
Linux on Z and LinuxONE

libica Programmer's Reference
Version 3.9

IBM

SC34-2602-13

Note

Before using this document, be sure to read the information in “Notices” on page 189.

Edition notice

This edition applies to libica version 3.9 for openCryptoki version 3.17 and to all subsequent releases and modifications
until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 2009, 2021.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this document..v
How this document is organized.. v
Who should read this document.. v
Distribution independence...v
Other publications for Linux on Z and LinuxONE...v

Summary of changes..vii
Updates for libica version 3.8 and libica version 3.9...vii
Updates for libica version 3.6 and libica version 3.7...vii
Updates for libica version 3.5..viii

Chapter 1. General information about libica... 1
Check the prerequisites: cryptographic device driver and cryptographic coprocessor.............................1

Chapter 2. Installing and using libica... 5
Installing libica from the distribution packages ...5
Installing libica from the source package... 5
Using libica... 6
Using libica in FIPS mode.. 6
Enabling libica for FIPS mode..7

Chapter 3. Application programming interfaces ... 9
General support functions...20
Secure hash operations... 23
Pseudo random number generation functions... 36
RSA key generation functions..42
RSA encrypt and decrypt operations.. 44
Elliptic curve cryptography (ECC) functions..46
AES functions... 69
TDES/3DES functions.. 96
Information retrieval functions... 107
FIPS mode functions... 109
SIMD support...110
Deprecated functions.. 111

Chapter 4. Accessing libica functions through the PKCS #11 API (openCryptoki). 125

Chapter 5. libica constants, type definitions, data structures, and return codes...127
libica constants..127
Type definitions... 128
Data structures.. 128
Return codes..132

Chapter 6. libica tools.. 133
icainfo - Show available libica functions...133
icastats - Show use of libica functions..135

Chapter 7. Examples..139
SHAKE-128 example... 139

 iii

SHA-256 example... 141
RSA example..143
AES with CFB mode example.. 146
AES with CTR mode example.. 156
AES with OFB mode example..164
AES with XTS mode example.. 170
AES with CBC mode example..173
AES with GCM mode example... 175
CMAC example...177
ECDSA example... 180
ECDH example... 181
Makefile example...182
Common Public License - V1.0... 182

Accessibility.. 187

Notices..189
Trademarks.. 189

Glossary.. 191

Index.. 195

iv

About this document

This document describes how to install and use the current version of the Library for IBM® Cryptographic
Architecture (libica).

libica is a library of cryptographic functions used to write cryptographic applications on Linux® on Z and
LinuxONE, both with and without cryptographic hardware.

You can find the latest version of this document on the IBM Documentation at:

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ci.html

How this document is organized
The information is divided into topics that describe installing, configuring and using libica together with
descriptions of the functions and example programs.

Chapter 1, “General information about libica,” on page 1 has general information about the current
libica version.

Chapter 2, “Installing and using libica,” on page 5 contains installation and set up instructions, and
coexistence information for the current libica version.

Chapter 3, “Application programming interfaces ,” on page 9 describes the libica APIs.

The information from Chapter 4, “Accessing libica functions through the PKCS #11 API (openCryptoki),”
on page 125 has been transferred to this publication: openCryptoki - An Open Source Implementation
of PKCS #11. All required information on how the libica cryptographic functions can be accessed using
openCryptoki is included there.

Chapter 5, “libica constants, type definitions, data structures, and return codes,” on page 127 lists the
defines, typedefs, structs, and return codes for libica.

Chapter 6, “libica tools,” on page 133 contains tools to investigate the capabilities of your cryptographic
hardware and how these capabilities are used by applications that use libica.

Chapter 7, “Examples,” on page 139 is a set of programming examples that use the libica APIs.

Who should read this document
This document is intended for C programmers who want to access IBM Z® hardware support for
cryptographic methods.

In particular, this publication addresses programmers who write hardware-specific plug-ins for
cryptographic libraries such as OpenSSL and openCryptoki.

Distribution independence
This publication does not provide information that is specific to a particular Linux distribution.

The tools it describes are distribution independent.

Other publications for Linux on Z and LinuxONE
You can find publications for Linux on Z and LinuxONE on IBM Documentation.

These publications are available on IBM Documentation at
ibm.com/docs/en/linux-on-systems?topic=linuxone-library-overview

• Device Drivers, Features, and Commands
• Using the Dump Tools

© Copyright IBM Corp. 2009, 2021 v

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ci.html
https://www.ibm.com/docs/en/linux-on-systems?topic=support-opencryptoki-open-source-pkcs-11
https://www.ibm.com/docs/en/linux-on-systems?topic=support-opencryptoki-open-source-pkcs-11
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html

• KVM Virtual Server Management, SC34-2752
• Configuring Crypto Express Adapters for KVM Guests, SC34-7717
• How to use FC-attached SCSI devices with Linux on z Systems®, SC33-8413
• Introducing IBM Secure Execution for Linux, SC34-7721
• openCryptoki - An Open Source Implementation of PKCS #11, SC34-7730
• libica Programmer's Reference, SC34-2602
• Exploiting Enterprise PKCS #11 using openCryptoki, SC34-2713
• Secure Key Solution with the Common Cryptographic Architecture Application Programmer's Guide,

SC33-8294
• Pervasive Encryption for Data Volumes, SC34-2782
• Enterprise Key Management for Pervasive Encryption of Data Volumes, SC34-7740
• How to set an AES master key, SC34-7712
• Troubleshooting, SC34-2612
• Kernel Messages, SC34-2599
• How to Improve Performance with PAV, SC33-8414
• How to Set up a Terminal Server Environment on z/VM, SC34-2596

vi Linux on Z and LinuxONE: libica Programmer's Reference

Summary of changes

This revision reflects changes to the Development stream for libica version 3.8 and libica version 3.9.

You can find the open source version of libica at:

https://github.com/opencryptoki/libica/releases

Updates for libica version 3.8 and libica version 3.9

Edition SC34-2602-13
• In FIPS mode, the initial integrity check is now always performed. In the previous libica version 3.7, the

check was only performed when a hmac file was available. It was assumed that distributions provide
their own hmac files. Now the creation of hmac files using a static default key is part of the make process
and distributors may or may not specify their own hmac key.

• A variant of the libica.so module, called libica-cex.so, is provided. This module is built without
software fallbacks and without any functionality using CPACF. It only provides RSA, ECDSA, and ECDH
acceleration via IBM CryptoExpress accelerators and CCA coprocessors. The module is intended to
simplify certifications in environments that do not require CPACF acceleration when using libica. A
corresponding icainfo processing is provided to display the available functions of the libica-cex
module.

• The icainfo utility has a new option -c to display all elliptic curves that are supported by libica on the
current system configuration.

• libica version 3.9 supports OpenSSL version 1.1 and version 3.0. Earlier versions are no longer
supported.

Updates for libica version 3.6 and libica version 3.7

Edition SC34-2602-12
• The MSA9 component of IBM z15™ provides key generation and key exchange functions as well as sign-

and verify-operations for Ed25519 and Ed448 curves. You can use new libica APIs that exploit these
features by supporting Ed25519 and Ed448 key generation, sign and verify, as well as X25519 and
X448 key generation and key exchange.

• In addition, new counters for Ed25519 and Ed448 key generation and sign and verify operations are
introduced in the icastats utility, as well as new counters for X25519 and X448 key generation and
key exchange operations.

• In the icainfo, output, available hardware support is now divided into two columns: dynamic
hardware means support by cryptographic coprocessors, static hardware means support by CPACF.

• In FIPS mode, when the distribution provided an HMAC value in a file, pre-calculated from the libica
library file libica.so, an initial integrity check is performed by re-calculating a HMAC value from
libica.so and verifying it against the pre-calculated HMAC value.

• The pkcstok_migrate tool is available to transform a libica token, an EP11 token, a CCA token,
or a Soft token created with any version of openCryptoki, into a FIPS compliant data format for use
with openCryptoki version 3.12 or later. Being FIPS compliant, the token data is stored in a format
that is better protected against attacks than the previously used data format. Refer to either the
pkcstok_migrate man page or to openCryptoki - An Open Source Implementation of PKCS #11.

• In addition to the existing openCryptoki mechanism CKM_RSA_PKCS_PSS, new mechanisms using
SHA hashing methods are also supported for the probabilistic signature scheme (PSS). For further

© Copyright IBM Corp. 2009, 2021 vii

https://github.com/opencryptoki/libica/releases
https://www.ibm.com/docs/en/linux-on-systems?topic=support-opencryptoki-open-source-pkcs-11

information about openCryptoki mechanisms, read openCryptoki - An Open Source Implementation of
PKCS #11.

Updates for libica version 3.5

Edition SC34-2602-11
The current libica version 3.5 implements the following new API functions:

• A function to enable or disable the offloading of cryptographic operations to cryptographic
coprocessors. Or you can set the new environment variable LIBICA_OFFLOAD_MODE to zero to disable
offloading.

• A function to enable or disable the counting of cryptographic operations. Or you can set the new
environment variable LIBICA_STATS_MODE to zero to disable the counting.

• Two new hash functions perform secure hash on input data using the SHA-512/224 and SHA-512/256
algorithms.

viii Linux on Z and LinuxONE: libica Programmer's Reference

https://www.ibm.com/docs/en/linux-on-systems?topic=support-opencryptoki-open-source-pkcs-11
https://www.ibm.com/docs/en/linux-on-systems?topic=support-opencryptoki-open-source-pkcs-11

Chapter 1. General information about libica
The libica library provides hardware support for cryptographic functions. It also provides software
fallbacks when there is no hardware support available or when the hardware returned an error.

The cryptographic adapters are used for asymmetric encryption and decryption. The CPACF instructions
are used for symmetric encryption and decryption, pseudo random number generation, message
authentication, and secure hashing. For some of these functions, if the hardware is not available or failed,
libica uses the low-level cryptographic functions of OpenSSL, if available.

This product includes software that is developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org). This product includes cryptographic software that is written by Eric Young
(eay@cryptsoft.com).

The libica library is part of the openCryptoki project in GitHub. It is primarily used by OpenSSL through
the IBM OpenSSL CA engine or by openCryptoki through the ICA token. A higher level of security can be
achieved by using it through the PKCS #11 API implemented by openCryptoki.

The libica library is optimized to work on IBM Z hardware.

IBM reserves the right to change or modify this API at any time. However, an effort is made to keep the
API compatible with later versions within a major release.

You can use the icastats utility to obtain statistics about cryptographic processes. The icainfo
command shows whether libica is using cryptographic hardware or software fallback for each specific
libica function. See “icastats - Show use of libica functions” on page 135 and “icainfo - Show available
libica functions” on page 133 for more information.

libica is an open source project and can be found at:

https://github.com/opencryptoki/libica/releases

In the extracted source package, you also find test cases for all APIs in directory /src/tests/.

Check the prerequisites: cryptographic device driver and
cryptographic coprocessor

To exploit hardware support of asymmetric cryptographic operations, you need a loaded device driver and
an installed IBM cryptographic coprocessor.

Installing and loading the cryptographic device driver
The cryptographic device driver is included in the regular kernel package shipped with your Linux
distribution.

To check, enter the lszcrypt command:

© Copyright IBM Corp. 2009, 2021 1

http://www.openssl.org/
https://github.com/opencryptoki/libica/releases

lszcrypt
CARD.DOMAIN TYPE MODE STATUS REQUESTS
--
00 CEX5A Accelerator online 0
00.001a CEX5A Accelerator online 0
01 CEX5C CCA-Coproc online 55
01.001a CEX5C CCA-Coproc online 55
03 CEX5P EP11-Coproc online 50
03.001a CEX5P EP11-Coproc online 50
04 CEX6A Accelerator online 0
04.001a CEX6A Accelerator online 0
05 CEX6C CCA-Coproc online 104
05.001a CEX6C CCA-Coproc online 104
06 CEX7P EP11-Coproc online 8
06.001a CEX7P EP11-Coproc online 8

If the following error message is displayed, load the zcrypt device driver main module:

error - cryptographic device driver zcrypt is not loaded!

In earlier Linux distributions, the cryptographic device driver is shipped as a single module called
z90crypt. In more recent distributions, the cryptographic device driver is shipped as set of modules
with the ap module being the main module that triggers loading all required sub-modules. There is,
however, an alias name z90crypt that links to the ap main module.

There might be distributions using kernel levels starting with 4.10, that have basic cryptographic device
driver support as part of the kernel (that is, the ap module is already compiled in the kernel). In this case,
the subsequently mentioned lsmod and modprobe commands do not work as described. In addition, the
domain and poll_thread parameters are no longer module parameters, but kernel parameters. In this
case, you can change the values directly via sysfs, or change as kernel parameters. Refer to the Device
Drivers, Features, and Commands for upstream kernels for further information.

For installations with a loadable cryptographic device driver, use the lsmod command to find out if either
the z90crypt or the ap module is already loaded.

If required, use the modprobe command to load the z90crypt or ap module. When loading the
z90crypt or ap module, you can use the following optional module parameters:
domain=

specifies a particular cryptographic domain. By default, the device driver attempts to use the domain
with the maximum number of devices.

After loading the device driver, use the lszcrypt command with the -b option to confirm that the
correct domain is used. If your distribution does not include this command, see the version of Device
Drivers, Features, and Commands that applies to your distribution about how to use the sysfs interface
to find out the domain. This publication also provides more information about loading and configuring
the cryptographic device driver.

If the cryptographic device driver is part of the kernel, you cannot unload it. In this case, you can
directly edit domain settings via sysfs.

poll_thread=
enables the polling thread for instances of Linux on z/VM® and for Linux instances that run in LPAR
mode on an IBM Z platform earlier than z10.

For Linux instances that run in LPAR mode on a z10 or later, this setting is ignored and AP interrupts
are used instead.

For more information about these module parameters, the polling thread, and AP interrupts, see the
version of Device Drivers, Features, and Commands that applies to your distribution.

See your Linux distribution documentation for how to load the module persistently.

2 Linux on Z and LinuxONE: libica Programmer's Reference

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_devdd.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_devdd.html

Checking the cryptographic adapter availability
Check whether you have plugged in and enabled your IBM cryptographic adapter and validate your model
and type configuration (accelerator or coprocessor).

Use the lszcrypt -V command to display detailed information about the cryptographic coprocessors:

lszcrypt -V

CARD.DOMAIN TYPE MODE STATUS REQUESTS PENDING HWTYPE QDEPTH FUNCTIONS DRIVER
--
0c CEX7A Accelerator online 46 0 13 08 -MC-A-NF- cex4card
0c.004c CEX7A Accelerator online 46 0 13 08 -MC-A-NF- cex4queue
0f CEX7C CCA-Coproc online 4 0 13 08 S--D--NF- cex4card
0f.004c CEX7C CCA-Coproc online 4 0 13 08 S--D--NF- cex4queue
10 CEX7P EP11-Coproc online 0 0 13 08 -----XNF- cex4card
10.004c CEX7P EP11-Coproc online 0 0 13 08 -----XNF- cex4queue

Use the chzcrypt command to enable (online state) or disable (offline state) an IBM cryptographic
adapter:

$ chzcrypt -e 0x06 // set card 06 online
$ chzcrypt -d 0x06 // set card 06 offline

For more information about IBM cryptographic coprocessors with Linux on Z and LinuxONE see

Drivers, Features, and Commands, SC33-8411.

Chapter 1. General information about libica 3

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_dd.html

4 Linux on Z and LinuxONE: libica Programmer's Reference

Chapter 2. Installing and using libica
View the contained subtopics for information about where to obtain the libica library, and how to install it.

Installing libica from the distribution packages
To make use of the described libica hardware support for cryptographic functions, it is necessary to install
the libica package. Obtain the libica package from your distribution provider as soon as available (RPM or
DEB) for package manager installation.

Procedure
• The libica library is available as an RPM or DEB package named libica3-<version> within your

distribution package.
Mainly there are two packages, a library package and a development package. Ubuntu and recent
SUSE Linux Enterprise Server distributions separated the icastats and icainfo commands into the
libica-tools package.

See your Linux distribution documentation for how to install an RPM or DEB package. To check
whether the libica library is installed, issue:

rpm -qa | grep -i libica /* for Redhat and SUSE */

dpkg -l | grep -i libica /* for Ubuntu */

Installing libica from the source package
If you prefer, you can install libica from the source package manually.

Procedure
1. Download the latest libica sources from the GitHub libica website.
2. Extract the tar archive.

There should be a new directory named libica-3.x.x.
3. Change to that directory and execute the following scripts and commands:

$./bootstrap.sh
$./configure
$ make
make install

where:
bootstrap

Initial setup, basic configurations
configure

Check configurations and build the makefile. For detailed information, refer to the INSTALL file
from the libica package.

You can use the option --enable-fips when running the configure command to enable the
build environment to compile with FIPS mode:

configure --enable-fips

© Copyright IBM Corp. 2009, 2021 5

https://github.com/opencryptoki/libica/releases

You can use the option --enable-internal-tests when running the configure command to
enable the internal tests for elliptic curve cryptography:

configure --enable-internal-tests

With this option, internal tests perform additional algorithm tests on all supported elliptic curves.

make
Compile and link

make install
Install the libraries

make check
Execute the libica tests

Using libica
The function prototypes are provided in this header file: include/ica_api.h.

Applications using these functions must link to libica and libcrypto. The libcrypto library is available from
the OpenSSL package. You must have OpenSSL in order to run programs using the current libica version.

Using the libica-cex variant
A variant of the libica.so module, called libica-cex.so, is intended to simplify certifications in
environments that do not require CPACF acceleration when using libica.

The libica-cex module is built without software fallbacks and without any functionality using CPACF. It
only provides RSA, ECDSA, and ECDH acceleration via IBM cryptographic coprocessors.

Using libica in FIPS mode
The libica library is enabled for FIPS 140-2 certification and therefore can run in the so-called FIPS
mode. When running in FIPS mode, only cryptographic algorithms approved by the National Institute of
Standards and Technology (NIST) can be used.

The NIST defines so called Federal Information Processing Standards (FIPS). One of their publications,
the FIPS PUB 140-2 Security Requirements For Cryptographic Modules defines a standard for
cryptography-based security systems (crypto modules) used by US Federal organizations to protect
sensitive data. FIPS 140-2 certifications are done under the Cryptographic Module Validation Program
(CMVP).

The FIPS 140-2 standard specifies four levels of security. Each level corresponds to a set of requirements
wherein a higher level is a strict superset of the lower levels. Software cryptographic modules can
maximally reach a level 1 certification. In order to make the libica FIPS 140-2 level 1 conformant, the
library has been extended by the following features:

• When running in FIPS mode, only NIST approved crypto algorithms can be used and various self-tests
are conducted. Approved crypto algorithms are listed in Annex A: Approved Security Functions for FIPS
PUB 140-2. However, it is possible to disable this feature at compile time. Non-approved algorithms
(like for example, DES and PRNG) are disabled when running in FIPS mode.

For information on how to enable or disable the FIPS mode, see “Enabling libica for FIPS mode” on page
7.

• The software fallbacks and RSA key generation of libica is currently provided by OpenSSL. When running
in FIPS mode, libica tries to load OpenSSL in FIPS mode. If the available OpenSSL build does not
support this, libica consequently disables its fallbacks and RSA key generation. If loading OpenSSL in
FIPS mode is successful, it allows only for the generation of RSA keys with FIPS approved parameters
(moduli, exponents).

6 Linux on Z and LinuxONE: libica Programmer's Reference

https://csrc.nist.gov/CSRC/media/Publications/fips/140/2/final/documents/fips1402annexa.pdf
https://csrc.nist.gov/CSRC/media/Publications/fips/140/2/final/documents/fips1402annexa.pdf

• Various self-tests required by FIPS 140-2 are implemented. If a self-test fails, libica enters an error
state (FIPS error state) and does not perform any cryptographic operations. In this case, an error
message is written to the syslog.

• The DRBG error state was changed to trigger the FIPS error state. In this case an error message is
written to the syslog.

• New interfaces were added to enable the consuming application to trigger the self-tests on demand and
to query the status (see “FIPS mode functions” on page 109). The status indicates, which self-tests
were passed or failed and whether libica is running in FIPS mode.

• Also, when in FIPS mode, an initial integrity check on the libica library file libica.so is performed by
calculating an HMAC from that file contents using a HMAC key. This key is specified at two places: in the
makefile and in the code (fips.c). At runtime, the HMAC (calculated with the key from fips.c) is then
compared with the HMAC (pre-calculated with the key from the makefile) in an existing HMAC file. If
the pre-calculated HMAC value is different to the calculated one, an error occurs and any cryptographic
operation is blocked. Check your libica installation and ensure that the correct libica.hmac file is
installed in the same directory as libica.so. The library and its default distribution location is /usr/
lib64/libica.so.

In libica version 3.7, an HMAC file was optional. If no HMAC file was present, libica.so could be used
without any integrity check performed. Starting with libica version 3.8, a HMAC file is always provided
(by default or by the distribution) and the integrity check is always performed.

• The icainfo output now indicates whether libica has built-in FIPS support, whether it is running in
FIPS mode, and whether it is in an error state. Algorithms that are not FIPS approved are marked as
blocked when running in FIPS mode. All algorithms are marked as blocked when libica is in an error
state.

For detailed information about the FIPS 140-2 standard, see FIPS PUB 140-2.

FIPS mode dependencies
Read about the dependencies on software and hardware that exist if you want to run libica in FIPS mode.

Dependencies on Open Source software (OpenSSL)
At startup, the library reads the kernel FIPS flag from the proc filesystem (see “Enabling the Linux kernel
for FIPS mode” on page 7). If the flag is found to be 1, then the libica DRBG must be used for random
number generation, because the libica PRNG is disabled with FIPS built.

Note: In FIPS mode, OpenSSL only supports a small subset of elliptic curves. This influences software
fallbacks.

Dependencies on hardware
The pseudo random number generator (PRNG) provided by libica is disabled with FIPS mode. So only the
DRBG can be used for the generation of random data. However, the DRBG needs at least MSA 2 to work.
This means that FIPS mode cannot be used if no MSA 2 (introduced with z10) or higher is available.

Enabling libica for FIPS mode
To use libica in FIPS mode, the library itself and also the Linux kernel need to be enabled. That is, the
FIPS-enabled libica library can run in FIPS mode when the kernel FIPS flag is set.

Enabling the Linux kernel for FIPS mode
A prerequisite for actually running the the FIPS-enabled libica in FIPS mode is to set the FIPS flag in the
used Linux kernel configured for FIPS.

Chapter 2. Installing and using libica 7

http://csrc.nist.gov/groups/STM/cmvp/standards.html

For all distributions, you need to enable the kernel FIPS mode at runtime by setting the kernel FIPS
flag. To set this flag in /proc/sys/crypto/fips_enabled, boot or reboot with the kernel parameter
fips=1.

For more information about setting and checking the kernel FIPS flag, refer to Device Drivers, Features,
and Commands, SC33-8411. Or, for more distribution-specific information, refer to the publications
provided by the specific distributor.

For systems with a Red Hat Enterprise Linux 8.3 distribution, you can use the fips-mode-setup
command to enable FIPS:

fips-mode-setup --enable

Enabling the libica library for FIPS mode
If you are using libica from a distribution, ensure that FIPS mode is supported, because a distribution may
provide libica packages (RPM or DEB) both with or without FIPS support.

If you want to install libica from the source package, as described in “Installing libica from the source
package” on page 5, then refer to the INSTALL file for information on how to install, configure, and build
the libica library. You can then enable the FIPS mode at compile time by running the configure script with
the enable-fips option:

./configure --enable-fips

8 Linux on Z and LinuxONE: libica Programmer's Reference

Chapter 3. Application programming interfaces
View a list of application programming interfaces (APIs) for the functions of the current version of libica.
All functions are declared in include/ica_api.h.

Note: The list uses the following short-names for IBM processors:
z15™

IBM z15
z15 T02

IBM z15 Model T02
z14

IBM z14®

z14 ZR1
IBM z14 Model ZR1

z13®
IBM z13®

z13s®
IBM z13s®

zBC12
IBM zEnterprise® BC12

zEC12
IBM zEnterprise EC12

z114
IBM zEnterprise 114

z196
IBM zEnterprise 196

• LinuxONE is supported whenever IBM z13 is supported.
• LinuxONE Emperor II and LinuxONE Rockhopper II are supported whenever IBM z14 is supported.
• LinuxONE III is supported whenever IBM z15 is supported.

Table 1. libica APIs

Function libica API name Key length
in bits

Supported on Hardware
support
(CPACF or
CEX*S)

SW
fallback

General support functions

Open adapter handle “ica_open_adapter” on page 21 N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

No N/A

Close adapter
handle

“ica_close_adapter” on page 21 N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

No N/A

© Copyright IBM Corp. 2009, 2021 9

Table 1. libica APIs (continued)

Function libica API name Key length
in bits

Supported on Hardware
support
(CPACF or
CEX*S)

SW
fallback

Enable/Disable SW
fallbacks

“ica_set_fallback_mode” on page
22

N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

No N/A

Enable/Disable
offloading to crypto
adapters

“ica_set_offload_mode” on page
22

N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

No N/A

Enable/Disable
counting of
cryptographic
operations

“ica_set_stats_mode” on page
23

N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

No N/A

Secure hash operations

Secure hash using
the SHA-1 algorithm
(deprecated)

“ica_sha1” on page 123 N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes Yes

Secure hash using
the SHA-224
algorithm

“ica_sha224” on page 23 N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes Yes

Secure hash using
the SHA-256
algorithm

“ica_sha256” on page 24 N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes Yes

Secure hash using
the SHA-384
algorithm

“ica_sha384” on page 25 N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes Yes

Secure hash using
the SHA-512
algorithm

“ica_sha512” on page 26 N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes Yes

Secure hash using
the SHA-512/224
algorithm

“ica_sha512_224” on page 27 N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes Yes

10 Linux on Z and LinuxONE: libica Programmer's Reference

Table 1. libica APIs (continued)

Function libica API name Key length
in bits

Supported on Hardware
support
(CPACF or
CEX*S)

SW
fallback

Secure hash using
the SHA-512/256
algorithm

“ica_sha512_256” on page 28 N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes Yes

Secure hash using
the SHA3-224
algorithm

“ica_sha3_224” on page 29 N/A z14, z14 ZR1,
z15, z15 T02

Yes No

Secure hash using
the SHA3-256
algorithm

“ica_sha3_256” on page 31 N/A z14, z14 ZR1,
z15, z15 T02

Yes No

Secure hash using
the SHA3-384
algorithm

“ica_sha3_384” on page 32 N/A z14, z14 ZR1,
z15, z15 T02

Yes No

Secure hash using
the SHA3-512
algorithm

“ica_sha3_512” on page 33 N/A z14, z14 ZR1,
z15, z15 T02

Yes No

Secure hash using
the SHAKE-128
algorithm

“ica_shake_128” on page 34 N/A z14, z14 ZR1,
z15, z15 T02

Yes No

Secure hash using
the SHAKE-256
algorithm

“ica_shake_256” on page 35 N/A z14, z14 ZR1,
z15, z15 T02

Yes No

Random number generation

Generate a pseudo
random number

“ica_random_number_generate”
on page 37

N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes Yes

Generate pseudo
random bits
NIST compliant -
instantiate

“ica_drbg_instantiate” on page
38

N/A z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes Yes

Generate pseudo
random bits NIST
compliant - reseed

“ica_drbg_reseed” on page 39 N/A z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes Yes

Generate pseudo
random bits NIST
compliant - generate

“ica_drbg_generate” on page 40 N/A z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes Yes

Generate pseudo
random bits
NIST compliant -
uninstantiate

“ica_drbg_uninstantiate” on page
41

N/A z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes Yes

Chapter 3. Application programming interfaces 11

Table 1. libica APIs (continued)

Function libica API name Key length
in bits

Supported on Hardware
support
(CPACF or
CEX*S)

SW
fallback

Generate pseudo
random bits NIST
compliant - health
test

“ica_drbg_health_test” on page
41

N/A z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes Yes

Elliptic curve cryptography (ECC) functions

Create an
ICA_EC_KEY data
structure for a new
elliptic curve key

“ica_ec_key_new” on page 47 N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes, for
supported
curves

No

Initialize an
ICA_EC_KEY data
structure with given
values for private
and public key

“ica_ec_key_init” on page 48 N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes, for
supported
curves

No

Generate new ECC
private and public
key values

“ica_ec_key_generate” on page
49

N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes, for
supported
curves

No

Free an ICA_EC_KEY
data structure

“ica_ec_key_free” on page 49 N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes, for
supported
curves

No

Calculate the Diffie-
Hellman shared
secret

“ica_ecdh_derive_secret” on
page 50

N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes, for
supported
curves

No

Obtain the public key
of an ECC key pair

“ica_ec_get_public_key” on page
51

N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes, for
supported
curves

No

Obtain the private
key of an ECC key
pair

“ica_ec_get_private_key” on
page 51

N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes, for
supported
curves

No

Create an ESCDSA
signature

“ica_ecdsa_sign” on page 52 N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes, for
supported
curves

No

12 Linux on Z and LinuxONE: libica Programmer's Reference

Table 1. libica APIs (continued)

Function libica API name Key length
in bits

Supported on Hardware
support
(CPACF or
CEX*S)

SW
fallback

Verify an ECDSA
signature

“ica_ecdsa_verify” on page 53 N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes, for
supported
curves

No

Allocate a new
context for X25519
keys

“ica_x25519_ctx_new” on page
54

N/A z15, z15 T02 Yes No

Allocate a new
context for X448
keys

“ica_x448_ctx_new” on page
54

N/A z15, z15 T02 Yes No

Allocate a new
context for Ed25519
keys

“ica_ed25519_ctx_new” on page
55

N/A z15, z15 T02 Yes No

Allocate a new
context for Ed448
keys

“ica_ed448_ctx_new” on page
55

N/A z15, z15 T02 Yes No

Copy the private and
public X25519 key
to the context

“ica_x25519_key_set” on page
56

256 z15, z15 T02 Yes No

Copy the private and
public X448 key to
the context

“ica_x448_key_set” on page 56 448 z15, z15 T02 Yes No

Copy the private and
public Ed25519 key
to the context

“ica_ed25519_key_set” on page
57

256 z15, z15 T02 Yes No

Copy the private and
public Ed448 key to
the context

“ica_ed448_key_set” on page
58

448 z15, z15 T02 Yes No

Copy the private and
public X25519 key
from the context

“ica_x25519_key_get” on page
58

256 z15, z15 T02 Yes No

Copy the private
and public X448 key
from the context

“ica_x448_key_get” on page 59 448 z15, z15 T02 Yes No

Copy the private and
public Ed25519 key
from the context

“ica_ed25519_key_get” on page
60

256 z15, z15 T02 Yes No

Copy the private and
public Ed448 key
from the context

“ica_ed448_key_get” on page
60

448 z15, z15 T02 Yes No

Generate an X25519
key

“ica_x25519_key_gen” on page
61

256 z15, z15 T02 Yes No

Chapter 3. Application programming interfaces 13

Table 1. libica APIs (continued)

Function libica API name Key length
in bits

Supported on Hardware
support
(CPACF or
CEX*S)

SW
fallback

Generate an X448
key

“ica_x448_key_gen” on page 62 448 z15, z15 T02 Yes No

Generate an
Ed25519 key

“ica_ed25519_key_gen” on page
62

256 z15, z15 T02 Yes No

Generate an Ed448
key

“ica_ed448_key_gen” on page
63

448 z15, z15 T02 Yes No

Derive a shared
secret for X25519
keys

“ica_x25519_derive” on page
63

256 z15, z15 T02 Yes No

Derive a shared
secret for X448 keys

“ica_x448_derive” on page 64 448 z15, z15 T02 Yes No

Sign an Ed25519 key “ica_ed25519_sign” on page 64 N/A z15, z15 T02 Yes No

Sign an Ed448key “ica_ed448_sign” on page 65 N/A z15, z15 T02 Yes No

Verify Ed25519 keys “ica_ed25519_verify” on page
66

N/A z15, z15 T02 Yes No

Verify Ed448 keys “ica_ed448_verify” on page 67 N/A z15, z15 T02 Yes No

Delete a context for
an X25519 key

“ica_x25519_ctx_del” on page
67

N/A z15, z15 T02 Yes No

Delete a context for
an X448 key

“ica_x448_ctx_del” on page 68 N/A z15, z15 T02 Yes No

Delete a context for
an Ed25519 key

“ica_ed25519_ctx_del” on page
68

N/A z15, z15 T02 Yes No

Delete a context for
an Ed448 key

“ica_ed448_ctx_del” on page
69

N/A z15, z15 T02 Yes No

RSA key generation functions

Generate RSA
keys in modulus/
exponent format

“ica_rsa_key_generate_mod_exp
o” on page 42

N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

No SW only

Generate RSA keys
in CRT format

“ica_rsa_key_generate_crt” on
page 43

N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

No SW only

RSA encryption and decryption operations

14 Linux on Z and LinuxONE: libica Programmer's Reference

Table 1. libica APIs (continued)

Function libica API name Key length
in bits

Supported on Hardware
support
(CPACF or
CEX*S)

SW
fallback

RSA encryption and
decryption operation
using a key in
modulus/exponent
format

“ica_rsa_mod_expo” on page
44

Depends
on supp.
key size of
Crypto
Express
feature

z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

No Key
length
max. 4K
bits

RSA encryption and
decryption operation
using a key in
Chinese-Remainder
Theorem (CRT)
format

“ica_rsa_crt” on page 45 Depends
on supp.
key size of
Crypto
Express
feature

z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

CEX*S:
Yes
CPACF: No

Key
length
max. 4K
bits

AES functions

AES with Cipher
Block Chaining mode

“ica_aes_cbc” on page 70 128, 192,
256

z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes Yes

AES with CBC-Cipher
text stealing mode

“ica_aes_cbc_cs” on page 71 128, 192,
256

z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes Yes

AES with Counter
with Cipher Block
Chaining - Message
Authentication Code
mode

“ica_aes_ccm” on page 73 128, 192,
256

zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

AES with Cipher
Feedback mode

“ica_aes_cfb” on page 74 128, 192,
256

z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

AES with CMAC
mode

“ica_aes_cmac” on page 75 128, 192,
256

zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

AES with CMAC
mode process
intermediate chunks

“ica_aes_cmac_intermediate” on
page 76

128, 192,
256

zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

AES with CMAC
mode process last
chunk

“ica_aes_cmac_last” on page
77

128, 192,
256

zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

Chapter 3. Application programming interfaces 15

Table 1. libica APIs (continued)

Function libica API name Key length
in bits

Supported on Hardware
support
(CPACF or
CEX*S)

SW
fallback

AES with Counter
mode

“ica_aes_ctr” on page 78 128, 192,
256

z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

AES with Counter
mode, using a list of
counters

“ica_aes_ctrlist” on page 80 128, 192,
256

z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

AES with Electronic
Code Book mode

“ica_aes_ecb” on page 81 128, 192,
256

z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes Yes

AES with Galois/
Counter Mode (GCM)
for single operations

“ica_aes_gcm” on page 82 128, 192,
256

z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

AES with Galois/
Counter Mode
(GCM) for streaming
operations - initialize

“ica_aes_gcm_initialize” on page
83

128, 192,
256

z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

AES with Galois/
Counter Mode
(GCM) for streaming
operations -
intermediate

“ica_aes_gcm_intermediate” on
page 85

128, 192,
256

z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

AES with Galois/
Counter Mode
(GCM) for streaming
operations - last

“ica_aes_gcm_last” on page 87 128, 192,
256

z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

AES with Galois/
Counter Mode (GCM)
for KMA exploitation
- pointer to new
GCM context

“ica_aes_gcm_kma_ctx_new” on
page 88

128, 192,
256

z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

AES with Galois/
Counter Mode (GCM)
for KMA exploitation
- deallocate new
GCM context

“ica_aes_gcm_kma_ctx_free” on
page 88

128, 192,
256

z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

16 Linux on Z and LinuxONE: libica Programmer's Reference

Table 1. libica APIs (continued)

Function libica API name Key length
in bits

Supported on Hardware
support
(CPACF or
CEX*S)

SW
fallback

AES with Galois/
Counter Mode (GCM)
for KMA exploitation
- initialize new GCM
context

“ica_aes_gcm_kma_init” on page
89

128, 192,
256

z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

AES with Galois/
Counter Mode (GCM)
for KMA exploitation
- perform encryption
or decryption with
authentication

“ica_aes_gcm_kma_update” on
page 90

128, 192,
256

z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

AES with Galois/
Counter Mode (GCM)
for KMA exploitation
- get authentication
tag

“ica_aes_gcm_kma_get_tag” on
page 92

128, 192,
256

z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

AES with Galois/
Counter Mode
(GCM) for KMA
exploitation - verify
authentication tag

“ica_aes_gcm_kma_verify_tag”
on page 92

128, 192,
256

z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

AES with Output
Feedback mode

“ica_aes_ofb” on page 93 128, 192,
256

zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

AES with XEX-based
Tweaked Code Book
mode (TCB) with
CipherText Stealing
(CTS)

“ica_aes_xts” on page 94 128, 256 zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

TDES/3DES functions

TDES with Cipher
Block Chaining mode

“ica_3des_cbc” on page 96 168 z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes Yes

TDES with CBC-
Cipher text Stealing
mode

“ica_3des_cbc_cs” on page 97 168 z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes Yes

TDES with Cipher
Feedback mode

“ica_3des_cfb” on page 99 168 z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

Chapter 3. Application programming interfaces 17

Table 1. libica APIs (continued)

Function libica API name Key length
in bits

Supported on Hardware
support
(CPACF or
CEX*S)

SW
fallback

TDES with CMAC
mode

“ica_3des_cmac” on page 100 168 zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

TDES with CMAC
mode process
intermediate chunks

“ica_3des_cmac_intermediate”
on page 101

168 zEC12, zBC12,
z13, z13s, z14,
z14 ZR1

Yes No

TDES with CMAC
mode process last
chunk

“ica_3des_cmac_last” on page
101

168 zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

TDES with Counter
mode

“ica_3des_ctr” on page 103 168 z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

TDES with Counter
mode, using a list of
counters

“ica_3des_ctrlist” on page 104 168 z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

TDES with Electronic
Code Book mode

“ica_3des_ecb” on page 105 168 z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes Yes

TDES with Output
Feedback mode

“ica_3des_ofb” on page 106 168 zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

Information retrieval functions

Return version
information for libica

“ica_get_version” on page 107 N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

N/A N/A

Return a list of
crypto mechanisms
supported by libica

“ica_get_functionlist” on page
108

N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

N/A N/A

FIPS mode functions

18 Linux on Z and LinuxONE: libica Programmer's Reference

Table 1. libica APIs (continued)

Function libica API name Key length
in bits

Supported on Hardware
support
(CPACF or
CEX*S)

SW
fallback

Queries and returns
a FIPS status and
whether libica is
running in FIPS
mode

“ica_fips_status” on page 109 N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

N/A N/A

Triggers the
implemented self-
tests when running
in FIPS mode

“ica_fips_powerup_tests” on
page 109

N/A z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

N/A N/A

SIMD support

Multiply two 512-bit
numbers

“ica_mp_mul512” on page 110 N/A z14, z14 ZR1,
z15, z15 T02

Yes No

Square a 512-bit
number

“ica_mp_sqr512” on page 111 N/A z14, z14 ZR1,
z15, z15 T02

Yes No

DES functions (deprecated)

DES with Cipher
Block Chaining mode

“ica_des_cbc” on page 112 56 z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes Yes

DES with CBC-Cipher
text stealing mode

“ica_des_cbc_cs” on page 113 56 z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes Yes

DES with Cipher
Feedback mode

“ica_des_cfb” on page 114 56 z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

DES with CMAC
mode

“ica_des_cmac” on page 115 56 zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

DES with CMAC
mode process
intermediate chunks

“ica_des_cmac_intermediate” on
page 116

56 zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

DES with CMAC
mode process last
chunk

“ica_des_cmac_last” on page
117

56 zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

Chapter 3. Application programming interfaces 19

Table 1. libica APIs (continued)

Function libica API name Key length
in bits

Supported on Hardware
support
(CPACF or
CEX*S)

SW
fallback

DES with Counter
mode

“ica_des_ctr” on page 118 56 z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

DES with Counter
mode, using a list of
counters

“ica_des_ctrlist” on page 120 56 z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

DES with Electronic
Code Book mode

“ica_des_ecb” on page 121 56 z196, z114,
zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02 ´

Yes Yes

DES with Output
Feedback mode

“ica_des_ofb” on page 122 56 zEC12, zBC12,
z13, z13s, z14,
z14 ZR1, z15,
z15 T02

Yes No

Note: If you are using the libica-cex.so module, but try to invoke a function that is not supported by
the libica-cex library, then the function issues the following return code:
EPERM

Operation not permitted by hardware or software restrictions.

General support functions
General support functions comprise the following APIs:

• Functions to open or close the crypto adapter. It is recommended to open the crypto adapter before
using any of the libica crypto functions, and to close it after the last usage of the libica crypto functions.
A valid adapter handle as input is explicitly required only for certain RSA-related and ECC-support
functions.

A pointer to the value DRIVER_NOT_LOADED indicates an invalid adapter handle. The parameter
ica_adapter_handle_t is a redefine of int.

• A function to enable or disable software fallbacks using OpenSSL. With fallbacks enabled, libica
attempts to perform requests by calling OpenSSL functions, if there is either no hardware support
available or if the hardware returned an error.

By default, the fallback mode is enabled for libica. In FIPS mode, OpenSSL only supports a small subset
of elliptic curves. This influences software fallbacks (see also “FIPS mode dependencies” on page 7).

• A function to enable or disable the offloading of cryptographic operations to cryptographic
coprocessors. By default, offloading is disabled and libica processes cryptographic operations on CPACF
instead of cryptographic coprocessors if functionality is available on both.

You can also set the environment variable LIBICA_OFFLOAD_MODE to an integer not equal to zero to
always prefer offloading to cryptographic coprocessors, if applicable.

• A function to enable or disable the counting of cryptographic operations. By default, libica counts its
cryptographic operations in shared memory. If you count the operations, you can use the icastats

20 Linux on Z and LinuxONE: libica Programmer's Reference

utility to see whether libica functions use hardware acceleration features or work with software
fallbacks.

You can also set the environment variable LIBICA_STATS_MODE to zero to disable the counting of
cryptographic operations.

These functions are declared in: include/ica_api.h.

ica_open_adapter

Purpose
Opens an adapter.

Format
unsigned int ica_open_adapter(ica_adapter_handle_t *adapter_handle);

Parameters
ica_adapter_handle_t *adapter_handle

Pointer to the file descriptor for the adapter or to DRIVER_NOT_LOADED if opening the crypto adapter
failed.

Opening an adapter succeeds if a cryptographic device is accessible for reading and writing. By
default, cryptographic access must be available with the /dev/z90crypt path name for the adapter
open request to succeed. If the environment variable LIBICA_CRYPT_DEVICE is set to a valid
path name of an accessible cryptographic device, accessing the device with that path name takes
precedence over the default path names.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_close_adapter

Purpose
Closes an adapter.

Comments
This API closes a device handle.

Format

unsigned int ica_close_adapter(ica_adapter_handle_t adapter_handle);

Parameters
ica_adapter_handle_t adapter_handle

Pointer to a previously opened device handle.

Chapter 3. Application programming interfaces 21

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_set_fallback_mode

Purpose
Lets you disable or enable SW fallbacks. With the fallback mode enabled, which is the default, libica
attempts to cover a request by calling OpenSSL functions as fallback, when there is no hardware support
available (for example, when the cryptographic coprocessors are offline). With SW fallbacks disabled, no
attempts are made to fulfill the request, if there is no hardware support or available or if the hardware
returned an error. Instead, the request issues return code ENODEV.

Format
void ica_set_fallback_mode(int fallback_mode);

Parameters
int fallback_mode

1
Enable software fallbacks. This is the default.

0
Disable software fallbacks.

Return codes
None.

ica_set_offload_mode

Purpose
Lets you control whether to use CPACF or cryptographic coprocessors to perform cryptographic
operations, if the required functionality is available on both. In such cases, libica processes cryptographic
operations on CPACF by default. Enabling the offloading to cryptographic coprocessors might be
reasonable in an environment where sufficient such coprocessors are available, and the CPU is to be
used for other workloads.

You can also enable the offloading to cryptographic coprocessors using the environment variable
LIBICA_OFFLOAD_MODE. If this environment variable is set to an integer not equal to zero, libica always
uses cryptographic adapters, if applicable.

Format
void ica_set_offload_mode(int offload_mode);

Parameters
int offload_mode

0
Disable offloading cryptographic operations to cryptographic coprocessors. This is the default.

22 Linux on Z and LinuxONE: libica Programmer's Reference

any integer ≠ 0
Enable offloading cryptographic operations to cryptographic coprocessors.

Return codes
None.

ica_set_stats_mode

Purpose
Lets you disable or enable collecting statistics about the use of libica functions. By default, libica counts
its cryptographic operations in shared memory.

You can also set the environment variable LIBICA_STATS_MODE to zero to disable the counting of
cryptographic operations.

Format
void ica_set_stats_mode(int stats_mode);

Parameters
int stats_mode

0
Disable counting the use of libica functions. No input is promoted to the icastats utility to see
whether libica functions use hardware acceleration features or work with software fallbacks.

any integer ≠ 0
Enable counting the use of libica functions. This is the default.

Return codes
None.

Secure hash operations
The provided hash functions perform secure hash on input data using the chosen algorithm
of SHA-224, SHA-256, SHA-384, SHA-512, SHA-512-224, SHA-512-256, SHA3-224, SHA3-256,
SHA3-384, SHA3-512, SHAKE-128, or SHAKE-256.

These functions are declared in: include/ica_api.h.

SHA context structures contain information about how much of the actual work was already performed.
Also, it contains the part of the hash that is already produced. For the user, it is only interesting in cases
where the message is not hashed at once, because the context is needed for further operations.

ica_sha224

Purpose
Performs a secure hash operation on the input data using the SHA-224 algorithm.

Format

unsigned int ica_sha224(unsigned int message_part,
 unsigned int input_length,
 unsigned char *input_data,

Chapter 3. Application programming interfaces 23

 sha256_context_t *sha256_context,
 unsigned char *output_data);

Required hardware support
KIMD-SHA-256 and KLMD-SHA-256

Parameters
unsigned int message_part

The message chaining state. This parameter must be one of the following values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part
unsigned int input_length

Length in bytes of the input data to be hashed using the SHA-224 algorithm. For
SHA_MSG_PART_FIRST and SHA_MSG_PART_MIDDLE calls, the byte length must be a multiple of
64, that is, the SHA-224 block size.

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be zero. So even in case of zero size
message data, it must be set to a valid value.

sha256_context_t *sha256_context
Pointer to the SHA-256 context structure used to store intermediate values needed when chaining is
used. The contents are ignored for message part SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST.
This structure must contain the returned value of the preceding call to ica_sha224 for message part
SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part SHA_MSG_PART_FIRST
and SHA_MSG_PART_FINAL, the returned value can be used for a chained call of ica_sha224.
Therefore, the application must not modify the contents of this structure in between chained calls.

Note: Due to the algorithm used by SHA-224, a SHA-256 context must be used.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output data has a length of
SHA224_HASH_LENGTH. Make sure that the buffer is at least this size.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_sha256

Purpose
Performs a secure hash on the input data using the SHA-256 algorithm.

Format

unsigned int ica_sha256(unsigned int message_part,

24 Linux on Z and LinuxONE: libica Programmer's Reference

 unsigned int input_length,
 unsigned char *input_data,
 sha256_context_t *sha256_context,
 unsigned char *output_data);

Required hardware support
KIMD-SHA-256 and KLMD-SHA-256

Parameters
unsigned int message_part

The message chaining state. This parameter must be one of the following values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part
unsigned int input_length

Length in bytes of the input data to be hashed using the SHA-256 algorithm. For
SHA_MSG_PART_FIRST and SHA_MSG_PART_MIDDLE calls, the byte length must be a multiple of
64, that is, the SHA-256 block size.

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be zero. So even in case of zero size
message data, it must be set to a valid value.

sha256_context_t *sha256_context
Pointer to the SHA-256 context structure used to store intermediate values needed when chaining is
used. The contents are ignored for message part SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST.
This structure must contain the returned value of the preceding call to ica_sha256 for message part
SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part SHA_MSG_PART_FIRST
and SHA_MSG_PART_FINAL, the returned value can be used for a chained call of ica_sha256.
Therefore, the application must not modify the contents of this structure in between chained calls.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output data has a length of
SHA256_HASH_LENGTH. Make sure that the buffer is at least this size.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_sha384

Purpose
Performs a secure hash on the input data using the SHA-384 algorithm.

Format

unsigned int ica_sha384(unsigned int message_part,

Chapter 3. Application programming interfaces 25

 uint64_t input_length,
 unsigned char *input_data,
 sha512_context_t *sha512_context,
 unsigned char *output_data);

Required hardware support
KIMD-SHA-512 and KLMD-SHA-512

Parameters
unsigned int message_part

The message chaining state. This parameter must be one of the following values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part
uint64_t input_length

Length in bytes of the input data to be hashed using the SHA-384 algorithm. For
SHA_MSG_PART_FIRST and SHA_MSG_PART_MIDDLE calls, the byte length must be a multiple of
128, that is, the SHA-384 block size.

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be zero. So even in case of zero size
message data, it must be set to a valid value.

sha512_context_t *sha512_context
Pointer to the SHA-512 context structure used to store intermediate values needed when chaining is
used. The contents are ignored for message part SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST.
This structure must contain the returned value of the preceding call to ica_sha384 for message part
SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part SHA_MSG_PART_FIRST
and SHA_MSG_PART_FINAL, the returned value can be used for a chained call of ica_sha384.
Therefore, the application must not modify the contents of this structure in between chained calls.

Note: SHA-384 also uses a SHA-512 context

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output data has a length of
SHA384_HASH_LENGTH. Make sure that the buffer is at least this size.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_sha512

Purpose
Performs a secure hash operation on input data using the SHA-512 algorithm.

26 Linux on Z and LinuxONE: libica Programmer's Reference

Format

unsigned int ica_sha512(unsigned int message_part,
 uint64_t input_length,
 unsigned char *input_data,
 sha512_context_t *sha512_context,
 unsigned char *output_data);

Required hardware support
KIMD-SHA-512 and KLMD-SHA-512

Parameters
unsigned int message_part

The message chaining state. This parameter must be one of the following values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part
uint64_t input_length

Length in bytes of the input data to be hashed using the SHA-512 algorithm. For
SHA_MSG_PART_FIRST and SHA_MSG_PART_MIDDLE calls, the byte length must be a multiple of
128, that is, the SHA-512 block size.

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be zero. So even in case of zero size
message data, it must be set to a valid value.

sha512_context_t *sha512_context
Pointer to the SHA-512 context structure used to store intermediate values needed when chaining is
used. The contents are ignored for message part SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST.
This structure must contain the returned value of the preceding call to ica_sha512 for message part
SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part SHA_MSG_PART_FIRST
and SHA_MSG_PART_FINAL, the returned value can be used for a chained call of ica_sha512.
Therefore, the application must not modify the contents of this structure in between chained calls.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output data has a length of
SHA512_HASH_LENGTH. Make sure that the buffer is at least this size.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_sha512_224

Purpose
Performs a secure hash operation on input data using the SHA-512/224 algorithm.

Chapter 3. Application programming interfaces 27

Format

unsigned int ica_sha512_224(unsigned int message_part,
 uint64_t input_length,
 unsigned char *input_data,
 sha512_context_t *sha512_context,
 unsigned char *output_data);

Required hardware support
KIMD-SHA-512 or KLMD-SHA-512

Parameters
unsigned int message_part

The message chaining state. This parameter must be one of the following values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part
uint64_t input_length

Length in bytes of the input data to be hashed using the SHA-512/224 algorithm. This value must
be greater than zero. For SHA_MSG_PART_FIRST and SHA_MSG_PART_MIDDLE calls, the byte length
must be a multiple of 128, that is, the SHA-512 block size.

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be zero.

sha512_context_t *sha512_context
Pointer to the SHA-512 context structure used to store intermediate values needed when chaining is
used. The content is ignored for message part SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST.
This structure must contain the returned value of the preceding call to ica_sha512_256
for message part SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part
SHA_MSG_PART_FIRST and SHA_MSG_PART_FINAL, the returned value can be used for a chained
call of ica_sha512_256. Therefore, the application must not modify the contents of this structure
between chained calls.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output data has a length of
SHA512_256_HASH_LENGTH. Make sure that the buffer is at least this size.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_sha512_256

Purpose
Performs a secure hash operation on input data using the SHA-512/256 algorithm.

28 Linux on Z and LinuxONE: libica Programmer's Reference

Format

unsigned int ica_sha512_256(unsigned int message_part,
 uint64_t input_length,
 unsigned char *input_data,
 sha512_context_t *sha512_context,
 unsigned char *output_data);

Required hardware support
KIMD-SHA-512 or KLMD-SHA-512

Parameters
unsigned int message_part

The message chaining state. This parameter must be one of the following values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part
uint64_t input_length

Length in bytes of the input data to be hashed using the SHA-512/256 algorithm. This value must
be greater than zero. For SHA_MSG_PART_FIRST and SHA_MSG_PART_MIDDLE calls, the byte length
must be a multiple of 128, that is, the SHA-512 block size.

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be zero.

sha512_context_t *sha512_context
Pointer to the SHA-512 context structure used to store intermediate values needed when chaining
is used. The content is ignored for message part SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST.
This structure must contain the returned value of the preceding call to ica_sha512 for message part
SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part SHA_MSG_PART_FIRST
and SHA_MSG_PART_FINAL, the returned value can be used for a chained call of ica_sha512.
Therefore, the application must not modify the contents of this structure in between chained calls.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output data has a length of
SHA512_HASH_LENGTH. Make sure that the buffer is at least this size.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_sha3_224

Purpose
Performs a secure hash operation on input data using the SHA3-224 algorithm.

Chapter 3. Application programming interfaces 29

Format

unsigned int ica_sha3_224(unsigned int message_part,
 unsigned int input_length,
 unsigned char *input_data,
 sha3_224_context_t *sha3_224_context,
 unsigned char *output_data);

Required hardware support
KIMD-SHA3-224 and KLMD-SHA3-224

Parameters
unsigned int message_part

The message chaining state. This parameter must be one of the following values:
SHA_MSG_PART_ONLY

a single hash operation.
SHA_MSG_PART_FIRST

the first part.
SHA_MSG_PART_MIDDLE

the middle part.
SHA_MSG_PART_FINAL

the last part.
unsigned int input_length

Length in bytes of the input data to be hashed using the SHA3-224 algorithm. For
SHA_MSG_PART_FIRST and SHA_MSG_PART_MIDDLE calls, the byte length must be a multiple of
144, that is, the SHA3-224 block size.

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be NULL. So even in case of zero size
message data, it must be set to a valid value.

sha3_224_context_t *sha3_224_context
Pointer to the SHA3-224 context structure used to store intermediate values needed when
chaining is used. The contents are ignored for message part SHA_MSG_PART_ONLY and
SHA_MSG_PART_FIRST. This structure must contain the returned value of the preceding call
to ica_sha3_224 for message part SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For
message part SHA_MSG_PART_FIRST and SHA_MSG_PART_MIDDLE, the returned value can be used
for a chained call of ica_sha3_224. Therefore, the application must not modify the contents of this
structure in between chained calls.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. This pointer must always be available and
must not be NULL. The resulting output data has a length of SHA3_224_HASH_LENGTH. Make sure
that the buffer is at least this size.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

30 Linux on Z and LinuxONE: libica Programmer's Reference

ica_sha3_256

Purpose
Performs a secure hash operation on input data using the SHA3-256 algorithm.

Format

unsigned int ica_sha3_256(unsigned int message_part,
 unsigned int input_length,
 unsigned char *input_data,
 sha3_256_context_t *sha3_256_context,
 unsigned char *output_data);

Required hardware support
KIMD-SHA3-256 and KLMD-SHA3-256

Parameters
unsigned int message_part

The message chaining state. This parameter must be one of the following values:
SHA_MSG_PART_ONLY

a single hash operation.
SHA_MSG_PART_FIRST

the first part.
SHA_MSG_PART_MIDDLE

the middle part.
SHA_MSG_PART_FINAL

the last part.
unsigned int input_length

Length in bytes of the input data to be hashed using the SHA3-256 algorithm. For
SHA_MSG_PART_FIRST and SHA_MSG_PART_MIDDLE calls, the byte length must be a multiple of
136, that is, the SHA3-256 block size.

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be zero. So even in case of zero size
message data, it must be set to a valid value.

sha3_256_context_t *sha3_256_context
Pointer to the SHA3-256 context structure used to store intermediate values needed when
chaining is used. The contents are ignored for message part SHA_MSG_PART_ONLY and
SHA_MSG_PART_FIRST. This structure must contain the returned value of the preceding call
to ica_sha3_256 for message part SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For
message part SHA_MSG_PART_FIRST and SHA_MSG_PART_MIDDLE, the returned value can be used
for a chained call of ica_sha3_256. Therefore, the application must not modify the contents of this
structure in between chained calls.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. This pointer must always be available and
must not be NULL. The resulting output data has a length of SHA3_256_HASH_LENGTH. Make sure
that the buffer is at least this size.

Return codes
0

Success

Chapter 3. Application programming interfaces 31

For return codes indicating exceptions, see “Return codes” on page 132.

ica_sha3_384

Purpose
Performs a secure hash operation on input data using the SHA3-384 algorithm.

Format

unsigned int ica_sha3_384(unsigned int message_part,
 uint64_t input_length,
 unsigned char *input_data,
 sha3_384_context_t *sha3_384_context,
 unsigned char *output_data);

Required hardware support
KIMD-SHA3-384 and KLMD-SHA3-384

Parameters
unsigned int message_part

The message chaining state. This parameter must be one of the following values:
SHA_MSG_PART_ONLY

a single hash operation.
SHA_MSG_PART_FIRST

the first part.
SHA_MSG_PART_MIDDLE

the middle part.
SHA_MSG_PART_FINAL

the last part.
uint64_t input_length

Length in bytes of the input data to be hashed using the SHA3-384 algorithm. For
SHA_MSG_PART_FIRST and SHA_MSG_PART_MIDDLE calls, the byte length must be a multiple of
104, that is, the SHA3-384 block size.

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be zero. So even in case of zero size
message data, it must be set to a valid value.

sha3_384_context_t *sha3_384_context
Pointer to the SHA3-384 context structure used to store intermediate values needed when
chaining is used. The contents are ignored for message part SHA_MSG_PART_ONLY and
SHA_MSG_PART_FIRST. This structure must contain the returned value of the preceding call
to ica_sha3_384 for message part SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For
message part SHA_MSG_PART_FIRST and SHA_MSG_PART_MIDDLE, the returned value can be used
for a chained call of ica_sha3_384. Therefore, the application must not modify the contents of this
structure in between chained calls.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. This pointer must be available and must not be
NULL. The resulting output data has a length of SHA3_384_HASH_LENGTH. Make sure that the buffer
is at least this size.

32 Linux on Z and LinuxONE: libica Programmer's Reference

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_sha3_512

Purpose
Performs a secure hash operation on input data using the SHA3-512 algorithm.

Format

unsigned int ica_sha3_512(unsigned int message_part,
 uint64_t input_length,
 unsigned char *input_data,
 sha3_512_context_t *sha3_512_context,
 unsigned char *output_data);

Required hardware support
KIMD-SHA3-512 and KLMD-SHA3-512

Parameters
unsigned int message_part

The message chaining state. This parameter must be one of the following values:
SHA_MSG_PART_ONLY

a single hash operation.
SHA_MSG_PART_FIRST

the first part.
SHA_MSG_PART_MIDDLE

the middle part.
SHA_MSG_PART_FINAL

the last part.
uint64_t input_length

Length in bytes of the input data to be hashed using the SHA3-512 algorithm. For
SHA_MSG_PART_FIRST and SHA_MSG_PART_MIDDLE calls, the byte length must be a multiple of
64, that is, the SHA3-512 block size.

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be zero. So even in case of zero size
message data, it must be set to a valid value.

sha3_512_context_t *sha3_512_context
Pointer to the SHA3-512 context structure used to store intermediate values needed when
chaining is used. The contents are ignored for message part SHA_MSG_PART_ONLY and
SHA_MSG_PART_FIRST. This structure must contain the returned value of the preceding call
to ica_sha3_512 for message part SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For
message part SHA_MSG_PART_FIRST and SHA_MSG_PART_MIDDLE, the returned value can be used
for a chained call of ica_sha3_512. Therefore, the application must not modify the contents of this
structure in between chained calls.

Chapter 3. Application programming interfaces 33

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. This pointer must be available and must not be
NULL. The resulting output data has a length of SHA3_512_HASH_LENGTH. Make sure that the buffer
is at least this size.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_shake_128

Purpose
Performs a secure hash operation on the input data using the SHAKE-128 algorithm. Unlike other hash
functions, the SHAKE algorithm has no fixed output length. This means that you can choose any output
length which is a multiple of 8 bits (1 byte).

Format

unsigned int ica_shake_128(unsigned int message_part,
 uint64_t input_length,
 unsigned char *input_data,
 shake_128_context_t *shake_128_context,
 unsigned char *output_data, unsigned int output_length);

Required hardware support
KIMD-SHAKE-128 and KLMD-SHAKE-128

Parameters
unsigned int message_part

The message chaining state. This parameter must be one of the following values:
SHA_MSG_PART_ONLY

a single hash operation.
SHA_MSG_PART_FIRST

the first part.
SHA_MSG_PART_MIDDLE

the middle part.
SHA_MSG_PART_FINAL

the last part.
uint64_t input_length

Length in bytes of the input data to be hashed using the SHAKE-128 algorithm. For
SHA_MSG_PART_FIRST and SHA_MSG_PART_MIDDLE calls, the byte length must be a multiple of
168, that is, the SHAKE-128 block size.

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be zero. So even in case of zero size
message data, it must be set to a valid value.

shake_128_context_t *shake_128_context
Pointer to the SHAKE-128 context structure used to store intermediate values needed when
chaining is used. The contents are ignored for message part SHA_MSG_PART_ONLY and
SHA_MSG_PART_FIRST. This structure must contain the returned value of the preceding call

34 Linux on Z and LinuxONE: libica Programmer's Reference

to ica_shake_128 for message part SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For
message part SHA_MSG_PART_FIRST and SHA_MSG_PART_MIDDLE, the returned value can be used
for a chained call of ica_shake_128. Therefore, the application must not modify the contents of this
structure in between chained calls.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. Done. This pointer must be available and must
not be NULL. The resulting output data has a length as specified in parameter output_length. Make
sure that the buffer is at least this size.

unsigned int output_length
The resulting length of the hashed data. The output length must not be zero and must be 1 byte or
more for all message parts.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_shake_256

Purpose
Performs a secure hash operation on the input data using the SHAKE-256 algorithm. Unlike other hash
functions, the SHAKE algorithm has no fixed output length. This means that you can choose any output
length which is a multiple of 8 bits (1 byte).

Format

unsigned int ica_shake_256(unsigned int message_part,
 uint64_t input_length,
 unsigned char *input_data,
 shake_256_context_t *shake_256_context,
 unsigned char *output_data, unsigned int output_length);

Required hardware support
KIMD-SHAKE-256 and KLMD-SHAKE-256

Parameters
unsigned int message_part

The message chaining state. This parameter must be one of the following values:
SHA_MSG_PART_ONLY

a single hash operation.
SHA_MSG_PART_FIRST

the first part.
SHA_MSG_PART_MIDDLE

the middle part.
SHA_MSG_PART_FINAL

the last part.
uint64_t input_length

Length in bytes of the input data to be hashed using the SHAKE-256 algorithm. For
SHA_MSG_PART_FIRST and SHA_MSG_PART_MIDDLE calls, the byte length must be a multiple of
136, that is, the SHAKE-256 block size.

Chapter 3. Application programming interfaces 35

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be zero. So even in case of zero size
message data, it must be set to a valid value.

shake_256_context_t *shake_256_context
Pointer to the SHAKE-256 context structure used to store intermediate values needed when
chaining is used. The contents are ignored for message part SHA_MSG_PART_ONLY and
SHA_MSG_PART_FIRST. This structure must contain the returned value of the preceding call
to ica_shake_256 for message part SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For
message part SHA_MSG_PART_FIRST and SHA_MSG_PART_MIDDLE, the returned value can be used
for a chained call of ica_shake_256. Therefore, the application must not modify the contents of this
structure in between chained calls.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. This pointer must be available and must not be
NULL. The resulting output data has a length as returned in parameter output_length. Make sure
that the buffer is at least this size.

unsigned int output_length
The resulting length of the hashed data. The output length must not be zero and must be 1 byte or
more for all message parts.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

Pseudo random number generation functions
libica provides two methods of random number (random bit) generation.

The two provided random number or random bit generators are:

• a conventional random number generator (“ica_random_number_generate” on page 37).
• a NIST SP800-90A compliant deterministic random bit generator. This generator is implemented by a

combination of five separate functional APIs and is hereafter referred to as ica_drbg to denote the
complete generator as a whole.

These functions are declared in: include/ica_api.h.

Conventional ica_random_number_generate function
libica initialization tries to seed the CPACF random generator. To get the seed, device /dev/hwrng is
opened. Device /dev/hwrng provides true random data from crypto adapters over the crypto device
driver (main module name is ap, with an alias name z90crypt, which is linking to ap). If that
fails, the initialization mechanism uses device /dev/urandom. Within the initialization, a byte counter
s390_byte_count is set to 0. If the CPACF pseudo random generator is available, after 4096 bytes of
the pseudo random number are generated, the random number generator is seeded again. If the CPACF
pseudo random generator is not available, random numbers are read from /dev/urandom.

Since libica version 2.6, this API internally invokes the NIST compliant ica_drbg functionality. The
original code of this API is only processed if no MSA5, or at least no MSA2 support is available, which is
the prerequisite of the ica_drbg API (see “NIST compliant ica_drbg functions” on page 36).

NIST compliant ica_drbg functions
The following APIs make up the complete ica_drbg functionality:

• “ica_drbg_instantiate” on page 38
• “ica_drbg_reseed” on page 39

36 Linux on Z and LinuxONE: libica Programmer's Reference

• “ica_drbg_generate” on page 40
• “ica_drbg_uninstantiate” on page 41
• “ica_drbg_health_test” on page 41

The IBM zEnterprise EC12 (zEC12) machines introduced an updated version 5 of the message security
assist (MSA). If available, the ica_drbg function exploits this updated MSA5 version that provides full
hardware support for random number generation based on SHA512 in accordance with NIST SP800-90A.

Note: If no MSA5 version is available, the ica_drbg software fallback exploits at least MSA2 support,
which includes SHA512. This fallback also produces NIST SP800-90A compliant random numbers,
however, without the mentioned high performance MSA5 hardware support. If no MSA2 or higher
support is available, the ica_drbg mechanism cannot return any pseudorandom bytes to the requesting
application. In such cases, you must use the ica_random_number_generate function.

The implementation is designed to be thread-safe such that different threads can share the same
ica_drbg instantiation.

The ica_drbg functionality uses certain definitions and supports the following DRBG mechanisms as
shown in Table 2 on page 37.

typedef struct ica_drbg_mech ica_drbg_mech_t;
extern ica_drbg_mech_t *const ICA_DRBG_SHA512;

Table 2. Supported DRBG mechanisms

DRBG mechanism supported security strengths
(in bits)

max. byte length of
pers/add parameters

DRBG_SHA512 112, 128, 196, 256 256 / 256

The following information list satisfies the NIST SP800-90A documentation requirements:

• Entropy input is read from /dev/hwrng. If /dev/hwrng is not available, the entropy input is read
from /dev/prandom.

• ica_drbg provides the ica_drbg_health_test interface for validation and health testing. This
function together with test parameters can be found in libica/src/include/s390_drbg.h. Nonce
and entropy input can be injected via these parameters for the purpose of known answer testing.

• No further support functions other than health testing are supported.
• The only DRBG mechanism currently implemented is Hash_DRBG using SHA-512.
• ica_drbg supports 112, 128, 196, and 256 bits of security.
• ica_drbg supports prediction resistance.
• The generate function is tested every 264 - 1 calls. This interval size is chosen, because CPACF hardware

failures should not happen frequently.
• The integrity of the health test can be determined by inspecting the checksum/hash of the package

before install.

ica_random_number_generate

Purpose
This function generates a pseudo random number. Parameter *ouput_data is a pointer to a buffer of
byte length output_length. output_length number of bytes of pseudo random data is placed in the buffer
pointed to by output_data.

Chapter 3. Application programming interfaces 37

Format

unsigned int ica_random_number_generate(unsigned int output_length,
 unsigned char *output_data);

Required hardware support
KMC-PRNG

Parameters
unsigned int output_length

Length in bytes of the output_data buffer, and the length of the generated pseudo random number.
unsigned char *output_data

Pointer to the buffer to receive the generated pseudo random number.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_drbg_instantiate

Purpose
This function instantiates a NIST SP800-90A compliant deterministic random bit generator.

Format

int ica_drbg_instantiate(ica_drbg_t **sh,
 int sec,
 bool pr,
 ica_drbg_mech_t *mech,
 const unsigned char *pers,
 size_t pers_len);

Parameters
ica_drbg_t **sh

State handle pointer. The (invalid) state handle is set to identify the new DRBG instantiation and thus
becomes valid.

int sec
Requested security strength in bits of the new DRBG instantiation. The security strength is set to the
lowest value supported by its DRBG mechanism that is greater than or equal to your selected sec
value (see Table 2 on page 37). For example, if you request security strength 160 for your instance, it
is actually set to 196.

bool pr
Prediction resistance flag. Indicates whether or not prediction resistance may be required by the
consuming application during one or more requests for pseudo random bytes.

ica_drbg_mech_t *mech
Pointer to the mechanism type selected for the new DRBG instantiation. The new instantiation is then
of this mechanism type. For available mechanisms, see Table 2 on page 37.

38 Linux on Z and LinuxONE: libica Programmer's Reference

const unsigned char *pers
Pointer to a personalization string. This is optional input that provides personalization information.
The personalization string should be unique for all instantiations of the same mechanism type. NULL
indicates that no personalization string is used (not recommended).

size_t pers_len
Length in bytes of the string referenced by *pers.

Return codes
0

Success
ENOTSUP

Prediction resistance or the requested security strength is not supported.
EPERM

Failed to obtain a valid timestamp from clock.
ICA_DBRG_HEALTH_TEST_FAIL

Health test failed, see “ica_drbg_health_test” on page 41.
ICA_DBRG_ENTROPY_SOURCE_FAIL

Entropy source failed.

ica_drbg_reseed

Purpose
This function reseeds a NIST SP800-90A compliant DRBG instantiation from ica_drbg_instantiate.

Format

int ica_drbg_reseed(ica_drbg_t *sh,
 bool pr,
 const unsigned char *add,
 size_t add_len);

Parameters
ica_drbg_t *sh

State handle pointer. Identifies the DRBG instantiation to be reseeded.
bool pr

Prediction resistance request. Indicates whether or not prediction resistance is required.
const unsigned char *add

Pointer to additional optional input. NULL indicates that no additional input is used.
size_t add_len

Length in bytes of parameter add.

Return codes
0

Success
ENOTSUP

Prediction resistance is not supported.
ICA_DBRG_HEALTH_TEST_FAIL

Health test failed, see “ica_drbg_health_test” on page 41.
ICA_DBRG_ENTROPY_SOURCE_FAIL

Entropy source failed.

Chapter 3. Application programming interfaces 39

ica_drbg_generate

Purpose
This function requests pseud random bytes from an ica_drbg instantiation created by the
ica_drbg_instantiate function.

Format

int ica_drbg_generate(ica_drbg_t *sh,
 int sec,
 bool pr,
 const unsigned char *add,
 size_t add_len,
 unsigned char *prnd,
 size_t prnd_len);

Parameters
ica_drbg_t *sh

State handle pointer. Identifies the DRBG instantiation from which pseudorandom bytes are
requested.

int sec
Requested security strength: Minimum bits of security that the generated pseudo random bytes shall
offer.

bool pr
Prediction resistance request. Indicates whether or not prediction resistance is required.

const unsigned char *add
Pointer to additional optional input. NULL indicates that no additional input is used.

size_t add_len
Length in bytes of parameter add.

unsigned char *prnd
Pointer to the generated pseudo random bytes.

size_t prnd_len
Length in bytes of parameter prnd, which corresponds to the number of generated pseudo random
bytes.

Return codes
0

Success
ENOTSUP

Prediction resistance or the requested security strength is not supported.
EPERM

Reseed required.
ICA_DBRG_HEALTH_TEST_FAIL

Health test failed, see “ica_drbg_health_test” on page 41.
ICA_DBRG_ENTROPY_SOURCE_FAIL

Entropy source failed.

For return codes indicating exceptions, see “Return codes” on page 132.

40 Linux on Z and LinuxONE: libica Programmer's Reference

ica_drbg_uninstantiate

Purpose
This function destroys an existing ica_drbg instance.

Format

int ica_drbg_uninstantiate(ica_drbg_t **sh);

Parameters
ica_drbg_t **sh

State handle pointer. The corresponding DRBG instantiation is destroyed and the state handle is set to
NULL (invalid).

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_drbg_health_test

Purpose
This function runs a health test for the complete ica_drbg function mechanism.

Format

int ica_drbg_health_test(void *func,
 int sec,
 bool pr,
 ica_drbg_mech_t *mech);

Parameters
void *func

Pointer indicating which function should be tested. Options are:

ica_drbg_instantiate
ica_drbg_reseed
ica_drbg_generate

The ica_drbg_instantiate function is tested whenever other functions are tested.
int sec

Security strength. Argument for the call to the function denoted by parameter func.
bool pr

Prediction resistance. Argument for the call to the function denoted by parameter func.
ica_drbg_mech_t *mech

Pointer to the mechanism to be tested.

Chapter 3. Application programming interfaces 41

Return codes
0

Success
ICA_DBRG_HEALTH_TEST_FAIL

Health test failed.
ENOTSUP

Prediction resistance or the requested security strength is not supported.
ICA_DBRG_ENTROPY_SOURCE_FAIL

Entropy source failed.

For return codes indicating exceptions, see “Return codes” on page 132.

RSA key generation functions
These functions generate an RSA public/private key pair. They are performed using software through
OpenSSL. Hardware is not used.

These functions are declared in: include/ica_api.h.

ica_rsa_key_generate_mod_expo

Purpose
Generates RSA keys in modulus/exponent format.

Comments
For specific information about some of these parameters, see the considerations in “Data structures” on
page 128.

Format

unsigned int ica_rsa_key_generate_mod_expo(ica_adapter_handle_t adapter_handle,
 unsigned int modulus_bit_length,
 ica_rsa_key_mod_expo_t *public_key,
 ica_rsa_key_mod_expo_t *private_key);

Parameters
ica_adapter_handle_t adapter_handle

Pointer to a previously opened device handle.
unsigned int modulus_bit_length

Length in bits of the modulus. This value should comply with the length of the keys (in bytes),
according to this calculation:

key_length = (modulus_bits + 7) / 8

ica_rsa_key_mod_expo_t *public_key
Pointer to where the generated public key is to be placed. If the exponent element in the public key
is not set, it is randomly generated. A poorly chosen exponent could result in the program looping
endlessly. Common public exponents are 3 and 65537.

ica_rsa_key_mod_expo_t *private_key
Pointer to where the generated private key in modulus/exponent format is to be placed. The length of
both the private and public keys should be set in bytes. This value should comply with the length of
the keys (in bytes), according to this calculation:

42 Linux on Z and LinuxONE: libica Programmer's Reference

key_length = (modulus_bits + 7) / 8

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_rsa_key_generate_crt

Purpose
Generates RSA keys in Chinese-Remainder Theorem (CRT) format.

Comments
This function allows users to generate RSA keys for any granularity in the range 57 - 4096 bits. For
specific information about some of these parameters, see the considerations in “Data structures” on page
128.

Format

unsigned int ica_rsa_key_generate_crt(ica_adapter_handle_t adapter_handle,
 unsigned int modulus_bit_length,
 ica_rsa_key_mod_expo_t *public_key,
 ica_rsa_key_crt_t *private_key);

Parameters
ica_adapter_handle_t adapter_handle

Pointer to a previously opened device handle.
unsigned int modulus_bit_length

Length in bits of the modulus part of the key. This value should comply with the length of the keys (in
bytes), according to this calculation:

key_length = (modulus_bits + 7) / 8

ica_rsa_key_mod_expo_t *public_key
Pointer to where the generated public key is to be placed. If the exponent element in the public
key is not set, it is randomly generated. A poorly chosen exponent can result in the program looping
endlessly. Common public exponents are 3 and 65537.

ica_rsa_key_crt_t *private_key
Pointer to where the generated private key in CRT format is to be placed. Length of both private and
public keys should be set in bytes. This value should comply with the length of the keys (in bytes),
according to this calculation

key_length = (modulus_bits + 7) / 8

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

Chapter 3. Application programming interfaces 43

ica_rsa_crt_key_check

Purpose
Analyzes an RSA CRT key and checks if the components are conform with the IBM cryptographic
architecture. If necessary the key is converted to a conform format that can be used for IBM
cryptographic hardware acceleration.

Checks if the RSA key credentials in CRT format are presented in privileged form, respectively whether
prime p is greater than prime q (p > q) In case of p < q, key credentials p and q as well as dp and dq
are swapped and qInverse is recalculated.

Format
unsigned int ica_rsa_crt_key_check(ica_rsa_key_crt_t *rsa_key);

Parameters
ica_rsa_key_crt_t *rsa_key

Pointer to the key to be used in CRT format.

Return codes
0

All key credentials are in the correct format.
1

Key credentials were recalculated.
ENOMEM

Memory allocation fails.

For return codes indicating exceptions, see “Return codes” on page 132.

RSA encrypt and decrypt operations
These functions perform a modulus/exponent operation using an RSA key whose type is either
ica_rsa_key_mod_expo_t or ica_rsa_key_crt_t. They exploit the available cryptographic accelerators and
CCA coprocessors.

These functions are declared in: include/ica_api.h.

ica_rsa_mod_expo

Purpose
Performs an RSA encryption or decryption operation using a key in modulus/exponent format.

Comments
Make sure that your message is padded before using this function.

Format

unsigned int ica_rsa_mod_expo(ica_adapter_handle_t adapter_handle,
 unsigned char *input_data,
 ica_rsa_key_mod_expo_t *rsa_key,
 unsigned char *output_data);

44 Linux on Z and LinuxONE: libica Programmer's Reference

Required hardware support
Cryptographic accelerators or CCA coprocessors.

Parameters
ica_adapter_handle_t adapter_handle

Pointer to a previously opened device handle.
unsigned char *input_data

Pointer to the input data to be encrypted or decrypted. This data must be in big endian format. Make
sure that the input data is not longer than the bit length of the key. The byte length for the input data
and the key must be the same. Right align the input data inside the data block.

ica_rsa_key_mod_expo_t *rsa_key
Pointer to the key to be used, in modulus/exponent format.

unsigned char *output_data
Pointer to the location where the output results are to be placed. This buffer has to be at least the
same size as input_data and therefore at least the same size as the size of the modulus.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_rsa_crt

Purpose
Performs an RSA encryption or decryption operation using a key in CRT format.

Comments
Make sure that your message is padded before using this function.

Format

unsigned int ica_rsa_crt(ica_adapter_handle_t adapter_handle,
 unsigned char *input_data,
 ica_rsa_key_crt_t *rsa_key,
 unsigned char *output_data);

Required hardware support
Cryptographic accelerators or CCA coprocessors.

Parameters
ica_adapter_handle_t adapter_handle

Pointer to a previously opened device handle.
unsigned char *input_data

Pointer to the input data to be encrypted or decrypted. This data must be in big endian format. Make
sure that the input data is not longer than the bit length of the key. The byte length for the input data
and the key must be the same. Right align the input data inside the data block.

ica_rsa_key_crt_t *rsa_key
Pointer to the key to be used, in CRT format.

Chapter 3. Application programming interfaces 45

unsigned char *output_data
Pointer to the location where the output results are to be placed. This buffer must be as large as the
input_data, and as large as the length of the modulus specified in rsa_key.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

Elliptic curve cryptography (ECC) functions
Elliptic curve cryptography (ECC) is an encryption technique that provides public key encryption based
on elliptic curves. Compared to RSA, it achieves the same security level with much smaller keys. The
mathematical background of ECC is described in RFC 6090 (https://datatracker.ietf.org/doc/html/rfc6090).
The use of ECC in SSL/TLS is described in RFC 4492 (https://datatracker.ietf.org/doc/html/rfc4492).

The ECC functions make use of the ECC support of the Crypto Express4S feature or later in CCA
coprocessor mode. They require a minimum CCA firmware level of 4.2 on the coprocessor.

These functions are declared in: include/ica_api.h.

You can use the icainfo utility with option -c to list all elliptic curves that are supported by libica on
your current system configuration. The availability of curves is, for example, dependent from whether
cryptographic coprocessors in CCA mode are available, whether OpenSSL is in FIPS mode, or whether the
whole system is in FIPS mode. For further information, see “icainfo - Show available libica functions” on
page 133.

Create an elliptic curve (EC) key

An EC key pair consists of a scalar (D) and a point (X,Y), which lies on the related elliptic curve. Hereby, D
is the private part and (X,Y) is the public part of the key.

The value of the private key D is specified by an octet string whose length depends on the domain
parameters of the related elliptic curve. The public key (X,Y) can be derived from D and the curve’s domain
parameters.

So an EC key pair is specified either by

• the curve and the D-value, or
• the curve-ID (NID value), D-value, and (X,Y).

In libica, an EC key pair is always specified by (NID, D, (X,Y)). The corresponding data type in libica is
ICA_EC_KEY.

An ICA_EC_KEY object is called a public EC key, if (X,Y) is specified, but D is not specified. An
ICA_EC_KEY object is called a private EC key if D is specified, and optionally also (X,Y).

A public EC key may be given in compressed form, which means that only the X-value is provided. The
missing Y-value can be recalculated from the curve-ID (NID value), D, and X. However, libica does not
support compressed public EC keys.

Calculate the Diffie-Hellman (DH) shared secret

In SSL/TLS, ECC is used together with the Diffie-Hellman key agreement protocol that allows two parties
(A and B), each having an elliptic curve public/private key pair, to establish a shared secret (z) over an
insecure channel. This shared secret may be directly used as a key, or to derive another key. The length
of z is equal to the length of D. Unlike to plain RSA-based SSL/TLS key exchange, the DH shared secret
(z-value) is not part of the SSL/TLS connection and therefore provides forward secrecy.

46 Linux on Z and LinuxONE: libica Programmer's Reference

Create or verify an ECDSA signature

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a variant of the Digital Signature Algorithm
(DSA) which uses elliptic curve cryptography. Given data is signed with an ECC private key and signature
verification is done with an ECC public key. Signing given data using ECDSA results in different signatures
when repeating the process, because the algorithm involves a random value (k). This random value
is created internally by the signature creation process and is re-calculated when verifying the ECDSA
signature.

An ECDSA signature is a tuple of two numbers (r,s). In libica, an ECDSA signature has always an even
length, and r is given by the first half, and s by the second half of the signature. In some cases, for
example, using the secp521 curve, r or s may have 65 or 66 bytes. In libica, additional 0x00 bytes are
padded at the front in such cases to enforce that r and s have the same length as D.

ica_ec_key_new

Purpose
Creates an ICA_EC_KEY data structure for a new elliptic curve key.

Format

ICA_EC_KEY* ica_ec_key_new(unsigned int nid,
 unsigned int *privlen);

Required hardware support
None.

Parameters
unsigned int nid

The identifier of the elliptic curve, on which the new key (ICA_EC_KEY) shall be based. These
identifiers are defined by OpenSSL.

NID value NID name (OpenSSL) Elliptic curve D length
(bytes)

409 NID_X9_62_prime192v secp192r1 24

713 NID_secp224r1 secp224r1 28

415 NID_X9_62_prime256v1 secp256r1 32

715 NID_secp384r1 secp384r1 48

716 NID_secp521r1 secp521r1 66

921 NID_brainpoolP160r1 brainpoolP160r1 20

923 NID_brainpoolP192r1 brainpoolP192r1 24

925 NID_brainpoolP224r1 brainpoolP224r1 28

927 NID_brainpoolP256r1 brainpoolP256r1 32

929 NID_brainpoolP320r1 brainpoolP320r1 40

931 NID_brainpoolP384r1 brainpoolP384r1 48

933 NID_brainpoolP512r1 brainpoolP512r1 64

Chapter 3. Application programming interfaces 47

unsigned int *privlen
Pointer to an unsigned integer buffer where the length of the private D value of the key (ICA_EC_KEY)
is returned.

Note: The lengths of X and Y are the same as the length of D. Therefore, the public key (X,Y) has twice the
length of D. Also, an ECDSA signature has twice the length of D.

Return codes
Returns a pointer to the opaque ICA_EC_KEY structure if successful.

Returns NULL if no memory could be allocated.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_ec_key_init

Purpose
Initializes an ICA_EC_KEY data structure with given private (D) or public key values (X,Y) or both. D may
be NULL, if no private key value shall be specified. X and Y may both be NULL, if no public key shall be
specified. If X is specified, also Y must be specified, and vice versa.

Format

int ica_ec_key_init(const unsigned char *X,
 const unsigned char *Y,
 const unsigned char *D,
 ICA_EC_KEY *key);

Required hardware support
None.

Parameters
const unsigned char *X

Pointer to the public X value that shall be assigned to the ICA_EC_KEY object.
const unsigned char *Y

Pointer to the public Y value that shall be assigned to the ICA_EC_KEY object.
const unsigned char *D

Pointer to the private D value that shall be assigned to the ICA_EC_KEY object.
ICA_EC_KEY *key

Pointer to a previously allocated ICA_EC_KEY data structure.

Return codes
0

Success
EPERM

If the EC curve is not supported in this environment.

For return codes indicating exceptions, see “Return codes” on page 132.

48 Linux on Z and LinuxONE: libica Programmer's Reference

ica_ec_key_generate

Purpose
Generates private and public key values for a given ICA_EC_KEY data structure.

Format

int ica_ec_key_generate(ica_adapter_handle_t adapter_handle,
 ICA_EC_KEY *key);

Required hardware support
At least, a Crypto Express4S CCA coprocessor is required (CEX4C or later).

Parameters
ica_adapter_handle_t adapter_handle

Pointer to a previously opened device handle.
ICA_EC_KEY *key

Pointer to a previously allocated ICA_EC_KEY data structure.

Return codes
0

Success
EINVAL

If at least one invalid parameter is given.
ENOMEM

If memory could not be allocated.
EFAULT

If an internal processing error occurred.
EPERM

If the EC curve is not supported in this environment.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_ec_key_free

Purpose
Frees an ICA_EC_KEY data structure.

Format

void ica_ec_key_free(ICA_EC_KEY *key);

Required hardware support
None.

Chapter 3. Application programming interfaces 49

Parameters
ICA_EC_KEY *key

Pointer to an ICA_EC_KEY data structure.

Return codes
None.

ica_ecdh_derive_secret

Purpose
Calculates the Diffie-Hellman shared secret (z value) of a first given private ICA_EC_KEY data structure
(with given D value) and a second given public ICA_EC_KEY data structure (with given X and Y values).

Format

int ica_ecdh_derive_secret(ica_adapter_handle_t adapter_handle,
 const ICA_EC_KEY *privkey_A,
 const ICA_EC_KEY *pubkey_B,
 unsigned char *z,
 unsigned int z_length);

Required hardware support
At least, a Crypto Express4S CCA coprocessor is required (CEX4C or later).

Parameters
ica_adapter_handle_t adapter_handle

Pointer to a previously opened device handle.
const ICA_EC_KEY *privkey_A

A pointer to a private ICA_EC_KEY object, initialized via ica_ec_key_init or
ica_ec_key_generate.

const ICA_EC_KEY *pubkey_B
A pointer to a public ICA_EC_KEY object, initialized via ica_ec_key_init or
ica_ec_key_generate.

unsigned char *z
Pointer to a writable buffer where the shared secret (z) is returned.

unsigned int z_length
The length in bytes of the z buffer. This length must be greater or equal to privlen, as returned when
creating the ICA_EC_KEY objects. Both keys are supposed to be based on the same elliptic curve, so
both keys have the same length of D, and the same (X,Y).

Return codes
0

Success
EINVAL

If at least one invalid parameter is given.
EFAULT

If an internal processing error occurred.
EPERM

If the EC curve is not supported in this environment.

50 Linux on Z and LinuxONE: libica Programmer's Reference

For return codes indicating exceptions, see “Return codes” on page 132.

ica_ec_get_public_key

Purpose
Obtains the public key (X,Y) of the given ICA_EC_KEY data structure.

Format

int ica_ec_key_get_public_key(const ICA_EC_KEY *key,
 unsigned char *q,
 unsigned int *q_len);

Required hardware support
None.

Parameters
const ICA_EC_KEY *key

Pointer to a previously allocated ICA_EC_KEY data structure.
unsigned char *q

Pointer to a writable buffer where (X,Y) is returned.
unsigned int *q_len

Pointer to an unsigned integer where the length of (X,Y) in bytes is returned.

Return codes
0

Success
EINVAL

If at least one invalid parameter is given.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_ec_get_private_key

Purpose
Obtains the private key (D) of the given ICA_EC_KEY data structure.

Format

int ica_ec_key_get_private_key(const ICA_EC_KEY *key,
 unsigned char *d,
 unsigned int *d_len);

Required hardware support
None.

Chapter 3. Application programming interfaces 51

Parameters
const ICA_EC_KEY *key

Pointer to a previously allocated ICA_EC_KEY data structure.
unsigned char *d

Pointer to a writable buffer where D is returned.
unsigned int *d_len

Pointer to an unsigned integer where the length of D in bytes is returned.

Return codes
0

Success
EINVAL

If at least one invalid parameter is given.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_ecdsa_sign

Purpose
Creates an ECDSA signature for the given hashed data using the given private ICA_EC_KEY data
structure.

Format

int ica_ecdsa_sign(ica_adapter_handle_t adapter_handle,
 const ICA_EC_KEY *privkey,
 const unsigned char *data,
 unsigned int data_length,
 unsigned char *signature,
 unsigned int signature_length);

Required hardware support
At least, a Crypto Express4S CCA coprocessor is required (CEX4C or later).

Parameters
ica_adapter_handle_t adapter_handle

Pointer to a previously opened device handle.
const ICA_EC_KEY *privkey

Pointer to a readable private ICA_EC_KEY object.
const unsigned char *data

Pointer to a readable buffer containing the hashed data for which the signature is to be generated.
unsigned int data_length

The length of the hashed data. Supported lengths are 20, 28, 32, 48, and 64 bytes.
unsigned char *signature

Pointer to a writable buffer where the ECDSA signature is returned.
unsigned int signature_length

The length of the buffer. It must be greater or equal to 2*privlen as returned when creating the
ICA_EC_KEY data structure.

52 Linux on Z and LinuxONE: libica Programmer's Reference

Return codes
0

Success
EINVAL

If at least one invalid parameter is given.
EFAULT

If an internal processing error occurred.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_ecdsa_verify

Purpose
Verifies an ECDSA signature with the given data using the public ICA_EC_KEY data structure.

Format

int ica_ecdsa_verify(ica_adapter_handle_t adapter_handle,
 const ICA_EC_KEY *pubkey,
 const unsigned char *data,
 unsigned int data_length,
 const unsigned char *signature,
 unsigned int signature_length);

Required hardware support
At least, a Crypto Express4S CCA coprocessor is required (CEX4C or later).

Parameters
ica_adapter_handle_t adapter_handle

Pointer to a previously opened device handle.
const ICA_EC_KEY *pubkey

Pointer to a readable public ICA_EC_KEY object.
const unsigned char *data

Pointer to a readable buffer containing the hashed data for which the signature is to be verified.
unsigned int data_length

The length of the hashed data. Supported lengths are 20, 28, 32, 48, and 64 bytes.
unsigned char *signature

Pointer to a readable buffer where the ECDSA signature is provided.
unsigned int signature_length

The length of the buffer. It must be greater or equal to 2*privlen as returned when creating the
ICA_EC_KEY data structure.

Return codes
0

Success
EINVAL

If at least one invalid parameter is given.
EIO

If an internal processing error occurred.

Chapter 3. Application programming interfaces 53

EFAULT
If the signature is invalid.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_x25519_ctx_new

Purpose
Allocates a new X25519 context and returns its address as output parameter. The context buffer is used
by all other ica_x25519_... functions as a working area and must not be changed by the application. It
must be freed by the ica_x25519_ctx_del function when no longer needed.

Format
int ica_x25519_ctx_new(ICA_X25519_CTX **ctx);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_X25519_CTX **ctx

Address of a pointer to an X25519 context.

Return codes
0

Success
-1

If at least one invalid parameter is given or MSA9 is not available.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_x448_ctx_new

Purpose
Allocates a new X448 context and returns its address as output parameter. The context buffer is used by
all other ica_x448_... functions as a working area and must not be changed by the application. It must
be freed by the ica_x448_ctx_del function when no longer needed.

Format
int ica_x448_ctx_new(ICA_X448_CTX **ctx);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_X448_CTX **ctx

Address of a pointer to an X448 context.

54 Linux on Z and LinuxONE: libica Programmer's Reference

Return codes
0

Success
-1

If at least one invalid parameter is given or MSA9 is not available.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_ed25519_ctx_new

Purpose
Allocates a new ED25519 context and returns its address as output parameter. The context buffer is used
by all other ica_ed25519_... functions as a working area and must not be changed by the application.
It must be freed by the corresponding ica_ed25519_ctx_del function when no longer needed.

Format
int ica_ed25519_ctx_new(ICA_ED25519_CTX **ctx);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_ED25519_CTX **ctx

Address of a pointer to an ED25519 context.

Return codes
0

Success
-1

If at least one invalid parameter is given or MSA9 is not available.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_ed448_ctx_new

Purpose
Allocates a new ED448 context and returns its address as output parameter. The context buffer is used
by all other ica_ed448_... functions as a working area and must not be changed by the application. It
must be freed by the corresponding ica_ed448_ctx_del function when no longer needed.

Format
int ica_ed448_ctx_new(ICA_ED448_CTX **ctx);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Chapter 3. Application programming interfaces 55

Parameters
ICA_ED448_CTX **ctx

Address of a pointer to an ED448 context.

Return codes
0

Success
-1

If at least one invalid parameter is given or MSA9 is not available.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_x25519_key_set

Purpose
Copies the given private and public key values into an X25519 context.

Format

int ica_x25519_key_set(ICA_X25519_CTX *ctx,
 const unsigned char priv[32],
 const unsigned char pub[32]);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_X25519_CTX *ctx

Pointer to an X25519 context.
const unsigned char priv[32]

Buffer containing the private key for an X25519 context to be copied to that context.
const unsigned char pub[32]

Buffer containing the public key for an X25519 context to be copied to that context.

Return codes
0

Success
-1

If at least one invalid parameter is given or MSA9 is not available.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_x448_key_set

Purpose
Copies the given private and public key values into an X448 context.

56 Linux on Z and LinuxONE: libica Programmer's Reference

Format

int ica_x448_key_set(ICA_X448_CTX *ctx,
 const unsigned char priv[56],
 const unsigned char pub[56]);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_X448_CTX *ctx

Pointer to an X448 context.
const unsigned char priv[56]

Buffer containing the private key for an X448 context to be copied to that context.
const unsigned char pub[56]

Buffer containing the public key for an X448 context to be copied to that context.

Return codes
0

Success
-1

If at least one invalid parameter is given or MSA9 is not available.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_ed25519_key_set

Purpose
Copies the given private and public key values into an ED25519 context.

Format

int ica_ed25519_key_set(ICA_ED25519_CTX *ctx,
 unsigned char priv[32],
 unsigned char pub[32]);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_ED25519_CTX *ctx

Pointer to an ED25519 context.
unsigned char priv[32]

Buffer containing the private key for an ED25519 context to be copied to that context.
unsigned char pub[32]

Buffer containing the public key for an ED25519 context to be copied to that context.

Chapter 3. Application programming interfaces 57

Return codes
0

Success
-1

If at least one invalid parameter is given or MSA9 is not available.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_ed448_key_set

Purpose
Copies the given private and public key values into an ED448 context.

Format

int ica_ed448_key_set(ICA_ED448_CTX *ctx,
 const unsigned char priv[57],
 const unsigned char pub[57]);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_ED448_CTX *ctx

Pointer to an ED448 context.
const unsigned char priv[57]

Buffer containing the private key for an ED448 context to be copied to that context.
const unsigned char pub[57]

Buffer containing the public key for an ED448 context to be copied to that context.

Return codes
0

Success
-1

If at least one invalid parameter is given or MSA9 is not available.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_x25519_key_get

Purpose
Obtain the private and public key values from a given X25519 context.

Format

int ica_x25519_key_get(ICA_X25519_CTX *ctx,
 unsigned char priv[32],
 unsigned char pub[32]);

58 Linux on Z and LinuxONE: libica Programmer's Reference

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_X25519_CTX *ctx

Pointer to an X25519 context.
const unsigned char priv[32]

Buffer receiving the private key of an X25519 context.
const unsigned char pub[32]

Buffer receiving the public key of an X25519 context.

Return codes
0

Success
-1

If at least one invalid parameter is given, or if MSA9 is not available, or an internal error occurred
when deriving the public from the private key.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_x448_key_get

Purpose
Obtain the private and public key values from a given X448 context.

Format

int ica_x448_key_get(ICA_X448_CTX *ctx,
 const unsigned char priv[56],
 const unsigned char pub[56]);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_X448_CTX *ctx

Pointer to an X448 context.
const unsigned char priv[56]

Buffer receiving the private key of an X448 context.
const unsigned char pub[56]

Buffer receiving the public key of an X448 context.

Return codes
0

Success

Chapter 3. Application programming interfaces 59

-1
If at least one invalid parameter is given, or if MSA9 is not available, or an internal error occurred
when deriving the public from the private key.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_ed25519_key_get

Purpose
Copies the private and public key from the context.

Format

int ica_ed25519_key_get(ICA_ED25519_CTX *ctx,
 unsigned char priv[32],
 unsigned char pub[32]);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_ED25519_CTX *ctx

Pointer to an ED25519 context.
unsigned char priv[32]

Buffer receiving the private key of an ED25519 context.
unsigned char pub[32]

Buffer receiving the public key of an ED25519 context.

Return codes
0

Success
-1

If at least one invalid parameter is given, or if MSA9 is not available, or an internal error occurred
when deriving the public from the private key.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_ed448_key_get

Purpose
Copies the private and public key from the context.

Format

int ica_ed448_key_get(ICA_ED448_CTX *ctx,
 unsigned char priv[57],
 unsigned char pub[57]);

60 Linux on Z and LinuxONE: libica Programmer's Reference

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_ED448_CTX *ctx

Pointer to an ED448 context.
unsigned char priv[57]

Buffer receiving the private key of an ED448 context.
unsigned char pub[57]

Buffer receiving the public key of an ED448 context.

Return codes
0

Success
-1

If at least one invalid parameter is given, or if MSA9 is not available, or an internal error occurred
when deriving the public from the private key.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_x25519_key_gen

Purpose
Generates a private and a public key value for a given X25519 context.

Format

int ica_x25519_key_gen(ICA_X25519_CTX *ctx);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_X25519_CTX *ctx

Pointer to an X25519 context.

Return codes
0

Success
-1

If at least one invalid parameter is given or MSA9 is not available.

For return codes indicating exceptions, see “Return codes” on page 132.

Chapter 3. Application programming interfaces 61

ica_x448_key_gen

Purpose
Generates a private and a public key value for a given X448 context.

Format

int ica_x448_key_gen(ICA_X448_CTX *ctx);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_X448_CTX *ctx

Pointer to an X448 context.

Return codes
0

Success
-1

If at least one invalid parameter is given or MSA9 is not available.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_ed25519_key_gen

Purpose
Generates a private and a public key value for a given ED25519 context.

Format

int ica_ed25519_key_gen(ICA_ED25519_CTX *ctx);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_ED25519_CTX *ctx

Pointer to an ED25519 context.

Return codes
0

Success
-1

If at least one invalid parameter is given or MSA9 is not available.

62 Linux on Z and LinuxONE: libica Programmer's Reference

For return codes indicating exceptions, see “Return codes” on page 132.

ica_ed448_key_gen

Purpose
Generates a private and a public key value for a given ED448 context.

Format

int ica_ed448_key_gen(ICA_ED448_CTX *ctx);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_ED448_CTX *ctx

Pointer to an ED448 context.

Return codes
0

Success
-1

If at least one invalid parameter is given or MSA9 is not available.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_x25519_derive

Purpose
Derive a shared secret between the private key of party A stored in the context, and the given public key
of party B. Requires the context to hold the private key of party A.

Format

int ica_x25519_key_derive(ICA_X25519_CTX *ctx,
 unsigned char shared_secret[32],
 const unsigned char peer_pub[32]);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_X25519_CTX *ctx

Pointer to an X25519 context.
unsigned char shared_secret[32]

Buffer to return the derived shared secret between party A and party B.

Chapter 3. Application programming interfaces 63

const unsigned char peer_pub[32]
Buffer containing the given public key of party B as input.

Return codes
0

Success
-1

If at least one invalid parameter is given or MSA9 is not available, or the key derivation failed.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_x448_derive

Purpose
Derives a shared secret between the private key of party A stored in the context, and the given public key
of party B. Requires the context to hold the private key of party A.

Format

int ica_x448_derive(ICA_X448_CTX *ctx,
 unsigned char shared_secret[56],
 const unsigned char peer_pub[56]);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_X448_CTX *ctx

Pointer to an X448 context.
unsigned char shared_secret[56]

Buffer to return the derived shared secret between party A and party B.
const unsigned char peer_pub[56]

Buffer containing the given public key of party B as input.

Return codes
0

Success
-1

If at least one invalid parameter is given or MSA9 is not available, or the key derivation failed.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_ed25519_sign

Purpose
Signs the given input message with the private key contained in the context and returns the 64-byte
ed25519 signature.

64 Linux on Z and LinuxONE: libica Programmer's Reference

Format

int ica_ed25519_sign(ICA_ED25519_CTX *ctx,
 unsigned char sig[64],
 const unsigned char *msg,
 size_t msglen);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_ED25519_CTX *ctx

Pointer to an ED25519 context.
unsigned char sig[64]

Buffer containing the returned signature.
const unsigned char *msg

Buffer containing the input message to be signed.
size_t msglen

Length in bytes of the input message to be signed.

Return codes
0

Success
-1

If at least one invalid parameter is given or MSA9 is not available.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_ed448_sign

Purpose
Signs the given input message with the private key contained in the context and returns the 114-byte
ed448 signature.

Format

int ica_ed448_sign(ICA_ED448_CTX *ctx,
 unsigned char sig[114],
 const unsigned char *msg,
 size_t msglen);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_ED448_CTX *ctx

Pointer to an ED448 context.

Chapter 3. Application programming interfaces 65

unsigned char sig[114]
Buffer containing the returned signature.

const unsigned char *msg
Buffer containing the input message to be signed.

size_t msglen
Length in bytes of the input message to be signed.

Return codes
0

Success
-1

If at least one invalid parameter is given or MSA9 is not available.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_ed25519_verify

Purpose
Verifies the given ED25519 signature using the public key from the context against the given message.
Returns 0 if the signature is valid, returns -1 if the signature is invalid or an internal error occurred. If the
context does not contain the public key, it is internally derived from the private key in the context.

Format

int ica_ed25519_verify(ICA_ED25519_CTX *ctx,
 unsigned char sig[64],
 const unsigned char *msg,
 size_t msglen);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_ED25519_CTX *ctx

Pointer to an ED25519 context.
unsigned char sig[64]

Buffer containing the signature as input.
const unsigned char *msg

Buffer containing the message as input.
size_t msglen

Length of the input message to be verified.

Return codes
0

Success. Signature is OK.
-1

If at least one invalid parameter is given, or MSA9 is not available. Also, if deriving the public from the
private key fails and if the signature could not be correctly verified.

For return codes indicating exceptions, see “Return codes” on page 132.

66 Linux on Z and LinuxONE: libica Programmer's Reference

ica_ed448_verify

Purpose
Verifies the given ED448 signature using the public key from the context against the given message.
Returns 0 if the signature is valid, returns -1 if the signature is invalid or an internal error occurred. If the
context does not contain the public key, it is internally derived from the private key in the context.

Format

int ica_ed448_verify(ICA_ED448_CTX *ctx,
 unsigned char sig[114],
 const unsigned char *msg,
 size_t msglen);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_ED448_CTX *ctx

Pointer to an ED448 context.
unsigned char sig[114]

Buffer containing the input signature.
const unsigned char *msg

Buffer containing the message as input.
size_t msglen

Length in bytes of the input message to be verified.

Return codes
0

Success. Signature is OK.
-1

If at least one invalid parameter is given, or MSA9 is not available. Also, if deriving the public from the
private key fails and if the signature could not be correctly verified.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_x25519_ctx_del

Purpose
Deallocates a previously allocated X25519 context. Its sensitive data is erased.

Format

int ica_x25519_ctx_del(ICA_X25519_CTX **ctx);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Chapter 3. Application programming interfaces 67

Parameters
ICA_X25519_CTX **ctx

Address of a pointer to the X25519 context to be deleted.

Return codes
0

Success
-1

If at least one invalid parameter is given or MSA9 is not available.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_x448_ctx_del

Purpose
Deallocates a previously allocated X448 context. Its sensitive data is erased.

Format

int ica_x448_ctx_del(ICA_X448_CTX **ctx);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_X448_CTX **ctx

Address of a pointer to the X448 context to be deleted.

Return codes
0

Success
-1

If at least one invalid parameter is given or MSA9 is not available.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_ed25519_ctx_del

Purpose
Deallocates a previously allocated ED25519 context. Its sensitive data is erased.

Format

int ica_ed25519_ctx_del(ICA_ED25519_CTX **ctx);

68 Linux on Z and LinuxONE: libica Programmer's Reference

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_ED25519_CTX **ctx

Address of a pointer to the ED25519 context to be deleted.

Return codes
0

Success
-1

If at least one invalid parameter is given or MSA9 is not available.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_ed448_ctx_del

Purpose
Deallocates a previously allocated ED448 context. Its sensitive data is erased.

Format

int ica_ed448_ctx_del(ICA_ED448_CTX **ctx);

Required hardware support
The processor must have the MSA9 facility (STFLE bit 155) installed which is available starting with IBM
z15 systems.

Parameters
ICA_ED448_CTX **ctx

Address of a pointer to the ED448 context to be deleted.

Return codes
0

Success
-1

If at least one invalid parameter is given or MSA9 is not available.

For return codes indicating exceptions, see “Return codes” on page 132.

AES functions
These functions perform encryption and decryption or computation or verification of message
authentication codes using an AES key. Supported key lengths are 16, 24 or 32 bytes for AES-128,
AES-192 and AES-256 respectively. The cipher block size for AES is 16 bytes.

These functions are declared in: include/ica_api.h.

Chapter 3. Application programming interfaces 69

To securely apply AES encryption to messages that are longer than the cipher block size, modes of
operation can be used to chain multiple encryption, decryption, or authentication operations. Most modes
of operation require an initialization vector as additional input.

As long as the messages are encrypted or decrypted using such a mode of operation, have a size that is
a multiple of a particular block size (mostly the cipher block size), the functions encrypting or decryption
according to a mode of operation also compute an output vector. The output vector can be used as the
initialization vector of a chained encryption or decryption operation in the same mode with the same
block size and the same key.

When decrypting a cipher text, the mode of operation, the key, the initialization vector (if applicable), and
for ica_aes_cfb, the lcfb value used for the decryption function must match the corresponding settings
of the encryption function that transformed the plain text into cipher text.

AES API functions exploiting the KMA instruction

libica offers an enhanced API for the AES cipher in GCM block cipher mode. It consists of six API functions
that exploit the cipher message with authentication (KMA) instruction. This KMA instruction is part of the
message-security-assist extension 8 (MSA 8) and runs on the CPACF starting with z14 processors.

GCM API functions provided by libica earlier than version 3.2 also use the new KMA instruction on z14
processors. However, the enhanced GCM APIs offer advantages concerning usability and performance.
Therefore, consider to use these APIs instead of the existing ones in all of your applicable applications.

You find the descriptions of the enhanced GCM APIs in the following topics:

• “ica_aes_gcm_kma_ctx_new” on page 88
• “ica_aes_gcm_kma_ctx_free” on page 88
• “ica_aes_gcm_kma_init” on page 89
• “ica_aes_gcm_kma_update” on page 90
• “ica_aes_gcm_kma_get_tag” on page 92
• “ica_aes_gcm_kma_verify_tag” on page 92

ica_aes_cbc

Purpose
Encrypt or decrypt data with an AES key using Cipher Block Chaining (CBC) mode, as described in NIST
Special Publication 800-38A Chapter 6.2.

Format

unsigned int ica_aes_cbc(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *key,
 unsigned int key_length,
 unsigned char *iv,
 unsigned int direction);

Required hardware support
KMC-AES-128, KMC-AES-192, or KMC-AES-256

70 Linux on Z and LinuxONE: libica Programmer's Reference

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. The size of this buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted message. The size of this
buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data. data_length must be a multiple of the cipher block size (a multiple of 16 for AES).

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32, for AES-128, AES-192, and
AES-256 respectively. Therefore, you can use the definitions: AES_KEY_LEN128, AES_KEY_LEN192,
and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block in bytes. This vector is
overwritten during the function. The result value in iv can be used as the initialization vector for a
chained ica_aes_cbc or ica_aes_cbc_cs call with the same key.

unsigned int direction
0

Use the decrypt function.
1

Use the encrypt function.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_aes_cbc_cs

Purpose
Encrypt or decrypt data with an AES key using Cipher Block Chaining with Ciphertext Stealing (CBC-CS)
mode, as described in NIST Special Publication 800-38A Chapter 6.2, and the Addendum to NIST
Special Publication 800-38A on Recommendation for Block Cipher Modes of Operation: Three Variants
of Ciphertext Stealing for CBC Mode.

ica_aes_cbc_cs can be used to encrypt or decrypt the last chunk of a message consisting of
multiple chunks, where all chunks except the last one are encrypted or decrypted by chained calls to
ica_aes_cbc. To do this, the resulting iv of the last call to ica_aes_cbc is fed into the iv of the
ica_aes_cbc_cs call, provided that the chunk is greater than the cipher block size (greater than 16
bytes for AES).

Format

unsigned int ica_aes_cbc_cs(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *key,
 unsigned int key_length,
 unsigned char *iv,

Chapter 3. Application programming interfaces 71

 unsigned int direction,
 unsigned int variant);

Required hardware support
KMC-AES-128, KMC-AES-192 or KMC-AES-256

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. The size of this buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted message. The size of this
buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data. data_length must be greater than or equal to the cipher block size (16 bytes for AES).

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32, for AES-128, AES-192, and
AES-256 respectively. . Therefore, you can use the definitions: AES_KEY_LEN128, AES_KEY_LEN192,
and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes. This vector is overwritten
during the function. For variant equal to 1 or variant equal to 2, the result value in iv can be used as
the initialization vector for a chained ica_aes_cbc or ica_aes_cbc_cs call with the same key, if
data_length is a multiple of the cipher block size.

unsigned int direction
0

Use the decrypt function.
1

Use the encrypt function.
unsigned int variant

1
Use variant CBC-CS1 of the Addendum to NIST Special Publication 800-38A to encrypt or decrypt
the message: always keep last two blocks in order.

2
Use variant CBC-CS2 of the Addendum to NIST Special Publication 800-38A to encrypt or decrypt
the message: switch order of the last two blocks if data_length is not a multiple of the cipher block
size (a multiple of 16 bytes for AES).

3
Use variant CBC-CS3 of the Addendum to NIST Special Publication 800-38A to encrypt or decrypt
the message: always switch order of the last two blocks.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

72 Linux on Z and LinuxONE: libica Programmer's Reference

ica_aes_ccm

Purpose
Encrypt and authenticate or decrypt data and check authenticity of data with an AES key using Counter
with Cipher Block Chaining Message Authentication Code (CCM) mode, as described in NIST Special
Publication 800-38C. Formatting and counter functions are implemented according to NIST 800-38C
Appendix A.

Format

unsigned int ica_aes_ccm(unsigned char *payload,
 unsigned long payload_length,
 unsigned char *ciphertext_n_mac,
 unsigned int mac_length,
 const unsigned char *assoc_data,
 unsigned long assoc_data_length,
 const unsigned char *nonce,
 unsigned int nonce_length,
 const unsigned char *key,
 unsigned int key_length,
 unsigned int direction);

Required hardware support
KMCTR-AES-128, KMCTR-AES-192, or KMCTR-AES-256
KMAC-AES-128, KMAC-AES-192, or KMAC-AES-256

Parameters
unsigned char *payload

Pointer to a buffer of size greater than or equal to payload_length bytes. If direction is equal to
1, the payload buffer must be readable and contain a payload message of size payload_length to
be encrypted. If direction is equal to 0, the payload buffer must be writable. If the authentication
verification succeeds, the decrypted message in the most significant payload_length bytes of
ciphertext_n_mac is written to this buffer. Otherwise, the contents of this buffer is undefined.

unsigned long payload_length
Length in bytes of the message to be encrypted or decrypted. This value can be 0 unless
assoc_data_length is equal to 0.

unsigned char *ciphertext_n_mac
Pointer to a buffer of size greater than or equal to payload_length plus mac_length bytes. If direction
is equal to 1, the buffer must be writable and the encrypted message from payload followed by the
message authentication code for the nonce, the payload, and associated data are written to that
buffer. If direction is equal to 0, then the buffer is readable and contains an encrypted message of
length payload_length followed by a message authentication code of length mac_length.

unsigned int mac_length
Length in bytes of the message authentication code. Valid values are: 4, 6, 8, 10, 12, and 16.

const unsigned char *assoc_data
Pointer to a readable buffer of size greater than or equal to assoc_data_length bytes. The
associated data in the most significant assoc_data_length bytes is subject to the authentication code
computation, but is not encrypted.

unsigned long assoc_data_length
Length of the associated data in assoc_data. This value can be 0 unless payload_length is equal to 0.

const unsigned char *nonce
Pointer to readable buffer of size greater than or equal to nonce_length bytes, which contains a nonce
(number used once) of size nonce_length bytes.

Chapter 3. Application programming interfaces 73

unsigned int nonce_length
Length of the nonce in bytes. Valid values are greater than 6 and less than 14.

const unsigned char *key
Specifies a pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128, AES-192 and
AES-256 respectively. Therefore, you can use the definitions: AES_KEY_LEN128, AES_KEY_LEN192,
and AES_KEY_LEN256.

unsigned int direction
0

Use the decrypt function.
1

Use the encrypt function.

Return codes
0

Success
EFAULT

If direction is equal to 0 and the verification of the message authentication code fails.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_aes_cfb

Purpose
Encrypt or decrypt data with an AES key using Cipher Feedback (CFB) mode, as described in NIST Special
Publication 800-38A Chapter 6.3.

Format

unsigned int ica_aes_cfb(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *key,
 unsigned int key_length,
 unsigned char *iv,
 unsigned int lcfb,
 unsigned int direction);

Required hardware support
KMF-AES-128, KMF-AES-192, or KMF-AES-256

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. The size of this buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted message. The size of this
buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data.

74 Linux on Z and LinuxONE: libica Programmer's Reference

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32, for AES-128, AES-192, and
AES-256 respectively. Therefore, you can use the definitions: AES_KEY_LEN128, AES_KEY_LEN192,
and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block in bytes (16 bytes for AES).
This vector is overwritten during the function. The result value in iv can be used as the initialization
vector for a chained ica_aes_cfb call with the same key, if the data_length in the preceding call is a
multiple of lcfb.

unsigned int lcfb
Length in bytes of the cipher feedback, which is a value greater than or equal to 1 and less than or
equal to the cipher block size (16 bytes for AES).

unsigned int direction
0

Use the decrypt function.
1

Use the encrypt function.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_aes_cmac

Purpose
Authenticate data or verify the authenticity of data with an AES key using the Block Cipher Based Message
Authentication Code (CMAC) mode, as described in NIST Special Publication 800-38B. ica_aes_cmac
can be used to authenticate or verify the authenticity of a complete message.

Format

unsigned int ica_aes_cmac(const unsigned char *message,
 unsigned long message_length,
 unsigned char *mac,
 unsigned int mac_length,
 const unsigned char *key,
 unsigned int key_length,
 unsigned int direction);

Required hardware support
KMAC-AES-128, KMAC-AES-192 or KMAC-AES-256
PCC-Compute-Last_block-CMAC-Using-AES-128, PCC-Compute-Last_block-CMAC-Using-AES-192, or
PCC-Compute-Last_block-CMAC-Using-AES-256

Parameters
const unsigned char *message

Pointer to a readable buffer of size greater than or equal to message_length bytes. This buffer contains
a message to be authenticated, or of which the authenticity is to be verified.

Chapter 3. Application programming interfaces 75

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction is equal to 1, the
buffer must be writable and a message authentication code for the message in message of size
mac_length bytes is written to this buffer. If direction is equal to 0, this buffer must be readable and
contain a message authentication code to be verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac in bytes, which is less than or equal to the
cipher block size (16 bytes for AES). It is recommended to use values greater than or equal to 8.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128, AES-192, and
AES-256 respectively. Therefore, you can use the definitions: AES_KEY_LEN128, AES_KEY_LEN192,
and AES_KEY_LEN256.

unsigned int direction
0

Verify message authentication code.
1

Compute message authentication code for the message.

Return codes
0

Success
EFAULT

If direction is equal to 0 and the verification of the message authentication code fails.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_aes_cmac_intermediate

Purpose
Authenticate data or verify the authenticity of data with an AES key using the Block Cipher
Based Message Authentication Code (CMAC) mode, as described in NIST Special Publication
800-38B. ica_aes_cmac_intermediate and ica_aes_cmac_last can be used when the
message to be authenticated or to be verified using CMAC is supplied in multiple chunks.
ica_aes_cmac_intermediate is used to process all but the last chunk. All message chunks to be
processed by ica_aes_cmac_intermediate must have a size that is a multiple of the cipher block size
(a multiple of 16 bytes for AES).

Note that ica_aes_cmac_intermediate has no direction argument. This function can be used during
authentication and during authenticity verification.

Format

unsigned int ica_aes_cmac_intermediate(const unsigned char *message,
 unsigned long message_length,
 const unsigned char *key,
 unsigned int key_length,
 unsigned char *iv);

76 Linux on Z and LinuxONE: libica Programmer's Reference

Required hardware support
KMAC-AES-128, KMAC-AES-192, or KMAC-AES-256

Parameters
const unsigned char *message

Pointer to a readable buffer of size greater than or equal to message_length bytes. This buffer contains
a non-final part of a message, to be authenticated or of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message part in message. This value must be a multiple of the cipher block size.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128, AES-192, and
AES-256 respectively. Therefore, you can use the definitions: AES_KEY_LEN128, AES_KEY_LEN192,
and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes (16 bytes for AES). For the
first message part, this parameter must be set to a string of zeros. For processing the n-th message
part, this parameter must be the resulting iv value of the ica_aes_cmac_intermediate function
applied to the (n-1)-th message part. This vector is overwritten during the function. The result value in
iv can be used as the initialization vector for a chained call to ica_aes_cmac_initermediate or to
ica_aes_cmac_last with the same key.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_aes_cmac_last

Purpose
Authenticate data or verify the authenticity of data with an AES key using the Block Cipher
Based Message Authentication Code (CMAC) mode, as described in NIST Special Publication
800-38B. ica_aes_cmac_last can be used to authenticate or verify the authenticity of a complete
message, or of the final part of a message for which all preceding parts were processed with
ica_aes_cmac_intermediate.

Format

unsigned int ica_aes_cmac_last(const unsigned char *message,
 unsigned long message_length,
 unsigned char *mac,
 unsigned int mac_length,
 const unsigned char *key,
 unsigned int key_length,
 unsigned char *iv,
 unsigned int direction);

Required hardware support
KMAC-AES-128, KMAC-AES-192 or KMAC-AES-256
PCC-Compute-Last_block-CMAC-Using-AES-128, PCC-Compute-Last_block-CMAC-Using-AES-192, or
PCC-Compute-Last_block-CMAC-Using-AES-256

Chapter 3. Application programming interfaces 77

Parameters
const unsigned char *message

Pointer to a readable buffer of size greater than or equal to message_length bytes. This buffer contains
a message or the final part of a message to be authenticated, or of which the authenticity is to be
verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction is equal to 1, the
buffer must be writable and a message authentication code for the message in message of size
mac_length bytes is written to the buffer. If direction is equal to 0, the buffer must be readable and
contain a message authentication code that is verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac in bytes, which is less than or equal to the
cipher block size (16 bytes for AES). It is recommended to use values greater than or equal to 8.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128, AES-192, and
AES-256 respectively. Therefore, you can use the definitions: AES_KEY_LEN128, AES_KEY_LEN192,
and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes. If iv is NULL, message
is assumed to be the complete message to be processed. Otherwise, message is the final part of a
composite message to be processed, and iv contains the output vector resulting from processing all
previous parts with chained calls to ica_aes_cmac_intermediate (the value returned in iv of the
ica_aes_cmac_intermediate call applied to the penultimate message part).

unsigned int direction
0

Verify message authentication code.
1

Compute message authentication code for the message.

Return codes
0

Success
EFAULT

If direction is equal to 0 and the verification of the message authentication code fails.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_aes_ctr

Purpose
Encrypt or decrypt data with an AES key using Counter (CTR) mode, as described in NIST Special
Publication 800-38A Chapter 6.5. With the counter mode, each message block of cipher block size (16
bytes for AES) is combined with a counter value of the same size during encryption and decryption.

Starting with an initial counter value to be combined with the first message block, subsequent counter
values to be combined with subsequent message blocks are derived from preceding counter values by
an increment function. The increment function used in ica_aes_ctr is an arithmetic increment without
carry on the M least significant bits in the counter where M is a parameter to ica_aes_ctr.

78 Linux on Z and LinuxONE: libica Programmer's Reference

Format

unsigned int ica_aes_ctr(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *key,
 unsigned int key_length,
 unsigned char *ctr,
 unsigned int ctr_width,
 unsigned int direction);

Required hardware support
KMCTR-AES-128, KMCTR-AES-192, or KMCTR-AES-256

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. The size of this buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted message. The size of this
buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128, AES-192, and
AES-256 respectively. Therefore, you can use the definitions: AES_KEY_LEN128, AES_KEY_LEN192,
and AES_KEY_LEN256.

unsigned char *ctr
Pointer to a readable and writable buffer of the same size as the cipher block in bytes. ctr contains
an initialization value for a counter function, and it is replaced by a new value. That new value can be
used as an initialization value for a counter function in a chained ica_aes_ctr call with the same
key, if the data_length used in the preceding call is a multiple of the cipher block size.

unsigned int ctr_width
A number M between 8 and the cipher block size in bits. The value is used by the counter increment
function, which increments a counter value by incrementing without carry the least significant M bits
of the counter value. The value must be a multiple of 8 and smaller than 64. When in FIPS mode,
an additional counter overflow check is performed, so that the given data length divided by 64 is not
greater than 2M.

is not greater than 2M multiplied by the cipher block size.
unsigned int direction

0
Use the decrypt function.

1
Use the encrypt function.

Return codes
0

Success

Chapter 3. Application programming interfaces 79

For return codes indicating exceptions, see “Return codes” on page 132.

ica_aes_ctrlist

Purpose
Encrypt or decrypt data with an AES key using Counter (CTR) mode, as described in NIST Special
Publication 800-38A ,Chapter 6.5. With the counter mode, each message block of the same size as the
cipher block in bytes is combined with a counter value of the same size during encryption and decryption.

The ica_aes_ctrlist function assumes that a list n of precomputed counter values is provided, where
n is the smallest integer that is less than or equal to the message size divided by the cipher block size.
This function optimally uses IBM Z hardware support for non-standard counter functions.

Format

unsigned int ica_aes_ctrlist(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *key,
 unsigned int key_length,
 const unsigned char *ctrlist,
 unsigned int direction);

Required hardware support
KMCTR-DEAKMCTR-AES-128, KMCTR-AES-192, or KMCTR-AES-256

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. The size of this buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted message. The size of this
buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data.

Calls to ica_aes_ctrlist with the same key can be chained if:

• With the possible exception of the last call in the chain the data_length used is a multiple of the
cipher block size.

• The ctrlist argument of each chained call contains a list of counters that follows the counters used in
the preceding call.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128, AES-192, and
AES-256 respectively. Therefore, you can use the definitions: AES_KEY_LEN128, AES_KEY_LEN192,
and AES_KEY_LEN256.

const unsigned char *ctrlist
Pointer to a readable buffer that is both of a size greater than or equal to data_length, and a multiple
of the cipher block size (16 bytes for AES). ctrlist should contain a list of precomputed counter values,
each of the same size as the cipher block.

80 Linux on Z and LinuxONE: libica Programmer's Reference

unsigned int direction
0

Use the decrypt function.
1

Use the encrypt function.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_aes_ecb

Purpose
Encrypt or decrypt data with an AES key using Electronic Code Book (ECB) mode, as described in NIST
Special Publication 800-38A Chapter 6.1.

Format

unsigned int ica_aes_ecb(const unsigned char *in_data,
 unsigned char *output,
 unsigned int data_length,
 const unsigned char *key,
 unsigned int key_length,
 unsigned int direction);

Required hardware support
KM-AES-128, KM-AES-192, or KM-AES-256

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. The size of this buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted message. The size of this
buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data. data_length must be a multiple of the cipher block size (a multiple of 16 for AES).

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128, AES-192, and
AES-256 respectively. Therefore, you can use the definitions: AES_KEY_LEN128, AES_KEY_LEN192,
and AES_KEY_LEN256.

unsigned int direction
0

Use the decrypt function.
1

Use the encrypt function.

Chapter 3. Application programming interfaces 81

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_aes_gcm

Purpose
Encrypt data and authenticate data or decrypt data and check authenticity of data with an AES key using
the Galois/Counter Mode (GCM), as described in NIST Special Publication 800-38D. If no message needs
to be encrypted or decrypted and only authentication or authentication checks are requested, then this
method implements the GMAC mode.

Format

unsigned int ica_aes_gcm(unsigned char *plaintext,
 unsigned long plaintext_length,
 unsigned char *ciphertext,
 const unsigned char *iv,
 unsigned int iv_length,
 const unsigned char *aad,
 unsigned long aad_length,
 unsigned char *tag,
 unsigned int tag_length,
 const unsigned char *key,
 unsigned int key_length,
 unsigned int direction);

Required hardware support
KM-AES-128, KM-AES-192 or KM-AES-256
KIMD-GHASH
KMCTR-AES-128, KMCTR_AES-192 or KMCTR-AES-256

If available, KMA-GCM-AES-128, KMA-GCM-AES-192, and KMA-GCM-AES-256 are used transparently for
better performance.

Parameters
unsigned char *plaintext

Pointer to a buffer of size greater than or equal to plaintext_length bytes. If direction is equal to 1,
the plaintext buffer must be readable and contain a payload message of size plaintext_length to be
encrypted. If direction is equal to 0, the plaintext buffer must be writable and if the authentication
verification succeeds, the decrypted message in the most significant plaintext_length bytes of
ciphertext is written to the buffer. Otherwise, the contents of the buffer are undefined.

unsigned long plaintext_length
Length in bytes of the message to be encrypted or decrypted. This value can be 0 unless aad_length is
equal to 0. The value must be greater than or equal to 0 and less than (236) - 32.

unsigned char *ciphertext
Pointer to a buffer of size greater than or equal to plaintext_length bytes. If direction is equal to 1,
then this buffer must be writable and the encrypted message from plaintext is written to that buffer.
If direction is equal to 0, then this buffer is readable and contains an encrypted message of length
plaintext_length.

const unsigned char *iv
Pointer to a readable buffer of size greater than or equal to iv_length bytes, which contains an
initialization vector of size iv_length.

82 Linux on Z and LinuxONE: libica Programmer's Reference

unsigned int iv_length
Length in bytes of the initialization vector in iv. The value must be greater than 0 and less than 261. A
length of 12 is recommended.

const unsigned char *aad
Pointer to a readable buffer of size greater than or equal to aad_length bytes. The additional
authenticated data in the most significant aad_length bytes is subject to the message authentication
code computation, but is not encrypted.

unsigned int aad_length
Length in bytes of the additional authenticated data in aad. The value must be greater than or equal to
0 and less than 261.

unsigned char *tag
Pointer to a buffer of size greater than or equal to tag_length bytes. If direction is equal to 1, this
buffer must be writable, and a message authentication code for the additional authenticated data in
aad and the plain text in plaintext of size tag_length bytes is written to this buffer. If direction is equal
to 0, this buffer must be readable and contain a message authentication code to be verified against
the additional authenticated data in aad and the decrypted cipher text from ciphertext.

unsigned int tag_length
Length in bytes of the message authentication code tag. Valid values are 4, 8, 12, 13, 14, 15, and 16.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128, AES-192, and
AES-256 respectively. Therefore, you can use the definitions: AES_KEY_LEN128, AES_KEY_LEN192,
and AES_KEY_LEN256.

unsigned int direction
0

Verify message authentication code and decrypt encrypted payload.
1

Encrypt payload and compute message authentication code for the additional authenticated data
and the payload.

Return codes
0

Success
EFAULT

If direction is equal to 0 and the verification of the message authentication code fails.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_aes_gcm_initialize

Purpose
Start and initialize a new session of AES-GCM for stream cipher requests.

Format

unsigned int ica_aes_gcm_initialize(const unsigned char *iv,
 unsigned int iv_length,
 unsigned char *key,
 unsigned int key_length,
 unsigned char *icb,
 unsigned char *ucb,

Chapter 3. Application programming interfaces 83

 unsigned char *subkey,
 unsigned int direction);

Required hardware support
KM-AES-128, KM-AES-192 or KM-AES-256
KIMD-GHASH
KMCTR-AES-128, KMCTR_AES-192 or KMCTR-AES-256

If available, KMA-GCM-AES-128, KMA-GCM-AES-192, and KMA-GCM-AES-256 are used transparently for
better performance.

Parameters
unsigned char *iv

Pointer to a readable buffer of size greater than or equal to iv_length bytes, that contains an
initialization vector of size iv_length.

unsigned int iv_length
Length in bytes of the initialization vector in iv. It must be greater than 0 and less than 261. A length
of 12 is recommended.

unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128, AES-192 and
AES-256 respectively. Therefore, you can use the macros: AES_KEY_LEN128, AES_KEY_LEN192, and
AES_KEY_LEN256.

unsigned char *icb
Pointer to the initial counter block, which is a writable buffer of size AES_BLOCK_SIZE (16 bytes).
This buffer is filled by ica_aes_gcm_initialize() and used in ica_aes_gcm_last() for the
final tag computation.

unsigned char *ucb
Pointer to the usage counter block, which is a writable buffer of size AES_BLOCK_SIZE (16
bytes). This buffer is filled by ica_aes_gcm_initialize() and updated (increased) during the
intermediate update operations.

unsigned char *subkey
Pointer to the subkey block, which is a writable buffer (subkey block) of size
AES_BLOCK_SIZE (16 bytes). This buffer is filled by ica_aes_gcm_initialize() and used in
ica_aes_gcm_intermediate() and ica_aes_gcm_last().

unsigned int direction
0

Verify message authentication code and decrypt encrypted payload.
1

Encrypt payload and compute message authentication code for the additional authenticated data
and the payload.

Return codes
0

Success
EIO

If the operation fails.
EFAULT

If direction equals 0 and the verification of the message authentication code fails.

For return codes indicating exceptions, see “Return codes” on page 132.

84 Linux on Z and LinuxONE: libica Programmer's Reference

ica_aes_gcm_intermediate

Purpose
Authenticate data or verify the authenticity of data with an AES key using the Galois/Counter
Mode (GCM), as described in NIST Special Publication 800-38D. ica_aes_gcm_intermediate()
and ica_aes_gcm_last() can be used when the message to be authenticated or to be verified
using GCM is supplied in multiple chunks. ica_aes_gcm_intermediate() is used to process all
data chunks. Be aware that all chunks, with the possible exception of the last one, must be a
multiple of AES_BLOCK_SIZE (16 bytes). The last data chunk might be any size. In any cases the
ica_aes_gcm_last() must be called at the end to calculate the final authentication tag.

Format

unsigned int ica_aes_gcm_intermediate(unsigned char *plaintext,
 unsigned long plaintext_length,
 unsigned char *ciphertext,
 unsigned char *ucb,
 unsigned char *aad,
 unsigned long aad_length,
 unsigned char *tag,
 unsigned int tag_length,
 unsigned char *key,
 unsigned int key_length,
 unsigned char *subkey,
 unsigned int direction);

Required hardware support
KIMD-GHASH
KMCTR-AES-128, KMCTR_AES-192 or KMCTR-AES-256

If available, KMA-GCM-AES-128, KMA-GCM-AES-192, and KMA-GCM-AES-256 are used transparently for
better performance.

Parameters
unsigned char *plaintext

Pointer to a buffer of size greater than or equal to plaintext_length bytes.

If direction equals 1, the plaintext buffer must be readable and contain a payload message of
size plaintext_length that is encrypted. If direction equals 0 the plaintext buffer must be
writable.

If the authentication verification succeeds, the decrypted message in the most significant
plaintext_length bytes of ciphertext is written to the buffer. Otherwise the contents of the
buffer is undefined.

unsigned long plaintext_length
Length in bytes of the message to be encrypted or decrypted. It must be equal or greater than 0 and
less than 236-32. With the exception of the call followed by a call to ica_aes_gcm_last(), the value
must be a multiple of AES_BLOCK_SIZE. Only in the call followed by ica_aes_gm_last(), the value
does not have to be a multiple of AES_BLOCK_SIZE. Padding is done automatically.

unsigned char *ciphertext
Pointer to a buffer of a size which is a multiple of AES_BLOCK_SIZE and which is greater than or equal
to plaintext_length bytes.

If direction equals 1, then the buffer must be writable and the encrypted message from
plaintext is written to that buffer. If direction equals 0, then the buffer is readable and contains
an encrypted message of a length which is equal to the least multiple of AES_BLOCK_SIZE that is
greater than or equal to plaintext_length.

Chapter 3. Application programming interfaces 85

unsigned char *ucb
Pointer to the usage counter block, which is a writable buffer that is created during
ica_aes_gcm_initialize() and is updated (increased) during the intermediate update
operations. The length of this counter block is AES_BLOCK_SIZE (16 bytes). It is assumed
that with the call to ica_aes_gcm_intermediate() the contents of the usage counter
block was returned in the ucb parameter of a preceding call to ica_aes_gcm_init() or
ica_aes_gcm_intermediate().

unsigned char *aad
Pointer to a readable buffer of size greater than or equal to aad_length bytes. The additional
authenticated data in the most significant aad_length bytes is subject to the authentication code
computation, but is not encrypted.

unsigned long aad_length
Length in bytes of the additional authenticated data in aad. It must be equal to or greater than 0 and
less than 261, and the following constraints must apply:

• If the aad_length is not a multiple of AES_BLOCK_SIZE or 0, then in all subsequent
calls to ica_aes_gcm_intermediate() that belong to the same AES GCM computation, the
aad_length must be 0 which implies that only the last aad chunk can have a length that is not a
multiple of AES_BLOCK_SIZE.

• If in a preceding call to ica_aes_gcm_intermediate() belonging to the same AES GCM
computation, the plaintext_length was greater than 0, then aad_length must be 0, which
implies that plaintext or ciphertext can only be supplied when all additional authenticated data is
supplied.

unsigned char *tag
Contains the temporary hash/tag value. It is an input/output parameter and must be 16 byte long.

unsigned int tag_length
This parameter is currently not used.

unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128, AES-192, and
AES-256 respectively. Therefore, you can use the macros: AES_KEY_LEN128, AES_KEY_LEN192, and
AES_KEY_LEN256.

unsigned char *subkey
Pointer to a writable buffer, generated in ica_aes_gcm_initialize() and used in
ica_aes_gcm_intermediate() and ica_aes_gcm_last(). The length of this buffer is
AES_BLOCK_SIZE (16 bytes).

unsigned int direction
0

Verify message authentication code and decrypt encrypted payload.
1

Encrypt payload and compute message authentication code for the additional authenticated data
and the payload.

Return codes
0

Success
EIO

If the operation fails.
EFAULT

If direction is equal to 0 and the verification of the message authentication code fails.

For return codes indicating exceptions, see “Return codes” on page 132.

86 Linux on Z and LinuxONE: libica Programmer's Reference

ica_aes_gcm_last

Purpose
Authenticate data or verify the authenticity of data with an AES key using the Galois/Counter Mode
(GCM), as described in NIST Special Publication 800-38D. ica_aes_gcm_last() must be used to
authenticate or verify the authenticity of a message for which all preceding parts were processed with
ica_aes_gcm_intermediate().

Format

unsigned int ica_aes_gcm_last(unsigned char *icb,
 unsigned long aad_length,
 unsigned long ciph_length,
 unsigned char *tag,
 unsigned char *final_tag,
 unsigned int final_tag_length,
 unsigned char *key,
 unsigned int key_length,
 unsigned char *subkey,
 unsigned int direction);

Required hardware support
KIMD-GHASH
KMCTR-AES-128, KMCTR_AES-192 or KMCTR-AES-256

If available, KMA-GCM-AES-128, KMA-GCM-AES-192, and KMA-GCM-AES-256 are used transparently for
better performance.

Parameters
unsigned char *icb

Pointer to the initial counter block, which is a writable buffer that is created during
ica_aes_gcm_initialize() and is used in ica_aes_gcm_last() for the final tag computation.
The length of this counter block is AES_BLOCK_SIZE (16 bytes).

unsigned long aad_length
Overall length of authentication data, cumulated over all intermediate operations.

unsigned long ciph_length
Length in bytes of the overall ciphertext, cumulated over all intermediate operations.

unsigned char *tag
Contains the temporary hash/tag value computed during preceding ica_aes_gcm_initialize()
and ica_aes_gcm_intermediate() calls.

unsigned char *final_tag
Pointer to a readable buffer of size greater than or equal to final_tag_length bytes. If direction
is 1, the buffer is not used. If direction is 0, this message authentication code (tag) is verified with
the message authentication code computed over the intermediate update operations.

unsigned int final_tag_length
Length in bytes of the final message authentication code (tag). Valid values are 4, 8, 12, 13, 14, 15,
and 16.

unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128, AES-192 and
AES-256 respectively. Therefore, you can use the macros: AES_KEY_LEN128, AES_KEY_LEN192, and
AES_KEY_LEN256.

Chapter 3. Application programming interfaces 87

unsigned char *subkey
Pointer to a writable buffer generated in ica_aes_gcm_initialize() and used in
ica_aes_gcm_intermediate() and ica_aes_gcm_last(). The length of this subkey block is
AES_BLOCK_SIZE (16 bytes).

unsigned int direction
0

Verify message authentication code and decrypt encrypted payload.
1

Encrypt payload and compute message authentication code for the additional authenticated data
and the payload.

Return codes
0

Success
EIO

If the operation fails.
EFAULT

If direction is equal to 0 and the verification of the message authentication code fails.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_aes_gcm_kma_ctx_new

Purpose
Allocate a GCM context for all other KMA-related GCM functions and return a pointer to this context.
The context buffer is used by all other ica_aes_gcm_kma functions as a working area and must not
be changed by the application. It must be freed by ica_aes_gcm_kma_ctx_free() when no longer
needed.

Format

kma_ctx* ica_aes_gcm_kma_ctx_new();

Parameters
None.

Return codes
NULL

Returns a NULL pointer if no memory could be allocated. Returns a pointer to a GCM context if
successful.

ica_aes_gcm_kma_ctx_free

Purpose
Deallocates a previously allocated GCM context.

Format
void ica_aes_gcm_kma_ctx_free(kma_ctx *ctx);

88 Linux on Z and LinuxONE: libica Programmer's Reference

Parameters
kma_ctx *ctx

Pointer to a previously allocated GCM context that is to be deallocated.

Return codes
None.

ica_aes_gcm_kma_init

Purpose
Initialize the GCM context as returned from ica_aes_gcm_kma_ctx_new() either for encryption
(direction = 1) or decryption (direction = 0).

Format

int ica_aes_gcm_kma_init(unsigned int direction,
 const unsigned char *iv,
 unsigned int iv_length,
 const unsigned char *key,
 unsigned int key_length,
 kma_ctx *ctx);

Required hardware support
KIMD-GHASH
KM-AES-128, KM-AES-192, or KM-AES-256

If available, KMA-GCM-AES-128, KMA-GCM-AES-192, and KMA-GCM-AES-256 are used transparently for
better performance.

Parameters
unsigned int direction

0
Use the decrypt function.

1
Use the encrypt function.

const unsigned char *iv
Pointer to a readable buffer that contains an initialization vector. The buffer size, in bytes, can be equal
to the vector length (iv_length) or greater.

unsigned int iv_length
Length, in bytes, of the initialization vector in buffer iv. The value must be greater than 0 and less
than 261. A length of 12 is recommended.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length of the AES key in bytes. Supported sizes are 16, 24, and 32 for AES-128, AES-192 and
AES-256 respectively. Therefore, you can use the macros AES_KEY_LEN128, AES_KEY_LEN192, and
AES_KEY_LEN256.

kma_ctx *ctx
Pointer to a previously allocated GCM context. This buffer is internally used as a working area by
all other ica_aes_gcm_kma API functions and must not be changed by the application. The ctx
context must be established by calling ica_aes_gcm_ctx_new() before any call to any other

Chapter 3. Application programming interfaces 89

ica_aes_gcm_kma function, and must be freed by calling ica_aes_gcm_ctx_free() after the
last call to any ica_aes_gcm_kma function.

Return codes
0

Success
EIO

If the operation fails.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_aes_gcm_kma_update

Purpose
Perform encryption of plain text or decryption of cipher text with authentication, depending on the
direction specified in ica_aes_gcm_kma_init(). It also processes optional additional authenticated
data (parameter aad). It can be used either for a single call when all aad data and the complete plain text
or cipher text is known. Or it can also be used for processing chunks of aad data, and chunks of plain text
or cipher text.

Each chunk of plain text or cipher text from parameter in_data or each chunk of data from aad must be
a multiple of the AES block size (16 bytes), except of the last one.

If any chunk from aad or in_data is not a multiple of 16, the application must indicate this either
in parameter end_of_aad or end_of_data. When end_of_aad was indicated, no more additional
authenticated data can be provided. When end_of_data was indicated, no more message data can be
provided. The process ends when both, end_of_aad and end_of_data are set.

Format

int ica_aes_gcm_kma_update(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *aad,
 unsigned long aad_length,
 unsigned int end_of_aad,
 unsigned int end_of_data,
 const kma_ctx *ctx)

Required hardware support
KIMD-GHASH
KM-AES-128, KM-AES-192, or KM-AES-256

If available, KMA-GCM-AES-128, KMA-GCM-AES-192, and KMA-GCM-AES-256 are used transparently for
better performance.

Parameters
const unsigned char *in_data

Pointer to a readable buffer of size greater than or equal to data_length bytes. If direction =
1, parameter in_data must contain a payload message of size data_length that is encrypted and
authenticated. If direction = 0, parameter in_data must contain an encrypted message that is
decrypted and verified.

unsigned char *out_data
Pointer to a writable buffer of size data_length bytes or greater. If direction = 1, then the
encrypted message from parameter in_data is written to that buffer. If direction = 0, then the

90 Linux on Z and LinuxONE: libica Programmer's Reference

decrypted message from the in_data buffer is written to that buffer. The pointer to out_data may
point to the same buffer as for in_data, or a part of it, if you want to encrypt/decrypt in place.

unsigned long data_length
Length, in bytes, of the message to be encrypted or decrypted. The value must be equal or greater
than 0 and less than (236) - 32.

const unsigned char *aad
Pointer to a readable buffer of size aad_length bytes or greater. The additional authenticated data in
the most significant aad_length bytes is subject to the authentication code computation but is not
encrypted.

unsigned long aad_length
Length, in bytes, of the additional authenticated data in parameter aad. It must be 0 or greater, and
less than 261.

unsigned int end_of_aad
Can be either 0 or 1:
0

The application indicates that the current content of aad is not the last chunk of additional
authenticated data. In this case, the value of aad_length must be a multiple of the AES block
size (16 bytes).

1
The application indicates that the current content of aad is a single chunk or the last chunk.
Or the application indicates that the last aad chunk has been provided in an earlier call to a
ica_aes_gcm_kma function. In this case, parameter aad_length can have any non-negative
value.

When both, end_of_aad and end_of_data are specified, the process ends.

unsigned int end_of_data
Can be either 0 or 1:
0

The application indicates that the current content of in_data is not the last chunk. In this case,
the value of parameter data_length must be a multiple of the AES block size (16 bytes).

1
The application indicates that the current content of in_data is a single chunk or the last chunk.
In this case, aad_length can have any non-negative value.

When both, end_of_aad and end_of_data are specified, the process ends.

const kma_ctx *ctx
Pointer to a previously initialized GCM context.

The input GCM context must be the resulting context of a preceding ica_aes_gcm_kma_init
or ica_aes_gcm_kma_update function call. The resulting context can be used as
the input to a subsequent ica_aes_gcm_kma_update, ica_aes_gcm_kma_get_tag or
ica_aes_gcm_kma_verify_tag call.

Return codes
0

Success
EIO

If the operation fails.

For return codes indicating exceptions, see “Return codes” on page 132.

Chapter 3. Application programming interfaces 91

ica_aes_gcm_kma_get_tag

Purpose
Returns the calculated authentication tag after an encryption process.

Format

int ica_aes_gcm_kma_get_tag(unsigned char *tag,
 unsigned int tag_length,
 const kma_ctx *ctx);

Required hardware support
z13 or earlier:

KM-AES-128, KM-AES-192, or KM-AES-256
z14:

None.

If available, KMA-GCM-AES-128, KMA-GCM-AES-192, and KMA-GCM-AES-256 are used transparently for
better performance.

Parameters
unsigned char *tag

Pointer to a writable buffer to return the calculated authentication tag.
unsigned int tag_length

Length in bytes of the message authentication code tag. Valid tag lengths are 4, 8, 12, 13, 14, 15, and
16.

const kma_ctx *ctx
Pointer to the GCM context.

This context is the result of the of an ica_aes_gcm_kma_update call where the parameters
end_of_aad and end_of_data where set to 1.

Return codes
0

Success
EFAULT

If parameter direction of the ica_aes_gcm_kma_init() function is 0 (indicating a decryption
function).

For return codes indicating exceptions, see “Return codes” on page 132.

ica_aes_gcm_kma_verify_tag

Purpose
Verifies if the calculated authentication tag is identical to the known authentication tag specified in
parameter known_tag after a decryption process.

Format

int ica_aes_gcm_kma_verify_tag(const unsigned char* known_tag,
 unsigned int tag_length, kma_ctx* ctx)

92 Linux on Z and LinuxONE: libica Programmer's Reference

Required hardware support
z13 or earlier:

KIMD-GHASH
KM-AES-128, KM-AES-192, or KM-AES-256

z14:
None.

If available, KMA-GCM-AES-128, KMA-GCM-AES-192, and KMA-GCM-AES-256 are used transparently for
better performance.

Parameters
const unsigned char* known_tag

Pointer to a readable buffer containing a known authentication tag.
unsigned int tag_length

Length in bytes of the message authentication code tag. Valid tag lengths are 4, 8, 12, 13, 14, 15, and
16.

kma_ctx* ctx
Pointer to a GCM context.

This context is the result of the of an ica_aes_gcm_kma_update call where the parameters
end_of_aad and end_of_data where set to 1.

Return codes
0

Success
EINVAL

If at least one invalid parameter is given or direction is 1.
EFAULT

If the verification of the message authentication code fails.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_aes_ofb

Purpose
Encrypt or decrypt data with an AES key using Output Feedback (OFB) mode, as described in NIST Special
Publication 800-38A Chapter 6.4.

Format

unsigned int ica_aes_ofb(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *key,
 unsigned int key_length,
 unsigned char *iv,
 unsigned int direction);

Required hardware support
KMO-AES-128, KMO-AES-192, or KMO-AES-256

Chapter 3. Application programming interfaces 93

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. The size of this buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer that to contain the resulting encrypted or decrypted message. The size of
this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128, AES-192, and
AES-256 respectively. Therefore, you can use the definitions: AES_KEY_LEN128, AES_KEY_LEN192,
and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block, in bytes (16 bytes for
AES). This vector is overwritten during the function. If data_length is a multiple of the cipher block
size (16 bytes for AES), the result value in iv can be used as the initialization vector for a chained
ica_aes_ofb call with the same key.

unsigned int direction
0

Use the decrypt function.
1

Use the encrypt function.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_aes_xts

Purpose
Encrypt or decrypt data with an AES key using the XEX Tweakable Bloc Cipher with Ciphertext Stealing
(XTS) mode, as described in NIST Special Publication 800-38E and IEEE standard 1619-2007.

Format

unsigned int ica_aes_xts(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *key1,
 const unsigned char *key2,
 unsigned int key_length,
 unsigned char *tweak,
 unsigned int direction);

Required hardware support
KM-XTS-AES-128, or KM-XTS-AES-256

94 Linux on Z and LinuxONE: libica Programmer's Reference

PCC-Compute-XTS-Parameter-Using-AES-128, or PCC-Compute-XTS-Parameter-Using-AES-256

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. The size of this buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted message. The size of this
buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data. The minimal value of data_length is 16.

const unsigned char *key1
Pointer to a buffer containing a valid AES key. key1 is used for the actual encryption of the message
buffer, combined with some vector computed from the tweak value (Key1 in IEEE Std 1619-2007).

const unsigned char *key2
Pointer to a buffer containing a valid AES key key2 is used to encrypt the tweak (Key2 in IEEE Std
1619-2007).

unsigned int key_length
The length in bytes of the AES key. XTS supported AES key sizes are 16 and 32, for AES-128 and
AES-256 respectively. Therefore, you can use:

2 * AES_KEY_LEN128 and 2 * AES_KEY_LEN256.

unsigned char *tweak
Pointer to a valid 16-byte tweak value (as in IEEE standard 1619-2007). This tweak is overwritten
during the function. If data_length is a multiple of the cipher block size (a multiple of 16 for AES), the
result value in tweak can be used as the tweak value for a chained ica_aes_xts call with the same
key pair.

unsigned int direction
0

Use the decrypt function.
1

Use the encrypt function.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

Compatibility with earlier versions
In order to stay compatible with earlier versions of libica, the following AES interfaces remain supported:

unsigned int ica_aes_encrypt(unsigned int mode,
 unsigned int data_length, unsigned char *input_data,
 ica_aes_vector_t *iv, unsigned int key_length, unsigned char *aes_key,
 unsigned char *output_data);

unsigned int ica_aes_decrypt(unsigned int mode,
 unsigned int data_length, unsigned char *input_data,
 ica_aes_vector_t *iv, unsigned int key_length, unsigned char *aes_key,
 unsigned char *output_data);

Table 3 on page 96 shows libica version 2.0 AES functions calls, and their corresponding libica version
2.4 AES function calls.

Chapter 3. Application programming interfaces 95

Table 3. Compatibility of libica version 2.0 AES functions calls to libica version 2.4 AES function calls

Calling this libica version 2.0 AES function Corresponds to calling this libica version 2.4 AES
function

ica_aes_encrypt(MODE_ECB,
data_length,in_data,NULL,
key_length,key,out_data);

ica_aes_ecb(in_data,out_data,(long)data_length,
key,key_length,1);

ica_aes_encrypt(MODE_CBC,data_length,in_data,iv,
key_length,key,out_data);

ica_des_cbc(in_data,out_data,(long)data_length,
key,key_length,iv,1);

ica_aes_decrypt(MODE_ECB,data_length,in_data,NUL
L,
key_length,key,out_data);

ica_aes_ecb(in_data,out_data,(long)data_length,
key,key_length,0);

ica_aes_decrypt(MODE_CBC,data_length,in_data,iv,
key_length,key,out_data);

ica_aes_cbc(in_data,out_data,(long)data_length,
key,key_length,iv,0);

The functions ica_aes_encrypt and ica_aes_decrypt remain supported, but their use is
discouraged in favor of ica_aes_ecb and ica_aes_cbc.

For a detailed description of the earlier APIs, see libica Programmers Reference version 2.0.

TDES/3DES functions
Use the provided TDES/3DES functions for data encryption in various operation modes.

These functions are declared in: include/ica_api.h.

These functions perform encryption and decryption or computation and verification of message
authentication codes using a triple-DES (3DES, TDES or TDEA) key. A 3DES key consists of a
concatenation of three DES keys, each of which has a size of 8 bytes. Note that each byte of a DES
key contains one parity bit, such that each 64-bit DES key contains only 56 security-relevant bits. The
cipher block size for 3DES is 8 bytes.

3DES is known in two variants: a two key variant and a three key variant. This library implements only the
three key variant. The two key variant can be derived from functions for the three key variant by using the
same key as the first and third key.

To securely apply 3DES encryption to messages that are longer than the cipher block size, modes of
operation can be used to chain multiple encryption, decryption, or authentication operations. Most modes
of operation require an initialization vector as additional input. As long as the messages are encrypted
or decrypted using such a mode of operation and have a size that is a multiple of a particular block size
(mostly the cipher block size), the functions encrypting or decryption according to that mode of operation
also compute an output vector that can be used as the initialization vector of a chained encryption or
decryption operation in the same mode with the same block size and the same key.

Note that when decrypting a cipher text, the mode of operation, the key, the initialization vector (if
applicable), and for ica_3des_cfb the lcfb value used for the decryption function must match the
corresponding settings of the encryption function that was used to transform the plain text into the cipher
text.

ica_3des_cbc

Purpose
Encrypt or decrypt data with an 3DES key using Cipher Block Chaining (CBC) mode, as described in NIST
Special Publication 800-38A Chapter 6.2.

96 Linux on Z and LinuxONE: libica Programmer's Reference

Format

unsigned int ica_3des_cbc(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *key,
 unsigned char *iv,
 unsigned int direction);

Required hardware support
KMC-TDEA-192

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. The size of this buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted message. The size of this
buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data. data_length must be a multiple of the cipher block size (8 bytes for 3DES).

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes. This vector is overwritten
during the function. The result value in iv can be used as the initialization vector for a chained
ica_3des_cbc or ica_3des_cbc_cs call with the same key.

unsigned int direction
0

Use the decrypt function.
1

Use the encrypt function.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_3des_cbc_cs

Purpose
Encrypt or decrypt data with a 3DES key using Cipher Block Chaining with Ciphertext Stealing (CBC-CS)
mode, as described in NIST Special Publication 800-38A Chapter 6.2 and the Addendum to NIST
Special Publication 800-38A on Recommendation for Block Cipher Modes of Operation: Three Variants
of Ciphertext Stealing for CBC Mode.

ica_3des_cbc_cs can be used to encrypt or decrypt the last chunk of a message consisting of
multiple chunks, where all chunks except the last one are encrypted or decrypted by chained calls to
ica_3des_cbc. To do this, the resulting iv of the last call to ica_3des_cbc is fed into the iv of the
ica_3des_cbc_cs call, provided that the chunk is greater than the cipher block size (8 bytes for 3DES).

Chapter 3. Application programming interfaces 97

Format

unsigned int ica_3des_cbc_cs(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *key,
 unsigned char *iv,
 unsigned int direction,
 unsigned int variant);

Required hardware support
KMC-TDEA-192

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. The size of this buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted message. The size of this
buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data. data_length must be greater than or equal to the cipher block size (8 bytes for 3DES).

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block in bytes. This vector is
overwritten during the function. For variant equal to 1 or variant equal to 2, the result value in iv can
be used as the initialization vector for a chained ica_3des_cbc or ica_3des_cbc_cs call with the
same key, if data_length is a multiple of the cipher block size.

unsigned int direction
0

Use the decrypt function.
1

Use the encrypt function.
unsigned int variant

1
Use variant CBC-CS1 of the Addendum to NIST Special Publication 800-38A to encrypt or decrypt
the message: always keep last two blocks in order.

2
Use variant CBC-CS2 of the Addendum to NIST Special Publication 800-38A to encrypt or decrypt
the message: switch order of the last two blocks if data_length is not a multiple of the cipher block
size (a multiple of 8 bytes for 3DES).

3
Use variant CBC-CS3 of the Addendum to NIST Special Publication 800-38A to encrypt or decrypt
the message: always switch order of the last two blocks.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

98 Linux on Z and LinuxONE: libica Programmer's Reference

ica_3des_cfb

Purpose
Encrypt or decrypt data with a 3DES key using Cipher Feedback (CFB) mode, as described in NIST Special
Publication 800-38A Chapter 6.3.

Format

unsigned int ica_3des_cfb(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *key,
 unsigned char *iv,
 unsigned int lcfb,
 unsigned int direction);

Required hardware support
KMF-TDEA-192

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. The size of this buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted message. The size of this
buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes (8 bytes for 3DES). This
vector is overwritten during the function. The result value in iv can be used as the initialization vector
for a chained ica_3des_cfb call with the same key, if the data_length in the preceding call is a
multiple of lcfb.

unsigned int lcfb
Length in bytes of the cipher feedback, which is a value greater than or equal to 1 and less than or
equal to the cipher block size (8 bytes for 3DES).

unsigned int direction
0

Use the decrypt function.
1

Use the encrypt function.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

Chapter 3. Application programming interfaces 99

ica_3des_cmac

Purpose
Authenticate data or verify the authenticity of data with an 3DES key using the Block Cipher Based
Message Authentication Code (CMAC) mode, as described in NIST Special Publication 800-38B.
ica_3des_cmac can be used to authenticate or verify the authenticity of a complete message.

Format

unsigned int ica_3des_cmac(const unsigned char *message,
 unsigned long message_length,
 unsigned char *mac,
 unsigned int mac_length,
 const unsigned char *key,
 unsigned int direction);

Required hardware support
KMAC-TDEA-192
PCC-Compute-Last_block-CMAC-Using-TDEA-192

Parameters
const unsigned char *message

Pointer to a readable buffer of size greater than or equal to message_length bytes. This buffer contains
a message to be authenticated, or of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction is equal to 1, the
buffer must be writable and a message authentication code for the message in message of size
mac_length bytes is written to the buffer. If direction is equal to 0, the buffer must be readable and
contain a message authentication code to be verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac, which is less than or equal to the cipher
block size (8 bytes for 3DES). It is recommended to use a mac_length of 8.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned int direction
0

Verify message authentication code.
1

Compute message authentication code for the message.

Return codes
0

Success
EFAULT

If direction is equal to 0 and the verification of the message authentication code fails.

For return codes indicating exceptions, see “Return codes” on page 132.

100 Linux on Z and LinuxONE: libica Programmer's Reference

ica_3des_cmac_intermediate

Purpose
Authenticate data or verify the authenticity of data with an 3DES key using the Block Cipher
Based Message Authentication Code (CMAC) mode, as described in NIST Special Publication
800-38B. ica_3des_cmac_intermediate and ica_3des_cmac_last can be used when the
message to be authenticated or to be verified using CMAC is supplied in multiple chunks.
ica_3des_cmac_intermediate is used to process all but the last chunk. All message chunks to be
processed by ica_3des_cmac_intermediate must have a size that is a multiple of the cipher block
size (a multiple of 8 bytes for 3DES).

Note that ica_3des_cmac_intermediate has no direction argument. This function can be used during
authentication and during authenticity verification.

Format

unsigned int ica_3des_cmac_intermediate(const unsigned char *message,
 unsigned long message_length,
 const unsigned char *key,
 unsigned char *iv);

Required hardware support
KMAC-TDEA-192

Parameters
const unsigned char *message

Pointer to a readable buffer of size greater than or equal to message_length bytes. This buffer contains
a non-final part of a message to be authenticated, or of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message part in message. This value must be a multiple of the cipher block size.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size (8 bytes for 3DES). For the first message
part, this parameter must be set to a string of zeros. For processing the n-th message part, this
parameter must be the resulting iv value of the ica_3des_cmac_intermediate applied to the
(n-1)-th message part. This vector is overwritten during the function. The result value in iv can
be used as the initialization vector for a chained call to ica_3des_cmac_initermediate or to
ica_3des_cmac_last with the same key.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_3des_cmac_last

Purpose
Authenticate data or verify the authenticity of data with an 3DES key using the Block Cipher Based
Message Authentication Code (CMAC) mode, as described in NIST Special Publication 800-38B.
ica_3des_cmac_last can be used to authenticate or verify the authenticity of a complete

Chapter 3. Application programming interfaces 101

message or of the final part of a message, for which all preceding parts were processed with
ica_3des_cmac_intermediate.

Format

unsigned int ica_3des_cmac_last(const unsigned char *message,
 unsigned long message_length,
 unsigned char *mac,
 unsigned int mac_length,
 const unsigned char *key,
 unsigned char *iv,
 unsigned int direction);

Required hardware support
KMAC-TDEA,-192
PCC-Compute-Last_block-CMAC-Using-TDEA-192

Parameters
const unsigned char *message

Pointer to a readable buffer of size greater than or equal to message_length bytes. It contains a
message or the final part of a message to be authenticated, or of which the authenticity is to be
verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction is equal to 1, the
buffer must be writable and a message authentication code for the message in message of size
mac_length bytes is written to the buffer. If direction is equal to 0, the buffer must be readable and
contain a message authentication code that is to be verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac in bytes that is less than or equal to the
cipher block size (8 bytes for 3DES). It is recommended to use a mac_length of 8.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes. If iv is NULL, message
is assumed to be the complete message to be processed. Otherwise, message is the final part of a
composite message to be processed and iv contains the output vector resulting from processing all
previous parts with chained calls to ica_des_cmac_intermediate (the value returned in iv of the
ica_des_cmac_intermediate call applied to the penultimate message part.

unsigned int direction
0

Verify message authentication code.
1

Compute message authentication code for the message.

Return codes
0

Success
EFAULT

If direction is equal to 0 and the verification of the message authentication code fails.

For return codes indicating exceptions, see “Return codes” on page 132.

102 Linux on Z and LinuxONE: libica Programmer's Reference

ica_3des_ctr

Purpose
Encrypt or decrypt data with a triple-length DES key using Counter (CTR) mode, as described in NIST
Special Publication 800-38A Chapter 6.5. With the counter mode, each message block of size cipher
block size (8 bytes for 3DES) is combined with a counter value of the same size during encryption and
decryption.

Starting with an initial counter value to be combined with the first message block, subsequent counter
values to be combined with subsequent message blocks are derived from preceding counter values by an
increment function. The increment function used in ica_3des_ctr is an arithmetic increment without
carry on the M least significant bits in the counter, where M is a parameter to ica_3des_ctr.

Format

unsigned int ica_3des_ctr(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *key,
 unsigned char *ctr,
 unsigned int ctr_width,
 unsigned int direction);

Required hardware support
KMCTR-TDEA-192

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. The size of this buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted message. The size of this
buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *ctr
Pointer to a readable and writable buffer of the same size as the cipher block in bytes. ctr contains an
initialization value for a counter function that is replaced by a new value. The new value can be used
as an initialization value for a counter function in a chained ica_3des_ctr call with the same key, if
the data_length used in the preceding call is a multiple of the cipher block size.

unsigned int ctr_width
A number M between 8 and the cipher block size in bits. The value is used by the counter increment
function, which increments a counter value by incrementing without carry the least significant M bits
of the counter value. The value must be a multiple of 8 and smaller than 64. When in FIPS mode,
an additional counter overflow check is performed, so that the given data length divided by 64 is not
greater than 2M.

unsigned int direction
0

Use the decrypt function.

Chapter 3. Application programming interfaces 103

1
Use the encrypt function.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_3des_ctrlist

Purpose
Encrypt or decrypt data with an 3DES key using Counter (CTR) mode, as described in NIST Special
Publication 800-38A ,Chapter 6.5. With the counter mode, each message block of the same size as the
cipher block is combined with a counter value of the same size during encryption and decryption.

The ica_3des_ctrlist function assumes that a list n of precomputed counter values is provided where
n is the smallest integer that is less than or equal to the message size divided by the cipher block size.
This function is used to optimally utilize IBM Z hardware support for non-standard counter functions.

Format

unsigned int ica_3des_ctrlist(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *key,
 const unsigned char *ctrlist,
 unsigned int direction);

Required hardware support
KMCTR-TDEA-192

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. The size of this buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted message. The size of this
buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data.

Calls to ica_3des_ctrlist with the same key can be chained if:

• With the possible exception of the last call in the chain the data_length used is a multiple of the
cipher block size.

• The ctrlist argument of each chained call contains a list of counters that follows the counters used in
the preceding call.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

104 Linux on Z and LinuxONE: libica Programmer's Reference

const unsigned char *ctrlist
Pointer to a readable buffer that is both of size greater than or equal to data_length, and a multiple of
the cipher block size (8 bytes for 3DES). ctrlist should contain a list of precomputed counter values,
each of the same size as the cipher block.

unsigned int direction
0

Use the decrypt function.
1

Use the encrypt function.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_3des_ecb

Purpose
Encrypt or decrypt data with an 3DES key using Electronic Code Book (ECB) mode, as described in NIST
Special Publication 800-38A Chapter 6.1.

Format

unsigned int ica_3des_ecb(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *key,
 unsigned int direction);

Required hardware support
KM-DEA-192

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. The size of this buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writeable buffer to contain the resulting encrypted or decrypted message. The size of this
buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data. data_length must be a multiple of the cipher block size (8 bytes for 3DES).

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned int direction
0

Use the decrypt function.
1

Use the encrypt function.

Chapter 3. Application programming interfaces 105

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_3des_ofb

Purpose
Encrypt or decrypt data with an 3DES key using Output Feedback (OFB) mode, as described in NIST
Special Publication 800-38A Chapter 6.4.

Format

unsigned int ica_3des_ofb(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *key,
 unsigned int key_length,
 unsigned char *iv,
 unsigned int direction);

Required hardware support
KMO-TDEA-192

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. The size of this buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer that contains the resulting encrypted or decrypted message. The size of
this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block in bytes (8 bytes for 3DES).
This vector is overwritten during the function. If data_length is a multiple of the cipher block size (a
multiple of 8 for 3DES), the result value in iv can be used as the initialization vector for a chained
ica_3des_ofb call with the same key.

unsigned int direction
0

Use the decrypt function.
1

Use the encrypt function.

Return codes
0

Success

106 Linux on Z and LinuxONE: libica Programmer's Reference

For return codes indicating exceptions, see “Return codes” on page 132.

Compatibility with earlier versions
In order to stay compatible with earlier versions of libica, the following 3DES interfaces remain supported:

unsigned int ica_3des_encrypt(unsigned int mode,
 unsigned int data_length, unsigned char *input_data,
 ica_des_vector_t *iv, ica_des_key_triple_t *des_key,
 unsigned char *output_data);

unsigned int ica_3des_decrypt(unsigned int mode,
 unsigned int data_length, unsigned char *input_data,
 ica_des_vector_t *iv, ica_des_key_triple_t *des_key,
 unsigned char *output_data);

Table 4 on page 107 shows libica version 2.0 TDES functions calls, and their corresponding libica version
2.4 TDES function calls.

Table 4. Compatibility of libica version 2.0 TDES functions calls to libica version 2.4 TDES function calls

Calling this libica version 2.0 TDES function Corresponds to calling this libica version 2.4 TDES
function

ica_3des_encrypt(MODE_ECB,
data_length,in_data,NULL,
key, out_data);

ica_3des_ecb(in_data,out_data,(long)data_length,
key,1);

ica_3des_encrypt(MODE_CBC,data_length,in_data,iv
,
key,out_data);

ica_3des_cbc(in_data,out_data,(long)data_length,
key,iv,1);

ica_3des_decrypt(MODE_ECB,data_length,in_data,NU
LL,
key,out_data);

ica_3des_ecb(in_data,out_data,(long)data_length,
key,0);

ica_3des_decrypt(MODE_CBC,data_length,in_data,iv
,
key,out_data);

ica_3des_cbc(in_data,out_data,
(long)data_length,,
key,iv,0);

The functions ica_3des_encrypt and ica_3des_decrypt remain supported, but their use is
discouraged in favor of ica_3des_ecb and ica_3des_cbc.

For a detailed description of the earlier APIs, see libica Programmers Reference version 2.0.

Information retrieval functions
Use the provided functions to retrieve information about the libica version and the supported crypto
mechanisms.

These functions are declared in: include/ica_api.h.

ica_get_version

Purpose
Return libica version information.

Chapter 3. Application programming interfaces 107

Format
unsigned int ica_get_version(libica_version_info *version_info);

Parameters
libica_version_info *version_info

Pointer to a libica_version_info structure. The structure is filled with the current libica version
information.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_get_functionlist

Purpose
Returns a list of crypto mechanisms supported by libica.

Format

unsigned int ica_get_functionlist(libica_func_list_element *mech_list,
 unsigned int *mech_list_len);

Parameters
libica_func_list_element *mech_list

Null or pointer to an array of at least as many libica_func_list_element structures as denoted in
the *mech_list_len argument. If the value in the *mech_list_len argument is equal to or greater
than the number of mechanisms available in libica then the libica_func_list_element structures in
*mech_list are filled (in the order of the array indices) with information for the supported otherwise
the *mech_list argument remains unchanged.

unsigned int *mech_list_len
Pointer to an integer which contain the actual number of array elements (number of structures). If
*mech_list was NULL the contents of *mech_list_len will be replaced by the number of mechanisms
available in libica.

Return codes
0

Success
EINVAL

The value in *mech_list is to small

For return codes indicating exceptions, see “Return codes” on page 132.

Recommended usage
First call ica_get_functionlist with a NULL mechanism list, then allocate the mechanism
list according to number of mechanisms in libica returned by that function, and then call
ica_get_functionlist with the allocated mechanism list.

108 Linux on Z and LinuxONE: libica Programmer's Reference

FIPS mode functions
Two functions are available that let you start implemented self-tests and query and return the results.
Also you are informed whether libica is running in FIPS mode.

These functions are declared in: include/ica_api.h.

ica_fips_status

Purpose
Queries and returns a FIPS status that indicates, which self-tests were passed or failed, and whether
libica is running in FIPS mode.

The output is an integer, which is interpreted as a series of 32 bits, where each bit is a flag. Each flag,
if set, corresponds to one of the defined constants as described in “FIPS mode constants” on page 127.
Each constant, in return indicates either a status, or whether a certain test has passed (flag or constant is
not set) or failed (flag or constant is set).

For example, look at the following returned integer as a bitmap, where only the 12 rightmost bits are
considered:

... 0001 0000 1000
 | |
 2^8=256 2^3=8

In this example, we see that bits with values 8 and 256 are set, which means, that
ICA_FIPS_CRITICALFUNC 8 and ICA_FIPS_BYPASS 256 are set. This in turn means, that the Critical
functions test and the Bypass test failed.

Format
int ica_fips_status(void);

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_fips_powerup_tests

Purpose
Triggers the implemented self-tests. Use the int ica_fips_status(void); function to see which
tests passed or failed (see “ica_fips_status” on page 109).

Format
void ica_fips_powerup_tests(void);

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

Chapter 3. Application programming interfaces 109

SIMD support
The IBM z14 and the IBM z13 machines added various vector instruction facilities to their processor's
instruction set. These are single instruction, multiple data (SIMD) vector instructions that perform the
same operation on multiple data points (the vector elements) simultaneously. Thus, starting with IBM
z14 and libica version 3.3, you can exploit this data-level parallelism to improve performance of multi-
precision arithmetic.

So starting with libica version 3.3 and IBM z14, you can use two APIs to exploit this parallelism in
public key cryptography functions for computationally intensive squaring and multiplication operations for
numbers up to a size of 512 bits.

Input format
For both APIs, the input numbers are represented in radix 264 with little-endian digit order, that is, the
least-significant digit is stored at array element zero.

That is:

a = a7(264)7 + a6(264)6 + a5(264)5 + a4(264)4 + a3(264)3 + a2(264)2 + a1(264) + a0;
with:
ai ∈ {0,...,264-1}

is represented by:

uint64_t a[8] = {a0; a1; a2; a3; a4; a5; a6; a7};

All input must be zero-padded. The output is zero-padded.

ica_mp_mul512

Purpose
Computes the 1024-bit product r of the 512-bit factors a and b, that is r = ab.

Format

int ica_mp_mul512(uint64_t r[16],
 const uint64_t a[8],
 const uint64_t b[8]);

Required hardware support
All vector instructions required for using this function are only available in the instruction set starting with
IBM z14 machines.

Parameters
uint64_t r[16]

Pointer to the 1024-bit product resulting from factors a[8] and b[8].
const uint64_t a[8]

Pointer to the first 512-bit factor.
const uint64_t b[8]

Pointer to the second 512-bit factor.

110 Linux on Z and LinuxONE: libica Programmer's Reference

Return codes
0

Success
≠ 0

Vector facilities are not enabled.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_mp_sqr512

Purpose
Computes the 1024-bit square r of the 512-bit base a, that is r = a2.

Format

int ica_mp_sqr512(uint64_t r[16],
 const uint64_t a[8]);

Required hardware support
All vector instructions required for using this function are only available in the instruction set starting with
IBM z14 machines.

Parameters
uint64_t r[16]

Pointer to the 1024-bit square resulting from the 512-bit base a[8].
const uint64_t a[8]

Pointer to the 512-bit base a[8].

Return codes
0

Success
≠ 0

Vector facilities are not enabled.

For return codes indicating exceptions, see “Return codes” on page 132.

Deprecated functions
Some of the libica application programming interfaces are meanwhile deprecated due to their insufficient
security strength. For compatibility reasons, libica continues to offer these functions. However, it is
recommended to replace them with more secure APIs as indicated.

The list of deprecated functions currently comprises all DES functions and the SHA1 function.

• Instead of the DES functions, use the corresponding AES functions (“AES functions” on page 69).
• Instead of the SHA1 function (ica_sha1), use one of the hash APIs listed in “Secure hash operations”

on page 23.

These deprecated functions are also included in: include/ica_api.h.

Chapter 3. Application programming interfaces 111

DES functions
DES functions perform encryption and decryption and computation or verification of message
authentication codes using a DES (DEA) key. A DES key has a size of 8 bytes. Each byte of a DES key
contains one parity bit, such that each 64-bit DES key contains only 56 security-relevant bits. The cipher
block size for DES is 8 bytes.

To securely apply DES encryption to messages that are longer than the cipher block size, modes of
operation can be used to chain multiple encryption, decryption, or authentication operations. Most modes
of operation require an initialization vector as additional input. As long as the messages are encrypted or
decrypted using such a mode of operation, and have a size that is a multiple of a particular block size
(mostly the cipher block size), the functions encrypting or decrypting according to a mode of operation
also compute an output vector. This output vector can be used as the initialization vector of a chained
encryption or decryption operation in the same mode with the same block size and the same key.

When decrypting a cipher text, these values used for the decryption function must match the
corresponding settings of the encryption function that transformed the plain text into the cipher text:

• The mode of operation
• The key
• The initialization vector (if applicable)
• For the ica_des_cfb function, the lcfb parameter

ica_des_cbc

Purpose
Encrypt or decrypt data with a DES key using Cipher Block Chaining (CBC) mode, as described in NIST
Special Publication 800-38A Chapter 6.2.

Format

unsigned int ica_des_cbc(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *key,
 unsigned char *iv,
 unsigned int direction);

Required hardware support
KMC-DEA

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. This buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted message. The size of this
buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data. data_length must be a multiple of the cipher block size (a multiple of 8 bytes for DES).

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

112 Linux on Z and LinuxONE: libica Programmer's Reference

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes (8 bytes for DES). This
vector is overwritten by this function. The result value in iv can be used as the initialization vector for a
chained ica_des_cbc or ica_des_cbc_cs call with the same key.

unsigned int direction
0

Use the decrypt function.
1

Use the encrypt function.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_des_cbc_cs

Purpose
Encrypt or decrypt data with a DES key using Cipher Block Chaining with Ciphertext Stealing (CBC-CS)
mode, as described in NIST Special Publication 800-38A, Chapter 6.2 and the Addendum to NIST
Special Publication 800-38A on Recommendation for Block Cipher Modes of Operation: Three Variants
of Ciphertext Stealing for CBC Mode.

ica_des_cbc_cs can be used to encrypt or decrypt the last chunk of a message consisting of
multiple chunks, where all chunks except the last one are encrypted or decrypted by chained calls to
ica_des_cbc. To do this, the resulting iv of the last call to ica_des_cbc is fed into the iv of the
ica_des_cbc_cs call, provided that the chunk is greater than the cipher block size (8 bytes for DES).

Format

unsigned int ica_des_cbc_cs(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *key,
 unsigned char *iv,
 unsigned int direction,
 unsigned int variant);

Required hardware support
KMC-DEA

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. The size of this buffer must be at least as large as the data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted message. This buffer must
be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data. data_length must be greater than or equal to the cipher block size (8 bytes for DES).

Chapter 3. Application programming interfaces 113

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes. This vector is overwritten
during the function. For variant equal to 1 or variant equal to 2, the result value in iv can be used as
the initialization vector for a chained ica_des_cbc or ica_des_cbc_cs call with the same key, if
data_length is a multiple of the cipher block size.

unsigned int direction
0

Use the decrypt function.
1

Use the encrypt function.
unsigned int variant

1
Use variant CBC-CS1 of the Addendum to NIST Special Publication 800-38A to encrypt or decrypt
the message: always keep last two blocks in order.

2
Use variant CBC-CS2 of the Addendum to NIST Special Publication 800-38A to encrypt or decrypt
the message: switch order of the last two blocks if data_length is not a multiple of the cipher block
size (a multiple of 8 bytes for DES).

3
Use variant CBC-CS3 of the Addendum to NIST Special Publication 800-38A to encrypt or decrypt
the message: always switch order of the last two blocks.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_des_cfb

Purpose
Encrypt or decrypt data with a DES key using Cipher Feedback (CFB) mode, as described in NIST Special
Publication 800-38A Chapter 6.3.

Format

unsigned int ica_des_cfb(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *key,
 unsigned char *iv,
 unsigned int lcfb,
 unsigned int direction);

Required hardware support
KMF-DEA

114 Linux on Z and LinuxONE: libica Programmer's Reference

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. The size of this buffer must be at least as large as the data_length
parameter.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted message. The size of this
buffer in bytes must be at least as large as the data_length parameter.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size bytes (8 bytes for DES). This vector is
overwritten during the function. The result value in iv can be used as the initialization vector for a
chained ica_des_cfb call with the same key, if data_length in the preceding call is a multiple of the
lcfb parameter.

unsigned int lcfb
Length in bytes of the cipher feedback, which is a value greater than or equal to 1 and less than or
equal to the cipher block size (8 bytes for DES).

unsigned int direction
0

Use the decrypt function.
1

Use the encrypt function.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_des_cmac

Purpose
Authenticate data or verify the authenticity of data with a DES key using the Block Cipher Based Message
Authentication Code (CMAC) mode, as described in NIST Special Publication 800-38B. ica_des_cmac
can be used to authenticate or verify the authenticity of a complete message.

Format

unsigned int ica_des_cmac(const unsigned char *message,
 unsigned long message_length,
 unsigned char *mac,
 unsigned int mac_length,
 const unsigned char *key,
 unsigned int direction);

Required hardware support
KMAC-DEA
PCC-Compute-Last_block-CMAC-Using-DEA

Chapter 3. Application programming interfaces 115

Parameters
const unsigned char *message

Pointer to a readable buffer of size greater than or equal to message_length bytes. This buffer contains
a message to be authenticated or of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction is equal to 1, the
buffer must be writable and a message authentication code for the message in message of size
mac_length bytes is written to the buffer. If direction is equal to 0, the buffer must be readable and
contain a message authentication code to be verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac, which is less than or equal to the cipher
block size (8 bytes for DES). It is recommended to use a mac_length of 8.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned int direction
0

Verify message authentication code.
1

Compute message authentication code for the message.

Return codes
0

Success
EFAULT

If direction is equal to 0 and the verification of the message authentication code fails.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_des_cmac_intermediate

Purpose
Authenticate data or verify the authenticity of data with a DES key using the Block Cipher
Based Message Authentication Code (CMAC) mode, as described in NIST Special Publication
800-38B. ica_des_cmac_intermediate and ica_des_cmac_last can be used when the
message to be authenticated or to be verified using CMAC is supplied in multiple chunks.
ica_des_cmac_intermediate is used to process all but the last chunk. All message chunks to be
processed by ica_des_cmac_intermediate must have a size that is a multiple of the cipher block size
(8 bytes for DES).

Note that ica_des_cmac_intermediate has no direction argument. This function can be used during
authentication and during authenticity verification.

Format

unsigned int ica_des_cmac_intermediate(const unsigned char *message,
 unsigned long message_length,
 const unsigned char *key,
 unsigned char *iv);

116 Linux on Z and LinuxONE: libica Programmer's Reference

Required hardware support
KMAC-DEA

Parameters
const unsigned char *message

Pointer to a readable buffer of size greater than or equal to message_length bytes. This buffer contains
a non-final part of a message to be authenticated, or of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message part in message. This value must be a multiple of the cipher block size.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size bytes (8 bytes for DES). For the first message
part, this parameter must be set to a string of zeros. For processing the n-th message part, this
parameter must be the resulting iv value of the ica_des_cmac_intermediate function applied
to the (n-1)-th message part. This vector is overwritten during the function. The result value in iv
can be used as the initialization vector for a chained call to ica_des_cmac_initermediate, or to
ica_des_cmac_last with the same key.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_des_cmac_last

Purpose
Authenticate data or verify the authenticity of data with a DES key using the Block Cipher Based
Message Authentication Code (CMAC) mode, as described in NIST Special Publication 800-38B.
ica_des_cmac_last can be used to authenticate or verify the authenticity of a complete
message or of the final part of a message for which all preceding parts were processed with
ica_des_cmac_intermediate.

Format

unsigned int ica_des_cmac_last(const unsigned char *message,
 unsigned long message_length,
 unsigned char *mac,
 unsigned int mac_length,
 const unsigned char *key,
 unsigned char *iv,
 unsigned int direction);

Required hardware support
KMAC-DEA
PCC-Compute-Last_block-CMAC-Using-DEA

Chapter 3. Application programming interfaces 117

Parameters
const unsigned char *message

Pointer to a readable buffer of size greater than or equal to message_length bytes. This buffer contains
a message or the final part of a message, to be either authenticated or of which the authenticity is to
be verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction is equal to 1, the
buffer must be writable and a message authentication code for the message in message of size
mac_length bytes is written to the buffer. If direction is equal to 0, the buffer must be readable and
contain a message authentication code that is verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac that is less than or equal to the cipher block
size (8 bytes for DES). It is recommended to use a mac_length of 8.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes. If iv is NULL, message
is assumed to be the complete message to be processed. Otherwise, message is the final part of a
composite message to be processed and iv contains the output vector resulting from processing all
previous parts with chained calls to ica_des_cmac_intermediate (the value returned in iv of the
ica_des_cmac_intermediate call applied to the penultimate message part).

unsigned int direction
0

Verify message authentication code.
1

Compute message authentication code for the message.

Return codes
0

Success
EFAULT

If direction is equal to 0 and the verification of the message authentication code fails.

For return codes indicating exceptions, see “Return codes” on page 132.

ica_des_ctr

Purpose
Encrypt or decrypt data with a DES key using Counter (CTR) mode, as described in NIST Special
Publication 800-38A Chapter 6.5. With the counter mode, each message block of the same size as the
cipher block (8 bytes for DES) is combined with a counter value of the same size during encryption and
decryption.

Starting with an initial counter value to be combined with the first message block, subsequent counter
values to be combined with subsequent message blocks are derived from preceding counter values by
an increment function. The increment function used in ica_des_ctr is an arithmetic increment without
carry on the M least significant bits in the counter, where M is a parameter to ica_des_ctr.

118 Linux on Z and LinuxONE: libica Programmer's Reference

Format

unsigned int ica_des_ctr(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *key,
 unsigned char *ctr,
 unsigned int ctr_width,
 unsigned int direction);

Required hardware support
KMCTR-DEA

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. The size of this buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted message. The size of this
buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *ctr
Pointer to a readable and writable buffer of the same size as the cipher block in bytes. ctr contains
an initialization value for a counter function, and it is replaced by a new value. That new value can be
used as the initialization value for a counter function in a chained ica_des_ctr call with the same
key, if the data_length used in the preceding call is a multiple of the cipher block size.

unsigned int ctr_width
A number M between 8 and the cipher block size in bits. This value is used by the counter increment
function, which increments a counter value by incrementing without carry the least significant M bits
of the counter value. The value must be a multiple of 8 and smaller than 64. When in FIPS mode,
an additional counter overflow check is performed, so that the given data length divided by 64 is not
greater than 2M.

unsigned int direction
0

Use the decrypt function.
1

Use the encrypt function.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

Chapter 3. Application programming interfaces 119

ica_des_ctrlist

Purpose
Encrypt or decrypt data with a DES key using Counter (CTR) mode, as described in NIST Special
Publication 800-38A ,Chapter 6.5. With the counter mode, each message block of the same size as the
cipher block is combined with a counter value of the same size during encryption and decryption.

The ica_des_ctrlist function assumes that a list n of precomputed counter values is provided, where
n is the smallest integer that is less than or equal to the message size divided by the cipher block size.
This function is used to optimally utilize IBM Z hardware support for non-standard counter functions.

Format

unsigned int ica_des_ctrlist(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *key,
 const unsigned char *ctrlist,
 unsigned int direction);

Required hardware support
KMCTR-DEA

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. The size of this buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted message. The size of this
buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data.

Calls to ica_des_ctrlist with the same key can be chained if:

• With the possible exception of the last call in the chain the data_length used is a multiple of the
cipher block size.

• The ctrlist argument of each chained call contains a list of counters that follows the counters used in
the preceding call.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

const unsigned char *ctrlist
Pointer to a readable buffer of a size greater than or equal to data_length, and a multiple of the cipher
block size (8 bytes for DES). ctrlist should contain a list of precomputed counter values, each of the
same size as the cipher block.

unsigned int direction
0

Use the decrypt function.
1

Use the encrypt function.

120 Linux on Z and LinuxONE: libica Programmer's Reference

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

ica_des_ecb

Purpose
Encrypt or decrypt data with a DES key using Electronic Code Book (ECB) mode, as described in NIST
Special Publication 800-38A Chapter 6.1.

Format

unsigned int ica_des_ecb(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *key,
 unsigned int direction);

Required hardware support
KM-DEA

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. The size of this buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writeable buffer to contain the resulting encrypted or decrypted message. The size of this
buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data. data_length must be a multiple of the cipher block size (8 bytes for DES).

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned int direction
0

Use the decrypt function.
1

Use the encrypt function.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

Chapter 3. Application programming interfaces 121

ica_des_ofb

Purpose
Encrypt or decrypt data with a DES key using Output Feedback (OFB) mode, as described in NIST Special
Publication 800-38A Chapter 6.4.

Format

unsigned int ica_des_ofb(const unsigned char *in_data,
 unsigned char *out_data,
 unsigned long data_length,
 const unsigned char *key,
 unsigned int key_length,
 unsigned char *iv,
 unsigned int direction);

Required hardware support
KMO-DEA

Parameters
const unsigned char *in_data

Pointer to a readable buffer that contains the message to be encrypted or decrypted. The size of the
message in bytes is data_length. The size of this buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer that contains the resulting encrypted or decrypted message. The size of
this buffer must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at the beginning of
in_data.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block in bytes (8 bytes for
DES). This vector is overwritten during the function. If data_length is a multiple of the cipher block
size (8 bytes for DES), the result value in iv can be used as the initialization vector for a chained
ica_des_ofb call with the same key.

unsigned int direction
0

Use the decrypt function.
1

Use the encrypt function.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

122 Linux on Z and LinuxONE: libica Programmer's Reference

DES function compatibility
In order to stay compatible with earlier versions of libica, the following DES interfaces remain supported:

unsigned int ica_des_encrypt(unsigned int mode,
 unsigned int data_length, unsigned char *input_data,
 ica_des_vector_t *iv, ica_des_key_single_t *des_key,
 unsigned char *output_data);

unsigned int ica_des_decrypt(unsigned int mode,
 unsigned int data_length, unsigned char *input_data,
 ica_des_vector_t *iv, ica_des_key_single_t *des_key,
 unsigned char *output_data);

Table 5 on page 123 shows libica version 2.0 DES functions calls, and their corresponding libica version
2.4 DES function calls.

Table 5. Compatibility of libica version 2.0 DES functions calls to libica version 2.4 DES function calls

Calling this libica version 2.0 DES function Corresponds to calling this libica version 2.4 DES
function

ica_des_encrypt(MODE_ECB,
data_length,in_data,NULL,
key, out_data);

ica_des_ecb(in_data,out_data,(long)data_length,
key,1);

ica_des_encrypt(MODE_CBC,data_length,in_data,iv,
key,out_data);

ica_des_cbc(in_data,out_data,(long)data_length,
key,iv,1);

ica_des_decrypt(MODE_ECB,data_length,in_data,NUL
L,
key,out_data);

ica_des_ecb(in_data,out_data,(long)data_length,
key,0);

ica_des_decrypt(MODE_CBC,data_length,in_data,iv,
key,out_data);

ica_des_cbc(in_data,out_data,(long)data_length,
key,iv,0);

The functions ica_des_encrypt and ica_des_decrypt remain supported, but their use is
discouraged in favor of ica_des_ecb and ica_des_cbc.

For a detailed description of the earlier APIs, see libica Programmers Reference version 2.0.

ica_sha1

Purpose
Performs a secure hash operation on the input data using the SHA-1 algorithm.

Format

unsigned int ica_sha1(unsigned int message_part,
 unsigned int input_length,
 unsigned char *input_data,
 sha_context_t *sha_context,
 unsigned char *output_data);

Required hardware support
KIMD-SHA-1 and KLMD-SHA-1

Chapter 3. Application programming interfaces 123

Parameters
unsigned int message_part

The message chaining state. This parameter must be one of the following values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part
unsigned int input_length

Length in bytes of the input data to be hashed using the SHA-1 algorithm.
unsigned char *input_data

Pointer to the input data to be hashed. This pointer must not be zero. So even in case of zero size
message data, it must be set to a valid value.

sha_context_t *sha_context
Pointer to the SHA-1 context structure used to store intermediate values needed when chaining is
used. The contents are ignored for message part SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST.
This structure must contain the returned value of the preceding call to ica_sha1 for message part
SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part SHA_MSG_PART_FIRST
and SHA_MSG_PART_FINAL, the returned value can be used for a chained call of ica_sha1.
Therefore, the application must not modify the contents of this structure in between chained calls.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output data has a length of
SHA_HASH_LENGTH. Make sure that the buffer is at least this size.

Return codes
0

Success

For return codes indicating exceptions, see “Return codes” on page 132.

124 Linux on Z and LinuxONE: libica Programmer's Reference

Chapter 4. Accessing libica functions through the
PKCS #11 API (openCryptoki)

The cryptographic functions provided by libica can be accessed using the PKCS #11 API implemented by
openCryptoki.

For information on how to install and configure openCryptoki, and how to exploit the features of
openCryptoki using the ICA token, refer to openCryptoki - An Open Source Implementation of PKCS #11.

For a description of the current PKCS #11 standard, see PKCS #11 Cryptographic Token
Interface Standard.

© Copyright IBM Corp. 2009, 2021 125

https://www.ibm.com/docs/en/linux-on-systems?topic=support-opencryptoki-open-source-pkcs-11
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pkcs11
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pkcs11

126 Linux on Z and LinuxONE: libica Programmer's Reference

Chapter 5. libica constants, type definitions, data
structures, and return codes

Use these constants, type definitions, data structures, and return codes when you program with the libica
APIs.

The APIs are described in Chapter 3, “Application programming interfaces ,” on page 9. To use them,
include ica_api.h in your programs.

libica constants
The constants listed in this topic are provided and valid for the current libica version.

#define ICA_ENCRYPT 1

#define ICA_DECRYPT 0

#define ICA_DRBG_NEW_STATE_HANDLE NULL

FIPS mode constants
/* ’FIPS mode active’-flag */

#define ICA_FIPS_MODE 1

Powerup-test-failed flags

/* Cryptographic algorithm test (KAT or pair-wise consistency test) */

#define ICA_FIPS_CRYPTOALG 2

/* Critical functions test (N/A) */

#define ICA_FIPS_CRITICALFUNC 8

Conditional-test-failed flags

/* Pair-wise consistency test for public & private keys (N/A) */

#define ICA_FIPS_CONSISTENCY 16

/* Software/Firmware load test (N/A) */

#define ICA_FIPS_LOAD 32

/* Manual key entry test (N/A) */

#define ICA_FIPS_KEYENTRY 64

/* Continuous random number generator test */

#define ICA_FIPS_RNG 128

/* Bypass test (N/A) */

#define ICA_FIPS_BYPASS 256

© Copyright IBM Corp. 2009, 2021 127

Type definitions
These type definitions are available to ensure compatibility with libica version 1 types.

typedef ica_des_vector_t ICA_DES_VECTOR;

typedef ica_des_key_single_t ICA_KEY_DES_SINGLE;

typedef ica_des_key_triple_t ICA_KEY_DES_TRIPLE;

typedef ica_aes_vector_t ICA_AES_VECTOR;

typedef ica_aes_key_single_t ICA_KEY_AES_SINGLE;

typedef ica_aes_key_len_128_t ICA_KEY_AES_LEN128;

typedef ica_aes_key_len_192_t ICA_KEY_AES_LEN192;

typedef ica_aes_key_len_256_t ICA_KEY_AES_LEN256;

typedef sha_context_t SHA_CONTEXT;

typedef sha256_context_t SHA256_CONTEXT;

typedef sha512_context_t SHA512_CONTEXT;

typedef unsigned char ica_des_vector_t[8];

typedef unsigned char ica_des_key_single_t[8];

typedef unsigned char ica_key_t[8];

typedef unsigned char ica_aes_vector_t[16];

typedef unsigned char ica_aes_key_single_t[8];

typedef unsigned char ica_aes_key_len_128_t[16];

typedef unsigned char ica_aes_key_len_192_t[24];

typedef unsigned char ica_aes_key_len_256_t[32];

typedef struct ica_drbg_mech ica_drbg_mech_t;

typedef struct ica_drbg ica_drbg_t;

Data structures
These structures are used in the API of the current libica version.

For the definitions of older functions, see previous versions of this book. The older functions are no longer
recommended for use, but they are supported.

typedef struct {
unsigned int key_length;
unsigned char* modulus;

128 Linux on Z and LinuxONE: libica Programmer's Reference

unsigned char* exponent;
} ica_rsa_key_mod_expo_t;

typedef struct {
unsigned int key_length;
unsigned char* p;
unsigned char* q;
unsigned char* dp;
unsigned char* dq;
unsigned char* qInverse;
} ica_rsa_key_crt_t;

typedef struct {
unsigned int mech_mode_id;
unsigned int flags;
unsigned int property;
} libica_func_list_element;

typedef struct kma_ctx_t kma_ctx;

* mech_mode_id: Unique mechanism ID for each mechanism implemented in libica, as follows:

#define SHA1 1
#define SHA224 2
#define SHA256 3
#define SHA384 4
#define SHA512 5
#define SHA3_224 6
#define SHA3_256 7
#define SHA3_384 8
#define SHA3_512 9
#define G_HASH 10
#define SHAKE_128 11
#define SHAKE_256 12
#define DES_ECB 20
#define DES_CBC 21
#define DES_CBC_CS 22
#define DES_OFB 23
#define DES_CFB 24
#define DES_CTR 25
#define DES_CTRLST 26
#define DES_CBC_MAC 27
#define DES_CMAC 28
#define DES3_ECB 41
#define DES3_CBC 42
#define DES3_CBC_CS 43
#define DES3_OFB 44
#define DES3_CFB 45
#define DES3_CTR 46
#define DES3_CTRLST 47
#define DES3_CBC_MAC 48
#define DES3_CMAC 49
#define AES_ECB 60
#define AES_CBC 61
#define AES_CBC_CS 62
#define AES_OFB 63
#define AES_CFB 64
#define AES_CTR 65
#define AES_CTRLST 66
#define AES_CBC_MAC 67
#define AES_CMAC 68
#define AES_CCM 69
#define AES_GCM 70
#define AES_XTS 71
#define AES_GCM_KMA 72
#define P_RNG 80
#define EC_DH 85
#define EC_DSA_SIGN 86
#define EC_DSA_VERIFY 87
#define EC_KGEN 88
#define RSA_ME 90
#define RSA_CRT 91
#define RSA_KEY_GEN_ME 92
#define RSA_KEY_GEN_CRT 93
#define SHA512_DRNG 94
#define SHA512_224 95

Chapter 5. libica constants, type definitions, data structures, and return codes 129

#define SHA512_256 96

#define ED25519_KEYGEN 100
#define ED25519_SIGN 101
#define ED25519_VERIFY 102
#define ED448_KEYGEN 103
#define ED448_SIGN 104
#define ED448_VERIFY 105
#define X25519_KEYGEN 106
#define X25519_DERIVE 107
#define X448_KEYGEN 108
#define X448_DERIVE 109

For more details regarding these mechanisms, refer to openCryptoki - An Open Source Implementation of
PKCS #11.

* flags
This flag represents the type of hardware/software support for each mechanism.

#define ICA_FLAG_SHW 4
Static hardware support (operations on CPACF). Hardware support will be available unless a hardware
error occurs.

#define ICA_FLAG_DHW 2
Dynamic hardware support (operations on crypto cards). Hardware support will be available unless
the hardware is reconfigured.

#define ICA_FLAG_SW 1
Software support. If both static and dynamic hardware support as well as software support are
available, then software support is used as fall back if hardware support fails.

* property
This property field is optional depending on the mechanism. It is used to declare mechanism specific
parameters, such as key sizes for RSA and AES.

For RSA mechanisms:

- bit 0
512 bit key size support

- bit 1
1024 bit key size support

- bit 2
2048 bit key size support

- bit 3
4096 bit key size support

For AES mechanisms:

- bit 0
128 bit key size support

- bit 1
192 bit key size support

- bit 2
256 bit key size support

For all non-RSA/AES mechanisms this field is empty.

Take note of these considerations:

• The buffers pointed to by members of type unsigned char * must be manually allocated and deallocated
by the user.

• Key parts must always be right-aligned in their fields.
• All buffers pointed to by members modulus and exponent in struct ica_rsa_key_mod_expo_t must be of

length key_length.

130 Linux on Z and LinuxONE: libica Programmer's Reference

https://www.ibm.com/docs/en/linux-on-systems?topic=support-opencryptoki-open-source-pkcs-11
https://www.ibm.com/docs/en/linux-on-systems?topic=support-opencryptoki-open-source-pkcs-11

• All buffers pointed to by members p, q, dp, dq, and qInverse in struct ica_rsa_key_crt_t must be of size
key_length / 2 or larger.

• In the struct ica_rsa_key_crt_t, the buffers p, dp, and qInverse must contain 8 bytes of zero padding in
front of the actual values.

• If an exponent is set in struct ica_rsa_key_mod_expo_t as part of a public key for key generation, be
aware that due to a restriction in OpenSSL, the public exponent cannot be larger than a size of unsigned
long. Therefore, you must have zeros left-padded in the buffer pointed to by exponent in the struct
ica_rsa_key_mod_expo_t struct. Be aware that this buffer also must be of size key_length.

• This key_length value should be calculated from the length of the modulus in bits, according to this
calculation:

key_length = (modulus_bits + 7) / 8

typedef struct {
 uint64_t runningLength;
 unsigned char shaHash[LENGTH_SHA_HASH];
} sha_context_t;

typedef struct {
 uint64_t runningLength;
 unsigned char sha256Hash[LENGTH_SHA256_HASH];
} sha256_context_t;

typedef struct {
 uint64_t runningLengthHigh;
 uint64_t runningLengthLow;
 unsigned char sha512Hash[LENGTH_SHA512_HASH];
} sha512_context_t;

typedef struct {
 uint64_t runningLength;
 unsigned char sha3_224Hash[SHA3_224_HASH_LENGTH];
} sha3_224_context_t;

typedef struct {
 uint64_t runningLength;
 unsigned char sha3_256Hash[SHA3_256_HASH_LENGTH];
} sha3_256_context_t;

typedef struct {
 uint64_t runningLengthHigh;
 uint64_t runningLengthLow;
 unsigned char sha3_384Hash[SHA3_384_HASH_LENGTH];
} sha3_384_context_t;

typedef struct {
 uint64_t runningLengthHigh;
 uint64_t runningLengthLow;
 unsigned char sha3_512Hash[SHA3_512_HASH_LENGTH];
} sha3_512_context_t;

typedef struct {
 uint64_t runningLengthHigh;
 uint64_t runningLengthLow;
 unsigned int output_length;
 unsigned char shake_128Hash[200];
} shake_128_context_t;

typedef struct {

Chapter 5. libica constants, type definitions, data structures, and return codes 131

 uint64_t runningLengthHigh;
 uint64_t runningLengthLow;
 unsigned int output_length;
 unsigned char shake_256Hash[200];
} shake_256_context_t;

typedef struct {
 unsigned int major_version;
 unsigned int minor_version;
 unsigned int fixpack_version;
} libica_version_info;

Return codes
The current libica functions use the standard Linux return codes listed in this topic.

0
Success

EFAULT
The message authentication (for GCM) or the signature verification (for ECDSA), or the RSA key
generation (via OpenSSL) failed.

EINVAL
Incorrect parameter

EIO
I/O error

EPERM
Operation not permitted by hardware or software restrictions.

ENODEV
No such device

ENOMEM
Not enough memory

errno
When libica calls open, close, begin_sigill_section, the error codes of these programs are
returned.

132 Linux on Z and LinuxONE: libica Programmer's Reference

Chapter 6. libica tools
The libica packages include tools to investigate the capabilities of your cryptographic hardware and how
these capabilities are used by applications that use libica.

icainfo - Show available libica functions
Use the icainfo command to find out which libica functions are available on your Linux system.

The icainfo output also indicates, whether the libica library has built-in FIPS support, whether it is
running in FIPS mode, and whether it is in an error state. Algorithms that are not FIPS approved are
marked as blocked in both table columns and cannot be processed when running in FIPS mode. All
algorithms are marked as blocked when libica is in an error state.

Format

icainfo syntax
icainfo

 -v

 -c

 -h

Where:

-v or --version
Displays the version number of icainfo, then exits.

-c
Displays the supported curves for elliptic curve cryptography. See also “Elliptic curve cryptography
(ECC) functions” on page 46.

-h or --help
Displays help information for the command.

To obtain an overview of the supported algorithms with modes of operations and how they are
implemented on your Linux system (hardware, software, or both), enter:

icainfo

View a sample output produced by this command. Available hardware support is presented in two
columns: dynamic hardware means support by cryptographic coprocessors, static hardware means
support by CPACF. A 'no' in column software indicates, that for this function no software fallback
provided by OpenSSL is implemented in libica.

© Copyright IBM Corp. 2009, 2021 133

 Cryptographic algorithm support
--
 | hardware |
 function | dynamic | static | software
---------------+------------+------------+------------
 SHA-1 | no | yes | yes
 SHA-224 | no | yes | yes
 ...
 SHA-512 | no | yes | yes
 SHA-512/224 | no | yes | yes
 SHA-512/256 | no | yes | yes
 ...
 SHA3-512 | no | yes | no
 ...
 SHAKE-256 | no | yes | no
 GHASH | no | yes | no
 P_RNG | blocked | blocked | blocked
 DRBG-SHA-512 | no | yes | yes
 ECDH | yes | yes | yes
 ECDSA Sign | yes | yes | yes
 ECDSA Verify | yes | yes | yes
 EC Keygen | yes | yes | yes
Ed25519 Keygen | no | yes | no
 Ed25519 Sign | no | yes | no
Ed25519 Verify | no | yes | no
 ...
 RSA ME | yes | no | yes
 RSA CRT | yes | no | yes
 DES ECB | blocked | blocked | blocked
 DES CBC | blocked | blocked | blocked
 ...
 3DES ECB | no | yes | yes
 3DES CBC | no | yes | yes
 ...
 AES ECB | no | yes | yes
 ...
 AES GCM | no | yes | no
--
Built-in FIPS support: FIPS mode active.

The variant of the libica.so module, called libica-cex.so, introduced in “Using the libica-cex
variant” on page 6 provides a corresponding icainfo-cex command to display the available functions of
the libica-cex module.

The icainfo-cex command has the same syntax as icainfo (see “icainfo syntax” on page 133).

See an excerpt from an icainfo-cex output produced when running with the libica-cex module. The
minus-sign - indicates the disabled features:

 Cryptographic algorithm support
--
 | hardware |
 function | dynamic | static | software
---------------+------------+------------+------------
 SHA-1 | no | - | -
 SHA-224 | no | - | -
 SHA-256 | no | - | -
 ...
 ECDH | yes | - | -
 ECDSA Sign | yes | - | -
 ECDSA Verify | yes | - | -
 EC Keygen | yes | - | -
Ed25519 Keygen | no | - | -
 Ed25519 Sign | no | - | -
 ...
 RSA ME | yes | - | -
 RSA CRT | yes | - | -
 DES ECB | no | - | -
 DES CBC | no | - | -
 ...
--
No built-in FIPS support.
Software fallbacks are disabled in libica-cex.
CPACF support (including fallbacks) is disabled in libica-cex.

134 Linux on Z and LinuxONE: libica Programmer's Reference

Use the icainfo -c command to list the elliptic curves that are supported by libica on your current
system configuration. The availability of curves is, for example, dependent from the installed MSA level,
whether cryptographic coprocessors in CCA mode are available, whether OpenSSL is in FIPS mode, or
whether the whole system is in FIPS mode.

The table columns show whether a curve is supported by the hardware, either on a cryptographic
coprocessor in CCA mode (dynamic), on CPACF (static), or with a software fallback by OpenSSL.

icainfo -c

 | hardware |
 EC curve | dynamic | static | software
-----------------+------------+------------+-----------
 prime192v1 | yes | no | yes
 secp224r1 | yes | no | yes
 prime256v1 | yes | yes | yes
 secp384r1 | yes | yes | yes
 secp521r1 | yes | yes | yes
 brainpoolP160r1 | yes | no | yes
 brainpoolP192r1 | yes | no | yes
 brainpoolP224r1 | yes | no | yes
 brainpoolP256r1 | yes | no | yes
 brainpoolP320r1 | yes | no | yes
 brainpoolP384r1 | yes | no | yes
 brainpoolP512r1 | yes | no | yes
 ED25519 | no | yes | no
 ED448 | no | yes | no
 X25519 | no | yes | no
 X448 | no | yes | no

No built-in FIPS support.

Curves may or may not be supported because of the following reasons:

• The curve requires MSA9 (IBM z15 or later).
• A CCA coprocessor is available.
• The curve is not supported by OpenSSL in FIPS mode.

icastats - Show use of libica functions
Use the icastats utility to find out whether libica uses hardware acceleration features or works with
software fallbacks. icastats collects the statistical data per user and not per system.

The command also shows which specific functions of libica are used. For a standard user, icastats
shows a statistics table with all crypto operations that are used by the user’s processes. For the root user,
icastats provides statistics for all users, or processes, on the system.

The shared memory segment that holds the statistic data is created when a user starts icastats or
when a program is started, that performs cryptographic operations using libica. Once the shared memory
segment exists, it can only be removed by one of the delete options (-d or -D) provided with the
icastats utility. Thus, this function collects crypto statistics independently from the process context for
continuing availability of data. All cryptographic operations using libica are counted into the statistics.

Note: Before deleting the shared memory segment, ensure that there are no running applications that are
using this memory segment.

Chapter 6. libica tools 135

Format

icastats syntax
icastats

 -A

 -d

 -D

 -r

 -R

 -S

 -U <  username >

 -h

 -v

Where:

-A or --all
Shows the statistic tables from all users (for root users only).

-d or --delete
Removes the user specific shared memory segment.

-D or --delete-all
Removes all shared memory segments (for root users only).

-r or --reset
Resets the user statistic data table.

-R or --reset-all
Resets all statistic data tables from all users (for root users only).

-S or --summary
Shows accumulated statistics from all users (for root users only).

-U <username> or --user <username>
Shows statistic data for a dedicated user (for root users only).

-h or --help
Displays help information for the command.

-v or --version
Displays the version number of icastats, then exits.

Examples

To display the current use of libica functions issue:

icastats

View an excerpt of a sample output produced by this command:

 function | # hardware | # software
--------------+--------------------------+-------------------------
 | ENC CRYPT DEC | ENC CRYPT DEC
--------------+--------------------------+-------------------------
 SHA-1 | 0 | 0
 SHA-224 | 0 | 0
 ...
 SHA3-384 | 507 | 0
 ...
 SHAKE-256 | 8276 | 0
 ...

136 Linux on Z and LinuxONE: libica Programmer's Reference

 P_RNG | 55 | 0
 DRBG-SHA-512 | 29400 | 0
 ECDH | 4188 | 0
 ECDSA Sign | 1480 | 0
 ECDSA Verify | 1480 | 0
 EC Keygen | 132 | 0
 RSA-ME | 351 | 1
 RSA-CRT | 64 | 0
 DES ECB | 0 0 | 0 0
 DES CBC | 0 0 | 0 0
 ...
 AES CMAC | 0 0 | 0 0
 AES XTS | 0 0 | 0 0
 AES GCM | 0 0 | 0 0

CRYPT
indicates cryptographic functions that produce a one-way result on given data, for example, creating a
digital hash value from a given input text, or creating/verifying a digital signature.

ENC
is shown for a two way function performing encryption.

DEC
is shown for a two way function performing decryption.

Note that one single libica function may increase several different counters when internally using different
hardware functions. For example, performing AES GCM on a z13 involves using the AES ECB, AES CTR
and GHASH hardware functions. On a z14, the AES GCM counter increases to indicate the use of the KMA
instruction. Depending on the input data, other counters may also increase. Therefore, by looking at the
hardware counters, it is not possible to see how often a particular API function was called.

Logging and error handling
Access failures to the shared memory segments that are used by the icastats utility, are logged once
via the syslog interface. After a failed attempt to access the shared memory segment, the library no longer
collects any statistic data for this application (related to application lifetime and user).

Example of syslog message:

<date> <machine> <application>: failed to create or access shared memory segment.

The icastats utility prints an error message if it cannot create, access, or remove the shared memory
segment.

Note: The log message may indicate a permission problem with the shared memory segment. An
administrator can remove the defect memory segment. The next call of icastats should create a new
memory segment automatically.

You can view the shared memory segments and information about creators and owners with an ipcs
command, for example:

ipcs -i ID
ipcs -m

Chapter 6. libica tools 137

138 Linux on Z and LinuxONE: libica Programmer's Reference

Chapter 7. Examples
These sample program segments illustrate the use of the libica APIs.

These examples are released under the Common Public License - V1.0, which is stated in full at the end of
this chapter. See “Common Public License - V1.0” on page 182.

In the extracted source package, you also find test cases for all APIs in directory .../test/. For
information on how to compile the test cases, refer to the INSTALL file from the libica package.

View a list of examples for libica, and the makefile used to create the library.

• “SHAKE-128 example” on page 139
• “SHA-256 example” on page 141
• “RSA example” on page 143
• “AES with CFB mode example” on page 146
• “AES with CTR mode example” on page 156
• “AES with OFB mode example” on page 164
• “AES with XTS mode example” on page 170
• “CMAC example” on page 177
• “ECDSA example” on page 180
• “ECDH example” on page 181
• “Makefile example” on page 182
• “Common Public License - V1.0” on page 182

SHAKE-128 example

/* This program is released under the Common Public License V1.0
 *
 * You should have received a copy of Common Public License V1.0 along with
 * with this program.
 *
 * Copyright IBM Corp. 2017
 *
 */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <ica_api.h>

/* The name of the file to calculate the SHAKE-128 hash from */
#define FILE_NAME "example_shake_128.c"

/* Size of the chunks in which the file is read.
 * Must be a multiple of 168 bytes (the SHAKE-128 block size).
 */
#define CHUNK_SIZE 168

/* An arbitrary output_length in case the user did not specify a value via args */
#define SAMPLE_SHAKE_OUTPUT_LENGTH 123

/* Prints hex values to standard out. */
static void dump_data(unsigned char *data, unsigned long length);

/* Prints a description of the return value to standard out. */
static int handle_ica_error(int rc);

int main(int argc, char **argv)
{
 int rc=0;
 unsigned int output_length = SAMPLE_SHAKE_OUTPUT_LENGTH;

© Copyright IBM Corp. 2009, 2021 139

 /* Try to read the user specified output length. If none given, use our
 * sample value.
 */
 if (argc > 1 && argv[1] != NULL)
 output_length = atoi(argv[1]);

 /* This is the buffer where the SHAKE-128 hash is generated into.
 * The SHAKE algorithm can create output of any length greater or equal
 * to 8 bytes. Let's use an output length of 256 bytes for this example.
 */
 unsigned char* shake_result_p;

 /* The file will be read in several chunks into this buffer.
 * The chunks will be the input to the ica_shake_128 function which
 * we call for each chunk.
 */
 unsigned char shake_input[CHUNK_SIZE];

 /* This is the SHAKE-128 context. It stores intermediate values
 * needed when chaining multiple chunks (as we do).
 */
 shake_128_context_t context;

 /* Open the file in binary mode and read its content in chunks */
 FILE *f;
 f = fopen(FILE_NAME, "r");
 if (f == NULL)
 return handle_ica_error(errno);

 /* Allocate a buffer for the output value */
 shake_result_p = malloc(output_length);
 if (shake_result_p == NULL) {
 printf("Cannot malloc %d bytes for output value. \n", output_length);
 return EINVAL;
 }

 /* Perform the shake-128 operation ... */
 int len;
 unsigned long total_size = 0;
 memset((char*)&context, 0, sizeof(context));
 while (!feof(f)) {
 /* read a chunk of data */
 len = fread(shake_input, 1, CHUNK_SIZE, f);
 if (total_size == 0) {
 /* this is the first chunk */
 rc = ica_shake_128(SHA_MSG_PART_FIRST, len, shake_input,
 &context, shake_result_p, output_length);
 } else if (!feof(f)) {
 /* add this chunk to the hash */
 rc = ica_shake_128(SHA_MSG_PART_MIDDLE, len, shake_input,
 &context, shake_result_p, output_length);
 } else {
 /* this is the last chunk */
 rc = ica_shake_128(SHA_MSG_PART_FINAL, len, shake_input,
 &context, shake_result_p, output_length);
 }

 total_size += len;
 if (rc)
 break;
 }

 /* close the file */
 fclose(f);

 /* Error handling (if necessary). */
 if (rc)
 return handle_ica_error(rc);

 /* Dump the generated hash to standard output, just for
 * a visual control.
 */
 printf("SHAKE-128 hash with %d bytes of file '%s' (%lu bytes):\n", output_length,
 FILE_NAME, total_size);

 dump_data(shake_result_p, output_length);
}

static void dump_data(unsigned char *data, unsigned long length)
{
 unsigned char *ptr;
 int i;

140 Linux on Z and LinuxONE: libica Programmer's Reference

 for (ptr = data, i = 1; ptr < (data + length); ptr++, i++) {
 printf("0x%02x ", *ptr);
 if ((i % 16) == 0)
 printf("\n");
 }
 if (i % 16)
 printf("\n");
}

static int handle_ica_error(int rc)
{
 switch (rc) {
 case 0:
 printf("OK\n");
 break;
 case EINVAL:
 printf("Incorrect parameter.\n");
 break;
 case EPERM:
 printf("Operation not permitted by Hardware (CPACF).\n");
 break;
 case EIO:
 printf("I/O error.\n");
 break;
 default:
 printf("unknown error.\n");
 }
 return rc;
}

SHA-256 example

/* This program is released under the Common Public License V1.0
 *
 * You should have received a copy of Common Public License V1.0 along with
 * with this program.
 *
 * Copyright IBM Corp. 2016
 *
 */

#include <stdio.h>
#include <string.h>
#include <errno.h>

#include <ica_api.h>

/* The name of the file to calcualte the SHA256 hash from */
#define FILE_NAME "example_sha256.c"

/* Size of the chunks in which the file is read.
 * Must be a multiple of 64 bytes.
 */
#define CHUNK_SIZE 1024

/* Prints hex values to standard out. */
static void dump_data(unsigned char *data, unsigned long length);
/* Prints a description of the return value to standard out. */
static int handle_ica_error(int rc);

int main(char **argv, int argc)
{
 int rc;

 /* This is the buffer where the SHA256 hash is generated into.
 * For SHA256, it needs to be 32 bytes in size (SHA256_HASH_LENGTH).
 */
 unsigned char sha_result[SHA256_HASH_LENGTH];

 /* The file will be read in several chunks into this buffer.
 * The chunks will be the input to the ica_sha256 function which
 * we call for each chunk.
 */
 unsigned char sha_input[CHUNK_SIZE];

 /* This is the SHA 256 context. It stores intermediate values
 * needed when chaining multiple chunks (as we do).
 */

Chapter 7. Examples 141

 sha256_context_t context;

 /* Open the file in binary mode and read its content in chunks */
 FILE *f;

 f = fopen(FILE_NAME,"r");
 if (f==NULL)
 return handle_ica_error(errno);

 int len;
 unsigned long total_size = 0;

 while(!feof(f)) {
 /* read a chunk of data */
 len = fread(sha_input, 1, CHUNK_SIZE, f);

 if (total_size == 0) {
 /* this is the first chunk */
 rc = ica_sha256(SHA_MSG_PART_FIRST,
 len, sha_input,
 &context,
 sha_result);
 }
 else if (!feof(f)) {
 /* add this chunk to the hash */
 rc = ica_sha256(SHA_MSG_PART_MIDDLE,
 len, sha_input,
 &context,
 sha_result);
 }
 else {
 /* this is the last chunk */
 rc = ica_sha256(SHA_MSG_PART_FINAL,
 len, sha_input,
 &context,
 sha_result);
 }

 total_size += len;

 if (rc)
 break;
 }

 /* close the file */
 fclose(f);

 /* Error handling (if necessary). */
 if (rc)
 return handle_ica_error(rc);

 /* Dump the generated hash to standard output, just for
 * a visual control.
 *
 * Note: You can verify the displayed hash using command
 * 'sha256sum example_sha256.c'
 */
 printf("SHA256 hash of file '%s' (%u bytes):\n", FILE_NAME, total_size);
 dump_data(sha_result, sizeof(sha_result));
}

static void dump_data(unsigned char *data, unsigned long length)
{
 unsigned char *ptr;
 int i;

 for (ptr = data, i = 1; ptr < (data+length); ptr++, i++) {
 printf("0x%02x ", *ptr);
 if ((i % 16) == 0)
 printf("\n");
 }
 if (i % 16)
 printf("\n");
}

static int handle_ica_error(int rc)
{
 switch (rc) {
 case 0:
 printf("OK\n");
 break;
 case EINVAL:

142 Linux on Z and LinuxONE: libica Programmer's Reference

 printf("Incorrect parameter.\n");
 break;
 case EPERM:
 printf("Operation not permitted by Hardware (CPACF).\n");
 break;
 case EIO:
 printf("I/O error.\n");
 break;
 default:
 printf("unknown error.\n");
 }

 return rc;
}

RSA example

/* This program is released under the Common Public License V1.0
 *
 * You should have received a copy of Common Public License V1.0 along with
 * with this program.
 *
 * Copyright IBM Corp. 2016
 *
 */

#include <stdio.h>
#include <string.h>
#include <errno.h>

#include <ica_api.h>

#define RSA_KEY_SIZE_BITS 2048
#define RSA_KEY_SIZE_BYTES (RSA_KEY_SIZE_BITS + 7) / 8

#define RSA_DATA_SIZE_BYTES RSA_KEY_SIZE_BYTES

/* This is the plain data, you want to encrypt. For the
 * encryption mode used in this example, it is necessary,
 * that the length of the encrypted data is less or eqal
 * to the RSA key length in bytes.
 */
unsigned char message[] = {
 0x55, 0x73, 0x69, 0x6e, 0x67, 0x20, 0x6c, 0x69,
 0x62, 0x69, 0x63, 0x61, 0x20, 0x69, 0x73, 0x20,
 0x73, 0x6d, 0x61, 0x72, 0x74, 0x20, 0x61, 0x6e,
 0x64, 0x20, 0x65, 0x61, 0x73, 0x79, 0x21, 0x00,
};

/* Prints hex values to standard out. */
static void dump_data(unsigned char *data, unsigned long length);
/* Prints a description of the return value to standard out. */
static int handle_ica_error(int rc);

int main(char **argv, int argc)
{
 int rc;

 /* This is the RSA public/private key pair. We use libica function
 * ica_rsa_key_generate_crt to generate it.
 */
 ica_rsa_key_mod_expo_t public_key;
 ica_rsa_key_crt_t private_key;
 unsigned char public_modulus[RSA_KEY_SIZE_BYTES];
 unsigned char public_exponent[RSA_KEY_SIZE_BYTES];
 unsigned char private_p[RSA_KEY_SIZE_BYTES];
 unsigned char private_q[RSA_KEY_SIZE_BYTES];
 unsigned char private_dp[RSA_KEY_SIZE_BYTES];
 unsigned char private_dq[RSA_KEY_SIZE_BYTES];
 unsigned char private_qInverse[RSA_KEY_SIZE_BYTES];

 unsigned char plain_data[RSA_DATA_SIZE_BYTES];
 unsigned char cipher_data[RSA_DATA_SIZE_BYTES];
 unsigned char decrypt_data[RSA_DATA_SIZE_BYTES];

 /* This is the adapter handle */
 ica_adapter_handle_t handle;

Chapter 7. Examples 143

 /* Open the adapter */
 rc = ica_open_adapter(&handle);

 /* Error handling (if necessary). */
 if (rc)
 return handle_ica_error(rc);
 if (handle == DRIVER_NOT_LOADED)
 return handle_ica_error(-1);

 /* Setup the public_key and private_key structures */
 public_key.key_length = RSA_KEY_SIZE_BYTES;
 public_key.modulus = public_modulus;
 public_key.exponent = public_exponent;
 private_key.key_length = RSA_KEY_SIZE_BYTES;
 private_key.p = private_p;
 private_key.q = private_q;
 private_key.dp = private_dp;
 private_key.dq = private_dq;
 private_key.qInverse = private_qInverse;

 /* Zero the key fields
 Note: If the exponent element in the public key is not set,
 (i.e. all zero) it is randomly generated.*/
 memset(public_modulus, 0, sizeof(public_modulus));
 memset(public_exponent, 0, sizeof(public_exponent));
 memset(private_p, 0, sizeof(private_p));
 memset(private_q, 0, sizeof(private_q));
 memset(private_dp, 0, sizeof(private_dp));
 memset(private_dq, 0, sizeof(private_dq));
 memset(private_qInverse, 0, sizeof(private_qInverse));

 /* Generate a key for RSA */
 rc = ica_rsa_key_generate_crt(handle,
 RSA_KEY_SIZE_BITS,
 &public_key, &private_key);

 /* Error handling (if necessary). */
 if (rc)
 return handle_ica_error(rc);

 printf("Public modulus:\n");
 dump_data(public_modulus, sizeof(public_modulus));
 printf("Public exponent:\n");
 dump_data(public_exponent, sizeof(public_exponent));
 printf("Private p:\n");
 dump_data(private_p, sizeof(private_p));
 printf("Private q:\n");
 dump_data(private_q, sizeof(private_q));
 printf("Private dp:\n");
 dump_data(private_dp, sizeof(private_dp));
 printf("Private dq:\n");
 dump_data(private_dq, sizeof(private_dq));
 printf("Private qInverse:\n");
 dump_data(private_qInverse, sizeof(private_qInverse));

 /* Left allign the message data into the plain_data buffer
 * and padd it to the right with zeros.
 * Note: In real life you would perform propper padding of
 * the data. In this example we simply left pad the data
 * with binary zeros.
 */
 memset(plain_data, 0, sizeof(plain_data));
 memcpy(plain_data + sizeof(plain_data)-sizeof(message),
 message, sizeof(message));

 /* Dump plain data to standard output, just for
 * a visual control.
 */
 printf("plain data:\n");
 dump_data(plain_data, sizeof(plain_data));

 /* Encrypt the plain data to cipher data, using the public key. */
 rc = ica_rsa_mod_expo(handle, plain_data,
 &public_key, cipher_data);

 /* Error handling (if necessary). */
 if (rc)
 return handle_ica_error(rc);

 /* Dump encrypted data. */
 printf("encrypted data:\n");
 dump_data(cipher_data, sizeof(plain_data));

144 Linux on Z and LinuxONE: libica Programmer's Reference

 /* Decrypt cipher data to dercrypt data, using the private key. */
 rc = ica_rsa_crt(handle, cipher_data,
 &private_key, decrypt_data);

 /* Error handling (if necessary). */
 if (rc)
 return handle_ica_error(rc);

 /* Dump decrypted data.
 * Note: Please compare output with the plain data, they are the same.
 */
 printf("decrypted data:\n");
 dump_data(decrypt_data, sizeof(plain_data));

 /* In our example, the data is right alligned in the buffer, padded with
 * zeros to the left. Find first non zero byte which is the start of the
 * original data.
 * Note: In real life the data would be properly padded and thus would
 * have to be unpadded first.
 */
 unsigned char *c;
 for(c=decrypt_data;
 c<decrypt_data+sizeof(plain_data) && *c==0x00;
 c++);

 /* Surprise... :-)
 * Note: The following will only work in this example!
 */
 printf("%s\n", c);

 /* Close the adapter */
 rc = ica_close_adapter(handle);

 /* Error handling (if necessary). */
 if (rc)
 return handle_ica_error(rc);
}

static void dump_data(unsigned char *data, unsigned long length)
{
 unsigned char *ptr;
 int i;

 for (ptr = data, i = 1; ptr < (data+length); ptr++, i++) {
 printf("0x%02x ", *ptr);
 if ((i % 16) == 0)
 printf("\n");
 }
 if (i % 16)
 printf("\n");
}

static int handle_ica_error(int rc)
{
 switch (rc) {
 case 0:
 printf("OK\n");
 break;
 case EINVAL:
 printf("Incorrect parameter.\n");
 break;
 case EPERM:
 printf("Operation not permitted by Hardware (CPACF).\n");
 break;
 case EIO:
 printf("I/O error.\n");
 break;
 case -1:
 printf("Driver not loaded\n");
 break;
 default:
 printf("unknown error.\n");
 }

 return rc;
}

Chapter 7. Examples 145

AES with CFB mode example
/* This program is released under the Common Public License V1.0
 *
 * You should have received a copy of Common Public License V1.0 along with
 * with this program.
 */

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include "ica_api.h"

#define NR_TESTS 12
#define NR_RANDOM_TESTS 1000

/* CFB128 data -1- AES128 */
unsigned char NIST_KEY_CFB_E1[] = {
 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,
};

unsigned char NIST_IV_CFB_E1[] = {
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_CFB_E1[] = {
 0x3b, 0x3f, 0xd9, 0x2e, 0xb7, 0x2d, 0xad, 0x20,
 0x33, 0x34, 0x49, 0xf8, 0xe8, 0x3c, 0xfb, 0x4a,
};

unsigned char NIST_TEST_DATA_CFB_E1[] = {
 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};

unsigned char NIST_TEST_RESULT_CFB_E1[] = {
 0x3b, 0x3f, 0xd9, 0x2e, 0xb7, 0x2d, 0xad, 0x20,
 0x33, 0x34, 0x49, 0xf8, 0xe8, 0x3c, 0xfb, 0x4a,
};

unsigned int NIST_LCFB_E1 = 128 / 8;

/* CFB128 data -2- AES128 */
unsigned char NIST_KEY_CFB_E2[] = {
 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,
};

unsigned char NIST_IV_CFB_E2[] = {
 0x3b, 0x3f, 0xd9, 0x2e, 0xb7, 0x2d, 0xad, 0x20,
 0x33, 0x34, 0x49, 0xf8, 0xe8, 0x3c, 0xfb, 0x4a,
};

unsigned char NIST_EXPECTED_IV_CFB_E2[] = {
 0xc8, 0xa6, 0x45, 0x37, 0xa0, 0xb3, 0xa9, 0x3f,
 0xcd, 0xe3, 0xcd, 0xad, 0x9f, 0x1c, 0xe5, 0x8b,
};

unsigned char NIST_TEST_DATA_CFB_E2[] = {
 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
};

unsigned char NIST_TEST_RESULT_CFB_E2[] = {
 0xc8, 0xa6, 0x45, 0x37, 0xa0, 0xb3, 0xa9, 0x3f,
 0xcd, 0xe3, 0xcd, 0xad, 0x9f, 0x1c, 0xe5, 0x8b,
};

unsigned int NIST_LCFB_E2 = 128 / 8;

/* CFB8 data -3- AES128 */
unsigned char NIST_KEY_CFB_E3[] = {
 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,

146 Linux on Z and LinuxONE: libica Programmer's Reference

};

unsigned char NIST_IV_CFB_E3[] = {
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_CFB_E3[] = {
 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x3b,
};
unsigned char NIST_TEST_DATA_CFB_E3[] = {
 0x6b,
};

unsigned char NIST_TEST_RESULT_CFB_E3[] = {
 0x3b,
};
unsigned int NIST_LCFB_E3 = 8 / 8;

/* CFB8 data -4- AES128 */
unsigned char NIST_KEY_CFB_E4[] = {
 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,
};

unsigned char NIST_IV_CFB_E4[] = {
 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x3b,
};

unsigned char NIST_EXPECTED_IV_CFB_E4[] = {
 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x3b, 0x79,
};
unsigned char NIST_TEST_DATA_CFB_E4[] = {
 0xc1,
};

unsigned char NIST_TEST_RESULT_CFB_E4[] = {
 0x79,
};

unsigned int NIST_LCFB_E4 = 8 / 8;

/* CFB 128 data -5- for AES192 */
unsigned char NIST_KEY_CFB_E5[] = {
 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,
};

unsigned char NIST_IV_CFB_E5[] = {
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_CFB_E5[] = {
 0xcd, 0xc8, 0x0d, 0x6f, 0xdd, 0xf1, 0x8c, 0xab,
 0x34, 0xc2, 0x59, 0x09, 0xc9, 0x9a, 0x41, 0x74,
};

unsigned char NIST_TEST_DATA_CFB_E5[] = {
 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};

unsigned char NIST_TEST_RESULT_CFB_E5[] = {
 0xcd, 0xc8, 0x0d, 0x6f, 0xdd, 0xf1, 0x8c, 0xab,
 0x34, 0xc2, 0x59, 0x09, 0xc9, 0x9a, 0x41, 0x74,
};

unsigned int NIST_LCFB_E5 = 128 / 8;

/* CFB 128 data -6- for AES192 */
unsigned char NIST_KEY_CFB_E6[] = {
 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,
};

Chapter 7. Examples 147

unsigned char NIST_IV_CFB_E6[] = {
 0xcd, 0xc8, 0x0d, 0x6f, 0xdd, 0xf1, 0x8c, 0xab,
 0x34, 0xc2, 0x59, 0x09, 0xc9, 0x9a, 0x41, 0x74,
};

unsigned char NIST_EXPECTED_IV_CFB_E6[] = {
 0x67, 0xce, 0x7f, 0x7f, 0x81, 0x17, 0x36, 0x21,
 0x96, 0x1a, 0x2b, 0x70, 0x17, 0x1d, 0x3d, 0x7a,
};

unsigned char NIST_TEST_DATA_CFB_E6[] = {
 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
};

unsigned char NIST_TEST_RESULT_CFB_E6[] = {
 0x67, 0xce, 0x7f, 0x7f, 0x81, 0x17, 0x36, 0x21,
 0x96, 0x1a, 0x2b, 0x70, 0x17, 0x1d, 0x3d, 0x7a,
};

unsigned int NIST_LCFB_E6 = 128 / 8;

/* CFB 128 data -7- for AES192 */
unsigned char NIST_KEY_CFB_E7[] = {
 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,
};

unsigned char NIST_IV_CFB_E7[] = {
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_CFB_E7[] = {
 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xcd,
};

unsigned char NIST_TEST_DATA_CFB_E7[] = {
 0x6b,
};

unsigned char NIST_TEST_RESULT_CFB_E7[] = {
 0xcd,
};

unsigned int NIST_LCFB_E7 = 8 / 8;

/* CFB 128 data -8- for AES192 */
unsigned char NIST_KEY_CFB_E8[] = {
 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,
};

unsigned char NIST_IV_CFB_E8[] = {
 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xcd,
};

unsigned char NIST_EXPECTED_IV_CFB_E8[] = {
 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xcd, 0xa2,
};

unsigned char NIST_TEST_DATA_CFB_E8[] = {
 0xc1,
};

unsigned char NIST_TEST_RESULT_CFB_E8[] = {
 0xa2,
};

unsigned int NIST_LCFB_E8 = 8 / 8;

/* CFB128 data -9- for AES256 */
unsigned char NIST_KEY_CFB_E9[] = {
 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,

148 Linux on Z and LinuxONE: libica Programmer's Reference

 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CFB_E9[] = {
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_CFB_E9[] = {
 0xdc, 0x7e, 0x84, 0xbf, 0xda, 0x79, 0x16, 0x4b,
 0x7e, 0xcd, 0x84, 0x86, 0x98, 0x5d, 0x38, 0x60,
};

unsigned char NIST_TEST_DATA_CFB_E9[] = {
 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};

unsigned char NIST_TEST_RESULT_CFB_E9[] = {
 0xdc, 0x7e, 0x84, 0xbf, 0xda, 0x79, 0x16, 0x4b,
 0x7e, 0xcd, 0x84, 0x86, 0x98, 0x5d, 0x38, 0x60,
};

unsigned int NIST_LCFB_E9 = 128 / 8;

/* CFB128 data -10- for AES256 */
unsigned char NIST_KEY_CFB_E10[] = {
 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CFB_E10[] = {
 0xdc, 0x7e, 0x84, 0xbf, 0xda, 0x79, 0x16, 0x4b,
 0x7e, 0xcd, 0x84, 0x86, 0x98, 0x5d, 0x38, 0x60,
};

unsigned char NIST_EXPECTED_IV_CFB_E10[] = {
 0x39, 0xff, 0xed, 0x14, 0x3b, 0x28, 0xb1, 0xc8,
 0x32, 0x11, 0x3c, 0x63, 0x31, 0xe5, 0x40, 0x7b,
};

unsigned char NIST_TEST_DATA_CFB_E10[] = {
 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
};

unsigned char NIST_TEST_RESULT_CFB_E10[] = {
 0x39, 0xff, 0xed, 0x14, 0x3b, 0x28, 0xb1, 0xc8,
 0x32, 0x11, 0x3c, 0x63, 0x31, 0xe5, 0x40, 0x7b,
};

unsigned int NIST_LCFB_E10 = 128 / 8;

/* CFB8 data -11- for AES256 */
unsigned char NIST_KEY_CFB_E11[] = {
 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CFB_E11[] = {
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_CFB_E11[] = {
 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xdc,
};

unsigned char NIST_TEST_DATA_CFB_E11[] = {
 0x6b,
};

unsigned char NIST_TEST_RESULT_CFB_E11[] = {
 0xdc,
};

Chapter 7. Examples 149

unsigned int NIST_LCFB_E11 = 8 / 8;

/* CFB8 data -12- for AES256 */
unsigned char NIST_KEY_CFB_E12[] = {
 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CFB_E12[] = {
 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xdc,
};

unsigned char NIST_EXPECTED_IV_CFB_E12[] = {
 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xdc, 0x1f,
};

unsigned char NIST_TEST_DATA_CFB_E12[] = {
 0xc1,
};

unsigned char NIST_TEST_RESULT_CFB_E12[] = {
 0x1f,
};

unsigned int NIST_LCFB_E12 = 8 / 8;

void dump_array(unsigned char *ptr, unsigned int size)
{
 unsigned char *ptr_end;
 unsigned char *h;
 int i = 1;

 h = ptr;
 ptr_end = ptr + size;
 while (h < (unsigned char *)ptr_end) {
 printf("0x%02x ",(unsigned char) *h);
 h++;
 if (i == 8) {
 printf("\n");
 i = 1;
 } else {
 ++i;
 }
 }
 printf("\n");
}

void dump_cfb_data(unsigned char *iv, unsigned int iv_length,
 unsigned char *key, unsigned int key_length,
 unsigned char *input_data, unsigned int data_length,
 unsigned char *output_data)
{
 printf("IV \n");
 dump_array(iv, iv_length);
 printf("Key \n");
 dump_array(key, key_length);
 printf("Input Data\n");
 dump_array(input_data, data_length);
 printf("Output Data\n");
 dump_array(output_data, data_length);
}

void get_sizes(unsigned int *data_length, unsigned int *iv_length,
 unsigned int *key_length, unsigned int iteration)
{
 switch (iteration) {
 case 1:
 *data_length = sizeof(NIST_TEST_DATA_CFB_E1);
 *iv_length = sizeof(NIST_IV_CFB_E1);
 *key_length = sizeof(NIST_KEY_CFB_E1);
 break;
 case 2:
 *data_length = sizeof(NIST_TEST_DATA_CFB_E2);
 *iv_length = sizeof(NIST_IV_CFB_E2);
 *key_length = sizeof(NIST_KEY_CFB_E2);
 break;
 case 3:

150 Linux on Z and LinuxONE: libica Programmer's Reference

 *data_length = sizeof(NIST_TEST_DATA_CFB_E3);
 *iv_length = sizeof(NIST_IV_CFB_E3);
 *key_length = sizeof(NIST_KEY_CFB_E3);
 break;
 case 4:
 *data_length = sizeof(NIST_TEST_DATA_CFB_E4);
 *iv_length = sizeof(NIST_IV_CFB_E4);
 *key_length = sizeof(NIST_KEY_CFB_E4);
 break;
 case 5:
 *data_length = sizeof(NIST_TEST_DATA_CFB_E5);
 *iv_length = sizeof(NIST_IV_CFB_E5);
 *key_length = sizeof(NIST_KEY_CFB_E5);
 break;
 case 6:
 *data_length = sizeof(NIST_TEST_DATA_CFB_E6);
 *iv_length = sizeof(NIST_IV_CFB_E6);
 *key_length = sizeof(NIST_KEY_CFB_E6);
 break;
 case 7:
 *data_length = sizeof(NIST_TEST_DATA_CFB_E7);
 *iv_length = sizeof(NIST_IV_CFB_E7);
 *key_length = sizeof(NIST_KEY_CFB_E7);
 break;
 case 8:
 *data_length = sizeof(NIST_TEST_DATA_CFB_E8);
 *iv_length = sizeof(NIST_IV_CFB_E8);
 *key_length = sizeof(NIST_KEY_CFB_E8);
 break;
 case 9:
 *data_length = sizeof(NIST_TEST_DATA_CFB_E9);
 *iv_length = sizeof(NIST_IV_CFB_E9);
 *key_length = sizeof(NIST_KEY_CFB_E9);
 break;
 case 10:
 *data_length = sizeof(NIST_TEST_DATA_CFB_E10);
 *iv_length = sizeof(NIST_IV_CFB_E10);
 *key_length = sizeof(NIST_KEY_CFB_E10);
 break;
 case 11:
 *data_length = sizeof(NIST_TEST_DATA_CFB_E11);
 *iv_length = sizeof(NIST_IV_CFB_E11);
 *key_length = sizeof(NIST_KEY_CFB_E11);
 break;
 case 12:
 *data_length = sizeof(NIST_TEST_DATA_CFB_E12);
 *iv_length = sizeof(NIST_IV_CFB_E12);
 *key_length = sizeof(NIST_KEY_CFB_E12);
 break;
 }

}

void load_test_data(unsigned char *data, unsigned int data_length,
 unsigned char *result,
 unsigned char *iv, unsigned char *expected_iv,
 unsigned int iv_length,
 unsigned char *key, unsigned int key_length,
 unsigned int *lcfb, unsigned int iteration)
{
 switch (iteration) {
 case 1:
 memcpy(data, NIST_TEST_DATA_CFB_E1, data_length);
 memcpy(result, NIST_TEST_RESULT_CFB_E1, data_length);
 memcpy(iv, NIST_IV_CFB_E1, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E1, iv_length);
 memcpy(key, NIST_KEY_CFB_E1, key_length);
 *lcfb = NIST_LCFB_E1;
 break;
 case 2:
 memcpy(data, NIST_TEST_DATA_CFB_E2, data_length);
 memcpy(result, NIST_TEST_RESULT_CFB_E2, data_length);
 memcpy(iv, NIST_IV_CFB_E2, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E2, iv_length);
 memcpy(key, NIST_KEY_CFB_E2, key_length);
 *lcfb = NIST_LCFB_E2;
 break;
 case 3:
 memcpy(data, NIST_TEST_DATA_CFB_E3, data_length);
 memcpy(result, NIST_TEST_RESULT_CFB_E3, data_length);
 memcpy(iv, NIST_IV_CFB_E3, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E3, iv_length);

Chapter 7. Examples 151

 memcpy(key, NIST_KEY_CFB_E3, key_length);
 *lcfb = NIST_LCFB_E3;
 break;
 case 4:
 memcpy(data, NIST_TEST_DATA_CFB_E4, data_length);
 memcpy(result, NIST_TEST_RESULT_CFB_E4, data_length);
 memcpy(iv, NIST_IV_CFB_E4, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E4, iv_length);
 memcpy(key, NIST_KEY_CFB_E4, key_length);
 *lcfb = NIST_LCFB_E4;
 break;
 case 5:
 memcpy(data, NIST_TEST_DATA_CFB_E5, data_length);
 memcpy(result, NIST_TEST_RESULT_CFB_E5, data_length);
 memcpy(iv, NIST_IV_CFB_E5, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E5, iv_length);
 memcpy(key, NIST_KEY_CFB_E5, key_length);
 *lcfb = NIST_LCFB_E5;
 break;
 case 6:
 memcpy(data, NIST_TEST_DATA_CFB_E6, data_length);
 memcpy(result, NIST_TEST_RESULT_CFB_E6, data_length);
 memcpy(iv, NIST_IV_CFB_E6, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E6, iv_length);
 memcpy(key, NIST_KEY_CFB_E6, key_length);
 *lcfb = NIST_LCFB_E6;
 break;
 case 7:
 memcpy(data, NIST_TEST_DATA_CFB_E7, data_length);
 memcpy(result, NIST_TEST_RESULT_CFB_E7, data_length);
 memcpy(iv, NIST_IV_CFB_E7, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E7, iv_length);
 memcpy(key, NIST_KEY_CFB_E7, key_length);
 *lcfb = NIST_LCFB_E7;
 break;
 case 8:
 memcpy(data, NIST_TEST_DATA_CFB_E8, data_length);
 memcpy(result, NIST_TEST_RESULT_CFB_E8, data_length);
 memcpy(iv, NIST_IV_CFB_E8, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E8, iv_length);
 memcpy(key, NIST_KEY_CFB_E8, key_length);
 *lcfb = NIST_LCFB_E8;
 break;
 case 9:
 memcpy(data, NIST_TEST_DATA_CFB_E9, data_length);
 memcpy(result, NIST_TEST_RESULT_CFB_E9, data_length);
 memcpy(iv, NIST_IV_CFB_E9, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E9, iv_length);
 memcpy(key, NIST_KEY_CFB_E9, key_length);
 *lcfb = NIST_LCFB_E9;
 break;
 case 10:
 memcpy(data, NIST_TEST_DATA_CFB_E10, data_length);
 memcpy(result, NIST_TEST_RESULT_CFB_E10, data_length);
 memcpy(iv, NIST_IV_CFB_E10, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E10, iv_length);
 memcpy(key, NIST_KEY_CFB_E10, key_length);
 *lcfb = NIST_LCFB_E10;
 break;
 case 11:
 memcpy(data, NIST_TEST_DATA_CFB_E11, data_length);
 memcpy(result, NIST_TEST_RESULT_CFB_E11, data_length);
 memcpy(iv, NIST_IV_CFB_E11, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E11, iv_length);
 memcpy(key, NIST_KEY_CFB_E11, key_length);
 *lcfb = NIST_LCFB_E11;
 break;
 case 12:
 memcpy(data, NIST_TEST_DATA_CFB_E12, data_length);
 memcpy(result, NIST_TEST_RESULT_CFB_E12, data_length);
 memcpy(iv, NIST_IV_CFB_E12, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E12, iv_length);
 memcpy(key, NIST_KEY_CFB_E12, key_length);
 *lcfb = NIST_LCFB_E12;
 break;
 }

}

int kat_aes_cfb(int iteration, int silent)
{
 unsigned int data_length;

152 Linux on Z and LinuxONE: libica Programmer's Reference

 unsigned int iv_length;
 unsigned int key_length;

 get_sizes(&data_length, &iv_length, &key_length, iteration);

 unsigned char iv[iv_length];
 unsigned char tmp_iv[iv_length];
 unsigned char expected_iv[iv_length];
 unsigned char key[key_length];
 unsigned char input_data[data_length];
 unsigned char encrypt[data_length];
 unsigned char decrypt[data_length];
 unsigned char result[data_length];

 int rc = 0;
 unsigned int lcfb;
 memset(encrypt, 0x00, data_length);
 memset(decrypt, 0x00, data_length);

 load_test_data(input_data, data_length, result, iv, expected_iv,
 iv_length, key, key_length, &lcfb, iteration);
 memcpy(tmp_iv, iv, iv_length);

 printf("Test Parameters for iteration = %i\n", iteration);
 printf("key length = %i, data length = %i, iv length = %i,"
 " lcfb = %i\n", key_length, data_length, iv_length, lcfb);

 if (iteration == 3)
 rc = ica_aes_cfb(input_data, encrypt, lcfb, key, key_length, tmp_iv,
 lcfb, 1);
 else
 rc = ica_aes_cfb(input_data, encrypt, data_length, key, key_length,
 tmp_iv, lcfb, 1);
 if (rc) {
 printf("ica_aes_cfb encrypt failed with rc = %i\n", rc);
 dump_cfb_data(iv, iv_length, key, key_length, input_data,
 data_length, encrypt);
 }
 if (!silent && !rc) {
 printf("Encrypt:\n");
 dump_cfb_data(iv, iv_length, key, key_length, input_data,
 data_length, encrypt);
 }

 if (memcmp(result, encrypt, data_length)) {
 printf("Encryption Result does not match the known ciphertext!\n");
 printf("Expected data:\n");
 dump_array(result, data_length);
 printf("Encryption Result:\n");
 dump_array(encrypt, data_length);
 rc++;
 }

 if (memcmp(expected_iv, tmp_iv, iv_length)) {
 printf("Update of IV does not match the expected IV!\n");
 printf("Expected IV:\n");
 dump_array(expected_iv, iv_length);
 printf("Updated IV:\n");
 dump_array(tmp_iv, iv_length);
 printf("Original IV:\n");
 dump_array(iv, iv_length);
 rc++;
 }
 if (rc) {
 printf("AES OFB test exited after encryption\n");
 return rc;
 }

 memcpy(tmp_iv, iv, iv_length);
 if (iteration == 3)
 rc = ica_aes_cfb(encrypt, decrypt, lcfb, key, key_length, tmp_iv,
 lcfb, 0);
 else
 rc = ica_aes_cfb(encrypt, decrypt, data_length, key, key_length,
 tmp_iv, lcfb, 0);
 if (rc) {
 printf("ica_aes_cfb decrypt failed with rc = %i\n", rc);
 dump_cfb_data(iv, iv_length, key, key_length, encrypt,
 data_length, decrypt);
 return rc;
 }

Chapter 7. Examples 153

 if (!silent && !rc) {
 printf("Decrypt:\n");
 dump_cfb_data(iv, iv_length, key, key_length, encrypt,
 data_length, decrypt);
 }

 if (memcmp(decrypt, input_data, data_length)) {
 printf("Decryption Result does not match the original data!\n");
 printf("Original data:\n");
 dump_array(input_data, data_length);
 printf("Decryption Result:\n");
 dump_array(decrypt, data_length);
 rc++;
 }
 return rc;
}

int load_random_test_data(unsigned char *data, unsigned int data_length,
 unsigned char *iv, unsigned int iv_length,
 unsigned char *key, unsigned int key_length)
{
 int rc;
 rc = ica_random_number_generate(data_length, data);
 if (rc) {
 printf("ica_random_number_generate with rc = %i errnor = %i\n",
 rc, errno);
 return rc;
 }
 rc = ica_random_number_generate(iv_length, iv);
 if (rc) {
 printf("ica_random_number_generate with rc = %i errnor = %i\n",
 rc, errno);
 return rc;
 }
 rc = ica_random_number_generate(key_length, key);
 if (rc) {
 printf("ica_random_number_generate with rc = %i errnor = %i\n",
 rc, errno);
 return rc;
 }
 return rc;
}

int random_aes_cfb(int iteration, int silent, unsigned int data_length,
 unsigned int lcfb)
{
 unsigned int iv_length = sizeof(ica_aes_vector_t);
 unsigned int key_length = AES_KEY_LEN128;

 unsigned char iv[iv_length];
 unsigned char tmp_iv[iv_length];
 unsigned char key[key_length];
 unsigned char input_data[data_length];
 unsigned char encrypt[data_length];
 unsigned char decrypt[data_length];

 int rc = 0;
 for (key_length = AES_KEY_LEN128; key_length <= AES_KEY_LEN256; key_length += 8) {
 memset(encrypt, 0x00, data_length);
 memset(decrypt, 0x00, data_length);

 load_random_test_data(input_data, data_length, iv, iv_length, key,
 key_length);
 memcpy(tmp_iv, iv, iv_length);

 printf("Test Parameters for iteration = %i\n", iteration);
 printf("key length = %i, data length = %i, iv length = %i,"
 " lcfb = %i\n", key_length, data_length, iv_length, lcfb);

 rc = ica_aes_cfb(input_data, encrypt, data_length, key, key_length,
 tmp_iv, lcfb, 1);
 if (rc) {
 printf("ica_aes_cfb encrypt failed with rc = %i\n", rc);
 dump_cfb_data(iv, iv_length, key, key_length, input_data,
 data_length, encrypt);
 }
 if (!silent && !rc) {
 printf("Encrypt:\n");
 dump_cfb_data(iv, iv_length, key, key_length, input_data,
 data_length, encrypt);

154 Linux on Z and LinuxONE: libica Programmer's Reference

 }

 if (rc) {
 printf("AES OFB test exited after encryption\n");
 return rc;
 }

 memcpy(tmp_iv, iv, iv_length);

 rc = ica_aes_cfb(encrypt, decrypt, data_length, key, key_length,
 tmp_iv, lcfb, 0);
 if (rc) {
 printf("ica_aes_cfb decrypt failed with rc = %i\n", rc);
 dump_cfb_data(iv, iv_length, key, key_length, encrypt,
 data_length, decrypt);
 return rc;
 }

 if (!silent && !rc) {
 printf("Decrypt:\n");
 dump_cfb_data(iv, iv_length, key, key_length, encrypt,
 data_length, decrypt);
 }

 if (memcmp(decrypt, input_data, data_length)) {
 printf("Decryption Result does not match the original data!\n");
 printf("Original data:\n");
 dump_array(input_data, data_length);
 printf("Decryption Result:\n");
 dump_array(decrypt, data_length);
 rc++;
 }
 }
 return rc;
}

int main(int argc, char **argv)
{
 unsigned int silent = 0;
 unsigned int endless = 0;
 if (argc > 1) {
 if (strstr(argv[1], "silent"))
 silent = 1;
 if (strstr(argv[1], "endless"))
 endless = 1;
 }
 int rc = 0;
 int error_count = 0;
 int iteration;
 for(iteration = 1; iteration <= NR_TESTS; iteration++) {
 rc = kat_aes_cfb(iteration, silent);
 if (rc) {
 printf("kat_aes_cfb failed with rc = %i\n", rc);
 error_count++;
 } else
 printf("kat_aes_cfb finished successfuly\n");

 }

 unsigned int data_length = 1;
 unsigned int lcfb = 1;
 unsigned int j;
 for(iteration = 1; iteration <= NR_RANDOM_TESTS; iteration++) {
 for (j = 1; j <= 3; j++) {
 int silent = 1;
 if (!(data_length % lcfb)) {
 rc = random_aes_cfb(iteration, silent, data_length, lcfb);
 if (rc) {
 printf("random_aes_cfb failed with rc = %i\n", rc);
 error_count++;
 } else
 printf("random_aes_cfb finished successfuly\n");
 }
 switch (j) {
 case 1:
 lcfb = 1;
 break;
 case 2:
 lcfb = 8;
 break;
 case 3:

Chapter 7. Examples 155

 lcfb = 16;
 break;
 }
 }
 if (data_length == 1)
 data_length = 8;
 else
 data_length += 8;
 }
 if (error_count)
 printf("%i testcases failed\n", error_count);
 else
 printf("All testcases finished successfully\n");

 return rc;
}

AES with CTR mode example
/* This program is released under the Common Public License V1.0
 *
 * You should have received a copy of Common Public License V1.0 along with
 * with this program.
 */

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include "ica_api.h"

#define NR_TESTS 7

/* CTR data - 1 for AES128 */
unsigned char NIST_KEY_CTR_E1[] = {
 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,
};

unsigned char NIST_IV_CTR_E1[] = {
 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
};

unsigned char NIST_EXPECTED_IV_CTR_E1[] = {
 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x00,
};

unsigned char NIST_TEST_DATA_CTR_E1[] = {
 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};

unsigned char NIST_TEST_RESULT_CTR_E1[] = {
 0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26,
 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce,
};

/* CTR data - 2 for AES128 */
unsigned char NIST_KEY_CTR_E2[] = {
 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,
};

unsigned char NIST_IV_CTR_E2[] = {
 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
};

unsigned char NIST_EXPECTED_IV_CTR_E2[] = {
 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x03,
};

unsigned char NIST_TEST_DATA_CTR_E2[] = {

156 Linux on Z and LinuxONE: libica Programmer's Reference

 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10,
};

unsigned char NIST_TEST_RESULT_CTR_E2[] = {
 0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26,
 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce,
 0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff,
 0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff,
 0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e,
 0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab,
 0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1,
 0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee,
};

/* CTR data - 3 - for AES192 */
unsigned char NIST_KEY_CTR_E3[] = {
 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CTR_E3[] = {
 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
};

unsigned char NIST_EXPECTED_IV_CTR_E3[] = {
 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x00,
};

unsigned char NIST_TEST_DATA_CTR_E3[] = {
 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};

unsigned char NIST_TEST_RESULT_CTR_E3[] = {
 0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5,
 0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28,
};

/* CTR data - 4 - for AES192 */
unsigned char NIST_KEY_CTR_E4[] = {
 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CTR_E4[] = {
 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x00,
};

unsigned char NIST_EXPECTED_IV_CTR_E4[] = {
 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x01,
};

unsigned char NIST_TEST_DATA_CTR_E4[] = {
 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
};

unsigned char NIST_TEST_RESULT_CTR_E4[] = {
 0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a,
 0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5,
};

/* CTR data 5 - for AES 256 */
unsigned char NIST_KEY_CTR_E5[] = {
 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,

Chapter 7. Examples 157

 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CTR_E5[] = {
 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
};

unsigned char NIST_EXPECTED_IV_CTR_E5[] = {
 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x03,
};

unsigned char NIST_TEST_DATA_CTR_E5[] = {
 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10,
};

unsigned char NIST_TEST_RESULT_CTR_E5[] = {
 0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5,
 0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28,
 0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a,
 0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5,
 0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c,
 0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d,
 0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6,
 0x13, 0xc2, 0xdd, 0x08, 0x45, 0x79, 0x41, 0xa6,
};

/* CTR data 6 - for AES 256.
 * Data is != BLOCK_SIZE */
unsigned char NIST_KEY_CTR_E6[] = {
 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CTR_E6[] = {
 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
};

unsigned char NIST_EXPECTED_IV_CTR_E6[] = {
 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x03,
};

unsigned char NIST_TEST_DATA_CTR_E6[] = {
 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
};

unsigned char NIST_TEST_RESULT_CTR_E6[] = {
 0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5,
 0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28,
 0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a,
 0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5,
 0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c,
 0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d,
 0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6,
};

/* CTR data 7 - for AES 256
 * Counter as big as the data. Therefore the counter
 * should not be updated. Because it is already pre
 * computed. */
unsigned char NIST_KEY_CTR_E7[] = {
 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,

158 Linux on Z and LinuxONE: libica Programmer's Reference

 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CTR_E7[] = {
 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x00,
 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x01,
 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x02,
};

unsigned char NIST_EXPECTED_IV_CTR_E7[] = {
 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x00,
 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x01,
 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x02,
};

unsigned char NIST_TEST_DATA_CTR_E7[] = {
 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10,
};

unsigned char NIST_TEST_RESULT_CTR_E7[] = {
 0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5,
 0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28,
 0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a,
 0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5,
 0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c,
 0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d,
 0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6,
 0x13, 0xc2, 0xdd, 0x08, 0x45, 0x79, 0x41, 0xa6,
};

void dump_array(unsigned char *ptr, unsigned int size)
{
 unsigned char *ptr_end;
 unsigned char *h;
 int i = 1;

 h = ptr;
 ptr_end = ptr + size;
 while (h < (unsigned char *)ptr_end) {
 printf("0x%02x ",(unsigned char) *h);
 h++;
 if (i == 8) {
 printf("\n");
 i = 1;
 } else {
 ++i;
 }
 }
 printf("\n");
}

void dump_ctr_data(unsigned char *iv, unsigned int iv_length,
 unsigned char *key, unsigned int key_length,
 unsigned char *input_data, unsigned int data_length,
 unsigned char *output_data)
{
 printf("IV \n");
 dump_array(iv, iv_length);
 printf("Key \n");
 dump_array(key, key_length);
 printf("Input Data\n");
 dump_array(input_data, data_length);
 printf("Output Data\n");
 dump_array(output_data, data_length);

Chapter 7. Examples 159

}

void get_sizes(unsigned int *data_length, unsigned int *iv_length,
 unsigned int *key_length, unsigned int iteration)
{
 switch (iteration) {
 case 1:
 *data_length = sizeof(NIST_TEST_DATA_CTR_E1);
 *iv_length = sizeof(NIST_IV_CTR_E1);
 *key_length = sizeof(NIST_KEY_CTR_E1);
 break;
 case 2:
 *data_length = sizeof(NIST_TEST_DATA_CTR_E2);
 *iv_length = sizeof(NIST_IV_CTR_E2);
 *key_length = sizeof(NIST_KEY_CTR_E2);
 break;
 case 3:
 *data_length = sizeof(NIST_TEST_DATA_CTR_E3);
 *iv_length = sizeof(NIST_IV_CTR_E3);
 *key_length = sizeof(NIST_KEY_CTR_E3);
 break;
 case 4:
 *data_length = sizeof(NIST_TEST_DATA_CTR_E4);
 *iv_length = sizeof(NIST_IV_CTR_E4);
 *key_length = sizeof(NIST_KEY_CTR_E4);
 break;
 case 5:
 *data_length = sizeof(NIST_TEST_DATA_CTR_E5);
 *iv_length = sizeof(NIST_IV_CTR_E5);
 *key_length = sizeof(NIST_KEY_CTR_E5);
 break;
 case 6:
 *data_length = sizeof(NIST_TEST_DATA_CTR_E6);
 *iv_length = sizeof(NIST_IV_CTR_E6);
 *key_length = sizeof(NIST_KEY_CTR_E6);
 break;
 case 7:
 *data_length = sizeof(NIST_TEST_DATA_CTR_E7);
 *iv_length = sizeof(NIST_IV_CTR_E7);
 *key_length = sizeof(NIST_KEY_CTR_E7);
 break;
 }

}

void load_test_data(unsigned char *data, unsigned int data_length,
 unsigned char *result,
 unsigned char *iv, unsigned char *expected_iv,
 unsigned int iv_length,
 unsigned char *key, unsigned int key_length,
 unsigned int iteration)
{
 switch (iteration) {
 case 1:
 memcpy(data, NIST_TEST_DATA_CTR_E1, data_length);
 memcpy(result, NIST_TEST_RESULT_CTR_E1, data_length);
 memcpy(iv, NIST_IV_CTR_E1, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E1, iv_length);
 memcpy(key, NIST_KEY_CTR_E1, key_length);
 break;
 case 2:
 memcpy(data, NIST_TEST_DATA_CTR_E2, data_length);
 memcpy(result, NIST_TEST_RESULT_CTR_E2, data_length);
 memcpy(iv, NIST_IV_CTR_E2, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E2, iv_length);
 memcpy(key, NIST_KEY_CTR_E2, key_length);
 break;
 case 3:
 memcpy(data, NIST_TEST_DATA_CTR_E3, data_length);
 memcpy(result, NIST_TEST_RESULT_CTR_E3, data_length);
 memcpy(iv, NIST_IV_CTR_E3, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E3, iv_length);
 memcpy(key, NIST_KEY_CTR_E3, key_length);
 break;
 case 4:
 memcpy(data, NIST_TEST_DATA_CTR_E4, data_length);
 memcpy(result, NIST_TEST_RESULT_CTR_E4, data_length);
 memcpy(iv, NIST_IV_CTR_E4, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E4, iv_length);
 memcpy(key, NIST_KEY_CTR_E4, key_length);
 break;
 case 5:

160 Linux on Z and LinuxONE: libica Programmer's Reference

 memcpy(data, NIST_TEST_DATA_CTR_E5, data_length);
 memcpy(result, NIST_TEST_RESULT_CTR_E5, data_length);
 memcpy(iv, NIST_IV_CTR_E5, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E5, iv_length);
 memcpy(key, NIST_KEY_CTR_E5, key_length);
 break;
 case 6:
 memcpy(data, NIST_TEST_DATA_CTR_E6, data_length);
 memcpy(result, NIST_TEST_RESULT_CTR_E6, data_length);
 memcpy(iv, NIST_IV_CTR_E6, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E6, iv_length);
 memcpy(key, NIST_KEY_CTR_E6, key_length);
 break;
 case 7:
 memcpy(data, NIST_TEST_DATA_CTR_E7, data_length);
 memcpy(result, NIST_TEST_RESULT_CTR_E7, data_length);
 memcpy(iv, NIST_IV_CTR_E7, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E7, iv_length);
 memcpy(key, NIST_KEY_CTR_E7, key_length);
 break;
 }

}

int random_aes_ctr(int iteration, int silent, unsigned int data_length, unsigned int iv_length)
{
 unsigned int key_length = AES_KEY_LEN256;
 if (data_length % sizeof(ica_aes_vector_t))
 iv_length = sizeof(ica_aes_vector_t);

 printf("Test Parameters for iteration = %i\n", iteration);
 printf("key length = %i, data length = %i, iv length = %i\n",
 key_length, data_length, iv_length);

 unsigned char iv[iv_length];
 unsigned char tmp_iv[iv_length];
 unsigned char key[key_length];
 unsigned char input_data[data_length];
 unsigned char encrypt[data_length];
 unsigned char decrypt[data_length];

 int rc = 0;
 rc = ica_random_number_generate(data_length, input_data);
 if (rc) {
 printf("random number generate returned rc = %i, errno = %i\n", rc, errno);
 return rc;
 }
 rc = ica_random_number_generate(iv_length, iv);
 if (rc) {
 printf("random number generate returned rc = %i, errno = %i\n", rc, errno);
 return rc;
 }

 rc = ica_random_number_generate(key_length, key);
 if (rc) {
 printf("random number generate returned rc = %i, errno = %i\n", rc, errno);
 return rc;
 }
 memcpy(tmp_iv, iv, iv_length);

 rc = ica_aes_ctr(input_data, encrypt, data_length, key, key_length,
 tmp_iv, 32, 1);
 if (rc) {
 printf("ica_aes_ctr encrypt failed with rc = %i\n", rc);
 dump_ctr_data(iv, iv_length, key, key_length, input_data,
 data_length, encrypt);
 return rc;
 }
 if (!silent && !rc) {
 printf("Encrypt:\n");
 dump_ctr_data(iv, iv_length, key, key_length, input_data,
 data_length, encrypt);
 }

 memcpy(tmp_iv, iv, iv_length);
 rc = ica_aes_ctr(encrypt, decrypt, data_length, key, key_length,
 tmp_iv, 32, 0);
 if (rc) {
 printf("ica_aes_ctr decrypt failed with rc = %i\n", rc);
 dump_ctr_data(iv, iv_length, key, key_length, encrypt,
 data_length, decrypt);
 return rc;

Chapter 7. Examples 161

 }

 if (!silent && !rc) {
 printf("Decrypt:\n");
 dump_ctr_data(iv, iv_length, key, key_length, encrypt,
 data_length, decrypt);
 }

 if (memcmp(decrypt, input_data, data_length)) {
 printf("Decryption Result does not match the original data!\n");
 printf("Original data:\n");
 dump_array(input_data, data_length);
 printf("Decryption Result:\n");
 dump_array(decrypt, data_length);
 rc++;
 }
 return rc;
}

int kat_aes_ctr(int iteration, int silent)
{
 unsigned int data_length;
 unsigned int iv_length;
 unsigned int key_length;

 get_sizes(&data_length, &iv_length, &key_length, iteration);

 printf("Test Parameters for iteration = %i\n", iteration);
 printf("key length = %i, data length = %i, iv length = %i\n",
 key_length, data_length, iv_length);

 unsigned char iv[iv_length];
 unsigned char tmp_iv[iv_length];
 unsigned char expected_iv[iv_length];
 unsigned char key[key_length];
 unsigned char input_data[data_length];
 unsigned char encrypt[data_length];
 unsigned char decrypt[data_length];
 unsigned char result[data_length];

 int rc = 0;

 load_test_data(input_data, data_length, result, iv, expected_iv,
 iv_length, key, key_length, iteration);
 memcpy(tmp_iv, iv, iv_length);

 if (iv_length == 16)
 rc = ica_aes_ctr(input_data, encrypt, data_length, key, key_length,
 tmp_iv, 32, 1);
 else
 rc = ica_aes_ctrlist(input_data, encrypt, data_length, key, key_length,
 tmp_iv, 1);
 if (rc) {
 printf("ica_aes_ctr encrypt failed with rc = %i\n", rc);
 dump_ctr_data(iv, iv_length, key, key_length, input_data,
 data_length, encrypt);
 }
 if (!silent && !rc) {
 printf("Encrypt:\n");
 dump_ctr_data(iv, iv_length, key, key_length, input_data,
 data_length, encrypt);
 }

 if (memcmp(result, encrypt, data_length)) {
 printf("Encryption Result does not match the known ciphertext!\n");
 printf("Expected data:\n");
 dump_array(result, data_length);
 printf("Encryption Result:\n");
 dump_array(encrypt, data_length);
 rc++;
 }

 if (memcmp(expected_iv, tmp_iv, iv_length)) {
 printf("Update of IV does not match the expected IV!\n");
 printf("Expected IV:\n");
 dump_array(expected_iv, iv_length);
 printf("Updated IV:\n");
 dump_array(tmp_iv, iv_length);
 printf("Original IV:\n");
 dump_array(iv, iv_length);
 rc++;

162 Linux on Z and LinuxONE: libica Programmer's Reference

 }
 if (rc) {
 printf("AES CTR test exited after encryption\n");
 return rc;
 }

 memcpy(tmp_iv, iv, iv_length);
 rc = ica_aes_ctr(encrypt, decrypt, data_length, key, key_length,
 tmp_iv, 32,0);
 if (rc) {
 printf("ica_aes_ctr decrypt failed with rc = %i\n", rc);
 dump_ctr_data(iv, iv_length, key, key_length, encrypt,
 data_length, decrypt);
 return rc;
 }

 if (!silent && !rc) {
 printf("Decrypt:\n");
 dump_ctr_data(iv, iv_length, key, key_length, encrypt,
 data_length, decrypt);
 }

 if (memcmp(decrypt, input_data, data_length)) {
 printf("Decryption Result does not match the original data!\n");
 printf("Original data:\n");
 dump_array(input_data, data_length);
 printf("Decryption Result:\n");
 dump_array(decrypt, data_length);
 rc++;
 }
 return rc;
}

int main(int argc, char **argv)
{
 // Default mode is 0. ECB,CBC and CFQ tests will be performed.
 unsigned int silent = 0;
 unsigned int endless = 0;
 if (argc > 1) {
 if (strstr(argv[1], "silent"))
 silent = 1;
 if (strstr(argv[1], "endless"))
 endless = 1;
 }
 int rc = 0;
 int error_count = 0;
 int iteration;
 if (!endless)
 for(iteration = 1; iteration <= NR_TESTS; iteration++) {
 rc = kat_aes_ctr(iteration, silent);
 if (rc) {
 printf("kat_aes_ctr failed with rc = %i\n", rc);
 error_count++;
 } else
 printf("kat_aes_ctr finished successfuly\n");

 }
 int i = 0;
 if (endless)
 while (1) {
 printf("i = %i\n",i);
 silent = 1;
 rc = random_aes_ctr(i, silent, 320, 320);
 if (rc) {
 printf("kat_aes_ctr failed with rc = %i\n", rc);
 return rc;
 } else
 printf("kat_aes_ctr finished successfuly\n");
 i++;
 }

 if (error_count)
 printf("%i testcases failed\n", error_count);
 else
 printf("All testcases finished successfully\n");

 return rc;
}

Chapter 7. Examples 163

AES with OFB mode example
/* This program is released under the Common Public License V1.0
 *
 * You should have received a copy of Common Public License V1.0 along with
 * with this program.
 */

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include "ica_api.h"

#define NR_TESTS 6
#define NR_RANDOM_TESTS 10000

/* OFB data - 1 for AES128 */
unsigned char NIST_KEY_OFB_E1[] = {
 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,
};

unsigned char NIST_IV_OFB_E1[] = {
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_OFB_E1[] = {
 0x50, 0xfe, 0x67, 0xcc, 0x99, 0x6d, 0x32, 0xb6,
 0xda, 0x09, 0x37, 0xe9, 0x9b, 0xaf, 0xec, 0x60,
};

unsigned char NIST_TEST_DATA_OFB_E1[] = {
 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};

unsigned char NIST_TEST_RESULT_OFB_E1[] = {
 0x3b, 0x3f, 0xd9, 0x2e, 0xb7, 0x2d, 0xad, 0x20,
 0x33, 0x34, 0x49, 0xf8, 0xe8, 0x3c, 0xfb, 0x4a,
};

/* OFB data - 2 for AES128 */
unsigned char NIST_KEY_OFB_E2[] = {
 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,
};

unsigned char NIST_IV_OFB_E2[] = {
 0x50, 0xfe, 0x67, 0xcc, 0x99, 0x6d, 0x32, 0xb6,
 0xda, 0x09, 0x37, 0xe9, 0x9b, 0xaf, 0xec, 0x60,
};

unsigned char NIST_EXPECTED_IV_OFB_E2[] = {
 0xd9, 0xa4, 0xda, 0xda, 0x08, 0x92, 0x23, 0x9f,
 0x6b, 0x8b, 0x3d, 0x76, 0x80, 0xe1, 0x56, 0x74,
};

unsigned char NIST_TEST_DATA_OFB_E2[] = {
 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
};

unsigned char NIST_TEST_RESULT_OFB_E2[] = {
 0x77, 0x89, 0x50, 0x8d, 0x16, 0x91, 0x8f, 0x03,
 0xf5, 0x3c, 0x52, 0xda, 0xc5, 0x4e, 0xd8, 0x25,
};

/* OFB data - 3 - for AES192 */
unsigned char NIST_KEY_OFB_E3[] = {
 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,
};

unsigned char NIST_IV_OFB_E3[] = {

164 Linux on Z and LinuxONE: libica Programmer's Reference

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_OFB_E3[] = {
 0xa6, 0x09, 0xb3, 0x8d, 0xf3, 0xb1, 0x13, 0x3d,
 0xdd, 0xff, 0x27, 0x18, 0xba, 0x09, 0x56, 0x5e,
};

unsigned char NIST_TEST_DATA_OFB_E3[] = {
 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};

unsigned char NIST_TEST_RESULT_OFB_E3[] = {
 0xcd, 0xc8, 0x0d, 0x6f, 0xdd, 0xf1, 0x8c, 0xab,
 0x34, 0xc2, 0x59, 0x09, 0xc9, 0x9a, 0x41, 0x74,
};

/* OFB data - 4 - for AES192 */
unsigned char NIST_KEY_OFB_E4[] = {
 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,
};

unsigned char NIST_IV_OFB_E4[] = {
 0xa6, 0x09, 0xb3, 0x8d, 0xf3, 0xb1, 0x13, 0x3d,
 0xdd, 0xff, 0x27, 0x18, 0xba, 0x09, 0x56, 0x5e,
};

unsigned char NIST_EXPECTED_IV_OFB_E4[] = {
 0x52, 0xef, 0x01, 0xda, 0x52, 0x60, 0x2f, 0xe0,
 0x97, 0x5f, 0x78, 0xac, 0x84, 0xbf, 0x8a, 0x50,
};

unsigned char NIST_TEST_DATA_OFB_E4[] = {
 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
};

unsigned char NIST_TEST_RESULT_OFB_E4[] = {
 0xfc, 0xc2, 0x8b, 0x8d, 0x4c, 0x63, 0x83, 0x7c,
 0x09, 0xe8, 0x17, 0x00, 0xc1, 0x10, 0x04, 0x01,
};

/* OFB data 5 - for AES 256 */
unsigned char NIST_KEY_OFB_E5[] = {
 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_OFB_E5[] = {
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_OFB_E5[] = {
 0xb7, 0xbf, 0x3a, 0x5d, 0xf4, 0x39, 0x89, 0xdd,
 0x97, 0xf0, 0xfa, 0x97, 0xeb, 0xce, 0x2f, 0x4a,
};

unsigned char NIST_TEST_DATA_OFB_E5[] = {
 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};

unsigned char NIST_TEST_RESULT_OFB_E5[] = {
 0xdc, 0x7e, 0x84, 0xbf, 0xda, 0x79, 0x16, 0x4b,
 0x7e, 0xcd, 0x84, 0x86, 0x98, 0x5d, 0x38, 0x60,
};

/* OFB data 6 - for AES 256 */
unsigned char NIST_KEY_OFB_E6[] = {
 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

Chapter 7. Examples 165

unsigned char NIST_IV_OFB_E6[] = {
 0xb7, 0xbf, 0x3a, 0x5d, 0xf4, 0x39, 0x89, 0xdd,
 0x97, 0xf0, 0xfa, 0x97, 0xeb, 0xce, 0x2f, 0x4a,
};

unsigned char NIST_EXPECTED_IV_OFB_E6[] = {
 0xe1, 0xc6, 0x56, 0x30, 0x5e, 0xd1, 0xa7, 0xa6,
 0x56, 0x38, 0x05, 0x74, 0x6f, 0xe0, 0x3e, 0xdc,
};

unsigned char NIST_TEST_DATA_OFB_E6[] = {
 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
};

unsigned char NIST_TEST_RESULT_OFB_E6[] = {
 0x4f, 0xeb, 0xdc, 0x67, 0x40, 0xd2, 0x0b, 0x3a,
 0xc8, 0x8f, 0x6a, 0xd8, 0x2a, 0x4f, 0xb0, 0x8d,
};

void dump_array(unsigned char *ptr, unsigned int size)
{
 unsigned char *ptr_end;
 unsigned char *h;
 int i = 1;

 h = ptr;
 ptr_end = ptr + size;
 while (h < (unsigned char *)ptr_end) {
 printf("0x%02x ",(unsigned char) *h);
 h++;
 if (i == 8) {
 printf("\n");
 i = 1;
 } else {
 ++i;
 }
 }
 printf("\n");
}

void dump_ofb_data(unsigned char *iv, unsigned int iv_length,
 unsigned char *key, unsigned int key_length,
 unsigned char *input_data, unsigned int data_length,
 unsigned char *output_data)
{
 printf("IV \n");
 dump_array(iv, iv_length);
 printf("Key \n");
 dump_array(key, key_length);
 printf("Input Data\n");
 dump_array(input_data, data_length);
 printf("Output Data\n");
 dump_array(output_data, data_length);
}

void get_sizes(unsigned int *data_length, unsigned int *iv_length,
 unsigned int *key_length, unsigned int iteration)
{
 switch (iteration) {
 case 1:
 *data_length = sizeof(NIST_TEST_DATA_OFB_E1);
 *iv_length = sizeof(NIST_IV_OFB_E1);
 *key_length = sizeof(NIST_KEY_OFB_E1);
 break;
 case 2:
 *data_length = sizeof(NIST_TEST_DATA_OFB_E2);
 *iv_length = sizeof(NIST_IV_OFB_E2);
 *key_length = sizeof(NIST_KEY_OFB_E2);
 break;
 case 3:
 *data_length = sizeof(NIST_TEST_DATA_OFB_E3);
 *iv_length = sizeof(NIST_IV_OFB_E3);
 *key_length = sizeof(NIST_KEY_OFB_E3);
 break;
 case 4:
 *data_length = sizeof(NIST_TEST_DATA_OFB_E4);
 *iv_length = sizeof(NIST_IV_OFB_E4);
 *key_length = sizeof(NIST_KEY_OFB_E4);
 break;
 case 5:

166 Linux on Z and LinuxONE: libica Programmer's Reference

 *data_length = sizeof(NIST_TEST_DATA_OFB_E5);
 *iv_length = sizeof(NIST_IV_OFB_E5);
 *key_length = sizeof(NIST_KEY_OFB_E5);
 break;
 case 6:
 *data_length = sizeof(NIST_TEST_DATA_OFB_E6);
 *iv_length = sizeof(NIST_IV_OFB_E6);
 *key_length = sizeof(NIST_KEY_OFB_E6);
 break;
 }

}

void load_test_data(unsigned char *data, unsigned int data_length,
 unsigned char *result,
 unsigned char *iv, unsigned char *expected_iv,
 unsigned int iv_length,
 unsigned char *key, unsigned int key_length,
 unsigned int iteration)
{
 switch (iteration) {
 case 1:
 memcpy(data, NIST_TEST_DATA_OFB_E1, data_length);
 memcpy(result, NIST_TEST_RESULT_OFB_E1, data_length);
 memcpy(iv, NIST_IV_OFB_E1, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E1, iv_length);
 memcpy(key, NIST_KEY_OFB_E1, key_length);
 break;
 case 2:
 memcpy(data, NIST_TEST_DATA_OFB_E2, data_length);
 memcpy(result, NIST_TEST_RESULT_OFB_E2, data_length);
 memcpy(iv, NIST_IV_OFB_E2, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E2, iv_length);
 memcpy(key, NIST_KEY_OFB_E2, key_length);
 break;
 case 3:
 memcpy(data, NIST_TEST_DATA_OFB_E3, data_length);
 memcpy(result, NIST_TEST_RESULT_OFB_E3, data_length);
 memcpy(iv, NIST_IV_OFB_E3, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E3, iv_length);
 memcpy(key, NIST_KEY_OFB_E3, key_length);
 break;
 case 4:
 memcpy(data, NIST_TEST_DATA_OFB_E4, data_length);
 memcpy(result, NIST_TEST_RESULT_OFB_E4, data_length);
 memcpy(iv, NIST_IV_OFB_E4, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E4, iv_length);
 memcpy(key, NIST_KEY_OFB_E4, key_length);
 break;
 case 5:
 memcpy(data, NIST_TEST_DATA_OFB_E5, data_length);
 memcpy(result, NIST_TEST_RESULT_OFB_E5, data_length);
 memcpy(iv, NIST_IV_OFB_E5, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E5, iv_length);
 memcpy(key, NIST_KEY_OFB_E5, key_length);
 break;
 case 6:
 memcpy(data, NIST_TEST_DATA_OFB_E6, data_length);
 memcpy(result, NIST_TEST_RESULT_OFB_E6, data_length);
 memcpy(iv, NIST_IV_OFB_E6, iv_length);
 memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E6, iv_length);
 memcpy(key, NIST_KEY_OFB_E6, key_length);
 break;
 }

}

int load_random_test_data(unsigned char *data, unsigned int data_length,
 unsigned char *iv, unsigned int iv_length,
 unsigned char *key, unsigned int key_length)
{
 int rc;
 rc = ica_random_number_generate(data_length, data);
 if (rc) {
 printf("ica_random_number_generate with rc = %i errnor = %i\n",
 rc, errno);
 return rc;
 }
 rc = ica_random_number_generate(iv_length, iv);
 if (rc) {
 printf("ica_random_number_generate with rc = %i errnor = %i\n",
 rc, errno);

Chapter 7. Examples 167

 return rc;
 }
 rc = ica_random_number_generate(key_length, key);
 if (rc) {
 printf("ica_random_number_generate with rc = %i errnor = %i\n",
 rc, errno);
 return rc;
 }
 return rc;
}

int random_aes_ofb(int iteration, int silent, unsigned int data_length)
{
 int i;
 int rc = 0;
 unsigned int iv_length = sizeof(ica_aes_vector_t);
 unsigned int key_length = AES_KEY_LEN128;
 unsigned char iv[iv_length];
 unsigned char tmp_iv[iv_length];
 unsigned char input_data[data_length];
 unsigned char encrypt[data_length];
 unsigned char decrypt[data_length];
for (i = 0; i <= 2; i++) {

 unsigned char key[key_length];

 memset(encrypt, 0x00, data_length);
 memset(decrypt, 0x00, data_length);

 load_random_test_data(input_data, data_length, iv, iv_length, key,
 key_length);
 memcpy(tmp_iv, iv, iv_length);
 printf("Test Parameters for iteration = %i\n", iteration);
 printf("key length = %i, data length = %i, iv length = %i\n",
 key_length, data_length, iv_length);

 rc = ica_aes_ofb(input_data, encrypt, data_length, key, key_length,
 tmp_iv, 1);
 if (rc) {
 printf("ica_aes_ofb encrypt failed with rc = %i\n", rc);
 dump_ofb_data(iv, iv_length, key, key_length, input_data,
 data_length, encrypt);
 }
 if (!silent && !rc) {
 printf("Encrypt:\n");
 dump_ofb_data(iv, iv_length, key, key_length, input_data,
 data_length, encrypt);
 }

 if (rc) {
 printf("AES OFB test exited after encryption\n");
 return rc;
 }

 memcpy(tmp_iv, iv, iv_length);

 rc = ica_aes_ofb(encrypt, decrypt, data_length, key, key_length,
 tmp_iv, 0);
 if (rc) {
 printf("ica_aes_ofb decrypt failed with rc = %i\n", rc);
 dump_ofb_data(iv, iv_length, key, key_length, encrypt,
 data_length, decrypt);
 return rc;
 }

 if (!silent && !rc) {
 printf("Decrypt:\n");
 dump_ofb_data(iv, iv_length, key, key_length, encrypt,
 data_length, decrypt);
 }

 if (memcmp(decrypt, input_data, data_length)) {
 printf("Decryption Result does not match the original data!\n");
 printf("Original data:\n");
 dump_array(input_data, data_length);
 printf("Decryption Result:\n");
 dump_array(decrypt, data_length);
 rc++;
 return rc;
 }
 key_length += 8;

168 Linux on Z and LinuxONE: libica Programmer's Reference

}

 return rc;
}

int kat_aes_ofb(int iteration, int silent)
{
 unsigned int data_length;
 unsigned int iv_length;
 unsigned int key_length;

 get_sizes(&data_length, &iv_length, &key_length, iteration);

 printf("Test Parameters for iteration = %i\n", iteration);
 printf("key length = %i, data length = %i, iv length = %i\n",
 key_length, data_length, iv_length);

 unsigned char iv[iv_length];
 unsigned char tmp_iv[iv_length];
 unsigned char expected_iv[iv_length];
 unsigned char key[key_length];
 unsigned char input_data[data_length];
 unsigned char encrypt[data_length];
 unsigned char decrypt[data_length];
 unsigned char result[data_length];

 int rc = 0;

 load_test_data(input_data, data_length, result, iv, expected_iv,
 iv_length, key, key_length, iteration);
 memcpy(tmp_iv, iv, iv_length);

 rc = ica_aes_ofb(input_data, encrypt, data_length, key, key_length,
 tmp_iv, 1);
 if (rc) {
 printf("ica_aes_ofb encrypt failed with rc = %i\n", rc);
 dump_ofb_data(iv, iv_length, key, key_length, input_data,
 data_length, encrypt);
 }
 if (!silent && !rc) {
 printf("Encrypt:\n");
 dump_ofb_data(iv, iv_length, key, key_length, input_data,
 data_length, encrypt);
 }

 if (memcmp(result, encrypt, data_length)) {
 printf("Encryption Result does not match the known ciphertext!\n");
 printf("Expected data:\n");
 dump_array(result, data_length);
 printf("Encryption Result:\n");
 dump_array(encrypt, data_length);
 rc++;
 }

 if (memcmp(expected_iv, tmp_iv, iv_length)) {
 printf("Update of IV does not match the expected IV!\n");
 printf("Expected IV:\n");
 dump_array(expected_iv, iv_length);
 printf("Updated IV:\n");
 dump_array(tmp_iv, iv_length);
 printf("Original IV:\n");
 dump_array(iv, iv_length);
 rc++;
 }
 if (rc) {
 printf("AES OFB test exited after encryption\n");
 return rc;
 }

 memcpy(tmp_iv, iv, iv_length);
 rc = ica_aes_ofb(encrypt, decrypt, data_length, key, key_length,
 tmp_iv, 0);
 if (rc) {
 printf("ica_aes_ofb decrypt failed with rc = %i\n", rc);
 dump_ofb_data(iv, iv_length, key, key_length, encrypt,
 data_length, decrypt);
 return rc;
 }

 if (!silent && !rc) {
 printf("Decrypt:\n");

Chapter 7. Examples 169

 dump_ofb_data(iv, iv_length, key, key_length, encrypt,
 data_length, decrypt);
 }

 if (memcmp(decrypt, input_data, data_length)) {
 printf("Decryption Result does not match the original data!\n");
 printf("Original data:\n");
 dump_array(input_data, data_length);
 printf("Decryption Result:\n");
 dump_array(decrypt, data_length);
 rc++;
 }
 return rc;
}

int main(int argc, char **argv)
{
 unsigned int silent = 0;
 if (argc > 1) {
 if (strstr(argv[1], "silent"))
 silent = 1;
 }
 int rc = 0;
 int error_count = 0;
 int iteration;
 unsigned int data_length = sizeof(ica_aes_vector_t);
 for(iteration = 1; iteration <= NR_TESTS; iteration++) {
 rc = kat_aes_ofb(iteration, silent);
 if (rc) {
 printf("kat_aes_ofb failed with rc = %i\n", rc);
 error_count++;
 } else
 printf("kat_aes_ofb finished successfuly\n");

 }
 for(iteration = 1; iteration <= NR_RANDOM_TESTS; iteration++) {
 int silent = 1;
 rc = random_aes_ofb(iteration, silent, data_length);
 if (rc) {
 printf("random_aes_ofb failed with rc = %i\n", rc);
 error_count++;
 goto out;
 } else
 printf("random_aes_ofb finished successfuly\n");
 data_length += sizeof(ica_aes_vector_t);
 }

out:
 if (error_count)
 printf("%i testcases failed\n", error_count);
 else
 printf("All testcases finished successfully\n");

 return rc;
}

AES with XTS mode example

/* This program is released under the Common Public License V1.0
 *
 * You should have received a copy of Common Public License V1.0 along with
 * with this program.
 *
 * Copyright IBM Corp. 2016
 *
 */

#include <stdio.h>
#include <string.h>
#include <errno.h>

#include <ica_api.h>

#define AES_CIPHER_BLOCK_SIZE 16

/* This example uses a static keys. In real life you would
 * use real AES keys, which is negotiated between the
 * encrypting and the decrypting entity.

170 Linux on Z and LinuxONE: libica Programmer's Reference

 *
 * Note: AES-128 key size is 16 bytes (AES_KEY_LEN128)
 */
unsigned char aes_xts_key1[] = {
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
};
unsigned char aes_xts_key2[] = {
 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F,
};

/* This is the plain data, you want to encrypt. For the
 * encryption mode used in this example, it is necessary,
 * that the length of the encrypted data is at least as
 * large as the AES cipher block size (AES_CIPHER_BLOCK_SIZE),
 * but it does not have to be a multiple of the cipher block size.
 */
unsigned char plain_data[] = {
 0x55, 0x73, 0x69, 0x6e, 0x67, 0x20, 0x6c, 0x69,
 0x62, 0x69, 0x63, 0x61, 0x20, 0x77, 0x69, 0x74,
 0x68, 0x20, 0x41, 0x45, 0x53, 0x2d, 0x58, 0x54,
 0x53, 0x20, 0x69, 0x73, 0x20, 0x73, 0x6d, 0x61,
 0x72, 0x74, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x65,
 0x61, 0x73, 0x79, 0x21, 0x00
};

/* Prints hex values to standard out. */
static void dump_data(unsigned char *data, unsigned long length);
/* Prints a description of the return value to standard out. */
static int handle_ica_error(int rc);

int main(char **argv, int argc)
{
 int rc;

 /* This is the AES XTS tweak value.
 * We are generating it per random number generator. In real life
 * you would use an tweak value which is negotiated between the
 * encrypting and the decrypting entity.
 */
 unsigned char random_tweak_value[AES_CIPHER_BLOCK_SIZE];

 /* Since libica function ica_aes_xts updates the tweak value
 * we let ica_aes_xts work on a copy of the generated tweak
 * value. We will need the original tweak value for decrypting
 * the data later on.
 */
 unsigned char tweak_value[AES_CIPHER_BLOCK_SIZE];

 unsigned char cipher_data[sizeof(plain_data)];
 unsigned char decrypt_data[sizeof(plain_data)];

 /* Generate the tweak value by random */
 rc = ica_random_number_generate(sizeof(random_tweak_value),
 random_tweak_value);

 /* Error handling (if necessary). */
 if (rc)
 return handle_ica_error(rc);

 /* Dump keys, tweak value and plain data to standard output, just for
 * a visual control.
 */
 printf("AES key1:\n");
 dump_data(aes_xts_key1, sizeof(aes_xts_key1));
 printf("AES key2:\n");
 dump_data(aes_xts_key2, sizeof(aes_xts_key2));
 printf("TWEAK:\n");
 dump_data(random_tweak_value, sizeof(random_tweak_value));
 printf("plain data:\n");
 dump_data(plain_data, sizeof(plain_data));

 /* Copy the generated tweak value so that we still
 * have the original one available after the call to ica_aes_xts.
 */
 memcpy(tweak_value,random_tweak_value,sizeof(tweak_value));

 /* Encrypt plain data to cipher data, using libica API.
 */
 rc = ica_aes_xts(plain_data, cipher_data, sizeof(plain_data),
 aes_xts_key1, aes_xts_key2, AES_KEY_LEN128, tweak_value,

Chapter 7. Examples 171

 ICA_ENCRYPT);

 /* Error handling (if necessary). */
 if (rc)
 return handle_ica_error(rc);

 /* Dump encrypted data.
 */
 printf("encrypted data:\n");
 dump_data(cipher_data, sizeof(plain_data));

 /* Get the original tweak value, because ica_aes_xts
 * has modified the tweak_value variable on encryption.
 */
 memcpy(tweak_value,random_tweak_value,sizeof(tweak_value));

 /* Decrypt cipher data to decrypted data, using libica API.
 * Note: The same AES keys and tweak value must be used for
 * encryption and decryption.
 */
 rc = ica_aes_xts(cipher_data, decrypt_data, sizeof(plain_data),
 aes_xts_key1, aes_xts_key2, AES_KEY_LEN128, tweak_value,
 ICA_DECRYPT);

 /* Error handling (if necessary). */
 if (rc)
 return handle_ica_error(rc);

 /* Dump decrypted data.
 * Note: Please compare output with the plain data, they are the same.
 */
 printf("decrypted data:\n");
 dump_data(decrypt_data, sizeof(plain_data));

 /* Surprise... :-)
 * Note: The following will only work in this example!
 */
 printf("%s\n", decrypt_data);
}

static void dump_data(unsigned char *data, unsigned long length)
{
 unsigned char *ptr;
 int i;

 for (ptr = data, i = 1; ptr < (data+length); ptr++, i++) {
 printf("0x%02x ", *ptr);
 if ((i % AES_CIPHER_BLOCK_SIZE) == 0)
 printf("\n");
 }
 if (i % AES_CIPHER_BLOCK_SIZE)
 printf("\n");
}

static int handle_ica_error(int rc)
{
 switch (rc) {
 case 0:
 printf("OK\n");
 break;
 case EINVAL:
 printf("Incorrect parameter.\n");
 break;
 case EPERM:
 printf("Operation not permitted by Hardware (CPACF).\n");
 break;
 case EIO:
 printf("I/O error.\n");
 break;
 default:
 printf("unknown error.\n");
 }

 return rc;
}

172 Linux on Z and LinuxONE: libica Programmer's Reference

AES with CBC mode example

/* This program is released under the Common Public License V1.0
 *
 * You should have received a copy of Common Public License V1.0 along with
 * with this program.
 *
 * Copyright IBM Corp. 2016
 *
 */

#include <stdio.h>
#include <string.h>
#include <errno.h>

#include <ica_api.h>

#define AES_CIPHER_BLOCK_SIZE 16

/* This example uses a static key. In real life you would
 * use your real AES key, which is negotiated between the
 * encrypting and the decrypting entity.
 *
 * Note: AES-128 key size is 16 bytes (AES_KEY_LEN128)
 */
unsigned char aes_key[] = {
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
};

/* This is the plain data, you want to encrypt. For the
 * encryption mode used in this example, it is necessary,
 * that the length of the encrypted data is a multiple of
 * the AES cipher block size (AES_CIPHER_BLOCK_SIZE).
 */
unsigned char plain_data[] = {
 0x55, 0x73, 0x69, 0x6e, 0x67, 0x20, 0x6c, 0x69,
 0x62, 0x69, 0x63, 0x61, 0x20, 0x69, 0x73, 0x20,
 0x73, 0x6d, 0x61, 0x72, 0x74, 0x20, 0x61, 0x6e,
 0x64, 0x20, 0x65, 0x61, 0x73, 0x79, 0x21, 0x00,
};

/* Prints hex values to standard out. */
static void dump_data(unsigned char *data, unsigned long length);
/* Prints a description of the return value to standard out. */
static int handle_ica_error(int rc);

int main(char **argv, int argc)
{
 int rc;

 /* This is the initialization vector. The initialization vector
 * is of the same size as the cipher block (AES_CIPHER_BLOCK_SIZE).
 * We are generating it per random number generator. In real life
 * you would use an initialization vector which is negotiated
 * between the encrypting and the decrypting entity.
 */
 unsigned char random_iv[AES_CIPHER_BLOCK_SIZE];

 /* Since libica function ica_aes_cbc updates the initialization
 * vector, we let ica_aes_cbc work on a copy of the generated
 * initialization vector. We will need the original initialization
 * vector for decrypting the data later on.
 */
 unsigned char iv[AES_CIPHER_BLOCK_SIZE];

 unsigned char cipher_data[sizeof(plain_data)];
 unsigned char decrypt_data[sizeof(plain_data)];

 /* Generate the initialization vector by random */
 rc = ica_random_number_generate(sizeof(random_iv), random_iv);

 /* Error handling (if necessary). */
 if (rc)
 return handle_ica_error(rc);

 /* Dump key, iv and plain data to standard output, just for
 * a visual control.
 */

Chapter 7. Examples 173

 printf("AES key:\n");
 dump_data(aes_key, sizeof(aes_key));
 printf("IV:\n");
 dump_data(random_iv, sizeof(random_iv));
 printf("plain data:\n");
 dump_data(plain_data, sizeof(plain_data));

 /* Copy the generated initialization vector so that we still
 * have the original one available after the call to ica_aes_cbc.
 */
 memcpy(iv,random_iv,sizeof(iv));

 /* Encrypt plain data to cipher data, using libica API.
 */
 rc = ica_aes_cbc(plain_data, cipher_data, sizeof(plain_data),
 aes_key, AES_KEY_LEN128, iv,
 ICA_ENCRYPT);

 /* Error handling (if necessary). */
 if (rc)
 return handle_ica_error(rc);

 /* Dump encrypted data. */
 printf("encrypted data:\n");
 dump_data(cipher_data, sizeof(plain_data));

 /* Get the original initialization vector, because ica_aes_cbc
 * has modified the iv variable on encryption.
 */
 memcpy(iv,random_iv,sizeof(iv));

 /* Decrypt cipher data to decrypted data, using libica API.
 * Note: The same AES key and IV must be used for encryption and
 * decryption.
 */
 rc = ica_aes_cbc(cipher_data, decrypt_data, sizeof(plain_data),
 aes_key, AES_KEY_LEN128, iv,
 ICA_DECRYPT);

 /* Error handling (if necessary). */
 if (rc)
 return handle_ica_error(rc);

 /* Dump decrypted data.
 * Note: Please compare output with the plain data, they are the same.
 */
 printf("decrypted data:\n");
 dump_data(decrypt_data, sizeof(plain_data));

 /* Surprise... :-)
 * Note: The following will only work in this example!
 */
 printf("%s\n", decrypt_data);
}

static void dump_data(unsigned char *data, unsigned long length)
{
 unsigned char *ptr;
 int i;

 for (ptr = data, i = 1; ptr < (data+length); ptr++, i++) {
 printf("0x%02x ", *ptr);
 if ((i % AES_CIPHER_BLOCK_SIZE) == 0)
 printf("\n");
 }
 if (i % AES_CIPHER_BLOCK_SIZE)
 printf("\n");
}

static int handle_ica_error(int rc)
{
 switch (rc) {
 case 0:
 printf("OK\n");
 break;
 case EINVAL:
 printf("Incorrect parameter.\n");
 break;
 case EPERM:
 printf("Operation not permitted by Hardware (CPACF).\n");
 break;
 case EIO:

174 Linux on Z and LinuxONE: libica Programmer's Reference

 printf("I/O error.\n");
 break;
 default:
 printf("unknown error.\n");
 }

 return rc;
}

AES with GCM mode example

/* This program is released under the Common Public License V1.0
 *
 * You should have received a copy of Common Public License V1.0 along with
 * with this program.
 *
 * Copyright IBM Corp. 2016
 *
 */

#include <stdio.h>
#include <string.h>
#include <errno.h>

#include <ica_api.h>

#define AES_CIPHER_BLOCK_SIZE 16

/* This example uses a static key. In real life you would
 * use your real AES key, which is negotiated between the
 * encrypting and the decrypting entity.
 *
 * Note: AES-128 key size is 16 bytes (AES_KEY_LEN128)
 */
unsigned char aes_key[] = {
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
};

/* This is the plain data, you want to encrypt.
 */
unsigned char plain_data[] = {
 0x55, 0x73, 0x69, 0x6e, 0x67, 0x20, 0x6c, 0x69,
 0x62, 0x69, 0x63, 0x61, 0x20, 0x69, 0x73, 0x20,
 0x73, 0x6d, 0x61, 0x72, 0x74, 0x20, 0x61, 0x6e,
 0x64, 0x20, 0x65, 0x61, 0x73, 0x79, 0x21, 0x00
};

/* This is the initialization vector. The initialization vector
 * size must be greater than 0 and less than 261. A length of
 * 12 is recommended.
 */
unsigned char iv[12] = {
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0A, 0x0B
};

/* This is additional authenticated data. It is subject to the
 * message authentication code computation, but is not encrypted.
 */
unsigned char aad[] = {
 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F
};

/* Prints hex values to standard out. */
static void dump_data(unsigned char *data, unsigned long length);
/* Prints a description of the return value to standard out. */
static int handle_ica_error(int rc);

int main(char **argv, int argc)
{
 int rc;

 /* This is a buffer for the message authentication code (tag) for
 * the additional authenticated data in aad and the plain text.
 * Note: The authentication strength depends on the length of the
 * authentication tag

Chapter 7. Examples 175

 */
 unsigned char tag[16];

 unsigned char cipher_data[sizeof(plain_data)];
 unsigned char decrypt_data[sizeof(plain_data)];

 /* Dump key, iv, aad and plain data to standard output, just for
 * a visual control.
 */
 printf("AES key:\n");
 dump_data(aes_key, sizeof(aes_key));
 printf("IV:\n");
 dump_data(iv, sizeof(iv));
 printf("AAD:\n");
 dump_data(aad, sizeof(aad));
 printf("plain data:\n");
 dump_data(plain_data, sizeof(plain_data));

 /* Encrypt plain data to cipher data, using libica API.
 * This will also compute the authetication code (tag) from
 * the plain data and the additional authenticated data.
 */
 rc = ica_aes_gcm(plain_data, sizeof(plain_data), cipher_data,
 iv, sizeof(iv),
 aad, sizeof(aad),
 tag, sizeof(tag),
 aes_key, AES_KEY_LEN128,
 ICA_ENCRYPT);

 /* Error handling (if necessary). */
 if (rc)
 return handle_ica_error(rc);

 /* Dump encrypted data.
 */
 printf("encrypted data:\n");
 dump_data(cipher_data, sizeof(plain_data));
 printf("Authetication code:\n");
 dump_data(tag, sizeof(tag));

 /* Decrypt cipher data to decrypted data, using libica API.
 * Note: The same AES key, IV and AAD must be used for encryption and
 * decryption. The authentication code (tag) is verified against the
 * decrypted data and the additional authenticated data. If the
 * authentication code does not match, EFAULT is returned.
 */
 rc = ica_aes_gcm(decrypt_data, sizeof(plain_data), cipher_data,
 iv, sizeof(iv),
 aad, sizeof(aad),
 tag, sizeof(tag),
 aes_key, AES_KEY_LEN128,
 ICA_DECRYPT);

 /* Error handling (if necessary). */
 if (rc)
 return handle_ica_error(rc);

 /* Dump decrypted data.
 * Note: Please compare output with the plain data, they are the same.
 */
 printf("decrypted data:\n");
 dump_data(decrypt_data, sizeof(plain_data));

 /* Surprise... :-)
 * Note: The following will only work in this example!
 */
 printf("%s\n", decrypt_data);

 return rc;
}

static void dump_data(unsigned char *data, unsigned long length)
{
 unsigned char *ptr;
 int i;

 for (ptr = data, i = 1; ptr < (data+length); ptr++, i++) {
 printf("0x%02x ", *ptr);
 if ((i % AES_CIPHER_BLOCK_SIZE) == 0)
 printf("\n");
 }

176 Linux on Z and LinuxONE: libica Programmer's Reference

 if (i % AES_CIPHER_BLOCK_SIZE)
 printf("\n");
}

static int handle_ica_error(int rc)
{
 switch (rc) {
 case 0:
 printf("OK\n");
 break;
 case EINVAL:
 printf("Incorrect parameter.\n");
 break;
 case EPERM:
 printf("Operation not permitted by Hardware (CPACF).\n");
 break;
 case EIO:
 printf("I/O error.\n");
 break;
 case EFAULT:
 printf("The verification of the message authentication code has failed.\n");
 break;
 default:
 printf("unknown error.\n");
 }

 return rc;
}

CMAC example
/* This program is released under the Common Public License V1.0
 *
 * You should have received a copy of Common Public License V1.0 along with
 * with this program.
 */

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "ica_api.h"

#define BYTE 8

#define NUM_TESTS 12

unsigned int key_length[12] = {16, 16, 16, 16, 24, 24, 24, 24, 32, 32, 32,
 32};
unsigned char key[12][32] = {{
 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15,
 0x88, 0x09, 0xcf, 0x4f, 0x3c},{
 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15,
 0x88, 0x09, 0xcf, 0x4f, 0x3c},{
 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15,
 0x88, 0x09, 0xcf, 0x4f, 0x3c},{
 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15,
 0x88, 0x09, 0xcf, 0x4f, 0x3c},{
 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10 ,0xf3,
 0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c,
 0x6b, 0x7b},{
 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10 ,0xf3,
 0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c,
 0x6b, 0x7b},{
 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10 ,0xf3,
 0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c,
 0x6b, 0x7b},{
 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10 ,0xf3,
 0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c,
 0x6b, 0x7b},{
 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae,
 0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61,
 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4},{
 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae,
 0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61,
 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4},{
 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae,

Chapter 7. Examples 177

 0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61,
 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4},{
 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae,
 0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61,
 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4}
};

unsigned char last_block[3][16] = {{
 0x7d, 0xf7, 0x6b, 0x0c, 0x1a, 0xb8, 0x99, 0xb3, 0x3e, 0x42, 0xf0,
 0x47, 0xb9, 0x1b, 0x54, 0x6f},{
 0x22, 0x45, 0x2d, 0x8e, 0x49, 0xa8, 0xa5, 0x93, 0x9f, 0x73, 0x21,
 0xce, 0xea, 0x6d, 0x51, 0x4b},{
 0xe5, 0x68, 0xf6, 0x81, 0x94, 0xcf, 0x76, 0xd6, 0x17, 0x4d, 0x4c,
 0xc0, 0x43, 0x10, 0xa8, 0x54}
};

unsigned long mlen[12] = { 0, 16, 40, 64, 0,16, 40, 64, 0, 16, 40, 64};
unsigned char message[12][512] = {{
 0x00},{
 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
 0x11, 0x73, 0x93, 0x17, 0x2a},{
 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
 0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf ,0x8e, 0x51, 0x30,
 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11},{
 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
 0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, 0x30,
 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19,
 0x1a, 0x0a, 0x52, 0xef, 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b,
 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10},{
 0x00},{
 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
 0x11, 0x73, 0x93, 0x17, 0x2a},{
 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
 0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf ,0x8e, 0x51, 0x30,
 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11},{
 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
 0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, 0x30,
 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19,
 0x1a, 0x0a, 0x52, 0xef, 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b,
 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10},{
 0x00},{
 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
 0x11, 0x73, 0x93, 0x17, 0x2a},{
 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
 0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf ,0x8e, 0x51, 0x30,
 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11},{
 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
 0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, 0x30,
 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19,
 0x1a, 0x0a, 0x52, 0xef, 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b,
 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10}
};

unsigned char expected_cmac[12][16] = {{
 0xbb, 0x1d, 0x69, 0x29, 0xe9, 0x59, 0x37, 0x28, 0x7f, 0xa3, 0x7d,
 0x12, 0x9b, 0x75, 0x67, 0x46},{
 0x07, 0x0a, 0x16, 0xb4, 0x6b, 0x4d, 0x41, 0x44, 0xf7, 0x9b, 0xdd,
 0x9d, 0xd0, 0x4a, 0x28, 0x7c},{
 0xdf, 0xa6, 0x67, 0x47, 0xde, 0x9a, 0xe6, 0x30, 0x30, 0xca, 0x32,
 0x61, 0x14, 0x97, 0xc8, 0x27},{
 0x51, 0xf0, 0xbe, 0xbf, 0x7e, 0x3b, 0x9d, 0x92, 0xfc, 0x49, 0x74,
 0x17, 0x79, 0x36, 0x3c, 0xfe},{
 0xd1, 0x7d, 0xdf, 0x46, 0xad, 0xaa, 0xcd, 0xe5, 0x31, 0xca, 0xc4,
 0x83, 0xde, 0x7a, 0x93, 0x67},{
 0x9e, 0x99, 0xa7, 0xbf, 0x31, 0xe7, 0x10, 0x90, 0x06, 0x62, 0xf6,
 0x5e, 0x61, 0x7c, 0x51, 0x84},{
 0x8a, 0x1d, 0xe5, 0xbe, 0x2e, 0xb3, 0x1a, 0xad, 0x08, 0x9a, 0x82,
 0xe6, 0xee, 0x90, 0x8b, 0x0e},{
 0xa1, 0xd5, 0xdf, 0x0e, 0xed, 0x79, 0x0f, 0x79, 0x4d, 0x77, 0x58,
 0x96, 0x59, 0xf3, 0x9a, 0x11},{
 0x02, 0x89, 0x62, 0xf6, 0x1b, 0x7b, 0xf8, 0x9e, 0xfc, 0x6b, 0x55,
 0x1f, 0x46, 0x67, 0xd9, 0x83},{
 0x28, 0xa7, 0x02, 0x3f, 0x45, 0x2e, 0x8f, 0x82, 0xbd, 0x4b, 0xf2,
 0x8d, 0x8c, 0x37, 0xc3, 0x5c},{
 0xaa, 0xf3, 0xd8, 0xf1, 0xde, 0x56, 0x40, 0xc2, 0x32, 0xf5, 0xb1,
 0x69, 0xb9, 0xc9, 0x11, 0xe6},{

178 Linux on Z and LinuxONE: libica Programmer's Reference

 0xe1, 0x99, 0x21, 0x90, 0x54, 0x9f, 0x6e, 0xd5, 0x69, 0x6a, 0x2c,
 0x05, 0x6c, 0x31, 0x54, 0x10}
};

unsigned int i = 0;

void dump_array(unsigned char *ptr, unsigned int size)
{
 unsigned char *ptr_end;
 unsigned char *h;
 int i = 1, trunc = 0;
 int maxsize = 2000;

 puts("Dump:");

 if (size > maxsize) {
 trunc = size - maxsize;
 size = maxsize;
 }
 h = ptr;
 ptr_end = ptr + size;
 while (h < ptr_end) {
 printf("0x%02x ", *h);
 h++;
 if (i == 16) {
 if (h != ptr_end)
 printf("\n");
 i = 1;
 } else {
 ++i;
 }
 }
 printf("\n");
 if (trunc > 0)
 printf("... %d bytes not printed\n", trunc);
}
unsigned char *cmac;
unsigned int cmac_length = 16;

int api_cmac_test(void)
{
 printf("Test of CMAC api\n");
 int rc = 0;
 for (i = 0 ; i < NUM_TESTS; i++) {
 if (!(cmac = malloc(cmac_length)))
 return EINVAL;
 memset(cmac, 0, cmac_length);
 rc = (ica_aes_cmac(message[i], mlen[i],
 cmac, cmac_length,
 key[i], key_length[i],
 ICA_ENCRYPT));
 if (rc) {
 printf("ica_aes_cmac generate failed with errno %d (0x%x)."
 "\n",rc,rc);
 return rc;
 }
 if (memcmp(cmac, expected_cmac[i], cmac_length) != 0) {
 printf("This does NOT match the known result. "
 "Testcase %i failed\n",i);
 printf("\nOutput MAC for test %d:\n", i);
 dump_array((unsigned char *)cmac, cmac_length);
 printf("\nExpected MAC for test %d:\n", i);
 dump_array((unsigned char *)expected_cmac[i], 16);
 free(cmac);
 return 1;
 }
 printf("Expected MAC has been generated.\n");
 rc = (ica_aes_cmac(message[i], mlen[i],
 cmac, cmac_length,
 key[i], key_length[i],
 ICA_DECRYPT));
 if (rc) {
 printf("ica_aes_cmac verify failed with errno %d (0x%x).\n",
 rc, rc);
 free(cmac);
 return rc;
 }
 free(cmac);
 if (! rc)
 printf("MAC was successful verified. testcase %i "
 "succeeded\n",i);
 else {

Chapter 7. Examples 179

 printf("MAC verification failed for testcase %i "
 "with RC=%i\n",i,rc);
 return rc;
 }
 }
 return 0;
}

int main(int argc, char **argv)
{
 int rc = 0;

 rc = api_cmac_test();
 if (rc) {
 printf("api_cmac_test failed with rc = %i\n", rc);
 return rc;
 }
 printf("api_cmac_test was succesful\n");
 return 0;
}

ECDSA example

/* This program is released under the Common Public License V1.0
 *
 * You should have received a copy of Common Public License V1.0 along with
 * with this program.
 *
 * Copyright IBM Corp. 2018
 */
#include <errno.h>
#include <openssl/crypto.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>

#include <openssl/opensslconf.h>
#ifdef OPENSSL_FIPS
#include <openssl/fips.h>
#endif /* OPENSSL_FIPS */

#include "ica_api.h"
#include "testcase.h"
#include <openssl/obj_mac.h>

#define MAX_ECC_PRIV_SIZE 66 /* 521 bits */
#define MAX_ECDSA_SIG_SIZE 2*MAX_ECC_PRIV_SIZE

static unsigned char hash[] = {
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 0x10, 0x11, 0x12, 0x13,
};

int main(int argc, char **argv)
{
 ica_adapter_handle_t adapter_handle;
 unsigned int rc;
 unsigned char signature[MAX_ECDSA_SIG_SIZE];
 unsigned int privlen = 0;
 unsigned int hash_length = 20;
 unsigned int nid = NID_X9_62_prime256v1;
 ICA_EC_KEY *eckey;

 rc = ica_open_adapter(&adapter_handle);
 if (rc != 0) {
 V_(printf("ica_open_adapter failed and returned %d (0x%x).\n", rc, rc));
 }

 eckey = ica_ec_key_new(nid, &privlen);
 if (!eckey) {
 printf("Unsupported curve.\n");
 return rc;
 }

 rc = ica_ec_key_generate(adapter_handle, eckey);

180 Linux on Z and LinuxONE: libica Programmer's Reference

 if (rc) {
 printf("EC key for curve %i could not be generated, rc=%i.\n", nid, rc);
 return rc;
 }

 rc = ica_ecdsa_sign(adapter_handle, eckey, hash, hash_length,
 signature, MAX_ECDSA_SIG_SIZE);
 if (rc) {
 printf("Error creating ECDSA signature for curve %i, rc=%i.\n", nid, rc);
 return rc;
 }

 rc = ica_ecdsa_verify(adapter_handle, eckey, hash, hash_length,
 signature, MAX_ECDSA_SIG_SIZE);
 switch (rc) {
 case 0:
 printf("Signature verified ok.\n");
 break;
 case EINVAL:
 printf("At least one invalid parameter given.\n");
 break;
 case EFAULT:
 printf("Signature is invalid.\n");
 break;
 default:
 printf("An internal processing error occurred.\n");
 break;
 }

 ica_close_adapter(adapter_handle);

 return rc;
}

ECDH example

#include <errno.h>
#include <openssl/crypto.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>

#include <openssl/opensslconf.h>
#ifdef OPENSSL_FIPS
#include <openssl/fips.h>
#endif /* OPENSSL_FIPS */

#include "ica_api.h"
#include "testcase.h"
#include <openssl/obj_mac.h>

#define MAX_ECC_PRIV_SIZE 66 /* 521 bits */
#define MAX_ECDSA_SIG_SIZE 2*MAX_ECC_PRIV_SIZE

int main(int argc, char **argv)
{
 ica_adapter_handle_t adapter_handle;
 unsigned int rc;
 unsigned char shared_secret[MAX_ECC_PRIV_SIZE];
 unsigned int privlen = 0;
 unsigned int nid = NID_X9_62_prime256v1;
 ICA_EC_KEY *eckey1, *eckey2;

 rc = ica_open_adapter(&adapter_handle);
 if (rc != 0) {
 V_(printf("ica_open_adapter failed and returned %d (0x%x).\n", rc, rc));
 }

 /* Create EC key 1 */
 eckey1 = ica_ec_key_new(nid, &privlen);
 if (!eckey1) {
 printf("Unsupported curve.\n");
 return rc;
 }

Chapter 7. Examples 181

 rc = ica_ec_key_generate(adapter_handle, eckey1);
 if (rc) {
 printf("EC key for curve %i could not be generated, rc=%i.\n", nid, rc);
 return rc;
 }

 /* Create EC key 2 */
 eckey2 = ica_ec_key_new(nid, &privlen);
 if (!eckey2) {
 printf("Unsupported curve.\n");
 return rc;
 }

 rc = ica_ec_key_generate(adapter_handle, eckey2);
 if (rc) {
 printf("EC key for curve %i could not be generated, rc=%i.\n", nid, rc);
 return rc;
 }

 /* Now derive the shared secret */
 rc = ica_ecdh_derive_secret(adapter_handle, eckey1, eckey2,
 shared_secret, privlen);
 if (rc) {
 printf("Shared secret could not be derived, rc=%i.\n", rc);
 return rc;
 }

 ica_close_adapter(adapter_handle);

 return rc;
}

Makefile example
Specify include directory. Leave blank for default system location.
INCDIR =

Specify library directory. Leave blank for default system location.
LIBDIR =

Specify library.
LIBS = -lica

TARGETS = example_aes128_gcm

all: $(TARGETS)

%: %.c
 gcc $(INCDIR) $(LIBDIR) $(LIBS) -o $@ $^

clean:
 rm -f $(TARGETS)

Common Public License - V1.0
 Common Public License - V1.0

 THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON
 PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF
 THE PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.

 1. DEFINITIONS

 "Contribution" means:
 1. in the case of the initial Contributor, the initial code and
 documentation distributed under this Agreement, and

 2. in the case of each subsequent Contributor:
 1. changes to the Program, and
 2. additions to the Program;

 where such changes and/or additions to the Program originate
 from and are distributed by that particular Contributor. A
 Contribution 'originates' from a Contributor if it was added to
 the Program by such Contributor itself or anyone acting on such
 Contributor's behalf. Contributions do not include additions to

182 Linux on Z and LinuxONE: libica Programmer's Reference

 the Program which: (i) are separate modules of software
 distributed in conjunction with the Program under their own
 license agreement, and (ii) are not derivative works of the
 Program.

 "Contributor" means any person or entity that distributes the Program.

 "Licensed Patents " mean patent claims licensable by a Contributor
 which are necessarily infringed by the use or sale of its Contribution
 alone or when combined with the Program.

 "Program" means the Contributions distributed in accordance with this
 Agreement.

 "Recipient" means anyone who receives the Program under this Agreement,
 including all Contributors.

 2. GRANT OF RIGHTS

 1. Subject to the terms of this Agreement, each Contributor
 hereby grants Recipient a non-exclusive, worldwide,
 royalty-free copyright license to reproduce, prepare derivative
 works of, publicly display, publicly perform, distribute and
 sublicense the Contribution of such Contributor, if any, and
 such derivative works, in source code and object code form.

 2. Subject to the terms of this Agreement, each Contributor
 hereby grants Recipient a non-exclusive, worldwide,
 royalty-free patent license under Licensed Patents to make,
 use, sell, offer to sell, import and otherwise transfer the
 Contribution of such Contributor, if any, in source code and
 object code form. This patent license shall apply to the
 combination of the Contribution and the Program if, at the time
 the Contribution is added by the Contributor, such addition of
 the Contribution causes such combination to be covered by the
 Licensed Patents. The patent license shall not apply to any
 other combinations which include the Contribution. No hardware
 per se is licensed hereunder.

 3. Recipient understands that although each Contributor grants
 the licenses to its Contributions set forth herein, no
 assurances are provided by any Contributor that the Program
 does not infringe the patent or other intellectual property
 rights of any other entity. Each Contributor disclaims any
 liability to Recipient for claims brought by any other entity
 based on infringement of intellectual property rights or
 otherwise. As a condition to exercising the rights and licenses
 granted hereunder, each Recipient hereby assumes sole
 responsibility to secure any other intellectual property rights
 needed, if any. For example, if a third party patent license is
 required to allow Recipient to distribute the Program, it is
 Recipient's responsibility to acquire that license before
 distributing the Program.

 4. Each Contributor represents that to its knowledge it has
 sufficient copyright rights in its Contribution, if any, to
 grant the copyright license set forth in this Agreement.

 3. REQUIREMENTS

 A Contributor may choose to distribute the Program in object code form
 under its own license agreement, provided that:

 1. it complies with the terms and conditions of this Agreement;
 and

 2. its license agreement:
 1. effectively disclaims on behalf of all Contributors
 all warranties and conditions, express and implied,
 including warranties or conditions of title and
 non-infringement, and implied warranties or conditions
 of merchantability and fitness for a particular purpose;

 2. effectively excludes on behalf of all Contributors
 all liability for damages, including direct, indirect,
 special, incidental and consequential damages, such as
 lost profits;

 3. states that any provisions which differ from this
 Agreement are offered by that Contributor alone and not

Chapter 7. Examples 183

 by any other party; and

 4. states that source code for the Program is available
 from such Contributor, and informs licensees how to
 obtain it in a reasonable manner on or through a medium
 customarily used for software exchange.

 When the Program is made available in source code form:
 1. it must be made available under this Agreement; and
 2. a copy of this Agreement must be included with each
 copy of the Program.

 Contributors may not remove or alter any copyright notices
 contained within the Program.

 Each Contributor must identify itself as the originator of its
 Contribution, if any, in a manner that reasonably allows
 subsequent Recipients to identify the originator of the
 Contribution.

 4. COMMERCIAL DISTRIBUTION

 Commercial distributors of software may accept certain responsibilities
 with respect to end users, business partners and the like. While this
 license is intended to facilitate the commercial use of the Program,
 the Contributor who includes the Program in a commercial product
 offering should do so in a manner which does not create potential
 liability for other Contributors. Therefore, if a Contributor includes
 the Program in a commercial product offering, such Contributor
 ("Commercial Contributor") hereby agrees to defend and indemnify every
 other Contributor ("Indemnified Contributor") against any losses,
 damages and costs (collectively "Losses") arising from claims, lawsuits
 and other legal actions brought by a third party against the
 Indemnified Contributor to the extent caused by the acts or omissions
 of such Commercial Contributor in connection with its distribution of
 the Program in a commercial product offering. The obligations in this
 section do not apply to any claims or Losses relating to any actual or
 alleged intellectual property infringement. In order to qualify, an
 Indemnified Contributor must: a) promptly notify the Commercial
 Contributor in writing of such claim, and b) allow the Commercial
 Contributor to control, and cooperate with the Commercial Contributor
 in, the defense and any related settlement negotiations. The
 Indemnified Contributor may participate in any such claim at its own
 expense.

 For example, a Contributor might include the Program in a commercial
 product offering, Product X. That Contributor is then a Commercial
 Contributor. If that Commercial Contributor then makes performance
 claims, or offers warranties related to Product X, those performance
 claims and warranties are such Commercial Contributor's responsibility
 alone. Under this section, the Commercial Contributor would have to
 defend claims against the other Contributors related to those
 performance claims and warranties, and if a court requires any other
 Contributor to pay any damages as a result, the Commercial Contributor
 must pay those damages.

 5. NO WARRANTY

 EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS
 PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY
 WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR
 FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is solely responsible
 for determining the appropriateness of using and distributing the
 Program and assumes all risks associated with its exercise of rights
 under this Agreement, including but not limited to the risks and costs
 of program errors, compliance with applicable laws, damage to or loss
 of data, programs or equipment, and unavailability or interruption of
 operations.

 6. DISCLAIMER OF LIABILITY

 EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR
 ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT,
 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING
 WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF
 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR
 DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED

184 Linux on Z and LinuxONE: libica Programmer's Reference

 HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

 7. GENERAL

 If any provision of this Agreement is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability of
 the remainder of the terms of this Agreement, and without further
 action by the parties hereto, such provision shall be reformed to the
 minimum extent necessary to make such provision valid and enforceable.

 If Recipient institutes patent litigation against a Contributor with
 respect to a patent applicable to software (including a cross-claim or
 counterclaim in a lawsuit), then any patent licenses granted by that
 Contributor to such Recipient under this Agreement shall terminate as
 of the date such litigation is filed. In addition, if Recipient
 institutes patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Program
 itself (excluding combinations of the Program with other software or
 hardware) infringes such Recipient's patent(s), then such Recipient's
 rights granted under Section 2(b) shall terminate as of the date such
 litigation is filed.

 All Recipient's rights under this Agreement shall terminate if it fails
 to comply with any of the material terms or conditions of this
 Agreement and does not cure such failure in a reasonable period of time
 after becoming aware of such noncompliance. If all Recipient's rights
 under this Agreement terminate, Recipient agrees to cease use and
 distribution of the Program as soon as reasonably practicable. However,
 Recipient's obligations under this Agreement and any licenses granted
 by Recipient relating to the Program shall continue and survive.

 Everyone is permitted to copy and distribute copies of this Agreement,
 but in order to avoid inconsistency the Agreement is copyrighted and
 may only be modified in the following manner. The Agreement Steward
 reserves the right to publish new versions (including revisions) of
 this Agreement from time to time. No one other than the Agreement
 Steward has the right to modify this Agreement. IBM is the initial
 Agreement Steward. IBM may assign the responsibility to serve as the
 Agreement Steward to a suitable separate entity. Each new version of
 the Agreement will be given a distinguishing version number. The
 Program (including Contributions) may always be distributed subject to
 the version of the Agreement under which it was received. In addition,
 after a new version of the Agreement is published, Contributor may
 elect to distribute the Program (including its Contributions) under the
 new version. Except as expressly stated in Sections 2(a) and 2(b)
 above, Recipient receives no rights or licenses to the intellectual
 property of any Contributor under this Agreement, whether expressly, by
 implication, estoppel or otherwise. All rights in the Program not
 expressly granted under this Agreement are reserved.

 This Agreement is governed by the laws of the State of New York and the
 intellectual property laws of the United States of America. No party to
 this Agreement will bring a legal action under this Agreement more than
 one year after the cause of action arose. Each party waives its rights
 to a jury trial in any resulting litigation.

Chapter 7. Examples 185

186 Linux on Z and LinuxONE: libica Programmer's Reference

Accessibility

Accessibility features help users who have a disability, such as restricted mobility or limited vision, to use
information technology products successfully.

Documentation accessibility
The Linux on Z and LinuxONE publications are in Adobe Portable Document Format (PDF) and should be
compliant with accessibility standards. If you experience difficulties when you use the PDF file and want
to request a Web-based format for this publication send an email to eservdoc@de.ibm.com or write to:

IBM Deutschland Research & Development GmbH
Information Development
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

IBM and accessibility
See the IBM Human Ability and Accessibility Center for more information about the commitment that IBM
has to accessibility at

www.ibm.com/able

© Copyright IBM Corp. 2009, 2021 187

http://www.ibm.com/able

188 Linux on Z and LinuxONE: libica Programmer's Reference

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at
www.ibm.com/legal/copytrade.shtml

Adobe is either a registered trademark or trademark of Adobe Systems Incorporated in the United States,
and/or other countries.

© Copyright IBM Corp. 2009, 2021 189

https://www.ibm.com/legal/copytrade.shtml

The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

190 Linux on Z and LinuxONE: libica Programmer's Reference

Glossary

Advanced Encryption Standard (AES)
A data encryption technique that improved upon and officially replaced the Data Encryption Standard
(DES). AES is sometimes referred to as Rijndael, which is the algorithm on which the standard is
based.

asymmetric cryptography
Synonym for public key cryptography.

Block cipher
An algorithm that encrypts plain text blocks of a fixed length into cipher text blocks. The plain text and
cipher text blocks are sequences of bytes. They are always the same size, and that size is fixed by the
block cipher. This is called the block cipher's block size.

Examples for block ciphers are DES, Triple-DES, and AES. They are much more secure than stream
ciphers.

The block size of AES is always 16 bytes, so input data must be padded up to a multiple of this
block length. These padding bytes are removed when decrypting. Thus, the size of encrypted data is
normally not equal to the original plain text size.

Central Processor Assist for Cryptographic Function (CPACF)
Hardware that provides support for symmetric ciphers and secure hash algorithms (SHA) on every
central processor. Hence the potential encryption/decryption throughput scales with the number of
central processors in the system.

Chinese-Remainder Theorem (CRT)
A mathematical problem described by Sun Tsu Suan-Ching using the remainder from a division
operation.

Cipher Block Chaining (CBC mode)
A method of reducing repetitive patterns in cipher-text by performing an exclusive-OR operation on
each 8-byte block of data with the previously encrypted 8-byte block before it is encrypted.

Cipher block length
The length of a block that can be encrypted or decrypted by a symmetric cipher. Each symmetric
cipher has a specific cipher block length.

clear key
Any type of encryption key not protected by encryption under another key.

Counter Mode (CTR mode)
A block cipher mode where each message block of cipher block size (16 bytes for AES) is combined
with a counter value of the same size during encryption and decryption. Starting with an initial counter
value to be combined with the first message block, subsequent counter values to be combined
with subsequent message blocks are derived from preceding counter values by an increment
function. However, the incrementation should generate sequences as much as possible randomly,
and guaranteed not to repeat for a long time.

CPACF instructions
Instruction set for the CPACF hardware. CPACF functions for DES, TDES and SHA1 functions can be
invoked by five new instructions as described in z/Architecture Principles of Operation. As a group,
these instructions are known as the Message Security Assist (MSA).

Crypto Express6S (CEX6S)
Successor to the Crypto Express5 feature. The PCIe adapter on a CEX6S feature can be configured in
three ways: Either as cryptographic accelerator (CEX6A), or as CCA coprocessor (CEX6C) for secure
key encrypted transactions, or in EP11 coprocessor mode (CEX6P) for exploiting Enterprise PKCS #11
functionality.

A CEX6P only supports secure key encrypted transactions.

© Copyright IBM Corp. 2009, 2021 191

ECC
See Elliptic curve cryptography.

Electronic Code Book (ECB mode)
A method of enciphering and deciphering data in address spaces or data spaces. Each 64-bit block of
plain-text is separately enciphered and each block of the cipher-text is separately deciphered.

Elliptic curve cryptography (ECC)
A public-key process discovered independently in 1985 by Victor Miller (IBM) and Neal Koblitz
(University of Washington). ECC is based on discrete logarithms. Due to the algebraic structure of
elliptic curves over finite fields, ECC provides a similar amount of security to that of RSA algorithms,
but with relatively shorter key sizes.

Federal Information Processing Standards (FIPS)
A standard published by the US National Institute of Science and Technology.

FIPS
see Federal Information Processing Standards.

Galois Counter Mode (GCM mode)
A block cipher mode. It is usually used together with Advanced Encryption Standard (AES), but could
in theory be combined with other block ciphers also, if the block size is 16 bytes.

GCM can do authenticated encryption with associated data. This means, in addition to given plain
text, additional data that remains unencrypted can be authenticated, that is, protected against
modification. If all data shall remain unencrypted, but authenticated, a so called GMAC (Galois
Message Authentication Code) is created. This is simply an authentication mode on the input data.

libica
Library for IBM Cryptographic Architecture.

master key (MK)
In computer security, the top-level key in a hierarchy of key-encrypting keys.

MSA
Message Security Assist. See CPACF instructions.

Mode of operation
A schema describing how to apply a symmetric cipher to encrypt or decrypt a message that is longer
than the cipher block length. The goal of most modes of operation is to keep the security level of the
cipher by avoiding the situation where blocks that occur more than once will always be translated to
the same value. Some modes of operations allow handling messages of arbitrary lengths. See also:
Block cipher and Stream cipher.

modulus-exponent (Mod-Expo)
A type of exponentiation performed using a modulus.

National Institute of Standards and Technology (NIST)
A measurement standards laboratory and a non-regulatory agency of the United States Department
of Commerce. It is the federal technology agency that works with industry to develop and apply
technology, measurements, and standards.

NIST
see National Institute of Standards and Technology.

public key cryptography
In computer security, cryptography in which a public key is used for encryption and a private key is
used for decryption. Synonymous with asymmetric cryptography.

Rivest-Shamir-Adleman (RSA)
An algorithm used in public key cryptography. These are the surnames of the three researchers
responsible for creating this asymmetric or public/private key algorithm.

Secure Hash Algorithm (SHA)
A standardized cryptographic hash function to compute a unique (message) digest from a message
in a way that is mathematically impossible to reverse. Different data can possibly produce the same
hash value, but there is no way to use the hash value to determine the original data.

192 Linux on Z and LinuxONE: libica Programmer's Reference

secure key
A key that is encrypted under a master key. When using a secure key, it is passed to a cryptographic
coprocessor where the coprocessor decrypts the key and performs the function. The secure key never
appears in the clear outside of the cryptographic coprocessor.

Stream cipher
Stream ciphers can encrypt any arbitrary number of input bytes, but have significant weaknesses. RC4
is one example of a stream cipher that was heavily used in past decades, but should not be used
today. The principle of stream cipher is generating a series of random bytes based on a given key (also
called the key stream), and performing an exclusive or (XOR) on the plain text with the key stream
bytes.

symmetric cryptography
An encryption method that uses the same key for encryption and decryption. Keys of symmetric
ciphers are private keys.

zcrypt device driver
Kernel device driver to access Crypto Express adapters. Formerly, a monolithic module called
z90crypt. Today, it consists of multiple modules that are implicitly loaded when loading the ap
main module of the device driver.

Glossary 193

194 Linux on Z and LinuxONE: libica Programmer's Reference

Index

Numerics
3DES

Cipher Based Message Authentication Code (CMAC) 100
Cipher Based Message Authentication Code (CMAC)
intermediate 101
Cipher Based Message Authentication Code (CMAC) last
101
Cipher Block Chaining (CBC) 96
Cipher Block Chaining with Cipher text Stealing (CBC-
CS) 97
Cipher Feedback (CFB) 99
Counter (CTR) mode 103
Counter (CTR) mode with list 104
Electronic Code Book (ECB) 105
Output Feedback (OFB) 106

A
aad

additional authenticated data 85
accessibility 187
adapter

close 21
functions 20
open 21

additional authenticated data
aad 85

AES
Cipher Based Message Authentication Code (CMAC) 75
Cipher Based Message Authentication Code (CMAC) last
77
Cipher Block Chaining (CBC) 70
Cipher Block Chaining with Cipher text Stealing (CBC-
CS) 71
Cipher Feedback (CFB) 74
Counter (CTR) mode 78
Counter (CTR) mode with list 80
Counter with CBC MAC (CCM) 73, 83, 85, 87
Electronic Code Book (ECB) 81
Output Feedback (OFB) 93
XEX-based Tweaked CodeBook mode with CipherText
Stealing (XTS) 94

AES API functions 69
AES GCM for streaming operations 9
AES with CBC mode

examples 173
AES with CFB mode

examples 146
AES with CTR mode

examples 156
AES with GCM mode

examples 175
AES with OFB mode

examples 164
AES with XTS mode

examples 170

AES-GCM
exploiting KMA instruction 70

ap main module 1
API

ica_3des_cbc 96
ica_3des_cbc_cs 97
ica_3des_cfb 99
ica_3des_cmac 100
ica_3des_cmac_intermediate 101
ica_3des_cmac_last 101
ica_3des_ctr 103
ica_3des_ctrlist 104
ica_3des_ecb 105
ica_3des_ofb 106
ica_aes_cbc 70
ica_aes_cbc_cs 71
ica_aes_ccm 73
ica_aes_cfb 74
ica_aes_cmac 75
ica_aes_cmac_intermediate 76
ica_aes_cmac_last 77
ica_aes_ctr 78
ica_aes_ctrlist 80
ica_aes_ecb 81
ica_aes_gcm 82
ica_aes_gcm_initialize 83
ica_aes_gcm_intermediate 85
ica_aes_gcm_kma_ctx_free 88
ica_aes_gcm_kma_ctx_new 88
ica_aes_gcm_kma_get_tag 92
ica_aes_gcm_kma_init 89
ica_aes_gcm_kma_update 90
ica_aes_gcm_kma_verify_tag 92
ica_aes_gcm_last 87
ica_aes_ofb 93
ica_aes_xts 94
ica_close_adapter 21
ica_des_cbc 112
ica_des_cbc_cs 113
ica_des_cfb 114
ica_des_cmac 115
ica_des_cmac_intermediate 116
ica_des_cmac_last 117
ica_des_ctr 118
ica_des_ctrlist 120
ica_des_ecb 121
ica_des_ofb 122
ica_drbg_generate 40
ica_drbg_health_test 41
ica_drbg_instantiate 38, 41
ica_drbg_reseed 39
ica_ec_get_private_key 51
ica_ec_get_public_key 51
ica_ec_key_free 49
ica_ec_key_generate 49
ica_ec_key_init 48
ica_ec_key_new 47

Index 195

API (continued)
ica_ecdh_derive_secret 50
ica_ecdsa_sign 52
ica_ecdsa_verify 53
ica_ed25519_ctx_del 68
ica_ed25519_ctx_new 55
ica_ed25519_key_gen 62
ica_ed25519_key_get 60
ica_ed25519_key_set 57
ica_ed25519_sign 64
ica_ed25519_verify 66
ica_ed448_ctx_del 69
ica_ed448_ctx_new 55
ica_ed448_key_gen 63, 67
ica_ed448_key_get 60
ica_ed448_key_set 58
ica_ed448_sign 65
ica_fips_powerup_tests 109
ica_fips_status 109
ica_get_functionlist 108
ica_get_version 107
ica_mp_mul512 110
ica_mp_sqr512 111
ica_open_adapter 21
ica_random_number_generate 37
ica_rsa_crt 45
ica_rsa_crt_key_check 44
ica_rsa_key_generate_crt 43
ica_rsa_key_generate_mod_expo 42
ica_rsa_mod_expo 44
ica_set_fallback_moder 22
ica_set_offload_mode 22
ica_set_stats_mode 23
ica_sha1 123
ica_sha224 23
ica_sha256 24
ica_sha3_224 29
ica_sha3_256 31
ica_sha3_384 32
ica_sha3_512 33
ica_sha384 25
ica_sha512 26
ica_sha512_224 27
ica_sha512_256 28
ica_shake_128 34
ica_shake_256 35
ica_x25519_ctx_del 67
ica_x25519_ctx_new 54
ica_x25519_derive 63
ica_x25519_key_gen 61
ica_x25519_key_get 58
ica_x25519_key_set 56
ica_x448_ctx_del 68
ica_x448_ctx_new 54
ica_x448_derive 64
ica_x448_key_gen 62
ica_x448_key_get 59
ica_x448_key_set 56
libica 9

API functions
AES 69

APIs for FIPS mode functions 109
available functions 133

C
chzcrypt 1
cipher message with authentication

KMA instruction 70
close adapter 20
CMAC

examples 177
commands

icainfo 133
Common Public License - V1.0 182
constants

FIPS mode 127
create ECDSA signature 52
cryptographic adapter

installing 1

D
data structures 127
define statements 1, 127
dependencies

FIPS mode 7
deprecated functions

DES 111
SHA1 111

DES
Cipher Based Message Authentication Code (CMAC) 115
Cipher Based Message Authentication Code (CMAC)
intermediate 76, 116
Cipher Based Message Authentication Code (CMAC) last
117
Cipher Block Chaining (CBC) 112
Cipher Block Chaining with Cipher text Stealing (CBC-
CS) 113
Cipher Feedback (CFB) 114
Counter (CTR) mode 118
Counter (CTR) mode with list 120
Electronic Code Book (ECB) 121
Output Feedback (OFB) 122

deterministic random bit generator
DRBG 36
NIST compliant 36

DH
shared secret 46

Diffie-Hellman
DH 46
shared secret 46

distribution independence v
DRBG

deterministic random bit generator 36
NIST compliant 36

E
EC key

create 46
private 46
public 46

ECC
elliptic curve cryptography vii

ECC functions 46
ECDH

196 Linux on Z and LinuxONE: libica Programmer's Reference

ECDH (continued)
example 181

ECDSA
example 180

ECDSA signature
create 52
Elliptic Curve Digital Signature Algorithm signature 47
verify 53

Ed25519 and Ed448 curves vii
elliptic curve cryptography

ECC vii
Elliptic curve cryptography functions 46
enable-fips 7
example

makefile 182
SHAKE-128 139

examples
AES with CBC mode 173
AES with CFB mode 146
AES with CTR mode 156
AES with GCM mode 175
AES with OFB mode 164
AES with XTS mode 170
CMAC 177
Common Public License - V1.0 182
ECDH 181
ECDSA 180
RSA 143
SHA-256 141

F
fallback mode

using OpenSSL 22
Federal Information Processing Standards (FIPS) 6
FIPS, See Federal Information Processing Standards
FIPS 140-2 6
FIPS mode

constants 127
FIPS mode dependencies 7
FIPS mode enabling 7
FIPS mode functions 109
FIPS self-tests 109
FIPS status 109

G
Galois/Counter Mode

GCM 82, 85
GCM

Galois/Counter Mode 82,
85

GCM for streaming operations 9
glossary 191

I
ica_3des_cbc 96
ica_3des_cbc_cs 97
ica_3des_cfb 99
ica_3des_cmac 100
ica_3des_cmac_intermediate 101
ica_3des_cmac_last 101

ica_3des_ctr 103
ica_3des_ctrlist 104
ica_3des_ecb 105
ica_3des_ofb 106
ica_aes_cbc 70
ica_aes_cbc_cs 71
ica_aes_ccm 73
ica_aes_cfb 74
ica_aes_cmac 75
ica_aes_cmac_intermediate 76
ica_aes_cmac_last 77
ica_aes_ctr 78
ica_aes_ctrlist 80
ica_aes_ecb 81
ica_aes_gcm 82
ica_aes_gcm_kma_ctx_free 88
ica_aes_gcm_kma_ctx_new 88
ica_aes_gcm_kma_get_tag 92
ica_aes_gcm_kma_init 89
ica_aes_gcm_kma_update 90
ica_aes_gcm_kma_verify_tag 92
ica_aes_gcm_last 87
ica_aes_ofb 93
ica_aes_xts 94
ica_close_adapter 20, 21
ica_des_cbc 112
ica_des_cbc_cs 113
ica_des_cfb 114
ica_des_cmac 115
ica_des_cmac_intermediate 116
ica_des_cmac_last 117
ica_des_ctr 118
ica_des_ctrlist 120
ica_des_ecb 121
ica_des_ofb 122
ica_drbg 36
ica_drbg_generate 40
ica_drbg_health_test 41
ica_drbg_instantiate 38, 41
ica_drbg_reseed 39
ica_ec_get_private_key 51
ica_ec_get_public_key 51
ICA_EC_KEY

create 46
ica_ec_key_free 49
ica_ec_key_generate 49
ica_ec_key_init 48
ica_ec_key_new 47
ica_ecdh_derive_secret 50
ica_ecdsa_sign 52
ica_ecdsa_verify 53
ica_ed25519_ctx_del 68
ica_ed25519_ctx_new 55
ica_ed25519_key_gen 62
ica_ed25519_key_get 60
ica_ed25519_key_set 57
ica_ed25519_sign 64
ica_ed25519_verify 66
ica_ed448_ctx_del 69
ica_ed448_ctx_new 55
ica_ed448_key_gen 63
ica_ed448_key_get 60
ica_ed448_key_set 58
ica_ed448_sign 65

Index 197

ica_ed448_verify 67
ica_fips_powerup_tests 109
ica_fips_status 109
ica_get_functionlist 108
ica_get_version 107
ica_mp_mul512 110, 111
ica_open_adapter 20, 21
ica_random_number_generate 37
ica_rsa_crt 45
ica_rsa_crt_key_check 44
ica_rsa_key_generate_crt 43
ica_rsa_key_generate_mod_expo 42
ica_rsa_mod_expo 44
ica_set_fallback_mode 20, 22
ica_set_offload_mode 22
ica_set_stats_mode 23
ica_sha1 123
ica_sha224 23
ica_sha256 24
ica_sha3_224 29
ica_sha3_256 31
ica_sha3_384 32
ica_sha3_512 33
ica_sha384 25
ica_sha512 26
ica_sha512_224 27
ica_sha512_256 28
ica_shake_128 34
ica_shake_256 35
ica_x25519_ctx_del 67
ica_x25519_ctx_new 54
ica_x25519_derive 63
ica_x25519_key_gen 61
ica_x25519_key_get 58
ica_x25519_key_set 56
ica_x448_ctx_del 68
ica_x448_ctx_new 54
ica_x448_derive 64
ica_x448_key_gen 62
ica_x448_key_get 59
ica_x448_key_set 56
icainfo command 133
icainfo utility 1
icainfo, output vii
icastats

setting the counting of cryptographic operations 23
icastats utility 1, 135
Information retrieval functions 107
installing libica 5

K
key

CRT format 43
modulus/exponent
42

KMA instruction
cipher message with authentication instruction 70

KMA instructions
ica_aes_gcm_kma_ctx_free 88
ica_aes_gcm_kma_ctx_new 88
ica_aes_gcm_kma_get_tag 92
ica_aes_gcm_kma_init 89
ica_aes_gcm_kma_update 90

KMA instructions (continued)
ica_aes_gcm_kma_verify_tag 92

L
libica

APIs 9
binary package 5
constants 127
define statements 1, 127
enabling for FIPS mode 7
examples 139
FIPS mode 6
FIPS self-tests 109
FIPS status 109
function list 108
general information 1
installation 5
return codes 132
SIMD support 110
source package 5
structs 128
typedefs 128
usage 5
using 6
version 107

libica variant
libica-cex 6

libica-cex 6
Linux

distribution v
lszcrypt 1

M
makefile example 182
Message Security Assist

MSA 36, 41
MSA

Message Security Assist 36, 41
MSA2 36, 41
MSA5 36, 41

N
National Institute of Standards and Technology (NIST) 6
NID value 46
NIST, See National Institute of Standards and Technology
NIST compliant pseudo random number 36

O
offload mode

setting offload mode to adapters 22
open dapter 20
openCryptoki

cryptographic coprocessor 1
OpenSSL

fallback mode 22

P
pkcstok_migrate tool vii

198 Linux on Z and LinuxONE: libica Programmer's Reference

private EC key 46
private ICA_EC_KEY data structure 52
pseudo random number

NIST compliant 36
public EC key 46
public ICA_EC_KEY data structure 53

R
random number

generator functions 36
NIST compliant 36

return codes 127, 132
RSA

examples 143

S
secure hash 23
SHA-1 123
SHA-224 23
SHA-256

examples 141
SHA-384 25
SHA-512 26
SHA-512-224 27
SHA-512-256 28
SHA3-224 29
SHA3-256 31
SHA3-384 32
SHA3-512 33
SHAKE-128

example 139
SHAKE-256 35
shared secret

Diffie-Hellman 46
signature

ECDSA 47
SIMD support

ica_mp_mul512 110
ica_mp_sqr512 111

streaming operations
AES GCM 9

structs 128
summary of changes

libica version 3.5 viii
libica version 3.7 vii
libica version 3.8 vii
libica version 3.9 vii

T
TDES

Cipher Based Message Authentication Code (CMAC) 100
Cipher Based Message Authentication Code (CMAC)
intermediate 101
Cipher Based Message Authentication Code (CMAC) last
101
Cipher Block Chaining (CBC) 96
Cipher Block Chaining with Cipher text Stealing (CBC-
CS) 97
Cipher Feedback (CFB) 99
Counter (CTR) mode 103

TDES (continued)
Counter (CTR) mode with list 104
Electronic Code Book (ECB) 105
Output Feedback (OFB) 106

triple DES 96
type definitions 127
typedefs 128

U
ucb

usage counter block 85
usage counter block

ucb 85
using libica 5
utilities

icastats 135

V
variant of libica

libica-cex 6
verify ECDSA signature 53

Z
z90crypt

alias name 1

Index 199

200 Linux on Z and LinuxONE: libica Programmer's Reference

IBM®

SC34-2602-13

	Contents
	About this document
	How this document is organized
	Who should read this document
	Distribution independence
	Other publications for Linux on Z and LinuxONE

	Summary of changes
	Updates for libica version 3.8 and libica version 3.9
	Updates for libica version 3.6 and libica version 3.7
	Updates for libica version 3.5

	Chapter 1. General information about libica
	Check the prerequisites: cryptographic device driver and cryptographic coprocessor
	Installing and loading the cryptographic device driver

	Chapter 2. Installing and using libica
	Installing libica from the distribution packages
	Installing libica from the source package
	Using libica
	Using the libica-cex variant

	Using libica in FIPS mode
	FIPS mode dependencies

	Enabling libica for FIPS mode

	Chapter 3. Application programming interfaces
	General support functions
	ica_open_adapter
	ica_close_adapter
	ica_set_fallback_mode
	ica_set_offload_mode
	ica_set_stats_mode

	Secure hash operations
	ica_sha224
	ica_sha256
	ica_sha384
	ica_sha512
	ica_sha512_224
	ica_sha512_256
	ica_sha3_224
	ica_sha3_256
	ica_sha3_384
	ica_sha3_512
	ica_shake_128
	ica_shake_256

	Pseudo random number generation functions
	ica_random_number_generate
	ica_drbg_instantiate
	ica_drbg_reseed
	ica_drbg_generate
	ica_drbg_uninstantiate
	ica_drbg_health_test

	RSA key generation functions
	ica_rsa_key_generate_mod_expo
	ica_rsa_key_generate_crt
	ica_rsa_crt_key_check

	RSA encrypt and decrypt operations
	ica_rsa_mod_expo
	ica_rsa_crt

	Elliptic curve cryptography (ECC) functions
	ica_ec_key_new
	ica_ec_key_init
	ica_ec_key_generate
	ica_ec_key_free
	ica_ecdh_derive_secret
	ica_ec_get_public_key
	ica_ec_get_private_key
	ica_ecdsa_sign
	ica_ecdsa_verify
	ica_x25519_ctx_new
	ica_x448_ctx_new
	ica_ed25519_ctx_new
	ica_ed448_ctx_new
	ica_x25519_key_set
	ica_x448_key_set
	ica_ed25519_key_set
	ica_ed448_key_set
	ica_x25519_key_get
	ica_x448_key_get
	ica_ed25519_key_get
	ica_ed448_key_get
	ica_x25519_key_gen
	ica_x448_key_gen
	ica_ed25519_key_gen
	ica_ed448_key_gen
	ica_x25519_derive
	ica_x448_derive
	ica_ed25519_sign
	ica_ed448_sign
	ica_ed25519_verify
	ica_ed448_verify
	ica_x25519_ctx_del
	ica_x448_ctx_del
	ica_ed25519_ctx_del
	ica_ed448_ctx_del

	AES functions
	ica_aes_cbc
	ica_aes_cbc_cs
	ica_aes_ccm
	ica_aes_cfb
	ica_aes_cmac
	ica_aes_cmac_intermediate
	ica_aes_cmac_last
	ica_aes_ctr
	ica_aes_ctrlist
	ica_aes_ecb
	ica_aes_gcm
	ica_aes_gcm_initialize
	ica_aes_gcm_intermediate
	ica_aes_gcm_last
	ica_aes_gcm_kma_ctx_new
	ica_aes_gcm_kma_ctx_free
	ica_aes_gcm_kma_init
	ica_aes_gcm_kma_update
	ica_aes_gcm_kma_get_tag
	ica_aes_gcm_kma_verify_tag
	ica_aes_ofb
	ica_aes_xts
	Compatibility with earlier versions

	TDES/3DES functions
	ica_3des_cbc
	ica_3des_cbc_cs
	ica_3des_cfb
	ica_3des_cmac
	ica_3des_cmac_intermediate
	ica_3des_cmac_last
	ica_3des_ctr
	ica_3des_ctrlist
	ica_3des_ecb
	ica_3des_ofb
	Compatibility with earlier versions

	Information retrieval functions
	ica_get_version
	ica_get_functionlist

	FIPS mode functions
	ica_fips_status
	ica_fips_powerup_tests

	SIMD support
	ica_mp_mul512
	ica_mp_sqr512

	Deprecated functions
	ica_des_cbc
	ica_des_cbc_cs
	ica_des_cfb
	ica_des_cmac
	ica_des_cmac_intermediate
	ica_des_cmac_last
	ica_des_ctr
	ica_des_ctrlist
	ica_des_ecb
	ica_des_ofb
	DES function compatibility
	ica_sha1

	Chapter 4. Accessing libica functions through the PKCS #11 API (openCryptoki)
	Chapter 5. libica constants, type definitions, data structures, and return codes
	libica constants
	Type definitions
	Data structures
	Return codes

	Chapter 6. libica tools
	icainfo - Show available libica functions
	icastats - Show use of libica functions

	Chapter 7. Examples
	SHAKE-128 example
	SHA-256 example
	RSA example
	AES with CFB mode example
	AES with CTR mode example
	AES with OFB mode example
	AES with XTS mode example
	AES with CBC mode example
	AES with GCM mode example
	CMAC example
	ECDSA example
	ECDH example
	Makefile example
	Common Public License - V1.0

	Accessibility
	Notices
	Trademarks

	Glossary
	Index
	Numerics
	A
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	Z

