

IBM i Availability Implementing high availability

7.1

IBM i Availability Implementing high availability

7.1

Note

Before using this information and the product it supports, read the information in "Notices," on page 291.

This edition applies to IBM i 7.1 (product number 5770-SS1) and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models.

This edition replaces SCnn-nnnn-nn.

© Copyright IBM Corporation 1998, 2010.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

	Chapter 1. Implementing high availability 1
L	What's new for IBM i 7.1
	PDF file for Implementing high availability 3
	Installing IBM PowerHA for i licensed program 4
L	Uninstalling IBM PowerHA for i licensed program . 5
	Implementing high availability with the
	solution-based approach
	Selecting a high availability solution
	Verifying requirements for your high availability
	solution
	Setting up a high availability solution 15
	Managing a high availability solution
	Working with messages
	Reference: Panel help for the solution-based
	interface
	Implementing high availability with a task-based
	approach
	Planning your high availability solution 104
	Configuring high availability
	Configuring switched disks
	Configuring switched logical units (LUNs) 219

Configuring cross-site mirroring
Managing high availability
Scenarios: Managing high availability solutions 222
Managing clusters
Managing switched disks
Managing cross-site mirroring
Managing the FlashCopy technology 273
Troubleshooting your high availability solution 275
Troubleshooting clusters
Troubleshooting cross-site mirroring
Installing IBM PowerHA for i licensed program 286
Chapter 2. Related information for
Implementing high availability 287
Appendix, Notices

Appendix. Notices							 291
Programming interface i	infe	orn	nat	ion			. 293
Trademarks							. 293
Terms and conditions.							. 293

Chapter 1. Implementing high availability

For System i[®] environments, you can choose to implement high availability with either a solution-based approach or a task-based approach. For the *solution-based approach*, you can select from several predefined solutions. An easy-to-use interface guides you through verifying your environment, setting up your environment, and managing your chosen solution. The *task-based approach* allows you to design and build a customized high-availability solution for your business, using different interfaces for technologies related to high availability.

For both approaches, you are required to install the IBM[®] PowerHA[®] for i (iHASM) licensed program number (5770-HAS) on each system that is participating in high availability. Each of these approaches uses different interfaces to implement your high-availability solution. The solution-based approach uses the High Availability Solutions Manager graphical interface. For the task-based approach, you primarily use the Cluster Resource Services graphical interface from which you can create and manage the cluster, cluster resource groups, cluster administrative domains, and perform switchovers. Depending on the solution you create with the task-based approach, you need to use other interfaces to manage the technologies within your solution.

Note: By using the code examples, you agree to the terms of the Code license and disclaimer information.

What's new for IBM i 7.1

Read about this new topic collection for this release that contains previous information about Clustersand High Availability.

What's new as of October 2016

IBM PowerHA for i is enhanced to support a new representational state transfer (REST) server for
 advanced node failure detection. This function is provided through a new function PowerHA PTF for 7.1.
 The PTF numbers can be found on the IBM PowerHA SystemMirror[®] for i wiki.

Making use of the new REST support in enhanced commands requires IBM PowerHA for i to be installed
with a valid license key and the new function PowerHA PTFs to be loaded and applied. Making use of
the new REST support in enhanced APIs requires the new function base operating system PTFs to be
loaded and applied.

| The following commands are enhanced.

- I Add Cluster Monitor (ADDCLUMON) command
- Change Cluster Monitor (CHGCLUMON) command
- Remove Cluster Monitor (RMVCLUMON) command
- Display Cluster Information (DSPCLUINF) command
- Work Cluster (WRKCLU) command

| The following APIs are enhanced.

- List Cluster Information API
- Add Cluster Monitor API
- Change Cluster Monitor API
- I Remove Cluster Monitor API

Advanced node failure detection

IBM i cluster resource services can use a Hardware Management Console (HMC) or a Virtual I/O Server
(VIOS) partition to detect when a cluster node fails. This new capability allows more failure scenarios to
be positively identified and avoids cluster partition situations. IBM PowerHA for i support for advanced
node failure detection requires PowerHA version 2.0 or higher.

See "Planning advanced node failure detection" on page 174 for details.

Asynchronous delivery mode for geographic mirroring

Geographic Mirroring now supports a new asynchronous delivery mode which potentially increases the
 amount of latency (and thus distance) which can be tolerated by most applications using Geographic
 Mirroring.

See Communications requirements for geographic mirroring for details on asynchronous delivery mode.

Environment resiliency enhancements

Cluster administrative domain with IBM PowerHA for i now supports authorization lists (*AUTL) and
 printer device descriptions (*PRTDEV) as managed resource types. See "Planning environment resiliency"
 on page 167 for more information about monitored resources.

IPv6 support

IPv6 addresses can now be used when configuring your high-availability solutions. The IP addresses
used for Cluster IP address, Takeover IP address, Server Takeover IP address, and Data Port IP address
can now be either IPv4 or IPv6 addresses.

Clustering support for IPv6 addresses requires the current cluster version to be 7 or higher. See "Enabling
 application switchover across subnets with IPv6" on page 111 for additional details on IPv6.

Switched logical units (LUNs)

Switched logical units allow data that is stored in the independent disk pool from logical units created in
 an IBM System Storage[®]DS8000[®] or DS6000[™] to be switched between systems providing high availability.

See "Planning switched logical units (LUNs)" on page 165 for more information.

PowerHA version support

Version support was added to the PowerHA licensed program in i 7.1. A PowerHA version represents the
 level of IBM PowerHA for i function available through the PowerHA product. It is similar in concept and
 implementation to the cluster version.

See "Adjusting the PowerHA version" on page 228 and "Adjusting the cluster version of a cluster" on
page 229 for additional information about versioning.

What's new as of March 2013

With the addition of LUN (logical unit) switching capability, IBM PowerHA for i (5770-HAS) now
supports SAN Volume Controller (SVC) and Storwize[®] V7000 and V3700. This support extends the
options that are available to customers, improving reliability and availability. The LUN switching
technology allows one copy of an independent auxiliary storage pool (IASP) to switch between two
separate IBM i instances. It is typically used in conjunction with Metro Mirror or Global Mirror to

provide a higher-level of protection against failures. Note that LUN switching is available only when
 using N_Port ID Virtualization (NPIV) attachment of a storage device.

Additional enhancements to the PowerHA product are also available.

- All DS8000, SAN Volume Controller, and Storwize V7000 and V3700 PowerHA functionality is now available through the new PowerHA GUI, which is available under IBM Navigator for i.
- A new command interface, Work with CAD Monitored Resource Entries (WRKCADMRE), has been created, offering improved sorting, filtering, and searching capabilities for large number of MREs.
- Administrative domain entries can be added or removed when not all nodes are active in the cluster.
- Administrative domain, FlashCopy[®], and copy services functions are now fully cluster enabled so that all work can be initiated from any active cluster node.
- Geographic mirroring synchronization priority can be changed while the IASP is varied on.
- PowerHA submitted jobs are now associated with the QCSTJOBD job description instead of the QBATCH job description. This function is available with 7.1 PTF SI48522 and SI48540.

All of the IBM PowerHA for i enhancements will be available by March 30, 2013 through a 7.1 PTF
 SI48371. For more information regarding the enhancements to IBM PowerHA for i, visit developerWorks[®].

What's new as of October 2011

| Clustering and PowerHA LP now support N-2 version compatibility. This means a cluster running at

current cluster version 5 (V5R4-level function) could contain nodes with potential versions 5, 6, or 7

| (V5R4, V6R1, or V7R1). For PowerHA, this would be a cluster running with current PowerHA version 2.1

l could contain nodes with potential PowerHA version 2.x, 3.x, or 4.x.

Prior to 7.1 PTF SI44148: A cluster only supported one version difference. When adjusting the cluster version, the version is adjusted to be one level greater than the current cluster version. All nodes must have the same potential cluster version before the cluster version can be adjusted.

7.1 PTF SI44148 enables N-2 cluster version compatibility: All nodes must be within the N+2 potential
 cluster version before the cluster version can be adjusted.

Different scenario's have been provided to illustrate this new function. See Example: Upgrading operating
 system .

How to see what's new or changed

I In PDF files, you might see revision bars (1) in the left margin of new and changed information.

1 To find other information about what's new or changed this release, see the Memo to users.

PDF file for Implementing high availability

You can view and print a PDF file of this information about implementing high availability.

To view or download the PDF version of this document, select Implementing high availability (about 4000 KB). This PDF contains the following topics:

- Installing IBM PowerHA for i (iHASM) licensed program.
- Implementing high availability with the solution-based approach
- · Implementing high availability with a task-based approach

You can view or download these related topic collection PDFs:

• Availability roadmap 🦃 (325 KB)

- High availability overview 🧇 (275 KB) contains the following topics:
 - Benefits of high availability
 - Components of high availability
 - High-availability criteria
 - Choosing a System i high-availability solution
- High availability technologies 🂖 (595 KB) contains the following topics:
 - Clusters technology
 - Cluster administrative domain
 - Switched disk pools
 - Switchable devices
 - Cross-site mirroring
 - FlashCopy
 - High-availability management

Saving PDF files

To save a PDF on your workstation for viewing or printing:

- 1. Right-click the PDF link in your browser.
- 2. Click the option that saves the PDF locally.
- 3. Navigate to the directory in which you want to save the PDF.
- 4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free

copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html)

Related reference:

Chapter 2, "Related information for Implementing high availability," on page 287

Product manuals, IBM Redbooks[®] publications, Web sites, and other information center topic collections contain information that relates to the Implementing high availability topic collection. You also can find related information about implementing independent disk pools, cross-site mirroring, and disaster recovery. You can view or print any of the PDF files.

Installing IBM PowerHA for i licensed program

Before you can implement an IBM i high-availability solution, you must install the IBM PowerHA for i licensed program (5770-HAS) on each system that participates in high availability.

- Before installing the IBM PowerHA for i licensed program, you should have completed the following installation requirements:
- 1. Install or upgrade to i 7.1 Operating System.
- 2. Install IBM i Operating System Option 41 (HA Switchable Resources).
- | To install the IBM PowerHA for i licensed program, complete the following steps:
 - 1. Enter GO LICPGM from a command line.
 - 2. At the Work with licensed programs display, select option 11 (Install licensed programs).
 - 3. Select Product 5770-HAS, option *BASE to install IBM PowerHA for i Standard Edition. Press enter.

- 4. At the Install Options display, type in the name of your installation device as requested. Press enter to start the installation.
- 5. Using asynchronous geographic mirroring, metro mirroring, or global mirroring requires IBM
- PowerHA for i Enterprise Edition (option 1) be installed. Select Product 5770-HAS, option 1 to install IBM PowerHA for i Enterprise Edition. Press enter.

After successfully installing the IBM PowerHA for i licensed program, you need to restart the INETD server. For information about how to start INETD, see "Starting the INETD server" on page 191.

Uninstalling IBM PowerHA for i licensed program

If you no longer want to use interfaces or functions associated with IBM PowerHA for i licensed program, you need to uninstall the product.

| To uninstall the IBM PowerHA for i licensed program, complete these steps:

- 1. Type G0 LICPGM and press enter. The Work with licensed programs menu appears
- 2. Select option 12 (Delete licensed programs). The Delete licensed programs display appears.
- **3**. Type 4 (Delete) in the Option column in front of 5770-HAS.
- 4. Press enter. You are shown the **Confirm Delete of Licensed Programs** display.
 - 5. Press enter if your selections are correct. Press F12 to make corrections.
 - 6. You receive confirmation messages from the system when the licensed programs are deleted.
 - 7. Press F12 to return to the Work with licensed programs menu.

I If you have difficulty deleting a licensed program following these steps, type ENDSBS *ALL *IMMED and

press enter. Then proceed with step 1 again.

Implementing high availability with the solution-based approach

The High Availability Solutions Manager graphical interface provides a solution-based approach to selecting, configuring, and managing high availability in your business.

With High Availability Solutions Manager, which is part of the IBM PowerHA for i licensed program you

can select from several predefined high-availability solutions. For each of these solutions, the dependent

technologies are configured based on your selection. The High Availability Solutions Manager graphical

interface provides easy-to-use tools to manage your high-availability solution.

Implementing a high-availability solution can be a complex task, and each business environment is unique. Working with a business partner skilled in high availability is recommended, both when selecting and configuring a high-availability solution.

View the following Flash demo for an animated overview of the high availability solutions that High

Availability Solutions Manager provides. The following Flash demo requires the Flash plug-in 🐝 .

| ("Transcript").

|

L

Transcript

This topic provides a description of the Flash demo, which provides an overview of High Availability Solutions Manager.

IBM High Availability Solutions Manager

Audio

It's 10 p.m. Do you know where your business is? Is it processing bank transactions for a customer? Or is it selling products to a shopper in another state?

Whatever the case, whatever the need, are you prepared-for this?

Most businesses aren't equipped for unexpected outages or server failures. A high-availability solution provides your business with an answer to planned or unplanned outages, keeping your business running.

IBM has developed a solution to ensure your business is ready before the problem occurs. It's called IBM High Availability Solutions Manager, and it's more than a disaster recovery solution. It's disaster prevention. In a business environment, failure to access data is only one element to a server or system outage.

A true high-availability solution also includes redirected access to applications, environment, and policies. IBM has designed the High Availability Solutions Manager to cover access to everything, ensuring that, along with your data, your business applications, user information, passwords, and identification are also available.

It provides you with information to make the right high-availability choice to meet your business needs. IBM's High Availability Solutions Manager removes the complexity of managing your high-availability solution with a built-in and easy-to-use monitoring tool.

To learn more about IBM's high-availability solutions select one of the options.

Switched disk between logical partitions

Slide 1 of 5

Description: Image of a system with two logical partitions labeled LPAR1 and LPAR2 external to system

Audio: IBM's switched disk between logical partitions solution includes a single system with two logical partitions.

Slide 2 of 5

Description: Image of a system and two logical partitions animates.

Audio: Within each partition is SYSBAS, which is storage that contains the operating system for each partition.

Slide 3 of 5

Description: Image of system with two logical partitions and independent disk pool animates.

Audio: Also included is a single independent auxiliary storage pool, otherwise known as an independent ASP. The independent ASP disks can reside either internally or externally.

Slide 4 of 5

Description: Image of system with two logical partition and an independent disk pool animates showing data transfer.

Audio: The independent ASP provides the key mechanisms for each partition sharing access to the data, applications, environment, and policies.

Slide 5 of 5

Description: Image of system with two logical partition and an independent disk pool animates showing switch over between logical partitions.

Audio: If you have a planned outage or failure on one partition, the ownership of the independent ASP switches over to the other logical partition.

Switched disk between systems

Slide 1 of 8

Description: Animated images of two system

Audio: IBM's switched disk between systems solution consists of two single-partition independent systems.

Slide 2 of 8

Description: Animated images of two system with SYSBAS

Audio: Within each system is SYSBAS, which is storage that contains the operating system for each system.

Slide 3 of 8

Description: Animated images of two system with SYSBAS with an external tower containing independent disk pools

Audio: They are connected to an external tower that has a single independent auxiliary storage pool, otherwise known as an independent disk pool.

Slide 4 of 8

Description: Animated images of two system with SYSBAS with an external tower containing independent disk pools. Shows data stored on independent disk pools.

Audio: The independent ASP provides the key mechanisms for each system sharing access to the data, applications, environment, and policies.

Slide 5 of 8

Description: Animated images of two system with SYSBAS with an external tower containing independent disk pools. Shows connection between independent disk pools and systems.

Audio: The connection between the independent disk pool and the two systems is done through a high-speed link that provides optimal transfer of data.

Slide 6 of 8

Description: Animated images of two system with SYSBAS with an external tower containing independent disk pools. Shows relationship between independent disk pools and System 1.

Audio: In this example, the independent disk pool is owned by system 1 and the information flow is continuous between the independent disk pool and system 1.

Slide 7 of 8

Description: Animated images of two system with an external tower containing independent disk pools. Shows data switchover to System 2 during a planned outage.

Audio: If you have a planned outage or failure on system 1, the ownership of the independent disk pool switches over to System 2.

Slide 8 of 8

Description: Animated images of two system with an external tower containing independent disk pools. Shows a user connection during an outage.

Audio: This solution also works if a user is connected into system 1 with an IP address. If system 1 fails, the IP address is dynamically reassigned to system 2, and system 2 begins to communicate with the independent disk pool.

Cross-site mirroring with geographic mirroring

Slide 1 of 8

Description: Animated images of two system one located uptown and the other located downtown.

Audio: IBM's cross-site mirroring with geographic mirroring solution consists of two systems, each located in a different geographical place. The distance between the systems is limited to a maximum of 300 kilometers. In this example, System 1 is located uptown and System 2 is downtown.

Slide 2 of 8

Description: Animated images of two system with SYSBAS

Audio: Within each system is SYSBAS, which is storage that contains the operating system for the system.

Slide 3 of 8

Description: Animated images of two system with SYSBAS with an external tower containing independent disk pools

Audio: Both systems are connected to external towers that have single independent auxiliary storage pools otherwise known as an independent disk pools.

Slide 4 of 8

Description: Animated images of two system with SYSBAS with an external tower containing independent disk pools. Shows data stored on independent disk pools.

Audio: The independent disk pools provides the key mechanisms for each system sharing access to the data, applications, environment, and policies.

Slide 5 of 8

Description: Animated images of data being mirrored from independent disk pools on System 1 to independent disk pools on System 2.

Audio: With IBM's cross-site mirroring with geographic mirroring, the independent disk pool data is mirrored from one set of disks to another at a page level, so the data from the production independent disk pool is copied over to the mirrored independent disk pool.

Slide 6 of 8

Description: Animated images of two system with SYSBAS with an external tower containing independent disk pools. Shows data being updated and mirrored synchronously.

Audio: The transfer of data from the production independent disk pool to the mirrored independent disk pool is done in a synchronous way, so a user making a change on the production independent disk pool has to wait until the transmission happens to the mirrored independent disk pool.

Slide 7 of 8

Description: Animated images of two system with an external tower containing independent disk pools. Shows data stored in the mirrored independent disk pool is not accessible to System 2.

Audio: The mirrored independent disk pool is only used for high-availability purposes and is not currently accessible by system 2.

Slide 8 of 8

Description: Animated images of two system with an external tower containing independent disk pools. Shows data being switched to the mirrored copy during an outage.

Audio: Only one copy of the data is accessible at any given time. If you have a planned outage or failure on System 1, the ownership of the Independent ASP switches over to System 2 and the mirrored Independent ASP becomes the production Independent ASP.

Switched disk with geographic mirroring

Slide 1 of 9

Description: Animated images of two system, where one contains logical partitions. One system is located uptown and the other is located downtown.

Audio: IBM's switched disk with geographic mirroring solution includes one system with two logical partitions and another physical system located in another geographical region. The distance between the systems is limited to a maximum of 300 kilometers. In this example system 1 is located uptown and system 2 is downtown.

Slide 2 of 9

Description: Animated images of system 1 containing two logical partitions.

Audio: Within each logical partition of System 1 is SYSBAS, which is storage that contains the operating system for that partition.

Slide 3 of 9

Description: Animated images of system 1 containing independent disk pools.

Audio: Also included is a single independent auxiliary storage pool, otherwise known as an independent disk pool.

Slide 4 of 9

Description: Animated images of independent disk pool and the type of data it contains.

Audio: The independent disk pool provides the key mechanisms for each partition sharing access to the data, applications, environment, and policies.

Slide 5 of 9

Description: Animated image of data flow between partitions and independent disk pool.

Audio: If you have a planned outage or failure on one partition, the ownership of the independent disk pool switches over to the other logical partition.

Slide 6 of 9

Description: Animated image of data flow from independent disk pool to remote independent disk pool.

Audio: IBM's switched disk with geographic mirroring provides disaster recovery because the independent disk pool data is mirrored from one set of disks to another at a page level, so the data from the production independent disk pool is copied over to the mirrored independent disk pool.

Slide 7 of 9

Description: Animated image of data flow from user to mirrored independent disk pool.

Audio: The transfer of data from the production independent disk pool to the mirrored independent disk pool is done in a synchronous way so a user making a change on the production independent disk pool has to wait until the transmission happens to the mirrored independent disk pool.

Slide 8 of 9

Description: Animated image show no concurrent access to the second copy of data.

Audio: The mirrored independent disk pool is only used for disaster recovery purposes and is not concurrently accessible by system 2. Only one copy of the data is accessible at any given time.

Slide 9 of 9

Description:

Audio: If you have an outage to both partitions in system 1, the ownership of the independent disk pool switches over to system 2, and the mirrored independent disk pool becomes the production independent disk pool.

Selecting a high availability solution

The High Availability Solutions Manager graphical interface provides several predefined solutions, which use high-availability technologies supported by the i5/OS operating system. Each solution provides different levels of high-availability coverage and has specific advantages, restrictions and requirements.

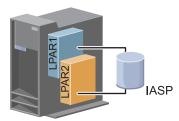
To select one of the high-availability solutions, complete the following steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. On the Welcome page, select Select your high-availability solution.
- 5. From the list of supported solutions, select the desired solution and click **Select**. You can select from the following solutions:

- Switched disk between logical partitions
- · Switched disk between systems
- · Switched disk with geographic mirroring
- Cross-site mirroring with geographic mirroring

For each solution, you can review overviews and executive summaries, and generate a dynamic list of requirements for that solution.

Overview: Switched disk between logical partitions


The High Availability Solutions Manager graphical interface defines several solutions for an i5/OS high-availability environment. This high-availability solution uses disk pools that are switched between two logical partitions that reside on a single system.

Logical partitioning is the ability to make a single i5/OS system function as if it were two or more independent systems. This solution is a good choice for businesses that already have logical partitions configured in their environment.

The High Availability Solutions Manager graphical interface does not perform any logical partition configuration. It validates that logical partitions exist in your environment and makes recommendations based on that discovery.

It also configures all the other necessary technologies, such as clusters and cluster administrative domains, and tests the setup by performing a series of switchovers that validates the configuration.

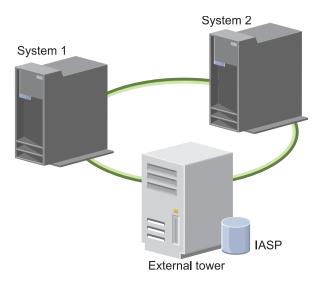
The following graphic illustrates the environment that uses this solution:

This solution has the following advantages:

- This is low-cost solution that uses available system resources.
- It provides availability for your business resources during planned outages.
- It provides availability for business resources during some unplanned outages, such as a single logical partition failure.
- Because this solution uses a single copy of data, it minimizes the number of disk units that are required.
- This solution contains current data that does not need to be synchronized.

This solution has the following restrictions:

- There is no disaster recovery available for a site-wide outage.
- There is a requirement that you configure a logical partition.
- There is a possible requirement for redundant hardware between partitions.
- There is only one logical copy of the data that resides in the independent disk pool. This can be a single point of failure, although the data may be protected with RAID protection.
- There is not any concurrent access to the disk pool from both logical partitions.


Overview: Switched disk between systems

The High Availability Solutions Manager graphical interface defines several solutions for an IBM i
 high-availability environment. This solution uses switched disks between two systems and provides high
 availability for data, applications, or devices during planned and unplanned outages.

By using switched disk technology, this solution provides a simple high-availability solution. With this solution, a single copy of data that is stored in the switched disk always remains current, which eliminates the need to synchronize data among systems and eliminates the risk of losing data during transmission.

With this solution, the High Availability Solutions Manager graphical interface configures disks and moves data and applications to the independent disk pool. It also configures all the other necessary technologies, such as clusters and cluster administrative domains, and tests the setup by performing a series of switchovers that validates the configuration.

The following graphic illustrates this solution:

This solution has the following advantages:

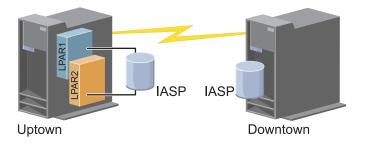
- · Provides availability for your business resources during planned outages
- · Provides availability for business resources during some unplanned outages
- Enables a single copy of data, which minimizes the number of disk units that are required
- Provides minimal performance overhead
- Enables data to remain current and does not need to be synchronized

This solution has the following restrictions:

|

- POWER7 hardware will not support switchable towers, so this solution may not be a strategic solution for your business.
- There is not any disaster recovery for a site-wide outage
- There is only one logical copy of the data resides in the independent disk pool. This can be a single point of failure, although the data may be protected with RAID protection.
- · There is not any concurrent access to the disk pool from both systems

Overview: Switched disk with geographic mirroring


I The High Availability Solutions Manager graphical interface provides several predefined IBM i high-availability solutions. This solution uses a three-node cross site mirroring environment to provide both disaster recovery and high availability.

At the production site (Uptown), switched disks are used to move independent disk pools between two nodes. The solution also uses geographic mirroring to generate a copy of the independent disk at a second site (Downtown). Thus, this solution provides both disaster recovery and high availability. The benefits of this solution are essentially the same as the basic switched disk solution with the added advantage of providing disaster recovery to application data by duplicating that data at another location. The production site (Uptown) has an independent disk pool that can be switched between logical partitions to provide high availability with fast switchover times for planned outages, such as applying fixes. This solution also provides disaster recovery with cross-site and geographic mirroring.

- Geographic mirroring is a subfunction of cross-site mirroring where data is mirrored to a copy of the
- I independent disk pool at the remote location. Data from the independent disk pool at the production site
- (Uptown) is mirrored to an independent disk pool on the backup site (Downtown). This solution
- I provides a simple and less expensive alternative to external storage-based solutions, such as IBM System
- Storage Global Mirror and Metro Mirror. However, geographic mirroring does not offer all the
- | performance options that the external storages solutions provide.

The High Availability Solutions Manager graphical interface verifies the requirements and configures the associated high availability technologies for this solution. However, it does not configure logical partitions for this solution. This solution can be implemented with existing logical partitions, or logical partitions can be created prior to the high availability configuration. It is recommended that you perform the necessary hardware and software planning for logical partitions prior to any configuration of your high-availability solution.

The following graphic illustrates this solution:

This solution has the following advantages:

- Provides availability for your business resources during planned outages
- Provides availability for business resources during unplanned outages
 - Provides availability for business resources during site-wide disasters
 - Enables each site to have a single copy of data which minimizes the number of disk units that are required
- Enables data to remain current and may not need to be synchronized

This solution has the following restrictions:

- There is no concurrent access to the disk pool. However, you can detach the mirror copy for offline processing of a second copy of the data.
- There is potential performance effects with increased central processing unit (CPU) that is required to support geographic mirroring

· Consider using redundant communication paths and adequate bandwidth

Overview: Cross-site mirroring with geographic mirroring

The High Availability Solutions Manager graphical interface defines several solutions for a high-availability environment. This solution provides high availability and disaster recovery by maintaining identical copies of disk pools at two sites that are geographically separated from one another.

Geographic mirroring is a subfunction of cross-site mirroring where data is mirrored to a copy of the
independent disk pool at the remote location. This solution provides disaster recovery in the event of a
site-wide outage on the production system (System 1). In that situation, failover to the backup site
(System 2) occurs, where operations can continue on the mirrored copy of the data. This solution
provides a simple and less expensive alternative to external storage-based solutions, such as IBM System
Storage Global Mirror and Metro Mirror. However, geographic mirroring does not offer all the

I performance options that the external storage solutions provide.

System 1 System 2 IASP IASP

The following graphic illustrates this solution:

This solution has the following advantages:

- Provides availability for your business resources during planned outages
- Provides availability for business resources during unplanned outages
 - Provides availability for business resources during a disaster
- Enables data to remains current and may not need to be synchronized

This solution has the following restrictions:

- There is no concurrent access to the disk pool. However, you can detach the mirror copy for offline processing of a second copy of the data.
- Potentially affects performance because increased central processing unit (CPU) is required to support geographic mirroring
- · Consider using redundant communication paths and adequate bandwidth

Verifying requirements for your high availability solution

The High Availability Solutions Manager graphical interface displays a list of requirements for your selected high-availability solution. Before configuring a solution, you need to provide configuration information that will enable setup of your selected solution.

After you have selected a solution for high availability, you should verify that the necessary software and hardware requirements are met by completing these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. On the Welcome page, select Verify requirements before setting up your high-availability solution.

5. On the **Verify Requirements List** page, check the list of requirement. The interface provides the following statuses for each requirement:

Table 1. Verify requirement status

Status	Description		
8	The requirement must be met to set up your high availability solution. You can meet a requirement by supplying missing identification information for resources which will be used later to set up your high-availability solution or by installing missing hardware and software.		
	After entering or selecting missing information click OK . After installing missing hardware or software, click Refresh so the requirements list can be updated to reflect the changes.		
The requirement is optional but might be recommended based on your specific business requirement for example, a minimum of one disk drive is required to configure an independent disk pool budisk might not be sufficient to store all of your data.			
	You can meet a requirement by supplying missing identification information for resources which will be used later to set up your high-availability solution or by installing missing hardware and software.		
	After entering or selecting missing information click OK . After installing missing hardware or software click Refresh so the requirements list can be updated to reflect the changes.		
\checkmark	The requirement has been met.		

After all required hardware, software and information has been identified and successfully verified, you can set up your solution.

Setting up a high availability solution

The High Availability Solutions Manager interface configures your selected high-availability solution.

Before setting up your solution, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from your IBM Systems Director Navigator for i5/OS window.
- 4. On the Welcome page, select Set up your high availability solution.

To set up your selected high-availability solution, follow these steps. When each step is completed, the Status column indicates whether the step completed successfully, failed, or was incomplete. If the step

completed successfully, the 📌 arrow moves to the next step.

- 1. Click Go to perform the Set up high availability policies step.
 - a. On the Set Up High Availability Policies page, select the policies that you want to use and click OK.
 - b. When this step is completed, the Status column indicates whether the step completed

successfully, failed, or was incomplete. If the step completed successfully, the \clubsuit arrow moves to the next step.

- 2. Click Go to perform the Set up high availability environment step.
 - a. On the Set Up High Availability Environment page, click Run Now.
 - b. When this step is completed, click Close to return to this page.
- **3**. Click **Go** to perform the **Verify administrative switchover from {1} to {2}** step, where {1} represents the primary node for your solution and {2} represents the backup node for your solution. (If you are setting up a three-node solution, this switchover is from the primary node to the local backup node.)

- a. On the Verify Administrative Switchover page, click Run Now.
- b. When this step is completed, click Close to return to this page.
- c. Manually verify that the administrative switchover was successful.
- 4. Click **Go** to perform the **Verify administrative switchover from {2} to {3}** step, where {2} represents the backup node for your solution and {3} represents the primary node for your solution. (If you are setting up a three-node solution, this switchover is from the local backup node to the remote backup node.)
 - a. On the Verify Administrative Switchover page, click Run Now.
 - b. When this step is completed, click **Close** to return to this page.
 - c. Manually verify that the administrative switchover was successful.
- 5. Click **Go** to perform the **Verify administrative switchover from {3} to {1}** step. This step displays only if you are setting up a three-node solution. This switchover is from the remote backup node to the primary node.
- 6. Click Go to perform the Migrate user profiles step.
 - a. On the Migrate User Profiles page, select the profiles that you want to migrate to the high-availability solution.
 - b. When this step is completed, click **Close** to return to this page.
- 7. Click Go to perform the Migrate libraries step.
 - **a**. On the Migrate Libraries page, select the libraries that you want to migrate to the high-availability solution.
 - b. When this step is completed, click **Close** to return to this page.
- 8. Click Go to perform the Migrate directories step.
 - a. On the Migrate Directories page, select the directories that you want to migrate to the high-availability solution.
 - b. When this step is completed, click **Close** to return to this page.
- **9**. Click **Go** to perform the **Verify administrative switchover from {1} to {2}** step, where {1} represents the primary node for your solution and {2} represents the backup node for your solution. (If you are setting up a three-node solution, this switchover is from the primary node to the local backup node.)
 - a. On the Verify Administrative Switchover page, click Run Now.
 - b. When this step is completed, click **Close** to return to this page.
 - c. Manually verify that the administrative switchover was successful.
 - **Note:** Before completing the setup of your high-availability solution, you must make sure that your business applications will work appropriately on all nodes in your solution. This step involves switching the nodes on which your applications will be running. When all the nodes in the solution have been verified, you can proceed to complete setting up the high-availability solution.
- 10. Click **Go** to perform the **Verify administrative switchover from {2} to {3}** step, where {2} represents the backup node for your solution and {3} represents the primary node for your solution. (If you are setting up a three-node solution, this switchover is from the local backup node to the remote backup node.)
 - a. On the Verify Administrative Switchover page, click Run Now.
 - b. When this step is completed, click **Close** to return to this page.
 - c. Manually verify that the administrative switchover was successful.
- 11. Click **Go** to perform the **Verify administrative switchover from {3} to {1}** step. This step displays only if you are setting up a three-node solution. This switchover is from the remote backup node to the primary node.
- 12. Click Go to perform the Finish set up and clean up work files step.
 - a. On the Finish Set Up and Clean Up Work Files page, click Run Now.

- b. When this step is completed, click Close to return to this page.
- **13**. Click **Close** on the Set Up Your High Availability Solution page. You have finished setting up your high-availability solution. Your high-availability solution is now active and ready to be managed.

Placing high availability systems in dedicated state

Before setting up your high-availability solution, each system that is participating in the high-availability solution must be in dedicated state. The setup process for high availability is disruptive to the system to the point where normal business operations are not possible. It is recommended that setup be completed during off-hours to eliminate this effect.

Placing your systems in dedicated state is specific to your environment. However, several common actions should be taken to place your systems in dedicated state. The High Availability Solutions Manager graphical interface provides a message area that displays subsystems and jobs that may need to be ended in order to reach dedicated state.

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your QSECOFR user profile and password.
- 3. End all user jobs. See Ending jobs for details. The message area displays jobs that should ended.
- 4. Ensure that TCP/IP is active. See Tools for verifying your network structure for information on different tools that can validate TCP/IP connections.
- 5. End all jobs and subsystems associated with all licensed program (all LPs).
- 6. Ensure that all subsystem jobs are ended except QCTL, QBATCH, QSYSWRK, and QUSRWRK.

Changing backup procedures for a high-availability solution

As part of configuring a high-availability solution with the High Availability Solution Manager interface, data is migrated to independent disk pools. To ensure that these objects continue to be backed up appropriately, you might need to change existing backup procedures.

Before you setup your high-availability solution, you should back up all of your data and system information. Use Customizing your GO SAVE backup to produce a set of instructions that is tailored to your save environment.

After you set up the high-availability solution and before migrating user profiles or user data into the high-availability environment, you need to ensure that the objects migrated to the independent disk pools can continue to be backed up. The following are some backup procedures that you might need to change if you are using GO SAVE options:

- 1. You can save independent disk pools separately, you can save them as part of a full system save (GO SAVE: Option 21), or you can save all user data (GO SAVE: Option 23). You must make the independent disk pools available before you perform the save operation.
- 2. If your system includes independent disk pools that use cross-site mirroring with geographical mirroring, metro mirror, or global mirror, eliminate them from the GO SAVE option by varying off the independent disk pools. You should save these independent disk pools separately from this GO SAVE operation. If these independent disk pools remain available during the GO SAVE operation, cross-site mirroring is suspended when the system becomes restricted. When you resume mirroring after the save operation, a partial synchronization is required.
- **3**. After your high-availability solution is set up, if you want to save independent disk pools without causing a failover or if you want to save the cluster environment for a node, you must shut down the high availability solution first. Select the task, Shut down high availability solution keep data available, from dropdown list in the Manage Your High Availability Solution section.

When the save operation completes, you can resume the high-availability solution.

Related tasks:

"Shutting down a high availability solution with data available" on page 21

The High Availability Solutions Manager interface allows you to quickly and easily perform the necessary steps for shutting down your high-availability solution while keeping data available to your customers

and users.

"Resuming a high availability solution" on page 22 The High Availability Solutions Manager graphical interface enables you to resume a high-availability solution that has been shut down.

Related information:

Performing a complete save with the GO SAVE checklist Saving independent ASPs

Verifying applications after each setup step

After the High Availability Solutions Manager graphical interface completes each setup step for your high-availability solution, you should verify that your applications still work properly.

Setting up your high-availability solution must be done when the systems in your high-availability solution are not being accessed by any internal or external users. It is strongly recommended that you verify your business applications work appropriately after each step in the setup process completes. Verifying after each setup step will enable you to identify migration problems before they could impact your end users.

Determining that your applications work in an independent disk pool environment is potentially a long process and it is a step that should be done on a non-production system prior to any migration to your production system. It is common to find that some changes are required to your applications before they will work in an independent disk pool environment. It is strongly recommended that you complete thorough testing of your applications in an independent disk pool environment before setting up your high-availability solution with the High Availability Solutions Manager graphical interface.

As an example, if you migrate a library into the high-availability environment that has hard coded library references, the applications using that library may no longer work after the migration. By verifying your applications after the migration of LIBA, you will discover the problem and be able to migrate LIBA out of the high-availability solution so that the applications will continue to work as before.

Related information:

IBM eServer iSeries Independent ASPs: A Guide to Moving Applications to IASPs

Managing a high availability solution

The High Availability Solutions Manager graphical interface enables you to manage your high-availability solution through solution-level tasks that are generated dynamically based on the current status of your solution. In addition to these tasks, you can also manage high availability resources that comprise your solution and view event messages.

You can monitor and perform high-availability solution-level actions, monitor and manage high-availability solution resources, and monitor solution events in the event log. The dynamically changing status icons makes this page ideal to use as a *dashboard*.

There are three sections on the Manage Your High Availability Solution page:

- The **Manage Your High Availability Solution** section provides an at-glance view of the status of the high-availability solution and quick access to solution-level actions.
- The **High Availability Solution Resources** section provides a tabbed list of all of the high-availability solution resources. Each tab gives a detailed view of each resource along with possible actions to perform on the resource.
- The **Event Log** section presents the list of events that have occurred in the high-availability solution.

After you have set up your high-availability solution, you can manage it. You must have the IBM PowerHA for i (iHASM) licensed product installed to be able to manage the high-availability solution.

To manage your high-availability solution, follow these steps:

- 1. In a web browser, enter http://mysystem:2001, where mysystem is the host name of the system with the high-availability solution.
- 2. Log on to the system with your user profile and password.
- 3. Under i5/OS Management, select High Availability Solution Manager.
- 4. On the High Availability Solutions Manager welcome page, select Manage your high-availability solution.

Working with high availability status messages

The High Availability Solutions Manager graphical interface provides overall status messages for your high-availability solution and for your high availability resources. These messages indicate whether the high-availability solution is working correctly, needs attention, or is not working correctly.

The following table describes the status graphics that are displayed for all elements in the high-availability solution.

Status	Description
~	Consistent . Indicates that the solution or resource is working correctly. You can initiate an administrative switchover, shut down the high-availability solution, or collect service information.
8	Error . Indicates that one or more resources in the solution may have errors which require attention. If the overall status is in error, look at the high availability resources section to see which resource is causing the problem, and take actions to resolve that problem. For example, if the solution is indicating error status because one of the nodes is stopped, you can restart the node to correct the problem.
8	Pending . Indicates that one or more resources in the solution are pending.
¥	Service . Indicates that one or more resources in the solution need requires service.
	Stopped . Indicates that the solution or resource is stopped. You need to restart the solution or resource.
?	Unknown . Indicates that the resource is unknown to the system.
	Warning . Indicates a possible problem with the solution or resource, or that a lengthy operation is in progress. You can shut down and restart the high-availability solution, or collect service information.

To work with high availability status messages, follow these steps:

- Review the event log to find any new messages about high-availability solution events.
- Look at the status of the high-availability solution in the Manage Your High Availability Solution section. This information indicates whether the solution is available for switchover, and the status of all nodes, cluster resource groups, monitored resources, independent disk pools, and TCP/IP interfaces. The actions that you can take depend on the status of the high-availability solution.
- Look at the status of each resource in the High Availability Solution Resources section. This information indicates whether each resource is consistent or inconsistent. The actions that you can take depends on the status of each resource:
 - Nodes
 - Cluster resource groups

- Monitored resources
- Independent disk pools
- TCP/IP interfaces
- Policies

These are the actions that you can take at the high-availability solution level.

Condition	Status	Action you can take	Result
Overall status is consistent	~	Select Switchover to initiate an administrative switchover of the high-availability solution. If you are using cross-site mirroring with switched disks, you can select Switchover at same site or Switchover to different site .	The high-availability solution switches from the primary node to the backup node.
Overall status is consistent	~	Select Shut down - Make data not available to shut down the high-availability solution for IPL.	The high-availability solution ends all cluster resource groups and nodes, varies off the independent disk pool, and prepares the environment for a power off.
Overall status is consistent	~	Select Shut down - Keep data available to shut down the high-availability solution for a dedicated system backup.	The high-availability solution ends all cluster resource groups and nodes, but does not vary off the independent disk pool, and prepares the environment for a backup. The data on the independent disk pool is still available.
All overall statuses have this option		Select Service info to collect or print the service information.	High Availability Solutions Manager collects all of the service-related information for the high-availability solution. You have the option to save or print this information.
Overall status is in error. The independent disk pool is manually suspended with or without tracking, or is suspended because of a communications failure.	8	Select Resume high availability solution to resume geographic mirroring.	High Availability Solutions Manager resumes geographic mirroring of the independent disk pool.
Overall status is in error. The independent disk pool is detached with tracking.	8	Select Resume high availability solution.	High Availability Solutions Manager reattaches and resumes geographic mirroring, and starts a partial synchronization of the independent disk pool. While the solution is being synchronized, the overall status is warning. You will not be able to work with your solution until the synchronization process completes.

Condition	Status	Action you can take	Result
Overall status is in error. The independent disk pool is detached without tracking.	8	Select Resume high availability solution.	High Availability Solutions Manager reattaches and resumes geographic mirroring, and starts a full synchronization of the independent disk pool. While the solution is being synchronized, the overall status is warning. You will not be able to work with your solution until the synchronization process completes.
Overall status is in error. One of the cluster resource groups is stopped.	8	Select Resume high availability solution.	High Availability Solutions Manager starts the cluster resource groups that are stopped.
Overall status is in error. One of the nodes is stopped.	8	Select Resume high availability solution.	High Availability Solutions Manager starts the nodes that are stopped.
Overall status is warning.	Δ		

Working with high availability solution tasks

The High Availability Solutions Manager graphical interface simplifies various administrative tasks, such as initiating an administrative switchover, shutting down and restarting the high-availability solution, and collecting service information. The High Availability Solutions Manager graphical interface also recovers from specific problems automatically, such as cluster partition state, stopped or locked resources, or a suspended independent disk pool.

Shutting down a high availability solution with data available:

The High Availability Solutions Manager interface allows you to quickly and easily perform the necessary steps for shutting down your high-availability solution while keeping data available to your customers and users.

To shut down a high-availability solution before performing a dedicated backup, perform these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. On the High Availability Solutions Manager welcome page, select Manage your high-availability solution.
- 5. Select **Shut Down Keep Data Available** from the dropdown list in the Manage Your High Availability Solution section.
- 6. From the Shut Down Keep Data Available page, click **Run Now**. The High Availability Solutions Manager graphical interface performs the steps for shutting down the high-availability solution. It stops all high availability resources, but keeps the independent disk pool varied on.
- 7. When the high-availability solution is shut down, click **Close** to return to the Manage Your High Availability Solution page. The overall status of the high-availability solution is refreshed. You can now place your system in restricted state without switching the independent disk pool to the backup system and perform your backup.

Related tasks:

"Changing backup procedures for a high-availability solution" on page 17

As part of configuring a high-availability solution with the High Availability Solution Manager interface, data is migrated to independent disk pools. To ensure that these objects continue to be backed up appropriately, you might need to change existing backup procedures.

Shutting down a high availability solution with data unavailable:

The High Availability Solutions Manager graphical interface allows you to end the high-availability solution in situations where you need to IPL a system. The system within the high-availability environment needs to be shut down for operating system or hardware upgrades. When you perform this action, applications and data are not failed over to a backup system.

To shut down a high-availability solution before performing a system IPL, perform these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. In High Availability Solutions Manager, select Manage your high-availability solution.
- 5. Select **Shut Down Make Data Not Available** from the dropdown list in the Manage Your High Availability Solution section.
- 6. From the Shut Down Make Data Not Available page, click **Run Now**. The High Availability Solutions Manager graphical interface performs the steps for shutting down the high-availability solution. It stops all high availability resources and varies off the independent disk pool. Data becomes unavailable to end users.
- 7. When the solution is shut down, click **Close** to return to the Manage Your High Availability Solution page. The overall status of the solution is refreshed. The system is now ready for IPL.

Resuming a high availability solution:

The High Availability Solutions Manager graphical interface enables you to resume a high-availability solution that has been shut down.

You can resume a high-availability solution in the following situations:

- After the high-availability solution has shut down automatically because of a problem with resources or geographic mirroring.
- After you have shut down the high-availability solution to perform a dedicated backup or system IPL.

To resume a high-availability solution, perform these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage your high availability solution.
- 5. Select **Resume** from the options list in the Manage Your High Availability Solution section.
- **6.** From the Resume High Availability Solution page, click **Run Now**. The interface performs the steps for resuming the high-availability solution. It restarts the nodes, cluster resource groups, and monitored resources, and if necessary, varies on the independent disk pool.
- 7. When the high-availability solution is resumed, click **Close** to return to the Manage Your High Availability Solution page. The overall status of the high-availability solution is refreshed.

Related tasks:

"Changing backup procedures for a high-availability solution" on page 17 As part of configuring a high-availability solution with the High Availability Solution Manager interface, data is migrated to independent disk pools. To ensure that these objects continue to be backed up appropriately, you might need to change existing backup procedures.

Performing switchovers:

The High Availability Solutions Manager graphical interface allows you to quickly and easily to perform administrative switchovers. A switchover allows you to change ownership from a production system to a backup system. You can perform switchovers for a variety of reasons, such as performing system maintenance.

Three of the four high-availability solutions use a two-node system, where you can switch over from the production system to the backup system, and back again. However, the Switched disk with cross-site mirroring solution is a three-node solution, which allows you to perform a three-way administrative switchover. You can switch over from the production system to a backup system at the same site, or to another backup system at a remote site, and then back again to the originalproduction system.

To perform an administrative switchover of the high-availability solution, perform these steps:

Switchover for a two-node solution:

To perform an administrative switchover of the high availability solution, perform these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. In High Availability Solutions Manager, select Manage your high availability solution.
- 5. If you are using a two-node, high-availability solution, select **Switchover** from the dropdown list in the Manage Your High Availability Solution section.
- 6. From the Perform Administrative Switchover page, click **Run Now**. The High Availability Solutions Manager graphical interface performs the switchover to the backup system.
- 7. When the switchover completes, click **Close** to return to the Manage Your High Availability Solution page. The overall status of the high-availability solution is refreshed.

Switchover for a three-node solution:

If you are using the Switched disk with cross-site mirroring solution, you either switch over to another node at the same site or a different site:

- 1. Select the type of switchover you want to perform:
 - a. Select **Switchover at same site** from the dropdown list. The High Availability Solutions Manager graphical interface performs the switchover to the backup system at the same site, or back again.
 - b. Select **Switchover to different site** from the dropdown list. The High Availability Solutions Manager graphical interface performs the switchover to the backup system at the remote site, or back again.
- 2. From the Perform Administrative Switchover page, click **Run Now**. The High Availability Solutions Manager graphical interface performs the switchover to the backup system.
- **3**. When the switchover completes, click **Close** to return to the Manage Your High Availability Solution page. The overall status of the high-availability solution is refreshed.

Recovering from partition state:

A cluster partition occurs in a cluster whenever communication is lost between one or more nodes in the cluster, and a failure of the lost nodes cannot be confirmed.

The High Availability Solutions Manager graphical interface allows you to quickly and easily change the partitioned node to failed and switch the data and applications to the first backup node. To recover from a cluster partition state, perform these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. In High Availability Solutions Manager, select Manage your high availability solution.
- 5. Select **Recover from partition state** from the dropdown list in the "Manage Your High Availability Solution" section.
- 6. From the Recover from a Partition State page, click **Run Now**. The High Availability Solutions Manager graphical interface performs the steps for recovering the node from the partition state.
- 7. When the cluster node is restarted, click **Close** to return to the Manage Your High Availability Solution page. The overall status of the high-availability solution is refreshed.

Collecting service information:

If you are having a problem with your high-availability solution or simply want detailed information for your records, you can use High Availability Solution Manager graphical interface to collect or print service information.

To collect service information, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. In High Availability Solutions Manager, select Manage your high-availability solution.
- 5. Select **Collect info** from the dropdown list in the Manage Your High Availability Solution section.
- 6. From the Collect Service Information page, click **Run Now**. The High Availability Solutions Manager graphical interface collects the service information for the high availability solution.
- 7. You can choose whether to print or save the service information.

Managing high availability resources

Use the High Availability Solutions Manager graphical interface to monitor and work with high availability resources. These resources include nodes, cluster resource groups, monitored resources, independent disk pools, TCP/IP interfaces, and high availability policies.

Managing nodes:

Nodes are systems or logical partitions which have been defined within your high-availability solution. You can manage the nodes in your high-availability solution by using the High Availability Solutions Manager graphical interface.

To work with all nodes in your high-availability solution, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.

- 5. Select the **Nodes** tab. You can perform any of the following functions on the nodes in the high-availability solution:
 - Monitor the status of nodes
 - Display or edit node properties
 - Start a node
 - Stop a node
 - Work with all nodes

The following are possible status values for nodes:

Table 2. Node status indicators

Icon	Status	Description
~	Active	The node has been started by using a Create Cluster operation, an Add Cluster Node Entry operation, which started the cluster node; or with a Start Cluster Node operation. Cluster Resource Services is active on the node.
Θ	Active Pending	The node is in the process of being started as the result of a Create Cluster operation, an Add Cluster Node Entry operation, which started the cluster node, or a Start Cluster Node operation. In addition, the node could have previously had a status of Partition and will change to the Active Pending status, as a result of the partitions being merged.
θ	Inactive Pending	Cluster Resource Services is in the process of ending on this node as the result of an end cluster node operation. The node is still in the cluster membership list.
8	Remove Pending	The node is in the process of being removed from the cluster membership list as the result of a Remove Cluster Node Entry operation.
	New	A node has been added to the cluster membership list, but Cluster Resource Services has never been started on that node. The Cluster Resource Service data structures have not been created on the node. The Cluster Resource Service data structures are created only on the node running the Create Cluster operation.
	Inactive	Cluster Resource Services has been ended on the node as the result of an end cluster node operation. The node is still in the cluster membership list, but is no longer communicating with other nodes in the cluster.
8	Failed	A previously active node has failed. A failure is either a system or clustering failure detected by Cluster Resource Services.
1	Partition	The node is only communicating with a subset of the cluster because of a network failure detected by Cluster Resource Services, which has resulted in the loss of communications to one or more nodes in the cluster. When the partitioned nodes are merged back into a whole cluster, the node will change to Active status without operator intervention. Any node that had a status of Failed in any partition will still have a status of Failed after the merge.
?	Unknown	This node is not an active member of the cluster, so the status of other nodes cannot be determined.

Related information:

Cluster node

Starting nodes:

Use the High Availability Solutions Manager graphical interface to start nodes that are part of your high-availability solution.

To start a node within the high-availability solution, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.

- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the **Nodes** tab.
- 6. Click the context menu next to the node and select Start.

When the node starts, you are returned to the Manage Your High Availability Solution page. The node status information is refreshed.

Stopping nodes:

You can use the High Availability Solutions Manager graphical interface to work with high availability resources, such as nodes.

To stop a node within the high-availability solution, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the **Nodes** tab.
- 6. Click the context menu next to the node and select **Stop**.

When the node stops, you are returned to the Manage Your High Availability Solution page. The node status information is refreshed.

Working with all nodes:

You can work with all of the nodes in your high-availability solution by using the High Availability Solutions Manager graphical interface.

To work with all the nodes within the high-availability solution, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the **Nodes** tab.
- 6. Click the context menu next to the node and select Work with All Nodes....

This displays the Cluster Resource Services graphical interface from which you can work with all the nodes within the high-availability solution.

Displaying node properties:

Display node properties to view or edit information about the cluster node.

To display node properties, follow these steps:

1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.

- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the **Nodes** tab.
- 6. Click the context menu next to the node and select **Properties**. The Node Properties page is shown.

When you close the Nodes Properties page, you are returned to the Manage Your High Availability Solution page. The node status information is refreshed.

Managing cluster resource groups (CRG):

You can manage the CRGs in your high-availability solution by using the High Availability Solutions Manager graphical interface.

Cluster resource groups manage high-availability resources and define relationships within the high-availability solution.

To manage CRGs in your high-availability solution, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- **5**. Select the **Cluster Resource Groups** tab. You can perform any of the following functions on the CRGs in the high availability solution:
 - Monitor the status of CRGs
 - Start a CRG
 - Stop a CRG
 - Delete a CRG
 - Work with all CRGs
 - Display or edit CRG properties

The following are possible status values for CRGs:

Table 3. Cluster resource group status indicators

Icon	Status	Description
\checkmark	Active	The resources managed by the cluster resource group are currently resilient.
	Inactive	The resources managed by the cluster resource group are currently not resilient.
8	Indoubt	The information contained within the cluster resource group object might not be accurate. This status occurs when an exit program is called with an action of Undo and fails to complete successfully.
Ŷ	Restored	The cluster resource group object was restored on this node and was not copied to the other nodes in the recovery domain. When Cluster Resource Services is started on this node, the cluster resource group will be synchronized with the other nodes in the recovery domain and its status set to Inactive .

Table 3. Cluster resource group status indicators (continued)

Icon	Status	Description
8	Add Pending	A new node is in the process of being added to the recovery domain of a cluster resource group. If the exit program is successful, the status is reset to its value at the time the API was called. If the exit program fails and the original state cannot be recovered, the status is set to Indoubt .
8	Delete Pending	Cluster resource group is in the process of being deleted. When the exit program completes, the cluster resource group is deleted from all nodes in the recovery domain.
8	Change Pending	The cluster resource group is in the process of being changed. If the exit program is successful, the status is reset to the value at the time the API was called. If the exit program fails and the original state cannot be recovered, the status is set to Indoubt .
8	End Pending	Resiliency for the cluster resource group is in the process of ending. If the exit program is successful, the status is set to Inactive . If the exit program fails and the original state cannot be recovered, the status is set to Indoubt .
Initialize Pending		A cluster resource group is being created and is in the process of being initialized. If the exit program is successful, the status is set to Inactive . If the exit program fails, the cluster resource group will be deleted from all nodes.
8	Remove Pending	A node is in the process of being removed from the recovery domain of the cluster resource group. If the exit program is successful, the status is reset to the value at the time the API was called. If the exit program fails and the original state cannot be recovered, the status is set to Indoubt .
8	Start Pending	Resiliency is in the process of starting for the cluster resource group. If the exit program is successful, the status is set to Active . If the exit program fails and the original state cannot be recovered, the status is set to Indoubt . For peer cluster resource groups, all nodes defined with a role of peer are active access points for the cluster resources.
8	Switchover Pending	The Initiate Switchover API was called, a failure of a cluster resource group occurred or a node failed, causing a switchover or failover to begin. The first backup node is in the process of becoming the primary node. If the exit program is successful, the status is set to Active . If the exit program fails and the original state cannot be recovered, the status is set to Indoubt . While the switchover function is not valid for a peer cluster resource group, users may see the status Switchover pending during a node failure.

Related information:

Cluster resource group

Starting a CRG:

You can start a cluster resource group (CRG) by using the High Availability Solutions Manager interface.

To start a CRG, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the Cluster Resource Groups tab.
- 6. Click the context menu next to the CRG and select **Start**.

When the CRG starts, you are returned to the Manage Your High Availability Solution page. The status information is refreshed.

Stopping a CRG:

You can stop a cluster resource group (CRG) by using the High Availability Solutions Manager interface.

To stop a CRG, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the **Cluster Resource Groups** tab.
- 6. Click the context menu next to the CRG and select **Stop**.

When the CRG stops, you are returned to the Manage Your High Availability Solution page. The status information is refreshed.

Deleting a CRG:

You can delete a cluster resource group (CRG) by using the High Availability Solutions Manager interface.

To delete a CRG, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the Cluster Resource Groups tab.
- 6. Click the context menu next to the CRG and select **Delete**.

When the CRG is deleted, you are returned to the Manage Your High Availability Solution page. The status information is refreshed.

Working with all CRGs:

You can work with all the CRGs that are defined in the high availability solution by using the High Availability Solutions Manager graphical interface.

To work with all the CRGs, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the Cluster Resource Groups tab.
- 6. Click the context menu next to the CRG and select Work with All CRGs.

This will display the Cluster Resource Services graphical interface from which you can work with all the CRGs within the high-availability solution.

Displaying CRG properties:

You can display CRG properties that are defined in the high availability solution by using the High Availability Solutions Manager interface.

To display the properties of a CRG, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the Cluster Resource Groups tab.
- 6. Click the context menu next to the CRG and select **Properties** to display the properties for the selected CRG.

Managing monitored resources:

You can manage monitored resources in your high-availability solution by using the High Availability Solutions Manager graphical interface.

Monitored resources are values associated with the operational environment for the high-availability solution. These resources are monitored throughout the high-availability solution. When they are changed on one node, those changes are propagated to other nodes in the high-availability solution. A cluster administrative domain manages the monitoring and synchronization of these resources, which eliminates the need to manually synchronize these resources throughout the environment.

To manage monitored resources in your high-availability solution, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the **Monitored Resources** tab. You can perform any of the following functions on the monitored resources the high-availability solution:
 - Monitor the status of monitored resources
 - · Work with all monitored resources
 - Display or edit properties

The following table shows the possible status values for monitored resources:

Table 4. Global status indicators

Icon	Status	Description
~	Consistent	The values for all the resource's attributes monitored by the system are the same on all active nodes within the cluster administrative domain.
8	Inconsistent	The values for all the resource's attributes monitored by the system are not the same on all active nodes within the cluster administrative domain.

Icon	Status	Description
8	Pending	The values of the monitored attributes are in the process of being synchronized across the cluster administrative domain.
	Added	The monitored resource entry has been added to the monitored resource directory in the cluster administrative domain but has not yet been synchronized.
	Ended	The monitored resource is in an unknown state because the cluster administrative domain has been ended, and changes to the resource are no longer being processed.
8	Failed	The resource is no longer being monitored by the cluster administrative domain and the MRE should be removed. Certain resource actions are not recommended when a resource is being synchronized by a cluster administrative domain. If the resource represented by an MRE is a system object, it should not be deleted, renamed, or moved to a different library without removing the MRE first. If a resource is deleted, renamed or moved to a different library, the global status for the MRE is Failed and any changes made to the resource on any node after that are not propagated to any node in the cluster administrative domain.

Table 4. Global status indicators (continued)

Related information:

Cluster administrative domain

Working with all monitored resources:

You can work with all monitored resources in your high availability solution by using the High Availability Solutions Manager graphical interface.

To work with all monitored resources, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the Monitored Resources tab.
- 6. Click the context menu next to the monitored resource and select **Work with All Monitored Resources**. This will display the Cluster Resource Service interface from which you can work with all the monitored resource within the high-availability solution.

Displaying monitored resource properties:

You can display properties of monitored resources in your high availability solution by using the High Availability Solutions Manager graphical interface.

To display the properties of a monitored resource, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the Monitored Resources tab.
- 6. Click the context menu next to the monitored resource and select Properties.

Managing independent disk pools:

You can manage independent disk pools in your high availability solution by using the High Availability Solutions Manager graphical interface.

To manage independent disk pools in your high-availability solution, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the **Independent disk pools** tab. You can perform any of the following functions on the independent disk pools in the high-availability solution:
 - Monitor the status of independent disk pools
 - Start mirroring
 - Stop mirroring
 - Work with all independent disk pools
 - Display or edit properties

The Status column of the table contains an icon representing the status of the independent disk pool. See the following table for a list of icons and the status each represents. The following are possible status values for independent disk pools:

Table 5. Independent disk pool status indicators

Icon	Status
\checkmark	Available.
<u> </u>	Available and mirroring is suspended with tracking.
<u>^</u>	Available and mirroring is suspended without tracking.
<u>^</u>	Available and mirroring is detached.
<u>^</u>	Synchronization is in progress.
	Unavailable.
	Unavailable and mirroring is suspended with tracking.
	Unavailable and mirroring is suspended without tracking.
	Unavailable and mirroring is detached.
8	Failed.

Related information:

Independent disk pools

Starting mirroring:

You can start mirroring an independent disk pool in your high availability solution by using the High Availability Solutions Manager graphical interface.

To start mirroring, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the Independent disk pools tab.
- 6. Click the context menu next to an independent disk pool and select Start Mirroring.

Stopping mirroring:

You can stop mirroring an independent disk pool in your high availability solution by using the High Availability Solutions Manager graphical interface.

To stop mirroring, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the Independent disk pools tab.
- 6. Click the context menu next to an independent disk pool and select Stop Mirroring.

Working with all independent disk pools:

You can work with all independent disk pools in your high-availability solution by using the High Availability Solutions Manager graphical interface.

To work with all independent disk pools, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the Independent disk pools tab.
- 6. Click the context menu next to an independent disk pool and select **Work with All Independent Disk Pools**. This will display the Disk Management graphical interface from which you can work with all the independent disk pools within the high-availability solution

Displaying independent disk pool properties:

You can work with all the independent disk pools in your high availability solution by using the High Availability Solutions Manager graphical interface.

To display independent disk pool properties, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the Independent disk pools tab.
- 6. Click the context menu next to an independent disk pool and select Properties.

Managing TCP/IP interfaces:

You can manage TCP/IP interfaces in your high-availability solution by using the High Availability Solutions Manager graphical interface.

To manage TCP/IP interfaces in your high-availability solution, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the **TCP/IP Interfaces** tab. You can perform any of the following functions on the TCP/IP interfaces in the high availability solution:
 - Monitor the status of TCP/IP interfaces
 - Start TCP/IP interfaces
 - Stop TCP/IP interfaces
 - Work with all TCP/IP interfaces
 - Display or edit properties

The following are possible status values for TCP/IP interfaces:

Table 6. TCP/IP interface status indicators

Icon	Status	Description
\checkmark	Active	The interface has been started and is running.
	Inactive	The interface has not been started. The interface is not active.
8	Starting	The system is processing the request to start this interface.
۵	Recovery Pending	An error with the physical line associated with this interface was detected by the system. The line description associated with this interface is in the recovery pending state.
	Recovery Canceled	A hardware failure has occurred. The line description associated with this interface is in the recovery canceled state.
	Failed	The line description associated with this interface has entered the failed state.
	Failed (TCP)	An error was detected in the IBM TCP/IP Vertical Licensed Internal Code.

Related information:

TCP/IP Setup

Starting TCP/IP interfaces:

You can start TCP/IP interfaces in your high-availability solution by using the High Availability Solutions Manager graphical interface.

To start a TCP/IP interface, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the **TCP/IP Interface** tab.
- 6. Click the context menu next to a TCP/IP Interface and select Start TCP/IP Interface.

Stopping TCP/IP interfaces:

When you select to stop TCP/IP interface, the High Availability Solutions Manager graphical interface responds based on the policy actions that have been defined for TCP/IP interfaces for this solution.

To stop a TCP/IP interface, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the **TCP/IP Interface** tab.
- 6. Click the context menu next to a TCP/IP Interface and select Stop TCP/IP Interface.

Working with all TCP/IP interfaces:

You can work with all TCP/IP interfaces in your high availability solution by using the High Availability Solution Manager interface.

To work with all TCP/IP interfaces, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the **TCP/IP Interface** tab.
- 6. Click the context menu next to a TCP/IP Interface and select Work with All TCP/IP Interfaces.

Displaying properties for TCP/IP interfaces:

You can display TCP/IP properties in your high-availability solution by using the High Availability Solutions Manager graphical interface.

To display or edit TCP/IP interface properties, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the **TCP/IP Interface** tab.
- 6. Click the context menu next to a TCP/IP Interface and select **Properties**.

Managing policies:

You can manage policies in your high-availability solution by using the High Availability Solutions Manager graphical interface.

Policies define automatic responses to common actions that might occur within your high-availability environment. These policies control how the High Availability Solutions Manager graphical interface responds within your solution. These policies were initially created when you set up your high-availability solution. To change and manage policies in your high-availability solution, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.
- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Select the **Policy** tab, and click **Edit** to change policies associated with your high-availability solution. You can work with the following policies for your high-availability solution:

Policy	Policy options
Action when a user profile is created	 Automatically create the user profile on all other nodes in the high availability solution and add the monitored resource entry (MRE) to the administrative domain to ensure the user profile is synchronized on all the nodes. This is the default option. Take no action when a user profile is created.
Action when a user profile is deleted	• Automatically remove the MRE from the administrative domain for the user profile. Do not delete the user profile on other nodes in the high availability solution. This is the default option.
	• Automatically remove the MRE from the administrative domain for the user profile. Delete the user profile on all other nodes in the high availability solution. All objects owned by that user profile on all nodes is deleted.
	• Automatically remove the MRE from the administrative domain for the user profile. Delete the user profile on all other nodes in the high availability solution. All objects owned by that user profile on all nodes is owned by the QDFTOWN user profile.

Table 7. Policies and options for high-availability solutions

Policy	Policy options
Action before the primary node enters restricted state	• Shut down the high-availability solution without performing an administrative switchover. Vary off the independent disk pool so that all the data is made unavailable before entering restricted state. This is the default option.
	• Shut down the high-availability solution without performing an administrative switchover. The independent disk pool and all the data it contains is available while in restricted state.
	• Perform an administrative switchover of the high-availability solution from the primary node to an available backup node before entering restricted state on the primary node.
Action before the primary node performs a power down	• Shut down the high-availability solution without performing an administrative switchover. The independent disk pool is varied off and all the data it contains is made unavailable before powering down the system. This is the default option.
	• Perform an administrative switchover of the high-availability solution from the primary node to an available backup node before powering down the primary node.
Action when performing a failover to a backup node	• If possible, perform a failover option to a backup node at the same site as the primary node. This is the default option.
	• Perform a failover from the primary node to the next available node in the recovery domain of the device cluster resource group (CRG) associated with the high-availability solution.

Table 7. Policies and options for high-availability solutions (continued)

Working with high availability event log

Use the event log in High Availability Solutions Manager graphical interface to view informational, warning, and error messages for your high-availability solution.

Each message in the event log on the Manage Your High Availability Solution page has a date and time stamp, severity level, and description. This table describes the severity level of messages that display in the event log.

Table 8. Event log status indicators

Severity	Description
i	The log contains informational messages.
<u>^</u>	The log contains warning messages and should be examined.

To work with the high availability event log, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. Select **High Availability Solutions Manager** from the IBM Systems Director Navigator for i5/OS navigation area.

- 4. From the High Availability Solutions Manager welcome page, select Manage Your High Availability Solution.
- 5. Review the event log to see if there are any new messages about events that are related to your high-availability solution.
- **6**. If a warning or error message is displayed, attempt to correct the problem with the high-availability solution or resource.

After you have corrected the problem with your solution or resource, an informational message indicates that your actions were successful.

Working with messages

The High Availability Solutions Manager graphical interface provides informational and error messages for your selected high-availability solution.

had000b

Dedicated Service Tools (DST) must be set up as follows:

- A service tools user ID and password for {0} must be configured.
- Service tools user IDs are configured using Dedicated Service Tools (DST).
- Service tools user ID and password must match the i5/OS user profile and password of the user that is calling this API.
- The i5/OS user profile password and the service tools user ID password must be all uppercase.
- Password level of the Dedicated Service Tools (DST) must be set. This is done through the service tools security data option, followed by the password level option. When this option has been activated, service tools user ID passwords are case sensitive.

hae0027

Communications could not be established with node {0}. The following are required on node {0} for communications to work.

- TCP server *INETD must be started
- IBM PowerHA for i (iHASM) licensed program number (5770-HAS) must be installed.
- IP address {1} must be active and reachable from the local system.

hae0028

The Share Memory Control (QSHRMEMCTL) system value must be set to a value of 1. In order to use the High Availability Solutions Manager graphical interface, the system value must be changed. Use the WRKSYSVAL command to change the value of QSHRMEMCTL to 1.

hai0006

Dedicated Service Tools (DST) must be set up for the QYHCHCOP API for the {0} user profile.

hat001b

Primary Node

hat001c

Backup Node

hat001d

Logical Partition

hat001e

System Serial Number

hat001f

Tower {0}

hat002c

V6R1 i5/OS

hat002d

Cluster IP Address {0}

OptiConnect Enabled

hat002e

Line Description

hat002f

hat0030

Tower contains required local communications hardware that will be switched with the tower.

hat0031

Present.

hat0032

Needed.

hat0033

Omit from solution.

hat0034

All unconfigured DASD under the IOP will be selected if any are selected.

hat0035

DASD.

hat0036

5761HAS - IBM System i High Availability Solutions Manager.

hat0037

Switchable IO Pool.

hat0038

Include in solution.

hat0039

Dependent Library {0} not allowed in independent disk pool.

hat003a

Tower contains configured DASD.

hat003b

Tower cannot be made switchable.

hat003c

Tower is private, may or may not be made switchable (unknown).

hat003d

IP address {0} not reachable.

hat003e

Cannot split up a parity set.

hat003f

Insufficient capacity on source node.

hat0040

Insufficient capacity on backup node.

hat0041

IOP

hat0042

All unconfigured DASD under the tower will be selected if any are selected.

hat0044

{0} contains object not supported in independent disk pool.

hat0045

{0} contains journal {1} to IFS objects.

hat0046

{0} contains job descriptions.

hat0047

{0} in use by System Value {1}.

hat0048

{0} in use by Network Attribute {1}.

hat0049

{0} contains journaled IFS objects.

hat004a

{0} contains class objects.

hat004b

{0} contains subsystem descriptions.

hat004c

{0} in use by subsystem description {1}.

hat004d

{0} contains database file {1} with data link control.

hat004e

{0} contains multisystem database file {1} (node group).

hat0053

DataPortIP {0}.

hat0057

Backup node at remote site.

hat0058

System Name.

hat005a

Configure independent disk pool.

hat005b

Configure geographic mirroring.

hat005c

Backup node at primary site.

hat005d

System value {0} must be set to {1}.

hat005e

Server takeover IP address.

hat005f

Tower contains non-switchable hardware.

hat0060

IOP {0} has configured DASD.

hat0061

IOP {0}contains communications hardware which will be switched with the IOP.

hat0062

Could not collect inventory for node {0}.

hat0063

Could not retrieve inventory for node {0}.

hat0064

Inventory collection processing step {0} of {1}.

hat0065

Tower{0} not owned by primary node.

hat0066

Tower {0} has configured DASD.

hat0067

Tower {0} has communications hardware or other non-switchable devices.

hat0068

Tower {0} is private.

hat0069

Tower {0} not visible from node {1}.

hat006a

IOP {0} has communications hardware or other non-switchable devices.

hat006b

The backup system for the primary site is not valid. It must be another partition of the same system.

hat006c

The remote backup system is not valid. It must be another physical system.

hat006d

IP address {1} not found.

hat006e

Current selection {1} not valid.

hat006f

The setup of your high-availability solution is now complete. If your normal security policy is to have the QSECOFR profile disabled and you enabled the QSECOFR profile to set up your high-availability solution, then you should return to your normal security policy and disable the QSECOFR profile.

hat0070

IOP {0} not owned by primary node.

hat0071

Licensed program product {1}

Related tasks:

Enabling and accessing disk units

Related information:

Share Memory Control (QSHRMEMCTL)

Reference: Panel help for the solution-based interface

This topic collection includes the panel help for the High Availability Solutions Manager graphical interface. You also can display the panel help by clicking the question mark ? icon on the page.

High Availability Solutions Manager welcome

High Availability Solutions Manager is an easy-to-use interface that helps you select, set up, and manage your high-availability solution. High Availability Solutions Manager is included in the IBM PowerHA for i licensed program, 5770-HAS.

Setting up your high-availability solution involves migrating your business applications to run in a high-availability environment. This environment includes an independent disk pool and two or more instances of i5/OS running V6R1. Setting up a high-availability solution results in the data, applications, and environment from one system replacing the contents of each backup system in the high-availability solution.

You need to perform the five tasks on the High Availability Solutions Manager welcome page in sequence. The only task that you can skip is the first one, See how IBM high availability solutions work. When you are finished using this panel, click **Close**.

See how IBM high availability solutions work

Displays a flash demo that introduces high availability concepts and explains how your enterprise can benefit from using the High Availability Solutions Manager interface to easily set up and manage a highly-available solution. The flash demo is always available.

Select your high-availability solution

Allows you to select from one of four high-availability solutions:

- Switched disk between logical partitions
- Switched disk between systems
- Switched disk with geographic mirroring
- Cross-site mirroring with geographic mirroring

The Select your high availability solution task is available until you start setting up the solution.

Verify requirements before setting up your high-availability solution

Verifies that your systems contain the required hardware and software resources for setting up the selected high-availability solution. This task is available only if you have selected a high-availability solution, and have not yet started setting it up. If your systems do not meet the requirements for a particular high-availability solution, you can either add the required resources or select a different high-availability solution.

Set up your high-availability solution (license required)

Sets up the selected high-availability solution automatically, step-by-step. This task is available only if you have verified the high availability requirements.

During the set up of the high-availability environment, the node from where you are running the setup becomes the primary node of the high-availability environment. The other node or nodes in your solution become the backup nodes. Because the setup of the high-availability environment deletes data from the backup node, save important data that exists on the backup node before beginning the setup step.

You must have a license for the IBM PowerHA for i, 5770-HAS licensed program to be able to set up the high-availability solution. You have a 70-day trial period in which you can use the High Availability Solutions Manager. When the trial period ends, you will not be able to use the High Availability Solutions Manager unless you purchase a license key through your standard software ordering process. Any high-availability solution that you have designed and set up during the trial period will be reactivated when the license key has been purchased.

Manage your high-availability solution (license required)

Allows you to manage your high-availability solution. The Manage your high-availability solution task is available after you have successfully set up the high-availability solution. You can monitor the status of your high-availability solution, perform an administrative switchover, shut down and resume the high-availability solution, and perform many other tasks.

You must have a license for the IBM PowerHA for i, 5770-HAS, to be able to manage the high-availability solution.

Terms and Concepts

Displays the *High availability technologies* PDF, which provides the infrastructure and tools to help achieve your availability goals. The key technologies in i5/OS high-availability solutions are cluster resource services (clusters) and independent disk pools.

High Availability Operator's Guide

Displays the Implementing high availability with the High Availability Solutions Manager – Operator's guide PDF, which includes all of the tasks for working with your high-availability solution.

An icon next to the task number indicates the status of the high availability tasks.

Icon	Description
~	Indicates that the task has been completed. If this icon appears next to the Manage your high-availability solution task, it indicates that the high-availability solution is working properly.
Δ	Indicates that the task is incomplete.
8	Indicates that there is a problem with one or more resources of the high-availability solution resources. This icon is used only for the Manage your high-availability solution task.

Select your high availability solution

The Select Your High Availability Solution page describes the predefined high-availability solutions available in High Availability Solutions Manager. Select a high-availability solution from the list on the left to see a brief description of the solution.

For each high-availability solution, you can view an overview of the solution, a customized shopping list, and an executive summary.

You can perform the following actions from this page:

View solution overview

Click to display a flash demo of the selected high-availability solution. You can save this information.

View customized shopping list

Click to see a customized list of hardware and software products that are required to set up the high-availability solution. You can save or print this information.

View executive summary

Click to see a list of the benefits and limitations of the selected high-availability solution. Use this information to help you decide which solution to select. You can save or print this information.

Select Select the desired high-availability solution from the list and click **Select** to identify the solution to be configured and deployed. (*Deploy* means to place files or install software into an operational environment.)

Cancel

Click to return to the High Availability Solutions Manager welcome page.

If these high-availability solutions do not meet your needs, contact your IBM representative for a customized solution, or use the Cluster Resource Services and Disk Management graphical interfaces, or use the IBM PowerHA for i (iHASM) commands and APIs to design your own high-availability solution.

For more information, see these information center topics:

• "Selecting a high availability solution" on page 10

- Switched disk between logical partitions
- Switched disk between systems
- Switched disk with geographic mirroring
- Cross-site mirroring with geographic mirroring

Customized shopping list

The Customized Shopping List page in High Availability Solutions Manager displays a list of the minimum requirements for your selected high-availability solution. Before configuring a solution, you need to ensure that all the minimum requirements have been met.

Each high-availability solution listed on the Select Your High Availability Solution page has its own customized shopping list. If your system does not meet the requirements for a particular high-availability solution, look at the shopping list for one of the other solutions. You also can save or print the list of requirements.

The system looks for the hardware devices and software licenses that are required to configure the selected high-availability solution. While retrieving this information, the inventory collection animation is displayed. An image of the selected high-availability solution is displayed in the upper right corner of the page. You cannot add extra resources to the minimum required list.

The **Requirements** column describes the hardware or software components that are required for the selected high-availability solution. This column also includes a link to a specific article or Web site with the technical details about the selected requirement.

The **Status** column indicates the following:

Table 9.	Verify red	quirement	status
----------	------------	-----------	--------

Status	Description
8	The requirement must be met to set up your high availability solution. You can meet a requirement by supplying missing identification information for resources which will be used later to set up your high-availability solution or by installing missing hardware and software.
	After entering or selecting missing information click OK . After installing missing hardware or software, click Refresh so the requirements list can be updated to reflect the changes.
Δ	The requirement is optional but might be recommended based on your specific business requirements. For example, a minimum of one disk drive is required to configure an independent disk pool but one disk might not be sufficient to store all of your data.
	You can meet a requirement by supplying missing identification information for resources which will be used later to set up your high-availability solution or by installing missing hardware and software.
	After entering or selecting missing information click OK . After installing missing hardware or software click Refresh so the requirements list can be updated to reflect the changes.
\checkmark	The requirement has been met.

The **Information** column lists the valid choices that meet the requirement. You can select the value that meets the requirement from the choices listed in the combo box. If no valid choices are listed, or if an existing resource is listed as not valid, check the message area for reasons why existing resources cannot be selected.

After all required hardware, software and information has been identified and successfully verified, you can set up your solution.

You also can perform the following actions on the requirements list:

Action	Description
Print	Prints the list of requirements. This action brings up the Print High Availability Solution Information page.
Refresh	Refreshes the list of requirements with the latest data.
Save	Saves this list of requirements to a file. This action brings up the Save High Availability Solution Information page.
ОК	After you have finished viewing the list of requirements, click OK to save the current list and return to the previous page.
Cancel	Discards any changes that you have made, closes this page, and returns to the previous page.

Messages

You might see the following informational and error messages for your selected high-availability solution:

had000b

Dedicated Service Tools (DST) must be set up as follows:

- A service tools user ID and password for {0} must be configured.
- Service tools user IDs are configured using Dedicated Service Tools (DST).
- Service tools user ID and password must match the i5/OS user profile and password of the user that is calling this API.
- The i5/OS user profile password and the service tools user ID password must be all uppercase.
- Password level of the Dedicated Service Tools (DST) must be set. This is done through the service tools security data option, followed by the password level option. When this option has been activated, service tools user ID passwords are case sensitive.

hae0027

Communications could not be established with node {0}. The following are required on node {0} for communications to work.

- TCP server *INETD must be started
- IBM PowerHA for i (iHASM) licensed program number (5770-HAS) must be installed.
- IP address {1} must be active and reachable from the local system.

hai0006

Dedicated Service Tools (DST) must be set up for the QYHCHCOP API for the {0} user profile.

hat001b

Primary Node

hat001c

Backup Node

hat001d

Logical Partition

hat001e

System Serial Number

hat001f

Tower {0}

hat002c

V6R1 i5/OS

hat002d

Cluster IP Address {0}

hat002e

Line Description

hat002f

OptiConnect Enabled

hat0030

Tower contains required local communications hardware that will be switched with the tower.

hat0031

Present.

hat0032

Needed.

hat0033

Omit from solution.

hat0034

All unconfigured DASD under the IOP will be selected if any are selected.

hat0035

DASD.

hat0036

5761HAS - IBM System i High Availability Solutions Manager.

hat0037

Switchable IO Pool.

hat0038

Include in solution.

hat0039

Dependent Library {0} not allowed in independent disk pool.

hat003a

Tower contains configured DASD.

hat003b

Tower cannot be made switchable.

hat003c

Tower is private, may or may not be made switchable (unknown).

hat003d

IP address {0} not reachable.

hat003e

Cannot split up a parity set.

hat003f

Insufficient capacity on source node.

hat0040

Insufficient capacity on backup node.

hat0041

IOP

hat0042

All unconfigured DASD under the tower will be selected if any are selected.

hat0044

{0} contains object not supported in independent disk pool.

hat0045

{0} contains journal {1} to IFS objects.

hat0046

{0} contains job descriptions.

hat0047 {0} in use by System Value {1}.

hat0048

{0} in use by Network Attribute {1}.

hat0049

{0} contains journaled IFS objects.

hat004a

{0} contains class objects.

hat004b

{0} contains subsystem descriptions.

hat004c

{0} in use by subsystem description {1}.

hat004d

{0} contains database file {1} with data link control.

hat004e

{0} contains multisystem database file {1} (node group).

hat0053

DataPortIP {0}.

hat0057

Backup node at remote site.

hat0058

System Name.

hat005c

Backup node at primary site.

hat005d

System value $\{0\}$ must be set to $\{1\}$.

hat005e

Server takeover IP address.

hat005f

Tower contains non-switchable hardware.

hat0060

IOP {0} has configured DASD.

hat0061

IOP {0} contains communications hardware which will be switched with the IOP.

hat0062

Could not collect inventory for node {0}.

hat0063

Could not retrieve inventory for node {0}.

hat0064

Inventory collection processing step {0} of {1}.

hat0065

Tower{0} not owned by primary node.

hat0066

Tower {0} has configured DASD.

hat0067

Tower {0} has communications hardware or other non-switchable devices.

hat0068

Tower {0} is private.

hat0069

Tower {0} not visible from node {1}.

hat006a

IOP {0} has communications hardware or other non-switchable devices.

hat006b

The backup system for the primary site is not valid. It must be another partition of the same system.

hat006c

The remote backup system is not valid. It must be another physical system.

hat006d

IP address {1} not found.

hat006e

Current selection {1} not valid.

hat0071

Licensed program product {1}

For the complete list of messages, see the "Working with messages" on page 38 information center topic.

Executive summary

The Executive Summary page in High Availability Solutions Manager describes the benefits and restrictions for the selected high availability solution. Use this information to help your company decide which solution to set up.

The following table describes the actions that you can perform on this page.

Action	Result
More details about this high availability solution	Displays additional information about the selected high availability solution.
Print	Prints the executive summary. This action brings up the Print High Availability Solution Information page.
Save	Saves the executive summary to a file. This action brings up the Save High Availability Solution Information page.
Close	Closes the Executive Summary panel and returns to the Select Your High Availability Solution page.

Save or print high availability solution information

You can use the Save or Print High Availability Solutions Information page in High Availability Solutions Manager to save or print information regarding a high-availability solution.

The **Solution Overview (flash demo)** information source is a visual demonstration of how the High Availability Solutions Manager graphical interface works. The **Solution Overview** can only be saved. There is no printable format.

The **Customized Shopping List** information source is a list of hardware and software items needed to configure the selected high-availability solution.

The **Executive Summary** information source is a list of benefits and restrictions that the selected high-availability solution provides.

The **Display Log** information source lists the results of performing a step during the setup of the selected high-availability solution.

The information option that is selected by default on this page depends on which function requested the action. For example, if you clicked **Save** on the Executive Summary page, the **Executive Summary** information source is selected on this page.

To save or print additional information sources, check the box to the left of the information source. Clicking on a checked box deselects the information source.

To select all of the options available, click the **Select All** button above the information source table, or select the **Select All** menu option in the **Select Action** dropdown menu and click **Go**.

To uncheck all checked boxes, click the **Deselect All** button (located next to the **Select All** button), or select the **Deselect All** menu option from the **Select Action** dropdown menu and click **Go**.

Click **OK** to save or print the selected information. Click **Cancel** to return to the previous page.

The following table describes what happens after clicking **OK**:

Action	Result
Save	The following dialog boxes might vary between browsers. This example is based on an Internet Explorer browser.
	 The File Download dialog box appears. Options are Open, Save, or Cancel.
	• Choosing Save in the File Download dialog box brings up a Save As dialog box. Select the location to save the file and click Save .
	 The Download Complete dialog appears when the save is complete. Options are Open, Open Folder, or Close.
Print	Launches the standard Print dialog box.

Verify requirements list

The Verify Requirements List page in High Availability Solutions Manager displays a list of the minimum requirements for your selected high-availability solution. Before configuring a solution, you need to ensure that all the minimum requirements have been met. You can save or print the requirements list.

The system looks for the hardware devices and software licenses that are required to configure the selected high-availability solution. While retrieving this information, the inventory collection animation is displayed. An image of the selected high-availability solution is displayed in the upper right corner of the page. You cannot add extra resources to the minimum required list.

The **Requirements** column describes the hardware or software components that are required for the selected high-availability solution. This column also includes a link to a specific article or Web site with the technical details about the selected requirement.

The **Status** column indicates the following:

Table 10. Verify requirement status

Status	Description	
8	The requirement must be met to set up your high availability solution. You can meet a requirement by supplying missing identification information for resources which will be used later to set up your high-availability solution or by installing missing hardware and software.	
	After entering or selecting missing information click OK . After installing missing hardware or software, click Refresh so the requirements list can be updated to reflect the changes.	
Δ	The requirement is optional but might be recommended based on your specific business requirements. For example, a minimum of one disk drive is required to configure an independent disk pool but one disk might not be sufficient to store all of your data.	
	You can meet a requirement by supplying missing identification information for resources which will be used later to set up your high-availability solution or by installing missing hardware and software.	
	After entering or selecting missing information click OK . After installing missing hardware or software click Refresh so the requirements list can be updated to reflect the changes.	
\checkmark	The requirement has been met.	

The **Information** column lists the valid choices that meet the requirement. You can select the value that meets the requirement from the choices listed in the combo box. If no valid choices are listed, or if an existing resource is listed as not valid, check the message area for reasons why existing resources cannot be selected.

After all required hardware, software and information has been identified and successfully verified, you can set up your solution.

Action	Description
Print	Prints the list of requirements. This action brings up the Print High Availability Solution Information page.
Refresh	Refreshes the list of requirements with the latest data.
Save	Saves the list of requirements to a file. This action brings up the Save High Availability Solution Information page.
ОК	After you have finished viewing the list of requirements, click OK to save the current list and return to the previous page. OK is enabled only when all mandatory requirements have been met. You are now ready to set up your high-availability solution.
Cancel	Discards any changes that you have made, closes this page, and returns to the previous page.

You also can perform the following actions on the requirements list:

For more information, see the "Verifying requirements for your high availability solution" on page 14 information center topic.

Messages

You might see the following informational and error messages for your selected high-availability solution:

had000b

Dedicated Service Tools (DST) must be set up as follows:

- A service tools user ID and password for {0} must be configured.
- Service tools user IDs are configured using Dedicated Service Tools (DST).
- Service tools user ID and password must match the i5/OS user profile and password of the user that is calling this API.
- The i5/OS user profile password and the service tools user ID password must be all uppercase.
- Password level of the Dedicated Service Tools (DST) must be set. This is done through the service tools security data option, followed by the password level option. When this option has been activated, service tools user ID passwords are case sensitive.

hae0027

Communications could not be established with node {0}. The following are required on node {0} for communications to work.

- TCP server *INETD must be started
- IBM PowerHA for i (iHASM) licensed program number (5770-HAS) must be installed.
- IP address {1} must be active and reachable from the local system.

hai0006

Dedicated Service Tools (DST) must be set up for the QYHCHCOP API for the {0} user profile.

hat001b

Primary Node

hat001c

Backup Node

hat001d

Logical Partition

hat001e

System Serial Number

hat001f

Tower {0}

hat002c

V6R1 i5/OS

hat002d

Cluster IP Address {0}

hat002e

Line Description

hat002f

OptiConnect Enabled

hat0030

Tower contains required local communications hardware that will be switched with the tower.

hat0031

Present.

hat0032

Needed.

hat0033

Omit from solution.

hat0034

All unconfigured DASD under the IOP will be selected if any are selected.

hat0035

DASD.

hat0036

5761HAS - IBM System i High Availability Solutions Manager.

hat0037

Switchable IO Pool.

hat0038

Include in solution.

hat0039

Dependent Library {0} not allowed in independent disk pool.

hat003a

Tower contains configured DASD.

hat003b

Tower cannot be made switchable.

hat003c

Tower is private, may or may not be made switchable (unknown).

hat003d

IP address {0} not reachable.

hat003e

Cannot split up a parity set.

hat003f

Insufficient capacity on source node.

hat0040

Insufficient capacity on backup node.

hat0041

IOP

hat0042

All unconfigured DASD under the tower will be selected if any are selected.

hat0044

{0} contains object not supported in independent disk pool.

hat0045

{0} contains journal {1} to IFS objects.

hat0046

{0} contains job descriptions.

hat0047

{0} in use by System Value {1}.

hat0048

{0} in use by Network Attribute {1}.

hat0049

{0} contains journaled IFS objects.

hat004a

{0} contains class objects.

hat004b

{0} contains subsystem descriptions.

hat004c

{0} in use by subsystem description {1}.

hat004d

{0} contains database file {1} with data link control.

hat004e

{0} contains multisystem database file {1} (node group).

hat0053

DataPortIP {0}.

hat0057

Backup node at remote site.

hat0058

System Name.

hat005c

Backup node at primary site.

hat005d

System value {0} must be set to {1}.

hat005e

Server takeover IP address.

hat005f

Tower contains non-switchable hardware.

hat0060

IOP {0} has configured DASD.

hat0061

IOP {0} contains communications hardware which will be switched with the IOP.

hat0062

Could not collect inventory for node {0}.

hat0063

Could not retrieve inventory for node {0}.

hat0064

Inventory collection processing step {0} of {1}.

hat0065

Tower{0} not owned by primary node.

hat0066

Tower {0} has configured DASD.

hat0067

Tower {0} has communications hardware or other non-switchable devices.

hat0068

Tower {0} is private.

hat0069

Tower {0} not visible from node {1}.

hat006a

IOP {0} has communications hardware or other non-switchable devices.

hat006b

The backup system for the primary site is not valid. It must be another partition of the same system.

hat006c

The remote backup system is not valid. It must be another physical system.

hat006d

IP address {1} not found.

hat006e

Current selection {1} not valid.

hat0071

Licensed program product {1}

For the complete list of messages, see the "Working with messages" on page 38 information center topic.

Set up your high availability solution

Use the Set Up Your High Availability Solution page in High Availability Solutions Manager to set up the selected high-availability solution. After you have verified that your data has been backed up, you are signed in as QSECOFR, and that you are running the setup from the node that you want to be the primary node in the high-availability solution, click **Go** to start setting up your solution.

Before you can set up the high-availability solution, your system must meet the following requirements:

• Your system must have the IBM PowerHA for i license key installed or be within the 70-day trial period.

If the trial period is running, the PowerHA trial period message displays. If the trial period has expired, the PowerHA trial period ended message displays, and you will not be able to continue setting up the solution.

• Your systems must be in dedicated state. This means that you are signed on as QSECOFR, no user jobs are running, and no users are signed on to the system.

If you are not signed in as QSECOFR, the user authority error message (HAI007E) displays. Click **All the systems involved in the solution must be in dedicated state** during solution setup for more details.

Set up your high-availability solution table

This table lists the steps for configuring your selected high-availability solution. Each configuration step contains a substep page. You must complete all configuration steps to set up the solution. However, you can stop in the middle of setup and return to setup later on. When you click **Go** to start the current step, the substep page for that step displays. After you complete the current step, you are returned to this page. The **Status** column indicates whether the step was completed successfully. Continue with each setup step until you have completed all steps.

Column	Description
Step	The configuration step name. The \clubsuit arrow points to the current step. When you complete a step, the arrow moves to the next step.
Estimated Time	The estimated time, in minutes, to complete the current configuration step.
Actual Time	The length of time, in minutes, that the configuration step took to complete.

Column	Description
Status	The status of the current step. This column is blank for steps that have not yet been started. When a configuration step is completed, the status column is set as follows:
	Complete - the step has completed successfully.
	Failed - the step failed.
	Running - the step is running.
	Undoing - the step is being undone.
	You can select Display log , Retry , or Undo step from the context menu b for each completed, failed, or incomplete step.

To set up your selected high-availability solution, follow these steps. When each step is completed, the Status column indicates whether the step completed successfully, failed, or was incomplete. If the step

completed successfully, the 🌵 arrow moves to the next step.

- 1. Click **Go** to perform the **Set up high availability policies** step.
 - a. On the Set Up High Availability Policies page, select the policies that you want to use and click OK.
 - b. When this step is completed, the Status column indicates whether the step completed

successfully, failed, or was incomplete. If the step completed successfully, the 📌 arrow moves to the next step.

- 2. Click Go to perform the Set up high availability environment step.
 - a. On the Set Up High Availability Environment page, click Run Now.
 - b. When this step is completed, click **Close** to return to this page.
- **3.** Click **Go** to perform the **Verify administrative switchover from {1} to {2}** step, where {1} represents the primary node for your solution and {2} represents the backup node for your solution. (If you are setting up a three-node solution, this switchover is from the primary node to the local backup node.)
 - a. On the Verify Administrative Switchover page, click Run Now.
 - b. When this step is completed, click **Close** to return to this page.
 - c. Manually verify that the administrative switchover was successful.
- 4. Click **Go** to perform the **Verify administrative switchover from {2} to {3}** step, where {2} represents the backup node for your solution and {3} represents the primary node for your solution. (If you are setting up a three-node solution, this switchover is from the local backup node to the remote backup node.)
 - a. On the Verify Administrative Switchover page, click Run Now.
 - b. When this step is completed, click **Close** to return to this page.
 - c. Manually verify that the administrative switchover was successful.
- 5. Click **Go** to perform the **Verify administrative switchover from {3} to {1}** step. This step displays only if you are setting up a three-node solution. This switchover is from the remote backup node to the primary node.
- 6. Click Go to perform the Migrate user profiles step.
 - **a.** On the Migrate User Profiles page, select the profiles that you want to migrate to the high-availability solution.
 - b. When this step is completed, click Close to return to this page.
- 7. Click **Go** to perform the **Migrate libraries** step.
 - **a**. On the Migrate Libraries page, select the libraries that you want to migrate to the high-availability solution.
 - b. When this step is completed, click **Close** to return to this page.

- 8. Click Go to perform the Migrate directories step.
 - **a**. On the Migrate Directories page, select the directories that you want to migrate to the high-availability solution.
 - b. When this step is completed, click Close to return to this page.
- **9**. Click **Go** to perform the **Verify administrative switchover from {1} to {2}** step, where {1} represents the primary node for your solution and {2} represents the backup node for your solution. (If you are setting up a three-node solution, this switchover is from the primary node to the local backup node.)
 - a. On the Verify Administrative Switchover page, click Run Now.
 - b. When this step is completed, click **Close** to return to this page.
 - c. Manually verify that the administrative switchover was successful.
 - **Note:** Before completing the setup of your high-availability solution, you must make sure that your business applications will work appropriately on all nodes in your solution. This step involves switching the nodes on which your applications will be running. When all the nodes in the solution have been verified, you can proceed to complete setting up the high-availability solution.
- 10. Click **Go** to perform the **Verify administrative switchover from {2} to {3}** step, where {2} represents the backup node for your solution and {3} represents the primary node for your solution. (If you are setting up a three-node solution, this switchover is from the local backup node to the remote backup node.)
 - a. On the Verify Administrative Switchover page, click **Run Now**.
 - b. When this step is completed, click **Close** to return to this page.
 - c. Manually verify that the administrative switchover was successful.
- 11. Click **Go** to perform the **Verify administrative switchover from {3} to {1}** step. This step displays only if you are setting up a three-node solution. This switchover is from the remote backup node to the primary node.
- 12. Click Go to perform the Finish set up and clean up work files step.
 - a. On the Finish Set Up and Clean Up Work Files page, click Run Now.
 - b. When this step is completed, click **Close** to return to this page.
- **13**. Click **Close** on the Set Up Your High Availability Solution page. You have finished setting up your high-availability solution. Your high-availability solution is now active and ready to be managed.

Actions

You can perform the following actions while setting up the high-availability solution:

Action	Result
Close	To return to the High Availability Solutions Manager page, click Close . The Set up high availability solution step is marked as completed only if all configuration steps are completed. Otherwise, it is marked as incomplete.
Display log	To display the log that was created while performing the configuration step, select Display Log from the context menu for the step. This log contains the commands that were run, the parameters, and the results. For example, if a setup step fails, display the log to read the error messages and troubleshoot the problem.
Go	To display the substep page for the current configuration step, click Go . This action is available until all configuration steps are completed, unless the current step has failed.

Action	Result
Retry	To perform the current configuration step again, click Retry . You also can select Retry from the context menu P for a step. This action is available only when the current step has failed, or when the step can be run any time. For example, you can set the high availability policies or verify administrative switchover at any time.
Undo previous step	To perform a rollback to all changes made in the previous configuration step, click Undo previous step . You also can select Undo step from the context menu for a step. The previous step is highlighted and ready to be configured. This action is available after completing the first configuration step.

Messages

During the setup of the high-availability solution, the following messages might display:

Backup procedure warning

Displays before every step which migrates objects to the high-availability solution.

Dedicated state

Displays before each major setup step if the system is not in dedicated state.

High Availability Solutions Manager trial period

Displays if you do not have an iHASM license.

High Availability Solutions Manager trial period ended

Displays if the 70-day trial period has expired.

Migration error

Displays if you try to migrate more data than the independent disk pool (IASP) can hold. You can either add more disk units to the independent disk pool or migrate less data to the independent disk pool.

Step completed

Displays after every major setup step. You should verify that your applications still work properly after each set up step.

User authority error

Displays if you are not signed in as QSECOFR.

For more information, see the following information center topics:

- "Changing backup procedures for a high-availability solution" on page 17
- "Placing high availability systems in dedicated state" on page 17
- "Verifying applications after each setup step" on page 18

Display high availability log

The Display Log page in High Availability Solutions Manager lists the commands, APIs, and other system functions that were used to perform a step during the setup of your high-availability solution. The log also includes completion and error messages.

After you finish running a setup step, select **Display log** from the context menu **b** for that step. For example, if a setup step fails, display the log to read the error messages and troubleshoot the problem.

The most recent completion or error messages are appended to the bottom of the log.

Messages sent to the log during a setup step are never removed, even if you perform an undo or retry of the step.

You can perform the following actions on this page:

Action	Result
Print	Click to print the log.
Save	Click to save the log to a file.
Close	Click to return to the Set Up Your High Availability Solution page.

Set up high availability policies

The Set Up High Availability Policies page in High Availability Solutions Manager asks you to choose default actions for various events that take place on the system after the high-availability solution is set up. The default action is automatically taken when the specified event occurs.

You can set up policies for the following default actions. Select one option from each section. To change the selected option in a section, select a different radio button in that section:

Default action when a user profile is created

Having user profiles automatically created on the nodes in the high availability solution can simplify system maintenance because you create only one profile for all the nodes.

Default action when a user profile is deleted

Having user profiles automatically deleted on the nodes in the high availability solution can simplify system maintenance because you delete only one profile for all the nodes.

Default action before the primary node enters the restricted state

With this action, you can keep the independent disk pool data available, either on the current primary node or on a backup node, using an administrative switchover.

Default action before the primary node performs a power-off operation

With this action, you can keep the independent disk pool data available on a backup node, using an administrative switchover.

Default action when performing a failover to a backup node

This policy is available only if the selected solution is Switched Disk with Geographic Mirroring.

After you have made the selections, click **OK** to save the selected options and return to the Set Up High Availability Solution page.

Click Cancel to discard the changes and return to the Set Up High Availability Solution page.

For more information, see the "Managing policies" on page 36 information center topic.

Set up high availability environment

The Set Up High Availability Environment page in High Availability Solutions Manager lists the substeps to be performed to complete the setup of the high-availability environment. This step uses the data that you provided earlier to configure each system to be part of the high-availability environment.

Important: You must be signed on using the QSECOFR user profile. The password for QSECOFR must be the same across all the nodes to be added to the high-availability solution. The password for the dedicated service tools (DST) QSECOFR must be the same as for the QSECOFR user profile, but in upper case.

The system on which the High Availability Solutions Manager web interface is running becomes the primary node of the high-availability solution. If this web interface is not running on the system that is designated as the primary node, you must close this browser window and open a new browser window on the system that will become the primary node before continuing with the setup of your high-availability solution.

Note: Verify that the TCP/IP *INETD server is started on all systems that will be involved in the deployment of the high-availability solution before beginning the deployment.

Field information

The substep table has the following columns.

Column	Description
Substep	Short description of the command or API that will be run.
Estimated time	Estimation of how much time the substep will take to complete. The estimated time changes dynamically to show the best estimate of the remaining time.
Actual time	The actual amount of time that has elapsed since the substep began running.
Status	The status of the substep. Possible values include: Blank - The substep has not yet been run or was undone. Complete - The substep has completed without error. Failed - The substep encountered errors while running. Running - The substep is currently running.
Command/API	The command or API that is currently being processed to complete the substep.

Completion and error messages that are received as the substeps are run are shown in the message area above the **Run Now**, **Cancel**, **Undo**, and **Close** buttons. You can attempt the task again after taking corrective action based on the error messages provided.

Click **Run Now** to begin the substep that the ψ arrow is pointing to.

Click **Cancel** to return to the Set Up High Availability Solution page without setting up the high-availability environment.

While the substeps are running, click **Cancel** to stop after the current substep has finished running, but before the next substep starts running. After the cancel processing is complete, the following options are available:

- Click **Undo** to undo the previously completed substeps.
- Click **Run Now** to continue running with the next substep.
- Click **Cancel** to return to the previous page without continuing or undoing any substeps. When setting up the high-availability solution, future set up processing will remember which substep is the next substep to be run.

Click **Close** to return to the Set Up High Availability Solution page after all substeps have finished running.

Substeps performed to set up the high-availability environment

High Availability Solutions Manager performs the following substeps to set up the high-availability environment:

- The Allow Add to Cluster Network attribute is changed to *ANY on all nodes in the high-availability solution.
- The cluster is created on all systems (nodes) that were previously specified.
- Device domain entries are added to the cluster.
- The independent disk pool device description is created.
- The Allow Server Security Information to be Retained (QRETSVRSEC) system value is changed to 1 for user profiles and other object types that need to be treated as secure.

- A cluster administrative domain is created and started.
- Monitored resources, such as system values, network attributes, TCP/IP attributes, environment variables, job descriptions, classes, and subsystem descriptions, are enrolled in the cluster administrative domain.
- The device cluster resource group is created to manage the independent disk pool.
- The disk units in the independent disk pool are configured.
- Geographical mirroring is configured, if you selected a high-availability solution that uses geographical mirroring.
- The independent disk pool is varied on.
- The device cluster resource group is started.
- Depending on which policies were selected, exit programs are added to five system exit points. The exit programs that are registered during this step are run after any existing exit programs are run. The VRYEXIT, CRT_PROFILE, and DLT_PROFILE exit programs are added.

See the table below for the exit points used, and a description of what the registered exit programs will do. For more information about exit points and exit programs, see Using Registration Facility APIs and Registration Facility Preprocessing Exit Programs in the IBM i Information Center.

Exit point	Exit program name Exit program format	Exit program function
QIBM_QDC_VRYEXIT	QSBVRYEXT PROF0100	Calls the program specified in the QUSRHASM/QSHUTDOWN data area. This data area is updated with the name of the program which will shut down the application.
QIBM_QSY_CRT_PROFILE	QSBCRTEXT CRTP0100	Performs the policy selected for Default action when a user profile is created on the Set Up High Availability Policies page.
QIBM_QSY_DLT_PROFILE	QSBDLTEXT DLTP0100	Performs the policy selected for Default action when a user profile is deleted on the Set Up High Availability Policies page.
QIBM_QWC_PRERESTRICT	QSBPREEXT PRSE0200	Performs the policy selected for Default action before the primary node enters restricted state on the Set Up High Availability Policies page.
QIBM_QWC_PWRDWNSYS	QSBPDSEXT PDPF0200	Performs the policy selected for Default action before the primary node performs a power down on the Set Up High Availability Policies page.

• Data areas are created for startup and shutdown processing. The data areas listed are used so the high-availability solution environment is started and ended in a specific way. If this processing is not done, unintended results such as unwanted failovers or unreachable data, could occur. See the table below for the names of the data areas and a description of what the data areas contain.

Note: End users can update the values in the data areas at any time.

Qualified data area name	Data area contents
QUSRHASM/QSTARTAPP	The 10-character name and 10-character library that is referenced during the switchover processing to start the user applications. This data area references the user program that does whatever processing is needed to start jobs, such as user applications and subsystems. This program might be the same program that is referenced from the QUSRHASM/QSTRUPPGM data area if the user program is called when the system is already running.
QUSRHASM/QSTRUPPGM	The 10-character name and 10-character library that is referenced in the QSTRUPPGM system value. The setup step puts the program for the QSTRUPPGM system value into the QUSRHASM/QSTRUPPGM data area. The QSTRUPPGM system value is replaced with QHASM/QSTRUPPGM because the high-availability solution environment needs to be started in a special order. At each IPL, the high availability environment is started, then the program referenced in the QUSRHASM/QSTRUPPGM data area is called to finish startup processing. The contents of the data area might be MYPGM MYLIB.
QUSRHASM/QSHUTDOWN	The 10-character name and 10-character library of the program that shuts down the highly available user applications. The contents of the data area might be MYPGM MYLIB. You need to update the QUSRHASM/QSHUTDOWN data area with the name of the program that shuts down the highly-available user applications. If a program name is not provided in the QUSRHASM/QSHUTDOWN data area, when the independent disk pool is varied off, the system ends all jobs (ENDJOB *IMMED) with references to the independent disk pool. By providing a program here, you can shut down your applications in a more orderly way. This program is called from the VRYEXIT program.

Messages

You might see the following informational and error messages for your selected high-availability solution:

hat005a

Configure independent disk pool.

hat005b

Configure geographic mirroring.

For the complete list of messages, see the "Working with messages" on page 38 information center topic.

Verify administrative switchover

Use the High Availability Solutions Manager interface to run the substeps to perform an administrative switchover. The title of this page might be Verify Administrative Switchover, Verify Administrative Switchover at Same Site, or Verify Administrative Switchover at Different Site.

Important: Ensure that the TCP/IP *INETD server is started on the nodes involved in the switchover.

Substeps performed to complete the administrative switchover

High Availability Solutions Manager performs the following substeps to complete the administrative switchover:

- Verifies that the nodes involved in the administrative switchover are active.
- Verifies that the device CRG is active.
- Verifies that the independent disk pool is active.
- Verifies that no duplicate libraries exist on the backup node.
- Changes the device CRG primary node by using the Change CRG Primary (CHGCRGPRI) command. See the Change CRG Primary information center topic for a detailed description of the functions that the CHGCRGPRI command performs. The CHGCRGPRI command does the following for a device CRG:
 - Varies off the independent disk pool. The exit program registered on the QIBM_QDC_VRYEXIT exit point is called. The exit program was registered on this exit point during the Set Up High Availability Environment step of the deployment.
 - Ends the server takeover IP address that is associated with the independent disk pool.
 - Varies on the independent disk pool on the node that is becoming the new primary node.
 - Starts the TCP/IP interface that is associated with the independent disk pool on the new primary node.
 - The device CRG exit program calls the program referenced by the QUSRHASM/QSTARTAPP data area that was set up in the Set Up High Availability Environment step of the deployment. This program starts all user applications that reference the independent disk pool.
 - Sets the device CRG status to Active if the switchover completes successfully.
- If the solution is Switched Disk with Geographic Mirroring, the recovery domain of the device CRG is modified, as described in the high-availability policies. For example, suppose the policy is to fail over to a node at the same site. After successful switchover, the recovery domain is changed so that the first available backup is the other node at the same site as the new primary node.

The end result of a successful administrative switchover depends on the high-availability solution that was deployed.

If the solution that has been set up is Switched Disk with Logical Partitions or Switched Disk with Two Systems, the independent disk pool moves to the other node. For example, NODE1 is the primary node and has the independent disk pool, and NODE2 is the backup node. During the switchover, the independent disk pool moves to NODE2, NODE2 becomes the primary node, and NODE1 becomes the backup node.

If the solution that has been set up is Cross-Site Mirroring with Geographic Mirroring, the independent disk pools change roles. For example, there are two nodes: NODE1 and NODE2. NODE1 has the production copy of the independent disk pool and NODE2 has the mirror copy. During the switchover, the mirror copy of the independent disk pool becomes the production copy, and the production copy becomes the mirror copy. Thus, NODE2 now has the production copy and NODE1 has the mirror copy.

If the solution that has been set up is Switched Disk with Geographic Mirroring, and the switchover is going to be to the same site, the hardware switches the same way as for the Switched Disk with Logical Partitions or Switched Disk with Two Systems solutions. If the switchover is to a different site, then the mirror copy of the independent disk pool becomes the production copy, and no hardware switches. For example, NODE1 and NODE2 are part of site NEWYORK. NODE1 is the primary node and has the production copy of the independent disk pool. NODE3 is part of site LONDON and has the mirror copy of the independent disk pool. NODE3 becomes the primary node, the production copy attached to NODE1 becomes the mirror copy, and the mirror copy attached to NODE3 becomes the production copy.

If the administrative switchover fails, the independent disk pool is switched back to the original primary system, and an error message displays in the message area.

Field information

Column	Description
Substep	Short description of the command or API that will be run.
Estimated time	Estimation of how much time the substep will take to complete. The estimated time changes dynamically to show the best estimate of the remaining time.
Actual time	The actual amount of time that has elapsed since the substep began running.
Status	The status of the substep. Possible values include: Blank - The substep has not yet been run or was undone. Complete - The substep has completed without error. Failed - The substep encountered errors while running. Running - The substep is currently running.
Command/API	The command or API that is currently being processed to complete the substep.

The substep table has the following columns.

Completion and error messages that are received as the substeps are run are shown in the message area above the **Run Now**, **Cancel**, **Undo**, and **Close** buttons. You can attempt the switchover again after taking corrective action based on the error messages provided.

Click **Run Now** to begin the substep that the ψ arrow is pointing to.

Click **Cancel** to exit without completing the administrative switchover.

While the substeps are running, click **Cancel** to stop after a substep has finished running, but before the next substep starts running. After the cancel processing is complete, the following options are available:

- Click **Undo** to undo the previously completed substeps.
- Click **Run Now** to continue running with the first substep that has not yet completed.
- Click **Cancel** to return to the previous page without continuing or undoing any substeps. When setting up the high-availability solution, future set up processing will remember which substep is the next substep to be run.

Click **Close** to exit after all substeps have finished running.

For more information, see the "Performing switchovers" on page 23 information center topic.

Migrate user profiles

The Migrate User Profiles page in High Availability Solutions Manager provides a list of user profiles to migrate to and from the high-availability solution.

The high-availability environment appears as a single system to end users. The number of backup systems or which system is currently active does not matter. The end user sees only one system, which is called the *active primary node*. You should migrate all end user profiles to the high-availability solution. Because the end user's data is only available on the active primary node, their profile is only able to sign on to that node.

Other users perform administrative tasks such as applying fixes or performing system backups. Those user profiles are called *administrative profiles*, and need to access all systems in the high-availability environment. Therefore, you should not migrate administrative profiles to the high-availability solution.

Each user profile references a job description. Job description objects must be in a library in the system auxiliary storage pool (ASP) to be used. If a library containing a job description is migrated to an independent disk pool, the job description becomes unusable. To avoid this potential problem, the High Availability Solutions Manager copies the job description that is associated with each user profile to be migrated to the QUSRHASM library.

Additionally, the newly copied job description in the QUSRHASM library has the initial ASP group (INLASPGRP) parameter updated to the name of the independent disk pool of the high-availability solution. This action is done so that the user is able to access the independent disk pool immediately after signing onto the system. The user profile being migrated is then updated to reference the copied job description in the QUSRHASM library.

To migrate the user profiles, High Availability Solutions Manager performs the following steps:

- The job description that is associated with the profile is copied to the QUSRHASM library and the INLASPGRP parameter is updated, as described above.
- The job description is enrolled in the cluster administrative domain by using the Add Cluster Administrative Domain Monitored Resource Entry (ADDCADMRE) command.
- The user profile is updated to use the job description in the QUSRHASM library.
- The user profile is enrolled in the cluster administrative domain by using the ADDCADMRE command. If the profile does not exist on the other nodes in the solution, the profile is created. If the user profile already exists, it is changed to match the profile on the primary system.

The ADDCADMRE command might fail if the user ID or group ID numbers that are associated with the user profile are already taken on the other system. If this happens, the High Availability Solutions Manager determines which user profile on the other system is currently taken by using the user or group ID number. That profile's user or group ID number is regenerated. After the user or group ID numbers are freed, the migrated user profile is changed to have the same user or group ID number as the primary system.

Attention: Before you migrate user profiles, libraries, and directories to the high-availability environment, perform a full-system backup. The goal of setting up a high-availability solution is to create a single image of your operating system environment regardless of the number of nodes in your high-availability solution. Libraries, directories, and user profiles are deleted on the backup nodes. For example, when library LIBA is migrated from the primary node to the independent disk pool, all versions of LIBA that exist on all other nodes in the solution are deleted. For more information, see "Changing backup procedures for a high-availability solution" on page 17.

Migrating user profiles to the high-availability environment

To migrate user profiles to the high-availability environment, follow these steps:

- 1. To select the profiles to be migrated from the Objects Not in the High Availability Solution table, click the box in the Select column.
- 2. Click Migrate >.
- **3.** While migration is taking place, each profile that has been migrated moves from the Objects Not in the High Availability Solution table to the High Availability Solution Objects table. The totals for **Migrated objects** and **Elapsed time** are updated after each profile is migrated. Completion and error messages are displayed in the message area.
- 4. To cancel the migration, click **Cancel**. The migration stops after the current user profile has completed migration.
- **5.** To undo a user profile migration or to migrate profiles back to the Objects Not in the High-Availability Solution table, follow the Migrating user profiles from the high-availability environment instructions below.
- 6. Once migration is complete, click **Close** to return to the Set Up High Availability Solution page.

Migrating user profiles from the high availability environment

To migrate user profiles from the high-availability environment, follow these steps:

- 1. To select the profiles to be migrated from the High-Availability Solution Objects table, click the box in the Select column.
- 2. Click < Migrate.
- **3.** While migration is taking place, each profile that has been migrated moves from the High-Availability Solution Objects table to the Objects Not in the High Availability Solution table. The totals for **Migrated objects** and **Elapsed time** are updated after each profile is migrated. Completion and error messages are displayed in the message area.
- 4. To cancel the migration, click **Cancel**. The migration stops after the current user profile has completed migration.
- 5. To undo a user profile migration or to migrate profiles back to the High-Availability Solution Objects table, follow the Migrating user profiles to the high-availability environment instructions above.
- 6. Once migration is complete, click **Close** to return to the Set Up High Availability Solution page.
- **Note:** Profiles that are migrated out of the high-availability solution are not changed back to their original state before migration.
- **Note:** Migration cannot happen both ways at the same time. Clicking **Migrate** > moves user profiles into the high-availability solution. Clicking < **Migrate** moves user profiles out of the high-availability solution.

Migration tables

Each Migration table contains four columns: Select, Profile, Status, Description.

Click the boxes in the Select column to select the user profiles to migrate.

The Status column contains an icon representing whether or not the user profile can be migrated. The following table shows the icons that might appear and what each icon means.

Status	Description
\checkmark	The user profile is ready for migration.
Δ	The user profile can be migrated, but you might need to perform additional steps. Click the context menu 🖻 next to the user profile name and select View restrictions .
⊗	The user profile cannot be migrated. Click the context menu 🖻 next to the user profile name and select View restrictions .

Migration totals for selected objects section:

- The **Selected objects** field is updated as user profiles are selected for migration.
- The **Migrated objects** field is updated after each user profile has been migrated.
- The **Estimated time** field is an estimate of the time remaining to migrate all selected user profiles. This field is updated while migration is taking place to reflect the estimated time remaining for user profiles that have not yet been migrated.
- The **Elapsed time** field is updated during migration to show how long the migration has been running.
- Completion and error messages received during migration are shown in the message area.

Click **Cancel** to stop migrating after the current user profile has been migrated.

Click Close after user profile migration has completed successfully.

Go

v

 Icon
 Name
 Description

 Image: Select all select all select all select all user profiles in the table. You also can select Select all in the Select Action drop-down menu and click Go.

 Image: Select all select all select all select all user profiles in the table. You also can select Deselect all in the Select Action drop-down menu and click Go.

 Image: Select all select all select all select all user profiles in the table. You also can select Deselect all in the Select Action drop-down menu and click Go.

 Image: Select all select all select all select all select all and click Go.

 Image: Select all select all select all select Action drop-down menu and click Go.

 Image: Select all select all select all select Action drop-down menu and click Go.

Clear all sorts

Select Action

drop-down menu list to sort the list by and specify ascending or descending sorting for each of the column. You also can select **Edit Sort** in the **Select Action**

Removes all current sorted views from the table. You also can select **Clear Sort** in the **Select Action**

Contains actions for the resources in the table view. Actions are listed in the Name column of this

drop-down menu and click Go.

drop-down menu and click Go.

The toolbar for each migration table contains the following toolbar buttons and menu:

Migrate libraries

Select Action ---

Use the Migrate Libraries page in High Availability Solutions Manager to migrate libraries to and from the high-availability solution.

table.

Deploying a high-availability solution implies that data is to be migrated from the primary system into the switchable independent disk pool. Therefore, only one copy of the data will exist. The data residing on the system where the deployment is originating from is moved to the independent disk pool. All other copies of the data are deleted from the backup systems.

High Availability Solutions Manager performs the following steps to migrate a library to the high-availability solution:

- 1. The library is saved with the SAVLIB command to a user-specified media, such as a tape device, save file, or optical device. (You would specify this device in the **Device used by migration** menu.)
- 2. The library is deleted from the current system.
- 3. The library is restored with the RSTLIB command into the independent disk pool.
- 4. Libraries with the same name as the previously restored library are deleted from the other nodes in the high-availability solution. This step is done to avoid any namespace collisions during switchovers. Private authorities are saved and restored with the library.

Note: The library on the backup node is not saved before deletion.

After the library has completed migration, any job description objects that specify INLLIBL(*SYSVAL) are updated. If the migrated library is referenced in the QUSRLIBL or QSYSLIBL system values, it is removed from those system values. Job descriptions which specify INLLIBL(*SYSVAL) are duplicated into the QUSRHASM library. The duplicated job description are modified to specify all libraries in the QUSRLIBL system value plus the migrated library. This step is done because system values cannot reference any libraries that exist in independent disk pools.

Some object types are allowed to reside in an independent disk pool, but cannot be used in an independent disk pool. Examples of these object types include *JOBD, *SBSD, and *CLS. If an object of that type exists in a library that needs to be migrated, consider some of the following options so that applications are not disrupted by a migration:

- Move the object to a library that will remain in the system disk pool.
- Do not migrate the library containing the object.
- Create a system disk pool library called **SYSBASE**, and move all objects that should not be migrated into the new SYSBASE library.
- Change all references to the moved objects at their new location in the SYSBASE library.

Job schedule entries might be affected if the independent disk pool must be varied on or varied off when the job is scheduled to run. For example, if the job that is scheduled to run must access the independent disk pool and the independent disk pool is not available at the scheduled time, then the job will not complete successfully. Modify the job schedule entry to run at a time when the independent disk pool is most likely to be available, or modify the job to not require the independent disk pool.

During the migration, a message might appear stating: The total size of the objects selected for migration and the work space required to do the migration exceeds the space available in the high-availability environment. To continue with the migration, you need to add additional unconfigured disk units to the independent disk pool. For details on adding unconfigured disk units to the independent disk pool in the IBM i Information Center.

Unconfigured disk units come from two sources: a) adding new disk units to the system, or b) removing disk units from the system disk pool. For details about removing disk units from the system disk pool, see Moving or removing a disk unit from a disk pool.

Attention: Before you migrate user profiles, libraries, and directories to the high-availability environment, perform a full-system backup. The goal of setting up a high-availability solution is to create a single image of your operating system environment regardless of the number of nodes in your high-availability solution. Libraries, directories, and user profiles are deleted on the backup nodes. For example, when library LIBA is migrated from the primary node to the independent disk pool, all versions of LIBA that exist on all other nodes in the solution are deleted. For more information, see "Changing backup procedures for a high-availability solution" on page 17.

Migrating libraries to the high availability environment

To migrate libraries to the high-availability environment, follow these steps:

- 1. Select the device to be used for the migration from the **Device used by migration** drop-down menu.
- 2. To select the libraries to be migrated from the Objects Not in the High Availability Solution table, click the box in the Select column.
- 3. Click Migrate >.
 - **Note:** Migration cannot happen both ways at the same time. Clicking **Migrate** > moves libraries into the high-availability solution. Clicking < **Migrate** moves libraries out of the high-availability solution.
- 4. While migration is taking place, each library that has been migrated moves from the Objects Not in the High-Availability Solution table to the High-Availability Solution Objects table. The totals for Migrated objects and Elapsed time are updated after each library is migrated. Completion and error messages are displayed in the message area.
- **5**. To cancel the migration, click **Cancel**. The migration stops after the current library has completed migration.

- **6**. To undo a library migration or to migrate libraries back to the Objects Not in the High Availability Solution table, follow the Migrating libraries from the high-availability environment instructions below.
- 7. Once migration is complete, click **Close** to return to the Set Up High Availability Solution page.

Migrating libraries from the high availability environment

To migrate libraries from the high-availability environment, follow these steps:

- 1. Select the device to be used for the migration from the **Device used by migration** drop-down menu.
- 2. To select the libraries to be migrated from the High-Availability Solution Objects table, click the box in the Select column.
- 3. Click < Migrate.
 - **Note:** Migration cannot happen both ways at the same time. Clicking **Migrate** > moves libraries into the high-availability solution. Clicking < **Migrate** moves libraries out of the high-availability solution.
- 4. While migration is taking place, each library that has been migrated moves from the High-Availability Solution Objects table to the Objects Not in the High-Availability Solution table. The totals for Migrated objects and Elapsed time are updated after each library is migrated. Completion and error messages are displayed in the message area.
- **5**. To cancel the migration, click **Cancel**. The migration stops after the current library has completed migration.
- 6. To undo a library migration or to migrate libraries back to the High Availability Solution Objects table, follow the Migrating libraries to the high availability environment instructions above.
- 7. Once migration is complete, click **Close** to return to the Set Up High Availability Solution page.
- **Note:** Libraries that are migrated from the high-availability solution are not migrated to all of the nodes in the high-availability solution. They are migrated back to only the primary system.

Migration tables

The tables of libraries have the following columns: Select, Library, Status, Size, Estimated Time, and Dependent Library.

Click the boxes in the Select column to select the library in the Library column.

The **Status** column contains an icon representing whether or not the library can be migrated. The following table shows the icons that might appear and what each icon means.

Status	Description
~	The library is ready for migration.
Δ	The library can be migrated, but dependent libraries will be migrated with this library. Click the context menu 🖻 next to the path name and select View dependencies .
8	The library cannot be migrated. Click the context menu 🖻 next to the path name and select View restrictions .

The **Device used by migration** menu lists the available tape device descriptions on the systems. Possible values include:

*VRT,*TAP,63B0,001 (default) *SAVF tape1 tape2

The **Size** column indicates the size (in megabytes) of the library.

The Estimated Time column shows an approximation of how long it will take to migrate the library.

The **Dependent Library** column identifies other libraries that need to be migrated with the selected library. For a list of the reasons why libraries are dependent, see "Library dependencies."

Migration totals for selected objects section:

- The Selected objects field is updated as libraries are selected for migration.
- The **Migrated objects** field is updated after each library has been migrated.
- The **Estimated time** field is an estimate of the time remaining to migrate all selected libraries. This field is updated while migration is taking place to reflect the estimated time remaining for libraries that have not yet been migrated.
- The Elapsed time field is updated during migration to show how long the migration has been running.
- Completion and error messages received during migration are shown in the message area.

Click Cancel to stop migrating after the current library has been migrated.

Click Close after library migration has completed successfully.

Icon	Name	Description
	Select all	Selects all items in the table. You also can select Select all in the Select Action drop-down menu and click Go .
	Deselect all	Deselects all items in the table. You also can select Deselect all in the Select Action drop-down menu and click Go .
	Edit sort	Allows you to specify up to 3 columns from the list to sort the list by and specify ascending or descending sorting for each of the column. You also can select Edit Sort in the Select Action drop-down menu and click Go .
P	Clear all sorts	Removes all current sorted views from the table. You also can select Clear Sort in the Select Action drop-down menu and click Go .
Select Action 💙 Go	Select Action drop-down menu	Contains actions for the resources in the table view. Actions are listed in the Name column of this table.

The toolbar for each migration table contains the following toolbar buttons and menu:

Library dependencies

The following is a list of possible reasons why a library might be dependent upon another library:

- The library contains a journal that has journaled objects in a different library.
- The library contains a journal that has journal receivers in a different library.
- The library contains a physical file that has a logical file associated with it in a different library.
- The library contains a logical file that is associated with a physical file in a different library.

Library restrictions

The following is a list of possible reasons why a library cannot be migrated to the high-availability solution:

- The library is part of i5/OS and can only reside in the system disk pool.
- The library contains a journal that has one or more integrated file system objects journaled to it.
- The library is in the library list of the current thread.
- The library is in the library list of any primary thread that is active on the system when the QLIBLCKLVL system value is set to lock libraries in the library list.
- The library contains an allocated job queue or output queue.
- The independent disk pool does not have enough space for the library and its objects.
- The library contains object types that cannot reside in an independent disk pool. For a complete list of objects that cannot reside in an independent disk pool, see Supported and unsupported object types.
- The library is referenced by any of the system values shown below.

QACGLVL	QATNPGM	QAUDCTL	QCFGMSGQ
QCONSOLE	QCTLSBSD	QIGCCDEFNT	QINACTMSGQ
QPRBFTR	QPRTDEV	QPWDVLDPGM	QRMTSIGN
QSRTSEQ	QSTRUPPGM	QUPSMSGQ	QUSEADPAUT

• The library is referenced by any of the network attributes shown below.

ALRFTR	DDMACC	DFTMODE
MSGQ	OUTQ	PCSACC

• The library is referenced by a user profile that has not been migrated to the independent disk pool.

Messages

You might see the following informational and error messages for your selected high-availability solution:

hat0042

All unconfigured DASD under the tower will be selected if any are selected.

hat0044

{0} contains object not supported in independent disk pool.

hat0045

{0} contains journal {1} to IFS objects.

hat0046

{0} contains job descriptions.

hat0047

{0} in use by System Value {1}.

hat0048

{0} in use by Network Attribute {1}.

hat0049

{0} contains journaled IFS objects.

hat004a

{0} contains class objects.

hat004b

{0} contains subsystem descriptions.

hat004c

{0} in use by subsystem description {1}.

hat004d

{0} contains database file {1} with data link control.

hat004e

{0} contains multisystem database file {1} (node group).

For the complete list of messages, see the "Working with messages" on page 38 information center topic.

Migrate directories

Use the Migrate Directories page in High Availability Solutions Manager to migrate directories to and from the high-availability solution.

Deploying a high-availability solution implies that data is to be migrated from the primary system into the switchable independent disk pool. Therefore, only one copy of the data exists. The data residing on the system where the deployment is originating from is moved to the independent disk pool. All other copies of the data are deleted from the backup systems.

High Availability Solutions Manager performs the following steps to migrate a directory to the high-availability solution:

- 1. The directories and their subdirectories are saved with the SAV command to a user-specified media, such as a tape device, save file, or optical device. (You would specify this device in the **Device used by migration** menu.)
- 2. The directory is deleted from the system.
- **3**. The directory is restored with the RST command into the independent disk pool. For example, if directory **/mydir** is to be migrated, the system would restore the directory to **/IndependentDiskPoolName/mydir**.
- 4. A symbolic link is added to the restored directory so that existing applications continue to work without modification. For example, the system would add a symbolic link named /mydir, whose contents would link to /IndependentDiskPoolName/mydir.
- 5. Directories with the same name as the migrated directory are deleted from the other nodes in the high-availability solution.

Note: The directory on the backup node is not saved before deletion.

6. A symbolic link is created on every backup node so that when the independent disk pool is switched to the backup node, the applications running on the backup node can find the migrated data.

During the migration, a message might appear stating The total size of the objects selected for migration and the work space required to do the migration exceeds the space available in the high-availability environment. To continue with the migration, you need to add additional unconfigured disk units to the independent disk pool. For details on adding unconfigured disk units to the independent disk pool in the IBM i Information Center.

Unconfigured disk units come from two sources: a) adding new disk units to the system, or b) removing disk units from the system disk pool. For details about removing disk units from the system disk pool, see Moving or removing a disk unit from a disk pool in the IBM i Information Center.

Attention: Before you migrate user profiles, libraries, and directories to the high-availability environment, perform a full-system backup. The goal of setting up a high-availability solution is to create a single image of your operating system environment regardless of the number of nodes in your high-availability solution. Libraries, directories, and user profiles are deleted on the backup nodes. For example, when library LIBA is migrated from the primary node to the independent disk pool, all versions of LIBA that exist on all other nodes in the solution are deleted. For more information, see "Changing backup procedures for a high-availability solution" on page 17.

Migrating directories to the high-availability environment

To migrate directories to the high-availability environment, follow these steps:

- 1. Select the device to be used for the migration from the **Device used by migration** drop-down menu.
- 2. To select the directories to be migrated from the Objects Not in the High Availability Solution table, click the box in the Select column.
- 3. Click Migrate >.
 - **Note:** Migration cannot happen both ways at the same time. Clicking on **Migrate** > moves directories into the high-availability solution. Clicking on < **Migrate** moves directories out of the high-availability solution.
- 4. While migration is taking place, each directory that has been migrated moves from the Objects Not in the High-Availability Solution table to the High-Availability Solution Objects table. The totals for Migrated objects and Elapsed time are updated after each directory is migrated. Completion and error messages are displayed in the message area.
- **5**. To cancel the migration, click **Cancel**. The migration stops after the current directory has completed migration.
- **6.** To undo a directory migration or to migrate directories back to the Objects Not in the High-Availability Solution table, follow the Migrating directories from the high-availability environment instructions below.
- 7. Once migration is complete, click Close to return to the Set Up High Availability Solution page.

Migrating directories from the high-availability environment

To migrate directories from the high-availability environment, follow these steps:

- 1. Select the device to be used for the migration from the **Device used by migration** drop-down menu.
- 2. To select the directories to be migrated from the High Availability Solution Objects table, click the box in the Select column.
- 3. Click < Migrate.
 - **Note:** Migration cannot happen both ways at the same time. Clicking on **Migrate** > moves directories into the high-availability solution. Clicking on < **Migrate** moves directories out of the high-availability solution.
- 4. While migration is taking place, each directory that has been migrated moves from the High-Availability Solution Objects table to the Objects Not in the High-Availability Solution table. The totals for Migrated objects and Elapsed time are updated after each directory is migrated. Completion and error messages are displayed in the message area.
- **5**. To cancel the migration, click **Cancel**. The migration stops after the current directory has completed migration.
- 6. To undo a directory migration or to migrate directories back to the High-Availability Solution Objects table, follow the Migrating directories to the high-availability environment instructions above.
- 7. Once migration is complete, click **Close** to return to the Set Up High Availability Solution page.
- **Note:** Directories that are migrated from the high-availability solution are not migrated to all of the nodes in the high-availability solution. They are migrated back to the primary system.

Migration tables

The tables of directories have the following columns: Select, Path, Status, Size, and Estimated Time.

Click the boxes in the Select column to select the directory in the Path column.

The **Status** column contains an icon representing whether or not the directory can be migrated. The following table shows the icons that might appear and what each icon means.

Status	Description
\checkmark	The directory is ready for migration.
Δ	The directory can be migrated, but there are warnings to consider before migrating the directory. Click the context menu 🖻 next to the path name and select View warnings .
⊗	The directory cannot be migrated. Click the context menu 🖻 next to the path name and select View restrictions.

The **Device used by migration** menu lists the available tape device descriptions on the systems. Possible values include:

*VRT,*TAP,63B0,001 (default) *SAVF tape1 tape2

The **Size** column indicates the size of the directory.

The Estimated Time column shows an approximation of how long it takes to migrate the directory.

Migration totals for selected objects section:

- The Selected objects field is updated as directories are selected for migration.
- The **Migrated objects** field is updated after each directory has been migrated.
- The **Size selected** field is the size of all selected directories.
- The **Size available** field is the size available for migrating the selected directories. The **Size available** value must be larger than the **Size selected** value for a successful migration.
- The **Estimated time** field is an estimate of the time remaining to migrate all selected directories. This field is updated while migration is taking place to reflect the estimated time remaining for directories that have not yet been migrated.
- The **Elapsed time** field is updated during migration to show how long the migration has been running.
- Completion and error messages received during migration are shown in the message area.

Click **Cancel** to stop migrating after the current directory has been migrated.

Click Close after directory migration has completed successfully.

The toolbar for each migration table contains the following toolbar buttons and menu:

Icon	Name	Description
	Select all	Selects all items in the table. You also can select Select all in the Select Action drop-down menu and click Go.
	Deselect all	Deselects all items in the table. You also can select Deselect all in the Select Action drop-down menu and click Go .

Icon	Name	Description
2	Edit sort	Allows you to specify up to 3 columns from the list to sort the list by and specify ascending or descending sorting for each of the column. You also can select Edit Sort in the Select Action drop-down menu and click Go .
P	Clear all sorts	Removes all current sorted views from the table. You also can select Clear Sort in the Select Action drop-down menu and click Go .
Select Action 💙 Go	Select Action drop-down menu	Contains actions for the resources in the table view. Actions are listed in the Name column of this table.

Migration warnings

The following is a list of possible warnings to be considered before migrating the directory to the high-availability solution:

- The path resolves to a symbolic link. Only the link is migrated. The directory or file pointed to by the link is not migrated.
- The path resolves to an object that is contained within a mounted local file system. Migrating objects in a mounted local file system is permitted, but the object is restored into the default file system of the independent disk pool. These objects no longer exist in the mounted local file system.

Migration restrictions

The following is a list of possible reasons why a directory cannot be migrated to the high-availability solution:

- The directory subtree contains an object that is currently journaled. Migrating integrated file system objects that are journaled requires you to take the following actions before these objects can be migrated:
 - Run ENDJRN OBJ(('/mydir')) SUBTREE(*ALL) JRN(*OBJ) LOGLVL(*ALL)
 - Make note of all of the journaled objects, journals, and journal libraries that are associated with the objects.
 - Migrate each library, which contained journals associated with the objects, into the high-availability solution.
 - Migrate the **/mydir** directory subtree.
 - Run the STRJRN command to start journaling for each of the objects which had previously been journaled
- The directory is provided by the system. There is no recovery or work around for this restriction. It is expected that the directories provided by the system are already in the system disk pool on every system in the high-availability solution.
- The directory is a mount point. If a file system mounted over the directory, there is no recovery or workaround. Mounting and unmounting file systems provides a dynamic way to change the integrated file system namespace. File systems can only be mounted over directories. The result of migrating a directory leaves a symbolic link in place of the original directory. The file system can no longer be mounted at the same location.
- The path resolves to an object within a remote file system. There is no recovery or work around for this restriction. The remote file system is mounted on every system and, therefore, is not needed in the switchable independent disk pool.

Messages

You might see the following informational and error messages for your selected high-availability solution:

hat0042

All unconfigured DASD under the tower will be selected if any are selected.

hat0044

{0} contains object not supported in independent disk pool.

hat0045

{0} contains journal {1} to IFS objects.

hat0046

{0} contains job descriptions.

hat0047

{0} in use by System Value {1}.

hat0048

{0} in use by Network Attribute {1}.

hat0049

{0} contains journaled IFS objects.

hat004a

{0} contains class objects.

hat004b

{0} contains subsystem descriptions.

hat004c

{0} in use by subsystem description {1}.

hat004d

{0} contains database file {1} with data link control.

hat004e

{0} contains multisystem database file {1} (node group).

For the complete list of messages, see the "Working with messages" on page 38 information center topic.

Finish set up and clean up files

The Finish Set Up and Clean Up Work Files page in High Availability Solutions Manager processes the substeps that are required to complete the setup of the high-availability solution, and clean up the work files that were created during the setup. This is the final step before your high-availability solution becomes active.

Important: This step cannot be undone. Once you have completed the substeps, the high-availability solution will be deployed. The policies chosen during the deployment are activated to ensure that the solution is highly available.

High Availability Solutions Manager performs the following substeps:

- 1. The QSTRUPPGM system value is updated with QHASM/QSBSTRUPPM. This program does everything that is required, including starting any cluster resource groups, to make the system highly available at startup.
- 2. The exit programs registered on the QIBM_QDC_VRYEXIT, QIBM_QWC_PRERESTRICT, and QIBM_QWC_PWRDWNSYS exit points are updated to include ending the cluster resource groups when varying off the independent disk pool, entering restricted state, or powering down the system.
- 3. Internal work files created during the setup of the high availability infrastructure are deleted.
- 4. The cluster nodes are started.

- 5. The cluster resource groups are started.
- 6. The independent disk pool is varied on.

Field information

The substep table has the following columns.

Column	Description
Substep	Short description of the command or API that will be run.
Estimated time	Estimation of how much time the substep will take to complete. The estimated time changes dynamically to show the best estimate of the remaining time.
Actual time	The actual amount of time that has elapsed since the substep began running.
Status	The status of the substep. Possible values include: Blank - The substep has not yet been run or was undone. Complete - The substep has completed without error. Failed - The substep encountered errors while running. Running - The substep is currently running.
Command/API	The command or API that is currently being processed to complete the substep.

The substep table has the following columns:

Column	Description
Substep	Short description of the command or API that will be run.
Estimated time	Estimation of how much time the substep will take to complete. The estimated time changes dynamically to show the best estimate of the remaining time.
Actual time	The actual amount of time that has elapsed since the substep began running.
Status	The status of the substep. Possible values include: Blank - The substep has not yet been run or was undone. Complete - The substep has completed without error. Failed - The substep encountered errors while running. Running - The substep is currently running.
Command/API	The command or API that is currently being processed to complete the substep. This field is blank if the substep has not been run or has been undone.

Click **Run Now** to begin the substep that the 🔶 arrow is pointing to.

Click Cancel to return to the Set Up High Availability Solution page without completing the deployment.

While the substeps are running, click **Cancel** to stop after the current substep has finished running, but before the next substep starts running. After the cancel processing is complete, the following options are available:

- Click Run Now to continue running with the first substep that has not completed.
- Click **Cancel** to return to the Set Up High Availability Solution page. Future set up processing will remember which substep is the next substep to be run.

Click **Close** to return to the Set Up High Availability Solution page after all substeps have finished running.

The message area below the substep table shows the completion and error messages that are received as the substeps are run.

Messages

You might see the following informational and error messages for your selected high-availability solution:

hat006f

The setup of your high-availability solution is now complete. If your normal security policy is to have the QSECOFR profile disabled and you enabled the QSECOFR profile to set up your high-availability solution, then you should return to your normal security policy and disable the QSECOFR profile.

For the complete list of messages, see the "Working with messages" on page 38 information center topic.

Manage your high availability solution - Nodes

The Manage Your High Availability Solution page is used to monitor and manage your high-availability solution. From this page, you also can manage the cluster nodes that your high-availability solution uses.

You can monitor and perform high-availability solution-level actions, monitor and manage high-availability solution resources, and monitor solution events in the event log. The dynamically changing status icons makes this page ideal to use as a *dashboard*.

There are three sections on the Manage Your High Availability Solution page:

- The **Manage Your High Availability Solution** section provides an at-glance view of the status of the high-availability solution and quick access to solution-level actions.
- The **High Availability Solution Resources** section provides a tabbed list of all of the high-availability solution resources. Each tab gives a detailed view of each resource along with possible actions to perform on the resource.
- The Event Log section presents the list of events that have occurred in the high-availability solution.

The **Manage Your High Availability Solution** section gives a graphical summary of the status of the high-availability solution. See the table below for a description of the possible statuses.

Status	Description
\checkmark	High-availability solution is available for switchover.
Δ	High-availability solution is not available for switchover, but no action is required.
8	High-availability solution is not available for switchover. User action is required.

Table 11. Status of the high-availability solution

A dropdown menu with the following solution-level actions is included. To perform one of the actions, select it from the menu and click **Go**.

Switchover

Select this action if you want to move the high-availability solution to the backup node. This process makes the backup node the new primary node. Perform this action before a planned outage of the primary node if the application is to remain available during the outage.

Shut Down - Keep Data Available

Select this action if you want to perform system maintenance or a system backup. When the action is performed, your system still is usable, but is not highly available should an unplanned outage occur. Although the application is still available, it will be unavailable in either a planned or unplanned outage.

Shut Down - Make Data Not Available

This action is typically run for system maintenance or if the system is going to be powered down.

When this action is performed, your system is accessible only by administrative users. The application is not available on either the primary or backup nodes.

Resume

Select this action if the high-availability solution was shut down and needs to be resumed.

Service Info

Select this action if you want to prepare data to send to a service representative. The system creates a save file named QUSRHASM/QSBSERVICE on the node from which the collection is initiated. The save file should be sent when service information is requested.

Recover Partition

Select this action to recover from a partition state. Cluster Resource Services cannot detect certain failure conditions as a node failure. Recovery from partition state requires operator intervention to determine the cause of the partition state. Selecting this action is only done in certain rare cases. The help for this task describes the process for deciding if selecting this action is necessary.

In addition to the previously listed actions, the Switched disk with geographic mirroring solution has the following possible actions:

Switchover to Different Site

Select this action if you want to run the high-availability solution on a backup node located at a geographically-different site. This action is typically done when all of the nodes at one site need to be taken down for maintenance.

Switchover to Same Site

Select this action if you want to run the high-availability solution on a backup node located at the same geographic location as the current primary node. This process makes the backup node at that site the new primary node.

The **High Availability Solution Resources** section provides a tabbed list of resources including Nodes, Cluster Resource Groups, Monitored Resources, Independent Disk Pools, TCP/IP Interfaces, and Policies. To navigate through this list, click the tab on the left side of the section.

Nodes

The high-availability solution resources **Nodes** tab of the Manage Your High Availability Solution page lists all of the nodes in the high-availability solution, as well as the status and role of each node.

The Name column of the table contains the name of each node in the solution. Beside the name is the button. Click this button to see what actions are available for the node. The status of the node determines which actions are available. For example, if the node is already started, the **Start** action is not available. The possible actions are:

Start

Start the node.

Stop

Stop the node.

Work with All Nodes

View and work with all nodes, including nodes which might not be included in the high-availability solution.

The Status column of the table contains an icon representing the status of the node. See the following table for a list of icons and the status each represents. Another option is to hold the mouse over the icon to see a banner pop up with the description.

Table 12. Node status indicators

Icon	Status	Description
\checkmark	Active	The node has been started by using a Create Cluster operation, an Add Cluster Node Entry operation, which started the cluster node; or with a Start Cluster Node operation. Cluster Resource Services is active on the node.
Ð	Active Pending	The node is in the process of being started as the result of a Create Cluster operation, an Add Cluster Node Entry operation, which started the cluster node, or a Start Cluster Node operation. In addition, the node could have previously had a status of Partition and will change to the Active Pending status, as a result of the partitions being merged.
8	Inactive Pending	Cluster Resource Services is in the process of ending on this node as the result of an end cluster node operation. The node is still in the cluster membership list.
8	Remove Pending	The node is in the process of being removed from the cluster membership list as the result of a Remove Cluster Node Entry operation.
	New	A node has been added to the cluster membership list, but Cluster Resource Services has never been started on that node. The Cluster Resource Service data structures have not been created on the node. The Cluster Resource Service data structures are created only on the node running the Create Cluster operation.
	Inactive	Cluster Resource Services has been ended on the node as the result of an end cluster node operation. The node is still in the cluster membership list, but is no longer communicating with other nodes in the cluster.
⊗	Failed	A previously active node has failed. A failure is either a system or clustering failure detected by Cluster Resource Services.
<u>^</u>	Partition	The node is only communicating with a subset of the cluster because of a network failure detected by Cluster Resource Services, which has resulted in the loss of communications to one or more nodes in the cluster. When the partitioned nodes are merged back into a whole cluster, the node will change to Active status without operator intervention. Any node that had a status of Failed in any partition will still have a status of Failed after the merge.
?	Unknown	This node is not an active member of the cluster, so the status of other nodes cannot be determined.

The Solution Role column of the table shows the current role of the node in the solution. See the table below for a list of the possible solution roles and a description of each.

Table 13. Current role of each node in the solution

Solution Role	Description
Primary	The node that is currently running the high-availability solution. The independent disk pool is owned by the primary node.
Backup	The node that will take over the role of primary if the current primary node fails or a manual switchover is initiated. The backup node does not own the independent disk pool until a switchover occurs.
Replicate	A node that has a copy of the cluster resources, but cannot assume the role of primary or backup, unless you assign the node a new role of primary or backup.
Peer	A node that has no order. This node can be an access point for cluster resources. All peer nodes should be equivalent.

Event log information

The **Event Log** section enables you to enter how many days event information should be kept on the system, and see the list of events that have occurred within the number of days specified. The columns shown in the table of logs are Time, Severity, and Information.

Time Shows the date and time the event was logged.

Severity

Shows an icon that represents the urgency of the event. See the table below for a description of each icon.

Information

Gives a brief description of the event.

Click the **High Availability Operator's Guide** link to view or download the *Implementing high availability* with the High Availability Solutions Manager – Operator's guide PDF.

Click Close to return to the High Availability Solutions Manager welcome page.

Table 14. Event log status indicators

Severity	Description
i	The log contains informational messages.
<u> </u>	The log contains warning messages and should be examined.

For more information, see the following information center topics:

- "Managing a high availability solution" on page 18
- "Working with high availability status messages" on page 19
- "Managing nodes" on page 24

Manage high availability solution - Cluster Resource Groups

The Manage Your High Availability Solution page is used to monitor and manage your high-availability solution. From this page, you also can manage the cluster resource groups (CRGs) that your high-availability solution uses.

You can monitor and perform high-availability solution-level actions, monitor and manage high-availability solution resources, and monitor solution events in the event log. The dynamically changing status icons makes this page ideal to use as a *dashboard*.

There are three sections on the Manage Your High Availability Solution page:

- The **Manage Your High Availability Solution** section provides an at-glance view of the status of the high-availability solution and quick access to solution-level actions.
- The **High Availability Solution Resources** section provides a tabbed list of all of the high-availability solution resources. Each tab gives a detailed view of each resource along with possible actions to perform on the resource.
- The **Event Log** section presents the list of events that have occurred in the high-availability solution.

The **Manage Your High Availability Solution** section gives a graphical summary of the status of the high-availability solution. See the table below for a description of the possible statuses.

Table 15. Status of the high-availability solution

Status	Description
\checkmark	High-availability solution is available for switchover.
Δ	High-availability solution is not available for switchover, but no action is required.
8	High-availability solution is not available for switchover. User action is required.

A dropdown menu with the following solution-level actions is included. To perform one of the actions, select it from the menu and click **Go**.

Switchover

Select this action if you want to move the high-availability solution to the backup node. This process makes the backup node the new primary node. Perform this action before a planned outage of the primary node if the application is to remain available during the outage.

Shut Down - Keep Data Available

Select this action if you want to perform system maintenance or a system backup. When the action is performed, your system still is usable, but is not highly available should an unplanned outage occur. Although the application is still available, it will be unavailable in either a planned or unplanned outage.

Shut Down - Make Data Not Available

This action is typically run for system maintenance or if the system is going to be powered down. When this action is performed, your system is accessible only by administrative users. The application is not available on either the primary or backup nodes.

Resume

Select this action if the high-availability solution was shut down and needs to be resumed.

Service Info

Select this action if you want to prepare data to send to a service representative. The system creates a save file named QUSRHASM/QSBSERVICE on the node from which the collection is initiated. The save file should be sent when service information is requested.

Recover Partition

Select this action to recover from a partition state. Cluster Resource Services cannot detect certain failure conditions as a node failure. Recovery from partition state requires operator intervention to determine the cause of the partition state. Selecting this action is only done in certain rare cases. The help for this task describes the process for deciding if selecting this action is necessary.

In addition to the previously listed actions, the Switched disk with geographic mirroring solution has the following possible actions:

Switchover to Different Site

Select this action if you want to run the high-availability solution on a backup node located at a geographically-different site. This action is typically done when all of the nodes at one site need to be taken down for maintenance.

Switchover to Same Site

Select this action if you want to run the high-availability solution on a backup node located at the same geographic location as the current primary node. This process makes the backup node at that site the new primary node.

The **High Availability Solution Resources** section provides a tabbed list of resources including Nodes, Cluster Resource Groups, Monitored Resources, Independent Disk Pools, TCP/IP Interfaces, and Policies. To navigate through this list, click the tab on the left side of the section.

Cluster Resource Groups

The high-availability solution resources **Cluster Resource Groups** tab of the Manage Your High Availability Solution page shows a list of all of the cluster resource groups (CRGs) in the high-availability solution, as well as the status and role of each CRG.

The Name column of the table contains the name of each CRG in the solution. Beside the name is the button. Click this button to see what actions are available for the CRG. The status of the CRG determines which actions are available. For example, if the CRG is already started, the **Start** action is not available. The possible actions are:

Start Start the CRG.

Stop Stop the CRG.

Work with All CRGs

View and work with all CRGs, including CRGs which might not be included in the high-availability solution.

The Status column of the table contains an icon representing the status of the CRG. See the following table for a list of icons and the status each represents. Another option is to hold the mouse over the icon to see a banner pop up with the description.

Table 16. Cluster resource group status indicators					
Icon	Status	Description			
					_

Icon	Status	Description		
\checkmark	Active	The resources managed by the cluster resource group are currently resilient.		
	Inactive	The resources managed by the cluster resource group are currently not resilient.		
8	Indoubt	The information contained within the cluster resource group object might not be accurate. This status occurs when an exit program is called with an action of Undo and fails to complete successfully.		
Y	Restored	The cluster resource group object was restored on this node and was not copied to the other nodes in the recovery domain. When Cluster Resource Services is started on this node, the cluster resource group will be synchronized with the other nodes in the recovery domain and its status set to Inactive .		
8	Add Pending	A new node is in the process of being added to the recovery domain of a cluster resource group. If the exit program is successful, the status is reset to its value at the time the API was called. If the exit program fails and the original state cannot be recovered, the status is set to Indoubt .		
6	Delete Pending	Cluster resource group is in the process of being deleted. When the exit program completes, the cluster resource group is deleted from all nodes in the recovery domain.		
6	Change Pending	The cluster resource group is in the process of being changed. If the exit program is successful, the status is reset to the value at the time the API was called. If the exit program fails and the original state cannot be recovered, the status is set to Indoubt .		
6	End Pending	Resiliency for the cluster resource group is in the process of ending. If the exit program is successful, the status is set to Inactive . If the exit program fails and the original state cannot be recovered, the status is set to Indoubt .		
6	Initialize Pending	A cluster resource group is being created and is in the process of being initialized. If the exit program is successful, the status is set to Inactive . If the exit program fails, the cluster resource group will be deleted from all nodes.		
8	Remove Pending	A node is in the process of being removed from the recovery domain of the cluster resource group. If the exit program is successful, the status is reset to the value at the time the API was called. If the exit program fails and the original state cannot be recovered, the status is set to Indoubt .		
8	Start Pending	Resiliency is in the process of starting for the cluster resource group. If the exit program is successful, the status is set to Active . If the exit program fails and the original state cannot be recovered, the status is set to Indoubt . For peer cluster resource groups, all nodes defined with a role of peer are active access points for the cluster resources.		

Table 16. Cluster resource group status indicators (continued)

Icon	Status	Description
8	Switchover Pending	The Initiate Switchover API was called, a failure of a cluster resource group occurred, or a node failed, causing a switchover or failover to begin. The first backup node is in the process of becoming the primary node. If the exit program is successful, the status is set to Active . If the exit program fails and the original state cannot be recovered, the status is set to Indoubt . While the switchover function is not valid for a peer cluster resource group, users may see the status Switchover pending during a node failure.

The Type column of the table shows the type of CRG. See the table below for a list of the possible CRG types.

Table 17.	Cluster	resource	aroun	types
rubio II.	Clabiol	100000100	group	iypoo

Туре	Description
Administrative domain An administrative domain is a special case of a peer CRG. An administrative domain provides a way for objects, such as user profiles and system be synchronized across all of the nodes in the recovery domain.	
Application	Application resiliency enables an application program to be restarted on either the same node or a different node in the cluster.
Data	Data resiliency enables multiple copies of data to be maintained on more than one node in a cluster, and enables the point of access to be changed to a backup node.
Device	Device resiliency enables a device resource to be moved (switched) to a backup node.
Peer	Peer resiliency enables all nodes within the CRG to have the same data. When a failure occurs, the point of failure is communicated to the other nodes in the CRG and those nodes continue the operation from the failure point.

Event log information

The **Event Log** section enables you to enter how many days event information should be kept on the system, and see the list of events that have occurred within the number of days specified. The columns shown in the table of logs are Time, Severity, and Information.

Time Shows the date and time the event was logged.

Severity

Shows an icon that represents the urgency of the event. See the table below for a description of each icon.

Information

Gives a brief description of the event.

Click the **High Availability Operator's Guide** link to view or download the *Implementing high availability* with the High Availability Solutions Manager – Operator's guide PDF.

Click Close to return to the High Availability Solutions Manager welcome page.

Table 18. Event log status indicators

Severity	Description
i	The log contains informational messages.

Table 18. Event log status indicators (continued)

Severity	Description
<u>^</u>	The log contains warning messages and should be examined.

For more information, see the following information center topics:

- "Managing a high availability solution" on page 18
- "Working with high availability status messages" on page 19
- "Managing cluster resource groups (CRG)" on page 27

Manage high-availability solution - Monitored resources

The Manage Your High Availability Solution page is used to monitor and manage your high-availability solution. From this page, you also can manage the monitored resources that your high-availability solution uses.

You can monitor and perform high-availability solution-level actions, monitor and manage high-availability solution resources, and monitor solution events in the event log. The dynamically changing status icons makes this page ideal to use as a *dashboard*.

There are three sections on the Manage Your High Availability Solution page:

- The **Manage Your High Availability Solution** section provides an at-glance view of the status of the high-availability solution and quick access to solution-level actions.
- The **High Availability Solution Resources** section provides a tabbed list of all of the high-availability solution resources. Each tab gives a detailed view of each resource along with possible actions to perform on the resource.
- The Event Log section presents the list of events that have occurred in the high-availability solution.

The **Manage Your High Availability Solution** section gives a graphical summary of the status of the high-availability solution. See the table below for a description of the possible statuses.

 Table 19. Status of the high-availability solution

 Status
 Description

Status	Description	
\checkmark	High-availability solution is available for switchover.	
Δ	High-availability solution is not available for switchover, but no action is required.	
8	High-availability solution is not available for switchover. User action is required.	

A dropdown menu with the following solution-level actions is included. To perform one of the actions, select it from the menu and click **Go**.

Switchover

Select this action if you want to move the high-availability solution to the backup node. This process makes the backup node the new primary node. Perform this action before a planned outage of the primary node if the application is to remain available during the outage.

Shut Down - Keep Data Available

Select this action if you want to perform system maintenance or a system backup. When the action is performed, your system still is usable, but is not highly available should an unplanned outage occur. Although the application is still available, it will be unavailable in either a planned or unplanned outage.

Shut Down - Make Data Not Available

This action is typically run for system maintenance or if the system is going to be powered down. When this action is performed, your system is accessible only by administrative users. The application is not available on either the primary or backup nodes.

Resume

Select this action if the high-availability solution was shut down and needs to be resumed.

Service Info

Select this action if you want to prepare data to send to a service representative. The system creates a save file named QUSRHASM/QSBSERVICE on the node from which the collection is initiated. The save file should be sent when service information is requested.

Recover Partition

Select this action to recover from a partition state. Cluster Resource Services cannot detect certain failure conditions as a node failure. Recovery from partition state requires operator intervention to determine the cause of the partition state. Selecting this action is only done in certain rare cases. The help for this task describes the process for deciding if selecting this action is necessary.

In addition to the previously listed actions, the Switched disk with geographic mirroring solution has the following possible actions:

Switchover to Different Site

Select this action if you want to run the high-availability solution on a backup node located at a geographically-different site. This action is typically done when all of the nodes at one site need to be taken down for maintenance.

Switchover to Same Site

Select this action if you want to run the high-availability solution on a backup node located at the same geographic location as the current primary node. This process makes the backup node at that site the new primary node.

The **High Availability Solution Resources** section provides a tabbed list of resources including Nodes, Cluster Resource Groups, Monitored Resources, Independent Disk Pools, TCP/IP Interfaces, and Policies. To navigate through this list, click the tab on the left side of the section.

Monitored Resources

The high-availability solution resources **Monitored resources** tab of the Manage Your High Availability Solution page lists all of the monitored resources in the high-availability solution, as well as the status and type of each monitored resource.

The Global Status column of the table contains an icon representing the global status of the monitored resource. See the following table for a list of icons and the status each represents. Another option is to hold the mouse over the icon to see a banner pop up with the global status.

Icon	Status	Description
~	Consistent	The values for all the resource's attributes monitored by the system are the same on all active nodes within the cluster administrative domain.
8	Inconsistent	The values for all the resource's attributes monitored by the system are not the same on all active nodes within the cluster administrative domain.
8	Pending	The values of the monitored attributes are in the process of being synchronized across the cluster administrative domain.
	Added	The monitored resource entry has been added to the monitored resource directory in the cluster administrative domain but has not yet been synchronized.

Table 20. Global status indicators

Table 20. Global status indicators (continued)

Icon	Status	Description
	Ended	The monitored resource is in an unknown state because the cluster administrative domain has been ended, and changes to the resource are no longer being processed.
8	Failed	The resource is no longer being monitored by the cluster administrative domain and the MRE should be removed. Certain resource actions are not recommended when a resource is being synchronized by a cluster administrative domain. If the resource represented by an MRE is a system object, it should not be deleted, renamed, or moved to a different library without removing the MRE first. If a resource is deleted, renamed or moved to a different library, the global status for the MRE is Failed and any changes made to the resource on any node after that are not propagated to any node in the cluster administrative domain.

The Type column of the table shows the type of the monitored resource in the solution. See the table below for a list of the possible types of monitored resources.

Table 21. Types of monitored resources

ASP devices Optical devices	
Classes	Subsystem descriptions
Ethernet lines	System environment variables
Job descriptions	System values
Network attributes	User profiles
Network host adapters	Tape devices
Network servers	TCP/IP attributes
NWS configurations	Token ring lines
NWS storage spaces	

Event log information

The **Event Log** section enables you to enter how many days event information should be kept on the system, and see the list of events that have occurred within the number of days specified. The columns shown in the table of logs are Time, Severity, and Information.

Time Shows the date and time the event was logged.

Severity

Shows an icon that represents the urgency of the event. See the table below for a description of each icon.

Information

Gives a brief description of the event.

Click the **High Availability Operator's Guide** link to view or download the *Implementing high availability* with the High Availability Solutions Manager – Operator's guide PDF.

Click Close to return to the High Availability Solutions Manager welcome page.

Table 22. Event log status indicators

Severity	Description	
i	The log contains informational messages.	

Table 22. Event log status indicators (continued)

Severity	Description
<u>^</u>	The log contains warning messages and should be examined.

For more information, see the following information center topics:

- "Managing a high availability solution" on page 18
- "Working with high availability status messages" on page 19
- "Managing monitored resources" on page 30

Manage high-availability solution - Independent disk pools

The Manage Your High Availability Solution page is used to monitor and manage your high-availability solution. From this page, you also can manage the independent disk pools that your high-availability solution uses.

You can monitor and perform high-availability solution-level actions, monitor and manage high-availability solution resources, and monitor solution events in the event log. The dynamically changing status icons makes this page ideal to use as a *dashboard*.

There are three sections on the Manage Your High Availability Solution page:

- The **Manage Your High Availability Solution** section provides an at-glance view of the status of the high-availability solution and quick access to solution-level actions.
- The **High Availability Solution Resources** section provides a tabbed list of all of the high-availability solution resources. Each tab gives a detailed view of each resource along with possible actions to perform on the resource.
- The Event Log section presents the list of events that have occurred in the high-availability solution.

The **Manage Your High Availability Solution** section gives a graphical summary of the status of the high-availability solution. See the table below for a description of the possible statuses.

Status	Description
\checkmark	High-availability solution is available for switchover.
Δ	High-availability solution is not available for switchover, but no action is required.
8	High-availability solution is not available for switchover. User action is required.

Table 23. Status of the high-availability solution

A dropdown menu with the following solution-level actions is included. To perform one of the actions, select it from the menu and click **Go**.

Switchover

Select this action if you want to move the high-availability solution to the backup node. This process makes the backup node the new primary node. Perform this action before a planned outage of the primary node if the application is to remain available during the outage.

Shut Down - Keep Data Available

Select this action if you want to perform system maintenance or a system backup. When the action is performed, your system still is usable, but is not highly available should an unplanned outage occur. Although the application is still available, it will be unavailable in either a planned or unplanned outage.

Shut Down - Make Data Not Available

This action is typically run for system maintenance or if the system is going to be powered down. When this action is performed, your system is accessible only by administrative users. The application is not available on either the primary or backup nodes.

Resume

Select this action if the high-availability solution was shut down and needs to be resumed.

Service Info

Select this action if you want to prepare data to send to a service representative. The system creates a save file named QUSRHASM/QSBSERVICE on the node from which the collection is initiated. The save file should be sent when service information is requested.

Recover Partition

Select this action to recover from a partition state. Cluster Resource Services cannot detect certain failure conditions as a node failure. Recovery from partition state requires operator intervention to determine the cause of the partition state. Selecting this action is only done in certain rare cases. The help for this task describes the process for deciding if selecting this action is necessary.

In addition to the previously listed actions, the Switched disk with geographic mirroring solution has the following possible actions:

Switchover to Different Site

Select this action if you want to run the high-availability solution on a backup node located at a geographically-different site. This action is typically done when all of the nodes at one site need to be taken down for maintenance.

Switchover to Same Site

Select this action if you want to run the high-availability solution on a backup node located at the same geographic location as the current primary node. This process makes the backup node at that site the new primary node.

The **High Availability Solution Resources** section provides a tabbed list of resources including Nodes, Cluster Resource Groups, Monitored Resources, Independent Disk Pools, TCP/IP Interfaces, and Policies. To navigate through this list, click the tab on the left side of the section.

Independent Disk Pools

The high-availability solution resources **Independent disk pools** tab of the Manage Your High Availability Solution page lists all of the independent disk pools in the high-availability solution, as well as the status and capacity of each independent disk pools.

The Name column of the table contains the name of each independent disk pool in the solution. Beside the name is the button. Click this button to see what actions are available for the independent disk pool. The status of the independent disk pool determines which actions are available. The possible action is:

Work with All Independent Disk Pools

View and work with all independent disk pools, including those which might not be included in the high-availability solution.

In addition to the action listed above, the following actions are available if a solution involving geographic mirroring has been deployed.

Start mirroring

Select this option if mirroring was stopped. This option is not available when the independent disk pool is already being mirrored.

Stop mirroring

Choose this option to stop mirroring. This option is not available if the independent disk pool is not currently being mirrored.

The Status column of the table contains an icon representing the status of the independent disk pool. See the following table for a list of icons and the status each represents. Another option is to hold the mouse over the icon to see a banner pop up with the description.

Table 24. Independent disk pool status indicators

Icon	Status
~	Available.
	Available and mirroring is suspended with tracking.
	Available and mirroring is suspended without tracking.
Δ	Available and mirroring is detached.
Δ	Synchronization is in progress.
	Unavailable.
	Unavailable and mirroring is suspended with tracking.
	Unavailable and mirroring is suspended without tracking.
	Unavailable and mirroring is detached.
8	Failed.

The Capacity column of the table shows the current capacity, in gigabytes, of the independent disk pool.

Event log information

The **Event Log** section enables you to enter how many days event information should be kept on the system, and see the list of events that have occurred within the number of days specified. The columns shown in the table of logs are Time, Severity, and Information.

Time Shows the date and time the event was logged.

Severity

Shows an icon that represents the urgency of the event. See the table below for a description of each icon.

Information

Gives a brief description of the event.

Click the **High Availability Operator's Guide** link to view or download the *Implementing high availability* with the High Availability Solutions Manager – Operator's guide PDF.

Click **Close** to return to the High Availability Solutions Manager welcome page.

Severity	Description
i	The log contains informational messages.
Δ	The log contains warning messages and should be examined.

For more information, see the following information center topics:

- "Managing a high availability solution" on page 18
- "Working with high availability status messages" on page 19
- "Managing independent disk pools" on page 32

Manage high-availability solution - TCP/IP interfaces

The Manage Your High Availability Solution page is used to monitor and manage your high-availability solution. From this page, you also can manage the TCP/IP interfaces that your high-availability solution uses.

You can monitor and perform high-availability solution-level actions, monitor and manage high-availability solution resources, and monitor solution events in the event log. The dynamically changing status icons makes this page ideal to use as a *dashboard*.

There are three sections on the Manage Your High Availability Solution page:

- The **Manage Your High Availability Solution** section provides an at-glance view of the status of the high-availability solution and quick access to solution-level actions.
- The **High Availability Solution Resources** section provides a tabbed list of all of the high-availability solution resources. Each tab gives a detailed view of each resource along with possible actions to perform on the resource.
- The **Event Log** section presents the list of events that have occurred in the high-availability solution.

The **Manage Your High Availability Solution** section gives a graphical summary of the status of the high-availability solution. See the table below for a description of the possible statuses.

Table 26.	Status	of the	high-availab	oility solution

Status	Description
~	High-availability solution is available for switchover.
Δ	High-availability solution is not available for switchover, but no action is required.
8	High-availability solution is not available for switchover. User action is required.

A dropdown menu with the following solution-level actions is included. To perform one of the actions, select it from the menu and click **Go**.

Switchover

Select this action if you want to move the high-availability solution to the backup node. This process makes the backup node the new primary node. Perform this action before a planned outage of the primary node if the application is to remain available during the outage.

Shut Down - Keep Data Available

Select this action if you want to perform system maintenance or a system backup. When the

action is performed, your system still is usable, but is not highly available should an unplanned outage occur. Although the application is still available, it will be unavailable in either a planned or unplanned outage.

Shut Down - Make Data Not Available

This action is typically run for system maintenance or if the system is going to be powered down. When this action is performed, your system is accessible only by administrative users. The application is not available on either the primary or backup nodes.

Resume

Select this action if the high-availability solution was shut down and needs to be resumed.

Service Info

Select this action if you want to prepare data to send to a service representative. The system creates a save file named QUSRHASM/QSBSERVICE on the node from which the collection is initiated. The save file should be sent when service information is requested.

Recover Partition

Select this action to recover from a partition state. Cluster Resource Services cannot detect certain failure conditions as a node failure. Recovery from partition state requires operator intervention to determine the cause of the partition state. Selecting this action is only done in certain rare cases. The help for this task describes the process for deciding if selecting this action is necessary.

In addition to the previously listed actions, the Switched disk with geographic mirroring solution has the following possible actions:

Switchover to Different Site

Select this action if you want to run the high-availability solution on a backup node located at a geographically-different site. This action is typically done when all of the nodes at one site need to be taken down for maintenance.

Switchover to Same Site

Select this action if you want to run the high-availability solution on a backup node located at the same geographic location as the current primary node. This process makes the backup node at that site the new primary node.

The **High Availability Solution Resources** section provides a tabbed list of resources including Nodes, Cluster Resource Groups, Monitored Resources, Independent Disk Pools, TCP/IP Interfaces, and Policies. To navigate through this list, click the tab on the left side of the section.

TCP/IP Interfaces

The high-availability solution resources **TCP/IP interfaces** tab of the Manage Your High Availability Solution page lists all of the TCP/IP interfaces in the high-availability solution, as well as the status and role of each TCP/IP interfaces.

The Internet Address column of the table contains the IP address of each interface in the solution. Beside

the internet address is the D button. Click this button to see what actions are available for the TCP/IP interface. The status of the TCP/IP interface determines which actions are available. For example, if the interface is already started, the **Start** action is not available. The possible actions are:

Start TCP/IP Interface

Start the TCP/IP interface.

Stop TCP/IP Interface

Stop the TCP/IP interface.

Work with All TCP/IP Interfaces

View and work with all TCP/IP interfaces, including those which might not be included in the high-availability solution.

The Status column of the table contains an icon representing the status of the TCP/IP interface. See the following table for a list of icons and the status each represents. Another option is to hold the mouse over the icon to see a banner pop up with the description.

Icon	Status	Description
\checkmark	Active	The interface has been started and is running.
	Inactive	The interface has not been started. The interface is not active.
8	Starting	The system is processing the request to start this interface.
8	Recovery Pending	An error with the physical line associated with this interface was detected by the system. The line description associated with this interface is in the recovery pending state.
8	Recovery Canceled	A hardware failure has occurred. The line description associated with this interface is in the recovery canceled state.
8	Failed	The line description associated with this interface has entered the failed state.
۲	Failed (TCP)	An error was detected in the IBM TCP/IP Vertical Licensed Internal Code.

Table 27. TCP/IP interface status indicators

The Solution Role column of the table shows the current role of the TCP/IP interface in the solution. See the table below for a list of the possible solution roles and a description of each.

Table 28. Current role of each TCP/IP interface

Solution Role	Description
Device takeover IP	The TCP/IP interface is used for an application cluster resource group.
Data port IP	The TCP/IP interface is used for a device cluster resource group for geographic mirroring.
Node communication IP	The TCP/IP interface is used for cluster node communication.
Server takeover IP	The TCP/IP interface is used for systems associated with the relational database name in the device description for an independent disk pool. The specified address must exist on all nodes in the recovery domain if the cluster resource group is active.

Event log information

The **Event Log** section enables you to enter how many days event information should be kept on the system, and see the list of events that have occurred within the number of days specified. The columns shown in the table of logs are Time, Severity, and Information.

Time Shows the date and time the event was logged.

Severity

Shows an icon that represents the urgency of the event. See the table below for a description of each icon.

Information

Gives a brief description of the event.

Click the **High Availability Operator's Guide** link to view or download the *Implementing high availability* with the High Availability Solutions Manager – Operator's guide PDF.

Click Close to return to the High Availability Solutions Manager welcome page.

Table 29. Event log status indicators

Severity	Description
i	The log contains informational messages.
<u>^</u>	The log contains warning messages and should be examined.

For more information, see the following information center topics:

- "Managing a high availability solution" on page 18
- "Working with high availability status messages" on page 19
- "Managing TCP/IP interfaces" on page 34

Manage high availability solution - Policies

The Manage Your High Availability Solution page is used to monitor and manage your high-availability solution. From this page, you also can manage the policies that your high-availability solution uses.

You can monitor and perform high-availability solution-level actions, monitor and manage high-availability solution resources, and monitor solution events in the event log. The dynamically changing status icons makes this page ideal to use as a *dashboard*.

There are three sections on the Manage Your High Availability Solution page:

- The **Manage Your High Availability Solution** section provides an at-glance view of the status of the high-availability solution and quick access to solution-level actions.
- The **High Availability Solution Resources** section provides a tabbed list of all of the high-availability solution resources. Each tab gives a detailed view of each resource along with possible actions to perform on the resource.
- The Event Log section presents the list of events that have occurred in the high-availability solution.

The **Manage Your High Availability Solution** section gives a graphical summary of the status of the high-availability solution. See the table below for a description of the possible statuses.

Table 30. Status of the high-availability solution		
Status	Description	
\checkmark	High-availability solution is available for switchover.	
Δ	High-availability solution is not available for switchover, but no action is required.	
	High-availability solution is not available for switchover. User action is required.	

Table 30. Status of the high-availability solution

A dropdown menu with the following solution-level actions is included. To perform one of the actions, select it from the menu and click **Go**.

Switchover

Select this action if you want to move the high-availability solution to the backup node. This process makes the backup node the new primary node. Perform this action before a planned outage of the primary node if the application is to remain available during the outage.

Shut Down - Keep Data Available

Select this action if you want to perform system maintenance or a system backup. When the action is performed, your system still is usable, but is not highly available should an unplanned outage occur. Although the application is still available, it will be unavailable in either a planned or unplanned outage.

Shut Down - Make Data Not Available

This action is typically run for system maintenance or if the system is going to be powered down. When this action is performed, your system is accessible only by administrative users. The application is not available on either the primary or backup nodes.

Resume

Select this action if the high-availability solution was shut down and needs to be resumed.

Service Info

Select this action if you want to prepare data to send to a service representative. The system creates a save file named QUSRHASM/QSBSERVICE on the node from which the collection is initiated. The save file should be sent when service information is requested.

Recover Partition

Select this action to recover from a partition state. Cluster Resource Services cannot detect certain failure conditions as a node failure. Recovery from partition state requires operator intervention to determine the cause of the partition state. Selecting this action is only done in certain rare cases. The help for this task describes the process for deciding if selecting this action is necessary.

In addition to the previously listed actions, the Switched disk with geographic mirroring solution has the following possible actions:

Switchover to Different Site

Select this action if you want to run the high-availability solution on a backup node located at a geographically-different site. This action is typically done when all of the nodes at one site need to be taken down for maintenance.

Switchover to Same Site

Select this action if you want to run the high-availability solution on a backup node located at the same geographic location as the current primary node. This process makes the backup node at that site the new primary node.

The **High Availability Solution Resources** section provides a tabbed list of resources including Nodes, Cluster Resource Groups, Monitored Resources, Independent Disk Pools, TCP/IP Interfaces, and Policies. To navigate through this list, click the tab on the left side of the section.

Policies

The high-availability solution resources **Policies** tab of the Manage Your High Availability Solution panel enables you to change the high availability policies at any time.

To change the currently selected option, select the radio button next to the desired option.

Click **OK** to save the new selections.

For more information about each high-availability policy, see "Managing policies" on page 36 in the information center.

Event log information

The **Event Log** section enables you to enter how many days event information should be kept on the system, and see the list of events that have occurred within the number of days specified. The columns shown in the table of logs are Time, Severity, and Information.

Time Shows the date and time the event was logged.

Severity

Shows an icon that represents the urgency of the event. See the table below for a description of each icon.

Information

Gives a brief description of the event.

Click the **High Availability Operator's Guide** link to view or download the *Implementing high availability* with the High Availability Solutions Manager – Operator's guide PDF.

Click Close to return to the High Availability Solutions Manager welcome page.

Table 31. Event log status indicators

Severity	Description
i	The log contains informational messages.
Δ	The log contains warning messages and should be examined.

For more information, see the following information center topics:

- "Managing a high availability solution" on page 18
- "Working with high availability status messages" on page 19

Collect service information

The Collect Service Information page in High Availability Solutions Manager contains a list of substeps to be performed to collect service information, including traces, logs, and flight recorders, from every node in the high-availability solution.

The information is collected into a save file which you can then send to an IBM service representative. Established service procedures should be used when sending the data to IBM. Do this task only when an IBM service representative has asked you to collect this information.

Substeps performed to collect service information

High Availability Solutions Manager performs the following substeps to collect service information from every node in the high-availability solution:

- Creates library QHASMTEMP.
- If the QHASMTEMP library already exists, it is cleared and processing continues.
- Locks library QHASMTEMP. Locking this library ensures only one person at a time can collect service information.
- Uses the Dump Cluster Trace (DMPCLUTRC) command to dump the cluster trace queues to a database file in QHASMTEMP.
- Saves the cluster trace dump file in a save file in QHASMTEMP.
- Saves the output from the level-1 Integrated Solutions Console to a save file.
- Saves the flight recorder from the High Availability Solutions Manager graphical interface to a save file.
- Saves all other internal infrastructure data for the high-availability solution to a save file.
- Saves library QHASMTEMP to a save file called QHASMSDATA in library QGPL. If the save file already exists, it is cleared before the new data is saved.
- Deletes library QHASMTEMP.

At this point, you can send all of the QHASMSDATA save files that were created on each node to IBM.

Field information

Column	Description
Substep	Short description of the command or API that will be run.
Estimated time	Estimation of how much time the substep will take to complete. The estimated time changes dynamically to show the best estimate of the remaining time.
Actual time	The actual amount of time that has elapsed since the substep began running.
Status	The status of the substep. Possible values include: Blank - The substep has not yet been run or was undone. Complete - The substep has completed without error. Failed - The substep encountered errors while running. Running - The substep is currently running.
Command/API	The command or API that is currently being processed to complete the substep.

The substep table has the following columns.

Completion and error messages that are received as the substeps are run are shown in the message area above the **Run Now**, **Cancel**, **Undo**, and **Close** buttons.

Click **Run Now** to begin the substep that the ψ arrow is pointing to.

Click **Cancel** to return to the Manage Your High Availability Solution page without collecting the service information.

While the substeps are running, click **Cancel** to stop after the current substep has finished running, but before the next substep starts running. After the cancel processing is complete, the following options are available:

- Click **Undo** to undo the previously completed substeps.
- Click **Run Now** to continue running with the next substep.
- Click **Cancel** to return to the Manage Your High Availability Solution page without continuing or undoing any substeps.

Click **Close** to return to the Manage Your High Availability Solution page after all substeps have finished running.

For more information, see the "Collecting service information" on page 24 information center topic.

Verify administrative switchover

Use the High Availability Solutions Manager interface to run the substeps to perform an administrative switchover. The title of this page might be Verify Administrative Switchover, Verify Administrative Switchover at Same Site, or Verify Administrative Switchover at Different Site.

Important: Ensure that the TCP/IP *INETD server is started on the nodes involved in the switchover.

Substeps performed to complete the administrative switchover

High Availability Solutions Manager performs the following substeps to complete the administrative switchover:

- Verifies that the nodes involved in the administrative switchover are active.
- Verifies that the device CRG is active.
- Verifies that the independent disk pool is active.
- Verifies that no duplicate libraries exist on the backup node.

- Changes the device CRG primary node by using the Change CRG Primary (CHGCRGPRI) command. See the Change CRG Primary information center topic for a detailed description of the functions that the CHGCRGPRI command performs. The CHGCRGPRI command does the following for a device CRG:
 - Varies off the independent disk pool. The exit program registered on the QIBM_QDC_VRYEXIT exit point is called. The exit program was registered on this exit point during the Set Up High Availability Environment step of the deployment.
 - Ends the server takeover IP address that is associated with the independent disk pool.
 - Varies on the independent disk pool on the node that is becoming the new primary node.
 - Starts the TCP/IP interface that is associated with the independent disk pool on the new primary node.
 - The device CRG exit program calls the program referenced by the QUSRHASM/QSTARTAPP data area that was set up in the Set Up High Availability Environment step of the deployment. This program starts all user applications that reference the independent disk pool.
 - Sets the device CRG status to Active if the switchover completes successfully.
- If the solution is Switched Disk with Geographic Mirroring, the recovery domain of the device CRG is modified, as described in the high-availability policies. For example, suppose the policy is to fail over to a node at the same site. After successful switchover, the recovery domain is changed so that the first available backup is the other node at the same site as the new primary node.

The end result of a successful administrative switchover depends on the high-availability solution that was deployed.

If the solution that has been set up is Switched Disk with Logical Partitions or Switched Disk with Two Systems, the independent disk pool moves to the other node. For example, NODE1 is the primary node and has the independent disk pool, and NODE2 is the backup node. During the switchover, the independent disk pool moves to NODE2, NODE2 becomes the primary node, and NODE1 becomes the backup node.

If the solution that has been set up is Cross-Site Mirroring with Geographic Mirroring, the independent disk pools change roles. For example, there are two nodes: NODE1 and NODE2. NODE1 has the production copy of the independent disk pool and NODE2 has the mirror copy. During the switchover, the mirror copy of the independent disk pool becomes the production copy, and the production copy becomes the mirror copy. Thus, NODE2 now has the production copy and NODE1 has the mirror copy.

If the solution that has been set up is Switched Disk with Geographic Mirroring, and the switchover is going to be to the same site, the hardware switches the same way as for the Switched Disk with Logical Partitions or Switched Disk with Two Systems solutions. If the switchover is to a different site, then the mirror copy of the independent disk pool becomes the production copy, and no hardware switches. For example, NODE1 and NODE2 are part of site NEWYORK. NODE1 is the primary node and has the production copy of the independent disk pool. NODE3 is part of site LONDON and has the mirror copy of the independent disk pool. NODE3 becomes the primary node, the production copy attached to NODE1 becomes the mirror copy, and the mirror copy attached to NODE3 becomes the production copy.

If the administrative switchover fails, the independent disk pool is switched back to the original primary system, and an error message displays in the message area.

Field information

The substep table has the following columns.

Column	Description
Substep	Short description of the command or API that will be run.

Column	Description
Estimated time	Estimation of how much time the substep will take to complete. The estimated time changes dynamically to show the best estimate of the remaining time.
Actual time	The actual amount of time that has elapsed since the substep began running.
Status	The status of the substep. Possible values include: Blank - The substep has not yet been run or was undone. Complete - The substep has completed without error. Failed - The substep encountered errors while running. Running - The substep is currently running.
Command/API	The command or API that is currently being processed to complete the substep.

Completion and error messages that are received as the substeps are run are shown in the message area above the **Run Now**, **Cancel**, **Undo**, and **Close** buttons. You can attempt the switchover again after taking corrective action based on the error messages provided.

Click **Run Now** to begin the substep that the 🌵 arrow is pointing to.

Click **Cancel** to exit without completing the administrative switchover.

While the substeps are running, click **Cancel** to stop after a substep has finished running, but before the next substep starts running. After the cancel processing is complete, the following options are available:

- Click **Undo** to undo the previously completed substeps.
- Click Run Now to continue running with the first substep that has not yet completed.
- Click **Cancel** to return to the previous page without continuing or undoing any substeps. When setting up the high-availability solution, future set up processing will remember which substep is the next substep to be run.

Click Close to exit after all substeps have finished running.

For more information, see the "Performing switchovers" on page 23 information center topic.

Recover from partition state

You can run the Recover from Partition State task in High Availability Solutions Manager when a node has failed, but the failure has been detected as a partition condition. The Recover from Partition State page contains a list of substeps that you can run when a partitioned node has failed. If a node is still active, but is partitioned, you should not run this task.

- **Important:** Take extreme caution when running this task. You need to run the substeps to recover from partition state only in rare cases where a node has failed, but the failure has been detected as a partition condition. Unpredictable results can occur if you run this task when a node has not failed. You can check the following conditions to determine if you need to run this task:
 - A partition state occurs when the system cannot determine whether another system is down, or is unreachable. It might be a cable problem, which you can resolve by plugging the cable back in. The system self-heals on the partition state when the communications problem is fixed. This type of recovery can take 1 15 minutes, based on your parameter settings. If the problem can be resolved in this manner, you should not run the Recover from Partition task.
 - If you are on the primary node and the backup node has a status of **Partition**, check the status of the backup system, and check the communication status between the primary node and the backup node. Take necessary corrective actions to return the backup system to a usable state. When the backup system is returned to a usable state and the communications link between the systems is active, then the partition state might recover

without operator intervention. If not, you can run the Recover from Partition task from the primary node. You also need to restart clustering on the backup node.

- If you are on the backup node and the primary node has a status of **Partition**, check the status of the primary node. If the primary node is still operational but not communicating to the backup node, take appropriate recovery actions on the communications interface. When the communications interface is active, automatic recovery might take place. If the primary node is no longer operational, then you must decide whether to force a switchover to the backup node by running the Recover from Partition task.
 - **Note:** Be careful about forcing a switchover. If the independent disk on the primary node is still varied on, vary off the independent disk on the primary node before running this task. When you have verified that the independent disk is varied off, or if the primary node is no longer operational, and you decide to force a switchover to the backup node, you can run the Recover from Partition task.

For more information about how a cluster is partitioned and how to avoid and recover from partition errors, see Partition errors and Recovering from partition state.

Substeps performed to recover from partition state

If a backup node has a status of **Partition** as seen from another node, the following steps are run when you select **Run Now**:

- The partitioned backup node is set to the **Failed** status. For more details, see the Changing partitioned nodes to failed topic.
- If cross-site mirroring is configured for a two-node solution, tracking will be suspended by using the **Start ASP Session (CHGASPSSN)** command.

If the primary node has a status of **Partition** as seen from one of the backup nodes, the following steps are run when you select **Run Now**:

- The node is set to the **Failed** status. For more details, see the Changing partitioned nodes to failed topic.
- If cross-site mirroring is configured for a two-node solution, or the primary node site is different from the backup node site, tracking will be suspended by using the CHGASPSSN command.
- The cluster resource group is changed with the **Change Cluster Resource Group (CHGCRG)** command to make the first backup node the primary node. The node roles are changed, and the backup node owns the hardware.
- The cluster resource group is started with the Start Cluster Resource Group (STRCRG) command.
- The independent disk pool is varied on.
- **Important:** These substeps do not recover the failed node. If the failed system is recovered and usable, you need to perform additional recovery steps to return the system to an active node in the cluster. If the node failed because of a complete system loss, for example, the system disk pool had to be reloaded, see the Recovering a cluster after a complete system loss topic. If the system does not need to be reloaded, manually issue the **Start Cluster Node (STRCLUNOD)** command from the system whose node was set to **Failed** by the Recover from Partition task.

Field information

The substep table has the following columns.

Column	Description
Substep	Short description of the command or API that will be run.

Column	Description
Estimated time	Estimation of how much time the substep will take to complete. The estimated time changes dynamically to show the best estimate of the remaining time.
Actual time	The actual amount of time that has elapsed since the substep began running.
Status	The status of the substep. Possible values include: Blank - The substep has not yet been run or was undone. Complete - The substep has completed without error. Failed - The substep encountered errors while running. Running - The substep is currently running.
Command/API	The command or API that is currently being processed to complete the substep.

Completion and error messages that are received when the substeps are run are shown in the message area above the **Run Now**, **Cancel**, and **Close** buttons.

Click **Run Now** to begin the substep that the ψ arrow is pointing to.

Click **Cancel** to return to the Manage Your High Availability Solution page without recovering from the partition state.

While the substeps are running, click **Cancel** to stop after the current substep has finished running, but before the next substep starts running. After the cancel processing is complete, the following options are available:

- Click **Run Now** to continue running with the next substep.
- Click Cancel to return to the Manage Your High Availability Solution page.

Click **Close** to return to the Manage Your High Availability Solution page after all substeps have finished running.

Related tasks:

"Changing partitioned nodes to failed" on page 281

Sometimes, a partitioned condition is reported when there really was a node outage. This can occur when cluster resource services loses communications with one or more nodes, but cannot detect if the nodes are still operational. When this condition occurs, a simple mechanism exists for you to indicate that the node has failed.

Shut down high availability solution - keep data available

The Shut Down High Availability Solution - Keep Data Available page contains a list of substeps to be performed to shut down the high-availability environment but keep the independent disk pool available on the current node. This is typically done when a full-system save or data backup needs to be performed. No switchover will occur as a result of this action.

Substeps performed to shut down the high-availability environment while keeping data available

High Availability Solutions Manager performs the following substeps to shut down the high-availability environment and keep the data available:

- If you have chosen the Switched Disk with Geographic Mirroring or Cross Site Mirroring with Geographic Mirroring solution, geographic mirroring is suspended.
- The device cluster resource group is ended.
- All of the cluster nodes in the high-availability solution are ended.

When the substeps have completed successfully, the high-availability solution is shut down, and the independent disk pool is still available.

Field information

Column	Description
Substep	Short description of the command or API that will be run.
Estimated time	Estimation of how much time the substep will take to complete. The estimated time changes dynamically to show the best estimate of the remaining time.
Actual time	The actual amount of time that has elapsed since the substep began running.
Status	The status of the substep. Possible values include: Blank - The substep has not yet been run or was undone. Complete - The substep has completed without error. Failed - The substep encountered errors while running. Running - The substep is currently running.
Command/API	The command or API that is currently being processed to complete the substep.

The substep table has the following columns.

Completion and error messages that are received as the substeps are run are shown in the message area above the **Run Now**, **Cancel**, and **Close** buttons.

Click **Run Now** to begin the substep that the ψ arrow is pointing to.

Click **Cancel** to return to the Manage Your High Availability Solution page without shutting down the high-availability environment.

While the substeps are running, click **Cancel** to stop after the current substep has finished running, but before the next substep starts running. After the cancel processing is complete, the following options are available:

- Click **Run Now** to continue running with the next substep.
- Click Cancel to return to the Manage Your High Availability Solution page.

Click **Close** to return to the Manage Your High Availability Solution page after all substeps have finished running.

For more information, see the "Shutting down a high availability solution with data available" on page 21 information center topic.

Shut down high availability solution - make data not available

The Shutdown High Availability Solution – Make Data Not Available page contains a list of substeps to be performed to shut down the high-availability environment and also make the independent disk pool unavailable. Typically, this is done in preparation of an IPL of the primary node, where you do not need to perform an administrative switchover.

Substeps performed to shut down the high-availability environment

High Availability Solutions Manager performs the following substeps to shut down the high-availability environment and make the independent disk pool unavailable:

- **Note:** The high-availability solution policies are not consulted during this task. The independent disk pool will not be switched over to a backup node. If you want to switch over the high-availability solution, this is not the task to use.
- The independent disk pool is varied off.
 - This substep automatically ends any user jobs that are associated with the independent disk pool.

- During this substep, the exit program registered on the QIBM_QDC_VRYEXIT exit point is called. This exit program invokes any program that is defined in the QUSRHASM/QSHUTDOWN data area.
- The device cluster resource group is ended.
- All of the cluster nodes in the high-availability solution are ended.

When all of the substeps have completed successfully, the high-availability solution is shut down and the independent disk pool is not available on any nodes.

Field information

The substep table has the following columns.

Column	Description
Substep	Short description of the command or API that will be run.
Estimated time	Estimation of how much time the substep will take to complete. The estimated time changes dynamically to show the best estimate of the remaining time.
Actual time	The actual amount of time that has elapsed since the substep began running.
Status	The status of the substep. Possible values include: Blank - The substep has not yet been run or was undone. Complete - The substep has completed without error. Failed - The substep encountered errors while running. Running - The substep is currently running.
Command/API	The command or API that is currently being processed to complete the substep.

Completion and error messages that are received as the substeps are run are shown in the message area above the **Run Now**, **Cancel**, and **Close** buttons.

Click **Run Now** to begin the substep that the ψ arrow is pointing to.

Click **Cancel** to return to the Manage Your High Availability Solution page without shutting down the high-availability environment.

While the substeps are running, click **Cancel** to stop after the current substep has finished running, but before the next substep starts running. After the cancel processing is complete, the following options are available:

- Click **Run Now** to continue running with the next substep.
- Click Cancel to return to the Manage Your High Availability Solution page.

Click **Close** to return to the Manage Your High Availability Solution page after all substeps have finished running.

For more information, see the "Shutting down a high availability solution with data unavailable" on page 22 information center topic.

Resume high availability solution

The Resume High Availability Solution page in High Availability Solutions Manager contains a list of substeps to be performed to resume the high-availability solution and make the data available. The high availability solution is set up to automatically resume when the system restarts after an IPL. This task is typically used only after you have shut down the high availability solution and need to resume it manually.

Substeps performed to resume the high-availability solution

High Availability Solutions Manager performs the following substeps to resume the high-availability solution:

- The cluster nodes are started.
- The cluster resource groups are started.
- If the independent disk pool is varied off, it will be varied on.
- If the high-availability solution is Switched Disk with Geographical Mirroring or Cross-Site Mirroring with Geographical Mirroring, mirroring of the independent disk pool is resumed.

Field information

The substep table has the following columns.

Column	Description
Substep	Short description of the command or API that will be run.
Estimated time	Estimation of how much time the substep will take to complete. The estimated time changes dynamically to show the best estimate of the remaining time.
Actual time	The actual amount of time that has elapsed since the substep began running.
Status	The status of the substep. Possible values include: Blank - The substep has not yet been run or was undone. Complete - The substep has completed without error. Failed - The substep encountered errors while running. Running - The substep is currently running.
Command/API	The command or API that is currently being processed to complete the substep.

Completion and error messages that are received as the substeps are run are shown in the message area above the **Run Now**, **Cancel**, and **Close** buttons.

Click **Run Now** to begin the substep that the ψ arrow is pointing to.

Click **Cancel** to return to the Manage Your High Availability Solution page without resuming the high-availability environment.

While the substeps are running, click **Cancel** to stop after the current substep has finished running, but before the next substep starts running. After the cancel processing is complete, the following options are available:

- Click **Run Now** to continue running with the next substep.
- Click **Cancel** to return to the Manage Your High Availability Solution page.

Click **Close** to return to the Manage Your High Availability Solution page after all substeps have finished running.

For more information, see the "Resuming a high availability solution" on page 22 information center topic.

No help is available

No help is available for this page.

Implementing high availability with a task-based approach

The task-based approach to configuring and managing i5/OS high availability allows you to configure and manage a customized high-availability solution based on your business needs. Graphical and command-line interfaces are used for configuring and managing your high-availability solution.

Unlike the solution-based approach, which uses the High Availability Solution Manager graphical interface, where a predefined solution is configured automatically with limited user input, the task-based approach gives the knowledgeable user the means to customize and implement a personalized solution. However, to create and manage a high-availability solution with this approach, users need to have a good understanding of their high availability needs and be familiar with several interfaces.

Cluster Resource Services graphical interface

The Cluster Resource Services interface allows you to configure and manage cluster technologies, which are integral to a high-availability solution. To use this interface the IBM PowerHA for i (iHASM) licensed program 5770-HAS installed. With this interface you can perform the following functions:

- Create and manage a cluster
- Create and manage nodes
- · Create and manage cluster resource groups
- Create and manage cluster administrative domains
- Create and manage monitored resources
- Monitor the cluster for cluster related events, such as cluster partitions and failovers
- Perform manual switchovers for planned outages, such as scheduled maintenance to a system

Disk Management interface

The Disk Management interface allows you to configure and manage independent disk pools which are necessary when implementing several data resiliency technologies. Depending on the type of data resiliency technology that is implemented, installation requirements might be necessary to use some of these functions:

- Create a disk pool
- Make a disk pool available
- Make a disk pool unavailable
- Configure geographic mirroring
- Configure metro mirror
- Configure global mirror

Command line interface

The command line interface allows you to perform many different high availability tasks with CL commands. For each cluster-related task the corresponding CL command has been identified.

Related information:

IBM PowerHA for i commands

Planning your high availability solution

Before configuring an i5/OS high-availability solution, proper planning is necessary to ensure all the requirements for the solution have been met.

Each high availability technology has minimum requirements that should be met before configuring a specific solution. In addition to these requirements, it is important to also determine which resources should be made resilient. These resources, such as applications, data, and devices, should be evaluated to

determine whether they should be highly available. If they require high availability, it is important to make any necessary changes to the environment prior to configuring a solution for high availability. For example, you might have data that resides in SYSBAS, which should be highly available. Before configuring a solution, you should move that data to an independent disk pool. Applications might also require changes to enable high availability.

Cluster applications

Application resilience is one of the key elements in a clustered environment. If you are planning to write and use highly available applications in your cluster you should be aware that these applications have specific availability specifications.

By taking advantage of resilient applications in your cluster, an application can be restarted on a different cluster node without requiring you to reconfigure the clients. In addition, the data that is associated with the application will be available after switchover or failover. This means that the application user can experience minimal, or even seamless, interruption while the application and its data switch from the primary node to the backup node. The user does not need to know that the application and data have moved on the back end.

In order to achieve application resiliency in your cluster, applications that meet certain availability specifications must be used. Certain characteristics must be present in the application in order for it to be switchable, and therefore always available to the users of the application in the cluster. See High Availability and Clusters for details on these application traits. Because these requirements exist, you have the following options for using a switchable application in your cluster:

1. Purchase a cluster-enabled software application

Software products that are cluster-enabled meet certain high-availability requirements.

2. Write or change your own application to make it highly available

Independent software vendors and application programmers can customize applications to allow them to be switchable in a System i clustered environment.

Once you have a resilient application, it must be managed within your cluster.

Related information: IBM PowerHA

Identifying resilient applications:

Not every application will give you the availability benefits of clustering.

An application must be resilient in order to take advantage of the switchover and failover capabilities provided by clustering. Application resilience allows the application to be restarted on the backup node without having to reconfigure the clients using the application. Therefore your application must meet certain requirements to take full advantage of the capabilities offered by clustering.

IBM i architecture for cluster-enabled applications:

Additional end-user value is provided by any application that is highly available, recognizing applications that continue to be available in the event of an outage, planned or unplanned.

IBM i has provided an application resilience architecture that supports various degrees of highly available application. Applications on the high end of this spectrum demonstrate highly available characteristics, provide automation of the highly available environment, and are managed through high availability management interfaces.

These applications have the following characteristics:

• The application can switch over to a backup cluster node when the primary node becomes unavailable.

- The application defines the resilient environment in the Resilient Definition and Status Data Area to enable automatic configuration and activation of the application by a cluster management application.
- The application provides application resilience by means of an application CRG exit program to handle cluster related events, taking advantage of the capabilities of the IBM i cluster resource services.
- The application provides an application restart function that repositions the user to an application menu screen or beyond.

Applications that demonstrate more stringent availability and restart characteristics have the following characteristics:

- The application provides enhanced application resilience through more robust handling of cluster events (action codes) by the application CRG exit program.
- The application provides a greater level of application restart support. For host-centric applications, the user will be repositioned to a transaction boundary by commitment control or checkpoint functions. For client-centric applications, the user will experience a seamless failover with minimal service interruption.

Writing a highly available cluster application:

A highly available application is one that can be resilient to a system outage in a clustered environment.

Several levels of application availability are possible:

- 1. If an application error occurs, the application restarts itself on the same node and corrects any potential cause for error (such as corrupt control data). You can view the application as though it had started for the first time.
- **2**. The application performs some amount of checkpoint-restart processing. You can view the application as if it were close to the point of failure.
- **3**. If a system outage occurs, the application is restarted on a backup server. You can view the application as though it had started for the first time.
- 4. If a system outage occurs, the application is restarted on a backup server and performs some amount of checkpoint-restart processing across the servers. You can view the application as if it were close to the point of failure.
- 5. If a system outage occurs, a coordinated failover of both the application and its associated data to another node or nodes in the cluster occurs. You can view the application as though it had started for the first time.
- 6. If a system outage occurs, a coordinated failover of both the application and its associated data to another node or nodes in the cluster occurs. The application performs some amount of checkpoint-restart processing across the servers. You can view the application as if it were close to the point of failure.

Note: In cases 1 through 4 above, you are responsible for recovering the data.

Making application programs resilient:

Learn how to make application programs resilient.

A resilient application is expected to have the following characteristics:

- The application can be restarted on this node or another node
- The application is accessible to the client through the IP address
- The application is stateless or state information is known
- Data that is associated with the application is available after switchover

The three essential elements that make an application resilient to system outages in a clustered environment are:

The application itself

How tolerant is the application to errors or to system outages, and how transparently can the application restart itself?

The application can handle this through the use of clustering capabilities.

Associated data

I

I

I

I

When an outage occurs, does it affect the availability of any associated data?

You can store critical data in switched disks which allow data to remain available during an outage. Alternatively, a cluster middleware IBM Business Partner replication product that takes advantage of the clustering capabilities can handle this.

Control capabilities and administration

How easy is it to define the environment that supports the availability of the data and the application?

IBM PowerHA for i licensed program number, provides several interfaces to configure and manage high-availability solutions and technology. The PowerHA licensed program provides the following interfaces:

High Availability Solutions Manager graphical interface

This graphical interface allows you to select from several IBM i supported high-availability solutions. This interface validates all technology requirements for your selected solution, configures your selected solution and the associated technologies and provides simplified management of all the high availability technologies that comprise your solution.

Cluster Resource Services graphical interface

This graphical interface provides an experienced user more flexibility in customizing a high availability-solution. It allows you to configure and manage cluster technologies, such as CRGs. You can also configure some independent disk pools from this interface when they are used as part of a high availability solution.

IBM PowerHA for i commands

These commands provide similar functions but are available through a command-line interface.

APIs These IBM PowerHA for i APIs allow you to work with new function for independent disk pools.

In addition, you can also use a third-party cluster management interface that uses the clustering APIs and also combines resilient applications with resilient data can handle this.

Related information:

High availability management

Restarting highly available cluster applications:

To restart an application, the application needs to know its state at the time of the failover or switchover.

State information is application specific; therefore, the application must determine what information is needed. Without any state information, the application can be restarted on your PC. However, you must reestablish your position within the application.

Several methods are available to save application state information for the backup system. Each application needs to determine which method works best for it.

• The application can transfer all state information to the requesting client system. When a switchover or failover occurs, the application uses the stored state on the client to reestablish the state in the new server. This can be accomplished by using the Distribute Information API or Clustered Hash Table APIs.

- The application can replicate state information (such as job information and other control structures that are associated with the application) on a real-time basis. For every change in the structures, the application sends the change over to the backup system.
- The application can store pertinent state information that is associated with it in the exit program data portion of the cluster resource group for that application. This method assumes that a small amount of state information is required. You can use the Change Cluster Resource Group (QcstChangeClusterResourceGroup) API to do this.
- The application can store state information in a data object that is being replicated to the backup systems along with the application's data.
- The application can store state information in a data object contained in the switchable IASP that also contains the application's data.
- The application can store the state information about the client.
- No state information is saved, and you need to perform the recovery.
- **Note:** The amount of information that is required to be saved is lessened if the application uses some form of checkpoint-restart processing. State information is only saved at predetermined application checkpoints. A restart takes you back to the last known checkpoint which is similar to how database's commitment control processing works.

Calling a cluster resource group exit program:

The cluster resource group exit program is called during different phases of a cluster environment.

This program establishes the environment necessary resiliency for resources within a cluster. The exit program is optional for a resilient device CRG but is required for the other CRG types. When a cluster resource group exit program is used, it is called on the occurrence of cluster-wide events, including the following:

- A node leaves the cluster unexpectedly
- A node leaves the cluster as a result of calling the End Cluster Node (QcstEndClusterNode) API or Remove Cluster Node Entry (QcstRemoveClusterNodeEntry) API
- The cluster is deleted as a result of calling the Delete Cluster (QcstDeleteCluster) API
- A node is activated by calling the Start Cluster Node (QcstStartClusterNode) API
- Communication with a partitioned node is re-established

The exit program completes the following processes:

- Runs in a named activation group or the caller's activation group (*CALLER).
- Ignores the restart parameter if the exit program has an unhandled exception or is canceled.
- Provides a cancel handler.

When a cluster resource group API is run, the exit program is called from a separate job with the user profile specified on the Create Cluster Resource Group (QcstCreateClusterResourceGroup) API. The separate job is automatically created by the API when the exit program is called. If the exit program for a data CRG is unsuccessful or ends abnormally, the cluster resource group exit program is called on all active nodes in the recovery domain by using an action code of Undo. This action code allows any unfinished activity to be backed out and the original state of the cluster resource group to be recovered.

Suppose an unsuccessful switchover occurs for a device CRG. After switching back all the devices, if all of the devices were varied-on successfully on the original primary node, clustering calls the exit program on the original primary node by using an action code of Start.

If the exit program for an application CRG is unsuccessful or ends abnormally, cluster resource services attempt to restart the application if the status of the CRG is active. The cluster resource group exit program is called by using an action code of Restart. If the application cannot be restarted in the

specified maximum number of attempts, the cluster resource group exit program is called by using an action code of Failover. The restart count is reset only when the exit program is called by using an action code of start, which can be the result of a start CRG, a failover, or a switchover.

When the cluster resource group is started, the application CRG exit program called on the primary node is not to return control to cluster resource services until the application itself ends or an error occurs. After an application CRG is active, if cluster resource services must notify the application CRG exit program of some event, another instance of the exit program is started in a different job. Any action code other than Start or Restart is expected to be returned.

When a cluster resource group exit program is called, it is passed a set of parameters that identify the cluster event being processed, the current state of the cluster resources, and the expected state of the cluster resources.

For complete information about cluster resource group exit programs, including what information is passed to the exit program for each action code, see Cluster Resource Group Exit Program in the Cluster API documentation. Sample source code has been provided in the QUSRTOOL library which can be used as a basis for writing an exit program. See the TCSTAPPEXT member in the QATTSYSC file.

Application CRG considerations:

An application cluster resource group manages application resiliency.

Managing application CRG takeover of IP addresses:

You can manage application CRG takeover of IP addresses by using cluster resource services. You can also manage them manually.

You can manage the application takeover IP address that is associated with an application CRG in two ways. The easiest way, which is the default, is to let cluster resource services manage the takeover IP address. This method directs cluster resource services to create the takeover IP address on all nodes in the recovery domain, including nodes subsequently added to the recovery domain. When this method is selected, the takeover IP address cannot currently be defined on any node in the recovery domain.

The alternative way is to manage the takeover IP addresses yourself. This method directs cluster resource services to not take any steps to configure the takeover IP address; the user is responsible for configuration. You must add the takeover IP address on all nodes in the recovery domain (except on replicate nodes) before starting the cluster resource group. Any node to be added to the recovery domain of an active CRG must have the takeover IP address configured before being added.

Related concepts:

"Example: Application cluster resource group failover actions" on page 112 This example shows how one failover scenario works. Other failover scenarios can work differently.

Multiple subnets: It is possible to have the application takeover IP address work across multiple subnets, although the default is to have all recovery domain nodes on the same subnet. To configure the application takeover IP address when the nodes in the recovery domain span multiple subnets, you need to enable the switchover environment.

Enabling application switchover across subnets with IPv4:

Clustering, in general, requires that all cluster nodes in the recovery domain of an application cluster resource group reside on the same LAN (use the same subnet addressing). Cluster resource services supports a user configured takeover IP address when configuring application CRGs.

Address Resolution Protocol (ARP) is the network protocol that is used to switch the configured application takeover IP address from one node to another node in the recovery domain. To enable the application switchover across subnets, you need to use the virtual IP address support and the Routing Information Protocol (RIP) for IPv4.

The following manual configuration steps are required to enable the switchover environment. This set of instructions must be done on all the nodes in the recovery domain, and repeated for the other nodes in the cluster that will become nodes in the recovery domain for the given application CRG.

- 1. Select an IPv4 takeover IP address to be used by the application CRG.
 - To avoid confusion, this address should not overlap with any other existing addresses used by the cluster nodes or routers. For example, if choosing 19.19.19.19, ensure that 19.0.0.0 (19.19.0.0) are not routes known by the system routing tables.
 - Add the takeover interface (for example, 19.19.19.19. Create it with a line description of *VIRTUALIP, subnet mask of 255.255.255 (host route), maximum transmission unit of 1500 (any number in the range 576-16388), and autostart of *NO. This takeover address (for example, 19.19.19.19) does must exist as a *VIRTUALIP address before identifying it as an associated local interface in next step. It does not, however, must be active.
 - 2. Associate the intended takeover IP address with one or both of the IP addresses that you specify to be used by cluster communications when you create the cluster or add a node to the cluster.
 - For example, this means that you make the 19.19.19.19 takeover address an associated local interface on the IP address for the cluster node. This must be done for each cluster address on each cluster node.

Note: The cluster addresses must be ended to accomplish this change under the Configure TCP/IP (CFGTCP) command.

- **3**. Create the cluster and create any CRGs. For the application CRG, specify QcstUserCfgsTakeoverIpAddr for the **Configure takeover IP address** field. Do not start any application CRGs.
- 4. Using Configure TCP/IP applications (option 20) from the Configure TCP/IP menu, then Configure RouteD (option 2), then Change RouteD attributes (option 1), ensure that the Supply field is set to *YES. If not, set it to *YES. Then start or restart RouteD (RIP or RIP-2) on each cluster node.
 - NETSTAT option 3 shows the RouteD using a local port if currently running. RouteD must be running and advertising routes (ensure that the Supply field is set to *YES) on every cluster node in the CRG recovery domain.
- 5. Ensure that all the commercial routers in the network that interconnect the recovery domain LANs are accepting and advertising host routes for RIP.
 - This is not necessarily the default setting for routers. The language varies with router manufacturer, but the RIP interfaces settings should be set to send host routes and receive dynamic hosts.
 - This also applies to both the router interfaces that point to the systems as well as the router-to-router interfaces.

Note: Do not use an IBM i machine as the router in this configuration. Use a commercial router (IBM or otherwise) that is designed for routing purposes. IBM i routing cannot be configured to handle this function.

- 6. Manually activate the takeover address on one of the cluster nodes:
 - a. Wait up to 5 minutes for RIP to propagate the routes.
 - b. Ping the takeover address from all nodes in the CRG recovery domain and from selected clients on the LANs who will be using this address.
 - c. Ensure the takeover address is ended again.

(Clustering will start the address on the specified primary node when the CRGs are started.)

7. Start the application CRGs.

• The takeover address is started by clustering on the specified, preferred node, and RIP advertises the routes throughout the recovery domain. RIP might take up to 5 minutes to update routes across the domain. The RIP function is independent from the start CRG function.

Important:

I

I

I

I

I

|

I

- If the above procedure is not followed for all cluster nodes in the application CRG recovery domain, the cluster hangs during the switchover process.
- Even though you do not perform a failover to replica nodes, it is a good idea to perform the procedure on the replica nodes in the event that they might be changed at a later date in time to become a backup.
- If you want to use multiple virtual IP addresses, then each one will require a separate application CRG and a separate IP address with which to be associated. This address may be another logical IP address on the same physical adapter or it may be another physical adapter altogether. Also, care must be taken to prevent ambiguities in the routing tables. This is best achieved by doing the following:
 - Add a *DFTROUTE to the routing table for each virtual IP address.
 - To use multiple IP address use CFGTCP (option 2).
 - Set all parameters, including the next hop, the same to reach the router of choice; however, the Preferred binding interface should be set to the local system IP address that is associated with the virtual IP address that is represented by this route.
- *Enabling application switchover across subnets with IPv6:*

I Clustering, in general, requires that all cluster nodes in the recovery domain of an application cluster

resource group reside on the same LAN (use the same subnet addressing). Cluster resource services

supports a user configured takeover IP address when configuring application CRGs.

Address Resolution Protocol (ARP) is the network protocol that is used to switch the configured application
 takeover IP address from one node to another node in the recovery domain. To enable the application
 switchover across subnets, you need to use the virtual IP address support and the Routing Information
 Protocol Next Generation (RIPng) for IPv6.

The following manual configuration steps are required to enable the switchover environment. This set of
instructions must be done on all the nodes in the recovery domain, and repeated for the other nodes
in the cluster that will become nodes in the recovery domain for the given application CRG.

- 1. Select an IPv6 takeover IP address to be used by the application CRG.
 - To avoid confusion, this address should not overlap with any other existing addresses used by the cluster nodes or routers.
 - It is recommended that this address is defined with a shorter IPv6 address prefix than any other IPv6 address that shares the same IPv6 prefix to ensure that the correct address is chosen for the source address in outbound packets.
 - Add the takeover interface (for example, 2001:0DB8:1234::1. Create it with a line description of *VIRTUALIP, maximum transmission unit of 1500 (any number in the range 576-16388), and autostart of *NO.
- Create the cluster and create any CRGs. For the application CRG, specify QcstUserCfgsTakeoverIpAddr for the Configure takeover IP address field. Do not start any application CRGs.
- Use the Change RIP Attributes (CHGRIPA) command to set the RIPng attributes. Run the command: CHGRIPA AUTOSTART(*YES) IP6COND(*NEVER) IP6ACPDFT(*NO) IP6SNDONLY(*VIRTUAL).
- 4. Ensure there is an IPv6 link-local address active on the system. An IPv6 link-local address starts with 'fe80:'.
- 5. Use the Add RIP Interface (ADDRIPIFC) command add a RIP interface used by the OMPROUTED server to advertise the virtual address used for the takeover IP address. For example, if fe80::1 is the

active IPv6 link-local address, run the command: ADDRIPIFC IFC('fe80::1') RCVDYNNET(*YES) SNDSTTRTE(*YES) SNDHOSTRTE(*YES) SNDONLY(*VIRTUAL).

- 6. Restart the OMPROUTED server using the following commands:
- a. ENDTCPSVR SERVER(*OMPROUTED) INSTANCE(*RIP)
 - b. STRTCPSVR SERVER(*OMPROUTED) INSTANCE(*RIP)
- 7. Ensure that all the commercial routers in the network that interconnect the recovery domain LANs are accepting and advertising host routes for RIPng.
 - This is not necessarily the default setting for routers. The language varies with router manufacturer, but the RIPng interfaces settings should be set to send host routes and receive dynamic hosts.
 - This also applies to both the router interfaces that point to the systems as well as the router-to-router interfaces.
 - **Note:** Do not use an IBM i machine as the router in this configuration. Use a commercial router (IBM or otherwise) that is designed for routing purposes. IBM i routing cannot be configured to handle this function.
- 8. Manually activate the takeover address on one of the cluster nodes:
 - a. Wait up to 5 minutes for RIP to propagate the routes.
 - b. Ping the takeover address from all nodes in the CRG recovery domain and from selected clients on the LANs who will be using this address.
 - c. Ensure that the takeover address is ended again.
 - (Clustering will start the address on the specified primary node when the CRGs are started.)
- | 9. Start the application CRGs.
 - The takeover address is started by clustering on the specified, preferred node, and RIPng advertises the routes throughout the recovery domain. RIPng might take up to 5 minutes to update routes across the domain. The RIPng function is independent from the start CRG function.

Important:

T

Т

1

Т

If the above procedure is not followed for all cluster nodes in the application CRG recovery domain, the cluster hangs during the switchover process.
Even though you do not perform a failover to replica nodes, it is a good idea to perform the procedure on the replica nodes in the event that they might be changed at a later date in time to become a backup.
If you want to use multiple virtual IP addresses, then each one will require a separate application CRG and a separate IP address with which to be associated. This address may be another logical IP address on the same physical adapter or it may be another physical adapter altogether. Also, care must be taken to prevent ambiguities in the routing tables. This is best achieved by doing the following:

Add a *DFTROUTE to the routing table for each virtual IP address.
To use multiple IP address use CFGTCP (option 2).
Set all parameters, including the next hop, the same to reach the router of choice; however, the Preferred binding interface should be set to the local system IP address that is associated with the virtual IP address that is represented by this route.

Example: Application cluster resource group failover actions:

This example shows how one failover scenario works. Other failover scenarios can work differently.

The following happens when a cluster resource group for a resilient application fails over due to exceeding the retry limit or if the job is canceled:

- The cluster resource group exit program is called on all active nodes in the recovery domain for the CRG with an action code of failover. This indicates that cluster resource services is preparing to failover the application's point of access to the first backup.
- Cluster resource services ends the takeover Internet Protocol (IP) connection on the primary node.
- Cluster resource services starts the takeover IP address on the first backup (new primary) node.
- Cluster resource services submits a job that calls the cluster resource group exit program only on the new primary node with an action code of Start. This action restarts the application.

Related concepts:

"Managing application CRG takeover of IP addresses" on page 109

You can manage application CRG takeover of IP addresses by using cluster resource services. You can also manage them manually.

Example: Application exit program:

This code example contains an application cluster resource group exit program.

You can find this code example in the QUSRTOOL library.

Note: By using the code examples, you agree to the terms of the Chapter 3, "Code license and disclaimer information," on page 289.

```
/*
                                                                    */
/* Library: QUSRTOOL
                                                                    */
/* File:
           OATTSYSC
                                                                    */
/* Member: TCSTAPPEXT
                                                                    */
/* Type:
           ILE C
                                                                    */
/*
/* Description:
/* This is an example application CRG exit program which gets called for
                                                                    */
/* various cluster events or cluster APIs. The bulk of the logic must
                                                                    */
/* still be added because that logic is really dependent upon the unique
                                                                    */
/* things that need to be done for a particular application.
                                                                    */
/*
                                                                    */
/* The intent of this example to to provide a shell which contains the
                                                                    */
/* basics for building a CRG exit program. Comments throughout the example*/
/* highlight the kinds of issues that need to be addressed by the real
                                                                    */
/* exit program implementation.
                                                                    */
/*
                                                                    */
/* Every action code that applies to an application CRG is handled in this */
/* example.
                                                                    */
/*
                                                                    */
/* The tcstdtaara.h include is also shipped in the QUSRTOOL library. See
                                                                    */
/* the TCSTDTAARA member in the QATTSYSC file.
                                                                    */
/*
                                                                    */
/* Change log:
                                                                    */
/* Flag Reason
               Ver
                     Date
                            User Id Description
                                                                    */
/*
                                                                    */
       D98332 v5r1m0 000509 ROCH
                                    Initial creation.
/*
                                                                    */
  . . .
/* $A1 P9950070 v5r2m0 010710 ROCH
                                    Dataarea fixes
                                                                    */
/* $A2 D99055 v5r2m0 010913 ROCH Added CancelFailover action code
                                                                    */
/* $A3 D98854 v5r2m0 010913 ROCH Added VerificationPhase action code*/
       P9A10488 v5r3m0 020524 ROCH
/* $A4
                                   Added example code to wait for data*/
/*
                                    CRGs on switchover action code
                                                                    */
/*
                                                                    */
-*/
/*
                                                                    */
/* Header files
                                                                    */
                                                                    */
```

/*-----*/ */ */ #include "qusrtool/qattsysc/tcstdtaara" /* QCSTHAAPPI/QCSTHAAPPO data areas*/ #include /* API to Retrieve contents of a data area */
#include /* API error code type definition */
#include /* mitime builtin */
#include /* waittime builtin */ _____ /* */ /* Constants */ /* */ /*--#define UnknownRole -999 #define DependCrgDataArea "QCSTHAAPPO" #define ApplCrgDataArea "QCSTHAAPPI" #define Nulls 0x0000000000000000000 /*-----*/ /* */ /* The following constants are used in the checkDependCrgDataArea() */ /* function. The first defines how long to sleep before checking the data */ /* CRG function is being run. The third defines the maximum wait time for */ /* the Initiate Switchover or failover functions. */ /* */ /*-----#define WaitSecondsIncrement 30 #define MaxStartCrgWaitSeconds 0 #define MaxWaitSeconds 900 -----/*-/* */ /* As this exit program is updated to handle new action codes, change the *//* define below to the value of the highest numbered action code that is *//* handled. */ /* */ /*---------*/ #define MaxAc 21 -----*/ /* */ /* If the exit program data in the CRG has a particular structure to it, *//* include the header file for that structure definition and change the */ /* define below to use that structure name rather than char. */ /* */ /*-----#define EpData char /*-----/* */ /* Change the following define to the library the application resides in *//* and thus where the QCSTHAAPPO and QCSTHAAPPI data areas will be found. *//* */ /*-----*/ #define ApplLib "QGPL"

```
-----*/
/*
                                                                       */
/* Prototypes for internal functions.
                                                                       */
/*
                                                                       */
/*-----*/
static int getMyRole(Qcst EXTP0100 t *, int, int);
#pragma argopt(getMyRole)
static int doAction(int, int, int, Qcst_EXTP0100 t *, EpData *);
#pragma argopt(doAction)
static int createCrg(int, int, Qcst_EXTP0100_t *, EpData *);
static int startCrg(int, int, Qcst EXTP0100 t *, EpData *);
static int restartCrg(int, int, Qcst EXTP0100 t *, EpData *);
static int endCrg(int, int, Qcst_EXTP0100_t *, EpData *);
static int verifyPhase(int, int, Qcst_EXTP0100_t *, EpData *);
static int deleteCrg(int, int, Qcst EXTP0100 t *, EpData *);
static int memberIsJoining(int, int, Qcst_EXTP0100_t *, EpData *);
static int memberIsLeaving(int, int, Qcst_EXTP0100_t *, EpData *);
static int switchPrimary(int, int, Qcst_EXTP0100_t *, EpData *);
static int addNode(int, int, Qcst_EXTP0100_t *, EpData *);
static int rmvNode(int, int, Qcst_EXTP0100_t *, EpData *);
static int chgCrg(int, int, Qcst_EXTP0100_t *, EpData *);
static int deleteCrgWithCmd(int, int, Qcst_EXTP0100_t *, EpData *);
static int undoPriorAction(int, int, Qcst_EXTP0100_t *, EpData *);
static int endNode(int, int, Qcst EXTP0100 t *, EpData *);
static int chgNodeStatus(int, int, Qcst_EXTP0100_t *, EpData *);
static int cancelFailover(int, int, Qcst_EXTP0100_t *, EpData *);
static int newActionCode(int, int, Qcst_EXTP0100_t *, EpData *);
static int undoCreateCrg(int, int, Qcst_EXTP0100_t *, EpData *);
static int undoStartCrg(int, int, Qcst_EXTP0100_t *, EpData *);
static int undoEndCrg(int, int, Qcst_EXTP0100_t *, EpData *);
static int undoMemberIsJoining(int, int, Qcst_EXTP0100_t *, EpData *);
static int undoMemberIsLeaving(int, int, Qcst_EXTP0100_t *, EpData *);
static int undoSwitchPrimary(int, int, Qcst_EXTP0100_t *, EpData *);
static int undoAddNode(int, int, Qcst_EXTP0100_t *, EpData *);
static int undoRmvNode(int, int, Qcst EXTP0100 t *, EpData *);
static int undoChgCrg(int, int, Qcst_EXTP0100_t *, EpData *);
static int undoCancelFailover(int, int, Qcst_EXTP0100_t *, EpData *);
static void bldDataAreaName(char *, char *, char *);
#pragma argopt(bldDataAreaName)
static int checkDependCrgDataArea(unsigned int);
#pragma argopt(checkDependCrgDataArea)
static void setApplCrgDataArea(char);
#pragma argopt(setApplCrgDataArea)
static void cancelHandler( CNL Hndlr Parms T *);
static void unexpectedExceptionHandler( INTRPT Hndlr Parms T *);
static void endApplication(unsigned int, int, int, Qcst EXTP0100 t *, EpData *);
#pragma argopt(endApplication)
/*-
     -----*/
/*
                                                                       */
/* Some debug routines
                                                                       */
/*
/*-----*/
static void printParms(int, int, int, Qcst EXTP0100 t *, EpData *);
static void printActionCode(unsigned int);
static void printCrgStatus(int);
static void printRcvyDomain(char *,
                          unsigned int,
                          Qcst_Rcvy_Domain_Array1_t *);
static void printStr(char *, char *, unsigned int);
                 */
/*----
/*
                                                                       */
/* Type definitions
                                                                       */
/*
     -----*/
/*-
```

```
/*
                                                                               */
/* This structure defines data that will be passed to the exception and
                                                                               */
/* cancel handlers. Extend it with information unique to your application.*/
/*
                                                                               */
                   _____
/*-----
typedef struct {
                           /* Pointer to return code
  int *retCode;
                                                                               */
 EpData *epData; /* Exit program data from the CRG
                                                                               */
 Qcst_EXTP0100_t *crgData; /* CRG data
                                                                               */
 unsigned int actionCode; /* The action code % \left( {{\left( {{{\left( {{{\left( {{{\left( {{{c}}} \right)}} \right.}} \right)}_{c}}} \right)}_{c}} \right)
                                                                               */
                int role;
                                                                               */
  int priorRole;
                                                                               */
} volatile HandlerDataT;
                    -----
                                                                            ---*/
                                                                               */
/*
/* Function pointer array for handling action codes. When the exit program*/
/* is updated to handle new action codes, add the new function names to
                                                                             */
/* this function pointer array.
                                                                               */
/*
                                                                               */
/*-----
                  -----
static int (*fcn[MaxAc+1]) (int role,
                             int priorRole,
                             Qcst_EXTP0100_t *crgData,
                             EpData *epData) = {
  newActionCode, /* 0 - currently reserved */
 createCrg, /* 1 */
startCrg, /* 2 */
 startCrg, /* 2 */
restartCrg, /* 3 */
endCrg, /* 4 */
verifvPhase, /* 5 - currently reserved */
' 6 - currently reserved */
 deleteCrg, /* 7 */
memberIsJoining, /* 8 */
 memberIsLeaving, /* 9 */
  switchPrimary, /* 10 */
                   /* 11 */
 addNode,
                   /* 12 */
 rmvNode,
                   /* 13 */
 chgCrg,
 deleteCrgWithCmd,/* 14 */
 undoPriorAction, /* 15 */
 endNode, /* 15 */
endNode, /* 16 */
newActionCode, /* 17 - applies only to a device CRG */
newActionCode, /* 18 - applies only to a device CRG */
newActionCode, /* 19 - applies only to a device CRG */
chgNodeStatus, /* 20 */
cancelFailover /* 21 */
};
/*-
        -----*/
/*
                                                                               */
/* Function pointer array for handling prior action codes when called with */
/* the Undo action code. When the exit program is updated to handle */
/* Undo for new action codes, add the new function names to this function */
/* pointer array.
                                                                               */
/*
                                                                               */
/*-----
static int (*undoFcn[MaxAc+1]) (int role,
                                 int priorRole,
                                 Qcst EXTP0100_t *crgData,
                                 EpData *epData) = {
 newActionCode,
                        /* 0 - currently reserved */
                        /* 1 */
 undoCreateCrg,
```

```
undoStartCrg, /* 2 */
newActionCode, /* 3 */
undoEndCrg, /* 4 */
newActionCode, /* 5 - no undo for this action code */
newActionCode, /* 6 - currently reserved */
newActionCode, /* 7 */
undoMemberIsJoining, /* 8 */
undoMemberIsLeaving, /* 9 */
undoSwitchPrimary, /* 10 */
undoAdNode, /* 11 */
undoAdNode, /* 11 */
undoRmvNode, /* 12 */
undoChgCrg, /* 13 */
newActionCode, /* 14 */
newActionCode, /* 16 */
newActionCode, /* 16 */
newActionCode, /* 17 - applies only to a device CRG */
newActionCode, /* 18 - applies only to a device CRG */
newActionCode, /* 19 - applies only to a device CRG */
newActionCode, /* 20 */
undoCancelFailover /* 21 */
```

```
};
```

/*

HandlerDataT hdlData;

```
----- */
 /*
                                                        */
 /* Take each of the arguments passed in the argv array and castit to
                                                        */
 /* the correct data type.
                                                        */
 /*
                                                        */
/*----- */
 int *retCode = (int *)argv[1];
 unsigned int *actionCode = (unsigned int *)argv[2];
 EpData *epData = (EpData *)argv[3];
 Qcst_EXTP0100_t *crgData = (Qcst_EXTP0100_t *)argv[4];
 char *formatName = (char *)argv[5];
/*-----*/
 /*
                                                        */
 /* Ensure the format of the data being passed is correct. */
 /* If not, a change has been made and this exit program needs tobe
                                                        */
 /* updated to accomodate the change. Add appropriate errorlogging for */
 /* your application design.
                                                        */
 /*
                                                        */
/*-----
 if (0 != memcmp(formatName, "EXTP0100", 8))
  abort();
/*--
           _____
 /*
                                                        */
 /* Set up the data that will be passed to the exception and cancel
                                                        */
 /* handlers.
                                                        */
```

*/

/*------/ hdlData.retCode = retCode; hdlData.epData = epData; hdlData.crgData = crgData; hdlData.actionCode = *actionCode; hdlData.role = UnknownRole; hdlData.priorRole = UnknownRole; VBDY(); /* force changed variables to home storage location */ -----/* */ /* Enable an exception handler for any and all exceptions. */ /* */ /*------// #pragma exception handler(unexpectedExceptionHandler, hdlData, \ _C1_ALL, _C2_ALL, _CTLA_INVOKE) /*----------*/ /* */ /* Enable a cancel handler to recover if this job is canceled. /* */ /*_____*/ #pragma cancel_handler(cancelHandler, hdlData) /*----/* */ /* Extract the role and prior role of the node this exit program is */ /* running on. If the cluster API or event changes the recovery domain */ /* (node role or membership status), the new recovery domain's offset is */ /* passed in Offset Rcvy Domain Array and the offset of the recovery */ /* domain as it looked prior to the API or cluster event is passed in */ /* Offset_Prior_Rcvy_Domain_Array. If the recovery domain isn't changed,*/ /* only Offset Rcvy Domain Array can be used to address the recovery */ /* domain. */ /* */ hdlData.role = getMyRole(crgData, crgData->Offset Rcvy Domain Array, crgData->Number Nodes Rcvy Domain); if (crgData->Offset_Prior_Rcvy_Domain_Array) hdlData.priorRole = getMyRole(crgData, crgData->Offset_Prior_Rcvy_Domain_Array, crgData->Number_Nodes_Prior_Rcvy_Domain); else hdlData.priorRole = hdlData.role; VBDY(); /* force changed variables to home storage location */ /*-----*/ /* */ /* Enable the following to print out debug information. */ /* -----*/ /*---/* printParms(*actionCode, hdlData.role, hdlData.priorRole, crgData, epData); */

```
_____
 /*
                                                               */
 /* Do the correct thing based upon the action code. The return code
                                                               */
 /* is set to the function result of doAction().
                                                               */
 /*
                                                               */
/*-----/
 *retCode = doAction(*actionCode,
                  hdlData.role,
                  hdlData.priorRole,
                  crgData,
                  epData);
/*-----*/
 /*
                                                               */
 /* The exit program job will end when control returns to the operating
                                                               */
 /* system at this point.
                                                               */
 /*
                                                               */
 return:
#pragma disable_handler /* unexpectedExceptionHandler
                                                               */
#pragma disable_handler /* cancelHandler
                                                               */
} /* end main()
                                                               */
/*
                                                               */
/* Get the role of this particular node from one of the views of the
                                                               */
/* recovery domain.
                                                               */
/*
                                                               */
/* APIs and cluster events which pass the updated and prior recovery domain*/
/* to the exit program are:
                                                               */
/* QcstAddNodeToRcvyDomain
                                                               */
/* QcstChangeClusterNodeEntry
                                                               */
/* QcstChangeClusterResourceGroup
                                                               */
/* QcstEndClusterNode (ending node does not get the prior domain)
                                                               */
/* QcstInitiateSwitchOver
                                                               */
/* QcstRemoveClusterNodeEntry (removed node does not get the prior domain)
/* QcstRemoveNodeFromRcvyDomain
                                                               */
/* QcstStartClusterResourceGroup (only if inactive backup nodes are
                                                               */
/*
                            reordered)
                                                               */
/* a failure causing failover
                                                               */
/* a node rejoining the cluster
                                                               */
/* cluster partitions merging
                                                               */
/*
/* All other APIs pass only the updated recovery domain.
                                                               */
/*
static int getMyRole(Qcst EXTP0100 t *crgData, int offset, int
count) {
 Qcst Rcvy Domain Array1 t *nodeData;
 unsigned int iter = 0;
/*_____
 /*
                                                               */
 /* Under some circumstances, the operating system may not be able to
                                                               */
 /* determine the ID of this node and passes *NONE. An example of such a */
 /* circumstance is when cluster resource services is not active on a
                                                               */
 /* node and the DLTCRG CL command is used.
                                                               */
 /*
                                                               */
```

```
-----*/
 if (0 == memcmp(crgData->This Nodes ID, QcstNone,
sizeof(Qcst_Node_Id_t)))
   return UnknownRole;
/*-----
 /*
                                                                */
 /* Compute a pointer to the first element of the recovery domain array. */
 /*
                                                                */
/*-----*/
 nodeData = (Qcst_Rcvy_Domain_Array1_t *)((char *)crgData +
offset);
                  /*
 /* Find my node in the recovery domain array. I will not be in the
                                                                */
 /* prior recovery domain if I am being added by the Add Node to Recovery */
 /* Domain API.
                                                                */
 /*
                                                                */
/*-----
 while ( 0 != memcmp(crgData->This_Nodes_ID,
                   nodeData->Node_ID,
                   sizeof(Qcst_Node_Id_t))
       &&
        iter < count
      ) {
   nodeData++;
   iter++;
 }
 if (iter < count)
   return nodeData->Node_Role;
 else
   return UnknownRole;
                                                                */
 /* end getMyRole()
/**
/*
                                                                */
/* Call the correct function based upon the cluster action code. The
                                                                */
/* doAction() function was split out from main() in order to clarify the
                                                                */
/* example. See the function prologues for each called function for
                                                                */
/* information about a particular cluster action.
                                                                */
/*
                                                                */
/* Each action code is split out into a separate function only to help
                                                                */
/* clarify this example. For a particular exit program, some action codes */
/* may perform the same function in which case multiple action codes could */
/* be handled by the same function.
                                                                */
/*
                                                                */
static int doAction(int actionCode.
                 int role,
                 int priorRole,
                 Qcst_EXTP0100_t *crgData,
                 EpData *epData) {
/*---
 /*
                                                                */
 /* For action codes this exit program knows about, call a function to
                                                                */
 /* do the work for that action code.
                                                                */
 /*
                                                                */
```

```
-----*/
 if (actionCode <= MaxAc )
   return (*fcn[actionCode]) (role, priorRole, crgData, epData);
 else
/*-----*/
   /*
                                                                  */
   /* IBM has defined a new action code in a new operating system release */
   /* and this exit program has not yet been updated to handle it. Take a*/
   /* default action for now.
                                                                  */
   /*
                                                                  */
/*-----*/
   return newActionCode(role, priorRole, crgData, epData);
  /* end doAction()
                                                                  */
               ******
                                                                 **/
/*
                                                                  */
/* Action code = QcstCrgAcInitialize
                                                                  */
/*
                                                                  */
/* The QcstCreateClusterResourceGroup API was called. A new cluster
/* resource group object is being created.
                                                                  */
/*
                                                                  */
/* Things to consider:
                                                                  */
   - Check that the application program and all associated objects are on*/
/*
      the primary and backup nodes. If the objects are not there,
/*
                                                                  */
      consider sending error/warning messages or return a failure return
/*
                                                                  */
1*
      code.
                                                                  */
1*
   - Check that required data or device CRGs are on all nodes in the
                                                                  */
     recovery domain.
/*
                                                                  */
/*
    - Perform any necessary setup that is required to run the
                                                                  */
1*
    the application on the primary or backup nodes.
                                                                  */
    - If this CRG is enabled to use the QcstDistributeInformation API,
/*
                                                                  */
      the user queue needed by that API could be created at this time.
/*
                                                                  */
/*
static int createCrg(int role,
                  int doesNotApply,
                  Qcst EXTP0100 t *crgData,
                  EpData *epData) {
 return QcstSuccessful;
} /* end createCrg()
                                                                  */
/*
                                                                  */
/* Action code = QcstCrgAcStart
                                                                  */
/*
                                                                  */
/* The QcstStartClusterResourceGroup API was called. A cluster resource
                                                                  */
/* group is being started.
                                                                  */
/* The QcstInitiateSwitchOver API was called and this is the second action */
/* code being passed to the exit program.
                                                                  */
/* The fail over event occurred and this is the second action code being
/* passed to the exit program.
                                                                  */
/*
                                                                  */
/* A maximum wait time is used when checking to see if all dependent CRGs */
/* are active. This is a short time if the CRG is being started because of*/
/* the QcstStartClusterResourceGroup API. It is a longer time if it is
                                                                  */
/* because of a failover or switchover. When failover or switchover are
                                                                  */
/* being done, it make take a while for data or device CRGs to become
                                                                  */
/* ready so the wait time is long. If the Start CRG API is being used, the*/
/* dependent CRGs should already be started or some error occurred, the
                                                                  */
/* CRGs were started out of order, etc. and there is no need for a long
                                                                  */
```

```
/* wait.
                                                              */
/*
                                                              */
/* Things to consider:
                                                              */
   - If this node's role is primary, the application should be started. */
/*
/*
     This exit program should either call the application so that it runs*/
/*
     in this same job or it should monitor any job started by this
                                                              */
/*
     exit program so the exit program knows when the application job
                                                              */
/*
     ends. By far, the simplest approach is run the application in this */
/*
     job by calling it.
                                                             */
/*
     Cluster Resource Services is not expecting this exit program to
                                                              */
/*
     return until the application finishes running.
                                                              */
/*
    - If necessary, start any associated subsystems, server jobs, etc.
                                                             */
/*
    - Ensure that required data CRGs have a status of active on all nodes */
/*
     in the recovery domain.
                                                             */
/*
                                                              */
static int startCrg(int role,
                int doesNotApply,
                Qcst EXTP0100 t *crgData,
                EpData *epData) {
 unsigned int maxWaitTime;
 /* Start the application if this node is the primary
                                                              */
 if (role == QcstPrimaryNodeRole) {
/*-----*/
   /*
                                                              */
   /* Determine if all CRGs that this application CRG is dependent upon
                                                             */
   /* are ready. If the check fails, return from the Start action code. */
   /* Cluster Resource Services will change the state of the CRG to
                                                              */
   /* Inactive.
                                                              */
   /*
                                                              */
/*-----*/
   if (crgData->Cluster_Resource_Group_Status ==
QcstCrgStartCrgPending)
    maxWaitTime = MaxStartCrgWaitSeconds;
   else
    maxWaitTime = MaxWaitSeconds;
   if (QcstSuccessful != checkDependCrgDataArea(maxWaitTime))
    return QcstSuccessful;
        -----*/
   /*
   /* Just before starting the application, update the data area to
   /* indicate the application is running.
   /*
/*-----*/
   setApplCrgDataArea(Appl_Running);
      -----*/
   /*
   /* Add logic to call application here. It is expected that control
                                                              */
   /* will not return until something causes the application to end: a
   /* normal return from the exit program, the job is canceled, or an
   /* unhandled exception occurs. See the cancelHandler() function for
                                                             */
   /* some common ways this job could be canceled.
   /*
                                                              */
/*-----*/
```

```
/*
                                                           */
   /* After the application has ended normally, update the data area to
                                                           */
   /* indicate the application is no longer running.
                                                           */
   /*
                                                           */
/*-----*/
  setApplCrgDataArea(Appl_Ended);
 }
 else
  /*
   /* On backup or replicate nodes, mark the status of the application in */
   /* the data area as not running.
                                                           */
   /*
                                                           */
              */
   setApp1CrgDataArea(App1 Ended);
 return QcstSuccessful;
} /* end startCrg()
     */
   /*
                                                           */
/* Action code = QcstCrgAcRestart
                                                           */
/*
                                                           */
/* The previous call of the exit program failed and set the return */
/* code to QcstFailWithRestart or it failed due to an exception and the
                                                           */
/* exception was allowed to percolate up the call stack. In either */
/* case, the maximum number of times for restarting the exit program has
                                                           */
/* not been reached yet.
                                                           */
/*
                                                           */
/* This action code is passed only to application CRG exit programs which
                                                           */
/* had been called with the Start action code.
                                                           */
/*
                                                           */
static int restartCrg(int role,
                 int doesNotApply,
                 Qcst EXTP0100_t *crgData,
                 EpData *epData) {
/*--
                  ------
 /*
                                                           */
 /* Perform any unique logic that may be necessary when restarting the */
 /* application after a failure and then call the startCrg() function to */
 /* do the start functions.
                                                           */
 /*
                                                           */
                  .----*/
 return startCrg(role, doesNotApply, crgData, epData);
} /* end restartCrg()
                                                           */
/*
                                                           */
/* Action code = QcstCrgAcEnd
                                                           */
/*
                                                           */
/* The end action code is used for one of the following reasons:
                                                           */
```

```
/*
    - The QcstEndClusterResourceGroup API was called.
                                                                     */
/*
    - The cluster has become partitioned and this node is in the secondary*/
      partition. The End action code is used regardless of whether the
/*
                                                                     */
/*
      CRG was active or inactive. Action code dependent data of
                                                                     */
/*
      QcstPartitionFailure will also be passed.
                                                                     */
    - The application ended. Action code dependent data of
/*
                                                                     */
/*
      QcstResourceEnd will also be passed. All nodes in the recovery
                                                                     */
/*
      domain will see the same action code (including the primary).
                                                                     */
    - The CRG job has been canceled. The exit program on this node will */
/*
/*
      be called with the End action code. QcstMemberFailure will be
                                                                     */
/*
      passed as action code dependent data.
                                                                     */
/*
                                                                     */
/*
                                                                     */
/*
                                                                     */
/*
                                                                     */
  Things to consider:
/*
    - If the CRG is active, the job running the application is canceled
/*
      and the IP takeover address is ended AFTER the exit program is
                                                                     */
/*
      called.
                                                                     */
/*
    - If subsystems or server jobs were started as a result of the
                                                                     */
/*
      QcstCrgAcStart action code, end them here or consolidate all logic
                                                                     */
/*
      to end the application in the cancelHandler() since it will be
                                                                     */
/*
      invoked for all Cluster Resource Services APIs which must end the
                                                                     */
/*
      application on the current primary.
                                                                     */
/*
                                                                     */
static int endCrg(int role,
                int priorRole,
                Qcst_EXTP0100_t *crgData,
                EpData *epData) {
  /*
  /* End the application if it is running on this node.
 /*
 endApplication(QcstCrgAcRemoveNode, role, priorRole, crgData,
epData);
 return QcstSuccessful;
} /* end endCrg()
                                                                     */
/*
                                                                     */
/* Action code = QcstCrgAcVerificationPhase
                                                                     */
/*
                                                                     */
/* The verification phase action code is used to allow the exit program to */
/* do some verification before proceeding with the requested function
                                                                     */
/* identified by the action code depended data. If the exit program
                                                                     */
/* determines that the requested function cannot proceed it should return
                                                                     */
/* QcstFailWithOutRestart.
                                                                     */
/*
                                                                     */
/*
                                                                     */
/* NOTE: The exit program will NOT be called with Undo action code.
                                                                     */
/*
                                                                     */
static int verifyPhase(int role,
                     int doesNotApply,
                     Qcst EXTP0100 t *crgData,
                     EpData *epData) {
  /*
                                                                     */
 /* Do verification
                                                                     */
```

/*

```
if (crgData->Action_Code_Dependent_Data == QcstDltCrg) {
       /* do verification */
       /* if ( fail ) */
         /* return QcstFailWithOutRestart */
 }
 return QcstSuccessful;
} /* end verifyPhase()
                                                                      */
      /*
                                                                      */
/* Action code = QcstCrgAcDelete
                                                                      */
/*
                                                                      */
/* The QcstDeleteClusterResourceGroup or QcstDeleteCluster API was called.
                                                                      */
/* A cluster resource group is being deleted while Cluster Resource
                                                                      */
/* Services is active.
                                                                      */
/* If the QcstDeleteCluster API was used, action code dependent data of
                                                                      */
/* QcstDltCluster is passed.
                                                                      */
/* If the QcstDeleteCluster API was used and the CRG is active, the exit
                                                                      */
/* program job which is still active for the Start action code is canceled*/
/* after the Delete action code is processed.
                                                                      */
/*
                                                                      */
/* Things to consider:
                                                                      */
/*
    - Delete application programs and objects from nodes where they are
                                                                      */
      no longer needed such as backup nodes. Care needs to be exercised
/*
                                                                      */
/*
      when deleting application objects just because a CRG is being
                                                                      */
      deleted since a particular scenario may want to leave the
/*
                                                                      */
/*
      application objects on all nodes.
                                                                      */
/*
                                                                      */
static int deleteCrg(int role,
                   int doesNotApply,
                   Qcst_EXTP0100_t *crgData,
                   EpData *epData) {
 return QcstSuccessful;
} /* end deleteCrg()
      */
/*
                                                                      */
/* Action code = QcstCrgAcReJoin
                                                                      */
/*
                                                                      */
/* One of three things is occurring-
                                                                      */
/*
  1. The problem which caused the cluster to become partitioned has been */
/*
      corrected and the 2 partitions are merging back together to become */
/*
      a single cluster. Action code dependent data of QcstMerge will be
                                                                      */
1*
      passed.
                                                                      */
1*
   2. A node which either previously failed or which was ended has had
                                                                      */
/*
      cluster resource services started again and the node is joining the */
/*
      cluster. Action code dependent data of QcstJoin will be passed.
                                                                      */
/*
   3. The CRG job on a particular node which may have been canceled or
      ended has been restarted. Action code dependent data of QcstJoin
1*
                                                                      */
      will be passed.
/*
                                                                      */
/*
                                                                      */
/* Things to consider:
                                                                      */
/*
    - If the application replicates application state information to other*/
/*
      nodes when the application is running, this state information will */
/*
      need to be resynchronized with the joining nodes if the CRG is
                                                                      */
/*
      active.
                                                                      */
/*
    - Check for missing application objects on the joining nodes.
                                                                      */
/*
    - Ensure the required data CRGs are on the joining nodes.
                                                                      */
```

*/

```
- If the application CRG is active, ensure the required data CRGs are */
/*
/*
      active.
/*
                                                                      */
static int memberIsJoining(int role,
                         int priorRole,
                         Qcst EXTP0100 t *crgData,
                         EpData *epData) {
          -----
  /*
                                                                    */
  /* Ensure the data area status on this node starts out indicating
                                                                    */
 /* the application is not running if this node is not the primary.
                                                                    */
 /*
/*-----*/
 if (role != QcstPrimaryNodeRole) {
   setApplCrgDataArea(Appl Ended);
 /*
                                                                      */
 /* If a single node is rejoining the cluster, you may do a certain set of*/
  /* actions. Whereas if the nodes in a cluster which became partitioned */
 /* are merging back together, you may have a different set of actions.
                                                                      */
 /*
                                                                      */
  if (crgData->Action Code Dependent Data == QcstJoin) {
   /* Do actions for a node joining.
                                                                      */
 }
 else {
   /* Do actions for partitions merging.
                                                                      */
 return QcstSuccessful;
} /* end memberIsJoining()
                                                                      */
/*
                                                                      */
/* Action code = QcstCrgAcFailover
                                                                      */
/*
                                                                      */
/* Cluster resource services on a particular node(s) has failed or ended
                                                                      */
/* for this cluster resource group. The Failover action code is passed
                                                                      */
/* regardless of whether the CRG is active or inactive. Failover can
                                                                      */
/* happen for a number of reasons:
                                                                      */
/*
                                                                      */
/*
    - an operator canceled the CRG job on a node. Action code dependent */
/*
      data of QcstMemberFailure will be passed.
                                                                      */
/*
    - cluster resource services was ended on the node (for example, the
                                                                      */
/*
      QSYSWRK subsystem was ended with CRS still active). Action code
                                                                      */
/*
      dependent data of QcstNodeFailure will be passed.
                                                                      */
/*
    - the application for an application CRG has failed on the primary
                                                                      */
/*
      node and could not be restarted there. The CRG is Active.
                                                                      */
/*
      Action code dependent data of QcstApplFailure will be passed.
                                                                      */
/*
    - the node failed (such as a power failure). Action code dependent
                                                                      */
/*
      data of QcstNodeFailure will be passed.
                                                                      */
/*
    - The cluster has become partitioned due to some communication failure*/
/*
      such as a communication line or LAN failure. The Failover action
                                                                      */
/*
      code is passed to recovery domain nodes in the majority partition. */
/*
      Nodes in the minority partition see the End action code. Action
                                                                      */
/*
      code dependent data of QcstPartitionFailure will be passed.
                                                                      */
/*
      A node in the CRG's recovery domain is being ended with the
                                                                      */
/*
      QcstEndClusterNode API. The node being ended will see the End Node */
```

```
action code. All other nodes in the recovery domain will see the
/*
                                                                  */
/*
      Failover action code. Action code dependent data of QcstEndNode
                                                                  */
/*
      will be passed for the Failover action code.
                                                                  */
    - An active recovery domain node for an active CRG is being removed
/*
1*
      from the cluster with the QcstRemoveClusterNodeEntry API. Action
                                                                  */
/*
      code dependent data of QcstRemoveNode will be passed. If an
                                                                  */
/*
      inactive node is removed for an active CRG, or if the CRG is
                                                                  */
1*
      inactive, an action code of Remove Node is passed.
                                                                  */
/*
                                                                  */
/* The exit program is called regardless of whether or not the CRG is
                                                                  */
/* active. The exit program may have nothing to do if the CRG is not
                                                                  */
/* active.
                                                                  */
/*
                                                                  */
/* If the CRG is active and the leaving member was the primary node,
                                                                  */
/* perform the functions necessary for failover to a new primary.
                                                                  */
/*
/* The Action Code Dependent Data field can be used to determine if:
                                                                  */
  - the failure was due to a problem that caused the cluster to become
/*
/*
      partitioned (all CRGs which had the partitioned nodes in the
                                                                  */
/*
      recovery domain are affected)
1*
  - a node failed or had cluster resource services ended on the node (all*/
/*
     CRGs which had the failed/ended node in the recovery domain are
                                                                  */
/*
     affected)
                                                                  */
  - only a single CRG was affected (for example a single CRG job was
/*
                                                                  */
/*
     canceled on a node or a single application failed)
                                                                 */
/*
                                                                  */
/*
                                                                  */
/* Things to consider:
                                                                  */
    - Prepare the new primary node so the application can be started.
/*
/*
    - The application should NOT be started at this time. The exit
/*
      program will be called again with the QcstCrgAcStart action code if */
/*
      the CRG was active when the failure occurred.
                                                                  */
    - If the application CRG is active, ensure the required data CRGs are */
/*
/*
      active.
                                                                  */
/*
                                                                  */
static int memberIsLeaving(int role,
                       int priorRole,
                       Qcst EXTP0100 t *crgData,
                       EpData *epData) {
/*---
       _____
 /*
                                                                  */
 /* If the CRG is active, perform failover. Otherwise, nothing to do.
                                                                  */
 /*
                                                                  */
/*-----*/
 if (crgData->Original_Cluster_Res_Grp_Stat == QcstCrgActive) {
       .....*/
   /*
   /* The CRG is active. Determine if my role has changed and I am now
                                                                  */
   /* the new primary.
                                                                  */
   /*
                                                                  */
/*-----*/
   if (priorRole != role && role == QcstPrimaryNodeRole) {
         -----*/
     /*
                                                                  */
     /* I was not the primary but am now. Do failover actions but don't */
     /* start the application at this time because this exit program will */
     /* be called again with the Start action code.
                                                                  */
```

/*	*/
/**/	/
/**/	/
/*	*/
<pre>/* Ensure the data area status on this node starts out indicating /* the application is not running.</pre>	g */ */
/* the apprication is not running.	*/
/**/	/
<pre>setApplCrgDataArea(Appl_Ended);</pre>	
/**/	· .
/* /* If the application has no actions to do on the Start action co	*/ ode */
/* and will become active as soon as the takeover IP address is	oue */ */
/* activated, then this code should be uncommented. This code w	
/* determine if all CRGs that this application CRG is dependent u	
<pre>/* are ready. If this check fails, return failure from the actio /* code.</pre>	on */ */
/* code. /*	*/
<pre>/**/ /* if (QcstSuccessful != checkDependCrgDataArea(MaxWaitSeconds))</pre>	/
<pre>/* If (QCSTSUCCESSIUT != checkDependergDataArea(maxwallSeconds)) /* return QcstFailWithOutRestart;</pre>	*/ */
}	
}	
<pre>return QcstSuccessful; } /* end memberIsLeaving()</pre>	*/
/**************************************	******
/*	*/
/* Action code = QcstCrgAcSwitchover	*/
/*	*/
/* The QcstInitiateSwitchOver API was called. The first backup node in $/*$ the cluster resource group's recovery domain is taking over as the	n */ */
/* primary node and the current primary node is being made the last bac	
/*	*/
/* Things to consider:	*/
<pre>/* - Prepare the new primary node so the application can be started.</pre>	*/
/* - The application should NOT be started at this time. The exit /* program will be called again with the QcstCrgAcStart action code	*/ e. */
/* - The job running the application is canceled and the IP takeover	
/* address is ended prior to the exit program being called on the	*/
/* current primary.	*/
<pre>/* - Ensure required data or device CRGs have switched over and are</pre>	*/
/* active. /*	*/ */
/ ~ /***********************************	
static int switchPrimary(int role,	
int priorRole,	
Qcst_EXTP0100_t *crgData, EpData *epData) {	
/*/*	*/ */
/ /* See if I am the old primary. /*	, */ */
	^/ . /
/*	*/

if (priorRole == QcstPrimaryNodeRole) {

/* */ /* Do what ever needs to be done to cleanup the old primary before the */ /* switch. Remember that that job which was running the exit program */ /* which started the application was canceled already. */ /* */ /* One example may be to clean up any processes holding locks on the */ /* database. This may have been done by the application cancel */ /* handler if one was invoked. */ /*-----/ } /* */ /* I'm not the old primary. See if I'm the new primary. */ /* */ /*-----*/ else if (role == QcstPrimaryNodeRole) { /*-----*/ /* */ /* Do what ever needs to be done on the new primary before the */ /* application is started with the QcstCrgAcStart action code. */ /* */ /*-----*/ /*-----*/ /* */ /* Ensure the data area status on this nodes starts out indicating */ /* the application is not running. */ /* */ /*-----*/ setApplCrgDataArea(Appl Ended); /*-----*/ /* */ /* If the application has no actions to do on the Start action code */ /* and will become active as soon as the takeover IP address is */ /* activated, then this code should be uncommented. This code will /* determine if all CRGs that this application CRG is dependent upon */ /* are ready. If this check fails, return failure from the action */ /* code. */ /* */ /*-----*/ if (QcstSuccessful != checkDependCrgDataArea(MaxWaitSeconds)) /* */ /* return QcstFailWithOutRestart; */ } else { /*----------*/ /* */ /* This node is one of the other backup nodes or it is a replicate */ /* node. If there is anything those nodes must do, do it here. If */ /* not, remove this else block. */ /* */

```
*/
  /*
                                                    */
  /* Ensure the data area status on this nodes starts out indicating
                                                    */
  /* the application is not running.
                                                    */
  /*
                                                    */
                          ----*/
  setApplCrgDataArea(Appl_Ended);
 }
 return QcstSuccessful;
} /* end switchPrimary()
                                                    */
*/
/*
/* Action code = QcstCrgAcAddNode
                                                    */
/*
                                                    */
/* The QcstAddNodeToRcvyDomain API was called. A new node is being added
                                                   */
/* to the recovery domain of a cluster resource group.
                                                    */
/*
                                                    */
/* Things to consider:
                                                    */
/*
   - A new node is being added to the recovery domain. See the
                                                    */
/*
    considerations in the createCrg() function.
                                                    */
/*
   - If this CRG is enabled to use the QcstDistributeInformation API,
                                                    */
/*
    the user queue needed by that API could be created at this time.
                                                    */
/*
                                                    */
static int addNode(int role,
             int priorRole,
             Qcst EXTP0100 t *crgData,
             EpData *epData) {
  ------
                                ----*/
 /*
                                                    */
 /* Determine if I am the node being added.
                                                    */
 /*
                                                    */
/*-----*/
 if (0 == memcmp(&crgData->This_Nodes_ID,
            &crgData->Changing Node ID,
            sizeof(Qcst Node Id t)))
 {
      -----*/
                                                    */
  /* Set the status of the data area on this new node.
                                                    */
                                                    */
                          ----*/
  setApplCrgDataArea(Appl_Ended);
/*-----*/
                                                    */
  /* Create the queue needed by the Distribute Information API.
                                                    */
  /*
                                                    */
/*-----
         -----*/
```

```
if (0 == memcmp(&crgData->DI Queue Name,
                  Nulls,
                  sizeof(crgData->DI_Queue_Name)))
   }
 }
 return QcstSuccessful;
} /* end addNode()
      */
    /*
                                                                     */
/* Action code = QcstCrgAcRemoveNode
                                                                     */
/*
                                                                     */
/* The QcstRemoveNodeFromRcvyDomain or the QcstRemoveClusterNodeEntry
                                                                     */
/* API was called. A node is being removed from the recovery domain of
/* a cluster resource group or it is being removed entirely from the
/* cluster.
/*
                                                                     */
/* This action code is seen by:
                                                                     */
   For the QcstRemoveClusterNodeEntry API:
/*
                                                                     */
/*
     - If the removed node is active and the CRG is Inactive, all nodes in*/
/*
       the recovery domain including the node being removed see this
                                                                     */
/*
       action code. The nodes NOT being removed see action code dependent*/
/*
       data of OcstNodeFailure.
                                                                     */
/*
     - If the removed node is active and the CRG is Active, the node being*/
       removed sees the Remove Node action code. All other nodes in the */
/*
1*
       recovery domain see an action code of Failover and action code
                                                                     */
1*
       dependent data of QcstNodeFailure.
                                                                     */
     - If the node being removed is not active in the cluster, all nodes
/*
                                                                     */
/*
       in the recovery domain will see this action code.
                                                                     */
1*
   For the QcstRemoveNodeFromRcvyDomain API:
                                                                     */
/*
     - All nodes see the Remove Node action code regardless of whether or
                                                                     */
/*
       not the CRG is Active. Action code dependent data of
                                                                     */
/*
       QcstRmvRcvyDmnNode will also be passed.
                                                                     */
/*
                                                                     */
/* Things to consider:
                                                                     */
/*
    - You may want to cleanup the removed node by deleting objects no
/*
      longer needed there.
/*
    - The job running the application is canceled and the IP takeover
/*
      address is ended after the exit program is called if this is the
                                                                     */
/*
      primary node and the CRG is active.
                                                                     */
/*
    - If subsystems or server jobs were started as a result of the
                                                                     */
/*
      QcstCrgAcStart action code, end them here or consolidate all logic
                                                                     */
/*
      to end the application in the cancelHandler() since it will be
                                                                     */
      invoked for all Cluster Resource Services APIs which must end the
/*
                                                                     */
/*
      application on the current primary.
                                                                     */
/*
                                                                     */
static int rmvNode(int role,
                 int priorRole,
                 Qcst EXTP0100 t *crgData,
                 EpData *epData) {
                     .....*/
  /* Determine if I am the node being removed.
                                                                     */
     -----*/
```

if (0 == memcmp(&crgData->This_Nodes_ID,

```
&crgData->Changing Node ID,
               sizeof(Qcst Node Id t)))
 {
          -----*/
                                                                 */
     /* End the application if it is running on this node.
                                                                 */
                                                                 */
     1*
                                                ----*/
     endApplication(QcstCrgAcRemoveNode, role, priorRole, crgData,
epData);
 }
 return QcstSuccessful;
} /* end rmvNode
                                                                 */
/*
/* Action code = QcstCrgAcChange
                                                                 */
/*
                                                                 */
/* The QcstChangeClusterResourceGroup API was called. Some attribute
                                                                 */
/* or information stored in the cluster resource group object is being
                                                                 */
/* changed. Note that not all changes to the CRG object cause the exit
                                                                 */
/* program to be called. As of V5R1M0, only these changes will cause the
                                                                */
/* exit program to be called-
                                                                 */
/*
   - the current recovery domain is being changed
                                                                 */
/*
    - the preferred recovery domain is being changed
                                                                 */
/*
                                                                 */
/* If any of the above changes are being made but additionally the exit
                                                                 */
/* program is being changed to *NONE, the exit program is not called.
                                                                 */
/*
                                                                 */
/* Things to consider:
                                                                 */
/*
   - None unless changing the recovery domain affects information or
                                                                 */
/*
     processes for this cluster resource group. Note that the primary
                                                                 */
     node cannot be changed with the QcstChangeClusterResourceGroup API
/*
                                                                 */
/*
      if the CRG is active.
                                                                 */
/*
                                                                 */
static int chgCrg(int role,
               int priorRole,
               Qcst EXTP0100 t *crgData,
               EpData *epData) {
 return QcstSuccessful;
} /* end chgCrg()
                                                                 */
     /*
                                                                 */
/* Action code = QcstCrgAcDeleteCommand
                                                                 */
/*
                                                                 */
/* The Delete Cluster Resource Group (DLTCRG) CL command has been called
                                                                 */
/* to delete a cluster resource group object, the QcstDeleteCluster API
                                                                 */
/* has been called, or the QcstRemoveClusterNodeEntry API has been called. */
/* In each case, cluster resource services is not active on the cluster
                                                                 */
/* node where the command or API was called. Thus, this function is not
                                                                 */
/* distributed cluster wide but occurs only on the node where the CL
                                                                 */
/* command or API was called.
                                                                 */
/*
                                                                 */
/* If the QcstDeleteCluster API was used, action code dependent data of
                                                                 */
                                                                 */
/* QcstDltCluster is passed.
/*
                                                                 */
/* See the considerations in the deleteCrg() function
                                                                 */
/*
                                                                 */
```

static int deleteCrgWithCmd(int role, int doesNotApply, Qcst EXTP0100 t *crgData, EpData *epData) { return QcstSuccessful; } /* end deleteCrgWithCmd() */ */ /* Action code = QcstCrgEndNode */ /* */ /* The QcstEndClusterNode API was called or a CRG job was canceled. /* */ /* The QcstCrgEndNode action code is passed to the exit program only on the*/ /* node being ended or where the CRG job was canceled. On the node where *//* a Cluster Resource Services job is canceled, action code dependent data*/ /* of QcstMemberFailure will be passed. */ /* When Cluster Resource Services ends on this node or the CRG job ends, it*/ /* will cause all other nodes in the cluster to go through failover */ /* processing. The action code passed to all other nodes will be */ /* QcstCrgAcFailover. Those nodes will see action code dependent data of */ /* QcstMemberFailure if a CRG job is canceled or QcstNodeFailure if the */ /* node is ended. */ /* */ /* Things to consider: */ - The job running the application is canceled and the IP takeover /* */ address is ended after the exit program is called if this is the /* */ /* primary node and the CRG is active. */ /* - If subsystems or server jobs were started as a result of the */ /* QcstCrgAcStart action code, end them here. */ /* static int endNode(int role, int priorRole, Qcst EXTP0100 t *crgData, EpData *epData) { -----/*---/* */ /* End the application if it is running on this node. */ /* */ endApplication(QcstCrgEndNode, role, priorRole, crgData, epData); return QcstSuccessful; } /* end endNode() */ 1* */ /* Action code = QcstCrgAcChgNodeStatus */ /* */ /* The QcstChangeClusterNodeEntry API was called. The status of a node */ /* is being changed to failed. This API is used to inform cluster resource*/ /* services that the node did not partition but really failed. */ /* */ /* Things to consider: */ /* - The exit program was called previously with an action code of */ QcstCrgAcEnd if the CRG was active or an action code of /* */ /* QcstCrgAcFailover if the CRG was inactive because cluster resource */ /* services thought the cluster had become partitioned. The user is */ /* now telling cluster resource services that the node really failed /* instead of partitioned. The exit program has something to do only */

```
if it performed some action previously that needs to be changed now */
/*
/*
      that node failure can be confirmed.
                                                                       */
/*
                                                                       */
static int chgNodeStatus(int role,
                       int priorRole.
                       Qcst EXTP0100 t *crgData,
                       EpData *epData) {
  return QcstSuccessful;
} /* end chgNodeStatus()
                                                                       */
      /*
                                                                       */
/* Action code = QcstCrgAcCancelFailover
                                                                       */
/*
                                                                       */
/* Cluster resource services on the primary node has failed or ended
                                                                       */
/* for this cluster resource group. A message was sent to the failover
                                                                       */
/* message queue specified for the CRG, and the result of that message
                                                                       */
/* was to cancel the failover. This will change the status of the CRG to
                                                                       */
/* inactive and leave the primary node as primary.
                                                                       */
                                                                       */
/*
/* Things to consider:
                                                                       */
/*
    - The primary node is no longer participating in cluster activities.
                                                                       */
/*
      The problem which caused the primary node to fail should be fixed
                                                                       */
/*
      so that the CRG may be started again.
                                                                       */
/*
                                                                       */
static int cancelFailover(int role,
                        int priorRole,
                        Qcst EXTP0100 t *crgData,
                        EpData *epData) {
 return QcstSuccessful;
} /* end cancelFailover()
                                                                       */
/*
                                                                       */
/* Action code = exit program does not know it yet
                                                                       */
/*
                                                                       */
/* A new action code has been passed to this exit program. This can occur */
/* after a new i5/0S release has been installed and some new cluster API */
/* was called or some new cluster event occurred. The logic in this exit */
/* program has not yet been updated to understand the new action code.
                                                                       */
/*
                                                                       */
/* Two different strategies could be used for the new action code. The
                                                                       */
/* correct strategy is dependent upon the kinds of things this particular
                                                                       */
/* exit program does for the application.
                                                                       */
/*
                                                                       */
/* One strategy is to not do anything and return a successful return code.
/* This allows the new cluster API or event to run to completion. It
                                                                       */
/* allows the function to be performed even though this exit program
                                                                       */
/* did not understand the new action code. The risk, though, is that the
                                                                       */
/* exit program should have done something and it did not. At a minimum,
                                                                       */
/* you may want to log some kind of error message about what happened so
                                                                       */
/* that programming can investigate and get the exit program updated.
                                                                       */
/*
                                                                       */
/* The opposite strategy is to return an error return code such as
                                                                       */
/* QcstFailWithRestart. Of course doing this means that the new cluster
                                                                       */
/* API or event cannot be used until the exit program is updated for the
                                                                       */
                                                                       */
/* new action code. Again, logging some kind of error message for
/* programming to investigate would be worthwhile.
                                                                       */
/*
                                                                       */
/* Only the designer of the exit program can really decide which is the
                                                                       */
/* better course of action.
                                                                       */
```

```
/*
                                                                       */
static int newActionCode(int role,
                       int doesNotApply,
                       Qcst_EXTP0100_t *crgData,
                       EpData *epData) {
      _____
/*----
  /*
                                                                       */
 /* Add logic to log an error somewhere - operator message queue, job
                                                                       */
 /* log, application specific error log, etc. so that the exit program
                                                                       */
 /* gets updated to properly handle the new action code.
                                                                       */
 /*
                                                                       */
 /* Note that if this is left coded as it is, this is the "don't do
                                                                       */
 /* anything" strategy described in the prologue above.
  /*
                                                                       */
 return QcstSuccessful;
} /* end newActionCode()
                                                                       */
/*
                                                                       */
/* Action code = QcstCrgAcUndo
                                                                       */
/*
                                                                       */
/* Note: The exit program is never called with an undo action code for
                                                                       */
/* any of these prior action codes:
                                                                       */
    QcstCrgAcChgNodeStatus
/*
                                                                       */
/*
    QcstCrgAcDelete
                                                                       */
/*
    QcstCrgAcDeleteCommand
                                                                       */
/*
    OcstCraEndNode
                                                                       */
1*
    QstCrgAcRemoveNode (If the node being removed is active in the
                                                                       */
                       cluster and the API is Remove Cluster Node.
/*
                                                                       */
                       The Remove Node From Recovery Domain will call
/*
                                                                       */
/*
                       with Undo and the Remove Cluster Node API will
                                                                       */
                       call with Undo if the node being removed is
/*
/*
                       inactive.
                                                                       */
/*
    QcstCrgAcRestart
                                                                       */
/*
    QcstCrgAcUndo
                                                                       */
/*
/* APIs that call an exit program do things in 3 steps.
                                                                       */
    1. Logic which must be done prior to calling the exit program.
/*
                                                                       */
/*
    2. Call the exit program.
                                                                       */
/*
    3. Logic which must be done after calling the exit program.
                                                                       */
/*
                                                                       */
/* Any errors that occur during steps 2 or 3 result in the exit program
                                                                       */
/* being called again with the undo action code. This gives the exit
                                                                       */
/* program an opportunity to back out any work performed when it was first */
/* called by the API. The API will also be backing out any work it
                                                                       */
/* performed trying to return the state of the cluster and cluster objects */
/* to what it was before the API was called.
                                                                       */
/*
                                                                       */
/* It is suggested that the following return codes be returned for the
                                                                       */
/* specified action code as that return code will result in the most
                                                                       */
/* appropriate action being taken.
                                                                       */
/*
                                                                       */
    QcstCrgAcInitialize: QcstSuccessful; The CRG is not created.
/*
                                                                       */
/*
    QcstCrgAcStart:
                        QcstSuccessful; The CRG is not started.
                                                                       */
/*
    QcstCrgAcEnd:
                        QcstFailWithOutRestart; The CRG is set to Indoubt*/
/*
                                       The cause of the failure needs to*/
/*
                                       investigated.
                                                                      */
/*
    QcstCrgAcReJoin:
                        QcstFailWithOutRestart; The CRG is set to Indoubt*/
/*
                                       The cause of the failure needs to*/
/*
                                       investigated.
                                                                       */
```

```
/*
    QcstCrgAcFailover: QcstFailWithOutRestart; The CRG is set to Indoubt*/
/*
                                  The cause of the failure needs to*/
/*
                                  investigated.
/*
    QcstCrgAcSwitchover: QcstFailWithOutRestart; The CRG is set to Indoubt*/
/*
                                  The cause of the failure needs to*/
/*
                                  investigated.
                                                              */
/*
    QcstCrgAcAddNode: QcstSuccessful; The node is not added.
                                                              */
/*
    QcstCrgAcRemoveNode: QcstFailWithOutRestart; The CRG is set to Indoubt*/
/*
                                  The cause of the failure needs to*/
/*
                                  investigated.
                                                             */
/*
    QcstCrgAcChange:
                     QcstSuccessful; The recovery domain is not
                                                              */
/*
                                  changed.
                                                              */
/*
                                                              */
static int undoPriorAction(int role,
                      int priorRole,
                      Qcst EXTP0100 t *crgData,
                      EpData *epData) {
          /*
                                                              */
 /* The prior action code defines what the exit program was doing when
                                                              */
 /* it failed, was canceled, or returned a non successful return code.
 /*
                                                              */
/*------//
 if (crgData->Prior Action Code <= MaxAc )
   return (*undoFcn[crgData-<Prior Action Code])
                                 (role, priorRole, crgData,
epData);
 else
/*----
   /*
                                                              */
   /* IBM has defined a new action code in a new operating system release */
   /* and this exit program has not yet been updated to handle it. Take a*/
   /* default action for now.
                                                              */
   /*
                                                              */
   return newActionCode(role, priorRole, crgData, epData);
 /* end undoPriorAction()
                                                              */
/*
                                                              */
/* Action code = QcstCrgAcUndo
                                                              */
/*
                                                              */
/* Prior action code = QcstCrgAcInitialize
                                                              */
/*
                                                              */
/* Things to consider:
/*
   The CRG will not be created. Objects that might have been created
                                                              */
1*
   on nodes in the recovery domain should be deleted since a subsequent */
/*
   create could fail if those objects already exist.
                                                              */
/*
                                                              */
static int undoCreateCrg(int role,
                    int doesNotApply,
                    Qcst EXTP0100 t *crgData,
                    EpData *epData) {
 return QcstSuccessful;
} /* end undoCreateCrg()
                                                             */
```

```
*/
/* Action code = QcstCrgAcUndo
                                                                  */
/*
                                                                  */
/* Prior action code = QcstCrgAcStart
                                                                  */
/*
                                                                  */
/* Things to consider:
    Cluster Resource Services failed when it was finishing the Start CRG
/*
    API after it had already called the exit program with the Start
1*
                                                                  */
/*
    Action code.
                                                                  */
/*
                                                                  */
/*
    On the primary node, the exit program job which is running the
                                                                  */
    application will be canceled. The exit program will then be called
/*
                                                                 */
/*
    with the Undo action code.
                                                                  */
/*
                                                                  */
/*
    All other nodes in the recovery domain will be called with the Undo
                                                                  */
/*
    action code.
                                                                  */
/*
                                                                  */
static int undoStartCrg(int role,
                     int doesNotApply,
                     Qcst EXTP0100 t *crgData,
                     EpData *epData) {
 return QcstSuccessful;
} /* end undoStartCrg()
                                                                  */
/*
                                                                  */
/* Action code = QcstCrgAcUndo
                                                                  */
/*
                                                                  */
/* Prior action code = QcstCrgAcEnd
                                                                  */
/*
/* Things to consider:
                                                                  */
/*
   The CRG will not be ended. If the exit program did anything to bring */
    down the application it can either restart the application or it can */
/*
    decide to not restart the application. If the application is not
/*
                                                                  */
/*
    restarted, the return code should be set to QcstFailWithOutRestart so */
    the status of the CRG is set to Indoubt.
/*
                                                                  */
/*
                                                                  */
*******
static int undoEndCrg(int role,
                   int doesNotApply,
                   Qcst EXTP0100 t *crgData,
                   EpData *epData) {
 return QcstFailWithOutRestart;
} /* end undoEndCrg()
                                                                  */
/*
/* Action code = QcstCrgAcUndo
                                                                  */
/*
                                                                  */
/* Prior action code = QcstCrgAcReJoin
                                                                  */
/*
/* Things to consider:
/*
   An error occurred which won't allow the member to join this CRG
/*
    group. Anything done for the Join action code needs to be looked at
                                                                  */
   to see if something must be undone if this member is not an active
/*
                                                                  */
/*
    member of the CRG group.
                                                                  */
/*
                                                                  */
static int undoMemberIsJoining(int role,
                           int doesNotApply,
                           Qcst EXTP0100 t *crgData,
                           EpData *epData) {
```

```
return QcstFailWithOutRestart;
} /* end undoMemberIsJoining()
                                                                 */
   /*
                                                                 */
/* Action code = QcstCrgAcUndo
                                                                 */
/*
                                                                 */
/* Prior action code = QcstCrgAcFailover
                                                                 */
/*
                                                                 */
/* Things to consider:
                                                                 */
   This does not mean that the node failure or failing member is being
                                                                 */
/*
/*
    undone. That failure is irreversible. What it does mean is that the */
    exit program returned an error from the Failover action code or
/*
                                                                 */
/*
    Cluster Resource Services ran into a problem after it called the exit */
/*
    program. If the CRG was active when Failover was attempted, it is
                                                                 */
/*
    not at this point. End the resilient resource and expect a human to */
/*
    look into the failure. After the failure is corrected, the CRG will
                                                                 */
/*
    must be started with the Start CRG API.
/*
                                                                 */
/*
                                                                 */
static int undoMemberIsLeaving(int role,
                          int doesNotApply,
                          Qcst_EXTP0100_t *crgData,
                          EpData *epData) {
 return QcstFailWithOutRestart;
} /* end undoMemberIsLeaving()
                                                                 */
        /*
                                                                 */
/* Action code = QcstCrgAcUndo
                                                                 */
/*
                                                                 */
/* Prior action code = QcstCrgAcSwitchover
                                                                 */
/*
                                                                 */
/* Things to consider:
                                                                 */
/*
    Some error occurred after the point of access was moved from the
                                                                 */
/*
    original primary and before it could be brought up on the new primary.*/
    The IP address was ended on the original primary before moving the
/*
                                                                 */
/*
    point of access but is started on the original primary again. Cluster*/
/*
    Resource Services will now attempt to move the point of access back */
/*
    to the original primary. The application exit program and IP takeover*/
/*
    address will be started on the original primary.
                                                                 */
/*
                                                                 */
/*
                                                                 */
static int undoSwitchPrimary(int role,
                         int doesNotApply,
                         Qcst EXTP0100 t *crgData,
                         EpData *epData) {
 return QcstFailWithOutRestart;
} /* end undoSwitchPrimary()
                                                                 */
/*
                                                                 */
/* Action code = QcstCrgAcUndo
                                                                 */
/*
                                                                 */
                                                                 */
/* Prior action code = QcstCrgAcAddNode
/*
                                                                 */
/* Things to consider:
                                                                 */
/*
    If objects were created on the new node, they should be removed so
                                                                 */
/*
    that a subsequent Add Node to aRecovery Domain does not fail if it
                                                                 */
```

```
/*
    attempts to create objects again.
                                                               */
/*
                                                               */
/*
                                                               */
static int undoAddNode(int role,
                   int doesNotApply,
                   Qcst EXTP0100 t *crgData,
                   EpData *epData) {
 return QcstSuccessful;
} /* end undoAddNode()
                                                               */
     /*
                                                               */
/* Action code = QcstCrgAcUndo
                                                               */
/*
                                                               */
/* Prior action code = QcstCrgAcRemoveNode
                                                               */
/*
/* Things to consider:
    The node is still in the recovery domain. If objects were removed
/*
/*
    from the node, they should be added back.
                                                               */
/*
                                                               */
static int undoRmvNode(int role,
                   int doesNotApply,
                   Qcst_EXTP0100_t *crgData,
                   EpData *epData) {
 return QcstFailWithOutRestart;
} /* end undoRmvNode()
                                                               */
/**
                                                              **/
/*
                                                               */
/* Action code = QcstCrgAcUndo
                                                               */
/*
                                                               */
/* Prior action code = QcstCrgAcChange
                                                               */
/*
/* Things to consider:
/*
  Changes to the CRG will be backed out so that the CRG and its
   recovery domain look just like it did prior to the attempted change.
/*
/*
    Any changes the exit program made should also be backed out.
                                                               */
/*
                                                               */
static int undoChgCrg(int role,
                  int doesNotApply,
                  Qcst EXTP0100 t *crgData,
                  EpData *epData) {
 return QcstSuccessful;
} /* end undoChgCrg()
                                                               */
**/
/*
                                                               */
/* Action code = QcstCrgAcUndo
                                                               */
/*
                                                               */
/* Prior action code = QcstCrgAcCancelFailover
                                                               */
/*
/* Things to consider:
                                                               */
/*
   This does not mean that the node failure or failing member is being
    undone. That failure is irreversible. What it does mean is that
/*
                                                               */
/*
   Cluster Resource Services ran into a problem after it called the exit */
/*
    program. The CRG will be InDoubt regardless of what is returned from */
    this exit program call. Someone will need to manually look into the */
/*
/*
    the failure. After the failure is corrected, the CRG will must be */
```

```
started with the Start CRG API.
/*
                                                          */
/*
                                                          */
/*
                                                          */
static int undoCancelFailover(int role,
                       int doesNotApply,
                       Qcst EXTP0100 t *crgData,
                       EpData *epData) {
 return QcstSuccessful;
} /* end undoCancelFailover()
                                                          */
     /*
                                                          */
/* A simple routine to take a null terminated object name and a null
                                                          */
/* terminated library name and build a 20 character non-null terminated
                                                          */
/* gualified name.
                                                          */
/*
                                                          */
static void bldDataAreaName(char *objName, char* libName, char *qualName) {
 memset(qualName, 0x40, 20);
 memcpy(qualName, objName, strlen(objName));
 qualName += 10;
 memcpy(qualName, libName, strlen(libName));
 return;
} /* end bldDataAreaName
                                                          */
/*
                                                          */
/* The data area is checked to see if all the CRGs that this application
                                                         */
/* is dependent upon are ready. If they are not ready, a wait for a
                                                        */
/* certain amount of time is performed and the data area is checked again. */
/* This check, wait loop continues until all dependent CRGs become ready or*/
/* until the maximum wait time has been reached.
                                                          */
/* The length of the wait can be changed to some other value if a
                                                          */
/* particular situation would be better with shorter or longer wait times. */
/*
                                                          */
/*
                                                          */
static int checkDependCrgDataArea(unsigned int maxWaitTime) {
 Qus EC t errCode = { sizeof(Qus EC t), 0 };
 char dataAreaName[20];
 struct {
   Qwc Rdtaa Data Returned t stuff;
   char ready;
 } data;
 1*
                                                          */
 /* This is an accumulation of the time waited for the dependent CRGs to */
 /* become ready.
                                                          */
 /*
                                                          */
/*-----*/
 unsigned int timeWaited = 0;
/*----
     -----*/
 /*
                                                          */
 /* Build definition of the amount of time to wait.
                                                          */
 /*
                                                          */
```

```
/*-----/
 _MI_Time timeToWait;
int hours = 0;
 int minutes = 0;
 int seconds = WaitSecondsIncrement;
 int hundreths = 0;
 short int options = WAIT NORMAL;
 mitime( &timeToWait, hours, minutes, seconds, hundreths );
/*-----
 /*
                                                 */
 /* Build the qualified name of the data area.
                                                 */
 /*
                                                  */
/*-----*/
 bldDataAreaName(DependCrgDataArea, ApplLib, dataAreaName);
/*-----
 /*
 /* Get the data from the data area that indicates whether or not the
                                                  */
 /* CRGs are all ready. This data area is updated by the High
 /* Availability Business Partners when it is ok for the application to */
 /* proceed.
 /*
                                                  */
/*-----*/
 QWCRDTAA(&data,
       sizeof(data),
       dataAreaName,
       offsetof(Qcst_HAAPPO_t,Data_Status)+1, /* API wants a 1 origin */
       sizeof(data.ready),
       &errCode);
/*-----*/
 /* If the dependent CRGs are not ready, wait for a bit and check again. */
 /*
/*-----*/
 while (data.ready != Data Available) {
/*-----
                                                 */
  /*
                                                 */
  /* If the dependent CRGs are not ready after the maximum wait time,
                                                 */
  /* return an error. Consider logging some message to describe why the */
  /* application did not start so that the problem can be looked into. */
  /*
                                                 */
/*-----*/
  if (timeWaited >= maxWaitTime)
   return QcstFailWithOutRestart;
/*-----*/
  /*
                                                 */
  /* Wait to allow the data CRGs to become ready.
                                                  */
  1*
                                                  */
/*------//
  waittime(&timeToWait, options);
  timeWaited += WaitSecondsIncrement;
```

```
/*-----*/
   /*
   /* Get information from the data area again to see if the data CRGs are*/
   /* ready.
   /*
                                                             */
/*------//
   QWCRDTAA(&data,
          sizeof(data),
          dataAreaName,
          offsetof(Qcst HAAPPO t,Data Status)+1, /* API wants a 1 origin */
          sizeof(data.ready),
          &errCode);
 }
 return QcstSuccessful;
                                                               */
} /* end checkDependCrgDataArea
/*
                                                             */
/* The application CRG data area is updated to indicate that the
                                                             */
/* application is running or to indicate it is not running. This data area*/
/* information is used by the High Availability Business Partners to */
/* coordinate the switchover activities between CRGs that have dependencies*/
/* on each other.
                                                             */
/*
                                                             */
static void setApplCrgDataArea(char status) {
 char cmd[54];
 char cmdEnd[3] = \{0x00, ')', 0x00\};
/*-----*/
 /*
 /* Set up the CL command string with the data area library name, the data*/
 /* area name, and the character to put into the data area. Then run the */
 /* CL command.
                                                             */
                                                             */
 /*
 memcpy(cmd, "CHGDTAARA DTAARA(", strlen("CHGDTAARA DTAARA(")+1);
 strcat(cmd, ApplLib);
 strcat(cmd, "/");
 strcat(cmd, ApplCrgDataArea);
 strcat(cmd, " (425 1)) VALUE(");
                                                       /* @A1C */
 cmdEnd[0] = status;
strcat(cmd, cmdEnd);
 system(cmd);
 return;
} /* end setApplCrgDataArea
                                                             */
/*
                                                             */
/* This function is called any time the exit program receives an exception */
/* not specifically monitored for by some other exception handler. Add */
/* appropriate logic to perform cleanup functions that may be required.
                                                             */
/* A failure return code is then set and control returns to the operating */
/* system. The job this exit program is running in will then end.
                                                             */
/*
                                                             */
/* When this function gets called, myData->role may still contain the
                                                             */
/* UnknownRole value if an exception occurred before this node's role
                                                             */
/* value was set. To be completely correct, the role should be tested
                                                             */
```

```
/* for UnknownRole before making any decisions based upon the value of
                                                           */
/* role.
                                                           */
/*
                                                           */
static void unexpectedExceptionHandler(_INTRPT_Hndlr_Parms_T
*exData) {
     _____
/*----
                                                          */
                                                           */
 /* Get a pointer to the structure containing data that is passed to the */
 /* exception handler.
 /*
                                                           */
/*-----*/
 HandlerDataT *myData = (HandlerDataT *)exData->Com Area;
 /*
                                                           */
 /* Perform as much cleanup function as necessary. Some global state
                                                           */
 /* information may must be kept so the exception handler knows what */
 /* steps were completed before the failure occurred and thus knows what */
 /* cleanup steps must be performed. This state information could be */
 /* kept in the HandlerDataT structure or it could be kept in some other */
 /* location that this function can address.
                                                           */
 /*
                                                           */
 /*
                                                           */
 /* If this is the primary node and the application was started, end it. */
 /* The application is ended because the exit program will be called again*/
 /* with the Restart action code and want the restartCrg() function to */
 /* always work the same way. In addition, ending the application may
 /* clear up the condition that caused the exception. */
 /* If possible, warn users and have them stop using the application so
                                                           */
 /* things are done in an orderly manner.
                                                           */
 /*
                                                           */
/*-----*/
 endApplication(myData->actionCode,
             myData->role,
             myData->priorRole,
             myData->crgData,
             myData->epData);
 /* Set the exit program return code.
                                                           */
 1*
                                                           */
               -----*/
 *myData->retCode = QcstFailWithRestart;
/*-----
 /*
                                                           */
 /* Let the exception percolate up the call stack.
 /*
/*-----/
 return;
                                                           */
} /* end unexpectedExceptionHandler
```

/*************************************
<pre>/* This function is called any time the job this exit program is running in*/ /* is canceled. The job could be canceled due to any of the following */ /* (the list is not intended to be all inclusive)- */ /* - an API cancels an active application CRG. The End CRG, Initiate */ /* Switchover, End Cluster Node, Remove Cluster Node or Delete Cluster */ /* API cancels the job which was submitted when the exit program was */ /* called with a Start action code. */ /* - operator cancels the job from some operating system display such as */ /* Work with Active Jobs */ /* - the subsystem this job is running in is ended */ /* - all subsystems are ended */ /* - an operating system machine check occurred */</pre>
<pre>/*</pre>
/*************************************
<pre>/**/ /* /* Get a pointer to the structure containing data that was passed to the */ /* cancel handler.</pre>
/**/ HandlerDataT *myData = (HandlerDataT *)cnlData->Com_Area;
<pre>/*</pre>
/**/
<pre>/**/ /* /* This job is being canceled. If I was running the application as a */ /* result of the Start or Restart action codes, end the application now. */ /* This job is being canceled because a Switch Over or some other */ /* Cluster Resource Services API was used which affects the primary node */ /* or someone did a cancel job with a CL command, from a system display, */</pre>
/* etc. */

```
myData->crgData,
           myData->epData);
/*-----*/
                                                 */
 /* Set the exit program return code.
                                                 */
 /*
                                                 */
                       -----*/
 *myData->retCode = QcstSuccessful;
/*-----
 /*
                                                 */
 /* Return to the operating system for final ending of the job.
                                                 */
 /*
                                                 */
              -----*/
/*-----
 return;
} /* end cancelHandler
                                                 */
/*
/* A common routine used to end the application by various action code
/* functions, the exception handler, and the cancel handler.
                                                 */
/*
                                                 */
static void endApplication(unsigned int actionCode,
                 int role,
                 int priorRole,
                 Qcst EXTP0100 t *crgData,
                 EpData *epData) {
 if ( role == QcstPrimaryNodeRole
   &&
     crgData->Original Cluster Res Grp Stat == QcstCrgActive)
{
/*------*/
  /*
                                                 */
  /* Add logic to end the application here. You may need to add logic
  /* to determine if the application is still running because this
  /* function could be called once for an action code and again from
                                                 */
  /* the cancel handler (End CRG is an example).
                                                 */
  /*
                                                 */
/*-----/
/*-----*/
  /*
                                                 */
  /* After the application has ended, update the data area to indicate
  /* the application is no longer running.
                                                 */
  /*
                                                 */
/*-----*/
  setApplCrgDataArea(Appl Ended);
 }
 return;
} /* end endApplication
                                                 */
```

```
/*
                                                                       */
/* Print out the data passed to this program.
                                                                       */
/*
                                                                       */
static void printParms(int actionCode,
                     int role,
                     int priorRole,
                     Qcst_EXTP0100_t *crgData,
                     EpData *epData) {
 unsigned int i;
 char *str;
 /* Print the action code.
                                                                       */
 printf("%s", "Action Code = ");
 printActionCode(actionCode);
  /* Print the action code dependent data.
                                                                       */
 printf("%s", " Action_Code_Dependent_Data = ");
 switch (crgData->Action Code Dependent Data) {
   case QcstNoDependentData: str = "QcstNoDependentData";
                             break;
                             str = "QcstMerge";
   case QcstMerge:
                             break;
                             str = "QcstJoin";
   case QcstJoin:
                             break;
   case QcstPartitionFailure: str = "QcstPartitionFailure";
                             break;
str = "QcstNodeFailure";
   case QcstNodeFailure:
                             break;
str = "QcstMemberFailure";
   case QcstMemberFailure:
                             break;
str = "QcstEndNode";
   case QcstEndNode:
                             break;
                             str = "QcstRemoveNode";
   case QcstRemoveNode:
                             break;
str = "QcstApplFailure";
   case QcstApplFailure:
                             break;
str = "QcstResourceEnd";
   case QcstResourceEnd:
                             break;
str = "QcstDltCluster";
   case QcstDltCluster:
                             break;
                             str = "QcstRmvRcvyDmnNode";
   case QcstRmvRcvyDmnNode:
                             break;
                             str = "QcstDltCrg";
   case QcstDltCrg:
                             break;
   default: str = "unknown action code dependent data";
  }
 printf("%s \n", str);
  /* Print the prior action code.
                                                                       */
 printf("%s", " Prior_Action_Code = ");
 if (crgData->Prior_Action_Code)
   printActionCode(crgData->Prior Action Code);
 printf("\n");
  /* Print the cluster name.
                                                                       */
 printStr(" Cluster Name = ",
          crgData->Cluster Name, sizeof(Qcst Cluster Name t));
  /* Print the CRG name.
                                                                       */
 printStr(" Cluster_Resource_Group_Name = ",
          crgData->Cluster Resource Group Name,
sizeof(Qcst_Crg_Name_t));
```

<pre>/* Print the CRG type. printf("%s \n", " Cluster_Resource_Group_Type = QcstCrgApplResiliency");</pre>	*/
/* Print the CRG status. printf("%s", " Cluster_Resource_Group_Status = "); printCrgStatus(crgData->Cluster_Resource_Group_Status);	*/
/* Print the CRG original status. printf("%s", " Original_Cluster_Res_Grp_Stat = "); printCrgStatus(crgData->Original_Cluster_Res_Grp_Stat);	*/
<pre>/* Print the Distribute Information queue name. printStr(" DI_Queue_Name = ",</pre>	*/
<pre>/* Print the CRG attributes. printf("%s", " Cluster_Resource_Group_Attr = "); if (crgData->Cluster_Resource_Group_Attr & QcstTcpConfigByUsr) printf("%s", "User Configures IP Takeover Address"); printf("\n");</pre>	*/
/* Print the ID of this node. printStr(" This_Nodes_ID = ", crgData->This_Nodes_ID, sizeof(Qcst_Node_Id_t));	*/
/* Print the role of this node. printf("%s %d \n", " this node's role = ", role);	*/
/* Print the prior role of this node. printf("%s %d \n", " this node's prior role = ", priorRole);	*/
<pre>/* Print which recovery domain this role comes from. printf("%s", " Node_Role_Type = "); if (crgData->Node_Role_Type == QcstCurrentRcvyDmn) printf("%s \n", "QcstCurrentRcvyDmn"); else printf("%s \n", "QcstPreferredRcvyDmn");</pre>	*/
/* Print the ID of the changing node (if any). printStr(" Changing_Node_ID = ", crgData->Changing_Node_ID, sizeof(Qcst_Node_Id_t));	*/
<pre>/* Print the role of the changing node (if any). printf("%s", " Changing_Node_Role = "); if (crgData->Changing_Node_Role == -3) printf("%s \n", "*LIST"); else if (crgData->Changing_Node_Role == -2) printf("%s \n", "does not apply"); else printf("%d \n", crgData->Changing_Node_Role];</pre>	*/
<pre>/* Print the takeover IP address. printStr(" Takeover_IP_Address = ",</pre>	*/
/* Print the job name. printStr(" Job_Name = ", crgData->Job_Name, 10);	*/
/* Print the CRG changes. printf("%s \n", " Cluster_Resource_Group_Changes = ");	*/

if (crgData->Cluster Resource Group Changes & QcstRcvyDomainChange) %s \n", "Recovery domain changed"); printf(" if (crgData->Cluster_Resource_Group_Changes & QcstTakeOverIpAddrChange) printf(" %s \n", "Takeover IP address changed"); /* Print the failover wait time. */ printf("%s", "Failover_Wait_Time = "); if (crgData->Failover_Wait_Time == QcstFailoverWaitForever) printf("%d %s \n", crgData->Failover_Wait_Time, "Wait forever"); else if (crgData->Failover Wait Time == QcstFailoverNoWait) printf("%d %s \n", crgData->Failover_Wait_Time, "No wait"); else printf("%d %s \n", crgData->Failover Wait Time, "minutes"); /* Print the failover default action. */ printf("%s", "Failover_Default_Action = "); if (crgData->Failover_Default_Action == QcstFailoverProceed) printf("%d %s \n", crgData->Failover Default Action, "Proceed"); else printf("%d %s \n", crgData->Failover Default Action, "Cancel"); /* Print the failover message queue name. */ printStr(" Failover Msg Queue = ", crgData->Failover Msg Queue, sizeof(crgData->Failover_Msg_Queue)); printStr(" Failover Msg Queue Lib = " crgData->Failover_Msg_Queue_Lib, sizeof(crgData->Failover_Msg_Queue_Lib)); /* Print the cluster version. */ printf("%s %d \n", " Cluster_Version = ", crgData->Cluster_Version); /* Print the cluster version mod level */ printf("%s %d \n", " Cluster_Version_Mod_Level = ", crgData->Cluster Version Mod Level); /* Print the requesting user profile. */ printStr(" Req User Profile = ", crgData->Req User Profile, sizeof(crgData->Req User Profile)); /* Print the length of the data in the structure. */ printf("%s %d \n", " Length Info_Returned = ", crgData->Length_Info_Returned); /* Print the offset to the recovery domain array. */ printf("%s %d \n", " Offset Rcvy_Domain_Array = ", crgData->Offset Rcvy Domain Array); /* Print the number of nodes in the recovery domain array. */ printf("%s %d \n", " Number_Nodes_Rcvy_Domain = ", crgData->Number Nodes Rcvy Domain); /* Print the current/new recovery domain. */ printRcvyDomain(" The recovery domain:", crgData->Number Nodes Rcvy Domain, (Qcst Rcvy Domain Array1 t *)

```
((char *)crgData +
crgData->Offset Rcvy Domain Array));
                                                                      */
  /* Print the offset to the prior recovery domain array.
 printf("%s %d \n",
        " Offset Prior Rcvy Domain Array = ",
        crgData->Offset Prior Rcvy Domain Array);
 /* Print the number of nodes in the prior recovery domain array.
                                                                      */
 printf("%s %d \n",
        " Number Nodes_Prior_Rcvy_Domain = ",
        crgData->Number Nodes Prior Rcvy Domain);
 /* Print the prior recovery domain if one was passed.
                                                                      */
 if (crgData->Offset_Prior_Rcvy_Domain_Array) {
   printRcvyDomain(" The prior recovery domain:",
                  crgData->Number_Nodes_Prior_Rcvy_Domain,
                  (Qcst Rcvy Domain Array1 t *)
               ((char *)crgData +
crgData->Offset_Prior_Rcvy_Domain_Array));
 return:
} /* end printParms
                                                                      */
/*
                                                                      */
/* Print a string for the action code.
                                                                      */
/*
                                                                      */
static void printActionCode(unsigned int ac) {
 char *code;
 switch (ac) {
   case QcstCrgAcInitialize: code = "QcstCrgAcInitialize";
                            break;
   case QcstCrgAcStart:
                            code = "QcstCrgAcStart";
                            break;
                            code = "QcstCrgAcRestart";
   case QcstCrgAcRestart:
                            break;
                            code = "QcstCrgAcEnd";
   case QcstCrgAcEnd:
                            break;
                            code = "QcstCrgAcDelete";
   case QcstCrgAcDelete:
                            break;
   case QcstCrgAcReJoin:
                            code = "QcstCrgAcReJoin";
                            break;
                            code = "QcstCrgAcFailover";
   case QcstCrgAcFailover:
                            break;
   case QcstCrgAcSwitchover: code = "QcstCrgAcSwitchover";
                            break;
   case QcstCrgAcAddNode:
                            code = "QcstCrgAcAddNode";
                            break;
   case QcstCrgAcRemoveNode: code = "QcstCrgAcRemoveNode";
                            break;
   case QcstCrgAcChange:
                            code = "QcstCrgAcChange";
                            break;
   case QcstCrgAcDeleteCommand: code = "QcstCrgAcDeleteCommand";
                            break;
                            code = "QcstCrgAcUndo";
   case QcstCrgAcUndo:
                            break;
                            code = "QcstCrgEndNode";
   case QcstCrgEndNode:
                            break;
   case QcstCrgAcAddDevEnt:
                            code = "QcstCrgAcAddDevEnt";
                            break;
                            code = "QcstCrgAcRmvDevEnt";
   case QcstCrgAcRmvDevEnt:
                            break;
```

```
case QcstCrgAcChgDevEnt: code = "QcstCrgAcChgDevEnt";
                            break;
   case QcstCrgAcChgNodeStatus: code = "QcstCrgAcChgNodeStatus";
                            break;
   case QcstCrgAcCancelFailover: code = "QcstCrgAcCancelFailover";
                            break;
   case QcstCrgAcVerificationPhase: code =
"QcstCrgAcVerificationPhase";
                            break;
   default:
                            code = "unknown action code";
                            break;
 }
 printf("%s", code);
 return;
} /* end printActionCode
                                                                      */
/*
                                                                      */
/* Print the CRG status.
                                                                      */
/*
                                                                      */
static void printCrgStatus(int status) {
 char * str;
 switch (status) {
                                   str = "QcstCrgActive";
   case QcstCrgActive:
                                   break;
                                   str= "QcstCrgInactive";
   case QcstCrgInactive:
                                   break;
str = "QcstCrgIndoubt";
   case QcstCrgIndoubt:
                                   break;
str = "QcstCrgRestored";
   case QcstCrgRestored:
                                   break;
   case QcstCrgAddnodePending:
                                   str =
"QcstCrgAddnodePending";
                                   break;
                                   str = "QcstCrgDeletePending";
   case QcstCrgDeletePending:
                                   break;
                                   str = "QcstCrgChangePending";
   case QcstCrgChangePending:
                                   break;
                                   str = "QcstCrgEndCrgPending";
   case QcstCrgEndCrgPending:
                                   break;
   case QcstCrgInitializePending:
                                   str =
"QcstCrgInitializePending";
                                   break;
   case QcstCrgRemovenodePending:
                                   str =
"QcstCrgRemovenodePending";
                                   break;
   case QcstCrgStartCrgPending:
                                   str =
"QcstCrgStartCrgPending";
                                   break;
   case QcstCrgSwitchOverPending:
                                   str =
"QcstCrgSwitchOverPending";
                                   break;
   case QcstCrgDeleteCmdPending:
                                   str =
"QcstCrgDeleteCmdPending";
                                   break;
   case QcstCrgAddDevEntPending:
                                   str =
"QcstCrgAddDevEntPending";
                                   break;
   case QcstCrgRmvDevEntPending:
                                   str =
"QcstCrgRmvDevEntPending";
                                   break;
   case QcstCrgChgDevEntPending:
                                   str =
"QcstCrgChgDevEntPending";
```

```
break:
   case QcstCrgChgNodeStatusPending: str =
"QcstCrgChgNodeStatusPending";
                               break;
   default: str = "unknown CRG status";
 }
 printf("%s \n", str);
 return:
} /* end printCrgStatus
                                                              */
/*
                                                              */
/* Print the recovery domain.
                                                              */
/*
                                                              */
static void printRcvyDomain(char *str,
                       unsigned int count,
                       Qcst_Rcvy_Domain_Array1_t *rd) {
 unsigned int i;
 printf("\n %s \n", str);
 for (i=1; i<=count; i++) {
             Node ID = ", rd->Node_ID,
   printStr("
sizeof(Qcst_Node_Id_t));
   printf("%s %d \n", " Node_Role = ", rd
printf("%s", " Membership_Status = ");
                       Node_Role = ", rd->Node_Role);
   switch (rd->Membership_Status) {
    case 0: str = "Active";
    break;
case 1: str = "Inactive";
    break;
case 2: str = "Partition";
           break;
    default: str = "unknown node status";
   }
   printf("%s \n", str);
   rd++;
 }
 return:
} /* end printRcvyDomain
                                                              */
/*
                                                              */
/* Concatenate a null terminated string and a non null terminated string
                                                             */
/* and print it.
                                                              */
/*
                                                              */
static void printStr(char *s1, char *s2, unsigned int len) {
 char buffer[132];
 memset(buffer, 0x00, sizeof(buffer));
 memcpy(buffer, s1, strlen(s1));
 strncat(buffer, s2, len);
 printf("%s \n", buffer);
 return;
} /* end printStr
                                                              */
```

Planning data resiliency

Data resilience is the ability for data to be available to users or applications. You can achieve data

resiliency by using IBM i cluster technology with either switched disks, cross-site mirroring, or logical
 replication technologies.

- For IBM i supported implementations of data resilience, you have several choices of technologies. When
- these technologies are combined with IBM i cluster resource services, you can build a complete high-availability solution. These technologies can be categorized this way:

IBM i Independent disk pool technologies

These technologies are all based on IBM i implementation of independent disk pools. For high availability that uses independent disk pool technologies, it is required that all data that needs to be resilient be stored in an independent disk pool. In many cases, this requires migrating data to independent disk pools. This information assumes that migration of data has been completed.

- I The following IBM i supported technologies are based on independent disk pools:
 - Switched disks
 - Geographic mirroring
 - Metro Mirror
 - Global Mirror
- Switched logical units (LUN)

Logical replication technologies

Logical replication is a journal-based technology, where data is replicated to another system in real time.
Logical replication technologies use IBM i cluster resource services and journaling with IBM Business Partner applications. These solutions require a high availability business partner application to configure and manage the environment. This information does not provide specific requirements for these IBM Business Partner solutions. If you are implementing a logical replication solution for high availability, consult information related to application or contact a service representative.

Related information:

IBM eServer iSeries Independent ASPs: A Guide to Moving Applications to IASPs

Determine which data should be made resilient:

Understand what types of data you should consider making resilient.

Determining which data you need to make resilient is similar to determining which kind of data you need to back up and save when you prepare a back up and recovery strategy for your systems. You need to determine which data in your environment is critical to keeping your business up and running.

For example, if you are running a business on the Web, your critical data can be:

- · Today's orders
- Inventory
- Customer records

In general, information that does not change often or that you do not need to use on a daily basis probably does not need to be made resilient.

Planning switched disks:

A single copy of the data is maintained on switchable hardware either an expansion unit (tower) or an
IOP in a logical partition environment. Tower switching will not be available starting with POWER7
hardware.

When an outage occurs on the primary node, access to the data on the switchable hardware switches to a designated backup node. Additionally, independent disk pools can be used in a cross-site mirroring

(XSM) environment. This allows a mirror copy of the independent disk pool to be maintained on a system that is (optionally) geographically distant from the originating site for availability or protection purposes.

Careful planning is required if you plan to take advantage of switchable resources residing on switchable independent disk pools or cross-site mirroring (XSM).

I You should also evaluate your current system disk configuration to determine if additional disk units

I may be necessary. Similar to any system disk configuration, the number of disk units available to the

l application can have a significant affect on its performance. Putting additional workload on a limited

I number of disk units might result in longer disk waits and ultimately longer response times to the

application. This is particularly important when it comes to temporary storage in a system configured

with independent disk pools. All temporary storage is written to the SYSBAS disk pool. If your

application does not use much temporary storage, then you can get by with fewer disk arms in theSYSBAS disk pool. You must also remember that the operating system and basic functions occur in the

| SYSBAS disk pool.

Before you can use IBM Systems Director Navigator for IBM i to perform any disk management tasks, such as creating an independent disk pool, you need to set up the proper authorizations for dedicated service tools (DST).

Related tasks:

Enabling and accessing disk units

Hardware requirements for switched disks:

To use switched disks, you must have specific hardware.

To use switched disks, you must have one of the following:

- One or more expansion units (frame/units) residing on a high-speed link (HSL) loop.
- One or more IOPs on a shared bus or an IOP that is assigned to an I/O pool. In an LPAR environment, you can switch the IOP that contains the independent switched disks between system partitions without having an expansion unit. The IOP must be on the bus shared by multiple partitions or assigned to an I/O pool. All IOAs on the IOP will be switched.

In addition to these hardware requirements the following physical planning is required for switched disks:

- High-speed link (HSL) cables must be used to attach the expansion units to the systems in the cluster. The expansion unit must be physically adjacent in the HSL loop to the alternate system or expansion unit owned by the alternative system. You can include a maximum of two systems (cluster nodes) on each HSL loop, though each system can be connected to multiple HSL loops. You can include a maximum of four expansion units on each HSL loop, though a maximum of three expansion units can be included on each loop segment. On an HSL loop containing two systems, two segments exist, separated by the two systems. All expansion units on one loop segment must be contained in the same device cluster resource group (CRG).
- In order for an expansion unit to become switchable it must physically be the farthest away from the owning system on the loop segment. Note: An error will occur if you try to make an expansion unit switchable if there is another expansion unit farther away the owning system that has not become switchable.
- The switchable expansion unit must be SPCN-cabled to the system unit that will initially serve as the primary node for the device cluster resource group (device CRG). The primary node might be a primary or secondary logical partition within the system unit. If using logical partitions, the system buses in the intended expansion unit must be owned and dedicated by the partition involved in the cluster.

Software requirements for switched disks:

If you plan to use switched disks for IBM i high availability, ensure that the minimum software requirements are met.

• To use new and enhanced functions and features of this technology, it is recommended that you install the most current release and version of the operating system on each system or logical partition that is T participating in a high-availability solution based on this technology. If the production system and backup system are at different operating system releases, it is required that the backup system be at the T

more current release. Ι

1

1

Note: For systems on the same HSL loop, see the High Availability Web site to ensure that you have compatible versions of IBM i.

- One of the following graphical interfaces is required to perform some of the disk management tasks necessary to implement independent disk pools.
 - IBM Systems Director Navigator for i
 - System i Navigator
- You need to install IBM i Option 41 HA Switchable Resources. Option 41 gives you the capability to switch independent disk pools between systems. To switch an independent disk pool between systems, the systems must be members of a cluster and the independent switched disk must be associated with a device cluster resource group in that cluster. Option 41 is also required for working with high availability management interfaces which are provided as part of the IBM PowerHA for ilicensed program.

Related information:

High Availability and Clusters

Communications requirements for switched disks:

Switched disks require at least one TCP/IP communications interface between the systems in the cluster.

For redundancy, it is recommended that you have at least two separate interfaces between the systems.

Planning cross-site mirroring:

Cross-site mirroring provides several i5/OS disaster recovery and high availability technologies: Geographic mirroring, metro mirror, and global mirror.

Cross-site mirroring technologies implement disaster recovery through maintaining separate sites, which are usually at some distance from each other. Each of these technologies have specific communication, hardware, and software requirements. However, before implementing one of these technologies, you should plan your sites as well. One site is typically considered the production or source site. This site contains your production data which is mirrored or copied to the remote site. The remote site, sometime referred to as a backup or target site, contains the mirrored copy of the production data. In the event of site-wide disaster at the production site, the backup site resumes your business with the mirrored data. Before configuring a cross-site mirroring technology, consider the following regarding your site plans.

Determine which sites will be production and backup sites

Access the current hardware and software resources that are in place at each site to determine if there are any missing components that will be necessary for a cross-site mirroring solution.

Determine the distance between production and backup sites

Depending on your communication bandwidth and other factors, distance between sites can affect performance and latency in the mirroring technology you choose. Some cross-site mirroring technologies are better suited for sites that are at great distances, while other may have performance degradation.

Ensure that you have proper authority to DST

Before you can use IBM Systems Director Navigator for i5/OS to perform any disk management tasks you need to set up the proper authorizations for dedicated service tools (DST).

Related tasks:

Enabling and accessing disk units

Planning geographic mirroring:

Geographic mirroring is a sub-function of cross-site mirroring. This technology provides disaster recovery and high availability in IBM i environments.

Hardware requirements for geographic mirroring:

- I If you plan to use geographic mirroring for IBM i high availability, ensure that the minimum hardware requirements are met.
 - All independent disk pool hardware requirements must be met.
 - At least two IBM i models, which can be separated geographically, are required.
- At least two sets of disks at each site that are roughly of similar capacity are required.
- A separate storage pool for jobs using geographic mirrored independent disk pools should be configured. Performing geographic mirroring from the main storage pool can cause the system to hang under extreme load conditions.
 - Geographic mirroring is performed when the disk pool is available. When geographic mirroring is being performed, the system value for the time of day (QTIME) should not be changed.
- Communications requirements for independent disk pools are critical because they affect throughput.
- Geographic mirroring traffic is dispersed round robin across the potentially multiple communication lines available to it. It is recommended that if multiple lines are provided for geographic mirroring, that those lines be of similar speed and capacity.
- It is recommended that a separate communication line be used for the clustering heartbeat to prevent contention with the geographic mirroring traffic.

Related concepts:

"Communications requirements for geographic mirroring" on page 156

When you are implementing an IBM i high-availability solution that uses geographic mirroring, you should plan communication lines so that geographic mirroring traffic does not adversely affect system performance.

Software requirements for geographic mirroring:

If you plan to use geographic mirroring as part of an IBM i high availability solution, the following software is required.

- To use advanced features of geographic mirroring, IBM PowerHA for i license program must be installed.
- To use new and enhanced functions and features of this technology, it is recommended that you install the most current release and version of the operating system on each system or logical partition that is participating in a high-availability solution based on this technology. If the production system and backup system are at different operating system releases, it is required that the backup system be at the
- more current release.
- Note: For systems on the same HSL loop, see the High Availability Web site to ensure that you have compatible versions of IBM i.
 - One of the following graphical interfaces is required to perform some of the disk management tasks necessary to implement independent disk pools.
- IBM Systems Director Navigator for i
 - System i Navigator

 You need to install IBM i Option 41 HA Switchable Resources. Option 41 gives you the capability to switch independent disk pools between systems. To switch an independent disk pool between systems, the systems must be members of a cluster and the independent switched disk must be associated with a device cluster resource group in that cluster. Option 41 is also required for working with high availability management interfaces which are provided as part of the IBM PowerHA for ilicensed program.

Related information:

High Availability and Clusters

Communications requirements for geographic mirroring:

When you are implementing an IBM i high-availability solution that uses geographic mirroring, you should plan communication lines so that geographic mirroring traffic does not adversely affect system performance.

The following is recommended:

• Geographic mirroring can generate heavy communications traffic. If geographic mirroring shares the same IP connection with another application, for example clustering, then geographic mirroring might be suspended, which results in synchronization. Likewise, clustering response might be unacceptable, which results in partitioned nodes. Geographic mirroring should have its own dedicated communication lines. Without its own communication line, geographic mirroring can contend with other applications that use the same communication line and affect user network performance and throughput. This also includes the ability to negatively affect cluster heartbeat monitoring, resulting in a cluster partition state. Therefore, it is recommended that you have dedicated communication lines for both geographic mirroring and clusters. Geographic mirroring supports up to four communications lines.

Geographic mirroring distributes changes over multiple lines for optimal performance. The data is sent on each of the configured communication lines in turn, from 1 to 4, over and over again. Four communication lines allow for the highest performance, but you can obtain relatively good performance with two lines.

If you use more than one communication line between the nodes for geographic mirroring, it is best to separate those lines into different subnets, so that the usage of those lines is balanced on both systems.

- If your configuration is such that multiple applications or services require the use of the same communication line, some of these problems can be alleviated by implementing Quality of Service (QoS) through the TCP/IP functions of IBM i. The IBM i quality of service (QoS) solution enables the policies to request network priority and bandwidth for TCP/IP applications throughout the network.
- Ensure that throughput for each data port connection matches. This means that the speed and connection type should be the same for all connections between system pairs. If throughput is different, performance will be gated by the slowest connection.
- Consider the delivery method for a geographic mirroring ASP session. Before 7.1, the mirroring uses synchronous communication between the production and mirror copy systems. This delivery method is best for low latency environments. In 7.1, asynchronous support was added, which means
- best for low latency environments. In 7.1, asynchronous support was added, which means
 asynchronous communications is used between the production and mirror copy systems. This delivery
- method is best for high latency environments. This delivery method will consume more system
- resources on the production copy node than synchronous delivery.
 - Consider configuring a virtual private network for TCP/IP connections for the following advantages:
 - Security of data transmission by encrypting the data
 - Increased reliability of data transmission by sending greater redundancy

Related concepts:

T

"Hardware requirements for geographic mirroring" on page 155

If you plan to use geographic mirroring for IBM i high availability, ensure that the minimum hardware requirements are met.

Related reference:

Quality of Service (QoS)

Journal planning for geographic mirroring:

When implementing high availability based on i5/OS geographic mirroring, you should plan for journal management.

Journal management prevents transactions from being lost if your system ends abnormally. When you journal an object, the system keeps a record of the changes you make to that object. Regardless of the high availability solution that you implement, journaling is considered a best practice to prevent data loss during abnormal system outages.

Related information:

Journal management

Backup planning for geographic mirroring:

Before implementing high availability based on geographic mirroring, you should understand and plan a backup strategy within this environment.

Before configuring any high-availability solution, assess your current backup strategy and make
appropriate changes if necessary. Geographic mirroring does not allow concurrent access to the mirror
copy of the independent disk pool, which has implications to performing remote backups. If you want to
back up from the geographically mirrored copy, you must quiesce mirroring on the production system
and suspend the mirrored copy with tracking enabled. Tracking allows for changes on the production to
be tracked so that they can be synchronized when the mirrored copy comes back online. Then you must
vary on the suspended "mirror" copy of the independent disk pool, perform the backup procedure, vary
off "the suspended mirror copy" and then resume the independent disk pool to the original production
host. This process only requires "partial data resynchronization" between the production and mirrored
copies.

Your system is running exposed while doing the backups and when synchronization is occurring. It is also recommended that you suspend mirroring with tracking enabled, which speeds up the synchronization process. Synchronization is also required for any persistent transmission interruption, such as the loss of all communication paths between the source and target systems for an extended period of time. You can also use redundant communication paths to help eliminate some of those risks associated with a communication failure.

I It is recommended that you should also use geographic mirroring in at least a three system, or logical

partitions, where the production copy of the independent disk pool can be switched to another system atthe same site that can maintain geographic mirroring.

Related concepts:

"Scenario: Performing backups in geographic mirroring environment" on page 223 This scenario provides an overview of tasks that are necessary when performing a remote backup in a i5/OS high-availability solution that uses geographic mirroring.

"Scenario: Switched disk with geographic mirroring" on page 184

This scenario describes an i5/OS high-availability solution that uses switched disks with geographic mirroring in a three-node cluster. This solution provides both disaster recovery and high availability.

Performance planning for geographic mirroring:

When implementing a geographic mirroring solution, you need to understand and plan your environment to minimize potential effects on performance.

A variety of factors can influence the performance of geographic mirroring. The following factors provide general planning considerations for maximizing performance in a geographic mirroring environment:

CPU considerations

Geographic mirroring increases the CPU load, so there must be sufficient excess CPU capacity. You might require additional processors to increase CPU capacity. As a general rule, the partitions you are using to run geographic mirroring need more than a partial processor. In a minimal CPU configuration, you can potentially see 5 - 20% CPU overhead while running geographic mirroring. If your backup system has fewer processors in comparison to your production system and there are many write operations, CPU overhead might be noticeable and affect performance.

| Base pool size considerations

If asynchronous delivery transmission is used for geographic mirroring, it may be necessary to also
increase the amount of storage in the base pool of the system. The amount to increase the base pool by
depends primarily on the amount of latency which occurs due to the distance between the two systems.

Larger amounts of latency will require larger amounts of the base pool.

Machine pool size considerations

For optimal performance of geographic mirroring, particularly during synchronization, increase your machine pool size by at least the amount given by the following formula:

- The amount of extra machine pool storage is: 300 MB + .3MB x the number of disk ARMs in the independent disk pool. The following examples show the additional machine pool storage needed for independent disk pools with 90 disk ARMs and a 180 disk ARMs, respectively:
 - 300 + (.3 x 90 ARMs) = 327 MB of additional machine pool storage
 - 300 + (.3 x 180 ARMs) = 354 MB of additional machine pool storage

The extra machine pool storage is required on all nodes in the cluster resource group (CRG) so that the target nodes have sufficient storage in case of switchover or failover. As always, the more disk units in the independent disk pool, the better the performance should be, as more things can be done in parallel.

To prevent the performance adjuster function from reducing the machine pool size, you should do one of the following:

1. Set the machine pool minimum size to the calculated amount (the current size plus the extra size for geographic mirroring from the formula) by using Work with Shared Storage Pools (WRKSHRPOOL) command or Change Shared Storage Pool (CHGSHRPOOL) command.

Note: It is recommended to use this option with the Work with Shared Storage Pools (WRKSHRPOOL) option.

2. Set the Automatically adjust memory pools and activity levels (QPFRADJ) system value to zero, which prohibits the performance adjuster from changing the size of the machine pool.

Disk unit considerations

Disk unit and IOA performance can affect overall geographic mirroring performance. This is especially
true when the disk subsystem is slower on the mirrored system. When geographic mirroring is in a
synchronous mirroring mode, all write operations on the production copy are gated by the mirrored copy
writes to disk. Therefore, a slow target disk subsystem can affect the source-side performance. You can
minimize this effect on performance by running geographic mirroring in asynchronous mirroring mode.
Running in asynchronous mirroring mode alleviates the wait for the disk subsystem on the target side,
and sends confirmation back to the source side when the changed memory page is in memory on the
target side.

System disk pool considerations

Similar to any system disk configuration, the number of disk units available to the application can have a significant affect on its performance. Putting additional workload on a limited number of disk units might result in longer disk waits and ultimately longer response times to the application. This is particularly important when it comes to temporary storage in a system configured with independent disk pools. All temporary storage is written to the SYSBAS disk pool. If your application does not use a lot of temporary storage, then you can get by with fewer disk arms in the SYSBAS disk pool. You must also remember that the operating system and basic functions occur in the SYSBAS disk pool. This is also true for the mirror copy system since, in particular, the TCP messages that are sent to the mirror copy can potentially page in the system asp.

Network configuration considerations

Network cabling and configuration can potentially impact geographic mirroring performance. In addition
 to ensuring that network addressing is set up in different subnets for each set of data port IP addresses,
 network cabling and configuration should also be set up in the same manner.

Planning metro mirror:

i5/OS high availability supports metro mirror, which provides high availability and disaster recovery. To effectively configure and manage a high availability solution that uses this technology, proper planning is required.

Related information:

Guidelines and recommendations for using Copy Services functions with DS8000

Hardware requirements for metro mirror:

To configure and manage an i5/OS high-availability solution that uses metro mirror technology, you should ensure that the minimum hardware requirements are met.

The following minimum hardware requirements are recommended:

- At least two System i models separated geographically with at least one IBM System Storage DS8000 external storage unit attached to each system. The DS8000 external storage units are supported on all System i models that support fibre channel attachment for external storage.
- One of the following supported fibre channel adaptors are required:
 - 2766 2 Gigabit Fibre Channel Disk Controller PCI
 - 2787 2 Gigabit Fibre Channel Disk Controller PCI-X
 - 5760 4 Gigabit Fibre Disk Controller PCI-X
- A new IOP is required to support external load source unit on the DS8000:
 - Feature 2847 PCI-X IOP for SAN load source
- Appropriate disk sizing for the system storage should be completed prior to any configuration. You need one set of disk for the source, an equal set of disk units for the target, and another set for each consistency copy.

Related information:

iSeries[™] and IBM TotalStorage: A Guide to Implementing External Disk on i5

IBM System Storage DS8000 Information Center

Software requirements for Metro Mirror:

Before configuring an IBM i high-availability solution that uses Metro Mirror, ensure that the minimum software requirements have been met.

Metro Mirror has the following minimum software requirements:

- Each IBM i model with in the high-availability solution must be running at least IBM i V6R1 for use with the IBM PowerHA for i licensed program.
- Note: For prior releases, you can still use the IBM Advanced Copy Services for PowerHA on i, which T is an offering from Lab Services, to work with IBM System Storage solutions. If you are using Global Mirror on multiple platforms, or if you want to implement Global Mirror on multiple IBM i partitions, you can also use the IBM Advanced Copy Services for PowerHA on i.
- IBM PowerHA for i licensed program installed on each system participating in the high-availability T solution that uses Metro Mirror.
- Т • You need to install IBM i Option 41 HA Switchable Resources. Option 41 gives you the capability to switch independent disk pools between systems. To switch an independent disk pool between systems, the systems must be members of a cluster and the independent switched disk must be associated with a device cluster resource group in that cluster. Option 41 is also required for working with high availability management interfaces which are provided as part of the IBM PowerHA for i licensed program.
 - To control storage, the IBM PowerHA for i licensed program also requires storage command-line interface (DSCLI). DSCLI is required software for all the IBM System Storage solutions. To manage any of the IBM System Storage solutions, such as the FlashCopy technology, Metro Mirror, Global Mirror, there is a requirement to have DSCLI installed each of the systems or partitions participating in the high availability solution which uses these storage solutions. DSCLI has these additional software requirements:
 - Java[™] Version 1.4
 - Option 35 (CCA Cryptographic Service Provider) installed on each system or partition
 - Ensure that the latest PTF have been installed.

Related information:

1

- Iseries[™] and IBM TotalStorage: A Guide to Implementing External Disk on i5
- IBM System Storage DS8000 Information Center

Communications requirement for metro mirror:

Before configuring i5/OS high-availability solution that uses metro mirror, ensure that the minimum communication requirements have been met.

To use the metro mirror technology, you must be using or planning to use a storage area network (SAN).

A SAN is a dedicated, centrally managed, secure information infrastructure that enables any-to-any interconnection between systems and storage systems. SAN connectivity is required for using IBM System Storage, such as DS8000 external storage units.

The following are the minimum communication requirements for an i5/OS high availability solution that uses metro mirror:

- One of the following supported fibre channel adaptors are required:
 - 2766 2 Gigabit Fibre Channel Disk Controller PCI
 - 2787 2 Gigabit Fibre Channel Disk Controller PCI-X
 - 5760 4 Gigabit Fibre Disk Controller PCI-X
- The System i product supports a variety of SAN switches and directors. Refer to the Storage area network (SAN) Web site, for a complete list of supported switches and directors
- In addition, taking advantage of multipath I/O is highly recommended in order to improve overall resiliency and performance. Multipath I/O provides the ability to have multiple fibre channel devices configured to the same logical disk units within the storage. When correctly configured this allows

single devices, I/O enclosures, or possibly HSL loops to fail without losing connections to the disk units. Multipath also provides performance benefits by spreading workloads across all available connections (paths). Each connection for a multipath disk unit functions independently. Several connections provide improved resiliency by allowing disk storage to be used even if a single path fails.

Related reference:

Storage area network (SAN) Web site

Journal planning for metro mirror:

Journaling is important for increasing recovery time for all high availability solutions. In the case of IBM System Storage based technologies, such as metro mirror, it is vital that journaling be used to force write operations to external storage units, since mirroring of data occurs outside of System i storage.

Journal management prevents transactions from being lost if your system ends abnormally. When you journal an object, the system keeps a record of the changes you make to that object. Regardless of the high availability solution that you implement, journaling is considered a best practice to prevent data loss during abnormal system outages.

Related information:

Journal management

Backup planning for metro mirror:

With metro mirror, you can use the FlashCopy feature to create a copy of data stored in IBM System Storage external storage units.

FlashCopy operations provide the ability to create point-in-time copies. As soon as the FlashCopy operation is processed, both the source and target volumes are available for application use. The FlashCopy feature can be used with other IBM System Storage technologies, such as metro and global mirror, to create consistent, point-in-time copy of data at a remote site which then can be backed up with your standard backup procedures. You should complete the following before implementing the FlashCopy technology:

- Identify the source volumes and target volumes for FlashCopy relationships. You should select FlashCopy target volumes in different ranks for better performance.
- Understand FlashCopy data consistency considerations. There are environments where data is stored in system memory cache and written to disk at some later time. To avoid these types of restart actions, ensure that all data that is related to the FlashCopy source volume has been written to disk before you perform the FlashCopy operation.
- You can use an existing metro mirror source volume as a FlashCopy target volume. This allows you to create a point-in-time copy using a target volume of a FlashCopy pair and then mirror that data to a source metro mirror volume at a remote location.

Performance planning for metro mirror:

You should understand these performance considerations prior to configuring metro mirror.

Before you use metro mirror, consider the following requirements and guidelines:

- The source and target volumes in a metro mirror relationship must be the same storage type.
- The source and target logical volumes must be the same size or the target must be larger in size.
- For metro mirror environments, distribute the work loads by not directing all updates to a small set of common volumes on a single target storage unit. The performance impact at the target site storage unit adversely affects the performance at the source site.
- Similar to any system disk configuration, the number of disk units available to the application can have a significant affect on its performance. Putting additional workload on a limited number of disk

units might result in longer disk waits and ultimately longer response times to the application. This is particularly important when it comes to temporary storage in a system configured with independent disk pools. All temporary storage is written to the SYSBAS disk pool. If your application does not use a lot of temporary storage, then you can get by with fewer disk arms in the SYSBAS disk pool. You must also remember that the operating system and basic functions occur in the SYSBAS disk pool.

Related information:

Guidelines and recommendations for using Copy Services functions with DS8000

Planning global mirror:

i5/OS high availability supports global mirror, which provides high availability and disaster recovery in environments that use external storage solutions. To effectively configure and manage high availability that uses this technology, proper planning is required.

IBM System Storage global mirror technology requires all users to share one global mirror connection. i5/OS high availability global mirror allows only one System i[™] partition to be active in the global mirror session on a given System Storage server. No other System i partitions or servers from other platforms may use global mirror at the same time. Adding more than one user to a global mirror session will cause unpredictable results to occur.

If you are using global mirror on multiple platforms, or if you want to implement global mirror on multiple System i partitions, you can use the IBM Copy Services for System i. This offering is available from Lab Services.

Related information:

Guidelines and recommendations for using Copy Services functions with DS8000

Hardware requirements for global mirror:

To configure and manage an i5/OS high-availability solution that uses global mirror technology, you should ensure that the minimum hardware requirements are met.

The following minimum hardware requirements should be met for global mirror:

- At least two System i models separated geographically with at least one IBM System Storage DS8000 external storage unit attached to each system. The DS8000 external storage units are supported on all System i models that support fibre channel attachment for external storage.
- One of the following supported fibre channel adaptors are required:
 - 2766 2 Gigabit Fibre Channel Disk Controller PCI
 - 2787 2 Gigabit Fibre Channel Disk Controller PCI-X
 - 5760 4 Gigabit Fibre Disk Controller PCI-X
- A new IOP is required to support external load source unit on the DS8000:
 - Feature 2847 PCI-X IOP for SAN load source
- Appropriate disk sizing for the system storage should be completed prior to any configuration. You need one set of disk for the source, an equal set of disk units for the target, and another set for each consistency copy.

Related information:

- Iseries[™] and IBM TotalStorage: A Guide to Implementing External Disk on i5
- IBM System Storage DS8000 Information Center

Software requirements for Global Mirror:

Before configuring an IBM i high-availability solution that uses Global Mirror, ensure that the minimum software requirements have been met.

Global Mirror has the following minimum software requirements:

Each IBM i model with in the high-availability solution must be running at least IBM i V6R1 for use
 with the IBM PowerHA for i licensed program.

Note: For prior releases, you can still use the IBM Advanced Copy Services for PowerHA on i, which is an offering from Lab Services, to work with IBM System Storage solutions. If you are using Global Mirror on multiple platforms, or if you want to implement Global Mirror on multiple
 IBM i partitions, you can also use the IBM Advanced Copy Services for PowerHA on i.

- IBM PowerHA for i licensed product install on each system participating in the high-availability solution that use Global Mirror.
- To control storage, the IBM PowerHA for i licensed program also requires storage command-line interface (DSCLI). DSCLI is required software for all the IBM System Storage solutions. To manage any of the IBM System Storage solutions, such as the FlashCopy technology, Metro Mirror, Global Mirror, there is a requirement to have DSCLI installed each of the systems or partitions participating in the high availability solution which uses these storage solutions. DSCLI has these additional software requirements:
 - Java Version 1.4
 - Option 35 (CCA Cryptographic Service Provider) installed on each system or partition
- Ensure that the latest PTF have been installed.

Related information:

- iSeries[™] and IBM TotalStorage: A Guide to Implementing External Disk on i5
- IBM System Storage DS8000 Information Center

Communications requirement for global mirror:

Before configuring an i5/OS high-availability solution that uses global mirror, you should ensure that the minimum communication requirements have been met.

To use the global mirror technology you must be using or planning to use a storage area network (SAN).

A *SAN* is a dedicated, centrally managed, secure information infrastructure that enables any-to-any interconnection between systems and storage systems. SAN connectivity is required for using IBM System Storage, such as DS8000 external storage units.

The following are the minimum communication requirements for an i5/OS high availability solution that use global mirror:

- One of the following supported fibre channel adaptors are required:
 - 2766 2 Gigabit Fibre Channel Disk Controller PCI
 - 2787 2 Gigabit Fibre Channel Disk Controller PCI-X
 - 5760 4 Gigabit Fibre Disk Controller PCI-X
- The System i product supports a variety of SAN switches and directors. Refer to the Storage area network (SAN) Web site, for a complete list of supported switches and directors
- In addition, taking advantage of multipath I/O is highly recommended in order to improve overall resiliency and performance. Multipath I/O provides the ability to have multiple fibre channel devices configured to the same logical disk units within the storage. When correctly configured this allows single devices, I/O enclosures, or possibly HSL loops to fail without losing connections to the disk units. Multipath also provides performance benefits by spreading workloads across all available

connections (paths). Each connection for a multipath disk unit functions independently. Several connections provide improved resiliency by allowing disk storage to be used even if a single path fails.

Related reference:

Storage area network (SAN) Web site

Journal planning for global mirror:

Journaling is important for decreasing recovery time for all high availability solutions. In the case of IBM System Storage based technologies, such as global mirror, journaling forces write operations to external storage units, which is necessary because data mirroring occurs outside of System i storage.

Journal management prevents transactions from being lost if your system ends abnormally. When you journal an object, the system keeps a record of the changes you make to that object. Regardless of the high availability solution that you implement, journaling is considered a best practice to prevent data loss during abnormal system outages.

Related information:

Journal management

Backup planning for global mirror:

When using global mirror technology within your high-availability solution, you can use the FlashCopy feature to create point-in-time copy of your data.

FlashCopy operations provide the ability to create point-in-time copies. As soon as the FlashCopy operation is processed, both the source and target volumes are available for application use. The FlashCopy feature can be used with other IBM System Storage technologies, such as metro and global mirror, to create consistent, point-in-time copy of data at a remote site which then can be backed up with your standard backup procedures. You should complete the following before implementing the FlashCopy technology:

- Identify the source volumes and target volumes for FlashCopy relationships. You should select FlashCopy target volumes in different ranks for better performance.
- Understand FlashCopy data consistency considerations. There are environments where data is stored in system memory cache and written to disk at some later time. To avoid these types of restart actions, ensure that all data that is related to the FlashCopy source volume has been written to disk before you perform the FlashCopy operation.

Performance planning for global mirror:

You should understand these performance considerations prior to configuring global mirror.

Before you use global mirror, consider these performance guidelines:

- The source and target volumes in a metro mirror relationship must be the same storage type.
- The source and target volumes in a metro mirror relationship must be the same storage type.
- Similar to any system disk configuration, the number of disk units available to the application can have a significant affect on its performance. Putting additional workload on a limited number of disk units might result in longer disk waits and ultimately longer response times to the application. This is particularly important when it comes to temporary storage in a system configured with independent disk pools. All temporary storage is written to the SYSBAS disk pool. If your application does not use a lot of temporary storage, then you can get by with fewer disk arms in the SYSBAS disk pool. You must also remember that the operating system and basic functions occur in the SYSBAS disk pool.

Related information:

Guidelines and recommendations for using Copy Services functions with DS8000

Planning switched logical units (LUNs):

A single copy of the data is maintained on the logical units within the IBM[®] System Storage[™] storage
 unit.

When an outage occurs on the primary node, access to the data on the switchable logical units switches
to a designated backup node. Additionally, independent disk pools can be used in a cross-site mirroring
(XSM) environment. This allows a mirror copy of the independent disk pool to be maintained on a
system that is (optionally) geographically distant from the originating site for availability or protection
purposes.

Careful planning is required if you plan to take advantage of switchable logical units residing onindependent disk pools or cross-site mirroring (XSM).

You should also evaluate your current system disk configuration to determine if additional disk units may be necessary. Similar to any system disk configuration, the number of disk units available to the application can have a significant affect on its performance. Putting additional workload on a limited L number of disk units might result in longer disk waits and ultimately longer response times to the application. This is particularly important when it comes to temporary storage in a system configured L with independent disk pools. All temporary storage is written to the SYSBAS disk pool. If your 1 application does not use much temporary storage, then you can get by with fewer disk arms in the SYSBAS disk pool. You must also remember that the operating system and basic functions occur in the | SYSBAS disk pool.

Before you can use IBM Navigator for i to perform any disk management tasks, such as creating an
 independent disk pool, you need to set up the proper authorizations for dedicated service tools (DST).

- Hardware requirements for switchable logical units
- To use switchable logical units, you must have specific hardware.
- Software requirements for switchable logical units
- If you plan to use switchable logical units for i5/OS high availability, ensure that the minimum software requirements are met.
- · Communications requirements for switchable logical units
- Switchable logical units require at least one TCP/IP communications interface between the systems in the cluster

Planning for logical replication:

Multiple copies of the data are maintained with logical replication. Data is replicated, or copied, from the primary node in the cluster to the backup nodes designated in the recovery domain. When an outage occurs on the primary node, the data remains available because a designated backup node takes over as the primary point of access.

Logical replication makes a copy of something in real time. It is the process of copying objects from one node in a cluster to one or more other nodes in the cluster. Logical replication makes and keeps the objects on your systems identical. If you make a change to an object on one node in a cluster, this change is replicated to other nodes in the cluster.

You must decide on a software technology to use for logical replication. The following solutions are available for achieving logical replication in your cluster:

• IBM iCluster for i

L

A logical replication product from IBM which provides high availability on IBM i.

• IBM Business Partners products

Data replication software from recognized cluster IBM Business Partners enables you to replicate objects across multiple nodes.

• A custom-written replication application

IBM journal management provides a means by which you can record the activity of objects on your system. You can write an application taking advantage of journal management to achieve logical replication.

Related information:

Journal management

Determine which systems to use for logical replication:

When you are determining which systems to use for logical replication, there are several key considerations.

These considerations are:

- Performance capacity
- Disk capacity
- Critical data
- Disaster prevention

If your system fails over, you need to know what data and applications you have running on your primary system and your backup system. You want to put the critical data on the system that is most capable of handling the workload in case it fails over. You do not want to run out of disk space. If your primary system runs out of space and fails over, it is highly likely that your backup system is also going to fail over due to lack of disk space. To ensure your data center is not completely destroyed in case of a natural disaster, such as a flood, tornado, or hurricane, you should locate the replicated system in a remote location.

Cluster middleware IBM Business Partners and available clustering products:

In addition to IBM PowerHA for i, there are other cluster management products available.

IBM iCluster for i, as well as other products, provide software solutions for replication and cluster
management functions. Most of these solutions are based on logical replication. Logical replication uses
remote journal or similar technology to transfer object changes to a remote system, where they are
applied to the target objects. In addition to PowerHA management solutions, you can purchase other
cluster middleware products which use logical replication technology. Those products typically also
include a management interface.

Journal planning for logical replication:

If you are using logical replication, you should use journaling to force writes from the production copy of data to the backup copy of data.

Journal management prevents transactions from being lost if your system ends abnormally. When you journal an object, the system keeps a record of the changes you make to that object. Regardless of the high availability solution that you implement, journaling is considered a best practice to prevent data loss during abnormal system outages.

In logical replication environments, journaling is the basis of the solution and as such is a requirement for implementing a solution based on this technology. With logical replication, a real-time copy to a backup system might be limited depending on the size of the object being replicated. For example, a program updates a record residing within a journaled file. As part of the same operation, it also updates an object, such as a user space, that is not journaled. The backup copy becomes completely consistent when the user space is entirely replicated to the backup system. Practically speaking, if the primary system fails,

and the user space object is not yet fully replicated, a manual recovery process is required to reconcile the state of the user space to match the last valid operation whose data was completely replicated.

Related information:

Journal management

Backup planning for logical replication:

If you are using a logical replication technology, you should plan for backup operations within thisenvironment.

Logical replication replicates changes to the objects, such as files or programs on a production copy, to a backup copy. The replication is near real time (simultaneous). Typically, if the object, such as a file, is journaled, replication is handled at a record level. A key advantage of this technology is that the backup copy can be accessed in real time for backup operations. You can perform a remote backup on the backup copy of the data without disrupting the production version of the data.

Performance planning for logical replication:

If you are using a logical replication technology as part of a high-availability solution, you should understand potential effects on performance with this solution.

With logical replication, potential effects on performance lay in the latency of the replication process. This refers to the amount of lag time between the time at which changes are made on the source system and the time at which those changes become available on the backup system. Synchronous remote journaling can minimize this to a large extent. Regardless of the transmission mechanism used, you must adequately project your transmission volume and plan your communication lines and speeds correctly to help ensure that your environment can manage replication volumes when they reach their peak. In a high volume environment, latency may be a problem on the target side even if your transmission facilities are properly planned.

Planning environment resiliency

Environment resiliency ensures that your objects and attributes remain consistent among resources defined in the high-availability environment. You need to identity which resources require a consistent environment to function properly and create a cluster administrative domain that will ensure that these resource attributes remain consistent in your high availability solution.

Planning for a cluster administrative domain:

The cluster administrative domain requires planning to manage resources that are synchronized among nodes within a cluster administrative domain. In order to ensure that an application will run consistently on any system in a high-availability environment, all resources that affect the behavior of the application need to be identified, as well as the cluster nodes where the application will run, or where application data might reside.

A cluster administrator can create a cluster administrative domain and add monitored resources that are synchronized among nodes. The i5/OS cluster provides a list of system resources that can be synchronized by a cluster administrative domain, represented by monitored resource entries (MREs).

When designing a cluster administrative domain, you should answer the following questions:

What nodes will be included in the cluster administrative domain?

You should determine what nodes in a cluster are to be managed by the cluster administrative domain. These are the cluster nodes representing the systems where an application can run or where the application data is stored, and that require a consistent operational environment. Nodes cannot be in multiple cluster administrative domains. For example, if you have four nodes in a cluster (Node A, Node B, Node C and Node D), Nodes A and B can be in one cluster

administrative domain and Nodes C and D can be in another. However you cannot have Nodes B and C in a third cluster administrative domain and still have them in their original cluster administrative domain.

What will be the naming convention for cluster administrative domains?

Depending on the complexity and size of your clustered environment, you might want to establish a standard naming convention for peer CRGs and cluster administrative domains. Since a peer CRG is created when you create a cluster administrative domain, you will want to differentiate other peer CRGs from those that represent cluster administrative domains. For example, peer CRGs that represent cluster administrative domains can be named *ADMDMN1*, *ADMDMN2*, and so forth, while other peer CRGs can be named *PEER1*. You can also use the List Cluster Resource Group Information (QcstListClusterResourceGroupIn) API to determine whether the peer CRG is used as a cluster administrative domain. A peer CRG which represents a cluster administrative domain can be identified by its application identifier, which is QIBM.AdminDomain.

Planning monitored resources entries (MRE):

Monitored resources are i5/OS objects that can be defined within a cluster administrative domain. These resources need to remain consistent across the systems in a high-availability environment otherwise during an outage applications might not perform as expected. You should plan which supported resources within your environment should be monitored.

You need to determine which system resources need to be synchronized. You can select attributes for each of these resources to customize what is synchronized. Applications that run on multiple nodes might need specific environment variables to run properly. In addition data that spans several nodes might also require certain user profiles to be accessed. Be aware of the operational requirements for your applications and data before you determine what resources need to be managed by a cluster administrative domain.

Planning clusters

Before implementing a high-availability solution, you must ensure that you met all prerequisites for clusters.

Hardware requirements for clusters:

To implement a high-availability solution, you need to plan and configure a cluster. A cluster groups systems and resources in a high availability environment.

The following are the minimum hardware requirements for clusters:

- You will need at least two System i model or logical partitions. Clusters supports up to 128 systems within a cluster. Any System i model that is capable of running IBM i V4R4M0, or later, is compatible for using clustering.
- External uninterruptible power supply or equivalent is recommended to protect from a sudden power loss which could result in a cluster partition.
- Clustering uses Internet Protocol (IP) multicast capabilities. Multicast does not map well to all types of physical media.
- If you plan to use data resiliency technologies that require independent disk pools, you will also need to plan for hardware specific to your chosen data resiliency technology. You can also use different methods of disk protection to prevent failover from occurring should a protected disk fail.

Related concepts:

"Planning data resiliency" on page 151

Data resilience is the ability for data to be available to users or applications. You can achieve data resiliency by using IBM i cluster technology with either switched disks, cross-site mirroring, or logical replication technologies.

Related reference:

"Planning checklist for clusters" on page 175 Complete the cluster configuration checklist to ensure that your environment is prepared properly before you begin to configure your cluster.

Related information:

Uninterruptible power supply IP multicasting

Disk protection

L

L

L

Software requirements for clusters:

In order to use clustering, you must have the correct software and licenses.

- 1. Latest supported release of IBM i operating system installed.
- 2. TCP/IP Connectivity Utilities feature installed.
- **3**. If you plan to use data resiliency technologies, like switched disks or cross-site mirroring, there are additional requirements.
- 4. Option 41 (High Availability Switchable Resources) is required if you plan to use the following interfaces:
 - IBM PowerHA for i licensed program. This licensed program provides the following interfaces which require Option 41:
 - High Availability Solutions Manager graphical interface
 - Cluster Resource Services graphical interface
 - IBM PowerHA for i commands
- IBM PowerHA for i APIs
- 5. You can also use IBM Business Partner product or write your own high availability management application by using Cluster APIs.

Related concepts:

"Planning switched disks" on page 152

A single copy of the data is maintained on switchable hardware either an expansion unit (tower) or an IOP in a logical partition environment. Tower switching will not be available starting with POWER7 hardware.

"Planning cross-site mirroring" on page 154

Cross-site mirroring provides several i5/OS disaster recovery and high availability technologies: Geographic mirroring, metro mirror, and global mirror.

"Planning data resiliency" on page 151

Data resilience is the ability for data to be available to users or applications. You can achieve data resiliency by using IBM i cluster technology with either switched disks, cross-site mirroring, or logical replication technologies.

Related reference:

"Planning checklist for clusters" on page 175

Complete the cluster configuration checklist to ensure that your environment is prepared properly before you begin to configure your cluster.

Related information:

Cluster APIs

Communications requirements for clusters:

Use any type of communications media in your clustering environment as long as it supports Internet Protocol (IP).

Cluster resource services uses TCP/IP and UDP/IP protocols to communicate between nodes. Local area networks (LANs), wide area networks (WANs), OptiConnect system area networks (SANs), or any combination of these connectivity devices are supported. Your choice should be based on the following factors:

- Volume of transactions
- Response time requirements
- Distance between the nodes
- Cost considerations

You can use these same considerations when determining the connection media to be used to connect primary and backup locations of resources. When planning your cluster, it is recommended that you designate one or more of your backup nodes in remote locations in order to survive a site loss disaster.

To avoid performance problems that might be caused by inadequate capacity, you need to evaluate the communication media that is used to handle the volumes of information that are sent from node to node. You can choose which physical media you prefer to use such as token ring, Ethernet, asynchronous transfer mode (ATM), SPD OptiConnect, high-speed lk (HSL) OptiConnect, or Virtual OptiConnect (a high-speed internal connection between logical partitions).

HSL OptiConnect is a technology provided by OptiConnect for IBM i software (IBM i Option 23 - IBM i OptiConnect). It can be used to construct highly available solutions. HSL OptiConnect is a system area network that provides high-speed, point-to-point connectivity between cluster nodes by using high speed link (HSL) Loop technology. HSL OptiConnect requires standard HSL cables, but no additional hardware.

For switchable hardware, also referred to as resilient device CRGs, you need to have an switched disk in your environment. In a logical partition environment, this is a collection of disk units that are on the bus that is being shared by the logical partitions, or that are attached to an input/output processor that has been assigned to an I/O pool. For a multiple system environment, this is one or more switchable expansion units properly configured on the HSL loop also containing the systems in the recovery domain. The switchable expansion unit can also be used in an LPAR environment.

Note: If you are using 2810 LAN adapters using only TCP/IP, and not using Systems Network Architecture (SNA) or IPX, you can increase your adapter performance on an OS/400[®] V4R5M0 system by specifying Enable only for TCP(*YES) for your specific line description using the **Work with Line Descriptions (WRKLIND)** command. Enable only for TCP(*YES) is set automatically in OS/400 V5R1M0, and later releases.

Related concepts:

"Planning switched disks" on page 152

A single copy of the data is maintained on switchable hardware either an expansion unit (tower) or an IOP in a logical partition environment. Tower switching will not be available starting with POWER7 hardware.

Related reference:

"Planning checklist for clusters" on page 175

Complete the cluster configuration checklist to ensure that your environment is prepared properly before you begin to configure your cluster.

Dedicate a network for clusters:

During normal operations, base clustering communication traffic is minimal. It is, however, highly recommended that you have redundant communication paths configured for each node in a cluster.

A redundant communications path means that you have two lines configured between two nodes in a cluster. If a failure on the first communication path occurs, the second communication path can take over to keep communications running between the nodes, thereby minimizing conditions that can put one or

more nodes of the cluster into a cluster partition. One thing to consider when configuring these paths is that if both of your communications lines go into the same adapter on the system, these lines are still at risk if this single adapter fails. However, it should be noted that a cluster partition is not always avoidable. If your system experiences a power loss or if a hardware failure occurs, the cluster can become partitioned. By configuring two lines, you can dedicate one line for clustering traffic and the other line for the normal traffic and also for the backup line if the dedicated line for clustering goes down. The typical network-related cluster partition can best be avoided by configuring redundant communications paths between all nodes in the cluster.

Tips: Cluster communications:

Consider these tips when you set up your communications paths.

- Be sure you have adequate bandwidth on your communication lines to handle the non cluster activity along with the clustering heartbeating function and continue to monitor for increased activity.
- For best reliability, do not configure a single communication path linking one or more nodes.
- Do not overburden the line that is responsible for ensuring that you are still communicating with a node.
- Eliminate as many single points of failure as possible, such as having two communication lines coming into a single adapter, same input-output processor (IOP), or same expansion unit.
- If you have an extremely high volume of data being passed over your communication lines, you may want to consider putting data replication and heartbeat monitoring on separate networks.
- User Datagram Protocol (UDP) multicast is the preferred protocol that the cluster communications infrastructure uses to send cluster management information between nodes in a cluster. When the physical media supports multicast capabilities, cluster communications uses the UDP multicast to send management messaging from a given node to all local cluster nodes that support the same subnet address. Messages that are sent to nodes on remote networks are always sent by using UDP point-to-point capabilities. Cluster communications does not rely on routing capability for multicast messages.
- The multicast traffic that supports cluster management messaging tends to fluctuate by nature. Depending on the number of nodes on a given LAN (that supports a common subnet address) and the complexity of the cluster management structure that is chosen by the cluster administrator, cluster-related multicast packets can easily exceed 40 packets per second. Fluctuations of this nature can have a negative effect on older networking equipment. One example is congestion problems on devices on the LAN that serve as Simple Network Management Protocol (SNMP) agents that need to evaluate every UDP multicast packet. Some of the earlier networking equipment does not have adequate bandwidth to keep up with this type of traffic. You need to ensure that you or the network administrator has reviewed the capacity of the networks to handle UDP multicast traffic to make certain that clustering does not have a negative effect on the performance of the networks.

Performance planning for clusters:

Since potentially significant differences exist in your communications environment, you have the capability to adjust variables that affect cluster communications to best match your environment.

The default values should normally be acceptable to most common environments. If your particular environment is not well suited for these defaults, you can tune cluster communications to better match your environment. Base-level tuning and advanced level tuning are available.

Base-level tuning

Base-level tuning allows you to set the tuning parameters to a predefined set of values identified for high, low, and normal timeout and messaging interval values. When the normal level is selected, the default values are used for cluster communications performance and configuration parameters. Selecting the low level causes clustering to increase the heartbeating interval and the various message timeout values. With fewer heartbeats and longer timeout values, the cluster is less sensitive to communications failures. Selecting the high level causes clustering to decrease the heartbeating interval and the various message timeout values. With more frequent heartbeats and shorter timeout values, the cluster is more sensitive to communications failures.

Advanced-level tuning

With advanced-level tuning, individual parameters can be tuned by using a predefined ranges of values. This allows more granular tuning to meet any special circumstances in your communications environment. If an advanced level of tuning is desired, it is recommended that you obtain help from IBM support personnel or equivalent. Setting the individual parameters incorrectly can easily result in decreased performance.

Tunable cluster communications parameters:

The Change Cluster Resource Services (QcstChgClusterResourceServices) API enables some of the cluster topology services and cluster communications performance and configuration parameters to be tuned to better suit the many unique application and networking environments in which clustering occurs.

The **Change Cluster (CHGCLU)** command provides a base level of tuning, while the QcstChgClusterResourceServices API provides both base and advanced levels of tuning.

The QcstChgClusterResourceServices API and **Change Cluster Configuration (CHGCLUCFG)** command can be used to tune cluster performance and configuration. The API and command provide a base level of tuning support where the cluster will adjust to a predefined set of values identified for high, low, and normal timeout and messaging interval values. If an advanced level of tuning is desired, usually anticipated with the help of IBM support personnel, then individual parameters can be tuned through the use of the API over a predefined value range. Inappropriate changes to the individual parameters can easily lead to degraded cluster performance.

When and how to tune cluster parameters

The **CHGCLU** command and the QcstChgClusterResourceServices API provide for a fast path to setting cluster performance and configuration parameters without your needing to understand the details. This base level of tuning primarily affects the heartbeating sensitivity and the cluster message timeout values. The valid values for the base level of tuning support are:

1 (High Timeout Values/Less Frequent Heartbeats)

Adjustments are made to cluster communications to decrease the heartbeating frequency and increase the various message timeout values. With fewer heartbeats and longer timeout values, the cluster will be slower to respond (less sensitive) to communications failures.

2 (Default Values)

Normal default values are used for cluster communications performance and configuration parameters. This setting can be used to return all parameters to the original default values.

3 (Low Timeout Values/More Frequent Heartbeats)

Adjustments are made to cluster communications to decrease the heartbeating interval and decrease the various message timeout values. With more frequent heartbeats and shorter timeout values, the cluster is quicker to respond (more sensitive) to communications failures.

Example response times are shown in the following table for a heartbeat failure leading to a node partition:

Note: Times are specified in minutes:seconds format.

	1 (Less sensitive)			2 (Default)			3 (More sensitive)		
	Detection of Heartbeat Problem	Analysis	Total	Detection of Heartbeat Problem	Analysis	Total	Detection of Heartbeat Problem	Analysis	Total
Single subnet	00:24	01:02	01:26	00:12	00:30	00:42	00:04	00:14	00:18
Multiple subnets	00:24	08:30	08:54	00:12	04:14	04:26	00:04	02:02	02:06

Depending on typical network loads and specific physical media being used, a cluster administrator might choose to adjust the heartbeating sensitivity and message timeout levels. For example, with a high speed high-reliability transport, such as OptiConnect with all systems in the cluster on a common OptiConnect bus, one might desire to establish a more sensitive environment to ensure quick detection leading to faster failover. Option 3 is chosen. If one were running on a heavily loaded 10 Mbs Ethernet bus and the default settings were leading to occasional partitions just due to network peak loads, option 1 could be chosen to reduce clustering sensitivity to the peak loads.

The Change Cluster Resource Services API also allows for tuning of specific individual parameters where the network environmental requirements present unique situations. For example, consider again a cluster with all nodes common on an OptiConnect bus. Performance of cluster messages can be greatly enhanced by setting the message fragment size parameter to the maximum 32,500 bytes to better match the OptiConnect maximum transmission unit (MTU) size than does the default 1,464 bytes. This reduces the overhead of fragmentation and reassembly of large messages. The benefit, of course, depends on the cluster applications and usage of cluster messaging resulting from those applications. Other parameters are defined in the API documentation and can be used to tune either the performance of cluster messaging or change the sensitivity of the cluster to partitioning.

Related reference:

QcstChgClusterResourceServices API

Related information:

Change Cluster (CHGCLU) command

Changing cluster resource services settings:

The default values affecting message timeout and retry are set to account for most typical installations. However, it is possible to change these values to more closely match your communications environment.

The values can be adjusted in one of these ways:

- Set a general performance level that matches your environment.
- Set values for specific message tuning parameters for more specific adjustment

In the first method, the message traffic is adjusted to one of three communications levels. The normal level is the default and is described in detail in Heartbeat monitoring.

The second method should normally be done only under the advisement of an expert.

The Change Cluster Resource Services (QcstChgClusterResourceServices) API describes details on both methods.

Related reference: QcstChgClusterResourceServices API Related information: Heartbeat monitoring

Planning multiple-release clusters:

If you are creating a cluster that includes nodes at multiple cluster versions, then certain steps are required when you create the cluster.

By default, the current cluster version is set to the potential cluster version of the first node added to the cluster. This approach is appropriate if this node is at the lowest version level to be in the cluster. However, if this node is at a later version level, then you cannot add nodes with a lower version level. The alternative is to use the target cluster version value when you create a cluster to set the current cluster version to one less than the potential cluster version of the first node added to the cluster.

Note: If you are using the IBM PowerHA for i licensed program, V6R1 is required on all systems within the cluster.

For example, consider the case where a two-node cluster is to be created. The nodes for this cluster follow:

Node identifier	Release	Potential cluster version
Node A	V5R4	5
Node B	V6R1	6

If the cluster is to be created from Node B, care must be taken to indicate that this will be a mixed-release cluster. The target cluster version must be set to indicate that the nodes of the cluster will communicate at one less than the requesting node's potential node version.

Performance planning for clusters:

When changes are made to a cluster, the overhead necessary to manage the cluster can be affected.

The only resources that clustering requires are those necessary to perform heartbeat monitoring, to manage the cluster resource groups and the cluster nodes, and to handle any messaging taking place between cluster resource groups and cluster nodes. After your clustering environment is operational, the only increase in overhead is if you make changes to the cluster.

During a normal operating environment, clustering activity should have minimal effect on your clustered systems.

| Planning advanced node failure detection:

Ι

Advanced node failure detection function can be used to reduce the number of failure scenarios which
 result in cluster partitions.

Before implementing advance node failure detection, you must ensure that you have met all theprerequisites.

- To prevent cluster partitions when a cluster node has actually failed, a Hardware Management Console (HMC) v7 or Virtual I/O Server (VIOS) partition can be used.
- For each cluster node, determine the type of server that the cluster monitor will be using to monitor that node. If the node is managed either by an IVM or by an HMC at version V8R8.5.0 or earlier, then a common information model (CIM) server can be used. If the node is managed by an HMC at version V8R8.5.0, then a representational state transfer (REST) server can be used.
- Note: For cluster nodes managed by HMCs at version V8R8.5.0, you may choose to use either a CIM server or a REST server. The REST server is recommended because CIM servers are not supported for later versions of HMC.

- Each node that is to have failures reported to it, will need to have a cluster monitor configured.
- Hardware requirements for the advanced node failure detection:
- Advanced node failure detection feature can be used provided all the hardware requirements are met.

The following minimum hardware requirements are needed for the advanced node failure detectionfeature:

- At least two IBM i models or logical partitions
- Either Hardware Management Console (HMC) or Virtual I/O Server (VIOS)
- Software requirements for the advanced node failure detection:

To use the advanced node failure detection function in an IBM i high-availability solution, the minimumsoftware requirements should be met.

Each node planning to use the advanced node failure detection feature with Common Information Model(CIM) servers has the following software requirements:

- 5770-SS1 Base operating system option 33 Portable Application Solutions Environment
- 5770-SS1 Base operating system option 30 Qshell
- 5733-SC1 IBM Portable Utilities for IBM i
- 5733-SC1 option 1 OpenSSH, OpenSSL, zlib
- 5770-UME IBM Universal Manageability Enablement
- HMC version V8R8.5.0 or earlier. This is the last version of HMC to support the CIM server.
- 5770-HAS IBM PowerHA for i LP
- **Note:** IVM uses the CIM server.

Each node planning to use the advanced node failure detection feature with representational statetransfer (REST) servers has the following software requirements:

- 5770-SS1 Base operating system option 3 Extended Base Directory Support
- 5770-SS1 Base operating system option 33 Portable Application Solutions Environment
- 5733-SC1 IBM Portable Utilities for IBM i (Only required for initial configuration of a cluster monitor.)
- 5733-SC1 option 1 OpenSSH, OpenSSL, zlib (Only required for initial configuration of a cluster monitor.)
- 5770-HAS IBM PowerHA for i LP
- HMC version V8R8.5.0 or later. This is the first version of HMC to support the REST server.
- PowerHA for i new function cluster monitor HMC REST support PTF

Planning checklist for clusters:

Complete the cluster configuration checklist to ensure that your environment is prepared properly before you begin to configure your cluster.

Table 32. TCP/IP configuration checklist for clusters

TCP/I	TCP/IP requirements		
	Start TCP/IP on every node you plan to include in the cluster using the Start TCP/IP (STRTCP) Command.		
	Configure the TCP loopback address (127.0.0.1) and verify that it shows a status of Active. Verify the TCP/IP loopback address by using the Work with TCP/IP Network Status (WRKTCPSTS) Command on every node in the cluster.		

Table 32. TCP/IP configuration checklist for clusters (continued)

TCP/IP requirements				
	Verify that the IP addresses used for clustering on a node have a status of Active. Use the Work with TCP/IP Network Status (WRKTCPSTS) Command to check the status of the IP addresses.			
	Verify that the Internet Daemon (INETD) server is active on all nodes in the cluster. If INETD server is not active, you need to start the INETD server. For information about how to start INETD server, see "Starting the INETD server" on page 191.			
	Verify that user profile for INETD, which is specified in /QIBM/ProdData/OS400/INETD/inetd.conf, does not have more than minimal authority. If this user profile has more than minimal authority, starting cluster node will fail. By default, QUSER is specified as the user profile for INETD.			
	Verify every cluster IP address on every node in the cluster can route to and send UDP datagrams to every other IP address in the cluster. If any cluster node uses an IPv4 address, then every node in the cluster needs to have an active IPv4 address (not necessarily configured as a Cluster IP address) that can route to and send TCP packets to that address. Also, if any cluster node uses an IPv6 address, then every node in the cluster needs to have an active IPv6 address (not necessarily configured as a Cluster IP address) that can route to and send TCP packets to that address. Also, if any cluster node uses an IPv6 address, then every node in the cluster needs to have an active IPv6 address (not necessarily configured as a Cluster IP address) that can route to and send TCP packets to that address. Use the PING command, specifying a local IP address, and the TRACEROUTE command, specifying UDP messages can be useful in determining if two IP addresses can communicate. PING and TRACEROUTE do not work between IPv4 and IPv6 addresses, or if a firewall is blocking PING and TRACEROUTE .			
	Verify that ports 5550 and 5551 are not being used by other applications. These ports are reserved for IBM clustering. Port usage can be viewed by using the Work with TCP/IP Network Status (WRKTCPSTS) command. Port 5550 is opened and is in a Listen state by clustering after INETD is started.			

Table 33. Administrative domain checklist for clusters

Clust	Cluster resource services cluster interface considerations			
Install IBM PowerHA for i (iHASM licensed program (5770-HAS). A valid license key must exist on all cluster nodes that will be in the high-availability solution.				
	 Install Option 41 (IBM i - HA Switchable Resources). A valid license key must exist on all cluster nodes that will be in the device domain. Verify that all host servers are started by using the Start Host Server (STRHOSTSVR) Command: STRHOSTSVR SERVER(*ALL) 			

If you plan to use switchable devices in your cluster, the following requirements must be satisfied:

Table 34. Resilient device configuration checklist for clusters

Resil	Resilient device requirements			
	Install IBM PowerHA for i licensed program. A valid license key must exist on all cluster nodes that will be in the high-availability solution.			
	Verify that Option 41 (HA Switchable Resources) is installed and that a valid license key exists on all cluster nodes that will be in the device domain.			
	To access disk management functions, configure the service tools server (STS) with DST access and user profiles. See Enabling and accessing disk units for details.			
	If you are switching resilient devices between logical partitions on a system, and you are using something other than the HMC to manage your logical partitions, enable Virtual OptiConnect for the partitions. This is done at dedicated service tools (DST) sign-on. See Virtual OptiConnect for details.			
	If you are using the Hardware Management Console to manage your partitions, change your partition profile properties on the OptiConnect tab to enable Virtual OptiConnect for each partition in the switchable configuration. You must activate the partition profile to reflect the change.			

Table 34. Resilient device configuration checklist for clusters (continued)

Resil	ient device requirements
_	If an expansion unit on an HSL OptiConnect loop is switched between two systems, and one of the systems has logical partitions, enable HSL OptiConnect for the partitions. If you are using something other than the HMC to manage logical partitions, this is done at dedicated service tools (DST) sign-on.
	If you are using the Hardware Management Console to manage your partitions, change your partition profile properties on the OptiConnect tab to enable HSL OptiConnect for each partition in the switchable configuration. You must activate the partition profile to reflect the change.
_	If you are switching resilient devices between logical partitions, and you are using something other than the HMC to manage your logical partitions, you must configure the bus to be shared between the partitions or configure an I/O pool. The bus must be configured as Own bus shared by one partition, and all other partitions that will participate in the device switching must be configured as Use bus shared.
	If you are using the Hardware Management Console to manage your logical partitions, you must configure an I/O pool that includes the I/O processor, I/O adapter, and all attached resources to allow an independent disk pool to be switchable between partitions. Each partition must have access to the I/O pool. See Make your hardware switchable for more details. For details on hardware planning requirements for switchable devices, see Hardware requirements for switched disks.
	When switching an expansion unit on an HSL loop between two different systems, configure the expansion unit as switchable. See Make your hardware switchable for details.
_	When an expansion unit is added to an existing HSL loop, restart all servers on that same loop.
	The maximum transmission unit (MTU) for your communication paths must be greater than the cluster communications tunable parameter, Message fragment size. The MTU for a cluster IP address can be verified by using the Work with TCP/IP Network Status (WRKTCPSTS) command on the subject node. The MTU must also be verified at each step along the entire communications path. It can be easier to lower the Message fragment size parameter after the cluster is created than raise the MTU for the communications path. See Tunable cluster communications parameters for more information about message fragment size. You can use the Retrieve Cluster Resource Services Information (QcstRetrieveCRSInfo) API to view the current settings of the tuning parameters and the Change Cluster Resource Services (QcstChgClusterResourceServices) API to change the settings.
	For geographic mirroring, make sure that both nodes are assigned to a different site name.

Table 35. Security config	uration checklist for clusters
---------------------------	--------------------------------

Secur	Security requirements				
	Set the Allow Add to Cluster (ALWADDCLU) network attribute appropriately on the target node if you are trying to start a remote node. This should be set to *ANY or *RQSAUT depending on your environment. If this attribute is set to *RQSAUT, then IBM i option 34 (Digital Certificate Manager) and the CCA Cryptographic Service Provider (Option 35) must be installed. See Enable a node to be added to a cluster for details on setting the ALWADDCLU network attribute.				
	Enable the status of the user profile for INETD specified in /QIBM/ProdData/OS400/INETD/inetd.conf. It must not have *SECADM or *ALLOBJ special authorities. By default, QUSER is specified as the user profile for INETD.				
	Verify that the user profile that calls the cluster resource services APIs exists on all cluster nodes and has *IOSYSCFG authority.				
	Verify that the user profile to run the exit program for a cluster resource group (CRG) exists on all recovery domain nodes.				

Table 36. Job configuration checklist for clusters

Job co	Job considerations			
Jobs can be submitted by the cluster resource services APIs to process requests. The jobs either run under user profile to run the exit program specified when creating a cluster resource group, or under the user profile that requested the API (for varying on devices in resilient device CRGs only). Ensure that the subsystem that services the job queue associated with the user profile is configured as: *NOMAX for the number of jobs it can run from that job queue.				
_	Jobs are submitted to the job queue specified by the job description that is obtained from the user profile defined for a CRG. The default job description causes the jobs to be sent to the QBATCH job queue. Because this job queue is used for many user jobs, the exit program job might not run in a timely fashion. Consider a unique job description with a unique user queue.			
	When exit program jobs are run, they use routing data from the job description to choose which main storage pool and run time attributes to use. The default values result in jobs that are run in a pool with other batch jobs that have a run priority of 50. Neither of these may produce the desired performance for exit program jobs. The subsystem initiating the exit program jobs (the same subsystem that is using the unique job queue) should assign the exit program jobs to a pool that is not used by other jobs initiated by the same subsystem or other subsystems. In addition, the exit program jobs should be assigned a run priority of 15 so that they run before almost all other user jobs.			
	Set the QMLTTHDACN system value to 1 or 2.			

There are several software interfaces available for configuring and managing your cluster. One of these interfaces is Cluster Resource Services interface. If you choose to use Cluster Resource Services, the following requirements must be satisfied.

T / / AT A / ·	-	<u> </u>	<i></i>		
Table 37. Cluster	Resource	Services	configuration	checklist	tor clusters

Clust	Cluster Resource Services graphical interface considerations		
	Install IBM PowerHA for i licensed program. A valid license key must exist on all cluster nodes that will be in the high-availability solution.		
	Install Option 41 (HA Switchable Resources). A valid license key must exist on all cluster nodes that will be in the device domain.		
	Verify that all host servers are started by using the Start Host Server (STRHOSTSVR) command: STRHOSTSVR SERVER(*ALL)		

Table 38. Advanced node failure detection checklist for clusters

L

I	Advanced node failure detection considerations when using a CIM server or IVM					
 		Determine which cluster nodes are or can be managed with a Hardware Management Console (HMC) or a Virtual I/O Server (VIOS) partition on an Integrated Virtualization Manager (IVM) managed server				
I		Determine which cluster node(s) are to receive messages when some other cluster node fails				
I		On each cluster node that is to receive a message from an HMC or IVM, the following things must be done.				
I		Install base operating system option 33 - IBM Portable Application Solutions Environment for i				
I		Install 5733-SC1 - IBM Portable Utilities for i				
I		Install 5733-SC1 option 1 - OpenSSH, OpenSSL, zlib				
I		Install 5770-UME - IBM Universal Manageability Enablement for i.				
I		Configure the enableAuthentication and sslClientVerificationMode properties for the 5770-UME product.				
I		Copy a digital certificate file from the HMC or VIOS and add it to an IBM i truststore.				
I		Start the *CIMOM server with STRTCPSVR *CIMOM CL command				
I		Configure the cluster monitor(s) with the ADDCLUMON CL command				
I	Adva	nced node failure detection considerations when using a REST server				

Table 38. Advanced node failure detection checklist for clusters (continued)

Ι	Advanced node failure detection considerations when using a CIM server or IVM				
 		Determine which cluster nodes are or can be managed with a Hardware Management Console (HMC) REST server			
Ι		Determine which cluster node(s) are to receive messages when some other cluster node fails			
Ι		On each cluster node that is to receive a message from an HMC, the following things must be done.			
Ι		Install base operating system option 3 - Extended Base Directory Support.			
Ι		Install base operating system option 33 - IBM Portable Application Solutions Environment for i			
Ι		Install 5733-SC1 - IBM Portable Utilities for i (Only required for initial configuration of a cluster monitor.)			
 		Install 5733-SC1 option 1 - OpenSSH, OpenSSL, zlib (Only required for initial configuration of a cluster monitor.)			
Ι		Copy a digital certificate file from the HMC or VIOS and add it to an IBM i truststore.			
I		Configure the cluster monitor(s) with the ADDCLUMON CL command			

Planning the FlashCopy feature

You can use the FlashCopy feature as a means to reduce your backup window in i5/OS high availability environments that use the external storage units of the IBM System Storage. Before using the FlashCopy feature, ensure that the minimum requirements have been met.

Hardware requirements for the FlashCopy feature:

To use the FlashCopy technology in an i5/OS high-availability solution, ensure that the minimum hardware requirements are met.

The following minimum hardware requirements are needed for the FlashCopy feature:

- At least two System i models or logical partitions separated geographically with at least one IBM System Storage DS8000 external storage unit attached to each system. The DS8000 external storage units are supported on all System i models that support fibre channel attachment for external storage.
- One of the following supported fibre channel adaptors are required:
 - 2766 2 Gigabit Fibre Channel Disk Controller PCI
 - 2787 2 Gigabit Fibre Channel Disk Controller PCI-X
 - 5760 4 Gigabit Fibre Disk Controller PCI-X
- Appropriate disk sizing for the system storage should be completed prior to any configuration. You need one set of disk for the source, an equal set of disk units for the target, and another set for each consistency copy.

Software requirements for the FlashCopy feature:

To use the FlashCopy technology in an IBM i high-availability solution, the minimum software requirements should be met.

The FlashCopy feature has the following minimum software requirements:

- Each IBM i model with in the high-availability solution must be running at least IBM i V6R1 for use with the IBM PowerHA for i licensed program.
- Note: For prior releases, you can still use the IBM Advanced Copy Services for PowerHA on i, which is an offering from Lab Services, to work with IBM System Storage solutions. If you are using
 Global Mirror on multiple platforms, or if you want to implement Global Mirror on multiple
 IBM i partitions, you can also use the IBM Advanced Copy Services for PowerHA on i.
 - IBM PowerHA for i installed on each system.

• Ensure that the latest PTF have been installed.

Communications requirements for the FlashCopy feature:

To use the FlashCopy technology in an i5/OS high-availability solution, ensure that the minimum communications requirements are met.

The following minimum communication requirements should be met for the FlashCopy feature:

- At least two System i models separated geographically with at least one IBM System Storage DS8000 external storage unit attached to each system. The DS8000 external storage units are supported on all System i models that support fibre channel attachment for external storage.
- One of the following supported fibre channel adaptors are required:
 - 2766 2 Gigabit Fibre Channel Disk Controller PCI
 - 2787 2 Gigabit Fibre Channel Disk Controller PCI-X
 - 5760 4 Gigabit Fibre Disk Controller PCI-X
- A new IOP is required to support external load source unit on the DS8000:
 - Feature 2847 PCI-X IOP for SAN load source
- Appropriate disk sizing for the system storage should be completed prior to any configuration. You need one set of disk for the source, an equal set of disk units for the target, and another set for each consistency copy.

Security planning for high availability

Prior to configuring your high-availability solution, you should reassess the current security strategies in your environment and make any appropriate changes to facilitate high availability.

Distributing cluster-wide information:

Learn about the security implications of using and managing cluster-wide information.

The Distribute Information (QcstDistributeInformation) API can be used to send messages from one node in a cluster resource group recovery domain to other nodes in that recovery domain. This can be useful in exit program processing. However, it should be noted that there is no encryption of that information. Secure information should not be sent with this mechanism unless you are using a secure network.

Non persistent data can be shared and replicated between cluster nodes by using the Clustered Hash Table APIs. The data is stored in non persistent storage. This means the data is retained only until the cluster node is no longer part of the clustered hash table. These APIs can only be used from a cluster node that is defined in the clustered hash table domain. The cluster node must be active in the cluster.

Other information distributed by using cluster messaging is similarly not secured. This includes the low level cluster messaging. When changes are made to the exit program data, there is no encryption of the message containing that data.

Considerations for using clusters with firewalls:

If you are using clustering in a network that uses firewalls, you should be aware of some limitations and requirements.

If you are using clustering with a firewall, you need to give each node the ability to send outbound messages to and receive inbound messages from other cluster nodes. An opening in the firewall must exist for each cluster address on each node to communicate with every cluster address on every other node. IP packets traveling across a network can be of various types of traffic. Clustering uses ping, which is type ICMP, and also uses UDP and TCP. When you configures a firewall, you can filter traffic based on

the type. For clustering to work the firewall needs to allow traffic of ICMP, UDP and TCP. Outbound traffic can be sent on any port and inbound traffic is received on ports 5550 and 5551.

In addition, if you are making use of advanced node failure detection, any cluster node that is to receive
failure messages from a Hardware Management Console (HMC) or Virtual I/O Server (VIOS) must be
able to communicate with that HMC or VIOS. The cluster node will send to the HMC or VIOS on the IP
address associated with the HMC's or VIOS' domain name and to port 5989. The cluster node will receive
from the HMC or VIOS on the IP address associated with the cluster node's system name and on port
5989.

Maintaining user profiles on all nodes:

You can use two mechanisms for maintaining user profiles on all nodes within a cluster.

In a high-availability environment, a user profile is considered to be the same across systems if the profile
names are the same. The name is the unique identifier in the cluster. However, a user profile also
contains a user identification number (UID) and group identification number (GID). To reduce the
amount of internal processing that occurs during a switchover, where the independent disk pool is made
unavailable on one system and then made available on a different system, the UID and GID values
should be synchronized across the recovery domain for the device CRG. Administrative Domain can be
used to synchronize user profiles, including the UID and GID values, across the cluster.

One mechanism is to create a cluster administrative domain to monitor shared resources across nodes in a cluster. A cluster administrative domain can monitor several types of resources in addition to user profiles, providing easy management of resources that are shared across nodes. When user profiles are updated, changes are propagated automatically to other nodes if the cluster administrative domain is active. If the cluster administrative domain is not active, the changes are propagated after the cluster administrative domain is not active, the changes are propagated after the cluster administrative domain is recommended because it automatically maintains user profiles with a high-availability environment.

With the second mechanism, administrators can also use Management Central in System i Navigator to perform functions across multiple systems and groups of systems. This support includes some common user-administration tasks that operators need to perform across the multiple systems in their cluster. With Management Central, you can perform user profile functions against groups of systems. The administrator can specify a post-propagation command to be run on the target systems when creating a user profile.

Important:

- If you plan to share user profiles that use password synchronization within a cluster, you must set the Retain Server Security (QRETSVRSEC) system value to 1.
- If you change QRETSVRSEC to 0 after you add a monitored resource entry (MRE) for a user profile, and then change a password (if password is being monitored), the global status for the MRE is set to Inconsistent. The MRE is marked as unusable. Any changes made to the user profile after this change are not synchronized. To recover from this problem, change QRETSVRSEC to 1, remove the MRE, and add the MRE again.

Related tasks:

"Creating a cluster administrative domain" on page 211

In a high-availability solution, the cluster administrative domain provides the mechanism that keeps resources synchronized across systems and partitions within a cluster.

Configuring high availability

Before you can configure a high-availability solution in your i5/OS environment, ensure that you have completed the appropriate planning and understand your resources and goals for high availability and disaster recovery. Use configuration scenarios for high availability and tasks associated with high availability technologies to create your own high-availability solution.

Scenarios: Configuring high availability

Configuration scenarios provide examples of different i5/OS high availability environments and step-by-step configuration tasks to help you implement a high-availability solution based on your needs and resiliency requirements.

These scenarios contain descriptions of the business objectives for high availability and provide a graphic that illustrates the resources within the high-availability solution. Each solution example contains step-by-step instructions to set up and test high availability. However, this information does not cover all configuration cases and additional testing may be required to verify high availability.

Scenario: Switched disk between logical partitions:

This scenario describes an i5/OS high-availability solution that uses disk pools that are switched between two logical partitions that reside on a single system.

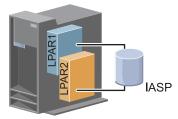
Overview

Logical partitioning is the ability to make a single i5/OS system function as if it were two or more independent systems. This solution is a good choice for businesses that already have logical partitions configured in their environment.

This scenario does not show the configuration of logical partitions.

Objectives

This solution has the following advantages:


- This is low-cost solution that uses available system resources.
- It provides availability for your business resources during planned outages.
- It provides availability for business resources during some unplanned outages, such as a single logical partition failure.
- Because this solution uses a single copy of data, it minimizes the number of disk units that are required.
- This solution contains current data that does not need to be synchronized.

This solution has the following restrictions:

- There is no disaster recovery available for a site-wide outage.
- There is a requirement that you configure a logical partition.
- There is a possible requirement for redundant hardware between partitions.
- There is only one logical copy of the data that resides in the independent disk pool. This can be a single point of failure, although the data may be protected with RAID protection.
- There is not any concurrent access to the disk pool from both logical partitions.

Details

This graphic illustrates the environment for this scenario:

Configuration steps

Complete the following tasks to configure the high availability technologies associated with this scenario:

- 1. Complete checklist for cluster
- 2. Create a cluster
- **3**. Add a node
- 4. Start a node
- 5. Add node to a device domain
- 6. Create a cluster administrative domain
- 7. Start a cluster administrative domain
- 8. Create an independent disk pool
- 9. Add monitored resource entries
- 10. Make hardware switchable
- 11. Create a device CRG
- **12**. Starting a device CRG
- **13**. Make disk pool available
- 14. Perform a switchover to test your high-availability solution

Scenario: Switched disk between systems:

1 This scenario shows an IBM i high-availability solution that uses switched disks between two systems

and provides high availability for data, applications, or devices during planned and unplanned outages.

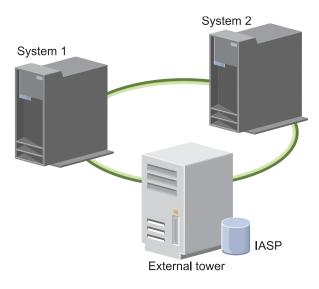
I There is no switchable tower support between systems on POWER7 hardware.

Overview

By using switched disk technology, this solution provides a simple high-availability solution. With this solution, a single copy of data that is stored in the switched disk always remains current, which eliminates the need to synchronize data among systems and eliminates the risk of losing data during transmission.

Objectives

This solution has the following advantages:


- Provides availability for your business resources during planned outages
- · Provides availability for business resources during some unplanned outages
- Enables a single copy of data, which minimizes the number of disk units that are required
- Provides minimal performance overhead
- Enables data to remain current and does not need to be synchronized

This solution has the following restrictions:

- POWER7 hardware will not support switchable towers, so this solution may not be a strategic solution for your business.
 - There is not any disaster recovery for a site-wide outage
 - There is only one logical copy of the data resides in the independent disk pool. This can be a single point of failure, although the data may be protected with RAID protection.
 - There is not any concurrent access to the disk pool from both systems

Details

This graphic illustrates the environment for this scenario:

Configuration steps

- 1. Complete planning checklist
- 2. Create a cluster
- 3. Add a node
- 4. Start a node
- 5. Add nodes to device domain
- 6. Create a cluster administrative domain
- 7. Start a cluster administrative domain
- 8. Create an independent disk pool
- 9. Add monitored resource entries
- 10. Make hardware switchable
- 11. Create a device CRG
- 12. Start a device CRG
- **13**. Make disk pool available
- 14. Perform a switchover to test your high-availability solution

Scenario: Switched disk with geographic mirroring:

This scenario describes an i5/OS high-availability solution that uses switched disks with geographic mirroring in a three-node cluster. This solution provides both disaster recovery and high availability.

Overview

At the production site (Uptown), switched disks are used to move independent disk pools between two nodes. The solution also uses geographic mirroring to generate a copy of the independent disk at a second site (Downtown). Thus, this solution provides both disaster recovery and high availability. The benefits of this solution are essentially the same as the basic switched disk solution with the added advantage of providing disaster recovery to application data by duplicating that data at another location. The production site (Uptown) has an independent disk pool that can be switched between logical

partitions to provide high availability with fast switchover times for planned outages, such as applying fixes. This solution also provides disaster recovery with cross-site and geographic mirroring.

Geographic mirroring is a subfunction of cross-site mirroring where data is mirrored to a copy of the

I independent disk pool at the remote location. Data from the independent disk pool at the production site

(Uptown) is mirrored to an independent disk pool on the backup site (Downtown). This solution

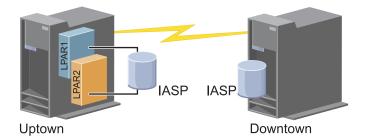
I provides a simple and less expensive alternative to external storage-based solutions, such as IBM System

| Storage Global Mirror and Metro Mirror. However, geographic mirroring does not offer all the

I performance options that the external storages solutions provide.

Objectives

This solution has the following advantages:


- Provides availability for your business resources during planned outages
- Provides availability for business resources during unplanned outages
 - Provides availability for business resources during site-wide disasters
 - Enables each site to have a single copy of data which minimizes the number of disk units that are required
- Enables data to remain current and may not need to be synchronized

This solution has the following restrictions:

- There is no concurrent access to the disk pool. However, you can detach the mirror copy for offline processing of a second copy of the data.
- There is potential performance effects with increased central processing unit (CPU) that is required to support geographic mirroring
- Consider using redundant communication paths and adequate bandwidth

Details

This graphic illustrates this solution:

Configuration steps

- 1. Complete planning checklist for clusters
- 2. Create a cluster
- **3**. Add a node
- 4. Start a node
- 5. Add a node to a device domain
- 6. Create a device CRG
- 7. Define site names
- 8. Create cluster administrative domain
- 9. Start cluster administrative domain

- 10. Create an independent disk pool
- 11. Add monitored resource entries
- 12. Make hardware switchable
- 13. Configure geographic mirroring
- 14. Make disk pools available
- 15. Perform a switchover to test configuration.

Related tasks:

"Configuring geographic mirroring" on page 220

Geographic mirroring is a sub-function of cross-site mirroring. To configure a high-availability solution by using geographic mirroring, you need to configure a mirroring session between the production system and the backup system.

Scenario: Cross-site mirroring with geographic mirroring:

1 This scenario describes an IBM i high-availability solution that uses geographic mirroring in a two node cluster. This solution provides both disaster recovery and high availability.

Overview

Geographic mirroring is a subfunction of cross-site mirroring where data is mirrored to a copy of the

I independent disk pool at the remote location. This solution provides disaster recovery in the event of a

site-wide outage on the production system (System 1). In that situation, failover to the backup site

(System 2) occurs, where operations can continue on the mirrored copy of the data. This solution

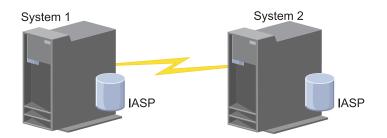
provides a simple and less expensive alternative to external storage-based solutions, such as IBM System

Storage Global Mirror and Metro Mirror. However, geographic mirroring does not offer all the

I performance options that the external storage solutions provide.

Objectives

This solution has the following advantages:


- Provides availability for your business resources during planned outages
- Provides availability for business resources during unplanned outages
 - Provides availability for business resources during a disaster
- Enables data to remains current and may not need to be synchronized

This solution has the following restrictions:

- There is no concurrent access to the disk pool. However, you can detach the mirror copy for offline processing of a second copy of the data.
- Potentially affects performance because increased central processing unit (CPU) is required to support geographic mirroring
- · Consider using redundant communication paths and adequate bandwidth

Details

The following graphic illustrates this solution:

Configuration steps

- 1. Complete planning checklist for clusters
- 2. Create a cluster
- | 3. Add nodes

Т

- 4. Start nodes
- 5. Add nodes to device domain
- 6. Create a cluster administrative domain
- 7. Start cluster administrative domain
- **8**. Create an independent disk pool
- 9. Add monitor resource entries
- | 10. Create device CRG
- | 11. Start a device CRG
- | **12**. Make disk pool available
- | **13**. Configure geographic mirroring.
- 14. Perform a switchover to test the configuration.

Scenario: Cross-site mirroring with metro mirror:

1 This scenario describes an IBM i high-availability solution which is based on external storage and provides disaster recovery and high availability for storage systems which are separated by short distances. Metro Mirror is an IBM System Storage solution that copies data synchronously from the storage unit at the production site to the storage unit at the backup site. In this way data remains consistent at the backup site.

Overview

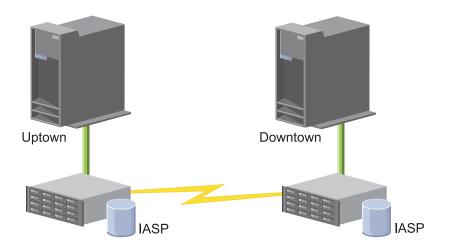
The cross-site mirroring with Metro Mirror solution provides a high availability and disaster recovery by using external storage units within a metropolitan area. The independent disk pool is replicated between the external storage devices to provide availability for both planned and unplanned outages. When Metro Mirror receives a host update to the production volume, it completes the corresponding update to the backup volume. Metro Mirror supports a maximum distance of 300 km (186 mi). Delays in response times for Metro Mirror are proportional to the distance between the volumes.

1 This scenario covers the configuration of IBM-supplied IBM i high availability technology and does not provide installation or configuration instructions regarding IBM System Storage DS8000 series. This information assumes that an IBM System Storage solution is already in place before the i5/OS high availability configuration. For installation and configuration information about DS8000, see IBM System

Storage DS8000 Information Center

Objectives

This solution has the following advantages:


- Replication is entirely managed by the external storage unit, thus no IBM i CPU is used. Replication continues in the storage unit even when the system experiences a system-level failure.
- Availability for business resources during planned or unplanned outages, which includes maintenance outages or software/PTF related outages as well as disaster recovery.
- I/O remains consistent and does not need to be synchronized
- Fast recovery times when used with journaling. Journaling recovers data more quickly in the event of an unplanned outage or failover. Journaling forces data changes to disk where the mirroring is occurring. If you do not use journaling, you might lose data that is in memory. Journaling provides recovery of these data-level transactions and helps with the recovery times.
- The ability to use the FlashCopy function on the source or target side of Metro Mirror.

This solution has the following restrictions:

- Requires external storage hardware
- · Consider using redundant communication paths and adequate bandwidth
- There is no concurrent access to the disk pool

Details

The following graphic illustrates this solution:

Configuration steps

- 1. Complete planning checklist for clusters
- 2. Create a cluster
- **3**. Add nodes
- 4. Start nodes
- 5. Add nodes to device domain
- 6. Create a cluster administrative domain
- 7. Start a cluster administrative domain
- 8. Create an independent disk pool
- 9. Add monitored resource entries
- 10. Create a device CRG
- 11. Start a device CRG

- **12**. Make disk pool available
- 13. Configure Metro Mirror session
- 14. Perform a switchover to test the configuration

Scenario: Cross-site mirroring with global mirror:

This scenario describes an i5/OS high-availability solution which is based on external storage and provides disaster recovery and high availability for storage systems that are separated by great distances. Global mirror is an IBM Systems Storage solution that copies data asynchronously from the storage unit at the production site to the storage unit at the backup site. In this way, data remains consistent at the backup site.

Overview

The cross-site mirroring with global mirror solution provides a disaster recovery solution by using external storage units across long distances. The independent disk pool is replicated between the external storage devices to provide availability for both planned and unplanned outages.

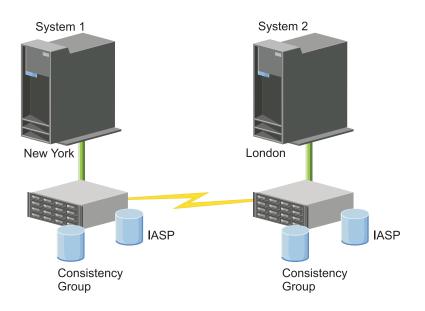
1 This scenario covers the configuration of IBM-supplied IBM i high availability technology and does not provide installation or configuration instructions regarding IBM System Storage DS8000 series. This information assumes that an IBM System Storage solution is already in place before the i5/OS high availability configuration. For installation and configuration information about DS8000, see IBM System

Storage DS8000 Information Center

Objectives

Cross-site mirroring with global mirror provides the following advantages:

- Replication is entirely managed by the external storage unit, thus no IBM i CPU is used. Replication continues in the storage unit even when the system experiences a system-level failure.
 - Availability for business resources during planned or unplanned outages, which includes maintenance outages or software/PTF related outages as well as disaster recovery.
 - Fast recovery times when used with journaling. Journaling recovers data more quickly in the event of an unplanned outage or failover. Journaling forces data changes to disk where the mirroring is occurring. If you do not use journaling, you might lose data that is in memory. Journaling provides recovery of these data-level transactions and helps with the recovery times.
 - The ability to use the FlashCopy function on the source or target side of global mirror.


This solution has the following restrictions:

- The solution requires IBM System Storage DS8000 server hardware.
- To achieve acceptable performance, consider using redundant communication paths and adequate bandwidth.
- There is no concurrent access to the disk pool.
- Only one System i partition may configure global mirror on a given System Storage server. No other System i partitions or servers from other platforms may use global mirror at the same time. Adding more than one user to a global mirror session will cause unpredictable results to occur.
- A consistency group is required for the global mirror target copy. A consistency group is not required for the global mirror source copy, but it is highly recommended.
- Reverse replication occurs automatically on a switchover only if the new target has a consistency group. Reverse replication never occurs automatically on a failover.
- When reverse replication does not occur on a switchover or failover, the configuration will consist of two source copies.

- If the desired target copy node has a consistency group, then a reattach operation will convert it to a target copy and automatically initiate replication.
- If the desired target copy node does not have a consistency group, then recovery requires manual intervention with the System Storage DS8000 Storage Manager interface to initiate replication and synchronize the current source and target.

Details

The following graphic illustrates the this solution:

Configuration steps

- 1. Complete planning checklist for clusters
- 2. Create a cluster
- 3. Add nodes
- 4. Start nodes
- 5. Add nodes to a device domain
- 6. Create cluster administrative domain
- 7. Start a cluster administrative domain
- 8. Create an independent disk pool
- 9. Add monitored resource entries
- 10. Create a device CRG
- 11. Start a device CRG
- 12. Make disk pool available
- 13. Configure global mirror session
- 14. Perform a switchover to test the configuration

Setting up TCP/IP for high availability

Because cluster resource services uses only IP to communicate with other cluster nodes, which are systems or logical partitions within a high availability environment, all cluster nodes must be IP-reachable, which means that you must have IP interfaces configured to connect the nodes in your cluster.

IP addresses must be set up either manually by the network administrator in the TCP/IP routing tables on each cluster node or they might be generated by routing protocols running on the routers in the network. This TCP/IP routing table is the map that clustering uses to find each node; therefore, each node must have its own unique IP address.

Each node can have up to two IP addresses assigned to it. These addresses must not be changed in any way by other network communications applications. Be sure when you assign each address that you take into account which address uses which kind of communication line. If you have a preference for using a specific type of communication media, make sure that you configure the first IP address by using your preferred media. The first IP address is treated preferentially by the reliable message function and heartbeat monitoring. Every cluster IP address on every node must be able to reach every other IP address in the cluster. If any cluster node uses an IPv4 address, then every node in the cluster needs to L have an active IPv4 address (not necessarily configured as a cluster IP address) that can route to and send TCP packets to that address. Also, if any cluster node uses an IPv6 address, then every node in the cluster needs to have an active IPv6 address (not necessarily configured as a cluster IP address) that can route to and send TCP packets to that address. One way to verify that one address can reach another address is if you can ping and use a UDP message trace route in both directions; however, PING and L TRACEROUTE do not work between IPv4 and IPv6 addresses, or if a firewall is blocking them.

Note: You need to be sure that the loopback address (127.0.0.1) is active for clustering. This address, which is used to send any messages back to the local node, is normally active by default. However, if it has been ended by mistake, cluster messaging cannot function until this address has been restarted.

Setting TCP/IP configuration attributes:

To enable cluster resource services, certain attribute settings are required in the TCP/IP configuration of your network.

You must set these attributes before you can add any node to a cluster:

- Set IP datagram forwarding to *YES by using the CHGTCPA (Change TCP/IP Attributes) command if you plan to use a System i product as the router to communicate with other networks and you have no other routing protocols running on that server.
- Set the INETD server to START. See "Starting the INETD server" for information about starting the INETD server.
- Set User Datagram Protocol (UDP) CHECKSUM to *YES using the CHGTCPA (Change TCP/IP Attributes) command.
- Set MCAST forwarding to *YES if you are using bridges to connect your token ring networks.
- If you are using OptiConnect for IBM i to communicate between cluster nodes, start the QSOC subsystem by specifying STRSBS(QSOC/QSOC).

Starting the INETD server:

The Internet Daemon (INETD) server must be started in order for a node to be added or started, as well as for merge partition processing.

It is recommended that the INETD server always be running in your cluster.

You can start the INETD server through IBM Navigator for i by completing the following steps:

1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.

- 2. Log on to the system with your user profile and password.
- 3. In the navigation tree, expand **i5/OS Management** and select **Network**.
- 4. On the Network page, select **TCP/IP Servers**. A list of available TCP/IP servers is displayed.
- 5. From the list, select **INETD**.

6. From the Select Action menu, select Start. The status of the server changes to Started.

Alternatively, you can start the INETD server by using the Start TCP/IP Server (STRTCPSVR) command and specifying the SERVER(*INETD) parameter. When the INETD server is started, a User QTCP (QTOGINTD) job is present in the Active Jobs list on the node.

Related reference:

STRTCPSVR (Start TCP/IP Server) command

Configuring clusters

Any i5/OS implementation of high availability requires a configured cluster to control and manage resilient resources. When used with other data resiliency technologies, such as switched disk, cross-site mirroring, or logical replication, cluster technology provides the key infrastructure that is necessary for high-availability solutions.

Cluster resource services provides a set of integrated services that maintain cluster topology, perform heartbeating monitorng, and allow creation and administration of cluster configuration and cluster resource groups. Cluster resource services also provides reliable messaging functions that keep track of each node in the cluster and ensures that all nodes have consistent information about the state of cluster resources. The Cluster Resource Service graphical user interface, which is part of the IBM PowerHA for i (iHASM) licensed program number (5770-HAS), allows you to configure and manage clusters within your high-availability solution. In addition, the licensed program also provides a set of control language (CL) commands that will allow you to work with cluster configurations.

There is also application program interfaces (APIs) and facilities that can be used by application providers or customers to enhance their application availability.

In addition to these IBM technologies, high availability business partners provide applications that use clusters with logical replication technology.

Creating a cluster:

To create a cluster, you need to include at least one node in the cluster and you must have access to at least one of the nodes that will be in the cluster.

If only one node is specified, it must be the system that you are currently accessing. For a complete list of requirements for creating clusters, see the "Planning checklist for clusters" on page 175.

If you will be using switchable devices in your cluster or by using cross-site mirroring technologies to configure a high-availability solution, there are additional requirements. See Scenarios: Configuring high availability solutions for several configuration examples of high-availability solutions which use these technologies. Each scenario provides step-by-step configuration tasks and an overview of outage coverage this solution provides. You can use these examples to configure your high-availability solution or customize them to suit your needs.

Use the following steps to create a cluster:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Welcome page, select New Cluster.
- 5. Follow the instructions in the New Cluster wizard to create the cluster.

After you create the new cluster, the Welcome page changes to display the name of the cluster at the top of the page. The Welcome page lists several tasks for working with clusters.

After you have created a cluster you need to add any additional nodes and create CRGs. **Related information**:

Create Cluster (CRTCLU) command Create Cluster (QcstCreateCluster) API

Enabling nodes to be added to a cluster:

Before you can add a node to a cluster, you need to set a value for the Allow add to cluster (ALWADDCLU) network attribute.

Use the **Change Network Attributes (CHGNETA)** command on any server that you want to set up as a cluster node. The **CHGNETA** command changes the network attributes of a system. The ALWADDCLU network attribute specifies whether a node allows another system to add it as a node in a cluster.

Note: You must have *IOSYSCFG authority to change the network attribute ALWADDCLU.

Possible values follow:

*SAME

The value does not change. The system is shipped with a value of *NONE.

*NONE

No other system can add this system as a node in a cluster.

*ANY Any other system can add this system as a node in a cluster.

***RQSAUT**

Any other system can add this system as a node in a cluster only after the cluster add request has been authenticated.

The ALWADDCLU network attribute is checked to see if the node that is being added is allowed to be part of the cluster and whether to validate the cluster request through the use of X.509 digital certificates. A *digital certificate* is a form of personal identification that can be verified electronically. If validation is required, the requesting node and the node that is being added must have the following installed on the systems:

- IBM i Option 34 (Digital Certificate Manager)
- IBM i Option 35 (CCA Cryptographic Service Provider)

When *RQSAUT is selected for the ALWADDCLU, the certificate authority trust list for the IBM i cluster security server application must be correctly set up. The server application identifier is QIBM_QCST_CLUSTER_SECURITY. At a minimum, add certificate authorities for those nodes that you allow to join the cluster.

Adding nodes:

The Cluster Resource Services graphical interface allows you to create a simple two-node cluster when you initially create the cluster. You can add additional nodes to the cluster in your IBM i high availability solution.

If you are creating a new cluster as part of a high availability solution you must add additional nodes through an active node in the cluster.

To add a node to an existing cluster, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.

- 4. On the **Cluster Resource Services** page, select the **Work with Cluster Nodes** task to show a list of nodes in the cluster.
- 5. On the **Nodes** tab, click the **Select Action** menu and select the **Add Node** action. The Add Node page is shown.
- 6. On the Add Node page, specify the information for the new node. Click **OK** to add the node. The new node appears in the list of nodes. A cluster can contain up to 128 nodes.

Starting nodes:

Starting a cluster node starts clustering and cluster resource services on a node in an IBM i high availability environment.

A node can start itself and is able to rejoin the current active cluster, provided it can find an active node in the cluster.

To start clustering on a node, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the **Nodes** tab, select the node you want to start.
- 5. Click the **Select Action** menu and select **Start**. When cluster resource services is successfully started on the node specified, the status of the node is set to Started.

Adding a node to a device domain:

A device domain is a subset of nodes in a cluster that shares device resources.

If you are implementing a high-availability solution that contains independent disk pools-based technologies, such as switched disk or cross-site mirroring, you must define the node as a member of a device domain. After you add the node to a device domain, you can create a device cluster resource group (CRG) that defines the recovery domain for the cluster. All nodes that will be in the recovery domain for a device CRG must be in the same device domain. A cluster node can belong to only one device domain.

To create and manage device domains, you must have i5/OS Option 41 (HA Switchable Resources) installed. A valid license key must exist on all cluster nodes in the device domain.

To add a node to a device domain, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select **Work with Cluster Nodes** task to show a list of nodes in the cluster.
- 5. On the Nodes tab, select the node that you want to add to the device domain.
- 6. From the Select Action menu, select the Properties.
- 7. On the **Clustering** tab, specify the name of the device domain to which you want to add the node in the **Device domain** field.

Creating cluster resource groups (CRGs):

Cluster resource groups (CRGs) manage high availability resources, such as applications, data, and devices. Each CRG type manages the particular type of resource in a high-availability environment.

The Cluster Resource Services graphical interface allows you to create different CRGs for management of your high availability resources. Each CRG type can be used separately or in conjunction with other CRGs. For example, you may have a stand-alone business application that requires high availability. After you have enabled the application for high availability, you can create CRGs to help manage availability for that application.

If you want only an application, not its data to be available in the event of an outage, you can create an application CRG. However, if you want to have both the data and application available, you can store both within an independent disk pool, which you can define in a device CRG. If an outage occurs, the entire independent disk pool is switched to a backup node, making both the application and its data available.

Creating application CRGs:

If you have applications in your high-availability solution that you want to be highly available, you can create an application cluster resource group (CRG) to manage failovers for that application.

You can specify to allow an active takeover IP address when you create the application CRG. When you start an application CRG that allows for an active takeover IP address, the CRG is allowed to start.

To create an application CRG, complete the following steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select **Work with Cluster Resource Groups** to show a list of cluster resource groups in the cluster.
- 5. On the Cluster Resource Group page, click the Select Action menu.
- 6. Select New Application CRG and click Go. The New Application CRG page is shown:
- 7. On the **General** page, specify the following information regarding the application CRG:
 - In the **Name** field, specify the name of the CRG. The name cannot exceed 10 characters.
- In the Takeover IP address field, specify the IP address that is to be associated with the application CRG. This value must be in IPv4 or IPv6 format. The takeover IP address allows access to the application without regard to which system the application is currently running on. The Configure Takeover IP address field determines whether the user or Cluster Resource Services is responsible for creating the IP address.
 - In the **Description** field, enter a description of the CRG. The description cannot exceed 50 characters.
 - Select **Allow restart** and indicate the number of restart attempts for the application CRG. These values determine the number of attempts to restart the application on the same node before a failover to the backup node occurs.
 - In the **Configure takeover IP address** field, select whether you want Cluster Resource Services or a user to configure and manage takeover IP address for application CRGs. Possible values are:

Cluster Resource Services

If you specify this value, the takeover IP address must not exist on any of the nodes in the recovery domain before creating the CRG. It is created for you on all recovery domain nodes. If the IP address exists, then the creation of the application CRG will fail.

- **User** If you specify this value, you must add the takeover IP address on all primary and backup nodes that are defined in the recovery domain before you can start the CRG.
- Select **Allow active takeover IP address** to allow a takeover IP address to be active when it is assigned to an application CRG. This field is only valid when the Configure takeover IP address field is set to Cluster Resource Services.

• In the **Distributed information user queue** field indicate the name of the user queue to receive distributed information. The name cannot exceed 10 characters. In the **Library** field specify the name of the library that contains the user queue to receive the distributed information. The library name cannot be *CURLIB, QTEMP, or *LIBL. The name cannot exceed 10 characters.

Note: If you set the Distribute information user queue to blank, you must also set the Library name to blank, the Failover wait time to 0, and the Failover default action to 0.

- In the **Failover message queue** field, specify the name of the message queue to receive messages when a failover occurs for this cluster resource group. If this field is set, the specified message queue must exist on all nodes in the recovery domain after the exit program is completed. The failover message queue cannot be in an independent disk pool. In the **Library** field, specify the name of the library that contains the message queue to receive the failover message. The library name cannot be *CURLIB, QTEMP, or *LIBL.
- In the **Failover wait time** field, specify the number of minutes to wait for a reply to the failover message on the cluster message queue. Possible values include:

Do not wait

Failover proceeds without user intervention.

Wait forever

Failover waits forever until a response is received to the failover inquiry message.

number

Specify the number of minutes to wait for a response to the failover inquiry message. If a response is not received in the specified number of minutes, the value in the Failover default action field specifies how to proceed.

- In the **Failover Default Action** field, specify what clustering should do when a response to the failover message on the cluster message queue is not received in the failover wait time limit. You can set this field to **Proceed with failover** or to **Cancel failover**.
- **8**. On the **Exit Program** page, you can specify the information for a CRG exit program. Exit programs are required all CRG types except for device CRGs. Exit programs are called after a cluster-related event for a CRG occurs and responds to that event.
- **9**. On the **Recovery Domain** page, add nodes to the recovery domain and specify their role within the cluster.

Creating data CRGs:

Data cluster resource groups (CRGs) are primarily used with logical replication applications, which are provided by several high availability business partners. If you are implementing a high-availability solution based on logical replication you can create a data CRG to assist the replication of data between primary and backup nodes.

To create a data CRG, complete the following steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select **Work with Cluster Resource Groups** to show a list of cluster resource groups in the cluster.
- 5. On the Cluster Resource Group page, click the Select Action menu.
- 6. Select New Data CRG and click Go. The New Data CRG page displays.
- 7. On the General page, specify the following information regarding the data CRG:
 - In the **Name** field, specify the name of the CRG. The name cannot exceed 10 characters.
 - In the **Description** field, enter a description of the CRG. The description cannot exceed 50 characters.

• In the **Distributed information user queue** field indicate the name of the user queue to receive distributed information. The name cannot exceed 10 characters. In the **Library** field specify the name of the library that contains the user queue to receive the distributed information. The library name cannot be *CURLIB, QTEMP, or *LIBL. The name cannot exceed 10 characters.

Note: If you set the Distribute information user queue to blank, you must also set the Library name to blank, the Failover wait time to 0, and the Failover default action to 0.

- In the **Failover message queue** field, specify the name of the message queue to receive messages when a failover occurs for this cluster resource group. If this field is set, the specified message queue must exist on all nodes in the recovery domain after the exit program is completed. The failover message queue cannot be in an independent disk pool. In the **Library** field, specify the name of the library that contains the message queue to receive the failover message. The library name cannot be *CURLIB, QTEMP, or *LIBL.
- In the **Failover wait time** field, specify the number of minutes to wait for a reply to the failover message on the cluster message queue. Possible values include:

Do not wait

Failover proceeds without user intervention.

Wait forever

Failover waits forever until a response is received to the failover inquiry message.

number

Specify the number of minutes to wait for a response to the failover inquiry message. If a response is not received in the specified number of minutes, the value in the Failover default action field specifies how to proceed.

- **8**. On the **Exit Program** page, you can specify the information for a CRG exit program. Exit programs are required all CRG types except for device CRGs. Exit programs are called after a cluster-related event for a CRG occurs and responds to that event.
- 9. On the **Recovery Domain** page, add nodes to the recovery domain and specify their role within the cluster.

Creating device CRGs:

A device cluster resource group (CRG) is made up of a pool of hardware resources that can be switched as an entity. To create switchable devices within a high-availability solution, the nodes that use these devices need to be a part of a device CRG.

Prior to creating a device CRG, add all nodes that will share a switchable resource to a device domain.

To create a device CRG, complete the following steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select **Work with Cluster Resource Groups** to show a list of cluster resource groups in the cluster.
- 5. On the Cluster Resource Group page, click the **Select Action** menu.
- 6. Select **New Device CRG** and click **Go**. The **New Device CRG** wizard is shown. The **New Device CRG** task is only available if all the nodes in the recovery domain are started.
- 7. Follow the instructions in the **New Device CRG** wizard to create the new device CRG. While running this wizard, you can create a new device CRG. You can also create either a new independent disk pool or specify an existing disk pool to use.

The device CRG keeps the hardware resource information identical on all recovery domain nodes and verifies that the resource names are identical. You can also configure a cluster administrative domain to keep the enrolled attributes of the configuration objects, which might include resource names,

identical across the cluster administrative domain. If you are using cross-site mirroring, you should create separate device CRGs for independent disk pools and other types of switchable devices at each site.

Creating peer CRGs:

You can create a peer CRG to define node roles in load-balancing environments.

To create a peer CRG in a cluster, complete the following steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select **Work with Cluster Resource Groups** to show a list of cluster resource groups in the cluster.
- 5. On the Cluster Resource Group page, click the **Select Action** menu.
- 6. Select New Peer CRG and click Go. The New Peer CRG page is shown.
- 7. On the General page, specify the following information regarding the peer CRG:
 - In the **Name** field, specify the name of the CRG. The name cannot exceed 10 characters.
 - In the **Description** field, enter a description of the CRG. The description cannot exceed 50 characters.
 - In the **Application ID** field, specify the application identifier for the peer cluster resource groups in the format [*VendorName*].[*ApplicationName*]. For example, MyCompany.MyApplication. The identifier cannot exceed 50 characters.
- **8**. On the **Exit Program** page, you can specify the information for a CRG exit program. Exit programs are required all CRG types except for device CRGs. Exit programs are called after a cluster-related event for a CRG occurs and responds to that event.
- **9**. On the **Recovery Domain** page, add nodes to the recovery domain and specify their role within the cluster.

Starting a CRG:

Starting a cluster resource group (CRG) activates clustering within your IBM i high availability environment.

To start a CRG, complete the following tasks:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select **Work with Cluster Resource Groups** to show a list of cluster resource groups in the cluster.
- 5. On the Cluster Resource Group tab, select the name of the CRG that you want to start.
- 6. From the Select Action menu, select Start. The Status column shows that the CRG is started.

Related information:

Start Cluster Resource Group (STRCRG) command

Create Cluster Resource Group (QcstCreateClusterResourceGroup) API

Specifying message queues

You can either specify a cluster message queue or a failover message queue. These message queues help you determine causes of failures in your i5/OS high availability environment.

A cluster message queue is used for cluster-level messages and provides one message which controls all cluster resource groups (CRGs) failing over to a specific node. A failover message queue is used for CRG-level messages and provides one message for each CRG that is failing over.

Specifying a cluster message queue

Note: You can also configure a cluster to use a cluster message queue by specifying the message queue while running the Create Cluster wizard.

To specify a cluster message queue, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, click **Display Cluster Properties**.
- 5. On the Cluster Properties page, click **Cluster Message Queue**.
- 6. Specify the following information to create a cluster message queue:
 - In the **Name** field, specify the name of the message queue to receive messages that deal with a failover at a cluster or node level. For node-level failovers, one message is sent that controls the failover of all cluster resource groups with the same new primary node. If a cluster resource group is failing over individually, one message is sent that controls the failover of that cluster resource group. The message is sent on the new primary node. If this field is set, the specified message queue must exist on all nodes in the cluster when they are started. The message queue cannot be in an independent disk pool.
 - In the **Library** field, specify the name of the library that contains the message queue to receive the failover message. The library name cannot be *CURLIB, QTEMP, *LIBL, *USRLIBL, *ALL, or *ALLUSR.
 - In Failover wait time field, select either Do not wait or Wait forever, or specify the number of minutes to wait for a reply to the failover message on the cluster message queue.
 - In the Failover default action field, specify the action that Cluster Resource Services takes when the response to the failover message has exceeded the failover wait time value. You can set this field to Proceed with failover or to Cancel failover.

Specifying a failover message queue

To specify a failover message queue, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from your IBM Systems Director Navigator for i5/OS window.
- 4. On the Cluster Resource Services page, select **Work with Cluster Resource Groups** to show a list of cluster resource groups in the cluster.
- 5. From the list of cluster resource groups, select the cluster resource group with which you want to work.
- 6. On the Cluster Resource Group page, click the Select Action menu and select Properties.
- 7. On the General page, specify the following values to specify a failover message queue:
 - In the **Failover message queue** field, specify the name of the message queue to receive messages when a failover occurs for this cluster resource group. If this field is set, the specified message queue must exist on all nodes in the recovery domain after the exit program is completed. The failover message queue cannot be in an independent disk pool.
 - In the **Library** field, specify the name of the library that contains the message queue to receive the failover message. The library name cannot be *CURLIB, QTEMP, or *LIBL.

• In the **Failover wait time** field, specify the number of minutes to wait for a reply to the failover message on the failover message queue. You can also specify the action that Cluster Resource Services takes when a response to the failover message exceeds the specified failover wait time.

Performing switchovers

Switchovers can be performed to test the high availability solution or to handle a planned outages for the primary node, such as a backup operation or scheduled system maintenance.

Performing a manual switchover causes the current primary node to switch over to the backup node. The recovery domain of the cluster resource group defines these roles. When a switchover occurs, the roles of the nodes currently defined in the recovery domain change such that:

- The current primary node is assigned the role of last active backup.
- The current first backup is assigned the role of primary node.
- Subsequent backups are moved up one in the order of backups.

A switchover is only allowed on application, data, and device CRGs that have a status of Active.

Note: If you are performing a switchover on a device CRG, you should synchronize the user profile name, UID, and GID for performance reasons. Cluster administrative domain simplifies synchronization of user profiles.

To perform a switchover on a resource, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select **Cluster Resource Services** from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select **Work with Cluster Resource Groups** to show a list of cluster resource groups in the cluster.
- 5. Select the CRG on which you want to perform a switchover. You can select application CRGs, data CRGs, or device CRGs to perform switchovers.
- 6. From the Select Action menu, select Switch.
- 7. Select Yes on the confirmation panel.

The selected cluster resource group is now switched to the backup node. The Status column is updated with the new node name.

Related concepts:

Cluster administrative domain

Related tasks:

"Configuring cluster administrative domains" on page 211

In a high-availability environment, it is necessary that the application and operational environment remain consistent among the nodes that participate in high availability. Cluster administrative domain is the i5/OS implementation of environment resiliency and ensures that the operational environment remains the consistent across nodes.

Related information:

Change Cluster Resource Group Primary (CHGCRGPRI) command

Initiate Switchover (QcstInitiateSwitchOver) API

Configuring nodes

Nodes are systems or logical partitions that are participating in an i5/OS high availability solution.

There are several tasks related to node configuration. When you use the Create Cluster wizard, you can configure a simple two-node cluster. You can add can add additional nodes up to a total of 128. Depending on the technologies that comprise your high-availability solution, additional node configuration tasks might be required.

Starting nodes:

Starting a cluster node starts clustering and cluster resource services on a node in an IBM i high availability environment.

A node can start itself and is able to rejoin the current active cluster, provided it can find an active node in the cluster.

To start clustering on a node, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the **Nodes** tab, select the node you want to start.
- 5. Click the **Select Action** menu and select **Start**. When cluster resource services is successfully started on the node specified, the status of the node is set to Started.

Related information:

Start Cluster Node (STRCLUNOD)) command Start Cluster Node (QcstStartClusterNode) API

Enabling nodes to be added to a cluster:

Before you can add a node to a cluster, you need to set a value for the Allow add to cluster (ALWADDCLU) network attribute.

Use the **Change Network Attributes (CHGNETA)** command on any server that you want to set up as a cluster node. The **CHGNETA** command changes the network attributes of a system. The ALWADDCLU network attribute specifies whether a node allows another system to add it as a node in a cluster.

Note: You must have *IOSYSCFG authority to change the network attribute ALWADDCLU.

Possible values follow:

*SAME

The value does not change. The system is shipped with a value of *NONE.

*NONE

No other system can add this system as a node in a cluster.

*ANY Any other system can add this system as a node in a cluster.

***RQSAUT**

Any other system can add this system as a node in a cluster only after the cluster add request has been authenticated.

The ALWADDCLU network attribute is checked to see if the node that is being added is allowed to be part of the cluster and whether to validate the cluster request through the use of X.509 digital certificates. A *digital certificate* is a form of personal identification that can be verified electronically. If validation is required, the requesting node and the node that is being added must have the following installed on the systems:

- IBM i Option 34 (Digital Certificate Manager)
- IBM i Option 35 (CCA Cryptographic Service Provider)

When *RQSAUT is selected for the ALWADDCLU, the certificate authority trust list for the IBM i cluster security server application must be correctly set up. The server application identifier is QIBM_QCST_CLUSTER_SECURITY. At a minimum, add certificate authorities for those nodes that you allow to join the cluster.

Adding nodes:

The Cluster Resource Services graphical interface allows you to create a simple two-node cluster when you initially create the cluster. You can add additional nodes to the cluster in your IBM i high availability solution.

If you are creating a new cluster as part of a high availability solution you must add additional nodes through an active node in the cluster.

To add a node to an existing cluster, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the **Cluster Resource Services** page, select the **Work with Cluster Nodes** task to show a list of nodes in the cluster.
- 5. On the **Nodes** tab, click the **Select Action** menu and select the **Add Node** action. The Add Node page is shown.
- 6. On the Add Node page, specify the information for the new node. Click **OK** to add the node. The new node appears in the list of nodes. A cluster can contain up to 128 nodes.

Related information:

Add Cluster Node Entry (ADDCLUNODE) command Add Cluster Node Entry (QcstAddClusterNodeEntry) API

Adding a node to a device domain:

A device domain is a subset of nodes in a cluster that shares device resources.

If you are implementing a high-availability solution that contains independent disk pools-based technologies, such as switched disk or cross-site mirroring, you must define the node as a member of a device domain. After you add the node to a device domain, you can create a device cluster resource group (CRG) that defines the recovery domain for the cluster. All nodes that will be in the recovery domain for a device CRG must be in the same device domain. A cluster node can belong to only one device domain.

To create and manage device domains, you must have i5/OS Option 41 (HA Switchable Resources) installed. A valid license key must exist on all cluster nodes in the device domain.

To add a node to a device domain, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select **Work with Cluster Nodes** task to show a list of nodes in the cluster.
- 5. On the Nodes tab, select the node that you want to add to the device domain.
- 6. From the Select Action menu, select the Properties.
- 7. On the **Clustering** tab, specify the name of the device domain to which you want to add the node in the **Device domain** field.

Related information:

Add Device Domain Entry (ADDDEVDMNE) command Add Device Domain Entry (QcstAddDeviceDomainEntry) API

Configuring advanced node failure detection

Advanced node failure detection can be used to prevent cluster partitions when a cluster node has

 actually failed. A Hardware Management Console (HMC) or Virtual I/O Server (VIOS) partition can be used.

I

I

In this example, a HMC is being used to manage two different IBM systems. For example, the HMC can
power up each system or configure logical partitions on each system. In addition, the HMC is monitoring
the state of each system and logical partitions on each system. Assume that each system is a cluster node

I and cluster resource services is monitoring a heartbeat between the two cluster nodes.

With the advanced node failure detection function, cluster resource services can be configured to make
use of the HMC. For example, Node A can be configured to have a cluster monitor that uses the HMC.
Whenever HMC detects that Node B fails (either the system or the logical partition for Node B), it
notifies cluster resource services on Node A of the failure. Cluster resource services on Node A then
marks Node B as failed and perform failover processing rather than partitioning the cluster.

Likewise, Node B can also be configured to have a cluster monitor. In this example, then, a failure of
 either Node A or Node B would result in a notification from the HMC to the other node.

For advanced node failure detection, follow these steps:

- Configure the HMC with CIM server, HMC with REST server or VIOS . If you are using HMC with the REST server, skip to step 10.
- 2. The *CIMOM TCP server must be configured and started on each cluster node that has a cluster monitor configured on it. The default configuration of the *CIMOM server that is provided by the installation of the 5770-UME LP must be changed so that the IBM i system can communicate with the CIM server. In order to do that, two configuration attributes that control security aspects need to be changed by running the cimconfig command within a PASE shell.
- 3. Start the server from the command line with STRTCPSVR *CIMOM

- 4. Start a PASE shell from the command line with CALL QP2TERM
- 5. Enter /QOpenSys/QIBM/ProdData/UME/Pegasus/bin/cimconfig -s enableAuthentication=false -p
 See Authentication on CIMON for more information about enableAuthentication attribute.
- Enter /QOpenSys/QIBM/ProdData/UME/Pegasus/bin/cimconfig -s sslClientVerificationMode=optional -p See Authentication on CIMOM for more information about sslClientVerificationMode attribute.
- 7. End the PASE shell by pressing F3.

Т

- 8. End the *CIMOM server with ENDTCPSVR *CIMOM .
- 9. Restart the *CIMOM server from the command line with STRTCPSVR *CIMOM.
- 10. A digital certificate file from the HMC or VIOS partition must be copied to the cluster node and added to a truststore. The digital certificates are self signed by the HMC or VIOS partition. Installing a new version of software on the HMC or VIOS partition may generate a new certificate which will then cause communication between the HMC or VIOS partition and the cluster node to fail (you will see error CPFBBCB with error code 4). If this occurs, add the digital certificate to the truststore on the nodes which have that HMC or VIOS partition configured in a cluster monitor.
- 11. To perform the cluster configuration steps, you may use either use the command line interface, Add Cluster Monitor (ADDCLUMON) command or a web browser. The Add Cluster Monitor command, must be used if you want to use the representational state transfer (REST) server. The PowerHA graphical interface only supports the Common Informational Model (CIM) server for the cluster monitor. Should you choose the latter, perform the steps below:
 - a. Enter *http://mysystem:2001*, where *mysystem* is the host name of the system.
- b. Log on to the system with your user profile and password.
- a. Select **PowerHA** from the IBM System Director Navigator for i window.
- b. Select **Work with Cluster Node**s.
- **c**. Select the pop-up menu for a node.
- d. Select Properties.
- e. Select Monitors.
- f. Select Action: Add Cluster Monitor.
- g. Enter correct CIM server host name, user ID, and password.
- h. Press OK.

Configuring advanced node failure detection on hardware management console (HMC) with CIM server:

A Hardware Management Console (HMC) can be used with advance node failure detection to prevent cluster
 partitions when a cluster node has actually failed.

| For HMC setup, follow these steps:

- 1. Follow these steps when your HMC level is V8R8.5.0 or less.
- 2. Ensure the *CIMOM TCP server is running on your IBM i. You can look for the QUMECIMOM job
 within the QSYSWRK subsystem to see whether it is running. If the job is not running, you can start
 it with the command STRTCPSVR *CIMOM
- 3. Ensure the *SSHD TCP server is running on your IBM i. (on the green screen command entry display: STRTCPSVR *SSHD). In order to start the *SSHD server, you need to ensure that the QSHRMEMC system value is set to 1.
- 4. You must use the physical monitor and keyboard attached to your HMC. You cannot telnet or use a web interface to the HMC
- 5. Open a restricted shell by right-clicking on the desktop, then select terminals/xterm.
- 6. You will get a new shell window on the desk top in which you can enter commands.

- 7. In the next step you, will be using the secure copy command on the HMC. However, you must have a home directory associated with your profile on the IBM i. For example, if you use QSECOFR as the Т profile name on the scp command, you will need to have a /home/QSECOFR directory created in the integrated file system on the IBM i.
- 8. Use the secure copy command to copy a file to your IBM i cluster node. (scp /etc/Pegasus/ server.pem QSECOFR@LP0236A:/server_name.pem) In the above command, change LP0236A to the name of your IBM i system name and change the server_name.pem to hmc_name.pem. For example, L name the file myhmc.pem.
- 9. Sign off the HMC

T

L

L

I

I

I

L

- 10. Sign on your IBM i system and bring up a green screen command entry display L
- 11. Enter the PASE shell environment. (on the green screen command entry display: call qp2term)
- 12. Move the HMC digital certificate (mv /myhmc.pem /QOpenSys/QIBM/UserData/UME/Pegasus/ I ssl/truststore/myhmc.pem (in the above, replace the name, myhmc.pem, with your specific file I L name)
- 13. Add the digital certificate to the truststore (/QOpenSys/QIBM/ProdData/UME/Pegasus/bin/ T cimtrust -a -U QSECOFR -f /QOpenSys/QIBM/UserData/UME/Pegasus/ssl/truststore/ L myhmc.pem -T s) I
- 14. In the above, replace the name, myhmc.pem, with your specific file name. Т
- 15. Exit the PASE shell by pressing F3. T
- 16. End the CIM server. On the green screen command entry display: ENDTCPSVR *CIMOM. T
- 17. Restart the CIM server to pick up the new certificate. (on the green screen command entry display: Т L STRTCPSVR *CIMOM

Configuring advanced node failure detection on hardware management console (HMC) with REST L server:

A Hardware Management Console (HMC) can be used with advance node failure detection to prevent cluster partitions when a cluster node has actually failed.

HMC with a representational state transfer (REST) server requires HMC version V8R8.5.0 or greater.

For HMC setup, follow these steps:

- 1. Enter the PASE shell environment. On the green screen command entry display enter call qp2term. L
- 2. Get the HMC certificate, by issuing L
- echo -n | openssl s client -connect hmc-name:443 | sed -ne '/-BEGIN CERTIFICATE-/,/-END I Т CERTIFICATE-/p' > hmc-name.cert
- Replace hmc-name with the actual name of your HMC. This copies the certificate into a file named I hmc-name.cert in your current directory. T
- L 3. In a web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 4. Log on to the system with your user profile and password. T
- 5. Click Internet Configurations from the IBM Navigator for i window. T
- 6. On the Internet Configurations page, click Digital Certificate Manager. You need to enter your user T T profile and password on the window that pops up.
- T 7. On the Digital Certificate Manager page, click Create New Certificate Store.
- 8. On the page that appears, you should have an option for ***SYSTEM**. Make sure that the button is L selected and click Continue. I
- I Note: If the *SYSTEM option is not there, you already have a *SYSTEM store created. Skip forward to step 11. I
- L 9. Select No - Do not create a certificate in the certificate store.

- 10. Create a password for the *SYSTEM store and click Continue. The password is case-sensitive. Most special characters work (sometimes there are problems with the @ symbol). It is recommended that you do not use special characters. The password is not tied to a user profile, so it will not lock you out of the system after too many retries if you forget it.
- 11. You have successfully create the *SYSTEM store. Now that the *SYSTEM store is created, you need to click OK and then click Select a Certificate Store. Select the newly created *SYSTEM option, and click continue.
- 12. Sign in with your new password and click **Continue**.
- 13. Click Manage Certificates.
- 14. Select **Import certificate** and click **Continue**.
- 15. Select Certificate Authority (CA) and click Continue.
- 16. Enter the path name of the certificate you want to import. For example, the path and file name may be /hmc-name.cert. Click **Continue**.

Configuring virtual I/O server (VIOS):

A Virtual I/O Server (VIOS) can be used with advance node failure detection to prevent cluster partitions when a
 cluster node has actually failed.

| The representational state transfer (REST) server is not supported by IVM.

| For a VIOS partition, follow these steps:

- Ensure the *SSHD TCP server is running on your IBM i. On the green screen command line enter: STRTCPSVR *SSHD.
- 2. Telnet to and sign on to the VIOS partition.
- **3**. Change to a non restricted shell by entering oem_setup_env
- 4. Use the secure copy command to copy a file to your IBM i cluster node. For example, /usr/bin/scp /opt/freeware/cimom/pegasus/etc/cert.pem QSECOFR@system-name:/server.pem. Change system-name to the IBM i system name. Change server.pem to vios-name.pem.
- 5. Start the CIMOM server running in the VIOS partition by entering **startnetsvc cimserver**.
- 6. Sign off the VIOS partition.
- 7. On the IBM i system, sign on to a green screen command line.
- 8. Enter the PASE shell environment. On the green screen command line, enter call qp2term.
- 9. Move the HMC digital certificate, enter mv /vios1.pem /QOpenSys/QIBM/UserData/UME/Pegasus/ ssl/truststore/vios1.pem. Replace vios1.pem, with your specific file name.
- 10. Add the digital certificate to the truststore, enter /QOpenSys/QIBM/ProdData/UME/Pegasus/bin/ cimtrust -a -U QSECOFR -f vios1.pem -T s. Replace the vios1.pem name, with your specific file name.
- | 11. Exit the PASE shell by pressing F3.
- 12. End the CIMOM server. On the green screen command line, enter ENDTCPSVR *CIMOM.
- 13. Restart the CIMOM server to pick up the new certificate. On the green screen command line, enter STRTCPSVR *CIMOM.

Configuring CRGs

Cluster resource groups (CRGs) manage resources within an i5/OS high availability environment. Several task enable the management of high availability resources through CRGs.

Starting a CRG:

Starting a cluster resource group (CRG) activates clustering within your IBM i high availability environment.

To start a CRG, complete the following tasks:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select **Work with Cluster Resource Groups** to show a list of cluster resource groups in the cluster.
- 5. On the Cluster Resource Group tab, select the name of the CRG that you want to start.
- 6. From the Select Action menu, select Start. The Status column shows that the CRG is started.

Related information:

Start Cluster Resource Group (STRCRG) command Create Cluster Resource Group (QcstCreateClusterResourceGroup) API

Creating cluster resource groups (CRGs):

Cluster resource groups (CRGs) manage high availability resources, such as applications, data, and devices. Each CRG type manages the particular type of resource in a high-availability environment.

The Cluster Resource Services graphical interface allows you to create different CRGs for management of your high availability resources. Each CRG type can be used separately or in conjunction with other CRGs. For example, you may have a stand-alone business application that requires high availability. After you have enabled the application for high availability, you can create CRGs to help manage availability for that application.

If you want only an application, not its data to be available in the event of an outage, you can create an application CRG. However, if you want to have both the data and application available, you can store both within an independent disk pool, which you can define in a device CRG. If an outage occurs, the entire independent disk pool is switched to a backup node, making both the application and its data available.

Creating application CRGs:

If you have applications in your high-availability solution that you want to be highly available, you can create an application cluster resource group (CRG) to manage failovers for that application.

You can specify to allow an active takeover IP address when you create the application CRG. When you start an application CRG that allows for an active takeover IP address, the CRG is allowed to start.

To create an application CRG, complete the following steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select **Work with Cluster Resource Groups** to show a list of cluster resource groups in the cluster.
- 5. On the Cluster Resource Group page, click the Select Action menu.
- 6. Select New Application CRG and click Go. The New Application CRG page is shown:
- 7. On the General page, specify the following information regarding the application CRG:
 - In the **Name** field, specify the name of the CRG. The name cannot exceed 10 characters.
- In the **Takeover IP address** field, specify the IP address that is to be associated with the application CRG. This value must be in IPv4 or IPv6 format. The takeover IP address allows access to the application without regard to which system the application is currently running on. The **Configure**
- application without regard to which system the application is currently running on. The Configure
 Takeover IP address field determines whether the user or Cluster Resource Services is responsible
- for creating the IP address.

- In the **Description** field, enter a description of the CRG. The description cannot exceed 50 characters.
- Select **Allow restart** and indicate the number of restart attempts for the application CRG. These values determine the number of attempts to restart the application on the same node before a failover to the backup node occurs.
- In the **Configure takeover IP address** field, select whether you want Cluster Resource Services or a user to configure and manage takeover IP address for application CRGs. Possible values are:

Cluster Resource Services

If you specify this value, the takeover IP address must not exist on any of the nodes in the recovery domain before creating the CRG. It is created for you on all recovery domain nodes. If the IP address exists, then the creation of the application CRG will fail.

- **User** If you specify this value, you must add the takeover IP address on all primary and backup nodes that are defined in the recovery domain before you can start the CRG.
- Select **Allow active takeover IP address** to allow a takeover IP address to be active when it is assigned to an application CRG. This field is only valid when the Configure takeover IP address field is set to Cluster Resource Services.
- In the **Distributed information user queue** field indicate the name of the user queue to receive distributed information. The name cannot exceed 10 characters. In the **Library** field specify the name of the library that contains the user queue to receive the distributed information. The library name cannot be *CURLIB, QTEMP, or *LIBL. The name cannot exceed 10 characters.

Note: If you set the Distribute information user queue to blank, you must also set the Library name to blank, the Failover wait time to 0, and the Failover default action to 0.

- In the **Failover message queue** field, specify the name of the message queue to receive messages when a failover occurs for this cluster resource group. If this field is set, the specified message queue must exist on all nodes in the recovery domain after the exit program is completed. The failover message queue cannot be in an independent disk pool. In the **Library** field, specify the name of the library that contains the message queue to receive the failover message. The library name cannot be *CURLIB, QTEMP, or *LIBL.
- In the **Failover wait time** field, specify the number of minutes to wait for a reply to the failover message on the cluster message queue. Possible values include:

Do not wait

Failover proceeds without user intervention.

Wait forever

Failover waits forever until a response is received to the failover inquiry message.

number

Specify the number of minutes to wait for a response to the failover inquiry message. If a response is not received in the specified number of minutes, the value in the Failover default action field specifies how to proceed.

- In the **Failover Default Action** field, specify what clustering should do when a response to the failover message on the cluster message queue is not received in the failover wait time limit. You can set this field to **Proceed with failover** or to **Cancel failover**.
- **8**. On the **Exit Program** page, you can specify the information for a CRG exit program. Exit programs are required all CRG types except for device CRGs. Exit programs are called after a cluster-related event for a CRG occurs and responds to that event.
- **9**. On the **Recovery Domain** page, add nodes to the recovery domain and specify their role within the cluster.

Related information:

Create Cluster Resource Group (CRTCRG) command

Create Cluster Resource Group (QcstCreateClusterResourceGroup) API

Creating data CRGs:

Data cluster resource groups (CRGs) are primarily used with logical replication applications, which are provided by several high availability business partners. If you are implementing a high-availability solution based on logical replication you can create a data CRG to assist the replication of data between primary and backup nodes.

To create a data CRG, complete the following steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select **Cluster Resource Services** from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select **Work with Cluster Resource Groups** to show a list of cluster resource groups in the cluster.
- 5. On the Cluster Resource Group page, click the Select Action menu.
- 6. Select New Data CRG and click Go. The New Data CRG page displays.
- 7. On the General page, specify the following information regarding the data CRG:
 - In the Name field, specify the name of the CRG. The name cannot exceed 10 characters.
 - In the **Description** field, enter a description of the CRG. The description cannot exceed 50 characters.
 - In the **Distributed information user queue** field indicate the name of the user queue to receive distributed information. The name cannot exceed 10 characters. In the **Library** field specify the name of the library that contains the user queue to receive the distributed information. The library name cannot be *CURLIB, QTEMP, or *LIBL. The name cannot exceed 10 characters.

Note: If you set the Distribute information user queue to blank, you must also set the Library name to blank, the Failover wait time to 0, and the Failover default action to 0.

- In the **Failover message queue** field, specify the name of the message queue to receive messages when a failover occurs for this cluster resource group. If this field is set, the specified message queue must exist on all nodes in the recovery domain after the exit program is completed. The failover message queue cannot be in an independent disk pool. In the **Library** field, specify the name of the library that contains the message queue to receive the failover message. The library name cannot be *CURLIB, QTEMP, or *LIBL.
- In the **Failover wait time** field, specify the number of minutes to wait for a reply to the failover message on the cluster message queue. Possible values include:

Do not wait

Failover proceeds without user intervention.

Wait forever

Failover waits forever until a response is received to the failover inquiry message.

number

Specify the number of minutes to wait for a response to the failover inquiry message. If a response is not received in the specified number of minutes, the value in the Failover default action field specifies how to proceed.

- **8**. On the **Exit Program** page, you can specify the information for a CRG exit program. Exit programs are required all CRG types except for device CRGs. Exit programs are called after a cluster-related event for a CRG occurs and responds to that event.
- **9**. On the **Recovery Domain** page, add nodes to the recovery domain and specify their role within the cluster.

Related information:

Create Cluster Resource Group (CRTCRG) command

Create Cluster Resource Group (QcstCreateClusterResourceGroup) API

Creating device CRGs:

A device cluster resource group (CRG) is made up of a pool of hardware resources that can be switched as an entity. To create switchable devices within a high-availability solution, the nodes that use these devices need to be a part of a device CRG.

Prior to creating a device CRG, add all nodes that will share a switchable resource to a device domain.

To create a device CRG, complete the following steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select **Work with Cluster Resource Groups** to show a list of cluster resource groups in the cluster.
- 5. On the Cluster Resource Group page, click the **Select Action** menu.
- 6. Select **New Device CRG** and click **Go**. The **New Device CRG** wizard is shown. The **New Device CRG** task is only available if all the nodes in the recovery domain are started.
- 7. Follow the instructions in the **New Device CRG** wizard to create the new device CRG. While running this wizard, you can create a new device CRG. You can also create either a new independent disk pool or specify an existing disk pool to use.

The device CRG keeps the hardware resource information identical on all recovery domain nodes and verifies that the resource names are identical. You can also configure a cluster administrative domain to keep the enrolled attributes of the configuration objects, which might include resource names, identical across the cluster administrative domain. If you are using cross-site mirroring, you should create separate device CRGs for independent disk pools and other types of switchable devices at each site.

Related information:

Create Cluster Resource Group (CRTCRG) command Create Cluster Resource Group (QcstCreateClusterResourceGroup) API

Creating peer CRGs:

You can create a peer CRG to define node roles in load-balancing environments.

To create a peer CRG in a cluster, complete the following steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select **Work with Cluster Resource Groups** to show a list of cluster resource groups in the cluster.
- 5. On the Cluster Resource Group page, click the **Select Action** menu.
- 6. Select New Peer CRG and click Go. The New Peer CRG page is shown.
- 7. On the **General** page, specify the following information regarding the peer CRG:
 - In the Name field, specify the name of the CRG. The name cannot exceed 10 characters.
 - In the **Description** field, enter a description of the CRG. The description cannot exceed 50 characters.
 - In the **Application ID** field, specify the application identifier for the peer cluster resource groups in the format [*VendorName*].[*ApplicationName*]. For example, MyCompany.MyApplication. The identifier cannot exceed 50 characters.

- **8**. On the **Exit Program** page, you can specify the information for a CRG exit program. Exit programs are required all CRG types except for device CRGs. Exit programs are called after a cluster-related event for a CRG occurs and responds to that event.
- 9. On the **Recovery Domain** page, add nodes to the recovery domain and specify their role within the cluster.

Related information:

Create Cluster Resource Group (CRTCRG) command

Create Cluster Resource Group (QcstCreateClusterResourceGroup) API

Configuring cluster administrative domains

In a high-availability environment, it is necessary that the application and operational environment remain consistent among the nodes that participate in high availability. Cluster administrative domain is the i5/OS implementation of environment resiliency and ensures that the operational environment remains the consistent across nodes.

Creating a cluster administrative domain:

In a high-availability solution, the cluster administrative domain provides the mechanism that keeps resources synchronized across systems and partitions within a cluster.

To create the cluster administrative domain, a user must have *IOSYSCFG authority and authority to the QCLUSTER user profile. To manage a cluster administrative domain, a user must be authorized to the CRG that represents the cluster administrative domain, the QCLUSTER user profile, and cluster resource group commands.

To create a cluster administrative domain, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, click **Work with Administrative Domains** to list cluster administrative domains in the cluster. If no cluster administrative domains have been configured, this list is empty.
- 5. On the Administrative Domain tab, select New Administrative Domain.
- **6**. In the New Administrative Domain page, specify the following information on the cluster administrative domain:
 - In the **Name** field, enter the name of the cluster administrative domain. The name cannot exceed 10 characters.
 - The **Cluster** field displays the name of the cluster. You cannot change the value of this field.
 - In the **Synchronization option** field, specify the synchronization behavior when a node joins a cluster administrative domain. This field is enabled only if the cluster is at version 6 or greater. Possible values follow:

Last Change Option (default)

Select this option if all changes to monitored resources should be applied to a cluster administrative domain. The most recent change that is made to a monitored resource is applied to the resource on all active nodes.

Active Domain Option

Select this option if only changes to monitored resources are allowed from active nodes. Changes made to monitored resources on inactive nodes are discarded when the node joins the cluster administrative domain. The Active Domain option does not apply to network server storage spaces (*NWSSTG) or network server configurations (*NWSCFG). Synchronization of these resources is always based on the last change that was made.

• From the **Nodes in the administrative domain** list, select the nodes that you would like to add to the cluster administrative domain and select **Add**.

Related concepts:

"Maintaining user profiles on all nodes" on page 181

You can use two mechanisms for maintaining user profiles on all nodes within a cluster.

Related information:

Create Cluster Administrative Domain (CRTCAD) command

Create Cluster Administrative Domain (QcstCrtClusterAdminDomain) API

Adding a node to the cluster administrative domain:

You can add additional nodes to a cluster administrative domain within a high-availability solution.

Before adding a node to a cluster administrative domain, ensure that node is also part of the cluster in which the cluster administrative domain resides. If it is not, you cannot add the node to the cluster administrative domain. The cluster administrative domain does not have to be active, but the resources will just not be made consistent until it is active.

When you add a node to the administrative domain, the MREs from the domain are copied to the node being added. If the monitored resource does not exist on the new node, it is created by the cluster administrative domain. If the monitored resource already exists on the node being added, it is synchronized with the rest of the cluster administrative domain if the domain is active. That is, the values of the attributes for each monitored resource on the node that is joining are changed to match the global values for the monitored resources in the active domain.

To add a node to a cluster administrative domain, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, click **Work with Administrative Domains** to display a list of cluster administrative domains in the cluster.
- 5. On the Administrative Domains page, select a cluster administrative domain.
- 6. From the Select Action menu, select Properties.
- 7. On the **Properties** page, choose the node that you want to add to the cluster administrative domain from the list of **Nodes in the administrative domain**. Click **Add**.

Related information:

Add Cluster Administrative Domain Node Entry (ADDCADNODE) command

Add Node To Recovery Domain (QcstAddNodeToRcvyDomain) API

Starting a cluster administrative domain:

Cluster administrative domains provide environment resiliency for resources within an i5/OS high-availability solution.

When the cluster administrative domain is started, any change made to any monitored resource while the cluster administrative domain was ending is propagated to all active nodes in the cluster administrative domain.

To start a cluster administrative domain, complete the following steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.

- 4. On the Cluster Resource Services page, click **Work with Administrative Domains** to display a list of cluster administrative domains in the cluster.
- 5. On the Administrative Domains page, select a cluster administrative domain.
- 6. From the Select Action menu, select Start.

The Status column shows that the cluster administrative domain is started.

Related concepts:

"Synchronization of monitored resource"

Synchronization of monitored resources occurs when monitored resources are changed on nodes which have been defined in the cluster administrative domain.

Related information:

Start Cluster Administrative Domain (STRCAD) command

Synchronization of monitored resource:

Synchronization of monitored resources occurs when monitored resources are changed on nodes which have been defined in the cluster administrative domain.

During this synchronization process, the cluster administrative domain attempts to change each resource with attributes whose values do not match its global values, unless there is a pending change for that resource. Any pending change is distributed to all active nodes in the domain and applied to each affected resource on each node. When the pending changes are distributed, the global value is changed and the global status of each affected resource is changed to *consistent* or *inconsistent*, depending on the outcome of the change operation for the resource on each node. If the affected resource is changed successfully on every active node in the domain, the global status for that resource is *consistent*. If the change operation failed on any node, the global status is set to *inconsistent*.

If changes are made to the same resource from multiple nodes while the cluster administrative domain is inactive, all of the changes are propagated to all of the active nodes as part of the synchronization process when the domain is started. Although all pending changes are processed during the activation of the cluster administrative domain, there is no guaranteed order in which the changes are processed. If you make changes to a single resource from multiple cluster nodes while the cluster administrative domains inactive, there is no guaranteed order to the processing of the changes during activation.

If a node joins an inactive cluster administrative domain (that is, the node is started while the cluster administrative domain is ended), the monitored resources are not resynchronized until the cluster administrative domain is started.

Note: The cluster administrative domain and its associated exit program are IBM-supplied objects. They should not be changed with the QcstChangeClusterResourceGroup API or the Change Cluster Resource Group (CHGCRG) command, or unpredictable results will occur.

After a cluster node that is part of a cluster administrative domain is ended, monitored resources can still be changed on the inactive node. When the node is started again, the changes will be resynchronized with the rest of the cluster administrative domain. During the resynchronization process, the cluster administrative domain applies any changes from the node that was inactive to the rest of the active nodes in the domain, unless changes had also been made in the active domain while the node was inactive. If changes were made to a monitored resource both in the active domain and on the inactive node, the changes made in the active domain are applied to the joining node. In other words, no changes made to any monitored resource are lost, regardless of the status of the node. You can specify the synchronization option to control synchronization behavior.

If you want to end a cluster node that is part of a cluster administrative domain, and not allow changes made on the inactive node to be propagated back to the active domain when the node is started (for

example, when ending the cluster node to do testing on it), you must remove the node from the administrative domain peer CRG before you end the cluster node.

Related concepts:

Remove Admin Domain Node Entry (RMVCADNODE) command

Related tasks:

"Starting a cluster administrative domain" on page 212 Cluster administrative domains provide environment resiliency for resources within an i5/OS high-availability solution.

Related information:

Remove CRG Node Entry (RMVCRGNODE) command

Adding monitored resource entries:

You can add a monitored resource entry (MRE) to a cluster administrative domain. Monitored resource entries define critical resources so that changes made to these resources are kept consistent across a high-availability environment.

To add a monitored resource entry, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. On the Cluster Resource Services page, click **Work with Administrative Domains** to display a list of cluster administrative domains in the cluster.
- 4. On the Administrative Domains page, click the context icon next to the cluster administrative domain name, and select Monitored Resource Entries.
 - **Note:** The **Monitored Resource Entries** action is available only if the node that you are managing is part of the cluster administrative domain. The current list of monitored resource types is shown.
 - 5. In the list of monitored resource types, click the context icon next to the monitored resource type, and select **Add Monitored Resource Entry**. The Add Monitored Resource Entry page is shown.
 - 6. Select the attributes to be monitored for the monitored resource entry, and click **OK**. If the MRE object is in a library, you must specify the name and library for the object. The new monitored resource entry is added to the list of resources that the cluster administrative domain is monitoring. Changes to the monitored resource are synchronized across all active nodes in the cluster administrative domain when the domain is active. By default, all attributes associated with a monitored resource type are monitored; however, you can control what attributes are monitored by selecting attributes to be monitored.

Related tasks:

Т

"Selecting attributes to monitor" on page 248

After you have added monitored resource entries, you can select attributes associated with that resource to be monitored by the cluster administrative domain.

Related information:

Add Admin Domain MRE (ADDCADMRE) command

Add Monitored Resource Entry (QfpadAddMonitoredResourceEntry) API

Configuring switched disks

Switched disks are independent disk pools which have been configured as part of an i5/OS cluster. Switched disks allow data and applications stored within an independent disk pool to be switched to another system.

Creating an independent disk pool

To create an independent disk pool, you can use the New Disk Pool wizard. This wizard can assist you in creating a new disk pool and adding disk units to it.

With the New Disk Pool wizard you can include unconfigured disk units in a parity set, and you can start device parity protection and disk compression. As you add disk units, do not spread disk units that are in same parity set across multiple disk pools, because failure to one parity set would affect multiple disk pools.

Use the New Disk Pool wizard to create an independent disk pool using IBM Systems Director Navigator for i5/OS, follow these steps:

Note: To work with disk within the IBM Systems Director Navigator for i5/OS, you must have the appropriate password configuration for Dedicated Service Tools.

IBM Systems Director Navigator for i5/OS

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Configuration and Service from your IBM Systems Director Navigator for i5/OS window.
- 4. Select Disk Units.
- 5. From the Select Actions menu, select New Disk Pool.
- 6. Follow the wizard's instructions to add disk units to a new disk pool.
- 7. Print your disk configuration to have it available in a recovery situation.
- 8. Record the relationship between the independent disk pool name and number.

System i Navigator

To use the New Disk Pool wizard to create an independent disk pool using System i Navigator, follow these steps:

- 1. In System i Navigator, expand My Connections (or your active environment).
- 2. Expand the system you want to examine, and expand **Configuration and Service** > **Hardware** > **Disk Units**.
- 3. Right-click **Disk Pools** and select **New Disk Pool**.
- 4. Follow the wizard's instructions to add disk units to a new disk pool.
- 5. Print your disk configuration to have it available in a recovery situation.
- 6. Record the relationship between the independent disk pool name and number.
- **Note:** Add independent disk pools when your system is fully restarted. If you must use the New Disk Pool wizard in the dedicated service tools (DST) mode, you need to create an associated device description for the independent disk pool when the system is fully restarted. Use the Create Device Description (ASP) (CRTDEVASP) command to create the device description. Name the device description and resource name the same as you name the independent disk pool. You can use the Work with Device Descriptions (WRKDEVD) command to verify that the device description and independent disk pool name match.

Starting mirrored protection

The Add Disk Unit and New Disk Pool wizards guide you through the process of adding pairs of similar capacity disk units to a protected disk pool. When you have your disks configured correctly, you are ready to start mirroring for mirrored protection.

Mirrored protection is local to a single system and is distinct from cross-site mirroring. If you want to start mirroring on an independent disk pool that is unavailable, you can do so when your system is fully restarted. For all other disk pools, you need to restart your system to the dedicated service tools (DST) mode before starting mirrored protection.

I There are restrictions to follow when starting mirror-protection on the load source disk unit.

The smaller capacity disk must start out as the load source device when two disks of unequal capacity are matched as a mirrored pair. The load source can then be matched with the larger capacity disk unit. For example, if the load source disk unit is a 35 G-Byte disk, it can be matched with a 36 GB disk.
If the load source is a 36 G-Byte disk, it cannot be matched with the 35 G-Byte disk.

The system must be directed to match the load source disk unit with a disk unit that is in a physical location the service processor cannot use to IPL the partition. From SST, select Work with disk units->Work with disk configuration->Enable remote load source mirroring. The Enable remote load source mirroring function allows a disk unit to be matched with the load source disk unit even though the disk unit resides in a physical location the service processor is not able to use to IPL the partition.

| To start mirroring using IBM Navigator for i, follow these steps:

- 1. Select **Configuration and Service** from your IBM Navigator for i window.
 - 2. Select Disk Pools.
 - 3. Select the disk pool that you want to mirror.
 - 4. From the Select Actions menu, select Start Mirroring.

To start mirroring using System i Navigator, follow these steps:

- 1. In System i Navigator, expand My Connections (or your active environment).
- 2. Expand the System i you want to examine, **Configuration and Service** > **Hardware** > **Disk Units** > **Disk Pools**.
- 3. Right-click the disk pools you want to mirror, and select Start Mirroring.

Stopping mirrored protection

When you stop mirrored protection, one disk unit from each mirrored pair is unconfigured. Before you can stop mirrored protection for a disk pool, at least one disk unit in each mirrored pair in that disk pool must be present and active.

To control which mirrored disk unit of each pair is unconfigured, you may suspend the disk units that you want to become unconfigured. For disk units that are not suspended, the selection is automatic.

If you want to stop mirroring on an independent disk pool that is unavailable, you can do so when your system is fully restarted. For all other disk pools, you need to restart your system to the dedicated service tools (DST) mode before stopping mirrored protection.

Mirrored protection is dedicated to a single system, and is distinct from cross-site mirroring.

To stop mirrored protection using IBM Systems Director Navigator for i5/OS, follow these steps:

- 1. Select Configuration and Service from your IBM Systems Director Navigator for i5/OS window.
- 2. Select Disk Pools.
- 3. Select the disk pool that you want to stop.
- 4. From the Select Actions menu, select Stop Mirroring.

To stop mirrored protection using System i Navigator, follow these steps:

- 1. In System i Navigator, expand My Connections (or your active environment).
- 2. Expand the System i you want to examine, **Configuration and Service** > **Hardware** > **Disk Units** > **Disk Pools**.
- 3. Select the disk unit for which you want to stop mirrored protection.
- 4. Right-click any selected disk pool, and select Stop Mirroring.
- 5. Click Stop Mirroring from the resulting confirmation dialog box.

Adding a disk unit or disk pool

The Add Disk Unit wizard allows you to use an existing disk pool to add new or non-configured disk units.

The Add Disk Unit and Disk Pool wizards save you time by bundling several time-consuming configuration functions into one efficient process. They also take the guesswork out of disk unit configuration because they understand the capabilities of your system and only offer valid choices. For instance, the wizard does not list the option to start compression unless your system has that capability.

When you choose to add disk units to a protected disk pool, the wizard forces you to include the disk units in device parity protection or to add enough disk units of the same capacity to start mirrored protection. The wizard also gives you the option of balancing data across the disk pool or starting disk compression if these are permissible actions for your system configuration. You decide which options to choose so that the operation is tailored to your system.

To add a disk unit or disk pool using IBM Systems Director Navigator for i5/OS, follow these steps:

- 1. Select Configuration and Service from your IBM Systems Director Navigator for i5/OS window.
- 2. Select Disk Units.
- 3. From the Select Actions menu, select Add Disk Unit.
- 4. Follow the wizard's instructions to add disk units to your disk pool.

To add a disk unit or disk pool using System i Navigator, follow these steps:

- 1. In System i Navigator, expand My Connections (or your active environment).
- 2. Expand the System i you want to examine, **Configuration and Service** > **Hardware** > **Disk Units**.
- 3. To add disk units, right-click All Disk Units and select Add Disk Unit.
- 4. Follow the instructions in the wizard to complete the task.

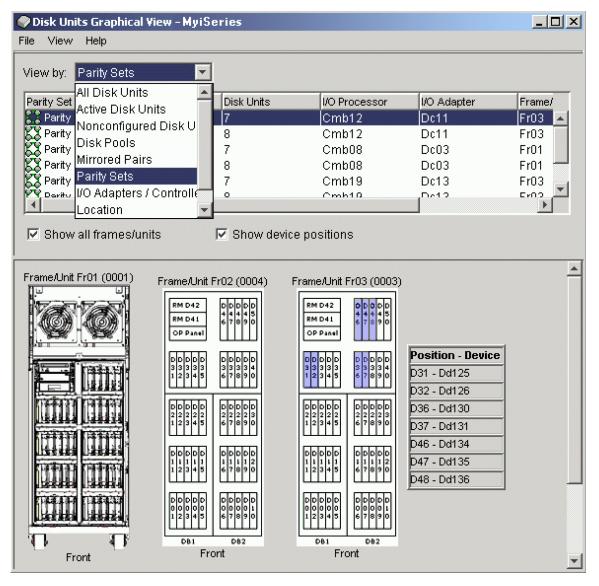
Evaluating the current configuration

Before you change the disk configuration of your system, it is important to know exactly where the existing disk units are located in relation to disk pools, IOAs, and frames.

The graphical view of System i Navigator eliminates the process of compiling all this information by providing a graphical representation of how your system is configured. You can use the graphical view to perform any function that is possible through the Disk Units list view of System i Navigator, with the added benefit of being able to see a visual representation. If you right-click any object in the table, such as a specific disk unit, disk pool, parity set, or frame, you see the same options as in the main System i Navigator window.

You can choose how to view the hardware in the Disk Unit Graphical View window. For example, you can select to view by disk pools, and then select a disk pool in the list to display only those frames that contain the disk units that make up the selected disk pool. You can select Show all frames to see whether or not they contain disk units in the selected disk pool. You can also select Show device positions to associate disk unit names with the device position where they are inserted.

You can right-click any highlighted blue disk unit in the graphical view and select an action to perform on the disk unit. For example, you can select to start or stop compression on a disk unit, include or exclude the disk unit in a parity set, or rename the disk unit. If the disk unit has mirrored protection, you can suspend or resume mirroring on the disk unit. If you right-click an empty disk unit slot, you can start the Install Disk Unit wizard.


- | To activate the graphical view from System i Navigator, follow these steps:
 - 1. In System i Navigator, expand My Connections (or your active environment).
 - 2. Expand the system you want to examine, Configuration and Service > Hardware > Disk Units

3. Right-click All Disk Units, and select Graphical View

| To activate the graphical view from IBM Navigator for i, follow these steps:

- 1. Select **Configuration and Service** from the IBM Navigator for i window.
- | 2. Select Disk Units or Disk Pools.
- 3. From the Select Actions menu, select Graphical View.

Here is an example of the graphical view in System i Navigator. The View by menu lists several options for viewing disk units.

Making a disk pool available

To access the disk units in an independent disk pool, you must make the disk pool available (vary it on).

To access the disk units in an independent disk pool and the objects in the corresponding database, you must make the disk pool available (vary it on). If you are using geographic mirroring, you must make the production copy of the disk pool available. You can only make the mirror copy available if it is detached. For a geographically mirrored disk pool, you must also make sure that the switchable hardware group is started before attempting to make the disk pool available unless geographic mirroring is suspended.

In a multisystem clustered environment, you can make the disk pool available to the current node or to another node in the cluster. The independent disk pool can only be varied on for one node at a time. When you want to access the independent disk pool from a different node, you must switch the independent disk pool to the backup cluster node. See Performing a switchover for details on switching a device CRG (referred to as a switchable hardware group in System i Navigator) to the backup node.

Note: If you make a primary or secondary disk pool available, all of the disk pools in the disk pool group are also made available at the same time.

When you make a disk pool available or perform disk configuration changes on an independent disk pool, processing can seem to stop. If you are doing other device description activities, then make available and disk configuration changes will wait.

Failures early in make available processing of a geographically mirrored disk pool might cause a full synchronization on the next make available or resume.

To make an independent disk pool available:

- 1. In System i Navigator, expand My Connections (or your active environment).
- 2. Expand the you want to examine, **Configuration and Service** > Hardware > Disk Units.
- 3. Expand Disk Pools.
- 4. Right-click the unavailable disk pool and select **Make Available**. You can select multiple disk pools to make available at the same time.
- 5. From the dialog box displayed, click Make Available to make the disk pool available.

You can use the Vary Configuration (VRYCFG) command in the character-based interface to make the disk pool available.

Use the Display ASP Status (DSPASPSTS) command to identify where a step is in the process.

Configuring switched logical units (LUNs)

Switched logical units is an independent disk pool that is controlled by a device cluster resource group and can be switched between nodes within a cluster. For IBM i high availability solutions that uses switchable logical units with IBM[®] System Storage[™], you need to configure an ASP Copy Description that defines the host identifiers and volume groups for each cluster node in which the ASP device can be switched.

In IBM i, the creation of an ASP Copy Description for switchable logical units does not set up the host identifiers and volume groups on the external storage units, but rather sets up a relationship between the IBM i systems and existing host identifiers and volume groups on the external storage units.

Before creating a copy description for switchable logical units on IBM i IBM i, you should have configured the logical units on the IBM System Storage external storage unit as well as created the independent auxiliary storage pool and device cluster resource group that will control the switching. For information about using the IBM System Storage DS8000[®], see IBM System Storage DS8000 Information Center.

IBM Systems Director Navigator for i

To configure switchable logical units, follow these steps:

- 1. Enter the Add ASP Copy Description (ADDASPCPYD) command at an IBM i command prompt.
- 2. Enter the appropriate names for ASP device, cluster resource group, cluster resource group site, IBM System Storage host, location, and logical unit name.

- **3**. Enter the appropriate cluster node names, host identifiers, and volume groups in the recovery domain field.
- 4. Create an ASP Copy Description for every ASP device that is to use switchable logical units. All ASP devices in the cluster resource group must be defined by a separate ASP copy description.

Configuring cross-site mirroring

Cross-site mirroring is a collective term used for several different high availability technologies, including geographic mirroring, metro mirror and global mirror. Each one of these technologies has specific tasks related to configuration.

Configuring geographic mirroring

Geographic mirroring is a sub-function of cross-site mirroring. To configure a high-availability solution by using geographic mirroring, you need to configure a mirroring session between the production system and the backup system.

Before configuring geographic mirroring, you must have an active cluster, nodes, and CRG. The independent disk pools which you plan to use for geographic mirroring must also be varied off (unavailable) to complete configuration. The topic, Scenario: Cross-site mirroring with geographic mirroring, provides step-by-step instructions for setting up a high-availability solution based on geographic mirroring.

IBM Navigator for i

To configure geographic mirroring by using IBM Systems Director Navigator for i, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Configuration and Service from your IBM Systems Director Navigator for i window.
- 4. Select Disk Pools.
- 5. Select the disk pool that you want to use as the production (source) copy.
- 6. From the Select Actions menu, select New Session.
- 7. Follow the wizard's instructions to complete the task.

System i Navigator

To configure geographic mirroring by using System i Navigator, follow these steps:

- 1. In System i Navigator, expand My Connections (or your active environment).
- 2. Expand the system that you want to use as the production copy.
- 3. Expand Configuration and Service > Hardware > Disk Units > Disk Pools.
- 4. Right-click the disk pool that you want to use as the production copy and select **Sessions** > **New**.
- 5. Follow the wizard's instructions to complete the task.

Related concepts:

"Scenario: Switched disk with geographic mirroring" on page 184

This scenario describes an i5/OS high-availability solution that uses switched disks with geographic mirroring in a three-node cluster. This solution provides both disaster recovery and high availability.

Configuring metro mirror session

For i5/OS high availability solutions that use IBM System Storage metro mirror technology, you need to configure a session between the System i machine and IBM System Storage external storage units that have metro mirror configured. In i5/OS, metro mirror sessions do not set up the mirroring on the external storage units, but rather sets up a relationship between the i5/OS systems and the existing metro mirror configuration on external storage units.

Before creating a metro mirror session on i5/OS, you should have configured metro mirror on the IBM System Storage external storage units. For information about using metro mirror on IBM System Storage

DS8000, see IBM System Storage DS8000 Information Center

To configure metro mirror session, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Configuration and Service from your IBM Systems Director Navigator for i5/OS window.
- 4. Select Disk Pools.
- 5. Select the disk pool that you want to use as the production (source) copy.
- 6. From the Select Actions menu, select New Session.
- 7. Follow the wizard's instructions to complete the task.

Related information:

Add ASP Copy Description (ADDASPCPYD) command Start ASP Session (STRASPSSN) command

Start ASI Session (STRASI SSIV) command

Configuring global mirror session

For i5/OS high availability solutions that use IBM System Storage global mirror technology, you need to configure a session between the System i machine and IBM System Storage external storage units that have global mirror configured. In i5/OS, global mirror sessions do not set up the mirroring on the external storage units, but rather sets up a relationship between the i5/OS systems and the existing global mirror configuration on external storage units.

IBM System Storage global mirror technology requires all users to share one global mirror connection. i5/OS high availability global mirror allows only one System i partition to configure global mirror on a given System Storage server. No other System i partitions or servers from other platforms may use global mirror at the same time. Adding more than one user to a global mirror session will cause unpredictable results to occur.

Before creating a global mirror session on i5/OS, you should have configured global mirror on the IBM System Storage external storage units. For information about using global mirror on IBM System Storage

DS8000, see IBM System Storage DS8000 Information Center

To configure global mirroring, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select **Configuration and Service** from your IBM Systems Director Navigator for i5/OS window.
- 4. Select Disk Pools.
- 5. Select the disk pool that you want to use as the production (source) copy.
- 6. From the Select Actions menu, select New Session.
- 7. Follow the wizard's instructions to complete the task.

Related information:

Add ASP Copy Description (ADDASPCPYD) command

Start ASP Session (STRASPSSN) command

Configuring switched logical units (LUNs)

Switched logical units is an independent disk pool that is controlled by a device cluster resource group and can be switched between nodes within a cluster. For IBM i high availability solutions that uses

switchable logical units with IBM[®] System Storage[™], you need to configure an ASP Copy Description that defines the host identifiers and volume groups for each cluster node in which the ASP device can be switched.

In IBM i, the creation of an ASP Copy Description for switchable logical units does not set up the host identifiers and volume groups on the external storage units, but rather sets up a relationship between the IBM i systems and existing host identifiers and volume groups on the external storage units.

Before creating a copy description for switchable logical units on IBM i IBM i, you should have configured the logical units on the IBM System Storage external storage unit as well as created the independent auxiliary storage pool and device cluster resource group that will control the switching. For information about using the IBM System Storage DS8000[®], see IBM System Storage DS8000 Information Center.

IBM Systems Director Navigator for i

To configure switchable logical units, follow these steps:

- 1. Enter the Add ASP Copy Description (ADDASPCPYD) command at an IBM i command prompt.
- 2. Enter the appropriate names for ASP device, cluster resource group, cluster resource group site, IBM System Storage host, location, and logical unit name.
- **3**. Enter the appropriate cluster node names, host identifiers, and volume groups in the recovery domain field.
- 4. Create an ASP Copy Description for every ASP device that is to use switchable logical units. All ASP devices in the cluster resource group must be defined by a separate ASP copy description.

Managing high availability

After you have configure an i5/OS high-availability solution, you can manage that solution by using several interfaces that are related to high availability.

Scenarios: Managing high availability solutions

As a system operator or administrator of your high-availability solution, you need to perform common tasks like backup and system maintenance in your high-availability environment.

The following scenarios provide instructions on performing common system tasks, such as backups and upgrades, as well as examples of managing high-availability events, such as cluster partitions and failover. For each scenario, a model environment has been chosen. The instructions for each scenario correspond to that particular high-availability solution and are meant for example purposes only.

Scenarios: Performing backups in a high-availability environment

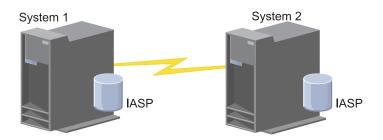
Depending on your high availability-solution and your backup strategy, the method for backing up data can be different. However, there is a common set of tasks when you perform backup operations for systems in a high availability environment.

In several high availability-solutions, you have the capability of performing remote backups from the second copy of data that is stored on the backup system. Remote backups allow you to keep your production system operational, while the second system is backed up. Each of these scenarios provides examples of two high-availability solutions where backups are performed remotely on the backup system.

In the first scenario, remote backups are performed in a high availability solution that uses geographic mirroring technology. The second scenario shows how the FlashCopy feature can be used in a high-availability environment that use IBM System Storage solutions, such as metro or global mirror.

Scenario: Performing backups in geographic mirroring environment:

This scenario provides an overview of tasks that are necessary when performing a remote backup in a i5/OS high-availability solution that uses geographic mirroring.


Overview

In this example, a system administrator needs to perform a backup of data stored on independent disk pools that are used in a high-availability solution based on geographic mirroring technology. The administrator does not want to affect the production system by taking it offline to perform the backup. Instead the administrator plans to temporarily detach the mirrored copy, and then perform a backup from the second copy of data located on independent disk pools at a remote location.

Note: Detaching the mirrored copy essentially ends geographic mirroring until the copy is reattached to the production. During the time it is detached, high availability and disaster recovery are not operational. If an outage to the production system occurs during this process, some data will be lost.

Details

The following graphic illustrates this environment:

Configuration steps

- 1. Quiescing independent disk pool
- 2. "Detaching mirror copy" on page 267
- 3. Making disk pool available
- 4. Backing up independent disk pool
- 5. "Resuming an independent disk pool" on page 265
- 6. "Reattaching mirror copy" on page 267

Scenario: Performing a FlashCopy function:

In this example an administrator wants to perform a backup from the remote copy of data stored in an external storage units at the backup site. Using the FlashCopy function available with IBM Storage Solutions, the administrator reduces his backup time considerably.

Overview

In this example, a system administrator needs to perform a backup of data stored on IBM System Storage external storage units. The administrator does not want to affect the production system by taking it offline to perform the backup. Instead the administrator plans to perform a FlashCopy operation, which takes a point-in-time capture of the data. From this data, the administrator backs up the data to external media. The FlashCopy operation only takes a few seconds to complete, thus reducing the time for the entire backup process.

Although in this example the FlashCopy feature is being used to for backup operations, it should be noted that the FlashCopy feature has multiple uses. For example, FlashCopy can be used for data warehousing to reduce query workload on production systems, or for duplicating production data to create a test environment.

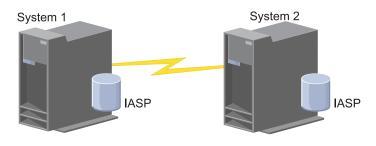
Configuration steps

- 1. "Quiescing an independent disk pool" on page 264
- 2. "Configuring a FlashCopy session" on page 273
- **3**. Perform the FlashCopy function on IBM System Storage external storage units. For information about using the FlashCopy function on IBM System Storage DS8000, see IBM System Storage DS8000

Information Center 🐳 .

- 4. "Resuming an independent disk pool" on page 265
- 5. Make disk pool available
- 6. Backing up independent disk pool

Scenario: Upgrading operating system in a high-availability environment


In this example, a system administrator is upgrading the operating system for two IBM i systems in ahigh-availability solution based on geographic mirroring.

Overview

The system administrator needs to upgrade the operating system for two systems in the high-availability environment. In this example, there are two nodes: System 1 and System 2. System 1 is the production copy and System 2 is the mirror copy. Both systems are at IBM i V6R1. The independent disk pool is online, geographic mirroring is active, and the systems are synchronized. The system administrator wants to upgrade both of these systems to i 7.1.

Details

The following graphic illustrates the environment:

Configuration steps

- 1. Detach the mirror copy (System 2).
- 2. End the CRG (System 2).
- **3**. Stop the node (System 2).
- 4. Upgrading System 2 to the new release. See Upgrading or replacing i5/OS and related software for details.
- 5. Install IBM PowerHA for i licensed program.
- 6. Make disk pool available and test applications on System 2. Testing the applications ensures that they operate as expected within the new release. After application tests are completed, you can finish the upgrade by completing the rest of these steps.

- 7. Make disk pool unavailable on the detached mirrored copy (System 2).
- 8. Reattach mirrored copy. This initiates a resynchronization of the mirrored data. After the resynchronization is completed, you can continue the upgrade process.
- 9. Performing switchovers. This makes the mirrored copy (System 2) the new production copy and the production copy (System 1) becomes the new mirrored copy.
- **Note:** Geographic mirroring is suspended because you cannot perform geographic mirroring from n-1 to n. You can perform geographic mirroring from n to n-1 without problems. In this scenario, geographic mirroring is suspended after a switchover is completed. Data is now no longer mirrored during the remainder of the upgrade process because there is no longer a valid backup system.
- 10. End the CRG (System 1).

|

I

I

- **11**. Stop the node (System 1).
- 12. Upgrade System 1 to the new release. See Upgrading or replacing i5/OS and related software for details.
- **13**. Install IBM PowerHA for i licensed program.
- 14. Start nodes (System 1).
- 15. Start CRGs (System 1).
- **16**. Resume mirroring
- 17. Perform switchover. This switches the current mirrored copy (System 1) back to the production copy and the production copy (System 2) to become the mirrored copy. This is the original configuration before the upgrade.
- 18. Adjusting the cluster version of a cluster
- 19. Adjusting the high availability version of PowerHA LP

Example: Upgrading operating system:

In a high-availability environments, you must perform specific actions prior to performing operating system upgrades.

The following examples can help you determine what you need to do to perform an upgrade in your cluster environment. Before performing the upgrade or any actions you should first determine the current cluster version for your cluster.

Notes:

I

I

I

T

I

I

- 1. V6R1 represents the current release of the operating system.
 - 2. 7.1 represents the new release of the operating system.
 - **3**. V5R4 represents the prior release of the operating system.

Example 1: The node to be upgraded is at IBM i V6R1. All other nodes in the cluster are at IBM i
V6R1 or higher. The current cluster version is 6.

- Action:
 - 1. Upgrade node to IBM i 7.1.
 - 2. Start the upgraded node.
- Example 2: The node to be upgraded is at IBM i V6R1. All other nodes in the cluster are at IBM i
 V6R1 or higher. The current cluster version is 5.
- Action:
 - 1. Upgrade the node to IBM i 7.1.
 - 2. Start the upgraded node.

Example 3: The node to be upgraded is IBM i V5R4. All other nodes in the cluster are at IBM i V5R4 or higher. The current cluster version is 5.

Action: T

T

1

Ι

- 1. Upgrade the node to IBM i 7.1.
- 2. Start the upgraded node.

Example 4: The node to be upgraded is at IBM i V5R4. All other nodes in the cluster are at IBM i L V5R3 or higher. The current cluster version is 4.

Actions:

- 1. Upgrade all nodes to V5R4.
- 2. Start all of the upgraded nodes.
- **3**. Change the cluster version to 5.
- 4. Upgrade the node to 7.1.
- 5. Start the upgraded node.

Example 5: The node to be upgraded is at IBM i V5R3 or lower. All other nodes in the cluster are at IBM i V5R3 or lower. The current cluster version cluster version is less than or equal to 4.

Actions:

- 1. Upgrade all nodes to V5R4.
- 2. Start all of the upgraded nodes.
- **3**. Change the cluster version to 5.
- 4. Upgrade the node to 7.1.
- 5. Start the upgraded node.

The following table provides actions you need to take when performing an upgrade in a cluster environment.

I I	Tahla 30	Upgrading	nodae to	IRM i 7 1
	Table 39.	Opyraulity	noues ic	

Current release of node you are upgrading	Current cluster version	Actions
V6R1	5 or 6	 Upgrade the node to IBM i 7.1. Start the upgraded node.
V5R4	5	 Upgrade the node to IBM i 7.1. Start the upgraded node.
V5R4	4	 Upgrade all nodes to V5R4. Start all of the upgraded node. Change the cluster version to 5. Upgrade the node to 7.1. Start the upgraded node.
V5R3 or lower	less than or equal to 4	 Upgrade all nodes to V5R4. Start all of the upgraded node. Change the cluster version to 5. Upgrade the node to IBM i 7.1. Start the upgraded node.

Scenario: Making a device highly available

In addition to independent disk pools, you can also provide high availability for other supported devices. In this situation, the high availability administrator wants to provide high availability to Ethernet lines.

Overview

The system administrator wants to provide high availability for Ethernet lines used within the high-availability solution. The current configuration provides high availability for planned outages with two systems that uses switched disk technology. This solution also use cluster administrative domain to manage and synchronize changes to the operational environment of the high availability solution. This example assumes that all high availability configuration and Ethernet configuration has been completed successfully prior to finishing these steps. It is also assumed that the current state of the high availability is active and all monitored resources are consistent within the environment. This example provides steps on configuring high availability for a Ethernet line.

Configuration steps

- 1. "Creating switchable devices" on page 238
- 2. "Adding monitored resource entries" on page 214
- 3. "Selecting attributes to monitor" on page 248

Managing clusters

Using the Cluster Resource Services graphical interfaces, you can perform many tasks associated with the cluster technology that is the basis of your i5/OS high availability solution. These tasks help you manage and maintain your cluster.

Some of the changes that you can make to the cluster after you configure it include the following:

Cluster tasks

- Add a node to a cluster
- Remove nodes from a cluster
- Start a cluster node
- End a cluster node
- Adjust the cluster version of a cluster to the latest level
- Delete a cluster
- Change cluster node

Cluster resource group tasks

- Create new cluster resource groups
- Delete existing cluster resource groups
- Start a cluster resource group
- Add a node to a cluster resource group
- · Remove a node from a cluster resource group
- End a cluster resource group
- Change the recovery domain for a cluster resource group
- Perform a switchover
- Add a node to a device domain
- Remove a node from a device domain

Cluster administrative domain tasks

- Create a cluster administrative domain
- Add monitored resources
- Delete cluster administrative domain

Adjusting the PowerHA version

The PowerHA version is the version at which the nodes in the cluster managed by the PowerHA productare actively communicating with each other.

The PowerHA version values determine which functions can be used by the PowerHA product. The
PowerHA version may require a certain cluster version in order to operate. For example, PowerHA
version 2.0 requires a current cluster version of 7.

The current PowerHA version is set when a cluster is created. If a cluster exists, the current PowerHAversion will be set to the lowest supported version.

Like cluster version, PowerHA has a current and potential version level. The current PowerHA version is
the version at which the nodes in the cluster which are known by the PowerHA product are actively
communicating with each other. The potential PowerHA version is the highest PowerHA version the
node can support. The PowerHA version cannot be changed until all PowerHA nodes are installed with a
common potential PowerHA version. The potential PowerHA version can be between n and n+1. For
example, NODE1 has a potential PowerHA version of 2.0, NODE2 has a potential PowerHA version of
2.0, and NODE3 has a potential PowerHA version of 3.0. All three nodes can support version 2.0, so the
current PowerHA version can be adjusted to 2.0.

Beginning with PowerHA version 2.0, if a node with an incompatible potential PowerHA version is
added to the cluster, the node will successfully be added, but the node will be considered "unknown" to
PowerHA. If a node is unknown to PowerHA, certain product functions cannot be performed on the
node. A node is known to PowerHA if the node has the PowerHA product installed, and the potential
PowerHA version is compatible with the current PowerHA version.

The current PowerHA version can be changed with the Change Cluster Version (CHGCLUVER)command.

The Change Cluster Version (CHGCLUVER) command can only be used to adjust to a higher cluster or
 PowerHA version. If you want to adjust the PowerHA version by two, the CHGCLUVER command must
 be run twice.

The current cluster version cannot be set higher than the lowest potential node version in the cluster.
Likewise, the current PowerHA version cannot be set higher than the lowest potential PowerHA version
of any node in the cluster. PowerHA potential version of any node in the cluster. To view the potential
node and PowerHA versions, use the Display Cluster Information (DSPCLUINF) command.

Use the following instructions to verify and change the cluster version for a node.

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 1 2. Log on to the system with your user profile and password.
- **3**. Select **Cluster Resource Services** from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select the **Display Cluster Properties** task.
- 5. On the Cluster Properties page, click the **General** tab.
- 6. Verify the cluster version setting or change the version to the correct setting.
- 1 7. Verify the PowerHA version setting or change the version to the correct setting.

| Related concepts:

- | Cluster version
- Related information:
- | Change Cluster Version (CHGCLUVER) command

Adjusting the cluster version of a cluster

The cluster version defines the level at which all the nodes in the cluster are actively communicating witheach other.

Cluster versioning is a technique that allows the cluster to contain systems at multiple release levels and
 fully interoperate by determining the communications protocol level to be used.

To change the cluster version, all nodes in the cluster must be at the same potential version. The cluster
version can then be changed to match the potential version. This allows the new function to be used. The
version can only be increased by one. It cannot be decremented without deleting the cluster and
recreating it at a lower version. The current cluster version is initially set by the first node defined in the
cluster. Subsequent nodes added to the cluster must be equal to the current cluster version or the next
level version; otherwise, they cannot be added to the cluster.

If you are upgrading a node to a new release, you must ensure that the node has the appropriate cluster
version. Cluster only supports a one version difference. If all the nodes in the cluster are at the same
release, you should upgrade to the new release, before changing the cluster version. This ensures that all
functions associated with the new release are available. See the topic, "Scenario: Upgrading operating
system in a high-availability environment" on page 224 for detailed actions for upgrading to a new
release.

Use the following instructions to verify and change the cluster version for a node.

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- | 2. Log on to the system with your user profile and password.
- 1 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select the **Display Cluster Properties** task.
- 5. On the Cluster Properties page, click the **General** tab.
- 6. Verify the cluster version setting or change the version to the correct setting.

Related concepts:

- | Cluster version
- Related information:
- | Change Cluster Version (CHGCLUVER) command
- Adjust Cluster Version (QcstAdjustClusterVersion) API

Deleting a cluster

When you delete a cluster, cluster resource services ends on all active cluster nodes and they will be removed from the cluster.

You must have at least one active node before you can delete a cluster. If you have switched disks or other switchable devices in your cluster, you must first remove each node from the device domain before you delete your cluster. Otherwise, you might not be able to add the disks back into another cluster.

To delete a cluster, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, click Delete Cluster.
- 5. The **Delete Cluster** confirmation window displays. Select **Yes** to delete the cluster. After you delete the cluster, the **Cluster Resource Services** page changes to display the **New Cluster** task.

Related tasks:

"Removing a node from a device domain" on page 234 A *device domain* is a subset of nodes in a cluster that share device resources.

Related information:

Delete Cluster (DLTCLU) command

Delete Cluster (QcstDeleteCluster) API

Displaying cluster configuration

You can display a detailed report that provides information on the cluster configuration. The cluster configuration report provides detailed information about the cluster, node membership list, configuration and tuning parameters, and each cluster resource group in the cluster.

To display cluster configuration, complete the following steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the **Cluster Resource Services** page, select the **Display Configuration Information** task. This displays the Cluster Configuration and Properties page. You can save this page as a file or print it.

Related information:

Display Cluster Information (DSPCLUINF) command

Saving and restoring cluster configuration

If you use clustering on your systems, it is still important that you create a backup and recovery strategy to protect your data.

If you are planning on using clustering as your backup strategy so that you have one system up and running while the other system is down when its being backed up, it is recommended that you have a minimum of three systems in the cluster. By having three systems in the cluster, you will always have one system to switch over to should a failure occur.

Saving and restoring cluster resource groups

You can save a cluster resource group whether the cluster is active or inactive. The following restrictions apply for restoring a cluster resource group:

- If the cluster is up and the cluster resource group is not known to that cluster, you cannot restore the cluster resource group.
- If the node is not configured for a cluster, you cannot restore a cluster resource group.

You can restore a cluster resource group if the cluster is active, the cluster resource group is not known to that cluster, the node is in the recovery domain of that cluster resource group, and the cluster name matches that in the cluster resource group. You can restore a cluster resource group if the cluster is configured but is not active on that node and if that node is in the recovery domain of that cluster resource group.

Preparing for a disaster

In the event of a disaster, you might need to reconfigure your cluster. In order to prepare for such a scenario, it is recommended that you save your cluster configuration information and keep a hardcopy printout of that information.

1. Use the **Save Configuration (SAVCFG)** command or the **Save System (SAVSYS)** command after making cluster configuration changes so that the restored internal cluster information is current and consistent with other nodes in the cluster. See Saving configuration information for details on performing a SAVCFG or SAVSYS operation.

 Print a copy of the cluster configuration information every time you change it. You can use the Display Cluster Information (DSPCLUINF) command to print the cluster configuration. Keep a copy with your backup tapes. In the event of a disaster, you might need to reconfigure your entire cluster.

Related information:

Saving configuration information Save Configuration (SAVCFG) command Save System (SAVSYS) command Display Cluster Information (DSPCLUINF) command

Monitoring cluster status

The Cluster Resource Services graphical interface monitors cluster status and displays a warning message when nodes participating in the high availability solution become inconsistent.

The Cluster Resource Services graphical interface displays warning message HAI0001W on the Nodes page if the cluster is inconsistent. An inconsistent message means that information that is retrieved from this node might not be consistent with other active nodes in the cluster. Nodes become inconsistent when they become inactive within the cluster.

To obtain consistent information, you can either access the cluster information from an active node in the cluster, or start this node and retry the request.

To monitor cluster status, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select **Cluster Resource Services** from the IBM Systems Director Navigator for i window.
- 4. On the Node page, HAI0001W is shown if the node is inconsistent: The local cluster node is not active. Cluster information may not be accurate until the local node has been started.

Related tasks:

"Starting nodes" on page 201 Starting a cluster node starts clustering and cluster resource services on a node in an IBM i high availability environment.

Related information:

Display Cluster Information (DSPCLUINF) command Display Cluster Resource Group Information (DSPCRGINF) command List Cluster Information (QcstListClusterInfo) API List Device Domain Info (QcstListDeviceDomainInfo) API Retrieve Cluster Resource Services Information (QcstRetrieveCRSInfo) API Retrieve Cluster Information (QcstRetrieveClusterInfo) API List Cluster Resource Groups (QcstListClusterResourceGroups) API List Cluster Resource Group Information (QcstListClusterResourceGroupInf) API

Specifying message queues

You can either specify a cluster message queue or a failover message queue. These message queues help you determine causes of failures in your i5/OS high availability environment.

A cluster message queue is used for cluster-level messages and provides one message which controls all cluster resource groups (CRGs) failing over to a specific node. A failover message queue is used for CRG-level messages and provides one message for each CRG that is failing over.

Specifying a cluster message queue

Note: You can also configure a cluster to use a cluster message queue by specifying the message queue while running the Create Cluster wizard.

To specify a cluster message queue, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, click Display Cluster Properties.
- 5. On the Cluster Properties page, click Cluster Message Queue.
- 6. Specify the following information to create a cluster message queue:
 - In the **Name** field, specify the name of the message queue to receive messages that deal with a failover at a cluster or node level. For node-level failovers, one message is sent that controls the failover of all cluster resource groups with the same new primary node. If a cluster resource group is failing over individually, one message is sent that controls the failover of that cluster resource group. The message is sent on the new primary node. If this field is set, the specified message queue must exist on all nodes in the cluster when they are started. The message queue cannot be in an independent disk pool.
 - In the **Library** field, specify the name of the library that contains the message queue to receive the failover message. The library name cannot be *CURLIB, QTEMP, *LIBL, *USRLIBL, *ALL, or *ALLUSR.
 - In **Failover wait time** field, select either **Do not wait** or **Wait forever**, or specify the number of minutes to wait for a reply to the failover message on the cluster message queue.
 - In the Failover default action field, specify the action that Cluster Resource Services takes when the response to the failover message has exceeded the failover wait time value. You can set this field to Proceed with failover or to Cancel failover.

Specifying a failover message queue

To specify a failover message queue, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from your IBM Systems Director Navigator for i5/OS window.
- 4. On the Cluster Resource Services page, select **Work with Cluster Resource Groups** to show a list of cluster resource groups in the cluster.
- 5. From the list of cluster resource groups, select the cluster resource group with which you want to work.
- 6. On the Cluster Resource Group page, click the **Select Action** menu and select **Properties**.
- 7. On the General page, specify the following values to specify a failover message queue:
 - In the **Failover message queue** field, specify the name of the message queue to receive messages when a failover occurs for this cluster resource group. If this field is set, the specified message queue must exist on all nodes in the recovery domain after the exit program is completed. The failover message queue cannot be in an independent disk pool.
 - In the **Library** field, specify the name of the library that contains the message queue to receive the failover message. The library name cannot be *CURLIB, QTEMP, or *LIBL.
 - In the **Failover wait time** field, specify the number of minutes to wait for a reply to the failover message on the failover message queue. You can also specify the action that Cluster Resource Services takes when a response to the failover message exceeds the specified failover wait time.

Cluster deconfiguration checklist

To ensure complete deconfiguration of a cluster, you must systematically remove different cluster components.

Table 40. Independent disk pool deconfiguration checklist for clusters

Indep	ependent disk pool requirements		
	If you are using switched disk pools, the tower should be switched to the node which is the SPCN owner before deconfiguring the cluster resource group. You can use Initiate Switchover (QcstInitiateSwitchOver) API or the Change Cluster Resource Group Primary (CHGCRGPRI) command to move the CRG back to the SPCN owner. If this step is not performed, you will not be able to mark the tower private for that system.		
	If you plan to remove a subset of an independent disk pool group or remove the last independent disk pool in the switchable devices, you must end the CRG first. Use the End Cluster Resource Group (ENDCRG) command.		
	If you want delete an independent disk pool that is participating in a cluster, it is strongly recommended that you first delete the device cluster resource group (CRG). See "Deleting a CRG" on page 238 for details. You can also use the Remove CRG Device Entry (RMVCRGDEVE) command to remove the configuration object of the independent disk pool from the CRG.		
	After you have removed the configuration object of the independent disk pool from the cluster switchable device, you can delete an independent disk pool.		
	 Delete the device description for an independent disk pool by completing these tasks: 1. On a command-line interface, type WRKDEVD DEVD(*ASP) and press Enter. 2. Page down until you see the device description for the independent disk pool that you want to delete. 3. Select Option 4 (Delete) by the name of the device description and press Enter. 		

Clust	luster resource group requirement	
	Delete cluster resource group by completing the either of the following steps:	
	1. If clustering is not active on the node, then type DLTCRG CRG(CRGNAME) on a command-line interface. CRGNAME is the name of the CRG that you want to delete. Press Enter.	
	2. If clustering is active on the node, then type DLTCRGCLU CLUSTER(CLUSTERNAME) CRG(CRGNAME) on a command-line interface. CLUSTERNAME is the name of the cluster. CRGNAME is the name of the CR that you want to delete. Press Enter.	

Managing nodes

System and logical partitions that are a part of an i5/OS high availability environment are called nodes. You can perform several managing tasks that pertain to nodes.

Displaying node properties:

You can display and manage properties that are associated with nodes that are configured as part of your high-availability environment by using the Cluster Resource Services graphical interface.

To display node properties, complete the following tasks

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the **Cluster Resource Services** page, select the **Work with Cluster Nodes** task to show a list of nodes in the cluster.
- 5. On the **Nodes** tab, click the **Select Action** menu and select **Properties**. Click **Go**. This displays the Node properties page.
 - The General page displays the name of the node and the system IP address for that node.
 - The Clustering page displays the following information:

- The cluster interface IP addresses that are used by clustering to communicate with other nodes in the cluster.
- The potential version of the node specifies the version and modification level at which the nodes in the cluster are actively communicating with each other.
- The device domains that are configured in the selected cluster. If you select a device domain in the list, the nodes that belong to the selected device domain are also displayed.

Stopping nodes:

Stopping or ending a node ends clustering and cluster resource services on that node.

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the **Nodes** tab, select the node you want to stop.
- 5. Click the **Select Action** menu and click **Stop**. When cluster resource services is successfully stopped on the node specified, the status of the node is set to Stopped.

Related information:

End Cluster Node (ENDCLUNOD) command End Cluster Node (QcstEndClusterNode) API

Removing nodes:

You might need to remove a node from a cluster if you are performing an upgrade of that node or if the node no longer needs to participate in the i5/OS high-availability environment.

To remove a node from an existing cluster, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the **Cluster Resource Services** page, select the **Work with Cluster Nodes** task to show a list of nodes in the cluster.
- 5. On the Nodes page, select the Select Action menu, and then select Remove.
- 6. Click Yes in the Remove Cluster Node Confirmation window.

Related tasks:

"Deconfiguring geographic mirroring" on page 268

If you no longer want the capability to use geographic mirroring for a specific disk pool or disk pool group, you can select to **Deconfigure Geographic Mirroring**. If you deconfigure geographic mirroring, the system stops geographic mirroring and deletes the mirror copy of the disk pools on the nodes in the mirror copy site.

Related information:

Remove Cluster Node Entry (RMVCLUNODE) command Remove Cluster Node Entry (QcstRemoveClusterNodeEntry) API

Removing a node from a device domain:

A *device domain* is a subset of nodes in a cluster that share device resources.

Important:

Be cautious when removing a node from a device domain. If you remove a node from a device domain, and that node is the current primary point of access for any independent disk

pools, those independent disk pools remain with the node being removed. This means that those independent disk pools are no longer accessible from the remaining nodes in the device domain.

After a node is removed from a device domain, it cannot be added back to the same device domain if one or more of the existing cluster nodes still belong to that same device domain. To add the node back to the device domain, you must:

- 1. Delete the independent disk pools currently owned by the node being added to the device domain.
- 2. Restart the system by performing an IPL on the node.
- 3. Add the node to the device domain.
- 4. Re-create the independent disk pools deleted in step 1.

To remove a node from a device domain, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select **Cluster Resource Services** from the IBM Systems Director Navigator for i window.
- 4. On the **Cluster Resource Services** page, select the **Work with Cluster Nodes** task to show a list of nodes in the cluster.
- 5. On the **Nodes** tab, select the **Select Action** menu and select **Properties**. Click **Go**. The Node Properties sheet is shown.
- 6. On the **Clustering** tab, delete the node name from the **Device domain** field and click **OK**.

Related tasks:

"Deleting a cluster" on page 229

When you delete a cluster, cluster resource services ends on all active cluster nodes and they will be removed from the cluster.

Related information:

Remove Device Domain Entry (RMVDEVDMNE) command

Remove Device Domain Entry (QcstRemoveDeviceDomainEntry) API

Add a cluster monitor to a node

IBM i Cluster Resource Services can now use Hardware Management Console (HMC) or a Virtual I/O
 Server (VIOS) partition to detect when a cluster node fails. This new capability allows more failure
 scenarios to be positively identified and avoids cluster partition situations.

The PowerHA graphical interface allows you to use the HMC or VIOS to monitor and manage the state
of each system. Once a monitor is set up, HMC or VIOS provide notification of node failures. A cluster
monitor can be used to reduce the number of failure scenarios which result in cluster partitions.

PowerHA GUI only supports the Common Informational Model (CIM) server for the cluster monitor. The

Add Cluster Monitor command must be used if you want to use the representational state transfer
 (REST) server.

| To add a cluster monitor to an existing cluster, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 1 2. Log on to the system with your user profile and password.
- **3**. Select **Cluster Resource Services** from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select the Work with Cluster Nodes task to show a list of nodes in the cluster.
- 5. On the Nodes tab, click the context icon next to the specific node, and then Select Properties. The
 Node Properties sheet is shown.

6. On the Monitors tab, on the monitor information table click the Select Action drop-down list and select the Add Cluster Monitor action.

Removing a cluster monitor

A *cluster monitor* provides another source of information to allow cluster resource services to determine
 when a cluster node has failed.

| Important:

T

Т

Т

Т

Be cautious when removing a cluster monitor. If you remove a node from a cluster monitor, and that node is the current primary point of access for any CRG, that node could partition when in fact, the node really failed. This means the user must now do manual steps to become highly available again.

PowerHA GUI only supports the Common Informational Model (CIM) server for the cluster monitor. The
 Remove Cluster Monitor command must be used if you want to use the representational state transfer
 (REST) server.

| To remove a cluster monitor, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 1 2. Log on to the system with your user profile and password.
- **3**. Select **Cluster Resource Services** from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select the Work with Cluster Nodes task to show a list of nodes in the cluster.
- 5. On the Nodes tab, click the context icon next to the specific node, and then select Properties. Click
 Go. The Node Properties sheet is shown.
- 6. Select the **Monitors** tab, to see a list of cluster monitors configured for the node.
- 7. On the Monitors tab, select the specific monitor, click the Select action drop-down list, and select the Remove function.

Managing cluster resource groups (CRGs)

Cluster resource groups (CRGs) manage resilient resources within an i5/OS high availability environment. They are a cluster technology that defines and controls switching resources to backup systems in the event of an outage.

Displaying CRG status:

You can monitor the status of cluster resource groups (CRG) in your high-availability environment. You can use these status messages to validate changes in the CRG or to determine problems with the CRG.

To display the CRG status, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select **Work with Cluster Resource Groups** to show a list of cluster resource groups in the cluster.
- 5. On the Cluster Resource Group page, view the current status of a CRG in the Status column.

The following are possible status values for a CRG:

Table 42. Status values for CRGs

Possible values	Description
Started	The CRG is currently started.

Possible values	Description
Stopped	The CRG is currently stopped.
Indoubt	The information about this CRG within the high availability solution might not be accurate. This status occurs when the CRG exit program is called with an action of undo and fails to complete successfully.
Restored	The CRG was restored on its node and has not been copied to other nodes in the cluster. When clustering is started on the node, the CRG will be synchronized with the other nodes and its status is set to inactive.
Inactive	Cluster resource services for the CRG is not active on the node. The node might have failed, the node might have been ended, or the CRG job on that node might not be running.
Deleting	The CRG is in the process of being deleted from the cluster.
Changing	The CRG is in the process of being changed. The CRG is reset to its previous status when the change has been successfully completed.
Stopping	The CRG is in the process of being stopped.
Adding	The CRG is in the process of being added to the cluster.
Starting	The CRG is in the process of being started.
Switching	The CRG is in the process of switching over to another node.
Adding node	A new node is in the process of being added to the cluster. The CRG is reset to its previous status when the node has been successfully added.
Removing node	A node is in the process of being removed from the CRG. The CRG is reset to its previous status when the node has been successfully removed.
Changing node status	The status of a node in the recovery domain for a CRG is currently being changed.

Table 42. Status values for CRGs (continued)

Stopping a CRG:

Cluster resource groups (CRGs) manage resilient resources within an i5/OS high availability environment. They are a cluster technology that defines and controls switching resilient resources to backup systems in the event of an outage.

You might want to stop the CRG to end automatic failover capability in your high-availability environment. For example, you might be performing an IPL on one of the systems that is defined in the CRG.

To stop a CRG, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select **Work with Cluster Resource Groups** to show a list of cluster resource groups in the cluster.
- 5. On the Cluster Resource Group page, select a CRG that you want to stop.

6. From the Select Action menu, select Stop and click Go.

Related information:

End Cluster Resource Group (ENDCRG) command

End Cluster Resource Group (QcstEndClusterResourceGroup) API

Deleting a CRG:

You can delete a cluster resource group by using the Cluster Resource Service interface.

To delete a CRG, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select **Work with Cluster Resource Groups** to show a list of cluster resource groups in the cluster.
- 5. On the Cluster Resource Group page, select a CRG that you want to delete.
- 6. From the Select Action menu, select Delete and click Go.
- 7. Select Yes in the Delete Cluster Resource Group confirmation window.

Related information:

Delete Cluster Resource Group from Cluster (DLTCRGCLU) command

Delete Cluster Resource Group (QcstDeleteClusterResourceGroup) API

Creating switchable devices:

In addition to independent disk pool devices, several other devices are supported for high availability. Devices, such as Ethernet lines, optical devices, and network servers, and others, can now be part of a high availability solution.

A device cluster resource group contains a list of switchable devices. Each device in the list identifies a switchable independent disk pool or another type of switchable device, such as tape devices, line descriptions, controllers, and network servers. The entire collection of devices is switched to the backup node when an outage occurs. You also can vary on the devices during the switchover or failover process.

To create a switchable device, complete the following steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select **Work with Cluster Resource Groups** to show a list of cluster resource groups in the cluster.
- 5. On the Cluster Resource Group page, click the context icon next to the device cluster resource group for which you would like to add an existing switchable device, and select **Add Existing Device** from the context menu.
- 6. In the Add Switchable Device List, click Add.
- 7. In the Add Switchable Device window, fill in the configuration object type and object name of the switchable device. Click **OK** to add the new switchable device to the list. For example, if you were adding a switchable Ethernet line, select Ethernet line for the list.
- 8. Click OK on the list window to add the new device to the device cluster resource group.

Changing the recovery domain for a CRG:

The recovery domain controls recovery actions for a subset of nodes defined in a cluster resource group (CRG).

To change a recovery domain for a device cluster resource group, application cluster resource group, or data cluster resource group, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, select **Work with Cluster Resource Groups** to show a list of cluster resource groups in the cluster.
- 5. On the Cluster Resource Group page, select a CRG that you want to change.
- 6. From the Select Action menu, select Properties and click Go.
- 7. Click the Recovery Domain page to change the existing values for the recovery domain. On this page you can change the roles of nodes within the recovery domain of the cluster, and add and remove nodes from the recovery domain. For a device cluster resource group, you can also change the site name and data port IP addresses for a node in the recovery domain.

Related information:

Add Cluster Resource Group Node Entry (ADDCRGNODE) command

Change Cluster Resource Group (CHGCRG) command

Remove Cluster Resource Group Node Entry (RMVCRGNODE) command

Add a Node to Recovery Domain (QcstAddNodeToRcvyDomain) API

Change Cluster Resource Group (QcstChangeClusterResourceGroup) API

Remove Node from Recovery Domain (QcstRemoveNodeFromRcvyDomain) API

Creating site names and data port IP addresses:

If you are using geographic mirroring, the nodes defined in the recovery domain node of the device cluster resource group must have a data port IP address and site name.

The site name is associated with a node in the recovery domain for a device cluster resource group, applicable only to geographic mirroring. When you are configuring a geographic mirroring environment for high availability, each node at different sites must be assigned to a different site name.

To create the data port IP address and site names for nodes in the recovery domain, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, click the **Work with Cluster Resource Groups** task to show a list of cluster resource groups in the cluster.
- 5. On the Cluster Resource Group tab, click the context icon next to the device cluster resource group, and then select **Properties**.
- 6. On the Recovery Domain page, select Edit.
- 7. To use an existing data port IP address, select it from the list and click **OK**. To add a new data port IP address, click **Add**. In the Add Data Port IP Address window, enter the IP address.
- 8. In the Edit window, you can specify the Site name.

Managing failover outage events

Typically, a failover results from a node outage, but there are other reasons that can also generate a failover. Different system or user actions can potentially cause failover situations.

It is possible for a problem to affect only a single cluster resource group (CRG) that can cause a failover for that CRG but not for any other CRG.

Four categories of outages can occur within a cluster. Some of these events are true failover situations where the node is experiencing an outage, while others require investigation to determine the cause and the appropriate response. The following tables describe each of these categories of outages, the types of outage events that fall into that category and the appropriate recovery action you should take to recover.

Category 1 outages: Node outage causing failover

Node-level failover occurs, causing the following to happen:

- For each CRG, the primary node is marked *inactive* and made the last backup node.
- The node that was the first backup becomes the new primary node.

Failovers happen in this order:

- 1. All device CRGs
- 2. All data CRGs
- 3. All application CRGs

Notes:

- 1. If a failover for any CRG detects that none of the backup nodes are active, the status of the CRG is set to *indoubt* and the CRG recovery domain does not change.
- 2. If all of cluster resource services fails, then the resources (CRGs) that are managed by cluster resource services go through the failover process.

Table 43. Category 1 outages: Node outage causing failover

Failover outage event		
ENDTCP(*IMMED or *CNTRLD with a time limit) is issued.		
ENDSYS (*IMMED or *CNTRLD) is issued.		
PWRDWNSYS(*IMMED or *CNTRLD) is issued.		
Initial program load (IPL) button is pressed while cluster resource services is active on the system.		
End Cluster Node (API or command) is called on the primary node in the CRG recovery domain.		
Remove Cluster Node (API or command) is called on the primary node in the CRG recovery domain.		
HMC delayed power down of the partition or panel option 7 is issued.		
ENDSBS QSYSWRK(*IMMED or *CNTRLD) is issued.		

Category 2 outages: Node outage causing partition or failover

These outages will cause either a partition or a failover depending on whether advanced node failure
detection is configured. Refer to the columns in the table. If advanced node failure detection is
configured, failover occurs in most cases and Category 1 outage information applies. If advanced node
failure detection is not configured, partition occurs and the following applies:

- The status of the nodes not communicating by cluster messaging is set to a Partition status. See Cluster partition for information about partitions.
- All nodes in the cluster partition that do not have the primary node as a member of the partition will end the active cluster resource group.
- | Notes:

- 1. If a node really failed but is detected only as a partition problem and the failed node was the primary node, you lose all the data and application services on that node and no automatic failover is started.
- 2. You must either declare the node as failed or bring the node back up and start clustering on that node again. See Change partitioned nodes to failed for more information.

Failover outage event	No advanced node failure detection	НМС	VIOS
CEC hardware outage (CPU, for example) occurs.	partition	failover	partition or failover
Operating system software machine check occurs.	partition	failover	failover
HMC immediate power off or panel option 8 is issued.	partition	failover	failover
HMC partition restart or panel option 3 is issued.	partition	failover	failover
Power loss to the CEC occurs.	partition	partition	partition

Table 44. Category 2 outages: Node outage causing partition

Category 3 outages: CRG fault causing failover

For a system containing VIOS, a CEC hardware failure could result in either failover or partition. Which

l occurs depends upon the type of system and the hardware failure. For example in a blade system, a CEC

I failure that prevents VIOS from running results in a partition since VIOS is unable to report any failure.

I In the same system in which a single blade fails but VIOS continues to run, failover results since VIOS is

l able to report the failure.

Т

1

I

|

L

L

When a CRG fault causes a failover, the following happens:

- If only a single CRG is affected, failover occurs on an individual CRG basis. This is because CRGs are independent of each other.
- If someone cancels several cluster resource jobs, so that several CRGs are affected at the same time, no coordinated failover between CRGs is performed.
- The primary node is marked as Inactive in each CRG and made the last backup node.
- The node that was the first backup node becomes the new primary node.
- If there is no active backup node, the status of the CRG is set to Indoubt and the recovery domain remains unchanged.

Table 45. Category 3 outages: CRG fault causing failover

Failover outage event	
The CRG job has a software error that causes it to end abnormally.	
	Application exit program failure for an application CRG.

Category 4 outages: Communication outage causing partition

This category is similar to category 2. These events occur:

- The status of the nodes not communicating by cluster messaging are set to Partition status. See Cluster partition for information about partitions.
- All nodes and cluster resource services on the nodes are still operational, but not all nodes can communicate with each other.

• The cluster is partitioned, but each CRG's primary node is still providing services.

The normal recovery for this partition state should be to repair the communication problem that caused the cluster partition. The cluster will resolve the partition state without any additional intervention.

Note: If you want the CRGs to fail over to a new primary node, ensure that the old primary node is not using the resources before the node is marked as failed. See Change partitioned nodes to failed for more information.

Table 46. Category 4 outages: Communication outage causing partition

Failover outage event	
Communications adapter, line, or router failure on cluster heartbeat IP address lines occurs.	
ENDTCPIFC is affecting all cluster heartbeat IP addresses on a cluster node.	

Outages with active CRGs

- If the CRG is Active and the failing node is *not* the primary node, the following results:
 - The failover updates the status of the failed recovery domain member in the CRG's recovery domain.
 - If the failing node is a backup node, the list of backup nodes is reordered so that active nodes are at the beginning of the list.
- If the CRG is Active and the recovery domain member is the primary node, the actions the system performs depend on which type of outage has occurred.
 - Category 1 outages: Node outage causing failover
 - Category 2 outages: Node outage causing partition
 - Category 3 outages: CRG fault causing failover
 - Category 4 outages: Communication outage causing partition

Outages with inactive CRGs

When there is an outage with CRGs, the following occur:

- The membership status of the failed node in the cluster resource group's recovery domain is changed to either Inactive or Partition status.
- The node roles are not changed, and the backup nodes are not reordered automatically.
- The backup nodes are reordered in an Inactive CRG when the **Start Cluster Resource Group (STRCRG)** command or the Start Cluster Resource Group (QcstStartClusterResourceGroup) API is called.
 - **Note:** The Start Cluster Resource Group API will fail if the primary node is not active. You must issue the **Change Cluster Resource Group (CHGCRG)** command or the Change Cluster Resource Group (QcstChangeClusterResourceGroup) API to designate an active node as the primary node, and then call the Start Cluster Resource Group API again.

Managing cluster administrative domains

After a cluster administrative domain is created and the appropriate monitored resource entries (MREs) are added, the cluster administrator should monitor the activity within the administrative domain to ensure that the monitored resources remain consistent. Using Cluster Resource Services graphical interface, you can manage and monitor a cluster administrative domain.

This graphical interface provides the ability to list the MREs along with the global status for each resource. Detailed information can be displayed by selecting an MRE. This information includes the global value for each attribute associated with the MRE, along with an indication whether the attribute is

consistent or inconsistent with the domain. If the global status of a monitored resource is inconsistent, the administrator should take the necessary steps to determine why the resource is inconsistent, correct the problem, and resynchronize the resource.

If the resource is inconsistent because an update failed on one or more nodes, information is kept for the MRE that can help you determine the cause of the failure. On the node where the failure occurred, a message is logged with the MRE as to the cause of the failed update. On the other nodes, there will be an informational message logged internally which tells you there was a failure, along with the list of nodes where the update failed. These messages are available through the Cluster Resource Service graphical interface or by calling the Retrieve Monitored Resource Information (QfpadRtvMonitoredResourceInfo) API. Failure messages are also logged in the job log of the peer CRG job.

After the cause of the inconsistency is determined, the resource can be resynchronized, either as a result of an update operation on the node where the failure occurred, or by ending and restarting the administrative domain. For example, an MRE for a user profile could be inconsistent because you changed the UID for the user profile on one node in the administrative domain, but the UID you specified was already in use by another user profile on one of the nodes. If you change the value of the UID again to something that is not used by another user profile within the administrative domain, the change will be made by the cluster administrative domain on all nodes and the global status for the user profile MRE is set to consistent. You do not need to take any further action to resynchronize the user profile MRE.

In some cases, you need to end and restart the cluster administrative domain CRG in order for the inconsistent resources to be resynchronized. For example, if you change the UID for a user profile that has an MRE associated with it, but the user profile is active in a job on one of the other cluster nodes in the administrative domain, the global value for the MRE associated with the user profile will be set to inconsistent because the change operation failed on the node where the user profile was active in a job. In order to correct this situation, you need to wait until the job has ended and then end the cluster administrative domain. When the administrative domain is started again, the global value for each attribute that is inconsistent will be used to change the resource to a consistent state.

The global status for a monitored resource is always set to failed if the resource is deleted, renamed, or moved on any node in the domain. If this is the case, the MRE should be removed because the resource is no longer be synchronized by the cluster administrative domain.

When you restore a monitored resource on any system that is part of a cluster administrative domain, the resource is resynchronized to the global value currently known in the cluster administrative domain when the peer CRG representing the cluster administrative domain is active.

The following restore commands result in a resynchronization of system objects: RSTLIB, RSTOBJ, RSTUSRPRF and RSTCFG. In addition, RSTSYSINF and UPDSYSINF result in a resynchronization of system values and network attributes. To resynchronize system environment variables after running the RSTSYSINF or UPDSYSINF commands, the peer CRG that represents the cluster administrative domain must be ended and started again.

If you want to restore your monitored resources to a previous state, remove the MRE that represents the resource that you want to restore. Then, after restoring the resource, add an MRE for the resource from the system where the restore operation was done. The cluster administrative domain will synchronize the monitored resource across the domain by using the values from the restored resource.

To monitor a cluster administrative domain, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. On the Cluster Resource Services page, click **Work with Administrative Domains** to display a list of cluster administrative domains in the cluster.

- 4. On the Administrative Domain tab, select New Administrative Domain.
- **5**. On the New Administrative Domain page, specify the information on the cluster administrative domain.

Stopping a cluster administrative domain:

Cluster administrative domains provide environment resiliency for resources within an i5/OS high-availability solution. You might need to stop a cluster administrative domain to temporarily end synchronization of monitored resources.

A cluster administrative domain becomes inactive when it is stopped. While the cluster administrative domain is inactive, all of the monitored resources are considered to be inconsistent because changes to them are not being synchronized. Although changes to monitored resources continue to be tracked, the global value is not changed and changes are not propagated to the rest of the administrative domain. Any changes made to any monitored resource while the cluster administrative domain is inactive are synchronized across all active nodes when the cluster administrative domain is restarted.

Note: The cluster administrative domain and its associated exit program are IBM-supplied objects. They should not be changed using the QcstChangeClusterResourceGroup API or the **CHGCRG** command. Making these changes will cause unpredictable results.

To stop a cluster administrative domain, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. On the Cluster Resource Services page, click **Work with Administrative Domains** to display a list of cluster administrative domains in the cluster.
- 4. On the Administrative Domains page, select a cluster administrative domain.
- 5. From the Select Action menu, select Stop.
- 6. Click Yes on the Stop Administrative Domain Confirmation page.

Related information:

End Cluster Administrative Domain (ENDCAD) command

Deleting a cluster administrative domain:

Using the Cluster Resource Services interface, you can delete a cluster administrative domain. Deleting a cluster administrative domain ends synchronization of monitored resources that are defined in the cluster administrative domain.

To delete a cluster administrative domain, complete the following:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. On the Cluster Resource Services page, click **Work with Administrative Domains** to display a list of cluster administrative domains in the cluster.
- 4. On the Administrative Domains page, select a cluster administrative domain.
- 5. From the Select Action menu, select Delete.
- 6. Click Yes on the Delete Administrative Domain Confirmation page.

Changing the properties of a cluster administrative domain:

Using the Cluster Resource Services graphical interface, you can change properties to an existing cluster administrative domain. These properties control synchronization of monitored resource entries that are defined in the cluster administrative domain.

To change the properties of a cluster administrative domain, complete the following steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- **3**. On the Cluster Resource Services page, click **Work with Administrative Domains** to display a list of cluster administrative domains in the cluster.
- 4. On the Administrative Domains page, select a cluster administrative domain.
- 5. From the Select Action menu, select Properties.
- **6**. On the Properties page, you can change the following information about the cluster administrative domain:
 - In the **Name** field, enter the name of the cluster administrative domain. The name cannot exceed 10 characters.
 - In the **Synchronization option** field, specify the synchronization behavior when a node joins a cluster administrative domain. This field is enabled only if the cluster is at version 6 or greater. Possible values follow:

Last Change Option (default)

Select this option if all changes to monitored resources should be applied to a cluster administrative domain. When a node joins an active cluster administrative domain, any changes made to monitored resources on the joining node while it was inactive, are applied to the monitored resources on the other active nodes in the domain, unless a more recent change was made to the resource in the active domain. The most recent change that is made to a monitored resource is applied to the resource on all active nodes.

Active Domain Option

Select this option if only changes to monitored resources are allowed from active nodes. Changes made to monitored resources on inactive nodes are discarded when the node joins the cluster administrative domain. The Active Domain option does not apply to network server storage spaces (*NWSSTG) or network server configurations (*NWSCFG). Synchronization of these resources is always based on the last change that was made.

• From the **Nodes in the administrative domain** list, you can either add a node to the cluster administrative domain by selecting **Add** or you can remove a node from the domain by selecting **Remove**.

Managing monitored resource entries:

The Cluster Resource Services graphical interfaces allows you to manage monitored resource entries in your cluster administrative domain. A cluster administrative domain ensures that changes made to these monitored resources remain consistent on each node within the high-availability environment.

Working with monitored resource entry status:

The Cluster Resource Services graphical interface provides status messages for monitored resource entries within a cluster administrative domain.

After an MRE is added to the cluster administrative domain, the resource is monitored for changes on all administrative domain nodes so that the values of the resource attributes can be synchronized across the nodes in the cluster administrative domain. The synchronization behavior is dependent on a number of factors:

- Status of the cluster
- Status of the cluster administrative domain
- Status of the node
- Particular actions on the resource

To work with monitored resource entry status, complete these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, click **Work with Administrative Domains** to display a list of cluster administrative domains in the cluster.
- 5. On the Administrative Domains page, click the context icon next to the cluster administrative domain name, and select **Monitored Resource Entries**.

Note: The **Monitored Resource Entries** action is available only if the node that you are managing is part of the cluster administrative domain. The current list of monitored resource types is shown.

- 6. On the Monitored Resources Entries list panel, click the context icon next to the resource type and select Attributes.
- 7. The list of attributes for monitored resource is shown. The Global Status column displays the current status for this attribute in the active cluster administrative domain.

These values determine the status of a monitored resource across the cluster:

Global Value

Т

T

The value for each monitored attribute that a resource is expected to have on all administrative domain nodes. The global value is the same on all active nodes and represents the last change that was synchronized in the domain.

Global Status

The status of the resources across a cluster administrative domain and whether the resources are fully synchronized. Possible global status values follow:

Consistent

The values for all the resource's attributes monitored by the system are the same on all active nodes within the cluster administrative domain. This status occurs in a normal operational environment where the cluster, the cluster administrative domain, and all of the nodes are operational and active in the cluster. In this environment, any change to a value of a monitored resource is propagated to all the other nodes in the cluster administrative domain. This processing is asynchronous to the original change, but will result in consistent values for the enrolled resources across the administrative domain. In this situation, the global status is Consistent, the change is successfully made on each node, and the value of the resource on each node matches the global value for the resource.

Inconsistent

The values for all the resource's attributes monitored by the system are not the same on all active nodes within the cluster administrative domain. A message is logged that describes why the status is Inconsistent. For example, if changes were made to monitored resources while the cluster administrative domain is inactive, then monitored resource status would be Inconsistent.

Pending

The values of the monitored attributes are in the process of being synchronized across the cluster administrative domain.

Added

The monitored resource entry has been added to the cluster administrative domain but has not yet been synchronized.

Ended

The monitored resource is in an unknown state because the cluster administrative domain has been ended, and changes to the resource are no longer being processed. When the cluster administrative domain is ended, the global status for all MREs that are currently set to Consistent are set to Ended.

Failed

The resource is no longer being monitored by the cluster administrative domain and the MRE should be removed. Certain resource actions are not recommended when a resource is being synchronized by a cluster administrative domain. If the resource represented by an MRE is a system object, it should not be deleted, renamed, or moved to a different library without removing the MRE first. If a resource is deleted, renamed or moved to a different library, the global status for the MRE is Failed and any changes made to the resource on any node after that are not propagated to any node in the cluster administrative domain.

When restoring a monitored resource on a node within the cluster administrative domain, the values of the monitored resource are changed back to match the global values that are synchronized by the cluster administrative domain.

Removing monitored resource entries:

Monitored resource entries (MREs) are resources currently used within the high-availability environment and are monitored for changes through a cluster administrative domain. You might want to remove MREs when you no longer need them to be monitored. You can remove monitored resource entries (MREs) by using the Cluster Resource Services graphical interface.

To remove a monitored resource entry, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, click **Work with Administrative Domains** to display a list of cluster administrative domains in the cluster.
- 5. On the Administrative Domains page, click the context icon next to the cluster administrative domain name, and select Monitored Resource Entries.
- **Note:** The **Monitored Resource Entries** action is available only if the node that you are managing is part of the cluster administrative domain. The current list of monitored resource types is shown.
- 6. In the list of monitored resource types, click the context icon next to the monitored resource type, and select **Monitored Resource Entries**. The MRE object list is shown.
- 7. Click the context icon next to the MRE object that you would like to remove, and select **Remove Monitored Resource Entry**.
- 8. Click **Yes** in the Remove MRE Object Confirmation window. The monitored resource entry is removed from the cluster administrative domain.

Related information:

I

Remove Admin Domain MRE (RMVCADMRE) command

Remove Monitored Resource Entry (QfpadRmvMonitoredResourceEntry) API

Listing monitored resource entries:

Monitored resource entries are resources, such as user profiles and environment variables, that have been defined in a cluster administrative domain. You can use the Cluster Resource Services graphical interface to list monitored resource entries that are currently defined in a cluster administrative domain.

To list monitored resource entries, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.

- 4. On the Cluster Resource Services page, click **Work with Administrative Domains** to display a list of cluster administrative domains in the cluster.
- 5. On the Administrative Domains page, click the context icon next to the cluster administrative domain name, and select **Monitored Resource Entries**.
- **Note:** The **Monitored Resource Entries** action is available only if the node that you are managing is part of the cluster administrative domain. The current list of monitored resource types is shown.
- 6. In the list of monitored resource types, click the context icon next to the monitored resource type, and select **Monitored Resource Entries**.
- 7. View and work with the list of enrolled monitored resource entries.

Selecting attributes to monitor:

T

After you have added monitored resource entries, you can select attributes associated with that resource to be monitored by the cluster administrative domain.

To select attributes to monitor for a monitored resource entry (MRE), follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, click **Work with Administrative Domains** to display a list of cluster administrative domains in the cluster.
- 5. On the Administrative Domains page, click the context icon next to the cluster administrative domain name, and select Monitored Resource Entries.
- **Note:** The **Monitored Resource Entries** action is available only if the node that you are managing is part of the cluster administrative domain. The current list of monitored resource types is shown.
 - 6. In the list of monitored resource types, click the context icon next to the monitored resource type, and select **Monitored Resource Entries...** The MRE object list is shown.
 - 7. Click the context icon next to the MRE object, such as user profile or system value, and select **Work with Attributes**. The MRE Attributes List is shown.
- **8**. In the MRE Attribute List window, select the attributes that you want to monitor, and then click
- Close. For example, if you want to monitor Ethernet line description for changes to its resource name attribute, you would select resource name as the attribute.

Related tasks:

"Adding monitored resource entries" on page 214

You can add a monitored resource entry (MRE) to a cluster administrative domain. Monitored resource entries define critical resources so that changes made to these resources are kept consistent across a high-availability environment.

Attributes that can be monitored:

A monitored resource entry can be added to the cluster administrative domain for various types of resources. This topic lists the attributes that each resource type can be monitored.

Resource types

- Authorization lists (*AUTL)
- Classes (*CLS)
- Ethernet line descriptions (*ETHLIN)
- Independent disk pools device descriptions (*ASPDEV)
- Job descriptions (*JOBD)
- Network attributes (*NETA)
- Network server configuration for connection security (*NWSCFG)

- Network server configuration for remote systems (*NWSCFG)
- Network server configurations for service processors (*NWSCFG)
- Network server descriptions for iSCSI connections (*NWSD)
- Network server descriptions for integrated network servers (*NWSD)
- Network server storage spaces (*NWSSTG)
- Network server host adapter device descriptions (*NWSHDEV)
- Optical device descriptions (*OPTDEV)
- Printer device descriptions for LAN connections (*PRTDEV)
- Printer device descriptions for virtual connections (*PRTDEV)
 - Subsystem descriptions (*SBSD)
 - System environment variables (*ENVVAR)
 - System values (*SYSVAL)
 - Tape device descriptions (*TAPDEV)
 - Token-ring line descriptions (*TRNLIN)
 - TCP/IP attributes (*TCPA)
 - User profiles (*USRPRF)

Table 47. Table 1. Attributes that can be monitored for authorization lists

Ι	Attribute name	Description
Ι	AUT	Authority
Ι	TEXT	Text description
Ι		1

Table 48. Attributes that can be monitored for classes

Attribute name	Description
CPUTIME	Maximum CPU time
DFTWAIT	Default wait time
MAXTHD	Maximum threads
MAXTMPSTG	Maximum temporary storage
RUNPTY	Run priority
TEXT	Text description
TIMESLICE	Time slice

Table 49. Attributes that can be monitored for Ethernet line descriptions

Attribute name	Description
ASSOCPORT	Associated port resource name
AUTOCRTCTL	Autocreate controller
AUTODLTCTL	Autodelete controller
CMNRCYLMT	Recovery limits
COSTBYTE	Relative cost per byte for sending and receiving data on the line
COSTCNN	Relative cost of being connected on the line
DUPLEX	Duplex
GENTSTFRM	Generate test frames
GRPADR	Group address

Table 49. Attribut	es that can be	e monitored for	Ethernet line	descriptions	(continued)
--------------------	----------------	-----------------	---------------	--------------	-------------

Attribute name	Description
LINESPEED	Line speed
MAXFRAME	Maximum frame size
MAXCTL	Maximum controllers
MSGQ	Message queue
ONLINE	Online at IPL
PRPDLY	Propagation delay
RSRCNAME	Resource name
SECURITY	Security level of the physical line
SSAP	Source service access point (SSAP) information list
TEXT	Text description
USRDFN1	First user-defined
USRDFN2	Second user-defined
USRDFN3	Third user-defined
VRYWAIT	Vary on wait

Table 50. Attributes that can be monitored for independent disk pools device descriptions

Attribute name	Description
MSGQ	Message queue
RDB	Relational database
RSRCNAME	Resource name
TEXT	Text description

Table 51. Attributes that can be monitored for job descriptions

Attribute name	Description
ACGCDE	Accounting code
ALWMLTTHD	Allow multiple threads
DDMCNV	DDM conversation
DEVRCYACN	Device recovery action
ENDSEV	End severity
HOLD	Hold on job queue
INLASPGRP	Initial ASP group
INLLIBL	Initial library list
INQMSGRPY	Inquiry message reply
JOBMSGQFL	Job message queue full action
JOBMSGQMX	Job message queue maximum size
JOBPTY	Job priority (on JOBQ)
JOBQ	Job queue
LOG	Message logging
LOGCLPGM	Log CL program commands
OUTPTY	Output priority (on OUTQ)

T

Table 51. Attributes that can be monitored for job descriptions (continued)

Attribute name	Description
OUTQ	Output queue
PRTDEV	Print device
PRTTXT	Print text
RQSDTA	Request data or command
RTGDTA	Routing data
SPLFACN	Spooled file action
SWS	Job switches
SYNTAX	CL syntax check
TEXT	Text description
TSEPOOL	Time slice end pool
USER	User

Table 52. Attributes that can be monitored for network attributes

Attribute name	Description	
ALWADDCLU	Allow add to cluster	
DDMACC	DDM/DRDA request access	
NWSDOMAIN	Network server domain	
PCSACC Client request access		
Note: Each network attribute is treated as its own monitored resource entry. For these, the resource type and attribute names are identical.		

Table 53. Attributes that can be monitored for network server configurations for service processors

Attribute name	Description
EID	Enclosure identifier
INZSP	Initialize service processor
SPAUT	Service processor authority
SPCERTID	Service processor certificate identifier
SPINTNETA	Service processor Internet address
SPNAME	Service processor name
TEXT	Text description

Table 54. Attributes that can be monitored for network server configuration for remote systems

Attribute name	Description
BOOTDEVID	Boot device identifier
CHAPAUT	Target CHAP authentication
DELIVERY	Delivery method
DYNBOOTOPT	Dynamic boot options
INRCHAPAUT	Initiator CHAP authentication
RMTIFC	Remote interfaces
RMTSYSID	Remote system identifier

Table 54. Attributes that can be monitored for network server configuration for remote systems (continued)

Attribute name	Description
SPNWSCFG	Service processor network server configuration that is used to manage the remote server
TEXT	Text description

Table 55. Attributes that can be monitored for network server configuration for connection security

Attribute name	Description
IPSECRULE	IP security rules
TEXT	Text description

Table 56. Attributes that can be monitored for Network server descriptions for integrated network servers

Attribute name	Description	
CFGFILE	Configuration file	
CODEPAGE	ASCII code page representing the character set to be used by this network server	
EVTLOG	Event log	
MSGQ	Message queue	
NWSSTGL	Storage space links	
PRPDMNUSR	Propagate domain user	
RSRCNAME	Resource name	
RSTDDEVRSC	Restricted device resources	
SHUTDTIMO	Shut down time out	
SYNCTIME	Synchronize date and time	
TCPDMNNAME	TCP/IP local domain name	
TCPHOSTNAM	TCP/IP host name	
TCPPORTCFG	TCP/IP port configuration	
TCPNAMSVR	TCP/IP name server system	
TEXT	Text description	
VRYWAIT	Vary on wait	
WINDOWSNT	Windows network server description	

Table 57. Attributes that can be monitored for network server descriptions for iSCSI connections

Attribute name	Description	
ACTTMR	Activation timer	
CFGFILE	Configuration file	
CMNMSGQ	Communications message queue	
CODEPAGE	ASCII code page representing the character set to be used by this network server	
DFTSECRULE	Default IP security rule	
DFTSTGPTH	Default storage path	
EVTLOG	Event log	
MLTPTHGRP	Multi-path group	

Attribute name	Description	
MSGQ	Message queue	
NWSCFG	Network server configuration Storage space links	
NWSSTGL		
PRPDMNUSR	Propagate domain user	
RMVMEDPTH	Removable media path	
RSRCNAME	Resource name	
RSTDDEVRSC	Restricted device resources	
I SHUTDTIMO	Shut down time out	
STGPTH	iSCSI storage paths of the network server	
I SVROPT	Serviceability options	
SYNCTIME	Synchronize date and time	
TCPDMNNAME	TCP/IP local domain name	
TCPHOSTNAM	TCP/IP host name	
TCPNAMSVR	TCP/IP name server system	
TCPPORTCFG	TCP/IP port configuration	
TEXT	Text description	
VRTETHCTLP	Virtual Ethernet control port	
VRTETHPTH	Virtual Ethernet path	
VRYWAIT	Vary on wait	

Table 57. Attributes that can be monitored for network server descriptions for iSCSI connections (continued)

Table 58. Attributes that can be monitored for network server storage spaces

Attribute name	Description
SIZE	Size
TEXT	Text description
TOTALFILES	Total files

Table 59. Attributes that can be monitored for network server host adapter device descriptions

Attribute name	Description
CMNRCYLMT	Recovery limits
LCLIFC	Associated local interface
MSGQ	Message queue
ONLINE	Online at IPL
RSRCNAME	Resource name
TEXT	Text description

Table 60. Attributes that can be monitored for optical device descriptions

Attribute name	Description
MSGQ	Message queue
ONLINE	Online at IPL
RSRCNAME	Resource name

Table 60. Attributes that can be monitored for optical device descriptions (continued)

Attribute name	Description
TEXT	Text description

Table 61. Attributes that can be monitored for printer device descriptions for *LAN printers

Attribute name	Description
ACTTMR	Activation timer
ADPTADR	LAN remote adapter address
ADPTTYPE	Adapter type
ADPTCNNTYP	Adapter connection type
AFP	Advanced function printing
CHRID	Character identifier
FONT	Font
FORMFEED	Formfeed
IMGCFG	Image configuration
INACTTMR	Inactivity timer
LNGTYPE	Language type
LOCADR	Location location address
MAXPNDRQS	Maximum pending request
MFRTYPMDL	Manufacturer type and model
MSGQ	Message queue
ONLINE	Online at IPL
PORT	Port number
PRTERRMSG	Print error message
PUBLISHINF	Publishing information
RMTLOCNAME	Remote location
SEPDRAWER	Separator drawer
SEPPGM	Separator program
SWTLINLST	Switched line list
SYSDRVPGM	System driver program
TEXT	Text description
TRANSFORM	Host printer transform
USRDFNOBJ	User-defined object
USRDFNOPT	User-defined options
USRDRVPGM	User-defined driver program
USRDTATFM	Data transform program
WSCST	Workstation customizing object

Table 62. Attributes that can be monitored for printer device descriptions for *VRT printers

I	Attribute name	Description
I	CHRID	Character identifier
I	FORMFEED	Form feed

Ι	Table 62. Attributes that c	can be monitored for print	er device descriptions for *	VRT printers (continued)
---	-----------------------------	----------------------------	------------------------------	--------------------------

ttribute name	Description
GCFEAT	DBCS FEATURE
MGCFG	Image configuration
IAXLENRU	Maximum length of request unit
IFRTYPMDL	Manufacturer type and model
1SGQ	Message queue
DNLINE	Online at IPL
RTERRMSG	Print error message
UBLISHINF	Publishing information
EPDRAWER	Separator drawer
EPPGM	Separator program
EXT	Text description
RANSFORM	Host print transform
JSRDFNOBJ	User-defined object
JSRDFNOPT	User-defined options
JSRDRVPGM	User-defined driver program
ISRDTAFM	Data transform program
VSCST	Workstation customizing object
EPPGM	Separator program
WTLINLST	Switched line list
YSDRVPGM	System driver program
EXT	Text description
RANSFORM	Host printer transform
JSRDFNOBJ	User-defined object
ISRDFNOPT	User-defined options
JSRDRVPGM	User-defined driver program
ISRDTATFM	Data transform program
VSCST	Workstation customizing object

Table 63. Attributes that can be monitored for subsystem descriptions

Attribute name	Description
AJE	Autostart job entry
CMNE	Online at IPL
JOBQE	Job queue
MAXJOBS	Maximum number of jobs
РЈЕ	Prestart job entry
RMTLOCNAME	Remote location name
RTGE	Routing entry
SGNDSPF	Sign on display
SYSLIBLE	Subsystem library
TEXT	Text description

Table 63. Attributes that can be monitored for subsystem descriptions (continued)

Attribute name	Description
WSNE	Workstation name entry
WSTE	Workstation type entry

Table 64. Attributes that can be monitored for system environment variables

Any *SYS level environment variable can be monitored. The attribute and resource name are both the same as the environment variable's name.

Note: Each environment variable is treated as its own monitored resource entry. For these, the resource type and attribute names are identical.

Table 65. Attributes that can be monitored for system values

Attribute name	Description
QACGLVL	Accounting level
QACTJOBITP	Allow jobs to be interrupted
QALWOBJRST	Prevents anyone from restoring a system-state object or an object that adopts authority
QALWUSRDMN	Allows user domain objects
QASTLVL	Assistance level
QATNPGM	Attention program
QAUDCTL	Audit control
QAUDENDACN	Audit journal error action
QAUDFRCLVL	Auditing force level
QAUDLVL	Auditing level
QAUDLVL2	Auditing level extension
QAUTOCFG	Automatic device configuration
QAUTORMT	Remote controllers and devices
QAUTOVRT	Automatic virtual device configuration
QCCSID	Coded character set identifier
QCFGMSGQ	Message queue for lines, controllers, and devices
QCHRID	Default graphic character set and code page used for displaying or printing data
QCHRIDCTL	Character identifier control for the job
QCMNRCYLMT	Automatic communications error recovery
QCNTRYID	Country or region identifier
QCRTAUT	Authority for new objects
QCRTOBJAUD	Auditing new objects
QCTLSBSD	Controlling subsystem or library
QCURSYM	Currency symbol
QDATFMT	Date format
QDATSEP	Date separator
QDBRCVYWT	Wait for database recovery before completing restart
QDECFMT	Decimal format

Attribute name	Description
QDEVNAMING	Device naming convention
QDEVRCYACN	Device recovery action
QDSCJOBITV	Time out interval for disconnected jobs
QDSPSGNINF	Controls the display of sign-on information
QENDJOBLMT	Maximum time for immediate end
QFRCCVNRST	Force conversion on restore
QHSTLOGSIZ	History log file size
QIGCCDEFNT	Coded font name
QIGCFNTSIZ	Coded font point size
QINACTITV	Inactive job time-out interval
QINACTMSGQ	Timeout interval action
QIPLTYPE	Type of restart
QJOBMSGQFL	Job message queue full action
QJOBMSGQMX	Job message queue maximum size
QJOBMSGQSZ	Initial size of job message queue in kilobytes (KB)
QJOBMSGQTL	Maximum size of job message queue (in KB)
QJOBSPLA	Initial size of spooling control block for a job (in bytes)
QKBDBUF	Keyboard buffer
QKBDTYPE	Keyboard language character set
QLANGID	Default language identifier
QLIBLCKLVL	Lock libraries in a user job's library search list
QLMTDEVSSN	Limit device sessions
QLMTSECOFR	Limit security officer device access
QLOCALE	Locale
QLOGOUTPUT	Produce printer output for job log
QMAXACTLVL	Maximum activity level of the system
QMAXJOB	Maximum number of jobs that are allowed on the system
QMAXSGNACN	The system's response when the limit imposed by QMAXSIGN system value is reached
QMAXSIGN	Maximum number of not valid sign-on attempts allowed
QMAXSPLF	Maximum printer output files
QMLTTHDACN	When a function in a multithreaded job is not threadsafe
QPASTHRSVR	Available display station pass-through server jobs
QPRBFTR	Problem log filter
QPRBHLDITV	Minimum retention
QPRTDEV	Default printer
QPRTKEYFMT	Print key format
QPRTTXT	Up to 30 characters of text that can be printed at the bottom of listings and separator pages
QPWDCHGBLK	Minimum time between password changes

Table 65. Attributes that can be monitored for system values (continued)

Attribute name	Description
QPWDEXPITV	Number of days for which a password is valid
QPWDEXPWRN	Password expiration warning interval system
QPWDLMTACJ	Limits the use of adjacent numbers in a password
QPWDLMTCHR	Limits the use of certain characters in a password
QPWDLMTREP	Limits the use of repeating characters in a password
QPWDLVL	Password level
QPWDMAXLEN	Maximum number of characters in a password
QPWDMINLEN	Minimum number of characters in a password
QPWDPOSDIF	Controls the position of characters in a new password
QPWDRQDDGT	Require a number in a new password
QPWDRQDDIF	Controls whether the password must be different from the previous passwords
QPWDRULES	Password rules
QPWDVLDPGM	Password approval program
QPWRDWNLMT	Maximum time for immediate shutdown
QRCLSPLSTG	Automatically clean up unused printer output storage
QRETSVRSEC	Retain server security data indicator
QRMTSIGN	Remote sign-on
QRMTSRVATR	Remote service attribute
QSCANFS	Scan file systems
QSCANFSCTL	Scan control
QSCPFCONS	Console problem occurs
QSECURITY	System security level
QSETJOBATR	Set job attributes
QSFWERRLOG	Software error log
QSHRMEMCTL	Allow use of shared or mapped memory with write capability
QSPCENV	Default user environment
QSPLFACN	Spooled file action
QSRTSEQ	Sort sequence
QSRVDMP	Service log for unmonitored escape messages
QSSLCSL	Secure Sockets Layer cipher specification list
QSSLCSLCTL	Secure Sockets Layer cipher control
QSSLPCL	Secure Sockets Layer protocols
QSTRUPPGM	Set startup program
QSTSMSG	Display status messages
QSYSLIBL	System library list
QTIMSEP	Time separator
QTSEPOOL	Indicates whether interactive jobs should be moved to another main storage pool when they reach time slice end

| | Table 65. Attributes that can be monitored for system values (continued)

Attribute name	Description
Note : Each system value is treated as its own monitored r names are identical.	esource entry. For these, the resource type and attribute

Table 66. Attributes that can be monitored for tape device descriptions

Attribute name	Description
ASSIGN	Assign device at vary on
MSGQ	Message queue
ONLINE	Online at IPL
RSRCNAME	Resource name
TEXT	Text description
UNLOAD	Unload device at vary off

Table 67. Attributes that can be monitored for token-ring descriptions

Attribute name	Description
ACTLANMGR	Activate LAN manager
ADPTADR	Local adapter address
AUTOCRTCTL	Autocreate controller
AUTODLTCTL	Autodelete controller
CMNRCYLMT	Recovery limits
COSTBYTE	Relative cost per byte for sending and receiving data on the line
COSTCNN	Relative cost of being connected on the line
DUPLEX	Duplex
ELYTKNRLS	Early token release
FCNADR	Functional address
LINESPEED	Line speed
LINKSPEED	Link speed
LOGCFGCHG	Log configuration changes
MAXCTL	Maximum controllers
MAXFRAME	Maximum frame size
MSGQ	Message queue
ONLINE	Online at IPL
PRPDLY	Propagation delay
RSRCNAME	Resource name
SECURITY	Security for line
SSAP	Source service access point (SSAP) information list
TRNINFBDN	Token-ring inform of beacon
TRNLOGLVL	TRLAN manager logging level
TRNMGRMODE	TRLAN manager mode
TEXT	Text description of the token-ring line
USRDFN1	First user-defined

Table 67. Attributes that can be monitored for token-ring descriptions (continued)

Attribute name	Description
USRDFN2	Second user-defined
USRDFN3	Third user-defined
VRYWAIT	Vary on wait

Table 68. Attributes that can be monitored for TCP/IP attributes

Attribute name	Description
ARPTIMO	Address resolution protocol (ARP) cache timeout
ECN	Enable explicit congestion notification (ECN)
IP6TMPAXP	IPv6 temporary address excluded prefix
IPDEADGATE	IP dead gateway detection
IPDTGFWD	IP datagram forwarding
IPPATHMTU	Path maximum transmission unit (MTU) discovery
IPQOSBCH	IP QoS datagram batching
IPQOSENB	IP QoS enablement
IPQOSTMR	IP QoS timer resolution
IPRSBTIMO	IP reassembly timeout
IPSRCRTG	IP source routing
IPTTL	IP time to live (hop limit)
LOGPCLERR	Log protocol errors
NFC	Network file cache
TCPCLOTIMO	TCP time-wait timeout
TCPCNNMSG	TCP close connection message
TCPKEEPALV	TCP keep alive
TCPMINRTM	TCP minimum retransmit time
TCPR1CNT	TCP R1 retransmission count
TCPR2CNT	TCP R2 retransmission count
TCPRCVBUF	TCP receive buffer size
TCPSNDBUF	TCP send buffer size
TCPURGPTR	TCP urgent pointer
UDPCKS	UDP checksum
Note: Each TCP/IP attribute is treated	as its own monitored resource entry. For these, the resource type and

Note: Each TCP/IP attribute is treated as its own monitored resource entry. For these, the resource type and attribute names are identical.

Table 69. Attributes that can be monitored for user profiles

Attribute name	Description
ACGCDE	Accounting code
ASTLVL	Assistance level
ATNPGM	Attention program
CCSID	Coded character set ID
CHRIDCTL	Character identifier control

Attribute name	Description		
CNTRYID	Country or region ID		
CURLIB	Current library		
DLVRY	Delivery		
DSPSGNINF	Display sign-on information		
GID	Group ID number		
GRPAUT	Group authority		
GRPAUTTYP	Group authority type		
GRPPRF	Group profile		
HOMEDIR	Home directory		
INLMNU	Initial menu		
INLPGM	Initial program to call		
JOBD	Job description		
KBDBUF	Keyboard buffering		
LANGID	Language ID		
LCLPWDMGT	Local password management		
LMTCPB	Limit capabilities		
LMTDEVSSN	Limit device sessions		
LOCALE	Locale		
MAXSTG	Maximum allowed storage		
MSGQ	Message queue		
OUTQ	Output queue		
OWNER	Owner		
PASSWORD	User password		
PRTDEV	Print device		
PTYLMT	Highest schedule priority		
PWDEXP	Set password to expired		
PWDEXPITV	Password expiration interval		
SETJOBATR	Locale job attributes		
SEV	Severity code filter		
SPCAUT	Special authority		
SPCENV	Special environment		
SRTSEQ	Sort sequence		
STATUS	Status		
SUPGRPPRF	Supplemental groups		
TEXT	Text description		
UID	User ID number		
USRCLS	User class		
USREXPDATE	User expiration date		
USREXPITV	User expiration interval		
USROPT	User options		

Table 69. Attributes that can be monitored for user profiles (continued)

|

Displaying monitored resource entry messages:

Using the Cluster Resource Services graphical interface, you can display messages associated with monitored resource entries.

To display and view monitored resource entry messages, complete the following:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the Cluster Resource Services page, click **Work with Administrative Domains** to display a list of cluster administrative domains in the cluster.
- 5. On the Administrative Domains page, click the context icon next to the cluster administrative domain name, and select Monitored Resource Entries.
 - **Note:** The **Monitored Resource Entries** action is available only if the node that you are managing is part of the cluster administrative domain. The current list of monitored resource types is shown.
 - 6. In the list of monitored resource types, click the context icon next to the name, and select **Attributes**. The MRE object list is shown.
 - 7. Click the context icon next to the MRE object, such as a user profile or system value, and select **Display Values**.

Managing switched disks

T

Switched disks are independent disk pools that have been configured as part of a device cluster resource group (CRG). Ownership of data and applications that stored in a switched disk can be switched to other systems that have been defined in the device CRG. Switched disk technology provides high availability during planned and some unplanned outages.

Making a disk pool unavailable

You can select an independent disk pool to make it unavailable (vary it off). You cannot access any of the disk units or objects in the independent disk pool or its corresponding database until it is made available (varied on) again. The pool can be made available again on the same system or another system in the recovery domain of the cluster resource group.

Important: Before an independent disk pool can be made unavailable, no jobs can hold reservations on the disk pool. See Release job reservations on an independent disk for details on determining whether jobs are using an independent disk pool and how to release the job reservations.

When making a UDFS disk pool unavailable using System i Navigator, messages might be generated that require a response in the character-based interface. System i Navigator will not provide any indication that a message is waiting.

To make an independent disk pool unavailable:

- 1. In System i Navigator, expand My Connections (or your active environment).
- 2. Expand the System i you want to examine, Configuration and Service > Hardware > Disk Units.
- 3. Expand Disk Pools.
- 4. Right-click the disk pool you want to make unavailable and select Make Unavailable.
- 5. From the dialog box that displays, click Make Unavailable to make the disk pool unavailable.

You can use the Vary Configuration (VRYCFG) command in the character-based interface to make the disk pool unavailable.

Use the Display ASP Status (DSPASPSTS) command to identify where a step is in the process.

Use the Control ASP Access (QYASPCTLAA) API to restrict the processes that have access to the ASP.

Use the Start DASD Management Operation (QYASSDMO) API to reduce the amount of time it takes to make a disk pool unavailable.

Making your hardware switchable

In an i5/OS high-availability environment, you must make an external expansion unit switchable.

When you are using independent disk pools in a switchable environment, the associated hardware must be authorized to switch as well. Depending on your environment, this can include frame or units or IOPs and their associated resources. Refer to the following steps that apply to your switchable environment.

Making frame or unit switchable

An independent disk pool can contain disk units within several expansion units. If you have a stand-alone expansion unit that contains disk units included in an independent disk pool, you must authorize the expansion unit to grant access to other systems. This is called making an expansion unit switchable. If you do not want other systems to be able to access the stand-alone expansion unit, you must make the expansion unit private.

To make a frame or unit switchable, follow these steps:

- 1. In System i Navigator, expand My Connections (or your active environment).
- 2. Expand the system you want to examine, **Configuration and Service** > **Hardware** > **Disk Units** > **By Location** and select the frame or disk unit that you want to make switchable.
- 3. Right-click a highlighted frame or disk unit and select **Make Switchable**.
- 4. Follow the instructions on the dialog box that is displayed.

Making IOP switchable

To allow an IOP to be switched, the bus containing the IOP that controls the disk units to be switched must be owned by the primary node (owned shared). The backup node must also use the bus (use bus shared). See Dynamically switching IOPs between partitions for more information.

To complete this task, you need a Service Tools user profile with administration authority to the System Partitions function in dedicated service tools (DST). For more information about obtaining logical partition privileges, refer to Logical partition authority.

To change the ownership type for a bus by using Management Central, follow these steps:

- 1. In System i Navigator, expand My Connections (or your active environment).
- 2. Select the primary partition of the system.
- 3. Expand **Configuration and Service** and select **Logical Partitions**.
- 4. Right-click the **Logical Partition** and select **Configure Partitions**.
- 5. In the Configure Logical Partitions window, right-click the bus for which you want to change ownership and select **Properties**.
- 6. Select the **Partitions** page.
- 7. Select the partition that owns the bus in **Owning logical partition**, and then select the ownership type in **Sharing**. If the ownership type is shared, the partitions that share the bus appear in the list. Click Help if you need more information about these options.
- 8. Click OK.

Making I/O pool switchable with Hardware Management Console

If you are using the Hardware Management Console to manage your logical partitions, you must create an I/O pool that includes the IOP, IOA, and all attached resources to allow an independent disk pool to be switchable between partitions. You must grant access to each partition that you want to own the independent disk pool by assigning the I/O pool in each partition profile.

To create an I/O pool that can be switched between partitions, follow these steps:

- 1. Open the Logical Partition Profile Properties window to change partition profile properties and assign resources to an I/O pool.
- 2. Click the Physical I/O tab.
- **3**. In the Profile I/O devices column, expand the bus that contains the IOP that you want to make switchable.
- 4. Select the IOP that you want to assign to an I/O pool. The IOP must be *desired* (no check mark in the **Required** column).
- 5. Click the I/O pool column so that the cursor appears in the row of the IOP you want to assign to an I/O Pool, and type the number for the I/O pool.
- 6. Repeat these steps to add each IOA and resource under the control of the IOP to the I/O pool.
- 7. Click OK.

Associating I/O pool with partitions

After you have added the resources to the I/O pool, complete the following steps to associate the I/O pool with each additional partition that you want to be able to own the independent disk pool in the switchable environment.

- 1. Open the Logical Partition Profile Properties window to change partition profile properties for each additional partition that needs to access the independent disk pool.
- 2. Click the Physical I/O tab.
- 3. Click Advanced.
- 4. In the I/O Pools window, in the **I/O pools to add** field, type the number of the I/O pool to which you assigned the resources that you want to switch with the independent disk pool.
- 5. Click Add > OK.

For the I/O pool changes to take effect, complete the following steps for each partition whose partition profile was changed:

- 1. Shut down the partition. See Restarting and shutting down IBM i in a logical partition.
- 2. Start the logical partition by activating the partition profile to reflect the changes.

Related concepts:

Dynamically switching IOPs between partitions

Logical partition authority

I/O pool I∕

Related tasks:

- Changing partition profile properties
- Image: Image
- Image: Provide the second state of the sec

Quiescing an independent disk pool

In an i5/OS high-availability solution, independent disk pools are used to store resilient data and applications. Some system functions, such as performing backups, require that you temporarily suspend changes to that data while the operation occurs.

To decrease the amount of time it takes to quiesce an independent disk pool, you might want to hold batch job queues, end some subsystems, or send a break message to interactive users, advising them to postpone new work.

To quiesce an independent disk pool, complete these steps.

In a command line interface, enter the following command: **CHGASPACT ASPDEV(name) OPTION(*SUSPEND) SSPTIMO(30) SSPTIMOACN(*CONT)**, where *name* is the name of the independent disk pool that you want to suspend. In this command you are specifying to suspend the independent disk pool with a 30-second timeout, and to continue with the next step even if the timeout limit has been exceeded.

Resuming an independent disk pool

After you have quiesced an independent disk pool in an i5/OS high availability environment for backup operations, you will need to resume the independent disk pool to ensure changes made to the data during the quiesce are updated.

Complete these steps to resume an independent disk pool:

In a command line interface, enter the following command: CHGASPACT ASPDEV (name) OPTION (*RESUME),, where name is the name of the independent disk pool that you want to resume.

Managing cross-site mirroring

You can manage three cross-site mirroring technologies: geographic mirroring, metro mirror and global mirror. These cross-site mirroring technologies provide disaster recovery by copying critical data from disk units at the production site to disk units at a backup location.

Managing geographic mirroring

Use the following information to help you manage geographic mirroring. Geographic mirroring is a sub-function of cross-site mirroring, where data is mirrored to independent disk pools in an i5/OS environment.

Suspending geographic mirroring:

If you need to end TCP communications for any reason, such as placing your system in restricted state, you should suspend geographic mirroring first. This action temporarily stops mirroring between systems in a high-availability solution.

- When you suspend mirroring, any changes made on the production copy of the independent disk poolare not being transmitted to the mirror copy.
 - **Note:** When you resume geographic mirroring, synchronization is required between the production and mirror copies. If geographic mirroring was suspended without tracking, then full synchronization occurs. This can be a lengthy process.

Suspending geographic mirroring when IBM PowerHA for i is installed

- 1 To suspend geographic mirroring with IBM Systems Director Navigator for i, follow these steps:
 - 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
 - 2. Log on to the system with your user profile and password.
- **3**. Select **Configuration and Service** from your IBM Systems Director Navigator for i window.
 - 4. Select Disk Pools.
 - 5. Select the production copy of the **Disk Pool** that you want to suspend.
 - 6. From the Select Actions menu, select Sessions.
 - 7. Select the session that you want to suspend.

8. From the Select Actions menu, select Suspend with tracking or Suspend without tracking.

Suspending geographic mirroring when IBM PowerHA for i is not installed

To suspend geographic mirroring with System i Navigator, follow these steps:

- 1. In System i Navigator, expand My Connections (or your active environment).
- 2. Expand the system that owns the production copy of the geographically mirrored disk pool that you want to suspend.
- 3. Expand Configuration and Service > Hardware > Disk Units > Disk Pools.
- 4. Right-click the production copy of the **Disk Pool** you want to suspend and select **Geographic Mirroring** > **Suspend Geographic Mirroring**.

If you suspend with tracking, the system attempts to track changes made to those disk pools. This might shorten the length of the synchronization process by performing partial synchronization when you resume geographic mirroring. If tracking space is exhausted, then when you resume geographic mirroring, complete synchronization is required.

Note: If you suspend geographic mirroring without tracking changes, then when you resume geographic mirroring, a complete synchronization is required between the production and mirror copies. If you suspend geographic mirroring and you do track changes, then only a partial synchronization is required. Complete synchronization can be a lengthy process, anywhere from one to several hours or longer. The length of time it takes to synchronize is dependent on the amount of data being synchronized, the speed of TCP/IP connections, and the number of communication lines used for geographic mirroring.

Resuming geographic mirroring:

If you suspend geographic mirroring, you must resume it in order to reactivate mirroring between the production and mirrored copies again.

Note: When you resume geographic mirroring, the production and mirror copies are synchronized concurrent with performing geographic mirroring. Synchronization can be a lengthy process. If a disk pool becoming unavailable interrupts synchronization, then synchronization continues from where it was interrupted when the disk pool becomes available again. When an interrupted synchronization is continued, the first message (CPI0985D) states that the synchronization is 0% complete.

Resuming geographic mirroring when IBM PowerHA for i is installed

- | To resume geographic mirroring with IBM Systems Director Navigator for i, follow these steps:
 - 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
 - 2. Log on to the system with your user profile and password.
 - 3. Select Configuration and Service from your IBM Systems Director Navigator for i window.
 - 4. Select Disk Pools.
 - 5. Select the production copy of the Disk Pool that you want to resume.
 - 6. From the **Select Actions** menu, select **Sessions**.
 - 7. Select the session that you want to resume.
 - 8. From the Select Actions menu, select Resume.

Resuming geographic mirroring when IBM PowerHA for i is not installed

To resume geographic mirroring using System i Navigator, follow these steps:

1. In System i Navigator, expand My Connections (or your active environment).

- 2. Expand the system that owns the production copy of the disk pool for which you want to resume geographic mirroring.
- 3. Expand Configuration and Service > Hardware > Disk Units > Disk Pools.
- 4. Right-click the **Disk Pool** you want to resume and select **Geographic Mirroring** > **Resume Geographic Mirroring**.

Detaching mirror copy:

If you are using geographic mirroring and want to access the mirror copy to perform save operations or data mining, or to create reports, you must detach the mirror copy from the production copy.

You detach the mirror copy by accessing the production copy of the disk pool.

Detaching the mirror copy when IBM PowerHA for i is installed

1 To detach the mirror copy by using IBM Navigator for i, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select **Configuration and Service** from your IBM Systems Director Navigator for i5/OS window.
- 4. Select Disk Pools.
- 5. Select the production copy of the **Disk Pool** that you want to detach.
- 6. From the **Select Actions** menu, select **Sessions**.
- 7. Select the session that you want to detach.
- 8. From the Select Actions menu, select Detach with tracking or Detach without tracking.

Detaching the mirror copy when IBM PowerHA for i is not installed

It is recommended, but not required, that you make the independent disk pool unavailable to ensure theproduction copy is not altered while the detachment is being performed.

To detach the mirror copy by using System i Navigator, follow these steps:

- 1. In System i Navigator, expand My Connections (or your active environment).
- 2. Expand the system that owns the production copy of the disk pool from which you want to detach the mirror copy.
- 3. Expand Configuration and Service > Hardware > Disk Units > Disk Pools.
- Right-click the production copy of the Disk Pool you want to detach and select Geographic Mirroring > Detach Mirror Copy.

If **Geographic Mirroring** > **Detach Mirror Copy** cannot be clicked because it is disabled, the mirror copy is not in sync with the production copy, Geographic mirroring must be resumed, the disk pool varied on, and production and mirror copies synchronized before the mirror copy can be detached.

Before you make the detached mirror copy available, you should create a second, unique device description for the independent disk pool that differentiates it from the production copy. A separate device description for the mirror copy prevents two instances of the same database in the network. It will also simplify work done outside of System i Navigator. Use the detached mirror copy device description to make the detached mirror copy available.

Reattaching mirror copy:

If you detached the mirror copy and have completed your work with the detached mirror copy, you must reattach the detached mirror copy to resume using geographic mirroring.

You reattach the detached mirror copy by accessing the production copy of the disk pool. The detached mirror copy must be unavailable when you reattach it to the production copy.

Note: When you reattach the detached mirror copy, as of V6R1, there is the option to detach with tracking which only requires a partial synchronization on reattach.

Reattaching the mirror copy when IBM PowerHA for i is installed

To reattach the mirror copy with IBM Navigator for i, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Configuration and Service from your IBM Navigator for i window.
- 4. Select Disk Pools.
- 5. Select the production copy of the **Disk Pool** that you want to reattach.
 - 6. From the Select Actions menu, select Sessions.
- 1 7. Select the session that you want to reattach.
 - 8. From the Select Actions menu, select Attach.

Reattaching the mirror copy when IBM PowerHA for i is not installed

To reattach the mirror copy using System i Navigator, follow these steps:

- 1. In System i Navigator, expand My Connections (or your active environment).
- **2**. Expand the system that owns the production copy of the disk pool to which you want to reattach the detached mirror copy.
- 3. Expand Configuration and Service > Hardware > Disk Units > Disk Pools.
- Right-click the production copy of the Disk Pool you want to reattach and select Geographic Mirroring > Reattach Mirror Copy.

Deconfiguring geographic mirroring:

If you no longer want the capability to use geographic mirroring for a specific disk pool or disk pool group, you can select to **Deconfigure Geographic Mirroring**. If you deconfigure geographic mirroring, the system stops geographic mirroring and deletes the mirror copy of the disk pools on the nodes in the mirror copy site.

The disk pool must be offline to deconfigure geographic mirroring.

Deconfigure geographic mirroring when IBM PowerHA for i is installed

1 To deconfigure geographic mirroring with IBM Systems Director Navigator for i, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 1 2. Log on to the system with your user profile and password.
- | 3. Expand the system you want to examine, Configuration and Service > Disk Pools
- 1 4. End the ASP Session for your geographic mirroring configuration
 - a. Click the arrow beside the disk pool you wish to deconfigure. Choose Session > Open...
 - b. Select your ASP Session. Choose the Delete action. Press Go.
- | 5. Deconfigure Geographic Mirroring for the ASP
 - a. Click the arrow beside the disk pool you wish to deconfigure. Choose Session > New > Geographic Mirroring > Deconfigure Geographic Mirroring
 - b. Click Deconfigure on the Confirmation screen
 - 6. Update your cluster configuration, as follows:

- a. Remove the nodes associated with the mirror copy from the device cluster resource group (CRG)
 recovery domain.
 - b. Remove the site name and data port IP addresses from the remaining nodes in the cluster.

Deconfigure geographic mirroring when IBM PowerHA for i is not installed

- 1. In System i Navigator, expand My Connections (or your active environment).
- 2. Expand the system you want to examine, **Configuration and Service** > **Hardware** > **Disk Units** > **Disk Pools**.
- 3. Right-click the production copy of the **Disk Pool** you want to deconfigure and select **Geographic Mirroring** > **Deconfigure Geographic Mirroring**.
- 4. Update your cluster configuration, as follows:
 - a. Remove the nodes associated with the mirror copy from the device cluster resource group (CRG) recovery domain.
 - b. Remove the site name and data port IP addresses from the remaining nodes in the cluster.

Related tasks:

L

"Removing nodes" on page 234

You might need to remove a node from a cluster if you are performing an upgrade of that node or if the node no longer needs to participate in the i5/OS high-availability environment.

Changing geographic mirroring properties:

You can change information associated with geographic mirroring and edit the associated copy descriptions.

Changing geographic mirroring properties with IBM Systems Director Navigator for i5/OS

To edit the geographic mirroring session by using IBM Systems Director Navigator for i5/OS, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Configuration and Service from your IBM Systems Director Navigator for i5/OS window.
- 4. Select **Disk Pools**.
- 5. Select the disk pool associated with the session.
- 6. From the Select Actions menu, select Sessions.
- 7. Select the session.
- 8. From the **Select Actions** menu, select **Properties**. To change an associated copy description, select the copy description and click **Edit**.

Changing geographic mirroring properties with System i Navigator

To change the geographic mirroring properties by using System i Navigator, follow these steps:

- 1. In System i Navigator, expand My Connections (or your active environment).
- 2. Expand the system that owns the production copy of the geographically mirrored disk pool associated with the geographic mirror session for which you want to edit the attributes, **Configuration and Service** > **Hardware** > **Disk Units** > **Disk Pools**.
- 3. Right-click the production copy of the **Disk Pool** for which you want to edit the attributes and select **Sessions** > **Open**.
- 4. Right-click the production copy of the **Session** for which you want to edit the attributes and select **Properties**. To change an associated copy description, select the copy description and click **Edit**.

Managing metro mirror sessions

In i5/OS high availability environment that use IBM System Storage metro mirror technology, you must configure a metro mirroring session between the i5/OS systems and the external disk units with metro mirror configured. From the system, you can manage these sessions.

Suspending metro mirror sessions:

You might need to suspend metro mirror sessions to perform maintenance on the system.

To suspend a metro mirror session, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select **Configuration and Service** from your IBM Systems Director Navigator for i5/OS window.
- 4. Select Disk Pools.
- 5. Select the disk pool that you want to suspend.
- 6. From the Select Actions menu, select Sessions.
- 7. Select the session that you want to suspend.
- 8. From the Select Actions menu, select Suspend.

Resuming Metro Mirror sessions:

After you have completed routine operations, such as performing maintenance on your system, you need

to resume a suspended Metro Mirror session to re-enable high availability.

To resume a suspended metro mirroring session, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Configuration and Service from your IBM Systems Director Navigator for i5/OS window.
- 4. Select Disk Pools.
- 5. Select the disk pool that is suspended.
- 6. From the **Select Actions** menu, select **Sessions**.
- 7. Select the session that is suspended.
- 8. From the Select Actions menu, select Resume.

Deleting metro mirror session:

You can delete the metro mirror session to no longer use the session for high availability and disaster recovery.

To delete a metro mirror session, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Configuration and Service from your IBM Systems Director Navigator for i5/OS window.
- 4. Select Disk Pools.
- 5. Select the disk pool associated with the session that you want to delete.
- 6. From the Select Actions menu, select Sessions.
- 7. Select the session that you want to delete.
- 8. From the **Select Actions** menu, select **Delete**.

Displaying or changing Metro Mirror properties:

Display information about a metro mirroring session to change the associated copy descriptions.

- 1 To change the metro mirroring properties with IBM Navigator for i, follow these steps:
 - 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
 - 2. Log on to the system with your user profile and password.
 - 3. Select Configuration and Service from your IBM Systems Director Navigator for i window.
 - 4. Select Disk Pools.

- 5. Select the disk pool associated with the session.
- 6. From the Select Actions menu, select Sessions.
- 7. Select the session.
- 8. From the **Select Actions** menu, select **Properties**. To change an associated copy description, select the copy description and click **Edit**.

Managing global mirror

In i5/OS high availability environment that use IBM System Storage global mirror technology, you must configure a global mirroring session between the i5/OS systems and the external disk units with global mirror configured. From the system, you can manage these sessions.

Suspending global mirror sessions:

You might need to suspend global mirror sessions to perform maintenance on the system.

To suspend a global mirroring session, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Configuration and Service from your IBM Systems Director Navigator for i5/OS window.
- 4. Select **Disk Pools**.
- 5. Select the disk pool that you want to suspend.
- 6. From the **Select Actions** menu, select **Sessions**.
- 7. Select the session that you want to suspend.
- 8. From the Select Actions menu, select Suspend.

Resuming Global Mirror sessions:

After you have completed routine operations, such as performing maintenance on your system, you needto resume a suspended Global Mirror session to re-enable high availability.

To resume a suspended global mirroring session, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Configuration and Service from your IBM Systems Director Navigator for i5/OS window.
- 4. Select Disk Pools.
- 5. Select the disk pool that is suspended.
- 6. From the **Select Actions** menu, select **Sessions**.
- 7. Select the session that is suspended.
- 8. From the Select Actions menu, select Resume.

Deleting global mirror sessions:

You can delete the global mirror session to no longer use the session for high availability and disaster recovery.

To delete a global mirroring session, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select **Configuration and Service** from your IBM Systems Director Navigator for i5/OS window.
- 4. Select Disk Pools.
- 5. Select the disk pool associated with the session that you want to delete.
- 6. From the Select Actions menu, select Sessions.
- 7. Select the session that you want to delete.
- 8. From the Select Actions menu, select Delete.

Changing Global Mirror session properties:

Display information about a Global Mirror session to change the associated copy descriptions.

- | To change the Global Mirror properties with IBM Navigator for i, follow these steps:
 - 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
 - 2. Log on to the system with your user profile and password.
- 1 3. Select Configuration and Service from your IBM Navigator for i window.
 - 4. Select Disk Pools.
 - 5. Select the disk pool associated with the session.
 - 6. From the Select Actions menu, select Sessions.
 - 7. Select the session.

8. From the **Select Actions** menu, select **Properties**. To change an associated copy description, select the copy description and click **Edit**.

Managing switched logical units (LUNs)

Switched logical units are independent disk pools created from logical units created in an IBM System Storage DS8000 or DS6000 that have been configured as part of a device cluster resource group (CRG).

Ownership of data and applications that stored in a switched logical unit can be switched to other systems that have been defined in the device CRG. Switched disk technology provides high availability during planned and some unplanned outages.

Haking switched logical units (LUNs) available and unavailable:

You can select an independent disk pool to make it unavailable or available. You cannot access any of the
disk units or objects in the independent disk pool or its corresponding database until it is made available
again. The pool can be made available again on the same system or another system in the recovery
domain of the cluster resource group.

An independent disk pool can be made unavailable by varying it off. Access to any of the disk units or
objects in the independent disk pool or its corresponding database are not available, until they are varied
on. The pool can be made available on the same system or another system in the recovery domain of the
cluster resource group.

Quiescing an independent disk pool:

In an i5/OS high-availability solution, independent disk pools are used to store resilient data and applications. Some system functions, such as performing backups, require that you temporarily suspend changes to that data while the operation occurs.

To decrease the amount of time it takes to quiesce an independent disk pool, you might want to hold batch job queues, end some subsystems, or send a break message to interactive users, advising them to postpone new work.

To quiesce an independent disk pool, complete these steps.

In a command line interface, enter the following command: CHGASPACT ASPDEV(name) OPTION(*SUSPEND) SSPTIMO(30) SSPTIMOACN(*CONT), where *name* is the name of the independent disk pool that you want to suspend. In this command you are specifying to suspend the independent disk pool with a 30-second timeout, and to continue with the next step even if the timeout limit has been exceeded.

Resuming an independent disk pool:

After you have quiesced an independent disk pool in an i5/OS high availability environment for backup operations, you will need to resume the independent disk pool to ensure changes made to the data during the quiesce are updated.

Complete these steps to resume an independent disk pool:

In a command line interface, enter the following command: CHGASPACT ASPDEV (name) OPTION (*RESUME),, where name is the name of the independent disk pool that you want to resume.

Managing the FlashCopy technology

FlashCopy is a IBM System Storage technology that allows you to take a point-in-time copy of external disk units. In i5/OS high availability solutions which use metro or global mirror, The FlashCopy technology can be used for backup window reduction by taking a copy of data which then can be backed up to media. To use the FlashCopy technology, a session must be created between the system and the external storage units.

Configuring a FlashCopy session

For i5/OS high-availability environments that use IBM System Storage technology, you can configure a FlashCopy session to create a point-in-time copy of data.

For information on using the FlashCopy feature on IBM System Storage DS8000, see IBM System Storage

DS8000 Information Center

To configure a FlashCopy session, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Configuration and Service from your IBM Systems Director Navigator for i5/OS window.
- 4. Select Disk Pools.
- 5. Select the disk pool that you want to use as the source copy.
- 6. From the **Select Actions** menu, select **New Session**.
- 7. Follow the wizard's instructions to complete the task.

Updating a FlashCopy session

You can update a FlashCopy session when you are performing resynchronization of FlashCopy volumes on your IBM System Storage external storage units. Resynchronization allows you to make a copy without recopying the entire volume. This process is only possible with a persistent relationship, whereby the storage unit continually tracks updates to the source and target volumes. With persistent relationships, the relationship between the source and target volumes is maintained after the background copy has completed. The FlashCopy session created on the i5/OS provides a means to manage and monitor activity related to the FlashCopy session on the IBM System Storage units.

To update a FlashCopy session, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Configuration and Service from your IBM Systems Director Navigator for i5/OS window.
- 4. Select Disk Pools.
- 5. Select the disk pool associated with the session that you want to update.
- 6. From the Select Actions menu, select Sessions.
- 7. Select the session that you want to update.
- 8. From the Select Actions menu, select Update FlashCopy.

Reattaching a FlashCopy session

Reattach a FlashCopy session.

To reattach a FlashCopy session, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select **Configuration and Service** from your IBM Systems Director Navigator for i5/OS window.
- 4. Select Disk Pools.
- 5. Select the disk pool associated with the session that you want to reattach.
- 6. From the Select Actions menu, select Sessions.
- 7. Select the session that you want to reattach.
- 8. From the Select Actions menu, select Reattach FlashCopy.

Detaching a FlashCopy session

You can detach the target volumes from the source for a selected FlashCopy session.

To detach target volumes from the source for a selected a FlashCopy session, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select **Configuration and Service** from your IBM Systems Director Navigator for i5/OS window.
- 4. Select Disk Pools.
- 5. Select the disk pool associated with the session that you want to detach.
- 6. From the Select Actions menu, select Sessions .
- 7. Select the session from which you want to detach target and source volumes.
- 8. From the Select Actions menu, select Detach FlashCopy .

Deleting a FlashCopy session

Delete a FlashCopy session.

To delete a FlashCopy session, follow these steps:

1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.

- 2. Log on to the system with your user profile and password.
- 3. Select Configuration and Service from your IBM Systems Director Navigator for i5/OS window.
- 4. Select Disk Pools.
- 5. Select the disk pool associated with the session that you want to delete.
- 6. From the Select Actions menu, select Sessions.
- 7. Select the session that you want to delete.
- 8. From the **Select Actions** menu, select **Delete**.

Restoring data from a FlashCopy session

After a FlashCopy session has been completed on the IBM System Storage units, you can restore that data from target volume to the source volume in the event of an outage at the source copy of data. To do this you need to reverse the FlashCopy session that is created on i5/OS. However, reversing the session copies data from the target back to the source and returns the source to it an earlier version.

Attention: Reversing a FlashCopy session backs out the changes made on the source copy by copying the target's data back to the source. This returns the source to that earlier point in time.

To reverse a FlashCopy session, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Configuration and Service from your IBM Systems Director Navigator for i5/OS window.
- 4. Select Disk Pools.
- 5. Select the disk pool of the source copy.
- 6. From the Select Actions menu, select Open Sessions.
- 7. Select the session.
- 8. From the Select Actions menu, select Reverse FlashCopy.

Changing FlashCopy properties

Display information about a FlashCopy session to change the associated copy descriptions.

To change information about a FlashCopy session, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Configuration and Service from your IBM Systems Director Navigator for i5/OS window.
- 4. Select Disk Pools.
- 5. Select the disk pool associated with the session
- 6. From the Select Actions menu, select Sessions.
- 7. Select the session.
- 8. From the **Select Actions** menu, select **Properties**. To change an associated copy description, select the copy description and click **Edit**.

Troubleshooting your high availability solution

After you have configured you i5/OS high-availability solution, you may encounter problems with different technologies, including clusters and cross-site mirroring.

Troubleshooting clusters

Find error recovery solutions for problems that are specific to clusters.

At times, it may appear that the cluster is not working properly. This topic covers information about problems that you may encounter with clusters.

Determine if a cluster problem exists

Start here to diagnose your cluster problems.

At times, it may seem that your cluster is not operating correctly. When you think a problem exists, you can use the following to help determine if a problem exists and the nature of the problem.

• Determine if clustering is active on your system.

To determine if cluster resource services is active, look for the two jobs - QCSTCTL and QCSTCRGM - in the list of system jobs. If these jobs are active, then cluster resource services is active. You can use the Work Management function in IBM Director Navigator for i5/OS or in System i Navigator to View jobs or use the WRKACTJOB (Work with Active Jobs) command to do this. You can also use the DSPCLUINF (Display Cluster Information) command to view status information for the cluster.

- Additional jobs for cluster resource services may also be active. Cluster jobs provides information about how cluster resource services jobs are formatted.
- Determine the cause of a CPFBB26 message.

Message . . . : Cluster Resource Services not active or not responding. Cause . . . : Cluster Resource Services is either not active or cannot respond to this request because a resource is unavailable or damaged.

This error can mean that either the CRG job is not active or the cluster is not active. Use the **DSPCLUINF** (Display Cluster Information) command to determine if the node is active. If the node is not active, start the cluster node. If it is active, you should also check the CRG to determine whether the CRG has problems.

Look for the CRG job in the list of system jobs. You can use the Work Management function in IBM Director Navigator for i5/OS or in System i Navigator to View jobs or use the WRKACTJOB (Work with Active Jobs) command to do this. You can also use the DSPCRGINF (Display CRG Information) command to view status information for the specific CRG, by specifying the CRG name in the command. If the CRG job is not active, look for the CRG job log to determine the cause of why it was ended. Once the problem is fixed, you could restart the CRG job with CHGCLURCY (Change Cluster Recovery) command or by ending and restarting cluster on that node.

- Look for messages indicating a problem.
 - Ensure that you can review all messages associated with a cluster command, by selecting F10 which toggles between "Include detailed messages" and "Exclude detailed messages". Select to include all detailed messages and review them to determine if other actions are necessary.
 - Look for inquiry messages in QSYSOPR that are waiting for a response.
 - Look for error messages in QSYSOPR that indicate a cluster problem. Generally, these will be in the CPFBB00 to CPFBBFF range.
 - Display the history log (**DSPLOG** CL command) for messages that indicate a cluster problem. Generally, these will be in the CPFBB00 to CPFBBFF range.
- Look at job logs for the cluster jobs for severe errors.

These jobs are initially set with a logging level at (4 0 *SECLVL) so that you can see the necessary error messages. You should ensure that these jobs and the exit program jobs have the logging level set appropriately. If clustering is not active, you can still look for spool files for the cluster jobs and exit program jobs.

• If you suspect some kind of hang condition, look at call stacks of cluster jobs.

Determine if there is any program in some kind of DEQW (dequeue wait). If so, check the call stack of each thread and see if any of them have getSpecialMsg in the call stack.

• Check for cluster vertical licensed internal code (VLIC) logs entries.

These log entries have a 4800 major code.

- Use NETSTAT command to determine if there are any abnormalities in your communications environment.
- NETSTAT returns information about the status of Internet Protocol network routes, interfaces, TCP
 connections, and UDP ports on your system.
 - Use Netstat Option 1 (Work with TCP/IP interface status) to ensure that the IP addresses chosen to be used for clustering show an 'Active' status. Also ensure that the LOOPBACK address (127.0.0.1) is also active.
- Use Netstat Option 3 (Work with TCP/IP Connection Status) to display the port numbers (F14).
 Local port 5550 should be in a 'Listen' state. This port must be opened using the STRTCPSVR
 *INETD command evidenced by the existence of a QTOGINTD (User QTCP) job in the Active Jobs
 list. If clustering is started on a node, local port 5551 must be opened and be in a '*UDP' state. If
 clustering is not started, port 5551 must not be opened or it will, in fact, prevent the successful start
 of clustering on the subject node.
- Use PING to verify if there is a communications problem. If you try to start a cluster node and there is a communications problem, you may receive an internal clustering error (CPFBB46). However, PING does not work between IPv4 and IPv6 addresses, or if a firewall is blocking it.

Gathering recovery information for a cluster

You can use the **Work with Cluster (WRKCLU)** command to collect information for a complete picture of your cluster. This information can be used to aid in error resolution.

The **Work with Cluster (WRKCLU)** command is used to display and to work with cluster nodes and objects. When you run this command, the Work with Cluster display is shown. In addition to displaying nodes in a cluster and cluster information, you can use this command to view cluster information and to gather data about your cluster

To gather error recovery information, complete these steps:

1. On a character-based interface, type WRKCLU OPTION(OPTION). You can specify the following options to indicate with which cluster status information you want to work with.

*SELECT

Display the Work with Cluster menu.

*CLUINF

Display cluster information.

*CFG Display the performance and configuration parameters for the cluster.

*NODE

Display the Work with Cluster Nodes panel which is a list of nodes in the cluster.

*DEVDMN

Display the Work with Device Domains panel which is a list of device domains in the cluster.

*CRG Display the Work with Cluster Resource Groups panel which is a list of cluster resource groups in the cluster.

*ADMDMN

Display the Work with Administrative Domains panel which is a list of administrative domains in the cluster.

*SERVICE

Gathers related trace and debug information for all cluster resource service jobs in the cluster. This information is written to a file with a member for each cluster resource service job. Use this option only when directed by your service provider. It will display a prompt panel for the **Dump Cluster Trace (DMPCLUTRC)**.

Common cluster problems

1

Lists some of the most common problems that can occur in a cluster, as well as ways to avoid and recover from them.

The following common problems are easily avoidable or easily correctable.

You cannot start or restart a cluster node

This situation is typically due to some problem with your communications environment. To avoid this situation, ensure that your network attributes are set correctly, including the loopback address, INETD settings, ALWADDCLU attibute, and the IP addresses for cluster communications.

- The ALWADDCLU network attribute must be appropriately set on the target node if trying to start a remote node. This should be set to either *ANY or *RQSAUT depending on your environment.
- The IP addresses chosen to be used for clustering locally and on the target node must show an Active status.
- The LOOPBACK address (127.0.0.1) locally and on the target node must also be active.
- Verify that network routing is active by attempting to PING using the IP addresses used for clustering L on the local and remote nodes; however, PING does not work between IPv4 and IPv6 addresses, or if a firewall is blocking it. If any cluster node uses an IPv4 address, than every node in the cluster needs to L L have an active IPv4 address (not necessarily configured as a Cluster IP address) that can route to and send TCP packets to that address. Also, if any cluster node uses an IPv6 address, than every node in Т the cluster needs to have an active IPv6 address (not necessarily configured as a Cluster IP address) T L that can route to and send TCP packets to that address.
 - INETD must be active on the target node. When INETD is active, port 5550 on the target node should be in a *Listen* state. See INETD server for information about starting the INETD server.
 - Prior to attempting to start a node, port 5551 on the node to be started must not be opened or it will, in fact, prevent the successful start of clustering on the subject node.

You end up with several, disjointed one-node clusters

This can occur when the node being started cannot communicate with the rest of the cluster nodes. Check the communications paths.

The response from exit programs is slow.

A common cause for this situation is incorrect setting for the job description used by the exit program. The MAXACT parameter may be set too low so that, for example, only one instance of the exit program can be active at any point in time. It is recommended that this be set to *NOMAX.

Performance in general seems to be slow.

There are several common causes for this symptom.

- The most likely cause is heavy communications traffic over a shared communications line.
- Another likely cause is an inconsistency between the communications environment and the cluster message tuning parameters. You can use the Retrieve Cluster Resource Services Information (QcstRetrieveCRSInfo) API to view the current settings of the tuning parameters and the Change Cluster Resource Services (QcstChgClusterResourceServices) API to change the settings. Cluster performance may be degraded under default cluster tuning parameter settings if using old adapter hardware. The adapter hardware types included in the definition of old are 2617, 2618, 2619, 2626, and 2665. In this case, setting of the Performance class tuning parameter to Normal is desired.
- If all the nodes of a cluster are on a local LAN or have routing capabilities which can handle Maximum Transmission Unit (MTU) packet sizes of greater than 1,464 bytes throughout the network routes, large cluster message transfers (greater than 1,536K bytes) can be greatly speeded up by increasing the cluster tuning parameter value for *Message fragment size* to better match the route MTUs.

You cannot use any of the function of the new release.

If you attempt to use new release function and you see error message CPFBB70, then your current cluster version is still set at the prior version level. You must upgrade all cluster nodes to the new release level and then use the adjust cluster version interface to set the current cluster version to the new level. See Adjust the cluster version of a cluster for more information.

You cannot add a node to a device domain or access the System i Navigator cluster management interface.

To access the System i Navigator cluster management interface, or to use switchable devices, you must have IBM i Option 41, HA Switchable Resources installed on your system. You must also have a valid license key for this option.

You applied a cluster PTF and it does not seem to be working.

You should ensure that you have completed the following tasks after applying the PTF:

- 1. End the cluster
- 2. Signoff then signon

The old program is still active in the activation group until the activation group is destroyed. All of the cluster code (even the cluster APIs) run in the default activation group.

3. Start the cluster

Most cluster PTFs require clustering to be ended and restarted on the node to activate the PTF.

CEE0200 appears in the exit program joblog.

On this error message, the from module is QLEPM and the from procedure is Q_LE_leBdyPeilog. Any program that the exit program invokes must run in either *CALLER or a named activation group. You must change your exit program or the program in error to correct this condition.

CPD000D followed by CPF0001 appears in the cluster resource services joblog.

When you receive this error message, make sure the QMLTTHDACN system value is set to either 1 or 2.

Cluster appears hung.

Make sure cluster resource group exit programs are outstanding. To check the exit program, use the **WRKACTJOB (Work with Active Jobs)** command, then look in the Function column for the presence of PGM-QCSTCRGEXT.

Partition errors

Certain cluster conditions are easily corrected. If a cluster partition has occurred, you can learn how to recover. This topic also tells you how to avoid a cluster partition and gives you an example of how to merge partitions back together.

A cluster partition occurs in a cluster whenever contact is lost between one or more nodes in the cluster and a failure of the lost nodes cannot be confirmed. This is not to be confused with a partition in a logical partition (LPAR) environment.

If you receive error message CPFBB20 in either the history log (QHST) or the QCSTCTL joblog, a cluster partition has occurred and you need to know how to recover. The following example shows a cluster partition that involves a cluster made up of four nodes: A, B, C, and D. The example shows a loss of communication between cluster nodes B and C has occurred, which results in the cluster dividing into

two cluster partitions. Before the cluster partition occurred, there were four cluster resource groups, which can be of any type, called CRG A, CRG B, CRG C, and CRG D. The example shows the recovery domain of each cluster resource group.

Node A	Node B	x	Node C	Node D
CRG A (backup1)	CRG A (primary)			
	CRG B (primary)		CRG B (backup1)	
	CRG C (primary)		CRG C (backup1)	CRG C (backup2)
CRG D (backup2)	CRG D (primary)		CRG D (backup1)	
Partition 1			Partition 2	

Table 70. Example of a recovery domain during a cluster partition

A cluster may partition if the maximum transmission unit (MTU) at any point in the communication path is less than the cluster communications tuneable parameter, message fragment size. MTU for a cluster IP address can be verified by using the **Work with TCP/IP Network Status (WRKTCPSTS)** command on the subject node. The MTU must also be verified at each step along the entire communication path. If the MTU is less than the message fragment size, either raise the MTU of the path or lower the message fragment size. You can use the Retrieve Cluster Resource Services Information (QcstRetrieveCRSInfo) API to view the current settings of the tuning parameters and the Change Cluster Resource Services (QcstChgClusterResourceServices) API to change the settings.

Once the cause of the cluster partition condition has been corrected, the cluster will detect the re-established communication link and issue the message CPFBB21 in either the history log (QHST) or the QCSTCTL joblog. This informs the operator that the cluster has recovered from the cluster partition. Be aware that once the cluster partition condition has been corrected, it may be a few minutes before the cluster merges back together.

Determining primary and secondary cluster partitions:

In order to determine the types of cluster resource group actions that you can take within a cluster partition, you need to know whether the partition is a primary or a secondary cluster partition. When a partition is detected, each partition is designated as a primary or secondary partition for each cluster resource group defined in the cluster.

For primary-backup model, the primary partition contains the node that has the current node role of primary. All other partitions are secondary. The primary partition may not be the same for all cluster resource groups.

A peer model has the following partition rules:

- If the recovery domain nodes are fully contained within one partition, it will be the primary partition.
- If the recovery domain nodes span a partition, there will be no primary partition. Both partitions will be secondary partitions.
- If the cluster resource group is active and there are no peer nodes in the given partition, the cluster resource group will be ended in that partition.
- Operational changes are allowed in a secondary partition as long as the restrictions for the operational changes are met.
- No configuration changes are allowed in a secondary partition.

The restrictions for each Cluster Resource Group API are:

Cluster Resource Group API	Allowed in primary partition	Allowed in secondary partitions
Add Node to Recovery Domain	X	
Add CRG Device Entry		
Change Cluster Resource Group	X	
Change CRG Device Entry	X	X
Create Cluster Resource Group		
Delete Cluster Resource Group	X	X
Distribute Information	X	X
End Cluster Resource Group ¹	X	
Initiate Switchover	X	
List Cluster Resource Groups	X	X
List Cluster Resource Group Information	X	X
Remove Node from Recovery Domain	X	
Remove CRG Device Entry	X	
Start Cluster Resource Group ¹	X	
Note: 1. Allowed in all partitions for peer cluster resou	urce groups, but only affects the p	artition running the API.

Table 71. Cluster Resource Group API Partition Restrictions

By applying these restrictions, cluster resource groups can be synchronized when the cluster is no longer partitioned. As nodes rejoin the cluster from a partitioned status, the version of the cluster resource group in the primary partition is copied to nodes from a secondary partition.

When merging two secondary partitions for peer model, the partition which has cluster resource group with status of Active will be declared the winner. If both partitions have the same status for cluster resource group, the partition which contains the first node listed in the cluster resource group recovery domain will be declared the winner. The version of the cluster resource group in the winning partition will be copied to nodes in another partition.

When a partition is detected, the Add Cluster Node Entry, Adjust Cluster Version, and the Create Cluster API cannot be run in any of the partitions. The Add Device Domain Entry API can only be run if none of the nodes in the device domain are partitioned. All of the other Cluster Control APIs may be run in any partition. However, the action performed by the API takes affect only in the partition running the API.

Changing partitioned nodes to failed:

Sometimes, a partitioned condition is reported when there really was a node outage. This can occur when cluster resource services loses communications with one or more nodes, but cannot detect if the nodes are still operational. When this condition occurs, a simple mechanism exists for you to indicate that the node has failed.

Attention: When you tell cluster resource services that a node has failed, it makes recovery from the partition state simpler. However, changing the node status to failed when, in fact, the node is still active and a true partition has occurred should not be done. Doing so can cause a node in more than one partition to assume the primary role for a cluster resource group. When two nodes think they are the primary node, data such as files or databases can become disjoint or corrupted if multiple nodes are each independently making changes to their copies of files. In addition, the two partitions cannot be merged back together when a node in each partition has been assigned the primary role.

When the status of a node is changed to Failed, the role of nodes in the recovery domain for each cluster resource group in the partition may be reordered. The node being set to Failed will be assigned as the last backup. If multiple nodes have failed and their status needs to be changed, the order in which the nodes are changed will affect the final order of the recovery domain's backup nodes. If the failed node was the primary node for a CRG, the first active backup will be reassigned as the new primary node.

When cluster resource services has lost communications with a node but cannot detect if the node is still operational, a cluster node will have a status of **Not communicating**. You may need to change the status of the node from **Not communicating** to **Failed**. You will then be able to restart the node.

To change the status of a node from Not communicating to Failed, follow these steps:

- 1. In a Web browser, enter http://mysystem:2001, where mysystem is the host name of the system.
- 2. Log on to the system with your user profile and password.
- 3. Select Cluster Resource Services from the IBM Systems Director Navigator for i window.
- 4. On the **Cluster Resource Services** page, select the **Work with Cluster Nodes** task to show a list of nodes in the cluster.
- 5. Click the **Select Action** menu and select **Change Status**. Change the status on the node to failed.

Related information:

Change Cluster Node (CHGCLUNODE) command Change Cluster Node Entry (QcstChangeClusterNodeEntry) API

Partitioned cluster administrative domains:

Consider the following information when working with partitioned cluster administrative domains.

If a cluster administrative domain is partitioned, changes continue to be synchronized among the active nodes in each partition. When the nodes are merged back together again, the cluster administrative domain propagates all changes made in every partition so that the resources are consistent within the active domain. There are several considerations regarding the merge processing for a cluster administrative domain:

- If all partitions were active and changes were made to the same resource in different partitions, the most recent change is applied to resource on all nodes during the merge. The most recent change is determined by using Coordinated Universal Time (UTC) from each node where a change initiated.
- If all partitions were inactive, the global values for each resource are resolved based on the last change made while any partition was active. The actual application of these changes to the monitored resources does not happen until the peer CRG that represents the cluster administrative domain is started.
- If some partitions were active and some were inactive prior to the merge, the global values representing changes made in the active partitions are propagated to the inactive partitions. The inactive partitions are then started, causing any pending changes made on the nodes in the inactive partitions to propagate to the merged domain.

Tips: Cluster partitions:

Use these tips for cluster partitions.

- 1. The rules for restricting operations within a partition are designed to make merging the partitions feasible. Without these restrictions, reconstructing the cluster requires extensive work.
- 2. If the nodes in the primary partition have been destroyed, special processing may be necessary in a secondary partition. The most common scenario that causes this condition is the loss of the site that made up the primary partition. Use the example in recovering from partition errors and assume that Partition 1 was destroyed. In this case, the primary node for Cluster Resource Groups B, C, and D must be located in Partition 2. The simplest recovery is to use Change Cluster Node Entry to set both

Node A and Node B to failed. See changing partitioned nodes to failed for more information about how to do this. Recovery can also be achieved manually. In order to do this, perform these operations:

- a. Remove Nodes A and B from the cluster in Partition 2. Partition 2 is now the cluster.
- b. Establish any logical replication environments needed in the new cluster. IE. Start Cluster Resource Group API/CL command, and so on.

Since nodes have been removed from the cluster definition in Partition 2, an attempt to merge Partition 1 and Partition 2 will fail. In order to correct the mismatch in cluster definitions, run the Delete Cluster (QcstDeleteCluster) API on each node in Partition 1. Then add the nodes from Partition 1 to the cluster, and reestablish all the cluster resource group definitions, recovery domains, and logical replication. This requires a great deal of work and is also prone to errors. It is very important that you do this procedure only in a site loss situation.

3. Processing a start node operation is dependent on the status of the node that is being started:

The node either failed or an End Node operation ended the node:

- a. Cluster resource services is started on the node that is being added
- b. Cluster definition is copied from an active node in the cluster to the node that is being started.
- **c.** Any cluster resource group that has the node being started in the recovery domain is copied from an active node in the cluster to the node being started. No cluster resource groups are copied from the node that is being started to an active node in the cluster.

The node is a partitioned node:

- a. The cluster definition of an active node is compared to the cluster definition of the node that is being started. If the definitions are the same, the start will continue as a merge operation. If the definitions do not match, the merge will stop, and the user will need to intervene.
- b. If the merge continues, the node that is being started is set to an active status.
- **c.** Any cluster resource group that has the node being started in the recovery domain is copied from the primary partition of the cluster resource group to the secondary partition of the cluster resource group. Cluster resource groups may be copied from the node that is being started to nodes that are already active in the cluster.

Cluster recovery

Read about how to recover from other cluster failures that may occur.

Recovering from cluster job failures:

Failure of a cluster resource services job is usually indicative of some other problem.

You should look for the job log associated with the failed job and look for messages that describe why it failed. Correct any error situations.

You can use the **Change Cluster Recovery (CHGCLURCY) command** to restart a cluster resource group job that was ended without having to end and restart clustering on a node.

- 1. CHGCLURCY CLUSTER(EXAMPLE)CRG(CRG1)NODE(NODE1)ACTION(*STRCRGJOB) This command will cause cluster resource group job, CRG1, on node NODE1 to be submitted. To start the cluster resource group job on NODE1 requires clustering to be active on NODE1.
- 2. Restart clustering on the node.

If you are using a IBM Business Partner cluster management product, refer to the documentation that came with the product.

Related information:

Change Cluster Recovery (CHGCLURCY) command

Recovering a damaged cluster object:

While it is unlikely you will ever experience a damaged object, it may be possible for cluster resource services objects to become damaged.

The system, if it is an active node, will attempt to recover from another active node in the cluster. The system will perform the following recovery steps:

For a damaged internal object

- 1. The node that has the damage ends.
- 2. If there is at least one other active node within the cluster, the damaged node will automatically restart itself and rejoin the cluster. The process of rejoining will correct the damaged situation.

For a damaged cluster resource group

- 1. The node that has a damaged CRG will fail any operation currently in process that is associated with that CRG. The system will then attempt to automatically recover the CRG from another active node.
- 2. If there is at least one active member in the recovery domain, the CRG recovery will work. Otherwise, the CRG job ends.

If the system cannot identify or reach any other active node, you will need to perform these recovery steps.

For a damaged internal object

You receive an internal clustering error (CPFBB46, CPFBB47, or CPFBB48).

- 1. End clustering for the node that contains the damage.
- 2. Restart clustering for the node that contains the damage. Do this from another active node in the cluster.
- 3. If Steps 1 and 2 do not solve the problem, remove the damaged node from the cluster.
- 4. Add the system back into the cluster and into the recovery domain for the appropriate cluster resource groups.

For a damaged cluster resource group

You receive an error stating that an object is damaged (CPF9804).

- 1. End clustering on the node that contains the damaged cluster resource group.
- 2. Delete the CRG by using the **DLTCRG** command.
- 3. If there is no other node active in the cluster that contains the CRG object, restore from media.
- 4. Start clustering on the node that contains the damaged cluster resource group. This can be done from any active node.
- 5. When you start clustering, the system resynchronizes all of the cluster resource groups. You may need to recreate the CRG if no other node in the cluster contains the CRG.

Recovering a cluster after a complete system loss:

Use this information with the appropriate checklist in the Recovering your system topic for recovering your entire system after a complete system loss when your system loses power unexpectedly.

Scenario 1: Restoring to the same system

1. In order to prevent inconsistencies in the device domain information between the Licensed Internal Code and IBM i, it is recommended that you install the Licensed Internal Code by using option 3 (Install Licensed Internal Code and Recover Configuration).

- **Note:** For the Install Licensed Internal Code and Recover Configuration operation to succeed, you must have the same disk units -- with exception of the load source disk unit if it has failed. You must also be recovering the same release.
- 2. After you have installed the Licensed Internal Code, follow the Recovering Your Disk Configuration procedure in the *Recovering your system* topic. These steps will help you avoid having to reconfigure the disk pools.
- **3.** After you have recovered your system information and are ready to start clustering on the node you just recovered, you must start clustering from the active node. This will propagate the most current configuration information to the recovered node.

Scenario 2: Restoring to a different system

After you have recovered your system information and checked the job log to make sure that all objects have restored, you must perform the following steps to obtain the correct cluster device domain configuration.

- 1. From the node you just restored, delete the cluster.
- 2. From the active node, perform these steps:
 - a. Remove the recovered node from the cluster.
 - b. Add the recovered node back into the cluster.
 - c. Add the recovered node to the device domain.
 - d. Create the cluster resource group or add the node to the recovery domain.

Recovering a cluster after a disaster:

In the case of a disaster where all your nodes are lost, you will need to reconfigure your cluster.

In order to prepare for such a scenario, it is recommended that you save your cluster configuration information and keep a hardcopy printout of that information.

Restoring a cluster from backup tapes:

During normal operations, you should never restore from a backup tape.

This is only necessary when a disaster occurs and all nodes were lost in your cluster. If a disaster should occur, you recover by following your normal recovery procedures that you have put in place after you created your backup and recovery strategy.

Troubleshooting cross-site mirroring

This information can help you solve problems related to cross-site mirroring that you might encounter.

Geographic mirroring messages

Review the geographic mirroring message descriptions and recoveries to resolve your geographic mirroring problems.

0x00010259

Description: Operation failed because the system did not find the mirror copy.

Recovery: Not all the nodes in the device domain responded. Make sure that clustering is active. If necessary, start clusters on the node. See "Starting nodes" on page 201 for details. Try the request again. If the problem persists, contact your technical support provider.

0x0001025A

Description: Not all of the disk pools in the disk pool group are geographically mirrored.

Recovery: If one disk pool in a disk pool group is geographically mirrored, all of the disk pools in the disk pool group must be geographically mirrored. Take one of the following actions:

- 1. Configure geographic mirroring for the disk pools which are not geographically mirrored.
- 2. Deconfigure geographic mirroring for the disk pools that are geographically mirrored.

0x00010265

Description: The detached mirrored copy is available.

Recovery: Make the detached mirrored copy unavailable and then try the reattach operation again.

0x00010380

Description: A disk unit is missing from the configuration of the mirror copy.

Recovery: Find or fix the missing disk unit in the mirror copy. Check the Product Activity Log on destination node. Reclaim IOP cache storage.

0x00011210

Description: The proposed secondary disk pool for the disk pool group is not geographically mirrored.

Recovery: If one disk pool in a disk pool group is geographically mirrored, all of the disk pools in the disk pool group must be geographically mirrored. You must configure geographic mirroring for the proposed secondary disk pool which is not geographically mirrored, either now or after completing this operation.

0x00011211

Т

Description: Duplicate mirror copies exist.

Recovery: Check for locally mirrored disk units that may exist on two systems, Enterprise Storage Server[®] FlashCopy, or back level independent disk pool copies. See the Product Activity Log on the mirror copy node for more information. Eliminate duplication and try the request again. If the problem persists, contact your technical support provider, or see IBM i Technical Support for information about IBM support and services.

Installing IBM PowerHA for i licensed program

Before you can implement an IBM i high-availability solution, you must install the IBM PowerHA for i licensed program (5770-HAS) on each system that participates in high availability.

- Before installing the IBM PowerHA for i licensed program, you should have completed the following installation requirements:
- 1. Install or upgrade to i 7.1 Operating System.
- 1 2. Install IBM i Operating System Option 41 (HA Switchable Resources).
- | To install the IBM PowerHA for i licensed program, complete the following steps:
 - 1. Enter GO LICPGM from a command line.
 - 2. At the Work with licensed programs display, select option 11 (Install licensed programs).
- | 3. Select Product 5770-HAS, option *BASE to install IBM PowerHA for i Standard Edition. Press enter.
 - 4. At the Install Options display, type in the name of your installation device as requested. Press enter to start the installation.
- 5. Using asynchronous geographic mirroring, metro mirroring, or global mirroring requires IBM
 PowerHA for i Enterprise Edition (option 1) be installed. Select Product 5770-HAS, option 1 to install
 - IBM PowerHA for i Enterprise Edition. Press enter.

After successfully installing the IBM PowerHA for i licensed program, you need to restart the INETD server. For information about how to start INETD, see "Starting the INETD server" on page 191.

Chapter 2. Related information for Implementing high availability

Product manuals, IBM Redbooks publications, Web sites, and other information center topic collections contain information that relates to the Implementing high availability topic collection. You also can find related information about implementing independent disk pools, cross-site mirroring, and disaster recovery. You can view or print any of the PDF files.

IBM Redbooks

- Implementing PowerHA for IBM i
- IBM i 6.1 Independent ASPs: A Guide to Quick Implementation of Independent ASPs
- Availability Management: A Guide to planning and implementing Cross-Site Mirroring on System i5

Web sites

• IBM PowerHA for i **W** (www-03.ibm.com/systems/power/software/availability/i/) IBM site for High Availability and Clusters

Other information

- Disk management
- Recovering your system

Related reference:

"PDF file for Implementing high availability" on page 3 You can view and print a PDF file of this information about implementing high availability.

Chapter 3. Code license and disclaimer information

IBM grants you a nonexclusive copyright license to use all programming code examples from which you can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

- 1. LOSS OF, OR DAMAGE TO, DATA;
- 2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL DAMAGES; OR
- 3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT APPLY TO YOU.

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan, Ltd. 3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

Software Interoperability Coordinator, Department YBWA 3605 Highway 52 N Rochester, MN 55901 U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information

This "Implementing high availability" publication documents intended Programming Interfaces that allow the customer to write programs to obtain the services of IBM i.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that all proprietary notices are preserved. You may not distribute, display or make derivative works of these publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your enterprise provided that all proprietary notices are preserved. You may not make derivative works of these publications, or reproduce, distribute or display these publications or any portion thereof outside your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or implied, to the publications or any information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM.®

Printed in USA