesannsrneeaannne 321
Communications setup for DDM examples and tasks......ccccecceeeiiciiieeeeeciieee e eecveee e e enees 321
DDM example 1: Simple inquiry appliCatioN...cui i iieee ettt vree e e eae e e e e 322
DDM example 2: ORDERENT appliCatioN....ccuuiieiicciiiee ettt eetre e e et e e eveee e e e veee e e e nnes 324
DDM example 2: Central system ORDERENT fil€S......uiiiieciiiieeieciiee et 324
DDM example 2: Description of ORDERENT Program.......ccecveereveerniueessieeessseesssseesssseesssseesns 324
DDM example 2: Remote system ORDERENT fil€S...ccciccuuiiiiiiciiiee ettt 325
DDM example 2: Transferring a program t0 @ Server SySteM......occcceevveerrcieernieesnieeesseessnens 326
DDM example 2: COPYING @ file. ittt sttt sre e s see e s see e e 328
DDM example 3: Accessing Multiple IBM i fileS....cucuiiiriiiiiiiiiieenieercieesiee e 328
DDM example 4: Accessing a file 0N SYSTEM/36.....uiiiiciiiiciiiiiiieiciee et sere e sseee e ssee e 329
USBE FAD S cetuttttttieieeeeeeeeeeeeeeeeeeeeeeeeeeeereesssssssssaaaaaaaaaseesaeeeasesssssssssssssssssssssnsnnnnnssnnnsssesseeeeeeesessesssssssnssnes 329
Connecting to a distributed relational database........ccevviiriiiieiiiieiee e 330
IBM i system value QUCSID.....uuieeeiceiieeeeetee e e cecttee e e ttee e e e e ttee e e s earte e e s sensteeeessnstasessenseseesennssneansan 330

CCSID conversion considerations for DB2 for z/OS and DB2 Server for VM database managers...331
Why am I getting an SQL5048N message when I attempt to connect from DB2 for Linux, UNIX,

AN WINAOWS 2.ttt ettt ettt ettt e et s e e s bte e sbe e e sbeeesasaeesaseeessbeesseaessseesssaesssaesnssnenn 331
Do IBM i files have t0 be JOUINALEd?.........eei ittt e e e e e e e rae e e s e raeee s 332
When will query data be blocked for better performanCe?.......cueeeeeecciiee e, 332
How do you interpret an SQLCODE and the associated tokens reported in an SQLO969N error

LB S S A7 e titee ettt e e ettt et e ettt et e e e et e e e e e b bt e e e e a et e e e e e re e e e e e ne e e e e e e ret et e e neteeeeenreeeeeenrraeeeeanreeens 333

vii

viii

How can the host variable type in WHERE clauses affect performance?.......cccccoveeeeeciieeeeeccveeeennne 333

Can I use a library list for resolving unqualified table and view names?.......ccccovveevrveeenieenncieennnnen, 334
How can unlike clients override package options such as NLSS sort sequences, system naming
and separate date/time fOrMatS? ..ouiiei i e e e e e 335
Why are no rows returned when I perform a qQUEIY? ... iciiiee et ree e e ree e e 335
What level of DB2 for Linux, UNIX, and Windows is required to interact with DB2 for IBM i?........ 335
How can I get scrollable cursor support enabled from DB2 for Linux, UNIX, and Windows to
LSS 1 B o =1 (0] o 10 USSRt 336
Other tips for interoperating in UNLike ENVIFONMENTS....cocciiiiiiieiieeeee e 336
0101 o] 1=2] aToT o] (10 =PTSRS 339
IBM i problem handling OVEIVIEW......ccuciiiiiiiiiiieieiee ettt see e sste e seee e ssaee e ssaeaessseeeseseaessneeesnns 339
System and commUuNICatioNS ProObBlEMSuiiii i e e e e rree e e e e eaneeeee s 340
(DI R]BYANTo] oY1 or- L4 Te] a1 o] o] o] 1=] o oINS 341
Resolving incorrect oUtPUL ProblEMS......iiiii ittt 341
Resolving loop, wait, or performance problemsS.........ccuiiiiiieiniieineeesteesee st saee s 342
[N TS3 A 0 =T AP PR PO PRRTPRRRUPTRN 345
o= TotoT 0 o] 011 =T g LTSy A o= OSSP 346
CRTSQLPKG LISTING..ettiecuteeeiiiteeiiieesiiieesiieesiteessiteessseeessseeesssseesssseesssesesssssesssssessssnesssnesssseesnnsns 347
SOLCODES ANd SOLSTATES....ttttiiieeieeeeeeeeeiiitrtrrereeeee et eeeeessssrrssreeeeeeesesesassssssssessseseessessassssssnees 347
Distributed relational database SQLCODES and SOLSTATES......uuuvutiiieeeeeiiiiirrrrrreeeeeeeeeeeenns 348
Finding first-failure data cCapture data......ccccciiieiiieieeee e e 352
Getting data to repOrt @ fAIlUME....cii it te e st e st e e seraeesane 353
T Al o= 3= W Te] o 11 (o = PP 353
Finding job logs from TCP/IP server prestart JoDS......cccvviiiniiiiniiiiniecre e 353
Printing the product aCtiVity LOS......cuuiuiiiiiiiiieirtesete et 354
o] o1 =Tl o =SOSR 355
B = (oL 0] o R 355
) = L (= o =TSO USSP PUPPPPP 355
COMMUNICATIONS TrACE.c.uttiititietieeette et eree ettt e e e e st e e s e e s ste e e sbeessbeessbaessssaessssaesssaessseesnnee 356
Standard COMMUNICATIONS trACE. .. iiiiiiiiiiieriee ettt ettt st e s e e s ae e ssabeesssbeessasaesas 356
TCP/IP COMMUNICAtIONS TrACE . uuueeeeeeeee e e ettt e e e s s e e e e e e e e e e e e eeseeeeseessabaaaaaaaaaaanans 358
TCP/IP communication trace formatting.......ccccceevevieiiiiieriiiee ettt ee e 359
Starting a service job to diagnose application server problems........cccceveveircvieiniieencieeeneee e 361
SEIVICE JODS TOr APPC SEIVEIS...ciiiiciiieecectiee e e ecctie e s e eete e e e eetree e ssebeeeeseesteeee e s nsaeeesennseaaessessenes 361
Creating your own transaction program name and setting QCNTSRVC........ccccccevvvierrvcieerinennnne 361

Setting QCNTSRVC as a transaction program name on a Db2 for i application requester... 362
Creating your own transaction program name for debugging a Db2 for i application

Y=] V7= o o] o T PSRNt 362
Setting QCNTSRVC as a transaction program name on a DB2 for VM client......ccccceeveennneen. 362
Setting QCNTSRVC as a transaction program name on a DB2 for z/OS client.......ccccceeuuennne 362
Setting QCNTSRVC as a transaction program name on a DB2 for Linux, UNIX, and

WINAOWS CLIENT .. eiieiiiie ettt sttt sbte e st e e sbe e e sbeeesebeeessteesneessseeesan 363

SErVICE JODS TOr TCP/IP SEIVEIS..ciiiiiiiie e ettt e ettt e e eectee e e eestree e e e ebree e e e s nbeeeeesenntaeeesessaneseennssenas 363
ORWOPTIONS dAA @I a...cccuuurriieiiiiieeeiieeeeiiiirteteeeee e e e e eeeesesssrreeeeeeeeeeeesesssssssssssessesesssesssssssssssennes 364
Example: CL command to create the data ar€a......cccceeecueeeeececiiie e 365
Working with distributed relational database USErs........cccvvviiiiiiiiiiieicceceec e 366
(070} o)V =Tox {11 o VSRR 366
S S AZES. . eeeieuetteee ettt e ettt et ettt et e ettt e e sttt e e s abtee e e e us bt e e e e e sbt e e e e e st aeeaearbee e e e e nrteeeeeanneaeeennne 367

M S S E LY PO uuetteeeeeitttee ettt e ettt e e et e e e sttt e e s ettt e e s asbe e e e e ssteeeeeanreeeesenneeeeseanraeeeeannes 369
Distributed relational database MESSAZES.....ccccviivciiiiiiiiriee et see e 370
Handling program start request failures for APPC.......c.uiiviiiriieinieceite e eeiee st e s siee e seee e 373
Handling connection request failures for TCP/IP.....c..coiiiiiriiiiiieeriieesite st ssve e ssve e 373
Server is not started or the port ID is NOt valid.......ccuveeiieciiiie e 373

DRDA connection authorization failure........coueeeiiiirieeeceececsee e 374
SYSTEM NOt AVAILADLE...eeei e e e e e e naae s 375
Connection failures specific to interactive SQL.........eeiiecciiieiicciiie e e 375

NoOt enNoUgh Prestart JODS At SEIVET ...ttt be e e 375
Related INTOrMIATION. .. .uiiiieeeee ettt e s s s s e e s st e e e sabeeesabeeesabeeesaseaesaseeesasens 376

B] N L a N (] A T= 1A To] o RN 376

Distributed relational database LIbrary.........ue i sbe e e e enees 377
Other IBM distributed relational database platform libraries.........ccceeeciieeiecciiee e 378
ATCHITECTUIE DOOKS...ciiiiieiieett ettt et s st e st e s be e s s abe e e sbaessabeeessbeessaseesnases 379

[\ 0] (L =Y - TR 1 - ¥ |

Programming interface iNformMation. ... e s e s e 382
= e (=100 =T OO OO PPRROPRRNt 382
BT g 0TS TaTo oo TaTe L1 A To] o I3 PRSP 383

Distributed database programming

Distributed database programming describes the distributed relational database management portion
of the IBM® i licensed program. Distributed relational database management provides applications with
access to data that is external to the applications and typically located across a network of computers.

This topic also contains IBM i distributed data management (DDM) concepts, information about preparing
for DDM communications, and DDM-related programming information. You can use IBM i DDM to prepare
a system to access data in remote files and to control access to local files by remote systems.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 380.

What's new for IBMi 7.3

Read about new or significantly changed information for the distributed database programming topic
collection.

InIBMi 7.3, Distributed Relational Database Architecture™ (DRDA) support has been extended to include
support for the following functions:

« Rerouting to alternate subsystems based on the user profile connected with
(QSYS2.SET_SERVER_SBS_ROUTING)

« Support new generic bind option SYSTIMESENSITIVE.

What's new as of April 2019

« SQL Package creation will be allowed if owning profile of *PGM or *SRVPGM is not on the application
server. The package will be owned by the connecting user profile.

How to see what's new or changed
To help you see where technical changes have been made, this information uses:

« The #image to mark where new or changed information begins.
« The € image to mark where new or changed information ends.

In PDF files, you might see revision bars (|) in the left margin of new and changed information.

To find other information about what's new or changed this release, see the Memo to users.

PDF file for Distributed database programming

© Copyright IBM Corp. 1998, 2015

You can view and print a PDF file of this information.

To view or download the PDF version of this document, select Distributed database programming.

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF link in your browser.

2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free
copy from the Adobe Web site (http://get.adobe.com/reader/)-’-iﬁ.

DRDA and DDM overview

This topic describes the concepts and processing of IBM i distributed relational database support and
IBM i distributed data management support.

DRDA overview

IBM i distributed relational database support consists of an implementation of IBM Distributed Relational
Database Architecture (DRDA) and integration of other SQL clients through Application Requester Driver
(ARD) programs.

This topic describes distributed relational database and how it is used on the IBM i operating system.

In addition, an example distributed relational database called Spiffy Corporation is described. This
fictional company uses the IBM i product in a distributed relational database application program.

Distributed relational database processing
A relational database is a set of data stored in one or more tables in a computer.

A table is a two-dimensional arrangement of data consisting of horizontal rows and vertical columns as
shown in the following table. Each row contains a sequence of values, one for each column of the table. A
column has a name and contains a particular data type (for example, character, decimal, or integer).

Table 1. A typical relational table

Item Name Supplier Quantity
78476 Baseball ACME 650
78477 Football Imperial 228
78478 Basketball ACME 105
78479 Soccer ball ACME 307

Tables can be defined and accessed in several ways on the system. One way to describe and access
tables on the system is to use a language like Structured Query Language (SQL). SQL is the standard IBM
database language and provides the necessary consistency to enable distributed data processing across
different systems.

Another way to describe and access tables on the system is to describe physical and logical files using
data description specifications (DDS) and access tables using file interfaces (for example, read and write
high-level language statements).

SQL uses different terminology from that used on the IBM i operating system. For most SQL objects, there
is a corresponding IBM i system object. The following table shows the relationship between SQL relational
database terms and system terms.

2 IBMi: Distributed database programming

http://get.adobe.com/reader/

Table 2. Relationship of SQL terms to system terms

SQL term

System term

relational database. A database that can
be perceived as a set of tables and can

be manipulated in accordance with the
relational model of data. There are three
types of relational databases a user can
access from a IBM i environment, as listed
under the System term column. For more
information, see the Relational database
topic.

schema. Consists of a library, a journal, a
journal receiver, an SQL catalog, and an
optional data dictionary. A schema groups
related objects and allows you to find the
objects by name.

Note: A schema is also commonly referred to
as a collection.

table. A set of columns and rows.

row. The horizontal part of a table containing
a serial set of columns.

column. The vertical part of a table of one
data type.

view. A subset of columns and rows of one or
more tables.

index. A collection of data in the columns
of a table, logically arranged in ascending or
descending order.

package. An object that contains control
structures for SQL statements to be used by
an application server.

system relational database or system database. All
the database objects that exist on disk attached to the
system that are not stored on independent auxiliary
storage pools.

user relational database or user database. All the
database objects that exist in a single independent
auxiliary storage pool group along with those database
objects that are not stored in independent auxiliary
storage pools.

Notes:

« The IBM i operating system can be host to multiple
relational databases if independent auxiliary storage
pools are configured on the system. There is always
one system relational database, and there can be one
or more user relational databases. Each user database
includes all the objects in the system database.

« The user should be aware that from a commitment
control point of view, the system database is treated
as a separate database, even when from an SQL
point of view, it is viewed as being included within
a user database. For more information, see the
Troubleshooting transactions and commitment control
topic.

remote relational database, or remote database. A
database that resides on IBM i or another system that
can be accessed remotely.

library. Groups related objects and allows you to find the
objects by name.

physical file. A set of records.

record. A set of fields.

field. One or more bytes of related information of one
data type.

logical file. A subset of fields, records or both of up to 32
physical files.

A type of logical file.

SQL package. Has the same meaning as the SQL term.

Distributed database programming 3

Table 2. Relationship of SQL terms to system terms (continued)

SQL term System term

catalog. A set of tables and views that No similar object. However, the Display File Description
contains information about tables, packages, (DSPFD) command and the Display File Field Description
views, indexes, and constraints. The catalog (DSPFFD) command provide some of the same

views in QSYS2 contain information about information that querying an SQL catalog provides.

all tables, packages, views, indexes, and

constraints on the IBM i operating system.

Additionally, an SQL schema contains a set

of these views that only contains information

about tables, packages, views, indexes, and

constraints in the schema.

A distributed relational database consists of a set of tables and other objects that are spread across
different but interconnected databases. The database management system may use DRDA protocols
to access any of these interconnected databases. An application connection to a database in such an
environment is one of two types: local or DRDA. There is, at most, only one local optimized database
connection per activation group. Any additional database connections must use DRDA.

In DRDA terminology, an application requester (AR) is the code that handles the application end of a
distributed connection. The AR is the application that is requesting data.

An application server (AS) is the code that handles the database end of the connection.

A simple distributed relational database is shown in the following figure where the application runs on one
system, and the database is located on another system.

Application requestor Application server

Application @ —— DBMS

RBAL1501-0

Figure 1. A simple distributed relational database

DRDA also supports multi-tier connections between an application requester and a server. In this
topology, the server that an application requester connects to is an application server, but any other
server further downstream is called a database server (DS) as it does not interact directly with the
application requester. In addition, to highlight its role as neither the system where a database request
originates nor the system that performs the database function for the request, each application server
or database server between an application requester and the final database server is also called an
intermediate server.

A more complex distributed relational database is shown in the following figure where the application
runs on one system, and the database management system running on a second system routes a request
to a database server located on a third system.

4 IBMi: Distributed database programming

Application requestor Application server Database server

Applicaton —— DBMS 1 = Data

RBAL1509-0

Figure 2. A more complex distributed relational database

The term client is often used interchangeably with AR, and server with AS or DS.

A unit of work is one or more database requests and the associated processing that make up a completed
piece of work as shown in the following figure. A simple example is taking a part from stock in an
inventory control application program. An inventory program can tentatively remove an item from a shop
inventory account table and then add that item to a parts reorder table at the same location. The term
transaction is another expression used to describe the unit of work concept.

In the preceding example, the unit of work is not complete until the part is both removed from the shop
inventory account table and added to a reorder table. When the requests are complete, the application
program can commit the unit of work. This means that any database changes associated with the unit of
work are made permanent.

With unit of work support, the application program can also roll back changes to a unit of work. If a unit of
work is rolled back, the changes made since the last commit or rollback operation are not applied. Thus,
the application program treats the set of requests to a database as a unit.

Request 1 —>
Unit of work 1 Request 2 R
Request 3 [
Request 4 | Local relational
database
Unit of work 2 Request 5 |
Request 6 —
Request 7 —>
Unit of work 3|: 2
Request 8 —> %
<
o
['4

Figure 3. Unit of work in a local relational database

Related concepts

Relational database

Troubleshooting transactions and commitment control
XA transaction support for commitment control

Distributed database programming 5

Related reference
Display File Description (DSPFD) command
Display File Field Description (DSPFFD) command

Remote unit of work
Remote unit of work (RUW) is a form of distributed relational database processing in which an application
program can access data on a remote database within a unit of work.

A remote unit of work can include more than one relational database request, but all requests must be
made to the same remote database. All requests to a relational database must be completed (either
committed or rolled back) before requests can be sent to another relational database. This is shown in the
following figure.

_ Request 1 L

Unit of work 1 Request 2 —» Relational database 1

L Request 3 J
— Request 4 L

Unit of work 2

Request 5 —» Relational database 2
— Request 6 4l__>
— Request 7 —

Unit of work 3 Relational database 3
L Request 8 —>

RBAL1503-0

Figure 4. Remote unit of work in a distributed relational database

Remote unit of work is application-directed distribution because the application program must connect to
the correct relational database system before issuing the requests. However, the application program only
needs to know the name of the remote database to make the correct connection.

Remote unit of work support enables an application program to read or update data at more than one
location. However, all the data that the program accesses within a unit of work must be managed by

the same relational database management system. For example, the shop inventory application program
must commit its inventory and accounts receivable unit of work before it can read or update tables that
are in another location.

In remote unit of work processing, each computer has an associated relational database management
system and an associated application requester program that help process distributed relational data
requests. This allows you or your application program to request remote relational data in much the same
way as you request local relational data.

Distributed unit of work
Distributed unit of work (DUW) enables a user or application program to read or update data at multiple
locations within a unit of work.

Within one unit of work, an application running on one system can direct SQL requests to multiple

remote database management systems using the SQL supported by those systems. For example, the shop
inventory program can perform updates to the inventory table on one system and the accounts receivable
table on another system within one unit of work. The following figure illustrates this idea.

6 IBMi: Distributed database programming

_ Request 1 I

o
Unit of work 1 Request 2 | Relational database 1
—>
L Request 3 -
— Request 4 —|—
) L
Unit of work 2 Request 5 — » Relational database 2
— Request 6
Request 7 |
Unit of work 3|: Relational database 3
Request 8 _—

RBAL1504-0

Figure 5. Distributed unit of work in a distributed relational database

The target of the requests is controlled by the user or application with SQL statements such as CONNECT
TO and SET CONNECTION. Each SQL statement must refer to data at a single location.

When the application is ready to commit the work, it initiates the commit; commitment coordination is
performed by a synchronization-point manager or a transaction manager.

DUW allows update access or read-only access to multiple database management systems in one unit of
work.

Whether an application can update a given database management system in a unit of work is dependent
on the level of DRDA (if DRDA is used to access the remote relational database) and the order in which the
connections and updates are made.

Distributed request
Distributed request enables a user or application program to read or update data at one or more databases
within a single SQL statement.

Within one SQL statement, an application running against a local database can direct SQL requests to one
or more remote databases. For example, a program can perform updates to table A on database 1 and
table B on database 2 within one SQL statement. The following figure illustrates this idea.

Distributed database programming 7

_ DBMS request 1 I

-
SQL statement 1 DBMS request 2 | Relational database 1
—>
L DBMS request 3 -
— DBMS request 4 —|—
S
SQL statement 2 DBMS request 5 —» Relational database 2

— DBMS request 6

DBMS request 7 |
SQL statement 3|: Relational database 3

DBMS request8 I~

RBAL1510-0

Figure 6. Distributed request in a distributed relational database

IBM i distributed relational database supports a subset of the distributed request functionality. It allows
update access or read-only access to a single local or remote database in one SQL statement.

The target database of the SQL statement is controlled by the user or application by specifying database
qualifiers on referenced objects. For more information on object qualification, see SQL Reference.

Remote database connections are controlled by the database management system. The user or
application can not use CONNECT TO, SET CONNECTION, RELEASE or DISCONNECT against these remote
database connections. Remote database connections are tied to the local database connection. They are
started as needed and ended when the local database connection is ended.

Special registers and global variables are propagated over remote database connections. If special
registers or global variables do not exist on the remote database, they are ignored. If global variables
exist but do not have the same attributes, the operation fails. Updates to the local special registers or
global variables are propagated as needed over existing remote database connections.

When the application is ready to commit the work, it initiates the commit; commitment coordination is
performed by a synchronization-point manager or a transaction manager.

Whether an application can update a given database in a SQL statement is dependent on the level of
DRDA (if DRDA is used to access the remote relational database) and the order in which the connections
and updates are made.

Three-Part Names
A three-part name specifies the relational database, the schema (or library depending on naming
method), and the name of an object for use in an SQL statement.

An application running against the local database can direct SQL requests to either the local database or
a remote database. The database qualifiers within an SQL statement are resolved and if all refer to the
same database, the SQL statement is processed at that database. If the database qualifiers within an SQL
statement do not all refer to the same database, an SQL0512 is signalled.

Explicit three-part names

The following example shows an SQL statement with an explicit remote RDB qualifier (RemoteRDB).

CRTSQLxxx PGM(MySchema/MyPgm) RDB(LocalRDB)

8 IBMi: Distributed database programming

EXEC SQL SELECT % INTO :SERVICE FROM RemoteRDB/MySchema/MyTableA;
EXEC SQL COMMIT;

Implicit three-part names

The following example shows two SQL statements, each with an implicit local RDB qualifier.

CRTSQLxxx PGM(MySchema/MyPgm) RDB(LocalRDB)
EXEC SQL SELECT * INTO :SERVICE FROM MyTableA;
EXEC SQL CALL MySchema/MyProcedureA;
EXEC SQL COMMIT;

For more information on implicit RDB qualifiers, see SQL Reference.

Aliases
An alias is a substitute name for a table or view. Aliases are unique in that they can refer to a based on
table or view that is on the current database or a remote database.

An application running against the local database can direct SQL requests to either the local database or
a remote database. If there are aliases in the statement, the database qualifier of the based on table or
view is used to determine the location to process the SQL statement.

The following example shows an SQL statement using an alias with an explicit remote database qualifier
(RemoteRDB) for the based on table.

CRTSQLxxx PGM(MySchema/MyPgm) RDB(LocalRDB)
EXEC SQL CREATE ALIAS MySchema/MyTableA FOR RemoteRDB/MySchema/MyTableA;
EXEC SQL SELECT % INTO :SERVICE FROM MySchema/MyTableA;
EXEC SQL COMMIT;

Other distributed relational database terms and concepts

On IBM systems, some distributed relational database support is provided by the DB2° for Linux®, UNIX,
and Windows, and IBM DB2 DataPropagator for iSeries, V8.1 licensed programs. In addition, you can use
some of these concepts when writing IBM i application programs.

Db2° for i supports both the remote unit of work and distributed unit of work with Advanced Program-
to-Program Communication (APPC) and TCP/IP communications. A distributed request is an SQL query
directed to two or more data sources in a federated database system. This type of distributed relational
database access enables a user or application program to issue a single SQL statement that can read or
update data at multiple locations.

Tables in a distributed relational database do not have to differ from one another. Some tables can be
exact or partial copies of one another. Extracts, snapshots, and replication are terms that describe types
of copies using distributed processing.

Extracts are user-requested copies of tables. The copies are extracted from one database and loaded into
another specified by the user. The unloading and loading process might be repeated periodically to obtain
updated data. Extracts are most useful for one-time or infrequent occurrences, such as read-only copies
of data that rarely changes.

Snapshots are read-only copies of tables that are automatically made by a system. The system refreshes
these copies from the source table on a periodic basis specified by the user—perhaps daily, weekly, or
monthly. Snapshots are most useful for locations that seek an automatic process for receiving updated
information on a periodic basis.

Data replication means the system automatically updates copies of a table. It is similar to snapshots
because copies of a table are stored at multiple locations. Data replication is most effective for situations
that require high reliability and quick data retrieval with few updates.

Distributed database programming 9

Tables can also be split across computer systems in the network. Such a table is called a distributed
table. Distributed tables are split either horizontally by rows or vertically by columns to provide easier
local reference and storage. The columns of a vertically distributed table reside at various locations, as do
the rows of a horizontally distributed table. At any location, the user still sees the table as if it were kept
in a single location. Distributing tables is most effective when the request to access and update certain
portions of the table comes from the same location as those portions of the table.

Related concepts

Distributed relational database on IBM i

Db2 for i provides all the database management functions for IBM i. Distributed relational database
support on the system is an integral part of the operating system, just as is support for communications,
work management, security functions, and other functions.

Distributed Relational Database Architecture support

Distributed Relational Database Architecture (DRDA) support for distributed relational database
processing is used by IBM relational database products. DRDA support defines protocols for
communication between an application program and a remote relational database.

DRDA support provides distributed relational database management in both IBM and non-IBM
environments. In IBM environments, relational data is managed with the following programs:

« DB2 for AIX®

« DB2 for HP-UX

« Db2 fori

- DB2 for Linux

- DB2 for Sun Solaris
- DB2 for VSE/VM

- DB2 for Windows
- DB2 for z/OS®

DRDA support provides the structure for access to database information for relational database managers
operating in like and unlike environments. For example, access to relational data between two or more
systems with Db2 for i databases is distribution in a like environment. Access to relational data between
Db2 for i and another type of system or a client different from the one embedded in IBM i is distribution

in an unlike environment. One specific example of this is access to relational data between Db2 for i and
IBM DB2 Universal Driver for Structured Query Language for Java™ (SQLJ) and Java Database Connectivity
(IDBO).

SQL is the standard IBM database language. It provides the necessary consistency to enable distributed
data processing across like and unlike operating environments. Within DRDA support, SQL allows users to
define, retrieve, and manipulate data across environments that support a DRDA implementation.

The Distributed Relational Database Architecture is an extension of the distributed data management
(DDM) architecture. However, DRDA and DDM methods for accessing data are different. DRDA is an
extension of SQL whereas DDM is an extension of native I/O.

Using distributed relational database processing, an application can connect to a remote system using
the relational database directory on the local system. The relational database directory provides the
necessary links between a relational database name and the communications path to that database. An
application running under the distributed relational database only has to identify the database name and
run the SQL statements needed for processing.

DRDA and CDRA support

A distributed relational database might not only span different types of computers, but those computers
might be in different countries or regions.

Identical systems can encode data differently depending on the language used on the system. Different
systems encode data differently. For instance, a z/OS product, a IBM i product, and a Windows system

10 IBMi: Distributed database programming

that are running the DB2 for Linux, UNIX, and Windows licensed program encode numeric data in their
own unique formats. In addition, a z/OS and a IBM i product use the EBCDIC encoding scheme to encode
character data, while a Windows system that is running DB2 LUW uses an ASCII encoding scheme.

For numeric data, these differences do not matter. Unlike systems that provide Distributed Relational
Database Architecture (DRDA) support automatically convert any differences between the way a number
is represented in one computer system to the way it is represented in another. For example, if an IBM i
application program reads numeric data from a Db2 for i database, Db2 for i sends the numeric data in the
z/OS format, and the IBM i database management system converts it to IBM i numeric format.

However, the handling of character data is more complex, but this too can be handled within a distributed
relational database.

Character conversion with CDRA

Not only can there be differences in encoding schemes, such as Extended Binary Coded Decimal
Interchange Code (EBCDIC) versus American Standard Code for Information Interchange (ASCII), but
there can also be differences related to language.

For instance, systems configured for different languages can assign different characters to the same code,
or different codes to the same character. For example, a system configured for U.S. English can assign the
same code to the character } that a system configured for the Danish language assigns to a. But those two
systems can assign different codes to the same character such as $.

If data is to be shared across different systems, character data needs to be seen by users and
applications the same way. In other words, a Windows user in New York and an IBM i user in Copenhagen
both need to see a $ as a $, even though $ might be encoded differently in each system. Furthermore, the
user in Copenhagen needs to see a }, if that is the character that was stored at New York, even though the
code might be the same as a Danish &. In order for this to happen, the $ must be converted to the proper
character encoding for a Windows system (that is, U.S. English character set, ASCII), and converted back
to Danish encoding when it goes from New York to Copenhagen (that is, Danish character set, EBCDIC).
This sort of character conversion is provided for by IBM i as well as the other IBM distributed relational
database managers. This conversion is done in a coherent way in accordance with the Character Data
Representation Architecture (CDRA).

CDRA specifies the way to identify the attributes of character data so that the data can be understood
across systems, even if the systems use different character sets and encoding schemes. For conversion to
happen across systems, each system must understand the attributes of the character data it is receiving
from the other system. CDRA specifies that these attributes be identified through a coded character set
identifier (CCSID). All character data in DB2 for z/OS, DB2 for VM, and the IBM i database management
systems have a CCSID, which indicates a specific combination of encoding scheme, character set, and
code page. All character data in an Extended Services environment has only a code page (but the other
database managers treat that code page identification as a CCSID). A code page is a specific set of
assignments between characters and internal codes.

For example, CCSID 37 means encoding scheme 4352 (EBCDIC), character set 697 (Latin, single-byte
characters), and code page 37 (USA/Canada country extended code page). CCSID 5026 means encoding
scheme 4865 (extended EBCDIC), character set 1172 with code page 290 (single-byte character set

for Katakana/Kanji), and character set 370 with code page 300 (double-byte character set for Katakana/
Kanji).

DRDA-enabled systems include mechanisms to convert character data between a wide range of CCSID-
to-CCSID pairs and CCSID-to-code page pairs. Character conversion for many CCSIDs and code pages is
already built into these products. For more information about CCSIDs supported by IBM i, see the IBM i

globalization topic.

Related concepts
IBM i globalization
Related reference
Coded character set identifier

Distributed database programming 11

Support for the national language of any country requires the proper handling of a minimum set of
characters.

Application requester driver programs

An application requester driver (ARD) program is a type of exit program that enables SQL applications to
access data managed by a database management system other than Db2 for i.

An IBMi client calls the ARD program during the following operations:

« The package creation step of SQL precompiling, performed using the Cxreate Structured Query
Language Package (CRTSQLPKG) command or CRTSQLxxx commands, when the relational
database (RDB) parameter matches the RDB name corresponding to the ARD program.

- Processing of SQL statements when the current connection is to an RDB name corresponding to the
ARD program.

These calls allow the ARD program to pass the SQL statements and information about the statements to a
remote relational database and return results back to the application requester (AR). The AR then returns
the results to the application or the user. Access to relational databases accessed by ARD programs
appear like access to DRDA application servers in the unlike environment.

The ARD program is registered in the system by use of the Add Relational Database Directory
Entry (ADDRDBDIRE) command. One of the parameters that is specified is the library in which the
program is located. For a system configured with independent auxiliary storage pools, the ARD program
must reside in a library in the system database (a library that is part of the system ASP or a configured
basic ASP).

Related concepts

Application programming interfaces

Related reference

Add Relational Database Directory Entry (ADDRDBDIRE) command
Create Structured Query Language Package (CRTSQLPKG) command

Distributed relational database on IBM i

Db2 for i provides all the database management functions for IBM i. Distributed relational database
support on the system is an integral part of the operating system, just as is support for communications,
work management, security functions, and other functions.

The IBM i operating system can be part of a distributed relational database network with other systems
that support a Distributed Relational Database Architecture (DRDA) implementation. IBM i can be an
application requester (AR) or an application server (AS) in either like or unlike environments. Distributed
relational database implementation on the IBM i operating system supports remote unit of work (RUW)
and distributed unit of work (DUW). RUW allows you to submit multiple requests to a single database
within a single unit of work, and DUW allows requests to multiple databases to be included within a single
unit of work.

Using DUW support, you can decrement the inventory count of a part on one system and increment the
inventory count of a part on another system within a unit of work, and then commit changes to these
remote databases at the conclusion of a single unit of work using a two-phase commit process. Db2 for
i does not support distributed requests, so you can only access one database with each SQL statement.
The level of support provided in an application program depends on the level of support available on the
application server (AS) and the order in which connections and updates are made.

In addition to DRDA access, application requester driver (ARD) programs can be used to access databases
that do not support DRDA. Connections to relational databases accessed through ARD programs are
treated like connections to unlike servers. Such connections can coexist with connections to DRDA
application servers, connections to the local relational database, and connections which access other
ARD programs.

On the IBM i operating system, the distribution functions of snapshots and replication are not
automatically performed by the system. You can install and configure the DB2 DataPropagator product on

12 IBMi: Distributed database programming

IBM i to perform these functions. Also, you can use these functions in user-written application programs.
More information about how you can organize these functions in a distributed relational database is
discussed in the topic Data availability and protection.

On the IBM i operating system, the distributed request function is not directly supported. However,
the DataJoiner product can perform distributed queries, joining tables from a variety of data sources.
DataJoiner works synergistically with DataGuide, a comprehensive information catalog in the IBM
Information Warehouse family of products. DataGuide provides a graphical user interface to complete
information listings about a company's data resources.

The IBMi licensed program includes runtime support for SQL. You do not need the Db2 for i Query
Manager and SQL Development Kit licensed program installed on a Db2 for i application requester or
application server to process distributed relational database requests or to create an SQL collection on
IBM i. However, you need the Db2 for i Query Manager and SQL Development Kit program to precompile
programs with SQL statements, to run interactive SQL, or to run Db2 for i Query Manager.

Communications support for the DRDA implementation on the IBM i operating system is provided under
either TCP/IP or the IBM Systems Network Architecture (SNA) through the Advanced Program-to-Program
Communication (APPC) protocol, with or without Advanced Peer-to-Peer Networking (APPN).

Related concepts

Other distributed relational database terms and concepts

On IBM systems, some distributed relational database support is provided by the DB2° for Linux®, UNIX,
and Windows, and IBM DB2 DataPropagator for iSeries, V8.1 licensed programs. In addition, you can use
some of these concepts when writing IBM i application programs.

Connecting to a distributed relational database
What makes a distributed relational database application distributed is its ability to connect to a relational
database on another system.

Data availability and protection

In a distributed relational database environment, data availability involves not only protecting data on an
individual system in the network, but also ensuring that users have access to the data across the network.
APPC, APPN and HPR

Configuring TCP/IP

OptiConnect

Example: Spiffy Corporation distributed relational database

The Spiffy Corporation is used in several IBM manuals to describe distributed relational database support.
In this topic collection, this fictional company has been changed somewhat to illustrate IBM i support for
DRDA in a network of IBM i products.

Examples used throughout this topic collection illustrate particular functions, connections, and
processes. These might not correspond exactly to the examples used in other distributed relational
database publications, but an attempt has been made to make them look familiar.

Though the Spiffy Corporation is a fictional enterprise, the business practices described here are modeled
after those in use in several companies of similar construction. However, this example does not attempt to
describe all that can be done using a distributed relational database, even by this example company.

Spiffy organization and system profile
Spiffy Corporation is a fictional national product distributor that sells and services automobiles, among
other products, to retail customers through a network of regional offices and local dealerships.

Given the high competitiveness of today's automobile industry, the success of an operation like the Spiffy
Corporation depends on high-quality servicing and timely delivery of spare parts to the customer. To
meet this competition, Spiffy has established a vast service network incorporated within its dealership
organization.

The dealership organization is headed by a central vehicle distributor located in Chicago, Illinois. There
are several regional distribution centers across North America. Two of these are located in Minneapolis,

Distributed database programming 13

Minnesota and Kansas City, Missouri. These centers minimize the distribution costs of vehicles and
spare parts by setting up regional inventories. The Minneapolis regional center serves approximately 15
dealerships while the Kansas City center serves as many as 30 dealerships.

The figure here illustrates a system organization chart for Spiffy Corporation.

Chizago

0| =

=

hAPOO0 koo

D111 RY Frred

)

Adhllh RI1TRIT RIIRIT AlRITT h1IRIT 1hTIRIF AlRITT
[] [] - L - - L

L1
I
[
[T
Ll
L
I

LT o L) T b L)
[N [Z ===== + 015 01 0z [=em=eele [0

Figure 7. The Spiffy Corporation system organization

Spiffy is in the process of building up a nationwide integrated telecommunications network. For the
automobile division, they are setting up a network of IBM i products for the regional distribution centers
and the dealerships. These are connected to a System z° platform at the central vehicle distributor. This
network is considered a vital business asset for maintaining the competitive edge.

The central distributor runs DB2 for z/OS on its System z platform with relevant decision support
software. This system is used because of the large amounts of data that must be handled at any one time
in a variety of application programs. The central vehicle distributor system is not dedicated to automobile
division data processing. The distributor system must handle work and processes, for the corporation,
that do not yet operate in a distributed database environment. The regional centers are running IBM

14 IBMi: Distributed database programming

i products. They use APPC/APPN with SNADS and 5250 display station pass-through using an SDLC
protocol.

All of the dealerships use IBM i products that vary in size. These systems are connected to the regional
office using SDLC protocol. The largest dealerships have a part time programmer and a system operator to
tend to the data processing functioning of the enterprise. Most of the installations do not employ anyone
with programming expertise, and some of the smaller locations do not employ anyone with more than a
general knowledge of computers.

Business processes of the Spiffy Corporation Automobile Service
The Spiffy Corporation automobile division has business practices that are automated in this distributed
relational database environment.

To keep the examples from becoming more complicated than necessary, consider just those functions in
the company that pertain to vehicle servicing.

Dealerships can have a list of from 2000 to 20 000 customers. This translates to 5 service orders per day
for a small dealership and up to 50 per day for a large dealership. These service orders include scheduled
maintenance, warranty repairs, regular repairs, and parts ordering.

The dealers stock only frequently needed spare parts and maintain their own inventory databases. Both
regional centers provide parts when requested. Dealer inventories are also stocked on a periodic basis by
a forecast-model-controlled batch process.

Distributed relational database administration for the Spiffy Corporation
Spiffy Corporation requires that each dealership have one or more IBM i products and that those systems
must be available to the network at certain times.

However, each dealership manages its data processing resources and procedures as a stand-alone
enterprise. The size of the system and the number of business processes that are automated on it are
determined by each dealership's needs and the resources available to it.

The Spiffy Corporation requires all dealerships to be active in the inventory distributed relational
database. Because the corporation operates its own dealerships, it has a full complement of dealership
software that might or might not access the distributed relational database environment. The Spiffy
dealerships use the full set of software tools. Most of the private franchises also use them, because they
are tailored specifically to the Spiffy Corporation way of doing business.

The regional distribution centers manage the inventory for their region. They also function as the database
administrator for all distributed database resources used in the region. The responsibilities involved vary
depending on the level of data processing competency at each dealership. The regional center is always
the first contact for help for any dealership in the region.

The Minneapolis regional distribution center has a staff of IBM i programmers with a wide range of
experience and knowledge about the systems and the network. The dealership load is about one half that
of other regional centers to allow this center to focus on network-wide IBM i support functions. These
functions include application program development, program maintenance, and problem handling.

Listed here are the database responsibilities for each level of activity in the network:

Dealerships

« Perform basic system operation and administration
« Enroll local users

Regional distribution centers

 Set up data processing for new dealerships

- Disperse database resources for discontinued dealerships
- Enroll network users in region

 Maintain inventory for region

Distributed database programming 15

» Develop service plans for dealerships
« Operate help desk for dealerships

Other activities

In addition to the regional distribution center activities, the Minneapolis IBM i competency center does
the following activities:

« Develop applications

Operate help desk for regional centers

Tune database performance
» Resolve database problems

Many examples in this topic show the process of obtaining a part from inventory in order to schedule
customer service or repairs. Others show distributed relational database administration tasks used to
set up, secure, monitor, and resolve problems for servers in the Spiffy Corporation distributed relational
database network.

DDM overview

This topic describes the purpose of distributed data management (DDM), the functions that DDM supplies,
and the concepts of IBM i DDM.

DDM is part of the IBM i licensed program. IBM i DDM as a source supports Level 2.0 and below of the
DDM architecture. IBM i DDM as a target supports Level 2.0 and below for record file (a file on disk in
which the data is read and written in records) types and Level 3.0 and below of the DDM architecture for
stream files (documents) and directories (folders).

IBM i DDM support allows application programs or users to access data files that reside on remote
systems, and also allows remote systems to access data files on the local IBM i operating system, as
shown in Figure 8 on page 17. Any system that supports the DDM architecture as a client system can
access data (if authorized to do so) on any other system to which it is attached. The attached system
must support DDM as a server system (the system that receives a request from another system to use one
or more files located on the system). However, the client and server systems must support compatible
subsets and levels of the DDM architecture.

The folder management services (FMS) support allows personal computer users to access folders and
documents that reside on an IBM i server system. Remote systems that support Level 3.0 or Level 2.0
of the DDM architecture for the stream access method can access folders and documents on the local
system.

DDM extends the file accessing capabilities of the IBM i database management support. In this topic
collection, database management refers to the system function that controls local file processing; that is,
it controls access to data in files stored on the local system, and it controls the transfer of that data to
requesting programs on the same system.

Distributed data management controls remote file processing. DDM enables IBM i application programs to
access data files stored on another system supporting DDM. Similarly, other systems that have DDM can
access files in the database of the local system. DDM makes it easier to distribute file processing between
two or more systems.

16 IBMi: Distributed database programming

i5/0S

,,,,, — System/36

i5/0S

N T System/38

. Other
~ DDM-Compatible
Systems

Figure 8. Client and server systems

Systems that use DDM communicate with each other using the Advanced Program-to-Program
Communication (APPC) support, Advanced Peer-to-Peer Networking (APPN) support, or TCP/IP. See the
Communications Management manual on the IBM i PDF files and manuals page and the APPC, APPN, and
HPR topic for information needed to use APPC and APPN.

Folder management services (FMS) allows local access to documents or folders that are on the IBM i
operating system. Personal computers can access folder management functions on the system by using
DDM.

Note: Distributed data management for the IBM Personal Computer uses the IBM i portion of the IBM i
Access Family licensed program.

As shown in Figure 9 on page 18, the system on which a user application issues a request involving

a remote file is called a client system. The system that receives the request for one of its files is called
the server system. A system can be both a client and server system for separate requests received at the
same time.

Using DDM, an application program can get, add, change, and delete data records in a file that exists
on a server system. It can also perform file-related operations, such as creating, deleting, renaming, or
copying a file from the server system to the client system.

When DDM is in use, neither the application program nor the program user needs to know if the file that is
needed exists locally or on a remote system. DDM handles remote file processing in essentially the same
way as local file processing is handled on the local system, and the application program normally does not
receive any indication of where the requested file is located. (However, in error conditions, messages are
returned to the user that indicate, when necessary, that a remote system was accessed.) Informational
messages about the use of server system files are included in the client system's job log.

When DDM is to be used, only application programmers need to know where the file is located and, using
control language (CL) commands outside of the high-level language (HLL) programs, they can control
which file is used. However, the programmers can also choose to use specific recovery functions to handle
certain communications failures; the HLL programs might need to be changed to include handling any
such failure.

Therefore, BASIC, ILE COBOL, ILE RPG, ILE C, and IBM i programs that are compiled to process database
files on the local system might not need to be changed or recompiled for DDM to process those same files
when they are moved to or exist on a remote system.

Distributed database programming 17

i5/0S Client i5/0S Server

Program

Database
File

™| pom
File

Figure 9. Moving a program from a client to a server system

Related concepts

Planning and design for DDM
There are several requirements that must be met for distributed data management (DDM) to be used

properly.

System compatibility
DDM can be used to communicate between systems that are architecturally different.

Although the architectures of the IBM i operating system and System/36 are different, these systems can
use DDM to access files in each other's database. To successfully communicate with each other, each
system must have an implementation of DDM that is compatible with Level 2.0 or below of the IBM DDM
architecture. Also, each type of system might use all or only part of the IBM DDM architecture or might
have extensions to the architecture.

If you are communicating with any systems other than IBM i, you must consider the level of DDM support
provided by those servers for such things as unique security considerations.

For a list of the DDM architecture manuals that supply the details about Level 3.0 or below of the IBM
DDM architecture, see Architecture books.

Related reference

Architecture books
Listed here are the DDM and DRDA architecture books.

Overview of DDM functions

Here is an overview of the types of DDM functions on a server system.

The following file operations, normally specified in HLL programs, can be done on files at server systems:
« Allocating, opening, or closing one or more files.

« Reading, writing, changing, or deleting records in a file.

The following file and nonfile operations, normally specified in CL programs or by CL commands, can be
done on files at the server systems:

« Copying the contents of a file.

« Performing operations on physical or logical file members (such as adding, clearing, or removing
members), but only if the target is an IBM i or System/38.

« Accessing remote files for nondata purposes, such as:
— Displaying information about one or more files, using commands such as Display File
Description (DSPFD) and Display File Field Description (DSPFFD). These commands

can display the file attributes of the DDM file on the client system or the file or field attributes of the
remote file on the server system.

18 IBMi: Distributed database programming

— Controlling the locking of files on the server system, using the Al1locate Object (ALCOBJ) and
Deallocate Object (DLCOBJ) commands.

— Deleting, renaming, creating, and changing files using the Delete File (DLTF), Rename
Object (RNMOBJ),Create Physical File (CRTPF),Create Source Physical File
(CRTSRCPF), Cxeate Logical File (CRTLF), Change Physical File (CHGPF), Change
Logical File (CHGLF), and Change Source Physical File (CHGSRCPF) commands.

 Accessing remote systems for nondata purposes:

— Sending a CL command to the server system (an IBM i and a System/38 only) so it can be run there,
instead of on the client system (where it might not be useful to run it), using the Submit Remote
Command (SBMRMTCMD) command. The SBMRMTCMD command is the method you use to move, save,
or restore files on a server system. For example, aMove Object (MOVOBJ) command might be
sent to move a database file on the server system. (For typical uses of the SBMRMTCMD command,
refer to its description in Using CL and DDS with DDM or refer to the CL topic for a more complete
description.)

Various other nonfile-related operations can be done on the server system.

Related concepts
Control language
Using CL and DDS with DDM

This topic contains DDM-related information about specific control language (CL) commands, data
description specifications (DDS) considerations, DDS keywords, and DDM user profile authority.

Basic DDM concepts

Although DDM supports other functions besides opening and accessing remote files, the concepts
described in this topic collection deal primarily with remote file accessing.

From a user's viewpoint, accessing data on a remote system is much the same as accessing data on the
local system. The main difference is the additional time needed for the data link to pass the data between
the systems whenever the remote file is accessed. Otherwise, the user or application program does not
need to know whether the data being accessed came from a local or remote file. Refer to Performance
considerations for DDM for additional considerations.

For DDM IBM i-to-IBM i file processing, remote file processing is done much the same as local file
processing. The purpose of this topic collection is to describe the things that are different for DDM. Also,
because other systems can use DDM, those considerations and concepts are covered as needed to enable
the programmer to successfully prepare the system for using DDM.

The DDM concepts in this topic collection describe mainly IBM i-to-IBM i remote file processing. For
purposes of illustration, concepts that relate to System/36 and System/38 are shown in some examples.
If you are using DDM on both System/36 and IBM i, you should be aware that the concepts for both types
are similar, except in the way they point to the remote file: IBM i and System/38 use a separate DDM file to
refer to each remote file to be accessed; System/36 uses a network resource directory that contains one
network resource directory entry for each remote file to be accessed.

Related concepts

Additional DDM concepts

Most users of DDM will not need the information in the remainder of these topics; it is intended primarily
for experienced programmers who need to know more about DDM.

Performance considerations for DDM
These topics provide information to help you improve performance when using DDM and also provide
some information about when to use something other than DDM to accomplish some functions.

Parts of DDM

DDM consists of several parts to handle remote file processing among the systems using DDM.
« Source DDM (SDDM)

Distributed database programming 19

« Target DDM (TDDM)

- DDM file

i5/0S Client

DataManagement

Application Program
'
'
'

!

Source DDM
(SDDM)

DDM
A‘ File

i5/0S Server

DataManagement

I

TargetDDM
(TDDM)

Database
File

N T

DDM Communications

DDM Communications

Figure 10. Communicating with DDM

The preceding figure shows how the basic parts involved in DDM communications on both systems relate
to each other.

When a DDM file is accessed by a client system user or program, a DDM conversation is started between
SDDM and TDDM for the job in which the program or user is operating.

Parts of DDM: Source DDM
The support on the client (or local) system is started, as needed, within a source job to do DDM functions.

The source DDM (SDDM) translates requests for remote file access from client system application
programs into DDM requests that are routed to the server system for processing. The SDDM support
establishes and manages a DDM conversation with the server system that has the desired remote file.

When an application program first attempts to access a remote file, a search for the requested DDM file
is done on the client system. As with local file processing, if the file name is not qualified with a library
name, the current library list for the job in which the program is running is searched for the specified file.
When the file is found, the system accesses the file, determines that it is a DDM file and starts the SDDM.

When the SDDM is started, it checks to see if a DDM conversation is already active between the source
job starting the SDDM and the server system identified by the remote location and mode values in the
DDM file. If a conversation that can be used exists, it is used. If not, a program start request is issued

to the appropriate server system to start a TDDM (a target job) on the server system to establish a DDM
conversation between the SDDM and TDDM. Parameters that are automatically created from information
in the DDM file about the remote file are passed when the remote system sends a program start request.

After the TDDM is started, the SDDM can forward each program request to the target job for processing.
If, for example, input/output (I/O) operations are to be done on a remote file, the program opens the

file and then issues the desired operation requests. The SDDM forwards the open request and the TDDM
opens the remote file. Then the SDDM forwards each file operation request to the TDDM, and both of
them handle the interchange of data between the application program and the remote file. When a DDM
function is being processed, the requesting program waits for the function to be completed and the
results to be received, just as it does for local file operations.

Related concepts

IBMi as the client system for DDM

All of these actions, as well as those required on the server system, must complete successfully before
any operations (file or nonfile) requested by the source program can be done.

Parts of DDM: Target DDM
A server system job is started on the target (or remote) system as a result of an incoming DDM request
and ends when the associated DDM conversation ends.

The target DDM (TDDM) translates DDM requests for remote file access into data management requests
on the server system and then handles the return of the information that is to be sent to the client system.

20 IBMi: Distributed database programming

The TDDM is started when the remote system sends a program start request. The TDDM is started as a
batch job on the server system. After the TDDM is started and a DDM conversation is established, the
TDDM waits for a request (such as a file open or read operation, or a nonfile-related operation) to be sent
by the SDDM.

When the TDDM receives a request to access an object on the server system, it searches for the requested
object. If the object was not qualified with a library or path name, the current library list or current
directory for the target job is searched.

When the requested object is found, the TDDM passes the first operation requested to database or folder
management on the server system, which performs the operation on the object. When the operation is
completed, database or folder management services return the results of the operation to the TDDM,
which passes it to the SDDM. The SDDM passes the results and any accompanying data (such as

records requested on a read operation) to the application program. These actions are repeated for each
subsequent I/0O operation request received, until the object is closed. If an operation does not complete
successfully, the SDDM returns an error message to the program, providing information about the error.

The TDDM and the target job remain active until the DDM conversation is ended by the client system job
that started it.

Related concepts

IBM i as the server system for DDM
The IBM i target DDM (or TDDM) is actually a job that runs a DDM-related server system program. It is
started when the client system sends a program start request (an SDDM).

Parts of DDM: DDM file

A DDM file is a file on the client system that contains the information needed to access a data file on a
server system.

The DDM file is a system object that exists on the client system to identify a remote file. It combines the
characteristics of a device file and a database file. As a device file, the DDM file refers to a remote location
name, local location name, device name, mode, and a remote network ID to identify a remote system as
the server system. The DDM file appears to the application program as a database file and serves as the
access device between a client system program and a remote file.

However, it is not a data file that can be accessed by a program for database operations. Instead, when a
client system program specifies the name of a DDM file, the file information is used by DDM to locate the
remote file whose data is to be accessed.

DDM file information is based on locations. The remote location where the remote file is located
is specified using the remote location name (RMTLOCNAME) parameter on the Cxreate DDM File
(CRTDDMF) or Change DDM File (CHGDDMF) command.

The remote file name specified on the CRTDDMF or CHGDDMF command must be in the format used by the
remote system.

Another use of the DDM file is to submit control language (CL) commands to the server system to run on
that system. In this case, the remote file normally associated with the DDM file is ignored.

Related reference

Submit Remote Command (SBMRMTCMD) command

The Submit Remote Command (SBMRMTCMD) command submits a command using DDM to run on the
server system.

DDM file creation using SNA
You can create a DDM file that uses SNA as the communication protocol for connecting with the remote
system.

Each DDM file that uses SNA contains the following information.

Distributed database programming 21

DDM file value and description of values

DDM file name
The name of the DDM file on the client system that is used to identify a specific remote file.

Remote file name
The actual file name of the remote file; that is, the name by which it is known on the server system.
(For a target System/36, this is the file label of the remote file.)

Remote location name
The name of the remote location where the remote file exists. This remote location name provides the
data link to the server system (remote location) by using APPN/APPC, over which a DDM conversation
is established when this DDM file is accessed.

Device
The name of the device on the client system used to communicate with the remote location.

Local location name
The name of the local location. This is the name by which the server system knows your system. Your
system can consist of more than one local location.

Mode
The name of the mode to be used to communicate between the local location and remote location.

Remote network ID
The remote network ID to be used with the remote location. This value further qualifies the remote
location name. Two locations with the same remote location name but different remote network IDs
are viewed as two distinctly separate locations.

Type
The type of connection to be used to communicate with the remote location when the DDM
conversation is established with the remote system. To create a DDM file that uses an SNA
connection, specify *SNA. This is the default type.

DDM file creation using TCP/IP
You can create a DDM file that uses TCP/IP as the communication protocol for connecting with the remote
system.

Each DDM file that uses TCP/IP contains the following information.

DDM file value and description of values

DDM file name
The name of the DDM file on the client system that is used to identify a specific remote file.

Remote file name
The actual file name of the remote file; that is, the name by which it is known on the server system.

Remote location name
The name of the remote location where the remote file exists. This remote location name provides the
data link to the server system (remote location) by using TCP/IP, over which a DDM conversation is
established when this DDM file is accessed.

Type
The type of connection to be used to communicate with the remote location when the DDM
conversation is established with the remote system. To create a DDM file that uses TCP/IP, specify *IP.

Related concepts

Managing the TCP/IP server

The DRDA and DDM TCP/IP server does not typically require any changes to your existing system
configuration. At some time, you might want to change the way the system manages the server jobs

22 IBMi: Distributed database programming

to better meet your needs, to solve a problem, to improve the system performance, or to look at the jobs
on the system.

DDM file creation using RDB directory entry information
You can create a DDM file that uses the remote location information from a relational database (RDB)
directory entry.

Each DDM file that uses an RDB directory entry contains the following information.

DDM file value and description of values

DDM file name
The name of the DDM file on the client system that is used to identify a specific remote file.

Remote file name
The actual file name of the remote file; that is, the name by which it is known on the server system.

Remote location name
Specify *RDB to indicate that the remote location information is taken from an RDB directory entry.
Relational database
The name of the relational database entry used for the remote location information. The remote
location information in the RDB directory entry is used to establish the data link to the server system
(remote location), over which a DDM conversation is established when the DDM file is accessed.

You need to specify an RDB directory entry associated with an auxiliary storage pool (ASP) group for the
DDM file's remote location information to access that ASP group.

Related concepts
Disk management

Effect of job description on ASP group selection

When the target DDM server is configured to use ASP groups, and the DDM file specifies a relational
database name, the relational database entry specified in the DDM file on the client is used to establish
the ASP group for the target job.

When using a DDM file that does not specify a relational database name, the target job's ASP group is
established using the initial ASP group attribute in the job description for the user profile that the target
jobis running under.

For DRDA, it is recommended to not rely on the initial ASP group attribute (INLASPGRP) on the connecting
user's job description to establish the ASP group for an IBM i application server job. The INLASPGRP
attribute can be set on Create Job Description (CRTJOBD) and Change Job Description (CHGJOBD)
commands; However, the attribute may not be used for DRDA depending on the application requester's
(AR) configuration, such as the security mechanism negotiated for the incoming connection. Therefore,

it is recommended to configure the AR to specify the relational database name of the ASP group when
connecting over DRDA.

Example: Using the basic concepts of DDM in an APPC network
This example application uses DDM to access a remote file. It can be run by a company that has
warehouses located in several cities.

The following figure illustrates the relationships among the primary items included in a DDM file.

On aIBMi platform in Chicago, an Open Database File (OPNDBF) command requests that file CUST021 be
opened for input. Because the file name was not qualified on the command, the library list for the source
job is used to find the file, which is stored in the NYCLIB library.

Because CUST021 is a DDM file, the SDDM on the CHICAGO system is started in the source job when the
file is opened. The SDDM uses the remote location and mode names (NEWYORK and MODENYC) from the
DDM file to establish a DDM conversation with and start a target job (TDDM) on the appropriate server
system (NEWYORK). The remote file to be accessed by the client system program is CUSTMAST in library
XYZ.

Distributed database programming 23

The TDDM receives the remote file name from the SDDM and then allocates and opens the file named
CUSTMAST, which corresponds to the DDM file named CUST021 on the client system.

CHICAGO
i5/0S Client

CLProgram

B

NEWYORK
° i5/08 Server
.

OPNDBF FILE(CUST021) OPTION(*INP)
. ‘ ‘

.
CLOFFILE(CUST021)

SDDM

Remote location: NEWYORK — TDDM
Y Remote file: XYZ/CUSTMAST
7 4
7/ |
/ I
NYCLIBLibrary / :
¥ i
DDM File - CUST021 :
I
i

XYZ Library

v

Device CUSTMAST
RMTFILE(XYZ/CUSTMAST) Description
RMTLOCNAME(NEWYORK) - DEVD(RMTDEV)
MQDE(MODENYC) RMTLOCNAME(NEWYORK) Data
Modes: File
.
MODENYC
° Mode:

MODENYC

Figure 11. Relationships among DDM file parameters and the systems

The remote location name in the DDM file identifies the remote system where the file exists. The local
system uses the remote location name as well as other values specified in the DDM file to select a device
description. The device description can be either manually created or, if APPN is being used, automatically
created and activated by the system. The SDDM establishes a DDM conversation with the server system
using the values NEWYORK and MODENYC in the APPC remote location name. The APPC-related support
must have been started on the server system before the request is issued by the SDDM. (No special
support is required on the client system.)

Note: The APPN parameter on the Create Controller Description (APPC) (CRTCTLAPPC) and Create
Controller Description (SNA Host) (CRTCTLHOST) commands determines whether the APPN support is
used.

24 IBMi: Distributed database programming

Example: Using the basic concepts of DDM in an APPN network
The IBM i Advanced Peer-to-Peer Networking (APPN) support can be used to allow DDM access to
systems not directly connected to the local system.

CHICAGO
i5/0S
Client DALLAS
Network Network
Node Node
Network Network
Node Node
NEWYORK
i5/0S
Server
Network
Node

Figure 12. Using DDM in an APPN network

Figure 1 in “Example: Using the basic concepts of DDM in an APPC network” on page 23 shows a program
on the Chicago system accessing a file on the New York system. Although the systems are shown as
directly connected, the same DDM concepts apply if the network is configured as shown in the preceding
figure. When the DDM file CUST021 in the figure is opened on the Chicago system, the APPN support finds
the remote location named NEWYORK, determines the optimal path through the network, and establishes
a DDM conversation with that location. Although there might be several other systems (network nodes)
forwarding the data between CHICAGO and NEWYORK, the source DDM and target DDM function as if
there were a direct connection between these two systems.

If the file CUSTMAST were moved from NEWYORK to some other system in the network (for example,
DALLAS), then in this example, the DDM file at CHICAGO needs to be changed. The remote location name
would be changed from NEWYORK to DALLAS. If a large number of systems in the network refer to the
file CUSTMAST, then movement of the file results in a change to the DDM file at each of these systems. By
using the IBM i capability to have multiple local location names, maintenance of these files is reduced.

In the preceding figure, the system NEWYORK can be given two local location names, NEWYORK and
FILELOC. The DDM file at CHICAGO uses FILELOC as the remote location name. When access to file
CUSTMAST is required, APPN finds the location FILELOC in the system named NEWYORK, and the DDM
conversation is established as before.

If the file CUSTMAST is now moved from NEWYORK to DALLAS, the user at NEWYORK deletes the local
location FILELOC from his system, and it is added to the system at DALLAS. This is done by using the
APPN local location list. When the program in CHICAGO now attempts to access the file CUSTMAST, the
APPN support finds the remote location FILELOC at the system in Dallas, and the DDM conversation is
established to that system. The movement of CUSTMAST did not result in a change to the DDM file at
CHICAGO.

This example shows the concept of multiple local locations and how reduced maintenance results when
files are moved from one system to another. The example is not intended to suggest that a unique
location name should be used for every file accessed through DDM. The decision of which files should be
associated with separate local locations should be based on such factors as the movement of these files
and the number of remote systems accessing these files.

Distributed database programming 25

Additional DDM concepts

Most users of DDM will not need the information in the remainder of these topics; it is intended primarily
for experienced programmers who need to know more about DDM.

Described are conceptual details and examples about:

« Program start requests, which start the TDDMs (target jobs)

« Open data paths (ODPs), used to access the files

- Remote location information

« DDM conversations, established for source and target communications
« Source and target jobs

« I/O operations within a job

IBM i as the client system for DDM
All of these actions, as well as those required on the server system, must complete successfully before
any operations (file or nonfile) requested by the source program can be done.

When the DDM file is referred to, the following things occur:

- If the request is to open a file, its information is used simultaneously to create an open data path (ODP)
on the client system and to start the SDDM support, which runs within the same job as the source
program. The SDDM also uses the information: to convert the client system request into a DDM request,
to communicate with the appropriate server system, and to establish a DDM conversation to be used
for the source job. (The ODP is partially created with the DDM file information; it is not usable until the
SDDM processes the remaining information after the DDM conversation is established.)

« The communications portion of DDM establishes a communications path with the server system. The
server system is identified by using the remote location information specified in the DDM file, and the
target file is identified by the remote file name. Other information about the remote location, not kept
in the DDM file, is stored by the SDDM. This includes the transaction program name, user ID, activation
group number, and scope of the conversation. Using the remote location information, the TDDM is
started on the server system and a DDM conversation is established when the remote system receives
the program start request. The conversation is established the first time the remote file is accessed, but
only if a conversation using the same remote location values for that server system does not already
exist for the source job.

« After the DDM conversation is established, the SDDM (which can be used by multiple programs and
multiple DDM files in the same source job) sends the DDM architecture command to the TDDM, for
file-related requests. This command describes the file operation to be done and contains the name of
the remote file (specified in the DDM file) to be accessed. For nonfile-related requests, such as when
the Submit Remote Command (SBMRMTCMD) command is used, the remote file name is not sent to
the TDDM; the remote file name is ignored.

The SDDM converts each program request for a file open or input/output operation (received by using the
DDM file and ODP) into an equivalent DDM command request and then sends it to the server system.

The following figure shows the basic parts on the client system that are involved in accessing remote files.

26 IBMi: Distributed database programming

i5/0S Client

UserApplication
Program
Open Data Path
Open p
Get
Source DDM
Put (SDDM)
[]
[]
Close
DDM Communications
Manager
Server System

Figure 13. IBM i as the DDM client system

After each request is handled by the target job, the DDM response from the server system is returned,
converted by the SDDM into the appropriate form, and passed back to the user. The response might
include data (if data was requested) or an indication of status (for other types of file access). The source
program waits until the function completes and the results are received.

The following figure shows a simplified example of the interchange of data between the client and server

systems for a typical request to access a remote file.

Distributed database programming 27

Client System Server System

Open DDMfile
Open remote file request —_—r > Remote file is opened
° <4—7— Acknowledgmentof completion

Getarecord by key for
laterchange »

Recordis accessed andlocked
<4——— Recordissent

Recordis modified and

) >
changeisrequested Recordis changed and lock

isreleased
. <4—— Acknowledgmentof completion
L]

L]
Close DDMfile
Close remote filerequest —b Remotefileis closed
<4—— Acknowledgmentofcompletion

Figure 14. Typical handling of an I/O operation request

After the first DDM file that was opened in the job is closed, the DDM conversation that it used is normally
kept active. This allows the same program or another program in the job to use the same conversation
when opening another DDM file, or doing other DDM-related operations. (For example, in Figure 16 on
page 32, source job 3A has two DDM files using the same conversation.) This saves the time and
resources required to establish a new conversation every time a new DDM file that uses the same remote
location information is used in that job.

When a DDM file is closed, the DDM conversation remains active, but nothing happens in the conversation
until the SDDM processes the next DDM-related request from a program. While it is not being used,
however, the conversation can be dropped. This can occur if the DDMCNYV job attribute's default value

of *KEEP is changed to *DROP using the Change Job (CHGJOB) command, or if the Reclaim DDM
Conversations (RCLDDMCNV) command or Reclaim Resources (RCLRSC) command is used
while the job is active.

Related concepts

Parts of DDM: Source DDM
The support on the client (or local) system is started, as needed, within a source job to do DDM functions.

Integrated Language Environment and DDM
Integrated Language Environment® (ILE) introduces the concept of activation groups that run within IBM i
jobs. An activation group is a substructure of a runtime job.

An activation group consists of system resources (storage for program or procedure variables,
commitment definitions, and open files) allocated to one or more programs. An activation group is
like a miniature job within a job. By default, all DDM conversations are scoped to the activation group
level. To scope is to specify the boundary within which system resources can be used. Programs that
run in different activation groups start separate DDM conversations when they use the same DDM file
or the same remote location information. Sharing of existing DDM conversations takes place within
the confines of the activation group. A DDM conversation can be scoped to the job level by specifying
OPNSCOPE(*JOB) on the OPNDBF command.

Client system actions dependent on type of server system
If the client system is not IBM i or System/38, only the DDM architecture commands defined in Level 2.0
and earlier of the DDM architecture are used.

If the client system is an IBM i or System/38, then IBM i and System/38 extensions to the architecture
are used to support some operations not defined by the Level 2.0 DDM architecture. Examples of
System/38 and IBM i extensions to the architecture are the Submit Remote Command (SBMRMTCMD)
and processing file members of remote files.For creating a file when the client is an IBM i and the server is
also an IBM i, the IBM i extension is used.

28 IBMi: Distributed database programming

Server systems that are not IBM i or System/38 might not be capable of handling all of the functions

that an IBM i or a System/38 can handle. For example, a System/36 does not support relative record
processing and keyed record processing with one open operation; therefore, programs that mix accessing
records in a file by key or relative record do not work if the file is on a System/36. In addition, server
systems that do not support Level 2.0 of the DDM architecture can only handle functions defined in the
level they support.

Neither System/36 nor System/38 support access to folder management objects.

Note: The IBM i operating system only allows access to folder management services (FMS) objects when
the client supports Level 2.0 of the DDM architecture for stream files (files on disks in which data is

read and written in consecutive fields without record boundaries) and directories, for example, the IBM
Personal Computer using DDM.

An IBM i client does not support access to stream files and directories.

IBM i as the server system for DDM
The IBM i target DDM (or TDDM) is actually a job that runs a DDM-related server system program. It is
started when the client system sends a program start request (an SDDM).

For client IBM i systems, the program start request is started on the client system using information
contained in the IBM-supplied intersystem communications function (ICF) file for DDM. The remote
location information in the DDM file being accessed is used to send the program start request to the
appropriate server system.

The attributes of the target job are determined by the values specified on the Add Communications
Entxy (ADDCMNE) command, which is used on the server system to add a communications entry to
the subsystem description used for the job. This command identifies the device description, the job
description (including the library list for the target job), and the default user profile to be used by the
subsystem.

For a IBM i Access Family connection, the routing entry in the QIWS subsystem for DDM (CMPVAL
('DDMY)), along with the device description the personal computer is connected to, is used to obtain the
attributes of the target job.

After it is started, the TDDM does the following things:
 For database files:

— Handles communications with the client system by using a DDM conversation established over an
APPC, over TCP/IP, or over a IBM i Access Family data link.

— Converts the access requests from the client system into the equivalent system functions and runs
them on the server system. After the target object is located, the server system-created ODP and
target database management services are used to access the object for whatever operation is
requested. The TDDM can, for example, pass requests that open the object and then do requested
I/O operations to the objects.

— Includes IBM i or System/38 extensions to the DDM Level 2.0 architecture for requests received
from the client system (if the client is an IBM i or a System/38), which allow most IBM i functions
that operate on local systems to also work on remote IBM i systems. For example, it might receive
a SBMRMTCMD command from the client system (an IBM i or a System/38) to do a nonfile-related
operation, such as using the CL command Replace Library List (RPLLIBL) to replace the library list
within the current target job.

— Converts target IBM i responses to the equivalent DDM responses and sends them back to the client
system. When the client system is an IBM i or System/38, the actual IBM i or System/38 messages
are sent back to the client system.

« For folder management services objects:

Converts the DDM stream and directory access requests into the equivalent IBM i folder management
services functions and then runs them on the target server. The following commands are supported:

— Change Current Directory (CHGCD)

Distributed database programming 29

Change File Attributes (CHGFAT)
Close Directoxry (CLSDRC)

Close Document (CLOSE)

Copy File (CPYFIL)

Create Directory (CRTDRC)
Create Stream File (CRTSTRF)
Delete Directoxry (DELDRC)
Delete File (DELFIL)

Foxce Buffer (FRCBFF)

Get Data Stream (GETSTR)

Get Directory Entxry (GETDRCEN)
List File Attributes (LSTFAT)
Load Stream File (LODSTRF)
Lock Data Stream (LCKSTR)

Open Directory (OPNDRC)

Open Document (OPEN)

Put Data Stream (PUTSTR)

Query Current Directory (QRYCD)
Query Space Available (QRYSPC)
Rename Directory (RNMDRC)
Rename File (RNMFIL)

Unload Stream File (ULDSTRF)
Unlock Data Stxeam (UNLSTR)

The following figure shows the basic parts on the IBM i client that are involved in processing the
requested destination file.

The TDDM runs as a separate batch job, just as any other user APPC, TCP/IP, or IBM i Access Family
target application. A new TDDM, using additional server system resources, is started for each distinct
source server program start request received by the server system. There is one target job for each DDM
conversation. Each TDDM can handle access requests for multiple files in the DDM conversation.

30 IBMi: Distributed database programming

Client System ‘

i5/0S Server H

DDM Communications
Manager
TargetDDM
(TDDM)
TextManagement
Open Data Path Input/Output
Open —» <+—— Open
Get — +«—— Get
Put > | Database Folder Services| < Put
[, | Management Management «—
L 5 -« |
Close Close
4 v
Database File ’ Folderor ‘
Document

Figure 15. IBM i as the DDM server system

The subsystem, user profiles, and server resources to be used by the TDDM are defined the same as they
are for other types of jobs.

Related concepts

Parts of DDM: Target DDM

A server system job is started on the target (or remote) system as a result of an incoming DDM request
and ends when the associated DDM conversation ends.

DDM-related jobs and DDM conversations
This topic provides additional information about activation groups, client system jobs, server system jobs,
and the DDM conversations used by those jobs.

For remote file processing, at least two separate jobs are used, one running on each system: a client
system job and a server system job. (The client system job is the one in which the user application is
running.) Multiple application programs can be running in different activation groups within a single client
system job. Each activation group within a client system job has a separate DDM conversation and server
system job for the remote location information specified in the DDM files. Multiple DDM files share a
conversation when the following items are true:

« The files are accessed in the same activation group within a client job.
« The files specify the same remote location combination.

For each DDM conversation, there is one server system job, which includes the TDDM.

The SDDM runs within a client system job or activation group on the client system. It can handle multiple
DDM conversations with one or more server systems at the same time. For the same client job or
activation group, one SDDM handles all the remote file access requests. This is true regardless of how
many server systems or remote files are involved. No separate job for the SDDM exists in the system.

If the client system DDM files involved all use the same remote location information to identify the server
system, one TDDM job is created for each client system job that requests access to one or more files on
the server system.

The following figure shows five programs accessing six DDM files. The numbers in the upper set of boxes
representing DDM files correspond to the same numbers in the lower set of boxes representing the
associated remote files. These DDM files are using four different remote location descriptions to access
six different remote files, all on the same server system. Seven DDM conversations are needed to handle
the processing. An explanation of the DDM conversations follows:

Distributed database programming 31

« PGM1 and PGM2 run in different client jobs and are using DDM files (2 and 3) that contain the same
remote location information. A separate conversation is needed for each client job.

« PGM3 in client job 3 uses the two DDM files (5 and 6) that both use the same remote location
information. They will share the same conversation and server job (5B).

« PGM4 and PGMS5 run in different activation groups within client job 4. They are using two DDM files (5
and 6) that both use the same remote location information. A separate conversation is needed for each
activation group.

In the following figure, jobs 1, 2, and 3 in System A each have a SDDM. Each activation group in job 4 has
its own SDDM. Jobs 1B through 7B each have their own TDDM.

When the application program or the client job closes the DDM file on the client system, the DDM
conversation and its associated server job ends, unless the following items are true:

« The value of the DDMCNV attribute of the Change Job (CHGJOB) command for the client job is *KEEP
(the server default).

« Any locks established during the job by the Al1locate Object (ALCOBJ) command still exist.

SystemA
Client System

Job4
Job1 Job2 Job3 PGM4 PGMS5
PGM1 PGM2 PGM3 Activation Activation
GroupA GroupB
l—‘ — | |
* Device
Device 1A Device 2A [Descriptions
M M M M ‘4— Modes
c cc c ccc 4= DDM Conversations
SystemB
Server System
¥ ¥ ¥ Ml Modes
. Device
Qewce]B Device EL i Descriptions
v v v v v v
(2] [+] LeJ | [B | | Ledepr momoe

Data

Job Job Job Job Job Job Job Files

1B 2B 3B 4B 5B 6B 7B

Figure 16. Relationships of DDM client and server jobs

The CHGJIOB and ALCOBJ commands are described in topic Using CL and DDS with DDM. If
DDMCNV(*KEEP) is specified, the DDM conversation remains active and waits for another DDM request to
be started.

From a performance viewpoint, if the DDM conversation is likely to be used again, *KEEP is the value that
should be used. This saves the time and resources used on the server system to start each TDDM and
establish the conversation and job.

The following figure shows the relationship between the SDDM and two TDDMs on different server
systems and the figure in Example: Accessing files on multiple servers with DDM topic shows the
relationship between the SDDM and two TDDMs on one server system.

The IBM i operating system can be a client system and a server system at the same time, and two systems
can be accessing files located on each other. In addition, an IBM i job can be a client job and a server job.
A DDM file can refer to a remote file that is another DDM file.

32 IBMi: Distributed database programming

CHICAGO
i5/0S Client

User Program
(Accesses FILEA, FILEB, and FILEC
viaprogram statements.)

-

DDM Communications
(APPC support,

TargetDDM
(TDDM)

FILEX
(datafile)

DDMFile Values
inFILEBandFILEC:
Data Management FILEA
(datafile) Remote Remote
b A Location File
[Name Name
Source DDM FILEB - DALLAS FILEX
(SDDM) (DDMfile)
pLPMIe) 4
M
FILEC e NEWYORK FILEY
DDM Communications w
(APPC support) N~
DALLAS NEWYORK
System/38 System/36
Server Server

DDM Communications
(APPC support)
Target Data Manager
(TDDM)
Disk DataManager

FILEY
(datafile)

Figure 17. Example: Accessing multiple local and remote files

Distributed database programming 33

Examples: Accessing multiple remote files with DDM

These examples show a single application program that use DDM to access multiple remote files. The first
example shows the remote files on different server systems, and the second shows them on the same
server system.

Example: Accessing files on multiple systems with DDM
This topic contains a figure that shows the relationships among the client system, its DDM files, and two
server systems.

CHICAGO
i5/08 Client

User Program
(Accesses FILEA, FILEB,and FILEC
viaprogram statements.)

O

DDMFile Values
inFILEBand FILEC:
Data Management FILEA
(datafile) Remote Remote
b | Location File
e R Name Name
Source DDM FILEB e —— DALLAS FILEX
(SDDM) &DMNS)/
M M
L e NEWYORK ~ FILEY
DDM Communications |_(DDMfile) |
(APPC support) N~—
DALLAS NEWYORK
System/38 System/36
Server Server

DDM Communications
(APPC support)

TargetDDM
(TDDM)

Nal DDM Communications
(APPC support)

TargetDataManager
(TDDM)

Disk VTOC

FILEY
(datafile)

FILEX
(datafile)

Disk DataManager

Figure 18. Example: Accessing multiple local and remote files

One server system is a System/38 and the other is a System/36. Each system has DDM installed.

The user program running on the client system is shown accessing three files: FILEA, FILEB, and FILEC.
FILEA, located on the client system, is accessed using only local data management. On different server
systems, DDM file FILEB corresponds to remote file FILEX and FILEC corresponds to remote file FILEY.
When the program opens FILEB and FILEC, DDM allows the program to access the corresponding remote
files as if they were on the client system. Only the person who defines the DDM files needs to know where
each file is located or what the file name is on the remote system.

Example: Processing multiple requests for remote files with DDM
This example shows how multiple programs access multiple files on the same server system.

This example shows a System/36 server system. The SDDM is shown handling requests for two files from
two programs in different jobs, and two TDDMs are handling the requests on the server system (one
TDDM for each requesting program). Although program B is accessing two files on the server system,
only one TDDM is created if all the associated DDM files specify the same remote location information to
identify the server system.

Both programs A and B are sharing FILEA. However, because these programs are shown to be in separate
jobs, they cannot share the same open data path (ODP) to FILEA. If they were in the same job, programs
A and B can share both the ODP on the client system and the remote file. When multiple programs within
the same job are accessing a remote file at the same time (by using one TDDM for each program), the
rules for file sharing are the same for remote files as for local files. These rules are based on how the

34 IBMi: Distributed database programming

SHARE parameter is specified on the Create DDM File (CRTDDMF), the Override with Database
File (OVRDBF), and the Change DDM File (CHGDDMF) commands.

i5/0S Client System/36 Server

ProgramB
Program# inJobB

(Accesses FILEA
(Accesses FILEA) and FILEB) Disk

’ DataManagement

»| Disk N
Data FILEA

i i . ¢—' Mgr M A

FILEB
TDDM TDDM

SDDM
forJobA forJobB. forJobA forJobB

DDM Communications Support ZA,‘ DDM Communications Support ‘

SDDM

Figure 19. Example: Processing multiple program and file requests

Planning and design

To prepare for a distributed relational database, you must understand both the needs of the business and
relational database technology. To prepare for the use of DDM, you need to meet several requirements
including communication requirements, security requirements, and modification requirements.

Related concepts

Performance considerations for DRDA

Distributed relational database performance is affected by the overall design of the database. The
location of distributed data, the level of commitment control you use, and the design of your SQL indexes
all affect performance.

Planning and design for DRDA

The first requirement for the successful operation of a distributed relational database is thorough
planning. You must consider the needs and goals of your enterprise when making the decision to use
a distributed relational database.

How you code an application program, where it resides in relation to the data, and the network design
that connects application programs to data are all important design considerations.

Database design in a distributed relational database is more critical than when you deal with just one
IBM i relational database. With more than one IBM i product to consider, you must develop a consistent
management strategy across the network. The following operations require particular attention when
forming your strategy:

« General operations
« Networking protocol
« System security

Accounting

Problem analysis

Backup and recovery processes

Identifying your needs and expectations for a distributed relational database

Consider these items when analyzing your needs and expectations of a distributed relational database.

Distributed database programming 35

Data needs for distributed relational databases
The first step in your analysis is to determine which factors affect your data and how they affect it.

Ask yourself the following questions:

« What locations are involved?
« What kind of transactions do you envision?
« What data is needed for each transaction?

« What dependencies do items of data have on each other, especially referential limitations? For example,
will information in one table need to be checked against the information in another table? (If so, both
tables must be kept at the same location.)

« Does the data currently exist? If so, where is it located? Who "owns" it (that is, who is responsible for
maintaining the accuracy of the data)?

- What priority do you place on the availability of the needed data? Integrity of the data across locations?
Protection of the data from unauthorized access?

« What access patterns do you envision for the data? For instance, will the data be read, updated, or both?
How frequently? Will a typical access return a lot of data or a little data?

« What level of performance do you expect from each transaction? What response time is acceptable?

Distributed relational database capabilities
The second step in your analysis is to decide whether your data needs lend themselves to a distributed
relational database solution.

Applications where most database processing is done locally and access to remote data is needed only
occasionally are typically good candidates for a distributed relational database.

Applications with the following requirements are usually poor candidates for a distributed relational
database:

- The data is kept at a central site and most of the work that a remote user needs to do is at the central
site.

- Consistently high performance, especially consistently fast response time, is needed. It takes longer to
move data across a network.

« Consistently high availability, especially twenty-four hour, seven-day-a-week availability, is needed.
Networks involve more systems and more in-between components, such as communications lines and
communications controllers, which increases the chance of breakdowns.

« Adistributed relational database function that you need is not currently available or announced.

Goals and directions for a distributed relational database
The third step in your analysis is to assess your short-term and long-term goals.

SQL is the standard IBM database language. If your goals and directions include portability or remote data
access on unlike systems, you should use distributed relational databases on the IBM i operating system.

The distributed database function of distributed unit of work, as well as the additional data copying
function provided by DB2 DataPropagator, broadens the range of activities you can perform on the
system. However, if your distributed database application requires a function that is not currently
available on IBM i, other options are available until the function is made available on the system. For
example, you can do one of the following things:

» Provide the needed function yourself.
« Stage your plans for distributed relational database to allow for the new function to become available.

« Reassess your goals and requirements to see if you can satisfy them with a currently available or
announced function. Some alternative solutions are listed in the following table. These alternatives can
be used to supplement or replace available function.

36 IBMi: Distributed database programming

Table 3. Alternative solutions to distributed relational database

Solution

Description

Advantages

Disadvantages

Distributed Data
Management (DDM)

A function of the operating
system that allows an
application program or user on
one system to use database files
stored on a remote system. The
system must be connected by

a communications network, and
the remote system must also
use DDM.

« For simple read and update
accesses, the performance
is better than for SQL.

Existing applications do not
need to be rewritten.

« Can be used to access
S/38, S/36, and CICS®.

« SQL is more
efficient for complex
functions.

= Might not be able
to access other
distributed relational
database platforms.

» Does not perform
CCSID and numeric
data conversions.

Intersystem
Communications
Function/Common
Programming
Interface (ICF/CPI
Communications)

ICF is a function of the operating
system that allows a program
to communicate interactively
with another program or
system. CPI Communications
is a call-level interface

that provides a consistent
application interface for
applications that use program-
to-program communications.
These interfaces make use of
SNA's logical unit (LU) 6.2
architecture to establish a
conversation with a program
on a remote system, to send
and receive data, to exchange
control information, to end a
conversation, and to notify a
partner program of errors.

 Allows you to customize
your application to meet
your needs.

 Can provide better
performance.

Compared to
distributed relational
database and

DDM, a more
complicated program
is needed to support
communications and
data conversion
requirements.

Display station
pass-through

A communications function that
allows users to sign on to one
IBM i environment from another
IBM i environment and use that
system's programs and data.

» Applications and data
on remote systems are
accessible from local
systems.

Allows for quick access
when data is volatile and a
large amount of data on one
system is needed by users
on several systems.

Response time on
screen updates is
slower than locally
attached devices.

A distributed relational database usually evolves from simple to complex as business needs change
and new products are made available. Remember to consider this when analyzing your needs and

expectations.

Distributed database programming 37

Designing the application, network, and data for a distributed relational
database

Designing a distributed relational database involves making choices about applications, network
considerations, and data considerations.

Tips: Designing distributed relational database applications
Distributed relational database applications have different requirements from applications developed
solely for use on a local database.

To properly plan for these differences, design your applications with the following considerations in mind:

« Take advantage of the distributed unit of work (DUW) function where appropriate.
« Code programs using common interfaces.

« Consider dividing a complex application into smaller parts and placing each piece of the application in
the location best suited to process it. One good way to distribute processing in an application is to make
use of the SQL CALL statement to run a stored procedure at a remote location where the data to be
processed resides. The stored procedure is not limited to SQL operations when it runs on a Db2 for i
application server; it can use integrated database input/output or perform other types of processing.

« Investigate how the initial database applications will be prepared, tested, and used.

- Take advantage, when possible, of SQL set-processing capabilities. This will minimize communication
with the application servers. For example, update multiple rows with one SQL statement whenever you
can.

« Be aware that database updates within a unit of work must be done at a single site if the remote unit
of work (RUW) connection method is used when the programs are prepared, or if the other nodes in the
distributed application do not support DUW.

« Keep in mind that the DUW connection method restricts you from directing a single statement to more
than one relational database.

 Performance is affected by the choice of connection management methods. Use of the RUW connection
management method might be preferable if you do not have the need to switch back and forth among
different remote relational databases. This is because more overhead is associated with the two-phase
commit protocols used with DUW connection management.

However, if you have to switch frequently among multiple remote database management systems,

use DUW connection management. When running with DUW connection management, communication
conversations to one database management system do not have to be ended when you switch the
connection to another database management system. In the like environment, this is not as big a
factor as in the unlike environment, since conversations in the like environment can be kept active by
use of the default DDMCNV(*KEEP) job definition attribute. Even in the like environment, however, a
performance advantage can be gained by using DUW to avoid the cost of closing cursors and sending
the communication flow to establish a new connection.

« The connection management method determines the semantics of the CONNECT statement. With the
RUW connection management method, the CONNECT statement ends any existing connections before
establishing a new connection to the relational database. With the DUW connection management
method, the CONNECT statement does not end existing connections.

Network considerations for a distributed relational database
The design of a network directly affects the performance of a distributed relational database.

To properly design a distributed relational database that works well with a particular network, do the
following things:

« Because the line speed can be very important to application performance, provide sufficient capacity at
the appropriate places in the network to achieve efficient performance to the main distributed relational
database applications.

« Evaluate the available communication hardware and software and, if necessary, your ability to upgrade.

38 IBMi: Distributed database programming

 For Advanced Program-to-Program Communication (APPC) connections, consider the session limits and
conversation limits specified when the network is defined.

« Identify the hardware, software, and communication equipment needed (for both test and production
environments), and the best configuration of the equipment for a distributed relational database
network.

« Consider the skills that are necessary to support TCP/IP as opposed to those that are necessary to
support APPC.

« Take into consideration the initial service level agreements with end user groups (such as what
response time to expect for a given distributed relational database application), and strategies for
monitoring and tuning the actual service provided.

 Understand that you cannot use an APPC-protected DUW conversation to connect to a database from
an application requester (AR) which has been set to an auxiliary storage pool (ASP) group for the current
thread.

- Develop a naming strategy for database objects in the distributed relational database and for each
location in the distributed relational database. A location is a specific relational database management
system in an interconnected network of relational database management systems that participate
in distributed relational database. A location in this sense can also be a user database in a system
configured with independent ASP groups. Consider the following items when developing this strategy:

— The fully qualified name of an object in a distributed database has three (rather than two) parts, and
the highest-level qualifier identifies the location of the object.

— Each location in a distributed relational database should be given a unique identification; each object
in the database should also have a unique identification. Duplicate identifications can cause serious
problems. For example, duplicate locations and object names might cause an application to connect
to an unintended remote database, and once connected, access an unintended object. Pay particular
attention to naming when networks are coupled.

— Each location in a user database should also be given a unique identification. If a user database on
two different systems were to be named PAYROLL, there would be a naming conflict if an application
needed to access them both from the same system. When an independent ASP device is configured,
the user has an option to specify an RDB name for that device that is different from the name of the
ASP device itself. It is the RDB name associated with the primary device in an ASP group by which
that user database is known.

Related concepts
Communications Management PDF

Data considerations for a distributed relational database
The placement of data in respect to the applications that need it is an important consideration when
designing a distributed relational database.

When making such placement decisions, consider the following items:

« The level of performance needed from the applications

« Requirements for the security, currency, consistency, and availability of the data across locations
« The amount of data needed and the predicted patterns of data access

- If the distributed relational database functions needed are available

« The skills needed to support the system and the skills that are actually available

« Who "owns" the data (that is, who is responsible for maintaining the accuracy of the data)

« Management strategy for cross-system security, accounting, monitoring and tuning, problem handling,
data backup and recovery, and change control

- Distributed database design decisions, such as where to locate data in the network and whether to
maintain single or multiple copies of the data

Distributed database programming 39

http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415406.pdf

Developing a management strategy for a distributed relational database

When you are managing a distributed relational database, keep these strategies in mind.

General operations for a distributed relational database
To plan for the general operation of a distributed relational database, consider both performance and
availability.

The following design considerations can help you improve both the performance and availability of a
distributed relational database:

« If an application involves transactions that run frequently or that send or receive a lot of data, you
should try to keep it in the same location as the data.

« For data that needs to be shared by applications in different locations, put the data in the location with
the most activity.

« If the applications in one location need the data as much as the applications in another location,
consider keeping copies of the data at both locations. When keeping copies at multiple locations, ask
yourself the following questions about your management strategy:

— Will users be allowed to make updates to the copies?

How and when will the copies be refreshed with current data?

Will all copies have to be backed up or will backing up one copy be sufficient?

How will general administration activities be performed consistently for all copies?

When is it permissible to delete one of the copies?

« Consider whether the distributed databases will be administered from a central location or from each
database location.

You can also improve performance by doing the following things:

- If data and applications must be kept at different locations, do the following things to keep the
performance within acceptable limits:

— Keep data traffic across the network as low as possible by only retrieving the data columns that will
be used by the application; that is, avoid using * in place of a list of column names as part of a SELECT
statement.

— Discourage programmers from coding statements that send large amounts of data to or receive large
amounts of data from a remote location; that is, encourage the use of the WHERE clause of the
SELECT statement to limit the number of rows of data.

— Use referential integrity, triggers, and stored procedures (an SQL CALL statement after a CONNECT
to a remote relational database management system); this improves performance by distributing
processing to the application server (AS), which can substantially reduce line traffic.

— Use read-only queries where appropriate by specifying the FOR FETCH ONLY clause.

— Be aware of rules for blocking of queries. For example, in queries between IBM i operating systems,
blocking of read-only data is done only for COMMIT(*NONE), or for COMMIT(*CHG) and COMMIT(*CS)
when ALWBLK(*ALLREAD) is specified.

— Keep the number of accesses to remote data low by using local data in place of remote data
whenever possible.

— Use SQL set operations to process multiple rows at the application requester with a single SQL
request.

— Try to avoid dropping of connections by using DDMCNV(*KEEP) when running with remote unit of
work (RUW) connection management, or by running with distributed unit of work (DUW) connection
management.

- Provide sufficient network capacity by doing the following things:

— Increase the capacity of the network by installing high-speed, high-bandwidth lines or by adding lines
at appropriate points in the network.

40 IBMi: Distributed database programming

— Reduce the contention or improve the contention balance on certain processors. For example, move
existing applications from a host system to a departmental system, or group some distributed
relational database work into batch.

Encourage good table design. At the distributed relational database locations, encourage appropriate
use of primary keys, table indexes, and normalization techniques.

Ensure data types of host variables used in WHERE clauses are consistent with the data types of
the associated key column data types. For example, a floating-point host variable has been known to
disqualify the use of an index built over a column of a different data type.

You can also improve availability by doing the following things:

In general, try to limit the amount of data traffic across the network.

If data and applications must be kept at different locations, do the following things to keep the
availability within acceptable limits:

Establish alternate network routes.

Consider the effect of time zone differences on availability:

- Will qualified people be available to start the system?
- Will off-hours batch work interfere with processing?

Ensure good backup and recovery features.

Ensure people are skilled in backup and recovery.

Security considerations for a distributed relational database

Part of planning for a distributed relational database involves the decisions you must make about securing
distributed data.

These decisions include:

What systems should be made accessible to users in other locations and which users in other locations
should have access to those systems.

How tightly controlled access to those systems should be. For example, should a user password be
required when a conversation is started by a remote user?

Is it required that passwords flow over the wire in encrypted form?

Is it required that a user profile under which a client job runs be mapped to a different user
identification or password based on the name of the relational database to which you are connecting?

What data should be made accessible to users in other locations and which users in other locations
should have access to that data.

What actions those users should be allowed to take on the data.
Whether authorization to data should be centrally controlled or locally controlled.

If special precautions should be taken because multiple systems are being linked. For example, should
name translation be used?

When making the previous decisions, consider the following items when choosing locations:

Physical protection. For example, a location might offer a room with restricted access.

Level of system security. The level of system security often differs between locations. The security level
of the distributed database is no greater than the lowest level of security used in the network.

All systems connected by Advanced Program-to-Program Communication (APPC) can do the following
things:

— If both systems are IBM i products, communicate passwords in encrypted form.

— When one system receives a request to communicate with another system in the network, verify that
the requesting system is actually "who it says it is" and that it is authorized to communicate with the
receiving system.

All systems can do the following things:

Distributed database programming 41

— Pass a user's identification and password from the local system to the remote system for verification
before any remote data access is allowed.

— Grant and revoke privileges to access and manipulate SQL objects such as tables and views.

The IBM i operating system includes security audit functions that you can use to track unauthorized
attempts to access data, as well as to track other events pertinent to security. The system also provides
a function that can prevent all distributed database access from remote systems.

— Security-related costs. When considering the cost of security, consider both the cost of buying
security-related products and the price of your information staff's time to perform the following
activities:

- Maintain identification of remote-data-accessing users at both local and remote systems.
- Coordinate auditing functions between sites.

Related concepts

Security

The IBM i operating system has built in security elements that limit access to data resources of a server.
Security options range from simple physical security to full password security coupled with authorization
to commands and data objects.

Accounting for a distributed relational database
You need to be able to account and charge for the use of distributed data.

Consider the following items:

- Accounting for the use of distributed data involves the use of resources in one or more remote systems,
the use of resources on the local system, and the use of network resources that connect the systems.

« Accounting information is accumulated by each system independently. Network accounting information
is accumulated independent of the data accumulated by the systems.

« The time zones of various systems might have to be taken into account when trying to correlate
accounting information. Each system clock might not be synchronized with the remote system clock.

« Differences might exist between each system's permitted accounting codes (numbers). For example,
the IBM i operating system restricts accounting codes to a maximum of 15 characters.

The following functions are available to account for the use of distributed data:

« IBMijob accounting journal. The system writes job accounting information into the job accounting
journal for each distributed relational database application. The Display Journal (DSPJRN)
command can be used to write the accumulated journal entries into a database file. Then, either a
user-written program or query functions can be used to analyze the accounting data.

« NetView® accounting data. The NetView licensed program can be used to record accounting data about
the use of network resources.

Related reference
Display Journal (DSPJRN) command

Job accounting in a distributed relational database
The IBM i job accounting function gathers data so you can determine who is using the system and what
system resources they are using.

Problem analysis for a distributed relational database
You need to manage problem analysis in a distributed database environment. Problem analysis involves
both identifying and resolving problems for applications that are processed across a network of systems.

Consider the following items:

« Distributed database processing problems manifest themselves in various ways. For example, an error
return code might be passed to a distributed database application by the system that detects the
problem. In addition, responses might be slow, wrong, or nonexistent.

42 IBMi: Distributed database programming

« Tools are available to diagnose distributed database processing problems. For example, each
distributed relational database product provides trace functions that can help diagnose distributed data
processing problems.

« When the IBM i operating system detects system failures, it logs information about program status
immediately after the failure is detected.

Backup and recovery for a distributed relational database
In a single system environment, backup and recovery take place locally. But in a distributed database,
backup and recovery also affect remote locations.

The IBM i operating system allows individual tables, collections, or groups of collections to be backed
up and recovered. Although backup and recovery can only be done locally, you might want to have less
critical data on a system that does not have adequate backup support. Backup and recovery procedures
must be consistent with data that might exist on more than one application server. Because you have
more than one system in the network, you might want to save such data to a second system so that it is
always available to the network in some form. Strategies such as these need to be planned and laid out
specifically before a database is distributed across the network.

Planning and design for DDM

There are several requirements that must be met for distributed data management (DDM) to be used
properly.
Notes:

- Before determining which files should be accessed using DDM, review Performance considerations for
DDM.

« Programming requirements and considerations for control language (CL) commands and data
description specifications (DDS) are covered in Using CL and DDS with DDM and Operating
considerations for DDM.

Related concepts

DDM overview

This topic describes the purpose of distributed data management (DDM), the functions that DDM supplies,
and the concepts of IBM i DDM.

Performance considerations for DDM
These topics provide information to help you improve performance when using DDM and also provide
some information about when to use something other than DDM to accomplish some functions.

Operating considerations for DDM

This topic collection tells how the IBM i operating system, both as a client or server system,
communicates with another IBM i to perform remote file processing. It also describes the differences
when an IBM i is communicating with a system that is not an IBM i.

Using CL and DDS with DDM
This topic contains DDM-related information about specific control language (CL) commands, data
description specifications (DDS) considerations, DDS keywords, and DDM user profile authority.

Communications requirements for DDM in an APPC network

Each IBM i product in a distributed data management (DDM) network that is not using OptiConnect must
meet these communications requirements.

« APPC/APPN support or the IBM i Access Family licensed program must be installed and configured on
the system.

« At least one Systems Network Architecture (SNA) communications line must use synchronous data link
communications (SDLC), token-ring network, Ethernet, or X.25 protocol.

The number of sessions that can be used for DDM conversations is not limited by DDM. The maximum is
determined in the same manner as for any other APPC-related communications. For parallel sessions, the

Distributed database programming 43

session maximum is specified in the mode. For single session devices, the session maximum is always
one.

IBM i products in a DDM network that uses OptiConnect must have the OptiConnect software and
hardware installed. OptiConnect replaces the need for SNA communications line connections.

Configuring a communications network in a TCP/IP network
This topic provides a high-level overview of the steps you take to set up a TCP/IP network.
1. Id)entify your IBM i platform to the local network (the network that your system is directly connected
to).
a) Determine if a line description already exists.
b) If a line description does not already exist, create one.
c) Define a TCP/IP interface to give your system an IP address.

2. Define a TCP/IP route. This allows your system to communicate with systems on remote TCP/IP
networks (networks that your IBM i platform is not directly connected to).

3. Identify the names of the servers in your network.
a) Build a local host table.

b) Identify a remote name server.
4. Start TCP/IP.
5. Verify that TCP/IP works.

Security requirements for DDM

You can prevent intentional and unintentional access to the data resources of a system by the distributed
data management (DDM) user.

Access to data in the DDM environment can be limited or prevented altogether, by a system-level network
attribute, the DDMACC parameter on the Change Network Attributes (CHGNETA) command. This attribute
allows the system (as a server system) to prevent all remote access. This attribute can also allow the
system to control file access by using standard authority to files and, further, by using an optional user exit
program to restrict the types of operations allowed on the files for particular users.

To provide adequate security, you might need to set up additional user profiles on the server system, one
for each client system user who can have access to one or more server system files. Or, a default user
profile should be provided for multiple client system users. The default user profile is determined by the
communications entry used in the subserver in which the target jobs are run.

For user profiles (or their equivalent) on server systems that are not running IBM i, refer to that system's
documentation.

File requirements for DDM

Before remote files can be accessed by a IBM i product, distributed data management (DDM) files must
be created on the client system.

At the time a DDM file is used, the device (remote location name) and mode (APPC session
characteristics) specified in the DDM file must also exist on the system if APPN is not used. If APPN is
used, then the device does not need to exist on the system. However, the system identified by the remote
location name must exist within the APPN network. The APPN parameter on the Cxreate Controller
Description (APPC) (CRTCTLAPPC) andthe Cxreate Controller Description (SNA Host)
(CRTCTLHOST) commands controls whether APPN is used.

44 IBMi: Distributed database programming

Program modification requirements for DDM

Remote files can be accessed by IBM i application programs written in the high-level language (HLL) and
control language.

In most cases, these applications can access both local or remote files without the programs being
changed. However, some considerations and restrictions might require the programs to be changed and
recompiled. These are grouped in these categories:

« IBMi functions that are not supported by the DDM architecture, but for which a System/38 extension to
the architecture might exist. These functions can be used only when the client and server systems are
running System/38 or IBM i.

- Restrictions and considerations that apply when the client or server system is running IBM i.

- Restrictions and considerations that apply to all target systems. User programs accessing local files
should program for abnormal conditions such as No record found, End of file, and Record lock time-out
on read for update. These conditions can also occur when a remote file is being accessed using DDM.
In addition, the use of DDM exposes the program to communication line failures while sending disk I/O
operations.

When a communications failure occurs, the system sends an appropriate message to the job, which is
returned to the application program as a generic file error. Each high-level language provides unique
user syntax capabilities for user-controlled handling or default processing of exceptional results of

a disk operation. Some languages might permit the user to retrieve the job message identification
(ID) that would specifically indicate a DDM communications failure. Refer to the appropriate language
manual for specific capabilities.

For secondary SDLC lines, it is recommended that the INACTTMR parameter of the Create Line
Description (SDLC) (CRTLINSDLC) command be set on the client and server systems to detect the
stopping of polling by the primary system. This prevents the possibility of a DDM read-for-update record
lock lasting indefinitely due to a communications failure on the primary system.

DDM architecture-related restrictions
The items listed in this topic are DDM architecture-related restrictions. Therefore, application programs
that use these items might have to be changed and recompiled before they can access remote files.

« The DDM architecture does not support IBM i logical files that are in multiple formats. However,
because multiple-format logical files are supported as a System/38 extension to the DDM architecture,
they can be used with DDM, but only if the source and server systems are running IBM i or System/38.

« Externally described data (using data description specifications (DDS) on IBM i) is not supported by
the DDM architecture. However, DDS can still be used, especially if both systems are running IBM i or
System/38. If the server system is running IBM i or System/38, most of the DDS support can be used as
though the remote file is a local file.

 To access folder management services objects, the client system must support Level 2.0 or Level 3.0 of
the DDM architecture for stream files and the stream access method. The following restrictions for the
byte stream model apply:

— WAIT time is not supported by the folder management services on the Lock Data Stream
(LCKSTR) command. The user must handle the waiting function on the client system.

— The Copy File (CPYFIL) command used to copy a document on the IBM i operating system is
supported with the restrictions. Only the header information is copied; no data is copied.

— The DELDRCOP (DRCALL) parameter is not supported on the Delete Directory (DELDRC)
command.

 Personal computer generic names are not allowed when performing operations on data management
objects such as files, libraries, or members. However, generic names are allowed when performing
operations on folder management services objects such as documents and folders. Generic names are
supported where the personal computer supports the operation and in the manner that the personal
computer supports the operation. For example, generic names are not supported for folders using the
rename and delete commands because the personal computer does not support them.

Distributed database programming 45

IBM i client and server restrictions and considerations for DDM
When the client system is running IBM i, IBM i database functions can be used on remote files. However,
there are some restrictions.

The restrictions are:

- An IBMi client system can create files on a system running System/38, but the DDM architecture file
models are used. As a result, no multiple-format logical or join logical files can be created on a server
system that is not running IBM i, including a System/38.

- Save or restore operations do not save or restore the data on a server system. Only the DDM file object
can be saved or restored locally.

« Operations that delay for a time period (that is, that wait for a file or record) are determined by the
time values specified on the server system. These values are specified by the WAITFILE and WAITRCD
parameters on various CL commands. This can result in increased delay times when DDM is used to
access files or records remotely.

« Query requests (OPNQRYF) to a System/38 cannot use group selection and join processing.

« When running System/36 applications to or from IBM i, these applications might result in timeouts
while waiting for a resource to become available. When running System/36 applications to or from
another System/36, the application waits indefinitely for the resource to become available.

For both source and target DDM jobs, due to the way DDM sends APPC operations, it is possible for the
DDM job on the secondary side of the APPC conversation to wait indefinitely after a line failure or other
failures at the remote system.

Consider the following suggestions to avoid indefinite waits:

— If the remote system supports record lock timeouts, ensure that reasonable time values are
specified. For example, on a target IBM i or System/38 database file, do not use the maximum value
that is allowed or *NOMAX when you specify the WAITRCD parameter on the CRTPF command.

WAITRCD addresses read-for-update operations, but does not apply to other file operations, such as
read only, add, and so on.

— When using an SDLC secondary line, use a time value for the line inactivity timer INACTTMR). Do not
use the *NOMAX value.

— Provide the person responsible for system operation with the associated line, controller, and device
names (or a list of DDM jobs that might run). If a DDM job then appears to be waiting indefinitely, this
person can display the job information to determine if the job is waiting indefinitely by reviewing the
job's processing unit time use (by using the Display Job (DSPJOB) command to display the active run
attributes).

When the server system is running IBM i, IBM i database functions can be used to access remote files,
with the following restrictions:

- The physical files that the logical files or join logical files are based on must exist on the same IBM i
operating system.

« Alogical file on an IBMii client system cannot share the access path of a remote file (on any server
system).

« Query requests (OPNQRYF), which require group selection and join processing from a System/38, do
not work.

Non-IBM i target restrictions and considerations for DDM
In addition to the restrictions that apply when the server system is running IBM i, the restrictions in this
topic also might apply when the server system is not running IBM i or System/38.

Whether they apply depends on what the target system supports. You should refer to that system's
documentation for more information.

« Only field data types that are common to the source and server systems can normally be processed by
HLL applications. Floating-point data is an example of a data type that might not be common. Records

46 IBMi: Distributed database programming

can be transmitted that contain floating-point data, but the representation of floating-point data sent
between systems might differ.

The packed signs sent between systems might differ; for example, one system might use a C and
another system might use an F.

Note: It is possible for you to write your application program so that it interprets the byte string for a
record processed through a DDM file in any way that you want. However, whenever you do this, it is your
responsibility to ensure that the data is handled correctly.

« Any operations that request a delay period before returning, such as for record lock wait times, might be
rejected or changed to a zero wait time by the server system.

« Lock requests can be changed by the server system to a more restrictive lock. This might prevent
some operations from occurring at the same time that can otherwise be performed on the local IBM i
operating system. See “Allocate Object (ALCOBJ) command” on page 156 for more information.

- Some IBM i parameters are ignored or cause errors if they are used during remote file processing on
server systems that do not run IBM i. Examples are the FRCRATIO and FMTSLR parameters on some of
the file commands. For more information, see OVRDBF (Override with Database File) command and see
Copy commands with DDM.

« Member names are not supported in the DDM architecture. When the server system is not running
IBM i or System/38, CL commands that have a MBR parameter, such as the Clear Physical File
Membex (CLRPFM) command, must be changed if the parameter specifies a member name that is
different than the file name. If the member name is different, an error occurs if the command is used
for a remote file that does not reside on the IBM i operating system. For some commands, MBR(*FIRST)
or MBR(*LAST) is also valid. See Member-related commands with DDM for a list of all the CL commands
related to file members, and for those that are not valid for accessing files on server systems that do not
run IBMi.

Note: MBR(*LAST) is not supported by System/38.

« If a parameter on a CL command requires the name of a source file, then the names of the DDM files
that refer to target files that are not on an IBM i operating system cannot be specified. The IBM i
operating system cannot determine whether a remote file on a target that does not reside on IBM i is in
fact a source file. (See Source file commands for a list of all the CL commands related to source files.)

« Certain IBM i commands that are valid for IBM i or System/38 server systems are not valid for other
targets. See DDM-related CL command lists for the lists of commands that are not supported when the
target is not an IBM i or a System/38.

Initial setup

The IBM i operating system provides runtime support for distributed relational databases. However, some
setup work might be required to make the servers and clients ready to send and receive work, particularly
in the Advanced Program-to-Program Communication (APPC) environment.

One or more subsystems can be used to control interactive, batch, spooled, and communications jobs.
All the clients in the network must have their relational database directory set up with connection
information. Finally, you might want to put data into the tables of the server throughout the network.

The relational database directory contains database names and values that are translated into
communications network parameters. A client must have an entry for each database in the network,
including the local database and any user databases that are configured on independent auxiliary storage
pools (independent ASPs, also known as independent disk pools). These local entries can be added
automatically by the system, or manually. Each directory entry consists of a unique relational database
name and corresponding communications path information. Information about the preferred password
security for outbound connections can be specified. For access provided by ARD programs, the ARD
program name must be added to the relational database directory entry.

There are a number of ways to enter data into a database. You can use an SQL application program, some
other high-level language application program, or one of these methods:

« Interactive SOQL

Distributed database programming 47

- IBMiquery management
« Data file utility (DFU)
« Copy File (CPYF) command

Connection and setup information for a distributed relational database network of unlike systems can be
found in the Distributed Relational Database Cross-Platform Connectivity book, SG24-4311.

Related concepts

Independent auxiliary storage pool
Independent disk pools

Related reference

Copy File (CPYF) command

IBM i work management

All of the work on the IBM i operating system is submitted through the work management function. On
the system, you can design specialized operating environments to handle different types of work to satisfy
your system requirements.

However, when the operating system is installed, it includes a work management environment that
supports interactive and batch processing, communications, and spool processing.

On the system, all user jobs operate in an environment called a subsystem, defined by a subsystem
description, where the system coordinates processing and resources. Users can control a group of jobs
with common characteristics independently of other jobs if the jobs are placed in the same subsystem.
You can start and end subsystems as needed to support the work being done and to maintain the
performance characteristics you want.

The basic types of jobs that run on the system are interactive, communications, batch, spooled, autostart,
and prestart.

An interactive job starts when you sign on a workstation and ends when you sign off. An Advanced
Program-to-Program Communication (APPC) batch job is a job started from a program start request from
another system. A non-communications batch job is started from a job queue. Job queues are not used
when starting a communications batch job. Spooling functions are available for both input and output.
Autostart jobs perform repetitive work or one-time initialization work. Autostart jobs are associated with
a particular subsystem, and each time the subsystem is started, the autostart jobs associated with it

are started. Prestart jobs are jobs that start running before the remote program sends a program start
request.

Related concepts

Managing the TCP/IP server

The DRDA and DDM TCP/IP server does not typically require any changes to your existing system
configuration. At some time, you might want to change the way the system manages the server jobs

to better meet your needs, to solve a problem, to improve the system performance, or to look at the jobs
on the system.

Setting up your work management environment

One subsystem, called a controlling subsystem, starts automatically when you load the system. Two
controlling subsystem configurations are supplied by IBM.

The first configuration includes the following subsystems:

- QBASE, the controlling subsystem, supports interactive, batch, and communications jobs.
« QSPL supports processing of spooling readers and writers.

* QSYSWRK supports various system functions, such as TCP/IP.

« QUSRWRK is the user work subsystem. It contains jobs that are started by systems to do work on behalf
of a user.

48 IBMi: Distributed database programming

QBASE automatically starts when the server is started. An automatically started job in QBASE starts
QSPL.

The second controlling subsystem configuration supplied is more complex. This configuration includes the
following subsystems:

« QCTL, the controlling subsystem, supports interactive jobs started at the console.
« QINTER supports interactive jobs started at other workstations.

« QCMN supports communications jobs.

« QBATCH supports batch jobs.

« QSPL supports processing of spooling readers and writers.

* QSYSWRK supports various system functions, such as TCP/IP.

* QUSRWRK is the user work subsystem. It contains jobs that are started by systems to do work on behalf
of a user.

If you change your configuration to use the QCTL controlling subsystem, it starts automatically when the
system is started. An automatically started job in QCTL starts the other subsystems.

You can change your subsystem configuration from QBASE to QCTL by changing the system value
QCTLSBSD (controlling subsystem) to QCTL on the Change System Value (CHGSYSVAL) command
and starting the system again.

You can change the IBM-supplied subsystem descriptions or any user-created subsystem descriptions
by using the Change Subsystem Description (CHGSBSD) command. You can use this command
to change the storage pool size, storage pool activity level, and the maximum number of jobs for the
subsystem description of an active subsystem.

Related concepts

Communications Management PDF

Managing work

Related reference

Change Subsystem Description (CHGSBSD) command
Change System Value (CHGSYSVAL) command

APPC subsystems

In a distributed relational database using a Systems Network Architecture (SNA) network,
communications jobs and interactive jobs are the main types of work an administrator must plan to
manage on each system.

Systems in the network start communications jobs to handle requests from a client. A client's
communications requests to other systems normally originate from interactive or batch jobs on the local
system.

Setting up an efficient work management environment for the distributed relational database network
systems can enhance your overall network performance by allocating system resources to the specific
needs of each server and client in the network.

When the IBMi licensed program is first installed, QBASE is the default controlling subsystem. As the
controlling subsystem, QBASE allocates system resources between the two subsystems QBASE and
QSPL. Interactive jobs, communications jobs, batch jobs, and so on, allocate resources within the QBASE
subsystem. Only spooled jobs are managed under a different subsystem, QSPL. This means you have

less control of system resources for handling communications jobs versus interactive jobs than you would
using the QCTL controlling subsystem.

Using the QCTL subsystem configuration, you have control of four additional subsystems for which the
system has allocated storage pools and other system resources. Changing the QCTL subsystems, or
creating your own subsystems gives you even more flexibility and control of your processing resources.

Distributed database programming 49

http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415406.pdf

Different system requirements for some of the systems in the Spiffy Corporation distributed relational
database network might require different work management environments for best network efficiency.
The following discussions show how the distributed relational database administrator can plan a work
management subsystem to meet the needs of each IBM i product in the Spiffy distributed relational
database network.

In the Spiffy Corporation system organization, a small dealership might be satisfied with a QBASE level

of control for the various jobs its users have on the system. For example, requests to a small dealership's
relational database from the regional client (to update dealer inventory levels for a shipment) are handled
as communications jobs. Requests from a dealership user to the regional server, to request a part not
currently in stock locally, are handled as interactive jobs on the dealership system. Both activities are
relatively small jobs because the dealership is smaller and handles fewer service orders and parts sales.
The coordination of resources in the QBASE subsystem provides the level of control this enterprise
requires for their interactive and communications needs.

A large dealership, on the other hand, probably manages its work through the QCTL subsystem, because
of the different workloads associated with the different types of jobs.

The number of service orders booked each day can be high, requiring a query to the local relational
database for parts or to the regional center server for parts not in stock at the dealership. This type of
activity starts interactive jobs on their system. The dealership also starts a number of interactive jobs
that are not distributed relational database related jobs, such as enterprise personnel record keeping,
marketing and sales planning and reporting, and so on. Requests to this dealership from the regional
center for performance information or to update inventory or work plans are communications jobs that
the dealership wants to manage in a separate environment. The large dealership can also receive a
request from another dealership for a part that is out of stock at the regional center.

For a large dealership, the QCTL configuration with separate subsystem management for QINTER
and QCMN provides more flexibility and control for managing its work environment. In this example,
interactive and communications jobs at the dealership system can be allocated more of the system
resources than other types of jobs. Additionally, if communications jobs are typically fewer than
interactive jobs for this system, resources can be targeted toward interactive jobs, by changing the
subsystem descriptions for both QINTER and QCMN.

A work management environment tailored to a Spiffy Corporation regional center perspective is also
important. In the Spiffy network, the regional center is a client to each dealership when it updates the
dealership inventory table with periodic parts shipment data, or updates the service plan table with new
or updated service plans for specific repair jobs. Some of these jobs can be run as interactive jobs (on the
regional system) in early morning or late afternoon when system usage is typically less, or run as batch
jobs (on the regional system) after regular business hours. The administrator can tailor the QINTER and
QBATCH subsystems to accommodate specific processing times and resource needs.

The regional center is also a server for each dealership when a dealership needs to query the regional
relational database for a part not in stock at the dealership, a service plan for a specific service job (such
as rebuilding a steering rack), or for technical bulletins or recall notifications since the last update to the
dealership relational database. These communications jobs can all be managed in QCMN.

However, a closer examination of some specific aspects of distributed relational database network use by
the KCOOO (Kansas City) regional center and the dealerships it serves suggests other alternatives to the
distributed relational database administrator at Kansas City.

The KCOO0O system serves several large dealerships that handle hundreds of service orders daily, and

a few small dealerships that handle fewer than 20 service orders each day. The remaining medium-

sized dealerships each handle about 100 service orders daily. One problem that presents itself to the
distributed relational database administrator is how to fairly handle all the communications requests to
the KCO0O system from other systems. A large dealership might control QCMN resources with its requests
so that response times and costs to other systems in the network are unsatisfactory.

The distributed relational database administrator can create additional communications subsystems so
each class of dealerships (small, medium, or large) can request support from the server and generally
receive better response. By tailoring the subsystem attributes, prestart job entries, communications work

50 IBMi: Distributed database programming

entries, and routing entries for each subsystem description, the administrator controls how many jobs can
be active on a subsystem and how jobs are processed in the subsystem.

The administrator can add a routing entry to change the class (and therefore the priority) of a DRDA/DDM
job by specifying the class that controls the priority of the job and by specifying QCNTEDDM on the
CMPVAL parameter, as in the following example:

ADDRTGE SBSD(QCMN) SEQNBR(280) CLS(QINTER) CMPVAL('QCNTEDDM' 37)

The administrator can also add a prestarted job for DRDA/DDM job by specifying QCNTEDDM as the
prestarted job, as in the following example:

ADDPJE SBSD(QCMN) PGM(QCNTEDDM)

Related concepts
Communications Management PDF
Managing work

TCP/IP subsystems
By default, the TCP/IP server prestart jobs used for TCP/IP connections run in the QUSRWRK subsystem.

QUSRWRK is the user work subsystem. It contains jobs that are started by systems to do work on behalf
of a user. The listener job that dispatches work to the prestart jobs runs in QSYSWRK.

User databases on independent auxiliary storage pools

The user can create additional IBM i relational databases by configuring independent auxiliary storage
pools (independent ASPs) on the system. Each independent auxiliary storage pool group is a relational
database.

In this topic collection, independent auxiliary storage pool groups are called user databases. They consist
of all the database objects that exist on the independent auxiliary storage pool group disks. Additionally,
all database objects in the system database of the IBM i operating system to which the independent
auxiliary storage pool is varied on are logically included in a user database. However, from a commitment
control perspective, the system database is treated differently.

There are a number of rules associated with the creation and use of user databases, besides those
imposed by the commitment control considerations just mentioned. One example is that you cannot

use an Advanced Program-to-Program Communication (APPC) protected distributed unit of work (DUW)
conversation to connect to a database from a client which has been set to a user database (an auxiliary
storage pool [ASP] group) for the current thread. Another example is that the name of any schema created
in a user database must not already exist in that user database or in the associated system database. For
more information about such restrictions, see the SQL reference topic.

« There are certain DRDA-related objects that cannot be contained in user databases. DDM user exit
programs must reside in libraries in the system database, as must any Application Requester Driver
programs.

- The process of varying on a user database causes the relational database (RDB) directory to be
unavailable for a period of time, which can cause attempts by a DRDA client or server to use the
directory to be delayed or to timeout. The exposure to having directory operations timeout is much
greater if multiple databases are varied on at the same time. The first time a user database is varied
on, an attempt is made by the system to add a directory entry for that database. If the directory is
unavailable due to a concurrent vary on operation, the addition fails and the entry must be manually
added.

- Other considerations in the use of user databases concern configuration of entries in the RDB directory.
One of the rules for naming user databases is that user RDB names cannot match the system
name specified in the network attributes (as displayed by the Display Network Attributes (DSPNETA)
command).

Distributed database programming 51

http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415406.pdf

« Local user database entries in the RDB directory are added automatically the first time that the
associated databases are varied on. They are created using the *IP protocol type and with the remote
location designated as LOOPBACK. LOOPBACK indicates that the database is on the same system as the
directory. It is highly suggested that user databases that are intended to be switched among systems be
configured to have a dedicated IP address associated with them. If the switchable database does not
have a dedicated IP address, then whenever it is switched, you must manually update its directory entry
on all the systems that reference that database.

« Once user databases are varied on, the system must verify RDB hames on incoming requests to match
either the system database or a user databases. If clients were running against invalid RDB names they
must be changed.

Related concepts

Managing application CRG takeover IP addresses

Troubleshooting transactions and commitment control

Using the relational database directory

The IBM i operating system uses the relational database directory to define the relational database
names that can be accessed by system applications and to associate these relational database names
with their corresponding network parameters. The system also uses the directory to specify if the
connection uses Systems Network Architecture (SNA) or IP.

Related reference
Display Network Attributes (DSPNETA) command
SQL reference

Using the relational database directory

The IBM i operating system uses the relational database directory to define the relational database
names that can be accessed by system applications and to associate these relational database names
with their corresponding network parameters. The system also uses the directory to specify if the
connection uses Systems Network Architecture (SNA) or IP.

The relational database directory allows a client to accept a relational database name from the
application and translate this name into the appropriate Internet Protocol (IP) address or host name

and port, or the appropriate Systems Network Architecture network identifier and logical unit (LU)

name values for communications processing. As of V5R2, the RDB directory is also used to specify the
user's preferred outbound connection security mechanism. The relational database directory also allows
associating an ARD program with a relational database name.

Each IBM i operating system in the distributed relational database network must have a relational
database directory configured. There is only one relational database directory on a system. Each client
in the distributed relational database network must have an entry in its relational database directory for
its local relational database and one for each remote and local user relational database that the client
accesses. Any system in the distributed relational database network that acts only as a server does not
need to include the relational database names of other remote relational databases in its directory.

The relational database name assigned to the local relational database must be unique. That is, it should
be different from any other relational database in the network. Names assigned to other relational
databases in the directory identify remote relational databases, or local user databases. The names of
remote RDBs must match the name an server uses to identify its local system database or one of its
user databases, if configured. If the local system RDB name entry at an server does not exist when it

is needed, one will be created automatically in the directory. The name used will be the current system
name displayed by the Display Network Attributes (DSPNETA) command.

Related reference
Display Network Attributes (DSPNETA) command

52 IBMi: Distributed database programming

Working with the relational database directory

Use these instructions to work with the relational database directory.
Related reference

Add Relational Database Directory Entry (ADDRDBDIRE) command
Change Relational Database Directory Entry (CHGRDBDIRE) command
Display Relational Database Directory Entry (DSPRDBDIRE) command
Remove Relational Database Directory Entry (RMVRDBDIRE) command
Work with Relational Database Directory Entry (WRKRDBDIRE) command

Adding an entry for SNA usage

The Add RDB Directory Entxry (ADDRDBDIRE) display is shown here. You can use the Add
Relational Database Directory Entry (ADDRDBDIRE) command to add an entry to the
relational database directory.

Add RDB Directory Entry (ADDRDBDIRE)

Type choices, press Enter.

Entry:
Relational database MP311
Relational database alias . . *NONE
Remote location:
Name or address MP311
Type *SNA *SNA, *IP

In this example, an entry is made to add a relational database named MP311 for a system with a

remote location name of MP311 to the relational database directory on the local system. For SNA
connections, the Relational database alias field must remain *NONE, the default value. The remote
location name does not have to be defined before a relational database directory entry using it is created.
However, the remote location name must be defined before the relational database directory entry is
used in an application. The relational database name (RDB) parameter and the remote location name
(RMTLOCNAME) parameter are required for the Add Relational Database Directory Entry
(ADDRDBDIRE) command. By default, the second element of the RMTLOCNAME parameter is *SNA. The
descriptive text (TEXT) parameter is optional. As shown in this example, it is a good idea to make the
relational database name the same as the system name or location name specified for this system in your
network configuration. This can help you identify a database name and correlate it to a particular system
in your distributed relational database network, especially if your network is complex.

To see the other optional parameters on this command, press F9 on the Add RDB Directory Entry
(ADDRDBDIRE) display. These optional parameters are shown here.

Add RDB Directory Entry (ADDRDBDIRE)

Type choices, press Enter.

Entry:

Relational database MP311

Relational database alias . . *NONE
Remote location

Name or address MP311

Type *SNA *SNA, *IP
Device:

APPC device description . . . xLOC Name, =LOC
Local location *L0C Name, *LOC, *NETATR
Remote network identifier . . . *LOC Name, *LOC, *NETATR, *NONE
Mode *NETATR Name, *NETATR
Transaction program *DRDA Character value, *DRDA
Text oL 'Oak Street Dealership'

Distributed database programming 53

The system provides *SNA as the default value for the following additional Add Relational Database
Directoxry Entry (ADDRDBDIRE) command parameters:

« Device (DEV)

« Local location (LCLLOCNAME)

« Remote network identifier (RMTNETID)
« Mode (MODE)

« Transaction program (TNSPGM)

Notes:

1. For SNA connections, the relational database alias field must be left with its *NONE default value.
2. The transaction program name parameter in the IBM i operating system is TNSPGM. In SNA, it is TPN.

3. If you use the defaults with Advanced Program-to-Program Communication (APPC), the system
determines the device, the local location, and the remote network identifier that will be used.
The mode name defined in the network attributes is used and the transaction program name for
Distributed Relational Database Architecture (DRDA) support is used. If you use the defaults with
Advanced Peer-to-Peer Networking (APPN), the system ignores the device (DEV) parameter, and uses
the local location name, remote network identifier, and mode name defined in the network attributes.

You can change any of these default values on the ADDRDBDIRE command. For example, you might have
to change the TNSPGM parameter to communicate with a DB2 for VM server. By default for DB2 for

VM support, the transaction program name is the name of the DB2 for VM database to which you want

to connect. The default TNSPGM parameter value for DRDA (*DRDA) is X'07F6C4C2'. QCNTEDDM and
DB2DRDA also map to X'07F6C4C2".

Related tasks

Setting QCNTSRVC as a transaction program name on a DB2 for VM client
Change the UCOMDIR NAMES file to specify QCNTSRVC in the TPN tag.

Related reference

Add Relational Database Directory Entry (ADDRDBDIRE) command

Setting QCNTSRVC as a transaction program name on a Db2 for i application requester

Specify the QCNTSRVC on the TNSPGM parameter of the Add Relational Database Directory

Entxy (ADDRDBDIRE) or Change Relational Database Directory Entry (CHGRDBDIRE)
command.

Setting QCNTSRVC as a transaction program name on a DB2 for z/OS client
Update the SYSIBM.LOCATIONS table to specify QCNTSRVC in the TPN column for the row that contains
the RDB-NAME of the Db2 for i server.

Setting QCNTSRVC as a transaction program name on a DB2 for Linux, UNIX, and Windows client
If you are working with DB2 for Linux, UNIX, and Windows and would like instructions on how to set up
the TPN on this family of products, there is a Web page to help you.

Adding an entry for TCP/IP usage

The Add RDB Directory Entxy (ADDRDBDIRE) display demonstrates how the panel changes if you
enter *IP as the second element of the RMTLOCNAME parameter, and what typical entries look like for an
RDB that uses TCP/IP.

Although usage of the Relational database alias field is enabled for connections that use TCP/IP, this first
TCP/IP example does not specify an alias.

54 IBMi: Distributed database programming

Add RDB Directory Entry (ADDRDBDIRE)

Type choices, press Enter.

Entry:
Relational database > MP311
Relational database alias . . *NONE
Remote location:
Name or address MP311.spiffy.com
Type>x%IP *SNA, *IP
Port number or service program *DRDA
Remote authentication method:
Preferred method *USRENCPWD *USRENCPWD, *USRID...
Allow lower authentication . . *ALWLOWER *ALWLOWER, *NOALWLOWER
Encryption algorithm *DES *DES, *AES
Secure connection *NONE *NONE, *SSL

More. ..
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Specifying a relational database alias name

This example shows the addition of a directory entry that specifies an RDB alias name. This allows
networks that have relational databases of the same name to uniquely identify each in a Distributed
Relational Database Architecture (DRDA) environment.

When an entry using an alias has been added to the RDB directory, the entry is identified by its alias name.
To display or delete the entry, you must specify the alias name.

The following display has RDBALS specified as the relational database alias name.

Add RDB Directory Entry (ADDRDBDIRE)

Type choices, press Enter.

Entry:
Relational database > TEST
Relational database alias . . RDBALS
Remote location:
Name or address MP311.spiffy.com
Type>%IP *SNA, *IP
Port number or service program *DRDA
Remote authentication method:
Preferred method *USRENCPWD *USRENCPWD, *USRID..
Allow lower authentication . . *ALWLOWER *ALWLOWER, *NOALWLOWER
Encryption algorithm *DES *DES, *AES
Secure connection *NONE *NONE, *SSL

More. ..
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

When you add an entry for an alias using the Work with Relational Database Directory Entry
(WRKRDBDIRE) command and option 1, you should first put the real RDB name in the Entry field, and
press Enter. Then, after filling in the other fields including the alias name in the Relational database alias
field, you will see the alias name replace the real RDB name in the Entry field of the list of RDB entries.
You must change Type for the remote location name from *SNA to *IP. You cannot add an alias to a
relational database directory entry that specifies *LOCAL as the remote location name.

When removing a relational database entry with the Remove Relational Database Directory
Entxry (RMVRDBDIRE) command, the alias name, rather than the real relational database name, is used
to specify which entry to remove.

If you identify a remote database by an alias, you cannot also refer to it by its real name in the same
directory.

Distributed database programming 55

Instead of specifying MP311.spiffy.com for the RMTLOCNAME parameter, you can specify the IP address
(for example, 9.5.25.176). For IP connections to another IBM i environment, leave the PORT parameter
value set at the default, *DRDA, unless you need to use port 447. For example, you might have port 447
configured for transmission using IP Security Architecture (IPSec). For connections to an IBM DB2 server
on some other platform, for example, you might need to set the port to a number such as 50000. Refer
to the product documentation for the system you are using. If you have a valid service name defined for
a DRDA port at a certain location, you can also use that name instead of a number. However, on the IBM i
operating system, *DRDA is preferred to the use of the DRDA service name.

Adding an entry for an application requester driver

To specify communication information and an application requester driver (ARD) program on the

Add Relational Database Directory Entry (ADDRDBDIRE) command prompt, press F9 (All
parameters) and page down.

When the ARD program will not use the communication information specified on the ADDRDBDIRE
command (which is normally the case), use the special value *ARDPGM on the RMTLOCNAME parameter.
The ARD program must reside in a library in the system database (ASP numbers 1-32).

Related reference
Add Relational Database Directory Entry (ADDRDBDIRE) command

Using the WRKRDBDIRE command

The Woxrk with RDB Directory Entries display provides you with options to add, change, display,
or remove a relational database directory entry.

Work with Relational Database Directory Entries
Position to

Type options, press Enter.
1=Add 2=Change 4=Remove 5=Display details 6=Print details

Remote
Option Entry Location Text
_ KC00O KCO0O Kansas City region database
_ MPOOO *LOCAL Minneapolis region database
_ MP101 MP101 Dealer database MP101
_ MP102 MP102 Dealer database MP102
_ MP211 MP211 Dealer database MP211
_ MP215 MP215 Dealer database MP215
4 MP311 MP311 Dealer database MP311
_ MP415 MP415 Dealer database MP415
_ MP515 MP515 Dealer database MP515
_ MP615 MP615 Dealer database MP615
_ MP715 MP715 Dealer database MP715

More. ..
F3=Exit F5=Refresh F6=Print list F12=Cancel F22=Display entire field

As shown on the display, option 4 can be used to remove an entry from the relational database directory
on the local system. If you remove an entry, you receive another display that allows you to confirm the
remove request for the specified entry or select a different relational database directory entry. If you use
the Remove Relational Database Directory Entry (RMVRDBDIRE) command, you have the
option of specifying a specific relational database name, generic names, all directory entries, or just the
remote entries.

You have the option on the Work with Relational Database Directory Entries display to display the details
of an entry. Output from the Work with Relational Database Entries display is sent to a display. However,
if you use the Display Relational Database Directory Entry (DSPRDBDIRE) command,

you can send the output to a printer or an output file. The relational database directory is not an

IBM i object, so using an output file provides a means of backup for the relational database directory.

For more information about using the Display Relational Database Directory Entries
(DSPRDBDIRE) command with an output file for backing up the relational database directory, see Saving
and restoring relational database directories.

56 IBM i: Distributed database programming

You have the option on the Work with RDB Directory Entries display to change an entry in the
relational database directory. You can also use the Change Relational Database Directory
Entry (CHGRDBDIRE) command to make changes to an entry in the directory. You can change any
of the optional command parameters and the remote location name of the system. You cannot change
a relational database name for a directory entry. To change the name of a relational database in the
directory, remove the entry for the relational database and add an entry for the new database name.

Note: If the remote location was changed in the relational database directory entry, then the remote
journal has to be removed using the Remove Remote Journal (RMVRMTIRN) command orthe
QjoRemoveRemoteJournal API and readded using the Add Remote Journal (ADDRMTJRN)
command or the QjoAddRemoteJournal API. If the remote location type, or authentication, or
something else was changed, then remote journaling just needs to be ended using the Change Remote
Journal (CHGRMTJRN) command or the QjoChangeJournalState API and restarted by also using
the Change Remote Journal (CHGRMTJIRN) command or the QjoChangeJournalState API. To
get your change used for distributed files, you need to delete and re-create your node group, and then
re-create the file.

Related tasks

Saving and restoring relational database directories
The relational database directory is not an IBM i object. Instead, it is made up of files that are opened by
the system at initial program load (IPL) time.

Related reference

Add Remote Journal (ADDRMTJIRN) command

Change Relational Database Directory Entry (CHGRDBDIRE) command
Change Remote Journal (CHGRMTJRN) command

Display Relational Database Directory Entry (DSPRDBDIRE) command
Remove Remote Journal (RMVRMTIRN) command

Remove Relational Database Directory Entry (RMVRDBDIRE) command

The *LOCAL directory entry

The directory entry containing *LOCAL is unique in that there is only one such entry in the directory, and
that it specifies the name of the local system database.

The associated RDB name can be used in the SQL statement CONNECT TO xxx (where xxx is the local
system name) to connect to the local database. The effect of CONNECT TO xxx is equivalent to using the
SOQL statement CONNECT RESET.

If you want to make a DRDA connection to the local system database, such as for program testing,
there are two special RDB names that can be used for that purpose: ME and MYSELF. For example, a
programmer adds a directory entry with an RDB name of ME, with type of *IP, and with the Remote
Location name of LOOPBACK. The programmer can then, in a program, run an SQL CONNECT TO ME
statement and establish a sockets DRDA connection to the local system. However, general use of these
RDB names is discouraged and they are documented only to warn that unexpected behavior can result
from using them in some situations.

However, if you must change the name of the local RDB entry, the procedure includes doing the remove
and add operation. But there are special considerations for removing the local entry, because that entry
contains some system-wide DRDA attribute information. If you try to remove the entry, you will get
message CPA3E01 (Removing or changing *LOCAL directory entry might cause loss of configuration data
(C G)), and you will be given the opportunity to cancel (C) the operation or continue (G). The message
text goes on to tell you that the entry is used to store configuration data entered with the Change

DDM TCP/IP Attributes (CHGDDMTCPA) command. If the *LOCAL entry is removed, configuration
data might be destroyed, and the default configuration values will be in effect. If the default values are
not satisfactory, configuration data will have to be re-entered with the CHGDDMTCPA command. Before
removing the entry, you might want to record the values specified in the CHGDDMTCPA command so that
they can be restored after the *LOCAL entry is deleted and added with the correct local RDB name.

You cannot add an alias to a relational database directory entry that specifies *LOCAL as the remote
location name. Message CPD3EC8 is displayed if you attempt to do so.

Distributed database programming 57

Server side RDB aliases are supported over TCP/IP. To create a server side RDB aliases, use the RDB
name from the *LOCAL entry, the desired alias name, the remote location LOOPBACK and type *IP. The
DRDA server jobs will then accept incoming requests against the alias name.

Add RDB Directory Entry (ADDRDBDIRE)

Type choices, press Enter.

Entry:
Relational database > LCLRDB
Relational database alias . . LCLALS
Remote location:
Name or address LOOPBACK
Type > xIP *SNA, *IP
Port number or service program *DRDA
Remote authentication method:
Preferred method *USRENCPWD *USRENCPWD, *USRID...
Allow lower authentication . . *ALWLOWER *ALWLOWER, *NOALWLOWER
Encryption algorithm *DES *DES, *AES
Secure connection *NONE *NONE, *SSL

More. ..
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Related reference
Change DDM TCP/IP Attributes (CHGDDMTCPA) command

Directory entries for user databases on independent auxiliary storage pools

For a system with only one database (that is, without independent auxiliary storage pools (independent
ASPs) configured), the *LOCAL entry refers to the single local database. For systems with multiple
databases (one system database and one or more user databases), the *LOCAL entry refers to the system
database.

The local user databases are represented by entries similar to remote *IP entries. The main difference

is the Remote location field. In cases where the database cannot be switched to a different system, this
field normally contains the word LOOPBACK. LOOPBACK represents the IP address of the host system.

If the database can be switched, it is suggested that the user configure the system in such a way that

a specific IP address is associated with the database regardless of the system to which it is attached.

For an explanation on how dedicated IP address configuration is done, see the Managing application CRG
takeover IP addresses topic. In that case, the IP address is used in the Remote location field.

If LOOPBACK is used for a switchable database, then whenever it is switched from the local system, the
user will have to manually change the directory entry to replace LOOPBACK with the IP address of the
new system to which it is attached, and then change it back to LOOPBACK when the database is switched
back.

Related reference
Managing application CRG takeover IP addresses

Example: Setting up a relational database directory

The Spiffy Corporation network example illustrates how the relational database directory is set up and
used on systems in a distributed relational database network.

The example assumes the use of Advanced Program-to-Program Communication (APPC) for
communications, as opposed to TCP/IP, which would be simpler to set up. However, some elements of
the example are protocol-independent. The RDB directory entries needed for APPC use are also needed
in a TCP/IP network, but the parameters differ. Host names or IP addresses and port identifications would
replace logical unit (LU) names, device descriptions, modes, TPNs, and so forth.

A simple relationship to consider is the one between two regional offices as shown in the following figure:

58 IBMi: Distributed database programming

hAFOO0 HC o0

Figure 20. Relational database directory set up for two systems

The relational database directory for each regional office must contain an entry for the local relational
database and an entry for the remote relational database because each system is both a client and a
server. The commands to create the relational database directory for the MPOOO system are:

ADDRDBDIRE RDB (MPOOO) RMTLOCNAME (xLOCAL) TEXT('Minneapolis region database')
ADDRDBDIRE RDB(KCO0O) RMTLOCNAME (KCOOO) TEXT('Kansas City region database')

In the preceding example, the MPOOO system identifies itself as the local relational database by
specifying *LOCAL for the RMTLOCNAME parameter. There is only one relational database on aIBM i
platform. You can simplify identification of your network relational databases by making the relational
database names in the RDB directory the same as the system name. The entry for the local location can
have the same name as the local system name, and the entry for the remote location name can have the
same name as the remote system name.

Note: The system name is specified on the SYSNAME parameter of the Change Network Attributes
(CHGNETA) command. The local system is identified on the LCLLOCNAME parameter of the CHGNETA
command during communications configuration. Remote locations using SNA (APPC) are identified
with the RMTCPNAME parameter on the Create Controller Description (APPC) (CRTCTLAPPC) command
during communications configuration. Using the same names for system names, network locations, and
database names can help avoid confusion, particularly in complex networks.

The corresponding entries for the KCO0OO system relational database directory are:

ADDRDBDIRE RDB (KCOOO) RMTLOCNAME (xLOCAL) TEXT('Kansas City region database')
ADDRDBDIRE RDB(MPOOO) RMTLOCNAME (MPGOO) TEXT('Minneapolis region database')
A more complex example to consider is that of a regional office to its dealerships. For example, to access

relational databases in the network shown in the following figure, the relational database directory for the
MPO0OO0O0 system must be expanded to include an entry for each of its dealerships.

Distributed database programming 59

fd PO

"

W v
hAF 101 MF 10 ===== * WFz01

Figure 21. Relational database directory setup for multiple systems

A sample of the commands used to complete the MP0OOQO relational database directory to include all its
dealer databases is as follows:

PGM

ADDRDBDIRE RDB (MPOOO) RMTLOCNAME (xLOCAL) +
TEXT('Minneapolis region database')
ADDRDBDIRE RDB(KCOOO) RMTLOCNAME (KC0O00)
TEXT('Kansas City region database')
ADDRDBDIRE RDB(MP101) RMTLOCNAME (MP101)
TEXT('Dealer database MP101')

ADDRDBDIRE RDB(MPOO2) RMTLOCNAME (MP110)
TEXT('Dealer database MP110')

ADDRDBDIRE RDB(MP215) RMTLOCNAME (MP201)
TEXT('Dealer database MP201')
ENDPGM

In the preceding example, each of the region dealerships is included in the Minneapolis relational
database directory as a remote relational database.

Because each dealership can serve as a client to MPO0OO and to other dealership servers, each dealership
must have a relational database directory that has an entry for itself as the local relational database, and
have the regional office and all other dealers as remote relational databases. The database administrator
has several options to create a relational database directory at each dealership system.

The most time-consuming and error-prone method is to create a relational database directory at each
system by using the Add Relational Database Directory Entry (ADDRDBDIRE) command to create each
directory entry on all systems that are part of the MPOOO distributed relational database network.

60 IBM i: Distributed database programming

A better alternative is to create a control language (CL) program like the one shown in the preceding
example for the MP0O0O system. The distributed relational database administrator can copy this CL
program for each of the dealership systems. To customize this program for each dealership, the database
administrator changes the remote location name of the MPO0OO system to MP00O, and changes the
remote location name of the local dealership to *LOCAL. The distributed relational database administrator
can distribute the customized CL program to each dealership to be run on that system to build its unique
relational database directory.

A third method is to write a program that reads the relational database directory information sent to an
output file as a result of using the Display Relational Database Directory Entry (DSPRDBDIRE) command.
This program can be distributed to the dealerships, along with the output file containing the relational
database directory entries for the MPOOO system. Each system can read the MP0OOO output file to create
a local relational database directory. The Change Relational Database Directory Entry (CHGRDBDIRE)
command can then be used to customize the MP0OOO system directory for the local system.

Related tasks

Saving and restoring relational database directories
The relational database directory is not an IBM i object. Instead, it is made up of files that are opened by
the system at initial program load (IPL) time.

Related reference

Add Relational Database Directory Entry (ADDRDBDIRE) command
Change Relational Database Directory Entry (CHGRDBDIRE) command
Create Controller Description (APPC) (CRTCTLAPPC) command
Display Network Attributes (DSPNETA) command

Display Relational Database Directory Entry (DSPRDBDIRE) command

Setting up security

Distributed Relational Database Architecture (DRDA) security is covered in the Security topic, but for the
sake of completeness, it is mentioned here as a consideration before using DRDA, or in converting your
network from the use of Advanced Program-to-Program Communication (APPC) to TCP/IP.

Security setup for TCP/IP is quite different from what is required for APPC. One thing to be aware of is

the lack of the secure location concept that APPC has. Because a TCP/IP server cannot fully trust that a
client system is who it says it is, the use of passwords on connection requests is more important. To make
it easier to send passwords on connection requests, the use of server authentication lists associated

with specific user profiles has been introduced with TCP/IP support. Entries in server authentication lists
can be maintained by use of the xxxSVRAUTE commands (where xxx represents ADD, CHG, and RMV)
described in “Security” on page 72. An alternative to the use of server authentication entries is to use

the USER/USING form of the SQL CONNECT statement to send passwords on connection requests.

Kerberos support provides another security option if you are using TCP/IP. Network authentication service
supports Kerberos protocols and can be used to configure for Kerberos.

Setup at the server side includes deciding and specifying what level of security is required for inbound
connection requests. For example, should unencrypted passwords be accepted? The default setting
is that they are. The default setting can be changed by use of the Change DDM TCP/IP Attributes
(CHGDDMTCPA) command.

Related concepts

Control language

Related tasks

Configuring network authentication service

Related reference

Change DDM TCP/IP Attributes (CHGDDMTCPA) command

Distributed database programming 61

Setting up the TCP/IP server

If you own a Distributed Relational Database Architecture (DRDA) server that will be using the TCP/IP
protocol, you need to set up the DDM TCP/IP server.

Setting up the TCP/IP server can be as simple as ensuring that it is started when it is needed, which can
be done by running the following command if you want it to remain active at all times:

CHGDDMTCPA AUTOSTART (*YES)

But there are other parameters that you might want to adjust to tune the server for your environment.
These include the initial number of prestart jobs to start, the maximum number of jobs, threshold when to
start more, and so forth.

You might want to set up a common user profile for all clients to use when connecting, or set up a set of
different user profiles with different levels of security for different classes of remote users. You can then
use the Add Server Authentication Entry (ADDSVRAUTE) command at the client to map each user's profile
name at the client to what user profile they will run under at the server.

Related concepts

Client security in a TCP/IP network

Different connectivity scenarios call for using different levels of authentication. Therefore, an
administrator can set the lowest security authentication method required by the client when connecting
to a server by setting the preferred authentication method field in each RDB directory entry.

Managing the TCP/IP server

The DRDA and DDM TCP/IP server does not typically require any changes to your existing system
configuration. At some time, you might want to change the way the system manages the server jobs

to better meet your needs, to solve a problem, to improve the system performance, or to look at the jobs
on the system.

Related reference
Add Server Authentication Entry (ADDSVRAUTE) command

Setting up SQL packages for interactive SQL
This topic applies only to server systems that are not running IBM i.

If either of the following items is true, then you need to ensure that SQL packages are created at the
systems:

« If you have the IBM DB2 Query Manager and SQL Development Kit for i licensed program and plan to
use the interactive SQL function of that product

- If you plan to connect to DRDA servers other than IBM i that use TCP/IP from a pre-V5R1 0S/400°
client, or to ones that do not have two-phase commit capability

Interactive SQL does not require SQL packages for IBM i. Normally, SQL packages are created
automatically for interactive SQL users at a server system that does not run IBM i. However, a problem
can occur because the initial connection for interactive SQL is to the local system, and that connection is
protected by two-phase commit protocols. If a subsequent connection is made to a system that is only
one-phase commit capable, or if TCP/IP is used from a pre-V5R1 0S/400 client, then that connection

is read-only. When an attempt is made to automatically create a package over such a connection, it

fails because the creation of a package is considered an update, and cannot be done over a read-only
connection.

The solution to this is to end the connection to the local database before connecting to the remote server
system. This can be done by doing a RELEASE ALL command followed by a COMMIT. Then the connection
to the remote system can be made and because it is the first connection, updates can be made over it.

When you start interactive SQL, you must specify a commitment control level other than *NONE. Also,
the user ID that you use to connect with must have the proper authority to create an SQL package on
the server. If you receive an SQLSTATE of 42501 on the connection attempt, you might not have package
creation authority.

62 IBMi: Distributed database programming

Related reference

Connection failures specific to interactive SQL
Sometimes when you are running a CONNECT statement from interactive SQL, a general SQ30080
message is given.

Setting up DDM files

The IBM i implementation of Distributed Relational Database Architecture (DRDA) support uses
Distributed Data Management (DDM) conversations for communications. Because of this, you can use
DDM in conjunction with distributed relational database processing.

You can use DDM to submit remote commands to a server, copy tables from one system to another, and
process nondistributed relational database work on another system.

With distributed relational database, information the client needs to connect to a database is provided in
the relational database directory. When you use DDM, you must create a separate DDM file for each file
you want to work with on the server. The DDM file is used by the application on the client to identify a
remote file on the server and the communications path to the server.

As of V5R2, you can also create DDM files with a reference to an RDB directory entry. Some database
administration tasks discussed in Managing a distributed relational database use DDM to access remote
files. A DDM file is created using the Create Distributed Data Management File (CRTDDMF) command.
You can create a DDM file before the file and communication path named in the file have been created.
However, the file named in the DDM file and the communications information must be created before the
DDM file is used by an application.

The following example shows one way a DDM file can be created:

CRTDDMF FILE (TEST/KC105TST) RMTLOCNAME (KC105)
RMTFILE (SPIFFY/INVENT)

If the DDM file access in the example is to be over TCP/IP, you must specify *IP in the second element of
the RMTLOCNAME parameter.

This command creates a DDM file named KC105TST and stores it in the TEST library on the client. This
DDM file uses the remote location KC105 to access a remote file named INVENT, which is stored in the
SPIFFY library on the server system.

You can use options on the Work with DDM Files display to change, delete, display or create DDM files.

Related concepts

DRDA and DDM administration

As an administrator for a distributed relational database, you are responsible for work that is done on
several systems.

Operating remote systems
As an administrator in a distributed relational database, you might have to operate a remote IBM i
product.

Related reference
Create Distributed Data Management File (CRTDDMF) command

Loading data into tables in a distributed relational database

Applications in the distributed relational database environment operate on data stored in tables. In
general, applications are used to query a table for information; to insert, update, or delete rows of a table
or tables; or to create a new table. Other situations occur where data on one system must be moved to
another system.

Distributed database programming 63

Loading new data into the tables of a distributed relational database

You load data into a table by entering each data item into the table. On the IBM i operating system, you
can use SQL, the Db2 for i Query Management function, or the data file utility portion of IBM i Application
Development Tools to create applications that insert data into a table.

Loading data into a table using SQL
A simple method of loading data into a table is to use an SQL application and the SQL INSERT operation.

Consider a situation in which a Spiffy regional center needs to add inventory items to a dealership's
inventory table on a periodic basis as regular inventory shipments are made from the regional center to
the dealership.

INSERT INTO SPIFFY.INVENT
(PART, DESC, QTY, PRICE)
VALUES
('1234567', 'LUG NUT', 25, 1.15)

The preceding statement inserts one row of data into a table called INVENT in an SQL collection named
SPIFFY.

For each item on the regular shipment, an SQL INSERT statement places a row in the inventory table
for the dealership. In the preceding example, if 15 different items were shipped to the dealership, the
application at the regional office could include 15 SQL INSERT statements or a single SQL INSERT
statement using host variables.

In this example, the regional center is using an SQL application to load data into a table at a server.
Runtime support for SQL is provided in the IBM i licensed program, so the server does not need the IBM
DB2 Query Manager and SQL Development Kit for i licensed program. However, IBM DB2 Query Manager
and SQL Development Kit for i is required to write the application.

Related concepts
SQL programming
Related reference
SQL reference

Manipulating data in tables and files using the IBM i query management function
The IBMi licensed program provides a Db2 for i query management function that allows you to
manipulate data in tables and files. A query is created using an SQL query statement.

You can run the query through CL commands or through a query callable interface in your application
program. Using the query management function, you can insert a row of data into a table for the inventory
updates described in “Loading data into a table using SQL” on page 64 as follows.

Create a source member INVLOAD in the source physical file INVLOAD and the SQL statement:

INSERT INTO SPIFFY/INVENT
(PART, DESC, QTY, PRICE)
VALUES
(&PARTVALUE, &DESCVALUE, &QTYVALUE, &PRICEVALUE)

Use a CL command to create a query management query object:
CRTQMQRY QMQRY (INVLOAD) SRCFILE(INVLOAD) SRCMBR(INVLOAD)

The following CL command places the INSERT SQL statement results into the INVENT table in the SPIFFY
collection. Use of variables in the query (&PARTVALUE, &DESCVALUE, and so on) allows you to enter the
desired values as part of the STRQMQRY call, rather than requiring that you create the query management
query again for each row.

STRQMQRY QMQRY (INVLOAD) RDB(KCGOO)
SETVAR((PARTVALUE '1134567'') (DESCVALUE '''Lug Nut''")
(QTYVALUE 25) (PRICEVALUE 1.15))

64 IBMi: Distributed database programming

The query management function is dynamic, which means its access paths are built at run time instead
of when a program is compiled. For this reason, the Db2 for i query management function is not as
efficient for loading data into a table as an SQL application. However, you need the IBM DB2 Query
Manager and SQL Development Kit for i product to write an application. Runtime support for SQL and
query management is part of the IBM i licensed program.

Related concepts
Query Management Programming PDF

Entering data, update tables, and make inquiries using data file utility

The data file utility (DFU), which is part of the IBM i Applications Development Tools package available
from IBM, is a program builder that helps you create programs to enter data, update tables, and make
inquiries.

You do not need a programming language to use DFU. Your data entry, maintenance, or inquiry program

is created when you respond to a series of displays. An advantage in using DFU is that its generic nature
allows you to create a database update program to load data to a table faster than you can by using
programming languages, such as SQL. You can work with data on a remote system by using DFU with DDM
files, or by using display station pass-through to run DFU at the server.

Moving data from one system to another

A number of situations occur in enterprise operations that might require moving data from one IBM i
operating system to another.

Here is a situation that might require moving data from one system to another: a new dealership

opens in a region, and some clients from one or two other dealerships might be transferred to the

new dealership as determined by client addresses. Perhaps a dealership closed or no longer represents
Spiffy Corporation sales and service. That dealer's inventories and required service information must be
allocated to either the regional office or other area dealerships. Perhaps a dealership has grown to the
extent that it needs to upgrade its system, and the entire database must be moved to the new system.

Here are some alternatives for moving data from one system to another:

« User-written application programs
Interactive SQL (ISQL)
Db2 for i Query Management functions

Copy to and from tape devices

« Copy file commands with DDM

« The network file commands

- IBMisave and restore commands

Creating a user-written application program
A program compiled with distributed unit of work (DUW) connection management can connect to a
remote database and a local database and FETCH from one to INSERT into the other to move the data.

By using multirow FETCH and multirow INSERT, blocks of records can be processed at one time.
Commitment control can be used to allow checkpoints to be performed at points during the movement of
the data to avoid having to completely start the copy again in case of a failure.

Querying a database using interactive SQL
Using the SQL SELECT statement and interactive SQL, you can query a database on another IBM i
operating system for the data that you need in order to create or update a table on the local system.

The SELECT statement allows you to specify the table name and columns containing the desired data, and
selection criteria or filters that determine which rows of data are retrieved. If the SELECT statement is
successful, the result is one or more rows of the specified table.

In addition to getting data from one table, SQL allows you to get information from columns contained in
two or more tables in the same database by using a join operation. If the SELECT statement is successful,

Distributed database programming 65

http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415703.pdf

the result is one or more rows of the specified tables. The data values in the columns of the rows returned
represent a composite of the data values contained in specified tables.

Using an interactive SQL query, the results of a query can be placed in a database file on the local system.
If a commitment control level is specified for the interactive SQL process, it applies to the server; the
database file on the local system is under a commitment control level of *NONE.

Interactive SQL allows you to do the following things:

- Create a new file for the results of a select.
 Replace an existing file.

- Create a new member in afile.

» Replace a member.

« Append the results to an existing member.
Consider the situation in which the KC105 dealership is transferring its entire stock of part number
1234567 to KC110. KC110 queries the KC105 database for the part they acquire from KC105. The result

of this inventory query is returned to a database file that already exists on the KC110 system. This is the
process you can use to complete this task:

Use the Start SQL (STRSQL) command to get the interactive SQL display. Before you enter any SQL
statement (other than a CONNECT) for the new database, specify that the results of this operation are
sent to a database file on the local system. To do so, follow these steps:

1. Select the Services option from the Enter SQL Statements display.

2. Select the Change Session Attributes option from the Services display.

3. Enter the Select Output Device option from the Session Attributes Display.

4. Type a 3 for a database file in the Output device field and press Enter. The following display is shown:

Change File

Type choices, press Enter.

File QSQLSELECT Name

Library QGPL Name

Member *FILE Name, *FILE, %FIRST
Option 1 1=Create new file

2=Replace file
3=Create new member
4=Replace member
5=Add to member

For a new file:
Authority *LIBCRTAUT *LIBCRTAUT, *CHANGE, *ALL

*EXCLUDE, *USE
authorization list name

F3=Exit F5=Refresh F12=Cancel
5. Specify the name of the database file that is to receive the results.

When the database name is specified, you can begin your interactive SQL processing as shown in the
following example.

66 IBM i: Distributed database programming

Enter SQL Statements

Type SQL statement, press Enter.

Current connection is to relational database KC00O.
CONNECT TO KC105

Current connection is to relational database KC105.
====> SELECT = FROM INVENTORY

WHERE PART = '1234567'

Bottom
F3=Exit F4=Prompt F6=Insert line F9=Retrieve F10=Copy line
F12=Cancel F13=Services F24=More keys

Related concepts
SQL programming
Related reference
SQL reference

Querying remote systems using Db2 for i query management function
The Db2 for i query management function provides almost the same support as interactive SQL for
querying a remote system and returning the results in an output file to the local system.

Both interactive SQL and the query management function can perform data manipulation operations,
such as INSERT, DELETE, and SELECT, for files or tables without the requirement that the table (or file)
already exist in a collection (it can exist in a library). Also, query management uses SQL CREATE TABLE
statements to provide a data definition when a new table is created on the system as a result of the query.
Tables created from a query management function follow the same guidelines and restrictions that apply
to a table created using SQL.

However, the query management function does not allow you to specify a member when you want to add
the results to a file or table. The results of a query function are placed in the first file member unless you

use the Override with Database File (OVRDBF) command to specify a different member before

starting the query management function.

Related concepts

Query Management Programming PDF

Related reference

Override with Database File (OVRDBF) command

Copying files to and from tape
There are several different commands that you can use to copy files to and from tape.

You can copy a table or file to tape using the Copy to Tape (CPYTOTAP) command on the IBM i operating
system.

Data on tape can be loaded on another system using the Copy from Tape (CPYFRMTAP) command. For
more information about using the command, see the Storage solutions topic.

You can also use the Copy File (CPYF) command to load data on tape into Db2 for i. This is especially
useful when you load data that was unloaded from DB2 for z/OS or DB2 Server for VM (SQL/DS). Nullable
data can be unloaded from these systems in such a way that a single-byte flag can be associated

with each nullable field. The CPYF command, with the *NULLFLAGS option specified for the FMTOPT
parameter, can recognize the null flags and ignore the data in the adjacent field on the tape and make the
field null in Db2 for i. Another useful FMTOPT parameter value for importing data from IBM mainframes

Distributed database programming 67

http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415703.pdf

is the *CVTFLOAT value. It allows floating-point data stored on tape in the z/OS format to be converted to
the IEEE format used by Db2 fori.

Related concepts

Storage solutions

Related reference

Copy To Tape (CPYTOTAP) command
Copy From Tape (CPYFRMTAP) command
Copy File (CPYF) command

Moving data between systems using copy file commands
Another way to move data from one IBM i operating system to another is to copy the data using the copy
file commands with DDM.

You can use the Copy File (CPYF), Copy Source File (CPYSRCF), and Copy From Query File (CPYFRMQRYF)
commands to copy data between files on clients and servers. You can copy local relational database or
device files from (or to) remote database files, and remote files can also be copied to remote files.

For example, if a dealership closes, the distributed relational database administrator can copy the client
and inventory tables from the remote system to the local regional system. The administrator needs a
properly authorized user profile on the server to access and copy the tables and must create a DDM file
on the client for each table or file that is copied. The following example shows the command that the
database administrator uses to copy a table called INVENT in a collection called SPIFFY from a system
with a remote location name of KC105 to a regional center system called KCO00. A DDM file called
INCOPY in a library called TEST on the KC0OOO client is used for the file access. These commands are run
on the KCOO0O system:

CRTDDMF FILE(TEST/INCOPY) RMTFILE(SPIFFY/INVENT)
RMTLOCNAME (KC105)

CPYF FROMFILE(TEST/INCOPY) TOFILE(TEST/INVENTDDM)
MBROPT (*ADD)

In this example, the administrator runs the commands on the KCO0O0 system. If the administrator is not
on the KCO0O system, then pass-through must be used to run these commands on the KCO0O0 system.
The Submit Remote Command (SBMRMTCMD) command cannot be used to run the preceding commands
because the IBM i operating system cannot be a client and a server for the same job.

Consider the following items when using this command with DDM:

- A DDM file can be specified on the FROMFILE and the TOFILE parameters for the Copy File (CPYF)
command and Copy Source File (CPYSRCF) commands.

Note: For the Copy From Query File (CPYFRMQRYF) and Copy from Tape (CPYFRMTAP) commands,
a DDM file name can be specified only on the TOFILE parameter; for the Copy to Tape (CPYTOTAP)
command, a DDM file name can be specified only on the FROMFILE parameter.

« When a delete-capable file is copied to a non-delete capable file, you must specify COMPRESS(*YES), or
an error message is sent and the job ends.

« If the remote file name on a DDM file specifies a member name, the member name specified for that file
on the Copy File (CPYF) command must be the same as the member name on the remote file name on
the DDM file. In addition, the Override with Database File (OVRDBF) command cannot specify a member
name that is different from the member name on the remote file name on the DDM file.

« If a DDM file does not specify a member name and if the Override with Database File (OVRDBF)
command specifies a member name for the file, the Copy File (CPYF) command uses the member name
specified on the OVRDBF command.

- If the TOFILE parameter is a DDM file that refers to a file that does not exist, CPYF creates the file.
Keep the following special considerations for remote files created with the Copy File (CPYF) command
in mind:

— The user profile for the target DDM job must be authorized to the Create Physical File (CRTPF)
command on the server.

68 IBM i: Distributed database programming

— For an IBM i server system, the TOFILE parameter has all the attributes of the FROMFILE parameter
except those described in the Database file management topic collection.

« When using TCP/IP, the second element of the RMTLOCNAME parameter of the Create Distributed Data
Management File (CRTDDMF) command must be *IP.

Related concepts

Database file management

Related reference

Copy File (CPYF) command

Copy Source File (CPYSRCF) command

Copy From Query File (CPYFRMQRYF) command
Copy from Tape (CPYFRMTAP) command

Copy To Tape (CPYTOTAP) command

Create Physical File (CRTPF) command

Create Distributed Data Management File (CRTDDMF) command
Override with Database File (OVRDBF) command
Submit Remote Command (SBMRMTCMD) command

Transferring data over network using network file commands

Data can be transferred over networks protocols that support Systems Network Architecture (SNA)
distribution services (SNADS). In addition to APPC and APPN protocols used with distributed relational
database processing, SNADS can be used with binary synchronous equivalence link (BSCEL) and SNA
Upline Facility (SNUF) protocols.

A IBM i environment supported by SNADS can send data to another system with the Send Network
File (SNDNETF) command and receive a network file from another system with the Receive
Network File (RCVNETF) and Work with Network Files (WRKNETF) commands.

Related reference

Receive Network File (RCYNETF) command
Send Network File (SNDNETF) command
Work with Network File (WRKNETF) command

Moving a table using object save and restore commands

You can move a table from another system using the Save Object (SAVOBJ) and Restore Object
(RSTOBJ) commands. The save commands save database files on tape or in a save file. The save file can
be distributed to another system through communications.

The save and restore commands used to save and restore tables or files include:

- Save Library (SAVLIB) command saves one or more collections or libraries
- Save Object (SAVOBJ) command saves one or more objects (including database tables and views)

- Save Changed Object (SAVCHGOBJ) command saves any objects that have changed since either
the last time the colle