AIX Version 7.1

AIX Network Data Administration Facility

IBM
Note

Before using this information and the product it supports, read the information in "Notices" on page 57.

This edition applies to AIX Version 7.1 and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2010, 2014.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

About this document ... v
Highlighting ... v
Case-sensitivity in AIX ... v
ISO 9000. ... v

AIX network data administration facility ... 1
What's new in AIX network data administration facility ... 1
NDAF concepts .. 1
 Physical filesystem ... 1
 NDAF domain .. 1
Data set ... 2
Cell ... 2
Replicas ... 2
Administration client .. 2
Administration server .. 2
Data server ... 4
Principal .. 4
Graphical representation of an NDAF domain ... 5
NDAF commands .. 5
dmf ... 5
dmdm ... 6
dms ... 6
dms_enable_fs .. 6
NDAF deployment models ... 6
 Data centers .. 6
 Wide area networks .. 6
NDAF security .. 7
 Security for NFS file access 7
 Exporting with Kerberos 7
Roles ... 8
NDAF role-based access control support ... 9
NDAF installation and configuration ... 9
 Installing NDAF .. 9
Upgrading NDAF ... 10
Configuring NPS version 4 .. 10
Configuring Kerberos .. 10
RPC port requirements ... 11
Configuring an NDAF data server ... 12
Configuring the NDAF administration server ... 13
Configuring an NDAF administration client ... 13
Managing NDAF .. 13
 Creating and managing administration servers for NDAF ... 13
 Creating and managing data servers ... 15
 Creating and managing cells 18
 Creating and managing roles 22
 Creating and managing data sets 25
 Creating and managing replicas 32
 Populating data sets ... 41
 Constructing a cell namespace from data sets 41
 Federating NFS servers without NDAF into an NDAF environment 42
 NDAF logs files analysis .. 43
 NDAF use cases and installation examples 44
 Configuring a Kerberos-enabled NDAF domain 44
 NDAF case studies .. 47
Troubleshooting NDAF .. 52
 NDAF checker .. 53
 NDAF data backup ... 54
 NDAF data recovery ... 54
Additional NDAF command processes ... 55
NDAF SMIT fastpaths ... 55

Notices .. 57
Privacy policy considerations ... 59
Trademarks .. 59

Index ... 61
About this document

This document provides system administrators with conceptual and procedural information about how to set up, administer, and manage the AIX Network Data Administration Facility (NDAF) subsystem. Information about projects, policies, and data aggregation is included.

Highlighting

The following highlighting conventions are used in this book:

- **Bold**: Identifies commands, subroutines, keywords, files, structures, directories, and other items whose names are predefined by the system. Also identifies graphical objects such as buttons, labels, and icons that the user selects.
- **Italics**: Identifies parameters whose actual names or values are to be supplied by the user.
- **Monospace**: Identifies examples of specific data values, examples of text similar to what you might see displayed, examples of portions of program code similar to what you might write as a programmer, messages from the system, or information you should actually type.

Case-sensitivity in AIX

Everything in the AIX® operating system is case-sensitive, which means that it distinguishes between uppercase and lowercase letters. For example, you can use the `ls` command to list files. If you type `LS`, the system responds that the command is not found. Likewise, `FILEA`, `FiLea`, and `filea` are three distinct file names, even if they reside in the same directory. To avoid causing undesirable actions to be performed, always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.
AIX network data administration facility

This section provides system administrators with complete information about how to perform such tasks as configuring and managing the AIX Network Data Administration Facility (NDAF). It includes information about the structure, installation, security, and troubleshooting. This publication is also available on the documentation CD that is shipped with the operating system.

What's new in AIX network data administration facility

Read about new or significantly changed information for the AIX network data administration facility topic collection.

November 2012

The following information is a summary of the updates made to this topic collection:

- Added the support information for role-based access control (RBAC). See [NDAF role-based access control support](#) for complete information.

How to see what's new or changed

In this PDF file, you might see revision bars (\[\]) in the left margin that identifies new and changed information.

NDAF concepts

The AIX Network Data Administration Facility (NDAF) is an AIX solution for centralized creation, placement, replication, ongoing management, and namespace federation of file system data across a network of machines.

Its primary purpose is to facilitate the provisioning of data on NFS version 4 (NFSv4) servers and the creation of a single NFSv4 exported file namespace that spans multiple server systems.

NDAF consists of several components. They include a domain where the network servers reside, a centralized server that controls the collection of data servers, and a directory tree of file system objects for management purposes.

Physical filesystem

A physical filesystem (PFS) is a filesystem that can access attached disk storage on a system and can be exported by an NFS server.

NDAF domain

An NDAF domain consists of one or more administration clients (that is, systems from which an administrator can control the NDAF environment through the `dmf` command), one or more AIX NDAF-enabled NFS servers, and potentially, one or more non-NDAF enabled NFS servers grouped around an NDAF administration server.

All systems in the NDAF domain share the same user and group definitions. For example, if NDAF is deployed using Kerberos security, all systems in the domain are members of the same Kerberos realm. The NDAF domain and the NFSv4 domain must be the same domain.
In an NDAF domain, the NDAF administration server receives its process information from commands run by one or more system administrators over a command-line interface (CLI). The NDAF administration server initiates all NDAF actions at the NFS data server systems that are part of the domain.

Data set
The basic unit of NDAF management is a *data set*. A data set is a directory tree. NDAF creates data sets and manages their attributes, mounting, and contained data.

Data sets, also called *dsets*, are manageable units of data that can be shared across a network. They provide basic management for replicating network data and inserting it into a namespace. They are linked together using data set references to form the file namespace. NDAF supports thousands of data sets or replicas across all managed servers. Read-only replicas of a data set can be created, distributed, and maintained across multiple data servers. When the master source for a collection of replicas is modified, the *dmf update replica* command is used to propagate the changes to all replica locations.

Data that is copied into data set directories is NFS-exported, but the data is not visible in the cell (see following section) in the NFS domain until the data set is mounted with the *dmf mount dset* command. File system objects in a data set include files, directories, access control lists (ACLs), links, and more.

Unless specified when they are created, data sets are created in the directory specified when the *dms* daemon is started by the `-ndaf_dataset_default` parameter or, if unspecified, the `-ndaf_dir` parameter.

A data set can only be created on a directory that belongs to a file system enabled (for dataset creation) by *dms_enable_fs*.

Cell
Data sets can be grouped with other data sets and organized into a single file namespace. This grouping is called a *cell*.

A cell is a unit of management and namespace that is hosted by an administration server. After a cell is defined on an administration server, more data sets can be created on that server using that cell. Each cell in an administration server is independent of all other cells hosted by that administration server. A cell contains its own namespace, consisting of data sets, and its own role-based security objects. Roles are privileges attached to a set of users that manage the resources within a cell. As many as eight distinct roles can be defined for each cell.

After a cell is created using the *dmf create cell name* command, and is automatically placed on the administration server. You cannot use the *dmf place cell name* command to place a cell on the administration server. Placing a cell results in the copy of the cell’s root directory information, which consists of mounted dsets and replicas referrals from the administration server to the targeted data server. A cell can be placed on any server defined on the administration server on which the cell is hosted. NFSv4 clients mount the root directory of the cell to access the cell’s full namespace.

All NFSv4 clients can view the objects mounted with *dmf mount* within a cell by mounting, with NFS, the root path of the cell from any NDAF server on which the cell has been placed.

NDAF supports up to 64 cells for every deployed NDAF instance (domain) that has cells residing on one or more data servers. When a cell is destroyed, all its data sets and replicas are also destroyed.

Replicas
Read-only copies of data sets can be created, distributed, and maintained safely across multiple data servers.
These read-only data sets are called replicas. A replica is placed in the global namespace in the same way as a data set. Multiple clones of a replica of the same data set can be placed on different servers so that if the primary server of a replica becomes unavailable to the client, the client can automatically access the same files from a different server. Replicas will not reflect updates that are made to the data set unless the replica is updated using the `dmf update replica` command.

Unless specified when they are created, replicas are created in the directory specified when the `dms` daemon is started by the `-ndaf_replica_default` parameter or, if unspecified, the `-ndaf_dir` parameter.

Replicas can only be created on a filesystem enabled for dset creation by the `dms_enable_fs` command.

Master replica location

The master replication location is the place where the replica was first created, and it is the first location updated on any `update` action request. The other replica locations are updated afterwards asynchronously.

You can change the master location to another replica location using the `master` action request.

A master replica can never be unplaced before another master replica location is defined as a replacement for the first location.

Replica clones

For replicas, the `dmf place replica` command creates a clone of the replica at a specified location on the server.

If the replica is mounted in the cell, this clone location is added to the NFS replica list that is returned to the NFS clients that are accessing the replica. For more information, see [NFS replication and global namespace](#). The order of the referrals in this list depends on the network configuration. Every clone location of a replica is updated asynchronously upon `dmf update` commands. The `dmf place replica` command takes as parameters the server and, optionally, the local path on the server.

A clone location of a replica can be removed from a server, as in the following example:

```
    dmf unplace replica my_server local_path -a my_admin -c my_cell -o my_replica
```

In this example, `my_server` is the name of the server on which the clone resides and `my_replica` is the name of the replica. The clone location is unexported, and its content is destroyed. This location is also removed from the file systems locations data list returned by NFSv4 for this replica in the cell. The other locations of the replica remain the same. The `dmf update replica` command updates clones along with their original replicas to be refreshed with the content of the original source data set.

Replication updates

The master replica is a read-only copy of the source data set, and the clones are copies of the master replica. If the source data set is updated, the replicas are not updated until explicitly done so using the `dmf update replica` command.

There are two methods of data transfer:

copy method

performs data transfer using full file tree copy. The copy method implements the data transfer method plugin interface and performs a data transfer operation by doing a complete walk of the directory tree for the data set and transmitting all objects and data to the target.

rsync method

performs data transfer using rsync-like algorithm. The rsync method performs a data transfer operation by doing a complete walk of the directory tree for the data set and transmitting only deltas for directories and data to the target. It is beneficial when updating replicas because it only sends changed blocks of information, so it reduces network bandwidth considerably.
Administration client

An administration client is any system in the network that has the `ndaf.base.client` fileset installed on it from which the `dmf` command can be run.

The NDAF administration server receives its process information from commands run by system administrators over a command-line interface. The program name for this administration client is the `dmf` command.

Related concepts:

In NDAF command strings, `dmf` is the prefix for all command-line interface commands.

Administration server

The NDAF administration server is a data server that runs both the dmadm and dms daemon processes and acts as the central point of control for the collection of NDAF data servers.

It receives commands from the system administrators who use the administration client (the `dmf` command). The NDAF administration server maintains a master database of configuration information and sends commands to the data servers. When a loss of communication occurs between the administration server and the data servers, the NDAF-managed data already present on the data server can still be accessed. After network connectivity is restored, the transactions between the systems are eventually completed.

The administration server is configured before all other NDAF components. This server requires 64-bit systems running the AIX 64-bit kernel.

Administration server databases are created in an `admin` subdirectory in the directory specified by the `-ndaf_dir` parameter when the `dmadm` daemon is started.

The `ndaf.base.admin` fileset is installed on the administration server systems.

Data server

A data server is the server that runs the dms daemon process controlling an NFS file server and its associated physical file system (PFS). The data provisioned with NDAF resides at the data server.

The `dms` process runs at each data server and carries out actions in underlying file systems. It sets default directories, timeout values, level of logging, security method used, Kerberos keytab path, Kerberos principal, and communication ports on each data server. Only data servers within the NDAF domain can be replicated.

Data server databases are created in a `server` subdirectory in the directory specified by the `-ndaf_dir` parameter when the `dms` daemon is started. These servers require 64-bit systems running the AIX 64-bit kernel. The administration server also serves as a data server.

As they run the dms daemon processes, administration servers also are data servers.

The `ndaf.base.server` fileset is installed on the data server systems.

Principal

A principal is an authorized NDAF user that Kerberos and other security methods screen for during security checks.

Principals control how objects can be manipulated and by which operations.
Only the first user to run the `dmf create admin` command, called the DmPrincipal, can create cells, servers, and roles. Additional NDAF principals can be added to manage an object with the `dmf add_to object DmPrincipal=login` command. All members of the DmPrincipal list are considered to be owners of the object and can control it.

NDAF principals can also be removed using the `dmf remove_from` action.

Graphical representation of an NDAF domain

The basic concepts of the functioning objects of an NDAF domain can be depicted graphically.

The following figure shows the organization of various objects within NDAF:

![Figure 1. The NDAF domain](image)

NDAF commands

The four primary commands that NDAF uses to perform its operations are the `dmf` command, `dms` command, `dmadm` command, and the `dms_enable_fs` command.

For more information about other NDAF commands, refer to "Additional NDAF command processes" on page 55, and the `dmf` command.

dmf

In NDAF command strings, `dmf` is the prefix for all command-line interface commands.

These command strings follow a consistent structure: the actual name of the executable (`dmf`), an action request called a verb (such as `create` or `delete`), the object to which the action is being applied (such as a server or a cell), and any subsequent parameters (such as `names`). These parameters are position-dependent.

The `dmf` command can be run on 32-bit or 64-bit systems.

Related information:
dmf Command
Provides complete information on the **dmf** command.

dmadm
The **dmadm** command operates NDAF on the administration server.

Both the **dmadm** and **dms** commands are required services on the administration server’s Kerberos keytab. The **dms** processes must be launched along with the **dmadm** daemons for the administration machine to function correctly.

Related information:
dmadm Command
Provides complete information on the **dmadm** command.

dms
The **dms** command operates NDAF on a data server.

On a data server within an NDAF domain, the **dms** command sets default directories, timeout values, level of logging, security method used, Kerberos keytab path, Kerberos principal, and communication ports.

Related information:
dms Command
Provides complete information on the **dms** command.

dms_enable_fs
The **dms_enable_fs** command enables, disables, or queries the capability to create cells, data sets, and replicas on a filesystem.

Related information:
dms_enable_fs Command
Provides complete information on the **dms_enable_fs** command.

NDAF deployment models

NDAF is designed to be deployed in either a data center environment or a wide area network (WAN) environment where servers are separated by distance or less reliable networks.

Deployments combining the two aspects are also possible. Each has unique considerations.

Data centers

Fast reliable networks are typical of data center environments. Data center configurations usually ensure a high degree of trust between the systems and the data flowing between them.

With fast reliable networks, replication of larger data sets with more maintained copies is possible. Networks in data center environments can handle replication of data that changes more frequently or changes more extensively.

Depending on the security of a data center environment, NDAF can be deployed without Kerberos-based authentication or the use of the Kerberos-based data protection features.

Wide area networks

In a wide area network (WAN) environment, network bandwidth or reliability constraints can limit the size of data that can be reasonably replicated across systems. The frequency and amount of change to data becomes an important consideration when deciding whether or not to replicate it, how many copies
to maintain, and how often to schedule replica updates. These considerations must be balanced against the benefit of placing the data at remote locations to get it closer to the point of consumption for better performance and increased availability.

NDAF is designed so that the loss of communication between the administration and data servers does not prevent access to NDAF-managed data already present on the data server. It is also designed to eventually complete transactions between systems after network connectivity is restored.

For this deployment model, the use of Kerberos-based security is preferable for providing trusted authentication or protection of data on the network.

NDAF security

NDAF systems, including the point of administration, can use strong security based on Kerberos and open network computing (ONC) remote procedure call (RPC) with RPCSEC-GSS for authentication when communicating with each other.

RPCSEC_GSS is a security method that can optionally be applied to ONC RPC. RPCSEC-GSS is a protocol that applies Generic Security Services (GSS) to RPC.

Security for NFS file access

To manage access to NFS clients, the NFSv4 access control list (ACL) method can be used for directories containing data sets, at filesystem level, and on the mounting point (nfsroot) of each server.

Filesystem objects are typically associated with an ACL that (for NFSv4 ACLs as opposed to AIX ACLs) consists of a series of access control entries (ACEs). Each ACE defines an identity and its related access rights.

Access control consists of protected information resources that specify who can be granted access to those resources. The operating system offers a choice of need-to-know or discretionary security. The owner of an information resource can grant other users read- or write-access rights for the resource. A user who is granted access rights to a resource can transfer those rights to other users. This security permits user-controlled information flow in the system; the owner of an information resource defines the access permissions to that resource.

Users have user-based access only to the objects that they own. Typically, users receive either the group permissions or the default permissions for a resource. The major task in administering access control is to define the group memberships of users, because these memberships determine the users' access rights to the files that they do not own.

The NFSv4 ACL type provides fine-grained control over access rights and also provides for features such as inheritance. NFSv4 ACLs consist of an array of ACEs. Each ACE defines access rights for an identity.

In AIX, use the `aclget`, `acledit`, `aclput` and `aclconvert` commands to manage NFSv4 ACLs. Additional information on AIX support of NFSv4 ACLs can be found in the Access Control List section of AIX Version 7.1 Security.

Exporting with Kerberos

By default, the data servers only export filesystems for NFSv4 access with all security types allowed.

You might want to change the default export options to restrict the auth_sys security mechanism or to permit NFS version 3 mounts.

To do this, run `chndaf` command with the following arguments:

```
chndaf -nfs_args=<new nfs args>
```
Format the new nfs args exactly as they would be for the exportfs command.

For example, to restrict exports to krb5 only, run chndaf -nfs_args=sec=krb5p.

If you specify the vers= stanza, you must include 4 (see below); NDAF will not work correctly otherwise. If you do not specify the vers= stanza, the filesystems will be exported for NFSv4 only.

To export for versions 3 and 4, run chndaf -nfs_args=vers=3:4.

For more information about Kerberos and RPCSEC-GSS security, see Setting up a network for RPCSEC-GSS.

Roles

Roles are privileges attached to a set of NDAF principals for managing the resources within a cell. NDAF roles are a distinct function separate from AIX administrative roles.

NDAF principals match Kerberos principals when using the Kerberos authentication, and they match user names when using system-based authentication (such as the auth_sys security mechanism).

At first, only the DmPrincipal attribute (signifying the first user to run the dmf create admin command) can create cells, servers, and roles. Additional NDAF principals can be used to manage an object with the dmf add_to object DmPrincipal=login command. All members of the DmPrincipal list are considered to be owners of the object and can control it.

NDAF principals can also be removed using the dmf remove_from action.

Creating a role and assigning it to a user on the DmMember list defines a set of command capabilities that are granted to the users of that role. The following capabilities are included:

Note: Each of these capabilities can be set to either 0 or 1. The default for each of these capabilities is 1.

DmCreateDs
If nonzero, specifies that this role permits data set creation on the servers listed in the DmServer list of the role. An asterisk (*) signifies that data set creation is permitted on every server that is part of the list. This applies in the same line to replicas, except that with replicas, the user also must be permitted to duplicate the source data set. This can be done if the user is a DmPrincipal of the source data set, or if the user is a DmMember of a role that is part of the DmOwningRole of the source data set and the role has its DmDuplicateDs field set to 1.

DmDestroyDs
If nonzero, specifies that this role permits data set destruction if this role is listed in the DmOwningRole of the data set. It applies in the same line to replicas.

DmModifyDs
If nonzero, specifies that this role permits data set or replica modification for the data sets and replicas that have this role in their DmOwningRole list. Modification involves using the following commands:
• dmf set command for the data set or replica
• dmf add_to command and dmf remove_from command for the data set or replica
• dmf place command and dmf unplace command for the replica if it is placed on (or unplaced from) a server that is listed in the DmServer list of that role
• dmf mount command and dmf unmount command for the data set or replica if it is directly mounted in the cell, or if it is mounted within another data set and this data set has a role in its DmOwningRole list with this user as a DmMember, and the DmModifyDs is set to 1
DmDuplicateDs
 If nonzero, specifies that this role permits data set replication of the data sets that have this role in their DmOwningRole list.

DmCreateRole
 If nonzero, specifies that this role permits role creation.

DmDestroyRole
 If nonzero, specifies that this role permits role destruction for the roles that have this role in their DmOwningRole list.

DmModifyRole
 If nonzero, specifies that this role permits role modification (dmf set, dmf add_to, and dmf remove_from) for the roles that have this role in their DmOwningRole list.

Roles can also be defined using the System Management Interface Tool (SMIT). For more information on creating roles, refer to "Creating and managing roles” on page 22.

After they are created using the dmf create role command, roles apply to every server by default (specified by an asterisk [*] in the DmServer list). They can then be applied on selected servers so that data sets or replicas can be created and placed using the dmf add_to role DmServer=role command, and afterwards using a dmf remove_from role Dmserver=role command. A role can also be applied to a single data set or replica using the dmf add_to DmOwningRole command on this data set or replica.

NDAF role-based access control support

NDAF provides support for role-based access control (RBAC). The NDAF client and server commands are enabled for RBAC. The nonroot user can run the NDAF commands when the administrator assigns the RBAC role of the command to that user.

NDAF installation and configuration

You can install and configure NDAF.

Installing NDAF

Use SMIT (fastpath: smitty install_all) or the installp command to install the ndaf.base filesystem. If the recommended Kerberos 5 security is required, install the krb5.client filesystem.

To install NDAF, the system must have IBM® AIX 5L™ Version 5.3 with the 5300-05 Technology Level or greater installed. The system must be using the 64-bit kernel.

A given system can assume one of three roles in an NDAF domain. Different pieces of the ndaf.base filesystem must be installed depending on the roles. The roles are:

Administration server
 For this system, ndaf.base.admin and ndaf.base.server must be installed. There is only one administration server for a federation of servers.

Data servers
 For these systems, ndaf.base.server must be installed.

Administration clients
 For these systems, only ndaf.base.client must be installed.

For information about the command and flags, see the installp command in AIX Version 7.1 Commands Reference.
Note: By default, the NDAF daemons are not started after installing the package. They are also not configured to be started automatically on the next boot. For instructions on starting the daemons, see “Configuring an NDAF data server” on page 12 or “Configuring the NDAF administration server” on page 13.

Upgrading NDAF

Upgrading a part of the NDAF framework to a new NDAF version will generally have no effect on the global system.

In spite of the upgrade’s lack of effect on the global system, NDAF is designed to detect when there are compatibility issues between two elements in the framework (between dmf and dmadm, dmadm and dms, or between two different dms elements). For example, if you are upgrading a server, and if the communication protocol changed compared to the other data servers belonging to the NDAF domain, the admin will restrict data transfers between those servers until they are upgraded to the correct versions.

In this example, you will get error messages and requests to upgrade either the dmf, dmadm, or dms systems.

You may also be requested to upgrade the admin when upgrading a data server. In the same line, upgrading the admin may lead to a recommendation to upgrade the dmf clients.

During a system upgrade that includes data server protocol change, data will remain accessible, but data transfers between incompatible servers will be forbidden. Replica creation, placement, update, cell placement, and mount-unmount operations will therefore be rejected between those data servers.

Configuring NFS version 4

NDAF servers must be configured as NFSv4 servers.

To configure an NDAF server as an NFSv4 server:

1. Set the NFSv4 domain name with the `chnfsdom` command.
2. Start the `nfsrgyd` daemon with the following command:
   ```bash
   startsrc -s nfsrgyd
   ```
3. Ensure that `nfsd` and `rpc.mountd` are automatically started on system boot. The simplest way to do this is to use the `touch` command to touch the `/etc/exports` file.
4. To enable aliasing, create or choose a directory on the server and set the NFSv4 root location with the `chnfs -r` command. For example, enter the command `chnfs -r /ndaf` (where `/ndaf` is a directory on the server). NDAF uses the `exname exportfs` option to create the global namespace using aliasing. Alias and non-alias exports cannot be mixed, so if the NDAF server is already an NFS server without an NFS root, the administrator is not able to set the root, and NDAF will not function properly. All current exports must be unexported before the root can be set, and all future exports must be aliased to appear under the NFS root. For more information, refer to `/etc/exports` in AIX Version 7.1 Files Reference.
5. Enable NFSv4 server replicas, aliasing, and referrals with the `chnfs -R on` command.

Result: NFSv4 is configured.

Configuring Kerberos 5

The NDAF administration server and all NDAF data servers and administration clients must be configured as Kerberos clients.
Note: A full discussion of Kerberos 5 configuration is beyond the scope of this topic. This topic is meant to describe the Kerberos principals needed by the NDAF product. For detailed instructions on setting up Kerberos, refer to the *IBM Network Authentication Service Version 1.4 Administrator’s and User’s Guide*, which is installed in the following directories:

HTML
/usr/lpp/krb5/doc/html/language/ADMINGD

PDF
/usr/lpp/krb5/doc/pdf/language/ADMINGD

In order to access these files, krb5.doc must be installed.

You can configure the NDAF administration server and all NDAF data servers and administration clients as Kerberos clients with either the `config.krb5` command or the `mkkrb5clnt` command. (The appropriate command depends on how Kerberos will be used on this system.) If you want an integrated login, you can use the `mkkrb5clnt` command to manage the integrated login configuration.

The Kerberos administrator must establish Kerberos service principals for every data server and for the administration server. The following principals are required:

Administration clients

- Every administration client must have a service principal in the form of `dmf/fully-qualified domain name`.

Data servers

- Every data server (including the administration server) must have a service principal in the form of `dms/fully-qualified domain name`.

Administration server

- The administration server must have a service principal in both of the following forms:
 - `dmadm/fully-qualified domain name`
 - `dms/fully-qualified domain name`

Any NFS or data server that exports for Kerberos

- Any NFS or data server that exports for Kerberos must have a service principal in the form of `nfs/fully-qualified domain name`.

The administrator can create these Kerberos service principals with the `add_principal` command under the Kerberos administration (`kadmin`) command (`/usr/sbin/krb5/kadmin`). The administrator must then add the server's service principals to the server's keytab file. You can do this with the `ktutil` command. For example:

```
ktutil: addent -password -p dms/test.austin.ibm.com -k 1 -e des
ktutil: wkt /etc/krb5/krb5.keytab
```

where the key version number (kvno) (`-k`) and encryption types are set as appropriate. All NDAF administrators must be known as Kerberos 5 users if Kerberos 5 security is used.

RPC port requirements

In order to communicate correctly, each server must be aware of the ports the other servers are listening on and emitting to.

The sending and receiving ports between communicating servers must have identical values. For example:

- The data server connects to another data server's SSP port, and the other data server listens to SSP (28003 is the default port).
- The data server connects to the administration server ACP, and the administration server listens to ACP (28002 is the default port).
The administration server connects to a data server SP port, and the data server listens to SP (28001 is the default port).

A client connects to the administration server AP, and the administration server listens to AP (28000 is the default port).

Note: When you start a server with non-default ports, make sure that the other servers are started with the same values for the specified non-default ports.

Configuring an NDAF data server

The primary configuration for an NDAF data server involves starting the `dms` daemon.

This can be accomplished using the System Management Interface Tool (SMIT) menus (fastpath `ndafdatastart`) or directly using the `mkndaf` and `chndaf` commands. Both methods will update the `/etc/rc.ndaf` startup file for simple (and if needed, automatic) restart on reboot. Due to the aliasing used to create the global namespace, the view from an NFS client is different than the local view from an NDAF data server. The view from an NFSv4 client mounting an NDAF data server's root is:

```
/mount_point/cell_name/dset_mount_name
```

The actual path to the data-set data on the data server (if not specified when the data set is created) is:

```
/ndaf_dataset_default/dset/ndaf_assigned_dir_name
```

Or, if the `ndaf_dataset_default` was not specified at daemons start time:

```
/ndaf_dir/dset/ndaf_assigned_dir_name
```

Similarly, the path to replica data on the data server (if not specified when the data set is created) is:

```
/ndaf_replica_default/ndaf_assigned_dir_name
```

Or, if the `ndaf_replica_default` was not specified at daemons start time:

```
/ndaf_dir/replica/ndaf_assigned_dir_name
```

There are three key considerations when starting NDAF on a data server:

Where data sets and replicas should reside by default:

Unless specified when a data set or replica is created, the data set or replica is created in the directory specified by the `ndaf_default_dset_dir`, `ndaf_default_replica_dir`, or `ndaf_dir` parameters when the `dms` daemon starts. These directories must reside in a filesystem that has been enabled for data sets using the `dms_enable_fs` command, and should be large enough for the expected size of the data sets and replicas. It is recommended that this filesystem be a separate, dedicated filesystem created specifically for storing data sets and replicas.

Note: The `/`, `/tmp`, and `/proc` filesystems cannot be enabled for data sets.

Where NDAF log and state data should reside:

The directory specified will have “log” and “server” subdirectories that contain data crucial to the operation of the NDAF data server. These subdirectories do not need to reside in a file system enabled for data sets. The data in the “server” subdirectory must be backed up along with the data-set data for data recovery purposes.

The type of security that will be used:

The `auth_sys` security type provides a level of security appropriate only within a trusted data center, whereas Kerberos can be used where stronger security is required.

There are three levels of Kerberos security:

- `krb5` Performs authentication, verifying that the message was sent by who it claims sent it.
krb5i Performs checksum operations to verify the integrity of the data. Integrity promises that the message has not been modified (and provides authentication).

krb5p Encrypts the data. Privacy prevents the message from being read by anyone but the intended recipient (and provides authentication and integrity).

For example, a data server could be configured with the following steps. (This example assumes NFS has been configured as described in “Configuring NFS version 4” on page 10).

```
# Enable the filesystem where data sets and replicas will go
rmf_enable_fs -s /ndafpool

# Configure default dirs and security
chndaf -I -ndaf_dir=/var/dmf -ndaf_dataset_default=/ndafpool/dsets \
-ndaf_replica_default=/ndafpool/replicas -security=auth_sys

# Start the dms daemon (and add to inittab so will start on reboot)
rmfndaf
```

Configuring the NDAF administration server

When configuring NDAF, you must first configure the administration server. There is one NDAF administration server for a given federation of NDAF data servers.

The NDAF administration server is the central point of control and all NDAF administration requests from NDAF clients are handled on this server. The administration server is also a data server, so the configuration procedure in “Configuring an NDAF data server” on page 12 also applies to the administration server. To configure the administration server, you must also configure the system as a data server. In addition to “log” and “server” subdirectories, there will also be an “admin” subdirectory. The only additional configuration step is to use the `chndaf` command to start the `dmadm` daemon as well as the `dms` daemon:

```
chndaf -admin_serv=yes
```

Configuring an NDAF administration client

An NDAF administration client is any system that is used to run data-management commands that are handled by the NDAF administration server.

There is no configuration necessary on the administration client beyond installing the `ndaf.base.client` fileset. The `rmf` command or NDAF Management SMIT menus are used for NDAF administration.

Managing NDAF

You must add the NDAF administration server and the data servers before you can perform other NDAF management tasks. You can then create and manage cells, roles, data sets, and replicas; populate data sets; construct cell namespaces; and, federate servers without the NDAF into an NDAF environment.

Creating and managing administration servers for NDAF

You must create the NDAF administration server and all of the data servers to the system before you can perform any other NDAF management tasks.

You can use the `rmf` command to create the NDAF administration server:

```
rmf create admin name [-r] [-a admin_server]
```

where:
-a admin_server
 Specifies the Domain Name System (DNS) name or IP address of the administration server. The port can be added using a colon separator.

name
 Specifies the name for the administration server to be created.

-r
 Prints the universally unique identifier (uuid) assigned to the request.

Note: Entering dmf create admin my_admin also creates the my_admin server object.

To add the NDAF administration server using SMIT, perform the following steps:
1. From the NDAF menu, select NDAF Management > Administration Server Management > Create Admin Server.
 Note: You can also use the ndafadmincreate fastpath.
2. Specify the DNS name or IP address of the administration server in the Admin Server DNS name field and press Enter.
3. Specify a name for the new administration server in the Admin Server name field and press Enter.

Showing and changing administration server attributes
You can show the attributes of a specific administration server. You can modify some of these attributes if you have the necessary authorization.

You can use the dmf command to show the attributes for an administration server, as follows:
dmf show admin [-r] [-a admin_server]

where:

-a admin_server
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

-r
 Prints the uuid assigned to the request.

You can use the dmf command to change the attributes for an administration server, as follows:
dmf add_to admin key=value [-r] [-a admin_server]
dmf remove_from admin key=value [-r] [-a admin_server]

where:

-a admin_server
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

key=value
 Specifies an attribute and the value to assign to it. Valid key is DmPrincipal.

-r
 Prints the uuid assigned to the request.

Perform the following steps to show or change the attributes for an administration server using SMIT:
1. From the NDAF menu, select NDAF Management > Administration Server Management > Change/Show Admin Server Attributes. Note that you can also use the ndafadminshow_admin fastpath.
2. Specify the DNS name or IP address of the administration server in the Admin Server DNS name field and press Enter. The following attributes are displayed:
Admin server DNS name (or IP address)
 Specifies the DNS name or IP address of the administration server that manages the NDAF domain

Admin server UUID
 Specifies the uuid for the administration server

Admin server name
 Specifies the name of the administration server

Admin server framework version
 Specifies the version of the application running on this server

Server to admin port
 Specifies the number of the port for RPC callbacks from data servers to the administration server

Security method
 Specifies the security method that is used for data transfers

NDAF principals
 Enter the list of users, separated by commas, directly in the input field; users from this list are owners of this cell and can manipulate it

Removing an administration server
You can remove an administration server object and clean the databases of all the objects that have been defined within the administration server.

You can use the dmf command to remove an NDAF administration server, as follows:

```
dmf destroy admin [-f] [-r] [-a admin_server]
```

where:

- `-a admin server`
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

- `-f`
 Forces the action without confirmation

- `-r`
 Prints the universally unique identifier (uuid) assigned to the request

To remove a NDAF administration server using SMIT, follow these steps:
1. From the NDAF menu, select NDAF Management > Administration Server Management > Remove Admin Server.

 Note: You can also use the `ndafadminremove` fastpath.

2. Specify the DNS name or IP address of the administration server in the Admin Server DNS name field and press Enter. A confirmation dialog opens.

Creating and managing data servers
You can create NDAF data servers which represent systems that will manage data in the NDAF namespaces.

You can use the dmf command to create a NDAF data server:

```
dmf create server <name> <dns_target> [-e] [-r] [-a <admin_server>]
```

where:
-a admin_server
 Specifies the Domain Name Service (DNS) name or IP address of the administration server. The
 port can be added using a colon separator.

name
 Specifies the name for the data server to be created.

dns_target
 Specifies the DNS name or IP address of the server. The port can be added using a colon
 separator.

-e
 Specifies that the object is external to NDAF. For more information about this flag, see "Case 2:
 Add an existing server with NFS exported data to an NDAF cell namespace without installing
 NDAF on it" on page 51.

-r
 Prints the uuid assigned to the request.

To add the NDAF administration server using SMIT, perform the following steps:
1. From the NDAF menu, select NDAF Management > Data Server Management > Create Data Server.

 Note: You can also use the ndafdscreate fastpath.
2. Specify the DNS name or IP address of the administration server in the Admin Server DNS name
 field.
3. Specify a name for the new data server in the Data Server name field and press Enter.
4. Specify the DNS name or IP address of the new data server in the Data Server DNS name field and
 press Enter.

Showing and changing data server attributes
You can show the attributes of a specified data server. If you have the required authorization, you can
modify some of these attributes.

You can use the dmf command to show the attributes for a data server, as follows:
dmf show server [-r] [-a admin_server] [-c container]

where:

-a admin_server
 Specifies the Domain Name Service (DNS) name or IP address of the administration server. The
 port can be added using a colon separator.

-c
 Specifies the data server name.

-r
 Prints the universally unique identifier uuid assigned to the request.

You can use the dmf command to change the attributes for a data server, as follows:
dmf add_to server key=value [-r] [-a admin_server] [-c container]
dmf remove_from server key=value [-r] [-a admin_server] [-c container]

where:

-a admin_server
 Specifies the DNS name or IP address of the administration server. The port can be added using a
 colon separator.

-c
 Specifies the data server name.

key=value
 Specifies an attribute and the value to assign to it. Valid keys are DmPrincipal, DmTransferTable,
 and DmClientDnsName.

-r
 Prints the uuid assigned to the request.
Perform the following steps to show or change the attributes for a data server using SMIT:

1. From the NDAF menu, select NDAF Management > Data Server Management > Change/Show Data Server Attributes. Note that you can also use the ndafdsshow_admin fastpath.

2. Specify the DNS name or IP address of administration server in the Admin Server DNS name field and press Enter. The following attributes are displayed:

 Admin server DNS name (or IP address)
 Specifies the DNS name or IP address of the administration server that manages the NDAF domain.

 Data server name
 Specifies the name of the data server.

 Data server DNS name (or IP address)
 Specifies the DNS name or IP address of the data server.

 Data server UUID
 Specifies the uuid for the administration server.

 Admin server framework version
 Specifies the version of the application running on this server.

 Server to server port
 Specifies the number of the port for RPC calls between data transfer agents.

 External server
 Specifies if this server is an external server (not running an NDAF daemon).

 Log level
 Specifies the amount of information written in the log file.

 Minimum RPC port number
 Specifies the minimum RPC port number to be used for data transfer between servers.

 Maximum RPC port number
 Specifies the maximum RPC port number to be used for data transfer between servers.

 Default dset path
 Specifies the local path where new datasets should be created in if no path is specified in the create dset command.

 Default replica path
 Specifies the local path where new replicas should be created in if no path is specified in the create replica command.

 NDAF principals
 Enter the list of users, separated by commas, directly in the input field. Users from this list are owners of this administration server and can manipulate it.

 Transfer method
 Specifies the names of the methods allowed for data transfer.

Removing a data server
You can remove a data server object and clean the databases of all the objects that have been defined within the data server.

You can use the dmf command to remove an NDAF data server, as follows:

`dmf destroy server [-f] [-r] [-a admin_server] [-c container]`

where:
-a admin_server
 Specifies the DNS name or IP address of the administration server. The port can be added using a
 colon separator.

-c container
 Specifies the server name.

-f
 Forces the action without confirmation.

-r
 Prints the uuid assigned to the request.

To remove an NDAF data server using SMIT, follow these steps:
1. From the NDAF menu, select NDAF Management > Administration Server Management > Remove
 Data Server.
2. Specify the DNS name or IP address of the administration server in the Admin Server DNS name
 field and press Enter.
3. Enter the name of the data server in the Data Server name field and press Enter. A confirmation
 dialog is then displayed.

Listing data servers
You can list the data servers that have been defined for a specified administration server.

You can use the dmf command to list data servers, as follows:
dmf enumerate admin server [pattern] [-r] [-a admin_server]

where:

 pattern
 Optional matching text pattern. Valid values include ? and *.

 -a admin_server
 Specifies the DNS name or IP address of the administration server. The port can be added using a
 colon separator.

 -r
 Prints the uuid assigned to the request.

Perform the following steps to list data servers using SMIT:
• From the NDAF menu, select NDAF Management > Data server Management > List Data Servers.
• Specify the name of the administration server that manages the NDAF domain in the Admin name
 field and press Enter.

Creating and managing cells
A cell is a collection of data sets organized into a single file namespace for use with NFSv4 servers.
NFSv4 clients are expected to mount the root directory of the cell to access the cell’s full namespace.

Creating a cell
You can create a cell for use with NFSv4 servers.

You must create an NDAF administration server before you can create a cell.

You can use the dmf command to create a cell:
dmf create cell name [-w timeout] [-r] [-a admin_server]

where:

 -a admin_server
 Specifies the DNS name or IP address of the administration server. The port can be added using a
 colon separator
name Specifies the name for the cell to be created.
-r Prints the uuid assigned to the request.
-w timeout Specifies how long the command can wait before completing.

Perform the following steps to create a cell using SMIT:
1. From the NDAF menu, select NDAF Management > Namespace (cell) Management > Create cell namespace.

 Note: You can also use the ndafcellcreate fastpath.
2. Specify the DNS name or IP address of the administration server that manages the NDAF domain in the Admin name field.
3. Enter a name for the new cell in the Cell name field and press Enter.

To create a cell named cell1 in the NDAF domain that is managed by the NDAFServer1 administration server, perform the following steps:
1. From the NDAF menu, select NDAF Management > Namespace (cell) Management > Create cell namespace.
2. Enter NDAFServer1 in the Admin name field.
3. Enter cell1 in the Cell name field and press Enter.

Listing cell namespaces
You can list the cells that have been defined for a specified administration server.

You can use the dmf command to list cells:
dmf enumerate admin cell [pattern] [-r] [-a admin_server]

where:
-a admin_server Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

pattern Optional matching text pattern. Valid values include ? and *.
-r Prints the uuid assigned to the request.

Perform the following steps to lists cells using SMIT:
2. Specify the name of the administration server that manages the NDAF domain in the Admin name field and press Enter.

Showing and changing cell attributes
You can show the attributes of a specified cell. You can modify some of these attributes if you have the necessary authorization.

You must have the required authorization to modify the attributes for a cell.

You can use the dmf command to show the attributes for a cell:
dmf show cell [-r] [-a admin_server] [-c container]

where:
-a admin_server
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

-c container
 Specifies the cell name this command is addressed to.

-r
 Prints the uuid assigned to the request.

You can use the dmf command to change the attributes for a cell:
dmf set cell key=value [-r] [-a admin_server] [-c container]

where:
- a admin_server
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

- c container
 Specifies the cell name this command is addressed to.

key=value
 Specifies an attribute and the value to assign to it. Valid keys are DmLogLevel and DmLocsMax.

-r
 Prints the uuid assigned to the request.

Perform the following steps to show and change the attributes for a specific cell using SMIT:
1. Select NDAF > NDAF Management > Namespace (cell) Management > Change/show cell attributes.
2. Specify the name of the administration server that manages the NDAF domain in the Admin name field.
3. Enter the name of the cell in the Cell name field (or choose one from the list by pressing F4). The following attributes are displayed:
 Admin server DNS name (or IP address)
 Specifies the DNS name or IP address of the administration server that manages the NDAF domain

 Admin server name
 Specifies the name of the administration server that manages the NDAF domain

 Cell name
 Specifies the name of the cell

 Cell UUID
 Specifies the uuid for the cell

 Maximum number of reported locations
 Specifies the maximum number of NFS location referrals that can be returned to an NFS client for an object

 NDAF principals
 Enter the list of users, separated by commas, directly in the input field. Users from this list are owners of this cell and can manipulate the cell

Removing a cell namespace
You can remove a cell object and clean the databases of all the objects that have been defined within the cell.

You can use the dmf command to remove a cell namespace:
dmf destroy cell [-r] [-f] [-a admin_server] [-c container]
where:

- **-a admin_server**
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

- **-c container**
 Specifies the container (that is, the cell name).

- **-f**
 Forces the action without confirmation.

- **-r**
 Prints the uuid assigned to the request.

Perform the following steps to remove a cell namespace using SMIT:

1. From the NDAF menu, select **NDAF Management > Namespace (cell) Management > Remove cell namespace**.
2. Specify the name of the administration server that manages the NDAF domain in the **Admin name** field and press Enter.
3. Enter the name of the cell to be removed in the **Cell name** field and press Enter. A standard SMIT dialog box displays to confirm the destruction of the cell.

Adding a server to a cell namespace

A cell can use a data server to host the cell’s data set referrals, and therefore authorize users to access the cell’s namespace, by mounting the cell root path from this server with NFS.

You can use the dmf command to enable a cell to use a data server to host the cell’s data set, as follows:

```
dmf place cell server_name [-r] [-a admin_server] [-c container]
```

where:

- **server_name**
 Specifies the server on which the cell should be made available for mounting by NFS.

- **-r**
 Prints the uuid assigned to the request.

- **-a admin_server**
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

- **-c container**
 Specifies the cell name.

Perform the following steps to enable a cell to use a data server to host the cell’s data set using SMIT:

1. From the NDAF menu, select **NDAF Management > Namespace (cell) Management > Add Server to a Cell Namespace**.
2. Specify the name of the administration server that manages the NDAF domain in the **Admin name** field and press Enter.
3. Enter the name of the cell in the **Cell Name** field (or choose one from the list by pressing F4) and press Enter.
4. Enter the name of the data server in the **Data server name** field (or choose one from the list by pressing F4) and press Enter.

Removing a server from a cell namespace

You can prevent a cell from using a data server to host the cell’s data sets.

You can use the dmf command to prevent a cell from using a data server to host the cell’s data sets:

```
dmf unplace cell server_name [-r] [-f] [-a admin_server] [-c container]
```
where:

`server_name` Specifies the server on which the cell should become unavailable for mounting by NFS.

`-r` Prints the `uuid` assigned to the request.

`-f` Forces the action without confirmation.

`-a admin_server` Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

`-c container` Specifies the cell name.

Perform the following steps to prevent a cell from using a data server to host the cell’s data sets using SMIT:

1. From the `NDAF` menu, select `NDAF Management > Namespace (cell) Management > Remove Server from a Cell Namespace`.
2. Specify the name of the administration server that manages the NDAF domain in the `Admin name` field and press Enter.
3. Enter the name of the cell in the `Cell Name` field (or choose one from the list by pressing F4) and press Enter.
4. Enter the name of the data server in the `Data server name` field (or choose one from the list by pressing F4) and press Enter.

Creating and managing roles

A role is a set of privileges associated with a set of users. Roles are used to manage resources within a cell. Administrators can create, list, remove, validate and change the options of roles.

Creating a role

You can create a role. A role is a set of privileges associated with a set of users. Roles are created for cells and are used to manage resources within a cell.

You must create a cell before you can create a role.

You can use the `dmf` command to create a role:

```
dmf create role name [-r] [-a admin_server] [-c container]
```

where:

`-a admin_server` Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

`-c container` Specifies the cell name.

`name` Specifies the name of the role to be created.

`-r` Prints the `uuid` assigned to the request.

Perform the following steps to create a role using SMIT:

1. From the `NDAF` menu, select `NDAF Management > Delegation of administration rights > Create a role`.
2. Enter the DNS name or the IP address of the administration server that manages the NDAF domain in the `Admin name` field and press Enter.
3. Enter the name of the cell in the **Cell name** field (or choose one from the list by pressing F4).
4. Enter the name of the role to be created in the **Role name** field and press Enter.

Showing and changing role attributes
You can show the attributes for a specific role. If you have the required privileges, you can modify some role attributes.

You can use the `dmf` command to show the attributes for a role:
```
dmf show role [-r] [-a admin_server] [-c container] [-o object]
```
where:

- **-a admin_server**
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

- **-c container**
 Specifies the cell name.

- **-o object**
 Specifies the name of the object this command is addressed to.

- **-r**
 Prints the `uuid` assigned to the request.

You can use the `dmf` command to change the attributes for a role:
```
dmf set role key=value [-r] [-a admin_server] [-c container] [-o object]
```
where:

- **-a admin_server**
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

- **-c container**
 Specifies the cell name.

- **key=value**
 Specifies an attribute and the value to assign to it. Valid keys are `DmCreateDs`, `DmDestroyDs`, `DmModifyDs`, `DmDuplicateDs`, `DmCreateRole`, `DmDestroyRole`, and `DmModifyRole`.

- **-o object**
 Specifies the name of the object this command is addressed to.

- **-r**
 Prints the `uuid` assigned to the request.

Perform the following steps to show and change the attributes for a role using SMIT:
1. From the **NDAF** menu, select **NDAF Management > Delegation of administration rights > Change / show role options**.
2. In the dialog panel, enter the DNS name or IP address of the administration server that manages the NDAF domain in the **Admin name** field and press Enter.
3. Enter the name of the cell in the **Cell name** field (or choose one from the list by pressing F4) and press Enter.
4. In the dialog panel, enter the name of the role to be shown or modified in the **Role name** field (or choose one from the list by pressing F4) and press Enter. The following attributes are displayed:

 Admin server DNS name (or IP address)
 Specifies the DNS name or the IP address of the administration server.

 Cell name
 Specifies the name of the cell.
Role name
 Specifies the name of the role.

Role UUID
 Specifies the universal unique identifier of the role.

NDAF principals
 Specifies the list of users (separated by commas) directly in the input field. These users are
 owners of this administration server and can manipulate the server.

Owning roles
 Specifies the roles that can apply to an object.

Members
 Specifies the principals that are members of this role (that is, the members for which this role
 permits administrative actions).

Servers
 Specifies the servers for which this roles permits activity.

Dset creation right
 Specifies whether the role has data set creation rights. The options are yes or no.

Dset destruction right
 Specifies whether the role has data set destruction rights. The options are yes or no.

Dset modification right
 Specifies whether the role has data set modification rights. The options are yes or no.

Dset duplication (replication) right
 Grants the right to duplicate (replicate) a dset. The options are yes or no.

Role creation right
 Specifies role creation rights. The options are yes or no.

Role destruction right
 Specifies role destruction rights. The options are yes or no.

Role modification right
 Specifies role modification rights. The options are yes or no.

Removing a role
You can remove a role.

You can use the dmf command to remove a role:

```
dmf destroy role [-r] [-f] [-a admin_server] [-c container] [-o object]
```

where:

- `-a admin_server`
 Specifies the DNS name or IP address of the administration server. The port can be added using a
colon separator.

- `-c container`
 Specifies the cell name.

- `-f`
 Forces the action without confirmation.

- `-o object`
 Specifies the name of the object this command is addressed to.

- `-r`
 Prints the uuid assigned to the request.

Perform the following steps to remove a role using SMIT:
1. From the NDAF menu, select NDAF Management > Delegation of administration rights > Remove role.
2. Enter the DNS name or IP address of the administration server that manages the NDAF domain in the Admin name field and press Enter.
3. Enter the name of the cell in the Cell name field (or choose one from the list by pressing F4) and press Enter.
4. Enter the name of the role to be removed in the Role name field and press Enter. A confirmation dialog displays.

Listing roles
You can list all of the roles for a cell.

You can use the `dmf` command to list all of the roles for a specified cell:
```
dmf enumerate cell role [pattern] [-r] [-a admin_server] [-c container]
```
where:
- `pattern` Optional matching text pattern. Valid values include a question mark (?) and an asterisk (*).
- `-r` Prints the `uuid` assigned to the request.
- `-a admin_server` Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.
- `-c container` Specifies the cell name.

Perform the following steps to list all of the roles for a specified cell using SMIT:
1. From the NDAF menu, select NDAF Management > Delegation of administration rights > List roles.
2. Enter the DNS name or IP address of the administration server that manages the NDAF domain in the Admin name field and press Enter.
3. Enter the name of the cell name in the Cell name field and press Enter.

Creating and managing data sets
A data set (dset) is a directory tree of filesystem objects (files, directories, ACLs, links, and so on).

You can create, remove, validate, list, mount, and unmount data sets and change their options.

Creating data sets
When you create a data set, you must specify an administration server, a namespace, and a data server.

You can use the `dmf` command to create a data set:
```
dmf create dset name server [path] [-r] [-a admin_server] [-c container]
```
where:
- `-a admin_server` Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.
- `-c container` Specifies the cell name.
- `name` Specifies the name for the data set to be created.
path Specifies the local path on the server. If the path parameter is omitted, the server puts the data set in its default pool.

-r Prints the uuid assigned to the request.

server Specifies the server name.

Perform the following steps to create a data set using SMIT:

1. From the NDAF menu, select NDAF Management > Data management > Dataset management > Create Dataset.

2. Specify the DNS name or IP address of the administration server that manages the NDAF domain in the Admin name field and press Enter.

3. Enter the cell name in the Cell name field (or choose one from the list by pressing F4).

4. Enter the data set name in the Dset name field.

5. Enter the data server name in the data server name field. Press Enter or define a local path in the following step.

6. Specify where on the server the data set will be created in the Local path on the server field and press Enter. If you do not specify a path, the new data set will be created on the default data set path defined for the server. The default data set path is the path specified when the dms daemon is started by the -ndaf_dataset_default parameter. If this parameter is not specified, the default path is $ndaf_dir/server/dsets, where $ndaf_dir is the path specified by the -ndaf_dir parameter. You can edit this path using the dmf set DmDefaultDsetPath command in the NDAF CLI.

Listing data sets
You can list all data sets for a specified cell or data server.

You can use the dmf command to list all data sets for a specified cell:

dmf enumerate cell dset [pattern] [-r] [-a admin_server] [-c container]

where:

-a admin_server Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

-c container Specifies the cell name.

pattern Optional matching text pattern. Valid values include a question mark (?) and an asterisk (*).

-r Prints the uuid assigned to the request.

You can use the dmf command to list all data sets for a specified server:

dmf enumerate server dset [pattern] [-r] [-a admin_server] [-c container]

where:

-a admin_server Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

-c container Specifies the server name.

pattern Optional matching text pattern. Valid values include a question mark (?) and an asterisk (*).

-r Prints the uuid assigned to the request.
Perform the following steps to display the list of all data sets for a specified cell or administration server using SMIT:

1. From the NDAF menu, select Data management > Dataset management > List data sets.
2. Specify the DNS name or IP address of the administration server that manages the NDAF domain in the Admin name field and press Enter.
3. Select whether to list all data sets for a cell or for a server by choosing the appropriate option using F4 and then press Enter.
4. Enter the cell name or server name in the Cell name or Data server Name field and press Enter (use F4 to select a cell or a server from a list). Leave this field blank and press Enter to display all the data sets for all cells or all data servers.

Validating data sets

You can check the consistency of a data set between the hosting server and the administration server databases.

You can use the `dmf` command to validate a data set:

```
dmf validate dset [-r] [-a admin_server] [-c container] [-o object]
```

where:

- `-a admin_server`
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

- `-c container`
 Specifies the cell name.

- `-o object`
 Specifies the name of the object to which this command is addressed.

Perform the following steps to check for the existence of a data set in a specified namespace using SMIT:

1. From the NDAF menu, select NDAF Management > Data management > Dataset management > Check Dataset.
2. Specify the DNS name or IP address of the administration server that manages the NDAF domain in the Admin name field and press Enter.
3. Enter the name of the cell in the Cell name field and press Enter.
4. Enter the name of the data set in the Dset name field (or choose one from the list by pressing F4) and press Enter.

Showing and changing data set attributes

You can show the attributes for a data set. If you have the required authorization, you can modify the attributes for a data set.

You can use the `dmf` command to show the attributes for a specified data set:

```
dmf show dset [-r] [-a admin_server] [-c container] [-o object]
```

where:

- `-a admin_server`
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

- `-c container`
 Specifies the cell name.

- `-o object`
 Specifies the name of the object this command is addressed to.
-r Prints the **uuid** assigned to the request.

You can use the **dmf** command to change the attributes for a specified data set:

```bash
dmf set dset key=value [-r] [-a admin_server] [-c container] [-o object]
```

where:

- **-a admin_server**
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

- **-c container**
 Specifies the cell name.

- **key=value**
 Specifies an attribute and the value to assign to it. Valid keys are **DmOwner**, **DmGroup**, **DmMode**, and **DmLocsMax**.

- **-o object**
 Specifies the name of the object this command is addressed to.

- **-r**
 Prints the **uuid** assigned to the request.

You can use the **dmf** command to adds a key/value item to a list-based attribute for a data set:

```bash
dmf add_to dset key=value [-r] [-a admin_server] [-c container] [-o object]
```

where:

- **-a admin_server**
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

- **-c container**
 Specifies the cell name.

- **key=value**
 Specifies an attribute and the value to assign to it. Valid keys are **DmPrincipal**, **DmOwningRole**, and **DmTransferTable**.

- **-o object**
 Specifies the name of the object this command is addressed to.

- **-r**
 Prints the **uuid** assigned to the request.

You can use the **dmf** command to remove a key/value item from a list-based attribute for a data set:

```bash
dmf remove_from dset key=value [-r] [-a admin_server] [-c container] [-o object]
```

where:

- **-a admin_server**
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

- **-c container**
 Specifies the cell name.

- **key=value**
 Specifies an attribute and the value to assign to it. Valid keys are **DmPrincipal**, **DmOwningRole**, and **DmTransferTable**.

- **-o object**
 Specifies the name of the object this command is addressed to.
Perform the following steps to show or change the attributes for a specified data set using SMIT:

1. From the NDAF menu, select NDAF Management > Data management > Dataset management > Change / show Dataset attributes.
2. Specify the DNS name or IP address of the administration server that manages the NDAF domain in the Admin server name field.
3. Enter the name of the cell in the Cell name field (or choose one from the list by pressing F4).
4. Enter the name of the data set in the Dset name field. The following attributes are displayed:
 - **Admin server DNS name (or IP address)**: Specifies the DNS name or IP address of the administration server.
 - **Cell name**: Specifies the name of the cell.
 - **Dset name**: Specifies the data set name.
 - **Dset UUID**: Specifies the universal unique identifier for this data set.
 - **Version**: Specifies the version of the replica data set.
 - **Owner**: Specifies the owner that should be set in the filesystem for this data set.
 - **Group**: Specifies the group that should be set in the filesystem for this data set.
 - **Mode**: Specifies the mode that should be set in the filesystem for this data set. Permissible values are 000 through 777 octal (in other words, the value is a normal UNIX file permission setting).
 - **Maximum number of reported locations**: Specifies the maximum number of NFS locations referrals that can be returned to an NFS client for an object.
 - **NDAF principals**: Specify a list of users (separated by commas) directly in the input field. Users from this list will own this data set and can manipulate the data set.
 - **Owning roles**: Specifies the roles that can manage this data set.
 - **Transfer methods**: Specifies the method this data server will use for data transfer (or choose one from the list by pressing F4). This field accepts multiple, comma-separated values. Possible values are copy, rsync, copy + rsync. The default value is copy.

Showing data set locations
You can display the physical locations of a data set.

You can use the dmf command to display the physical locations of a specified data set:
```
dmf show dset [-r] [-a admin_server] [-c container] [-o object]
```

where:
```
-a admin_server
  Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.
```
Perform the following steps to display the physical locations of a specified data set using SMIT:
1. From the NDAF menu, select NDFF Management > Data management > Dataset management > Show Dataset locations.
2. Specify the DNS name or IP address of the administration server that manages the NDAF domain in the Admin server name field.
3. Enter the name of the cell in the Cell name field.
4. Enter the name of the data set in the Dset name field (or choose one from the list by pressing F4) and press Enter. The data set attributes and data set locations are displayed.

Removing data sets
You can remove a data set.

You can use the dmf command to remove a data set:
```
dmf destroy dset [-r] [-f] [-a admin_server] [-c container] [-o object]
```

where:
```
-a admin_server
   Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.
-c container
   Specifies the cell name.
-f     Forces the action without confirmation.
-o object
   Specifies the name of the object this command is addressed to.
-r     Prints the uuid assigned to the request.
```

Perform the following steps to remove a data set using SMIT:
1. From the NDAF menu, select NDFF Management > Data management > Dataset management > Remove dataset.
2. Specify the DNS name or IP address of the administration server that manages the NDAF domain in the Admin name field and press Enter.
3. Enter the name of the cell in the Cell name field and press Enter.
4. Enter the name of the data set in the Dset name field (or choose one from the list by pressing F4) and press Enter. A confirmation dialog displays.

Mounting data sets
You can mount a data set in the cell namespace to make it visible in this cell from NFS clients.

You can use the dmf command to mount a data set:
```
dmf mount dset mount_path [-r] [-a admin_server] [-c container] [-o object]
```

where:
-a admin_server
 Specifies the DNS name or IP address of the administration server. The port can be added using a
 colon separator.
-c container
 Specifies the cell name.
mount_path
 Specifies the mount path in the namespace.
-o object
 Specifies the name of the object this command is addressed to.
-r
 Prints the uuid assigned to the request.

Perform the following steps to mount a data set using SMIT:
1. From the NDAF menu, select NDAF Management > Data management > Data set management >
 Mount Data set.
2. Specify the DNS name or IP address of the administration server that manages the NDAF domain in
 the Admin name field and press Enter.
3. Enter the name of the cell in the Cell name field and press Enter.
4. Enter the name of the data set in the Dset name field and press Enter.
5. Specify the location where the data set will be mounted on this server in the Mount path field. The
data set cannot be already mounted and the path cannot already exist.

Unmounting data sets
You can unmount a data set that was previously mounted. After a data set is unmounted, it is no longer
visible in the cell namespace. For data set mounts that exist within replicated data sets, the unmount does
not take effect until the associated replicas are updated.

You can use the dmf command to unmount a data set:

```bash
dmf unmount dset mount_path [-r] [-a admin_server] [-c container] [-o object]
```

where:
- a admin_server
 Specifies the DNS name or IP address of the administration server. The port can be added using a
 colon separator.
- c container
 Specifies the cell name.
- mount_path
 Specifies the mount path in the namespace.
- o object
 Specifies name of the object to which this command is addressed.
- r
 Prints the uuid assigned to the request.

Perform the following steps to unmount a data set using SMIT:
1. From the NDAF menu, select NDAF Management > Data management > Dataset management >
 Unmount Dataset.
2. Specify the DNS name or IP address of the administration server that manages the NDAF domain in
 the Admin name field and press Enter.
3. Enter the name of the cell in the Cell name field and press Enter.
4. Enter the name of the data set in the Dset name field and press Enter.
5. Specify the location where the data set is currently mounted in the Mount path field and press Enter.
Creating and managing replicas

A replica is a read-only copy of a data set. You can distribute a replica across multiple data servers. You can create, remove, validate, update, list, mount, umount, place, and unplace replicas and change their options.

Creating a replica of a data set

You can create a replica of a data set in a specified location on a server.

You must run dmf update in order to have the data synchronized between the replica and the source data set, in case the content of the source data set changes.

You can use the `dmf` command to create a replica, as follows:

```
dmf create replica name server [path] [-d | -w timeout] [-r] [-a admin_server] [-c container] [-o object]
```

where:

- `-a admin_server`
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

- `-c container`
 Specifies the container (the cell name, for example).

- `-d`
 Specifies that the command must be run asynchronously.

- `name`
 Specifies the name for the replica to be created.

- `-o object`
 Specifies the name of the data set that will be the source of this replica.

- `path`
 Specifies the local path on the server. If the path parameter is omitted, the server puts the replica in its default pool for replicas.

- `-r`
 Prints the `uuid` assigned to the request.

- `server`
 Specifies the name of the server where the replica will be created.

- `-w timeout`
 Specifies how long the command can wait before completing.

You can use the `dmf` command to add a key/value item to a list-based attribute for a replica:

```
dmf add_to replica key=value [-r] [-a admin_server] [-c container] [-o object]
```

where:

- `-a admin_server`
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

- `-c container`
 Specifies the cell name.

- `key=value`
 Specifies an attribute and the value to assign to it. Valid keys are `DmPrincipal`, `DmOwningRole`, and `DmTransferTable`.

- `-o object`
 Specifies the name of the object this command is addressed to.

- `-r`
 Prints the `uuid` assigned to the request.
You can use the `dmf` command to remove a key/value item from a list-based attribute for a replica:

```
dmf remove_from replica key=value [-r] [-a admin_server] [-c container] [-o object]
```

where:

- `-a admin_server`
 - Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

- `-c container`
 - Specifies the cell name.

- `key=value`
 - Specifies an attribute and the value to assign to it. Valid keys are `DmPrincipal`, `DmOwningRole`, and `DmTransferTable`.

- `-o object`
 - Specifies the name of the object this command is addressed to.

- `-r`
 - Prints the `uuid` assigned to the request.

Perform the following steps to create a replica using SMIT:

1. From the NDAF menu, select `NDAF Management > Data management > Replica management > Create replica of a dataset`.
2. Enter the DNS name or IP address of the administration server that manages the NDAF domain in the `Admin name` field and press Enter.
3. Enter a cell name in the `Cell name` field (or choose one from the list by pressing F4).
4. Specify the source data set to be replicated in the `Dset name` field.
5. Enter a name for the replica in the `Replica name` field.
6. Specify the server on which the replica will be created in the `Server` field.
7. Specify the replica location in the `Root directory` field. If you do not specify a location, the replica will be located in the default replica path defined for the server. The default replica path is the path specified when the `dms` daemon is started by the `ndaf_replica_default` parameter. If this parameter is not specified, the default path is `$ndaf_dir/server/replicas`, where `$ndaf_dir` is the path specified by the `ndaf_dir` parameter. You can edit this path using the `dmf set DmDefaultRepPath` command in the NDAF CLI.

Showing and changing replica attributes

You can display the attributes of a replica. If you have the required authorization, you can modify the attributes of a replica.

You can use the `dmf` command to display the attributes for a replica:

```
dmf show replica [-r] [-a admin_server] [-c container] [-o object]
```

where:

- `-a admin_server`
 - Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

- `-c container`
 - Specifies the cell name.

- `-o object`
 - Specifies the name of the object this command is addressed to.

- `-r`
 - Prints the `uuid` assigned to the request.
You can use the `dmf` command to change the attributes for a replica:

```
dmf set replica key=value [-r] [-a admin_server] [-c container] [-o object]
```

where:

- `-a admin_server` Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

- `-c container` Specifies the cell name.

- `key=value` Specifies an attribute and the value to assign to it. Valid keys are `DmOwner`, `DmGroup`, `DmMode`, and `DmLocsMax`.

- `-o object` Specifies the name of the object this command is addressed to.

- `-r` Prints the `uuid` assigned to the request.

Perform the following steps to display and change the attributes for a replica using SMIT:

1. From the NDAF menu, select `NDAF Management > Data management > Replica management > Change/show replica attributes`.
2. Enter the DNS name or IP address of the administration server that manages the NDAF domain in the `Admin name` field.
3. Enter the name of the cell in the `Cell name` field.
4. Enter the name of data set in the `Dset name` field. The following attributes display:

 - **Admin server DNS name (or IP address)** Specifies the DNS name or IP address of the server.
 - **Cell name** Specifies the name of the cell.
 - **Dset name** Specifies the name of the data set.
 - **Dset UUID** Specifies the universal unique identifier for the data set.
 - **Version** Specifies the version number of the replica.
 - **Owner** Specifies the owner of the data set root directory.
 - **Group** Specifies the group of the data set root directory.
 - **Mode** Specifies the mode that should be set for the data set root directory. The default mode is 755.
 - **Maximum number of reported locations** Specifies the maximum number of NFS locations referrals that can be returned to an NFS client for an object.
 - **NDAF principals** Specifies a list of users (separated by commas). These users own this data set and can manipulate the data set.
 - **Owning roles** Specifies the roles that can manage the replica.
Transfer methods

Specifies the methods you want this data server to use for data transfer (or choose one from the list by pressing F4). You can specify multiple, comma-separated methods. Possible methods are copy, rsync, and copy + rsync. The default method is copy.

Placing a replica

You can create a copy of the master replica location at a specified location on the server and export the replica on this server under the cell.

You can use the dmf command to place a replica:

dmf place replica server_name [path] [-d | -w timeout] [-r] [-a admin_server] [-c container] [-o object]

where:

-a admin_server
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

-c container
 Specifies the cell name.

-d
 Specifies that the command must be run asynchronously.

-o object
 Specifies the name of the object to which this command is addressed.

path
 Specifies the path of the replica data on that server.

-r
 Prints the uuid assigned to the request.

server_name
 Specifies the server name where the replica data should be placed.

-w timeout
 Specifies how long the command can wait before completing.

Perform the following steps to place a replica using SMIT:

1. From the NDAF menu, select NDAF Management > Data management > Replica management > Place replica.
2. Enter the DNS name or IP address of the administration server that manages the NDAF domain in the Admin name field and press Enter.
3. Enter the name of the cell in the Cell name field (or choose one from the list by pressing F4) and press Enter.
4. Enter the name of the replica to place in the Replica name field (or choose one from the list by pressing F4).
5. Enter the name of the server where the replica will be placed in the Server name field.
6. Specify the location where the replica will be copied in the Local path on server field. If you do not specify a location, the replica is copied in the default replica path defined for the server (defined in the DmDefaultRepPath attribute of the server).

Mounting a replica

You can mount a replica so that it is available at a specified location on a cell namespace.

You can use the dmf command to mount a replica:

dmf mount replica mount_path [-r] [-a admin_server] [-c container] [-o object]

where:
-a admin_server
 Specifies the DNS name or IP address of the administration server. The port can be added using a
 colon separator.

-c container
 Specifies the cell name.

mount_path
 Specifies the mount path in the namespace.

-o object
 Specifies the name of the object this command is addressed to.

-r
 Prints the uuid assigned to the request.

Perform the following steps to mount a replica using SMIT:
1. From the NDAF menu, select NDAF Management > Data management > Replica management >
 Mount replica.
2. Enter the DNS name or IP address of the administration server that manages the NDAF domain in
 the Admin name field and press Enter.
3. Enter the name of the cell in the Cell name field and press Enter.
4. Enter the name of the replica to be mounted in the Replica name field.
5. Specify the location in the cell namespace where the replica will be made available in the Mount path
 field.

Updating a replica
A replica is a read-only copy of a data set, but you can update a replica so that the replica's contents are
synchronized with the source data set.

You can use the dmf command to refresh a replica from its original source data set:
dmf update replica [-d | -w timeout] [-r] [-a admin_server] [-c container] [-o object]

where:

-a admin_server
 Specifies the DNS name or IP address of the administration server. The port can be added using a
 colon separator.

-c container
 Specifies the cell name.

-d
 Specifies that the command must be run asynchronously.

-o object
 Specifies the name of the object this command is addressed to.

-r
 Prints the uuid assigned to the request.

-w timeout
 Specifies how long the command can wait before completing.

Perform the following steps to refresh a replica from its original source data set using SMIT:
1. From the NDAF menu, select NDAF Management > Data management > Replica management >
 Update replica.
2. Enter the DNS name or IP address of the administration server that manages the NDAF domain in
 the Admin name field and press Enter.
3. Enter the name of the cell in which the replica is located in the Cell name field and press Enter.
4. Enter the name of the replica to update in the Replica name field and press Enter.
Validating a replica

Replica validation checks the consistency of the replica between the hosting server and the administration server databases.

You can use the `dmf` command to validate a replica:

```
dmf validate replica [-r] [-a admin_server] [-c container] [-o object]
```

where:

- `-a admin_server`
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

- `-c container`
 Specifies the cell name.

- `-o object`
 Specifies the name of the object this command is addressed to.

- `-r`
 Prints the `uuid` assigned to the request.

Perform the following steps to validate a replica using SMIT:

1. From the NDAF menu, select **NDAF Management > Data management > Replica management > Check replica**.
2. Enter the DNS name or IP address of the administration server that manages the NDAF domain in the **Admin name** field and press Enter.
3. Enter the name of the cell in the **Cell name** field and press Enter.
4. Enter the name of the replica to be checked in the **Replica name** field (or choose one from the list by pressing F4) and press Enter.

Unmounting a replica

You can unmount a previously mounted replica so that the replica is no longer available for use.

You can use the `dmf` command to unmount a replica:

```
dmf unmount replica mount_path [-r] [-a admin_server] [-c container] [-o object]
```

where:

- `-a admin_server`
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

- `-c container`
 Specifies the cell name.

- `mount_path`
 Specifies the mount path in the namespace.

- `-o object`
 Specifies the name of the object this command is addressed to.

- `-r`
 Prints the `uuid` assigned to the request.

Perform the following steps to unmount a replica using SMIT:

1. From the NDAF menu, select **NDAF Management > Data management > Replica management > Unmount replica**.
2. Enter the DNS name or IP address of the administration server that manages the NDAF domain in the **Admin name** field and press Enter.
3. Enter the name of the cell in the **Cell name** field and press Enter.
4. Enter the name of the replica to unmount in the **Replica name** field.
5. Specify the location where the replica is currently mounted in the cell namespace in the **Mount path** field and press Enter.

Unplacing a replica

Unplacing a replica removes a replica placed on a data server at a specified location. After confirmation of removal of a replica, the data on the location specified by the path is destroyed and the path is unexported.

You can use the `dmf` command to unplace a replica:

```
dmf unplace replica server_name [path] [-r] [-f] [-a admin_server] [-c container] [-o object]
```

where:

- `-a admin_server`
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.

- `-c container`
 Specifies the cell name.

- `-f`
 Forces the action without confirmation.

- `-o object`
 Specifies the name of the object this command is addressed to.

- `path`
 Specifies the path of the replica data on that server.

- `-r`
 Prints the `uuid` assigned to the request.

- `server_name`
 Specifies the server name where the replica data should be unplaced.

Perform the following steps to unplace a replica using SMIT:

1. From the **NDAF** menu, select **NDAF Management > Data management > Replica management > Unplace replica**.
2. Enter the DNS name or IP address of the administration server that manages the NDAF domain in the **Admin name** field and press Enter.
3. Enter the name of the cell in the **Cell name** field (or choose one from the list by pressing F4) and press Enter.
4. Enter the name of the cell in the **Cell name** field (or choose one from the list by pressing F4).
5. Enter the name of the replica to be unplaced in the **Replica name** field (or choose one from the list by pressing F4).
6. Enter the name of the server from which the replica will be removed in the **Server name** field.
7. Specify the location where the replica is currently copied on the server in the **Local path on server** field.

Removing a replica

Removing a replica removes every location of the replica including its master location.

You can use the `dmf` command to remove a replica:

```
dmf destroy replica [-r] [-f] [-a admin_server] [-c container] [-o object]
```

where:

- `-a admin_server`
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.
Perform the following steps to remove a replica using SMIT:
1. From the NDAF menu, select NDAF Management > Data management > Replica management > Remove replica.
2. Enter the DNS name or IP address of the administration server that manages the NDAF domain in the Admin name field and press Enter.
3. Enter the name of the cell in the Cell name field and press Enter.
4. Enter the name of the replica to be removed in the Replica name field and press Enter. A confirmation dialog displays.

Listing replicas

You can display a list of all replicas for a specified administration server or namespace.

You can use the `dmf` command to display a list of replicas for a selected cell, as follows:

```
dmf enumerate cell replica [pattern] [-r] [-a admin_server] [-c container]
```

where:

- `-a admin_server`
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.
- `-c container`
 Specifies the cell name.
- `pattern`
 Optional matching text pattern. Valid values include ? and *.
- `-r`
 Prints the `uuid` assigned to the request.

You can use the `dmf` command to display a list of replicas for a selected server, as follows:

```
dmf enumerate server replica [pattern] [-r] [-a admin_server] [-c container]
```

where:

- `-a admin_server`
 Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.
- `-c container`
 Specifies the server name.
- `pattern`
 Optional matching text pattern. Valid values include ? and *.
- `-r`
 Prints the `uuid` assigned to the request.

Perform the following steps to display a list of replicas using SMIT:
1. From the NDAF menu, select NDAF Management > Data management > Replica management > List replicas.
2. Specify the DNS name or IP address of the administration server that manages the NDAF domain in the Admin name field and press Enter.
3. Select whether to list all replicas for a cell or for a server by choosing the appropriate option (by pressing F4) and press Enter.

4. Enter the cell name or server name in the **Cell name** or **Data server Name** field (you can press F4 to select a cell or a server from a list) and press Enter. If you do not specify a cell name or server name, all of the replicas for all cells or all data servers are displayed.

Changing the master replica

You can specify a replica location to become the master location.

You can use the `dmf` command to change the master replica:

```
dmf master replica server [path] [-r] [-a admin_server] [-c container] [-o object]
```

where:

- `-a admin_server` Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.
- `-c container` Specifies the cell name.
- `-o object` Specifies the name of the object this command is addressed to.
- `path` Specifies the local path on the server.
- `-r` Prints the `uuid` assigned to the request.
- `server` Specifies the server name.

Perform the following steps to change the master replica using SMIT:

1. From the **NDAF** menu, select **NDAF Management > Data management > Replica management > Change master replica**.
2. Enter the DNS name or IP address of the administration server that manages the NDAF domain in the **Admin name** field and press Enter.
3. Enter the name of the cell in the **Cell name** field (or choose one from the list by pressing F4) and press Enter.
4. Enter the name of the replica that will become the master replica in the **Replica name** field (or choose one from the list by pressing F4).
5. Enter the name of the server where the replica will be placed in the **Server name** field.
6. Specify the location where the replica will be copied in the **Local path on server** field. If you do not specify a location, the replica is copied in the default replica path defined for the server (the `DmDefaultRepPath` attribute of the server).

Changing the source of a replica

You can change the source data set for a replica.

The content of the replica locations is not automatically updated with the content of the new source data set. You must explicitly do a replica update operation.

You can use the `dmf` command to change the source data set of a replica:

```
dmf source replica new_source [-r] [-a admin_server] [-c container] [-o object]
```

where:

- `-a admin_server` Specifies the DNS name or IP address of the administration server. The port can be added using a colon separator.
Perform the following steps to change the source data set of a replica using SMIT:

1. From the NDAF menu, select **NDAF Management > Data management > Replica management > Change the source of a replica**.
2. Enter the DNS name or IP address of the administration server that manages the NDAF domain in the **Admin name** field and press Enter.
3. Enter the name of the cell in the **Cell name** field (or choose one from the list by pressing F4) and press Enter.
4. Enter the name of the replica for which to change the source data set in the **Replica name** field (or choose one from the list by pressing F4).
5. Enter the name of the new source data set in the **New source dset name** (or choose one from the list by pressing F4) and press Enter.

Populating data sets

There are two basic approaches to populating newly created data sets with data: by local filesystem access on the server, or remotely by NFSv4. With the exception of replicas under NDAF control and the creation of data set references for data set mounts, the creation and manipulation of data inside filesystems with data sets uses normal filesystem access mechanism such as libc calls and NFS. The primary form of access to NDAF-managed filesystems is expected to be through NFS.

You can use local filesystem access to populate a new data set. If the path of the data set was specified when the data set was created, you can go to the specified directory on the server and create, restore, or copy the necessary data to the directory. When the data set is created in the default data set pool, the data set is created in the directory specified by the `-ndaf_dataset_default` parameter when the dms daemon is started on the server, or under `server/dsets` in the directory specified by the `-ndaf_dir` parameter if `-ndaf_dataset_default` is not specified. The directory name for the data set is generated by NDAF and is not obvious. You can locate the proper directory by running dmf show dset and inspecting the **DmPath** field. For example:

```
# dmf show dset -a admin.hostname -c my_cell -o my_dset | grep DmPath
DmPath: /ndafpool/dset/db2c3176-e5ed-11da-802d-0004ace4aa38
```

You can also use remote filesystem access to populate a new data set. After you have used the **dmf mount** command to place the data set in to the namespace, you can access the directory through an NFS client that mounts the root directory of any server on which the cell has been placed. You can go to the directory in the namespace where the data set was placed and create, restore, or remotely copy the data into the data set. You might need to run the **dmf set dset DmMode** to enable write access by the client. For example:

```
# dmf create dset my_dset1 my_server2 -a admin_hostname -c my_cell
# dmf place cell my_server2 -a admin_hostname -c my_cell
# dmf mount dset1 /mount_my_dset1 -a admin_hostname -c my_cell -o my_dset1
# dmf set dset DmMode=777 -a admin_hostname -c my_cell -o my_dset1
# mount -o vers=4 server_hostname:/ /mnt
# cd /mnt/my_cell/mount_my_dset1
```

Constructing a cell namespace from data sets

You can construct a cell namespace from data sets.
Creating a cell namespace from data sets (or replicas) involves creating the data sets (or replicas) with the `dmf create` command, and then using the `dmf mount` command to place them where needed in the namespace. For example, if you want to create data sets with the names `a`, `b`, `c`, and `d` and construct a namespace such as the following (where `x`, `y`, and `z` are arbitrary directory names):

```
my_cell
 / |
/ \ |
/ a b x |
/ \ \ |
/ y z |
/ \ \ |
/ c d |
```

You can enter the following set of commands:

```
# dmf create dset a my_admin -a admin_hostname -c my_cell
# dmf create dset b my_admin -a admin_hostname -c my_cell
# dmf create dset c my_admin -a admin_hostname -c my_cell
# dmf create dset d my_admin -a admin_hostname -c my_cell
# dmf mount dset /a -a admin_hostname -c my_cell -o a
# dmf mount dset /b -a admin_hostname -c my_cell -o b
# dmf mount dset /x/y/c -a admin_hostname -c my_cell -o c
# dmf mount dset /x/z/d -a admin_hostname -c my_cell -o d
```

If an NFSv4 client then mounts the root of an NDAF server on which the cell has been placed, the NFSv4 client will see the above directory structure.

Federating NFS servers without NDAF into an NDAF environment

NDAF offers the possibility to add one or more non-NDAF managed NFS data servers to a NDAF domain.

These servers are external to the NDAF servers. The purpose of this is to permit the federation of preexisting data on NDAF-enabled servers or data from non-NDAF servers into an NDAF cell. As an example, you can create an external server with the following:

```
dmf create server ndaf_external_nfs_server nfs_server_host -e -a ndaf_admin_host
```

where `nfs_server_host` is the DNS name of the server, and `ndaf_external_nfs_server` is the NDAF given name. Note the use of the `-e` parameter.

The following command creates a data set on this server:

```
dmf create dset dset_ext1 ndaf_external_nfs_server /export1/dset_extern -a ndaf_admin_host -c ndaf_cell_1
```

In this case the path used is relative to the NFS root location of the server.

You now have a data set named `dset_ext1`. Its location is `/export1/dset_extern`, on server `nfs_server_host` (seen as `ndaf_external_nfs_server` from an NDAF point-of-view). The data is exported as `nfs_server_host:/export1/dset_extern`.

You can now use this data set within a cell. For example, you can mount it at `/extern` in the `ndaf_cell1` cell, with the following command:

```
dmf mount dset /extern -a ndaf_admin_host -c ndaf_cell_1 -o dset_ext1
```

In this example, when a client now tries to access the `/somewhere/ndaf_cell_1/extern` directory (assuming `ndaf_cell_1` is mounted on the client at `somewhere`), the client is redirected to `nfs_server_host:/export1/dset_extern`.

42 AIX Version 7.1: AIX Network Data Administration Facility
NDAF logs files analysis
How the log messages in NDAF are classified and what they represent. It does not cover the syslog integration.

Log messages path
There are two kinds of log messages files: those from the dmadm daemons and those from the dms daemons.

As there are several processes running for each daemon, the dms logs are gathered into a single file that logs messages by identifying their process with its PID and type (such as SS for source session, and RM for request manager). The log messages are stored in the directory configured with the ndaf_log_dir parameter of the dms and dmadm daemons. If ndaf_log_dir is not used, then the log subdirectory in the default ndaf_dir directory is used. The data server log messages are stored on the systems running dms in the following format:
$log_dir/dms-<ddmmyyyy.hhmmss>.log

The administration log messages are stored on the systems running dmadm in the following format:
$log_dir/dmadm-<ddmmyyyy.hhmmss>.log

Log detail levels
When starting the dms and dmadm daemons, you can select the type of messages that are placed in the log files. Select the level to be used by adjusting the log_level parameter before starting the daemons.

The log level can be changed with the following dmf commands:
- dmf set server DmLogLevel=new_level – Changes the log level for the dms running on this server.
- dmf set cell DmLogLevel=new_level – Changes the log level for the dms running on the servers where this cell is placed

The possible levels that can be configured with the log_level parameter are described in the following table:

<table>
<thead>
<tr>
<th>Log level</th>
<th>Documented</th>
<th>Internal level value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>critical</td>
<td>Yes</td>
<td>0</td>
<td>Logs messages about problems that could prevent NDAF from working</td>
</tr>
<tr>
<td>error</td>
<td>Yes</td>
<td>1</td>
<td>Logs critical messages and description of the problems that caused a NDAF request to fail</td>
</tr>
<tr>
<td>warning</td>
<td>Yes</td>
<td>2</td>
<td>Log error messages and description of the problems that occurred during a request, but do not prevent it from succeeding</td>
</tr>
<tr>
<td>notice</td>
<td>Yes</td>
<td>3</td>
<td>Logs warning messages and description of the beginning request and summary of results</td>
</tr>
<tr>
<td>info</td>
<td>Yes</td>
<td>4</td>
<td>Logs notice messages and description of queued events, files treated, and RPC events</td>
</tr>
</tbody>
</table>

Log messages format
A description of the different log levels and their format.

Every line in the log files uses the following format:
- The line contains:
 - the date in universal time zone
 - the time in universal time zone
 - the process type
 - the process identifier
 - the thread identifier
Process types in log files
A complete list of process types that can appear in the log files.

<table>
<thead>
<tr>
<th>Type</th>
<th>Stands for</th>
<th>Relates to</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Admin watchdog process</td>
<td>dmadm log</td>
<td>Starts the other dmadm resident processes and restarts them if they fail.</td>
</tr>
<tr>
<td>NH</td>
<td>Notification Handler</td>
<td>dmadm log</td>
<td>Receive RPC request from the notify agent of the dms processes to identify which requests completed.</td>
</tr>
<tr>
<td>LH</td>
<td>Log Handler</td>
<td>dmadm log</td>
<td>Centralized log handler. Gathers log outputs from every distant log files – not used in the current implementation.</td>
</tr>
<tr>
<td>QH</td>
<td>Queue Handler</td>
<td>dmadm log</td>
<td>For asynchronous requests (replications), the requests are queued to the queue handler using queues on disk. This process then runs the request after the previous one has finished.</td>
</tr>
<tr>
<td>CH</td>
<td>Commands Handler</td>
<td>dmadm log</td>
<td>Receive RPC request from the dmf CLI commands.</td>
</tr>
<tr>
<td>DS</td>
<td>Data Server watchdog process</td>
<td>dms log</td>
<td>Starts the other dms resident processes and restarts them if they fail.</td>
</tr>
<tr>
<td>RM</td>
<td>Request Manager</td>
<td>dms log</td>
<td>Listen to RPC requests from the dmadm. In case of replication request, ask for a source session creation to the session manager.</td>
</tr>
<tr>
<td>SM</td>
<td>Session Manager</td>
<td>dms log</td>
<td>Read disk queues related to SS and TS creation requests. Then force either a source session or a target session process.</td>
</tr>
<tr>
<td>NA</td>
<td>Notify Agent</td>
<td>dms log</td>
<td>Send RPC to the dmadm to inform it when a request has completed.</td>
</tr>
<tr>
<td>LC</td>
<td>Lookup Control</td>
<td>dms log</td>
<td>Receives locations lookups from the NFS server and forces the lookup agent process to handle them.</td>
</tr>
<tr>
<td>LA</td>
<td>Lookup Agent</td>
<td>dms log</td>
<td>Manage locations lookups from the NFS server.</td>
</tr>
<tr>
<td>TA</td>
<td>Target Agent</td>
<td>dms log</td>
<td>Receives RPC requests to create a target session process from the source session processes. Then forwards the request to the session manager using disk queues.</td>
</tr>
<tr>
<td>SS</td>
<td>Source Session</td>
<td>dms log</td>
<td>Transfer replication data to a target session process.</td>
</tr>
<tr>
<td>TS</td>
<td>Target Session</td>
<td>dms log</td>
<td>Receive replication data from a source session process.</td>
</tr>
</tbody>
</table>

NDAF use cases and installation examples
Examples of a Kerberos-enabled NDAF domain and case studies of NDAF installation.

Configuring a Kerberos-enabled NDAF domain
How to set up a very simple Kerberos-enabled NDAF domain.

Your NDAF domain should consist of one NDAF administration system (called ndaf_admin), more than two NDAF servers (ndaf_server_1, ndaf_server_2, and so on), and at least one client (ndaf_dmf). You also need a Kerberos server (krb_server) that is the key distribution center (KDC). For example, our domain name is ndaf.domain.com, the associated Kerberos realm is NDAF.DOMAIN.COM, and the NDAF administrators are dmfadmin, dmfadmin2, and so on.

The correct NDAF fileset must be installed on every NDAF machine in the domain (ndaf.base.admin and ndaf.base.server on the administration system, ndaf.base.server on the servers and ndaf.base.client on
the clients). The **krb5.client** fileset must be installed on every NDAF system in the domain. The **krb5.server** fileset must be installed on the Kerberos server.

You must synchronize your systems with the correct date and time as a requirement for Kerberos authentication and encryption.

1. Run the **ntpd** command to synchronize your systems:
   ```
   root@[any machine]# ntpdate ntpserver
   
   **Note:** The ntpserver must be configured.
   
   2. Configure the ntp and Kerberos server by running the following command:
   ```
 root@ krb_server# /usr/krb5/sbin/config.krb5 -S -d ndaf.domain.com -r NDAF.DOMAIN.COM

 You will be prompted for a master database password and the admin/admin password. It is important that you remember these passwords because the admin/admin is now the administrator's principal of the domain/realm. After configuration, you will see a message such as:
   ```
   Starting kadmind...
   kadmind was started successfully.
   
   The first step is to create the principals corresponding to the NDAF administrators:
   ```
 root@ krb_server#/usr/krb5/sbin/kadmin -p admin/admin -s krb_server
 -wadmin_passwd -q "dnfadmin_passwd dmfadmin"
 Principal "admin@NDAF.DOMAIN.COM" created.

 Note: The **admin_passwd** is the password you used for the admin/admin principal. The **dmfadmin_passwd** is the password that the dmfadmin administrator uses to authenticate when running the **dmf** command.

3. You can create as many principals as NDAF administrators you require by running the following command:
   ```
   root@ krb_server#/usr/krb5/sbin/kadmin -p admin/admin -s vegeta
   -wadmin_passwd -q "dnfadmin2_passwd dmfadmin2"
   ```

4. Create all the service principals on the Kerberos service you need to use in your NDAF domain. Each principal is defined as a **service/fully_qualified_host** where **service** is either the **dmadm**, **dms** or **dmf**, and **fully_qualified_host** is the fully qualified name for the system hosting this service. Generate a random key for each system and store it on a local keytab file to use when setting up a Kerberos client as shown:
   ```
   root@ krb_server#/usr/krb5/sbin/kadmin -p admin/admin -s krb_server
   -wadmin_passwd -q "ank -randkey dmadm/ndaf_admin.ndaf.domain.com"
   root@ krb_server#/usr/krb5/sbin/kadmin -p admin/admin -s krb_server
   -wadmin_passwd -q "ktadd -k /tmp/ndaf_admin_keytab
dmadm/ndaf_admin.ndaf.domain.com"
   root@ krb_server#/usr/krb5/sbin/kadmin -p admin/admin -s krb_server
   -wadmin_passwd -q "ank -randkey dms/ndaf_admin.ndaf.domain.com"
   root@ krb_server#/usr/krb5/sbin/kadmin -p admin/admin -s krb_server
   -wadmin_passwd -q "ktadd -k /tmp/ndaf_admin_keytab
dms/ndaf_admin.ndaf.domain.com"
   root@ krb_server#/usr/krb5/sbin/kadmin -p admin/admin -s krb_server
   -wadmin_passwd -q "ank -randkey dms/ndaf_server_1.ndaf.domain.com"
   root@ krb_server#/usr/krb5/sbin/kadmin -p admin/admin -s krb_server
   -wadmin_passwd -q "ktadd -k /tmp/ndaf_server_1_keytab
dms/ndaf_server_1.ndaf.domain.com"
   root@ krb_server#/usr/krb5/sbin/kadmin -p admin/admin -s krb_server
   -wadmin_passwd -q "ank -randkey dms/ndaf_server_2.ndaf.domain.com"
   root@ krb_server#/usr/krb5/sbin/kadmin -p admin/admin -s krb_server
   -wadmin_passwd -q "ktadd -k /tmp/ndaf_server_2_keytab
dms/ndaf_server_2.ndaf.domain.com"
   root@ krb_server#/usr/krb5/sbin/kadmin -p admin/admin -s krb_server
   -wadmin_passwd -q "ank -randkey dms/ndaf_server_3.ndaf.domain.com"
   root@ krb_server#/usr/krb5/sbin/kadmin -p admin/admin -s krb_server
   -wadmin_passwd -q "ktadd -k /tmp/ndaf_server_3_keytab
dms/ndaf_server_3.ndaf.domain.com"
   root@ krb_server#/usr/krb5/sbin/kadmin -p admin/admin -s krb_server
   ```
To add the NFS service principals, run the following commands:

```
root@ krb_server# /usr/krb5/sbin/kadmin -p admin/admin -s krb_server
-wadmin_passwd -q "ank -randkey nfs/ndaf_admin.ndaf.domain.com"
```

```
root@ krb_server# /usr/krb5/sbin/kadmin -p admin/admin -s krb_server
-wadmin_passwd -q "ktadd -k /tmp/ndaf_admin_keytab
nfs/ndaf_admin.ndaf.domain.com"
```

```
root@ krb_server# /usr/krb5/sbin/kadmin -p admin/admin -s krb_server
-wadmin_passwd -q "ank -randkey nfs/ndaf_server_1.ndaf.domain.com"
```

```
root@ krb_server# /usr/krb5/sbin/kadmin -p admin/admin -s krb_server
-wadmin_passwd -q "ktadd -k /tmp/ndaf_server_1_keytab
nfs/ndaf_server_1.ndaf.domain.com"
```

```
root@ krb_server# /usr/krb5/sbin/kadmin -p admin/admin -s krb_server
-wadmin_passwd -q "ank -randkey nfs/ndaf_server_2.ndaf.domain.com"
```

```
root@ krb_server# /usr/krb5/sbin/kadmin -p admin/admin -s krb_server
-wadmin_passwd -q "ktadd -k /tmp/ndaf_server_2_keytab
nfs/ndaf_server_2.ndaf.domain.com"
```

6. Configure every Kerberos client for which you set a service principal. You can automate this process
with the keytab files that you previously created. Copy the keytab file to the corresponding Kerberos
client (for example, using `ssh`) as shown:

```
root@ krb_server# cat /tmp/ndaf_admin_keytab | ( ssh root@ndaf_admin
'cat > /etc/krb5/ndaf.keytab')
```

```
root@ krb_server# cat /tmp/ndaf_server_1_keytab | ( ssh
root@ndaf_server_1 'cat > /etc/krb5/ndaf.keytab')
```

7. Configure the clients with the following command:

```
root@ ndaf_admin# mkkrb5clnt -a admin/admin -c
krb_server.ndaf.domain.com -r NDAF.DOMAIN.COM -s
krb_server.ndaf.domain.com -d austin.ibm.com
```

where:

- **c** KDC
- **s** Kerberos server
- **a** admin principal
- **d** domain
- **r** Kerberos realm

```
root@ ndaf_server_1# mkkrb5clnt -a admin/admin -c
krb_server.ndaf.domain.com -r NDAF.DOMAIN.COM -s
krb_server.ndaf.domain.com -d austin.ibm.com
```

...
Repeat with the other servers and the NDAF clients.

8. Use the keytab files to set up the NFS hostkeys on each NDAF server (including the administration system):

 root@ndaf_admin# nfshostkey -p nfs/ndaf_admin.ndaf.domain.com -f /etc/krb5/ndaf.keytab
 root@ndaf_server_1# nfshostkey -p nfs/ndaf_server_1.ndaf.domain.com -f /etc/krb5/ndaf.keytab

9. Set the NFS domain and Kerberos realm on every server by running the following command:

 root@ndaf_admin# chnfsdom ndaf.domain.com
 root@ndaf_admin# chnfsrtd -a NDAF.DOMAIN.COM ndaf.domain.com

10. You can now start the NDAF system using the krb5p security level (or krb5 and krb5i):

 root@ndaf_admin# chndaf -ndaf_dir='/your/ndaf/dir'
 -krb5_keytab='/etc/krb5/ndaf.keytab' -security='krb5p'
 -krb5_principal='dmfadmin' -admin_serv=yes
 root@ndaf_server_1# chndaf -ndaf_dir='/your/ndaf/dir'
 -krb5_keytab='/etc/krb5/ndaf.keytab' -security='krb5p'
 -krb5_principal='dmfadmin'

11. To authenticate on the dmf system to perform a NDAF action, run the following command:

 dmfadmin@ndaf_dmf$ kinit dmfadmin
 dmfadmin@ndaf_dmf$ dmf create admin admin1 -a
 ndaf_admin.ndaf.domain.com

 From this point, all work done on NDAF related operations is related to the Kerberos principals
 defined for the administrators. For more information, see Configuring Kerberos.

12. You can use a different Kerberos principal from your login name by setting the DMF_PRINCIPAL
 environment variable to the Kerberos principal of your choice by running the following command:

 user1@ndaf_dmf$ whoami
 user1
 user1@ndaf_dmf$ kinit dmfadmin
 user1@ndaf_dmf$ export DMF_PRINCIPAL="admin"
 user1@ndaf_dmf$ dmf create admin admin1 -a ndaf_admin.ndaf.domain.com

NDAF case studies

Two case studies that use NDAF to enhance a network.

Case 1: Federating data from two distant sites and replicating data to enhance network affinity

- **Choosing the NDAF Administration System:** In this example, you will configure NDAF to give access
 to data shared between two distant sites. Data is replicated to improve network affinity and reduce
 data access latency.

 You must select a system to host the NDAF administration daemons. Install the ndaf.base.admin and
 ndaf.base.server filesets on that system. The system location is not important for the performance
 purpose as it only relays dmf requests to the data servers. As the NDAF administration system can
 also be used as a data server, one of the two data sites can be elected to be the NDAF admin.

 In this example, three systems are used. Two of the systems are located in Europe, including euroadm
 that is used as the NDAF administration system, and eurodat that is used as a data server. The other
 system is located in the United States (usadat) that is used as a data server.

- **Configuring and Installing the Administration System:** Configure the administration system
 (euroadm). Install the ndaf.base.admin and ndaf.base.server filesets with the following command:

 root@euroadm> installp -agXd /dev/cd0 ndaf.base.admin
 ndaf.base.server

 This system can be used as a data server and for administration purposes. Configure it to administrate
 the NDAF domain by starting the dmadm daemons:

 root@euroadm> chndaf -l -admin_serv=yes
The `chndaf` command modifies the `rc.ndaf` file so that when the NDAF services are started, they run with the appropriate options. Before starting the `dmdm` and `dms` daemons, you must specify the remaining options to be used. For instance, the `ndaf_dir` parameter sets the path that is used to store NDAF metadata. It is recommended that a separate file system with sufficient free space (300 MB) be used. The `/ndaf_admin` file system is used to store NDAF metadata by running the following command:

```
root@euroadm> chndaf -I -ndaf_dir=/ndaf_admin
```

The admin uses RPC connections over TCP to communicate with the `dmf` command line interface. It also communicates with the data servers running the `dms` daemons. If a firewall is used, it must allow access to the two `dmdm` communications ports. These ports are 28000 (receive `dmf` requests) and 28002 (receive requests callbacks from `dms`) by default. As the administration server also runs a data server, the data server ports used by the `dms` daemons must also be opened for TCP connections. These are port 28001 (receive `dmdm` requests) and 28003 (receive other `dms` replication requests). A range of ports is also used for data replications that are stored as NDAF server properties in the `DmMinRpcPort` and `DmMaxRpcPort` fields that span from 1024 to 65535 by default. In this example, the [42000-42003] ports are opened for requests connections and the [42004-43000] ports are opened for data transfers. These changes are reflected in the NDAF configuration before starting the daemons:

```
root@euroadm> chndaf -I -admin_port=42000 -serv_port=42001
-admin_cb_port=42002 -serv_serv_port=42003
```

Kerberos is used for both NDAF and NFS security by setting up Kerberos as described in Configuring a Kerberos-enabled NDAF domain. When finished, configure NDAF to use Kerberos security by running the following command:

```
root@euroadm> chndaf -I -security=krb5 -krb5_keytab=/etc/krb5/ndaf.keytab
```

Change the NFS export options that are used by NDAF by running the following command:

```
root@euroadm> chndaf -I -nfs_args=sec=krb5
```

Request the `dmdm` and `dms` daemons to start immediately and schedule to restart at boot time by running the following command:

```
root@euroadm> mkndaf -B
```

The four `dmdm` daemon processes and the eight `dms` daemon processes are now running. If not, see Troubleshooting NDAF.

- **Installing the dmf Command Line Interface:** Install the `ndaf.base.client` on one of the systems to send requests to the NDAF administration system. The `eurocli` system is used in this example:

```
root@eurocli> installp -agXd /dev/cd0 ndaf.base.client
```

- **Creating the NDAF Administration Object:** Before the `dmf` command is run, initialize the Kerberos principal:

```
root@eurocli> /usr/krb5/bin/kinit root
```

The administration system in NDAF is defined by creating an "admin" object with the `dmf` command with the following command:

```
root@eurocli> dmf create admin ndaf_global_admin -a euroadm:42000
```

The port used by the `dmdm` daemons to listen for the RPC request from the `dmf` command was used. As the standard port is not used in this example, it must be specified. The administration object is now created. Run the `dmf show admin` command to verify that the administration object exists:

```
root@eurocli> dmf show admin -a euroadm:42000
```

- **Configuring and Installing the Data Servers Systems:** To set up both the `eurodat` and `usadat` data server systems in this case study, install the `ndaf.base.server` fileset on these systems:

```
root@eurodat> installp -agXd /dev/cd0 ndaf.base.server
root@usadat> installp -agXd /dev/cd0 ndaf.base.server
```

Update the Kerberos key server configuration to allow the two data servers to use the `dms` service. For more information, see Configuring a Kerberos-enabled NDAF domain. When finished, configure NDAF to use Kerberos security by running the following command:
root@eurodat> chndaf -I -security=krb5 -krb5_keytab=/etc/krb5/ndaf.keytab
root@usadat> chndaf -I -security=krb5 -krb5_keytab=/etc/krb5/ndaf.keytab

Change the NFS export options that are used by NDAF with the following command:
root@eurodat> chndaf -I -nfs_args=sec=krb5
root@usadat> chndaf -I -nfs_args=sec=krb5

Configure the previously defined ports with the following command:
root@eurodat> chndaf -I -serv_port=42001 -admin_cb_port=42002
 -serv_serv_port=42003
root@usadat> chndaf -I -serv_port=42001 -admin_cb_port=42002
 -serv_serv_port=42003

The /ndaf_server file system is specified to store local NDAF metadata on these servers by running the following command:
root@eurodat> chndaf -I -ndaf_dir=/ndaf_server
root@usadat> chndaf -I -ndaf_dir=/ndaf_server

The dms daemons are started immediately and scheduled to restart at boot time by running the following command:
root@euroadm> mkndaf -B

The eight dms daemon processes should now be running. If not, see [Troubleshooting NDAF](#)

- **Creating the NDAF Server Objects:** The data server systems in NDAF are defined by creating "server" objects with the dmf command:
 root@eurocl1> dmf create server devel_server eurodat:42001 -a euroadm:42000
 root@eurocl1> dmf create server production_server usadat:42001 -a euroadm:42000

 The port used by the dms daemons to listen for a RPC request is configured with the dmadm daemon. In this example, configuring the port is not mandatory because it is the same as the -serv_port specified in the dmadm parameters. It must be specified when all the data servers are not listening on the same port. The server object is now created. Verify that it exists by running the dmf show server command:
 root@eurocl1> dmf show server -a euroadm:42000 -c devel_server
 root@eurocl1> dmf show server -a euroadm:42000 -c production_server

 The current system configuration is:
 - NDAF admin:
 - name : ndaf_global_admin
 - host : euroadm
 - dmf port : 42000
 - dms callback port : 42002
 - NDAF server:
 - name : ndaf_global_admin
 - host : euroadm
 - dmadm port : 42001
 - dms port : 42003
 - replication ports : [1024-65535]
 - NDAF server:
 - name : devel_server
 - host : eurodat
 - dmadm port : 42001
 - dms port : 42003
 - replication ports : [1024-65535]
 - NDAF server:
name : production_server
host : usadat
dmadm port : 42001
dms port : 42003
replication ports : [1024-65535]

Because ports [42004-43000] are needed for data transfers, the properties of the data servers are set as shown:

root@eurocli> dmf set server DmMinRpcPort=42004 -a euroadm:42000 -c
devel_server
root@eurocli> dmf set server DmMaxRpcPort=43000 -a euroadm:42000 -c
devel_server
root@eurocli> dmf set server DmMinRpcPort=42004 -a euroadm:42000 -c
production_server
root@eurocli> dmf set server DmMaxRpcPort=43000 -a euroadm:42000 -c
production_server
root@eurocli> dmf set server DmMinRpcPort=42004 -a euroadm:42000 -c
ndaf_global_admin
root@eurocli> dmf set server DmMaxRpcPort=43000 -a euroadm:42000 -c
ndaf_global_admin

The administration system data server /ndaf_global_admin/ ports are also set because they are used in the following NDAF commands: create cell, place cell, mount dset, and mount replica.

• **Enabling File Systems for Cells:** The file system where the cell is stored must be enabled with the `dms_enable_fs` command. The cell, data set, or replica creation fails if it is not enabled. To enable the cell, run the following command:

```
root@euroadm> dms_enable_fs -s /ndaf_admin
```

As the file system is now enabled, you can create a cell that will be the namespace used to access data sets and replicas with NFSv4 with the following command:

```
root@eurocli> dmf create cell global_root -a euroadm:42000
```

By default, the cell is created on the admin and is only accessible from that system with NFS. Any NFS client with the correct Kerberos rights can now access the empty namespace from the admin:

```
user@anywhere> mount -o vers=4 euroadm:/global_root /mnt/ndaf_namespace
```

• **Placing the Cell on the Data Servers:** The goal is for users to be able to directly access data from the data servers and not the administration system by creating clones of the cell, so that it is accessible from all of the data servers. This is accomplished by running the `dmf place cell` command. Along with the administration server, the other data servers must be enabled to have the right to place the cell on these servers by running the following command:

```
root@eurodat> dms_enable_fs -s /ndaf_server
root@usadat> dms_enable_fs -s /ndaf_server
```

Now that the file system that holds the clones of the cell is enabled, you can use the `dmf` command to place the cell on these data servers:

```
root@eurocli> dmf place cell devel_server -a euroadm:42000 -c
global_root
root@eurocli> dmf place cell production_server -a euroadm:42000 -c
global_root
```

NFS users can now access the cell from every server in the NDAF domain with the following command:

```
user@anywhere> mount -o vers=4 usadat:/global_root /mnt/ndaf_namespace
```

• **Creating a dset NDAF Data Set:** After the cell namespace is created, you can create the data sets (dset objects) to store data on the data server and that will be made available to NFS accesses. In this example, a separate file system is used to store the data itself so that it differs from the file system storing the NDAF metadata. Therefore, the `/ndaf_data` file system will be used. To create dset and replica objects on this file system, you must enable it with `dms_enable_fs` command:

```
root@eurodat> dms_enable_fs -s /ndaf_data
```

Create this dataset on the `eurodat` data server by running the following command:
root@eurocli> dmf create dset design_data devel_server
/ndaf_data/design -a euroadm:42000 -c global_root

You have specified the name of the dset (design_data), the NDAF server that hosts the data
(devel_server on the eurodat host), the path where the data resides (/ndaf_data/design), and the cell
that integrates this dset in its namespace (global_root). It is important to note that the data
represented by the new dset object was exported to NFS at creation time using the export rule that was
passed as a parameter to the NDAF daemons. Yet this dataset will not appear in the cell upon a dmf
mount operation. Put the data required into the new dataset by running the following command:
root@eurodat> cp -r /data_fs/design_data_to_export /ndaf_data/design

Creating a Replica:
In this example, a replica of this dataset is created. Clones of this replica will be
provided on both the eurodat and usadat data servers. This is done to allow network affinity for data
accesses and also to provide data accesses failover to the other locations in case one of the servers goes
down. As a replica does not change upon using the dmf update replica command, its data will be the
same on its various locations.
The replica is created by using the same /ndaf_data file system used for the dataset. Enabling the file
system for NDAF is not required. Create the replica of the dset by running the following command:
root@eurocli> dmf create replica design_rep devel_server
/ndaf_data/design_rep -a euroadm:42000 -c global_root -o design_data

The replica now contains the same data stored in the dset. As the content of the dataset evolves, the
replica might become different from the data stored in the dset.

Giving Access to the Replica within the Cell:
Run the dmf mount replica command to access the
replica in the cell namespace as shown:
root@eurocli> dmf mount replica /design -a euroadm:42000 -c
global_root -o design_rep

After mounting the cell from any of the servers, the user will see a "design" directory that is only a
NFSv4 referral to the replica data exported on eurodat when created.

Placing a Replica:
The problem is that the data resides in Europe (eurodat host). Access to this data from
the United States results in poor network performance. With NDAF, you can define several
locations for a replica. After updating, all locations are updated with the same data. When accessing a
replica referral mounted with NFSv4, a list of its locations are returned to the NFS client based on the
network affinity of the IP address. To take advantage of both network performance and failover, you
can create an additional location for the replica in the usadat host with the dmf place replica
command. Enable the file system containing the replicas on that host with the following command:
root@usadat> dms_enable_fs -s /ndaf_data

Place this replica on the usadat data server with the following command:
root@eurocli> dmf place replica production_server
/ndaf_data/design_rep -a euroadm:42000 -c global_root -o design_rep

The location residing in the production_server was updated with the content of the first replica
location hosted on eurodat.

Case 2: Add an existing server with NFS exported data to an NDAF cell
namespace without installing NDAF on it

In this case study, you will integrate a data server with already exported NFS data to the NDAF domain
previously defined. Data replication is not needed in this example. Therefore, the data server can be
integrated to our NDAF domain as an external server and will only gain visibility through the cell
previously defined. The host usaext server is used in this example.

Creating an External Server Object
Create the external server object that will be handled by NDAF with the following command:
root@eurocli> dmf create server external_server usaext -e -a
euroadm:42000

Note: The -e flag is used to specify this is an external server.
• Creating dset Objects to Represent Exported Data
 For each exported path on usaext that integrates to the NDAF domain, you must create a corresponding dset as shown:

 root@eurocli> dmf create dset dset1 external_server /the/NFS/exported/path1 -a euroadm:42000 -c global_root
 root@eurocli> dmf create dset dset2 external_server /the/NFS/exported/path2 -a euroadm:42000 -c global_root

• Mounting dsets as Standard dsets with dmf

 The created data set can now be made accessible in the cell with the dmf mount dset command:

 root@eurocli> dmf mount dset /mount_dset1 -a euroadm:42000 -c global_root -o dset1
 root@eurocli> dmf mount dset /mount_dset2 -a euroadm:42000 -c global_root -o dset2

Troubleshooting NDAF

You can troubleshoot NDAF.

Table 1. Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The dms or dmadm daemons won’t start.</td>
<td>Must specify either ndaf_dir or both ndaf_dataset_default and ndaf_replica_default when starting dms. Must specify ndaf_dir when starting dmadm. The specified directory for data sets and replicas must belong to a data-set enabled filesystem. Use dms_enable_fs to enable the filesystem. If using Kerberos, check the Kerberos keytab file.</td>
</tr>
<tr>
<td>Can read files, but can’t create or modify data set files from NFS client.</td>
<td>The DmMode for the data set might not permit writes. To fix this, use dmf set dset DmMode=<required mode></td>
</tr>
<tr>
<td>Cannot navigate to the cell or data set directory or access data set data from NFS client.</td>
<td>All the following must be running on the NDAF data server: (\text{nfsd, nisrgyd, and dms.})</td>
</tr>
<tr>
<td>The dmf command fails with Cannot contact remote host message.</td>
<td>Make sure the hostname of the administration server is specified correctly in the dmf command and that the dmadm daemon is running on the administration server.</td>
</tr>
<tr>
<td>Cannot specify directory when creating a data set.</td>
<td>The specified directory must belong to a filesystem that has been enabled for data sets on the server with the dms_enable_fs command. The specified directory must not exist. (\text{Note: The directory will be created by the dmf command.})</td>
</tr>
<tr>
<td>Source data set is down and a replica exists, but the client will not fail over to the replica.</td>
<td>This feature is not supported. Clients will fail over from one replica to another, but not from the source data set to a replica.</td>
</tr>
<tr>
<td>Failover from one replica to another takes too long or is too quick.</td>
<td>The timeout by default is approximately the timeo value multiplied by the retrans value (from the mount command or nfs4cl command). This can be overridden with the nfs4_v4_failover_timeouts option of the nfso command.</td>
</tr>
<tr>
<td>Cell or data set is not NFS-exported.</td>
<td>Make sure nfsroot is set. The command to set it is: (\text{chnfs -r <root_dir>}) To make the exports happen after setting the root, you must restart dms.</td>
</tr>
<tr>
<td>Cannot create a cell or data set.</td>
<td>Filesystem where the data set will be created must be enabled for data sets with the dms_enable_fs command.</td>
</tr>
</tbody>
</table>
| Cannot see data in a the data set when mounted with NFSv4. Might be able to see the data when mounted from some servers, but not from others. | NFSv4 must be configured with replicas enabled on all NDAF servers. The command to enable NDAF servers is: \(\text{chnfs -R on} \)
NDAF checker

To help diagnose problems, NDAF provides commands to check the consistency of the databases used to manage the NDAF objects on administration and data servers.

You can use the following `dmf` command code to check the validity and consistency of the administration server database:

```
dmf check_adm admin [-r] [-a admin_server]
```

where:

- `-r` Prints the `uuid` assigned to the request.
- `-a admin_server` Specifies the DNS name or IP address of the admin server. The port can be added using a colon separator.

You can use the following `dmf` command to check the validity and consistency of the data server database on the specified data server or on every managed data server if none is specified:

```
dmf check_serv server [-r] [-a admin_server] [-c container]
```

where:

- `-r` Prints the `uuid` assigned to the request.
- `-a admin_server` Specifies the DNS name or IP address of the admin server. The port can be added using a colon separator.
- `-c container` Specifies the name of the server to check.

You can use the following `dmf` command to check the consistency of the database on the administration server with the database on the specified data server or with the databases on every managed data server if none is specified:

```
dmf check_adm_serv {admin|server} [-r] [-a admin_server] [-c container]
```

where:

- `-r` Prints the `uuid` assigned to the request.
- `-a admin_server` Specifies the DNS name or IP address of the admin server. The port can be added using a colon separator.
- `-c container` Specifies the name of the server to check.

If the data from this command indicates inconsistencies between the databases, it might be necessary to recover from a backup to restore correct behavior. See "NDAF data backup" on page 54 and "NDAF data recovery" on page 54 for more information.

The following is sample output from running the following `dmf` command:

```
# dmf check_adm admin -a ndaf10

---------- STARTING REPORT FROM SERVER my_admin ----------
1 ERROR(S)
----------
---------- DATABASE CHECK ----------
ERROR: 1
```
The sample output shows that an NDAF object has a **DmGroup** parameter that is not valid. In this situation, use the **dmf show** command to find the corresponding data set, which is identified by the **DmUuid** parameter. In this case, the group specified for the data set is not valid because it does not exist in the `/etc/group` file. The solution might be to use the **dmf set dset** command to change this data set parameter.

NDAF data backup

An important consideration when backing up NDAF data is that the NDAF state data needs to be backed up along with the data set data.

While normal means can be used to back up the data set data (either locally on the server or remotely using NFS), it is recommended that the NDAF state data be backed up using a file system snapshot to get a consistent backup of the NDAF state data. This must be done locally on each data server and the administration server for that server's local state data. The directory to back up is the `ndaf_dir` specified when the `dms` or `dmadm` daemons were started. If this state data is lost, all data sets, replicas, and global namespace information will have to be recreated.

A data set replica could serve as a backup of dataset data in that the most recently updated replica could be copied back to the source data set location if necessary.

NDAF data recovery

Assuming the NDAF data set data and state data are backed-up as described above, recovery depends on what is lost.

If the file system itself is fine, missing or corrupted data set data could be recovered by simply restoring from a backup. Nevertheless it is a good idea to run the **dmf repair -V** (verify) command for the restored server, and then **dmf repair -R** (repair) if some inconsistencies are reported.

If more is required, you might want to first unexport the corrupted location, either by hand on the server by using the `exportfs -u` command, or automatically using the **dmf repair -U** (unmount) command for the corrupted server.

After the unexport is done, you can destroy, recreate, and recover the file system from a backup.

Finally, use the **dmf repair server** with the `-R` option to recover the server and reexport the data sets within the file system.

If you must recover the NDAF state data from a backup, use the **dmf repair server** command with the `-R` option after you recover the data from a snapshot.

The **dmf repair server** command can be run with no options or with the `-V` (verify) option to produce a report of inconsistencies.

For more information about the `-R` (repair) option, see the **dmf** command.
Additional NDAF command processes

There are additional commands.

NDAF uses three configuration commands to prepare systems for running its processes.

- **mkndaf**
 - configures the system to run NDAF.

- **chnndaf**
 - changes various parameter settings used by the **dms** command and **dmadm** command.

- **rmndaf**
 - configures the system to stop running NDAF daemons.

NDAF SMIT fastpaths

You can use SMIT fastpaths to go directly to your NDAF screen of choice, rather than navigate there screen by screen.

For more information about the underlying commands and syntax used by a particular screen to perform its task, see the [**dms command**] and the [**dmadm command**].

<table>
<thead>
<tr>
<th>Fastpath</th>
<th>Screen name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ndaf</td>
<td>Network Data Administration Facility (NDAF)</td>
<td>Main NDAF menu. Enables centralized provisioning of data and its location and replication across a network of systems. When used with NFSv4 servers, enables construction of a single NFS namespace that covers multiple servers.</td>
</tr>
<tr>
<td>ndafconfig</td>
<td>NDAF Configuration</td>
<td>Starts and stops the administration daemons and enables and disables filesystems for data sets.</td>
</tr>
<tr>
<td>ndafmgt</td>
<td>NDAF Management</td>
<td>Enables you to create, display, remove or change the attributes of NDAF entities such as administration and data servers, cell namespaces, data sets, replicas, and roles.</td>
</tr>
<tr>
<td>ndafadminconfig</td>
<td>Administration Server Configuration</td>
<td>Starts and stops dmadm and dms administration daemons.</td>
</tr>
<tr>
<td>ndafdataconfig</td>
<td>Data Server Configuration</td>
<td>Starts and stops dms administration daemon. Disables and enables filesystems for data sets.</td>
</tr>
<tr>
<td>ndafadmin</td>
<td>Administration Server Management</td>
<td>The administration server federates and manages the set of NFSv4 servers as a single system. You can create, remove, and change the attributes of the administration server.</td>
</tr>
<tr>
<td>ndafds</td>
<td>Data Server Management</td>
<td>NDAF uses data server systems to store data that it provisions. A data server process runs on each data server to carry out actions in underlying filesystems.</td>
</tr>
<tr>
<td>ndafcell</td>
<td>Namespace (Cell) Management</td>
<td>A cell is a collection of data sets organized into a single file namespace for use with NFSv4 servers. NFSv4 clients are expected to mount the root directory of the cell to access the cell’s full namespace.</td>
</tr>
<tr>
<td>ndafdataset</td>
<td>Dataset (dset) Management</td>
<td>Enables you to create, remove, validate, list, mount and unmount dsets, and change their attributes.</td>
</tr>
<tr>
<td>ndafrep</td>
<td>Replica Management</td>
<td>Enables you to create, remove, validate, update, list, mount, umount, place and unplace replicas and change their attributes.</td>
</tr>
<tr>
<td>ndafrole</td>
<td>Delegation of Administration Rights</td>
<td>Enables you to create, list, remove, and change the attributes of roles, which are a set of privileges attached to a set of users that permit the users to manage the resources within a cell.</td>
</tr>
<tr>
<td>ndafadminstart</td>
<td>Start Administration Daemons</td>
<td>Starts the dms and dmadm daemons on the administration server.</td>
</tr>
<tr>
<td>ndafadminstop</td>
<td>Stop Administration Daemons</td>
<td>Stops the dms and dmadm daemons on the administration server.</td>
</tr>
<tr>
<td>ndafdatastart</td>
<td>Start Administration Daemon</td>
<td>Starts the dms administration daemon.</td>
</tr>
</tbody>
</table>
Table 2. NDAF SMIT fastpaths (continued)

<table>
<thead>
<tr>
<th>Fastpath</th>
<th>Screen name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ndafdatastop</td>
<td>Stop Administration Daemon</td>
<td>Stops the dms administration daemon.</td>
</tr>
<tr>
<td>ndafenablefs</td>
<td>Enable Filesystem for Datasets</td>
<td>Configures a filesystem so that it can be defined as a data set.</td>
</tr>
<tr>
<td>ndafdisablefs</td>
<td>Disable Filesystem for Datasets</td>
<td>Configures a filesystem so that it can no longer be used as a data set.</td>
</tr>
<tr>
<td>ndafadmincreate</td>
<td>Create Admin Server</td>
<td>Creates the master administration server of the NDAF domain that will be running the administration server daemon.</td>
</tr>
<tr>
<td>ndafadminremove</td>
<td>Remove Admin Server</td>
<td>Removes the administration server and cleans the server’s databases of all the objects that have been defined within it.</td>
</tr>
<tr>
<td>ndafadminstatus</td>
<td>Show Admin Server Status</td>
<td>Displays the contents of the log of the administration server.</td>
</tr>
<tr>
<td>ndafadminclearstatus</td>
<td>Clear Admin Server Status</td>
<td>Clears the contents of the log of the administration server.</td>
</tr>
<tr>
<td>ndafdscreate</td>
<td>Create Data Server</td>
<td>Creates a data server within an administration server.</td>
</tr>
<tr>
<td>ndafcellcreate</td>
<td>Create Cell Namespace</td>
<td>Creates a cell namespace.</td>
</tr>
</tbody>
</table>
Notices

This information was developed for products and services offered in the U.S.A. This material may be available from IBM in other languages. However, you may be required to own a copy of the product or product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Dept. LRAS/Bldg. 903
11501 Burnet Road
Austin, TX 78758-3400
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.
Each copy or any portion of these sample programs or any derivative work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Privacy policy considerations

IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies or other technologies to collect product usage information, to help improve the end user experience, to tailor interactions with the end user or for other purposes. In many cases no personally identifiable information is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect personally identifiable information. If this Software Offering uses cookies to collect personally identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable information.

If the configurations deployed for this Software Offering provide you as the customer the ability to collect personally identifiable information from end users via cookies and other technologies, you should seek your own legal advice about any laws applicable to such data collection, including any requirements for notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see IBM’s Privacy Policy at [http://www.ibm.com/privacy] and IBM’s Online Privacy Statement at [http://www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/software/info/product-privacy].

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

UNIX is a registered trademark of The Open Group in the United States and other countries.
V
validating a replica 37

W
WANs 7
wide-area networks 7