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Accessibility

Accessibility features help users with physical disabilities, such as restricted mobility or limited vision,
to use software products successfully. System Automation for z/OS supports several user interfaces.
Product functionality and accessibility features vary according to the interface.

The major accessibility features in this product enable users in the following ways:

• Use assistive technologies such as screen reader software and digital speech synthesizer, to hear what
is displayed on screen. Consult the product documentation of the assistive technology for details on
using those technologies with this product and screen magnifier software

• Operate specific or equivalent features using only the keyboard
• Magnify what is displayed on screen.

The product documentation includes the following features to aid accessibility:

• All documentation is available to both HTML and convertible PDF formats to give the maximum
opportunity for users to apply screen-reader software

• All images in the documentation are provided with alternative text so that users with vision impairments
can understand the contents of the images.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user interfaces found in z/OS®.
Consult the assistive technology documentation for specific information when using such products to
access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E Primer, z/OS TSO/E User's
Guide, and z/OS ISPF User's Guide Vol 1 for information about accessing TSO/E and ISPF interfaces. These
guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to modify their functions.
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About this publication

This publication describes how to adapt your completed standard installation of IBM System Automation
for z/OS (SA z/OS) as described in IBM System Automation for z/OS Planning and Installation to your
environment. This publication contains information on how to add new applications to automation and
how to write your own automation procedures. It also contains information about how to add new
messages for automated applications.

Who Should Use This Publication
This publication is primarily intended for automation administrators responsible for:

• Customizing system automation and the operations environment
• Developing automation procedures and other operations capabilities

Prerequisites
Throughout this book, it is expected that readers are familiar with the System Automation for z/OS and
the following documentation:

• IBM System Automation for z/OS Operator's Commands
• IBM System Automation for z/OS Programmer's Reference
• IBM System Automation for z/OS Defining Automation Policy

Where to Find More Information

The System Automation for z/OS Library
Table 1 on page xix shows the information units in the System Automation for z/OS library. These
manuals can be downloaded from IBM Documentation.

Table 1. System Automation for z/OS library

Title Form Number Description

Get Started Guide SC27-9532 This book is intended for SA z/OS beginners. It
contains the information about early planning,
configuring the product, making it secure,
customizing your automation environment, and
the basic operational tasks that you perform on
a daily basis.

Planning and Installation SC34-2716 Describes SA z/OS new capabilities and how to
plan, install, configure, and migrate SA z/OS.

Customizing and Programming SC34-2715 Describes how to adapt the standard installation,
add new applications to automation, write your
own automation procedures, and add new
messages for automated applications.

Defining Automation Policy SC34-2717 Describes how to define and maintain the
automation policy.

User's Guide SC34-2718 Describes SA z/OS functions and how to use
SA z/OS to monitor and control systems.
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Table 1. System Automation for z/OS library (continued)

Title Form Number Description

Messages and Codes SC34-2719 Describes the problem determination information
of SA z/OS, including messages, return codes,
reason codes, and status codes.

Operator's Commands SC34-2720 Describes the operator commands available with
SA z/OS, including their purpose, format, and
specifics of how to use them.

Programmer's Reference SC34-2748 Describes the programming interfaces of SA z/OS
and the definitions for the status display facility
(SDF).

End-to-End Automation SC34-2750 Describes the end-to-end automation adapter for
z/OS and how it enables end-to-end automation
and how it connects to Service Management Unite
Automation.

Service Management Unite
Automation Installation and
Configuration Guide

SC27-8747 Describes how to plan, install, set up, configure,
and troubleshoot Service Management Unite
Automation.

Product Automation
Programmer's Reference and
Operator's Guide

SC34-2714 Describes how to customize and operate product
automation components (CICS, Db2, and IMS
automation) with SA z/OS to provide a simple
and consistent way to monitor and control all of
the CICS, Db2, and IMS regions, both local and
remote, within your organization.

TWS Automation Programmer's
and Operator's Reference Guide

SC34-2749 Describes how to customize and operate TWS
Automation.

Related Product Information
For information that supports System Automation for z/OS, visit the z/OS library in IBM Documentation
(https://www.ibm.com/docs/en/zos).

Summary of Changes for SC34-2715-01
This document contains information previously presented in System Automation for z/OS V3R5.0
Customizing and Programming, SC34-2715-00.

You may notice changes in the style and structure of some content in this document—for example,
headings that use uppercase for the first letter of initial words only, and procedures that have a
different look and format. The changes are ongoing improvements to the consistency and retrievability of
information in our documents.

This document contains terminology, maintenance, and editorial changes.

New Information
SA z/OS User Exits

A new exist AOFEXC26 is added. If this exit is defined, it is invoked during INGSUSPD processing
before Verification processing. The exit allows you to check the parameters that are passed. See
“AOFEXC26” on page 172.

Automation Solutions
The solution of defining INGWHY user actions is added. See “Defining INGWHY User Actions” on page
178.
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Read/Write Variables

• (OA59957) A new AOF_AAO_ISQ_APROF_AUTOOPEN global variable is introduced. With this
variable enabled, Processor Operations automatically performs a PROFILE CMD(OPEN) common
command, each time an ISQXIII connection request is executed for a closed connection.

• (OA59957) A new AOF_AAO_ISQ_DISABLE_ICMP_PING global variable is introduced. You can
disable ICMP PINGs with this variable, if ICMP PINGs are not allowed for security reasons in your
companies.

• AOF_AAO_JLM_RECYCLE, AOF_AAO_TWS_CHK_CONDDEP, and AOF_AAO_TWS_CHK_OUTPUT are
added. See Table 25 on page 227.

Parameter Defaults for Commands

• INGSUSPD_EXPIRE, INGSUSPD_REMOVE, INGSUSPD_SCOPE, INGSUSPD_TIMEOUT,
INGSUSPD_VERIFY, and INGSUSPD_WAIT variables are added. See “Parameter Defaults for
Commands” on page 242.

• INGWHY_TIMEOUT and INGWHY_WAIT variables are added. See “Parameter Defaults for
Commands” on page 242.

SDF Tree Structures
Description about managing SDF tree structure in a data space is added. See “SDF Tree Structures” on
page 253.

Changed Information
CICS® and IMS Connection Monitoring

The connection monitoring for CICS and IMS is enhanced by supporting extra connection monitoring
to external subsystem IBM MQ. See “External Subsystem Connection Monitoring for CICS and IMS” on
page 57.

Job Log Monitoring
Additional parameters for the INGJLM routine are described in the overview of Job Log Monitoring.
See “Overview” on page 59.

Pictures of SA z/OS Best Practice policies
The pictures of SA z/OS Best Practice policies have been moved from the USS directory to Add-on
policies.

Deleted Information
AOFEXX03 and AOFEXX15 static exits are removed.

INGRYSHU command is moved to IBM System Automation for z/OS Programmer's Reference and is
renamed to INGSHCMD (INGRYSHU).

SA z/OS Topology Manager for NMC: AOFMSGST is removed.
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Chapter 1. Adding a New Application to Automation
This information outlines the requirements to add and monitor a new application for SA z/OS.

Preparation Before Automating an Application
Before you can automate a product you need to extract its characteristics like its start and stop behaviour
and parameters like its jobname.

The following steps should help you to obtain these characteristics. Once you have finished you need
to add the application to your automation policy. Refer to IBM System Automation for z/OS Defining
Automation Policy for this activity. The main requirements for the automation of an application are:

• Address Space properties
• Application Start
• Application Shutdown
• Application Events
• Application Monitoring
• Outstanding Reply Processing
• Topology

Address Space properties
When adding an new application, you need to know the following most important characteristics of the
application:

• Jobname
• JCL procedure name
• Is it scheduled by the Master Scheduler or a scheduling subsystem?
• Is it an MVS™, OMVS application or another kind of application (for example a NetView task)?
• Location for running the application: every sysplex's system, once in the sysplex or on a subset of

systems within the sysplex?

The application's general properties are mostly defined in the APPLICATION INFO policy.

Step 1 - Application Start
Before you can introduce a new application you should consider how it is started and all the actions
required to make it operational.

Therefore it is important to know:

Table 2. Application Start

Actions Required Available Functionality

Are there any actions to complete before the
application itself could be started?

To include these actions in automation, use the
application's PRESTART policy. Any command
specified there is issued prior to the insertion of
the start command.

How to Add a New Application to Automation
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Table 2. Application Start (continued)

Actions Required Available Functionality

What is the application's start command? And are
there different start commands depending on the
startup mode of an application (for example, the
normal and the light start for a DB2® database)?

The start command should be located in the
STARTUP policy. It also provides the full flexibility
for different start commands by specifying
different start types. Once a start type is set,
the specified command will be chosen. The start
type easily can be chosen/changed at System
Automation runtime.

Who starts the application when it is not started
by System Automation? Is it started by another
instance?

The APPLICATION INFO policy lets you specify an
EXTERNAL STARTUP parameter.

Are there any actions to complete after the
application initialization?

Use the POSTSTART policy to issue additional
commands after the full initialization of the
application.

Note: All startup policies support flexible start types.

Step 2 - Application Stop
Once the application is no longer required, you need to take all the necessary steps to bring it down in a
planned way.

Therefore it is important to know:

Table 3. Application Stop (1)

Actions Required Available Functionality

Should you issue commands to prepare the
application shutdown ?

Use the SHUTDOWN INIT policy to identify
additional commands to be issued before the
application termination can be initiated.

Which command initiates the termination
process? And what happens when the stop
command does not take effect?

System Automation has the concept of command
escalation. It provides the capacity to specify
an order of termination commands. System
Automation will issue the first command and verify
the effect before it inserts the next more effective
command. There are three policies (SHUTDOWN
NORM, IMMED, FORCE) where you can specify
different shutdown command sequences for
different shutdown types.

Who stops the application when it is not
stopped by System Automation? Is there another
instance controlling the application?

The APPLICATION INFO policy lets you specify an
EXTERNAL SHUTDOWN parameter.

Are there any final termination actions
to complete after an orderly application
termination?

Use the SHUTDOWN FINAL policy to issue
additional commands after the termination of the
application.

Sometimes it can happen that an application terminates unexpectedly. In this case it might be necessary
to complete some cleanup actions before the application can be restarted. Consequently it is necessary
to know:

How to Add a New Application to Automation
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Table 4. Application Stop (2)

Actions Required Available Functionality

Are there any necessary cleanup activities to
be completed before the application can be
restarted?

The concept of status commands addresses this
issue. Once the application reaches a specific
status, the defined command will be issued.

Is the application restartable in case of an
unexpected termination?

System Automation recognizes several termination
situations for applications. Depending on the
situation System Automation is able to distinguish
between a recoverable and an unrecoverable
error. As a result, System Automation determines
whether to restart the application or not. This
concept is Code Match processing. Additionally
the RESTART option in the APPLICATION INFO
policy defines the circumstances when System
Automation should restart the application.

Is the application restarted automatically by
another application? Is the application ARM
(Automatic Restart Manager) enabled and will it
be restarted automatically?

System Automation provides the concept of Move
groups to accomplish the same behavior as the
ARM mechanism does. It is recommended to
use Move groups for achieving high availability of
applications.

Step 3 - Application Events
System Automation reacts to events. More specifically, it reacts to messages sent by applications or the
system itself.

There are many kinds of applications. Each of them sends a varying degree of messages which can be
used to determine its status. The messages represent different states during an application's life-cycle.
Normally MVS resources provide proper messages to determine the status of an application. Resources
within OMVS are mostly silent.

Step 3 points you to important messages in the life-cycle of the application. As you can see below a
resource is started once. After an amount of initialization time it is fully operational. When the resource is
no longer needed a stop command is invoked to terminate it. After the termination processing it does not
exist any longer.

Figure 1. Application Lifecycle

What are the important messages at the points in the application's life-cycle as illustrated in Figure 1
on page 3 above?

How to Add a New Application to Automation
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For example a message IEF403I is sent when the system observes that an application has been started.
IEF404I is issued when the application terminated.

Are there are other kinds of usable events at the specific points?

Step 3 discusses also the situation of an unplanned application termination.

Are there important messages at point 3 and 4 of Figure 1 on page 3 in case of an unplanned
termination?

For example a message IEF450I points to an unplanned termination.

Step 4 - Application Monitoring
Automating resources does not only consist of starting and stopping the resources. It is also important
to know methods that determine whether the component is working as expected or already terminated.
System Automation provides proper monitoring routines to be able to determine its state.

What kind of an application is it and could the state of the application be determined by:

• The existence of an address space
• The existence of a USS process
• The status of a NetView task

The corresponding monitor could be specified in the field MONITOR ROUTINE.

Step 4 presents messages issued by applications and how communicative they are. So it is useful to
decide whether an application must be actively monitored or its state could be reliably derived from
messages. If this is the case the MONITOR INTERVAL could be set to NONE. It helps to reduce the
messages in the NetView log and to reduce unnecessary system activity. The monitoring action itself
takes place at the startup and shutdown cycle to verify the state of the application.

In contrast, there are less communicative applications. In this case a well balanced monitor interval
(specific enough) ensures a periodic monitoring service to verify the applications status.

Sometimes it is not enough to know whether a resource is running or not. Many situations require more
detailed information as well as its status. The concept of monitor resources provides the infrastructure to
evaluate the status of resources in detail and to react properly to the specific situation.

Outstanding Reply Processing
SA z/OS keeps track of all outstanding Write-to-Operator Replies (WTORs) that it receives if it does not
reply to them immediately. Because some applications may have more than one outstanding WTOR at the
same time, and not all WTORs are equally important, they are classified accordingly.

For more details refer to Chapter 16, “WTOR Processing,” on page 153.

Topology
Normally the application to be automated depends on the underlying infrastructure, like JES2 or TCPIP.
This means that this infrastructure must be available before you can start the application.

Vice versa the application can be a prerequisite for other applications, before they can be started.

Likewise you need to think about which other applications must be terminated prior to the termination of
the application.

As described above, there are relationships between the applications.

At this point it might be helpful to draw a picture and to visualize the relationships between the
application in case of a start and a stop situation.

SA z/OS provides Best Practice policies containing solutions for several products. The solutions are
illustrated in PDF file format located in Add-on policies.

How to Add a New Application to Automation
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Please refer to the appropriate file to find out more information about the solution you are trying to
automate.

Adding the Application to Automation

Define an Application Policy Object
To add a new application to SA z/OS, you must create and define a new Application policy object using the
SA z/OS customization dialog.

With the customization dialog, you also define how the new application should be automated by SA z/OS,
for example:

• Specifying startup or shutdown commands for the application,
• Specifying the appropriate monitoring routine,
• Specifying relationships to correlate it with other applications,
• Linking the application into an application group,
• Considering where the applications should be visible.

SA z/OS provides Best Practice policies containing solutions for several products. The solutions are
illustrated in PDF file format located in Add-on policies.

How to add a new application and how to access System Automation's Best Practice solutions is
described in detail in IBM System Automation for z/OS Defining Automation Policy.

Using Automated Discovery to Define Application Policy Objects
This functionality is primarily intended to build a basic automation policy. You can discover z/OS system
resources like address spaces and along with SA z/OS delivered policies you can map the discovered
address spaces to applications defined in the SA z/OS delivered policies.

Thus, a new user policy can be populated with APL policy objects.

For more information, refer to Chapter 19, “Automated System Resource Discovery,” on page 211.

Build New Automation Configuration Files
When you finish defining the application in the customization dialog, build the new automation
configuration files from the updated policy database. See "Building the Configuration Files" in Defining
Automation Policy.

After you have completed this step, the application is known to SA z/OS and can therefore be automated
according to the policy that was defined in “Define an Application Policy Object” on page 5.

How to Add a New Application to Automation
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Chapter 2. Creating Automation Procedures
You can write additional automation procedures to supplement the basic automation procedures that are
supplied by SA z/OS. For example, you may want to develop procedures to automate an application that is
used exclusively on your system or to perform specialized automated operations for a subsystem.

SA z/OS commands and routines perform basic functions such as logging messages and checking
automation flags. You can use them in your own automation procedures.

SA z/OS automation routines are convenience routines that provide your automation procedures with a
simple, standard way of interfacing with the automation control file, automation status file, and NetView
log file. It is strongly recommended that you use these routines wherever possible in your own code.

“How Automation Procedures Are Structured” on page 7 describes how to structure your automation
procedures. Refer to IBM System Automation for z/OS Programmer's Reference for detailed descriptions
and examples of the automation routines and file manager commands you can use in your automation
routines.

How Automation Procedures Are Called
There are several ways to call an automation procedure including:

• Calling the automation procedure from the NetView automation table using SA z/OS automation
• Keying in the automation procedure name or its synonym into a NetView command line
• Calling the automation procedure from another program
• Starting the automation procedure with a timer
• Starting the automation procedure with the NetView EXCMD command
• Starting the automation procedure on an automation operator with the SA z/OS AOFEXCMD command

routine
• In the customization dialog, entering your automation procedure name in the Command text or

Command field of various policy items for the following entry types:

– Application
– MVS Component
– Timers
– Monitor Resources

Note: Not all routines can be called through all interfaces as some require extensive environmental setup
before they are invoked.

How Automation Procedures Are Structured
It is recommended that the structure of automation procedures contain three main parts, as follows:

1. Perform initialization processing
2. Determine whether automation is allowed
3. Perform automation processing.

Figure 2 on page 8 illustrates the structure of automation procedures for system operations and Figure
3 on page 8 for processor operations.

How Automation Procedures Are Called
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Figure 2. Automation Procedures for System Operations

Figure 3. Automation Procedures for Processor Operations

The following sections provide more details about each part of an automation procedure.

Performing Initialization Processing
Initialization processing may not be required for simple automation procedures.

Initialization processing is responsible for:

• Setting up any error trap routines.
• Identifying the automation procedure by setting a local variable either explicitly or at execution time.

This step makes it simpler to code routines that log messages and send notifications.
• Declaring the global variables, such as common and task global variables, that are used for subsystem
definition values in the automation procedure.

See Appendix A, “Global Variables,” on page 225 for descriptions of global variables.

How Automation Procedures Are Structured
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• Checking whether debugging is on.
• Issuing debugging messages, if debugging is turned on.
• Validating the automation procedure call.

This step can help prevent an operator from calling the automation procedure inappropriately.
Automation procedures can also be validated using command authorization checking methods provided
by NetView or an SAF product.

• Saving NetView message parameters. This step is necessary if your automation procedure uses the
NetView WAIT statement and you need to access the original message text or control information.

For more information on coding automation procedure initialization sections, refer to “Example
Automation Procedure” on page 15, to Tivoli NetView for z/OS Customization Guide and to Tivoli NetView
for z/OS Automation Guide.

Determining whether Automation Is Allowed

System Operations
Automation procedures for applications and MVS components that are called from the NetView
automation table should always perform an automation check by calling the AOCQRY automation routine.
AOCQRY checks that the automation flags allow automation.

These checks eliminate the risk of automating messages for applications that should not be automated,
or for which automation is turned off. AOCQRY also initializes most of the common and task global
variables that are used in the automation procedure with values specific to the application.

Refer to IBM System Automation for z/OS Programmer's Reference for more information on coding the
automation check routine.

Processor Operations
Most of the processor operations commands run only when processor operations has been started. To
determine whether processor operations is active, you can use the ISQCHK command in your automation
routines.

If processor operations is not running, ISQCHK returns return code 32 and issues the message:

ISQ0301 Cannot run cmd-name command until Processor Operations has started.

Your application can then issue the ISQSTART command to begin processor operations.

Performing Automation Processing
Automation processing is performed by any combination of SA z/OS routines and your own code.

The following documentation gives more information on coding automation procedures:

• “Automation Processing in System Operations” on page 9
• “Automation Processing in Processor Operations” on page 11

Automation Processing in System Operations
This section contains information on how to customize automation processing for system operations.

Updating Status Information
You can update status information by calling AOCUPDT. This routine is used when a message indicates a
status change.

This would normally be done from the automation routines ACTIVMSG, HALTMSG, and TERMMSG. Making
your own status updates may cause unpredictable results.

How Automation Procedures Are Structured
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For more information, see IBM System Automation for z/OS Programmer's Reference.

Logging Messages and Sending Notifications
You can log messages and send notifications by calling AOCMSG.

AOCMSG performs the following actions:

• Formats a message for display or logging
• Issues messages as SA z/OS notification messages to notification operators

For more information, see IBM System Automation for z/OS Programmer's Reference.

Issuing Commands and Replies
You can issue commands and replies by calling ACFCMD and ACFREP.

You can use these routines to:

• Issue one or more commands in response to a message.
• Issue a single reply in response to a message.
• Use the step-by-step (PASS) concept to react to or recover from an automation event.

ACFCMD issues one or more commands. It supports both a single reaction and the step-by-step (PASS)
concept. For more information, see IBM System Automation for z/OS Programmer's Reference.

ACFREP issues a single reply. It supports both a single reaction and the step-by-step (PASS) concept. For
more information see IBM System Automation for z/OS Programmer's Reference.

In many cases you may be able to use the ISSUEACT automation procedure that also supports single and
pass processing.

Checking Thresholds
You can check and update thresholds by calling the CHKTHRES automation routine. Use CHKTHRES to
track and maintain a threshold, and to change the recovery action based on the threshold level exceeded.

For more information see IBM System Automation for z/OS Programmer's Reference.

Checking Error Codes
You can check error codes by calling CDEMATCH. It compares error codes in a message to a set of
automation-unique error codes to determine the action to take.

In some cases you may be able to use the code matching capabilities of ISSUEACT and TERMMSG.

For more information, see IBM System Automation for z/OS Programmer's Reference.

Using File Manager Commands
You can use file manager commands to access SA z/OS control files such as the automation control file
and automation status file:

• Use the ACF command if you need to load or display the automation control file.
• Use the ACFFQRY command to query the automation control file quickly.
• Use the ASF command to display the automation status file.
• Use the ASFUSER command to modify the automation status file fields reserved for your own

information.

For more information, see IBM System Automation for z/OS Programmer's Reference.

Using External Code for Timers, Logic, and Other Functions
Your automation procedures may require code to set timers, to perform logic unique to your enterprise or
to the automation procedure itself, and to perform other functions.

Some examples include:

How Automation Procedures Are Structured
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• Issuing commands and trapping responses.

You can issue commands and trap responses using the NetView WAIT or PIPE commands. You may
need to use these commands in your code if it is necessary to check the value or status of a system
component or application before continuing processing. For more information, see Tivoli NetView for
z/OS Customization Guide.

• Setting Common Global and Task Global values to control processing.

You can set Common and Task Global values by using NetView commands. You may need to set these
values if it is necessary to set a flag indicating progress, message counts, and other indicators that must
be kept from one occurrence of a message to the next. See IBM System Automation for z/OS Defining
Automation Policy for a table of all externalized SA z/OS global variables.

Also refer to the discussion of common and task global variables in Tivoli NetView for z/OS
Customization Guide.

• Setting timer delays to resume processing.

You can set timer delays by using the NetView AT, AFTER, EVERY and CHRON commands. You can
use these commands when an automation procedure must either resume processing or initiate another
automation procedure after a given time to do additional processing. For example, you could use these
commands to perform active monitoring of subsystems. For more information, see the discussion of AT,
AFTER, EVERY and CHRON commands in Tivoli NetView for z/OS Automated Operations Network User's
Guide.

Automation Processing in Processor Operations
This section contains information on how to customize automation processing for processor operations.

Initializing a Target System
If your routines need to start target systems (hardware and/or operating system), issue the ISQCCMD
ACTIVATE command.

Shutting Down a Target System
If your routines need to shut down a target system, issue the ISQCCMD DEACTIVATE OCF command.

Before issuing the command to close the target system, shut down all of your functioning subsystems.
This avoids any unexpected situations at the target system.

Issuing Other OCF Commands
All OCF commands supported by processor operations can be issued from automation routines.

See IBM System Automation for z/OS Operator's Commands for details about these commands.

Reserved SA z/OS Commands
The SA z/OS commands ISQISUP, ISQISTAT, ISQCMMT, ISQSTRT, ISQXIPM, ISQGPOLL, and ISQGSMSG
are not intended for your use. Do not use these in your automation routines.

Unexpected results may occur.

The following commands can only be used from an operator console and should not be used in your
automation routines or with ISQEXEC: ISQXDST, ISQXOPT, and ISQHELP.

The following commands are for automation and should not be used in your automation routines:
ISQI101, ISQI212, ISQMCLR, ISQI320, ISQIUNX, ISQI347, ISQI470, ISQI886, ISQI888, ISQI889,
ISQI128, ISQIVMT, ISQMVMI1, ISQMVMI2, ISQMWAIT, ISQMDCCF, ISQM020, and ISQIPLC.

How Automation Procedures Are Structured
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Serializing Command Processing
Serializing command processing ensures that commands and automation routines are processed in the
order in which they are sent to a target system console. It can also prevent the command sequence from
being interrupted by other tasks.

Specific target control tasks are assigned to specific target systems during initialization of the target
system. More than one target system can share a target control task, but a target system never has more
than one target control task allocated to it to perform work.

When a command or an automation routine is sent to a target system, it can be processed partly in
the issuing task (a logged-on operator or an autotask) and partially in a target control task. When the
command or automation routine is to be processed by a target control task, it is either allocated to the
target control task and processed, or queued to be processed by the target control task. This serializes
the processing of commands and automation routines. Serializing ensures that they are processed in the
order in which they were sent to the target system console.

The NetView program has priority defaults established during its initialization. Usually, everything running
under NetView has a low priority. You can use the NetView DEFAULTS command to see what the settings
are, but you should not change them. For SA z/OS command processing to be serialized as designed, all
commands used in SA z/OS must have a priority setting of "low". If you change the priorities or have
more than one priority for commands used in SA z/OS, the difference in the priorities may defeat the
serialization that results from the architecture of the target control task.

Sending an Automation Routine to a Target Control Task
If you run the same series of SA z/OS commands regularly, you can program the commands into a
NetView automation routine. Follow the guidelines you use for any NetView automation routine.

A NetView autotask or a logged-on operator can then run this routine or send it to a target control task.
Use the following command to transfer an automation routine to a target control task:

ISQEXEC target-system-name SC routine-name

When you issue the ISQEXEC command to process an automation procedure, all of the commands
are processed in the order in which they occur in the automation procedure. This is because the
ISQEXEC command sends work to a target control task, which processes commands serially. Any other
commands or automation routines issued to the same console by the ISQEXEC command are queued
for processing by the target control task and do not start until the previous command or automation
procedure completes.

The ISQEXEC command also frees the original task from any long-running command sequence. This lets
you use the issuing task, such as an OST, for other work.

The ISQEXEC command does not lock consoles to ensure command serialization; the command
serialization process is due to the target control task allocation scheme. Commands and automation
routines are processed in the order in which they occur; however, it is possible for commands from other
tasks to interrupt the command sequence.

For more information about the ISQEXEC command, see IBM System Automation for z/OS Operator's
Commands.

Locking a Console
Several routines and operators may attempt to address the same console at the same time. The ISQEXEC
command does not prevent other tasks from interrupting the sequence of commands being processed by
the target control task; it does not lock the console.

To prevent a sequence of commands from being interrupted, use the ISQXLOC and ISQXUNL commands.
The ISQXLOC command locks access to the console. If a task attempts to issue a command to a locked
console, the task is told that the console is locked, and the command fails. When you are finished with
the sequence of commands that must be processed without interruption, issue the ISQXUNL command to
unlock access to the console.

How Automation Procedures Are Structured
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You can use the ISQXLOC and ISQXUNL commands within automation routines to ensure that they
complete without interference from other tasks. For automation routines that issue a number of SA z/OS
commands, put the following command after the ISQEXEC command and near the beginning of the
routine:

ISQXLOC target-system-name SC

This locks access to the target system console to the current task until the lock is dropped by the
command:

ISQXUNL target-system-name SC

Only the task that issued ISQXLOC can successfully issue ISQXUNL. If an ISQXLOC command is issued
from a locked sequence of commands, it is rejected because the console is already locked.

When you lock a system console for a target system running on a logical partition, you lock that system
console for all other target systems using that processor. A command sent to a system console for any
other target system (logical partition) on that target hardware definition does not run until the console is
unlocked.

If your automation routine cannot wait for a console to be released, use the ISQOVRD command to gain
control of the console. Use the following command only in critical automation routines:

ISQOVRD target-system-name SC

When the routine issuing the override command completes, the lock is removed and the console is
available.

How to Make Your Automation Procedures Generic
By using the SA z/OS automation routines, you can make your own automation procedures generic.

A generic automation procedure comprises three parts. For each part, there are special automation
routines that help you to fulfill your tasks:

Preparation
Check if automation is allowed and should be done. Use automation routine AOCQRY.

Evaluation
What should be done? Use automation routine CDEMATCH.

Execution
Do what should be done. Use automation routine ACFCMD or ACFREP.

How to Make Your Automation Procedures Generic
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********************************************
*******          Preparation         *******
********************************************

AOCQRY

- check if the resource is controlled by SA z/OS

- check if automation is allowed

- prepare/set task global variables for CDEMATCH, ACFCMD and ACFREP

…

CDEMATCH

- code matching (table search in ACF)

- find out required action

…

ACFCMD/ACFREP

- do required action:
  issue command / respond reply

Figure 4. Skeleton of an Automation Procedure

For more information on the mentioned automation routines refer to IBM System Automation for z/OS
Programmer's Reference. For more information on command processing or reply processing refer to IBM
System Automation for z/OS User's Guide.

Processor Operations Commands
Whenever possible, your automation routines should make use of SA z/OS processor operations OCF
commands, also called common commands. These commands are independent of the hardware type
of the target system's processor. Therefore, the use of these commands minimizes the need for
changes to your automation routines if you need to add new processors to your configuration. See IBM
System Automation for z/OS Operator's Commands for a detailed description of the processor operations
commands.

Developing Messages for Your Automation Procedures
Depending on the scope of additional programming, creating new automation procedures may also
require developing additional messages.

Some SA z/OS facilities and commands you can use to develop messages include:

• The AOCMSG automation routine (see IBM System Automation for z/OS Programmer's Reference).
• The AOCUPDT automation routine (see IBM System Automation for z/OS Programmer's Reference).

The following steps summarize the message development process.

1. Choose a message ID. Make sure it is unique.
2. Use NetView message services to define the message to NetView.

Put an entry for the message in a DSIMSG data set. This data set must be identified in a DSIMSG data
definition (DD) name.

3. Use the AOCMSG automation routine to issue the message (see IBM System Automation for z/OS
Programmer's Reference).

4. Add an entry for the message to your production copy of the NetView DSIMSG data set.

Example AOCMSG Call
This example shows how to code AOCMSG to issue message ABC123I.

Developing Messages for Your Automation Procedures
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Entries for messages in DSIMSG member DSIABC12 are as follows:

*********************************************************
120I ...
121I ...
122I ...
123I 10 40 THE EAGLE HAS &1
124I ...
*********************************************************

Your automation procedure contains the following AOCMSG call:

<other automation procedure code>
⋮
     AOCMSG LANDED,ABC123
⋮
<other automation procedure code>

When AOCMSG is called as specified in the automation procedure, DSIMSG member DSIABC12 is
searched for message ABC123I. Substitution for variable &1 occurs, and the following message is
generated:

ABC123I THE EAGLE HAS LANDED

Note that the message is defined with a 10 and a 40 between the message ID and the first word of the
message. These are the SA z/OS message classes to which the message belongs. When the message is
issued a copy is sent to every notification operator who is assigned class 10 or class 40 messages.

Refer to Tivoli NetView for z/OS Customization Guide for further information on developing new messages.

Example Automation Procedure
This section provides an example of an application program that handles a z/OS message. The automation
procedure uses a subset of the SA z/OS automation routines.

/* Example SA z/OS Automation Procedure */

 1   Signal on Halt Name Aof_Error; Signal on Failure Name Aof_Error
     Signal on Novalue Name Aof_Error; Signal on Syntax Name Aof_Error

 2   Parse source . . ident .

 3   "GLOBALV GETC AOFDEBUG AOF."||ident||".0DEBUG AOF."||ident||".0TRACE"
     If AOFDEBUG = 'Y' Then
       "AOCMSG "||ident||",700,LOG,"||time()||","||opid()||","||Arg(1)
     loc.0debug = AOF.ident.0DEBUG
     loc.0trace = AOF.ident.0TRACE
     loc.0me    = ident
     If loc.0trace <> '' Then Do
       loc.0debug = ''
       Trace Value loc.0trace
     End

 4   save_msg  = msgid()
     save_text = msgstr()
     lrc = 0

 5   /* This procedure can only be called for msg IEA099A */
     If save_msg <> 'IEA099A' Then Do
       "AOCMSG "||loc.0me||",203,"||time()||","||opid()
       Exit
     End

 6   "GLOBALV GETC AOFSYSTEM"
     cmd = 'AOCQRY '||save_msg||' RECOVERY '||AOFSYSTEM
     cmd
     svretcode = rc
     If loc.0debug = 'Y' Then
       "PIPE LIT /Called AOCQRY; Return Code was "||svretcode||"/" ,
         "| LOGTO NETLOG"

Example Automation Procedure
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     /* -------------------------------------------------------------- **
     ** Check return code from AOCQRY                                  **
     ** 0 = ok                       1 = global flag off               **
     ** 2 = specific flag off        3 = resource not in ACF           **
     ** 4 = bad parms                5 = errors/timeout                **
     ** -------------------------------------------------------------- */
     Select
 7     When svretcode >= 3 Then Do
          "AOCMSG "loc.0me",206,,"time()",,,"cmd",RETCODE="svretcode
          lrc = 1
       End
 8     When svretcode > 0 Then Do
         "GLOBALV GETT AUTOTYPE SUBSAPPL SUBSTYPE SUBSJOB"
         "AOCMSG "loc.0me",580,,"time()","SUBSAPPL","SUBSTYPE"," ,
           SUBSJOB","AUTOTYPE","save_msg
         lrc = 1
       End
       Otherwise Do
 9       Parse Var save_text With . 'JOBNAME=' save_job 'ASID=' save_asid .

 10      ehkvar1 = save_job
         ehkvar2 = save_asid
         "GLOBALV PUTT EHKVAR1 EHKVAR2"
 11      cmd = 'ACFCMD ENTRY='||AOFSYSTEM||',MSGTYP='||save_msg
         cmd
         svretcode = rc
         If loc.0debug = 'Y' Then
           "PIPE LIT /Called ACFCMD; Return Code was "||svretcode||"/" ,
             "| LOGTO NETLOG"

         /* ---------------------------------------------------------- **
         ** Check return code from ACFCMD                              **
         ** 0 = ok                       1 = no commands found in ACF  **
         ** 4 = bad parms                5 = errors/timeout            **
         ** ---------------------------------------------------------- */
 12      If svretcode > 1 Then Do
           "AOCMSG "loc.0me",206,,"time()",,,'"cmd"',RETCODE="svretcode
           lrc = 1
         End
       End
     End /* End of Select svretcode */

 13  Exit lrc

 14  Aof_Error:
      Signal Off Halt; Signal Off Failure
      Signal Off Novalue; Signal Off Syntax
      errtype = condition('C')
      errdesc = condition('D')
      Select
        When errtype = 'NOVALUE' Then rc = 'N/A'
        When errtype = 'SYNTAX' Then errdesc = errortext(rc)
        Otherwise Nop
      End
      "AOCMSG "errtype",760,,"loc.0me","sigl","rc","errdesc
     Exit -5

Notes on the Automation Procedure Example
 1 

This step sets error traps for negative return codes, operator halt commands, and REXX programming
errors.

 2 
This step defines the identity of the automation procedure.

 3 
This step handles the debug and trace settings (refer to “Using AOCTRACE to Trace Automation
Procedure Processing” on page 18.

 4 
Save the NetView message variables the automation procedure uses.

 5 
Perform authorization check. This procedure can only be called for a particular message.

Example Automation Procedure
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 6 
This section performs the automation check:

1. Fetch the AOFSYSTEM common global variable that contains the information under which entry
name the system messages are stored in the automation control file (ACF).

2. The automation procedure calls the AOCQRY command. This performs the automation flag check
and presets some task global variables that are used by other automation routines like ACFCMD.

 7 
Issue message AOF206I if call to AOCQRY fails.

 8 
Issue message AOF580I if automation flag is off.

 9 
Get the job name and asid reported in the message.

 10 
Set EHKVARn variables for ACFCMD.

 11 
Call ACFCMD to issue the command specified in the configuration files. The Automation Control File
entry for the message IEA099A could look like this:

      MVSESA IEA099A,
      CMD=(,,'MVS C &EHKVAR1,A=&EHKVAR2')

 12 
Issue message AOF206I if call to ACFCMD fails.

 13 
Exit with return code that indicates successful or unsuccessful processing.

 14 
This code logs a message if an error is trapped at step  1 .

Installing Your Automation Procedures
The installation process for a new automation procedure depends on the language in which the
automation procedure is written.

• If the automation procedure uses a compiled language, such as PL/I, C, or Assembler:

1. Compile or assemble your source into an object module.
2. Link-edit the object module into a NetView load library.
3. Include an entry for the automation procedure in the CNMCMDU member of the NetView DSIPARM

data set.
• If the automation procedure uses an interpreted language such as NetView command list or REXX:

1. Copy the automation procedure into a NetView command list library
2. Optionally include an entry for this automation procedure in the CNMCMDU member of the NetView

DSIPARM data set. Then it is more quickly found and invoked.

For more information on preparing your code for use and installing it, refer to Tivoli NetView for z/OS
Customization Guide.

Testing and Debugging Automation Procedures
This section describes SA z/OS and NetView facilities you can use for testing automation procedures,
including:

• SA z/OS assist mode
• SA z/OS AOCTRACE operator facility

Installing Your Automation Procedures
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• NetView testing and debugging facilities

The Assist Mode Facility
SA z/OS provides an assist mode facility, so that you can verify automated actions.

When assist mode is on, actions that are normally taken by SA z/OS automation procedures, such
as issuing a command or reply, are not performed. Instead messages that describe what would have
happened are written to the netlog.

The assist mode is associated with automation flags (Automation, Initstart, Start, Recovery, Terminate or
Restart). Whether assist mode is used for any action is determined by the automation flag. This is checked
to see whether that action is permitted.

Cases where you might want to use assist mode include:

• During early stages of developing and using your automation policy
• After changing your automation policy, such as after adding an application to automation
• After adding a new automation procedure to the SA z/OS code

Using Assist Mode to Test Automation Procedures
Assist mode can help you to detect problems with your automation procedures before they are added to
your production code. Assist mode works by intercepting commands and replies before they are issued
through NetView.

The intercepted commands and replies, as coded in the automation policy, are reformatted into a
message that is sent to the NetView log.

The reformatted command is issued in message AOF320I and the reformatted reply in message AOF323I.
Each message contains detailed information about the action defined in the automation policy and the
actual action to be issued.

During runtime of SA z/OS, the assist mode can be enabled with the INGAUTO command to set the
related automation flag to the value L. The DISPFLGS command can be used to view the current
automation flag settings. Any other value for the automation flag deactivates assist mode.

When an event triggers an automated action and assist mode is enabled, SA z/OS logs the action in the
NetView log. The log can be reviewed to ensure that automation has run as expected.

Assist mode works for all routines that call the SA z/OS automation routines, after having checked the
automation flag by calling AOCQRY.

Using AOCTRACE to Trace Automation Procedure Processing
The AOCTRACE command dialog maintains both global execution flow traces and automation procedure-
specific debugging flags.

Setting the global flag causes all routines that support tracing and all message IDs to record a statement
in the NetView log whenever they are invoked. The AOFDEBUG global variable is used to pass the global
flag information to the automation procedure. The global flag is set to null if the global trace is off, or Y if
the global trace is on.

Setting the automation procedure-specific flags lets you obtain information about what the automation
procedure is doing when it executes, or lets you activate a REXX trace. The debug flag is either null or
Y, and is stored in the AOF.clist.0DEBUG common variable (where clist is the true automation procedure
name).

The trace flag is set to null or a valid REXX trace type, as follows:

• A (All)
• R (Results)
• I (Intermediate)

Testing and Debugging Automation Procedures
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• C (Commands)
• E (Errors)
• F (Failures)
• L (Labels)
• O (Off)
• N (Normal)

The S (Scan) trace type cannot be used.

The trace flag is stored in the common global variable AOF. clist.0TRACE (where clist is the true
automation procedure name).

Message tracing can only be set from the command line, using the command AOCTRACE MSG/id,ON|
OFF where id is the message to be traced.

AOCTRACE is documented in IBM System Automation for z/OS Operator's Commands.

REXX Coding Example
For examples of code that can be placed at the beginning and end of your REXX automation procedures to
handle trace and debug settings, see AOFEXC00 in the SINGSAMP library.

When writing code to support the debug feature, you should expose loc. on all your procedures and insert
fragments of code to check the value of the loc.0debug flag and output relevant information. The loc.0me
assignment makes the automation procedure name available everywhere, so you can prefix all debug
messages with it. You can then tell where the messages are coming from. For example:

  Myproc:
    Procedure expose loc.
    If loc.0debug = 'Y' Then
       'PIPE LIT /' loc.0debug ' has called procedure MYPROC/',
       '| LOGTO NETLOG'
    Return

NetView Testing and Debugging Facilities
NetView provides several facilities to assist in testing and debugging automation procedures.

To do detailed testing, you may want to trace every statement issued from automation procedures. This
type of testing is enabled through the &CONTROL statement for NetView command lists and through the
TRACE statement for REXX procedures.

You can also specify less detailed tracing on the TRACE and &CONTROL statements, so that only
commands are traced. A comparable facility, the interactive debugging aid, is available for programs
coded in PL/I and C.

Perform specific tracing by issuing NetView MSG LOG, PIPE LOGTO NETLOG commands at appropriate
points throughout a NetView command list, REXX procedure, or PL/I routine.

To test for proper parsing and reaction to a message, write a short automation procedure to issue
a NetView WTO command. This WTO is processed by the NetView automation table and triggers the
appropriate automation procedure. If the automation procedure requires the job name, the job name
must be temporarily hard-coded to the appropriate name. In this case, because the WTO was issued
from the NetView region, the job name associated with the message is the NetView region. A sample
automation procedure follows:

WRITEWTO CLIST
   WTO &PARMSTR
   &EXIT

Testing and Debugging Automation Procedures
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The sample automation procedure can issue any single-line message by calling the routine. For example,
to issue message ABC123I, which indicates the start of a program, the command is:

WRITEWTO ABC123I My testprogram PRGTEST has started.

Where to Find More Testing Information
More information on testing can be found in the following books:

• Tivoli NetView for z/OS Customization Guide

This book lists requirements for your programs, including preparing your code for use, and detailed
information on writing exit routines and command processors.

• Tivoli NetView for z/OS Automation Guide

This book has guidelines for creating new automation procedures, including a recommended
development process.

Coding Your Own Information in the Automation Status File
You can code your own information in the automation status file with the ASFUSER command.

The automation status file has 40 user data fields that are associated with each resource that is defined
within it. You may use these fields to store persistent information about resources that your code needs
to access later. The information in the ASF is not lost when SA z/OS is shut down. It lasts until one of the
following events occurs:

• The ASF VSAM data set is deleted and redefined,
• You bring SA z/OS up with an automation control file that does not include the application that the

information has been defined for

Note that you should verify that the information you have stored in the automation status file is accurate
whenever SA z/OS initializes, as circumstances may have changed while SA z/OS was down.

Each automation status file field reserved for your data can contain up to 20 characters. The ASFUSER
command allows you to update and display data in these fields. See IBM System Automation for z/OS
Programmer's Reference for the ASFUSER command description.

Programming Recommendations
This section contains tips and techniques that may help to reduce the coding effort required when writing
your own automation procedures, and to improve performance of your automation procedures.

• Use variables, such as &SUBSAPPL, &SUBSTYPE, and &SUBSJOB in place of parameter values.

To display output from a self-written command, prefix it with the procedure name. To be independent of
a possible name change, use the 'parse source' REXX statement which provides the procedure name as
the third token.

Using NetView command list language variable JOBNAME for the resource field on an AOCQRY call, an
automation procedure can be written to support a known message for any job that can issue a message.

• Use defaults when possible to minimize coding.
• Use generic error codes (see CDEMATCH).
• Use available message parsing techniques:

– Use the NetView command PARSEL2R or REXX PARSE command to parse a message without relying
on a field position in a message.

– Parse a message in the NetView automation table and send only necessary fields to an automation
procedure.

• Consider not coding the ENTRY field in CDEMATCH calls (default is the SUBSAPPL returned from the last
AOCQRY call).

Coding Your Own Information in the Automation Status File
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• Use appropriate automation flags.
• Review the coding requirements in Tivoli NetView for z/OS Customization Guide including restrictions to

consider when writing code, such as:

– Restrictions when TVBINXIT is on
– Variable names
– Macro use
– Register use
– Re-entering programs

• Use SA z/OS automation routines where possible, because they reduce your maintenance overhead.
• Use SA z/OS processor operations common commands where possible, because these:

1. Are independent of the hardware type of the target system's processor
2. Minimize the need for changes to your automation routines as you add new processors to your

enterprise
• Consider using the NetView VIEW command to display online help text associated with new code, and

to develop a fullscreen interface for new commands that are a part of the new code. Refer to Tivoli
NetView for z/OS Customization Guide for information on the VIEW command.

Global Variable Names
When creating your own automation procedures, you must ensure that the names of any global variables
you create do not clash with SA z/OS external or internal global variable names.

In addition, you must not use names beginning with:

• CFG
• AOF
• ING
• ISQ
• EVI
• EVE
• EVJ

Global Variable Names
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Chapter 3. Adding a Message to Automation
SA z/OS exploits the NetView automation table (AT) and message revision table (MRT). The AT contains
traps for messages that must be automated. If an action must be taken in response to a message, this
action needs to be defined in the customization dialog. A related AT entry is required to call a routine to
execute the action. The MRT allows you to modify message attributes such as color, route code, descriptor
code, display and syslog settings, and text of original z/OS messages (rather than copies).

SA z/OS automatically generates the ATs, MRTs and the MPFLSTxx PARMLIB member.

Conceptual Overview
This section gives a brief overview of the main aspects of SA z/OS message automation:

• Message automation is a process that is based on the NetView AT and MRT.
• The ATs, MRTs and the MPFLSTxx PARMLIB member are generated by SA z/OS.
• AT entries are created for messages that actions are defined for.
• Messages can be defined to indicate a status change.
• Messages can be marked to be ignored, thus not generating an AT, MRT or MPF entry.
• Messages can be marked to be captured for further display.
• Most AT entries trap messages independent of the issuing product instance, component or module.
• Predefined AT entries can be changed.
• You can define the AT/MRT scope to determine precisely if and what kind of AT or MRT is built.

Defining Actions for Messages
AT entries are generated by SA z/OS for messages that are defined for APL, MTR, or MVC policy entries
and that have actions (for example, CMD or REP) defined for them.

Note: Throughout this chapter, whenever the term policy entry is used, it implies either an APL, MTR, or
MVC policy entry, unless otherwise stated.

The first step in defining actions is to select a policy entry from the Policy Selection panel. From its policy
selection list, select the MESSAGES/USER DATA policy item. This leads to the Message Processing panel,
where you can then define actions for message IDs. If an AT entry is built according to the action, it only
checks for the message ID by default, independent of the product instance, component or module issuing
that message. If this is not intended, you can use the AT action (see “Defining Message Overrides” on
page 25).

There are many messages that are already prepared by SA z/OS. For these messages specific AT entries
are predefined by SA z/OS, see the +SA_PREDEFINED_MSGS MVS component entry. If you want to know
what kind of AT entry is built for automating a particular message, you can view it on the Message
Automation Overview panel.

You can use system automation symbols (AOCCLONE variables) or system symbols in message IDs. These
symbols are resolved when AT and MRT are loaded, but cannot be resolved for MPF.

Defining CMD or REP Actions
Suppose, for example, that you define a CMD or REP action for message XYZ222I on the Message panel,
where XYZ222I is a completely new message that is not predefined by SA z/OS.

This definition leads to the creation of an AT entry for message XYZ222I using the ISSUEACT command
after the next Configuration Build process.

Defining Actions for Messages
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Note: If you have code definitions that you expect to be passed to ISSUEACT, you have to manage the AT
overrides to do this. This is not done by SA z/OS. See “Defining Message Overrides” on page 25.

Note that for MVC entries, messages have the parameter SYSTEMMSG=YES added to the SA z/OS
command (ISSUEACT).

Defining AT Actions
You can define various AT actions for messages using the Message Automation Overview panel:

• The condition in the AT entry
• Status changes for messages
• Capturing messages to be displayed but not automated
• Preventing the building of AT entries

You can also edit the AT entries directly using the AO option from this panel. Note that if you use one of
the other options after you have specified an override, SA z/OS requires you to confirm whether you want
to delete the override that exists for the message because it cannot be combined with the other options.

Defining Conditions for AT Entries
You can improve the efficiency of AT processing by controlling where entries are placed within the AT and
by specifying more precise conditions to trap the message.

SA z/OS allows you to do this with the AT Entry Conditions panel, which you reach from the Message
Automation Overview panel by entering the AC option.

Defining Status Messages
Many messages that indicate a state change of APL, MTR, and MVC resources are known to SA z/OS. The
related AT entries are already predefined.

For these messages there is no need to define them in the policy database.

If necessary, you can define additional application messages that indicate a state change. The AT action
leads to the Message Automation Overview panel, where you can enter the AS option to display the AT
Status Specification panel that lists resource states.

The Status Message Report shows all status messages. It lists all user-defined and predefined status
messages and their associated statuses.

Status messages can be defined for MVC policy entries as well as for APL and MTR instances or classes.
As an example, to define an UP state indicated by message XYZ444I, enter A in the Cmd field next to the
message ID on the Message Processing panel. On the Message Automation Overview panel, enter the AS
option to display the AT Status Specification panel and select the UP status. Here, XYZ444I is a message
that is unknown to SA z/OS.

This definition leads to the creation of an AT entry for message XYZ444I using the ACTIVMSG command
after the next configuration build process, as shown on the Message Automation Overview panel.

Notes:

1. There are certain messages that can be used as status messages, but for some messages, COD
definitions are required (for example, IEF450I). TERMMSG sets the status depending on these
definitions. For more details about TERMMSG, see IBM System Automation for z/OS Programmer's
Reference.

The entries for message IEF450I entries are important. Sample policy *BASE includes a set of
recommended code definitions.

2. Automation table entries are generated based on the messages that are defined with MESSAGES/
USER data. For size and performance reasons, these entries are message-oriented rather than job-
oriented.

Defining Actions for Messages
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This means that an AT action (except IGNORE) for a particular message generates an AT entry. This
entry traps that message independently of the issuing subsystem. It then sets the subsystem state as
selected via the AT action.

If a state message should be processed for a particular subsystem only, you can define an AT override
action.

Defining Captured Messages
If messages only need to be captured to be displayed but not automated, the AT Status Specification
panel provides an additional Capture option for APL and MVC entries.

Messages that have a CMD or REP action defined for them or that are defined as status message are
implicitly captured. There is no need to explicitly define these messages to be captured.

For example, to define message XYZ555I to be captured, enter option AS on the Message Automation
Overview panel to display the AT Status Specification panel and select the Capture option.

This definition leads to the creation of an AT entry for message XYZ555I using the AOFCPMSG command
after the next configuration build process, as shown on the Message Automation Overview panel.

Inhibiting AT, MRT, and MPFLSTxx Entries
Messages that are marked IGNORE do not cause an AT entry, MRT entry, or an MPFLSTxx entry to be
generated.

IGNORE discards other actions that are defined for the same message.

AT Entries That Are Never Built
There are many keywords that can be entered as message IDs in the customization dialog (for example,
message MVSDUMPFULL). No AT entry is built for these keywords.

A list of these keywords is given in the online help.

Defining Message Overrides
You can apply an override on the Message Processing panel for a message ID for an APL instance, APL
class or an MVC entry.

The AO option on the Message Automation Overview panel allows you to override an AT entry. You can
change any part of the AT entry. Condition and action statements can be changed, added or deleted.

If you define a message with an AT action or condition, and then invoke the override panel, the preview
of the AT entry is shown on the override editor screen. You can use this as a model for your own AT
definition. Use the CANCEL command to exit the editor without saving your changes.

Note that if you specify an AT status selection or an MRT action selection for a message with an AT or MRT
override, then a confirmation panel for the "override delete" is displayed because an override cannot be
combined with the other specifications.

You can include system automation symbols (AOCCLONE variables) and system symbols in an AT or MRT
override definition. They are resolved at AT and MRT load time.

You can define '&*JOBNAME.' as part of an AT condition statement that will be replaced by the jobname
of the given policy entry when building the AT. This is very valuable when defining an AT entry for an APL
class. Then each APL instance linked to that class will have its own AT entry with its jobname in the AT
condition statement. Checking for the jobname may also be required if different instances of a product
issue the same message but you only want certain jobs to be affected by that message.

To define an override for message XYZ666I, for example, on the Message Processing panel, you can
either change an existing AT entry that then becomes a user-defined AT entry, or, if no predefinitions are
available, you can define a user-specific AT entry.

Defining Actions for Messages
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Extended Status Command Support
The status command concept has been extended so that commands can be issued if two linked or
dependent applications reach an "up" or "down" state.

Thus, a command can be issued for one application (APL1) when another one APL2 enters or is in a
certain state. Application APL1 is a consumer that consumes services provided by application APL2 which
is a provider. In certain cases it is valuable to trigger a consumer action if the provider enters an UP or
DOWN state. Alternatively the consumer may take an action when coming up, which depends on the state
of the provider.

In addition to runtime variables such as &SUBSAPPL or &SUBSJOB, there are provider-specific runtime
variables that can be used within a command or reply as specified for a Message ID in the MESSAGES/
USER DATA policy. These variables start with &SU2 instead of &SUB. For a list of supported provider
runtime variables, see ACFCMD and ACFREP in IBM System Automation for z/OS Programmer's Reference.

Policy Definitions
Links must be defined in the APL policy for the consumer application.

A link is a data pair that is represented by a consumer and a provider subsystem name:

• The consumer name is defined as the Subsystem Name of the consumer APL
• The provider name is defined in the MESSAGES/USER DATA policy item of the consumer APL as part of a

pseudo Message ID

In order to execute a command by a consumer APL whenever a provider APL becomes UP or DOWN, use:

• UP_provider-subsys - to hold the commands that are executed when provider-subsys becomes UP
• DN_provider-subsys - to hold the commands that are executed when provider-subsys becomes DOWN.

A dynamic link is created by defining a USER action with the Keyword/Data pair DYNAMIC=YES for the
pseudo message ID.

Other pseudo messages are available to hold sets of commands on a consumer APL that are executed
whenever the consumer becomes UP and the provider APL is UP or DOWN respectively:

• ISUP_provider-subsys - to hold the commands that are executed when the provider-subsys is UP
• ISDN_provider-subsys - to hold the commands that are executed when the provider-subsys is DOWN.

No commands are issued when the consumer becomes DOWN. For dynamic links the commands are
executed when the link is activated and the provider is in the appropriate status.

For example, if you want to start the MQ Listener for the MQCHIN application whenever the TCPIP
application reaches an up state, you define a command for the message ID UP_TCPIP using the
MESSAGES/USER DATA policy item of MQCHIN. On the Message Processing panel, enter the line
command C for the UP_TCPIP message ID and on the subsequent Command Processing panel enter
MVS START LISTENER in the Command Text field.

For dynamic links, you need to define message IDs for all the providers that might be used by a consumer.
There are several alternatives for defining when a link is activated:

1. In the POSTSTART phase of the STARTUP policy item
2. Based on a user-selectable message before the consumer is in the UP state
3. Based on the "up" state (this can be UP or ENDED)
4. Based on a user-selectable message after the consumer is in the UP state

You can make these definitions in either the STARTUP or MESSAGES/USER DATA policy item.
Corresponding policy definitions are required for link deactivation either in the SHUTDOWN or
MESSAGES/USER DATA policy item.

You must supply a user-written REXX automation procedure that:

1. Identifies the provider

Defining Actions for Messages
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2. Issues the INGLINK command to activate the link, if required

All the dynamic links of a consumer are automatically DEACTIVATED after the consumer is shut down.
Thus you only need to define DEACTIVATE commands if you want this process to happen at an earlier
point in time. Furthermore, you must not define a DEACTIVATE if the consumer is its own provider since
this DEACTIVATE may take place before the DN_ message can be processed.

There is no difference in the DN_ and UP_ message processing between normal and transient
applications, with one exception: when stopping a transient provider the corresponding DN_ message
on the consumer is not processed.

Special Considerations
You can define a consumer as its own provider. This can be done to perform a predefined action for an
application whenever it enters any "down" state. A "down" state in this context is an agent state of:

• DOWN
• RESTART
• AUTODOWN
• STOPPED
• CTLDOWN
• BROKEN

Thus you no longer need to define the same action for each of the agent states. To achieve this, define the
same name in the DN_ message and subsystem name field of an application policy entry. You should note,
however, that:

• If the consumer and provider applications are different, the action defined under DN_ is only executed,
when the consumer application is in the "up" state. However if the consumer and provider applications
are the same, the action defined under DN_ is executed even when the consumer application is not in
the "up" state.

• Dynamic link definitions are not required. If you define a dynamic link, it is ignored.
• The action defined for the DN_message is not executed if the status change resulted from a failed

startup.

Defining Entries for the Message Revision Table
The message revision table (MRT) enables user-defined modification of attributes such as color, route
code, descriptor code, display and syslog settings, and text of original z/OS messages (rather than copies).

You can make decisions about the message based on its message ID, job name, and many other
properties. You can have only one MRT active per system.

Any MRT specifications that you make are independent of any AT entry data for the message. Thus if you
make a definition for the MRT but not for the AT, any existing data for AT entry is still in effect.

The MS option on the Message Automation Overview panel allows you to define conditions and attributes
that are used to generate NetView message revision table (MRT) entries for a message ID. Use the options
on the Message Revision Table Conditions panel to specify the following:

• Delete the message completely (if you select this, no other selection is valid)
• Whether to automate the message
• Suppress the message from the console or system log
• Translate the message text to uppercase or append further text to it
• Change the color, highlighting, and intensity (if your terminal supports high intensity) attributes of the

message. Only one selection for each of these attributes is allowed.

A syntax check is not made of the MRT entry because any system-specific definitions (for example,
symbols) can only be verified on the system where the MRT is to run.

Defining Actions for Messages
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You should check that routines that are triggered by the AT entry for the message ID are compatible with
any text that you append to the original message text.

You can also use the MO option on the Message Automation Overview panel to define the MRT entry
directly using a fullscreen editor. Note that a syntax check is not performed on this panel. You must
ensure that your specifications follow NetView message revision table syntax rules.

For more details, see the chapter "The Message Revision Table" in IBM Tivoli NetView for z/OS Automation
Guide.

Build
Once you have made all the message definitions that you need, you can start the Configuration Build
Process to build the configuration files containing the AT, MRT, and MPF table.

For more information about the build function, see the chapter "Building and Distributing Configuration
Files" in IBM System Automation for z/OS Defining Automation Policy.

The AT fragments, MRT, and the MPFLSTxx member are built into the configuration data output data set.

This may require more space than you have allocated for the output data set. Thus enlarging the output
data set may be required.

This also applies to the DSILIST data set where the listings are stored.

It is recommended that you copy the build output to a Generation Data Group (GDG) to avoid token
mismatch conditions and AT or MRT load errors.

AT and MRT Build Concept
The AT and MRT are built if necessary.

Note: If the MPF Header or Footer definitions have changed, an MPFLSTxx build is not performed. The
changes are taken into account at the next build.

Load
After the NetView automation tables have been generated using the customization dialog, they are ready
to be loaded.

INGAMS REFRESH can be used to refresh the complete SA z/OS configuration, that is, the Automation
Manager Configuration (AMC), the agent's Automation Control Files (ACFs) and the related NetView
Automation Tables (ATs) as they are defined in the SA z/OS Policy Database. Alternatively, ATs can be
loaded using ATLOAD.

The common global variable AOFSMARTMAT controls whether the AT and MRT fragments generated
at Automation Control File build should be used. For compatibility reasons the provided default is 2
indicating that the generated AT fragment is loaded at SA z/OS initialization time or during an INGAMS
REFRESH. The recommended value of AOFSMARTMAT is 3 indicating that the generated AT and MRT
fragments are loaded at SA z/OS initialization time or during an INGAMS REFRESH.

For more information about the values refer to AOFSMARTMAT in “Read/Write Variables” on page 226.

Some AT entries are required for SA z/OS to operate properly. These entries reside in a separate AT that is
loaded during SA z/OS initialization. This AT is called INGMSGSA. Do not edit it.

Listings
The DSILIST data set is used to store listings.

For example, if you want to view the listing of the AT INGMSG01, issue the command:

br dsilist.ingmsg01

Build
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To view the listing of the MRT, issue:

br dsilist.ingmrt01

A listing is produced whenever SA z/OS loads an AT or MRT. You can use the advanced automation option
(AAO) AOFMATLISTING to suppress listings by setting it to zero (see Appendix A, “Global Variables,” on
page 225).

The AT can be reloaded at configuration refresh (INGAMS, ACF ATLOAD). Because of this you should:

• Use a separate DSILIST data set for each NetView
• Allocate the DSILIST data set as a PDSE in order to prevent Sx37 errors

If the testing or loading of an AT or MRT fails, a special INGERRLS listing that contains the data of the
failing AT or MRT is written to DSILIST. To view this listing issue the following command:

br dsilist.ingerrls

A Guide to SA z/OS Automation Tables

NetView Automation Table Structure
SA z/OS provides a ready-to-use AT, INGMSG01.

To activate the AT, perform the following steps:

1. Define the AT member INGMSG01 in the SYSTEM INFO policy of the system in the customization
dialogs

2. Build the automation configuration files
3. Refresh the configuration using INGAMS REFRESH
4. Restart NetView with the new configuration

The SA z/OS AT contains:

• All entries for the SA z/OS basic automation infrastructure, which reside in INGMSGSA
• AT entries for messages that are defined in the PDB
• User include fragments

You do not have to customize the AT INGMSG01. All unused entries are disabled automatically according
to the configuration that you use. If you want to have additional entries that are valid only for your
environment, you can use either a separate AT (specified in the customization dialog) or use one of the
user includes.

Figure 5 on page 29 shows the structure of the AT:

INGMSG01
    │
    │
    │──── %INCLUDE AOFMSGSY
    │
    │──── %INCLUDE INGMSGU1
    │
    │──── %INCLUDE INGMSG02 (auto-generated)
    │
    └──── %INCLUDE INGMSGU2

Figure 5. AT Structure

For information about how to use the INCLUDE fragments that SA z/OS provides, refer to “Using SA z/OS
%INCLUDE Fragments” on page 30.

The following fragments are used by the AT:

NetView Automation Table Structure
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Synonym Definitions
There is one fragment, AOFMSGSY, that is used to initialize the various synonyms used throughout
the rest of the table. SA z/OS requires the synonyms to be suitably customized to reflect your
environment. See “Generic Synonyms: AOFMSGSY” on page 269 for more details about the
synonyms.

SA z/OS Functional Definitions
These definitions (located in the fragment that is loaded as INGMSG02) contain automation table
statements for specific functions of SA z/OS. You should not change these statements. Any
modifications can be made in INGMSGU1.

Master Automation Tables
This section discusses the three master automation tables that SA z/OS provides.

INGMSGSA
SA z/OS provides this automation table containing all statements that are required for SA z/OS to work
properly.

INGMSG01
INGMSG01 is suitable for use as a primary automation table.

INGMSG01 should not be included into any other table but should be activated as a separate table.

AOFMSGST
This is a table suitable for a NetView with a SA z/OS Satellite installed.

Integrating Automation Tables
If you have any user-written automation table statements that you still want to use, you must now
combine your primary table with the automation table for SA z/OS. There are several approaches to
achieve this.

Refer to the NetView documentation for more information on how to use NetView automation tables.

Multiple Master Automation Tables
Besides INGMSG01, you can specify multiple additional NetView automation tables for a system in
the customization dialog. The tables are concatenated as entered in this panel and processed in this
concatenation order.

You need not modify the INGMSG01 automation table or any of the fragments, except AOFMSGSY. It is
easy to maintain SA z/OS automation table fragments. However, you have to watch for new messages. It
is easy to maintain your entries, because they are independent from SA z/OS entries.

Using SA z/OS %INCLUDE Fragments
INGMSG01 is the master include member. It provides some message suppression that is necessary to
prevent mismatches and duplicate automation before the first %INCLUDE fragment.

The INGMSGU1 fragment can be used for user entries. These entries have precedence over the SA z/OS
entries. The default INGMSGU1 fragment is an empty member.

The INGMSGU2 fragment can be used for all entries that SA z/OS does not provide any entries for.
The default INGMSGU2 fragment is an empty member. During ACF COLD or WARM start the AT or are
loaded and they write a listing to the DSILIST data set. This enables the use of the NetView AUTOMAN
command to monitor and manage the ATs. Make sure that the size of your DSILIST data set is sufficient
to store these listings. Without these listings you can only monitor or manage the ATs using AUTOTBL. It
is recommended that you define your DSILIST data set as a PDSE so that regular data set compression is
not required. You should also make sure that the DSILIST DSN is unique to your NetView procedure.

Integrating Automation Tables
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Examples
An example output of AUTOTBL STATUS:

BNH361I THE AUTOMATION TABLE CONSISTS OF THE FOLLOWING LIST OF MEMBERS:   
AUTINIT2    COMPLETED INSERT  FOR TABLE #1: INGMSG01 AT 04/16/02 19:34:59    
AUTINIT2    COMPLETED INSERT  FOR TABLE #2: HAIMSG01 AT 04/16/02 19:35:00    
                                                                          
IPSNO                                                                   
BNH363I THE AUTOMATION TABLE CONTAINS THE FOLLOWING DISABLED STATEMENTS:  
TABLE: INGMSG01 INCLUDE: __n/a___ GROUP   : INGCICS                       
TABLE: INGMSG01 INCLUDE: __n/a___ GROUP   : INGIMAGE                      
TABLE: INGMSG01 INCLUDE: __n/a___ GROUP   : INGIMS                        
TABLE: INGMSG01 INCLUDE: __n/a___ GROUP   : INGJES3                       
TABLE: INGMSG01 INCLUDE: __n/a___ GROUP   : INGOPC   

An example of the AUTOMAN panel:

EZLKATGB              AUTOMATION TABLE MANAGEMENT                            
                                                                             
MEMBER    TYPE   LABEL/BLOCK/GROUP NAME(S)  STATUS    NUMBER OF STATEMENTS   
--------  -----  -------------------------  --------  --------------------   
INGMSG02  GROUP  INGCICS                    DISABLED           222           
INGMSG02  GROUP  INGDB2                     ENABLED            120           
INGMSG02  GROUP  INGIMAGE                   DISABLED           1             
INGMSG02  GROUP  INGIMS                     DISABLED           107           
INGMSG02  GROUP  INGJES2                    ENABLED            1             
INGMSG02  GROUP  INGJES3                    DISABLED           1             
INGMSG02  GROUP  INGOPC                     DISABLED           10            
INGMSG02  GROUP  INGUSS                     ENABLED            1             
                                                                             

In this example the configuration loaded does not use the IMS, CICS, OPC product automation and the
IXC102A automation. It uses JES2, DB2 and USS automation.

Restriction
The NetView AUTOMAN cannot be used to RELOAD INGMSG01.

Generic Automation Table Statements
The basic automation table contains a number of generic automation table entries that can reduce your
automation table overhead considerably. These samples use some of the advanced features of SA z/OS to
make automating your applications as simple and reliable as possible.

For some of these entries (IEF403I and IEF404I in particular) the message flow may be quite high. To
handle this, you can insert additional entries in INGMSGU1 to suppress a block of messages. For example,
if all your batch jobs started with the characters BAT or JCL, then the following entry would suppress
them:

IF MSGID = 'IEF40'. & DOMAINID = %AOFDOM% THEN BEGIN;
*
  IF (TOKEN(2) = 'BAT'. | TOKEN(2) = 'JCL'.)
    THEN DISPLAY(N) NETLOG(N);
*
END;

System Operations Automation Flow
SA z/OS uses dedicated work operators for all subsystem-related processing in order to:

• Keep the extra message-related workload off the NetView subsystem interface router task (CNMCSSIR)
and primary POI task PPT

• Establish even load balancing

Generic Automation Table Statements
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• Ensure that all messages for a subsystem are processed in the correct sequence

You define work operators in the customization dialog using the Automation Operators entry type (AOP).
Here you define automated functions that allow you to specify automation operators, which are the
NetView task name. This two-staged definition gives the flexibility to specify a second operator as a
backup within the same Automated Function definition. The automation operator name that is specified
here is the name of the task in NetView.

Note that the automation operators also need to be defined in the DSIOPF member in the NetView
DSIPARM data set or in the SAF product.

By default SA z/OS provides 20 Automated Functions, AOFWRK01 through AOFWRK20, with the
automation operator names AUTWRKxx. The number can be increased according to the installation
needs.

During SA z/OS initialization or refresh the subsystems that are defined in the configuration file are evenly
distributed among the automation operators in a round-robin manner. Thus each automation operator has
a list of subsystems that it is responsible for. Each automation operator then subscribes for the messages
of those subsystems via the NetView ASSIGN command. Finally the initial monitoring of SA z/OS is run on
the appropriate automation operator, which is then locked until message AOF540I is issued.

When SA z/OS is fully initialized all messages for a subsystem are queued to the same automation
operator. This ensures that all messages are processed in the order they have been received.

If the automation table action uses standard SA z/OS capabilities (that is, SA z/OS commands), the
message is processed at the automation operator in the following three steps. However, if there is a
complete user defined automation table entry (that is, an AT override), only the first step can be run:

1. The message is driven through the NetView automation tables.
2. If there is a match, the SA z/OS data model is applied, which includes automation flag checking, code

matching, threshold comparison, pass evaluation, and message capturing.
3. Finally the command is executed or the outstanding reply is answered.

There are two places where this processing can be modified for single messages:

• The assignment of messages to AUTWRKxx automation operators can be overruled.

To do this, the AOF_ASSIGN_JOBNAME advanced automation option must be set to 0, which lets
ASSIGN BY MESSAGE ID take precedence over the ASSIGN BY JOBNAME that is established by
SA z/OS.

An ASSIGN command with the MSG parameter must be issued to redirect the message. That particular
message is then assigned according to the user specification while all other messages still run on the
automation operators that are assigned by SA z/OS. However this should be used with care because it
suspends SA z/OS load balancing and breaks the serialized command processing for that subsystem.

• Execution of the command on the automation operator that has been assigned by SA z/OS can be
overruled by specifying an Automated Function name together with the command in the MESSAGES/
USER DATA policy in the customization dialog.

Execution of the command is then routed to the task that has been specified for the Automated
Function. The automation table and data model processing is still run on the automation operator and
thus proper sequencing is guaranteed.

SA z/OS internally uses the AOFEXCMD command (described in IBM System Automation for z/OS
Programmer's Reference) to queue the command to the specified automation operator. The routine
checks whether the requested automation operator is available and, if this is not the case, it queues
the command to a backup operator, so that in any case the command does not run on the current
automation operator.

It is recommended that you use this only if there are special reasons, for example, for long running
commands, because it may break the serialized command processing for that subsystem (if not all
commands are executed on the same automation operator).

Generic Automation Table Statements
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Inheritance Rules for Classes
Bear in mind the following inheritance rules for class data when building AT entries.

Define Application Information
Data is inherited in the APPLICATION INFO policy item per individual field, independent from each other
(except for Transient Rerun).

If a field is blank, the class value is inherited (if it is available). There are a few exceptions where
the inheritance can be blocked without specifying an instance value with the special value NONE , for
example, Restart after IPL.

Define Relationships
The External Startup and External Shutdown fields in the sub header area show inherited data individually
in the same way as in the APPLICATION INFO policy item.

However the relationships are only inherited as a whole if no relationships are defined for the child object.
It means that on the relationship panel, it's either all inherited data or no inherited data at all. As soon
as inherited data is modified or new relationship data is added on the child level, all relationships are
considered child (instance) definitions with no relationship inheritance at all. The only way to go back to
class inheritance is to delete all the relationships on the instance level.

Define Application Messages and User Data
Data is inherited per message ID.

For example, assume a message ID has a command definition for the instance, and the same message
ID is defined for a class with reply data. The command and reply data is not merged on the instance, and
the class definitions are not inherited at all. Message overrides (OVR) are not inherited at all. All OVRs are
used to generate AT entries at the level where they are specified.

Define Startup Procedures
The STARTUP policy offers two panels. The Subsystem Startup Processing panel with a subheader section
with input fields that may show inherited values, and for each selected startup phase there is a Startup
Command Processing panel with a command input area that also may show inherited data.

Subsystem Startup Processing
Data in the subheader section is inherited per individual field, similar to the APPLICATION INFO policy.
Command definitions for the different phases are inherited per start phase. So if PRESTART commands
are defined for the instance and both PRESTART and STARTUP commands are defined for a class, the
instance inherits the STARTUP commands from the class.

Startup Command Processing
Within each start phase the commands are inherited all together. So if a PRESTART command is defined
for the instance and other PRESTART commands are defined for a class, none of the commands are
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merged on the instance. Instead the instance has only the one command defined there. No PRESTART
commands are inherited from the class.

Define Shutdown Procedures
Shutdown specifications are inherited per phase. So if a SHUTINIT command is defined for the instance
and both SHUTINIT and SHUTNORM commands are defined for a class, the instance inherits the
SHUTNORM commands from the class.

Furthermore, command and reply definitions for one phase are inherited together. So if for SHUTFORCE
a command is defined for the instance, and the class has a reply defined for SHUTFORCE, nothing is
inherited by that instance.

Changes within inherited data result in creating definitions for the current application. So if for a phase,
commands and reply definitions are inherited, and then commands are modified, both the reply and the
command definitions become data of the current application. If only commands are inherited for a phase,
and then reply data is specified, the command definitions are also copied to the phase definition of the
current application.

Define Error Thresholds
The data is inherited as a whole if no thresholds are defined for the child object – it is not possible to
specify a level for Critical, Frequent, or Infrequent alone for an instance and inherit the other threshold
levels from a class.

Define IMS Subsystem-Specific Data
This policy combines fields that are built into the IMSCNTL and the ENVIRONMENT structures of the
configuration files. The fields within a structure are inherited all together, but each structure is inherited
independently from the other.

Furthermore the IMSCNTL fields do not allow definitions for a class (though they are displayed on the
class panel). And finally for a subtype other than CTL only a subset of the fields is available.

Thus there are three variations of this panel:

1. Instance of subtype CTL with all IMSCNTL and all ENVIRONMENT fields
2. Class of subtype CTL with all ENVIRONMENT fields
3. Instance or Class of subtype other than CTL with a subset of ENVIRONMENT fields (2 fields)

The first four fields (APPLid, Default HSBID, Startup parm1, Startup parm2) are never inherited. They
cannot be specified for a class. The remaining fields are inherited all together in a blocks.

Automatic AT Generation
CMD (Command), REP (Reply), COD (Code), and USR (User Data) are inherited per message ID. For
example, assume a message ID has a command definition on the instance, and the same message ID is
defined for a class with reply data. The command and reply data are not merged on the instance, and the
class definitions are not inherited at all.

Messsage Overrride and Status specifications provide instructions for the generation of the AT entry.
This data is never inherited, but is used to create one AT entry for the object where they are specified.
Remember that the AT is message oriented and the AT entry usually has the message ID as a condition, so
for example, inheriting a Status would create duplicate entries.
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Chapter 4. Monitoring Applications
System Automation for z/OS provides different ways to monitor your applications:

• Using observed status monitoring routines, SA z/OS can determine whether your applications and
several other automated resources are active, inactive, or in the process of being started. It is
recommended to always enable observed status monitoring routines and to use the product-provided
routines where possible. See “Observed Status Monitoring” on page 35 for further details.

• With monitor resources you can optionally monitor the health of your applications and recover them
on health status changes. SA z/OS distinguishes between active health monitoring and passive event-
based health monitoring. See “Health Monitoring” on page 36 for further details.

Active and passive health monitoring is supported by SA z/OS in the following areas:

• Health monitoring of JES3, based on console messages
• Health monitoring of z/OS, DB2, CICS, IMS and other components, based on IBM OMEGAMON classic

monitor exceptions or IBM Tivoli OMEGAMON XE situations
• Health monitoring of CICS, based on CICSPlex® SM
• Health monitoring of IMS, based on console messages

Observed Status Monitoring
SA z/OS determines the observed status of an application by running a routine identified by the policy
administrator in the customization dialog.

The routine can be specified for an individual application (refer to IBM System Automation for z/OS
Defining Automation Policy), and a default monitor routine can be specified for all applications on an entire
system (see the AUTOMATION INFO policy item in the customization dialog).

Table 5 on page 35 lists the routines that can be specified as application monitors.

Table 5. Observed Status Monitor Routines

Monitor Routines Using This Routine

AOFADMON This routine has been deprecated and is provided only for compatibility with earlier
releases. This routine determines the status of an application by issuing the MVS
D A, jobname command. The job name used is the job name defined in the
customization dialog

AOFATMON This routine is used to determine the status of a task operating within the NetView
environment.

AOFAPMON This routine determines the status of a program-to-program interface (PPI) receiver.

AOFCPSM This routine is a dedicated routine used to monitor the status of the SA z/OS
processor operations applications.

AOFUXMON This routine determines the status of a resource with application type USS. This
resource can either be a z/OS UNIX process, a file system in the UNIX file system
(zFS), or a TCP port. Depending on the nature of the resource (process, file, or port)
AOFUXMON decides which internal monitoring method to use.

INGPJMON This routine determines the status of an application by searching z/OS for address
spaces with a particular job name. The job name used is the job name defined in the
customization dialog for the application.

INGMTSYS With this routine, IMAGE applications for BCPII usage can be monitored.

INGROMON With this routine, OMVS can be monitored.

Observed Status Monitoring
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Table 5. Observed Status Monitor Routines (continued)

Monitor Routines Using This Routine

INGPSMON This routine monitors the subsystem's registration to the subsystem interface.

ISQMTSYS With this routine, a processor operations target system resource represented by its
proxy can be monitored. See “Automating Processor Operations Resources of z/OS
Target Systems Using Proxy Definitions” on page 81 for examples of how to use a
proxy definition. Active operator console connections are mandatory and are used
for sending a z/OS command (for example, d t) and receiving the related response.

SA z/OS expects certain return codes from all monitor routines, either from SA z/OS provided ones or from
your own routines. These can be one of the following:
RC

Meaning
0

Active
4

Starting
8

Inactive
12

Error

Note: When you write your own monitor routine, you must consider that this routine will also be executed
during initial status determination. This process occurs prior to common global variable AOFCOMPL is set
to YES and message AOF540I is issued, indicating INITIALIZATION RELATED PROCESSING HAS BEEN
COMPLETED.

Health Monitoring

Overview
Health monitoring is accomplished using special resources called monitor resources. Monitor resources,
which have a resource type MTR, are policy objects that are used to obtain the health status of
other resources, typically applications or application groups, or more generally, any object that can be
monitored. The health status is useful when you need to know how well a resource is performing and not
simply that it is active.

The health status can be used to provide application-specific performance and health monitoring
information, for example, an application may be active but it is failing to meet performance objectives
defined by the system administrator. The health status can be used either for information only, or by the
automation manager to make decisions and, if necessary, trigger automation for the application.

Monitor resources are defined in the customization dialog with entry type MTR. They are resources with
similar characteristics as all other SA z/OS resources.

Monitor resources are connected to application resources (APLs) or application group resources (APGs).
The health status of the monitored object is propagated to the APLs and APGs and results in a combined
health status there. You can define and connect MTRs in the customization dialog (see IBM System
Automation for z/OS Defining Automation Policy).

Monitor resources obtain the health status of an object in two different ways:

• Actively, by polling—that is executing a monitoring command periodically
• Passively, by processing events

Active monitors are scheduled periodically based on the interval defined in the MTR policy.
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Passive monitors do not have a monitor interval but can have a monitor command defined for them for
initial health status determination. They rely on other events to set the health status using the INGMON
command.

Monitor resources can be explicitly bound to the object that they are monitoring and optionally to a job.
This allows SA z/OS to handle a variety of monitoring events in a generic way. A monitored object can
be, for example, an OMEGAMON XE situation, or an event posted by CICSPlex System Manager (CICSPlex
SM). See “Passive, Event-Based Health Monitoring” on page 40. Note that the monitored object is
derived from the monitor resource name, if none was specified.

There can be one or more recovery commands associated with each health status (NORMAL, WARNING,
MINOR, CRITICAL and FATAL). These commands are invoked by SA z/OS when the monitor resource
switches to the corresponding health status.

You can display and control monitor resources with the DISPMTR command. Monitor resources are also
displayed on the Tivoli Enterprise Portal (TEP) as well as SDF, provided that the appropriate inform list
specifications have been made.

Monitor Resource Commands
When defining a monitor resource you can specify activate, deactivate and monitor commands. Any
command is suitable that can be executed in the NetView environment. These commands are divided into
two groups:

• NetView activate and deactivate commands that expect a return code of zero
• Monitor commands that return a health status

The main difference between these two groups is that the activate and deactivate commands are
executed only once, and SA z/OS expects a return code of zero.

If the activate command ended with a non-zero return code, the monitor resource remains in an
INACTIVE status. The monitor resource ends in a BROKEN status if the deactivate command ended with a
non-zero return code.

• The activate command is optional and can be used to establish the environment the monitoring routine
can run in. The command is executed every time the monitor is started. The command must exit with
return code 0.

• The deactivate command is optional and can be used to cleanup the environment. The command is
executed every time the monitor is stopped. The command must exit with return code 0.

• The monitor command is executed after the activate command and then periodically if a monitoring
interval is given. SA z/OS expects the monitor command to return a valid health status code.
Additionally the monitor command can issue a message that is then attached to the health status. The
absence of a monitoring interval indicates that the given monitor resource is a passive or event-based
health monitor. In this case, the monitor command is optional and, if specified, it is invoked for initial
health monitoring only. Otherwise, if a monitoring interval is provided, the given monitor resource is an
active health monitor. In this case, a monitor command must be provided to return a health status.

The activate, deactivate and monitor command can be a command procedure written in any language
that is supported by NetView: REXX, Assembler, PL/I, C, or the NetView Command List Language
(NCLL). Writing a monitor routine can be simple or it can be complex. The complexity depends upon
the application that you are attempting to monitor.
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Writing a Recovery Routine
The recovery routine is invoked every time the monitor resource switches to the health status that the
recovery routine is defined for. The goal of the recovery routine is to bring the monitor resource, and thus
the monitored object, back to a health status of NORMAL.

Recovery Techniques
User data in the MESSAGES/USER DATA policy item can be used to disable additional recovery processing
while other recovery is already in progress.

In combination with the predefined keyword DISABLETIME, the recovery disable time can be specified
in the formats hh:mm:ss, mm:ss, :ss, or mm. While recovery is disabled, no commands are processed on
behalf of this monitor resource for messages and exceptions that are specified in the MESSAGES/USER
DATA policy item.

Recovery is automatically enabled after the recovery disable time has expired. Recovery can also be
enabled prematurely by calling the INGMON command with the option CLEARING=YES, for example:

INGMON CI2XREP MSGTYPE=XREP CLEARING=YES

In some cases, it is necessary to force increasingly strong recovery actions over a period of time. This
can be accomplished using a PASS count that starts at 1 and runs to 99. SA z/OS maintains the PASS
count individually per message or exception, and increments the PASS count each time that message or
exception is processed. Upon successful recovery, it is the installation's responsibility to reset the PASS
count. When specified with option CLEARING=YES, INGMON enables command processing for messages
and exceptions, and resets the PASS count.

Task Global Variables for Recovery Routines
The following task global variables can be accessed by the recovery routine:

Task Global Variable Value

&EHKVAR1 Contains the monitor name

&EHKVAR2 Contains the current health status

&EHKVAR3 Contains the old health status

&EHKVAR4 Contains the message that is associated with the health status

&EHKVAR5 Contains the object name of the monitor

&EHKVAR6 Contains the job name

&SUBSAPPL Contains the monitor name

&SUBSTYPE Contains the string MONITOR

Active Health Monitoring
In general, the monitor command needs to issue one or more commands to generate data, process the
data, and set a return code. The return code is then used by SA z/OS to determine the health status for the
resource.

The possible return codes and the corresponding health status are given in Table 6 on page 38.

Table 6. Health Status Return Codes

Return Code Health Status Description

1 BROKEN The monitor detected an unrecoverable error. SA z/OS stops
monitoring.
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Table 6. Health Status Return Codes (continued)

Return Code Health Status Description

2 FAILED The monitor is currently unable to obtain a health status.
SA z/OS keeps the monitor active because the problem might
disappear.

3 NORMAL The monitor detected normal operation of the monitored
object.

4 WARNING The monitor detected a certain degree of degradation in the
operation of the monitored object.

5 MINOR The same as WARNING, but more severe.

6 CRITICAL The same as MINOR, but more severe.

7 FATAL The same as CRITICAL, but more severe.

8 DEFER Used internally.

The health status values affect the compound status in the automation manager.

Most monitor commands use UNKNOWN, NORMAL, and WARNING statuses. The MINOR, CRITICAL, and
FATAL statuses can be used as gradients to indicate that a problem is getting worse. BROKEN and FAILED
are statuses that describe the status of the monitor itself and may be seen if an error is encountered with
the monitor command. A health status of FATAL will trigger an application move as part of automated
recovery.

FATAL is a guaranteed automatic ForceDown, and, if available, failover for the application associated with
the monitor.

Optionally, the monitor routine can issue a message describing the condition that is trapped by the
SA z/OS process that invoked the monitor. The message can be viewed on the DISPMTR panel.

Every monitor command needs several basic steps:

1. Issue one or more commands to collect data and interrogate the results.
2. Based on the results from the command or commands, set the return code to a value from 1 through 8

and, optionally, perform processing based on that value.
3. Optionally, supply more descriptive information about the health status in a message that can be

viewed with the DISPMTR command.
4. Exit with the return code so SA z/OS can set the health status appropriately.

Figure 6 on page 40 is an example using the NetView PING command within a PIPE to query the status
of a TCP/IP stack on a remote system. The IP address is passed on input. The routine uses the average
round trip time (RTT) for the request provided in message BNH770I to determine the health.
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/*REXX MYMON */
Arg parm
monrcs='BROKEN FAILED NORMAL WARNING MINOR CRITICAL FATAL DEFER' 
'PIPE (STAGESEP | NAME PING)', 
'| NETV PING' parm, 
'| LOCATE 1.8 /BNH770I /', 
'| STEM out.' 
if out.0 = 0 then
  lrc = wordpos('FATAL',monrcs)
else
  do
    parse var out.1 . 'averaging' ms 'ms' . 
    say 'PING lasted' ms 'ms' 
    select 
      when ms < 10 then lrc = wordpos('NORMAL',monrcs)
      when ms < 20 then lrc = wordpos('WARNING',monrcs)
      when ms < 30 then lrc = wordpos('MINOR',monrcs)
      when ms < 40 then lrc = wordpos('CRITICAL',monrcs)
      otherwise lrc = wordpos('FATAL',monrcs)
    end
  end
Return lrc

Figure 6. Sample Monitor Command

Passive, Event-Based Health Monitoring

Overview
Passive, event-based monitoring allows you to react to events, for example a message, an OMEGAMON XE
situation, or a CICSPlex SM event, directly. In contrast to active health monitoring, SA z/OS does not have
to query the monitored object status periodically but is informed only when such an event has occurred.

The definitions in the MONITOR INFO policy item for a monitor resource allow you to define an object that
the monitor resource is bound to and optionally a job that the monitor resource accepts events from.

The Monitored Object specification for the monitor resource can follow any naming convention that might
be required for the monitoring process. For example, for CICS monitoring it has the prefix CPSM, followed
by the CICS name, the type (such as a connection), and the name. For a link called CT12, the monitored
object is called as follows, for example:

CPSM.CICSTOR1.CONNECT.CT12.

Whereas for monitoring OMEGAMON XE situations, it has the prefix ITM, followed by the situation name,
for example: ITM.MYAUXSHORTAGE_WARN.

There can be only one monitored object per monitor resource but more than one monitor resource can be
bound to a monitored object, for example, several IMS monitors might specify OLDS as an object.

You can also optionally specify the Monitored Jobname that a monitor resource accepts events from.
Thus, for example in the case of IMS monitor resources, you might specify a job name of IMS1 for monitor
resource MTR1 and IMS2 for MTR2. If an event arrives for OLDS and the issuer is IMS1 only MTR1 is
affected.

Event Types
In the simplest case, an event is represented by a plain message issued by a job. All monitor resources
that register for a particular message accept this message unless you also specified the monitored job
name.

In other cases, for example for OMEGAMON XE situations or events reported by CICSPlex SM, the event
is represented by a triggering message provided by SA z/OS for the purpose of health monitoring only.
This message, ING150I, that contains the monitored object name or the job can then be used by SA z/OS
to locate the monitor resource and to set the health status or issue commands. This allows SA z/OS to
handle a variety of monitoring events.
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INGMON, the command that is responsible for health monitoring, is invoked from the NetView®

automation table whenever ING150I or any other message a monitor resource has registered for is
issued. It locates the monitor resource for a given monitored object or job and then looks up the code
match table for the health status or commands, or both, that should be issued whenever the triggering
event occurs.

Code Matching for Event-Triggering Messages
INGMON allows you to pass up to three codes that, when specified, are used to determine a specific set of
commands to be issued in case of an event-triggering message.

For message ING150I, SA z/OS creates an automation table entry where Code 1 is used to select
commands by event severity. For other messages, you can override the default automation table entry
and pass the appropriate tokens in Code 1, Code 2, and Code 3, as you require.

In any case, the Value Returned field contains one or two tokens separated by a blank. The first token is a
required command selector that can be one of the following:
selection

Execute commands with the given selection or commands for which no selection is specified.
#

Perform pass processing and execute all commands that match the current pass.
#selection

Interpret selection as another pseudo message ID. Perform pass processing for this message and
execute all commands that match the current pass.

This is useful for pass processing on behalf of the event triggering message, for example, ING150I.
Suppose you have one entry for WARNING and one for CRITICAL. When you do pass processing
for ING150I your pass counter may be on 5, for example, when the first CRITICAL event comes in
(because you already had 4 WARNING events).

However, with #selection you can specify, for example, a value returned of #MYWARN WARNING and
#MYCRIT CRITICAL for the corresponding levels. INGMON performs pass processing for the pseudo-
message MYWARN and set the health status WARNING for a WARNING event. For a CRITICAL event
it performs independent pass processing for the pseudo-message MYCRIT and finally sets a health
status of CRITICAL.

Remember to set the IGNORE action for the pseudo-messages to avoid AT entries being built.

The second token in the Value Returned column of the Code Processing panel indicates the optional
health status to be set. If specified, it must be separated by a blank from the selection criterion.

Programming Techniques
Commands that are called by INGMON have access to the message that triggered the invocation using the
NetView SAFE, AOFMSAFE, for example:

/* MYCLIST, called by INGMON */
'PIPE SAFE AOFMSAFE | STEM MSG.'
If msg.0 > 0 Then
  msgtext = msg.1        /* first message line */

In addition, INGMON fills the task global variables &EHKVAR0, &EHKVAR1–9, and &EHKVART with
tokens that are derived from the message or exception that INGMON was invoked by. For messages,
the assignment starts with the message ID, and for exceptions, it starts with the exception ID.

INGMON also sets the following task global variables:
&SUBSAPPL

Contains the monitor name.
&SUBSTYPE

Contains the string MONITOR.
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&SUBSDESC
Contains the description of the monitor resource.

The following examples illustrate how message and exception tokens are assigned to these task global
variables.

Example 1:

$HASP9211 JES MAIN TASK NOT RUNNING. DURATION- hh:mm:ss.xx

Task Global Variable Value

&EHKVAR0 $HASP9211

&EHKVAR1 JES

&EHKVAR2 MAIN

&EHKVAR3 TASK

&EHKVAR4 NOT

&EHKVAR5 RUNNING.

&EHKVAR6 DURATION-

&EHKVAR7 hh:mm:ss.xx

&EHKVAR8
&EHKVAR9
&EHKVART

NULL

Example 2:

ING080I CI2XREP/MTR/KEYA OMSY4MVS OMIIMVS XREP Number of Outstanding Replies = 4

Task Global Variable Value

&EHKVAR0 XREP

&EHKVAR1 Number

&EHKVAR2 of

&EHKVAR3 Outstanding

&EHKVAR4 Replies

&EHKVAR5 =

&EHKVAR6 4

&EHKVAR7
&EHKVAR8
&EHKVAR9
&EHKVART

NULL

When defining commands to be issued by the INGMON command, the &EHKVARx variables can be used
to be replaced by the corresponding tokens of the message or exception.

When INGMON looks up the monitor resource for a given monitored object or job name, or both, it is
possible to skip monitor resource processing dynamically through a user-specified REXX expression. In
the absence of such a REXX expression, INGMON locates the monitor resource with the given monitored
object name for the job that issued the message and proceeds with health status setting and commands
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as defined in the automation policy. By adding a REXX expression to the User Defined Data panel within
the MESSAGES/USER DATA policy item for the automated message, further processing can be disabled
depending on the result of this REXX expression.

To do this, the predefined keyword INGMON_FUNCTION is specified as a keyword and an arbitrary
REXX expression is defined as the value in the User Data Processing panel. If the result of the REXX
expression is false (that is, 0), processing is stopped, otherwise INGMON processing continues. The
following example for the message ID MYMTR controls monitor resource processing, based on the day
of week that is defined in the common global variable DAY_OF_WEEK. (processing continues only if the
current day is not a Sunday):

Predefined Keyword Data

INGMON_FUNCTION cglobal('DAY_OF_WEEK') \= 'SUN'

When a monitor resource is defined with a monitor command but without an interval, the initial health
status of such a passive monitor resource is obtained at monitor resource start time only. Any other health
status update must be derived from events that the monitor resource has registered for.

It is however possible to issue the monitor command at any point in time by executing the command
AOFRCMTR. This command expects the monitored object name and optionally a job name as parameters.
It locates the corresponding monitor resource and, if specified, issues the monitor command.

See IBM System Automation for z/OS Programmer's Reference for the syntax of AOFRCMTR.

Health Monitoring using OMEGAMON
SA z/OS allows you to interact with IBM OMEGAMON products to collect key performance indicators that
represent the health status of address spaces, middleware, or even the system.

The following sections show you how to interact with these products using monitor resources.

Overview
The SA z/OS OMEGAMON interface lets you gather a wide range of performance data on a system. You
can gather data from the following performance monitoring products:

• IBM OMEGAMON for z/OS
• IBM OMEGAMON for CICS on z/OS
• IBM OMEGAMON for IMS on z/OS
• IBM Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS
• Other IBM Tivoli Monitoring products running on z/OS

Exception analysis is an OMEGAMON classic feature that monitors predefined thresholds in a system.
Each time exception analysis is invoked, an exception is displayed on the OMEGAMON console if a
threshold is exceeded. Using SA z/OS, you can then act on these exception alerts by running execs or
issuing commands, including issuing commands back to the host OMEGAMON.

Situations are much like exceptions but they are based on a combination of logical expressions and even
on the status of other embedded situations. Each product based on the IBM Monitoring infrastructure,
such as IBM OMEGAMON, provides a set of predefined situations that you can use as is, or modify
as you wish. You can also create your own situations to tailor the monitoring to your specific needs.
Situations are edited and displayed on the Tivoli Enterprise Portal (TEP). Using a TEP function called
Reflex Automation, you can inform SA z/OS about a particular situation and then act upon it.

IBM Monitoring services also allow you to interact with each and every product based on this
infrastructure through a standardized SOAP services interface on the Tivoli Enterprise Monitoring Server
(TEMS). SOAP services exist, for example, to obtain data from a particular object collected by IBM
OMEGAMON for z/OS (formerly IBM Tivoli OMEGAMON XE on z/OS). Other services allow you to
automatically manage situations and TEP workflow policies, or to send universal messages to the
universal message console.
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You can set up monitor resources to:

• Monitor sets of exceptions that may be of interest using an active monitor resource and set an
application's health status based on the existence of such exceptions

• React to and resolve conditions that cause those exceptions
• Monitor sets of situations that may be of interest using a passive monitor resource, set an application's

health status and react to and resolve conditions that cause those situations

Assumptions
Various topologies are possible for SA z/OS with IBM OMEGAMON classic monitors and IBM Tivoli
Monitoring products such as OMEGAMON XE:

• There can be one or more monitoring product per system
• Connectivity is through VTAM® and the NetView Terminal Access Facility (TAF) for OMEGAMON classic

monitors and through TCP/IP for OMEGAMON XE
• A TEMS SOAP Server is running locally, on a remote system or on a distributed system
• SA z/OS can act as a focal point either:

– Globally, monitoring data from monitoring products running on different systems
– Locally, monitoring data from monitoring products running on the local system

The following assumptions are made about the topologies that can be adopted for interaction with
OMEGAMON classic monitors:

1. The OMEGAMON product is installed on each system where MVS and CICS, DB2, or IMS is installed.
2. OMEGAMON monitors are installed and configured already to support multiple VTAM-based

connections to it. For interoperability with SA z/OS, logical units of type 3270 model 2 (24x80) are
required.

3. OMEGAMON monitors are setup to interact with an external security product such as IBM SecureWay
Security Server for z/OS (formerly RACF®).

4. OMEGAMON exceptions are reported when the threshold that is defined in OMEGAMON is exceeded.
That threshold must be agreed within an installation because it must cater for the least severe
condition that there might be an alert for.

The following assumption is made regarding the interaction with OMEGAMON XE:

1. Reflex automation is executed on the OMEGAMON XE agent that created the corresponding situation
event

OMEGAMON Interaction
The following subsections assume that, for OMEGAMON classic monitors interaction, you have defined
one or more OMEGAMON sessions and automated functions that are designated to handle network
communication using the SA z/OS customization dialog.

For details on defining OMEGAMON sessions, refer to the OMEGAMON SESSIONS and AUTHENTICATION
policy items in the Network (NTW) entry type and to the OPERATORS policy in the Auto Operators (AOP)
entry type described in IBM System Automation for z/OS Defining Automation Policy.

For OMEGAMON XE interaction using SOAP services you have to specify each SOAP server in the
automation policy that you want to connect to. For details on defining SOAP servers, refer to the SOAP
SERVER policy item in the Network (NTW) entry type described in IBM System Automation for z/OS
Defining Automation Policy.
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Using the INGOMX Programming Interface
INGOMX acts as the interface between operators (or auto-operators) and OMEGAMON. This includes not
only any of the classic OMEGAMON monitors for CICS, DB2, IMS, and MVS, but also OMEGAMON XE
monitors and other IBM Monitoring products running on z/OS.

For the classic OMEGAMON monitors, INGOMX can be used to issue OMEGAMON major, minor, and
immediate commands, and to filter one or more exceptions of interest from the list of exceptions reported
by OMEGAMON exception analysis. Each request is written to the console (but not exposed to NetView)
in the format as produced by the OMEGAMON monitor. When exception filtering is requested, multiple
exception lines for one exception are combined into a single line and written to the console as a single
message if the filter criterion (XTYPE) matches. INGOMX is best used within a NetView PIPE.

The INGOMX SOAP interface allows you to issue any of the SOAP services supported by the TEMS SOAP
server, for example to

• Obtain attributes of interest from a particular OMEGAMON XE object, for example, Job_name and
CPU_percent from the OMEGAMON XE for z/OS object Address_Space_CPU_Utilization

• Start and stop situations as well as TEP workflow policies
• Issue a universal message
• Send an event into the IBM Monitoring platform

The full set of SOAP services and a description of the XML-syntax is described in IBM Monitoring
Administrator's Guide.

The following examples illustrate the use of INGOMX. They are based on an OMEGAMON for MVS session
with the name OMSY4MVS. The same techniques also apply to other OMEGAMON monitors. For more
details, refer to IBM System Automation for z/OS Programmer's Reference.

Example 1. Returning Information on Common Storage Utilization Using the CSAA
Command

INGOMX EXECUTE,NAME=OMSY4MVS,CMD=CSAA
| IPXNG     CSAA   
SUMMARY                                                              
| IPXNG    
+                                                                            
| IPXNG    +           
System                                                           
| IPXNG    +          Maximum  Pre-CSAA   Orphan       
Usage                            
| IPXNG    +          -------  --------  -------  
---------------0___2___4___6___8___100
| IPXNG    +    CSA     3312K    1247K         0    1247K   37.6%|------>            
|  
| IPXNG    +   ECSA   307740K   78797K         0   78797K   25.6%|---->              
|  
| IPXNG    +    SQA     1620K     660K         0     660K   40.8%|------->           
|  
| IPXNG    +   ESQA   145696K   23930K         0   23930K   16.4%|-->                
|  

Example 2. Using OMEGAMON Command Modifiers

INGOMX EXECUTE,NAME=OMSY4MVS,CMD=ALLJ,MOD=#
| IPXNG    #ALLJ       166
INGOMX EXECUTE,NAME=OMSY4MVS,CMD=ALLJ,MOD=<
| IPXNG    <ALLJ  *MASTER*   PCAUTH     RASP    TRACE  DUMPSRV  XCFAS      GRS  
SMSPDSE+
| IPXNG    +       CONSOLE      WLM  ANTMAIN ANTAS000   OMVS IEFSCHAS   JESXCF  
ALLOCAS+
| IPXNG    ...
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Example 3. Trapping Outstanding Operator Replies

INGOMX TRAP,NAME=OMSY4MVS,XTYPE=(XREP)
| IPXNG    + XREP Number of Outstanding Replies = 5                

Example 4. Issuing OMEGAMON Minor Commands

/* REXX-Routine EXMINOR 
*/                                                           
cmd.1 = "CMD=SYS"   /* Major command, issued ahead of its minors   */
cmd.2 = "CMD=FCSA"  /* Minor: CSA frames below 16M                 */
cmd.3 = "CMD=FCOM"  /* Minor: CSA, LPA, SQA, and nucleus below 16M */
cmd.0 = 3                                                            
'PIPE STEM cmd. COLLECT',                                            
'| NETV INGOMX EXECUTE,NAME=OMSY4MVS,CMD=*',                         
'| CONSOLE ONLY'                                                    
* IPXNG    EXMINOR                                                
| IPXNG     SYS    >> WLM Goal mode OPT=00 SYSRES=(150526,8812) <<
| IPXNG     fcsa       328     1312 K                             
| IPXNG     fcom       849     3396 K                             

There is no need to explicitly establish a session between an operator and a particular OMEGAMON
monitor before using INGOMX; such sessions are established automatically on their first use.

Selective protection of individual OMEGAMON sessions and commands, or both, is possible based
on the NetView Command Authorization Table. Details can be found in the appendix, "Security and
Authorization", in IBM System Automation for z/OS Planning and Installation.

To use a SOAP service, for example to obtain certain attributes from an OMEGAMON XE object, you
first have to describe the request's parameters in the form of an XML document. The XML document is
validated and rejected by the SOAP server if it is found to be incorrect or incomplete. The spelling of
the names enclosed in '<' and '>' is significant because XML is a case-sensitive document description
language. Also, because the structure of every XML document is hierarchical, each element must be
enclosed by an opening name (for example, '<CT_Get>') and a corresponding closing name denoted by a
forward slash preceding the name (for example, '</CT_Get>').

The following is an example that describes the request parameters to retrieve the Job_Name, the
address space ID (ASID), and the CPU_Percent attributes from the OMEGAMON XE for z/OS object,
Address_Space_CPU_Utilization, for all jobs with a CPU percentage greater than 1.0. In this example, the
object that has been queried is collected on the TEMS called KEYAS:CMS.

<CT_Get>
  <target>KEYAS:CMS</target>
  <object>Address_Space_CPU_Utilization</object>
  <attribute>Job_Name</attribute>
  <attribute>ASID</attribute>
  <attribute>CPU_Percent</attribute>
  <afilter>CPU_Percent;GT;10</afilter>
</CT_Get>

You can pass this XML document either by pointing INGOMX to a sequential or partitioned data set, or in
the default SAFE, assuming INGOMX is invoked in a NetView PIPE.

When INGOMX is invoked, the SOAP server that is connected to must be specified. In the following
example, it is assumed that you have defined a SOAP server called KEYAYA in the SOAP SERVER policy
item of the Network (NTW) entry type using the SA z/OS customization dialog. This definition includes
the host name or IP address, the SOAP server's port and the path name of the SOAP service. The
request parameters as shown above are located in the member GETCPU in the partitioned data set
SYS1.SOAP.DATA:

soapds = 'SYS1.SOAP.DATA(GETCPU)'
soapsrv = 'KEYAYA'
Address NETVASIS 'PIPE (END % NAME GETCPU)',           
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'| NETV (MOE) INGOMX SOAPREQ SERVER='soapsrv' DATA='soapds, 
'| L: LOC 1.8 'd||'DWO369I '||d,                       
'| EDIT SKIPTO 'd||'RETURN CODE'||d,                   
'       UPTO 'd||'.'||d,                               
'       WORD 3 1',                                     
'| VAR omx_rc',                                        
'%L:',                 
'| CON ONLY'

On the successful return of INGOMX, the output of the SOAP server is returned in the multiline ING160I
message:

ING160I RESPONSE FROM SOAP SERVER: 9.xxx.xxx.xxx:1920///cms/soap
Job_Name:ASID:CPU_Percent                                     
IXGLOGR:20:2.1                                                
NET:59:2.1                                                    
RMFGAT:89:6.9                                                 
SDM1IRLM:108:1.7                                              
BBOS001S:113:22.1                                             
YANAMSJH:117:3.9

The first row of this message documents the IP address of the SOAP server that responded, that is,
KEYAYA in the example (IP address anonymized).

The second row describes the names of the attributes returned by the SOAP server. The attribute names
are separated from each other by the non-printable character X'FF' (represented by a :).

The third and all following rows contain the actual data that has been requested. The attribute values are
presented in the same sequence as the corresponding attribute names in the second row. Also, like the
attribute names, the attribute values are separated from each other by the non-printable character X'FF'
(represented by a :).

The tabular structure of this message allows you to easily process it in a NetView PIPE.

Using the INGMTRAP Monitor Command
INGMTRAP is a customized interface to INGOMX that provides filtering capabilities for exceptions of
interest as reported by OMEGAMON exception analysis and triggering of automation on behalf of such
exceptions. For each exception that matches the XTYPE filter that is provided by the caller, INGMTRAP
issues message ING080I, which is exposed to NetView.

For example:

ING080I CI2XREP/MTR/KEYA OMSY4MVS OMIIMVS XREP Number of Outstanding Replies = 4

If no exception matches the XTYPE filter that is provided by the caller, INGMTRAP creates a ING081I
message that is not exposed to NetView but written to the monitor resource's log to document that no
exception has been found. For example:

ING081I CI2XREP/MTR/KEYA OMSY4MVS OMIIMVS NO EXCEPTION FOUND

INGMTRAP can only be used as a monitor command. This means that it has to be specified directly as
a monitor command in the definition of a monitor resource, or it has to be called on behalf of such a
monitor command. The following example illustrates what you need to specify on the MONITOR INFO
policy in entry type monitor resource (MTR) in order to trap outstanding operator replies that are reported
by OMEGAMON for MVS session OMSY4MVS:

INGMTRAP NAME=OMSY4MVS,XTYPE=(XREP)

Be careful when specifying a list of exceptions: each exception may cause an ING080I message to be
issued. Because each occurrence of an ING080I message triggers health status processing of the monitor
resource, make sure you understand the impact that this may have on the monitor resource's final health
status.

For more details about INGMTRAP refer to IBM System Automation for z/OS Programmer's Reference.
For more details about defining monitor resources, refer to IBM System Automation for z/OS Defining
Automation Policy.
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Health Monitoring Based on OMEGAMON Exceptions
This section describes how to set up the monitor resources for health-based monitoring based
on OMEGAMON exceptions using the customization dialogs, provides a sample scenario, and gives
recommendations when using OMEGAMON in combination with monitor resources.

Defining the Monitor Resources
By combining monitor resources and the OMEGAMON interaction methods described in “OMEGAMON
Interaction” on page 44, automation can be triggered as a result of analyzing the output reported by
OMEGAMON and by the setting of an appropriate health status.

OMEGAMON exceptions can be periodically monitored using a monitor resource and the monitor
command INGMTRAP. There are a variety of ways to handle such exceptions:

1. In the customization dialog, the MESSAGES/USER DATA policy of a given monitor resource needs to
state the health status of each exception that INGMTRAP has been set up to monitor. Unlike messages,
OMEGAMON exceptions are denoted by a '+' sign, followed by a blank and then a 4-character
OMEGAMON exception ID.

2. In addition to the health status, a series of one or more commands can be specified to handle that
particular exception. Commands are processed in the same way as for any other resources that a
MESSAGES/USER DATA policy is provided for, such as applications (APL). This includes escalation
processing based on a PASS count, or processing based on a selection value that can be defined using
CODEs that are derived from a message.

3. The HEALTHSTATE policy can be used to issue recovery commands on behalf of an OMEGAMON
exception each time the health status changes.

No matter which method or combination of method are chosen, the process of handling an exception
is triggered by the occurrence of an ING080I message for a particular monitor resource and exception.
The automation table that is built from the definitions in the MESSAGES/USER DATA policy contains
statements that invoke the INGMON command to set the monitor resource's health status and to issue
commands in response to exceptions. In most cases, the necessary entries in the NetView Automation
Table are created automatically by SA z/OS. In some rare cases when, for example, command selection
should be based on CODEs, it is necessary to override the automation table definition of the exception,
and to specify up to 3 codes (CODE1, CODE2, and CODE3) on the invocation of INGMON.

Alternatively, an installation-written monitor command can be used to issue INGOMX for a series
of exceptions to one or more OMEGAMON monitor. Such a monitor command then returns with an
appropriate health status that is based on the analysis of the output produced by INGOMX. The recovery
commands that are issued when the health status changes are specified in the HEALTHSTATE policy of
that monitor resource.

Example Scenario
To illustrate how SA z/OS and OMEGAMON operate together, consider the following scenario.

Suppose there is a DB2 application that should be continuously monitored. Of particular
interest is the availability of primary active logs. The LOGN exception indicates that fewer
primary active logs exist than specified by the respective threshold value. This is considered a
critical health indicator because it can cause a DB2 hang situation if the last primary active log
becomes 100% full. Such a situation can only be resolved by making one or more additional
primary active logs available again.

In order to monitor this situation and react accordingly, the automation policy has to be changed. First,
define the session attributes for the OMEGAMON for DB2 monitor, if they do not yet exist, to be able to
establish a VTAM connection. The OMEGAMON session is referred to by its session name. Then review
the number of session operators (automation operators) that are started to handle the VTAM session
traffic and add an additional one if a higher degree of parallelism is required. You need to ensure that the
number of session operators and predefined NetView tasks are identical.
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Next, add a new monitor resource (MTR) that periodically requests exception information from this
OMEGAMON session. Add the MTR by means of a HasParent relationship to the DB2 subsystem to be
monitored. This ensures that the MTR is activated when the DB2 subsystem is started, and deactivated
when the DB2 subsystem is stopped. Also define the MTR via a HasMonitor relationship to the DB2
subsystem to ensure that the monitor's health status can be propagated to the application.

While the MTR is active, it uses the monitor command, INGMTRAP, to gather OMEGAMON exceptions that
currently exist, based on the thresholds that are defined in the OMEGAMON for DB2 installation profile.
INGMTRAP analyses all exceptions returned by OMEGAMON and filters out those exceptions that the
MTR is interested in, in this example, LOGN. SA z/OS subsequently issues message ING080I to initiate
exception processing.

Finally, also add a new rule to the NetView automation table (using the SA z/OS policy) that executes a
REXX automation procedure to add a new log data set to the pool of primary active data sets whenever
the LOGN exception is reported and the health status is CRITICAL (6). The MTR's health status is
considered CRITICAL if the number of available primary active logs is equal to 1. If the LOGN exception
is reported again in the next monitor interval, a second rule in the automation table sets the MTR's health
status to FATAL (7), which triggers an application move because normal recovery handling doesn't
seem to work anymore. In addition, an alert is sent to the operator to inform him about this situation. If
the LOGN exception is no longer reported, the MTR's health status is set to NORMAL (3).

The health status assigned to the MTR by means of the automation table is propagated to the DB2
application that owns this MTR. Thus, you can see at a glance whether the DB2 subsystem is okay or not.

Recommendations
You should consider the following recommendations when using OMEGAMON in combination with
monitor resources:

• Avoid monitoring multiple exceptions using INGMTRAP. Note that there can be more than one exception
that may trip and thus multiple ING080I messages may be generated. The monitor resource's health
status, however, depends on the last ING080I message.

• Avoid setting different health statuses for the same exception that is monitored by different monitor
resources using INGMTRAP. Note that only one automation table entry is generated by SA z/OS to
process message ING080I for such an exception.

In these cases, the use of INGOMX, invoked from an installation-written monitor command, to determine
a combined health status from multiple exceptions or to determine an individual health status for each
monitor resource, is preferred to using INGMTRAP.

Health Monitoring Based on OMEGAMON XE Situations
This section gives an overview of passive, event-based monitoring of OMEGAMON XE situations and
describes how to set up the monitor resources using the customization dialogs.

Overview
Unlike the exception-based monitoring that SA z/OS uses for classic OMEGAMON monitors, the IBM
Monitoring infrastructure provides the means to react to situations whenever they occur. On the Tivoli
Enterprise Portal (TEP), a user can specify what kind of automated response (reflex automation) should
be triggered for each individual situation.

SA z/OS makes use of this capability by providing a simple command called INGSIT. The ITM
administrator enters this command on the TEP with the Situation Editor dialog for those situations where
SA z/OS health monitoring or health-based automation should take place. For more details about INGSIT
refer to IBM System Automation for z/OS Programmer's Reference.

The Take Action command is carried out on the agent, for example, OMEGAMON XE for z/OS, and not
the Tivoli Enterprise Monitoring Server (TEMS) unless the TEMS is running on the same system. This
is because it is possible that the hub TEMS may not reside on z/OS and so the command may not be
delivered.

Health Monitoring using OMEGAMON

Chapter 4. Monitoring Applications  49



INGSIT triggers message ING150I that allows you to set the health status of individual monitor
resources. It is then possible to issue commands, such as recovery or notification commands, to
automatically fix the situation. You can specify what the health status is and what associated commands
are issued in the customization dialog.

Defining the Monitor Resources for OMEGAMON XE Situations

Procedure
To set up the monitor resources for OMEGAMON XE Situations:
1. Define one MTR for each OMEGAMON XE situation that you want to respond to.
2. In the MONITOR INFO policy item fill in the following fields:

Monitored Object
Enter the name of the OMEGAMON XE situation in uppercase with a prefix of ITM, for example,
ITM.MYSIT

Monitored Jobname
Enter an optional job name to match this situation to a particular monitor resource.

3. Define codes for the message ID ING150I in the MESSAGE/USER DATA policy of the MTR to yield the
commands that are to be issued and to map the severity to a valid health status.

Example Scenario
Consider the following scenario:

The PAGEADD command is to be issued when an auxiliary storage shortage is detected, based
on page data set utilization and page data sets that are not operational.

A situation called MyAuxShortage_Warn is defined by the installation that is true when both predefined
situations OS390_Local_PageDS_PctFull_Warn and OS390_PageDSNotOperational_Warn are true.

As reflex automation, the following system command is issued on the managed system, that is, the
system that produced the situations:

F NETV,INGSIT MyAuxShortage_Warn,warn

Where NETV is the job name of NetView address space.

This command is issued from the Take Action dialog, as shown in Figure 7 on page 51.
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Figure 7. Take Action Dialog

INGSIT is called and produces an ING150I message, which contains the situation name that is mapped to
the monitored object. Other optional information includes:

• The severity of the situation
• A job name that matches this situation to a particular monitor resource
• Other data that contains information related to the event

In this example, the situation, MyAuxShortage_Warn, and its severity, warn, are included.

Using the customization dialog, a monitor resource, for example, AUXSHORT, is created that specifies
ITM.MYAUXSHORTAGE_WARN (in uppercase) as its monitored object.

ING150I is then specified in the MESSAGE/USER DATA policy item of the AUXSHORT monitor resource. In
this example, the following code entry could be used to derive selection ADD and set the health status to
MINOR:

Code Values Entry

Code 1 warn

Code 2 *

Code 3 *

Value Returned ADD MINOR

In addition, one or more commands can be specified for ING150I for the selection that resulted from
code match processing. In the example above, the PAGEADD command would be specified for selection
ADD.
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After executing all the commands that have been specified in the Command Processing panel for the
selection, the health status that was mapped in the code processing is set (in this example, it was
MINOR). Note that if no health status was specified in the code match table, it remains unchanged.

In a more sophisticated extension of this scenario, the situation, MyAuxShortage_Warn, as shown on
the TEP is automatically acknowledged using SOAP services. To do this, a small request parameter
XML-document must be created and sent to the TEMS SOAP server for processing. To acknowledge a
situation, a CT_Acknowledge request must be issued as shown in the following example:

<CT_Acknowledge>
  <target>KEYAS:CMS</target>
  <name>MyAuxShortage_Warn</name>
  <source>KEYAPLEX:SYS1:MVSSYS</source>
  <data>System Automation is taking care of this</data>
</CT_Acknowledge>

The XML-document above references the TEMS that manages the situation (target), the situation itself
(name), and the so-called monitoring agent (source) that is the source of this situation. With the data-
element, you can pass any additional textual information to the person that is looking into this situation
on the TEP.

As described in “OMEGAMON Interaction” on page 44, INGOMX is used to issue the SOAP request to the
TEMS SOAP server. Once the situation has been acknowledged, it can be recognized as such on the TEP's
situation event console or navigator flyover list.

Health Monitoring using CICSPlex SM
This section introduces the components of event-based CICS monitoring and describes how to set up the
monitor resources using the customization dialogs.

Component Overview
Event-based CICS link and health monitoring is implemented using CICSPlex System Manager (CICSPlex
SM) objects. Whenever an event is received from CICSPlex SM, message ING150I is issued.

INGCPSM is the event listener for CICSPlex SM. Because it is a long-running automation procedure it
needs to be run in a virtual operator station task (VOST). It scans the configuration on startup and listens
for events. It then periodically checks whether the configuration has changed (that is, monitor resources
have been added, deleted, or changed, etc.) or monitor resources are waiting for initial monitoring (that is,
they have STATUS=ACTIVE and HEALTH=UNKNOWN).

Creating an Application to Manage the VOST
You can manage the VOST that executes INGCPSM using an application of type NONMVS:

• Start the VOST by using the INGVSTRT command as the start command of the APL, where its job name
is used as the attach_name of the VOST.

• Stop the VOST using a sequence of INGVSTOP stop commands in the management APL.
• Monitor the status of the VOST using the INGVMON monitoring routine in the management APL.

For more details, see IBM System Automation for z/OS Programmer's Reference.

Defining the Monitor Resources

Procedure
To set up the monitor resources:
1. Define one MTR for each CPSM object (for example, each connection).
2. Fill in the Monitored Object field in the MONITOR INFO policy item according to the naming

conventions, for example, CPSM.CICS1TOR.CONNECT.CON1
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3. Leave the Monitored Jobname field empty.
4. Define codes for the message ID ING150I in the MESSAGE/USER DATA policy of the MTR to map the

CPSM severities to valid health statuses, for example:

Code 1 Value Returned

VLS * NORMAL

LS * WARNING

LW * WARNING

HW * MINOR

Results
Refer to the *CICS add-on policy for sample definitions to monitor the connection between two CICS
resources.

Monitoring JES3 Components
The concept of a monitor resource is used to monitor the health of various JES3 components. SA z/OS
provides two commands that support a strict separation of the monitoring part and the resulting recovery
processing:

• AOFRJ3MN: used to monitor components in the JES3 environment, for example spool space.
• AOFRJ3RC: used to perform recovery actions against the monitored JES3 object.

The following example defines a spool space monitor:

1. Define a monitor resource with a “HasParent” relationship to the corresponding JES3 because it only
makes sense to monitor the spool space when JES3 is active.

2. Activate and deactivate commands in the MONITOR INFO policy are not necessary for the spool
monitor.

3. Use the AOFRJ3MN command as the monitor command in the MONITOR INFO policy and setup
the monitoring interval as desired. In this example, spool usage of up to 60% is NORMAL, 61-70%
WARNING, 71-80% MINOR, 81-90% CRITICAL and greater than 90% FATAL.

AOFRJ3MN  JES3_subys  SPOOLSHORT  60,70,80,90

4. Define the recovery action in the HEALTHSTATE policy, for example:

State Command Text

NORMAL AOFRJ3RC JES3_subsys SPOOLSHORT RESET

CRITICAL AOFRJ3RC JES3_subsys SPOOLSHORT 05

FATAL AOFRJ3RC JES3_subsys SPOOLSHORT 01

Issue one recovery command every minute. The commands are read from the JES3 SPOOLSHORT
CMDS policy of the JES3 subsystem. When the spool usage goes down to 60% or less, the health
status goes to NORMAL. This causes the invocation of the AOFRJ3RC command but now with the
RESET option - the RESET option stops recovery. It is recommended that you use JESOPER as the
auto-operator for the recovery commands. Note, that the recovery commands for the SPOOLSHORT
condition must be defined for the JES3 subsystem.

5. For the JES3 subsystem, define the necessary actions that should be performed for SPOOLSHORT in
the JES3 SPOOLSHORT CMDS policy:
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Pass Automated Function Command

1 JESOPER MVS &SUBSCMDPFXF U,Q=HOLD,AGE=30D,N=ALL,C

2 JESOPER MVS &SUBSCMDPFXF U,Q=HOLD,AGE=10D,N=ALL,C

3 JESOPER MVS &SUBSCMDPFXF U,Q=HOLD,AGE=3D,N=ALL,C

10 JESOPER MVS &SUBSCMDPFXF U,Q=HOLD,AGE=1D,N=ALL,C

This purges all jobs from the hold queue that are older than 30 days in the first pass. On pass 2, all jobs
older than 10 days are purged. On pass 3 all jobs older than 3 days are purged. Finally, after 10 times
the pass interval (in our example 5 minutes), all jobs older than 1 day are deleted if the recovery action
is not reset in the meantime.

AOFRJ3MN Routine
Use this routine to monitor various objects in a JES3 environment.

The following objects can be monitored:

• MDS queues (Fetch queue, Verify queue, Wait volume queue, Error queue, Allocation queue, Breakdown
queue, Unavailable queue, Restart queue, System select queue, System verify queue)

• Current setup depth
• Spool space

For each of the 10 JES3 MDS queues, thresholds may be set for each of the 4 health statuses (Warning,
Minor, Critical and Fatal) indicating the number of jobs that particular queue may contain causing to set
the corresponding health status. If, for example, the WARNING threshold for the Error queue is set to 5, if
5 or more jobs are pending on the MDS Error queue, the health status is set to Warning.

For the spool space the thresholds define the amount of used space that when exceeded causes to set
the corresponding health status.

Whenever AOFRJ3MN is called, it issues the appropriate JES3 command (*I,Q,S for SPOOLSHORT and
*I,S for the MDS queues) and parses the response. The value extracted from the message text is
compared with the thresholds and then the return code is set to the corresponding health status. This
simply sets the health status of the Monitor resource (MTR). No recovery action is taken by AOFRJ3MN
routine. Use the HEALTHSTATE policy of the Monitor resource to define a recovery action for each health
status, if necessary.

The syntax of the AOFRJ3MN routine is as follows:

AOFRJ3MN jes3apl object threshold-list

object
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MDSCOUNTQ

MDSCOUNTF

MDSCOUNTV

MDSCOUNTW

MDSCOUNTE

MDSCOUNTA

MDSCOUNTB

MDSCOUNTU

MDSCOUNTR

MDSCOUNTSS

MDSCOUNTSV

SPOOLSHORT

threshold-list
warning , minor , critical , fatal

jes3apl
Specifies the name of an APL of category JES3 for which this monitor works.

monitor
Specifies the JES3 object to be monitored:
MDSCOUNTQ

Current setup depth
MDSCOUNTF

Fetch queue
MDSCOUNTV

Verify queue
MDSCOUNTW

Wait volume queue
MDSCOUNTE

Error queue
MDSCOUNTA

Allocation queue
MDSCOUNTB

Breakdown queue
MDSCOUNTU

Unavailable queue
MDSCOUNTR

restart queue
MDSCOUNTSS

System select queue
MDSCOUNTSV

System verify queue
SPOOLSHORT

Spool
threshold-list

Specifies a list of four threshold values separated by commas:
warning

Set health status to WARNING if this value is exceeded
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minor
Set health status to MINOR if this value is exceeded

critical
Set health status to CRITICAL if this value is exceeded

fatal
Set health status to FATAL if this value is exceeded

If warning is not exceeded the health status is set to NORMAL.

Note that for SPOOLSHORT the values are in percent but for the MDS queues they are absolute
numbers. No value checking is done by AOFRJ3MN except for whole numbers.

Note also that the thresholds are tested from FATAL to WARNING. So if you want to go directly from
NORMAL to FATAL, you could specify 50,50,50,50

AOFRJ3RC Routine
This routine performs the recovery action against a monitored object in a JES3 environment.

When AOFRJ3RC is called, it checks whether the system that it is running that holds the JES3 global
processor. If not AOFRJ3RC terminates without any further action.

The syntax of the AOFRJ3RC routine is as follows:

AOFRJ3RC jes3apl msg-type pass-interval

RESET

jes3apl
Specifies the name of an APL of category JES3.

msg-type
Specifies the message type within the given JES3 APL that the recovery commands are to be read
from:
pass-interval

Specifies the time interval that AOFRJ3RC should wait before executing the next pass. The format
is in NetView notation ( mm, hh:mm, hh:mm:ss or :ss).

RESET
If RESET is specified AOFRJ3RC stops the recovery.

AOFRJ3RC looks into the MESSAGE/USER DATA policy definition of the specified JES3 APL. It issues
the command that is defined for PASS1 of the given message type. As long as there are commands in
higher passes it sets up a NetView timer that re-calls AOFRJ3RC after the given pass interval. Whenever
AOFRJ3RC is executed the command that is defined for the next pass is issued as long as one exists.

If RESET is specified instead of a pass interval any pending timer is killed and processing stops.

The return code is always zero.

Note: AOFRJ3RC issues the recovery commands in a fire-and-forget manner. It does not check whether
the recovery action has the desired result. This is done by the monitor. After one or more monitor
intervals the health status changes to a less severe one if the recovery shows an effect. If you want
to stop recovery actions when the health status returns to NORMAL, for example, you have to code a
HEALTHSTATE command that calls AOFRJ3RC with RESET.

JES2 Spool Monitoring
An SA z/OS monitor resource (MTR) is used to monitor JES2 spool file usage. This can be accomplished
with an active monitor that queries the spool usage periodically or a passive monitor that listens for
HASP050 and HASP355 events.

The JES2 spool monitoring function that is provided includes the following items:
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• Automation routines INGRMJSP, INGRCJSP (AOFRSD01), AOFRSD09, and AOFRSD0H. See
“INGRMJSP” on page 203, “INGRCJSP (AOFRSD01)” on page 205, “AOFRSD09” on page 197, and
“AOFRSD0H” on page 201.

• Automation table entries for system messages HASP050 and HASP355.
• Configuration parameters for the JES2 spool recovery process in the JES2 SPOOLSHORT and JES2

SPOOLFULL policy items of the JES2 application.

External Subsystem Connection Monitoring for CICS and IMS
SA z/OS allows you to monitor connections to the external subsystems DB2® and IBM® MQ for both CICS
and IMS:

CICS
The CICS command CEMT INQUIRE DB2CONN or CEMT INQUIRE MQCONN is issued regularly after
each monitor interval to query the status of the CICS DB2 or CICS MQ connection.

For more details, see the sections "Monitoring of CICS - External Subsystem Connections" and
"INGRMCDB Routine for the Monitoring of CICS - External Subsystem Connections" in IBM System
Automation for z/OS Product Automation Programmer's Reference and Operator's Guide.

IMS
The IMS command DISPLAY SUBSYS is issued regularly after each monitor interval and the response
to this command is analyzed with respect to the status of the connection to a DB2® or IBM® MQ
external subsystem.

For more details, see the sections "Monitoring of IMS - External Subsystem Connections" and
"INGRMIDB Routine for the Monitoring of IMS - External Subsystem Connections" in IBM System
Automation for z/OS Product Automation Programmer's Reference and Operator's Guide.

IMS Component Monitoring
For IMS automation, SA z/OS enables the monitoring of online log data sets (OLDS) and recovery control
data sets (RECON) of IMS control regions, and allows the status checking of the VTAM Application Control
Blocks (ACB) and the enablement of logons.

The monitor routines that are provided for this and the necessary definitions to enable the monitoring
functions are described in IBM System Automation for z/OS Product Automation Programmer's Reference
and Operator's Guide.
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Chapter 5. Job Log Monitoring
This information introduces the components of Job Log Monitoring and describes how to set up the
monitoring function using the customization dialogs.

Overview
Job Log Monitoring is designed to monitor JES spool files only. The current implementation supports any
JES spool output file regardless of whether the job is executing or the job has finished. However, in the
latter case the output must still be available on the JES output queue and the user has to ensure that the
output is processed only once.

To use joblog monitoring, NetView must have a JES job ID. If the user enables the DSIRQJOB task,
the JES job ID can be obtained by starting the DSIRQJOB. If the user disables the DSIRQJOB task, the
INGTJLM task will automatically acquire a JES job ID as needed when joblog monitoring is started. Before
any attempted shutdowns of JES in both cases, the user must ensure that the job ID is released by
stopping either the DSIRQJOB or INGTJLM task, whichever they have employed (refer to the best practice
policies for SA's recommended approach). Alternatively, refer to Starting the NetView Program Before
Starting JES topic in the NetView Installation: Getting Started manual. This topic explains how to use the
NetView MVS Command Revision function to stop the DSIRQJOB job when JES ends abnormally or is
stopped by a user from the command line.

The monitoring function is controlled by SA z/OS based on the definitions of the customization dialog.
Monitoring is automatically started when the job reaches a status of UP, ACTIVE, or RUNNING. If your
job was already active at the time you specified the Job Log Monitoring definitions in the customization
dialogs, then this job must be restarted in order to start Job Log Monitoring for it. However, you can
monitor jobs that are not controlled by SA z/OS with the following restrictions:

1. You cannot specify any filter criteria to limit the data that is passed to automation. This means any line
of data except an empty line that is generally excluded is forwarded to the message automation.

2. The message that is forwarded to message automation is always queued to the autotask LOGOPER.
For SA z/OS controlled jobs those messages are queued to the autotask that is responsible for the job
in view of SA z/OS.

3. You need to start the monitoring manually by using the command INGJLM START. Required
parameters are the job name and the monitoring interval. In case you want to monitor a data set
other than the default data set JESMSGLG you also need to specify the appropriate ddname. The
specifications of the owner or the job ID are necessary only when multiple jobs with the same job
name exist. This could be the case when the job already ended and the output is held on the output
queue. In this case, it is your responsibility that the job is monitored only once.

4. You need to qualify the ddname by the step name if you do not want to monitor a spool file of the last
step in a multi-step job when the ddname is specified multiple times. In case the step name is not
unique in an in-stream procedure you need to qualify the ddname by the procedure step name as well.

You can stop the monitoring function for a particular job at any time using the command INGJLM
STOP even for SA z/OS controlled jobs. Normally, the monitoring is automatically stopped when the
job has ended. For SA z/OS controlled jobs this is done when the job reaches a termination status like
AUTOTERM, ENDING, and so on. For non-SA z/OS controlled jobs the monitoring is automatically stopped
when the job has ended and the monitoring interval has expired twice.

The monitoring task can be suspended for an indefinite time frame using the command INGJLM
SUSPEND. The accumulated output of all monitored jobs is processed not before the task has been
restarted. The output of jobs that have finished in the meantime is lost unless the output is still held on
the JES output queue. Jobs that have been started after the task was suspended will not be monitored
after the task has been restarted. To restart the task, use the NetView command START TASK=INGTJLM.

The monitoring task can be instructed to continue its monitoring after NetView has been recycled. To do
so, issue the command INGJLM RECYCLE RESUME at any time when the task is active. Note that you need
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to do this only once for all future NetView recycles until the next IPL. The behavior is similar to when you
would suspend and restart the task except that the task is not suspended and a NetView recycle takes
place between task termination and restart. You can reset the condition by issuing the command INGJLM
RECYCLE RESET. This will clear the internal structures after NetView has been restarted and is the default.
The internal structure is held in a data space that is anchored to the master address space. Its initial size
depends on the number of jobs that have been defined in the PDB for monitoring. It will be at least 16K.
Each time the current allocation needs more space for monitoring the data space is extended by 1 block
up to the installation limit. However, the space required for monitoring a ddname is reused after the job of
the monitored ddname has terminated.

The name of the data space is given by the constant INGJLM suffixed by the value of the GRPID
parameter as defined in the DSIPARM member INGXINIT. Changing this value results in the creation
of a new data space when System Automation initializes the next time.

You may use the advanced automation option to set the behavior automatically. Every time when System
Automation (re-)initializes it checks the status of the Job Log Monitoring task. When the task is active
or needs to be started, it also evaluates the common global AOF_AAO_JLM_RECYCLE and issues the
command INGJLM RECYCLE according to the value of the global (Refer to “Read/Write Variables” on page
226 for details.

In case of an abend condition the monitoring task performs an internal suspend command with the
following exception. The job that caused the error condition is marked "in error" and will be excluded from
monitoring when the task is restarted.

Note: The monitoring task must be terminated before JES is shut down. For this reason the default policy
has been updated and the following STOP command has been added to the SHUTINIT phase of JES:

  PIPE NETV INGJLM STATUS
     | LOC /INGTJLM: ACTIVE/
     | EDIT /STOP TASK=INGTJLM/ 1
     | NETV

Limitations
1. Executing SA z/OS controlled jobs that are running less than two seconds are probably not monitored.

One reason is that the automation does not find the job active any longer. Or, JES has deallocated
the resource before the monitoring task could allocate it. The latter case is also true for non-SA z/OS
controlled jobs when the output is not held on the JES output queue after the job ended. In any case,
specify a message class when starting the job that leaves the output on the JES output queue and
trigger the monitoring manually.

2. The monitoring function is limited to the primary subsystems JES2 and JES3.
3. Dynamically allocated spool output data sets are not supported.
4. When the NetView task DSIRQJOB is defined, Job Log Monitoring waits for receiving the JES job ID by

DSIRQJOB. Without the job ID, a spool data set cannot be accessed. If DSIRQJOB is not defined, the
job ID is obtained by Job Log Monitoring and returned to JES when the monitoring task terminates.

If DSIRQJOB is terminated in a JES2 environment, the monitoring task is automatically suspended
because the job ID is returned to JES2. And the monitoring task is automatically restarted after
DSIRQJOB is restarted.

In a JES3 environment, DSIRQJOB does not return the job ID on termination. For this reason, the
monitoring task is not terminated. However, if for whatever reason the job ID is returned to JES3, the
monitoring task is automatically suspended but needs to be restarted manually when a new job ID is
received.

Customization
For SA z/OS controlled jobs, you have to define the monitoring interval, the messages and data sets
to be monitored for each job in the customization dialog. The main definition that actually initiates the
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monitoring for a job is the definition of the monitoring interval. You specify the interval at the policy
"APPLICATION INFO".

Note: Without the interval definition, no monitoring takes place regardless of what the policy "MESSAGES/
USER DATA" specifies.

                           Application Information               Line 00000001
Command ===> ________________________________________________ Scroll ===> CSR__

Entry Type : Application           PolicyDB Name   : SAMPLE_PDB
Entry Name : JLMS05                Enterprise Name : KEYPLEX
:
JCL Procedure Name . . . . AAAZJLMS____________________
Job Log Monitor Interval . 00:17        (mm:ss NONE)
Captured Messages Limit  . ___          (0 to 999)
:

Figure 8. ISPF dialog defining the Job Log Monitoring for an application

Dedicated messages that should be automated must be defined by specifying the offset of the message
ID within a single line and optionally one or more tokens making the message unique. An offset value
of 0 indicates a message without a particular ID. In this case at least one token pair must be defined to
identify the message. In case all messages are relevant and should be automated the common message
ID value JOBLOGALL is to be specified. This ID does not require any further user data specification.
However, the dialog will not generate an ACF fragment unless the message ID has attached any of the
definitions "S", "C", "R", "K", or "U". For this reason, the user data keyword/value pair JLM_OFFSET=NO is
required.

                            Message Processing       Line 00000001 Col 001 075
Command ===> ________________________________________________ Scroll ===> CSR__

Entry Type : Application           PolicyDB Name   : SAMPLE_PDB
Entry Name : JLMS05                Enterprise Name : KEYPLEX
:
Cmd Message ID     Description                              Cmd Rep Cod Usr A M
u__ JOBLOGALL      Automate all JESMSGLG messages_________                  * *
:

Figure 9. ISPF dialog defining the Job Log Monitoring of all JESMSGLG messages (1/3)

            User Data Processing : JOBLOGALL         Line 00000001 Col 001 075
Command ===> ________________________________________________ Scroll ===> CSR__
:
Cmd Keyword              Data
___ JLM_OFFSET__________ NO____________________________________________________
:

Figure 10. ISPF dialog defining the Job Log Monitoring of all JESMSGLG messages (2/3)

When specific messages should be monitored, the keyword JLM_OFFSET must define the actual offset of
the message ID in the corresponding SYSOUT data set. For the JESMSGLG data set, the offset of all text
begins at a specific column:

JES2 environment
The text begins at column 20 regardless of whether it is a multi-line message or the message text is
wrapped because it is longer than 126 characters (including the 19-byte prefix). Follow-on lines of a
multi-line message show the console ID of the multi-line message at column 4. Wrapped message text
shows blanks in the first 19 columns. Thus, trapping tokens of such messages requires the knowledge
of the exact position of each token. The first two tokens of the first line of each message are the time
and the job ID.
JES3 environment
The text begins at column 12 regardless of whether it is a multi-line message or the message text is
wrapped because it is longer than 126 characters (including the 11-byte prefix). The first token of each
message is always the time.
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Other SYSOUT data sets certainly have different layouts.

The first token definition in the sample below ends with the character '*'. This indicates that the message
tokens are checked for all characters up to the star character only. The star character and all immediately
following non-blank characters are ignored. The indicated message is passed to automation when its ID is
found at column 21 and the next token after the ID has the value '3' and the 7th token begins with KEY=.

            User Data Processing : cccnnnna          Line 00000001 Col 001 075
Command ===> ________________________________________________ Scroll ===> CSR__
:
Cmd Keyword              Data
___ JLM_OFFSET__________ 21____________________________________________________
___ JLM_TOKEN___________ (7,'KEY=*')___________________________________________
___ JLM_TOKEN___________ (4,'3')_______________________________________________
:

Figure 11. ISPF dialog defining the automation of specific messages

In case you want to monitor data sets other than the JESMSGLG data set you need to qualify your
message definition(s). The following sample shows you that the SYSOUT data sets referenced by the
ddname AAAZOUT and SYSPRINT pass every message to automation.

            User Data Processing : JOBLOGALL         Line 00000001 Col 001 075
Command ===> ________________________________________________ Scroll ===> CSR__
:
Cmd Keyword              Data
___ JLM_OFFSET__________ NO____________________________________________________
___ JLM_DDNAME__________ SYSPRINT______________________________________________
___ JLM_DDNAME__________ AAAZOUT_______________________________________________
:

Figure 12. ISPF dialog defining the Job Log Monitoring of specific messages

The next example shows you the monitoring definitions of a multi-step job. All messages of the job steps
STEP1 and STEP3 that are written to the ddname SYSPRINT are passed to automation. But, messages of
STEP2 written to SYSPRINT are ignored.

            User Data Processing : JOBLOGALL         Line 00000001 Col 001 075
Command ===> ________________________________________________ Scroll ===> CSR__
:
Cmd Keyword              Data
___ JLM_OFFSET__________ NO____________________________________________________
___ JLM_DDNAME__________ STEP1.SYSPRINT________________________________________
___ JLM_DDNAME__________ STEP3.SYSPRINT________________________________________
:

Figure 13. ISPF dialog defining the Job Log Monitoring of specific messages of a multi-step job

The following example shows you how to define a filter criteria that is not associated with a message.
You still need to define a "dummy" message ID as an anchor. All lines of the sysout data set defined by
ddname AAAZOUT whose first token has the value ’Name’ are passed to automation.

                            Message Processing       Line 00000001 Col 001 075
Command ===> ________________________________________________ Scroll ===> CSR__

Entry Type : Application           PolicyDB Name   : SAMPLE_PDB
Entry Name : JLMS05                Enterprise Name : KEYPLEX
:
Cmd Message ID     Description                              Cmd Rep Cod Usr A M
u__ DUMMY1         Automate specific text line____________                  * *:

Figure 14. ISPF dialog defining the Job Log Monitoring of a non-message print line (1/2)
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            User Data Processing : DUMMY1            Line 00000001 Col 001 075
Command ===> ________________________________________________ Scroll ===> CSR__
:
Cmd Keyword              Data
___ JLM_OFFSET__________ 0________________________________________________________ 
___ JLM_DDNAME__________ AAAZOUT__________________________________________________ 
___ JLM_TOKEN___________ (1,'Name')____________________________________________
:

Figure 15. ISPF dialog defining the Job Log Monitoring of a non-message print line (2/2)

The build process will automatically generate the following common MAT entry for automating the
message INGY1300I but only for SA z/OS controlled jobs:

* INGY1300I for jobs defining a message ID
  IF MSGID = 'INGY1300I' & TOKEN(6) ¬= 'N/A'
   & TOKEN(3) = SVJOB & TOKEN(6) = MSGTYPE THEN
     DISPLAY(N) NETLOG(Y) SYSLOG(N)
     EXEC(CMD('ISSUEACT JOBNAME='SVJOB' MSGTYPE='MSGTYPE)
          ROUTE(ONE %AOFOPGSSOPER%)
         ); 

Figure 16. Common MAT entry for message INGY1300I and jobs defining a message ID for monitoring

This just needs the definition of the command(s) that should be executed on behalf of the message ID, for
example:

                            Message Processing       Line 00000001 Col 001 075
Command ===> ________________________________________________ Scroll ===> CSR__

Entry Type : Application           PolicyDB Name   : SAMPLE_PDB
Entry Name : JLMS05                Enterprise Name : KEYPLEX
:
Cmd Message ID     Description                              Cmd Rep Cod Usr A M
c__ JOBLOGALL      Automate all JESMSGLG messages_________                1 * *
:

Figure 17. ISPF dialog defining the Job Log Monitoring of all JESMSGLG messages (3/3)

Note that the message INGY1300I is a multi-line message. The first line is the label line that provides the
following tokens OWNER, JOBNAME, JOBID, DDNAME, MSGID in the sequence as shown. The latter token
is exactly the message ID that you have specified on the 'Message Processing' dialog. Each subsequent
line represents a line of the original message.

If you want to monitor jobs that are not defined in the policy or that are defined in the policy but do not
have a message ID defined for monitoring you need to manually adjust the existing, predefined AT entry
(create an AT override) like the following:

* INGY1300I for jobs having no message ID defined
  IF MSGID = 'INGY1300I' & TOKEN(6) = 'N/A' THEN
     DISPLAY(N) NETLOG(Y) SYSLOG(N)
     EXEC(CMD('xxxxxxxx ...)
          ROUTE(ONE %AOFOPGSSOPER%)
         ); 

Figure 18. Common MAT entry for message INGY1300I and jobs without defining a message ID for
monitoring

In both cases, you have to start the monitoring manually. And, since no filter criteria are defined all
messages are passed to automation.

Note: When you use the NetView PIPE stage SAFE for retrieving the message, you will find the message in
the default safe.
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SPIN Parameter
For a spool data set:

JESMSGLG
JESYSMSG
SYSOUT ddname (JES2 only)

that is defined to be spun off and to be monitored by Job Log Monitoring, it is highly recommended to hold
the output until Job Log Monitoring has processed the data set. Otherwise, you may lose information you
would like to automate.

For the JESMSGLG data set you also need to verify that the output is not suppressed. In a JES2
environment the command

$D JOBCLASS(STC),LOG

must show the value YES for the parameter LOG. In a JES3 environment the command

*I,STD

must now show the value NOSTC for the parameter JESMSG. And, the command

*I,C=x

must not show the value NOLOG for the parameter JESMSG where 'x' is the class that is assigned to the
started task jobs.

When Job Log Monitoring detects that a particular data set has been spun off by JES it issues the message
INGY1333I after it has finished its processing of the data set. The message informs you that the particular
spool data can be released now. For example, the job name or the job identifier along with the SYSOUT
identifier of the message can be used to purge the data set:

JES2: $P O JQ(jnm|jid),OUTGRP=soid
JES3: *F,U,J=jnm|jid,DSN=...soid,CANCEL

Note that 'jid' is just the numerical part of the job identifier.

If the SYSOUT identifier is not present in the message the task could not determine the value.

The message INGY1306I indicates that monitoring has been stopped for a particular ddname and all
corresponding spool data sets can be released.

Status Information
The command INGJLM STATUS which can also be issued in a NetView PIPE returns the current status of
the monitoring task and its monitored data sets:

Status of task INGTJLM: {ACTIVE|INACTIVE|SUSPENDED}
Monitoring on recycle : {RESUME|RESET|N/A}
Owner    Jobname  Jobid    DDname   Status    Freq. Last        Read  Passed
         Procstep Step                                         LRead LPassed
-------- -------- -------- -------- --------- ----- -------- ------- -------
xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxxx mm:ss hh:mm:ss       n       n
                                                                   n       n
xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxxx mm:ss hh:mm:ss       n       n
         xxxxxxxx xxxxxxxx                                         n       n
xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxxx mm:ss hh:mm:ss       n       n
                  xxxxxxxx                                         n       n
*** Status complete ***

Figure 19. Job Log Monitoring status information

The status of a data set shows the following information:
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  E........
The data set is marked "in error" and is not monitored any longer.

  .A.......
The data set is allocated.

  ..O......
The data set has been opened successfully.

  ...U.....
The user is not allowed to read the data set.

  ....S....
The monitoring of the data set is ACF-based.

  .....M...
All messages are passed to automation.

  ......J..
The corresponding job has not been found on the chain of active address spaces.

  .......I.
The spool data set is not initialized. The allocation of the data set is retried at the next monitoring
interval. This repeats until the data set has been initialized.

  ........N
The ddname has defined the SPIN attribute. That means the corresponding spool data set can be
spun off during processing.

The frequency shows the interval in minutes and seconds between two checks for accumulated
messages. The next column shows the time when the last check occurred. The last two numbers show
the total number of messages that have been read as well as the number of messages that have been
passed to the automation table. The second status line of each data set shows the number of message
read and passed to automation since the last check.
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Chapter 6. Alert-Based Notification
SA z/OS provides an alert-based notification service that enables you to alert subject-matter experts. You
can escalate automation problems that require manual intervention by sending alerts, events or trouble
tickets to different kinds of notification targets.

SA z/OS supports several communication methods that allow you to deliver alerts to notification targets
such as:

• System Automation for Integrated Operations Management (SA IOM)
• Tivoli Enterprise Console (TEC)
• Tivoli® NETCOOL/OMNIbus
• IBM Tivoli Service Request Manager®

• A user-defined alert handler

Overview
The alert-based notification service of SA z/OS allows alerts to be sent to operators or system
programmers for predefined situations.

You can also customize when to issue alerts, if desired, using the customization dialog and the INGALERT
utility. Alerts can only be issued for applications (APL), monitor resources (MTR), application groups
(APG), and MVS components.

An alert is a set of information that is collected and sent by an SA z/OS automation agent to a target for
notification processing. The information that is sent consists of the text that is to be forwarded to the
alerted person or group. This information is supplemented by additional options that determine in detail
the processing at the different kinds of notification targets.

In SA z/OS there are several predefined alert points that trigger alerts whenever a command encounters a
problem situation, such as a resource becoming degraded or not being up within a given time interval.

Alerting can be enabled or disabled at various levels:

• Globally using the INGCNTL command
• Resource-specific using the resource's Inform List
• Alert-specific using code definitions for the message ID INGALERT

Communication Flow
Figure 20 on page 68 outlines the communication between the automation manager and the automation
agents.

Alert-Based Notification
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Figure 20. Alert Communication Flow

The automation agents on the systems in the sysplex subscribe to the automation manager to be alerted
about problems with system or sysplex application groups (APGs). This is because the automation
manager cannot itself send alerts to the notification targets. Whenever the automation manager detects a
problem with an APG it sends an alert to the subscribed automation agents (one in case of a system APG,
and all in case of a sysplex APG). Any alerts for sysplex APGs are handled by only one automation agent in
the sysplex.

The automation agents can also receive alerts for applications, application groups, or monitor resources
via the INGALERT command. If the affected resource is managed by a different automation agent, the
request is passed on. The automation agent that manages the resource sends the alert to the notification
target. If, for whatever reason, this automation agent cannot send the alert, it passes on the request to
the next automation agent in the sysplex. This can happen several times until the alert is successfully sent
or no more automation agents are available.

For each alert, the automation agent connects to a notification target, sends the alert and then
disconnects. The automation agent does not maintain a permanent connection to the SA IOM server.

Enabling Alerting
By default alerting is not enabled. To activate it you must perform setup actions in both SA z/OS and
notification target.

Setup in SA z/OS
You can turn alerting on or off at three different levels in SA z/OS:

• The system level, via the INGCNTL command. Turning off alerting means that no alerts are detected or
accepted by the system. Alerting must be turned on explicitly either globally or selectively for at least
one notification target.

• The resource level, via the Inform List policy field. Turning off alerting means that no alerts are detected
or accepted for the resource. The notification target must be explicitly specified (or inherited from the
defaults) to activate alerting for it.

Alert-Based Notification
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• The alert ID level, via code definitions for the INGALERT message ID of the resource or MVS component
entry.

INGCNTL Command
By default alerting is not enabled. You have to issue the INGCNTL command to enable it and set the
connection properties for the notification target.

This can be done as follows:

• In the NetView style sheet using auxiliary commands:

**********************************
* Auxiliary commands              
**********************************
* Enable Alerting and set connection properties      
auxInitCmd.A = INGCNTL SET ALERTMODE=IOM ALERTHOST=saiom:1040:SAALERT

• From the AOFEXDEF exit that is supplied with SA z/OS:

'INGCNTL SET ALERTMODE=IOM ALERTHOST=saiom:1040:SAALERT'

See IBM System Automation for z/OS Programmer's Reference for more information about the INGCNTL
command.

Inform List
You have to include the appropriate communication method for the notification target in the Inform
List field of the appropriate policy item to explicitly enable alerting for specific resources or classes of
resources, as shown in Table 7 on page 69.

Table 7. Inform List Policy Items

Policy Object Policy Item

Application Group (APG) APPLGROUP INFO *

Application (APL) APPLICATION INFO *

Monitor Resource (MTR) MONITOR INFO *

MVSCOMP Defaults (MDF) MVSESA INFO *

System Defaults (SDF) AUTOMATION OPTIONS

Sysplex Defaults (XDF) RESOURCE INFO
* Leaving the Inform List field blank allows the policy object to inherit the value specified in the system
defaults or sysplex defaults definition.

You must also specify the appropriate communication method for the desired notification target as shown
in Table 8 on page 69. 

Table 8. Inform List Communication Methods

Value in Inform List Communication Method Supported Notification Target in
SA z/OS

IOM Peer-to-peer protocol of IBM
Tivoli System Automation
for Integrated Operations
Management (SA IOM)

SA IOM

EIF Tivoli Event Integration Facility
(EIF)

TEC or OMNIbus

Alert-Based Notification

Chapter 6. Alert-Based Notification  69



Table 8. Inform List Communication Methods (continued)

Value in Inform List Communication Method Supported Notification Target in
SA z/OS

TTT XML TSRM via TDI

USR Command call User-defined alert handler

You can specify a blank-separated list of values to enable alerting for several notification targets.

Code Processing
Code processing with the INGALERT message ID allows you to define additional characteristics for events
to be passed to the notification target or to prevent event creation for certain alerts. Such definition can
be made, dependent on the alert ID, issuing job and type of notification target.

Code definitions for message ID INGALERT can be used for resources of type APL, APG, MTR, and for
MVS components. If no matching code definitions are found for the APL, APG or MTR resources, the
INGALERT code definitions are checked for the corresponding MVS component entry on the system where
the resource resides.

Enter the following in the Code Processing panel for the INGALERT message ID:
Code 1

The alert ID that identifies the type of alert. SA z/OS provides the following set of built-in alert points:

Alert ID Description For Resource Type

CMD_FAILED Return code checking is on and the command
ended with RC≠0

APL, MTR

COMM_FAILED An error was detected during communication to
another system

APL

CRITICAL_WTOR WTOR defined as CRITICAL without defined
REPLY.

APL

ISQHWMSG Important Hardware Messages are available on
the target hardware.

MVSESA

ISQHWST Target hardware is in DEGRADED or SERVICE
REQUIRED status.

MVSESA

MSG/Message ID Messages with a critical severity. The message
can be abbreviated by means of wildcard, for
example, MSG/DFS54*.

This Alert ID is applicable only for messages
that are captured by the AOFCPMSG command.

APL, APG, MTR

OS_DEGRADED The observed status of the resource has
become degraded

APL

OS_PROBLEM The automation status is ZOMBIE or BROKEN,
or a shutdown outside SA z/OS and restart is
not allowed

APL

REC_FAILED Automation was halted because the critical
threshold for a minor resource was exceeded

APL

REP_FAILED No further outstanding WTORs that are stored
by SA z/OS need to be replied to

APL

START_FAILED The start command failed APL

Alert-Based Notification
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Alert ID Description For Resource Type

START_PENDING The up message was not received within the
timeout interval

APL

STOP_PENDING Ran out of stop commands APL

CS_PROBLEM The compound status PROBLEM has been set APG

OPCERR Indicates a status change to a TWS resource as
reported by message EVJ120I

APL

Note: Alert points ISQHWMSG and ISQHWST are provided by Processor Operations for target
hardware connected over SNMP protocol.

You can also use any user-defined alert ID. Simply specify it in the corresponding code entry and call
INGALERT with this ID. Wildcards are supported.

Code 2
For APL this is the job name that alerting should be done for. For MVC it contains MVSESA. For APG
and MTR Code 2 is ignored. Wildcards are supported. This allows you to set alerting for several APLs
at once by using APL classes.

Code 3
The communication method that is used to send the alert to the notification target. Valid values are
IOM, EIF, TTT or USR. Wildcards are supported.

Value Returned
This can be either IGNORE to prevent event creation, or parameters that are sent to the notification
target together with the passed event. The meaning of these parameters depends on the type of
communication method, as follows:
IOM

The first two tokens of the Value Returned are considered to be:

• The priority of the alert (0–999).
• The escalation ID that is used in SA IOM to define the rules that determine how the alert should

be processed. The length of this value is limited to 20 characters.

If the first two tokens have invalid values, the Value Returned is assumed to be IGNORE.

If you specify more than two tokens in the Value Returned field, the superfluous tokens are
ignored.

EIF
The Value Returned is considered to be the event severity. Valid values are HARMLESS, WARNING,
MINOR, CRITICAL or FATAL, or a corresponding number between 1 and 5, where 1 corresponds
to HARMLESS, etc. Both alternatives for specifying a severity can be used for events to TEC or
NETCOOL/OMNIbus. When specifying the severity as a number, the code definition can also be
used to send alerts to SA IOM.

If you do not specify a valid severity, the Value Returned is assumed to be IGNORE.

Superfluous tokens in the Value Returned field are ignored.

TTT
If TSRM is the notification target, the values in Value Returned are used as:

• The priority of the trouble ticket as it is initially reported (1-5)
• The urgency, which is a indication of how quickly a trouble ticket should be resolved (1-5)
• The business impact or severity of the trouble ticket (1-5)

These values are not validated because other targets may expect other values.

Alert-Based Notification
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If you specify more than three tokens in the Value Returned field, the superfluous tokens are
ignored. If you specify less than three tokens, they are used according to their position and the
missing tokens default to N/A.

USR
The content of the Value Returned field is passed to the user-defined alert handler that is called.

Code Definitions Example
Consider the example in Table 9 on page 72. 

Table 9. Code Processing Example for the INGALERT Message ID

Code 1 Code 2 Code 3 Value Returned

START_FAILED IMS* IOM 500 IMS_start

START_FAILED DB2* EIF CRITICAL

* * * IGNORE

The code definitions in this example result in the following behavior:

• Alerts with the alert ID START_FAILED for jobs with the name prefix IMS are sent to IOM with priority
500 and escalation ID IMS_start.

• Alerts with the alert ID START_FAILED for jobs with the name prefix DB2 are sent as EIF events to TEC
or NETCOOL/OMNIbus with event severity CRITICAL.

• All other alerts are ignored for all notification targets.

INGALERT Command
You can use the INGALERT command to inject alerts into a system. This can be from either the NetView
automation table, an automation procedure, or the command line.

You can specify the following parameters:

• A resource name , the text MVSESA, or a job or subsystem name.
• The alert ID, for example, CS_PROBLEM, CMD_FAILED, and so on.
• A message ID that identifies the message text or a text string that is passed to the notification target.

For example, the following can be used from the command line or an automation procedure:

INGALERT MYGRP/APG/SYS1 ID=MYALERT TEXT=(MYGRP HAS A PROBLEM)

In this example, INGALERT uses the alert ID, MYALERT, to obtain additional parameters via a matching
code definition for the message ID INGALERT, and it uses the TEXT parameter value for the alert text.

The following can be used from the NetView automation table to send an alert whenever message
ABC123I is issued:

IF MSGID=’ABC123I’
THEN
EXEC(CMD(’INGALERT’));

INGALERT uses ABC123I as the alert ID and the complete text of message ABC123I as the alert text. The
resource parameter of INGALERT is defaulted to the job name of the subsystem that issued the message.

See IBM System Automation for z/OS Programmer's Reference for more information about the INGALERT
utility.
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Chapter 7. Availability and Recovery Time Reporting
SA z/OS introduces support to assist you in billing users or reporting reliability of your critical applications
or the software that those applications are dependent on. For example, you might want to charge
accurately based on the amount of time required to run an application. This is of importance for non-MVS
resources, such as USS applications, or monitoring resources that might run in the NetView address
space.

Overview
SA z/OS collects and records job-related information, and writes System Management Facility (SMF)
records at specific events in the lifetime of a resource.

This resource can be:

• A subsystem (APL)
• An application group (APG) that is hosted by the local system as well as sysplex application groups
• A monitor resource (MTR)

The INGPUSMF batch utility produces a report file that you can import into a spreadsheet. You can also
convert and write the report into DB2 tables that are provided and exploited by the IBM Tivoli System
Automation Application Manager. For more details, see “Writing the SMF Report to DB2” on page 78.

You can control whether a record is written for a resource by entering the value SMF in the Inform List
field in the resource's information policy item.

Resource Lifecycle
Figure 21 on page 73 shows the events in the lifetime of an application when SA z/OS records
information. 

Figure 21. Events in the Lifecycle of an Application

These events are:

• Start order received from the automation manager (t1)
• UP signal received (t2)
• Stop order received from the automation manager (t3)
• DOWN signal received (t4=t0)

By examining these records you can establish the following information for a given time period:
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• Application up time and downtime
• Application startup and shutdown time
• The number of scheduled stoppages and the approximate amount of scheduled downtime
• The number of unscheduled stoppages and the approximate amount of unscheduled downtime

To make using SA z/OS SMF records easier, the following periods are automatically calculated and stored
(in units of seconds) in the SMF record:

• The startup time (t2–t1)
• The shutdown time (t4–t3)
• The time the application was active (t3–t2)
• The last down time (t1–t4)

You therefore have a precise view of the lifecycle of the application.

Layout of the SMF Record
Table 10 on page 74 provides details of the data that is stored in the SMF record. 

Table 10. Layout of the SMF Record

Offset Length Format Description

00 2 Binary Record length. This field and the next (a total of 4 bytes) form the
record descriptor word (RDW).

02 2 Binary Segment descriptor. This is zero.

04 1 Binary System Indicator Bit:
0

Reserved
1

Subtypes used

05 1 Binary SMF Record Type. This is 114.

06 4 Binary The time, since midnight, that the record was moved into the SMF
buffer (in hundredths of a second).

10 4 Packed The date when the record was moved into the SMF buffer, in the form
0cyydddF.

14 4 EBCDIC System Identification (from the SID parameter).

18 2 Binary Record subtype:
1

Automation tracking record

20 2 Binary Record version.

22 2 — Reserved.

24 4 Binary Offset to product section from start of record, including the record
descriptor word (RDW).

28 2 Binary Length of product section.

30 2 Binary Number of product sections. This is always 1.

32 4 Binary Offset to resource section from start of record, including the record
descriptor word (RDW).
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Table 10. Layout of the SMF Record (continued)

Offset Length Format Description

36 2 Binary Length of resource event section.

38 2 Binary Number of resource event sections. This is always 1.

40 8 — Reserved.

Product Section

00 16 EBCDIC Product name, for example SA z/OS V3R2M0.

16 8 EBCDIC Name of the SYSPLEX.

24 8 EBCDIC Domain identifier.

32 8 EBCDIC MVS System name.

40 8 EBCDIC XCF group name.

Automation Section

00 24 EBCDIC Resource name (in automation manager notation).

24 8 EBCDIC Job name (optional).

32 2 Binary Event type:
X'0001'

Starting
X'0002'

Active
X'0003'

Stopping
X'0004'

Inactive
X'0005'

Degraded

34 2 — Reserved.

36 12 EBCDIC Automation agent status (optional).

48 12 EBCDIC Start type.

60 12 EBCDIC Stop type.

72 5 EBCDIC Termination type (abend code). Optional.

77 3 — Reserved.

80 4 Binary Total startup time in seconds.

84 4 Binary Elapsed time in seconds that the resource was active.

88 4 Binary Total shutdown time in seconds.

92 4 Binary Last down time of resource in seconds.
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Enabling SMF Records

Procedure
To enable SMF records for a resource:
1. Ensure that the SMFPRM xx member in SYS1.PARMLIB is set up to collect type 114 SMF records by

adding type 114 to the SYS(TYPE statement:

SYS(TYPE(30,...,114)

2. Specify SMF in the Inform List of the APPLICATION INFO policy item for the resource.

The INGPUSMF Utility
You can use the INGPUSMF utility to analyze SMF records and produce a data set that can be imported
into a spreadsheet program. The data set contains the type 114 records that SA z/OS produces in a
format that can easily be imported. By default, the fields are semicolon delimited.

Output
The first record in the data set is a title record that describes each column. The remaining records are the
data records. One data record is written for each type 114 SMF record.

Table 11 on page 76 describes the format of each record. 

Table 11. Format of INGPUSMF Utility Data Set Records

Column Description

1 SMF system ID

2 Date when SMF record was written, in YYYYMMDD format

3 Time when SMF record was written, in hhmmss format

4 SA z/OS product name, including release level

5 Name of sysplex

6 System name

7 NetView domain ID

8 XCF group name

9 Resource name in automation manager notation

10 Job name, if present

11 Event

12 Automation agent status

13 Startup time in seconds

14 Active time in seconds

15 Shutdown time in seconds

16 Down time in seconds

17 Start type

18 Stop type
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Table 11. Format of INGPUSMF Utility Data Set Records (continued)

Column Description

19 Termination (abend) code

The termination code for APGs can have the string $UNPL, which means unplanned
termination of an APG resource.

The INGPUSMF Utility JCL
The INGPUSMF utility runs as a batch job. See INGEUSMF for a sample. The meaning of the DD
statements is as follows:

STEPLIB
The load library that contains the INGPUSMF utility. The utility resides in the SINGMOD1 library.

REPORT
The output data set that contains the spreadsheet import data set in a semicolon-delimited format.
The record size is 255 bytes.

SYSPRINT
Contains information that is written by the utility.

HSATRACE
Is used for debugging purposes only. If present, the INGPUSMF utility writes trace entries to record
the process flow.

SMFDATA
Contains the SMF records. The record format is: Variable, blocked, spanned.

USRPARMS
Contains user options, such as filter criteria or a specific separator character.

User Options
You can specify various options in the USRPARMS data set that control the processing of the utility. You
must specify each option in a separate record. The option are defined as keyword=value pairs. If you
specify an option several times, the last occurrence is used. The keyword must start in column 1 of the
record. No blanks are allowed in front of or after the equal sign (=). A asterisk (*) is considered to be a
comment.

The following options are supported:
SEPCHAR=char

Defines the separator character to be used to separate the columns. The default is a semicolon (;) if
omitted

SYSID
Defines the SMF system ID used as a filter. Only SMF records that are generated by that system are
taken. The value can be 1–4 characters.

FROM=date
The starting date used as a filter. The format is YYYYMMDD. All SMF records written on the specified
date or later are taken.

TO=date
The ending date used as a filter. The format is YYYYMMDD All SMF records that are written no later
than the specified date are taken.

RESOURCE=
Defines the resources in automation manager notation used as a filter. You can specify up to 10
resource names. The name can be a wildcard, such as *abc, abc* or *abc*.
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Return Codes
The following return codes are set by the utility:
0

Normal completion.
8

Invalid option detected in the USRPARMS data set.
12

REPORT data set is not accessible.
16

A severe error occurred, for example, an open error for the SMFDATA data set, or writing a record to
the REPORT file.

Writing the SMF Report to DB2
You can convert and write the SMF report that is produced by INGPUSMF into DB2 tables that are
provided and exploited by the IBM Tivoli System Automation Application Manager.

The following reports are provided:

• Startup and Shutdown Reports:

– Report the cumulative startup and shutdown times for a resource, including its dependencies.
– Report resources with the longest startup and shutdown times in a selected domain.

• Availability and Recovery Reports:

– Report a resource's uptimes and downtimes, unexpected outages and corresponding recovery times.
– Report resources that had the highest number of unexpected outages in a selected domain.

A conversion utility, known as the z/OS offloader, delivers the z/OS domain data that is required to run
these reports.

The z/OS offloader component runs as a batch job (see Figure 22 on page 79) and uses existing
and new programs that are installed into the end-to-end automation adapter zFS directory, which is
normally /usr/lpp/ing/adapter. 
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Figure 22. SMF Processing with z/OS Offloader

You can use the sample job INGXRPRT to run the z/OS offloader.

Customization

Procedure
After installing the z/OS offloader you must carry out the following customization steps:
1. Customize the script /usr/lpp/ing/adapter/ingreport.sh. Adapt the installation path:

INSTALL_DIR=/usr/lpp/ing/adapter

2. Copy the sample job INGXRPRT and follow the steps as described in it.
There are several input parameters that you need to set correctly otherwise the conversion utility
cannot access the DB2 table:

Parameter Details

INGDSN=HLQ.SMF.REPORT The data set of the SMF report created by the INGPUSMF
utility.

INGSEPCHAR=; This must be the separator as used by the INGPUSMF utility.

INGDOMAIN=MyDomain The name of the E2E domain as specified in the E2E adapter
configuration file, ing.adapter.plugin.properties. If omitted the
default is used, which consists of the sysplex name and XCF
group name.
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Parameter Details

INGDB2_USER=db2inst1 The DB2 user name for remote logon.

INGDB2_PSW=db2admin The DB2 password for remote logon.

INGDB2_PORT=50000 The TCP/IP port to connect to the remote DB2.

INGDB2_SERVER=db2-host-name The TCP/IP host name to connect to the remote DB2.

INGDB2_NAME=EAUTODB The DB2 name or the DB2 location if DB2 resides on z/OS.

INGDB2_SCHEMA=EAUTOUSR The DB2 schema of the table.

3. (Optional) If the database is located on a z/OS system, a DB2 license file is required. An appropriate
license file for z/OS platform, db2jcc_licencse_*.jar must be installed in the application classpath.
Connectivity to z/OS databases is enabled with the license file as defined by the following table.

Update DB2 database From==> To License file required

Distributed system   ==> z/OS DB2 db2jcc_license_cisuz.jar

z/OS system             ==> z/OS DB2 db2jcc_license_cisuz.jar

z/OS system             ==> distributed DB2 db2jcc_license_cu.jar

a) Copy the appropriate license file, for example, from DB2_INSTALL_PATH/db2/db2v8/jcc/classes/
db2jcc_license_cisuz.jar to the directory /usr/lpp/ing/adapter/lib.

b) Modify the classpath in the script /usr/lpp/ing/adapter/ingreport.sh and add the license file for
example:
DB2_LICENSE+$INSTALL_LIB/db2jcc_license_cu.jar

4. Run the INGXRPRT job that copies the SMF report to DB2.

Output
The output of the ingreport.sh shell script shows the progress of the z/OS offloader. Any errors that occur
are reported in this output. See IBM System Automation for z/OS Messages and Codes for details of these
messages (INGX9850E, INGX9855E, and INGX9856E).
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Chapter 8. Automating Processor Operations-
Controlled Resources

This information describes how to customize your SA z/OS installation to enable the automation of
messages coming from target systems that are controlled by processor operations.

These target systems or resources are referred to as processor operations resources in the following.

Processor Operations, which is a focal point type function, allows you to monitor and control processor
hardware including Coupling Facility images, from a single NetView, the processor operations focal point.

Notes:

1. VM guest systems are treated the same as any other target systems that are controlled by ProcOps
(see IBM System Automation for z/OS Operator's Commands for details).

2. PSMs are "virtual" hardware and therefore not all target hardware commands apply (see IBM System
Automation for z/OS Operator's Commands for details).

With the method described in this chapter, you can use SA z/OS system operations to react on these
messages. This information is contained in “Automating Processor Operations Resources of z/OS Target
Systems Using Proxy Definitions” on page 81, which introduces the general process to achieve such
message automation.

Note:

The capability described in this section is a low-fidelity means to manage hardware resources from
System Automation's system operations panels, like INGLIST or INGREQ. However, the use of this
capability is discouraged due to certain limitations in this approach:

• Every target system is presented as an application resource missing the granularity of hardware
statuses that you would get, if you use existing processor operations panels, today.

• The message automation capabilities that this function gives you are focusing around automation of
the typical messages on the course of an IPL. Messages that are not already handled by the System
Automation product code require the implementation of custom message rules (either a user-defined
automation table or using automation table overrides out of the customization dialog).

Automating Processor Operations Resources of z/OS Target
Systems Using Proxy Definitions

SA z/OS processor operations can be used to automate messages that cannot be automated on the target
systems themselves. Typically these messages include those appearing at IPL time.

In a sysplex environment, there are additional messages (XCF WTORs) being displayed at IPL time when
joining the sysplex and at shutdown time when a system is leaving a sysplex. These WTOR messages
cannot be automated yet because SA z/OS system operations is not active at that time.

With the XCF message automation framework described in this chapter, you have a method of exploiting
your own XCF message automation.

Note: There are XCF WTOR messages, which are automatable by Sysplex Failure Management (SFM). In
these cases, to avoid conflicting automation, it is not recommended that you automate these messages
by SA z/OS.

Concept
You can use the SA z/OS standard interface and routines to handle system external messages in almost
the same way as system internally generated messages. This applies to the way of defining message
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automation in the customization dialog as well as to the means available for controlling message
automation at automation time.

To exploit the system operations mechanism for message automation, a proxy resource representing the
processor operations resources must be generated in the customization dialog as entry type Application
(APL).

There is a one-to-one relation between a proxy and a processor operations resource (target system). How
to implement this relation in the customization dialog is described in the following subsections.

Messages that are generated on external systems, where no SA z/OS is active or not yet active, can also
be automated. The resources generating these messages are called processor operations resources. They
are defined in the customization dialog as entry type System (SYS).

Customizing Automation for Proxy Resources
It is assumed that you have already used the customization dialog to define processor operations
processors (PRO). Within each processor entry, it is further assumed that you have specified the target
systems that you want to automate within the LPARS AND SYSTEMS policy. By building the policy (see
also LPARS AND SYSTEMS Policy Item in IBM System Automation for z/OS Defining Automation Policy) and
loading the configuration on the processor operations focal point, the hardware and its target systems are
accessible to processor operations.

Now, for every processor operations target system that you want to automate on the processor operations
focal point, you need to define the processor operations resources as entry type System (SYS) and a
corresponding proxy resource as entry type Application (APL) in the customization dialog.

If you want to define many proxy resources, you can use the application class concept as described in
IBM System Automation for z/OS Defining Automation Policy.

Defining the proxy resource as an Application (APL) has another advantage: The system is then visible
in the INGLIST panel and it can be managed and monitored like an application resource. SA z/OS users
are able to not only use message automation for target system messages, they can also issue start and
stop commands to IPL and shut down systems. These commands can be defined like any start and stop
command for an application. Unlike application resources, target systems are managed by processor
operations commands (for example, ISQCCMD target_system_name ACTIVATE FORCE(NO) or ISQSEND
target_system_name OC vary xcf,target_system_name,off,retain=yes). Processor operations commands
allow you to send MVS commands to target systems as well as hardware commands to the processor
(Support Element or Hardware Management Console).

The rules that you need to obey when defining a proxy resource are as follows:

1. Define the processor operations target system as entry type System (SYS). For those systems, the
following rule applies:

In the SYSTEM INFO policy, use the name of the processor operations target system for Image/
System name. The Image/System name must be unique within the policy database.

2. Define the proxy resource as entry type Application (APL). For those applications, within the
APPLICATION INFO policy, the following rules apply:

a. Use the name of the processor operations target system for Job Name. The Job Name must be
unique within the policy database.

b. Use NONMVS for Job Type. A proxy resource must always have a job type of NONMVS.
c. Use the name of the processor operations target system for Sysname. This is the same value that

you specified for Job Name and also for Image/System name in the related processor operations
resource SYS-entry above.

d. Use ISQMTSYS for Monitor Routine. ISQMTSYS attempts to get a system response from the
processor operations target system using either Gateway communication, XCF communication
(within the same sysplex), or communication via the hardware console, whichever method
succeeds first in that sequence.
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e. If you do not want the proxy resource, and hence the processor operations target system, to be
automatically started at IPL, set the Restart after IPL option to NO.

3. Because you can automate applications only by linking them to systems via an application group
(APG), you need to define an application group for the proxy applications. Choose an APG of Type
SYSTEM and Nature BASIC, with a Behavior of PASSIVE and leave the Automation Name empty to
avoid that a resource is created for this group. Also, do not merge the proxy applications with other
applications into this application group because destructive requests applied to a merged application
group would also affect the proxy resources contained in that group.

4. In the Message Processing panel for the proxy application, define the messages to be automated in the
Message ID column. Do not specify message ID ISQ900I, as this message is used as a carrier for the
original target system message.

Enter cmd in the Action column to specify the command to be processed if the defined message
occurs.

5. If the message to be automated is a WTOR, the variable &EHKVAR1 contains the reply ID. This variable
may then be used as a parameter to the ISQSEND command:

ISQSEND &SUBSJOB OC R &EHKVAR1,COUPLE=00

Startup and Shutdown Considerations
Processor operations commands must be used to start or stop processor operations resources, for
example:

• Start example:

ISQCCMD &SUBSJOB LOAD FORCE(NO)

• Stop example:

Pass 1 ISQSEND &SUBSJOB OC Z EOD
________________________________________________________________________

Pass 2 ISQSEND &SUBSJOB OC VARY XCF,&SUBSAPPL,OFF,RETAIN=YES

Note: If the delay time between sending the commands in pass 1 and pass 2 is not appropriate, you can
define a resource-specific Shut Delay in the Application Automation Definition panel.

For more details about processor operations commands refer to IBM System Automation for z/OS
Operator's Commands.

Preparing Message Automation
The interaction with target systems is based on the SA z/OS processor operations component. Therefore
the installation and customization of this component must be complete at this point.

Operating System messages from processor operations target systems receiving at the focal point are
transferred to ISQ900I messages.

ISQ901I is not relevant. It is used to inform interested operators about target system messages. It is not
used for automation purposes.

MSCOPE() parameter in CONSOLxx member: MSCOPE allows you to specify those systems in the
sysplex from which this console is to receive messages not explicitly routed to this console. An asterisk
(*) indicates the system on which this CONSOLE statement is defined. Because the default is *ALL,
indicating that unsolicited messages from all systems in the sysplex are to be received by this console,
this parameter must be set to '*' for correct automation by SA z/OS processor operations.

Automating Linux Console Messages

Automating Linux Console Messages
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The Linux Console Connection to NetView
When a Linux® target system IPLs, its boot messages are displayed on the Console Integration facility (CI)
of the System z® or 390-CMOS processor Support Element (SE). For SA z/OS processor operations, CI is
the only supported interface to communicate with the Linux operating system.

The communication between the processor operations focal point and CI is based on the NetView
RUNCMD and the Support Element's Operator Command Facility (OCF), an SNA application. In SA z/OS
processor operations, this connection path is referred to as a NetView Connection (NVC).

Linux Console Automation with Mixed Case Character Data
Unlike operating systems which translate console command input into uppercase characters, Linux is
case sensitive. The NetView automation table syntax allows the use of mixed case characters in compare
arguments of an IF statement.

When an automation command is to be scheduled as a result of such a comparison, any message token
arguments passed, are not translated into uppercase by NetView. Make sure that your automation routine
does not do an uppercase translation of parameters passed. For example, in REXX use the statement
PARSE ARG P1 P2 instead of ARG P1 P2, which implicitly performs a translation into uppercase. If a
Linux message invokes your automation code and the message information is retrieved using NetView's
GETMLINE function, no uppercase translation occurs. In order to send mixed case command data to the
Linux console consider the following REXX statement:

 Address Netvasis 'ISQsend MYlinux Oc whoami'

The addressed REXX command environment, Netvasis, passes the command string without doing an
uppercase translation. The ISQSEND command internally translates its destination parameters into
MYLINUX and OC but leaves command whoami as is.

Security Considerations
After Linux system initialization, usually a LOGIN prompt message is displayed allowing users defined to
the system to login. The ISQSEND command interface does not suppress any password data from being
displayed.

You may use the NetView LOG suppression character to avoid the password information to be visible in
the NetView log. In Support Element log files, such password data can be viewed in text form.

Restrictions and Limitations
The following Linux systems are supported:

• Linux systems running in an LPAR of a System z or 390-CMOS processor hardware
• Linux systems running on a System z or 390-CMOS processor hardware, configured in Basic mode
• Linux systems running as VM guest machines under z/VM® Version 4.3 or higher

Linux systems running under a VM, which itself runs as a VM guest, are not supported.

In the command shell environments of a Linux console it is possible to pass control keys as character
strings instead of pressing the keyboard control key combination to perform functions like Control-C. The
current Linux support of SA z/OS processor operations has not been tested using this Linux capability. Any
Linux program or command script that requires a user interaction with control keys should not be invoked
using the SA z/OS processor operations ISQSEND interface.

How to Add a Processor Operations Message to Automation
Use the NetView automation table (AT) and the SA z/OS command set to implement console automation.
You can automate the routine functions that an operator performs when a particular message is
generated. For more information see IBM System Automation for z/OS Defining Automation Policy, SC33–
7039.
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Messages Issued by a Processor Operations Target System
When a target system issues a message, the message is forwarded to the processor operations focal point
system. The focal point system repackages the message within an SA z/OS ISQ900I message, an ISQ901I
message, or both, and routes the message to the appropriate task:

• ISQ900I messages are routed to SA z/OS processor operations autotasks. If you want automation
that you write to receive ISQ900I messages, use the ISQEXEC command to run the automation in
a target control task. For information about using the ISQEXEC command, see section Sending an
Automation Routine to a Target Control Task in “Issuing Other OCF Commands” on page 11. Your
NetView automation table entries for SA z/OS should acknowledge the ISQ900I identifier for all target
system messages forwarded to the processor operations focal point system. You can specify your
ISQ900I automation table entries to be target system specific, however, this is not recommended.

• ISQ901I messages are routed to all logged-on operators identified as interested operators by the
ISQXMON command or marked as such in the customization dialog.

For information about the ISQEXEC and ISQXMON commands, see IBM System Automation for z/OS
Operator's Commands.

A message forwarded from an SNMP connection consists of the following:

• ISQ900I or ISQ901I message identifier
• Name of target system where the message originated
• Console designator form describing where the message originated
• Message identifier and text of the original message from the target system

For example, if a NetView connection forwards the message IEA101A SPECIFY SYSTEM PARAMETERS
from the operating system to the focal point system, SA z/OS creates one or both of the following SA z/OS
messages:

ISQ900I target-system-name OC IEA101A SPECIFY SYSTEM PARAMETERS
ISQ901I target-system-name OC IEA101A SPECIFY SYSTEM PARAMETERS

This message format applies to all processor operations target system messages. It is independent of the
target system resource that generated the original message.

The processor operations target system message is sent in the same format as it would be displayed on
the processor Support Element (SE) or Hardware Management Console (HMC).

Specifics of VM second level systems: Messages from guest machine operating system appear in the
following format:

ISQ900I psm-name.guest-name OC IEA101A SPECIFY SYSTEM PARAMETERS

Messages from CP on the virtual machine appear in the following format:

ISQ900I psm-name.guest.name OC HCPGSP2627I The virtual machine is 
        placed in CP mode due to a SIGP initial CPU reset from CPU 00.

Messages from the PSM itself appear in the following format:

ISQ700I psm-name SC ISQCS0314E Message Handler has failed.

Note: Make sure your consoles issue messages in the format that you expect and write your NetView
automation table entries accordingly.

Sample NetView Automation Table Statements
The following message response example presents a request for system parameters when the message
ID string contains 'IEA101A':

 IF      TEXT = . 'IEA101A SPECIFY SYSTEM PARAMETERS'
       & MSGID = 'ISQ900I' .
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 THEN    EXEC( CMD('ISQI101 ' ) ROUTE ( ONE *  ))
         DISPLAY(N) NETLOG(Y);

This NetView automation table statement initiates the ISQI101 routine when the message condition is
true.

Note: Text within messages may be in mixed case. Be sure your coding accounts for mixed case text.

Message ISQ211I
Some SA z/OS commands attempt to lock and unlock ports. Where an operator owns the lock for a port,
the SA z/OS unlock command, ISQXUNL, returns RC=12 associated with message ISQ211I Unable to
unlock target name console.

In such a case, you have the choice of either using the ISQOVRD command to force an unlock or you may
end your automation with a message. Thereafter, you can view your NetView log to find out the reason for
the lock of the port.

Your automation may encounter this message ISQ211I frequently. Attempting to unlock a locked port is
not an error condition; however, it may be a sign that the calling command did not succeed. Schedule your
automation from messages that indicate positively that a command did not run, not from the ISQ211I
message.

Processor Operations Command Messages
Some SA z/OS commands run on the target system. The message returned from these commands
indicates only that the support element was told to schedule the operation. Consequently, the operation
at the target system may not complete even though the SA z/OS message indicates a successful
completion.

SA z/OS acknowledges only that the command was successfully forwarded to the support element. An
unsuccessful operation at the target system generates an unsolicited message that the support element
forwards to the focal point system in an ISQ900I message. Schedule your automation from the message
that positively indicates that a target system operation did or did not complete.

The SINGSAMP SA z/OS sample library contains the PL/I source code for several automation routines
that issue responses to selected messages. You can select the response that is most appropriate for your
enterprise. You can also use them as models to create your own automation routines. The list in Table
12 on page 86 summarizes these routines, the messages they respond to, and the responses they issue
initially.

Table 12. SINGSAMP SA z/OS Sample Library Routines

SINGSAMP
Member

Routine Description

INGEI120 ISQI120 Responds to the following messages:

IEA120A Device ddd volid read, reply cont or wait.
IOS120A Device ddd shared (PR volid not read.)
        the recovery task, reply cont or wait.

Issues the following response to the target: CONT

INGEI357 ISQI357 Responds to the following message:

IEE357A Reply with SMF values or U.

Issues the following response to the target: U
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Table 12. SINGSAMP SA z/OS Sample Library Routines (continued)

SINGSAMP
Member

Routine Description

INGEI426 ISQI426 Responds to the following message:

$HASP426 Specify options - subsystem_id.

Issues the following response to the target: WARM,NOREQ.

INGEI502 ISQI502 Responds to the following message:

ICH502A Specify name for primary/backup
        RACF data set sequence nnn or none.

Issues the following response to the target: NONE

INGEI877 ISQI877 Responds to the following message:

IEA877A Specify full DASD SYS1.DUMP data sets
        to be emptied, tape units to be used as
        SYS1.DUMP data sets or GO.

Issues the following response to the target: GO

INGEI956 ISQI956 Responds to the following message:

IEE956A Reply - ftime = hh.mm.ss,
        name = operator,reason = (ipl,reason)
        or u.

Issues the following response to the target: U

The SA z/OS automation table entries in the ISQMSG0 member of the SINGNPRM data set include
inactive entries that call these automation routines. To incorporate these routines into your automation,
do the following:

1. Remove the comments from the corresponding automation table entries for the messages that initiate
the automation routines you want to use. If you perform these steps as part of the initial SA z/OS
installation, make these changes before you incorporate the SA z/OS entries. If you do this after the
initial SA z/OS installation, change the NetView automation table.

2. Code the routines you are using to issue the responses you want.
3. Compile the PL/I source code for the routines you want to use, and link the resulting object code to

your PL/I library.
4. Recycle the NetView program to activate the new entries.

For automation processing to occur, each message in the NetView automation table at the focal point
system and at each target system must be made available to the system's NetView program. In
z/OS, MPF controls message availability to the NetView program. Examine the MPF list member in the
SYS1.PARMLIB data set to ensure that the necessary messages are marked for automation. For target
systems using other operating systems, check the message suppression facilities used on those systems.

Testing Messages
SA z/OS provides a collection of NetView automation table entries for your SA z/OS configuration.
NetView automation table entries are in the AOFCMD member of the SA z/OS SINGNPRM installation
data set. When these entries are moved to your NetView automation table, they may need additional
editing.

For example, you may already test for a particular message in your production NetView automation table.
If you add an entry that tests for that same message, your automation table will not run as you expect.
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After a match with the test criteria is found, the search of the automation table is aborted. The second
NetView automation table statement is not found. Consequently, the message does not drive all of your
required actions.

To avoid this, combine entries into a single test condition. This ensures that all required actions are
scheduled for all messages. For the following message:

IEA320A RESPECIFY PARAMETERS OR CANCEL

your NetView automation table may already have the following entry: ( 1 )

IF      MSGID = 'IEA320A'
THEN    EXEC (CMD('USERJOB') ROUTE( ONE *) ) CONINUE(Y);

With SA z/OS installed, the following message appears when forwarded from System z or 390-CMOS
processor hardware:

ISQ900I SYS1 OC IEA320A RESPECIFY PARAMETERS OR CANCEL

After the SA z/OS entries are added, the NetView automation table includes the following entry:

IF      TEXT = . 'IEA320A RESPECIFY PARAMETERS' .
        & MSGID = 'ISQ900I' .
THEN
        EXEC (CMD('ISQI320 '   ) ROUTE( ONE *) )
        DISPLAY(N) NETLOG(Y);

In this case, the first entry satisfies the IF test and the command USERJOB runs ( 1 ). The second
command, ISQI320, is not scheduled to run because once the message matches a table entry, the
autotask stops searching. Combine these two entries into a single entry, such as:

IF      TEXT = . 'IEA320A RESPECIFY PARAMETERS' .
        & MSGID = 'ISQ900I' .
THEN
   EXEC(CMD('ISQI320 ' ) ROUTE( ONE *) )
   EXEC(CMD('USERJOB ' ) ROUTE( ONE *) )
   DISPLAY(N) NETLOG(Y);

When you use the second example, both commands are scheduled.

If your NetView automation table tests the text of SA z/OS messages, the message format must match the
character case for which you test. This can be done by requiring all sites to use the same format for their
messages, or by duplicating AT entries in uppercase and in mixed formats.

Building the New Automation Definitions
When you are finished using the customization dialog to add message response and automation operator
information to the automation policy, you need to build the system operations control files.

The complete description of how to build and distribute these files is provided in IBM System Automation
for z/OS Defining Automation Policy.

The SA z/OS build function places the new automation definitions in the data set defined in the Build
Parameters panel.

Copy the new automation definitions into the SA z/OS NetView DSIPARM concatenation in the NetView
startup procedures, or concatenate it to the NetView DSIPARM data set.

Loading the Changed Automation Environment
To reload the AMC file, automation control file and the AT perform the following actions:

To reload the MPF list, enter the following command:
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• From the z/OS console:

SET MPF=xx

• From a NetView console using the MVS prefix:

MVS SET MPF=xx

Where xx is the suffix of the MPF member in the SYS1.PARMLIB data set to load.

To reload the automation manager configuration file, all updated automation control files and the
automation tables issue:

INGAMS REFRESH

Specify a data set name or an asterisk (*) which means reload the current data set.

Using Pipes and ISQCCMD for Synchronous HW Commands
The System Automation for z/OS Hardware interfaces command, ISQCCMD, available for Processor
Operations SNMP connections and with imitations for BCP Internal Interface connections, allows the
management and control of processors and logical partitions, as well as hardware activation profiles.

When used in automation procedures, ISQCCMD provides an easy-to-use interface to automate processor
operations management and configuration tasks.

The following HW commands return all their response information immediately to NetView on command
completion and are therefore called synchronous commands:

• CCNTL
• CONDATA
• CPCDATA
• GETCLUSTER
• GETISTAT
• GETIINFO
• GETSDGA
• GETSINFO
• GETSSTAT
• ICNTL
• PROFILE
• STPDATA
• TCDATA

For SNMP and BCPii connections, ISQCCMD supports NetView PIPES. On completion of the ISQCCMD
command, a PIPE KEEP with the name ISQ.SNMP contains the immediate command response of the HW
command that was issued, for example:

* ISQCCMD  G14 GETSINFO                                                       
| ISQ417I GETSINFO STATUS(SUCCESS)
| ISQ900I G14.KEY3 SC AOFA0017 GETSINFO G14 STATUS(OPERATING) PDATA(TYPE(2084)
  ,MODEL(B16),S/N(000020016F7A)) MODE(LPAR) APROF() CPCSNAME(IBM390PS.G14) NAME(G14)
  TSTIME(070825131936)
| ISQ419I ISQCCMD GETSINFO processing on G14 is complete.
* IPSFO    PIPE KEEP ISQ.SNMP | CONS                                        
| IPSFO    AOFA0017 GETSINFO G14 STATUS(OPERATING)
           PDATA(TYPE(2084),MODEL(B16),S/N(000020016F7A)) MODE(LPAR) APROF()
           CPCSNAME(IBM390PS.G14) NAME(G14) TSTIME(070825131936)
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In the example above, the HW common command GETSINFO was issued at a NetView console.
Embedded in the ‘ISQ’ messages the response from the hardware is displayed on the console, starting at
report ID AOFA0017.

The same information is available if you reference the PIPE KEEP with the name ISQ.SNMP, once the
ISQCCMD command completed, as shown in the example, with the content of ISQ.SNMP displayed on the
console.

In an automation procedure, this can be coded as shown in the following example:

/*ReXX*/
/* Display CPC information using the ISQ.SNMP KEEP */ 
Arg cpcname
‘ISQCCMD ‘cpcname’ GETSINFO’
If RC = 0 Then Do
  ‘PIPE KEEP ISQ.SNMP ‘ ,
  ‘  | LOC /AOFA0017/ ‘ ,
  ‘  | LOC /’cpcname’/’ ,
  ‘  | CONS ONLY’  
End   

As an alternative, you can get the immediate ISQCCMD HW responses directly into the PIPE input stream
if you use the PIPE NETVIEW stage followed by an EXPOSE TOTRAP stage. In this case, all ISQ messages
and the AOFA0017 report data is available for PIPE processing.

/*ReXX*/ 
/* Display CPC information in a PIPE */
Arg cpcname
‘PIPE NETV ISQCCMD ‘cpcname’ GETSINFO‘ ,
‘  | EXPOSE TOTRAP ‘  ,
‘  | LOC /ISQ90/      ,   /* takes ISQ901I or ISQ900I */
‘  | LOC /AOFA0017/   ,
‘  | LOC /’cpcname’/’ ,
‘  | CONS ONLY’  

Automating Asynchronous Hardware Commands with ISQCCMD
and PIPES

The following ISQCCMD hardware commands return two messages to NetView. First a message that the
HW command has either been accepted for execution or rejected. Second, if an acceptance message
was issued, a completion event message that contains the actual success or failure information of the
command is sent asynchronously.

• ACTIVATE
• CBU
• CTRLCONS
• DEACTIVATE
• EXTINT
• LOAD
• OOCOD
• RESERVE
• RESTART
• START
• STOP
• STP
• SYSRESET
• TCM

Automation scripts using the ISQCCMD interface must distinguish between the accepted or rejected
response of an asynchronous HW command and the actual command completion information, which
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may either indicate successful execution or a failure. The asynchronous command completion events
from the hardware are made available for message automation and TRAP AND WAIT processing by
ProcOps. Application scripts using the ISQCCMD interface can get the Accepted or Rejected responses
directly at ISQCCMD termination time. The Accepted response can then be used to wait for the command
completion event message.

Member INGEI004 of the SINGSAMP library provides a REXX sample illustrating how asynchronous
hardware commands can be automated using ISQCCMD and NetView PIPES, together with TRAP and
WAIT.

VM Second Level Systems Support
This feature provides ProcOps support to control and monitor guest machines running under VM.

ProcOps allows an operating system to be IPLed into a processor, amongst other facilities. Such an
operating system is VM. Within VM other operating systems can be IPLed as guest machines. Of particular
interest are LINUX guest machines, but MVS, VSE and even VM guest machines may be possible. (Lower
levels of guest machines are not considered). Previously there was no effective way to enter commands to
and receive messages from such a guest target system in order to validate that it had IPLed correctly, or
that it is behaving correctly.

With second level guest machine support you can:

• Capture messages issued by the guest machine itself and route these back to the ProcOps process for
display or automated processing, or both

• Send commands to the guest machine from ProcOps, either as operator requests or automated actions

Guest Target Systems
The most likely guest machine that is used as a target system is a LINUX system. When a LINUX machine
has a secondary user, the secondary user can use CP SEND commands to:

• Issue CP commands to the guest machine
• Log on as a user to LINUX
• Enter LINUX commands (after logging on)

(It is also possible to set up the LINUX system in such a way that LINUX commands can be entered on the
VM console without logging on to LINUX.)

The secondary user receives:

• All "boot up messages"
• Responses to CP commands that are run on the guest machine
• Responses to logon and LINUX commands

MVS machines are more complex. When an MVS machine is running, the original VM user first becomes
an NIP console and then an MCS console. In these console modes MVS takes over all I/O to and
from the console, and MVS messages to it cannot be intercepted by any CP facilities. Hence the SCIF
SEND command cannot be used to send commands to MVS, nor can MVS messages to this console be
intercepted.

However a "virtual SCLP console" for the guest machine can be used. During the NIP phase of
initialization, use of this console can be forced by configuring the guest virtual machine so that it has
no usable 3270 consoles. NIP then directs its messages to the guest machine as line mode commands.
This is analogous to the stream of messages sent to the Operating System Messages (OSM) window on an
HMC by an MVS system running in a logical partition.

Responses to any NIP messages are entered using the CP VINPUT command. Internally this is done when
an ISQSEND command is issued to the operator console (OC) of the target system. To ensure that such
VINPUT commands are processed correctly, the guest machine must be operating in RUN ON state at this
time.
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To ensure that RUN ON state is set, a CP SET RUN ON command is sent to all MVS guest machines at the
time when the guest machine is started by the PSM.

Once MCS operation is established, important messages requiring operator action are directed to the
guest machine. Again, these are analogous to the stream of messages directed to the OSM window of
the HMC. Initially, commands cannot be entered to MVS. To do so, it is necessary to enter "Problem
Determination Mode". To enter this mode, a VARY CONSOLE(*),ACTIVATE command must be entered.
Once this is done:

• All MVS messages that are displayed are routed to the guest machine
• Commands may be entered using the CP VINPUT command.

Problem Determination is not generally recommended.

To enter LINUX commands it is normally necessary to log on to LINUX. This requires a user ID and
a password. So, to provide for LINUX commands would require the specification of a user ID and a
password to ProcOps, with all the attendant difficulties in the area of security. At present the LINUX
system is considered IPL COMPLETE when specified messages have appeared. These do not require a
user logon.

VM machines may also be guest machines. Third level guest machines are not supported.

VSE machines may also be guest machines.

Customizing Target Systems

LINUX
The LINUX target system should have in its VM Directory entry, a CONSOLE statement that sets its PSM as
its default secondary user. For example, if the virtual machine LNXAO1 is controlled by a PSM running in
virtual machine ISQPSM1, then its CONSOLE statement might be:

CONSOLE  009 3215 T ISQPSM1

When a LINUX target system is to be deactivated a FORCE command is used to shut it. The default
guest signal timeout interval values (set by the SET SIGNAL command) and values defined for the guest
machine determine the interval used when allowing the LINUX system to shut in an orderly fashion. If this
function is required for a guest, you must ensure that this is set accordingly.

Such actions may include updating the etc/inittab entry on the LINUX system itself, and setting up a
SHUTTRAP module on the VM host.

MVS
This should have a CONSOLE statement in its VM directory entry that defines its PSM as its secondary
user:

CONSOLE  01F 3270 T ISQPSM1

It should also IPL a CMS system as its initial action. Once this CMS system is IPLed it should run a
PROFILE EXEC that includes the statements similar to the following:

SET RUN ON 
DETACH   01F 
IPL   7700

The SET RUN ON is needed so that when a response is to be sent to a NIP console the VINPUT command
used is effective.

The DETACH is used so that when the MVS system IPLs it finds none of its defined 3270 consoles
available to it. (You should also ensure that no user issues a VM DIAL to an address that is defined as a
NIP or MCS console.)
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The IPL command is used to IPL the MVS system.

The MVS system itself should have included in its active CONSOLxx definition a CONSOLE statement for
the SYSCONS so that commands can be entered to MVS after it is IPLed, for example:

CONSOLE DEVNUM(SYSCONS)       
        ROUTCODE(ALL)         
        AUTH(MASTER)          
        MSCOPE(*)             
        CMDSYS(*)             
        UD(Y)                 

VM
This should have a CONSOLE statement in its VM directory entry that defines its PSM as its secondary
user:

CONSOLE  01F 3270 T ISQPSM1

It should also IPL a CMS system as its initial action. Once this CMS system is IPLed it should run a
PROFILE EXEC that includes the statements similar to the following:

SET RUN ON 
DETACH   01F
IPL   7700

The SET RUN ON is needed so that when a response is to be sent to a console the VINPUT command used
is effective.

The DETACH is used so that when the VM system IPLs it finds none of its defined 3270 consoles available
to it. (You should also ensure that no user issues a VM DIAL to an address that is defined as a Operator
Console)

The IPL command is used to IPL the VM system.

The VM system itself should include within its OPERATOR_CONSOLES statement in the SYSTEM CONFIG
file (which resides on the "parm disk") a specification for the emulated system console, for example:

OPERATOR _CONSOLES    01F    020    System_Console

This ensures that when VM IPLs and finds no regular consoles available, it then uses the emulated system
console. This in turn directs the messages to the secondary user as a stream of line-mode messages.

VSE
This should have a CONSOLE statement in its VM directory entry that defines its PSM as its secondary
user:

CONSOLE  01F 3270 T ISQPSM1

It should also IPL a CMS system as its initial action. Once this CMS system is IPLed it should run a
PROFILE EXEC that includes the statements similar to the following:

TERM CONMODE 3215
IPL   7700

The TERM CONMODE 3215 command sets the console into line mode.

Tips to find SNMP MIB attributes for GETRAW queries
The ISQCCMD common command GETRAW is a fast low-level programming interface to retrieve CPC and
CPC image (LPAR) information from the SE or HMC console. It uses an active ProcOps SNMP connection
and returns the data as a sequence of hexadecimal values. Refer to the Operator's Commands manual or
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the SA z/OS online help for detailed information about ISQCCMD, the GETRAW common command, and
the supported parameters.

Use the following information to find the object attribute information to set up your queries. It is
recommended that you have a basic understanding of SNMP MIB variables and object IDs.

Member INGEI007 in the SA z/OS sample library illustrates with several ISQCCMD GETRAW calls how this
programming interface can be used with REXX. Various attributes are retrieved in the samples.

The IBM Z CPC and CPC image MIB variables with their object IDs and suffixes are all documented in
the IBM Z SNMP Application Programming Interfaces (SB10-7171-xx) publication, available from IBM
Resource Link.

Topic Location in IBM Z SNMP Application Programming
Interfaces manual

Attributes with specific mainframe/console
levels

About this publication > Summary of SNMP API
support updates

Appendix E. Object Attribute Availability

List of supported suffixes for attributes in
ascending order

Chapter 3. Console application APIs > Data exchange
APIs and commands API structures and definitions >
Constant definitions.

Detailed object descriptions for the GETRAW
supported CPC and CPC image (LPAR) objects,
including the data types returned

Chapter 4. Console application managed objects >
Defined CPC

Chapter 4. Console application managed objects >
CPC image
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Chapter 9. Automating USS Resources
This information describes how z/OS UNIX System Services are integrated into SA z/OS, how to set up
z/OS UNIX automation, and provides tips about using z/OS UNIX automation.

Integration of z/OS UNIX System Services
The following functions are supported by SA z/OS for z/OS UNIX applications:

• Starting and stopping of applications
• Monitoring of:

– Processes (represented by the command or path and user ID)
– TCP Ports
– Files and file systems
– Generic User Monitoring (the user supplies a z/OS UNIX monitoring routine or script)

• Using an API to execute z/OS UNIX commands (INGUSS command)

Infrastructure Overview
The z/OS UNIX resources that should be automated must run in the z/OS UNIX of a z/OS system that
is already automated by SA z/OS. From the automation manager's perspective the NetView agent of this
system is responsible for the z/OS UNIX resources.

For command execution through INGUSS or user-defined monitoring, a z/OS UNIX program (provided
by SA z/OS) is directly invoked by SA z/OS. This program (ingccmd) executes UNIX commands and runs
when started by SA z/OS with the jobname INGCUNIX. The ingccmd program is the extension of the
NetView-based agent into z/OS UNIX. To monitor the standard z/OS UNIX resources (processes, ports, or
files) an internal SA z/OS routine is started.

Process initialization and termination status updates of USS resources are directly reported from system
exits to the SA z/OS environment by the program-to-program interface INGUXPPI. A NetView task with
the same name immediately posts the UP or DOWN status. The automation agent recognizes and then
sets the correct automation status for the resource.

For this functionality, the NetView Subsystem Interface (SSI) is required. For a correct customization of
the SSI, refer to Step 5 in the chapter "Installing SA z/OS on Host Systems" in IBM System Automation for
z/OS Planning and Installation.

When monitoring of the USS process indicates that it is down, its status is updated to AUTODOWN.
However, because it may take some time before a USS process has ended (that is, to clean up the
resources that is had acquired), monitoring is repeated after a cleanup delay. If you define your own
USS processes, you should specify a suitable cleanup delay using the APPLICATION INFO policy item.
Consider using an application class if you need to define several processes.

Setting Up z/OS UNIX Automation

Customization of z/OS UNIX Resources
z/OS UNIX resources are introduced to SA z/OS by defining them in the SA z/OS customization dialogs.

The customization dialogs support the application type USS. If USS is selected, you can enter z/OS
UNIX-specific data such as a UNIX user ID, command or path, filename, or monitored port. Choose one of
these fields to enter the data.
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The start and stop definitions can be varied between MVS and z/OS UNIX commands. For example, to
stop an application you can issue a UNIX kill command first and (if this was not successful) you can
perform an MVS cancel later.

Definitions for Automation Setup
The USS path where the program shipped with SA z/OS is located must be defined in the USS Automation
Path field of the System Info policy.

Definitions for z/OS UNIX Resources
To define a new application entry (APL, class, or instance), specify the application type USS on the Define
New Entry panel. When choosing the application type USS, the option USS Control is displayed on the
Policy Selection panel.

Select USS Control on the Policy Selection panel to enter the data for the new z/OS UNIX resource. You
can specify only the user ID and the z/OS UNIX monitoring routine for a class on this panel. All other
definitions (for example, from/to, dependencies, and so on.) can be entered as usual. For more details
about this panel, see IBM System Automation for z/OS Defining Automation Policy.

USS applications must be defined with a HASPARENT relationship to JES.

Use the USS Control Specification policy item for an object of type INSTANCE to define the resource as a:
Process

Enter the path of the command that is running (as shown by the UNIX command ps -e) in the Process
Command/Path field.

Filter
Enter additional filter criteria to uniquely identify the USS process. The field is optional and can only
be specified if a 'Command/Path' specification is available.

TCP port
Enter the TCP port number that the resource is to listen to on the local host in the Port Number field.

File
Enter the path of a file in the zFS in the File Name field.

IP Stack
For TCP port monitoring, you may enter optionally the name of the IP stack if multiple IP stacks are
configured.

Often the command/path specification, especially for Java™ processes, is not unique. The Filter field
allows you to uniquely identify the USS process if this is not possible.

There are two methods of monitoring USS applications when using AOFUXMON:

• The standard method is to specify the monitoring routine AOFUXMON in the APPLCATION INFO policy
item, which is called by SA z/OS for UNIX System Services resources.

• If you choose to use your own script or program in the zFS, this is called by AOFUXMON. You must then
specify the script or program in the Monitoring Command field of the USS CONTROL policy item, and
you must also specify AOFUXMON in the APPLCATION INFO policy item.

If this program does not begin with a forward slash (/) it must reside in the same directory as the z/OS
UNIX ingccmd routine that is supplied by SA z/OS. Otherwise the name specified is considered to be an
absolute path identifier.

The UNIX monitoring routine must have an exit value. It can be one of the following:
0

Resource is available
4

Resource is starting
8

Resource is unavailable
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12
Error occurred

If the user-specified monitoring routine loops, it receives a SIGKILL after the AOFUSSWAIT time (defined
in the NetView stylesheet).

Hint: It is possible to write a message from this UNIX monitoring routine to the MVS system log, in order
to trigger an action or perform a status change through the NetView Automation Table (AT).

The monitoring routine AOFUXMON must be specified, otherwise the default monitoring routine (usually
INGPJMON) is called, which is not sufficient for z/OS UNIX resources.

The Job Type field can be either MVS or NONMVS:
MVS

Is only used for resources that represent a process with a unique jobname. For these resources
SA z/OS accepts the following messages for status changes:

• IEF403I Job started
• IEF404I Job ended
• IEF450I Job abended

If no start command is specified, the default MVS start method (s <JOBNAME>) is used.
NONMVS

SA z/OS ignores the messages listed above for status changes. This is necessary if the job name is not
unique.

For z/OS UNIX resources the Start Delay interval that has been defined begins when SA z/OS issues a
start command for an application. SA z/OS is informed by z/OS that the resource that is to be monitored
has started. This results in the USS resource being set in the status ACTIVE. After the first start delay
interval and successful monitoring, the ACTIVMSG comand is triggered, which sets the agent status to UP.
The default value for the Start Timeout is 2 minutes.

If you set the Skip ACTIVE status field in the APPLICATION INFO policy item to YES, the resource is
immediately set to UP when SA z/OS is informed by z/OS that the process is running.

For application shutdown, SA z/OS is informed by z/OS as soon as the process has ended. At this point,
SA z/OS immediately sets the resource into the AUTODOWN status.

As a result of this behavior you should carefully consider how you set the following parameters in the
APPLICATION INFO policy item, either for the application or at the class level:

• Start Delay
• Start Cycles
• Skip ACTIVE status
• Shutdown Pass Interval
• Cleanup Delay

For more information, see the *USS best practices policy.

Automated Resources

Process Monitoring
No UNIX process identifiers (PIDs) can be monitored. The monitoring routine needs the start command
and the user ID that the process belongs to. This information can be obtained with the UNIX command
ps.

In the following example all processes that belong to the user USER are displayed:

USER:/u/user/ingcmd>ps -e

       PID COMMAND
  33554481 /bin/sh
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  50331698 /usr/sbin/rlogind2
  33554486 /usr/lpp/netview/bin/cnmeunix
  67108927 /bin/sh
  83886176 /bin/ps
  33554821 /usr/sbin/inetd
  83886472 FTPD    
  67109276 /bin/sh
  16777629 /usr/sbin/rlogind2
  33554924 HSAPYTCP

This means that automation could not distinguish between the two processes started by /usr/sbin/
rlogind2. Processes started by identical commands must have different user IDs.

Alternative 1

If it is necessary to automate processes running multiple instances, a user could use softlinks to
distinguish between the different processes. For example, the process:

/u/user/usstest/testme

should be started more than once. In this case, create some softlinks:

USER:/u/user/usstest> ln -s testme test1
USER:/u/user/usstest> ln -s testme test2

This results in:

USER:/u/user/usstest>ls -al
total 216
drwxrwxr-x   2 USER     DE#03243    8192 Jan 24 16:24 .
drwxr-xr-x  19 USER     DE#03243    8192 Jan 24 16:23 ..
lrwxrwxrwx   1 USER     DE#03243       6 Jan 24 16:24 test1 -> testme
lrwxrwxrwx   1 USER     DE#03243       6 Jan 24 16:24 test2 -> testme
-rwxrwxr-x   1 USER     DE#03243   94208 Jan 24 16:23 testme

These three programs (being the same "real" program) can be automated with the three different start
commands test1, test2, and testme. These links may be created as a prestart command and deleted as a
shutfinal command.

Note: Only the command is used, not the parameters that were used to start the program. This is
because a program may be started by SA z/OS with different startup parameters, depending on what
the automation manager told the automation agent to do. In this case, the only constant value is the
command, not the parameters.

Alternative 2

The same program can run in parallel several times by using different startup parameters (like Java
programs). In this case it is inefficient to automate these processes as described above. Java programs
run in a Java environment and are visible as Java processes, for example:

# ps -e                                                    
     PID TTY       TIME CMD                                
50331734 ?         5h24 .../V6R1/AP/AppServer/java/bin/java
83886173 ?         1:44 .../V6R1/AP/AppServer/java/bin/java
60341724 ?         2h36 .../V6R1/AP/AppServer/java/bin/java
73392173 ?         1:02 .../V6R1/AP/AppServer/java/bin/java

It is impossible in this case to distinguish and evaluate the process that should be monitored.

The command ps -ef shows the same processes (for example, programs running in a Java
environment), without the fully-qualified Java path but with a parameter chain that is used for startup.

#ps -ef                                                      
   UID        PID PPID  C    STIME TTY  TIME CMD  
EEZDMN   50331734    1  -   Jun 27 ?    5h25 java -Djava.util.logging.configureByServer=true
EEZDMN   83886173    1  -   Jun 27 ?    1:44 java -Dcom.ibm.eez.adapter.debug=true          
EEZDMN   60341724    1  -   Jun 27 ?    2h36 java -Djava.util.logging.manager=connect       
EEZDMN   73392173    1  -   Jun 27 ?    1:02 java -Djava.security.auth.login.config=/etc/security.conf

Mapping the output of both commands using the matching PID, a unique process can be evaluated and
monitored. The process that is distinguished is then:
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/SYSTEM/local/WebSphere/V6R1/AP/AppServer/java/bin/java
-Djava.util.logging.configureByServer=true             

Where the data that is specified in the USS Control Specification panel in the Process Command/Path
field is /SYSTEM/local/WebSphere/V6R1/AP/AppServer/java/bin/java and in the with Filter
field is the filter -Djava.util.logging.configureByServer=true.

Filter specification considerations on the USS Control Specification policy:

There are some cases that you cannot use the ps -ef command output directly as the filter. Assume that
the ps -ef command returns the following sample running processes:

     PID ... CMD                                                                          
83886161 ... java -Djava.util.logging.configureByServer=true
50331736 ... java -Dcom.ibm.eez.adapter.debug=true
16398523 ... java -X32m -X256m -Xquick -Dibm=1 -Ds=2 -Dl=1 Da=5 De=7 
13259061 ... sh -c sleep 300 ; uss_command parm1 

• Quotation marks (example PID 13259061)

If the USS start command does contain quotation marks, for example,

sh -c 'sleep 300 ; uss_command parm1'

Then the quotation marks are not present any longer when you are checking the running processes
within the system. Nevertheless, specify the filter data with single-quotation marks to be able to identify
the process within the system:

-c 'sleep 300 ; uss_command parm1'
• Variable substitution & quoted strings (example PID 16398523)

A USS shell script may contain variables that are surrounded by double and single quotation marks, for
example,

...
#variable section
JO='-X32m -X256m'
JP1='-Xquick -Dibm=1'
JP2='-Ds=2 -Dl=1'
#command execution
nohup java "${JO}" "$JP1" $JP2 'Da=5 De=7'
...

When the command is issued, the variables are resolved.

Specify the filter data with single-quotation marks surrounding the resolved content as detected from
the running process:

'-X32m -X256m' '-Xquick -Dibm=1' -Ds=2 -Dl=1 'Da=5 De=7'

If the USS program has the sticky bit set, the MVS load is performed using the symbolic link name.
For example, running two instances of syslogd requires the usage of a symbolic link, for example, /tmp/
syslogd. A separate /tmp directory must be used so that the same name (syslogd) can be created.

TCP Port Monitoring
Exactly one TCP port number can be entered for one resource. SA z/OS monitors the local host as
returned by the function gethostid().

When this port has a state of 'listening,' this resource is considered to be 'available' in terms of SA z/OS.
All other states of the port map to 'unavailable.'

No user ID is required for definitions.

If your system is configured with multiple IP stacks you may specify the name of the corresponding IP
stack for the defined port in the IP Stack field.

Setting Up z/OS UNIX Automation

Chapter 9. Automating USS Resources  99



File or File-System Monitoring
The existence of a file (belonging to a certain user) is verified. Many applications create files at startup
and delete these files when terminating normally. If more than one file should be monitored, this can be
modeled as an application group (APG) in the automation manager.

This monitoring can be used to determine if a certain file system is mounted. The start command for this
resource would be a UNIX 'mount' command, the stop command a UNIX 'umount'.

Start and Stop Definitions (INGUSS Command)
If the resource is to be controlled by traditional MVS commands, this could be done in the same way as
for all other MVS applications.

Issuing commands in the z/OS UNIX environment is done by specifying the INGUSS command in the start
or stop definitions for the resource. z/OS UNIX and MVS commands can be mixed in different shutdown
passes.

Note: INGUSS can only be used if the primary JES is available. Therefore, z/OS UNIX resources using
INGUSS need a HASPARENT dependency to JES. Most z/OS UNIX applications have this dependency. If
you want to issue prestart commands, an additional PREPAVAILABLE dependency is necessary.

If you want to switch the start of your USS related subsystems from a BPXBATCH based started task
to an INGUSS command call, the appropriate INGUSS command patterns vary for different cases.
For BPXBATCH related considerations, see INGUSS command in IBM System Automation for z/OS
Programmer's Reference.

Command Examples

Start Command for a Process

To start a process with the command and job name specified in the customization dialogs, enter INGUSS
JOBNAME=&SUBSJOB &SUBSPATH &SUBSFILTER in the Command Text field on the Startup Command
Processing panel of the STARTUP policy item of the resource.

Only the command that was used to start an application or a process can be monitored. If the same
program is to be started multiple times, a softlink as prestart command could be used to distinguish the
processes.

Use a Softlink to Distinguish Processes That Run the Same Executable File as a Prestart Command

To create a softlink for &SUBSPATH (the path parameter of the resource issuing the command, for
example, /u/user1/uss1) and link to the file /u/user1/usstest, enter the following command in the
Command Text field on the PRESTART Command Processing panel:

INGUSS /bin/ln -s /u/user1/usstest &SUBSPATH

When looking at the zFS, this results in:

USER1:/u/user1>ls -l
total 408
lrwxrwxrwx   1 USER1     DE#03243       7 Feb 13 12:44 uss1 -> usstest
-rwxrwxr-x   1 USER1     DE#03243  163840 Jan 29 14:55 usstest

Stop Commands for a Process

A z/OS UNIX process may be stopped in different ways (using escalation passes). For example, you can
first use the z/OS UNIX kill command, if that does not work use z/OS UNIX kill -9, and finally enter
an MVS cancel command.

Enter the definitions for this example as shown in Figure 23 on page 101 on the Command Processing
panel for the normal shutdown phase of the resource (via its SHUTDOWN policy item).
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 Cmd Ps AutoFn/* Command Text                                                   
     1           INGUSS /bin/kill &SUBSPID                                      
     3           INGUSS /bin/kill -9 &SUBSPID                                   
     4           MVS C &SUBSUSSJOB,A=&SUBSASID                                  

Figure 23. Stop Definitions for a Process

&SUBSPID is replaced at runtime by the real PID of the process.

Stop Command for a File

A stop command for a file may be deleting the file. The file name entered in the customization dialogs can
be found in &SUBSFILE, as shown in Figure 24 on page 101. 

 Cmd Ps AutoFn/* Command Text                                                   
     1           INGUSS /bin/rm &SUBSFILE                                       

Figure 24. Delete a File

Example: sshd
The Secure Shell Daemon application (SSH daemon or sshd) is the daemon program for ssh. This program
is an alternative to rlogin and rsh and provides encrypted communications between two untrusted hosts
over an insecure network. The sshd is the daemon that listens for connections from clients on port 22.

It is normally started when z/OS UNIX is initialized. It forks a new process for each incoming connection.
The forked processes/connections handle key exchange, encryption, authentication, command execution,
and data exchange. These connections show the same jobname and Command/Path and Filter as the SSH
daemon does. At sshd startup time its process ID (pid) is written in the /var/run/sshd.pid file.

Any adaptation and configuration changes to the sshd can be done in the sshd configuration file
sshd_config. It is located in the /etc/ssh directory.

Keeping the Secure Shell Daemon application (sshd) highly available requires that the sshd will not be
detached from its parent process. Additionally, the sshd must be started in a separate shell environment.
This shell is needed to establish a unique process which can be monitored. It can be accomplished by
starting the sshd with option -D

For shutdown purposes it is required that the process ID file (sshd.pid) is written to your file system. This
process ID will be read from that file and used to identify the sshd to terminate.

The ps -ef command supplies further parameters to identify the process referenced as Filter , for
example:

ps -ef | grep ssh
 UID        PID        PPID      C STIME TTY             TIME CMD
 AUTO1   83886553   67109368  - 14:53:27 ?         0:00 -sh -c /usr/sbin/sshd -D
 AUTO1   83886563   50335037  - 14:53:37 ttyp0000  0:00 grep ssh
 AUTO1   83887096   83886553  - 14:53:28 ?         0:00 /usr/sbin/sshd -D

Process 83886553 represents the address space containing the covering parent shell process for
monitoring purposes. Process 83887096 is the sshd itself.

From this output, set the Filter as -c '/usr/sbin/sshd -D' .

Note: Even though the quotation marks are not shown in the output for the command ps -ef, they must
not be defined in the Filter field of the USS Control policy.

To check for the required information for the Command/Path issue the ps -e command and look for the
process Id of the parent shell:

PID          TTY TIME        COMMAND 
... 
83886553    ?    14:53:27    /bin/sh 
67109368    ?    14:34:28    BPXBATCH 
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83887096    ?    14:53:28    /usr/sbin/sshd 
…

or issue ps -e | grep 83886553 to get the process directly:

83886553    ?    14:53:27    /bin/sh

This shows the process ID (PID) for the sshd monitoring process. From this output, set the Command/
Path as /bin/sh

Next find out the z/OS user ID that the process is running on by issuing the following z/OS command and
locating the user ID in the first column where the process ID (PID) is listed:

D OMVS,PID=83886553

The following output is displayed:

BPXO070I 19.01.02 DISPLAY OMVS 035
 OMVS     000E ACTIVE             OMVS=(PA,F9,11,LO,S0,09)
 USER     JOBNAME  ASID        PID       PPID STATE   START     CT_SECS
 OMVSKERN SSHD     00D0   83886553   67109368 1WI----- 14.53.27      .0
 LATCHWAITPID=         0 CMD=-sh -c /usr/sbin/sshd -D
 THREAD_ID        TCB@     PRI_JOB  USERNAME   ACC_TIME SC  STATE
 21ADF00000000001 008FF1C0 OMVS                    .006 WAT  W

From this output, set the User ID to OMVSKERN

Verify that sshd listens on port 22 as stated above. Use the netstat -a command and evaluate the
output by looking for the SSHD jobname:

# netstat -a
 ...
 SSHD    00000049 Listen
 Local Socket:   0.0.0.0..22
 Foreign Socket: 0.0.0.0..0
 …

From this output, set the port to 22.

You can define the UNIX internet daemon (sshd) using the fields of the USS Control policy item for
applications (APLs) of type USS in the customization dialogs with, for example, the data in Table 13 on
page 102.

Table 13. Example Customization Dialog Definitions for sshd

Process File Port

Application Name* SSHD/APL SSH_FILE/APL SSH_PORT/APL

User ID OMVSKERN

Process Command/Path /bin/sh

Filter -c '/usr/sbin/sshd -D'

File Name /var/run/sshd.pid

PORT 22

IP Stack TCPIP**

* This is the name that was specified for the applications when they were created.** Only if the system is
configured for multiple IP stacks.

Define a basic group containing all resources with relationships that indicate that:

• The group containing all sshd related resources depends on TCPIP
• The file is created by the sshd process and can never be started or created directly by SA z/OS
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• The sshd process listening on the port can never be started or created directly by SA z/OS.

Figure 25 on page 103 illustrates the SSHD (modeled as a group) as up and running when the
process /bin/sh -c '/usr/sbin/sshd -D' started by user OMVSKERN appears, the file /var/run/
sshd.pid exists, and port 22 is in the status 'listen' (sshd listens to this port for incoming login requests).
You can only choose a port that is defined in /etc/ssh/sshd_config .

Figure 25. SSH Daemon Listening

Start definition for SSHD_FILE/APL
None.

Start definition for SSHD_PORT/APL
None.

Start definition for SSHD/APL
CMD: INGUSS JOBNAME=&SUBSJOB &SUBSPATH &SUBSFILTER (&SUBSxxx variables are
substituted at runtime)

Stop definitions for SSHD_FILE/APL
These commands remove the file if it has not yet been removed by the sshd process.

Table 14. Pass description for sshd

Number of Pass Pass Description Command

1 If not done yet by sshd INGUSS /bin/rm &SUBSFILE

4 If Pass 1 did not remove the file INGUSS /bin/rm -f &SUBSFILE

Stop definitions for SSHD/APL
When stopping the SSHD the correct proccess ID from the sshd.pid file must be extracted. The kill
command is used to terminate the sshd process itself. Once the sshd command is issued the parent
shell used for monitoring purposes terminates and the SSHD/APL will go into a AUTODOWN status.

Use the following commands:

CMD:INGUSS /bin/sh -c '/bin/ps -ef | /bin/grep `/bin/cat /var/run/sshd.pid`
| /bin/grep -q sshd && /bin/kill `/bin/cat /var/run/sshd.pid`'

CMD:INGUSS /bin/sh -c '/bin/ps -ef | /bin/grep `/bin/cat /var/run/sshd.pid`
| /bin/grep -q sshd && /bin/kill -9 `/bin/cat /var/run/sshd.pid`'

CMD:INGRCLUP &SUBSJOB

These commands and the USS pipe are described here:
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Table 15. INGUSS Command and USS Pipe Summary

Command Task

INGUSS Is the interface to USS

/bin/sh -c '...' Provides a fully-equipped shell environment to
extract the pid of the sshd

`/bin/cat /var/run/sshd.pid` Subshell extracts the pid of the sshd: the extract
pid is represented by 'extracted_pid' in the left
column

/bin/ps -ef Asks for all USS processes

| /bin/grep extracted_pid Shows only the sshd process

| /bin/grep -q sshd Suppresses output and returns the appropriate
return code: return code 0: sshd process exists
return code 1: sshd process does NOT exist

&& Continues only if return code is 0 / if sshd exists

/bin/kill extracted_pid or /bin/kill -9
extracted_pid

Issues SIGTERM signal against the 'extracted pid'
of the sshd

In case, the kill command does not terminate the sshd process use INGRCLUP routine to invoke a
z/OS CANCEL command against the address spaces of the sshd and the monitored parent shell.

SA z/OS provides the *USS best practices policy that provides definitions for several automated USS
daemons, such as sshd. Common definitions for USS resources can be found in the APL classes starting
with C_USS_xxx .

Use also the Unix man pages to get more information about the used USS commands and their
parameters.

Hints and Tips
USS tasks behave differently when started as STCs rather than directly in the USS environment.

When a USS task is started as an STC, the starting user ID may differ so that, in most cases, the
AOFUXMON monitor routine is not able to internally trigger ACTIVMSG UP=YES.

In this case it is much simpler for SA z/OS to start these applications with INGUSS. An AT entry is then not
required for the UP message. SA z/OS is able to internally simulate this so that you do not have to worry
about UP messages.

Job names (that is, the last character of the job name) are not predictable for USS resources. However,
AOFUXMON is able to handle this by monitoring the path within USS and changing the defined job name in
SA z/OS accordingly.

For the syslog daemon you would define the job name as SYSLOGD. When the application is started and
changes the job name to, say, SYSLOGD7, AOFUXMON adjusts the SA z/OS data model to reflect this.
However, this cannot be handled in the AT with a generic entry for SYSLOGD*. This is because the change
in the job name is caused by the USS process that creates a new address space with a new name, so that
the old address space with the old name terminates. This means that you get an ended message for the
old address space and an UP message for the new address space. The sequence of these messages is
also unpredictable.
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Trapping UNIX syslogd Messages
To trap UNIX syslogd messages, an entry must be added to the syslogd configuration file /etc/
syslog.conf in order to forward the messages to the MVS system log. Thus, messages can be
processed by the NetView automation table (AT).

To forward all messages to the MVS log add the following entry:

*.* /dev/console

To send special messages to the MVS log only, follow the syslog message naming guidelines (for example,
for warning messages use *.warn). You can use /dev/console as an ordinary file to write to.

To test this, issue the following UNIX command from a USS console:

echo 'This is a test message' >>/dev/console

The UNIX messages have the MVS message ID BPXF024I and are multiline messages.

Figure 26 on page 105 shows an example of the output of the UNIX command in the system log. 

M 13:45:21.34 STC03602 00000090 BPXF024I (USER) Feb 13 13:45:21 SYS1 syslogtest 67109100 : This 
is
S                               
498                                                               
D                  498 00000090 a test 
message                                                    

Figure 26. Example of a UNIX Message

Trapping messages issued with the UNIX __console() service
Message BPXM023I is written to the operator when an application has called the __console() (BPX1CCS/
BPX4CCS) service to issue a message and the process calling the service is not running with UID=0.
BPXM023I is a wrapper that folds around the actual message. It is either a single-line or a multi-line
message.

To make this message easy to automate, an INGMSGSA automation table statement reformats it to
have just one single format. This automation table statement removes the first line of the message if
BPXM023I is a multi-line message, or removes the prefix if BPXM023I is a single-line message. Thus you
can drive reliable automation for this message despite of the caller's privileges.

How SA reformats BPXM023I is documented in the INGMSGSA automation table as follows.

* BPXM023I message                                                    
*  This msgID is just a wrapper that is only added if the                
*  the process calling BPX1CCS is not running with UID=0.                
*  It is either a single or a multi line message.                        
*  SA modifies the message to enable automation independent from the     
*  issuers authority.                                                    
*                                                                        
* -- WTO request via BPX1CCS syscall - Multiline message --              
* Modify message - drop first line of the multiline message              
  IF MSGID = 'BPXM023I' & HDRMTYPE = '"' & TOKEN(3) = ''                 
     THEN EDIT('FWDLINE 1 1.* 1 WRITELINE COPYREST');                    
*                                                                        
* -- WTO request via BPX1CCS syscall - Singleline message --             
* Modify message - remove header from first line                         
  IF MSGID = 'BPXM023I' & HDRMTYPE = 'E'                                 
     THEN EDIT('WORD 3.* 1 WRITELINE COPYREST'); 
 

Take the following single-line BPXM023I message for example. This message is an UP message for IBM
Common Data Provider for z Systems.

BPXM023I (CDPU) HBO6001I The Data Streamer started successfully.
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The INGMSGSA automation table statement cuts the first two words off and results in the following
message.

HBO6001I The Data Streamer started successfully.

If you want to automate that message, then you can define the "real" message ID HBO6001I as the UP
message in SA policy.

Debugging
Debugging can be activated for z/OS UNIX monitoring and command execution on the AOCTRACE panel.
The automation procedure for monitoring is AOFUXMON and for command execution AOFRSUSS.

Turning on debugging for AOFRSUSS implicitly turns on debugging for ingccmd (the SA z/OS command
server).

The debugging messages are written to the netlog and to the z/OS UNIX system log (syslogd).
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Chapter 10. Command Receiver
This information describes how to set up and use command receivers for general use. The command
receiver is able to pass NetView, SA z/OS or MVS commands to SA z/OS for execution. The command
receiver is able to dispatch incoming commands to a dedicated group of tasks, called the command
work tasks. The command receiver uses a round robin algorithm that ensures, on average, each of the
associated automated functions has the same number of commands to process. In short, the technique
enables the execution of multiple received commands in parallel.

The command receiver is used by:

• the Batch Command Interface
• AT Overwrite Syntax Checking of the Customization Dialog
• Relational Data Services from TSO
• other SA z/OS provided REXX functions running in TSO.

Setting Up the Command Receiver
Setting up the command receiver consists of the following:

1. Setting up the TSO/Batch environment, see the installation steps in “Use RDS for TSO” on page 122.
2. Defining the command receiver as a subsystem automated by SA z/OS
3. Defining the command work tasks used by the command receiver.

It is recommended to use the SA resources defined in the add-on policy *IBMCOMP. Select the following
entries:

Table 16. Policy Entry Names and Types for Command Receivers

Policy Entry Name Policy Entry Type

CMDRCVR APL

CMD_RECEIVER APG

CMD_RECEIVER_AUTOOPS AOP

These SA z/OS resources ensure that the command receiver task is started at SA z/OS initialization time
and ready to receive commands. The operator is able to monitor the status of the command receiver by
using the INGLIST command.

Setting Up TSO/Batch Environment
Add REXX function package INGTXFPG in the appropriate TSO module. TSO/E provides the following
samples in SYS1.SAMPLIB that you can use to code your own load modules:

Table 17. Sample Names and Load Modules for a TSO/Batch Environment

Sample Name Load Module name

IRXREXX1 IRXPARMS for MVS

IRXREXX2 IRXTSPRM for TSO/E

IRXREXX3 IRXISPRM for ISPF

There are various considerations for providing your own parameter modules. For details, see the
section "Function Package Table" in chapter "Language Processor Environments" of TSO REXX Reference.
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The different considerations depend on whether you want to change a parameter value only for an
environment that is initialized for:

• ISPF
• both TSO/E and ISPF sessions
• a non-TSO/E address space

Select the appropriate sample parameters modules, for example, IRXREXX2 for TSO/E also for batch
PGM=IKJEFT01, and add function package INGTXFPG as a system function package.

The following must be considered:

1. You must link-edit the REXX default parameters module with the corresponding names. For example,
the load for the sample IRXREXX2 must have the name IRXTSPRM.

2. Place the resultant REXX default parameter module in the LPALST.
3. Make sure that also the function package INGTXFPG resides in the Linklist.

Defining Command Receiver as a Subsystem Automated by SA z/OS
Import the CMDRCVR and CMD_RECEIVER objects from the sample policy *IBMCOMP. This creates an
application group containing a non-MVS subsystem called CMDRCVR presenting the command receiver.
The command receiver task will run in a VOST. The name of the VOST is the name of the associated
resource, in this case CMDRCVR. The work operator AOFCMDnn that is associated to the command
receiver APL is used as the owner of the VOST to run the command receiver.

When the CMDRCVR starts, it starts the PPI receiver by means of command:

INGRCRCV START OPF=AOFCMDOPER

The default PPI receiver identifier is INGRCRCV, but you can change it to any other name. If you
want to change it, you must specify the parameters PPI and CSAKEY=EMULATOR. The parameter
CSAKEY=EMULATOR defines the key used by the batch command interface and is used as the default key
by INGRCRPC for communicating with the command receiver. EMULATOR is the only key that is supported.
The INGRCRCV command would look like as follows, where xxxxxxxx is the PPI name of choice.

INGRCRCV START PPI=xxxxxxxx CSAKEY=EMULATOR OPF=AOFCMDOPER 

You may start more than one command receiver for use by INGRCRPC. Each additional command receiver
must have a unique PPI ID, but you must not specify CSAKEY=EMULATOR. For details on how to correlate
INGRCRPC with a specific command receiver, see “Function INGRCRPC” on page 114. For details about
multiple command receivers, see “Multiple Command Receivers” on page 109.

Be aware that the command receiver is not able to route the incoming command to one of the command
work tasks when the OPF=AOFCMDOPER parameter is missing. In this case, all incoming commands are
processed sequentially by the VOST task hosting the command receiver.

When subsystem CMDRCVR terminates, it stops the command receiver by means of INGRCRCV STOP
command.

Notice that the sample definition has escalation commands defined for the stop process. It uses the
INGVSTOP DETACH and INGVSTOP TASK commands for the stop passes. These commands stop the VOST
hosting the command receiver directly rather than terminating the command receiver gracefully.

Defining Command Work Tasks Used by the Command Receiver
Import object CMD_RECEIVER_AUTOOPS from the sample policy *IBMCOMP. This object import defines a
set of automated functions named AOFCMDnn where nn starts from 1 running up. By default 5 command
work tasks are defined. You may add more command work tasks if needed.

Notes:
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1. The command receiver checks if the automated functions (command work tasks) are defined and
active. If this is not the case, the command receiver terminates with error message ING347I.

2. Note that the names of NetView Automation Operators must match those that you define in member
ING.SINGPRM(AOFOPFSO). You may customize this sample to your needs. By default, the following
map is used:

Table 18. Functions and Operators for SA and NetView respectively

SA Automated Function NetView Automation Operators

AOFCMD01 | AOFCMDnn AUTCMD01 | AUTCMDnn

Starting and Stopping the Command Receiver
The command receiver is controlled by SA z/OS. It is defined as a non-MVS subsystem. Unless changed,
the name of the command receiver subsystem is CMDRCVR.

To start the command receiver, issue the INGREQ REQ=START command against the appropriate
subsystem, for example:

INGREQ CMDRCVR/APL/SYS1/ REQ=START

You should not have to start the command receiver in normal circumstances, because it should start
automatically when the SA z/OS agent registers with the automation manager.

To stop the command receiver, issue the INGREQ REQ=STOP command against the appropriate
subsystem, for example:

INGREQ CMDRCVR/APL/SYS1 REQ=STOP

To see the list of VOSTs used by the command receiver(s) use the INGRCRCV QUERY command.

Multiple Command Receivers
If you have started multiple command receivers, you can use the INGRCRCV QUERY command to show
the list of command receivers and the associated NetView tasks and PPI IDs. For example:

ING337I   PPI RECEIVER STATUS LIST
          STATUS    PPI       TASK      VOST      VOSTOWNER  OPF
          --------  --------  --------  --------  ---------  ---
          ACTIVE    INGRCRCV  DSI#0022  CMDRCVR   AUTWRK03   AOFCMDOPER
          ACTIVE    INGRCVR2  MYTASK                         EVTOPER

The display of this command shows the NetView task and PPI ID, the VOST owner and the OPF as
specified in the command receiver start command.

The VOST is used to run the command receiver if it was started via the INGVSTRT command (you can
check it in the APL's start command in the sample PDB). In this case, the VOST is the APL subsystem
name and the VOST owner is the associated work operator AUTWRKnn.

The second line shows another command receiver that was started with PPI ID INGRCVR2 via command:

AOFEXCMD MYTASK INGRCRCV START PPI=INGRCVR2 OPF=EVTOPER

This second command receiver does not run in a VOST, but runs in the task MYTASK. The command will
be scheduled to be executed by the single automated operator function EVTOPER.

VOST versus OST
The first command receiver runs in a VOST, and the second one runs in an OST.

The advantage of the VOST is that no separate OST is required. However, if more than one command
receiver is running, it is not recommended to use the same VOST owner. Therefore, it might be useful to
start the command receiver with the AOFEXCMD command in a separate task.
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Submitting NetView Commands from a Batch Job
This section describes how to execute NetView commands from a Batch job. This is particularly useful for
Tivoli Workload Scheduler, but can be used stand alone.

Sample Batch Job JCL
A sample batch job can be found in the System Automation for z/OS Installation library SINGSAMP.
Member EVJSJ001 contains the sample JCL.

The batch job must be run on the same system as the SA z/OS Agent that contains the command
receiver specified by the batch job. In most cases there will be a command receiver running on every
SA z/OS Agent. The use of the general purpose command receiver is recommended since it can handle
the execution of multiple commands concurrently. The use of the general purpose command receiver is
triggered by the SERVER=* parameter. However, customization of the command receivers can alter the
names of the command receivers and also the number and configuration of the command receivers. You
should check with your system programmers to determine the correct system and command receiver to
use for these batch jobs.

Command Statement Syntax
The commands supplied to the batch job in the //SYSIN ddname have the following syntax:

line-mode-command

> DDNAME "-"

* comment

1. All blank lines are ignored.
2. All lines starting with an asterisk (*) are comment lines and are printed in the output but otherwise

ignored.
3. Comments on the end of commands are not allowed.
4. Comments are not allowed between continuation lines.
5. A command can be continued by appending a dash (-) to the line.
6. Command output normally goes to //SYSTSPRT.
7. Command output may be redirected to other DDNAMEs. The default for this is the right angle bracket

(>) symbol.
8. PIPE > stage is prohibited. Use PIPE QSAM instead.
9. Fullscreen commands are not allowed.

Valid Command Types
Any command, clist or REXX program that issues correlated line messages may be used.

This means almost all NetView commands, all SA z/OS commands that support OUTMODE=LINE and any
clist or REXX program that either issues SAY messages or PIPES the messages to CONSOLE.

The return code from the command can be used to stop the remaining commands from being executed.
See the “MAXRC” on page 113 parameter of the AOFRYCMD procedure definition.

Command Continuation
Commands are continued across lines by appending a dash to the end of the command, for example:

PIPE NETVIEW LIST STATUS=OPS | -
CONSOLE ONLY

Sample Batch Job JCL
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Command Output Redirection
Normally command output is printed on the //SYSTSPRT DDNAME. However, the output of commands
may be redirected to other DDNAMEs. This is achieved via a redirection symbol. The default is the >
symbol, for example:

PIPE NETVIEW LIST STATUS=OPS | CONSOLE ONLY >MYOUTPUT

This allows subsequent steps in the batch job or other batch jobs to use the output of the command for
their own purpose.

You can change the redirection symbol with the REDIRECT parameter of AOFRYCMD if, for example,
you use > as a command prefix. Note that the redirection symbol must not be the same as any of the
characters that occur in the command. For more details, see “AOFRYCMD Description” on page 111.

The DCB characteristics of the output DDNAME should be as follows:

LRECL=132,RECFM=FB

Command Information Retrieval

A REXX program scheduled with the command AOFRYCMD (or by deprecated EVJRYCMD) is able to
retrieve the originating jobname and user id through task globals:

jobname = TGLOBAL('AOFRYCMD_JOBNAME')
userid = TGLOBAL('AOFRYCMD_USERID')

Note: When using the general purpose receiver by coding SERVER=* then TGLOBAL AOFRYCMD_USERID
contains the TSO userid, populated by userid() function in AOFRYCMD.

When not using the general purpose command receiver then, the TGLOBAL contains the SAF ID of the PPI
sender, populated by the PIPE EDIT SESSID stage in command slave EVJRVCMD.

Executing a Command on a Different NetView
Almost all SA z/OS commands can specify the TARGET= parameter to force the command to execute on
the target system.

If a command does not have this facility, for example the NetView LIST command, you can use PIPE
labels to send the command to the appropriate NetView, for example:

PIPE CC dom01: LIST STATUS | CONSOLE ONLY

Or even:

PIPE CC dom01/auto1: LIST STATUS=OPS | CONSOLE ONLY

JCL for the Batch Command Interface
You will find the sample JCL EVJSJ001 to execute commands on SA z/OS/NetView agents in the SA z/OS
product sample library (SINGSAMP).

AOFRYCMD Description

Purpose
AOFRYCMD is a REXX procedure that issues commands to a SA z/OS agent and receives the results of
those commands.

Note: AOFRYCMD is identical to EVJRYCMD. For an easy migration EVJRYCMD still exists in the library
SINGNREX while AOFRYCMD resides in SINGTREX. The use of AOFRYCMD is recommended.

Executing a Command on a Different NetView
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Syntax
AOFRYCMD

wsid NOWKSTS

SERVER = EVJCMDRV

SERVER = name

*

TIMEOUT = 60

TIMEOUT = seconds

TIMEOUT = NONE

HIGHRC = 0

HIGHRC = return_code

MAXRC = 999

MAXRC = return_code

SYSIN = SYSIN

SYSIN = DDname

REDIRECT = >

REDIRECT = chars

ASIS = NO

ASIS = YES

Parameters
wsid

This parameter is optional.

This parameter specifies the name of the TWS workstation that submitted this batch job. This
information is used by the command to disable the workstation in the event that communications
between the batch job and the SA z/OS Agent cannot be established.

If this parameter is specified, any NetView PPI communications problem will cause the command to
issue a TWS WSSTAT command to place the workstation offline.

NOWKSTS
This parameter is optional. It is also deprecated. It is preferable to omit the workstation ID.

This parameter modifies the behavior of the command. In the event of a failure in communications to
the SA z/OS Agent, this parameter prevents the command from disabling the TWS workstation that is
defined with the wsid parameter.

SERVER
This parameter is optional.

The default for this parameter is EVJCMDRV. This parameter specifies the name of the PPI receiver
in the SA z/OS Agent NetView that commands will be sent to. Specifying SERVER=* causes the
command receiver to pass the command to one of the associated work tasks to enable parallel
processing of commands. The command receiver EVJCMDRV is deprecated but still exists for
compatability reasons.

For details on defining EVJCMDRV, refer also to the *IBMCOMP Add-on policy.

Note: When using the general purpose command receiver by coding SERVER=*, the SINGTREX library
must be added to the SYSPROC concatenation chain.

TIMEOUT
This parameter is optional.

The default for this parameter is 60 seconds.

JCL for the Batch Command Interface
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This parameter specifies the time in seconds that the batch job will wait for a command to execute in
the SA z/OS Agent NetView. This timeout is applied separately to each command. If the timeout is set
to NONE, no timeout will be applied to the batch job.

Note: It is recommended that the INGREQ timeout (as defined with the FDBK parameter) should be
less than the TIMEOUT= parameter for the job.

This is because the INGREQ command's FDBK parameter can be used to specify a WAIT period that
will result in the command waiting until the desired status change is complete. For example, if the
TIMEOUT parameter is defaulted to 60 seconds, the INGREQ FDBK parameter should be coded as,
say, FDBK=(WAIT, :55)

HIGHRC
This parameter is optional.

The default for this parameter is 0 (zero).

This parameter specifies the highest acceptable Return Code for the job. Any return codes from
commands that are less than or equal to this value will reset the JCL Step return code to zero. Any
command return code that is greater than this value will be passed as the JCL Step return code.

Note: The JCL Step return code will be the highest return code of all the command return codes.

MAXRC
This parameter is optional.

The default for this parameter is 999.

This parameter specifies the maximum acceptable return codes from commands issued by the batch
job. If a command return code is higher than the value specified, the batch job is aborted and any
remaining commands will not be executed.

The return code that is reported to the JCL is determined by the HIGHRC parameter.

SYSIN
This parameter is optional.

The default for this parameter is SYSIN.

This parameter sets the DDNAME of the input file that contains the command to be executed.

REDIRECT
This parameter is optional.

The default for this parameter is >.

This parameter defines the redirection character. Enclose it in quotes or double-quotes if the string
contains special characters, such as the equal sign. It must not be the same as any of the characters
that occur in the command.

ASIS
This parameter is optional.

The default for this parameter is NO.

This parameter enables the submission of a required command in mixed case, to be executed as
presented, when the parameter value is YES.

Usage
When the SA z/OS Agent is started, it will automatically issue a WSSTAT command to mark the
workstation online. The specifications of which workstations to mark online at agent restart are contained
in the WORKSTATION message/user data policy for the tracker or controller. Multiple workstations may be
defined. Workstations that are assigned to trackers should have their WORKSTATION policy defined to the
same trackers that they are assigned to.

Each command is submitted in turn and the results of the command are retrieved. These results are then
written to either SYSTSPRT or to the output redirection DDNAME.

JCL for the Batch Command Interface
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Whether or not the command completed successfully is indicated by message ING330I for satisfactory
completion or message ING332I when the command failed. Message ING332I shows the return code of
the command completion. These messages are written to SYSPRINT (//SYSTSPRT DDName).

Note: The DW0369I message that might have been requested when using the NetView PIPE command
with the MOE option or automatically injected by SA when the command completed successfully is no
longer passed along.

Executing NetView Commands from a TSO REXX Program
This section describes how to execute NetView commands from a TSO REXX program and details of the
REXX function INGRCRPC.

Remote Procedure Call from TSO to the SA NetView Agent
Any REXX program that runs under TSO can use the function INGRCRPC to send a NetView command or
an MVS command to the local SA NetView Agent and to wait for the command execution. The response of
the command will be returned into a REXX stem.

The TSO address space and the SA NetView Agent must reside on the same z/OS system. Before you use
the function INGRCRPC, it's required that the command receiver is started on the SA NetView Agent, for
example, via the following command:

INGRCRCV START PPI=ppi_rcv_id OPF=AOFCMDOPER

In this command, the PPI parameter specifies the PPI receiver ID, which must be equal to the ppi_rcv_id
parameter of INGRCRPC. The SA command receiver runs in the SA NetView Agent and uses a PPI receiver
ID to receive incoming remote procedure call (RPC) requests. Any RPC request sent by INGRCRPC will
be scheduled on a NetView task for command execution. The OPF parameter specifies the name of the
SA operator function, which is either a single task or a group of tasks, for example, AOFCMDOPER. For a
detailed description of the command receiver, see Chapter 10, “Command Receiver,” on page 107.

Note:

If you start multiple command receivers, then for each command receiver, you need a unique pair of a PPI
receiver ID and corresponding SA operator function.

Sending multiple requests via INGRCRPC concurrently is not supported from the same TSO address
space. Requests must be sent one after another.

Function INGRCRPC
The REXX function INGRCRPC provides a remote procedure call (RPC) from TSO address space to the SA
NetView Agent address space on the same z/OS system. The purpose is to execute a standard command
(such as a NetView or MVS command) or a self-written REXX program and to route back the output to the
calling TSO program.

INGRCRCP uses the specified PPI receiver ID to determine the target command receiver. INGRCRPC uses
internally a unique PPI ID to receive the response. This PPI ID is the job ID of the calling job.

Syntax

rc = INGRCRPC(command, input_data, ppi_rcv_id, taskname, resp_name, timeout, 
security_ctx)

Parameters
command

The command to be executed in the SA NetView Agent.

Remote Procedure Call from TSO to the SA NetView
Agent
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Maximum length of the command is 31990 characters. The command must not include 'FF'X or 'FE'X.
Precede it with 'MVS' if you want to execute an MVS command. No prefix is needed for NetView or SA
commands. If it's an MVS command, INGRCRPC waits until the first output line (might be a multi-line)
is caught and timeout is not exceeded.

input_data
Optional input data. It's used for a REXX program. Omit it if you execute a standard command.

You can specify the name of a REXX stem, for example, 'input.'. This is an array of data lines which
will be provided as NetView default stem for command execution. This name must end with a dot
and input.0 must be a positive number specifying the number of input lines and input.n n=1,2,…
contains the n-th input line. For example:

input.0=2
input.1=’abc’
input.2=’xyz’
rc = INGRCRPC(‘MYREXPGM’,’input.’) 

This REXX program MYREXPGM can read the input data using the NETV default SAFE.

‘PIPE SAFE * | STEM input.’

ppi_rcv_id
Optional target PPI ID.

It is the PPI receiver ID of the command receiver. If not specified, the default INGRCRCV will be used.
See also Chapter 10, “Command Receiver,” on page 107.

A PPI receiver ID must be alphanumerical mixed case and can contain '$%&@#'. It must have a
length of 8 characters, right justified with blanks.

taskname
Optional name of the target task. The maximum length of this parameter is 8 characters.

If not specified, the command receiver decides by itself which task is to be used.

For security context AUTOTASK, the command will be executed in the specified taskname. For
security context USERTASK, the taskname is ignored and the command will be executed under the
user task.

The following rules apply to the taskname:

1. taskname is the name of an SA Automated Function with status ACTIVE. For a list of possible
names, see DISPAOPS command in IBM System Automation for z/OS Operator's Commands.

a. If the SA Automated Function is a single SA Automated Function, for example, EVTOPER, then
the associated NetView task is selected.

b. If the taskname represents an array of SA Automated Functions, then the corresponding
NetView task will be selected from this array via “RoundRobin”.

For example, the taskname is AOFCMDOPER which represents the array (AOFCMD01,
AOFCMD02,...). The specific definitions in CGlobals include: AOFCMDOPER.0 is the number
of tasks and AOFCMDOPER.n (n=1,2,…) is the n-th SA Operator Function. So for n=1,
AOFCMDOPER.1=AOFCMD01. This array of CGlobals must have been defined before you call
INGRCRPC.

Since taskname is restricted to a length of 8 characters, the name of the CGlobal array is also
restricted to 8 characters.

2. taskname is a valid NetView AUTOTASK (for example, AUTBASE) with status ACTIVE.
3. In any other cases (for example, unknown task name or inactive task), the command will NOT be

executed and error message ING332I will be returned.

resp_name
Optional name of a REXX stem that should receive the response.

Remote Procedure Call from TSO to the SA NetView
Agent
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If not specified, no response is requested (fire-and-forget).

If you specify the name of a REXX stem, it must end with a dot, for example, 'output.'.

On return, output.0 contains the number of output lines and output.n (n=1,2,..) contains the n-th
output line.

timeout
Optional number of seconds that INGRCRPC waits for the response.

If not specified, 10 seconds is used.

If timeout occurs, INGRCRPC returns one of the following return codes:
Return code 2

The remote site has not written any response data into the receiver PPI queue so far. Therefore,
no response data has been received at all within specified time frame. There is no guarantee
that the command has been terminated or is still running. Also, there is no guarantee that the
command has even started running. It might still remain in the command queue of the command
receiver task and is waiting for execution.

Return code 1
Return code 1 is only possible for the security context USERTASK. The command receiver is
interrupted while waiting for asynchronous output due to timeout. Message ING331I is the only
response data provided. The command is being executed but the command execution has not
been completed within the specified period of time. The command might still run on the remote
NetView task until it is complete. But after completion, no data will be returned.

security_ctx
Optional security context specification.
AUTOTASK

The command will be executed within the security context of the SA operator function, which are
auto task(s) specified in the start parameters of the command receiver.

USERTASK
The command will be executed within the security context of the NetView operator task, which is
equal to the calling TSO user ID.

If not specified, the security context is AUTOTASK. For more details, see “Security Considerations” on
page 119.

Return Codes
0

The command has been executed (either successfully or unsuccessfully) and the command response
could be transferred back to the TSO caller. For more details, see “Response Data” on page 117.

1
Timeout on NetView site (only provided with USERTASK).

2
Timeout on TSO site.

4
Missing or invalid input parameter.

See message INGPC012I, which tells you the failing function parameter. Check description of the
failing function parameter for correct usage.

8
Error while writing into response stem.

The REXX stem name might be incorrect or an internal error occurred with INGPCREX.

9
Error while reading from input data stem.

Remote Procedure Call from TSO to the SA NetView
Agent
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The reason might be that the stem element input_data.0 does not contain a whole number; the
REXX stem name is incorrect; or an internal error occurred with INGPCREX.

16
Error using the NetView PPI API.

For example, writing into a PPI queue failed or DSIPHONE OPEN, CLOSE or READ failed.

For more details, see accompanied message INGPC010I or INGPC011I.

17
Security error.

The TSO user has no access to the SAF profile that protects the usage of this function. For more
details, see “Security Considerations” on page 119.

20
Internal error. REXX script error. For example, REXX Syntax error or NOVALUE condition

24
Internal error. Invalid response data stream.

25
Internal error. Cannot decode response data stream.

28
Internal error. Initialization failed.

32
Internal error. Cannot obtain system information.

Response Data
The input command will be executed on the NetView task via a PIPE command.

If the command is a REXX program, you can use the REXX instruction SAY or NetView command PIPE
CONS ONLY to write response data.

The command output will be collected automatically and returned to the calling TSO program using the
stem ‘resp.’. Only if the return code is zero, you can get back the response of the command execution.

RC=INGRCRPC(cmd,,,,’resp.’)

resp.0 Number of output lines from the command execution plus one for the info
message.

resp.1 Always one of the following info messages ING330I, ING331I or ING332I

resp.n, n=2,3,... All output lines collected from the command execution.

RC=0, Successful Command Execution
If the command executed successfully, then resp.1 contains always message ING330I. Subsequent
response lines ( resp.n, n=2,3…) may contain the output data written by the command.

RC=0, Unsuccessful Command Execution
If the command executed unsuccessfully, then resp.1 is always message ING332I. Message ING332I
contains the bad return code of the command.

Subsequent response lines (resp.n, n=2,3…) might contain the output data written by the command.
In this case, it is very likely that the response contains additional error messages that describes the
reason of the command execution failure.

RC=1, Connection to Command Execution Task has been Interrupted.
If the return code is 1, then resp.1 always contains message ING331I.

No further command response was received due to the connection interruption to the command
handler.

Remote Procedure Call from TSO to the SA NetView
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RC=2, Connection to Command Execution Task timed out.
If the return code is 2, then there is no response at all because the connection timed out. Therefore,
no response can be received.

Messages ING330I, ING331I, ING332I and ING335I
If INGRCRPC returns a response, then the first line of the response is always one of the following
messages:

• ING330I Command execution was successful

• ING331I Command execution failed. Waiting for asynchronous output has 
been interrupted due to timeout.

• ING332I Command execution failed. RC=rc SYSTEM=sys Command=cmd 
REASON:xxxx

If function INGRCRPC sends the command to the target task, then message ING335I will be written to
NETLOG before the command is executed. For example:
ING335I Execute remote command on behalf of JOB=BDOW USER=BDOW OPER=AUTCMD03 
CLIST=TESTRPC COMMAND=TECHO

For a full description of these messages, see System Automation for z/OS Messages and Codes.

Examples

Usage Example
• Send the NetView command RES to the default receiver INGRCRCV. Wait up to 10 seconds, which is the

default. Receive and display the command output.

rc = INGRCRPC('RES',,,,’out.’)           
if (rc=0) then
do i=1 to out.0
   say out.i
end

• Send the command INGLIST to a different command receiver with PPI ID PPIQNAME, which will
execute the command within the security context USERTASK. Wait up to 30 seconds for response.

rc = INGRCRPC('INGLIST OUTMODE=LINE',,’PPIQNAME’,’USERTASK’,’out.’,30) 

 

• Send MVS command D A,BDOW* to the default receiver INGRCRCV. Wait up to 30 seconds for response
on the TSO side but stop MVS command execution until the first multi-line message was received.

rc = INGRCRPC('MVS D A,BDOW*',,,,’out.’,30)

Programming Example
• This example invokes the MYREXPGM command via RPC and displays the output.

/*REXX*/
 context='AUTOTASK'  /*auto task security context*/
 context='USERTASK'  /*user task security context*/
 data.0=3 
 data.1='input line 1' 
 data.2='input line 2' 
 data.3='input line 3'
 command = 'MYREXPGM'             /*ANY NETV command */
 RC = INGRCRPC(command,,
              'DATA.',,
              'INGRCRCV',,        /*default command receiver*/  
              ,,                  /*default task*/    
              'RESP.',,
              10,,
              context)    
 SAY 'INGRCRPC RC='RC  

Examples
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 if (rc=0) then  
 do i=1 to resp.0  
    say resp.i  
 end 
EXIT                                             

• The following self-written command MYREXPGM receives the input data and returns it as output data:

/*REXX MYREXPGM*/
SAY 'MYREXPGM STARTED'
   ADDRESS NETVASIS,
    'PIPE SAFE *',
    '| STEM SAFE.' 
/*SAY may be used to return response data */
SAY 'MYREXPGM SAFE.0='safe.0 
do i=1 to safe.0 
  say 'OUTPUT('i'):' safe.i 
end 
SAY 'MYREXPGM ENDED'
EXIT 

Security Considerations
Both the usage of TSO function INGRCRPC and the execution of the command in the corresponding
NetView task are subject to security checking.

Protect the Usage of INGRCRPC
The INGRCRPC function performs SAF profile checking depending on the security context you have
chosen, which is specified in the security_ctx parameter.

Assuming TSO user BOB wants to use the INGRCRPC function, the following permission is needed:

AUTOTASK

PERMIT TSO.*.*.CMDRCVR.SEND CLASS(SYSAUTO) ID(BOB) ACC(READ)

USERTASK

PERMIT TSO.*.*.CMDRCVR.SEND.USERTASK CLASS(SYSAUTO) ID(BOB) ACC(READ)

Note: If the SAF profiles do not exist, access is granted per default.

Protect the Command Execution
The execution of the command (specified in the command parameter) by the NetView task (specified in
taskname parameter) is subject to SA third party security or NetView command security, or both. That
depends on the security context you have chosen.

AUTOTASK
The use of the security context AUTOTASK causes SA to perform a third party SAF check.

For example, if the TSO user BOB wants to execute the MYCMD command, the following permission is
needed:

PERMIT *.*.MYCMD CLASS(NETCMDS) ID(BOB) ACC(READ)

In addition, the autotask (for example, AUTCMDnn) must be allowed to execute the command. The
following permission is needed:

PERMIT *.*.MYCMD CLASS(NETCMDS) ID(AUTCMDnn) ACC(READ)

USERTASK
The use of the security context USERTASK is subject to NetView command security.

Security Considerations
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NetView provides different flavors of command security. If you choose CMDAUTH=SAF in the NetView
security settings, then NetView performs SAF checking for command security and the TSO user BOB
needs the following permission:

PERMIT *.*.MYCMD CLASS(NETCMDS) ID(BOB) ACC(READ)

Other NetView Security
While the command is being executed in a NetView task, NetView might perform other kinds of security
checking. For example, dataset security or command security of imbedded commands. The execution
of the command is subject to pure NetView security and varies depending on which NetView task the
command is executing.

Security Considerations
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Chapter 11. Enabling Relational Data Services (RDS)
SA z/OS provides Relational Data Services (RDS) which are available through the INGRDS command. It
provides basic access methods for SA z/OS built-in relational data tables. The syntax of the INGRDS
command is similar to the API of SQL but without the full SQL language parser. However, RDS is not a full
SQL and does not support all concepts of SQL. SA z/OS saves the relational data tables in VSAM files.

For fast access, the relational data tables are held in the GETMAIN storage of the NetView address space.
With PTF UA54030, the relational data service tables are held in 64-bit storage. Only the control data is
still stored in 31-bit storage of the NetView address space. This increases the capacity of user data stored
into the RDS tables. Persistence is achieved by an algorithm that periodically saves the tables into a VSAM
KSDS file with DD INGEMUGL. The tables will be restored during SA initialization when NetView is started.

Each SA z/OS agent maintains its own VSAM data file and in memory tables that only hold data associated
with it. When the SA z/OS agent is down, the table data cannot be accessed.

Note: There is one VSAM KSDS file per SA/NetView agent which holds the persistent RDS tables.
Accessing the RDS tables is only possible via INGRDS if the SA/NetView is running.

Enable/Disable Persistent Relational Data Tables
Relational Data Services (RDS) are available at any time after System Automation initialization. However,
new or modified RDS tables are persistent only if the archiving application RDSARCH runs periodically in
the background or if you save manually a specific RDS table via command INGRDS ARCHIVE.

Prerequisite for archiving and restoring RDS tables is the existence of the VSAM file INGEMUGL. RDS
tables are restored during System Automation / NetView startup. Refer to the step "Install Relational Data
Services" in the chapter "Installing SA z/OS" of IBM System Automation for z/OS Planning and Installation
Guide.

Once RDS is initialized you may disable making RDS tables persistent by stopping the resource RDSARCH.
This stops archiving the RDS tables. However RDS still works with the in-memory RDS tables.

Import System Automation Resources
It is recommended you use the SA z/OS resources defined in the add-on PDB *IBMCOMP.

Select the following entries:

Table 19. Receiver Names and Related Policies

Policy Entry Name Policy Entry Type

RDSARCH APL

RDS_ARCHIVER APG

RDS_AUTOOPS AOP

These SA resources ensure that the RDS archive task makes the RDS table persistent. The advantage is
to start or stop archiving easily. Error situations reflected by error messages such as VSAM IO error could
also be trapped in the message table and associated with the SA resource. The resource status might
become broken indicating a severe error.

After importing the RDS_ARCHIVER and RDSARCH, the SA z/OS customization dialog defines an APG
resource group that includes an APL resource RDSARCH. It provides the function to start or stop RDS
archiving. Using INGTIMER as a PRESTART and REFRESHSTART command, the RDS archiving command
will be scheduled on the automated function AOFRDSAR periodically every nn seconds. See “Regular
Snapshot” on page 122.

Import System Automation Resources
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After importing RDS_AUTOOPS the SA customization dialog defines the corresponding automated
functions AOFRDSAR and AOFRDSEV. Note that the names of the NetView Automation Operators must
match those that you define in member ING.SINGPRM(AOFOPFSO). You may customize this sample to
your needs. By default the following mapping is used:

Table 20. RDS/SA Functions and NetView Operators

SA Automated Function/Operator NetView Automated Operator

AOFRDSAR AUTRDSAR

AOFRDSEV AUTRDSEV

Regular Snapshot
By default, the RDS archiving resource RDSARCH issues the command "INGVALUE ARCHIVE" every 30
seconds. It runs on the automated function AOFRDSAR. Archiving and restoring must run always on the
same task. Make sure that the RDS archiving works well and periodically performs the backup of RDS
tables.

RDS Initialization
During SA z/OS initialization the persistent RDS tables are restored into memory, if the VSAM file with DD
INGEMUGL exists.

If this status of the RDS initialization is not OK then the following message may appear:

ING388I Function or command INGRCVAC failed, RC=36 REASON=ARCHIVE rejected INIT STATUS=xxxx

If xxxx is a NULL string then the initialization of RDS was not performed.

Use RDS for TSO
This section provides some general guidelines for System Automation (SA) Relational Data Services on
TSO.

You may execute the functions provided by INGRDS also under TSO. For that purpose use the TSO client
program INGRCRDX, for example, INGRCRDX QUERY mytable.

This client program executes the command INGRDS under cover on the local SA NetView Agent and
receives the response. Before using INGRCRDX you must perform some installation steps:

• Setup the TSO environment for use by the command receiver

– Install the SA provided TSO REXX function package INGTXFPG. For more information, refer to the
step "Configure Function Packages for TSO" in "Traditional SA z/OS Configuration" in IBM System
Automation for z/OS Planning and Installation.

– Make sure the TSO programs are able to execute the REXX library SINGTREX.
– Install the TSO authorized command INGPAUTH. For more information, refer to the step "Configure

Function Packages for TSO" in "Traditional SA z/OS Configuration" in IBM System Automation for z/OS
Planning and Installation.

• Install the command receiver in SA / NetView

– The command receiver must be installed and started on the local SA NetView agent. For more
information, see Chapter 10, “Command Receiver,” on page 107.

• Optionally setup security profiles
• For diagnostic purposes, you may verify the steps above by calling TSO command:

INGRCRDX CKINST

If you set up RDS for TSO successfully the command output should look similar to:

Use RDS for TSO

122   System Automation for z/OS : Customizing and Programming



SA TSO function package timestamp: 2014167 143531
SA TSO authorized command OK
SA TSO RPC to NetView OK
SA TSO RPC received VERSION=V3R5M0 GRPID=AA

Setup Security Profiles
Optionally you may install SAF security. The corresponding SAF user id is always the originating TSO user
id.

There is a SAF front-end checking which is done, by INGRCRDX on TSO:

READ ACCESS required for SYSAUTO and profile
TSO.sysplex.system.CMDRCVR.SEND

There is a SAF back-end checking which is done by the command receiver on NetView:

READ access required for CLASS NETCMDS and profile
netid.domain.INGRCRDS

RDS Table Editor
System Automation provides support for the ISPF editor on TSO in order to edit a RDS table and to save
changes made at the RDS table. While editing a RDS table it is protected against modification by other
users via a LOCK token. The lock token is JOB$xxx where xxx is the TSO user id.

Note: If you have defined the data set with variable records you may get the warning message below. It
is acceptable that all trailing blanks are removed. Saving the table again will work anyway. “Truncation
warning. The data you are editing is variable length data with at least one
record that ends with a blank. Saving the data will result in removal of any
trailing blanks from all records. …”

For an ISPF EDIT example see screenshot below:

000001 @SA_RDS_TABLE: TABLE1 (30,20,15)
000002 NAME                               FIRST_NAME                        CITY
000003 ---------------------------------- --------------------------------- --------------
000004 Bond                               James                             London
000005 Smith                              John                              New York
000006 Schulz                             Emma                              Berlin
000007 Metzger                            NULL                              München
000008 Wagner                                                               Frankfurt
000009 Schiller                           Eva                               Stuttgart
000010 Schmidt                            Hugo                              Hamburg
000011 Fischer                            Egon                              Hamburg
****** ********************************* Bottom of Data ***********************************

sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssN
 Truncation warning. The data you are editing is variable length data with at            e
 least one record that ends with a blank. Saving the data will result in                 e
 removal of any trailing blanks from all records. You can issue the PRESERVE             e
 ON command if you don't want the blanks removed.                                        e
sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssm

Note: Trailing blanks can be removed to save space.

Customize the TSO Environment
Additional installation steps need to be performed. See “Use RDS for TSO” on page 122.

Use RDS for TSO
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Define a RDS Working Data Set for Viewing/Editing under TSO
Viewing and editing a table is done by use of a temporary member of a dedicated PDS. NetView and TSO
must have read and write access to this PDS. The PDS is reserved for this function. It must have maximum
record length big enough to support table rows with longest length that fit to your needs.

A unique temporary member will be created on behalf of the TSO user that calls INGRDS EDIT or VIEW.
For that purpose the TSO user id is used. The member will always be overwritten with subsequent calls to
INGRDS EDIT or VIEW.

The RDS working data set must be made know to all TSO address spaces and to NetView via following
AAO:

AOF_AAO_RDS_TSO_DSN=HLQ.RDS.WORK

The data set name HLQ.RDS.WORK is customizable. You may create a PDS with a name of its own.

Sample of a PDS characteristics with maximum records length of 1000 if the total sum of all columns
definition of a table is smaller 1000 bytes:

Organization  . . . : PO
Record format . . . : VB
Record length . . . : 1000
Block size  . . . . : 32000
Data set name type  : PDS

Viewing a RDS Table within TSO
You use the following command on TSO:

INGRCRDX VIEW mytab
INGRCRDX BROWSE mytab

It retrieves the table mytab and displays it using the ISPF editor.

Editing a RDS Table via TSO
You use the following command on TSO:

INGRCRDX EDIT mytab

It retrieves the table mytab and displays it using the ISPF editor. You may change the table. Please
observe the rules of column specifications as described below. Changes to the table will be saved in a
temporary file and imported to the RDS table mytab. A table lock is obtained until the table is saved or
quit.

The following rules apply:

1. Respect the column length and keep one blank between each column.
2. For an existing table you should not delete columns or insert new columns because you cannot

overwrite column definitions.
3. For a table that does not exist yet: After you modified the table name in line 1 and saved the table

you can delete, insert and rename columns. Make sure that the numbers in parenthesis match the
column width. The new table name must not exist. If the new table name exists already the old column
definitions are used.

Define a RDS Working Data Set for Viewing/Editing under TSO
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Chapter 12. Enabling Sysplex Automation
This information covers SA z/OS specific capabilities for Parallel Sysplex® automation, how to use the
SA z/OS customization dialogs to enable them, and how to customize your system.

Note: If you use a host code page other than 037, the hexadecimal representation of the at sign (@) can
be different. Use the letter represented by the hex code X'7C' for the at sign.

Sysplex Functions
The following functions are described:

• “Managing Couple Data Sets” on page 125
• “Managing the System Logger” on page 126
• “Managing Coupling Facilities” on page 127
• “Recovery Actions” on page 128
• “Hardware Validation” on page 135

Managing Couple Data Sets
Couple data sets (CDSs) contain control information about the sysplex and its resources, and are of crucial
importance for the functioning of a Parallel Sysplex.

Particularly important are the SYSPLEX couple data set, which contains information about the systems
and the communication structure (XCF groups) of the sysplex, and the CFRM couple data set, which
specifies its coupling facilities (CFs) and structures (see “Managing Coupling Facilities” on page 127).
Every MVS system in a Parallel Sysplex must have access to these CDSs, and to those of all other
implemented sysplex functions, such as SFM and Application Response Measurement (ARM).

If a member system cannot access a CDS, the corresponding sysplex function is impacted, and in some
cases the sysplex goes down. It is therefore recommended that you define two CDSs to XCF for every
CDS type required for the implementation of the sysplex. One of these, the primary CDS, is the one that
is actually used. The other, which is called the alternate CDS, serves as a backup copy. The two CDSs
contain the same data. Whenever the primary CDS changes, XCF updates the alternate CDS accordingly. If
an alternate CDS is available for a certain type, XCF automatically switches to this alternate CDS whenever
a member can no longer access the primary CDS.

All CDSs except the sysplex couple data set contain one or more user-defined configurations, called
policies. For each CDS type, only one policy can be active. However, it is possible to switch the active
policy at runtime. Refer to IBM System Automation for z/OS Operator's Commands for further information
about the INGPLEX command.

SA z/OS offers two functions for easier CDS management:

• Automated creation and recovery of alternate couple data sets for continuous availability
• INGPLEX CDS, which simplifies management of couple data sets

Ensuring Continuous Availability of Couple Data Sets
When an alternate CDS exists for a given CDS type and the current primary CDS fails, XCF makes this
alternate the primary CDS. After this switch, however, an alternate CDS no longer exists, and if the current
primary CDS also fails, the problems that were to be avoided by the creation of an alternate occur again.
To avoid this single-point-of-failure situation, SA z/OS provides a recovery mechanism that tries to ensure
that an alternate CDS is always available for every CDS type used.

SA z/OS creates a new alternate CDS in the following two situations:

Managing Couple Data Sets

© Copyright IBM Corp. 1996, 2017 125



• During initialization, SA z/OS checks that an alternate CDS is specified for every primary CDS. If there is
a primary CDS for which no alternate CDS exists, SA z/OS automatically creates it.

• At runtime, SA z/OS ensures that a new alternate is created whenever the current alternate has been
removed or switched to the primary one.

Customization
Recovery of alternate CDSs is initiated either by the CDS function of INGPLEX or in the background (for
example, at initialization time). Background recovery can be switched on and off by using the SA z/OS
customization dialogs. Automatic re-creation with INGPLEX CDS is always enabled.

You must specify the spare volumes that SA z/OS may use for creating missing alternate CDSs (using
the policy item SYSPLEX from the Policy Selection panel for sysplex groups). This is also required for
automatic creation with INGPLEX CDS. Every CDS type has its own pool of spare volumes. Note that if you
do not define spare volumes for a CDS type, no recovery is performed for this type. For details on the use
of the customization dialogs, see “Enabling Continuous Availability of Couple Data Sets” on page 137.

You can control access to those functions of INGPLEX CDS that modify the sysplex configuration. Refer to
the "Security and Authorization" chapter of IBM System Automation for z/OS Planning and Installation for
details.

Managing the System Logger

Terms and Concepts
The system logger provides a sysplex-wide logging facility. Applications that use the system logger write
their log data into log streams. Within a Parallel Sysplex, these log streams are usually associated with
a coupling facility structure. For further information about coupling facility structures, refer to “Managing
Coupling Facilities” on page 127. By using a coupling facility log stream, members of a multisystem
application can merge their logs even when residing on different systems.

When an application writes data to a log stream this data is stored at first temporarily in the associated
structure (coupling facility log stream) or a local buffer (DASD-only log stream). From there, it is off-
loaded into a log stream data set which is automatically allocated by the system logger. When this log
stream data set is full, the system logger allocates a second one, and so on.

The control information for the system logger, which includes a directory for the log stream data sets of
every log stream, is contained in the LOGR couple data set. The total number of log stream data sets that
can be allocated by the system logger is determined when the LOGR couple data set is formatted.

Two problems that can arise in connection with the log stream data sets are a shortage of directory space
in the LOGR CDS and incorrect share options for the log stream data sets. SA z/OS provides the following
recovery actions for these problems:

• The primary and alternate LOGR CDSs are automatically re-sized if there is a directory shortage
• The operator is notified if the share options for log stream data sets are not defined correctly

Resizing the LOGR Couple Data Sets in Case of Directory Shortage
The LOGR CDS contains information about the log stream data sets used by the system logger. This
information is stored in directory extents. Every directory extent record can hold information about up
to 168 log stream data sets. The number of directory extents available in a LOGR CDS is specified
when the CDS is formatted (DSEXTENT parameter). When all available directory extents are used up the
system logger can no longer allocate new log stream data sets. This can cause considerable problems for
applications that use the system logger.

With SA z/OS, you can avoid this situation. If you switch on logger recovery, SA z/OS automatically
reformats your primary and alternate LOGR CDS with an increased DSEXTENT parameter whenever the
system reports a directory shortage.

Managing the System Logger
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Customization
Automation of system logger recovery is enabled through the SA z/OS customization dialogs. For more
details, see “System Log Failure Recovery” on page 176.

Managing Coupling Facilities
A coupling facility (CF) is a logical partition that provides storage for data exchange between components
of an application that is distributed across different systems in a Parallel Sysplex. A Parallel Sysplex can
contain more than one CF.

The storage of a coupling facility is divided into areas that are called structures. You can imagine a
structure as a special kind of data set. It is these structures, which are identified by their name, that are
accessed for reading and writing by the application components.

The association between CFs and structures is dynamic. A structure that is used by an application need
not be allocated at all (for example, when the application is not running), and can be allocated on different
CFs at different points in time. For every structure, there exists a preference list that defines the CFs on
which it may be allocated. The order of the CFs in that list determines which CF is selected when more
than one member of the list satisfies all allocation requirements (for example, provides enough space).

The preference list, the space requirements, and other properties of the structures are defined in the
active CFRM policy. This policy is contained in the CFRM couple data set. Refer to “Managing Couple Data
Sets” on page 125 for further information.

XES allocates a structure that does not yet reside on any CF when an application component needs
to be connected to it. Note that the application component only specifies the name of the structure
that it wants to access. It is XES that decides on which CF the structure is allocated. This decision is
influenced by the structure definition in the active CFRM policy. After the structure has been allocated, the
requesting application component can access it, and further components of this application can require
to connect to it. An application component that has access to an allocated structure is referred to as an
active connector to this structure.

In the simplest case, XES deallocates a structure when all connected application components have
disconnected from the structure. However, an application component can require that the structure or
its own connection to the structure be persistent. When the structure is persistent it remains allocated
even when the application component is no longer connected to it. When a connection is persistent the
structure remains allocated after a failure of that connection. The application component in question
remains a connector to the structure, although not an active one. It is now a failed persistent connector. In
both cases, you can force the deallocation of the structure as soon as it no longer has active connectors.

Allocated structures can be rebuilt. Rebuilding is the process of reconstructing a structure on the same
or another CF. A rebuild consists of three main steps. First, XES allocates the new structure instance.
Then, the data of the old structure is reconstructed in the new structure. Finally, XES deallocates the old
structure instance. Note that you cannot specify the target CF in your rebuild request. As with structure
allocation, XES selects it from the preference list.

There are two methods for rebuild: user-managed and system-managed. With user-managed rebuild,
the active connectors are responsible for reconstructing the data. With system-managed rebuild, XES
transfers the data to the new structure instance. System-managed rebuild is thus also available for
structures without active connectors. These structures can either themselves be persistent or have failed
persistent connections.

When an application component connects to a structure, it specifies whether it allows the structure to
be rebuilt through user-managed or system-managed rebuild. For structures with active connectors, both
rebuild methods require that all active connectors allow the respective rebuild method.

You can also duplex structures. Duplexing means maintaining two instances of the same structure on
different CFs at the same time. Duplexing serves to increase availability and usability of a structure.

Typical management tasks for CFs are removing a CF from the sysplex and reintegrating it again. These
tasks have several steps that must be performed in a certain order and can be quite complex. To simplify
these operations, SA z/OS offers the INGCF command. INGCF has several functions, which serve to

Managing Coupling Facilities
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manipulate structures and the CFs themselves. For more information, see IBM System Automation for
z/OS Operator's Commands and the online help.

Some functions deal with the sender paths of a coupling facility. They have the following limitations. First,
at least one system in the sysplex that is running the automation must know the control unit ID (CUID) of
the coupling facility. If this is not the case, no missing sender paths can be resolved.

A missing sender path occurs when a coupling facility is deactivated prior to a system IPL (or reIPL) and
then activated afterwards. The system that has been IPLed (or reIPLed) does not recognize the coupling
facility. To determine the missing sender paths, the automation calls the HOM interface of HCD. Resolving
the missing path information is only possible when either the complete network address is defined in HCD
along with the processor ID, or you provide the CPC synonym used by the automation as the processor ID.
However, it is recommended that you define both. If neither is defined, the system that misses the sender
paths must run the automation.

Recovery Actions

Resolving WTO(R) Buffer Shortages
When all WTO(R) buffers are in use, it is possible that commands can no longer be processed. To resolve
this, there are several options: you can extend the buffer, change the properties of the affected consoles,
or cancel jobs that issue WTO(R)s.

SA z/OS provides recovery of buffer shortage in two stages. It first tries to extend the buffer and modify
the console characteristics, if applicable. If this does not help, it then cancels jobs that issue WTO(R)s.
You must specify which jobs can be canceled by SA z/OS if there is a buffer shortage.

Customization: Automation of buffer shortage recovery is enabled using the SA z/OS customization
dialogs. For more information, see “Enabling WTO(R) Buffer Shortage Recovery” on page 138.

WTO Recovery is performed when different messages are received by SA z/OS. The action taken when
each of these messages is received is described in Table 21 on page 129. 

Recovery Actions
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Table 21. WTOBUF Recovery Process

Recovery Message Command

WTO IEA405E Set the console attributes.

If the deletion mode is not roll or wrap, set the mode to roll. K S,DEL=R,L=x

If any out-of-line display area exists, delete the status display. K E,D,L=x

If the interval between message rolls is greater than 1 second and not
'*' , set the interval to 0.25 seconds.

K S,RTME=1/4,L=x

If the console receives messages not only from the local system and
the WTO message buffer size has reached its maximum, remove the
buffering systems from the list and add the local system to the list.

V
CN(x),MSCOPE=(l)

IEA404A Suspend the console.

Requeue the messages to the hardcopy log. K Q,L=x

Vary the active console (COND=A) offline. For SMCS consoles, issue the
appropriate VTAM command. V 

{CN(x),OFFLINE
  |
NET,TERM,LU1=x,
   TYPE=FORCE
  }

Cancel the job or TSO user that caused the shortage, but only when
defined as a candidate during customization. C {jobnm,A=asid

  |U=userid
  }

IEA406I Resume the console if it was suspended and if it is not a SMCS console. V CN(x),ONLINE

Restore the console attributes.

Set the deletion mode to the value before the buffer shortage occurred. K S,DEL=old,L=x

Set the interval between message rolls to the value before the buffer
shortage occurred.

K S,RTME=old,L=x

Set the list from which the console is to receive unsolicited messages to
the list before the buffer shortage occurred.

V
CN(x),MSCOPE=(l)

Increase the WTO message buffer size to minimize future shortages as
follows:

new = min(9999,max(1500,1.2 * current MLIM))

K M,MLIM=new

Issue the message AOF929 for permanent changes (MLIM).

Recovery Actions
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Table 21. WTOBUF Recovery Process (continued)

Recovery Message Command

WTOR IEA230E Increase the maximum number of reply IDs to the maximum allowable
value if the maximum number of systems in the sysplex is greater than 8
or the system runs in local mode.

K M,RMAX=9999

Increase the WTOR message buffer size if the current RMAX value is
greater than the current RLIM value as follows:

new = min(9999,max(10 + 2 * maxsys_in_sysplex,1.2 * 
current 
    RLIM))

K M,RLIM=new

IEA231A Cancel all jobs and TSO users that have outstanding WTORs and that are
defined as candidates during the customization. C {jobnm,A=asid

  |U=userid
  }

IEA232I Issue the message AOF928 for irreversible changes (RMAX). Issue the
message AOF929 for permanent changes (RLIM).

Handling Long-Running Enqueues (ENQs)
This type of recovery is divided into the following individual functions:

• Long-running enqueue recovery
• "Hung" command recovery
• Command flooding recovery

All these recoveries can be enabled and disabled individually or globally.

The long-running enqueue recovery function lets you:

• Check which resources are blocked
• Customize automation to cancel or keep the jobs that block the resource
• Customize automation to dump the jobs before they are canceled

You can determine which resources you want to monitor. You can define a value for the maximum time
a job can lock a resource while other jobs are waiting for it. If this amount of time is exceeded, recovery
takes place. Identification of and elimination of these potential bottlenecks helps to reduce the risk of a
Parallel Sysplex outage.

While the time definition describes an inclusion list, you also have the possibility to define an exclusion list
of resources that are not monitored at all.

For more information about enabling the ENQ function, see “Enabling Long Running Enqueues (ENQs)” on
page 140.

This function has been extended by two supplementary functions:

• “"Hung" Command Recovery” on page 130
• “Command Flooding Recovery” on page 131

"Hung" Command Recovery
The purpose of this function is to detect hung commands that often result in multisystem outages. We
distinguish three situations:

1. Commands that inhibit other commands from completing execution
2. Commands that inhibit jobs from completing execution
3. Jobs that inhibit commands from completing execution

Recovery Actions
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Automation examines ENQ contention associated with command processing and builds a list of blockers
and waiters. The SA z/OS policy is then examined to see how long waiting commands and waiting jobs are
allowed to wait before automated action is taken. The policy is also examined to determine what action
(DUMP, NODUMP, KEEP or exclude) is to be taken against the blocking command or job, as follows:

1. When a command inhibits other commands from completing and no policy definitions exist for any of
the waiting commands, no automated action is taken.

2. When a command inhibits jobs from completing and no policy definitions exist for the blocking
command, no automated action is taken.

3. When a job inhibits commands from completing and no policy definitions exist for any of the waiting
commands, no automated action is taken.

If long-running ENQ and hung command recovery detect that the same resource requires automated
action at the same time, the hung command recovery policy definitions take precedence and hung
command recovery automates the resource.

The action taken (DUMP, NODUMP, KEEP or exclude) is identical to the long-running ENQ recovery action.

In either case only commands that are waiting on blocked resources are considered. "Hung" command
recovery only considers those resources that are not being monitored by long-running ENQ recovery.
If long-running ENQ recovery is disabled then all resources, even those defined as long-running ENQ
resources, are considered for "hung" command recovery. It is also important to realize that if long-running
ENQ recovery is enabled and a generic "catchall" resource definition applies, then "hung" command
recovery cannot occur, because long-running ENQ recovery always take precedence.

Commands are executed by the master and console address spaces. Thus when a resource blocker is
from either of these address spaces it is considered to be a blocking command rather than a blocking job.

As with resources, you can make similar definitions for commands that determine how long a command is
permitted to lock a resource while other commands are waiting for the resource.

If the resource blocker is a job then recovery actions are only taken when the job has blocked the
command for 3 consecutive iterations of "hung" command recovery processing. This results in a job
blocking a command for no more than 90 to <120 seconds.

Recovery action for the blocking job or the job that issued the blocking command is the same as that
specified for long-running ENQ recovery automation.

Command Flooding Recovery
The purpose of this function is to detect jobs that flood a command class. Command flooding can cause
log buffer shortages and inhibits other commands from executing. Both can lead to a multisystem outage.

When all (50) TCBs that are reserved for command processing are in use, new commands are queued
to the waiting queue. In this case the system issues message IEE806A which triggers this function to
evaluate what jobs are causing the situation.

Jobs that just issue a set of commands, such as 200 (or more) "VARY dev,ONLINE" commands should not
be considered during the evaluation. This is achieved by comparing the current and the previous snapshot
of the affected command class.

Snapshot processing is scheduled when message IEE806A is trapped. The interval time between the
snapshots is 3 seconds by default (see “Enabling Long Running Enqueues (ENQs)” on page 140 for
details about adjusting this value if necessary). The interval should give these jobs enough time to finish
issuing commands before the first snapshot is taken. Only jobs that issue commands on two consecutive
snapshots become subject of the recovery action.

Before the recovery action takes place, the number of commands that are issued by the job must exceed a
threshold (see below) and at least one of the commands must not be involved in a lock contention that is
handled by the "hung" commands recovery.

The recovery action depends on the job definitions (see “Enabling Long Running Enqueues (ENQs)” on
page 140). If the job can be canceled, the recovery also removes its waiting commands and terminates its
executing commands. The recovery action is completed either with message ING922E or with message
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ING924E. The latter message is repeatedly issued approximately every minute until the waiting queue
becomes empty.

The threshold is calculated by subtracting the number of jobs that are issuing commands in the command
class from the total number of TCBs (50) that are reserved for command processing. This prevents jobs
that repeatedly issue few commands from being evaluated.

The recovery ends when the message IEE061I is issued.

Note: The dump definitions are not in effect if a dump should be taken when the job is canceled. This is
because the recovery routine of the job that is being canceled can suppress the dump.

Customization
Automation of handling long-running enqueues is enabled through the SA z/OS customization dialogs. For
more details, see “Enabling Long Running Enqueues (ENQs)” on page 140.

Managing System Removal
The purpose of this function is to isolate failed systems from a Parallel Sysplex by removing them as
quickly as possible. It also ensures fast mean time to recovery (MTTR) for those system images that you
wish to restart immediately if an unavoidable outage occurs.

Note: This function is unavailable when running on a z/OS image which runs under z/VM, even if the
function is enabled.

In particular, the function automates the messages IXC102A and IXC402D.

The automation of the IXC102A message completes the Sysplex Failure Management (SFM). Under
certain circumstances SFM cannot complete the isolation of a failed system. This is because SFM's HW
isolation, resetting the channel subsystem (CSS) of the failed system, is driven through the CF. When
connectivity between the system image and the coupling facility is lost, SFM cannot perform the hardware
isolation (ISOLATE command) and defers resetting the system image until manual operator intervention
occurs. Message IXC102A tells the operator to manually reset the HW and then reply "DOWN" to the
message, after which SFM safely partitions the system image out of the sysplex. The longer the delay
lasts, the more the components and applications that rely on XCF messaging are impacted. The delay can
eventually lead to a sysplex outage when the failed system has I/O operations pending. Automation of
this message minimizes the delay.

Message IXC402D has the same impact as IXC102A. However, this message indicates a possible
temporary inoperative status of the system due to a missing status update. For this reason the automation
gives the system the chance to recover before the removal takes place by replying "INTERVAL=sss" to
the first occurrence of message IXC402D. The interval time, sss, is the failure detection interval that is
displayed by the command D XCF,CPL.

The automation does the removal of a system in two stages. The first stage clears any pending I/O
operations by sending a hardware command to the Support Element. This requires information about the
software running on the hardware. Because the system issuing message IXC102A or IXC402D does not
necessarily have access to the hardware of the failed system, the automation needs predefined mapping
between software and hardware. Depending on this mapping, it then routes the hardware command to
the system that has access to the hardware of the failed system. For information about how to do the
mapping refer to “Enabling System Removal” on page 138. For further information about the hardware
requirements refer to IBM System Automation for z/OS Planning and Installation.

The second stage replies to the outstanding WTOR with "DOWN" triggering the removal of the system
from the sysplex.

Customization
Automation of message IXC102A is enabled through the SA z/OS customization dialogs. For more details,
see “Step 4: Automating IXC102A and IXC402D Messages” on page 139.
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Recovering Auxiliary Storage Shortage
With the automation of local page data sets that is controlled by the recovery flag of the automation flag
MVSESA.PAGE, you can prevent auxiliary storage shortage outages by dynamically allocating spare local
page data sets when needed.

The function checks which job causes the shortage condition and whether additional page data sets can
be added. If this is not possible, the job that is causing the shortage will be cancelled if this has been
defined. For more details see Table 22 on page 134.

To enable local page data set automation, you should customize the PAGTOTL parameter (defined in one
of the IEASYSxx PARMLIB members used during IPL). Make sure that you set the PAGTOTL parameter to a
value greater than the number of local page data sets currently used.

Local page data sets must be defined in the master catalog and should not be SMS-managed. It is
recommended that you use pre-allocated local data sets instead of dynamically allocated ones. This
makes the process faster because formatting newly allocated page data sets is time-consuming. Each
predefined local page data set should be allocated with 10% space of local page space that is currently
used by the system. If predefined page data sets can no longer be allocated, new local page data sets will
be created dynamically.

The following table shows the recovery actions in detail. Generally speaking;

• In case the recovery cannot complete successfully it always terminates with message AOF953 and a
specific reason code.

• On invocation due to page data set shortages the recovery first checks whether some preformatted
page data sets and the HLQ for data sets that should be dynamically created have been defined. If none
has been defined the recovery terminates with RSN=4.

• If the command PAGEADD returns a message other than IEE782I and IEE783I the recovery is
terminated with RSN=24.

• If an IDCAMS service fails the recovery is terminated with RSN=16.

WorkLoad Manager (WLM) - responsible for the Auxiliary Storage Management (ASM) - recommends that
you automate the message IRA210E rather than message IRA206E which has replaced the message
IRA204E since z/OS release 1.10. The reason is that the system has already identified the address space
that caused the shortage.

Storage class memory (SCM) available with zBC12 and zEC12 requires at least z/OS release 1.13 with
APAR OA38660.
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Table 22. Auxiliary Storage Management

Recovery Message Command

MSG IRA205I
IRA200E
IRA201E
IRA265I
IRA260E

Check the maximum number of local page data sets. When the value
PAGTOTL is reached the recovery is terminated RSN=20.

MVS D ASM,LOCAL

Add a free page data set that has been allocated and formatted in a
prior recovery.

MVS PAGEADD

If the previous action was unsuccessful and message is not IRA201E
create and add a page data set.

MVS PAGEADD

If the previous action was unsuccessful add a pre-formatted data set. MVS PAGEADD

If the previous action was unsuccessful and message is IRA201E
create and add a page data set.

MVS PAGEADD

If PAGEADD was successful schedule timer INGT742P for adding more
page data sets in case this action was insufficient. Otherwise, the
recovery is terminated with RSN=8 or RSN=12.

AFTER 00.00:10,
ID=INGT742P

IRA203E
IRA204E
IRA210E

Save the jobname of the very first message only. Next, check if the job
has been defined for cancellation. Finally, schedule a timer to pop up
10 seconds later than the timer INGT742P. If this timer does not exist,
use the current time.

AT hh:mm:ss
ID=INGT742J

IRA202I
IRA262I

Delete any pending recovery action.
MVS D 
ASM,LOCAL 
PURGE 
TIMER=INGT742P
PURGE 
TIMER=INGT742J
PURGE
TIMER=INGT742S

IRA250I Determine whether SCM offline storage is available. If no more storage
can be added, the recovery is terminated with RSN=0, but will continue
when IRA200E is issued.

MVS D M=SCM

Add 'increment size' of SCM storage. CF SCM(incr),ON

If CF SCM was successful schedule a timer for adding more SCM
storage in case this action was insufficient. Otherwise the recovery is
terminated with RSN=28

AFTER 00:00:10,
   ID INGT742S

IRA252I Delete SCM pending recovery actions. PURGE
TIMER=INGT742S

ILR009E Mark the page data set “unuseable” if it is a spare data set and remove
the volume from the list of available volumes for dynamic allocation.

MVS D ASM,LOCAL

If the data set was a spare data set:

• Check the maximum number of local page data sets. When the value
PAGTOTL is reached the recovery is terminated with RSN=20

• Create and add a page data set. If PAGEADD was unsuccessful the
recovery is terminated with RSN=8 or RSN=12

PAGEADD

IEE205I Mark the page data set ‘free’ if it is a spare data set.

PAGE n/a Repeats the recovery of messages IRA200E, IRA205I, IRA260E and
IRA265I after the timer INGT742P has expired.

PAGECRIT n/a Repeats the recovery of messages IRA201E after the timer INGT742P
has expired.

SCM n/a Repeats the recovery of message IRA250I after the timer INGT742S
has expired.
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Table 22. Auxiliary Storage Management (continued)

Recovery Message Command

JOB n/a Cancels the job that caused the recovery after the timer INGT742J has
expired.

MVS CANCEL

Hardware Validation
This function performs cross-validation of the hardware configuration mapped out in the customization
dialogs against the actual hardware configuration that is running. This information is critical to accurately
control logical partitions (LPARs) on any supported CPC within the HMC/SE LAN over the BCP Internal
Interface.

Hardware validation uses the CPC name, Partition name and Partition number to ensure that the LPARs
defined in the customization dialogs are on the correct CPC and located on the correct partition number.
However, this helps only for coupling facilities because their partition identifiers must be defined in the
active CFRM policy.

For MVS images, information from the HMC/SE (such as system name and sysplex name that are
stored during initialization) is used to verify the corresponding customization dialog definitions. During
initialization of the automation's Hardware Command Interface and just before a disruptive request is
sent to a partition, new checks are made to ensure that everything matches correctly.

Note: Only active images can be verified. For inactive images we must still rely on definitions made in the
customization dialogs.

An active system in this context is a system belonging to the same sysplex as the system that runs the
hardware validation, that is SA z/OS checks only systems and coupling facilities within its own sysplex.

Hardware validation runs on an SA z/OS system primarily during startup, and subsequently when changes
to the definition in the customization dialogs are applied through the INGAMS REFRESH command. The
validation checks the definitions of all registered systems, that is whenever an SA z/OS system performs
the hardware validation, it validates all systems and coupling facilities that are active in the sysplex at this
point in time. Registered systems are systems running SA z/OS that have joined the same XCF group.

The validation of active systems and coupling facilities requires that the CPCs that host the active systems
must all be defined in the customization dialogs.

The data for inactive systems cannot be verified. However, these definitions are checked for consistency
across all registered systems. As soon as one of these inactive systems or coupling facilities joins the
sysplex or is made available for use, the validation is run for the particular image only.

Retrieving actual hardware information can take up to 5 minutes per CPC depending on the model and its
LPARs. During the time that the hardware validation takes place all other hardware-related automation is
either delayed or cannot be performed, depending on the type of recovery. For this reason the validation
carries out "delta" processing. That is validating only the data that has changed. This also includes
the absence of data resulting in terminating CPC connections when CPC definitions are missing that
have been applied by a prior validation. The actions resulting from the validation are performed on ALL
registered systems. This has two advantages:

• you don't need to recycle NetView for changes in hardware definitions.
• you only need to make the changes available to one system.

The first part of the hardware validation triggered by the ACF command or the automation startup
determines what CPC connections must be terminated and initiated, namely in this sequence. The
resulting actions are performed on all registered systems. When this step has been completed
successfully the image validation is performed.

The image validation collects actual hardware information, and verifies the current hardware definitions
against the actual data and the definitions found on all other registered systems. It informs you if:

• A real system or coupling facility could not be validated because either actual hardware information or
user definitions are not available
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• The image definitions could not be evaluated because the actual hardware information is not available
• The real system or coupling facility is not active and the image definitions of some of the registered

systems are different
• Any definition value has been corrected that was improperly defined or not defined at all

Changes in hardware definitions can be made available to all registered systems by simply invoking the
command INGAMS REFRESH on only one of the these systems. There is one exception: the change of
the authorization token value used for the communication with a particular CPC. A change of this value
requires 3 steps:

1. In the first step you must remove the particular CPC definition and then invoke the ACF command as
above.

2. When the command completes successfully the next step is to change the authorization token value of
the CPC at the Support Element.

3. The final step is to define the CPC again with the new token value and invoke the ACF command again.

Note: This behavior of the INGAMS command applies to the hardware definitions only.

The second part of the validation is triggered by either the message IXC517I that is issued when a
coupling facility is made available for use, or by the automation itself when notified that a system joined
the sysplex. Both trigger the automation to perform only the validation of the new system or coupling
facility. Multiple occurrences of messages for the same system or coupling facility are ignored while this
system or coupling facility is validated. In case of a new system, the advantage here is that the real
hardware is validated before the system starts NetView and the automation. If this automation then
detects no difference between its current definitions and the definitions of the other registered systems
—which is the normal case—only a consistency check takes place. This check does not require any real
hardware information.

Prerequisites
Note: Hardware validation is not supported on MVS systems running under z/VM.

Enabling Hardware-Related Automation
To enable the sysplex automation that SA z/OS provides for recovery actions and coupling facility
management, the following definitions must be made in the customization dialog.

Step 1: Defining the Processor

About this task
Use the customization dialog to define a new processor of Entry Type PRO. The name should be the real
physical name of the processor defined in HCD. For more information, refer to the online help or the
section "Creating a New Processor" in IBM System Automation for z/OS Defining Automation Policy.

Step 2: Using the Policy Item PROCESSOR INFO
Use the Processor Information panel, to define a processor using Entry Type PRO.

Note: The connection type protocol must be INTERNAL

For more information, refer to the online help or the section "More about Policy Item PROCESSOR INFO"
in IBM System Automation for z/OS Defining Automation Policy.

Step 3: Defining Logical Partitions
If the processor that you have defined runs in LPAR mode, define its logical partitions using the LPAR
Definitions panel. You should define all LPARs that are physically available on your processor, together
with the systems that run on them.

Enabling Hardware-Related Automation
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For more information, refer to the online help or the section "More about Policy Item LPARS AND
SYSTEMS" in IBM System Automation for z/OS Defining Automation Policy.

Step 4: Defining the System
Define a system using entry type SYS, and the Define New Entry panel.

Note: To avoid receiving hardware validation messages during SA z/OS initialization, you should define all
your systems (including your coupling facilities).

For more information, refer to the online help or the section "Creating a New System" in IBM System
Automation for z/OS Defining Automation Policy.

Step 5: Connecting the System to the Processor
Connect this system to the processor that you defined in “Step 2: Using the Policy Item PROCESSOR
INFO” on page 136 and to its logical partition (if you set the processor mode as LPAR).

Connect this system to the sysplex or standard group (see “Step 6: Defining Logical Sysplexes” on page
137 and “Step 7: Defining the Physical Sysplex” on page 137).

Note: MVS SYSNAME and the Image/ProcOps Name must be the same.

Restriction: Usually, the MVS SYSNAME may begin with a number. However, in this case, it must be the
same as the Image/ProcOps Name, which cannot begin with a number. Therefore, this naming restriction
also applies to the MVS SYSNAME.

Step 6: Defining Logical Sysplexes
Define EACH logical sysplex (systems within the same XCF group ID) using entry type GRP with group type
SYSPLEX.

Use policy SYSPLEX to enter the real physical sysplex name. You can use the same name in several
SYSPLEX GRPs.

Use policy SYSTEMS to connect all systems within the same XCF group ID to the SYSPLEX GRP. A system
can only be connected to one SYSPLEX GRP.

Step 7: Defining the Physical Sysplex
Define your real physical sysplex using entry type GRP with group type STANDARD.

Use policy SYSTEMS to connect all systems of your physical sysplex to the STANDARD GRP.

Enabling Continuous Availability of Couple Data Sets
Couple data sets (CDSs) contain important information about how to manage certain aspects of your
sysplex. For example, the SFM CDS (sysplex failure management couple data set) defines how the system
manages system and signalling connectivity failures and PR/SM (Processor Resource/Systems Manager)
reconfiguration actions.

The following couple data sets are particularly important for the functioning of your Parallel Sysplex:

• The SYSPLEX couple data set, which defines the systems and the XCF groups of the sysplex
• The CFRM couple data set, which defines the coupling facilities and structures of the sysplex

It is recommended that you define alternate couple data sets for all couple data sets in your sysplex.
These alternate couple data sets serve as backups when the primary CDS fails.

With the customization dialog you can specify a series of spare volumes for every CDS type, for example,
SYSPLEX, ARM, CFRM. The first volume in the series is used to create an alternative CDS if one of the
primary alternate CDSs fails.
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In the customization dialog you define the potential alternate couple data sets using the Group entry type.
Select a sysplex group, then select its policy item SYSPLEX (define sysplex policy) from the panel Policy
Selection.

The Sysplex Policy Definition panel is displayed if you select policy item SYSPLEX from the Policy
Selection panel for sysplex groups.

For a description of this panel refer to the online help or the section "More About Policy Item SYSPLEX" in
IBM System Automation for z/OS Defining Automation Policy.

Enabling WTO(R) Buffer Shortage Recovery
You can customize the WTO(R) buffer shortage recovery of SA z/OS with the MESSAGES/USER DATA
policy item of the customization dialog for the MVS Component entry type (MVC).

Code definitions for the message ID WTOBUF are used to specify jobs that are canceled or kept in case a
WTO(R) buffer shortage is threatening. The jobs that you select for cancelation will then no longer issue
WTO(R)s.

Specify code definitions for message ID WTOBUF with the following values:
CODE1

Specifies the name of the job which might or might not be canceled.
CODE2

This must be WTO, WTOR, or * to indicate which requests the job (or jobs) might or might not be
canceled for. Use just * to specify WTO and WTOR requests.

CODE3
This must be blank.

Value Returned
This must be CANCEL to indicate that the job (or jobs) might be canceled or KEEP to indicate that they
might not.

Example:

 Code 1          Code 2          Code 3          Value Returned                 
 JOB1            WTOR                            KEEP                           
 JOB2*           WTO                             KEEP                           
 JOB3*           *                               CANCEL                         
 JOB4*           *                               KEEP                           
 *               *                               KEEP                           

To set up the default behavior for all jobs not explicitly defined, a specification of CODE1=* and CODE2=*
is needed. To indicate that all other jobs might be canceled specify CANCEL in the Value Returned field,
otherwise specify KEEP.

The job name *MASTER* cannot be entered in the Code 1 field. Even if your default behavior is set up to
cancel all jobs that have not been explicitly defined, a cancel command is not issued against *MASTER* if
it is the job name being checked. This is because *MASTER* is non-cancelable.

Enabling System Removal
SA z/OS helps you to resolve pending I/Os for systems being removed from the sysplex.

See “Recovery Actions” on page 128 and “Managing System Removal” on page 132 for further details.

Because the automation must know where the system is located to send the command to the appropriate
Support Element, you must use the customization dialog to define its hardware configuration.

The BCP Internal Interface allows you to perform hardware operations from each NetView in your sysplex
member as long as its processor hardware supports this. Refer to IBM System Automation for z/OS
Planning and Installation for more information.

Enabling WTO(R) Buffer Shortage Recovery
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Hint: If you want to use the IXC102A automation, make sure there is no processor operation related
IXC102A automation defined in your automation policy. Likewise, if you want to continue to use the
processor operations based automation of messages IXC102A and IXC402D, the IXC102A automation
flag must be disabled.

Step 1: Defining the Processor and System
The processor and system must be defined as described in “Enabling Hardware-Related Automation” on
page 136.

Step 2: Defining the Application with Application Type IMAGE
Use entry type APL to define a new application with Application Type IMAGE and subsystem name that
is the same as the Image Name of the system that this application represents (as defined in “Step 4:
Defining the System” on page 137).

Use entry type APL and select policy item APPLICATION INFO for your system. On the panel Application
Information you can define a new application type IMAGE. For more information, refer to the online help
or the section "Policy Items for Applications" in IBM System Automation for z/OS Defining Automation
Policy.

Because the application has been defined as type IMAGE, the job name is set by default to the subsystem
name and cannot be changed.

The Subtype, Scheduling Subsystem, JCL Procedure Name, ARM Element Name, and WLM Resource
Name are forced to be blank.

Some other definitions in the policy item APPLICATION INFO are also defaulted:

• the Job Type is forced to NONMVS
• the Monitor Routine is defaulted to INGMTSYS if nothing is specified
• the External Startup is defaulted to ALWAYS if the Monitor Routine is INGMTSYS
• the External Shutdown is defaulted to ALWAYS if the Monitor Routine is INGMTSYS

For more information, refer to the online help or the section "More About Policy Item APPLICATION INFO"
in IBM System Automation for z/OS Defining Automation Policy.

Step 3: Defining an Application Group
Because you can only automate applications by linking them to systems via an application group, you
need to define an application group for the IMAGE applications.

Step 4: Automating IXC102A and IXC402D Messages
You can automate IXC102A and IXC402D messages to avoid sysplex outages.

Note: The following shows examples for defining commands and codes for message IXC102A.

You can specify one of the following four hardware commands for each system in the sysplex that is
automated. If you specify nothing SYSRESET CLEAR is used.

• SYSRESET [CLEAR]
• DEACTIVATE
• ACTIVATE [P(image_profile_name)]
• LOAD [P(load_profile_name)]

Where:
CLEAR

Indicates that the storage is cleared
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P
Specifies the profile to be used. The name can consist of up to 16 alphanumeric characters. If the
parameter is omitted, the last used profile is taken.

Note: The following restriction applies to the hardware commands ACTIVATE and LOAD:

Both commands invoke processor functions that can cause asynchronous events such as operator
messages at BCP (Basic Control Program) Internal Interface initialization time or processor hardware
wait states. Currently, the BCP Internal Interface does not allow the monitoring and control of these
events.

Use policy item MESSAGES/USER DATA of the SA z/OS customization dialog within the application type
IMAGE you created to define commands and codes for message IXC102A and IXC402D. Enter C or
S in the Cmd column and IXC102A in the Message ID column (or IXC402D for IXC402D message
automation). For more information, refer to the online help or the section "MESSAGES/USER DATA Policy
Item for Applications" in IBM System Automation for z/OS Defining Automation Policy. The definitions here
also apply to message IXC402D.

Pressing Enter displays the CMD Processing panel, as shown in Figure 27 on page 140. Use this panel
to specify a valid hardware command for the image in the Command Text column and a "Pass/Selection"
value that must match the "Value Returned" definition specified on the Code Processing panel.

 Cmd Ps       AutoFn/* Command Text                                                   
     ACTCODE           LOAD P(LOADPROF)                                      
 

Figure 27. Sample Panel for Command Processing

On the Message Processing panel enter k to define codes. Specify on the Code Processing panel, as
shown in Figure 28 on page 140, the following:

 Code 1          Code 2          Code 3          Value Returned                 
 IXC102A         BCPII                           ACTCODE                        

Figure 28. Sample Panel for Code Processing

If you want to automate messages IXC102A and IXC402D , you must enter IXC102A for Code 1 and
BCPII for Code 2 for both messages.

Step 5: Verify Automation table entries
Verify that the entries of IXC102A and IXC402D of the predefined messages are used in your automation
table and that the auto-operator AUTXCF and AUTXCF2 are defined (see *BASE sample policy).

Enabling Long Running Enqueues (ENQs)
If you automate long running ENQs, you must define the following:

• The resource or resources that are being checked
• The time frame when a long ENQ is detected

If you automate "hung" commands, you must define the following:

• The command (or commands) that are being monitored or excluded from monitoring
• The time frame for each command that a command is granted for completion or, if commands are to be

excluded from monitoring, the exclusion keyword
• The action to be taken against this command if this command is determined to be a blocker of other

commands or jobs

In addition, the following definitions can be made:
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• The names of jobs that should be canceled or kept when detecting a long ENQ, a "hung" command, or
command flooding

• The snapshot interval for a command class
• The title of the dump taken before the job is cancelled
• The default storage areas to be dumped
• Symbol definitions to be used when the dump specifications are provided by a PARMLIB member

Use the entry type GRP in the customization dialog to define the following policies:

• Resource definition
• JOB/ASID definitions
• IEADMCxx symbols
• Command definition
• Snapshot interval definition

Step 1: Defining Resources
Use the Long Running ENQ Resource Definition panel to define your resources. This panel is displayed
if you select policy item RESOURCE DEFINITIONS from the Long Running Enqueue Policy section of
the Policy Selection panel for sysplex groups. For more information, refer to the online help or the
section "More About Policy Item RESOURCE DEFINITIONS" in IBM System Automation for z/OS Defining
Automation Policy.

Step 2: Making Job/ASID Definitions
Use the Long Running ENQ Job/ASID Definitions panel that is displayed if you select policy item JOB/
ASID DEFINITIONS from the Long Running Enqueue Policy section of the Policy Selection panel for
sysplex groups. For more information, refer to the online help or the section "More About Policy Item
JOB/ASID DEFINITIONS" in IBM System Automation for z/OS Defining Automation Policy.

Step 3: Defining IEADMCxx Symbols
Use the Long Running ENQ IEADMCxx Symbols panel that is displayed if you select policy item IEADMCxx
SYMBOLS from the Long Running Enqueue Policy section of the Policy Selection panel for sysplex
groups. For more information, refer to the online help or the section "More About Policy Item IEADMCxx
SYMBOLS" in IBM System Automation for z/OS Defining Automation Policy.

Step 4: Defining Commands
Use the Long Running Command Definition panel to define your commands. This panel is displayed if you
select policy item COMMAND DEFINITIONS from the Long Running Enqueue Policy section of the Policy
Selection panel for sysplex groups. For more information, refer to the online help or the section "More
About Policy Item COMMAND DEFINITIONS" in IBM System Automation for z/OS Defining Automation
Policy.

Step 5: Defining Snapshot Intervals
Use the Command Flooding Definition panel to define the individual snapshot times. This panel is
displayed if you select policy item COMMAND FLOODING from the Long Running Enqueue Policy section
of the Policy Selection panel for sysplex groups. For more information, refer to the online help or the
section "More About Policy Item COMMAND FLOODING" in IBM System Automation for z/OS Defining
Automation Policy.
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Enabling Auxiliary Storage Shortage Recovery
To prevent auxiliary storage shortage outages you can predefine local page data sets, using the SA z/OS
customization dialog for entry type GRP to define the following:

• local page data set
• job definitions

Step 1: Defining the Local Page Data Set
Use the Local Page Data Set Recovery panel that is displayed if you select policy item LOCAL PAGE DATA
SET from the Local Page Data Set Policy section of the Policy Selection panel for sysplex groups.

For more information, refer to the online help or the section "More About Policy Item LOCAL PAGE DATA
SET" in IBM System Automation for z/OS Defining Automation Policy.

Step 2: Defining the Handling of Jobs
Use the Local Page Data Set Recovery Job Definition panel that is displayed if you select policy item JOB
DEFINITIONS from the Local Page Data Set Policy section of the Policy Selection panel for sysplex groups.

For more information, refer to the online help or the section "More About Policy Item JOB DEFINITIONS"
in IBM System Automation for z/OS Defining Automation Policy.

Defining Common Automation Items
There are definitions that relate to utilities running as a started task. The first one (Temporary Data Set
HLQ/TEMPHLQ) replaces the usage of the first qualifier of the automation status file.

The second definition (Started Task Job Name/STCJOBNM) allows the unique assignment of started task
job names scheduled by the automation in case you have dedicated job name assignments that conflict
with the procedure names provided by the automation.

It is recommended that you define the Temporary Data Set HLQ/TEMPHLQ. If it is not defined, the
automation uses the first qualifier of the automation status file.

You can define both of these items using the Sysplex Policy Definition panel that is displayed if you select
the policy item SYSPLEX from the Policy Selection panel for sysplexes. For more information, refer to the
online help or the section "More About Policy Item SYSPLEX" in IBM System Automation for z/OS Defining
Automation Policy.

Customizing the System to Use the Functions

Additional Automation Operator IDs
To automate the Parallel Sysplex, you must define the additional automation operator IDs.

You can import these auto-operator definitions from the *BASE sample policy provided.

Switching Sysplex Functions On and Off
Use the SA z/OS customization dialog to specify the following minor resource names:

CDS
For the recovery of alternate CDSs.

ENQ
Enables the handling of the next four individual recoveries.

ENQ.CMDFLOOD
Enables the handling of commands that flood a particular command class.
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ENQ.HUNGCMD
Enables the handling of jobs and commands that inhibit other commands from completing execution.

ENQ.LONGENQ
Enables the handling of long-running ENQs.

LOG
For the recovery of the system log.

LOGGER
For the recovery of the system logger.

PAGE
For the recovery of auxiliary storage shortage.

WTO
For the recovery of WTO(R) buffer shortages.

XCF
For automating messages IXC102A and IXC402D.

By default, all recovery actions are enabled. If you want to disable them, use the customization dialog
Flag Automation Specification and set the recovery flag to NO.

Note: You can change the automation recovery flag during runtime by using the command INGAUTO.

Customizing the System to Use the Functions
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Chapter 13. Automating Networks

Automation Network Definition Process
This section summarizes the steps for defining an automation network to SA z/OS. More detail for each
step of the process is provided later in this information.

1. Define your message forwarding paths between different systems. To do this, you define:

• A primary focal point, where all notifications are sent.
• An optional backup focal point, used when the primary focal point is unavailable.
• Target systems, which are monitored and controlled by the focal point system.
• Gateway sessions between the systems.

“Defining Gateway Sessions” on page 146 describes how to define gateway sessions.
2. Modify the NetView definitions to reflect your automation network configuration. The chapter on how

to install SA z/OS on host systems in IBM System Automation for z/OS Planning and Installation
provides details.

For an example of the automation network definition process, see also the chapter about installing
SA z/OS on host systems in IBM System Automation for z/OS Planning and Installation.

These definitions create a path allowing message forwarding from target systems to the focal point
system.

A message forwarding path is best implemented by defining systems in the following top-down manner:

1. Primary focal point system
2. Backup focal point system
3. Target systems

Defining the primary focal point first ensures that it is ready to handle forwarded messages as soon as
forwarding is turned on for the target systems.

If the message forwarding path is not yet implemented on all systems in an automation network,
messages are displayed to notification operators on the target systems. Once the message forwarding
path is implemented, notifications are forwarded to the focal point system.

If the target systems are implemented first, additional overhead occurs because the target systems
unsuccessfully attempt to forward notifications, and the notifications are logged in the NetView log.

Defining an SDF Focal Point System
The focal point system and backup focal point systems are defined using the Network entry type in the
customization dialog. Each system has a single entry in the automation policy defining the next system or
domain in the message forwarding path. Figure 29 on page 146 shows an example automation network.
In this example, the primary focal point system is CHI01. The backup focal point is CHI02.
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Figure 29. Focal Point Forwarding Definitions for Systems

SA z/OS always displays messages on the local system. It forwards them to a focal point, if there is one
defined.

Defining Gateway Sessions

Procedure
To define gateway sessions:
1. For each system, define the outbound gateway autotask (GATOPER) on the Automation Operators

policy object of the customization dialog. Refer to "Automation Operators Entry Type" in IBM System
Automation for z/OS Defining Automation Policy.

2. On the SA z/OS Network policy object, use the GATEWAY policy item to define the domains of all
systems within the network which need to communicate with each other. Refer to "Network Entry
Type" in IBM System Automation for z/OS Defining Automation Policy.

3. Define operator IDs used for all inbound and outbound gateway autotasks used on the system in
the NetView DSIPARM data set member DSIOPF. See the chapter on how to install SA z/OS on host
systems in IBM System Automation for z/OS Planning and Installation for details.

Defining Automatically-Initiated TAF Fullscreen Sessions
You can automatically establish Terminal Access Facility (TAF) fullscreen sessions for applications that
SA z/OS monitors, so that the operators need not define the sessions on a daily basis.

These TAF fullscreen sessions are defined in the FULL SESSIONS policy item for a Network policy object.

In addition to defining TAF fullscreen sessions using the customization dialog, you follow the NetView
process for customizing TAF fullscreen sessions, as outlined in Tivoli NetView for z/OS Customization
Guide.

Once TAF fullscreen sessions are set up, they can be managed using the TAF Fullscreen Menu in the
SA z/OS Operator Interface. See “Managing TAF Full-Screen Sessions” in IBM System Automation for z/OS
User's Guide for more information on managing TAF fullscreen sessions.

To define an application on the Fullscreen TAF Application Definition panel that you reach by selecting the
FULL SESSIONS policy item of a Network policy object, specify the following:

• The session name, or the name of the application that a TAF fullscreen session is to be established for,
for example, TSO. This name is displayed in the Description field on the TAF Fullscreen Menu operator
panel. This value can be the same as that used for the application ID.

• The application ID. You can obtain this value from the library containing the network definitions
(VTAMLST) or from your network system programmer.

• The system name that the application runs on, for example, CHI01. This is an information-only field and
is displayed in the System field on the TAF Fullscreen Menu operator panel.
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For example, the following panel defines a TAF fullscreen session for TSO in system CHI01:

   COMMANDS  HELP                                                               
 ------------------------------------------------------------------------------ 
 AOFPINE3              Fullscreen TAF Application Definition  Row 1 to 10 of 20 
 Command ===>                                                   SCROLL===> PAGE 
                                                                                
 Entry Type : Network               PolicyDB Name   : USER_PDB                  
 Entry Name : FOCAL_NETWORK         Enterprise Name : USER_ENTERPRISE           
                                                                                
 Enter the applications with which SA z/OS operators can establish TAF          
 sessions automatically using the operator interface.                           
                                                                                
 Session Name    Application ID    System                                       
   TSO             TAIN1           CHI01                                        
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                

Figure 30. Fullscreen TAF Application Definition Panel
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Chapter 14. Defining a VTAM Application to SA z/OS
VTAM applications need to have Application nodes activated for the application to operate correctly. This
is normally not a problem if an application is to run on a single system. However, if the application is to be
switched from one system to another (via a move group or server group), the application node definition
must be deleted from the system that the application is moving from. If this is not done, users may not be
able to log on to the application because there is a definition for the application node that is not active,
that is, the application has not opened the node ACB.

To alleviate this problem, the application node must be deleted from the old system and created on the
new system. Unfortunately, the only way to delete a node in VTAM is to deactivate its major node, that is,
the member that it is defined in.

Newer releases of VTAM have introduced the concept of Model node definitions. In this case a major
node is created with the type of node and a name that includes wildcards. Whenever a node of the type
is accessed, VTAM will use the name requested to match the models. It will then dynamically create a
node based on the model definitions with the name requested. When the node is no longer required it
will delete it. What this means for application nodes is that a model definition can be defined once on
each VTAM in the network that the application might be run on. Then when the application is started and
opens its ACB, VTAM will dynamically create the node for it. Likewise when moving the application, upon
closing the ACB, VTAM will delete the node and another VTAM on another system will dynamically create
the node.

VTAM applications may require recovery commands to be issued if VTAM is restarted, or the VTAM
application node is reactivated. These commands differ from subsystem to subsystem and can be
specified in the Messages/User Data policy items as described in the following section.

The INGVTAM command provides a method of activating the Major Nodes for an application before the
application is started, and deactivating the Major Nodes after it is down. To enable the function you must
code the INGVTAM command in the PRESTART, REFRESHSTART, and SHUTDOWN FINAL definitions. In
addition, if VTAM should ever be restarted whilst the applications are running, the major nodes must be
reactivated. This can be accomplished by coding the INGVTAM command in the UP messages/user data
policy for the VTAM subsystem.

Registering VTAM Application Subsystems with SA z/OS Recovery
To enable VTAM application recovery to take place, the subsystems must be registered with the SA z/OS
recovery code.

About this task
This is achieved by using the INGVTAM command that is described in IBM System Automation for z/OS
Programmer's Reference. The following application policy items must be customized:

Procedure
1. The PRESTART policy in the STARTUP policy must have at least a NORMal start item with the INGVTAM

command to activate a list of major nodes. The following command can be used as an example:

INGVTAM &SUBSAPPL REQ=ACTIVATE MAJNODE=(majnode1,majnode2,...)

Where majnoden are VTAM application major nodes. Each major mode is varied active to VTAM when
the subsystem prestart commands are issued. Note, it is expected that only one of the major nodes
contain the minor node that the VTAM application subsystem will use.

2. The FINAL definition in the SHUTDOWN policy is used to deregister the subsystem with SA z/OS VTAM
application recovery. Use the INGVTAM REQ=DEACTIVATE command in the policy. For example,
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INGVTAM &SUBSAPPL REQ=DEACTIVATE

The DEACTIVATE request issues a vary net inactive for each major node registered by the
REQ=ACTIVATE. The vary is not done if the major node is shared by other subsystems that
have also registered the major nodes. When the last subsystem registered issues an INGVTAM
REQ=DEACTIVATE, the major node is varied inactive. The only exception to this is when the major
node contains model resources with wildcards in the node definition. In this case, the major node is
never inactivated.

3. The REFRESHSTART definition must have the same definition as the PRESTART definition in the
STARTUP policy. This policy item is used to reregister the subsystem with SA z/OS VTAM application
recovery.

4. Enter commands that are issued when the VTAM subsystem is restarted. Typically, these commands
reopen the VTAM ACB that the subsystem uses to communicate with VTAM.

5. Optionally enter a relationship for the subsystem to ensure that the prestart commands are only issued
when VTAM is up. The required relationship is:

PrepAvailable(WhenAvailable),Passive,Weak -> VTAM/APL/=

where VTAM is the name of the VTAM subsystem and that is the supporting resource. Passive forces
the relationship to wait until VTAM is UP. Weak specifies that only the supporting resource status is
checked.

6. In addition the UP message for VTAM should have the following command:

INGVTAM REQ=ACTIVATE

Results
When INGVTAM is executed with REQ=ACTIVATE and no positional subsystem, it finds all the subsystems
that had previously registered via INGVTAM and issues Vary NET ACT commands for their major nodes.
After this has been done, it will execute any policy command(s) that is/are specified to USER MESSAGE
VTAMUP for the subsystems.
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Chapter 15. Shutting Down z/OS systems in a GDPS
Environment

SA z/OS allows you to shutdown z/OS systems either through the INGREQ ALL command in a GDPS®

production environment or from a GDPS controlling system.

There are three distinct phases in the final shutdown processing that are defined using the special
message ID SYSTEM_SHUTDOWN message/user data policy item for the MVS Component entry type:
Phase 0

This phase is entered prior to shutting down the resource that is identified by the GDPS STOPAPPL
parameter (the STOPAPPL resource). In this phase you can perform any action before the actual
system shutdown starts.

Phase 1
This phase begins when the resource that is identified by the GDPS STOPAPPL parameter (the
STOPAPPL resource) has been terminated. In this phase you can specify additional INGREQ stop
commands or any other commands through NetView to terminate any subsystems that are still
present.

Phase 2
This phase begins after the termination of OMVS and any local automation manager (PAM and SAMs).
Only NetView commands or z/OS commands issued through NetView can be specified. For example,
the MVS Z EOD command.

Notes:

1. OMVS and all local automation managers are always shutdown by SA z/OS automatically.
Do not specify termination commands for OMVS or automation managers in PHASE1 or
PHASE2. When running in a JES3 environment, consider triggering the command MVS F
BPXOINIT,SHUTDOWN=FORKS via routine INGRYSHU in the JES3 SHUTINIT phase. INGRYSHU will
only issue the command when a system shutdown is detected. Likewise, you can trigger command
MVS F BPXOINIT,SHUTDOWN=FILESYS in the JES3 SHUTFINAL phase.

2. Be aware that the NetView address space is still present and must stay up in order to signal the
nearly termination of the system to GDPS.

3. Whenever NetView is ended without its CLOSE command being invoked, it cannot automatically
archive recent messages in its active Canzlog. This can be accomplished instead by invoking the
NetView CANZLOG CUE command during Phase 2.

The scenario is based on the provided best practice policies *BASE and *GDPS. For more details refer to
the MVC entry GDPS_SYSTEM_SHUTDOWN in the *GDPS best practice policy.

Example Definition
The actions you take to shutdown z/OS systems from within GDPS are defined using the
SYSTEM_SHUTDOWN message/user data policy item for the MVS Component entry type. These actions
can include instructing SA z/OS to shutdown resources out of the affected dependency path of GDPS
STOPAPPL, shutdown file systems, and so on.

Table 23. Example SYSTEM_SHUTDOWN Command Processing Entry

Cmd Ps/Select AutoFn/* Command Text

PHASE1
INGREQ RACF/APL/&SYSNAME. REQ=STOP PRECHECK=NO 
REMOVE=SYSGONE 
VERIFY=NO OUTMODE=LINE
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Table 23. Example SYSTEM_SHUTDOWN Command Processing Entry (continued)

Cmd Ps/Select AutoFn/* Command Text

PHASE1
INGREQ RRS/APL/&SYSNAME. REQ=STOP PRECHECK=NO 
REMOVE=SYSGONE 
VERIFY=NO OUTMODE=LINE

PHASE1
INGREQ GDPS_ALL/APG/&SYSNAME. REQ=STOP PRECHECK=NO 
REMOVE=SYSGONE 
VERIFY=NO OUTMODE=LINE

PHASE1
INGREQ LOOKASIDE/APG/&SYSNAME. REQ=STOP PRECHECK=NO 
REMOVE=SYSGONE 
VERIFY=NO OUTMODE=LINE

PHASE1
INGRCHCK BASE_SYS/APG/&SYSNAME.OBSERVED=(SO HA)

PHASE1
INGRCHCK LOOKASIDE/APG/&SYSNAME.OBSERVED=(SO HA)

PHASE2
MVS Z EOD

Table 23 on page 151 shows example definitions for the SYSTEM_SHUTDOWN entry that place stop
votes against the listed resources in PHASE1 in a sequential order. The desired completion of the
resource shutdown is processed in parallel. The specified INGRCHCK command at the end of the PHASE1
sequences waits for the completion of the stop requests for the specified resources.

For example:

INGRCHCK LOOKASIDE/APG/&SYSNAME OBSERVED=(SOFTDOWN HARDDOWN)

For more information about the INGRCHCK command, see IBM System Automation for z/OS Programmer's
Reference.

If synchronization is necessary, the FDBK option for the INGREQ command permits waiting until the
appropriate subsystem has been shutdown. The FDBK=WAIT option causes an INGREQ stop command to
be processed sequentially. In this way it slows down the shutdown process.

The primary and all secondary automation managers (PAM and SAMs) on the local system will be
shutdown by SA z/OS automatically unless they are moved to another system. OMVS will be shutdown by
SA z/OS automatically too. Only the MVS Z EOD command is issued in PHASE2.

INGREQ Considerations
If nothing has been specified, a default of OVERRIDE=(TRG FLG SUS) and TYPE=NORM is used.

If necessary, you can override the default via the INGREQ user exit AOFEXC01.
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Chapter 16. WTOR Processing
When System Automation for z/OS receives WTORs (write-to-operator-with-reply requests), it either
automatically replies to them, or stores them if they are to be used for recovery or to shut down the
subsystem that issued them. WTORs that are stored for later use are known as outstanding WTORs.

Process Flow of WTORs
All WTORs that are issued at a system should be forwarded to NetView. Otherwise SA z/OS is not able to
process them.

To achieve this, specify YES for Route all WTORs to AT in policy BUILD CONTROL of Entry Type MSG. For
details of this Entry Type and policy, refer to IBM System Automation for z/OS Defining Automation Policy.
Otherwise the following definition in the message revision table has to be added:

UPON (OTHERMSG)
  SELECT
* Ensure all WTORs are being automated
    WHEN (WQE SUBSTR 345 C2D ^= "+0")
      REVISE("Y" AUTOMATE)
    OTHERWISE
  END

Incoming WTORs are processed by the NetView automation table (AT) and this triggers commands
according to the processing purpose:

Called automation routine Processing Purpose

ISSUEACT 1. Issue commands or replies (or both) that have been defined to a
subsystem.

2. Store the WTOR if it has not been replied to.

ACTIVMSG, HALTMSG, TERMMSG 1. Update the status of the subsystem that issued the WTOR.
2. Issue defined commands or replies (or both).
3. Store the WTOR if it has not been replied to.

INGMON 1. Issue commands or replies (or both) that have been defined to a
monitor resource.

2. Store the WTOR if it has not been replied to.

OUTREP Store the WTOR.

The commands (other than OUTREP) are routed to the first active task that is defined in the AT synonym
%AOFOPGSSOPER%. Thus they are usually routed to the work operator of the subsystem that issued the
WTOR. This is done based on the job name that is associated with the WTOR.

Automation routines that process WTORs from subsystems that are not defined in SA z/OS or are from
MVS components are routed to tasks that the WTORs have been assigned to based on their message ID.

The OUTREP command is routed to the first active task that is defined in the AT synonym
%AOFOPSYSOPER%.
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Actions in Response to Incoming WTORs
You can use the MESSAGES/USER DATA automation policy item to define what response SA z/OS should
make to incoming WTORs for applications, monitor resources and MVS components, as follows:

• Use the CMD action (possibly combined with the CODE action) to define commands that are to be issued
in response to an incoming WTOR.

• Use the REP action (possibly combined with the CODE action) to define a reply that is to be made
immediately in response to an incoming WTOR.

• Use the AUTO action to define the incoming WTOR as a status message that changes the status of the
subsystem that issued the WTOR.

NetView automation table statements are created that call the relevant command, depending on the
defined actions.

If you used CODE definitions to define actions, the automation table statements that are created have to
be supplemented with an OVR action to tell SA z/OS what variable information is to be extracted from the
WTOR and how to pass this data as code values to the related command.

WTORs that have no actions defined for them are stored by SA z/OS via OUTREP. Appropriate automation
table statements are created for this purpose.

Customizing how WTORs Are Stored by SA z/OS
SA z/OS keeps track of all outstanding WTORs that have not yet been replied to and displays them via
SDF.

These outstanding WTORs include:

• Permanent outstanding WTORs that are issued by applications at startup and thus provide an interface
for critical operator communication and shutdown

• WTORs that no replies have been defined for in the SA z/OS automation policy
• WTORs that were issued before SA z/OS had initialized or during down time of SA z/OS

You can use the automation policy to define the severity for outstanding WTORs and a priority that allows
you to distinguish between primary and secondary WTORs:
Severity

The severity of a WTOR determines the color of the WTOR in SDF. The following values can be
specified for the severity:
NORMAL

Ordinary messages that do not indicate a problem.
UNUSUAL

Messages that might indicate a problem.
IMPORTANT

Messages that indicate serious problems.
CRITICAL

Messages that indicate alarming problems.
IGNORE

Messages that are to be ignored by SA z/OS.
Priority

A primary WTOR is stored and can later be used for operator communication and to shut down the
subsystem that issued it. In contrast, secondary WTORs are replied to immediately, or may be stored
to be displayed in SDF.

This customization is done with code definitions in the MESSAGES/USER DATA policy item for a message
ID of WTORS. For details see the description of the OUTREP command in IBM System Automation for z/OS
Programmer's Reference.
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Processing of Primary WTORs
To prevent SA z/OS from replying to primary WTORs as soon as they are received, the replies are not
defined directly for the message ID of the primary WTOR. Instead, the issuing of replies to primary WTORs
is invoked by other messages or executed commands.

Thus the replies for primary WTORs that are to be deferred are defined for the ID of these invoking
messages, or the replies to be issued are provided for a predetermined message ID. For example, the
SHUTDOWN automation policy item is used to define the replies to be issued during shutdown.

The reply ID of any stored, primary WTOR to a subsystem can be used for operator communication or the
shutdown of this subsystem.

If SA z/OS has to communicate with a subsystem by issuing a reply but an outstanding WTOR has not yet
been stored for the subsystem, the RETRY option is used to wait for the required WTOR.

You can define multiple replies with the same pass or selection option for a message ID. These replies can
be used in response to a sequence of incoming primary WTORs.

Example
Message ABC123D is issued by application ABCAPPL during startup as permanent, outstanding WTOR
and SA z/OS stores it as primary WTOR for this application. During the lifetime of the application,
whenever message ABC789I is issued in special situations, a reply should be issued to the permanent,
outstanding WTOR ABC123D for this application. The MESSAGES/USER DATA automation policy item for
message ID ABC789I of the application is used to define this reply.

When message ABC789I is issued by the application, SA z/OS retrieves the reply ID of the permanent,
outstanding WTOR and issues command MVS R 117,ABC RESTORE, as shown in Figure 31 on page 155.

Figure 31. Example Processing of a Primary WTOR

Restrictions
The reply IDs of a subsystem's outstanding primary WTORs are stored by SA z/OS as a blank-separated
list without leading zeros. The storage for this is restricted to 255 bytes. If this limit is reached, the reply
IDs of further incoming primary WTORs are ignored.

Usage Notes
When storing incoming WTORs, a search for code definitions for the message ID, WTORS, is first made in
the entry for the subsystem that issued the WTOR.

If the subsystem itself cannot be found in the automation policy or the code definitions that are searched
for are not found for the subsystem, they are searched for under the MVSESA entry. For subsystems such
as IMS or NetView that have a permanent outstanding reply, you should specify the code definitions for
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the subsystem entries themselves instead of MVSESA. This improves performance by reducing searches
within the automation policy.
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Chapter 17. SA z/OS User Exits
To allow user-specific activities that are not covered by the Customization Dialog, SA z/OS provides
support for the following classes of user exits:

• Customization Dialog exits that can be called during certain phases when working with the
Customization Dialog, see “Customization Dialog Exits” on page 157

• Initialization exits that are called at the start of SA z/OS initialization, before message AOF603D is
issued, see “Initialization Exits” on page 160

• Static exits that are called at fixed points during SA z/OS processing, see “Static Exits” on page 164
• Flag exits that are called when SA z/OS needs to evaluate an automation flag, see “Flag Exits” on page

165
• Command exits that can be called during the processing of certain commands, see “Command Exits” on

page 168

For copying and updating sample exits refer to IBM System Automation for z/OS Planning and Installation.

Additionally, SA z/OS has a number of facilities that behave in an exit-like manner, see “Pseudo-Exits” on
page 173.

Customization Dialog Exits
SA z/OS provides a series of the following user exits that can be invoked during certain phases while
working with the Customization Dialog.

• “User Exits for BUILD Processing” on page 157
• “User Exits for COPY Processing” on page 158
• “User Exits for DELETE Processing” on page 159
• “User Exits for CONVERT Processing” on page 159
• “User Exits for RENAME and IMPORT Functions” on page 159
• “User Exits for Other Functions” on page 160

“Invocation of Customization Dialog Exits” on page 160 provides information on how to activate the user
exits.

User Exits for BUILD Processing
The following user exits are provided for the process of building the automation control file.

• INGEX10: This is called before the automation control file build function starts. This exit is only
available when the build process is initiated from the customization dialogs.

• INGEX01: This is called before the automation control file build function starts. This exit is available
when the build process is initiated from the customization dialogs, from a batch job submitted via the
customization dialogs, or from a batch job submitted independently from the customization dialogs.

When a BUILD mode of BATCH is selected in the customization dialogs, the JCL for the batch job is
submitted and INGEX01 is called when the job begins execution and before the automation control file
build function starts in batch.

• INGEX02: This is called after the configuration file build has ended. This exit is available when the
BUILD process is initiated from the customization dialogs, from a batch job submitted through the
customization dialogs, or from a batch job submitted independently from the customization dialogs.

The following parameters are passed to both INGEX01 and INGEX02 exits, separated by commas:

• Parm1 = PolicyDB name
• Parm2 = Enterprise name
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• Parm3 = BUILD output data set
• Parm4 = entry type (or blank)
• Parm5 = entry name (or blank)
• Parm6 = BUILD type (MOD/ALL)
• Parm7 = BUILD mode (ONLINE/BATCH)
• Parm8 = Configuration (0=NORMAL/1=ALTERNATE/2=TERTIARY)
• Parm9 = Sysplex name (or blank)
• Parm10 = Build option (1,2, or 3)
• Parm11 = return code (for INGEX02 only)

If user exit INGEX10 produces return code RC = 0, build processing continues. If a return code RC > 0 is
produced, an error message is returned and the build processing terminates.

If user exit INGEX10 ends with return code RC > 0, user exits INGEX01 and INGEX02 are not called.
Processing terminates.

If user exit INGEX10 ends with return code RC > 0 and a BUILD mode of BATCH was selected in the
customization dialogs, no JCL is submitted to run the build in batch. Processing terminates.

If user exit INGEX01 produces return code RC = 0, build processing continues. If a return code RC > 0 is
produced, an error message is returned and build processing terminates. If the build is run in batch mode,
and a return code RC > 0 is produced, the job finishes with a return code RC 08.

If user exit INGEX01 ended with return code RC > 0, user exit INGEX02 is not called because the build
function was not started. Processing terminates.

User exit INGEX02 is always called when the BUILD process has started, irrespective of whether it has
completed or not.

If user exit INGEX02 produces a return code RC > 0, an error message is displayed. If the build is run in
batch mode, and a return code RC > 0 is produced, the job completes with a return code RC 04. If a severe
build error occurred, the job completes with a return code RC 20.

The return codes and their meaning are as follows:
0

Successful
4

Build with minor errors
12

No build (data is inconsistent)
20

No build (severe errors)

User Exits for COPY Processing
Two user exits are implemented for the COPY processing.

1. INGEX03: This is called before the COPY function starts. The following parameters are passed:

• Entry name of the entry to be copied to (target)
• Entry name of the entry to be copied from (source)
• Entry type (for example, APL)

2. INGEX04: This is called after the COPY function has ended. The following parameters are passed:

• Entry name of the entry to be copied to (target)
• Entry name of the entry to be copied from (source)
• Entry type (for example, APL)
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• Indicator whether the COPY process was successful or not (S=successful, U=unsuccessful)

If user exit INGEX03 produces return code RC = 0, COPY processing continues. If a return code RC > 0 is
produced, an error message is displayed, the COPY function does not start, and processing terminates.

If user exit INGEX03 ended with return code RC > 0, the user exit INGEX04 is not called because the
COPY processing will terminate.

User exit INGEX04 is always called once the COPY function has started. The information about the
success or failure of the COPY function is passed as a parameter.

If user exit INGEX04 produces a return code RC > 0, an error message is displayed.

User Exits for DELETE Processing
Two user exits are implemented for the DELETE processing.

1. INGEX05: This is called before the DELETE process starts. The following parameters are passed:

• Entry name of the entry to be deleted
• Entry type (for example, APL)

2. INGEX06: This is called after the DELETE process has ended. The following parameters are passed:

• Entry name of the entry to be deleted
• Entry type (for example, APL)
• Indicator whether the DELETE process was successful or not (S=successful, U=unsuccessful)

If user exit INGEX05 produces return code RC = 0, the DELETE processing continues. If a return code RC
> 0 is produced, an error message is displayed, the DELETE function does not start and the processing
terminates.

If user exit INGEX05 ended with a return code RC > 0, user exit INGEX06 is not called because the
DELETE processing will terminate.

User exit INGEX06 is always called once the DELETE function has started. The information about the
success or failure of the DELETE function is passed as a parameter.

If user exit INGEX06 produces a return code RC > 0, an error message is displayed.

User Exits for CONVERT Processing
Two user exits are implemented for the CONVERT processing.

1. INGEX07: This is called before the CONVERT process starts. No parameters are passed.
2. INGEX08: This is called after the CONVERT process has ended. No parameters are passed.

If user exit INGEX07 produces return code RC = 0, the CONVERT processing continues. If a return
code RC > 0 is produced, an error message is displayed, the CONVERT function does not start and the
processing terminates.

If user exit INGEX07 ended with a return code RC > 0, user exit INGEX08 is not called because the
CONVERT processing will terminate.

User exit INGEX08 is always called once the CONVERT function has started.

If user exit INGEX08 produces a return code RC > 0, an error message is displayed.

User Exits for RENAME and IMPORT Functions
The following user exits are provided for the renaming and import functions.

• INGEX15: This is called before an entry is renamed. The following parameters are passed:

– Entry Name
– Entry Type
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Note: When renaming an entry, a new entry is created and the old entry is deleted. Therefore, INGEX05
is called before the old entry is deleted and INGEX06 is called after the entry has been deleted.

• INGEX16: This is called after an entry has been renamed. The following parameters are passed:

– Entry Type
– Old Entry Name
– New Entry Name

• INGEX17: This is called during the IMPORT function, when reading data from the source policy
database. One parameter is passed:

– Name of copy data work table. This table contains the entry types and entry names of the data to be
copied.

• INGEX18: This is called after the IMPORT function has ended. INGEX18 is only called if INGEX17 was
called at the beginning of the IMPORT function. If checks have been made that prevent INGEX17 being
called, INGEX18 is not called either.

One parameter is passed:

– Indicator whether the IMPORT process was successful (S=successful, U=unsuccessful)

User Exits for Other Functions
The following user exits are provided for other functions.

• INGEX09: This is called when the log data set is switched, usually because the current data set is full.
One parameter is passed:

– Name of current log data set, for example, the data set that went out of space
• INGEX20: This is called after the links have been changed. No parameters are passed.
• INGEX21: This is called before the policy database report is invoked. No parameters are passed.

Invocation of Customization Dialog Exits
The user exits are part of the SA z/OS product. Therefore they are supplied in the same data set as all
other ISPF REXX modules (part of SINGIREX). All of the supplied samples just perform a 'RETURN' with
return code RC=0.

You have two possibilities to apply your user modifications:

1. Edit the user exit (or exits) in the supplied library. Your changes do not have any consequences for
the code of the SA z/OS product. These exits are not serviced (via PTF) by IBM because they do not
include any code at the time of product delivery.

2. Supply the modified user exit in a private data set. Then you have to concatenate your private data
set to your SYSEXEC library chain. As INGDLG supports multiple data set names specified for ddname
SYSEXEC, this can be done in the following way:

 INGDLG SELECT(ADMIN) ALLOCATE(YES) HLQ(SYS1)
        SYSEXEC(usr.private.dsn SYS1.SINGIREX)

This example assumes that the high level qualifier of the data sets where the IBM supplied parts exist
is SYS1.

If you specify the SYSEXEC parameter in the INGDLG call, you need to specify the IBM supplied library
explicitly with its fully qualified data set name.

Initialization Exits
These exits are invoked during SA z/OS initialization:

• AOFEXDEF
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• AOFEXI01
• AOFEXI02
• AOFEXI03
• AOFEXI04
• AOFEXI05
• AOFEXI06
• AOFEXINT
• Environmental Setup Exits

Figure 32 on page 161 shows the sequence that exits may be invoked during SA z/OS initialization.

Figure 32. SA z/OS Exit Sequence during SA z/OS Initialization
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AOFEXDEF
This exit is called at the start of SA z/OS initialization, before message AOF603D is issued. For example,
using AOFEXDEF you can load a different MPF table.

This exit is run on AUTINIT1.

Parameters: None.

Return Codes: 0 is expected.

AOFEXI01
This exit is invoked before the AOF603D ENTER AUTOMATION OPTIONS reply is issued. It is invoked in a
NetView PIPE and gets the data that is displayed in the AOF767I message as input in the default SAFE.
With this exit you can add or remove lines from the message and add additional options to the reply.

Parameters: The Load Type is passed on input.
IPL|RECYCLE

IPL
Indicates that SA z/OS has been started after an IPL.

RECYCLE
Indicates that NetView and therefore SA z/OS has been restarted.

Return Codes: 0 is expected.

AOFEXI02
This exit is invoked after the operator has replied to the AOF603D reply. It gets the operator's response to
the reply as input in the default safe and it can remove, add, or change the options that the operator has
entered.

Parameters: The Load Type is passed on input. See “AOFEXI01” on page 162.

Return Codes: 0 is expected.

AOFEXI03
This exit is invoked before SA z/OS loads the NetView automation table(s) and message revision table.
It can be used to create statistics of the currently loaded ATs. Together with the AT listings that SA z/OS
produces at load, these statistics can be used for any purpose.

Parameters: None.

Return Codes: 0 is expected.

AOFEXI04
This exit is invoked after SA z/OS loads the NetView automation table(s) and message revision table. It
can be used to store the AT listings that SA z/OS produces at load.

Parameters: None.

Return Codes: 0 is expected.

AOFEXI05
This exit is called before either an ACF load or refresh takes place. The parameter indicates what action
the automation agent is going to process: REFRESH or LOAD.

Parameters: Type of ACF action (REFRESH or LOAD).

Return Codes: 0 (Note: the return code is ignored by the caller).
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AOFEXI06
This exit is called after an ACF process (LOAD or REFRESH) has completed (AOFCOMPL=YES) and before
the AOF540I message is issued.

Parameters: Type of ACF action (REFRESH or LOAD).

Return Codes: 0 (Note: the return code is ignored by the caller).

AOFEXINT
This exit is called when SA z/OS initialization is complete, before message AOF540I is issued. You can
use AOFEXINT to call your own initialization processing after SA z/OS has finished. Refer also to the
description of the global variable AOFSERXINT in AOFSERXINT global variable.

Parameters: The input parameter is the Starttype which is one of the following: RESYNC, IPL, REFRESH,
RELOAD, RECYCLE.

Return Codes: 0 is expected.

Environmental Setup Exits
The SA z/OS customization dialog allows you to define a string of exits that are invoked during SA z/OS
initialization processing.

These exits are defined using the SYSTEM INFO policy item of the System (SYS) entry type. See IBM
System Automation for z/OS Defining Automation Policy for more information.

Environmental setup exits are invoked after SA z/OS has started its various tasks, but before the primary
automation table has been loaded. You can use these exits to initiate your own automation, but some
SA z/OS services may be unavailable because SA z/OS has not yet finished initializing when these exits
are called. In particular, status information may be inaccurate because SA z/OS may not have finished
resynchronization. Environmental setup exits run on AUTINIT1.

Parameters
Parameters are passed in sequence, delimited by blanks.

INITIALIZATION
INITIALIZATION is a constant.

RELOAD|REFRESH|IPL|RECYCLE
RELOAD

Indicates that the automation control file has been reloaded.
REFRESH

Indicates that the automation control file has been refreshed.
IPL

Indicates that SA z/OS has just been restarted after a system IPL.
RECYCLE

Indicates that NetView has been restarted.

Return Codes
0 is expected. If you return a non-zero return code you may prevent other exits from being invoked or
disrupt SA z/OS initialization.

Usage Notes
• These exits are not driven if you run RESYNC.
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• Unlike the other static exits, you must specify the name of the routine or routines to invoke in the
automation control file.

Static Exits
These exits are invoked at fixed points in SA z/OS processing.

They are always invoked if they are found in the DSICLD concatenation. Positive return codes from these
exits are generally ignored, though it is recommended that you always exit with a return code of 0.

The main purpose of static exits is to allow you to take your own actions at specific points during SA z/OS
processing. The static exits available are described below.

AOFEXSTA
This exit is called from AOCUPDT every time the automation status of an application is updated.

Note: It is not necessary for AOCUPDT to change an application automation status for this exit to be
called. The exit is still invoked if the update does not result in a change of status.

AOFEXSTA can be used to perform any special status transition processing that cannot be triggered by
other methods.

Note: This exit is invoked frequently, and is invoked at times when SA z/OS is not fully initialized. Your exit
code should be as robust and efficient as possible.

SA z/OS attempts to load AOFEXSTA into storage at initialization. If this attempt fails, AOFEXSTA is not
invoked on any AOCUPDT calls. To activate the exit it must be present in the DSICLD concatenation when
the automation control file is loaded or reloaded.

AOFEXSTA runs on the task that called AOCUPDT, after all other processing has finished.

Attention: AOFEXSTA is scheduled with EXCMD opid(). If your operators are issuing commands
that change application statuses and you want to use AOFEXSTA, you may have to modify your
command authorization definitions.

Parameters: Parameters are passed in sequence, delimited by commas.

Resource type
SA z/OS uses types of SUBSYSTEM, MVSESA, WTORS, and SPOOL. Other users may use other
resource types.

Resource Name
For an application, this is the name of the subsystem it is defined as.

Automation Status
For an application, this is one of the automation statuses that is supported by SA z/OS.

SDF Root
This is the SDF Root, as specified in the customization dialog, for the system that originated the status
update. Generally the exit is driven only for status changes on other systems on the automation focal
point.

Return Codes: 0 is expected.

Restrictions:

• Because the exit is scheduled with EXCMD, the status update and subsequent processing in the caller
will have completed before the exit is invoked.

• Check the resource type and the SDF root to ensure you are only trying to process the right things.
• Plan carefully before you take any action to change the status of an application from this exit. If you are

not careful you may create a loop (AOCUPDT to AOFEXSTA to AOCUPDT to AOFEXSTA).

Notes:
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1. Consider using ISSUEACT or status change commands as alternatives to AOFEXSTA, because
AOFEXSTA is invoked for every status update that seriously degrades performance.

2. If the advanced automation options are set up appropriately, the ACTIVMSG and TERMMSG
commands issues commands whenever an application changes to a particular status. It may be more
appropriate to place commands here, rather than in the status change exit, which gets driven for
every status update of every resource. It is recommended to use status change commands for better
performance.

AOFEXX02
The exit allows the installation to decide whether or not an SDF update should be performed for the
specified resource.

A non-zero return code from the exit causes the SDF update processing to be skipped, both locally as well
as for the focal point.

This exit is called prior to posting entries to SDF to provide the facility to filter out specific events.

Refer to the sample exit for details of the parameters passed to the exit and the return codes.

AOFEXX04
This exit is called from CHKTHRES every time that this routine is called to check the number of errors
recorded in the automation status file for a given resource against error thresholds that are defined in the
automation control file.

Refer to the sample exit for details of the parameters passed to the exit and the return codes.

AOFEXX05
The exit is driven by SA z/OS at initialization time when setting up the SDF panels and trees or by the
RESYNC SDFDEFS command.

The exit is used by the installation to replace user variables in the SDF panel definition. A user variable
must follow the same convention as a z/OS system symbol, that means it must start with an ampersand
(&) and finish with a dot(.). An example is &MVDOMAIN.

Refer to the sample exit for details of the parameters passed to the exit and the return codes.

Flag Exits
Using automation flag exits you can cause your automated operations code to exit normal SA z/OS
processing to an external source, such as a scheduling function, to determine whether automation should
be on or off for a given resource at that particular instant.

Flag exits can be defined for any flag (AUTOMATION, INITSTART, START, RECOVERY, TERMINATE, or
RESTART) on any major or minor resource. See the description of the MINOR RESOURCES policy item in
IBM System Automation for z/OS Defining Automation Policy for more information on minor resources.

You can specify multiple exits for each flag.

A flag exit is invoked only if SA z/OS checks the value of the current flag setting during the flag evaluation
process of AOCQRY, as described in IBM System Automation for z/OS Programmer's Reference. If one of
the global or specific flags, which have to be checked in one iteration step during the evaluation process
over the inheritance hierarchy levels is set to NO, the other flag no longer has to be checked.

With the default BYPASS option of AOCQRY, exits that have been defined for the automation flag of a
resource are executed when that automation flag is checked during flag evaluation and the flag value is
EXITS.

With the FORCED option of AOCQRY, exits that have been defined for the automation flag of a resource are
executed when that automation flag is checked during flag evaluation, independent of the flag value, as
long as it is not empty.
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If an automation flag is set to EXITS, the flag value is assumed to be YES during flag checking as long as
none of the exits that have been defined for the checked resource switch the flag to NO. Exits that are
forced to execute do not change the flag value.

Flag settings are determined by:

• The automation policy settings
• NOAUTO periods (the flag is OFF during a NOAUTO period)
• The user-entered INGAUTO command

For example, if you enter the following flag settings:

Resource Flag Setting

DEFAULTS AUTOMATION YES

SUBSYSTEM RESTART NO

JES2 AUTOMATION Exit J2AUT

JES2 START Exit J2STR

JES2 RECOVERY NO

JES2 TERMINATE Exits J2SD1 and J2SD2

The effective flags for JES2 are:

Flag Effective setting

AUTOMATION YES, Exit J2AUT

INITSTART YES

START YES, Exit J2STR

RECOVERY NO

TERMINATE YES, Exits J2SD1 and J2SD2

RESTART NO

When SA z/OS checks the current value of any flag for the JES2 application, the process is as follows:

Flag Process

AUTOMATION 1. Call exit J2AUT.
2. If the exit returns:

• RC=0: AUTOMATION flag is YES
• RC>0: AUTOMATION flag is NO

INITSTART 1. Call exit J2AUT (because of AUTOMATION global flag).
2. If the exit returns:

• RC=0: INITSTART flag is YES
• RC>0: INITSTART flag is NO
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Flag Process

START 1. Call exit J2AUT (because of AUTOMATION global flag).
2. If exit returns RC=0, call exit J2STR.
3. If:

• Both flags return RC=0: START flag is YES
• Either flag returns RC>0: START flag is NO

RECOVERY RECOVERY flag is NO

TERMINATE 1. Call exit J2AUT (because of AUTOMATION global flag).
2. If exit returns RC=0, call exit J2SD1.
3. If exit J2SD1 returns RC=0, call exit J2SD2.
4. If:

• Both flags return RC=0: TERMINATE flag is YES
• Either flag returns RC>0: TERMINATE flag is NO

RESTART 1. Call exit J2AUT (because of AUTOMATION global flag).
2. Regardless of the return code, the RESTART flag is NO.

Note: Normally the START and RECOVERY flags are checked by SA z/OS only for minor resources but not
for the subsystem itself.

Parameters
Parameters are supplied in sequence, delimited by blanks.

Flag
This is the name of the flag that is being checked. Possible values are AUTOMATION, INITSTART,
START, RECOVERY, TERMINATE or RESTART.

Time Setting
Time Setting is a constant. It can be either:
AUTO

Automation is currently turned on.
NOAUTO

Automation is currently turned off.

A value of NOAUTO is possible only if AOCQRY is called with the parameter EXITS=FORCED.

Note: This ensures that the exit is invoked, but it is not possible for an exit to override a NOAUTO
period.

Resource Name
This is the name of the resource that the flag is being requested for. For minor resources it contains
the fully qualified minor resource name. Given no flag definition for TSO.USER.MAG1 and an exit
enabled for TSO.USER, the resource name passed to the exit would be TSO.USER.MAG1 if a check was
made for TSO.USER.MAG1.

Resource Type
This is the type of the resource that the flag is being requested for. Possible values are DEFAULTS,
SUBSYSTEM, or MVSESA (the value of the common global variable AOFSYSTEM).

Target Prefix
This is the TGPFX value with which AOCQRY was invoked. If TGPFX is not specified, the value SUB is
passed.
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Task Global Variables
The task global variables that are set by the AOCQRY command are available in flag exits.

Return Codes
0

Automation is allowed by the exit.
> 0

Automation is not allowed.

Notes:

1. Flag exits are always called through the AOCQRY command. This means that the task global variables
for the resource have been primed and are available for use. Normally the names of the task global
variables are prefixed with SUB, but if AOCQRY is called with a different value for parameter TGPFX,
they are found in variables that are prefixed with that value. You should use the TGPFX parameter that
is passed to locate the task global variables.

2. The set of task global variables that are set by AOCQRY depends on the values for the resource and
request parameter. Make sure that the task global variables that you rely on in your exit are being set
up.

3. If an exit is invoked for a minor resource, the task global variables are set for the major resource that is
associated with that minor resource.

4. If you call AOCQRY from within your exit you must specify a TGPFX value that is different from the
TGPFX parameter value you were passed. You are responsible for ensuring the uniqueness of all
TGPFXs if you nest AOCQRY exits. Because this can become quite complex, it is recommended you
avoid nesting exits.

5. Do not code calls to ACFCMD, ACFREP, or CDEMATCH because these use task global variables that are
prefixed with SUB that may not be set up for the application that you want to process.

6. Do not change any of the task global variables that have been set by AOCQRY.
7. Flag exits may be called frequently, so performance is important.
8. If AOCQRY is specified with FORCE and multiple exits are defined for a flag, the exits are called in

order.

Command Exits
These exits can be called during the processing of certain commands.

Sample exits are provided with the product. For details on copying and updating sample exits, refer to IBM
System Automation for z/OS Planning and Installation.

AOFEXC00
The AOFEXC00 exit routine is called if the selection L has been entered in the AOC command dialog.
No parameters are passed to the routine. The purpose of this routine is to act as the starting point for
installation-provided local functions.

AOFEXC01
If this exit is defined, it is invoked during INGREQ processing before Precheck and Verification processing.

The exit allows you to modify the parameters that are passed.

Refer to the sample exit for details of the parameters that are passed to the exit and the return codes.

The exit is not called during the INGREQ REQ=CANCEL processing. You may use exit AOFEXC08 instead.
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AOFEXC02
If this exit routine is defined, it is invoked during INGSCHED processing before the schedule override file
is updated. The parameters are positional and separated by a comma.

Refer to the sample exit for details of the parameters that are passed to the exit and the return codes.

AOFEXC03
If this exit routine is defined, it is invoked by the DISPINFO command slave to retrieve user-supplied
information about the subsystem. The input for the routine is the subsystem name. The data returned by
the exit is shown as part of the DISPINFO output.

Refer to the sample exit for details of the parameters that are passed to the exit and the return codes.

AOFEXC04
If this exit routine is defined, the command code U is supported for the DISPMTR, DISPSTAT, and INGLIST
commands. The input for the AOFEXC04 exit is the resource name (subsystem name for DISPSTAT) and
the location of the resource.

The location is either the system name if the resource resides on a system member of the local sysplex,
or the domain ID if the resource resides on a system that is outside of the local sysplex. For sysplex APGs,
REF and DMN resources, the location is always the system on which the INGLIST command was invoked.
The parameters are separated by a comma.

Refer to the sample exit for details of the parameters that are passed to the exit and the return codes.

AOFEXC05
This exit is called on entry of the INGLIST command. The exit allows you to modify the input parameters.
The modified input parameters are returned to the INGLIST command by sending a message (single or
multiline) to the console, for example:

OBSERVED=* DESIRED=*

Refer to the sample exit for details of the parameters that are passed to the exit and the return codes.

AOFEXC06
This exit is called on entry of the INGSET command with the SET action. The exit allows you to perform
authorization checking of the resources for the INGSET command.

Refer to the sample exit for details of the parameters that are passed to the exit and the return codes.

AOFEXC07
This exit is called on entry of the INGIMS command. The exit allows you to perform authorization
checking of the IMS subsystem that is the subject of the INGIMS command.

Refer to the sample exit for details of the parameters that are passed to the exit and the return codes.

AOFEXC08
This exit is called on entry of the INGVOTE command. The exit allows you to perform authorization
checking of the resources for the INGVOTE command. Because the INGSET CANCEL/KILL and INGSUSPD
REQ=RESUME actions use the INGVOTE command, this exit is also called when performing these actions.

Refer to the sample exit for details of the parameters that are passed to the exit and the return codes.
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AOFEXC09
This exit is called on entry of the SETSTATE command. The exit allows you to perform authorization
checking of the resources for the SETSTATE command.

Refer to the sample exit for details of the parameters that are passed to the exit and the return codes.

AOFEXC10
This exit is called on entry of the INGEVENT command. The exit allows you to perform authorization
checking of the resources for the INGEVENT command.

Refer to the sample exit for details of the parameters that are passed to the exit and the return codes.

AOFEXC11
This exit is called on entry of the INGCICS command. The exit allows you to perform authorization
checking of the resources for the INGCICS command.

Refer to the sample exit for details of the parameters that are passed to the exit and the return codes.

AOFEXC13
This exit is called on entry to the INGGROUP and INGMOVE commands. The exit allows you to perform
authorization checking of the user ID that issues the command.

Refer to the sample exit for details of the parameters passed to the exit and the return codes.

AOFEXC14
This exit is called by the SA z/OS GDPS termination routine (INGRGDPS) after stopping the PAM or
selecting a SAM to become the PAM.

Refer to the sample exit for details of the return codes.

AOFEXC15
If this exit routine is defined, it is invoked during INGREQ processing after the GO confirmation has been
received.

The user exit is called in a PIPE. Refer to the sample exit for details of the parameters that are passed to
the exit.

AOFEXC16
This exit is invoked by the INGTHRES command prior to updating or deleting the thresholds for a given
resource. It allows you to perform authorization checking of the requested action. If the exit returns with
a non-zero return code and additional data is written to the console, this data is shown in the message
panel. If no additional data is passed back in the exit, message AOF227I is issued.

Refer to the sample exit for details of the parameters that are passed to the exit and the return codes.

AOFEXC17
This exit is invoked by the INGALERT command. It allows you to:

• Modify the event text
• Reduce the Inform List with event notification targets such as IOM, EIF, TTT, and USR
• Modify the value that is returned from the matching code definition with information such as the event

severity or whether to ignore the event

Refer to the sample exit for details of the parameters that are passed to the exit and the return codes.
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AOFEXC18
This exit is invoked by the INGLKUP command. It is driven prior to stopping or canceling the specified
address space. It allows you to perform authorization checking of the requested action. If the exit returns
with a non-zero return code and additional data is written to the console, this data is shown in the
message panel. If no additional data is passed back in the exit, message AOF227I is issued.

Refer to the sample exit for details of the parameters that are passed to the exit and the return codes.

AOFEXC19
This exit is invoked by the INGAMS command. It is driven in the following cases:

• Enabling or disabling access to the takeover file
• Suspending or resuming systems
• Refreshing the configuration
• Performing a diagnostic action (starting or stopping recording, taking a snapshot)
• Switching the primary automation manager

The exit allows you to perform authorization checking of the INGAMS command. If the exit returns with
a non-zero return code and additional data is written to the console, this data is shown in the message
panel. If no additional data is passed back in the exit, message AOF227I is issued.

Refer to the sample exit for details of the parameters that are passed to the exit and the return codes.

AOFEXC20
This exit is called when a command is passed via the TWS request interface. The exit allows the
installation to perform authorization checking. Optionally, the exit can modify the command and/or the
completion information by returning up to two data lines:

• line 1 is the modified command including all its parameters. A null string must be returned when the
command is not modified. This is only necessary when modifying the completion information via the exit

• line 2 is the completion information:

– maximum return code
– completion checking coding.

The parameters must be separated by a comma. Error code U010 will be posted when one of the
parameters is wrong.

The installation exit is called in a PIPE. If the exit returns a bad return code and additional data is written
to the console, this data is written in the netlog. If no additional data is passed in the exit, message
AOF227I is issued.

Refer to the sample exit for details of the parameters that are passed to the exit and the return codes.

AOFEXC21
This exit is invoked by the INGOPC command with the option REQ=MOD. It allows you to perform
authorization checking of the requested action. If the exit returns with a non-zero return code and
additional data is written to the console, this data is shown in the message panel. If no additional data is
passed back in the exit, message AOF227I is issued.

Refer to the sample exit for details of the parameters that are passed to the exit and the return codes.

AOFEXC22
This exit is called when a trouble ticket is created using the INGALERT command. It allows you to
determine the trouble ticket detail data that is to be written to the detail data set.

Refer to the sample exit for details of the parameters that are passed to the exit and the return codes.
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AOFEXC23
This exit is invoked when a request is passed via the TWS interface. It allows you to perform authorization
checking of the requested action. If the exit returns a non-zero return code and additional data is written
to the console, this data is taken as a message. If no additional data is passed back in the exit, message
AOF227I is issued.

Refer to the sample exit for details of the parameters that are passed to the exit and the return codes.

AOFEXC24
If this exit is defined, it is invoked during INGRUN processing. This exit allows you to modify the
parameters that are passed.

Refer to the sample exit for details of the parameters that are passed to the exit and the return codes.

AOFEXC25
This exit is invoked when an INGAMS REFRESH request is processed. It provides details about new,
changed and deleted subsystems (APLs), application groups (APGs) and monitor resources (MTRs). The
exit is driven on NetView operator AUTO2 to prevent performance degradation during refresh processing.
It is recommended to pass back a return code of 0, however, the return code is not checked, today.

Refer to the sample exit for further details.

AOFEXC26
If this exit is defined, it is invoked during INGSUSPD processing before Verification processing. The exit
allows you to check the parameters that are passed.

Refer to the sample exit for details of the parameters that are passed to the exit and the return codes.
Its default processing will check the passed comment for emptiness. If no comment is specified, it is not
possible to inject a suspend request with the sample exit.

The exit is not called during the INGSUSPD REQ=RESUME processing.

AOFEXC27
The AOFEXC27 user exit, introduced by APAR OA56547, performs authorization checking for the
INGAUTO command with its specified parameters. It provides you the flexibility to allow or prevent
setting automation associated flags by INGAUTO and DISPFLGS commands.

If AOFEXC27 is defined, it is invoked during INGAUTO processing, after INGAUTO parameters are passed
to it. Then, AOFEXC27 decides either to allow or deny INGAUTO execution based on the parameters.

SUSPEND and RESUME requests are always executed, independently of AOFEXC27 definitions.

Refer to the sample exit in the SINGSAMP library for details of the parameters that are passed to the exit
and the return codes.
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Pseudo-Exits
This section discusses a number of places where SA z/OS either makes special use of a flag exit or has a
function with certain, exit-like, qualities.

Automation Control File Reload Permission Exit
When an operator issues the ACF COLD command, SA z/OS checks the global AUTOMATION flag of minor
resource MVSESA.RELOAD.CONFIRM.

If the flag is set to NO, the automation control file reload is not allowed. If the flag is set to YES, the task
global AOFCONFIRM is checked. If AOFCONFIRM has been set to a non-null value, the user is prompted
to confirm that they want the automation control file to be reloaded.

Notes:

1. Note that an exit can be associated with the global AUTOMATION flag for this resource.
2. An automation control file cannot be loaded if the global AUTOMATION flag for the major resource

MVSESA is set to N. If the global AUTOMATION flag for the minor resource MVSESA.RELOAD.CONFIRM
is set to Y, reloading the ACF is permitted.

Automation Control File Reload Action Exit
After the automation control file reload permission exit is checked, when SA z/OS is committed
to reloading the automation control file, it checks the global AUTOMATION flag for minor resource
MVSESA.RELOAD.ACTION.

The actual setting of this flag (ON or OFF) is ignored, but any exits defined for it are invoked. All exits
should return a return code of 0.

Subsystem Up at Initialization Commands
You can specify the commands to be issued if SA z/OS finishes resynchronizing statuses and an
application is found to be up. These commands are specified in the Customization Dialog > APL entry
type > STARTUP policy > REFRESHSTART phase.

These commands can be useful for synchronizing local automation that has been built on top of SA z/OS.

Testing Exits
Exits should be well tested with a variety of different input parameters before they are put into
production. For exits that need AOCQRY task globals, you can call AOCQRY to set up the globals without
evaluating the flag exits, and then invoke the exit on its own for testing purposes. This method saves the
overhead of calling AOCQRY every time you run the exit.

Attention:

If you have a syntax error or a no-value-condition in your exit it can cause parts of SA z/OS to
abend, resulting in severe disruption of your automation.
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Chapter 18. Automation Solutions
SA z/OS provides solutions that enable automatic processing of z/OS components, data sets and job
scheduling systems as well as automation procedures that are useful tools in the automation processing
context. By using these prefabricated automation procedures you can save the time to develop your own
procedures to handle the processing in corresponding situations.

In particular these automation routines provide solutions for:

• “LOGREC Data Set Processing” on page 175
• “SMF Data Set Processing” on page 176
• “SYSLOG Processing” on page 176
• “System Log Failure Recovery” on page 176
• “SVC Dump Processing” on page 176
• “Deletion of Processed WTORs from the Display” on page 177
• “AMRF Buffer Shortage Processing” on page 177
• “JES2 Spool Monitoring” on page 56
• “Drain Processing Prior to JES2 Shutdown” on page 177
• “IMS Transaction Recovery” on page 177
• “Defining INGWHY User Actions” on page 178
• “Looping Address Space Suppression” on page 180

The solutions for automatic processing of these situations include definitions in the automation
configuration files and automation procedures.

It is common to all the solutions that are provided that the automation procedures first determine
whether automation is allowed by checking the corresponding automation flags with the AOCQRY
command. See IBM System Automation for z/OS Defining Automation Policy for further information
concerning types and settings of automation flags. Use the DISPFLGS command to display or temporarily
change the current settings of the automation flags.

Some of the automation routines respond to messages by issuing commands from the automation
configuration files. Most of these automation routines keep track of the reception of these messages
and compare the frequency of the incoming messages with predefined thresholds of infrequent, frequent,
and critical levels. If such a defined threshold is exceeded, it is used as the option for selecting the
appropriate commands according to the first field in the command entry of the MESSAGES/USER DATA
policy item of the configuration file. If no threshold is exceeded the commands defined for the selection
option ALWAYS are issued. See "How SA z/OS Uses Error Thresholds" in IBM System Automation for z/OS
User's Guide for further information on setting up thresholds.

This chapter describes the details of the automation functions that are provided with SA z/OS.

LOGREC Data Set Processing
The logrec recovery function responds to system messages that indicate that the logrec data set is full or
nearly full. The recovery function issues predefined commands to dump and clear the logrec data sets.
While the recovery function is in progress, it prevents the automation processing being started a second
time.

The logrec recovery function includes the following items:

• Automation routines AOFRSA01 and AOFRSA02, see “AOFRSA01” on page 185 and “AOFRSA02” on
page 186

• Automation table entries for system messages IFB040I, IFB060E, IFB080E, IFB081I, and IFC001I
• Error threshold definitions for MVS component minor resource LOGREC

LOGREC Data Set Processing
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• Command specification in the MESSAGES/USER DATA automation policy item for the special message
ID LOGREC

SMF Data Set Processing
The SMF recovery function that is provided responds to system messages that indicate that the SMF data
set is full or has been switched. Predefined commands from the configuration files are selected to dump
and clear the contents of the SMF data set.

The commands to be selected can be defined depending on the occurrence of the incoming messages.
Additionally SA z/OS checks at initialization time whether SMF data sets need to be dumped and triggers
the appropriate recovery action. The SMF recovery function includes the following items:

• Automation routine AOFRSA03, see “AOFRSA03” on page 187
• Automation table entries for system messages IEE362A, IEE362I, IEE391A and IEE392I
• Error threshold definitions for MVS component minor resource SMFDUMP
• Command specification in the MESSAGES/USER DATA automation policy item for the special message

ID SMFDUMP

SYSLOG Processing
The syslog function that is provided responds to messages that are queued to the syslog. The function
starts an external writer to save the syslog that was queued. The commands to be selected can be defined
depending on the occurrence of the incoming messages.

The syslog function includes the following items:

• Automation routine AOFRSA08, see “AOFRSA08” on page 189
• Automation table entry for system message IEE043I
• Error threshold definitions for MVS component minor resource SYSLOG
• Command specification in the MESSAGES/USER DATA automation policy item for the special message

ID SYSLOG

System Log Failure Recovery
The system log failure recovery function that is provided responds to a system log inactive message by
restarting the system log. If the system log should be available to be used as the hardcopy medium, the
recovery function assigns the system log as the hardcopy medium.

The recovery commands are only issued if the occurrence of the system log inactive message that is
received does not exceed a defined critical threshold.

The system log failure recovery function that is provided includes the following items:

• Automation routine INGRX740, see “INGRX740” on page 207
• Automation table entries for system messages IEE037D, IEE041I, IEE533E, IEE769E, IEE043I
• Recovery automation flag for the MVS component minor resource LOG
• Error threshold definitions for the MVS component minor resource LOG
• Command specification in the MESSAGES/USERDATA automation policy item for the special message ID

LOG

SVC Dump Processing
The SVC dump processing function that is provided responds to an SVC dump-taken message by issuing
predefined commands from the configuration files to handle the dump. The commands to be selected can
be defined depending on the occurrence of the incoming messages.

The provided SVC dump processing function includes the following items:
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• Automation routine AOFRSA0C, see “AOFRSA0C” on page 191
• Automation table entries for system messages IEA611I and IEA911E
• Error threshold definitions for MVS component minor resource MVSDUMP
• Command specification in the MESSAGES/USER DATA automation policy item for the following special

message IDs:

– MVSDUMP
– MVSDUMPTAKEN
– MVSDUMPRESET

Deletion of Processed WTORs from the Display
The WTOR processing function that is provided deletes WTORs from SA z/OS display capabilities when
they are replied to or canceled.

The WTOR processing function includes the following items:

• Automation routine AOFRSA0E, see “AOFRSA0E” on page 194
• Automation table entries for system messages IEE400I and IEE600I

AMRF Buffer Shortage Processing
The AMRF buffer shortage processing function that is provided responds to messages that report buffer
shortage of the action message retention facility (AMRF). The function issues commands from the
configuration files to process buffer shortage automation.

The AMRF buffer shortage processing function that is provided includes the following items:

• Automation routine AOFRSA0G, see “AOFRSA0G” on page 194
• Automation table entries for system messages IEA359E, IEA360A and IEA361I
• Command specification in the MESSAGES/USER DATA automation policy item for the following special

message IDs:

– AMRFSHORT
– AMRFFULL
– AMRFCLEAR

Drain Processing Prior to JES2 Shutdown
SA z/OS provides functions for drain processing of JES2 resources prior to JES2 shutdown.

The JES2 drain processing function that is provided includes the following items:

• Automation routines AOFRSD07, AOFRSD0F, AOFRSD0G. See “AOFRSD07” on page 196, “AOFRSD0F”
on page 198 and “AOFRSD0G” on page 200.

• Automation table entries for system message HASP607.
• Specifications in the JES2 DRAIN automation policy item for the JES2 applications that are to be

drained and how they are to be drained prior to JES2 shutdown.

IMS Transaction Recovery
SA z/OS provides an IMS transaction recovery function. This responds to an IMS application program
abend message by issuing predefined replies or commands from the configuration files for recovery
purposes. A recovery action is not issued if the program is excluded from recovery processing, or the
occurrence of the incoming message exceeds a predefined critical threshold.

The IMS transaction recovery function that is provided by SA z/OS includes the following:
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• A NetView automation table entry for the application program abend message, DFS554A
• The subsystem that issues the abend message has the following automation policy definitions:

– Error threshold definitions in the MINOR RESOURCE policy item for the minor resource PROG.progid
or TRAN.tran

– Code definitions in the MESSAGES/USER DATA policy item for the message types
ABCODEPROG.progid, ABCODEPROG, ABCODETRAN.tran, or ABCODETRAN

– Reply or command specifications in the MESSAGES/USER DATA policy item for the message ID
DFS554A

Defining INGWHY User Actions
You can use INGWHY to initially analyze a situation to find why a resource is desired to be available or
unavailable, or why automation is unable to reach the desired status.

Besides analyzing potential reasons, automation also proposes actions that typically point to the
commands that may be helpful for a more detailed analysis. Automation administrators might need to
adapt or override these actions for various reasons.

• The action depends on the installation (sandbox vs. production system).
• The action depends on the resource (time critical vs. non-time-critical resource).
• The action depends on the time of day (shift plans).
• The action depends on whether a problem database including resource-specific actions already exists.

INGWHY reads the action text from the DSIPARM members INGWHYSA and INGWHYU.

• Member INGWHYSA contains the proposed actions that are delivered with the product. This member
must not be changed by users.

• Member INGWHYU allows users to override actions that are defined in INGWHYSA.

INGWHY processes INGWHYU first. If INGWHY finds a matching action ID in member INGWHYU, it will
not search for it again in member INGWHYSA.

Note: INGWHYSA and INGWHYU contain NetView Data REXX in logic mode. You can view these files by
using the Browse command with the NOINCL option in NetView.

Sample Scenario
A resource is found to be in a BROKEN state and the standard action needs to be enhanced.

1. SAPHOST_CTL/APL/AOCA is analyzed by INGWHY:
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 INGKYAN2                   SA z/OS - Command Dialogs        Line 1     of 14     
 Domain Id   : IPUFA    ------------ INGWHY   ------------   Date     : 02/07/17      
 Operator Id : OPER1            Sysplex = TSAPLEX            Time     : 19:05:50      
                                                                                
 Analyzed Resource:  SAPHOST CTL/APL/TSA1                  Job Name: SAPHCTL
 Status   Compound:  INHIBITED     Desired: AVAILABLE      Observed: 
SOFTDOWN                                 
 
-------------------------------------------------------------------------------                
                                             
  SITUATION:
 SAPHOST_CTL/APL/AOCA is not in its desired status and 
 automation is unable to proceed.

  REASON 2 OF 2:
 SAPHOST_CTL/APL/AOCA has a dependency on SAPHOST_EXE/APL/AOCA. 
 SAPHOST_EXE/APL/AOCA ..
 ..could not be started.
 ..is in a PROBLEM status and requires operator intervention.
 ..is in the agent status 'BROKEN'. 
 ..may have received a non-recoverable error.
 ..is desired to be AVAILABLE.                                
                   
  ACTION 2 OF 2:                                             INGWHYSA(A0209600) 
 Refer to your company's rules in order to take the appropriate 
 action. 
 You may contact the owner that is responsible for SAPHOST_EXE/APL/AOCA.
 Consider the following commands to apply to SAPHOST_EXE/APL/AOCA:
 - EXPLAIN  
 - SETSTATE
                                                                                               
              
 Command 
===>___________________________________________________________________                        
                                           
 F1=Help     F2=End      F3=Return                                  F6=Roll       
                         F9=Refresh     F10=Previous   F11=Next    F12=Retrieve   

Figure 33. Scenario: Overriding a Proposed Action
2. Action 2 recommends an action that needs to be enhanced.

This action is identified by the member name INGWHYSA and the action identification A0209600. This
information can be found at the end of the action title line:

ACTION 2 OF 2:                    INGWHYSA(A0209600)

INGWHYSA is the name of the DSIPARM member, where INGWHY reads the action text from, and
A0209600 identifies the action text within this file.

3. In ISPF, view member INGWHYSA and locate the action ID A0209600:

/*==============================================================*/
/* Action  : A0209600                                           */
/*         : Resource is in agent state BROKEN.                 */
/*           The Desired state is AVAILABLE.                    */
/*==============================================================*/
IF #action = 'A0209600' THEN DO                                 
'Refer to your company's rules to take the appropriate action.'
'You may contact the owner that is responsible for '#sub_res'.'
'Consider the following commands to apply to '#sub_res': '
'- EXPLAIN '
'- SETSTATE '
END

Copy the comment and the complete 'IF … THEN DO … END' section to your clipboard.
4. In ISPF, edit member INGWHYU and paste the content of your clipboard to the end of the file between

these lines:

/* ********************************************************** */
/* Start coding your action overrides here...                 */

/* End of INGWHYU                                             */
/**************************************************************/ 
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5. Edit and test the action in INGWHYU as described in the INGWHYU prolog.

Important: INGWHYU is processed by NetView as Data REXX code. Therefore, it must follow the Data
REXX syntax in logic mode.

Data REXX directive: /*%LOGIC. See Using Data REXX in Programming: REXX and the NetView
Command List Language.

Looping Address Space Suppression
The Looping Address Suppression is implemented as a special APL. You can import it from the supplied
sample automation policies.

Once imported you need to add a definition for your TEMS server, perform some customization for the APL
and then link it to the system that it will run on with an APG.

When SA z/OS loads the SOCNTL files containing the APL, it will activate the Looping Address Space
Suppression procedure.

Preparation
You need OMEGAMON for z/OS installed and running on the system where you want to run the procedure.

You need a TEMS server up and running that is in communication with OMEGAMON for z/OS.

Check you can display:

• OMEGAMON for z/OS
• OMEGAMON data from a TEP connected to the TEMS.

You need to know:

• a userid and a password that gives you access to the TEMS
• the IP address and the port number of the SOAP server running on the TEMS.

If you are going to use HTTPS for communication, you need to have already set it up under TCPIP. (See
the step for configuring Tivoli Enterprise Portal in "Traditional SA z/OS Configuration" in IBM System
Automation for z/OS Planning and Installation).

Copy the Sample Policy
If you are creating a new PDB, you can simply copy the entire *ITM add-on into your PDB.

About this task
If you have an existing PDB that includes some or all of the elements in the *ITM add-on, you can be more
selective:

Procedure
1. Take a backup of your normal PDB and then open it in the customization dialogs.
2. Go into Data Management (Option 5) and select Import for Add On (Option 2).
3. Place a C (for Customize) against the *ITM add-on to get to the component selection panel.
4. You should see a list of components, use M to reMove and S to Select to ensure that only the

'Monitoring Analytic' component is selected.
5. Press PF3 and then select 1 to view the data to be imported. Select option 3 to run the import.

Results
After some informational messages, you should see Import Successful, after which you press PF3
twice to access the main menu.
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Customizing your SOAP Server

Procedure
1. Open your PDB and select NTW (Networks).
2. Enter new TEMSserver, where TEMSserver is a unique name to identify the TEMS server that is

providing your OMEGAMON data.
3. Use Copy to copy the definitions from the SOAP_SERVERS network definition.
4. Select the SOAP SERVER policy and edit the HUBTEMS entry.
5. Enter the Host name and the Protocol.

If you are using HTTPS as your protocol, you need to change the port number to 3661 (although this
and the 1920 port number are only the default values, your site may have changed them).

6. Specify the User ID and Password of SAFPW.
This instructs System Automation that you are using the INGPW utility under NetView to supply the
password.

7. Press PF3 twice to return to your policy panel and then select WHERE USED.
8. Select the systems that will be receiving their OMEGAMON data through this TEMS server.

Note that it is important that there is only one single network with a HUBTEMS SOAP server defined
which is linked to each system.

9. Press PF3 to return to the entry selection panel.

Configuring your APL

Copying the sample
Select the APL entry type.

Enter new LOOPSUPP_identity to create a new APL. The identity could be a TEMS name or, if you have
systems from multiple sysplexes feeding into the same TEMS, a sysplex name. Doing the latter means you
need to specify a different set of policies for each sysplex.

Give it a SUBSYSTEM name of LOOPSUPP, press Enter and then press PF3.

Use the COPY policy to copy data from the LOOPSUPP APL.

Minor Resources
There is a minor resource called MONITOR defined. This controls the execution of the monitor when
the APL is Available. By default its RECOVERY flag is set to LOG. This means disruptive commands are
written to the Netlog rather than being executed. Non-disruptive recovery actions WARN and DIAG are
still performed.

For your first deployment you probably want to keep this value set to LOG, but for future deployments you
may want to enable your actions and set it to YES.

MESSAGES/USER DATA
There are two categories with definitions under this; INGCATEGORY and INGRECOVERY

• INGCATEGORY, you need to modify to add categorization rules for your address spaces.
• INGRECOVERY, use appropriate actions for the categorization.

You may want to inherit definitions for all LOOPSUPP monitors using the C_LOOPSUPP APL class.
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Adding a category rule
Under the MESSAGES/USER DATA Policy, place a K against INGCATEGORY and press Enter.

Enter an I against the line at the bottom (SYSOTHER if you using an unmodified sample) and press Enter.

Now the codes you can enter on this panel are:

Code Description

CODE1 The address spaces WLM Service Class.

CODE2 The address spaces job type: STC, BATCH, TSO. This value will be suffixed
with _SA as the address space defined to SA z/OS as an APL.

CODE3 The value of jobname.stepname for the address space. Note that the
code field is only 15 characters long, so you must use a wildcard if you
want to make the check critical upon the final characters of the step
name.

The output of the code match is the recovery category and this defaults to the name of the WLM Service
Class.

The sample policy puts all resources known to SA z/OS and all SYSOTHER resources into the WARN
recovery class, and all TSO users into the TSO_USER recovery category.

Press PF3 to exit when you are done.

Adding a Recovery Sequence
If you would like a recovery sequence to be generally available for all of your looping address space
monitors, then you should add it to the C_LOOPSUPP APL class. If you add a recovery sequence to an APL
you break the link between it and the C_LOOPSUPP INGRECOVERY data, so it does not pick up any further
changes made to the class.

The codes passed into the code match are as follows:

Code Description

CODE1 The name of the Recovery Category; result of INGCATEGORY.

CODE2 The current recovery pass for the address space. The recovery pass is
reset if there is a monitor cycle where the address space is not reported
as looping or if the monitor APL is stopped. This is normally a number,
but if you specify an * the reaction happens on every pass.

CODE3 <blank>

The output is a list of one or more recovery actions:

Action Description

NONE Do nothing.

WARN Issue a warning message, ING601E. The message is written to the Netlog
and notify operators setup to be informed on behalf of class 40 and 44 to
receive the warning message.

Warning messages are posted to SDF under the MVSESA resource. The
number of passes the job has been found on determines their severity:

<10 -> UNUSUAL

<20 -> IMPORTANT
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Action Description

20 and higher -> CRITICAL

The messages are cleared when the resource is no longer discovered or
when the monitor is stopped.

DIAG Use the OMEGAMON Inspection tool to obtain diagnostics on the address
space and write a diagnostic report to the Netlog. This can assist in
identifying where in the code the loop is occurring.

STOP Issue an MVS STOP command for the address space, or, if it is a TSO
USER, an MVS CANCEL USER command is issued. If used with an address
space defined to SA z/OS the STOP command will still be issued, but it
will not be translated into an INGREQ STOP request. This is to allow you
to code a direct shutdown sequence on a pass after you have tried a
SHUT_ command.

CANCEL Issue a MVS CANCEL command for the address space or, if it is a TSO
USER, an MVS CANCEL USER command is issued. If used with an address
space defined to SA z/OS the CANCEL command will still be issued, but
it will not be translated into an INGREQ STOP request. This is to allow
you to code a direct shutdown sequence on a pass after you have tried a
SHUT_command

FORCE Issue an MVS FORCE, ARM command for the address space, or if it is a
TSO USER, an MVS CANCEL USER command is issued. If used with an
address space defined to SA z/OS the FORCE command is still issued, but
it is not translated into an INGREQ STOP request. This is to allow you to
code a direct shutdown sequence on a pass after you have tried a SHUT_
command.

SHUT_NORM Issue an INGREQ STOP for shutdown type NORM for an address space
defined to SA z/OS. If used with an address space not defined to SA z/OS,
it is translated into a STOP instruction.

SHUT_IMMED Issue an INGREQ STOP for shutdown IMMED for an address space
defined to SA z/OS. If used with an address space not defined SA z/OS, it
is translated into a CANCEL instruction.

SHUT_FORCE Issue an INGREQ STOP for shutdown type FORCE for an address space
defined to SA z/OS. If used with an address space not defined to SA z/OS,
it is translated into a FORCE instruction.

SUSPEND Issue an MVS RESET,QUIESCE for the address space. This stops any
further CPU dispatching for it, but not stop it.

RESET_class Issue an MVS RESET,SRVCLASS=class for the address space. This
changes its WLM dispatching class, preferably to one where it consumes
less CPU. Changing the address space to class SYSOTHER reduces its
dispatching priority to a very low value.

USER_prog The prog parameter is the name of a user program which, if found, is
invoked during the recovery process.

The parameters passed to the routine are:

asid jobname jobid jobstep cpuindex

Note: For address spaces of type BATCH, TSO, and OMVS, the jobid
parameter is set to the jobname. For any other types, the jobid is set to
the jobstep.
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The sample policies provide 4 recovery categories:

Recovery Category Description

IGNORE This makes the monitor leave the job alone and not tell anyone about it. It
is designed to be used with known false positives.

WARN This outputs a warning message every pass and gathers diagnostics on
the second pass.

SUSPEND This outputs a warning message on every pass, gathers diagnostics on the
second pass and issues a SUSPEND for the address pace on the 4th pass.
There is no reminder that the address space has been suspended. You
need to check your logs.

TSO_USER This simply issues a warning message on every pass.

Again, press PF3 to exit when you are done.

Linkage
Now that your categorization and recovery policies are defined (you can come back later and refine them),
you need to link the APL to one or more systems where it runs.

Note that the systems it gets linked to must have a Network (NTW) defining a SOAP server called
HUBTEMS linked to them or the monitor does not work.

To do this, create an APG with a blank automation name, make your LOOPSUPP_identity APL a member
of it and link it to the systems where you want the monitor to run. You can model the APG on the
ING_ANALYTIC APG if you wish.

Build
You now need to build your SOCNTL files and get them ready to be activated on the target system.

Prime the Credentials
You now need to issue a command to set up the password that the monitor uses to access the TEMS
server.

Log onto the Automation Agent on each system that you are going to run the monitor on and issue the
following commands:

NETVASIS INGPW userid SOAP,INIT=password

so if your userid was AutoAgnt and your password was ABC1234d you would issue:

NETVASIS INGPW AutoAgnt SOAP,INIT=ABC1234d

When you subsequently change the password you need to reissue this command to tell System
Automation what the new password is.

Activate the Monitor
Issue an INGAMS REFRESH to pick up the new SOCNTL files and the monitor starts running.

Verify the Installation
Wait 5 minutes and then check the netlog. Look for an ING600I message.

This is the monitoring report that the procedure produces. It should indicate that the query was
successful and may or may not contain details of any looping address spaces that were found.

Looping Address Space Suppression
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AOFRSA01

Purpose
You can use the AOFRSA01 automation routine to respond to logrec data set nearly full or full messages
from your system by issuing commands from the configuration files to dump and clear the contents of the
logrec data set.

AOFRSA01 keeps track of the incoming logrec data set messages and compares their occurrence with
predefined thresholds of infrequent, frequent, and critical level. An exceeded threshold is used as the
option to select the appropriate commands according to the first field in the command entry of the
MVSESA/LOGREC entry/type-pair in the configuration file. If no threshold is exceeded the commands
defined for the selection option ALWAYS are issued.

AOFRSA01 should be called from the NetView automation table.

Syntax
AOFRSA01

Restrictions
• Actions are only taken in AOFRSA01 if the recovery automation flag for LOGREC is on.
• Processing in AOFRSA01 is only done if it is called from NetView automation table by one of the

expected messages IFB040I, IFB060E, IFB080E or IFB081I.
• The commands from automation policy to dump and clear the LOGREC data set are only issued if a

LOGREC recovery function is not already in progress.

Usage
Automation routine AOFRSA01 is intended to respond to the following messages:

IFB040I SYS1.LOGREC AREA IS FULL, hh.mm.ss
IFB060E SYS1.LOGREC NEAR FULL
IFB080E LOGREC DATA SET NEAR FULL, DSN=dsname
IFB081I LOGREC DATA SET IS FULL,hh.mm.ss, DSN=dsn

The commands to issue are selected from the command entry of the MVSESA/LOGREC entry/type-pair in
the configuration file.

If no threshold is reached when one of the expected messages arrive, all commands to entries with
no selection option and to selection option ALWAYS are selected. If the threshold at level infrequent is
exceeded, all commands to entries with no selection specification option and to selection option INFR are
selected. In the same way a level of frequent corresponds to selection option FREQ and a level of critical
corresponds to selection option CRIT.

Make sure that the automation routine AOFRSA02 is issued by message IFC001I from the NetView
automation table, to indicate the completion of the LOGREC recovery function.

Global Variables
&EHKVAR1

When defining the commands in the configuration files to dump and clear the contents of the LOGREC
data set, the variable &EHKVAR1 can be used for the name of the LOGREC data set. This variable is
substituted with the complete data set name of the LOGREC data set name.

AOFRSA01
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AOFRSA02

Purpose
You can use the AOFRSA02 automation routine to respond to the initialization message of the LOGREC
data set to reset the flag, which indicates that the LOGREC recovery function is in progress

AOFRSA02 should be called from the NetView automation table.

Syntax
AOFRSA02

Restrictions
• Actions are only taken in AOFRSA02 if the recovery automation flag for LOGREC is on.
• Processing in AOFRSA02 is only done if it is called from NetView automation table.

Usage
Automation routine AOFRSA02 is intended to respond to the following message:

IFC001I D=devtyp N=x F=track1* L=track2* S=recd** DIP COMPLETE

This is produced during the initialization of the LOGREC data set and describes the limits of the data set.

The flag, indicating that the LOGREC recovery function is in progress, is used by automation routine
AOFRSA01.

Examples
This example shows a sample scenario for LOGREC data set processing:

The following entries in the NetView automation table are created automatically to issue the appropriate
automation routine when one of the expected messages arrives:

IF MSGID = 'IFB040I' | MSGID = 'IFB060E' | 
   MSGID = 'IFB080I' | MSGID = 'IFB081I' 
THEN                                                       
EXEC(CMD('AOFRSA01')ROUTE(ONE %AOFOPRECOPER%));   

IF MSGID = 'IFC001I'                         
THEN                                                       
EXEC(CMD('AOFRSA02')ROUTE(ONE %AOFOPRECOPER%));

   COMMANDS  HELP                                                               
 ------------------------------------------------------------------------------ 
                               Thresholds Definition                            
 Command ===>                                                                   
                                                                                
 Entry Type : MVS Component         PolicyDB Name   : DATABASE_NAME             
 Entry Name : MVS_COMPONENTS        Enterprise Name : YOUR_ENTERPRISE           
                                                                                
 Resource   : MVSESA.LOGREC                                                     
                                                                                
 Critical Number  . . . . 3       (1 to 50)                                     
 Critical Interval  . . . 00:05   (hh:mm or hhmm, 00:01 to 24:00)               
                                                                                
 Frequent Number  . . . . 3       (1 to 50)                                     
 Frequent Interval  . . . 00:30   (hh:mm or hhmm, 00:01 to 24:00)               
                                                                                
 Infrequent Number  . . . 3       (1 to 50)                                     
 Infrequent Interval  . . 24:00   (hh:mm or hhmm, 00:01 to 24:00)               

Figure 34. Threshold Definitions for MVS Component LOGREC

AOFRSA02
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Cmd PS/Select AutoFn/* Command Text                                                             
                       MVS S CLRLOG,DSN=&EHKVAR1      
                                                                                   

Figure 35. MESSAGES/USER DATA Policy Item for Entry/Type-Pair MVSESA/LOGREC

Assume that the following message arrives the first time for one day:

IFB080E LOGREC DATA SET NEAR FULL, DSN=SYS1.AOC1.MAN3

Because none of the defined thresholds is exceeded, the automation routine AOFRSA01 searches for
defined commands without selection option and to selection option ALWAYS to be issued. With the
control file shown above the command MVS S CLRLOG,DSN=&EHKVAR1 is selected. Before issuing this
command, the variable &EHKVAR1 is substituted by the data set name of the received message resulting
in MVS S CLRLOG,DSN=SYS1.AOC1.MAN3.

If message IFB080E continues to arrive and the occurrence of the expected messages thus exceeds
the infrequent, frequent or critical threshold, the automation routine AOFRSA01 searches for defined
commands without selection option and to selection option INFR, FREQ or CRIT to be issued.

Because no command is defined with any selection option, only the defined command with no selection
option is selected and issued, as in the previous case.

Message AOF589I, AOF588I or AOF587I is issued in cases, where an infrequent, frequent or critical
threshold has been exceeded. These messages indicate that an infrequent, frequent or critical threshold
action has been processed.

If the recovery processing for a LOGREC data set is still in progress when an expected error message
arrives, the following message is issued:

AOF585I 15:45 : RECOVERY OF LOGREC IS ALREADY IN PROGRESS -

The recovery process is considered to be finished, when message IFC001I arrives telling that the LOGREC
data set has been initialized.

AOFRSA03

Purpose
You can use the AOFRSA03 automation routine to respond to SMF data set full or switch messages from
your system. AOFRSA03 issues commands from the configuration files to dump and clear the contents of
the SMF data set.

AOFRSA03 keeps track of incoming SMF data set messages and compares their occurrence with
predefined thresholds at infrequent, frequent, and critical levels. An exceeded threshold is used as the
option for selecting the appropriate commands according to the first field in the command entry of the
MVSESA/SMFDUMP entry/type pair in the configuration file. If no threshold is exceeded the commands
that are defined for the selection option ALWAYS are issued.

AOFRSA03 should be called from the NetView automation table.

Besides that kind of automation, SA z/OS also checks for full SMF data sets which were filled up while
SA z/OS was not active. For each data set where a dump is required a command is issued if the selection
option is set to 'ALWAYS'. &EHKVAR contains fully qualified SMF data set name.

Syntax
AOFRSA03

AOFRSA03
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Restrictions
• Processing in AOFRASA03 is done if it is called from NetView automation table by one of the expected

messages: IEE362A, IEE262I, IEE391A or IEE392I.
• If AOFRASA03 was triggered by one of the above messages, then actions are only taken if the recovery

automation flag for SMFDUMP is on.
• Actions in AOFRSA03 are only taken if the recovery automation flag for SMFDUMP is on.
• Processing in AOFRSA03 is only done if it is called from the NetView automation table by one of the

expected messages: IEE362A, IEE262I, IEE391A or IEE392I.

Usage
Automation routine AOFRSA03 is intended to respond to the following messages:

IEE362A SMF ENTER DUMP FOR dsname ON ser
IEE362I SMF ENTER DUMP FOR dsname ON ser
IEE391A SMF ENTER DUMP FOR DATA SET ON VOLSER ser, DSN=dsname
IEE392I SMF ENTER DUMP FOR DATA SET ON VOLSER ser, DSN=dsname

that indicate that the SMF data set is ready to be dumped.

Global Variables
&EHKVAR1

When defining the commands in the configuration file to dump and clear the contents of the SMF data
set, the variable &EHKVAR1 can be used for the name of the SMF data set. This variable is substituted
with the complete data set name by AOFRSA03 when message IEE391A or IEE392I is received. In
case of message IEE362A or IEE362I this variable is substituted with MANn, the second part of the
SMF data set name.

&EHKVAR2
When defining the commands in the configuration file to dump and clear the contents of the SMF data
set, the variable &EHKVAR2 can be used for the name of the SMF data set. This variable is substituted
with the complete data set name by AOFRSA03 when message IEE391A, IEE392I, IEE362A, or
IEE362I is received.

Examples
This example shows SMF data set processing when AOFRSA03 is called from the automation table.

The following entries in the NetView automation table are created automatically to issue the appropriate
automation routine when one of the expected messages arrives:

IF (MSGID = 'IEE362I' | MSGID = 'IEE362A' | 
    MSGID = 'IEE391A' | MSGID = 'IEE392I')   
THEN                                                        
EXEC(CMD('AOFRSA03')ROUTE(ONE %AOFOPRECOPER%));

AOFRSA03
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   COMMANDS  HELP                                                               
 ------------------------------------------------------------------------------ 
                               Thresholds Definition                            
 Command ===>                                                                   
                                                                                
 Entry Type : MVS Component         PolicyDB Name   : DATABASE_NAME             
 Entry Name : MVS_COMPONENTS        Enterprise Name : YOUR_ENTERPRISE           
                                                                                
 Resource   : MVSESA.SMFDUMP                                                    
                                                                                
 Critical Number  . . . . 3       (1 to 50)                                     
 Critical Interval  . . . 00:05   (hh:mm or hhmm, 00:01 to 24:00)               
                                                                                
 Frequent Number  . . . . 3       (1 to 50)                                     
 Frequent Interval  . . . 00:30   (hh:mm or hhmm, 00:01 to 24:00)               
                                                                                
 Infrequent Number  . . . 3       (1 to 50)                                     
 Infrequent Interval  . . 24:00   (hh:mm or hhmm, 00:01 to 24:00)               

Figure 36. Threshold Definitions for MVS Component SMFDUMP

Cmd PS/Select AutoFn/* Command Text                            
                       MVS S SMFDUMP1,DA='&EHKVAR2'           
                                                                                   

Figure 37. MESSAGES/USER DATA Policy Item for Entry/Type-Pair MVSESA/SMFDUMP

Assume that the following message arrives the first time on one day:

IEE391A SMF ENTER DUMP FOR DATASET ON VOLSER 123, DSN=SYS1.AOC1.MAN3

Because none of the defined thresholds has been exceeded, the AOFRSA03 automation routine searches
for commands to issue that have been defined without a selection option or with the selection option
ALWAYS. With the control file shown above the command MVS S SMFDUMP1,DA='&EHKVAR2' is
selected. Before issuing this command, the variable &EHKVAR2 is substituted with the data set name
from the received message, resulting in MVS S SMFDUMP1,DA='SYS1.AOC1.MAN3'.

If message IEE391A continues to arrive and the occurrence of the expected messages thus exceeds the
infrequent, frequent or critical thresholds, the AOFRSA03 automation routine searches for commands to
issue that have been defined without a selection option or with selection option INFR, FREQ or CRIT.

Because no command has been defined with a selection option, only the command that has been defined
without a selection option is selected and issued, as in the previous case.

Message AOF589I, AOF588I or AOF587I is issued in cases where an infrequent, frequent or critical
threshold has been exceeded. These messages indicate that an infrequent, frequent or critical threshold
action has been processed.

AOFRSA08

Purpose
You can use the AOFRSA08 automation routine to respond to syslog being queued messages by starting
an external writer to save the syslog that was queued.

AOFRSA08 keeps track of the incoming syslog queued messages and compares there occurrence with
predefined thresholds at infrequent, frequent, and critical levels. An exceeded threshold is used as the
option for selecting the appropriate commands according to the first field in the command entry of the
MVSESA/SYSLOG entry/type-pair in the configuration file. If no threshold is exceeded the commands that
are defined for the selection option ALWAYS are issued.

AOFRSA08 should be called from the NetView automation table.

AOFRSA08
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Syntax
AOFRSA08

Restrictions
• Processing in AOFRSA08 is only done if it is called from NetView automation table by the expected

message IEE043I.
• Actions are only taken in AOFRSA08 if the recovery automation flag for SYSLOG is on and if the status of

JES is UP or HALTED.

Usage
Automation routine AOFRSA08 is intended to respond to the message:

IEE043I A SYSTEM LOG DATA SET HAS BEEN QUEUED TO SYSOUT CLASS class

which indicates that the system closed the system log (SYSLOG) data set and queued the data set to a
SYSOUT class.

The commands to issue are selected from the command entry of the MVSESA/SYSLOG entry/type-pair in
the configuration file.

If no threshold is reached when one of the expected messages arrive, all commands that are defined for
entries without a selection option and for the selection option ALWAYS are selected.

If the threshold at the infrequent level is exceeded, all commands that are defined for entries without a
selection specification option and for entries with the selection option INFR are selected.

In the same way, a level of frequent corresponds to the selection option FREQ and a level of critical
corresponds to the selection option CRIT.

Examples
This example shows a sample scenario for SYSLOG processing:

The following entry in the NetView automation table is created automatically to issue AOFRSA08 as
response to the incoming IEE043I message:

IF MSGID = 'IEE043I'                       
THEN                                                     
EXEC(CMD('AOFRSA08')ROUTE(ONE %AOFOPRECOPER%));

   COMMANDS  HELP                                                               
 ------------------------------------------------------------------------------ 
                               Thresholds Definition                            
 Command ===>                                                                   
                                                                                
 Entry Type : MVS Component         PolicyDB Name   : DATABASE_NAME             
 Entry Name : MVS_COMPONENTS        Enterprise Name : YOUR_ENTERPRISE           
                                                                                
 Resource   : MVSESA.SYSLOG                                                     
                                                                                
 Critical Number  . . . . 3       (1 to 50)                                     
 Critical Interval  . . . 00:05   (hh:mm or hhmm, 00:01 to 24:00)               
                                                                                
 Frequent Number  . . . . 3       (1 to 50)                                     
 Frequent Interval  . . . 00:30   (hh:mm or hhmm, 00:01 to 24:00)               
                                                                                
 Infrequent Number  . . . 3       (1 to 50)                                     
 Infrequent Interval  . . 24:00   (hh:mm or hhmm, 00:01 to 24:00)               

Figure 38. Threshold Definitions for MVS Component SYSLOG

AOFRSA08
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Cmd PS/Select AutoFn/* Command Text                                                             
                       MVS S SAVELOG                  
                                                                                  

Figure 39. MESSAGES/USER DATA Policy Item for Entry/Type-Pair MVSESA/SYSLOG

Assume that the following message arrives the first time for one day:

IEE043I A SYSTEM LOG DATA SET HAS BEEN QUEUED TO SYSOUT CLASS A

Because none of the defined thresholds is exceeded, the automation routine AOFRSA08 searches for
defined commands without selection option and to selection option ALWAYS to be issued. With the
control file shown above the command MVS S SAVELOG is selected.

If message IEE043I continues to arrive and the occurrence of the expected messages thus exceeds
the infrequent, frequent or critical threshold, the automation routine AOFRSA08 searches for defined
commands without selection option and to selection option INFR, FREQ or CRIT to be issued.

Because no command is defined with any selection option, only the defined command with no selection
option is selected and issued, as in the previous case.

Message AOF589I, AOF588I or AOF587I is issued in cases, where an infrequent, frequent or critical
threshold has been exceeded. These messages indicate that an infrequent, frequent or critical threshold
action has been processed.

AOFRSA0C

Purpose
You can use the AOFRSA0C automation routine to respond to a SVC dump taken to a dump data set
message by issuing commands from the configuration file to format the dump, to clear the dump data
sets, or to prevent further dumping. The commands to issue are taken from the MVSESA/MVSDUMP
and MVSESA/MVSDUMPTAKEN entry/type-pairs and selected according to the frequency of the incoming
messages and the thresholds defined in the automation policies. The first field in the command entry
gives detailed criteria to select the appropriate commands from the configuration file.

AOFRSA0C should be called from the NetView automation table.

Syntax
AOFRSA0C

Restrictions
• Actions in AOFRSA0C are only taken if the recovery automation flag for MVSDUMP is on.
• Processing in AOFRSA0C is only done if it is called from NetView automation table by one of the

expected messages IEA611I or IEA911E.

Usage
Automation routine AOFRSA0C is intended to respond to the following messages:

IEA611I {COMPLETE|PARTIAL} DUMP ON dsname
DUMPID=dumpid REQUESTED BY JOB (jobname)
FOR ASIDS(id,id,...)
...

IEA911E {COMPLETE|PARTIAL} DUMP ON SYS1.DUMPnn
DUMPid=dumpid REQUESTED BY JOB (jobname)

AOFRSA0C
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FOR ASIDS(id,id,...)
...

These indicate that the system wrote a complete or partial SVC dump to an automatically allocated or
pre-allocated dump data set on a direct access storage device or a tape volume.

AOFRSA0C keeps track on the reception of these messages and compares the frequency of the incoming
messages with predefined thresholds of infrequent, frequent and critical level, where the thresholds
to MVS component MVSDUMP are considered. The commands to issue are selected according to the
frequency of the incoming messages.

If no threshold is reached, all commands to entries with no selection option and to selection option
ALWAYS are selected. If the threshold at level infrequent is exceeded, all commands to entries with
no selection option and to selection option INFR are selected. In the same way a level of frequent
corresponds to selection option FREQ and a level of critical corresponds to selection option CRIT.

The commands to issue are taken from MVSESA/MVSDUMP entry/type-pair of the configuration file with
respect to the frequency of the incoming of these messages.

If AOFRSA0C has been triggered by receipt of message IEA911E, all the commands from the MVSESA/
MVSDUMPTAKEN entry/type-pair of the configuration file are also selected and issued, as long as the
critical threshold has not been exceeded.

After dump processing has been done, AOFRSA0C further monitors the frequency of messages IEF611I
and IEF911E in intervals of 15 minutes. As soon as the frequency falls below the infrequent threshold, all
the commands of MVSESA/MVSDUMPRESET entry/type-pair are issued.

Global Variables
When defining the commands in the configuration file to handle the SVC dump data set, the variables
&EHKVAR1 to &EHKVAR6 can be used to be substituted by variable contents of message IEA611I
or IEA911E. The variables &EHKVAR1 to &EHKVAR6 are not available in command entries of type
MVSDUMPRESET. These variables are substituted as follows:

&EHKVAR1
The dsname of IEA611I or suffix of SYS1.DUMPnn in IEA911E

&EHKVAR2
The data set name

&EHKVAR3
The dump ID

&EHKVAR4
The job name

&EHKVAR5
The ID of address space

&EHKVAR6
The dump type (PARTIAL or COMPLETE)

Examples
This example shows the use of automation routine AOFRSA0C in a sample context:

An entry in the NetView automation table is used to issue AOFRSA0C when one of the expected messages
arrives:

IF MSGID = 'IEA611I' | MSGID = 'IEA911E'             
THEN                                              
EXEC(CMD('AOFRSA0C ')ROUTE(ONE %AOFOPRECOPER%));  

Three threshold levels are defined in the automation policy for MVS component MVSDUMP:

AOFRSA0C
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AOFKAASR                  SA z/OS  - Command Dialogs                           
 Domain ID   = IPSNO     ---------- INGTHRES ----------    Date = 08/28/03      
 Operator ID = SAUSER                                      Time = 09:38:02      
                                                                                
                                                                                
 Specify thresholds and resource changes:                                       
                                                                                
    Resource     =>    MVSESA.MVSDUMP     Group or specific resource            
    System       =>    KEY3         System name, domain ID, sysplex name or *all
                                                                                
    Critical     =>    6    errors in  00:30      Time (HH:MM)                  
    Frequent     =>    4    errors in  00:20      Time (HH:MM)                  
    Infrequent   =>    2    errors in  00:20      Time (HH:MM)                  
                                                                                
                                                                                
                                                                                
    Pressing ENTER will set the THRESHOLD values                                
                                                                                
                                                                                
                                                                                
                                                                                
 Command ===>                                                                   
    PF1=Help     PF2=End      PF3=Return                        PF6=Roll        
                                                               PF12=Retrieve    

Figure 40. MVSDUMP Thresholds

The MESSAGES/USER DATA automation policy item of the MVSESA/MVSDUMP entry/type-pair contains
the following command entries for the message ID MVSDUMP with selection options at different levels:

Ps/Select Command Text

FREQ 'MVS DD ALLOC=INACTIVE'

INFR 'MVS DD ALLOC=ACTIVE'

CRIT 'MVS DD ALLOC=INACTIVE'

The MESSAGES/USER DATA automation policy item of the MVSESA/MVSDUMPTAKEN entry/type-pair
contains the following entry without any selection options:

'MVS DD CLEAR,DSN=&EHKVAR1'

The MESSAGES/USER DATA automation policy item of the MVSESA/MVSDUMPRESET entry/type-pair
contains the following entry without any selection options:

'MVS DD ALLOC=ACTIVE'

As long as no threshold is exceeded at receipt of one of the IEA611I and IEA911E messages, no action is
taken.

If dumps have been taken more often than defined with the infrequent threshold, the command MVS DD
ALLOC=ACTIVATE, specified in entry type MVSDUMP, is issued. This makes sure that automatic dump
data set allocation is enabled. In cases when the dump has been written to a pre-allocated SYS1.DUMP
data set, additionally the data set is cleared using the command MVS DD CLEAR,DSN=&EHKVAR1,
specified in the entry type MVSDUMPTAKEN. Variable &EHKVAR1 is substituted by the numeric suffix of
the SYS1.DUMP data set.

The same processing is done in cases when the incoming dump data set messages exceeds the frequent
level.

As soon as the critical threshold is exceeded, the automation routine stops clearing pre-allocated
SYS1.DUMP data sets.

After commands having been issued by the automatic processing of dump data sets, automation routine
AOFRSA0C checks every 15 minutes whether the infrequent threshold is satisfied again. As soon as
this situation is reached, automatic dump data set allocation is enabled again by command MVS DD
ALLOC=ACTIVE, as defined in entry type MVSDUMPRESET.

AOFRSA0C
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AOFRSA0E

Purpose
Automation routine AOFRSA0E deletes WTORs from SA z/OS display capabilities when they are replied to
or canceled.

Syntax

AOFRSA0E

,

id

Parameters
id

The reply identifiers for cancelled messages.

Restrictions
Processing in AOFRSA0E is only done if it is called from NetView automation table by message IEE400I or
IEE600I or if one of these messages are passed by parameter.

Usage
Automation routine AOFRSA0E is intended to respond to the following messages:

IEE400I THESE MESSAGES CANCELED- id,id,id
IEE600I REPLY TO id IS; text

Message IEE400I says that the system cancelled messages because the issuing task ended or specifically
requested that the messages be cancelled. Message IEE600I notifies all consoles that received a
message that the system accepted a reply to the message.

As well AOFRSA0E can extract the identifiers of the messages to delete from passed parameters.

Example
The following example shows how to issue AOFRSA0E from the NetView automation table:

IF MSGID = 'IEE400I' | MSGID = 'IEE600I'           
THEN                                                
EXEC(CMD('AOFRSA0E ')ROUTE(ONE %AOFOPWTORS%));

AOFRSA0G

Purpose
You can use the AOFRSA0G automation routine to respond to messages reporting buffer shortage of
the action message retention facility (AMRF) by issuing commands from the configuration file to process
buffer shortage automation.

In the case of an incoming buffer shortage message, the commands to issue are taken from the MVSESA/
AMRFSHORT entry/type-pair with the selection option PASS1 and reissued at 1 minute intervals with an
incremented pass count.

AOFRSA0E
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In the case of a buffer full message, the commands to issue are taken from the MVSESA/AMRFFULL
entry/type-pair. If buffer shortage relieved is reported, the commands that are defined for the MVSESA/
AMRFCLEAR entry/type-pair are selected.

AOFRSA0G should be called from the NetView automation table.

Syntax
AOFRSA0G

Restrictions
• Actions are only taken in AOFRSA0G if the recovery automation flag for AMRF is on.
• Processing of system messages in AOFRSA0G is only done if it is called from NetView automation table

by message IEA359E, IEA360A or IEA361I.

Usage
Automation routine AOFRSA0G is intended to respond to the messages:

IEA359E BUFFER SHORTAGE FOR RETAINED ACTION MESSAGES - 80% FULL
IEA360A SEVERE BUFFER SHORTAGE FOR RETAINED ACTION MESSAGES - 100% FULL
IEA361I BUFFER SHORTAGE RELIEVED FOR RETAINED ACTION MESSAGES

IEA359E and IEA360A reports buffer shortage of the buffer area for immediate action messages, non-
critical and critical eventual action messages and WTOR messages. IEA361I indicates the reduction of the
number of retained action messages so that the buffer is now less than 75% full.

If AOFRSA0G has been triggered on receipt of message IEA359E the commands to issue are taken
from entry/type-pair MVSESA/AMRFSHORT, starting at selection option PASS1 and continuing with
incremented selection options in 1 minute intervals until message IEA361 reports that buffer shortage
has relieved. After arriving the maximal used selection option for a defined command processing restarts
at selection option PASS1.

If AOFRSA0G has been triggered on receipt of message IEA360A all commands from entry/type-pair
MVSESA/AMRFFULL are issued.

If AOFRSA0G has been triggered on receipt of message IEA361I all commands from entry/type-pair
MVSESA/AMRFCLEAR are issued.

Example
The following example shows a sample scenario for AMRF shortage processing:

Entries in the NetView automation table are used to issue AOFRSA0G when message IEA359E, IEA360E
or IEA361I arrives:

IF MSGID = 'IEA359E'                                 
THEN                                              
EXEC(CMD('AOFRSA0G')ROUTE(ONE %AOFOPRECOPER%));                            
IF MSGID = 'IEA360A'                                 
THEN                                              
EXEC(CMD('AOFRSA0G')ROUTE(ONE %AOFOPRECOPER%));                            
IF MSGID = 'IEA361I'                               
THEN                                            
EXEC(CMD('AOFRSA0G')ROUTE(ONE %AOFOPRECOPER%));

To specify how to respond to message IEA359E and IEA361I, the following command definitions are
made in the automation policy under the entry/type-pair MVSESA/AMRFFULL and MVSESA/AMRFCLEAR:
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 Command = ACF ENTRY=MVSESA,TYPE=AMRF*,REQ=DISP                                 
 SYSTEM = AOC1      AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA            
 -------------------------------------------------------------------------------
 AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA                               
  TYPE IS AMRFCLEAR                                                             
  CMD             = (,,'MVS CONTROL M,AMRF=Y')                                  
  TYPE IS AMRFFULL                                                               
  CMD             = (,,'MVS CONTROL M,AMRF=N')                                  
 END OF MULTI-LINE MESSAGE GROUP                                                

Figure 41. MVSESA AMRF Command Definitions

If for example message

IEA360A SEVERE BUFFER SHORTAGE FOR RETAINED ACTION MESSAGES - 100% FULL

arrives, AOFRSA0G is issued by the shown statement in the NetView automation table, which causes the
command CONTROL M,AMRF=N to be issued to clear the AMRF buffers.

After AMRF buffer shortage is relieved, the incoming message

IEA361I BUFFER SHORTAGE RELIEVED FOR RETAINED ACTION MESSAGES

causes command CONTROL M,AMRF=Y to be issued to reactivate AMRF.

AOFRSD07

Purpose
You can use the AOFRSD07 automation routine to respond to a JES2 not dormant message during JES2
shutdown by issuing commands for resources that are not drained.

The commands to issue are taken from the automation policy item JES2 DRAIN of application JES2.

Additionally AOFRSD07 calls AOFRSD0F which outputs a list of all active jobs and started tasks and a list
of all resources not yet drained.

AOFRSD07 should be called from the NetView automation table.

Syntax
AOFRSD07

Restrictions
Processing in AOFRSD07 is only done if:

• It is called from NetView automation table by JES2 message HASP607
• The terminate automation flag for JES2 is on
• JES2 is in shutdown progress

Usage
Automation routine AOFRSD07 is intended to respond to message

HASP607 JES2 NOT DORMANT --  MEMBER DRAINING, RC=rc text

which indicates in case the P JES2 command was entered to withdraw JES2 from the system that not all
of JES2's functions have completed.

To find out all resources not drained, the response to JES2 command DU,STA is processed. For each
resource in status DRAINING the corresponding command from the automation policy item JES2 DRAIN
for this resource type to force drain is issued. Resources in status ACTIVE are first stopped with JES2
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command P resource, before the command from the automation policy item to force drain is issued.
Resources in status INACTIVE are only stopped with JES2 command P resource.

In cases, where the automation is unable to issue actions on not yet drained resources, JES2 is set to
status STUCK and a message is issued which tells that an operator action is required. Those situations
occur if no command is specified in automation policy item JES2 DRAINED of JES2 to drain a resource or
if a not yet drained resource is in an unknown status

AOFRSD09

Purpose
Automation routine AOFRSD09 is used for JES2 spool recovery. It is called by AOFRSD01 via a timer every
retry interval to monitor spool utilization of JES2 and to successive issue the recovery commands of policy
item JES2 SPOOLSHORT or JES2 SPOOLFULL.

For this purpose AOFRSD09 processes the following steps:

• AOFRSD09 issues the JES2 command D SPOOL to obtain the current spool usage.
• AOFRSD09 re-evaluates the target of recovery process based on the actual warning threshold for TG

and the buffer value from the configuration file.
• If the recovery target has not yet been achieved and the current JES2 subsystem is responsible for

the spool recovery, AOFRSD09 increments the pass count and issues the appropriate commands from
the configuration file. In a shared JES2 environment, where all JES2 subsystems receive a copy of the
spool shortage message, AOFRD09 determine the appropriate JES2 subsystem for spool recovery. To
do this, AOFRD09 compares the list of cpuids, as defined in configuration file, with the response to
JES2 command D MEMBER,STATUS=ACTIVE. The first active cpuid on the list is considered to be the
appropriate JES2 subsystem for spool recovery.

• In case the spool shortage problem has already been relieved, AOFRSD09 stops the recovery process
and sets a timer to reset the pass count for the recovery commands after the reset interval.

You define recovery commands and configuration parameters for JES2 recovery processing, such as
buffer value, reset interval and cpuid list, using automation policy item JES2 SPOOLSHORT for spool
shortage recovery processing and JES2 SPOOLFULL for spool full recovery processing.

For further information about the JES2 SPOOLSHORT and JES2 SPOOLFULL automation policy items see
IBM System Automation for z/OS Defining Automation Policy.

Syntax
AOFRSD09 subsystem recovery type

Parameters
subsystem

The subsystem name of JES2. This parameter is required.
recovery type

This parameter is used to distinguish between a JES2 spool shortage and a JES2 spool full condition.
This parameter is required.
SHORT

The automatic recovery from a JES2 spool shortage condition is to be processed.
FULL

The automatic recovery from a JES2 spool full condition is to be processed.
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Restrictions
• Processing of recovery commands in AOFRSD09 is only done if the recovery automation flag for JES2 is

on. Otherwise the recovery process is suspended and the pass count for selection recovery commands
from the configuration file is not incremented.

• Automation routine AOFRSD09 should be processed by JESOPER. If it is called on another task it is
routed back to JESOPER.

• Processing in AOFRSD09 is only done if the specified type of spool recovery process has been initiated
by automation routine AOFRSD01.

• During a SPOOLFULL recovery condition, the processing for SPOOLSHORT recovery is suspended.

Usage
The recovery commands to issue are selected from the command entry of policy item JES2 SPOOLSHORT
or JES2 SPOOLFULL. A pass count is used as selection option and incremented at each successive
processing of automation routine AOFRSD09. At initialization of the recovery process, the pass count is
set to value PASS1 by automation routine AOFRSD01.

If pass processing runs out of defined recovery commands before the spool shortage condition is
resolved, AOFRSD09 re-executes the recovery sequence from PASS1. You can change this behavior
by setting the appropriate advanced automation option at start up of System Automation. You can use
the AOFSPOOLSHORTCMD variable (for SPOOLSHORT conditions) and the AOFSPOOLFULLCMD variable
(for SPOOLFULL conditions) to tell automation routine AOFRSD09 to stop recovery attempts when all
commands have been executed and to issue message AOF294I to inform the operator that manual
intervention is required in order to resolve the spool condition. For more information about advanced
automation options refer to “Read/Write Variables” on page 226.

Global Variables
When defining the commands in the SPOOLFULL or SPOOLSHORT processing panel of the configuration
file to handle the recovery, the variables &EHKVAR1 and &EHKVAR2 can be used to be substituted by
variable contents. Variable &EHKVAR1 is substituted by the current spool utilization and &EHKVAR2
contains the recovery target.

AOFRSD0F

Purpose
Automation routine AOFRSD0F is used by AOFRSD07 for drain processing prior to JES2 shutdown. Every
shutdown delay interval, AOFRSD0F displays all JES2 resources not yet drained. For this purpose it
scans the response to JES2 command DA,S for executing tasks, the response to JES2 command DA,J for
executing jobs and the response to JES2 command DU,STA for started devices or lines not yet drained and
displays the result in a message.

Syntax
AOFRSD0F subsystem

Parameters
subsystem

The subsystem name of JES2.

Restrictions
Processing in AOFRSD0F is only done if the following conditions are met:
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• The subsystem is of type JES2
• JES2 is in shutdown progress
• The terminate automation flag is on

Usage
This automation routine is performed as part of the SHUTDOWN processing.

Examples
This example shows a sample scenario for JES2 drain processing prior to JES2 shutdown.

The following statement shows how AOFRSD07 is issued from the NetView automation table by JES2
message

$HASP607:  IF MSGID(2) = 'HASP607'
THEN
EXEC(CMD('AOFRSD07')ROUTE(ONE %AOFOPJESOPER%));

Assume the following drain processing specifications in automation policy item JES2 DRAIN: 

   COMMANDS  HELP                                                               
 ------------------------------------------------------------------------------ 
                         JES2 DRAIN Specification                 Line 00000001 
 Command ===>                                                  Scroll ===> PAGE 
                                                                                
 Entry Type : Application           PolicyDB Name   : DATABASE_NAME             
 Entry Name : JES2                  Enterprise Name : YOUR_ENTERPRISE           
                                                                                
 Enter YES or NO for initial drain to bring down JES2 facilities:               
                                                                                
 Drain lines  . . . . . . . . . . YES                      (YES NO)             
 Drain VTAM interface . . . . . . YES                      (YES NO)             
 Drain spool offloaders . . . . . NO                       (YES NO)             
 Drain printers . . . . . . . . . YES                      (YES NO)             
 Drain readers  . . . . . . . . . YES                      (YES NO)             
 Drain punches  . . . . . . . . . YES                      (YES NO)             
                                                                                
 Enter NO or a command for force drain if normal drain fails:                   
 Force drain lines  . . . . . . . $E                       (NO, Command)        
 Force drain VTAM interface . . . $E                       (NO, Command)        
 Force drain spool offloaders . . NO                       (NO, Command)        
 Force drain printers . . . . . . $I                       (NO, Command)        
 Force drain readers. . . . . . . $C                       (NO, Command)        
 Force drain punches. . . . . . . $E                       (NO, Command)        
   

Figure 42. JES2 DRAIN Specifications Panel

The list of commands to force drain of JES2 resources are passed to the JES2/FORCEDRAIN entry/type-
pair in the configuration file and can be displayed with the DISPACF command: 

 Command = ACF ENTRY=JES2,TYPE=FORCEDRAIN,REQ=DISP                              
 SYSTEM = KEY3      AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2              
 -------------------------------------------------------------------------------
 AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2                                 
  TYPE IS FORCEDRAIN                                                            
  LIN             = ""$E""                                                      
  LOG             = ""$E""                                                      
  OFF             = ""NO""                                                      
  PRT             = ""$I""                                                      
  RDR             = ""$C""                                                      
  PUN             = ""$E""                                                      
 END OF MULTI-LINE MESSAGE GROUP                                                

Figure 43. DISPACF Panel

AOFRSD0F

Chapter 18. Automation Solutions  199



Assume that during a shutdown of JES2 message $HASP607 arrives, indicating that not all of JES2's
functions have completed and that JES2's response to command $DU,STATUS is:

$HASP636 13.53.22 $DU,STA                             
LINE1      UNIT=0FF3,STATUS=ACTIVE/BOEVM9,DISCON=NO  

Automation routine AOFRSD07 first issues JES2 command $PLINE1 to stop the line and then issues JES2
command $E, according to the policy specifications FOR entry/type-pair JES2/FORCEDRAIN.

Then automation routine AOFRSD0F is executed every shutdown delay interval, to list all JES2 resources
not drained.

AOFRSD0G

Purpose
You can use the AOFRSD0G automation routine to drain JES2 resources prior to JES2 shutdown.
AOFRSD0G issues commands to drain the initiators, offloader tasks, lines, printers, punches and readers,
depending on which resources are listed and enabled in the automation policy item JES2 DRAIN of
application JES2.

AOFRSD0G is used by the DRAINJES command.

Syntax
AOFRSD0G subsystem

Parameters
subsystem

The subsystem name of JES2.

Restrictions
Processing in AOFRSD0G is only done if the subsystem is of type JES2.

Usage
For all resources enabled to initial drain in automation policy item JES2 DRAIN of application JES2 the
JES2 command P is issued.

Example
Call AOFRSD0G JES2 to stop all resources enabled in JES2 DRAIN for init drain.

These resources can be listed with command DISPACF JES2 INITDRAIN.

 Command = ACF ENTRY=JES2,TYPE=INITDRAIN,REQ=DISP                               
 SYSTEM = AOC1      AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2              
 -------------------------------------------------------------------------------
 AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2                                 
  TYPE IS INITDRAIN                                                             
  LIN             = ""YES""                                                     
  LOG             = ""YES""                                                     
  OFF             = ""NO""                                                     
  PRT             = ""YES""                                                     
  RDR             = ""YES""                                                     
  PUN             = ""YES""                                                     
 END OF MULTI-LINE MESSAGE GROUP                                                

Figure 44. DISPACF JES2 INITDRAIN Panel
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AOFRSD0H

Purpose
The AOFRSD0H automation routine is used for JES2 spool recovery. It is called by AOFRSD09 with a timer
command after the reset interval and cleans up the pass counter for the pass processing of the recovery
commands of the configuration file.

Syntax
AOFRSD0H subsystem recovery type

Parameters
subsystem

The subsystem name of JES2. This parameter is required.
recovery type

This parameter is used to distinguish between a JES2 spool shortage and a JES2 spool full condition.
This parameter is required.
SHORT

The pass counter for spool shortage recovery processing is to be reset.
FULL

The pass counter for spool full recovery processing is to be reset.

Restrictions
• The AOFRSD0H automation routine should be processed by JESOPER. If it is called on another task it is

routed back to JESOPER.
• Each recovery action during the reset interval
• AOFRSD0H is only scheduled after the reset interval if no new recovery action of the corresponding type

SHORT or FULL has been taken during this time.
• The pass counter for spool full recovery processing is reset by AOFRSD0H after the reset interval, even

if spool short recovery is still in progress.

Examples
The following example shows a sample scenario for JES2 spool recovery processing:

The following entries in the NetView automation table are used to issue the AOFRSD01 automation
routine from the NetView automation table, when one of the expected messages arrives:

IF MSGID(2) = 'HASP050' & TEXT = .'TGS'.  
THEN                                                    
EXEC(CMD('AOFRSD01')ROUTE(ONE %AOFOPJESOPER%));
IF MSGID(2) = 'HASP355'                   
THEN                                                    
EXEC(CMD('AOFRSD01')ROUTE(ONE %AOFOPJESOPER%));

The SPOOLSHORT recovery is configured using the automation policy item JES2 SPOOLSHORT as shown
in Figure 45 on page 202.
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                            COMMANDS  
HELP                                                               
 ------------------------------------------------------------------------------ 
                       JES2 SPOOLSHORT Specification              Line 00000001 
 Command ===>                                                  Scroll ===> PAGE 
                                                                                
 Entry Type : Application           PolicyDB Name   : DATABASE_NAME             
 Entry Name : JES2                  Enterprise Name : YOUR_ENTERPRISE           
                                                                                
 Spool Shortage Retry Time  . . . . . 00:02:00   (hh:mm:ss)                     
 Spool Shortage Buffer  . . . . . . . 5          (0 to 50)                      
 Spool Shortage Reset Time  . . . . . 00:15:00   (hh:mm:ss)                     
                                                                                
 Enter priority of systems for spool recovery:                                  
 Spool Shortage Recovery SMFID  1 . . SYS1                                      
 Spool Shortage Recovery SMFID  2 . . SYS2                                      
 Spool Shortage Recovery SMFID  3 . . SYS3                                      
 Spool Shortage Recovery SMFID  4 . .                                           
 Spool Shortage Recovery SMFID  5 . .                                           
 Spool Shortage Recovery SMFID  6 . .                                           
 Spool Shortage Recovery SMFID  7 . .                                           
 Spool Shortage Recovery SMFID  8 . .                                           
 Spool Shortage Recovery SMFID  9 . .                                           
   

Figure 45. JES2 SPOOLSHORT Recovery Definition

Because no smfids are defined, the own JES2 subsystem is responsible for JES2 spool recovery
processing. Editing JES2 SPOOLSHORT CMDS policy allows you to enter the pass recovery commands
that are defined as shown in the response panel to command DISPACF JES2.

 Command = ACF ENTRY=JES2,TYPE=*,REQ=DISP                                       
 SYSTEM = KEY3      AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2              
 -------------------------------------------------------------------------------
  TYPE IS SPOOLSHORT                                                            
  CMD             = (PASS1,,'MVS $PQ,Q=N,A=3')                                  
  CMD             = (PASS1,,'MVS $OQ,Q=N,A=3,CANCEL')                           
  CMD             = (PASS1,,'MVS $PQ,Q=V,A=3')                                  
  CMD             = (PASS1,,'MVS $OQ,Q=V,A=3,CANCEL')                           
  CMD             = (PASS2,,'MVS $PQ,ALL,A=4')                                  
  CMD             = (PASS2,,'MVS $OQ,ALL,A=4,CANCEL')                           
  CMD             = (PASS3,,'MVS $PQ,ALL,A=3')                                  
  CMD             = (PASS3,,'MVS $OQ,ALL,A=3,CANCEL')                                      

Figure 46. DISPACF Command Response Panel

Assume that a JES2 spool shortage problem is reported by the following message:

$HASP050 JES RESOURCE SHORTAGE OF TGS - 80% UTILIZATION REACHED

This issues the AOFRSD01 automation routine by the appropriate NetView automation table entry.
AOFRSD01 initiates the JES2 SPOOLSHORT recovery process and sets an every timer to call the pass
processing routine by issuing AOFRSD09 JES2 SHORT every 5 minutes, as defined in the customization
dialog for SPOOLSHORT processing, see Figure 45 on page 202.

AOFRSD09 redetermines the actual spool usage, compares it with the defined TGWARN of 80% and
calculates the target of recovery as difference of TGWARN and the buffer value resulting in a value of
75. If this value is exceeded by the actual spool usage, all recovery commands with the PASS1 selection
option in the configuration file for the SPOOLSHORT recovery type are issued. After the retry interval of 5
minutes, AOFRSD09 is reissued by the timer.

If AOFRSD09 now determines that the JES2 spool shortage problem has been relieved, it stops recovery
processing and sets a timer to issue AOFRSD0H JES2 SHORT after the reset interval of 15 minutes.

If none of the expected JES2 messages arrives by the end of the reset interval, the AOFRSD0H
automation routine resets the pass count to 1 so that the next SPOOLSHORT recovery process issues
recovery commands beginning again at PASS1 selection option.
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HASP099

Restrictions
Shutdown processing of the JES2 message HASP099 is only done if:

• Shutdown automation for JES2 is on
• JES2 is in the process of being shut down

Usage
The ISSUEACT command responds to message:

HASP099 ALL AVAILABLE FUNCTIONS COMPLETE

This indicates that all JES2 job processors have become dormant, and no JES2 RJE lines are active.

INGRMJSP

Purpose
You use the INGRMJSP automation routine to monitor JES2 spool file usage. It queries the spool usage
to obtain the current spool usage and the warning level. If necessary it calls the INGRCJSP automation
routine for JES2 spool recovery processing.

The INGRMJSP command also updates the SPOOL entry in the status display facility (SDF) every time it is
called.

Syntax
INGRMJSP

Restrictions
Monitoring by INGRMJSP is only done if it has been defined as the monitor command for an appropriate
monitor resource in the customization dialog.

Usage
The INGRMJSP monitoring routine queries the spool usage by issuing the D SPOOLDEF,TGSPACE
command to obtain the current spool usage and the warning level as set up by the JES2 system
programmer:

• If the spool file is full, INGRMJSP sets the health status to CRITICAL and calls INGRCJSP.
• If the spool usage is above the warning level, INGRMJSP sets the health status to WARNING and calls

INGRCJSP.

Depending on the spool full percentage and the warning level, one of the following return codes is set:

Return code Meaning

1 A severe error occurred:

• The monitor does not have a job name
• The monitored object is not SPOOL or associated with JES2
• The specified job name does not refer to a JES2 resource
• No command prefix for JES2 was found
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Return code Meaning

2 Monitoring command failed:

• The D SPOOLDEF command failed

3 OK: Spool usage is below the warning level

4 WARNING: Spool usage is above the warning level

6 CRITICAL: The spool file is full

Example
To create a spool usage monitor in the customization dialog you must define the following items:

1. A monitor resource (MTR) with INGRMJSP as the monitoring command. For example, if you create
a monitor resource called JES2SPOOL with the short description JES2 Spool Monitor, specify the
following information in the MONITOR INFO policy item:

MONITOR INFO item Entry

Monitored Object SPOOL

Monitored Jobname JES2

Activate Command

Deactivate Command

Monitor Command INGRMJSP

Monitoring interval 00:15

Captured Messages Limit 20

Desired Available

Inform List SDF

Owner

Info Link

2. The following relationships to the JES2 application using the RELATIONSHIPS policy item:

Relationship type Supporting Resource Condition

HasParent JES2/APL/=

ForceDown JES2/APL/= WhenObservedDown

The monitor has a HasParent relationship to the corresponding JES2 resource because it only makes
sense to monitor the spool usage when JES2 is active.

3. The following recovery actions in the HEALTHSTATE policy item:

State Command

WARNING INGRCJSP

CRITICAL INGRCJSP

INGRMJSP
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INGRCJSP (AOFRSD01)

Purpose
You can use the INGRCJSP automation routine for JES2 spool recovery processing. It responds to JES2
spool shortage messages by initiating the recovery process for JES2 spool shortage. It responds to JES2
spool full messages by initiating the recovery process for JES2 spool full to downgrade the problem of
excessive spool usage.

The INGRCJSP routine does the following:

• Makes linear and first order predictions of spool usage, based on actual and historical values.
• Posts the spool status to the status display facility (SDF).
• Determines the target of recovery processing as the difference between the actual warning threshold for

track groups and the buffer value from the configuration file. The spool shortage condition is considered
as relieved if the recovery process achieves this target.

• Initiates pass processing to execute the recovery commands of the configuration file, as defined with
the JES2 SPOOLSHORT or JES2 SPOOLFULL policy item. The pass processing itself is done by the
AOFRSD09 automation routine, which is issued every retry interval. The retry interval is taken from the
configuration file.

You define recovery commands and configuration parameters for JES2 recovery processing, such as
buffer value and retry interval, using automation policy item JES2 SPOOLSHORT for spool shortage
recovery processing and JES2 SPOOLFULL for spool full recovery processing.

For further information about the JES2 SPOOLSHORT and JES2 SPOOLFULL automation policy items see
IBM System Automation for z/OS Defining Automation Policy.

INGRCJSP should be called from the NetView automation table.

Syntax
INGRCJSP

Restrictions
• Processing in INGRCJSP is only done if it is called from NetView automation table by JES2 messages

HASP050 or HASP355.
• Message HASP355 is only processed if it reports a shortage of track groups (TG).

Usage
The INGRCJSP automation routine is intended to respond to the following messages:

HASP050 JES2 RESOURCE SHORTAGE OF TGs - nnn% UTILIZATION REACHED

HASP355 SPOOL VOLUMES ARE FULL

HASP050 indicates that JES2 has a shortage of track groups and the current spool utilization exceeds
the current TGWARN value on this JES. TGNWARN is defined in the SPOOLDEF statement in the JES
initialization member and can be changed dynamically.

HASP355 indicates that a request for JES2 direct access spool space cannot be processed because all
available space has been allocated to JES2 functions or no spool volumes are available. Therefore the
recovery targets in this case are based on a figure of 100% spool utilization.

You should code TGWARN in the SPOOLDEF statement in the JES initialization member so that
SPOOLSHORT recovery is initiated before a SPOOLFULL condition is reached. If you do not do this the
recovery process may become unpredictable.
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When resetting after a SPOOLFULL condition, the problem is downgraded to a SPOOLSHORT condition.
SA z/OS expects the SPOOLSHORT recovery that was previously running to activate and try to downgrade
the problem to an OK. Without the prior SPOOLSHORT recovery, the spool status remains in SPOOLSHORT
after a successful SPOOLFULL recovery.

The NetView automation table entries for JES2 messages must respect the one character prefix in front of
the message identifier of JES2 messages that identifies the issuing JES.

The spool status is posted to SDF under the SPOOL generic, with the name of the subsystem as its
specific name. To have these displayed on an SDF panel, you need status fields for xxxx.SPOOL, elements
1 through n, where n is the number of different subsystems that use the spool.

INGRTAPE

Purpose
INGRTAPE maintains tape status details under SDF. When SA z/OS detects an outstanding tape mount
request then it feeds the related message into SDF. If the request is not satisfied before the warning
interval has expired, the status will change to warning.

If the tape mount request is still not satisfied after the alert delay, the status will change to alert.

The tape mount request is deleted from SDF dynamically when the related tape is mounted or the
requesting job is canceled.

The routine INGRTAPE automation routine is used to visualize the pending tape mount requests within
SDF. Its behavior is based on the definitions in the 'Tape Attendance' policy entry. For information about
activating and customizing Tape attendance, refer to IBM System Automation for z/OS Defining Automation
Policy.

Syntax
INGRTAPE

Usage
Automation routine INGRTAPE is intended to respond to the following messages: IEC501E, IEC501A,
IEC502E, IEC503I, IEC507D, IEC509A, IEC510D, IEC512I, IEC513D, IEC514D, IEC701D, IEC702I,
IEC703I, IEC704A, IEC706I, IEC707I, IEC708I, IEC708D, IEC709I, IEC710I, IEC711I, IEC712I,
IEC713I, IEC714I, IEC715I, IEF233A, IEF233D,IEF234E, IEF455D, IAT5210, TMS001, TMS002,
TMS0012

Restrictions
The monitoring of tape mounts is only enabled when activated via the Customization Dialogs.

Actions are only taken in INGRTAPE if the recovery automation flag is on for the message in question. The
flag check is performed against minor resource MVSESA.messageID.

INGRX711

Purpose
Automation routine INGRX711 can reformat the primary and alternate LOGR CDSs with an increased
DSEXTENT parameter whenever the system reports a directory shortage.
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Syntax
INGRX711

Usage
Automation routine INGRX711 is intended to respond to messages IXG261E and IXG257I.

Restriction
Automation must be allowed for the minor resource names: LOGGER and CDS.

INGRX740

Purpose
You can use the INGRX740 automation routine to respond to some syslog related system messages by
issuing defined recovery actions from the automation control file to restart the syslog or to assign the
syslog as a hardcopy medium.

INGRX740 keeps track of the incoming IEE037D syslog inactive message and compares its occurrence
with predefined thresholds for the MVS component minor resource, LOG. As long as the critical threshold
level is not exceeded, a recovery action related to a previously received system message is issued.

If one of the messages IEE043I, IEE533E or IEE769E is received prior to the IEE037D message that is
currently being processed, the commands that have been defined for IEE043I, IEE533E or IEE769E in the
MVSESA/msgid entry/type-pair of the configuration file are issued. If none of these messages has been
received prior to the IEE037D message that is currently being processed, the command MVS WRITELOG
START is issued.

The recovery routine INGRX740 also responds to an incoming IEE041I message if this indicates that the
SYSLOG data set is available for use as a hardcopy log. Commands are issued in response to message
IEE041I that are defined in the MVSESA/IEE041I entry/type-pair of the configuration file. An appropriate
command in this case would be MVS VARY SYSLOG,HARDCPY to have the SYSLOG receive the hardcopy
log.

INGRX740 should be called from the NetView automation table.

Syntax
INGRX740

Restrictions and Limitations
Processing in routine INGRX740 is only done if the following conditions are met:

• The recovery automation flag for LOG is on.
• The routine is running on an automation task.
• The routine is called from NetView automation table by one of the expected messages

– IEE037D
– IEE041I
– IEE533E
– IEE769E
– IEE043I

Actions in response to message IEE037D are only taken in INGRX740, if the Job Entry Subsystem is up
and running.

INGRX740
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Usage
Automation routine INGRX740 responds to the following messages:

IEE037D LOG NOT ACTIVE 
IEE041I THE SYSTEM LOG IS NOW ACTIVE[-MAY BE VARIED AS HARDCOPY LOG]
IEE043I A SYSTEM LOG DATA SET HAS BEEN QUEUED TO SYSOUT CLASS class
IEE533E SYSTEM LOG INITIALIZATION HAS FAILED 
IEE769E SYSTEM ERROR IN SYSTEM LOG

Example
This example shows a sample scenario for system log failure recovery.

The following entry in the NetView automation table is provided by SA z/OS to issue INGRX740 in
response to incoming messages IEE043I and IEE037D:

IF MSGID = 'IEE037D' THEN 
EXEC(CMD('INGRX740')ROUTE(ONE %AOFOPRECOPER%));
IF MSGID = 'IEE043I' THEN 
EXEC(CMD('INGRX740')ROUTE(ONE %AOFOPRECOPER%));

Assume that the following threshold levels are defined in the automation policy for MVS component minor
resource, LOG. 

   COMMANDS  HELP                                                               
 ------------------------------------------------------------------------------ 
                               Thresholds Definition                            
 Command ===>                                                                   
                                                                                
 Entry Type : MVS Component         PolicyDB Name   : DATABASE_NAME             
 Entry Name : MVS_COMPONENTS        Enterprise Name : YOUR_ENTERPRISE           
                                                                                
 Resource   : MVSESA.LOG                                                        
                                                                                
 Critical Number  . . . . 3       (1 to 50)                                     
 Critical Interval  . . . 00:05   (hh:mm or hhmm, 00:01 to 24:00)               
                                                                                
 Frequent Number  . . . . 3       (1 to 50)                                     
 Frequent Interval  . . . 00:30   (hh:mm or hhmm, 00:01 to 24:00)               
                                                                                
 Infrequent Number  . . . 3       (1 to 50)                                     
 Infrequent Interval  . . 24:00   (hh:mm or hhmm, 00:01 to 24:00)               

Figure 47. Threshold Definitions for MVS Component LOG

Assume that a command is defined for message IEE043I in the automation policy item MESSAGES/USER
DATA of MVS components, as shown in the following figure. 

   COMMANDS  HELP                                                               
 ------------------------------------------------------------------------------ 
                                  CMD Processing               Row 1 to 4 of 20 
 Command ===>                                                   SCROLL===> PAGE 
                                                                                
 Entry Name : MVS_COMPONENTS       Message ID : IEE043I                         
                                                                                
 Enter commands to be executed when resource issues the selected message.       
 or define this message as status message.                                      
                                                                                
 Status . . .                 ('?' for selection list)                          
                                                                                
 Pass/Selection Automated Function/'*'                                          
 Command Text                                                                   
                                                                                
 MVS WRITELOG START                                                             
                                                                                

Figure 48. MESSAGES/USER DATA Policy Item for Entry/Type-Pair MVSESA/LOG

INGRX740

208   System Automation for z/OS : Customizing and Programming



Assume that the following messages arrive the first time for one day, while the Job Entry Subsystem is up
and running and the recovery automation flag for the MVS component minor resource LOG has not been
switched off:

IEE043I A SYSTEM LOG DATA SET HAS BEEN QUEUED TO SYSOUT CLASS 1
IEE037D LOG NOT ACTIVE 

Because IEE043I has been received prior to message IEE037D and the critical threshold that has been
defined for message IEE037D has not been exceeded, the command that has been defined for message
IEE043I is issued in response to message IEE037D.

INGRX740
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Chapter 19. Automated System Resource Discovery
The discovery utility can be run against one or multiple customer systems, extracting all automation
relevant data from the currently active address spaces.

That will let SA z/OS make a simple link between the address spaces details (job name, command
prefix, start command, and so forth) and a class definition that provides messages, dependencies and
appropriate automation policy. It runs through the control blocks, pulling out not only job names, but also
procedure and step names. It pulls out the start commands, and the PGM name from the JCL. It can
search through CICS and IMS implementations to pull out lists of dependent regions. All that data is then
imported into the customer's Policy DB which will create a basic automation policy for them.

This policy then requires manual steps to create a ready to run automation policy. The policy will contain:

• Sysplex Group(s)
• Systems
• A System APG w/o Automation name where all applications found on that system are linked to
• APL Classes
• APL Instances, linked to classes
• Basic dependency structures

Note, there is no intention to discover any service period (schedule) related data. Furthermore, only
applications that are running when the discovery utility is run would be included in the SA z/OS policy.

In a subsequent step, rerunning the discovery utility and re-importing it will update the policy DB to add
any newly discovered APLs.

The discovery utility can be used when:

• installing and setting up SA z/OS,
• customers who need basic automation want a simplified way to maintain their policies.

Note: Automated System Resource Discovery is designed to support you when setting up a new policy.
The generated policy requires manual steps to adapt the policy to your installation. You therefore need to
be familiar with the SA z/OS Customization Dialogs.
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Disclaimer
The Autodiscovery function provides a basic automation policy which must be finalized. It is the
responsibility of the user to finalize the policy in a way that does not cause unwanted effects in the
user's installation.

Components Overview
There are three major process elements to this design. They are the discovery engine, the preloader and
the file update facility of the SA z/OS Customization Dialog, here called 'importer'. In this overview you will
read about the purpose of these processes and the data they require and generate.

Figure 49. Automated Discovery Overview

DISCOVERY ENGINE

The DISCOVERY engine runs on each target system. It non-disruptively extracts information from the
system's current workload and writes it to a system specific SNAPSHOT file.

SNAPSHOT FILE
The SNAPSHOT file is a regular text file and can be browsed with the ISPF browser. It should not be
edited. It mainly contains resources such as address spaces which were active at that point in time
when the discovery engine was running. The snapshot file is then sent over to the central system
where the customer is running the SA z/OS Customization Dialogs.

PRELOADER

The PRELOADER reads the data from the SNAPSHOT file, applies the rules encoded in the MAPPER
FILES to the data, extracts the relevant policy from the KNOWLEDGE BASE and then determines a

Components Overview
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delta update that needs to be made to the PDB to add the newly discovered data. It writes out a set of
instructions for the IMPORTER in a FLAT FILE.

KNOWLEDGE BASE

The KNOWLEDGE BASE represents two automation policies, a best practice policy provided by
SA z/OS and an installation specific automation policy. The SA z/OS provided policy already contains
a variety of different applications that are expected to be encountered on a customer's system. This
policy cannot be changed by users. The installation's automation policy is a PDS that must be created
by the installation using the Customization Dialog. It is intended to be populated with automation
policy items to be used as a model for entities that you have identified in your installation's MAPPER
FILES.

MAPPER FILES

The MAPPER FILES primarily describe how the PRELOADER has to map a resource listed in the
SNAPSHOT file to a policy entry contained in the KNOWLEDGE BASE. Besides those mapper files,
which are predefined by SA z/OS , there may be installation defined mapper files. The preloader will
first try to map a discovered resource using the installation's mapper file. If no mapping was found,
the preloader will continue using the SA z/OS provided mapper file. The MAPPER FILES are regular
text files and can be processed with a normal text editor.

PDB

The PDB - also referred to as 'Target PDB' - is an SA z/OS Policy Database that the user has created
to hold the definitions of the discovered data. The user may have manually updated it to add or
customize specific policies.

FLAT FILE

The FLAT FILE is read in by the IMPORTER, and the instructions contained within it are then executed
to edit the PDB that it is being imported into. This will create the policy elements that represent the
discovered data.

FLAT FILES are regular text files and can be processed with a normal text editor. They should be
edited with caution however as they both need to follow the syntax rules for the SA Customization
Dialogs file update utility and the introduction of even a small error or incompatibility will prevent the
whole file from loading.

IMPORTER

The IMPORTER is just a short term for the file update facility of the SA z/OS Customization Dialog. It
reads a FLAT FILE and imports the data into the Target PDB.

Overview of Using the Automated System Resource Discovery
Process

The Automated System Resource Discovery process can be considered as two separate steps: Gathering
data and feeding the discovered data into a policy.

Step 1: Scan each of the systems to be modelled with a discovery tool - the 'Discovery Engine'. For
that purpose, you will need to install this tool on each system to be modelled, unless there is a full
SA z/OS installation on it. When the discovery engine is run, it produces a SNAPSHOT data file containing
information about the system resources. This snapshot file then needs to be sent to the system where you
will run the SA z/OS customization dialogs.

Step 2: During this step the snapshot files are consolidated and accumulated into a Policy Database. The
consolidation process involves:

Step2a: running each discovered data file through a PRELOADER which will apply some identification
heuristics to the discovered data and construct a delta update to the PDB in order to:
Step2b: add in the newly discovered applications through the IMPORTER.

Components Overview
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At the start of Step 2 you need to identify the PDB that you are going to add the data to – it can be a newly
allocated one or an existing one. You then run each data file through the preloader (Step 2a) and import it
into the PDB (Step 2b) before you process the next data file.

During the preloader's analysis phase the discovery data is run through a set of heuristic rules, as defined
in MAPPER FILES, to classify it. Once it has been classified, its classification is utilized to select the
automation policy that will be used as a model for it during the construction phase.

You may specify your own policy selection rules to supplement those supplied and maintained by System
Automation. System Automation provides 'best practice' automation policy models for many applications
– and provides the ability for you to supplement or replace them with your own policy models. The output
of all of this processing is a flat file containing PDB update statements that can be applied to the PDB
through the Customization Dialog's Data Management function.

You have an opportunity to inspect the flat file and the reports produced by the preloader before
you import it into the PDB, so you can return to the analysis and construction process to refine the
identification and selection rules and then rerun the preloader, if it is necessary to do so. Once you have
imported the flat file into your PDB, you can move onto running the next data file through the preloader.

Step 1: Using The Discovery Engine
The 'DISCOVERY Engine' scans each of the systems to be modelled and stores its output in a system
specific snapshot data file.

Figure 50. Discovery Engine Overview

Step 1: Using the Discovery Engine
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Extraction of the Discovery Engine
If the systems you wish to automatically model do not have a full installation of SA z/OS upon them, you
will need to submit a supplied sample job to extract the discovery engine from a SA z/OS Installation.

About this task
The sample jobs are located in the SINGSAMP data set.

Procedure
1. Job INGEDEX0 should be run on a system where a full SA z/OS is installed. It needs to be edited to

specify the userid and system that the discovery engine should be sent to prior to submission.
2. Job INGEDEX1 should be sent to the target system.
3. Receive the transmitted data sets on the target system.
4. Job INGEDEX1 should then be run on the target system. It will unpack the data sets sent by

INGEDEX0 after allocating the appropriate data sets to hold them. It needs editing to specify some
details of the data sets prior to submission.

Results
You then need to make the code available to all systems where it will be run and to secure it to prevent
unauthorized execution.

Preparing the Discovery Jobs
There is a single piece of JCL that needs to be submitted to run the discovery for a system. It has two
parameters – the system affinity setting in the JCL and the name of the output data set.

Procedure
Prior to running the discovery job there is some set up that is required:
1. APF authorize the library the discovery code will be executed out of. For a full SA installation this has

probably already been done.
2. Ensure that the user you will be executing the discovery process under has appropriate authority –

permission to enter authorized mode on the z/OS side and superuser access on the USS side. These
permissions are only needed during the running of the discovery code and may be revoked afterwards.
Note that this has to be done for each system.

3. Produce the JCL to discover each system, with the system affinity and output data set properly set. You
can use the INGEDDSC sample member to do this. You need to edit it to specify some of the details
before you run it.

Running the Discovery Jobs
When you are prepared, submit the discovery jobs to:

• step through all address space control blocks and return information for each address space that is
active at the time the discovery runs. If the address space hosts an USS process, information about the
USS process are returned as well.

• provide information about all XCF groups defined for the local system
• provide information about all ARM elements defined for the local system
• provide information about all locally defined system symbols.

This data is then written to a snapshot file.

It is better to submit all the jobs to the discovery systems within the same sysplex at around the same
time, as it provides a more consistent view of activity across the sysplex. Ideally, the job should be run

Step 1: Using the Discovery Engine

Chapter 19. Automated System Resource Discovery  215



at a point in time when most of the applications are active. If your workload changes significantly during
the day or week, you can rerun the discovery process (once you have saved the output data files) to get a
view of the systems other workload. These can then be integrated into the PDB, although you will need to
manually create and link the Service Periods to automatically switch between the workloads.

Step 1: Using the Discovery Engine

216   System Automation for z/OS : Customizing and Programming



Step 2: Building the Automation Policy
This step is performed on that system, where you run the SA z/OS Customization Dialog to build the target
PDB.

Step 2a: The Preloader
The Preloader will analyze the data in a single snapshot and produce a corresponding model of those
resources within a flat file suitable for the dialogs to import.

Figure 51. Preloader Processes

Step 2: Building the Automation Policy
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Gathering of the Snapshot Files
You need to have identified the system where you run your SA z/OS Customization Dialogs as this is
usually where you want to run the preloader to transform the snapshot data files into flat files you can
import through the Customization Dialog's data management function.

Then the snapshot data files from the system discovery jobs need to be transmitted to the system where
you will run the preloader and stored there.

Note: If you choose to run the preloader on a different system to the one where you keep your PDBs and
run the Customization Dialogs, then you will need to make the PDB and KNOWLEDGE BASEs available to it
and to bring the flat files back to your Customization Dialog system for import.

Preparing the Preloader Job
Before you can run the preloader you need to do a few things.

About this task
Your need to customize the preloader job. A sample JCL is shipped as member INGEDPLD located in the
ING.SINGSAMP data set. You need to customize a copy of INGEDPLD as described in its prolog. Here are
the major steps:

Procedure
1. SA z/OS Knowledge Database PDB: Identify the HLQ of your SA z/OS installation's target library.

The HLQ is used to locate the SA z/OS Knowledge Base PDB. This automation policy is generated
based upon best practice policies supplied by SA z/OS. It contains the models for all of the resources
identified in the System Automation provided mapper files (and for a few others).

2. User's Knowledge Database PDB: Create or locate your installation's Knowledge Base PDB. Even
though you will not have edited your installation's mapping files yet if this is your first time through,
you need to have an installation's Knowledge Base PDB, which initially might be empty. Later on you
might want to populate this knowledge base. This is recommended if you need to deviate from the
SA z/OS knowledge base or if you want to enhance the knowledge base with your own entries.

3. Target PDB: Select the Target PDB. This is the PDB that you are going to update. It is recommended
that this is either a newly allocated, empty PDB or one that has previously been occupied with
automatically modelled data. If you use a PDB containing hand modelled data or data from our hand
modelling samples, you are likely to get a lot of duplication, as the automatically modelled entries tend
to be more complete, containing data that isn't necessarily specified on a hand made models.

4. Snapshot File: Locate the snapshot file which you want to process with this preloader run. For
each target system, you will have a snapshot file containing all discovered system resources and
definitions. You need to invoke the preloader for each snapshot file separately. Before processing
another snapshot file with the preloader, the generated flat file must be fed into the target PDB by the
importer. This is required because the preloader needs to know the current content of the target policy
to avoid generating invalid flat files.

5. Mapper files: Locate the mapper files. They are members of the SINGIMAP data set. There are some
SA ones and some user ones. The users’ mapper files in a U. When you want to modify them, you
should allocate a new PDS where you copy and maintain them. User mapper files must exist even
though they initially may not contain any mappings. You will find the mapper files documented in
Appendix F, “Autodiscovery Mapper Files and Report Formats,” on page 277.

6. Flat File: This is the output file of the preloader. It must exist before the preloader job is submitted.
After the flat file was generated and before another flat file will be generated, it is mandatory to import
it into the target policy.

7. Report Data Set: When generating a flat file, the preloader documents its progress in various
members of a report data set. The report is always generated and the partitioned data set must
exist before starting the preloader job. You will find the report members documented in Appendix F,
“Autodiscovery Mapper Files and Report Formats,” on page 277.

Step 2: Building the Automation Policy
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8. The Preloader takes two parameters that affect its' output: Unless you have been specifically
requested to do so by service, you normally omit the DEBUG parameter.

• DISPLAY, which causes the contents of generated reports to also appear in JOBLOG.
• DEBUG, which causes detailed debugging information to appear in the JOBLOG. Specifying DEBUG

forces the DISPLAY option, even if you have not specified it.

Results
You may wish to create one copy of the preloader job per target system, that is for each snapshot file. You
are now ready to run the preloader.

Running the Preloader Job

Procedure
The sequence for running the preloader is:
1. Verify the preloader job to point to the correct input and output data sets for the first target system's

snapshot file.
2. Submit the preloader job.
3. Inspect the output from the preloader.

What to do next
Remember: Before processing the next snapshot file with the preloader, the generated flat file must be
imported into the target PDB (see Step 2b). Then the target PDB is prepared to serve as input to the
preloader job for its next run. This sequence helps to avoid conflicts when importing flat files described
below.

Step 2b: The Importer
This is the Data Management function of the SA z/OS Customization Dialog to update a policy database
with data from a file.

Step 2: Building the Automation Policy
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Figure 52. Flat File Processing

You can either use the customization dialogs to select the target PDB and then use the Data Management
option to import the flat file into the target PDB, or you can use a batch job to perform the import. You
should do so only once you are happy with the contents of the flat file, as it is virtually impossible to
unimport it unless you have saved a copy of the PDB prior to performing the import.

Sample job INGEBFLT is provided as a sample batch job to run the import. Once the import is complete
you can run the preloader against another data file. You have to run it this way – preload/import – as the
preloader uses the information from the extract to prepare a delta update in the flatfile, that is, one that
contains things that are different. If you were to run multiple preloads against the same extract file, you
could end up with conflicts between the data in the flat files that would produce an invalid model when
they were imported.

Extending Automated Modelling
SA z/OS ships with a large number of presets for IBM and some 3rd party software. There will,
undoubtedly, be address spaces on your system that it has either not identified or which it has identified
incorrectly or incompletely.

Some of this will be because the applications are unique to your systems, some of it will be because the
allowed customization of the application is such that we do not have a suitable 'hook' to hard code into
the files that we ship to reliably identify it.

Extending Automated Modelling
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Mapping Files
The Automated Modelling Tool is extended by adding statements to a set of user mapping files that are
processed by the preloader. System Automation (SA) versions of these files are also provided and should
be used in conjunction with your user files to take full advantage of the automated modelling capabilities.

The mapping files are listed below. The first name is the SA member, the second is a user member that
you should edit your own policy into. Refer also to the appendix section “Mapper Files” on page 277.

INGSMAID / INGSMAIU
This is the Address Space Identification Mapping file. It contains rules for identifying Address Spaces
from the data discovered about the address space.

INGSMGRP / INGSMGRU
This is the XCF Group identification file. It contains rules for identifying the XCF groups that were
found to have been established.

INGSMGMB / INGSMGMU
This is the XCF Group Member identification file. It contains rules for identifying members of XCF
groups based upon the type of the group and the name that the member joined the group with.

INGSMUID / INGSMUIU
This is the USS Address Space Identification Mapping file. It contains rules for identifying processes
that were found running under USS.

INGSMPLU / INGSMPLY
This is the Policy Mapping file. If contains rules for selecting which identified Address Spaces will
be converted into SA policy, what model policy, if any, will be used for them and which of their
established fields will be over written.

INGSMVRS / INGSMVRU
This is the variable mapping file. It is used to define symbols – in addition to those found by the
discovery process – that can be used in the field value formulas in the policy mapping file.

The supplied user files contain some sample values that will probably not work on your system. You
should remove them.

Finalizing the Target Policy
After the systems have been discovered and the target policy has been populated, manual updates are
required in order to get an operational automation policy.

The steps below will lead you to an operational policy which supports starting, stopping and restarting
resources in place where all applications are linked to a common application group (APG) per system.

Creating and preparing a Reference Policy
There are a few definitions to be made in the target policy, which best can be imported from another
policy. That policy is intended to serve as a reference policy. If you do not have such a policy yet, you
may create it now while selecting those Best Practice policies, which contain samples for the discovered
applications.

As an example: if z/OS base components and DB2 were discovered, the *BASE and *DB2 Best Practice
policies should be selected. This new policy also serves as the source, where missing policy elements can
be copied from later on.

Importing from the Reference Policy
Switch to the Target PDB. Navigate to the 'Import entries from a Policy Database' panel and select the
reference policy as 'Source Policy Database'.

Enter 'GRP' as the 'Entry Type'and 'YES' in the 'Import Linked Entries' field. Then continue with selecting
the sysplex(es) and proceed to panel 'Selected Entry Names for Import'.

Finalizing the Target Policy
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This panel lists all policy entries as contained in the reference policy. It allows you to add additional
entries to your target policy. Because all entries are imported by default -if they do not already exist- into
your target policy, you need to:

1. Overtype the GRP and SYS entry names in the 'Entry Name' column with those names used in the
installation, so they match the Sysplex and System names in the target policy. As a result you will find
a 'Y' in column 'D'.

2. Remove each entry from the list, which should not be imported. In order to get an initial operational
policy, remove all entries from the 'Selected Entry Names for Import' panel except those entries of
type MVC, SDF, ADF, AOP, NFY, NTW and XDF.

Then run the import.

If you have more sysplexes and/or systems in your target policy, you need to repeat this import step for
each of the installation's sysplexes and systems.

Avoiding multiple entries for the same application
In some situations you may be able to reduce the number of policies required by specifying values
utilizing AOCCLONE variables.

For example, if an application has an Application Restart Management (ARM) Element name like
ABC@DEF and ABC@HIJ then you could choose to use an AOCCLONE value as the system dependent
part. In the variable mapping file, add a rule for each system that specifies the correct system dependent
value for that system:

PLEX1     SYS1     AOCCLONEA     DEF 
PLEX1     SYS2     AOCCLONEA     HIJ

Then in the user policy mapping file, specify that the ARM Element name for the address space should be
modelled as ABC@&AOCCLONEA. You may need to copy the mapping rule from the SA supplied mapping
file.

This should result in the generation of an APL that has an ARM Element name of ABC@&AOCCLONEA. And
which can be used on both the SYS1 and the SYS2 systems. The AOCCLONEA values would also be set on
those two systems.

In situations where the values cannot be specified in the APL policy using AOCCLONE values, your
options are more limited – clean up your system to reduce the variability or live with multiple application
instances. In the latter case, you may want to create a class to hold the common policy and just leave the
instances holding the discovered data values. This will give you a single place to change the automation
policy for the APLs.

Changing the Name of an APL
You can use the dialogs RENAME function to rename APLs that have been created by the automated
modelling tool. Provided you do not change any of the discovered data values the preloader will recognize
the renamed APL if it is run again and will not create a new APL.

This works because the preloader creates a signature for each APL, based upon the discovered data
values – Jobname, ARM Element name, Procedure Name, and so forth, and uses this to match discovered
APLs to pre-existing APLs.

If you want to make the change on the preloader, find or copy the policy rule for it into your user policy
mapping file and change its entry name to reflect the name you wish it to have.

Target Policy Ready for Build
Your target policy is now ready for running the build process.

You can enhance the capabilities of this policy as you proceed with your automation needs. Importing
from the reference policy can be repeated for further entries like application groups, monitors and
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transient applications. Their names, relationships and links need to be adapted according to the reference
policy.

Building the Configuration Control Data
You may either build the Configuration Control Data using the online or batch build process. During
the build process, WARNINGs may be issued. Please review the build report after the build process
completed.

WARNINGs due to the following reasons are expected:

• relationships to non-existent APGs,
• HASMONITOR relationships to non-existent MTRs,
• missing subtype specifications and subsequent warnings related to a missing subtype definition
• missing Automation Name for automatically generated APGs (LK_sysname_plexname).

The steps below will lead you to an operational policy which supports starting, stopping and restarting
resources in place where all applications are linked to a common application group (APG) per system.

Troubleshooting
My Application is Missing From the Flatfile

Check first that the APL has not already been imported. You need to open the PDB up in the
customization dialogs and look at the APLs to check this. It may have been renamed. If the APL
is already in the PDB, it will not be included in the Flatfile.

Next you need to check the EXCLUDE report to see if the address space is mentioned in there. If it is,
you need to look at the Policy Mapping rule that it hit. If it is an exclusion rule, you need to add a new
policy mapping rule to link the address space to the correct APL model for it.

For the APL import to work correctly, you need three things – correct identification of the address
space, model automation policy in one of the KB data sets (either an unmodified SA sample or an
entry from your user KB) and a rule in the policy mapping files to tie the two together.

Multiple Entries are Generated for the same Application
See the above section “Avoiding multiple entries for the same application” on page 222.

Building the Configuration Control Data
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Appendix A. Global Variables

You must ensure that the names of any global variables you create do not clash with SA z/OS external or
internal global variable names. You should check the following tables before creating any global variables
of your own.

Read-Only Variables
The values of these variables are used by SA z/OS internally. They can be read but must not be changed
by user REXX routines.

Table 24. Externalized Common Global Variables

Variable Name Description Reference

AOF.clist.0DEBUG Contains either a Y or blank. If it contains
Y an intermediate level of debug that
is supported by SA z/OS automation
procedures is turned on.

AOF.clist.0TRACE Contains a REXX trace setting to be used
by the automation procedure clist.

AOF_PRODLVL Contains the release level of SA z/OS. The
values are:
SA z/OS 4.1

SA z/OS,V4R1M0
SA z/OS 3.5

SA z/OS,V3R5M0
SA z/OS 3.4

SA z/OS,V3R4M0

AOFAOCCLONEx Where x either does not exist
(AOFAOCCLONE) or is a value from
1 through 9 or A through Z. The
AOFAOCCLONEx global variables contain
the values specified for the &AOCCLONEx.
variables for this system.

See the description of the
System policy object in IBM
System Automation for z/OS
Defining Automation Policy.

AOFCOMPL Contains YES if initialization is complete.

AOFDEBUG Contains a REXX trace setting to be used
globally.

AOFINITIALSTARTTYP Contains the value 'IPL' or 'RECYCLE'
depending on whether SA z/OS has been
started the first time after an IPL or after a
NetView recycle.

AOFJESPREFX The command prefix for the primary
scheduling subsystem.

AOFPFP Contains the domain ID of the primary
focal point (PFP).

See "SDF FOCALPOINT
Policy Item" in IBM System
Automation for z/OS Defining
Automation Policy.
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Table 24. Externalized Common Global Variables (continued)

Variable Name Description Reference

AOFBFP Contains the domain ID of the backup
focal point (BFP).

See "SDF FOCALPOINT
Policy Item" in IBM System
Automation for z/OS Defining
Automation Policy.

AOFCFP Contains the domain ID of the current
focal point. It can be either of the
following values:

• The domain ID of the PFP.
• The domain ID of the BFP, if PFP is not

available.
• The local domain ID, if both PFP and BFP

are not available.

If SDF Parallel Update is implemented,
this variable will contain the domain IDs
of both PFP and BFP.

AOFUFP Contains the value 'B' when the primary
focal point and the backup focal point
are updated in parallel. Otherwise, this
variable does not exists.

AOFSUBSYS The subsystem name of the primary
scheduling subsystem.

AOFSYSNAME Contains the name of the system. See AOCUPDT in IBM
System Automation for z/OS
Programmer's Reference.

AOFSYSTEM Contains the system type. Always set to
MVSESA.

AOFSYSTEMSHUTDOWN Contains YES if a system shutdown has
been invoked either via GDPS or via
INGREQ ALL.

Note: The value remains YES until
NetView/SA has been terminated or the
system leaves the XCF group.

AOFSYSPLEX Contains the name of the physical sysplex. See the 'Sysplex' column on
the INGAMS panel.

AOFSYSPLEXGROUP Contains the name of a GRP policy entry
with group type SYSPLEX as defined in the
customization dialog.

The GROUP INFO panel of
the customization dialog. See
the 'SAplex' column on the
INGAMS panel.

Read/Write Variables
Table 25 on page 227 lists the common global variables that can be user-defined. You can set them in
your startup exit to change the way that SA z/OS behaves. These variables should be set only once for an
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SA z/OS system. You can enable or disable advanced automation options (AAOs) by changing the settings
of the global variables in your NetView stylesheet. For example:

******************************************************
* System Automation AAO CGlobals
******************************************************
COMMON.AOFCNMASK = 290C0D0E0F101518
COMMON.INGREQ_ORIGINATOR = 1
COMMON.AOFRESTARTALWAYS = 0
COMMON.AOFSMARTMAT = 0

Table 25. Global Variables to Enable Advanced Automation (CGLOBALS)

Variable Value Effect

AOF_AAO_AAREQUEST_
MAX_WAIT

1 to 999
seconds

Defines the maximum wait time in seconds. Is used
when the MAXWAIT parameter is not specified for the
workload. See MAXWAIT parameter for valid range.

AOF_AAO_AOCUPDT_LOGGING YES | NO Specifies whether or not trace messages should be
written to the NetView log in case AOCUPDT is invoked
without its LOG parameter specified. The default is
YES.

FORCE_YES |
FORCE_NO

Specifies whether or not trace messages should
be written to the NetView log overruling the value
specified with the LOG parameter in the AOCUPDT
invocation.

AOF_AAO_AOCUPDT_PRESERVE_C
ASE

(This variable is introduced in
OA57918.)

YES When AOCUPDT is used with parameters MSG, INFO,
or USER, the case of these parameter values is
preserved for display in SDF.

Not defined or
any other value

All AOCUPDT parameter values are translated to
uppercase. Default behavior.

AOF_AAO_GWPING_RETRY 1-99 The gateway monitor can issue the PING command
prior to attempting a potentially time consuming
RMTCMD for a remote target. With this AAO you can
specify the number of retry attempts when the PING
command was not successful.

When the AAO is not set or when the value specified
is invalid then the PING command will not be issued at
all.

AOF_AAO_HW_VALIDATION
(The option applies to SA z/OS
only).

YES This option allows hardware validation to be
performed. For details, see the chapter "Enabling
Sysplex Automation" and the section "Enabling
Hardware-Related Automation" specifically. YES is the
default.

NO This option inhibits the hardware validation to
continue. Functions depending on the validation may
not work properly. The affected validation routines
terminate with return code 2.
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Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect

AOF_AAO_INJECT_NOFORCE_REQ Any value SA z/OS does not inject a STOP vote with Priority Force
for source *RECYCLE when processing an INGREQ
REQ=STOP RESTART=YES request. Instead the regular
stop request is passed to the automation manager
and removed automatically when the resource is
down. This also removes any previous request for the
resource that was made by the same source.

AOF_AAO_IPL_COMPLETE_MSG COND Specifies whether only message ING313I is given if
all resources reached the AVAILABLE status within the
expected time limit and ING314I if this is not the case.

ALWAYS Specifies that if ING314I has been given and the
resources become AVAILABLE later (at any point
in time) ING315I will be issued additionally. The
subscription remains in effect until the resources
reach the AVAILABLE status.

AOF_AAO_ISQ_APROF_AUTOOPEN

(Introduced in OA59957)

Y Processor Operations automatically performs a
PROFILE CMD(OPEN) common command, each time
an ISQXIII connection request is executed for a
closed connection. Subsequent PROFILE OPEN and
CLOSE requests will perform faster in your existing
automation routines, because they can recognize this
automatic profile open and skip the actual OPEN and
CLOSE operations.

You can test this variable before doing any profile
operation on your CPC. The overall PROFILE
performance can benefit significantly, depending on
the number of activation profiles that are defined in
your CPC configuration.

Not defined or
any other value

No automatic PROFILE CMD(OPEN) command is
performed each time an ISQXIII connection request
is executed for a closed connection.

AOF_AAO_ISQ_DISABLE_ICMP_PI
NG

(Introduced in OA59957)

Y Processor Operations doesn't use ICMP ECHO
requests (PINGs) to check the accessibility of target
hardware and target systems. It means that in
some situations (for example, connection address
switch, connection initialization and close operations,
and monitoring), Processor Operations has to try
operations blindly.

Enable this option only if there is a strict requirement
to disable ICMP ECHO requests.

Not defined or
any other value

Processor Operations uses ICMP ECHO requests
(PINGs) to check the accessibility of target hardware
and target systems. This is the default and
recommended setting.
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Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect

AOF_AAO_ISQ_DYNTGT User-defined Contains the pattern of how to compose dynamic
target system names at Processor Operations start.

The pattern can be composed from the following 3
building blocks:

• Lx: use LPAR name from 1 to x.
• Cy: use PROCESSOR name from 1 to y.
• Special characters ‘#$@’ (only one is allowed.)

For more details of the pattern, see "Processor
Operations – setup for dynamic target system names"
in IBM System Automation for z/OS User's Guide.

AOF_AAO_ISQ_KALIST ip_addr |
ip_addr/i

Specifies either the dotted decimal address or the
hostname of a SE or a HMC.

/ - separator

i - idle time in minutes

Multiple definitions can be made, separated by at least
one blank. Note, that each ip_addr must match with
the processor address definitions from the PDB.

AOF_AAO_JLM_RECYCLE RESET Directs Job Log Monitoring to ignore any former
monitoring after a NetView recycle.

RESUME Directs Job Log Monitoring to continue its monitoring
after a NetView recycle.

AOF_AAO_MSG_EHKVAR YES This indicates that when calling commands, the
tokens of the triggering message are to be stored in
variables EHKVAR0 through EHKVAR9 and EHKVART, if
not specified in parameter EHKVAR.

YES is the default.

NO This indicates that the tokens of the triggering
message are not to be stored in EHKVAR variables, if
not specified in parameter EHKVAR.

AOF_AAO_MVSTAPEMON >0 Set this value to represent the number of iterations
for INGRTAPE to continue monitoring using MVS
commands after the LATE alert has been reached. A
non-zero entry also indicates using MVS commands
for all tape mount monitoring prior to the LATE alert.

0 INGRTAPE relies on the receipt of the DOMMED
message to satisfy any outstanding alerts.

AOF_AAO_OMVS_SHUTDOWN NOWAIT This causes the wait for a complete termination of
OMVS to be skipped.

AOF_AAO_RDS_TSO_DSN User-defined Must be set in order to use the RDS table editor under
TSO. Specify a name of the RDS working data set. If
this value is changed then NetView requires a recycle
for it to take effect.
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Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect

AOF_AAO_RDS_TSO_RACFHLQ User-defined Must be set in order to use RACF protection of the
RDS table editor under TSO. Specify high level qualifier
which could be up to 26 bytes long and may contain
dots. If this value is changed then NetView requires a
recycle for it to take effect.

AOF_AAO_RETENTIONPERIOD 0 to 1440 Defines how long (in minutes) SA z/OS should keep
the CGLOBALS that are used to keep track of
command requests that are received from TWS. The
default is 60 minutes.

AOF_AAO_SDF_MSGDEL_OPERID taskname Name of the task to be used by RMTCMD to delete
captured exceptional messages from the SDF focal
point on the target system.

<OPER> Use the original operator ID from the focal point for
RMTCMD to delete the messages on the target.

blank Use the Reporter ID task for RMTCMD to delete critical
messages on the target. This is the default.

AOF_AAO_SDFBFP_ROOT.* User-defined Defines the static root names of the backup focal
point. For more details, refer to "Restrictions and
Limitations" of the command SDFTREE in IBM System
Automation for z/OS Programmer’s Reference.

When used, the variable AOF_AAO_SDFBFP_ROOT.0
must exist and defines the number of adjacent globals.

The value of an adjacent global can be the name of a
single root name or a list of root names separated by a
blank character.

AOF_AAO_SDFPFP_ROOT.* User-defined Defines the static root names of the primary focal
point. For more information, see "Restrictions and
Limitations" of the SDFTREE command in IBM System
Automation for z/OS Programmer’s Reference.

When this variable is used, the
AOF_AAO_SDFPFP_ROOT.0 variable must exist and
defines the number of adjacent globals.

The value of an adjacent global can be the name of
a single root name or a list of root names that are
separated by blank characters.

The globals are evaluated only when the primary
focal point and the backup focal point are updated in
parallel.
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Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect

AOF_AAO_SDFROOT_LIST
AOF_AAO_SDFROOT_LISTn
(where n is 1 to 4)

User-defined (Deprecated, use AOF_AAO_SDFROOT.*)

Defines the value of the &SDFROOT variable that is
used as the root name for the sample SDF panels that
are provided with SA z/OS.

The value can be the name of a single system or a
list of system names separated by a blank character.
A list can be used at the SDF focal point to have
SA z/OS generate the necessary panel definitions for
all systems in the list.

Use the AOF_AAO_SDFROOT_LISTn variables to honor
the maximum length of common global variables
within the NetView environment.

The system name can be appended by one or
more member names separated by slashes, the
first name refers to the panel definitions, and
the second name refers to the tree definitions,
for example SYS1 SYS2/MYPNLS SYS3&SLASH./
MYTREE SYS4/MYPNLS/MYTREE. Refer to "Status
Component Panel Definition" in IBM System
Automation for z/OS Programmer's Reference for the
interpretation of these definitions.

AOF_AAO_SDFROOT.* User-defined Defines the value of the &SDFROOT variable that is
used as the root name for the sample SDF panels that
are provided with SA z/OS.

When used, the variable AOF_AAO_SDFROOT.0 must
exist and defines the number of adjacent globals.

The value of an adjacent global can be the name of a
single system or a list of system names separated by
a blank character. A list can be used at the SDF focal
point to have SA z/OS generate the necessary panel
definitions for all systems in the list.

The system name can be appended by one or
more member names separated by slashes, the
first name refers to the panel definitions, and
the second name refers to the tree definitions,
for example SYS1 SYS2/MYPNLS SYS3&SLASH./
MYTREE SYS4/MYPNLS/MYTREE. Refer to "Status
Component Panel Definition" in IBM System
Automation for z/OS Programmer's Reference for the
interpretation of these definitions. The default names
are AOFPNLS and AOFTREE.

Note: NetView interprets two consecutive slashes as
the begin of a line comment. For this reason the
sample above uses the symbol for the slash character
followed by the slash character itself.
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Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect

AOF_AAO_SDFTGT_COMP.* User-defined Defines particular component names to be forwarded
to the SDF focal point on RESYNC requests without
deleting and refreshing the whole tree of the root
that the component belongs to. For more information,
see "Restrictions and Limitations" of the SDFTREE
command in IBM System Automation for z/OS
Programmer’s Reference.

When used, the variable AOF_AAO_SDFTGT_COMP.0
defines the number of adjacent globals.

The trailing wild character asterisk (*) is supported
on the component name, the alternate component
name, and the major component name, but not
on the root component name. For example, the
specification "ROOT.H*(IPL*)" matches all component
names beginning with "H" and its alternate component
names beginning with "IPL". In addition, system
symbols are supported as well.

AOF_AAO_SEC_PPIAUTH FAIL Used by 3rd party check for incoming command
received by the Command Receiver, Web Adapter, and
E2E Adapter. If corresponding SAF profile or class is
not defined the execution of the incoming command is
rejected.

not defined or
any other value

Used by 3rd party check for incoming command
received by the Command Receiver, Web Adapter, and
E2E Adapter. If corresponding SAF profile or class is
not defined the execution of the incoming command is
passed through.

AOF_AAO_SDFCxxx.* User-defined Defines the value of the &SDFCxxx variable that is
used as the status component name for the sample
SDF trees that are provided with SA z/OS where xxx
can be any sequence of characters that meets the
NetView requirements for common globals.

When used, the variable AOF_AAO_SDFCxxx.0 must
exist and defines the number of adjacent globals.

The value of an adjacent global can be the name of a
status component or a list of status component names
separated by a blank character. All adjacent globals
are combined to a list to have SA z/OS replicate the
desired tree definitions for all component names in
the list.

For more information refer to "AOCUPDT" and
"AOFTREE" in IBM System Automation for z/OS
Programmer's Reference for the interpretation of these
definitions.

AOF_AAO_SDFCsaplex.n Names the System Automation subplexes of the entire
enterprise.
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Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect

AOF_AAO_SHUTDOWN_BOOST YES | not
defined or any
other value

This variable controls whether shutdown boost is
allowed to be activated when a z/OS system is shut
down using GDPS.

If not specified, a value of YES is assumed. If set to
YES, it will allow activation of shutdown boost. Any
other value means that shutdown boost activation will
not be attempted.

Note: This option is intended only in those situations
where z/OS systems are generally enabled to exploit
System Recovery Boost but where the installation
want to opt out for specific reasons.

AOF_AAO_SHUTDOWN_STOPAPPL User-defined Specifies the name of the resource (name/type/
system) that SA z/OS monitors during system
shutdown to report shutdown complete back to GDPS.
Refer to the GDPS documentation about how to define
the stop application for your GDPS solution.

AOF_AAO_SHUTSYS_OLD YES Indicates that SA z/OS should not redirect the INGREQ
ALL REQ=STOP command to the GDPS STOPAPPL
resource when the GDPS tower is active.

AOF_AAO_TRANRERUN YES This indicates that a transient job can be rerun within
the lifecycle of a particular z/OS, if not specified
otherwise in the automation policy for this job.

NO This indicates that a transient job is only run once
in the lifecycle of a particular z/OS, if not specified
otherwise in the automation policy for this job. NO is
the default value.

AOF_AAO_TWS_CHK_CONDDEP YES Set this AAO to YES to exploit the new behavior
that allows you to save the return code passed
back from the completion checking routine for
conditional dependency processing in case of
successful operations.

AOF_AAO_TWS_CHK_OUTPUT
_NETLOG

YES Set this AAO to YES to place the output of the
completion checking routine in the netlog.

AOF_AAO_TWS_CMD_OUTPUT
_NETLOG

YES|NO Set this AAO to YES to place the output of the
command execution in the netlog.

AOF_AAO_TWS_ERRMSG This AAO can be used to inhibit the ERRMSG
parameter. If set to NON BLANK, it erases the
contents of the ERRMSG parameter.

AOF_AAO_TWS_MAX_WAIT_TIME Defines the installation default for the maximum wait
time for the INGREQ and INGMOVE command. The
default is taken when no wait time is specified in the
completion information parameter.
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Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect

AOF_AAO_TWS_RESYSPLEX YES|NO This AAO can be used to allow the TWS special
resource name to use the SA z/OS Sysplex name
instead of SYSPLEX to facilitate an enterprise wide
naming convention.

Default: NO for SYSPLEX

AOF_AAO_VPCEINIT 0 SA z/OS does not invoke the GDPS initialization exit,
VPCEINIT,

AOF_ASSIGN_JOBNAME 1 This indicates that SA z/OS exploits the NetView
"ASSIGN BY JOBNAME" feature with a higher priority
than the "ASSIGN BY MESSAGE ID" feature (priority
level 3).

This is the default setting.

0 SA z/OS exploits the NetView "ASSIGN BY JOBNAME"
feature with a lower priority than the "ASSIGN BY
MESSAGE ID" feature (priority level 4).

AOF_E2E_EAS_PPI User-defined PPI receiver ID of the event/automation service to be
used to forward events to the end-to-end automation
adapter.

AOF_E2E_EVT_RETRY 1 to n Specifies the number of retries, at intervals of one
second, that are used to transfer events via PPI
TECROUTE to the message adapter of the event/
automation service. The events are then forwarded to
the end-to-end automation adapter.

AOF_E2E_EXREQ_NETLOG 1 The output to requests received from the end-to-
end automation adapter and issued by the primary
automation agent, is logged to the NetView log.

0 The output to those requests is not logged to the
NetView log.

0 is the default setting.

AOF_E2E_TKOVR_TIMEOUT hh:mm:ss If a hot restart of the automation manager takes
longer than the value specified in this variable, the
end-to-end automation manager is informed about the
outage and has to resynchronize with the first-level
automation.

AOF_EMCS_AUTOTASK_
ASSIGNMENT

1 SA z/OS assigns an autotask to extended MCS
consoles with a console status of MASTER or ACTIVE

0 SA z/OS does not assign an autotask to extended MCS
consoles with a console status of MASTER or ACTIVE

0 is the default.
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Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect

AOF_EMCS_CN_ASSIGNMENT 1 SA z/OS obtains an extended MCS console with a
unique name for operator station tasks (OSTs). If an
MVS console was obtained for the OST previously, it is
released.

1 is the default setting.

0 SA z/OS does not obtain an extended MCS console
with a unique name for OSTs and the command
AOCGETCN is disabled.

AOF_PRESERVE_EXECUTION_CON
TEXT

(This variable is introduced in
OA55859.)

1 When SA z/OS uses the RMTCMD infrastructure,
the originating user ID will log on to the target
NetView environment. After logon, it will switch to the
automated function user ID to invoke the intended
action.

0 When SA z/OS uses the RMTCMD infrastructure, the
originating user ID will switch to the automated
function user ID during the RMTCMD processing.

0 is the default setting.

For security considerations of this variable,
see "RMTCMD Security Considerations" in TWS
Automation Programmer's and Operator's Reference
Guide.

AOFACFINIT 1 This indicates that SA z/OS attempts to proceed
with initialization despite error messages during the
processing of the automation control file.

1 is the default setting.

0 SA z/OS stops the initialization process upon such
errors. 

AOFARMQUERYRETRYS User-defined
numeric value

The number of times AOFPARMQ is called to query the
ARM status of an element after a status of UNKNOWN
is returned. If the ARM status does not change
to another status before the number of retries is
exhausted, SA z/OS continues processing and assume
the element is not ARM-enabled.

The default is 10.

AOFARMQUERYWAIT User-defined
numeric value

The number of seconds to wait between retries as
specified in the AOFARMQUERYRETRYS value above.

The default is 15.
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Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect

AOFCNMASK User-defined The characters that are used in determining unique
console names can be tailored by updating the
common global variable AOFCNMASK. This global
is used as a hex mask to extract characters from
the following string when generating unique console
names with command AOCGETCN:

left(opid(),8)||right(opid(),8),
||left(aofsysname,4)||right(aofsysname,4),
||left(applid(),8)||right(applid(),8),
||'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789$Ý#@_!?',
||aofcnmask_extended

Where

• opid() is a function that returns the OST task name
• aofsysname is a common global that stores the

system name
• applid() is a function that returns VTAM LU name
• aofcnmask_extended is an optional common global

that can store an additional user-defined identifier
(see AOFCNMASK_EXTENDED.)

The default for AOFCNMASK is 290C0D0E0F101718.
X'29' selects character A in position 41, X'0C' through
X'10' selects the last five characters of the opid in
positions 12 to 16, X'17' and X'18' select the last two
characters of the sysname in positions 23 and 24.

If AOFCNMASK is null, AOCGETCN attempts to obtain
a unique extended MCS console after a 1 minute
interval, followed by a two minute interval and so forth
for a maximum of 5 passes (15 minutes elapsed from
the initial invocation of the command).

Tailoring AOFCNMASK requires you to ensure that it
consists of an even number of characters, because
every two characters represent one hexadecimal
number. Otherwise the generation of unique console
names does not work.

For example, with

AOFCNMASK: 2A01020304055455

X'2A' selects character B in position 42, X'01' through
X'05' selects the first five characters of the opid in
positions 1 to 5, X'54' and X'56' select the last two
characters of the sysname in positions 84 and 85.

Note: The value you specify here will take precedence
over the specification of the NetView ConsMask style
sheet parameter.
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Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect

AOFCNMASK_EXTENDED User-defined Additional identifier for the generation of unique
console names.

This variable can be set individually in the NetView
stylesheet, if an additional user-defined identifier is
needed for the generation of unique console names
(for example, if previous console names were not
unique).

In this case AOFCNMASK_EXTENDED has to be
assigned with a value and the common global
variable AOFCNMASK has to be tailored to extract
the needed characters from AOFCNMASK_EXTENDED
(see AOFCNMASK).

If an additional identifier is not needed for the
generation of unique console names, this common
global does not have to be used and the console
names are generated in the usual way.

Maximum length is 172 characters.

AOFDEFAULT_TARGET User-defined Sets a default for the TARGET parameter for all
commands where this parameter is used.

AOFDESCA 010000100000
1000

Descriptor code for action messages

AOFDESCD 010000100000
1000

Descriptor code for decision messages

AOFDESCE 001000100000
1000

Descriptor code for eventual action messages

AOFDESCI 000001100000
1000

Descriptor code for informational messages

AOFDESCW 100000100000
1000

Descriptor code for wait messages

AOFEXPLAIN_USER User-defined The EXPLAIN command accepts this variable to
include help support for customer installation
supplied terms. It can hold one or more pairs of term/
help panel specifications separated by a blank. If the
specified status in the EXPLAIN command is not a
valid SA z/OS status, the command routine checks
whether it is an installation defined term. If so, the
associated help panel is displayed.

AOFINITREPLY hh:mm:ss The initial reply AOF603D is issued and automatically
responded after hh:mm:ss.

00:02:00 (2 minutes) is the default setting.

0 The initial reply AOF603D is not issued and
automation continues with the default start without
asking the operator.
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Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect

AOF_INIT_MCSFLAG User-defined
valid value

This variable contains the MCSFLAG that is used for
WTOs and WTORs that are issued by SA z/OS during
initialization.

The default is '00000000'.

AOF_INIT_ROUTCDE User-defined
valid value

This variable contains the ROUTCDE (routing code)
that is used for WTOs and WTORs that are issued by
SA z/OS during initialization.

The default is '01000000'.

AOF_INIT_SYSCONID User-defined
valid value

This variable contains the SYSCONID that is used for
WTOs and WTORs that are issued by SA z/OS during
initialization.

The default is blank.

AOFLOCALHOLD 0 INGNTFY and SA z/OS initialization executes the
SETHOLD AUTO command on the notify operator.

0 is the default setting.

1 SETHOLD must be manually invoked.

AOFMATLISTING 0 Setting this variable to 0 means that the NetView
automation table listing is not placed in the DSILIST
data set at NetView automation table load time.

Not defined or
all values except
0

If you do not set the variable or if you set it to any
value different from 0, a NetView automation table
listing is placed in the DSILIST data set.

AOFOPCCMDMSG 0 OPCAMOD only produces messages that are
generated by INGOPC.

0 is the default setting.

1 OPCAMOD produces EVJ011I, EVJ412I, EVJ420I, and
EVJ423I messages.

AOFPAUSE 0 to 5 This is the number of seconds that SA z/OS allows
for applications that have shut down to be cleared
by MVS, in addition to their termination delay. As
the AOFPAUSE value is applied to all applications it
should be kept small. AOFPAUSE may be useful on
a slow machine, where allowing an extra second or
two before SA z/OS checks if the application has been
cleared could avoid the need to use a termination
delay timer.

No matter how AOFPAUSE is set, the application
status is not updated to AUTODOWN or CTLDOWN
until SA z/OS is sure that the application has been
cleared from the system by MVS.

0 is the default setting.
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Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect

AOFRESTARTALWAYS 1 An application that has been shut down
normally, outside the control of SA z/OS, with
RESTARTOPT=ALWAYS, is restarted regardless of
whether or not it has reached its critical error
threshold.

0 An application that has been shut down
normally, outside the control of SA z/OS, with
RESTARTOPT=ALWAYS, is not restarted if it has
reached its critical error threshold.

0 is the default setting.

AOFRMTCMDWAIT See NetView
RMTCMD

Contains the installation wait time when RMTCMD is
used for communication.

60 seconds is the default setting for RMTCMD.

AOFRPCWAIT 0 to n This is the number of seconds that SA z/OS waits
for command responses from other systems in the
sysplex.

10 is the default setting.

AOFSENDALERT Yes or No This defines whether NetView alert forwarding (YES)
or the command handler (NO) is used to forward data
to the focal point.

Yes is the default setting.

AOFSERXINT 1 The exit AOFEXINT is processed under the BASEOPER
automation operator under the initialization process.
This is the default.

0 The exit AOFEXINT execution is serialized within the
initialization process.

AOFSHUTDELAY 0 to 59 This is the number of minutes that SA z/OS waits for a
termination message before continuing the shutdown
process. Any values outside this range are treated as
0. With a setting of 0, message AOF745E is not issued.

0 is the default setting.
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Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect

AOFSMARTMAT 0 The SA z/OS Agent is disabled from refreshing ATs
and the MRT. The user must supply an AT member
INGMSG02 which is included when SA z/OS initially
loads INGMSG01.

1 The SA z/OS Agent is enabled to refresh ATs when an
INGAMS REFRESH is issued. The AT fragment built by
the customization dialog is not loaded; the user must
supply a member INGMSG02 which is used instead.

The ATs are loaded after a successful test load. This
will allow the agent to notify the AM about a load
problem of the AT. The agent may notify the AM of
an AT load failure, thus stopping the configuration
refresh. The SA z/OS Agent will not load any MRT.

2 The SA z/OS Agent is enabled to load the AT that is
generated by the customization dialog and to refresh
ATs when an INGAMS REFRESH is issued. The AT
that is built by the customization dialog is dynamically
loaded into storage as the INGMSG02 fragment.

The ATs are loaded after a successful test load. This
allows the agent to inform the AM about any load
problem for the AT. The agent may notify the AM
of an AT load failure, thus stopping the configuration
refresh.

The SA z/OS Agent will not load any MRT.

This is the default value.

3 The SA z/OS automation agent is enabled to load the
MRT that is generated by the customization dialog
and to refresh the MRT when an INGAMS REFRESH
is issued. The AT built by the customization dialog
is dynamically loaded into storage as the INGMSG02
fragment. The MRT built by the customization dialog
is dynamically loaded as INGMRT01. The ATs and
the MRT will be loaded after a successful test load.
If an error is detected in the MRT, then the Agent
initialization is not interrupted and no MRT is loaded.
If an error is detected when a configuration refresh is
requested, then the refresh is not performed.

AOFSPOOLFULLCMD 1 SA z/OS does not execute the Spool recovery passes
more than once. Message AOF2941I is issued if the
SPOOLFULL condition persists.

0 SA z/OS re-executes the Spool recovery commands.

0 is the default setting.
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Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect

AOFSPOOLSHORTCMD 1 SA z/OS does not execute the Spool recovery passes
more than once. Message AOF2941I is issued if the
SPOOLSHORT condition persists.

0 SA z/OS re-executes the Spool recovery commands.

0 is the default setting.

AOFSTATUSCMDSEL 0 Issue all status commands or replies that are
associated with the new status, without respect to any
specified selection values. No thresholds are checked
for the minor resource subsystem.status to derive
selection criteria or prevent the issuing of commands
or replies if critical thresholds are exceeded.

If AOFSTATUSCMDSEL is not set, or it is set to a value
other than 0, only commands or replies with a given
selection criterion such as starttype or stoptype are
issued.

AOFUSSWAIT 1 to n This is the number of seconds SA z/OS waits
for the completion of a user-defined z/OS UNIX
monitoring routine (specified in the z/OS UNIX Control
Specification panel) until it receives a timeout. When
the timeout occurs, SA z/OS no longer waits for a
response from the monitoring routine and sends a
SIGKILL to the monitoring routine.

10 is the default setting.

INGCICS_CORRWAIT User-defined
numeric value

The number of seconds that INGCICS waits for output
from a CICS transaction. If not specified, INGCICS
uses a default CORRWAIT (CCDEF) value.

INGIMS_CORRWAIT User-defined
numeric value

The number of seconds that INGIMS waits for output
from an IMS command. If not specified, INGIMS uses
the default CORRWAIT (CCDEF) value.

INGOPC_MULTIPLIER 1 to n This is used in conjunction with AOFRMTCMDWAIT
and AOFRPCWAIT to determine how long to wait
before giving up.

INGPAC_SHOWNOLIMIT 1 Pacing gates that have a concurrency limit of NOLIMIT
are always shown on the INGPAC display. This is the
default.

0 Pacing gates that have a concurrency limit of NOLIMIT
are not shown on the INGPAC display.

INGRAITF_WAIT User-defined
numeric value

The number of seconds that the INGRAITF routine
waits.

INGREQ_ORIGINATOR 1 Indicates that SA z/OS assigns individual originator
IDs for each operator issuing an INGREQ command.

0 All operators are grouped under originator ID
OPERATOR.

0 is the default setting.
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Parameter Defaults for Commands
Table 26. Global Variables That Define the Installation Defaults for Specific Commands

Variable Name Description Reference 1

AOFSETSTATESCOPE Allows you to override the predefined default for the SCOPE
parameter of the SETSTATE command.

SETSTATE

DISPEVT_WAIT Sets the WAIT parameter of the DISPEVT command to the specified
value.

DISPEVT

DISPEVTS_WAIT Sets the WAIT parameter of the DISPEVTS command to the
specified value.

DISPEVTS

DISPGW_COLUMNS Specifies the panel column layout of the DISPGW command.

This is a stem where:

• DISPGW_COLUMNS.0 contains the number of elements
• DISPGW_COLUMNS.n contains the definition of the n-th column

Each column definition is a blank separated list of tokens in the
sequence:

• prefix is the prefix indicator of the column which can be:

I when the column is 'immovable' which implies 'prefixed'
P when the column is 'prefixed' for horizontal scrolling
F when the column is 'floating' (that is, scrolled)
- when the column is hidden

• sortorder is the sort order of the column which can be:

A when the column is sorted in ascending order
D when the column is sorted in descending order
- when the column is not sorted or hidden

• sortkey is the sort key of the column which can be:

1-n when the column is sorted in the n-th place
- when the column is not sorted or hidden

• columnname is the name of the column. These can be multiple
words. Because this name is used to reference the column you
cannot change column names.

TGLOBALS with that name are a user-specific setting and they
overwrite the installation defaults. It is recommended to save a
layout to TGLOBALS and then derive CGLOBALS when needed.
Invalid definitions are silently ignored.

DISPGW
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Table 26. Global Variables That Define the Installation Defaults for Specific Commands (continued)

Variable Name Description Reference 1

DISPMTR_COLUMNS Specifies the panel column layout of the DISPMTR command.

This is a stem where:

• DISPMTR_COLUMNS.0 contains the number of elements
• DISPMTR_COLUMNS.n contains the definition of the n-th column

Each column definition is a blank separated list of tokens in the
sequence:

• prefix is the prefix indicator of the column which can be:

I when the column is 'immovable' which implies 'prefixed'
P when the column is 'prefixed' for horizontal scrolling
F when the column is 'floating' (that is, scrolled)
- when the column is hidden

• sortorder is the sort order of the column which can be:

A when the column is sorted in ascending order
D when the column is sorted in descending order
- when the column is not sorted or hidden

• sortkey is the sort key of the column which can be:

1-n when the column is sorted in the n-th place
- when the column is not sorted or hidden

• columnname is the name of the column. These can be multiple
words. Because this name is used to reference the column you
cannot change column names.

TGLOBALS with that name are a user-specific setting and they
overwrite the installation defaults. It is recommended to save a
layout to TGLOBALS and then derive CGLOBALS when needed.
Invalid definitions are silently ignored.

DISPMTR
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Table 26. Global Variables That Define the Installation Defaults for Specific Commands (continued)

Variable Name Description Reference 1

DISPSTAT_COLUMNS Specifies the panel column layout of the DISPSTAT command.

This is a stem where:

• DISPSTAT_COLUMNS.0 contains the number of elements
• DISPSTAT_COLUMNS.n contains the definition of the n-th column

Each column definition is a blank separated list of tokens in the
sequence:

• prefix is the prefix indicator of the column which can be:

I when the column is 'immovable' which implies 'prefixed'
P when the column is 'prefixed' for horizontal scrolling
F when the column is 'floating' (that is, scrolled)
- when the column is hidden

• sortorder is the sort order of the column which can be:

A when the column is sorted in ascending order
D when the column is sorted in descending order
- when the column is not sorted or hidden

• sortkey is the sort key of the column which can be:

1-n when the column is sorted in the n-th place
- when the column is not sorted or hidden

• columnname is the name of the column. These can be multiple
words. Because this name is used to reference the column you
cannot change column names.

TGLOBALS with that name are a user-specific setting and they
overwrite the installation defaults. It is recommended to save a
layout to TGLOBALS and then derive CGLOBALS when needed.
Invalid definitions are silently ignored.

DISPSTAT

DISPTRG_WAIT Sets the WAIT parameter of the DISPTRG command to the specified
value.

DISPTRG
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Table 26. Global Variables That Define the Installation Defaults for Specific Commands (continued)

Variable Name Description Reference 1

EVIRYDP0_COLUMNS Specifies the panel column layout of the INGIMS REQ=DEP
command.

This is a stem where:

• EVIRYDP0_COLUMNS.0 contains the number of elements
• EVIRYDP0_COLUMNS.n contains the definition of the n-th column

Each column definition is a blank separated list of tokens in the
sequence:

• prefix is the prefix indicator of the column which can be:

I when the column is 'immovable' which implies 'prefixed'
P when the column is 'prefixed' for horizontal scrolling
F when the column is 'floating' (that is, scrolled)
- when the column is hidden

• sortorder is the sort order of the column which can be:

A when the column is sorted in ascending order
D when the column is sorted in descending order
- when the column is not sorted or hidden

• sortkey is the sort key of the column which can be:

1-n when the column is sorted in the n-th place
- when the column is not sorted or hidden

• columnname is the name of the column. These can be multiple
words. Because this name is used to reference the column you
cannot change column names.

TGLOBALS with that name are a user-specific setting and they
overwrite the installation defaults. It is recommended to save a
layout to TGLOBALS and then derive CGLOBALS when needed.
Invalid definitions are silently ignored.

INGIMS
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Table 26. Global Variables That Define the Installation Defaults for Specific Commands (continued)

Variable Name Description Reference 1

INGAMS_COLUMNS Specifies the panel column layout of the INGAMS command.

This is a stem where:

• INGAMS_COLUMNS.0 contains the number of elements
• INGAMS_COLUMNS.n contains the definition of the n-th column

Each column definition is a blank separated list of tokens in the
sequence:

• prefix is the prefix indicator of the column which can be:

I when the column is 'immovable' which implies 'prefixed'
P when the column is 'prefixed' for horizontal scrolling
F when the column is 'floating' (that is, scrolled)
- when the column is hidden

• sortorder is the sort order of the column which can be:

A when the column is sorted in ascending order
D when the column is sorted in descending order
- when the column is not sorted or hidden

• sortkey is the sort key of the column which can be:

1-n when the column is sorted in the n-th place
- when the column is not sorted or hidden

• columnname is the name of the column. These can be multiple
words. Because this name is used to reference the column you
cannot change column names.

TGLOBALS with that name are a user-specific setting and they
overwrite the installation defaults. It is recommended to save a
layout to TGLOBALS and then derive CGLOBALS when needed.
Invalid definitions are silently ignored.

INGAMS

INGAUTO_INTERVAL Sets the default for the INTERVAL parameter of the INGAUTO
command.

INGAUTO

INGEVENT_WAIT Sets the WAIT parameter of the INGEVENT command to the
specified value. The parameter specifies whether or not to wait until
the request is complete.

INGEVENT

INGEXEC_RESP Sets the RESP parameter of the INGEXEC command to the specified
value.

INGEXEC

INGEXEC_SELECT Sets the SELECT parameter of the INGEXEC command to the
specified value.

INGEXEC

INGEXEC_TIMEOUT Sets the TIMEOUT parameter of the INGEXEC command to the
specified value.

INGEXEC

INGEXEC_WAIT Sets the WAIT parameter of the INGEXEC command to the specified
value.

INGEXEC

INGGROUP_WAIT Sets the WAIT parameter of the INGGROUP command to the
specified value. The parameter specifies whether or not to wait until
the request is complete.

INGGROUP

INGHIST_MAX Sets the MAX parameter of the INGHIST command to the specified
value.

INGHIST
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Table 26. Global Variables That Define the Installation Defaults for Specific Commands (continued)

Variable Name Description Reference 1

INGHIST_WIMAX Sets the WIMAX parameter of INGHIST command to the specified
value.

INGHIST

INGIMS_CMDWAIT Sets the CMDWAIT parameter (the maximum wait time for a
command to complete) of the INGIMS command to the specified
value.

INGIMS

INGIMS_REQ Sets the REQ parameter (the request to be issued to the IMS
subsystem) of the INGIMS command to the specified value.

INGIMS

INGINFO_WAIT Sets the WAIT parameter of the INGINFO command to the specified
value.

INGINFO

INGLKUP_TIMEOUT Sets the TIMEOUT parameter of the INGLKUP command to the
specified value.

INGLKUP

INGLKUP_WAIT Sets the WAIT parameter of the INGLKUP command to the specified
value.

INGLKUP

INGLIST_COLUMNS Specifies the panel column layout of the INGLIST command.

This is a stem where:

• INGLIST_COLUMNS.0 contains the number of elements
• INGLIST_COLUMNS.n contains the definition of the n-th column

Each column definition is a blank separated list of tokens in the
sequence:

• prefix is the prefix indicator of the column which can be:

I when the column is 'immovable' which implies 'prefixed'
P when the column is 'prefixed' for horizontal scrolling
F when the column is 'floating' (that is, scrolled)
- when the column is hidden

• sortorder is the sort order of the column which can be:

A when the column is sorted in ascending order
D when the column is sorted in descending order
- when the column is not sorted or hidden

• sortkey is the sort key of the column which can be:

1-n when the column is sorted in the n-th place
- when the column is not sorted or hidden

• columnname is the name of the column. These can be multiple
words. Because this name is used to reference the column you
cannot change column names.

TGLOBALS with that name are a user-specific setting and they
overwrite the installation defaults. It is recommended to save a
layout to TGLOBALS and then derive CGLOBALS when needed.
Invalid definitions are silently ignored.

INGLIST

INGLIST_WAIT Sets the WAIT parameter of the INGLIST command to the specified
value.

INGLIST

INGMON_WAIT Sets the WAIT parameter of the INGMON command to the specified
value.

INGMON
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Table 26. Global Variables That Define the Installation Defaults for Specific Commands (continued)

Variable Name Description Reference 1

INGMOVE_WAIT Sets the WAIT parameter of the INGMOVE command to the specified
value.

INGMOVE

INGPAC_WAIT Sets the WAIT parameter of the INGPAC command to the specified
value.

INGPAC

INGRELS_SHOW Sets the SHOW parameter of the INGRELS command to the specified
value.

INGRELS

INGRELS_WAIT Sets the WAIT parameter of the INGRELS command to the specified
value.

INGRELS

INGREQ_BOOST Sets the default BOOST parameter of the INGREQ command to the
specified value.

INGREQ

INGREQ_EXPIRE Sets the default EXPIRE parameter of the INGREQ command to the
specified value. It can be set only to a relative time (e.g. +4:00), but
not an absolute expire date/time.

INGREQ

INGREQ_INTERRUPT Sets the default INTERRUPT parameter of the INGREQ command
to the specified value. The parameter specifies whether or not the
automation manager should wait until the resource has reached its
UP state, but the resource is still in the startup phase when the
higher priority stop request is given.

INGREQ

INGREQ_OVERRIDE Sets the default OVERRIDE parameter of the INGREQ command to
the specified value.

INGREQ

INGREQ_PRECHECK Sets the default PRECHECK parameter of the INGREQ command to
the specified value.

INGREQ

INGREQ_PRI Sets the default priority (PRI parameter) of the INGREQ command to
the specified value.

INGREQ

INGREQ_PRI.E2EMGR Specifies the priority that incoming requests from the end-to-end
automation manager are executed at. Default: LOW

INGREQ

INGREQ_REMOVE Sets the default value for the REMOVE parameter of the INGREQ
command to the specified value. If the resource reaches the
specified status (condition), the request is automatically removed.

INGREQ

INGREQ_REMOVE.START Sets the default value for the REMOVE parameter of the INGREQ
START command. If not specified the value set by INGREQ_REMOVE
is used.

INGREQ

INGREQ_REMOVE.STOP Sets the default value for the REMOVE parameter of the INGREQ
STOP command. If not specified the value set by INGREQ_REMOVE
is used.

INGREQ

INGREQ_RESTART Sets the default for the RESTART parameter of the INGREQ
command when shutting down the resource.

INGREQ

INGREQ_SCOPE Sets the SCOPE parameter of the INGREQ command to the specified
value.

INGREQ

INGREQ_SOURCE Sets the default SOURCE parameter of the INGREQ command to
the specified value. The parameter specifies the originator of the
request.

INGREQ
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Table 26. Global Variables That Define the Installation Defaults for Specific Commands (continued)

Variable Name Description Reference 1

INGREQ_TIMEOUT Sets the interval in minutes used to check for the INGREQ
command used to check whether the request has been successfully
completed, and whether to send a message or cancel the request if
it has not been satisfied after that time.

INGREQ

INGREQ_TYPE Sets the default startup/shutdown type (TYPE parameter) of the
INGREQ command to the specified value.

INGREQ

INGREQ_VERIFY Sets the default VERIFY parameter of the INGREQ command to the
specified value.

INGREQ

INGREQ_WAIT Sets the WAIT parameter of the INGREQ command to the specified
value.

INGREQ

INGRPT_WAIT Sets the WAIT parameter of the INGRPT command to the specified
value.

INGRPT

INGRUN_CMT Sets the CMT parameter of the INGRUN command to the specified
value.

INGRUN

INGRUN_MULT Sets the MULT parameter of the INGRUN command to the specified
value.

INGRUN

INGRUN_OVERRIDE Sets the OVERRIDE parameter of the INGRUN command to the
specified value.

INGRUN

INGRUN_PERSISTENT Sets the PERSISTENT parameter of the INGRUN command to the
specified value.

INGRUN

INGRUN_PRI Sets the PRI parameter of the INGRUN command to the specified
value.

INGRUN

INGRUN_REQ Sets the REQ parameter of the INGRUN command to the specified
value.

INGRUN

INGRUN_RUNMODE Sets the RUNMODE parameter of the INGRUN command to the
specified value.

INGRUN

INGRUN_RUNRES Sets the RUNRES parameter of the INGRUN command to the
specified value.

INGRUN

INGRUN_SYSTEM Sets the SYSTEM parameter of the INGRUN command to the
specified value.

INGRUN

INGRUN_TARGET Sets the TARGET parameter of the INGRUN command to the
specified value.

INGRUN

INGRUN_TYPE Sets the TYPE parameter of the INGRUN command to the specified
value.

INGRUN

INGRUN_VERIFY Sets the VERIFY parameter of the INGRUN command to the
specified value.

INGRUN

INGRUN_WAIT Sets the WAIT parameter of the INGRUN command to the specified
value.

INGRUN

INGSCHED_WAIT Sets the WAIT parameter of the INGSCHED command to the
specified value. The parameter specifies whether or not to wait until
the request is complete.

INGSCHED

INGSET_VERIFY Sets the default VERIFY parameter of the INGSET command to the
specified value.

INGSET
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Table 26. Global Variables That Define the Installation Defaults for Specific Commands (continued)

Variable Name Description Reference 1

INGSET_WAIT Sets the WAIT parameter of the INGSET command to the specified
value. The parameter specifies whether or not to wait until the
request is complete.

INGSET

INGSTX_WAIT Sets the WAIT parameter of the INGSTX command to the specified
value.

INGSTX

INGSUSPD_EXPIRE Sets the default EXPIRE parameter of the INGSUSPD command to
the specified value. It can be set only to a relative time (e.g. +4:00),
but not an absolute expire date/time.

INGSUSPD

INGSUSPD_REMOVE Sets the default value for the REMOVE parameter of the INGSUSPD
command to the specified value. If the resource reaches the
specified status (condition), the request is automatically removed.

INGSUSPD

INGSUSPD_SCOPE Sets the SCOPE parameter of the INGSUSPD command to the
specified value.

INGSUSPD

INGSUSPD_TIMEOUT Sets the interval in minutes for the INGSUSPD command to check
whether the request completes successfully, and whether to send a
message or cancel the request if the request is not satisfied after
that time.

INGSUSPD

INGSUSPD_VERIFY Sets the default VERIFY parameter of the INGSUSPD command to
the specified value.

INGSUSPD

INGSUSPD_WAIT Sets the WAIT parameter of the INGSUSPD command to the
specified value.

INGSUSPD

INGTRIG_WAIT Sets the WAIT parameter of the INGTRIG command to the specified
value.

INGTRIG

INGVOTE_EXCLUDE Sets the EXCLUDE parameter of the INGVOTE command to the
specified value. The parameter specifies the resource types (for
example SVP or GRP) to be excluded when showing all requests.
Resources of that type are filtered out.

INGVOTE

INGVOTE_SHOW Sets the SHOW parameter of the INGVOTE command to the
specified value.

INGVOTE

INGVOTE_SOURCE Sets the default SOURCE parameter of the INGVOTE command to
the specified value.

INGVOTE

INGVOTE_STATUS Sets the STATUS parameter of the INGVOTE command to the
specified value. The parameter specifies which requests should be
displayed: winning, losing or all.

INGVOTE

INGVOTE_WAIT Sets the WAIT parameter of the INGVOTE command to the specified
value.

INGVOTE

INGWHY_TIMEOUT Sets the TIMEOUT parameter of the INGWHY command to the
specified value.

INGWHY

INGWHY_WAIT Sets the WAIT parameter of the INGWHY command to the specified
value.

INGWHY

1. See the specified command in IBM System Automation for z/OS Operator's Commands.
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Appendix B. Customizing the Status Display Facility

Overview of the Status Display Facility
This information explains how to customize the Status Display Facility (SDF) panels, descriptors, and
operations.

How the Status Display Facility Works
The SA z/OS Status Display Facility (SDF) uses colors and highlighting to represent subsystem resource
states.

Typically, a subsystem shown in green on the SDF status panel indicates it is up, while red indicates a
subsystem in a stopped or problem state. SDF can be tailored to present the status of system components
in a hierarchical manner.

Types of SDF Panels
Figure 53 on page 252 shows several SDF screens for system CHI01. This figure shows the main types of
panels used in SDF:

• The root component
• The status component
• The detail status display

In addition to these panel types, you can create other types of panels according to your system
requirements and the applications you are monitoring.

Overview of the Status Display Facility
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Figure 53. Example SDF Panels

Root Component
The root component is typically an element appearing on the first screen displayed when SDF is started.
In Figure 53 on page 252, the CHI01 system is the root component.

Status Component
Resources monitored by SDF are called status components. In Figure 53 on page 252, system CHI01 has
JES2, RMF, VTAM, TSO, and NetView status components, as shown on the CHI01 System Status panel.
The status component panel displays all monitored resources in a system. Each monitored resource is
shown in the color of its current status. For example, JES2 is shown in green if it is up.

Detail Status Display
A detail status display is built from information in a status descriptor (see “Status Descriptors” on page
253). This panel is displayed by tabbing to the appropriate resource on the status component panel and
pressing the detail PF key. Each status component can have one or more status descriptors, or detail
records, associated with it.

Figure 53 on page 252 shows an example detail status display for a JES2 status descriptor. The 1 of 3
on the panel indicates that JES2 currently has three status descriptors, and therefore three detail status
displays, associated with it.
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Status Descriptors
A status descriptor is a detailed record of information about a resource status. In its raw form, a status
descriptor is a multiline SA z/OS message containing information such as:

• Root component and status component to which the status descriptor applies
• Priority, color, and highlighting associated with the status descriptor (see “How Status Descriptors

Affect SDF” on page 254 for more information)
• Date and time the status descriptor was generated
• Actual resource status information; for example, an SA z/OS message indicating the resource is up

SDF uses information in a status descriptor to generate a detail status display (see “Detail Status Display”
on page 252). You do not usually look directly at a status descriptor; rather, you look at portions of it
through a detail status display. For example, in Figure 53 on page 252, the detail status display presents
information from a status descriptor for status component JES2. The 1 of 3 on the panel indicates that
JES2 currently has three status descriptors associated with it.

SDF generates, displays, and deletes status descriptors.

SDF Tree Structures
SDF uses tree structures to set up the hierarchy of monitored resources displayed on SDF status panels.
An SDF tree structure usually starts with the system name as the root node and has a level number of
one. Tree structure levels subordinate to the root node are the monitored resources. The level numbers of
these resources reflect their dependency on each other.

The whole tree structure is kept in a data space for performance reasons. The size of the data space
really depends on your usage of SDF. Refer to the MAXTREEDSPSZ parameter description in IBM System
Automation for z/OS Programmers Reference for calculating and defining the size of the data space.

You define SDF tree structures in NetView DSIPARM data set member AOFTREE.

Figure 54 on page 253 shows an example SDF tree structure. Figure 53 on page 252 shows how these
statements result in a tree structure.

          1 SY1
            2 SYSTEM
              3 WTOR
              3 APPLIC
                4 AOFAPPL
                  5 AOFSSI
                4 JES
                4 VTAM
              3 TSO
              3 RMF
            2 GATEWAY
            2 MONITOR
            2 APG
              3 GROUP

Figure 54. Example SDF Tree Structure

SA z/OS supplies a sample SDF tree structure in the SA z/OS sample library. This tree structure is
referenced by a %INCLUDE statement in member AOFTREE in the NetView DSIPARM data set. You can
customize this sample tree structure to meet your requirements. This order of dependency does not
have to be the same as that used for system startup or shutdown using SA z/OS. System symbols are
supported for the tree structure. This can help reduce both customization work and errors.

For example, using the tree structure in Figure 54 on page 253, if there is a problem with TSO, it is not
desirable to also change the VTAM status color, because VTAM is not having any problems. In contrast, in
the SA z/OS startup and shutdown procedures, TSO is dependent on VTAM.

More details on SDF tree structure definitions are in “Step 1: Defining SDF Hierarchy” on page 261.
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How Status Descriptors Affect SDF
Status descriptors are the main units of information SDF uses. The information in status descriptors
determines how your SDF status displays look at any point in time. This section explains how SDF uses
status descriptors.

Priority and Color Assignments
Status descriptors are assigned both a priority number and a color. These color and priority assignments
determine the colors in which status components are displayed. In SDF, a lower number indicates a
higher priority. Status descriptors are connected to the status component in ascending order of priority.

Color and priority assignments for status descriptors are defined in two places:

• in the PRIORITY parameter in the AOFINIT member of the NetView DSIPARM data set. This parameter
defines initial priority and color assignments used for status descriptors. The values defined in AOFINIT
are used if no further customization is done to priority and color assignments. The default priority
ranges and colors used in AOFINIT are:

Priority Range Color

001 to 199 Red

200 to 299 Pink

300 to 399 Yellow

400 to 499 Turquoise

500 to 599 Green

600 to 699 Blue

White is used as the default status descriptor color (the DCOLOR parameter in member AOFINIT,
described in IBM System Automation for z/OS Programmer's Reference) and as the default color for
a status component without a tree structure entry (the ERRCOLOR parameter in member AOFINIT,
described in IBM System Automation for z/OS Programmer's Reference). For more information on the
PRIORITY parameter, see IBM System Automation for z/OS Programmer's Reference.

• in the SDF definitions in the Status Details policy object. These entries define colors, highlighting,
and priorities used for particular resource statuses. Color and priority assignments defined in the
customization dialog can be used to override assignments in the AOFINIT member.

Note: Some of the resource statuses that appear in SDF displays do not directly correspond to resource
statuses used in the automation status file.

IBM System Automation for z/OS Programmer's Reference shows the default resource status types,
colors, highlighting, and priorities provided with SA z/OS. These settings define to SA z/OS the
parameters used when adding status descriptors to SDF.

For more information on the SDF Status Details definition, see “Step 4: (Optional) Defining SDF in the
Customization Dialog” on page 266.

Chaining of Status Descriptors to Status Components
A resource status change causes a status descriptor to be generated. SDF adds this status descriptor
to a chain of status descriptors. Chained status descriptors determine the status and color of status
components. The highest-priority status descriptor in a chain determines the initial color in which
the status component is displayed. The underlying chained priority numbers determine the color that
successive detail status displays are shown in.

Status descriptors are chained off each level of status component in a tree structure. Status descriptors
chained to lower-level status components are also chained to a higher-level status component, again in
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order of priority. Status descriptors are also chained off the root component. These status descriptors are
all the status descriptors that currently exist at all levels of the tree structure.

For example, Figure 55 on page 255 shows status descriptors currently generated for system SY1. The
priority for each status descriptor is shown by a number.

Figure 55. Status Descriptors Chained to Status Components

The status components at the lowest level in this tree structure, JES2, RMF, and VTAM, have status
descriptors chained off them. Status component JES2 has three status descriptors chained, with priorities
1, 10, and 50. Because 1 is the highest priority, the status descriptor with priority 1 is organized first in
the chain. This highest-priority status descriptor determines the color in which JES2 is displayed on the
status panel. If an operator uses the detail PF key to view detail status displays for JES2, the information
contained in the status descriptor with priority 1 is displayed first, then the detail status display for the
status descriptor with priority 10, and so on.

At the SYSTEM status component level in the tree structure, all status descriptors from the lower-level
status components are also chained. Because the status descriptors chained to RMF and VTAM have
higher priorities than the priority 10 and 50 status descriptors for JES2, they are organized after the
priority 1 status descriptor in the chain. An operator using the detail PF key at the SYSTEM level could
view five detail status displays, ranging from priority 1 to priority 50.

Similarly, at the SY1 level in the tree structure, all status descriptors chained to all status components
in the tree structure are chained in order of priority. An operator using the detail PF key at the SY1 level
could view six detail status displays, ranging from priority 1 to priority 100.

If a status component has multiple status descriptors with equal priorities, the status descriptors are
chained off the status component in order of arrival time.

When a status descriptor no longer accurately reflects the actual status of a resource, SDF automatically
deletes it from status descriptor chains. As an example of how priority determines order of status
descriptors, suppose two status descriptors currently exist for status component JES2. If there are two
status descriptors for JES2 with priorities of 120 and 140, the status descriptor with priority 120 is
displayed first. In both cases, JES displays in red on the SDF status panel.

In SA z/OS, all statuses are defined in the automation control file. When an automation event occurs, the
SA z/OS AOCUPDT command scans the automation control file for the SDF entry for that status. SA z/OS
issues a request to add the status using the information from the automation control file.

For example, suppose subsystem RMF, shown on the example SDF panels in Figure 53 on page 252,
is set to a STOPPING state. The SA z/OS AOCUPDT command scans the automation control file for the
STOPPING state entry for SDF and generates a status descriptor, specifying a priority of 420. SDF adds
the status descriptor to the RMF status component. RMF appears as yellow and reverse on the status
panel. Once RMF is in a stopped state, the AOCUPDT command scans the automation control file for the
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STOPPED state SDF entry and generates a status descriptor with priority 120. SDF adds this new status
descriptor to the RMF status component. Now, RMF appears in red on the SDF status panel.

Propagating Status Descriptors Upward and Downward in a Tree Structure
Based on the order of dependencies defined in a tree structure, status descriptors can be propagated
upward or downward to status components in a tree structure.

This propagation of status descriptors affects the color in which status components are displayed, as
well as the detail status displays operators can view by using the detail PF key on a particular status
component.

Propagation of status upward and downward in a tree structure is defined by the PROPUP and
PROPDOWN parameter in the AOFINIT member (see IBM System Automation for z/OS Programmer's
Reference for descriptions).

The SA z/OS-provided defaults for status propagation in the AOFINIT member are to propagate status
upward (PROPUP=YES) but not downward (PROPDOWN=NO).

When status is propagated upward in a tree structure, if a status descriptor is added or deleted at a lower
level in the tree structure, it is also added or deleted from the cumulative chain of status descriptors at a
higher-level node in the tree structure.

Propagation of status upward in a tree structure consolidates the status of all monitored resources in the
system at the root node. In this way, the color of the root node reflects the most important or critical
status in a computer operations center. For example, in Figure 54 on page 253, any color changes for
AOFSSI are reflected in AOFAPPL, APPLIC, SYSTEM, and SY1, if SDF propagates status changes upward in
the tree structure. In Figure 53 on page 252, if all monitored resources are green, the root node CHI01 on
the Data Center Systems panel is also shown in green.

When status is propagated downward in a tree structure, if a status change occurs at a higher level in a
tree structure, the changes are sent downward in the tree structure. This propagating downward could
cause status descriptors at lower levels in the tree structure to be added or deleted.

Propagating status downward can be useful when an entire system is down. In such a case, you want
SDF status panels to accurately reflect the system status. You do not want status components lower in
the tree structure to retain previously generated status descriptors indicating that the components are up
and running, because these status descriptors do not accurately reflect the status of the components. You
can configure your SDF implementation to propagate status downward, and remove all status descriptors
from all status components in a tree structure. If an operator tries displaying detailed status about any of
the status components lower in the tree structure, they receive "NO DETAIL INFO AVAILABLE" messages.
The empty chain color, defined by the EMPTYCOLOR parameter in member AOFINIT with a default color
of blue, is also used to indicate that no detail information is available. See IBM System Automation for
z/OS Programmer's Reference for the EMPTYCOLOR description.

How SDF Helps Operations to Focus on Specific Problems
SDF structure and processing allows the program identifying a problem to be concerned only with the
specific problem.

For example, suppose an application program detects a warning message for status component JES on
CHI01. The following processing steps occur:

1. The application program issues a request to SDF to add a status descriptor for JES.
2. The status entry for JES on system CHI01 now indicates there is a problem with JES. If the SDF is

configured to propagate status up the hierarchical tree structure, the status for system CHI01 also
reflects the problem state. See IBM System Automation for z/OS Programmer's Reference for details on
the PROPUP SDF initialization parameter.

3. Now, suppose another more serious problem occurs. The application program which detects this new
problem issues another request to SDF to add a status descriptor having a lower priority number than
the status descriptor for the first problem.
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4. Because status descriptors are chained in order of priority, the JES status now reflects the status
descriptor color of the more serious problem.

5. When the more serious problem is resolved, the application program detecting the problem resolution
issues a request to SDF to remove the status descriptor for this problem from the chain of JES status
descriptors.

6. The status panel is updated to reflect the first problem.

How SDF Panels Are Defined
All SDF status panels, apart from detail status display panels, are defined in the AOFPNLS member of the
NetView DSIPARM data set.

Member AOFPNLS can contain either one or both of the following:

• %INCLUDE statements referencing other NetView DSIPARM members containing definitions of panels.
The %INCLUDE statement causes the named panel definition member to be loaded. This is the
recommended method, and the method used in the SA z/OS-provided version of AOFPNLS. System
symbols are supported for the %INCLUDE statements. This can help reduce both customization work
and errors.

• Panel structure definitions for all SDF panels.

Panel members defined or referenced in AOFPNLS are loaded into system memory, and may be deleted,
replaced, or temporarily made resident using the SDFPANEL command (see IBM System Automation for
z/OS Programmer's Reference for command description).

Panels that are to be dynamically loaded as needed (see “Dynamically Loading Tree Structure and Panel
Definition Members” on page 257) must be defined in a NetView DSIPARM member having the same
member name as the panel itself.

It is recommended that you include only frequently used panels in AOFPNLS, to conserve system
memory. Other panels can be dynamically loaded when needed, either by pressing a SDF function key or
by using the SCREEN command.

Note: Dynamic refresh only works with panels that are defined in AOFPNLS.

SDF internally formats and builds detail status display panels from the information in a status descriptor.
You do not have to define and format detail status display panels. Status components defined in the panel
definitions must also be defined in the corresponding tree structure. However, not all status components
defined in the tree structure require a corresponding entry on the SDF status panel. For example, in Figure
54 on page 253, the APPLIC status component is only a pseudo-entry and may not actually be displayed
on any SDF status display panel.

SDF status panels can be customized to reflect any environment. For example, you can define a panel
to show the status of all JES subsystems on all processors in a computer operations center. The JES
operator can view the panel to determine the status of any JES subsystem in the complex.

For detailed information on defining SDF panels, see “Step 2: Defining SDF Panels” on page 262.

Dynamically Loading Tree Structure and Panel Definition Members
Using %INCLUDE statements in the main SDF tree structure and panel definition members allows you to
dynamically load tree structure and panel definition members without restarting SDF.

The SDFTREE command loads a tree structure definition member. The SDFPANEL command loads a panel
definition member. You can dynamically reload members AOFTREE and AOFPNLS themselves. See IBM
System Automation for z/OS Programmer's Reference.

The RESYNC SDFDEFS command generates the SDF panels using the advanced automation option (AAO)
AOF_AAO_SDFROOT.n for the SDF root names that are to be applied. (See IBM System Automation for
z/OS Operator's Commands). It also replicates SDF tree definitions that have defined variables beginning
with &SDFCxxx using the corresponding AAO AOF_AAO_SDFCxxx.n. Config Refresh Monitoring uses the
reserved AAO AOF_AAO_SDFCsaplex.n.
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Note: Both members AOFPNLS and AOFTREE must not contain any variable that is subject to replication.

See "Status Component Panel Definition" in IBM System Automation for z/OS Programmer's Reference for
the setup of AOF_AAO_SDFROOT.n variables.

See "AOFTREE" in IBM System Automation for z/OS Programmer's Reference for the setup and usage of
AOF_AAO_SDFCxxx.n variables.

Using SDF for Multiple Systems
You can configure SDF so that multiple systems in an automation network can forward their resource
status information to the SDF on the focal point system.

Ensure the following requirements are met in a multiple-system environment:

• The tree structure for each system must be defined in the AOFTREE member of NetView DSIPARM on
the focal point system SDF. The root name must be unique for each system tree structure.

• SA z/OS focal point services must already be implemented before target system status update is
forwarded to the focal point SDF.

Because each root name must be unique in a multiple-system environment, you can uniquely address
any status component on any system that is defined to the focal point SDF by prefixing it with the root
component name:

ROOT_COMPONENT.STATUS_COMPONENT

For example:

SY1.JES2

Similarly, any SDF status descriptors that are forwarded from the target system to the focal point SDF are
prefixed with the root name of the target system by SA z/OS routines.

Primary and backup focal points (APAR OA55386)
SDF supports one primary focal point (PFP) and one backup focal point (BFP). A target system, with both
PFP and BFP defined, forwards its SDF data to the PFP system if the PFP is available. When the target
system detects that the PFP system is unavailable, it switches its focal point to the BFP and immediately
starts sending all SDF data to the BFP system. As soon as the target system detects that the PFP is
available again, it switches its focal point back to the PFP system, deletes all SDF data on the BFP system,
and starts sending all SDF data to the PFP system.

Each target system that defines the same PFP and BFP has to monitor the status of each focal point
system. The data that is shown on each focal point system depends on its connection with each target
system individually.

Alternatively, SDF also supports parallel update of both focal points to avoid the dependency on the
availability of the single connection between a target system and the PFP.

If the focal point system should not forward its local data to the other focal point system, only the target
systems need to have the Parallel Update field specified with YES in the SDF FOCALPOINT policy of
Network (NTW) entry type in the Customization Dialog. If each focal point system should forward its
local data to the other focal point system, all systems should share one definition. It means that the PFP
system defines itself as the primary focal point and the BFP system as the backup focal point. And the
BFP system defines itself as the backup focal point and the PFP system as the primary focal point.

If you have defined SDF root names besides the local system name, you need to make them available for
synchronization with the RESYNC FP command. Assuming your PFP is named SY1P and has an additional
root name PFPONLY, and the BFP is named SY2B with a similar root name BFPONLY, the following style
sheet definitions shows you how to specify them:

     %>select
     %>  when cursys() = 'SY1P' then
     %>    do
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     /* PFP has defined PFP=SY1P and BFP=SY2B */
     COMMON.AOF_AAO_SDFPFP_ROOT.0 = 1
     COMMON.AOF_AAO_SDFPFP_ROOT.1 = PFPONLY
     %>    end
     %>  when cursys() = 'SY2B' then
     %>    do
     COMMON.AOF_AAO_SDFBFP_ROOT.0 = 1
     COMMON.AOF_AAO_SDFBFP_ROOT.1 = BFPONLY
     %>    end
     %>  otherwise
     %>    nop
     %>end /* select */

If you plan to activate and deactivate the parallel update of the focal points using the INGAMS REFRESH
command, you need to adapt the above style sheet definitions as follows:

     %>select
     %>  when cursys() = 'SY1P' then  
     %>    do
     /* PFP has defined PFP=SY1P and BFP=SY2B */
     COMMON.AOF_AAO_SDFPFP_ROOT.0 = 1
     COMMON.AOF_AAO_SDFPFP_ROOT.1 = PFPONLY
     COMMON.AOF_AAO_SDFBFP_ROOT.0 = 1
     COMMON.AOF_AAO_SDFBFP_ROOT.1 = BFPONLY
     %>    end 
     %>  when cursys() = 'SY2B' then
     %>    do
     COMMON.AOF_AAO_SDFBFP_ROOT.0 = 1
     COMMON.AOF_AAO_SDFBFP_ROOT.1 = BFPONLY
     %>    end
     %>  otherwise
     %>    nop
     %>end /* select */

These definitions allow the focal point processing to determine the SDF root names that must not be
deleted on the backup focal point when the parallel update option is deactivated.

For a description of the style sheet variables, see “Read/Write Variables” on page 226.

SDF Components
SDF consists of the following components:

Table 27. SDF Components

Name Type Purpose

AOFTDDF Task Initializes SDF and maintains the status database. This initialization
is an automated function.

SDF Command Starts an SDF operator session.

SDFTREE Command Dynamically loads or deletes an SDF tree structure definition
member from the NetView DSIPARM data set.

SDFPANEL Command Dynamically loads or deletes an SDF panel definition member from
the NetView DSIPARM data set.

AOFINIT Input file Contains SDF initialization parameters defined with the statements
described in IBM System Automation for z/OS Programmer's
Reference. AOFINIT is in the NetView DSIPARM data set.

AOFTREE Input file Contains tree structures described in IBM System Automation for
z/OS Programmer's Reference. This member usually consists of a
list of %INCLUDE statements referencing other members containing
tree structures. AOFTREE is in the NetView DSIPARM data set.
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Table 27. SDF Components (continued)

Name Type Purpose

AOFPNLS Input file Contains SDF panel parameters defined by the statements described
in “Step 2: Defining SDF Panels” on page 262. This member
usually consists of a list of %INCLUDE statements referencing other
members containing panel definitions. AOFPNLS is in the NetView
DSIPARM data set.

panel_name Input file A DSIPARM member containing the definition of one or more SDF
panels or %INCLUDE statements identifying other DSIPARM panel
definition members. It is highly recommended that panel definition
members contain the definition of a single panel having the same
name as the member.

tree_name Input file A DSIPARM member containing the definition of one or more tree
structures. It is highly recommended that tree definition members
contain the definition of a single tree having the same root
component name as the member name.

How the SDF Task Is Started and Stopped
During SA z/OS initialization, the AOFTDDF task loads members defining panel format, panel flow, and
tree structures.

Member AOFINIT defines parameters common to all SDF panels and basic initialization specifications,
such as screen size, default PF keys, and the initial screen displayed when a SDF session is started. These
AOFINIT parameters are described in IBM System Automation for z/OS Programmer's Reference.

Starting the SDF Task
In SA z/OS code, the AOFTDDF task is started by the following command:

START TASK=AOFTDDF

Stopping the SDF Task
In SA z/OS code, the AOFTDDF task is stopped by the following command:

STOP TASK=AOFTDDF

Note: When SDF is restarted, all existing SDF status descriptors are lost, as they are kept only in memory.

SDF Definition Process
Use the following procedure to define the panels displayed in an SDF session. Details on each step are
provided later in this chapter and in IBM System Automation for z/OS Programmer's Reference.

Before you begin
All members like AOFINIT, AOFTREE, and AOFPNLS that are used to define the SDF environment support
NetView's Data REXX functionality. To use this functionality in a source member, you need to specify the
"/*%DATA" directive in the first column of the first record if it's not already done.

Procedure
1. Define the hierarchy of monitored resources used for your SDF panels, using tree structure statements

in NetView DSIPARM data set members. These tree structure definition members should be
referenced by %INCLUDE statements in the main SDF tree structure definition member, AOFTREE,
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in the NetView DSIPARM data set. See IBM System Automation for z/OS Programmer's Reference for
details.

2. Define SDF status panels using panel definition statements in NetView DSIPARM data set members.
Panels can either be automatically loaded when SDF starts, or dynamically loaded using the SDFPANEL
command. For panels to be automatically loaded, add %INCLUDE statement specifying the panel
definition member to the main panel definition member, AOFPNLS, in the (conref) DSIPARM data set.
See “Step 2: Defining SDF Panels” on page 262 for details.
Define and customize SDF status panels in the following general order:

a. Root panel
b. Status component panel for each entry on the root panel
c. Any other customized status panels.

3. Customize the SDF initialization parameters in NetView DSIPARM member AOFINIT, if necessary
(optional), or use defaults. See IBM System Automation for z/OS Programmer's Reference for detailed
descriptions of SDF initialization parameters. Using defaults is recommended.

4. Define SDF resource status, color, highlight and priority values using the customization dialog to edit
the SDF Status Display policy object, or use defaults. This step is optional. See IBM System Automation
for z/OS Defining Automation Policy for the description of the Status Display policy object. Using
defaults is recommended.

Notes:

a. Resources that SA z/OS is not currently automating are not displayed on SDF panels.
b. To display the status of multiple systems and forward status from target systems to SDF on a focal

point system, SA z/OS focal point services must already be implemented. See IBM Automation for
z/OS Defining Automation Policy for details on configuring focal point services.

Step 1: Defining SDF Hierarchy
Member AOFTREE in the NetView DSIPARM data set contains a set of definitions that define the
propagation hierarchy for status color changes.

When the status changes for a component, the corresponding color change is propagated up or down the
tree to the next higher or lower level component. The level is determined by the level number assigned to
each component. The type of propagation is determined either by the entry in the AOFINIT member or by
individual requests to add a status descriptor to a status component.

Note: SA z/OS does not use this SDF hierarchy for subsystem shutdown or startup procedures. Instead,
SA z/OS uses subsystem entries defined in the automation policy to determine startup and shutdown
relationships and hierarchies.

Tree Structure Definitions
AOFTREE contains tree structure definitions. To define tree structures, you can:

• Use %INCLUDE statements that reference other members containing definitions for specific tree
structures. This is the recommended method, and the method used in the SA z/OS-provided version
of AOFTREE.

On the %INCLUDE statement, the name of the referenced member must be enclosed in parentheses.
• Place all tree structure definitions in AOFTREE.
• Use a combination of both.

System symbols are supported wherever they are used in the AOFTREE, AOFINIT and AOFPNLS
members. This can help reduce both customization work and errors.

Figure 56 on page 262 shows a typical tree structure definition:
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          1 SY1
            2 SYSTEM
              3 WTOR
              3 APPLIC
                4 AOFAPPL
                  5 AOFSSI
                4 JES
                4 VTAM
              3 TSO
              3 RMF
            2 GATEWAY
            2 MONITOR
            2 APG
              3 GROUPS

Figure 56. Example Tree Structure Definition

In this tree structure, SY1 is the root component. This definition is in a separate member, named SY1. It is
referenced by the following statement in the AOFTREE member:

%INCLUDE(SY1TREE)

Loading Tree Structures
All tree structures need not be loaded during initialization. Some can be loaded dynamically after
SDF is started. To do this, use AOFTREE to define those tree structure entries that are loaded during
initialization, then use the SDFTREE command to load additional tree structures as needed.

For more information, see IBM System Automation for z/OS Programmer's Reference.

Tree structures loaded after SDF is started must be contained in separate members. Each member must
be named after the root component for which the tree structure is defined. 

Step 2: Defining SDF Panels
SDF status panels are defined in NetView DSIPARM member AOFPNLS.

SA z/OS loads the panel definitions in AOFPNLS when SDF is initialized.

Panel Definition Methods
To define panels in AOFPNLS, you can:

• Use %INCLUDE statements referencing separate NetView DSIPARM members containing panel
definitions. This is the recommended method, and the method used in the SA z/OS-provided version of
AOFPNLS. See “%INCLUDE Statement for SDF Panels” on page 265 for details on using the %INCLUDE
statement for SDF panel definition members.

• Include actual definitions for all panels.
• Use a combination of both %INCLUDE statements and panel definitions.
• Include a subset of panel entries to load during initialization, so that additional panel definitions can be

loaded only when needed (see IBM System Automation for z/OS Programmer's Reference).

System symbols are supported wherever they are used in the AOFTREE, AOFINIT and AOFPNLS
members. This can help reduce both customization work and errors.

Panel Definition Structure
The structure of each panel definition is as follows:

• Begin panel definition statement (PANEL)
• Status component definition statements, consisting of pairs of the following statements:

– STATUSFIELD: defines location of a status component on a panel
– STATUSTEXT: defines the text displayed in the STATUSFIELD
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• Text fields and data definition statements, consisting of pairs of the following statements:

– TEXTFIELD: defines locations and attributes for constant fields on panels
– TEXTTEXT: defines text displayed in the TEXTFIELD

• Status panel PF key definitions (PFKnn)

You should assign the SDFCONF command to the PF4 key. Use the following definition:

PFK4=SDFCONF &ROOT,&COMPAPPL,&RV,&SID,&SNODE,&DATE,&TIME,&DA

Using SDFCONF to delete a record in SDF is useful because it prompts you for confirmation before
performing the actual deletion. If you do not want the prompt panel to appear, then add ",VERIFY=NO"
to the end of the SDFCONF command.

You must call SDFCONF to delete exceptional messages, that is, captured messages with the severity
Unusual, Important and Critical. The SDFCONF command removes a message entry from the SDF
control structure and also from all other interfaces where the message is shown, for example, TEP.

• End panel statement (ENDPANEL)

Descriptions of these panel definition statements are in IBM System Automation for z/OS Programmer's
Reference.

Recommended Order for Defining Panels
When defining panels, it is recommended that you define them in the following order:

1. The root panel
2. The status components for each item listed on the root panel
3. Any other customized status panels

Note: This order of defining panels is a recommendation only. You can define your SDF panels in any order
desired.

Example Panel Definition
Figure 57 on page 263 shows how an example SDF panel looks when it is displayed.

 SYSTEM                 DATA CENTER SYSTEMS

   SY1                                 GATEWAY

===>
1=HELP 2=DETAIL 3=RET  6=ROLL  7=UP  8=DN    10=LF 11=RT    12=TOP

Figure 57. Example SDF Panel

Figure 58 on page 264 shows the panel definition statements required to define the panel in Figure 57 on
page 263.
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PANEL(SYSTEM,24,80)
TEXTFIELD(01,02,10,WHITE,NORMAL)
TEXTTEXT(SYSTEM)
TF(01,25,57,WHITE,NORMAL)
TT(DATA CENTER SYSTEMS)
STATUSFIELD(SY1,04,04,11,N,,SY1SYS)
STATUSTEXT(SY1)
SF(SY1.GATEWAY,02,40,47,N,,GATEWAY)
ST(GATEWAY)
TF(24,01,79,T,NORMAL)
TT(1=HELP 2=DETAIL 3=RET  6=ROLL  7=UP 8=DN    ,
10=LF 11=RT 12=TOP)
PFK1(AOCHELP SDF)
PFK2(DETAIL)
PFK3(RETURN)
PFK6(ROLL)
PFK7(UP)
PFK8(DOWN)
PFK10(LEFT)
PFK11(RIGHT)
PFK12(TOP)
ENDPANEL

Figure 58. Example Panel Definition Entry

In Figure 58 on page 264, the panel name is SYSTEM. This panel definition can either be in a separate
member referenced by an %INCLUDE statement in AOFPNLS or be directly coded in AOFPNLS. The
recommended method is to use a separate member and an %INCLUDE statement. If it is in a separate
member, the member name is SYSTEM. You do not have to explicitly define every PF key for the panel. PF
key definitions not specified are picked up from definitions in NetView DSIPARM member AOFINIT.

Table 28 on page 264 describes each statement in Figure 58 on page 264:

Table 28. Panel Definition Entry Description

Statement Description and Example Value

PANEL(SYSTEM,24,80) The panel definition statement. The panel name is
SYSTEM, the panel length is 24, and the panel width
is 80.

TEXTFIELD(01,02,10,WHITE,NORMAL) The text location statement defining constant panel
fields. This field starts on line 01 in position 02 and
ends in position 10. The color of the field is white and
highlighting is normal.

TEXTTEXT(SYSTEM) The text data statement specifying the actual data
that goes in the text field just defined. This field
contains the word SYSTEM.

TEXTFIELD and TEXTTEXT are always grouped in
pairs.

TF(01,25,57,WHITE,NORMAL) Another TEXTFIELD statement for another constant
field.

TT(DATA CENTER SYSTEMS) Another TEXTTEXT statement for the text field just
defined.

STATUSFIELD(SY1,04,04,11,N,,SY1SYS) The location of the status component field. The status
component is SY1. This field starts on line 04 in
position 04 and ends in position 11. The highlighting
level is normal. The next panel displayed when the
Down PF key is pressed is SY1SYS.
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Table 28. Panel Definition Entry Description (continued)

Statement Description and Example Value

STATUSTEXT(SY1) The text data used for the name of the field just
defined with the STATUSFIELD statement. In this
case, the field name is SY1.

STATUSFIELD and STATUSTEXT statements are
grouped in pairs.

SF(SY1.GATEWAY,02,40,47,N,,GATEWAY) Another STATUSFIELD definition.

ST(GATEWAY) Another STATUSTEXT definition.

TF(24,01,79,T,NORMAL)
TT(1=HELP 2=DETAIL 3=RET  6=ROLL  
7=UP,
8=DN 10=LF 11=RT    12=TOP)

Here, TEXTFIELD and TEXTTEXT are used to display
PF key definitions. For this panel, these are the
default definitions defined in AOFINIT. If you
need values differing from the defaults, there is
a statement for defining PF keys unique to this
panel, DPFKnn. See IBM System Automation for z/OS
Programmer's Reference for a description of this
statement.

PFK1(AOCHELP SDF)
PFK2(DETAIL)
PFK3(RETURN)
PFK6(ROLL)
PFK7(UP)
PFK8(DOWN)
PFK10(LEFT)
PFK11(RIGHT)
PFK12(TOP)

PF key definition statements.

ENDPANEL The end panel statement, indicating that this is the
end of definitions for this panel.

%INCLUDE Statement for SDF Panels
The %INCLUDE statement for SDF has the following features:

• The SDF %INCLUDE statement allows the specification of a list of members rather than a single
member only. Each member name in the list represents a DSIPARM member that is to be loaded.
Member names in the list are delimited by a comma.

• The SDF %INCLUDE statement requires parentheses around the specified member or members.
• You can specify the option STATIC or DYNAMIC for the SDF %INCLUDE statement. If you specify

DYNAMIC, this generates the panel definitions for all of the system names that you specify in
AOF_AAO_SDFROOT.n common global variable (see Table 25 on page 227). STATIC is the default.

• The target DSIPARM members may contain only complete panel definitions or additional %INCLUDE
statements. Panel definitions must be contained within a single member, and therefore cannot be built
using commonly defined segments.

System symbols are supported wherever they are used in the AOFTREE, AOFINIT and AOFPNLS
members. This can help reduce both customization work and errors.
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Step 3: (Optional) Customizing SDF Initialization Parameters
Member AOFINIT allows you to define parameters common to all SDF panels and SDF initialization
specifications, such as:

• Initial screen shown when SDF is started
• Maximum operator logon limit
• Default PF key definitions
• Detail status display panel PF key definitions
• Detail status display panel PF key descriptions
• Default priorities and colors

These parameters define values for SDF when it is started.

System symbols are supported wherever they are used in the AOFTREE, AOFINIT and AOFPNLS
members. This can help reduce both customization work and errors.

This step of SDF customization is optional. Using SA z/OS-provided default values for these parameters is
recommended.

Note: User-defined statuses are not saved across a recycle or a monitor cycle. This means the status of a
subsystem changes from the user-defined status to an appropriate SA z/OS status.

Step 4: (Optional) Defining SDF in the Customization Dialog
The SDF entries in the Status Display policy object allow you to define statuses and the priorities assigned
to those statuses.

These entries are used by SA z/OS commands to gather data for requests to add status descriptors to
status components. The format and values used in SDF Status Detail definitions are described in IBM
System Automation for z/OS Programmer's Reference.

This step of SDF customization is optional. Using SA z/OS-provided definitions for SDF is recommended.

266   System Automation for z/OS : Customizing and Programming



Appendix C. Coordinating System Operations with
Automatic Restart Manager

SA z/OS system operations provides coordination with the Automatic Restart Manager. The Automatic
Restart Manager (ARM) is a base z/OS component. It is a recovery function that automatically restarts
designated applications when:

• The application ends abnormally.
• The system that the application is running on is part of a sysplex, and that system fails. In this case,

ARM will attempt to restart the application on another system within the sysplex.

SA z/OS coordinates with ARM to:

• Determine which facility is responsible for restarting a specific application.
• Avoid possible duplications or conflicts in application recovery attempts.
• Allow you to take full advantage of SA z/OS fallback capabilities for applications running on sysplexes.

SA z/OS continues to automate an application after it has been moved to a fallback system, provided
SA z/OS is installed on that system. If it is not installed on the fallback system, SA z/OS is still aware
that the application is active on a system other than its primary one and does not attempt to restart it.

You have to define the Automatic Restart Manager policy using the administrative data utility for ARM
policy data (IXCMIAPU) described in z/OS MVS Setting Up a Sysplex.

SA z/OS resolves Automatic Restart Manager statuses to SA z/OS statuses, incorporates Automatic
Restart Manager-related conditions, and provides one status related to Automatic Restart Manager:

• EXTSTART - The application is being started or restarted externally.

Defining an ARM Element Name
Automatic Restart Manager uses element names to identify the applications with which it works. Each
Automatic Restart Manager enabled application must have a unique element name for itself that it uses in
all communication with Automatic Restart Manager.

Automatic Restart Manager tracks the element name and has its policy defined in terms of element
names. If an application moves between systems it MUST continue to use the same element name as
it did on the original system. For more information on defining Automatic Restart Manager names to
SA z/OS, see "Application Entry Type" in IBM System Automation for z/OS Defining Automation Policy.

All Automatic Restart Manager elements are unregistered initially. Transitions between statuses are
caused by:

• IXCARM macro invocations
• Application failures
• System failures
• Timeouts

A minor resource definition subsystem.0ARM can be used to tailor automation behaviour during ARM
restart processing. As an example, a subsystem.0ARM minor resource could be specified with a RESTART
EXIT enabled to drive a user supplied exit during ARM restart. The user exit would control additional
actions to be taken during ARM restart of the subsystem. If the RESTART flag for this minor resource is
resolved to 'N', SA z/OS will not allow ARM to attempt a restart of the application.

Rather than use the subsystem.0ARM minor resource definition, a RESTART EXIT could also be specified
against the major resource definition for the application. In this case the exit would be driven for all
application restarts, not just ARM.

Other reasons for SA z/OS not to allow ARM to attempt a restart of the application are:

Defining an ARM Element Name
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• The application's monitor indicates that the address space is already active.
• The application is involved in a shutdown.
• The application is in status BREAKING, BROKEN, or CTLDOWN.

Defining a MOVE Group for Automatic Restart Manager
All resources with the same ARM element name should be linked to one Sysplex Application Group of
nature MOVE (MOVE group).

An application's ARM element name is defined either during creation on the Define New Entry panel for
applications or after creation via policy item APPLICATION INFO, in both cases in the MVS Automatic
Restart Management Element Name field.

In order to ensure an application in a MOVE group has completely deregistered from ARM before the
automation manager attempts to restart it, a Prepareavailable/WhenObservedDown (passive) relationship
must be defined for each ARMed application in the MOVE group with the MOVE group defined as the
supporting resource.

To make sure that the automation manager will start the applications linked to a MOVE group, the
applications should not be in a HardDown status. The Start On IPL option should not be set to NO.

For more information on how to define MOVE groups see "Creating a New ApplicationGroup" in IBM
System Automation for z/OS Defining Automation Policy.

Defining a MOVE Group for Automatic Restart Manager
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Appendix D. Message Automation

Generic Synonyms: AOFMSGSY
This AOFMSGSY NetView automation table (AT) fragment contains a number of synonyms that must be
appropriately set. It is used in most master automation tables to set up the environmental parameters for
the other fragments. The AOFMSGSY member is supplied by SA z/OS (in the SINGNPRM data set).

You must customize it for each of your systems. The customized copy should be placed in the domain-
specific data set for that system.

You may use INGSYNU to define your own synonyms. This member will be included from AOFMSGSY
automatically. By using this member, you can avoid changing the product supplied AOFMSGSY member.

Note that many values in this table fragment are enclosed in triple single quotation marks. This means
that the value of the synonym is the value entered surrounded by a single set of single quotation marks.
This is necessary so that the value is treated as a literal and not an automation table variable.

Synonym Usage and Default

%AOFALWAYSACTION% This synonym contains the action statement used for all the messages
within a Begin-End block that SA z/OS does not trigger any action for.

Default: NULL

The default is that no action is taken and the message does not
continue to search for further matches within the same AT.

%AOFDOM% This synonym should contain the domain ID of the SA z/OS NetView
on the system that it is automating. The synonym is used to screen
messages to prevent the SA z/OS on this machine from reacting to a
message that originated on another machine. If not set correctly, your
automation fails.

Default: &DOMAIN.

This is a default domain name used in a number of the samples.

%AOFSYS% This synonym should contain the system name used in the last IPL
of the system. It is used to screen messages to prevent the SA z/OS
on this machine from reacting to events that have occurred on other
machines. It is important if you are running on a JES3 global or in a
sysplex with EMCS consoles. If not set correctly, your automation fails.

Default: &SYSNAME.

This is a default system name used in a number of the samples.

%AOFARMPPI% This synonym should contain the name of the NetView autotask that
is running the PPI interface from SA z/OS to z/OS. It is used to route
commands from the NetView automation table to the autotask.

Default: AOFARCAT

SA z/OS Message Presentation: AOFMSGSY
The presentation of SA z/OS messages (prefixed with AOF, ING, HSA, EVJ, EVE and EVI) under NetView
is controlled by the automation table. This uses a number of synonyms and task globals indicating your
message display characteristics. The following synonyms determine the display characteristics for each

SA z/OS Message Presentation: AOFMSGSY

© Copyright IBM Corp. 1996, 2017 269



type of message. There is one set for the normal presentation of the message (AOFNORMx) and a second
set for the held presentation (AOFHOLDx).

Synonym Usage and Default

%AOFHOLDI% This synonym defines the actions taken for SA z/OS information (type
I) messages that are held on your NCCF console.

Default: HOLD(Y) COLOR(GRE) XHILITE(REV)

This:

• Ensures that the message is held
• Causes the message to be displayed in reverse video green

%AOFHOLDA% This synonym defines the actions taken for SA z/OS immediate action
(type A) messages that are held on your NCCF console. As a rule, you
should specify HOLD(Y) in the action.

Default: HOLD(Y) COLOR(RED) XHILITE(REV) BEEP(Y)

This:

• Ensures that the message is held
• Causes the message to be displayed in reverse video red
• Sounds the terminal alarm when the message is displayed

%AOFHOLDD% This synonym defines the actions taken for SA z/OS decision (type D)
messages that are held on your NCCF console. As a rule, you should
specify HOLD(Y) in the action.

Default: HOLD(Y) COLOR(WHI) XHILITE(REV) BEEP(Y)

This:

• Ensures that the message is held
• Causes the message to be displayed in reverse video white
• Sounds the terminal alarm when the message is displayed

%AOFHOLDE% This synonym defines the actions taken for SA z/OS eventual action
(type E) messages that are held on your NCCF console. As a rule, you
should specify HOLD(Y) in the action.

Default: HOLD(Y) COLOR(YEL) XHILITE(REV) BEEP(Y)

This:

• Ensures that the message is held
• Causes the message to be displayed in reverse video yellow
• Sounds the terminal alarm when the message is displayed

%AOFHOLDW% This synonym defines the actions taken for SA z/OS wait state (type W)
messages that are held on your NCCF console. As a rule, you should
specify HOLD(Y) in the action.

Default: HOLD(Y) COLOR(PIN) XHILITE(REV) BEEP(Y)

This:

• Ensures that the message is held
• Causes the message to be displayed in reverse video pink
• Sounds the terminal alarm when the message is displayed

SA z/OS Message Presentation: AOFMSGSY
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Synonym Usage and Default

%AOFNORMI% This synonym defines the actions taken for SA z/OS information (type
I) messages that are not held on your NCCF console. As a rule, you
should not specify HOLD(Y) in the action.

Default: COLOR(GRE)

This:

• Ensures that the message is not held
• Causes the message to be displayed in green

%AOFNORMA% This synonym defines the actions taken for SA z/OS Immediate Action
(type A) messages that are held on your NCCF console. As a rule, you
should not specify HOLD(Y) in the action.

Default: COLOR(YEL) XHILITE(REV) BEEP(Y)

This:

• Ensures that the message is held
• Causes the message to be displayed in yellow
• Sounds the terminal alarm when the message is displayed

%AOFNORMD% This synonym defines the actions taken for SA z/OS Decision (type
D) messages that are held on your NCCF console. You may find it
beneficial to force these messages to be held.

Default: COLOR(WHI) XHILITE(BLI)

This:

• Ensures that the message is held
• Causes the message to be displayed in blinking white

%AOFNORME% This synonym defines the actions taken for SA z/OS Eventual Action
(type E) messages that are not held on your NCCF console. As a rule,
you should not specify HOLD(Y) in the action.

Default: COLOR(YEL)

This:

• Ensures that the message is not held
• Causes the message to be displayed in yellow

%AOFNORMW% This synonym defines the actions taken for SA z/OS Wait State (type
W) messages that are held on your NCCF console. You may find it
beneficial to force these messages to be held.

Default: HOLD(Y) COLOR(PIN) XHILITE(REV) BEEP(Y)

This:

• Ensures that the message is held
• Causes the message to be displayed in reverse video pink
• Sounds the terminal alarm when the message is displayed

Operator Cascades: AOFMSGSY
The next set of synonyms defines a series of operator cascades. A cascade is basically a list of automation
operators used in many of the fragments to route commands. If %CASCADE% is defined as a synonym for

Operator Cascades: AOFMSGSY
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'AUTMON AUTBASE AUTINIT1' and you route a command to it with ROUTE (ONE %CASCADE%) on an
EXEC statement, the command is run on the first autotask in the cascade that is logged on. This provides
you with a flexible, controllable means of providing backup processing tasks in case one of your normal
tasks is unavailable.

Synonym Usage and Default

%AOFOPINITOPR1% This cascade is used to route commands to AUTINIT1. If you have
renamed AUTINIT1 you must change the synonym.

Default: AUTINIT1

There is no backup for AUTINIT1. If it fails when it is needed, many
other things will probably fail as well.

%AOFOPINITOPR2% This cascade is used to route commands to AUTINIT2. If you have
renamed AUTINIT2 you must change this synonym.

Default: AUTINIT2 AUTINIT1

If AUTINIT2 is not active, AUTINIT1 does its work.

%AOFOPBASEOPER% This cascade is used to send commands to BASEOPER. If you are not
using the standard names for SA z/OS autotasks you must change this
synonym. BASEOPER is mainly defined as a fallback operator and has
very little work directly routed to it.

Default: AUTBASE AUTINIT1

AUTBASE is the operator ID that SA z/OS uses for BASEOPER in its
other samples. If AUTBASE is not active, AUTINIT1 is tried.

%AOFOPRPCOPER% This cascade is used for XCF communication management. If you are
not using the standard names for SA z/OS autotasks you must change
this synonym.

Default: AUTRPC AUTSYS AUTBASE AUTINIT1

%AOFOPSYSOPER% This cascade is used to send commands to SYSOPER. If you are not
using the standard names for SA z/OS autotasks you must change this
synonym. SYSOPER is mainly defined as a fallback operator and has
very little work directly routed to it.

Default: AUTSYS AUTBASE AUTINIT1

AUTSYS is the operator ID that SA z/OS uses for SYSOPER in its other
samples.

%AOFOPMSGOPER% This cascade is used to send commands to MSGOPER. If you are not
using the standard names for SA z/OS autotasks you must change this
synonym. MSGOPER is mainly defined to respond to miscellaneous
messages.

Default: AUTMSG AUTSYS AUTBASE AUTINIT1

AUTMSG is the operator ID that SA z/OS uses for MSGOPER in its other
samples.

Operator Cascades: AOFMSGSY
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Synonym Usage and Default

%AOFOPNETOPER% This cascade is used to send commands to NETOPER. If you are not
using the standard names for SA z/OS autotasks you must change this
synonym. NETOPER is defined for VTAM automation.

Default: AUTNET1 AUTNET2 AUTSYS AUTBASE AUTINIT1

AUTNET1 and AUTNET2 are the operator IDs that SA z/OS uses
for NETOPER in its other samples. NETOPER is the only sample
automation function to have a backup defined in the samples.

%AOFOPJESOPER% This cascade is used to send commands to JESOPER. If you are not
using the standard names for SA z/OS autotasks you must change this
synonym. JESOPER is mainly defined for JES automation.

Default: AUTJES AUTSYS AUTBASE AUTINIT1

AUTJES is the operator ID that SA z/OS uses for JESOPER in its other
samples.

%AOFOPMONOPER% This cascade is used to send commands to MONOPER. If you are not
using the standard names for SA z/OS autotasks you must change
this synonym. MONOPER is used for regular monitoring and subsystem
startups.

Default: AUTMON AUTSYS AUTBASE AUTINIT1

AUTMON is the operator ID that SA z/OS uses for MONOPER in its
other samples.

%AOFOPRECOPER% This cascade is used to send commands to RECOPER. If you are not
using the standard names for SA z/OS autotasks you must change this
synonym. RECOPER is used for recovery processing.

Default: AUTREC AUTSYS AUTBASE AUTINIT1

AUTREC is the operator ID that SA z/OS uses for RECOPER in its other
samples.

%AOFOPSHUTOPER% This cascade is used to send commands to SHUTOPER. If you are not
using the standard names for SA z/OS autotasks you must change this
synonym. SHUTOPER coordinates automated shutdowns.

Default: AUTSHUT AUTSYS AUTBASE AUTINIT1

AUTSHUT is the operator ID that SA z/OS uses for SHUTOPER in its
other samples.

Operator Cascades: AOFMSGSY
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Synonym Usage and Default

%AOFOPGSSOPER% This cascade is used to send commands to GSSOPER. If you are not
using the standard names for SA z/OS autotasks you must change this
synonym. GSSOPER is used for generic subsystem automation.

Default: * AUTGSS AUTSYS AUTBASE AUTINIT1

AUTGSS is the operator ID that SA z/OS uses for GSSOPER in its other
samples.

If you want to turn off the "ASSIGN BY JOBNAME" feature, that is,
the advanced automation CGLOBAL variable AOF_ASSIGN_JOBNAME
(see Appendix A, “Global Variables,” on page 225) has been set to 0,
you must remove the asterisk (*), because this may cause serialization
problems.

Note: The NetView command ASSIGN-BY-JOBNAME that occurs
before automation table processing only affects messages that are
associated with an MVS job name.

%AOFOPWTORS% This cascade is used to route commands concerning WTORS. If you
are not using the standard names for SA z/OS autotasks you must
change this synonym. Its use ensures that all WTOR processing is
done on the same task and this is serialized.

Default: * AUTGSS AUTSYS AUTBASE AUTINIT1

This specifies that AUTSYS is to do all the WTOR processing.

%AOFOPGATOPER% This cascade is used to route commands to this domain's gateway
autotask. Because the autotask name contains the domain ID you
must modify this synonym.

Default: GATRdomain.

AOF01 is the default domain used in the other samples. There is no
backup as the gateway CLISTs expect to be running on GATOPER.

Operator Cascades: AOFMSGSY
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Appendix E. TSO User Monitoring
Active TSO users can be monitored in SDF using the SA z/OS command DFTSOU (EVJETSOU).

To enable TSO user monitoring add the following entry to user AT include fragment INGMSGU1 (or to your
own user message table):

IF (MSGID='IEF125I' | MSGID='IEF126I' | MSGID='IEF450I')
  THEN EXEC(CMD('DFTSOU UPDATE') ROUTE(ALL *))
  DISPLAY(N) NETLOG(N) CONTINUE(Y);

Also, put 'DFTSOU SCAN' in the STARTUP-REFRESHSTART policy for the TSO subsystem.

When DFTSOU is called with the UPDATE parameter then:

• For IEF125I, an ADD request is sent to SDF for the TSO user that produces the message.
• For IEF126I, a DELETE request is sent to SDF for the TSO user that produces the message.
• For IEF450I, a DELETE request is sent to SDF for the failing TSO user. When IEF450I is specified, and

the trap is coded in INGMSGU1, then CONTINUE(Y) must also be coded.

When DFTSOU is called with the SCAN parameter, an MVS D TS,L command is issued to identify all
currently active TSO users. This data is then passed to SDF.

SDF updates are associated with SDF tree entry TSOUSERS.

TSO User Monitoring
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Appendix F. Autodiscovery Mapper Files and Report
Formats

Mapper Files
The mapping files all conform to the same set of syntax rules.

• The first line is a version indicator.
• Comments are prefixed by a hash ('#') sign.
• Data lines are tabular, with the layout of the columns being fixed for each mapping file. If the data gets

out of alignment the mappings will not work.
• The columns in each mapping file are split into input and output columns. The input columns are used

to search the data table, and the resulting output columns are applied to the data. In most of the files
only the first match is used – and the user data is searched before the System Automation (SA) data.
A match in the user data will prevent the SA data from being searched. The exception is the variable
mapping file, where all matching data lines are processed and the SA data is processed before the user
data. This allows the user data to overwrite values generated by the SA data.

• The values specified in the columns can be exact matches or can use the following wildcards:

– An asterisk ('*') will match any number of characters, including none.
– A percentage sign ('%') will match a single, required character.
– You can use a backward slash ('\') as an escape character, causing the following wildcard character to

be treated as a literal character – so \* would match an * in the input data.

For example, to match a string of 4 or more characters followed by IPC, you would need to specify
%%%%*IPC. The four percent signs require that there are at least 4 characters before the IPC, the *
matches whatever character(s), if any, come next and the 'IPC' constant is required at the end. It will
match ABCDIPC, ABCDEIPC or ABCDEFGHIPC.

• In almost all cases the width of the input column is the maximum length of the data value. The
exceptions are single character values where you need to use an escape character. These are 2
characters wide to allow for the escape character and the match value (a '\*').

Functions
Some mapping files support the entry of formulas into their output columns. When entering these you
need to follow these rules:

• Functions and constants follow REXX syntax, and you can use the full set of REXX functions.
• Constants need to be delimited by single quotes.
• Symbols can be substituted in using &symbol. syntax. For example &JOBNAME.'@'&AOCCLONE9. would

produce the jobname for the address space followed by an @ followed by the value of &AOCCLONE9 –
for example, NET@IPCSD.

• There are some columns that support the entry of formulas with unresolved &AOCCLONEx. values.
These values get resolved later at SA load time, and allow the same APL to be used with &AOCCLONE
values from different systems, dynamically generating different values. When entering a formula into
these, care must be taken, as you cannot use a REXX function on an unresolved &AOCCLONEx. value.
The workaround is to establish the value you want to use in the variable mapping file and use that
in the formula in the policy file. Note however that the value will be fixed and not dynamic like the
&AOCCLONEx. values.

Mapper Files
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Address Space Identification Mapping File ( INGSMAID / INGSMAIU)
This file contains rules to identify address spaces from their discovery data.

To see data about the Address Spaces that have been discovered and how they have been identified, see
the “ASDETAIL Report” on page 285 .

Table 29. Input Columns for Address Space Identification Mapping File

Input Column Number of Characters Values Used

SYSPLEX 8 chars

SYSTEM 8 chars

AS TYPE 2 chars A, I, J, M, S, U, * or blank

JOB PREFIX 1 chars T, S, J or blank

JOB NAME 8 chars

PROC NAME 8 chars

STEP NAME 8 chars

USERID 8 chars

CMD PREFIX 8 chars

SUBSYS NAME 8 chars

PRIMARY SUBSYS 1 chars P or blank

ASC SUBSYS NAME 8 chars

SCHED SUBSYS NAME 8 chars

PREVIOUS ID 24 chars

PROG NAME 8 chars

PROG PARMS 100 chars

Table 30. Output columns for Address Space Identification Files

Column Name Number of Characters

NEW ID 24 chars

The data searched against the table is the raw discovery data before any other identification has been
performed. The PREVIOUS ID value will either be a value from the discovery engine or blank. The value in
the NEW ID column overwrites the PREVIOUS ID value for the Address Space.

Table 31. Job Prefix Values

Value Job name

J Job

S Started Task

T TSO User

blank Unknown

Mapper Files
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Table 32. Address Space Type Values

Value Address Space Type

A ATX (APPC Transaction)

I Initiator

J Job

M Mount job

S Started Task

U TSO User

* System (use \* to match)

XCF Group Identification Mapping File ( INGSMGRP / INGSMGRU)
This file contains rules to identify established XCF Groups.

To see details of the XCF Groups discovered and how they have been identified, see the “XCFGROUP
Report” on page 284.

Table 33. Input Columns for XCF Group Identification Mapping File

Input Column Name Number of Characters

SYSPLEX 8 chars

SYSTEM 8 chars

XCF GROUP NAME 8 chars

Table 34. Output Columns for XCF Group Identification Mapping File

Column Name Number of Characters

GROUP TYPE 24 chars

While the SA provided file contains identification rules for some applications with hard-coded XCF Group
names – SA itself, for example, always names its main group INGXSGxx – there are a number of other
applications – such as Tivoli Workload Scheduler – that leave the entire construction of the name up
to you. Entries for such applications need to be made in your user mapping file, reflecting the naming
conventions used within the target sysplex. The GROUP TYPE values listed in the SA provided file are
the only SA defined values in the group identification space. Currently they only have to correspond with
GROUP TYPE entries in the XCF Group Member Mapping files.

XCF Group Member Identification Mapping File (INGSMGMB / INGSMGMU)
This files contains rules for identifying members of XCF groups.

To see details of the XCF Groups and their Members that were discovered and how they have been
identified, refer to the “XCFGROUP Report” on page 284 .

Table 35. Input Columns for XCF Group Member Identification Mapping File

Input Column Name Number of Characters

SYSPLEX 8 chars

SYSTEM 8 chars

XCF GROUP TYPE 24 chars

Mapper Files
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Table 35. Input Columns for XCF Group Member Identification Mapping File (continued)

Input Column Name Number of Characters

XCF MEMBER NAME 16 chars

XCF MEMBER JOBNAME 8 chars

Table 36. Output Columns for XCF Group Member Identification Mapping File

Output Column Name Number of Characters

Address Space Type 24 chars

The XCF GROUP TYPE comes from the XCF GROUP identification mapping file. The Address Space ID
replaces any previous identification of the address space by the discovery engine or the Address Space
Identification mapping file. In some cases, simple membership of an XCF Group implies the nature of the
members. In other cases, there is a specific naming convention that can be used to determine the role.
Trackers for Tivoli Workload Scheduler may join the group with a TRK suffix, while controllers may join
with a CTL suffix, but this is up to your local naming conventions. In some cases the XCF group member
name is the only way to distinguish the application instances.

USS Process Identification Mapping File (INGSMUID / INGSMUIU)
This file contains rules for identifying USS Processes. It is applied after the Address Space Identification
rules and the XCF Group Member Identification rules.

The USS data for the processes has been linked to the z/OS aspect of those processes through matching
ASID values. To see the USS Process details that have been discovered, look in the “ASDETAIL Report” on
page 285.

Table 37. Input Columns for USS Process Identification Mapping File

Input Column Name Number of Characters

SYSPLEX 8 chars

SYSTEM 8 chars

JOB NAME 8 chars

z/OS USERID 8 chars

USS USERID 8 chars

PREVIOUS ID 24 chars

z/OS PROG NAME 8 chars

USS COMMAND 256 chars

Table 38. Output Columns for USS Process Identification Mapping File

Output Column Name Number of Characters

NEW ID 24 chars

The z/OS values come from the automated Address Space data rather than from the discovered USS data.
This file is useful for identifying applications that run under USS, many of which can be indistinguishable
just by looking at the z/OS side of the discovered data.
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Policy Mapping File (INGSMPLU / INGSMPLY)
This file contains records that perform three tasks.

The first is to select which Address Spaces are to be modelled in SA policy and which are not. This
is controlled by the Model Location field. A value of X will exclude the address space from the model,
while values of U or S will cause it to be included. The second is to select the model that will be used
to represent the address space. This is done via the Model Entry Type and Model Entry Name fields. At
present only entries of type APL may be modelled. If these fields are blank, no model will be used and
just a basic APL entry will be created for the address space (which will require manual completion before
it can be used successfully for automation). If they are not, they indicate an APL entry in either the SA
KB (Model Location: S) or the User KB (Model Location: U) that will be used as a model for the APL entry
that is created for the address space. The third is to provide non-default values for some attributes of the
APL entry that will be created. Note that the Jobname and ARM Element Name fields support delayed
resolution of &AOCCLONE values in their formula. You may not use REXX functions on &AOCCLONE values
in these fields.

Table 39. Input Columns for Policy Mapping File

Input Column Name Number of characters

SYSPLEX 8 chars

SYSTEM 8 chars

ADDRESS SPACE ID 24 chars

JOBNAME 8 chars

PROCNAME 8 chars

Table 40. Output Columns for Policy Mapping File

Output Column
Name Number of characters Values Used

MODEL LOCATION 1 char S, U, or X

MODEL ENTRY TYPE 3 chars APL

MODEL ENTRY NAME 20 chars

ENTRY NAME 40 chars (Formula - 20 chars)

AUTOMATION NAME 40 chars (Formula - 11 chars)

JOBNAME 40 chars (Formula - 8 chars*)

ARM ELEMENT NAME 40 chars (Formula - 16 chars*)

APL TYPE 12 chars

APL SUBTYPE 12 chars

CLASS 40 chars (Formula - 20 chars)

The Entry name defaults first to the jobname. If this is not unique, it is suffixed with the sysplex name. If
this is still not unique, it is suffixed with a sequential number. If you specify a specific entry name it will
still be subject to the same uniqueness checking as the jobname. If you do not like the entry name you
can use the customization dialog facilities to rename it. This will not cause a second copy to appear if you
rerun the discovery, preload and import process.

The Automation Name defaults to the jobname, because this is the name your operators will use to
interact with the application under SA's control and it is a name that they are already familiar with. The
jobname should be unique on each system, so we should not get naming clashes.

Mapper Files

Appendix F. Autodiscovery Mapper Files and Report Formats  281



The jobname defaults to the jobname, but we allow you to enter a formula for it if you wish to add an
AOCCLONE value into it. This will not be reflected in the Automation Name. The formula must evaluate to
the discovered value.

The ARM Element Name also defaults to the discovered value and, again, we have provided you with a
way of overriding it with a formula including an &AOCCLONE value. The formula must evaluate to the
discovered value.

Some Address Space specific symbols are available to use in the formulas:

 &JOBNAME.
 &PROCNAME.
 &CMDPREFIX.
 &ARM_ELEMENT.
 &SCHED_SUB.

If you open up the SA KB, you can inspect the APL models that SA provides. Do not change the contents
of this PDB as it can be updated by APAR, which would overwrite your changes. To create your own user
models, you need to define your User KB PDB and create/copy entries into it. SA provides a sample PDB
you can use to seed it which contains a class for a generic APL that is automated by IEF403 and 404
messages only. While it is far from the best model for most APLs, it is a good starting point. You can also
copy and modify samples from the SA KB PDB. If you copy an entry into the User KB PDB, you should
copy the entry from the SA Policy Mapping File into your User Policy Mapping File and edit it to point to
the model you have created in your User KB.

The use of classes in the KB is strongly recommended and SA will copy them over if a model requires
them – but note that once they have been copied, it will not recopy them. This is to protect any changes
that you may have manually made to the class after it was copied out of the KB.

Variable Mapping File (INGSMVRS / INGSMVRU)
This file contains rules defining symbols that can be used in formulas.

Table 41. Input Columns for Variable Mapping File

Input Column Name Number of Characters

SYSPLEX 8 chars

SYSTEM 8 chars

Table 42. Output Columns for Variable Mapping File

Output Column Name Number of Characters

VAR NAME 16 chars

VAR FORMULA 48 chars

Note that any variables called AOCCLONE, or AOCCLONEx (where x is 0-9, A-Z) will end up in the
customization dialogs set as an AOCCLONE value on the system being discovered.

Preloader Reports
The reports generated by the preloader are:

SUMMARY
An overview of the import process.

XCFGROUP
Details of XCF groups found and identified, along with members found and identified. You need the
data from this report to construct your own XCF Group and Member identification records.

ARMGROUP
Details of Automatic Restart Groups and Elements that were discovered.
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ASDETAIL
Details of Address Spaces found and Identified, along with all of their discovery data. You need the
information from this report to construct your own Address Space identification and Policy mapping
records.

EXCLUDE
This contains the results of running the identified address spaces through the policy mapping file. It
shows which address spaces have been included in the policy and which have been excluded.

CONSTRCT
This contains information about how the flatfile was constructed. For each address space it will
indicate whether or a new APL was constructed or an existing one was relinked. It indicates which
sample policy (if any) was copied from the KB and which classes (if any) were also copied.

SYMBOLS
This contains information about the list of symbolic values that were discovered on the target system,
along with data about any variables defined in the variable mapping files.

KBIMPORT
This contains information about which entries were imported from the SA and User KBS.

KBMAP
This is an 'index' for the SA and User KBs, listing which entries are in which KB.

SUBSYS
This lists the z/OS subsystems that were identified, which address space is providing them, which
other address spaces are associated with it and which address spaces are being scheduled under
it. The following section describes the reports in detail. Note that it is not possible for you to add
additional reports or to customize the existing reports.

Summary Report
This report contains basic information summarizing the preloader process – elapsed times for various
steps and counts of things discovered, excluded, included and so forth. The phases of the discovery data
import are:

Parameter Review
The first phase resolves the mapping files and the report that will be used.

Discovery Import
The raw snapshot file is read in, the variable and ID mapping files are consulted and the address
spaces are identified. It generates the ASDETAIL, XCFGROUP and SYMBOLS reports.

PDB Import
The extract of the Target PDB is read in and analyzed. Entries for the read entities are output into the
CONSTRCT report.

Generation Phase
The policy mapping file is read and applied. This is where the decision is made as to whether an
Address Space is a new APL or a previously known one. It produces the EXCLUDE report and the
second part of the CONSTRCT report.

KB Import
The extracts of the two KB PDBs are read in and analyzed.

KB Xref
A second pass through the KB data to resolve dependencies between instances.

Output Phase
The flat file is assembled and output. This produces the second part of the CONSTRCT report.

The SUMMARY report gives an overview of activity in these phases.
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System Automation for z/OS V4R1 Discovery Import
 --------------------------------------------------
 Parameters
 SA Mapping file..........: KEY.DRIVER.AINGIMAP
 Installation mapping file: KEY.DRIVER.AINGIMAP
 Report File..............: MIK.DISCO.REPORT.LOAD1

 Generated: 24 Feb 2017 08:30:06

 --------------------------------------------------
 Start of Discovery Import Phase

 Data is for KEY1PLEX.KEY1

 Discovered 104 address spaces.

 Discovery Import Phase complete - 0.851825 seconds
 --------------------------------------------------
 Starting PDB Import Phase

 Loaded from target PDB:
 1 Group(s)
 1 System(s)
 1 Application Group(s)
 16 Application(s)

 PDB Import Phase Complete - 0.278650 seconds
 --------------------------------------------------
 Starting Policy Generation Phase

 Generating policy for KEY1PLEX.KEY1

 Policy mapping results:
    91 Address spaces excluded by policy mapping rules.
    13 Address spaces included.

Figure 59. The SUMMARY Report

XCFGROUP Report
This report contains details of the XCF groups located, their identification, the associated members and
their identification. Note that only members on the system being modelled will be identified in the report.

System Automation for z/OS V4R1 Discovery Import
 --------------------------------------------------
 Parameters

 SA Mapping file..........: KEY.DRIVER.AINGIMAP
 Installation mapping file: KEY.DRIVER.AINGIMAP
 Report File..............: MIK.DISCO.REPORT.LOAD1

 Generated: 24 Feb 2017 08:30:06

 XCF Groups and members:

 XCF Group: SYSXCF
 Id : GROUP_JES2_XCF
 Members:
 KEY1 KEY1.XCFAS - SYSTEM_XCFAS
 KEY2 KEY2.XCFAS
 KEY3 KEY3.XCFAS
 KEY4 KEY4.XCFAS

 XCF Group: SYSGRS
 Id : GROUP_SYSTEM_GRS
 Members:
 KEY1 KEY1.GRS - SYSTEM_GRS
 KEY2 KEY2.GRS
 KEY3 KEY3.GRS
 KEY4 KEY4.GRS

Figure 60. The XCFGROUP Report
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ARMGROUP Report
This report contains details of Automatic Restart Management Groups and Elements that were
discovered. Note that it does not contain any details about which systems, if any, each element could
be moved to.

System Automation for z/OS V4R1 Discovery Import
 --------------------------------------------------
 Parameters

 SA Mapping file..........: KEY.DRIVER.AINGIMAP
 Installation mapping file: KEY.DRIVER.AINGIMAP
 Report File..............: MIK.DISCO.REPORT.LOAD1

 Generated: 10 Mar 2017 07:47:46

 Extracting Automatic Restart Management data

 Groups and members:

 Group : DEFAULT
 Members:
 SYS_RRS_KEY1     NET@IPSVM     EZAY1TCPIP     M8SGN801001
 M9SGN901001     N913001     M9DGN90D001 HSAAM_KEY1$$$$1
 DB2$D911     I911001     OPCKEY1OPCI DBNASNA1
 OPCKEY1OPC8     DXNAINA1001

 Elements:

 Element: SYS_RRS_KEY1
 Jobname: RRS
 Group : DEFAULT
 Systems: KEY1 -> KEY1
 Level : 2

 Element: NET@IPSVM
 Jobname: NET
 Group : DEFAULT
 Systems: KEY1 -> KEY1
 Level : 1

 Element: EZAY1TCPIP
 Jobname: TCPIP
 Group : DEFAULT
 Systems: KEY1 -> KEY1
 Level : 1

Figure 61. The ARM Group Report

ASDETAIL Report
This report contains details of the address spaces discovered, united with their USS data, Automatic
Restart Management data and after the advanced identification heuristics have been run. This data is the
input into the policy mapping phase.
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System Automation for z/OS V4R1 Discovery Import
 --------------------------------------------------
 Parameters 

 SA Mapping file..........: KEY.DRIVER.AINGIMAP 
 Installation mapping file: KEY.DRIVER.AINGIMAP 
 Report File..............: MIK.DISCO.REPORT.LOAD1 

 Generated: 24 Feb 2017 08:30:06 

 Address space:     - ALLOCAS - 0012 
 Id     : SYSTEM_ALLOCAS 
 Proc   :         Step  : ALLOCAS 
 Prog   :         Parms : 
 Subsys :         Assoc : 
 User   :         Type  : * 
 Prefix :         Job px: 
 Primary:         Sched : 
 ARM Ele: 
 ARM Grp: 
 ARM Lvl:         Local : 
 USS Data :           <- 
 Jobname:         User  : 
 Command: 

 Address space:         - ANTAS000 - 000C 
 Id     : SYSTEM_ANTAS 
 Proc   : IEFPROC  Step  : ANTAS000 
 Prog   : ANTXAINI Parms : 
 Subsys :         Assoc  : 
 User   :          Type  : * 
 Prefix :          Job px:  
Primary:          Sched : MSTR 
 ARM Ele:
 ARM Grp:
 ARM Lvl:         Local :
 USS Data :           <-
 Jobname:          User :
 Command:

Figure 62. The ASDETAIL Report

EXCLUDE Report
This report contains details of all address spaces and whether or not they were included in the flat file,
along with an identification of the rule in the policy mapping file that excluded them (or an indication that
they did not match any of the rules in the policy mapping files).
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System Automation for z/OS V4R1 Discovery Import
 --------------------------------------------------
 Parameters

 SA Mapping file..........: KEY.DRIVER.AINGIMAP
 Installation mapping file: KEY.DRIVER.AINGIMAP
 Report File..............: MIK.DISCO.REPORT.LOAD1

 Generated: 24 Feb 2017 08:30:06

 Exclusion report

 ALLOCAS Excluded by mapping (23)
 ANTAS000 Excluded by mapping (23)
 ANTMAIN Excluded by mapping (23)
 APPC Excluded by mapping (23)
 ASCH Excluded by mapping (23)
 AUXMON Excluded by mapping (23)
 AXR Excluded by mapping (23)
 AXR02 Excluded by mapping (23)
 BPXOINIT Excluded by mapping (23)
 CATALOG Excluded by mapping (23)
 CAZ0 Excluded by mapping (23)
 CEA Excluded by mapping (23)
 EYUX310 Excluded by mapping (23)
 FFST Excluded by mapping (23)
 FTPS1 Excluded by mapping (23)
 GEOXHSWP Included by mapping (12)
 GRS Excluded by mapping (23)
 GRSMON Excluded by mapping (23)
 HSM Excluded by mapping (23)
 IEFSCHAS Excluded by mapping (23)

Figure 63. The EXCLUDE Report

CONSTRCT Report
This report contains three distinct sections. The first section describes the loading of data from the Target
PDB Extract. This shows all GRPs, SYSs, APGs and APLs loaded.

 Loading data from Target PDB

 Entry for sysplex GRP: KEY1PLEX
 Signature : GRP-KEY1PLEX
 Loaded GRP: KEY1PLEX (Index: 1)

 Entry for system SYS: KEY1PLEX.KEY2
 Signature : SYS-KEY2
 Loaded SYS: KEY2 (Index: 1)
 ...linked to GRP KEY1PLEX

 Entry for APL BPXOINIT
 Signature : APL-USS-BPXOINIT-0-0
 Loaded APL: BPXOINIT (Index: 1)

Figure 64. The CONSTRCT Report

The second section describes the processing of the discovered data, seeing which existing entries can be
reused and deciding if new entries need to be created. At the end of this section, the preloader has the
PDB delta information in storage.
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 Generating policy for KEY1PLEX.KEY1

 Entry for sysplex GRP: KEY1PLEX
 Signature: GRP-KEY1PLEX
 ...mapped to GRP KEY1PLEX (index: 1)

 Entry for system SYS: KEY1PLEX.KEY1
 Signature : SYS-KEY1
 Creating New SYS: KEY1 (Index: 2)
 ...linked to GRP KEY1PLEX

 Entry for APG LK_KEY1PLEX_KEY1
 Signature : APG-SYSTEM-BASIC--LK_KEY1PLEX_KEY1
 Creating New APG: LK_KEY1PLEX_KEY1 (Index: 2)
 ...linked to SYS KEY1

 Address space: 001F - GEOXHSWP
 Entry for APL GEOXHSWP
 Signature : APL-zOS--GEOXHSWP-HIPER-MSTR-
 ...sig mapped to APL GEOXHSWP (index: 6)
 ...linked to AGP: LK_KEY1PLEX_KEY1

Figure 65. The CONSTRCT Report (second section)

The third section describes the creation of the flat file to hold the update, including the editing of
the model policy, the cross referencing of model resources to real resources for relationships and the
inclusion of classes from the KBs.

Constructing flat file for: KEY1PLEX.KEY1

 NEW SYS KEY1
 --> GRP KEY1PLEX

 NEW APG LK_KEY1PLEX_KEY1
 --> SYS KEY1
 
UPD APL GEOXHSWP
 --> APG LK_KEY1PLEX_KEY1

 UPD APL JES2
 --> APG LK_KEY1PLEX_KEY1

 UPD APL LLA
 --> APG LK_KEY1PLEX_KEY1

Figure 66. The CONSTRCT Report (third section)

SYMBOLS Report
This report has three sections. The first section shows the symbols that were discovered on the target
system and their values:

Discovered symbols:

 &BACKFPT.   = IPSFO
 &BPXPARM.   = 10,LO
 &BPXSHARE.  =
 &CLOCK.     = ET
 &CLOCKEV.   =
 &CNMNETID.  = DEIBMIPS
 &CNMPRTCT.  = IPSFN
 &CNMRODM.   = EKGXRODM
 &CNMTCPN.   = TCPIP
 &COUPLE.    = SY
 &EKGYRODM.  = EKGYRODM
 &FOCALPT.   = IPUNM
 &FSTYPE.    = zFS

Figure 67. The SYMBOLS Report

The second section shows additional variables that were defined in the INGSMVRU and INGSMVRS
mapping files:
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Loading VAR Formulas from: KEY.DRIVER.AINGIMAP(INGSMVRS)

 Loaded variables:

 Loading VAR Formulas from: KEY.DRIVER.AINGIMAP(INGSMVRU)

 Loaded variables:

 AOCCLONE1 &SYSCLONE. Y2
 AOCCLONE2 RIGHT(&SYSNAME.,1) 2
 AOCCLONE3 RIGHT(&SYSNAME.,2) Y2

Figure 68. The SYMBOLS Report (second section)

The third section shows any errors that occurred in processing formulas using these symbols.

KBIMPORT Report
This report first lists the data imported from the SA KB and then the data imported from the User KB.

Loading KB Data from: INGSAQRY as S

 Loaded: S GRP SYSPLEX1 - 7 records
 Loaded: S SYS SYS1 - 77 records
 Loaded: S SYS SYS2 - 77 records
 Loaded: S SYS SYS3 - 77 records
 Loaded: S APG AM_X - 23 records
 Loaded: S APG BASE_APPL - 23 records
 Loaded: S APG BASE_SUPP - 23 records
 Loaded: S APG BASE_SYS - 23 records
 Loaded: S APG BASE_USS - 46 records
 Loaded: S APG BBO_ADMIN - 23 records
 Loaded: S APG BBO_CELL - 23 records
 Loaded: S APG BBO_DMGR - 23 records
 Loaded: S APG BBO_DMN - 23 records
 …
 Loaded: S APL ASCH - 64 records
 Loaded: S APL BBO_CLASS - 79 records
 Loaded: S APL BLSJPRMI - 52 records
 Loaded: S APL B1AGT - 74 records
 Loaded: S APL B1DMGR - 74 records
 Loaded: S APL B1DMN - 98 records
 Loaded: S APL B1SR1 - 74 records
 Loaded: S APL C_AM - 106 records
 Loaded: S APL C_APPL - 73 records
 Loaded: S APL C_CICS - 298 records
 Loaded: S APL C_CICS_CMAS - 81 records
 Loaded: S APL C_CICS_SHAREDSERVERS - 82 records
 Loaded: S APL C_CICS_TG - 79 records
 ...

Figure 69. The KBIMPORT Report

KBMAP Report
This report is a compiled 'index' of the SA and User KBs. It lists the entries found for each type (APL, APG,
and so on) along with an indication of which KB they were found in.
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Entries for type: APL

 S U APL AM                 SA Automation Manager
 S   APL AM2              Spare SA Automation Manager
 S U APL APPC            Advanced Peer-to-Peer Communication
 S U APL ASCH            APPC Scheduler
 S   APL BBO_CLASS   WebSphere class with general definitions
 S   APL BLSJPRMI         Build SNAP Tables for IPCS
 S   APL B1AGT            WAS V7 Node Agent
 S   APL B1DMGR           WAS V7 Deployment Manager
 S   APL B1DMN            WAS V7 Daemon
 S   APL B1SR1            WAS V7 Application Server
 S   APL C_AM            Class for Automation Manager Definitions
 S   APL C_APPL            Class for general APL definitions
 S   APL C_CICS            Class for CICS
 S   APL C_CICS_CMAS     Class for CICS CPSMCMAS
 ...
 S   APL TWSTRKR         TWS/OPC Tracker
 S U APL VLF              Virtual Lookaside Facility
 S U APL VTAM            Virtual Telecommunication Access Method
 S   APL WEBSRV           IBM HTTP Server
 S   APL ZFS              z/OS File System
   U APL AADUMMY         Used for checking policy defs
   U APL ABC              XPCS Test
   U APL ABC2            XPCS Test
   U APL AM1              Automation manager...
   U APL BOBHTST1         as
   U APL BOBHTST2         test scheduler workitems

Figure 70. The KBMAP Report

SUBSYS Report
This report gives a list of all of the z/OS subsystems that were discovered, and identifies the address
space providing the subsystem, any other address spaces that are associated with it and any address
spaces that are scheduled under it.

Subsystem   : JES2
 Provider  : JES2 - SYSTEM_JES
 Schedules :    EYUCAS1B GRSMON   IMS921I1 IMS921OM IMS921SI IMS922I1
 IMS922OM IMS922SI IMS923I1 JES2AUX  MIKDISC2 NET
 NETBTST2 OAM      OPCH     OPCI     OPC82S   OPC85S
 PCAUTH   PORTMAP  Q3E1MSTR RASP     SDSF     SMS
 SMSPDSE  SNA2DBM1 SNA2DIST SNA2IRLM SNA2MSTR SYSLOGD1
 TCPIP    TNF      TN3270   TN3270F  TN3270N  TRACE
 TSO      VMCF     YWHITAM2

 Subsystem   : MSTR
 Provider  : -
 Schedules : ANTAS000 ANTMAIN  APPC     ASCH     AXR      BPXOINIT
 CATALOG  CEA      DEVMAN   DFSZFS   DUMPSRV  FFST
 GEOXHSWP IOSAS    JESXCF   JES2     JES2MON  LLA
 MVSNFSCS NETBSSI5 OMVS     RACF     RESOLVER RRS
 SMF      VLF      WLM      XCFAS
 

Subsystem   : SNA2
 Provider  : SNA2MSTR - DB2_MSTR
 Associated: SNA2DBM1 SNA2DIST

Figure 71. The SUBSYS Report
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Appendix G. z13/z13s Specific Timeout Values for
Selected Hardware Commands

This section describes the implementation of APAR OA52002 (http://www-01.ibm.com/support/
docview.wss?uid=swg1OA52002), which is integrated in the SA V4R1 APAR fix. After you have applied
the APAR/PTF on your ProcOps focal point system, you may activate the OA52002 function for ProcOps
runtime usage.

Define Specific Timeout Values
AOF_AAO_ISQ_Z13TMO_USE Y

Define this SA AAO variable in your CNMSTYLE member and set its value to Y. Each time ProcOps
initializes a connection to a target hardware and the Z13TMO USE flag is set, ProcOps will register each
D/T2964 or D/T2965 found for special timeout handling. If you have no such processor types in your SA
policy, there is no need to set the Z13TMO flag.

Defining specific D/T2964 or D/T2965 timeout values. With the above flag set, you can decide to continue
using the regular timeout ISQCCMD default values or your own ISQ.SNMP.WAIT settings. In this case, only
a debug message in the netlog informs you about the value used. By defining an AAO variable for each
D/T2964 or D/T2965 processor in your configuration, you can specify the timeout value that overrides any
other setting.

AOF_AAO_ISQ_Z13TMO_<thw> hh:mm:ss

thw
ProcOps target hardware name from you

hh:mm:ss
Timeout value, same syntax as the ISQ.SNMP.WAIT specification. See help for ISQCCMD for details.

To find information for a base calculation of reasonable timeout values, see SA z/OS - z13 Specific
Operational Characteristics. This reference can be downloaded from Add-on policies.

Debug Messages
Since this APAR/PTF (OA52002) addresses a hardware deficiency specific to a single machine type set,
the messages informing about this RAS and problem determination support are written only to the netlog.

The following message variables are used:

cmd
Hardware command allowing a CLEAR STORAGE operation (ACTIVATE, DEACTIVATE, SYSRESET, and
LOAD)

dtmo1
ISQCCMD default timeout in seconds notation

ACTIVATE=600

DEACTIVATE=300

SYSRESET=60

LOAD=60

dtmo2
ISQCCMD timeout in M(m) notation

ACTIVATE=M(10)

DEACTIVATE=M(5)
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SYSRESET=M(1)

LOAD=M(1)

mtype
Machine type number, 2964 or 2965

thw
ProcOps target hardware name from SA policy

tmo
User specified timeout in hh:mm:ss notation

The following ProcOps debug messages relevant to APAR OA52002 might be issued:

ISQ511I OA52002 Possible elongated CLEAR STORAGE period on thw, machine type mtype.

Explanation: Message issued at ISQSTART or ISQXIII time, when the CPC's machine type is determined.
This helps to determine if subsequent timeout issues for this target hardware might be related to the
known hardware deficiency.

ISQ511I OA52002 Default or ISQ.SNMP.WAIT period tmo used on thw for command cmd.

Explanation: This message is issued when a hardware command with a possible CLEAR STORAGE option
is executed, but no Z13TMO override has been specified for this 2964/2965 type target hardware.

ISQ511I OA52002 User defined z13 special timeout period tmo used for command cmd.

Explanation: This message is issued when a Z13TMO user timeout value has been specified for a
hardware command that allows a CLEAR STORAGE.

ISQ511I User timeout value exceeds z API maximum. Defaults dtmo1 and dtmo2 are used on thw for
command cmd.

Explanation: This message is issued when a Z13TMO user timeout value or a ISQ.SNMP.WAIT timeout
value was specified that exceeds the supported System z API maximum timeout of 596 hours. The
ProcOps default timeout values are used.
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Appendix H. Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan 

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.
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Glossary

This glossary includes terms and definitions from:

• The IBM Dictionary of Computing New York: McGraw-Hill, 1994.
• The American National Standard Dictionary for Information Systems, ANSI X3.172-1990, copyright

1990 by the American National Standards Institute (ANSI). Copies can be purchased from the American
National Standards Institute, 1430 Broadway, New York, New York 10018. Definitions are identified by
the symbol (A) after the definition.

• The Information Technology Vocabulary developed by Subcommittee 1, Joint Technical Committee 1,
of the International Organization for Standardization and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts of this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft international standards, committee drafts, and working
papers being developed by ISO/IEC JTC1/SC1 are identified by the symbol (T) after the definition,
indicating that final agreement has not yet been reached among the participating National Bodies of
SC1.

The following cross-references are used in this glossary:

Contrast with. This refers to a term that has an opposed or substantively different meaning.
Deprecated term for. This indicates that the term should not be used. It refers to a preferred term,
which is defined in its proper place in the glossary.
See. This refers the reader to multiple-word terms in which this term appears.
See also. This refers the reader to terms that have a related, but not synonymous, meaning.
Synonym for. This indicates that the term has the same meaning as a preferred term, which is defined
in the glossary.
Synonymous with. This is a backward reference from a defined term to all other terms that have the
same meaning.

A
ACF

See automation configuration file.
ACF/NCP

Advanced Communications Function for the Network Control Program. See Advanced
Communications Function and Network Control Program.

ACF/VTAM
Advanced Communications Function for the Virtual Telecommunications Access Method. Synonym for
VTAM. See Advanced Communications Function and Virtual Telecommunications Access Method.

active monitoring
In SA z/OSautomation control file, the acquiring of resource status information by soliciting such
information at regular, user-defined intervals. See also passive monitoring.

adapter
Hardware card that enables a device, such as a workstation, to communicate with another device,
such as a monitor, a printer, or some other I/O device.

adjacent hosts
Systems connected in a peer relationship using adjacent NetView sessions for purposes of monitoring
and control.

adjacent NetView
In SA z/OS, the system defined as the communication path between two SA z/OS systems that do not
have a direct link. An adjacent NetView is used for message forwarding and as a communication link
between two SA z/OS systems. For example, the adjacent NetView is used when sending responses
from a focal point to a remote system.
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Advanced Communications Function (ACF)
A group of IBM licensed programs (principally VTAM, TCAM, NCP, and SSP) that use the concepts of
Systems Network Architecture (SNA), including distribution of function and resource sharing.

advanced program-to-program communication (APPC)
A set of inter-program communication services that support cooperative transaction processing in
a Systems Network Architecture (SNA) network. APPC is the implementation, on a given system, of
SNA's logical unit type 6.2.

Advanced Workload Analysis Reporter (zAware)
IBM analytics appliance running in a z Systems® partition, activated in zACI mode. Customers can use
the appliance to monitor the console message streams of other LPARs running in the same System z
cluster and create trend reports. Exploiting zAware and these trend reports can help to better predict
OS outages or performance degradations and initiate proactive clusters.

alert
In SNA, a record sent to a system problem management focal point or to a collection point to
communicate the existence of an alert condition.
In NetView, a high-priority event that warrants immediate attention. A database record is generated
for certain event types that are defined by user-constructed filters.

alert condition
A problem or impending problem for which some or all of the process of problem determination,
diagnosis, and resolution is expected to require action at a control point.

alert threshold
An application or volume service value that determines the level at which SA z/OS changes the
associated icon in the graphical interface to the alert color. SA z/OS may also issue an alert. See
warning threshold.

AMC
See Automation Manager Configuration.

American Standard Code for Information Interchange (ASCII)
A standard code used for information exchange among data processing systems, data communication
systems, and associated equipment. ASCII uses a coded character set consisting of 7-bit coded
characters (8-bit including parity check). The ASCII set consists of control characters and graphic
characters. See also Extended Binary Coded Decimal Interchange Code.

APF
See authorized program facility.

API
See application programming interface.

APPC
See advanced program-to-program communication.

application
In SA z/OS, applications refer to z/OS subsystems, started tasks, or jobs that are automated and
monitored by SA z/OS. On SNMP-capable processors, application can be used to refer to a subsystem
or process.

Application entry
A construct, created with the customization dialogs, used to represent and contain policy for an
application.

application group
A named set of applications. An application group is part of an SA z/OS enterprise definition and is
used for monitoring purposes.

application program
A program written for or by a user that applies to the user's work, such as a program that does
inventory or payroll.
A program used to connect and communicate with stations in a network, enabling users to perform
application-oriented activities.
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application programming interface (API)
An interface that allows an application program that is written in a high-level language to use specific
data or functions of the operating system or another program.

ApplicationGroup entry
A construct, created with the customization dialogs, used to represent and contain policy for an
application group.

ARM
See automatic restart management.

ASCB
Address space control block.

ASCB status
An application status derived by SA z/OS running a routine (the ASCB checker) that searches the z/OS
address space control blocks (ASCBs) for address spaces with a particular job name. The job name
used by the ASCB checker is the job name defined in the customization dialog for the application.

ASCII
See American Standard Code for Information Interchange.

ASF
See automation status file.

authorized program facility (APF)
A facility that permits identification of programs that are authorized to use restricted functions.

automated console operations (ACO)
The use of an automated procedure to replace or simplify the action that an operator takes from a
console in response to system or network events.

automated function
SA z/OS automated functions are automation operators, NetView autotasks that are assigned to
perform specific automation functions. However, SA z/OS defines its own synonyms, or automated
function names, for the NetView autotasks, and these function names are referred to in the sample
policy databases provided by SA z/OS. For example, the automation operator AUTBASE corresponds
to the SA z/OS automated function BASEOPER.

automatic restart management (ARM)
A z/OS recovery function that improves the availability of specified subsystems and applications
by automatically restarting them under certain circumstances. Automatic restart management is a
function of the Cross-System Coupling Facility (XCF) component of z/OS.

automatic restart management element name
In MVS 5.2 or later, z/OS automatic restart management requires the specification of a unique sixteen
character name for each address space that registers with it. All automatic restart management policy
is defined in terms of the element name, including the SA z/OS interface with it.

automation
The automatic initiation of actions in response to detected conditions or events. SA z/OS provides
automation for z/OS applications, z/OS components, and remote systems that run z/OS. SA z/OS also
provides tools that can be used to develop additional automation.

automation agent
In SA z/OS, the automation function is split up between the automation manager and the automation
agents. The observing, reacting and doing parts are located within the NetView address space, and
are known as the automation agents. The automation agents are responsible for:

• Recovery processing
• Message processing
• Active monitoring: they propagate status changes to the automation manager

automation configuration file
The SA z/OS customization dialogs must be used to build the automation configuration file. It consists
of:
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• The automation manager configuration file (AMC)
• The NetView automation table (AT)
• The NetView message revision table (MRT)
• The MPFLSTxx member

automation control file (ACF)
In SA z/OS, a file that contains system-level automation policy information. There is one master
automation control file for each NetView system that SA z/OS is installed on. Additional policy
information and all resource status information is contained in the policy database (PDB). The SA z/OS
customization dialogs must be used to build the automation control files. They must not be edited
manually.

automation flags
In SA z/OS, the automation policy settings that determine the operator functions that are automated
for a resource and the times during which automation is active. When SA z/OS is running, automation
is controlled by automation flag policy settings and override settings (if any) entered by the operator.
Automation flags are set using the customization dialogs.

automation manager
In SA z/OS, the automation function is split up between the automation manager and the automation
agents. The coordination, decision making and controlling functions are processed by each sysplex's
automation manager.

The automation manager contains a model of all of the automated resources within the sysplex. The
automation agents feed the automation manager with status information and perform the actions that
the automation manager tells them to.

The automation manager provides sysplex-wide automation.

Automation Manager Configuration
The Automation Manager Configuration file (AMC) contains an image of the automated systems in a
sysplex or of a standalone system. See also automation configuration file.

Automation NetView
In SA z/OS the NetView that performs routine operator tasks with command procedures or uses other
ways of automating system and network management, issuing automatic responses to messages and
management services units.

automation operator
NetView automation operators are NetView autotasks that are assigned to perform specific
automation functions. See also automated function. NetView automation operators may receive
messages and process automation procedures. There are no logged-on users associated with
automation operators. Each automation operator is an operating system task and runs concurrently
with other NetView tasks. An automation operator could be set up to handle JES2 messages that
schedule automation procedures, and an automation statement could route such messages to the
automation operator. Similar to operator station task. SA z/OS message monitor tasks and target
control tasks are automation operators.

automation policy
The policy information governing automation for individual systems. This includes automation for
applications, z/OS subsystems, z/OS data sets, and z/OS components.

automation policy settings
The automation policy information contained in the automation control file. This information is
entered using the customization dialogs. You can display or modify these settings using the
customization dialogs.

automation procedure
A sequence of commands, packaged as a NetView command list or a command processor written
in a high-level language. An automation procedure performs automation functions and runs under
NetView.
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automation routines
In SA z/OS, a set of self-contained automation routines that can be called from the NetView
automation table, or from user-written automation procedures.

automation status file (ASF)
In SA z/OS, a file containing status information for each automated subsystem, component or data
set. This information is used by SA z/OS automation when taking action or when determining what
action to take. In Release 2 and above of AOC/MVS, status information is also maintained in the
operational information base.

automation table (AT)
See NetView automation table.

autotask
A NetView automation task that receives messages and processes automation procedures. There are
no logged-on users associated with autotasks. Each autotask is an operating system task and runs
concurrently with other NetView tasks. An autotask could be set up to handle JES2 messages that
schedule automation procedures, and an automation statement could route such messages to the
autotasks. Similar to operator station task. SA z/OS message monitor tasks and target control tasks
are autotasks. Also called automation operator.

available
In VTAM programs, pertaining to a logical unit that is active, connected, enabled, and not at its session
limit.

B
Base Control Program (BCP)

A program that provides essential services for the MVS and z/OS operating systems. The program
includes functions that manage system resources. These functions include input/output, dispatch
units of work, and the z/OS UNIX System Services kernel. See also Multiple Virtual Storage and z/OS.

basic mode
A central processor mode that does not use logical partitioning. Contrast with logically partitioned
mode.

BCP
See Base Control Program.

BCP Internal Interface
Processor function of System z processor families. It allows for communication between basic control
programs such as z/OS and the processor support element in order to exchange information or to
perform processor control functions. Programs using this function can perform hardware operations
such as ACTIVATE or SYSTEM RESET.

beaconing
The repeated transmission of a frame or messages (beacon) by a console or workstation upon
detection of a line break or outage.

blade
A hardware unit that provides application-specific services and components. The consistent size and
shape (or form factor) of each blade allows it to fit in a BladeCenter chassis.

BladeCenter chassis
A modular chassis that can contain multiple blades, allowing the individual blades to share resources
such as management, switch, power, and blower modules.

BookManager®
An IBM product that lets users view softcopy documents on their workstations.

C
central processor (CP)

The part of the computer that contains the sequencing and processing facilities for instruction
execution, initial program load (IPL), and other machine operations.
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central processor complex (CPC)
A physical collection of hardware that consists of central storage, (one or more) central processors,
(one or more) timers, and (one or more) channels.

central site
In a distributed data processing network, the central site is usually defined as the focal point for
alerts, application design, and remote system management tasks such as problem management.

channel
A path along which signals can be sent; for example, data channel, output channel. See also link.

channel path identifier
A system-unique value assigned to each channel path.

channel-attached
Attached directly by I/O channels to a host processor (for example, a channel-attached device).
Attached to a controlling unit by cables, rather than by telecommunication lines. Contrast with link-
attached. Synonymous with local.

CHPID
In SA z/OS, channel path ID; the address of a channel.

CHPID port
A label that describes the system name, logical partitions, and channel paths.

CI
See console integration.

CICS/VS
Customer Information Control System for Virtual Storage. See Customer Information Control System.

CLIST
See command list.

clone
A set of definitions for application instances that are derived from a basic application definition by
substituting a number of different system-specific values into the basic definition.

clone ID
A generic means of handling system-specific values such as the MVS SYSCLONE or the VTAM subarea
number. Clone IDs can be substituted into application definitions and commands to customize a basic
application definition for the system that it is to be instantiated on.

command
A request for the performance of an operation or the execution of a particular program.

command facility
The component of NetView that is a base for command processors that can monitor, control,
automate, and improve the operation of a network. The successor to NCCF.

command list (CLIST)
A list of commands and statements, written in the NetView command list language or the REXX
language, designed to perform a specific function for the user. In its simplest form, a command list is
a list of commands. More complex command lists incorporate variable substitution and conditional
logic, making the command list more like a conventional program. Command lists are typically
interpreted rather than being compiled.
In SA z/OS, REXX command lists that can be used for automation procedures.

command procedure
In NetView, either a command list or a command processor.

command processor
A module designed to perform a specific function. Command processors, which can be written in
assembler or a high-level language (HLL), are issued as commands.

Command Tree/2
An OS/2-based program that helps you build commands on an OS/2 window, then routes the
commands to the destination you specify (such as a 3270 session, a file, a command line, or an
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application program). It provides the capability for operators to build commands and route them to a
specified destination.

common commands
The SA z/OS subset of the CPC operations management commands.

Common User Access (CUA) architecture
Guidelines for the dialog between a human and a workstation or terminal.

communication controller
A type of communication control unit whose operations are controlled by one or more programs
stored and executed in the unit or by a program executed in a processor to which the controller is
connected. It manages the details of line control and the routing of data through a network.

communication line
Deprecated term for telecommunication line.

connectivity view
In SA z/OS, a display that uses graphic images for I/O devices and lines to show how they are
connected.

console automation
The process of having NetView facilities provide the console input usually handled by the operator.

console connection
In SA z/OS, the 3270 or ASCII (serial) connection between a PS/2 computer and a target system.
Through this connection, the workstation appears (to the target system) to be a console.

console integration (CI)
A hardware facility that if supported by an operating system, allows operating system messages to
be transferred through an internal hardware interface for display on a system console. Conversely, it
allows operating system commands entered at a system console to be transferred through an internal
hardware interface to the operating system for processing.

consoles
Workstations and 3270-type devices that manage your enterprise.

couple data set
A data set that is created through the XCF couple data set format utility and, depending on its
designated type, is shared by some or all of the z/OS systems in a sysplex. See also sysplex couple
data setand XCF couple data set.

coupling facility
The hardware element that provides high-speed caching, list processing, and locking functions in a
sysplex.

CP
See central processor.

CPC
See central processor complex.

CPC operations management commands
A set of commands and responses for controlling the operation of System/390® CPCs.

CPC subset
All or part of a CPC. It contains the minimum resource to support a single control program.

CPU
Central processing unit. Deprecated term for processor.

cross-system coupling facility (XCF)
A component of z/OS that provides functions to support cooperation between authorized programs
running within a sysplex.

Customer Information Control System (CICS)
A general-purpose transactional program that controls online communication between terminal users
and a database for a large number of end users on a real-time basis.

Glossary  303



customization dialogs
The customization dialogs are an ISPF application. They are used to customize the enterprise
policy, like, for example, the enterprise resources and the relationships between resources, or the
automation policy for systems in the enterprise. How to use these dialogs is described in IBM System
Automation for z/OS Customizing and Programming.

D
DataPower® X150z

See IBM Websphere DataPower Integration Appliance X150 for zEnterprise® (DataPower X150z).
DASD

See direct access storage device.
data services task (DST)

The NetView subtask that gathers, records, and manages data in a VSAM file or a network device that
contains network management information.

data set
The major unit of data storage and retrieval, consisting of a collection of data in one of several
prescribed arrangements and described by control information to which the system has access.

data set members
Members of partitioned data sets that are individually named elements of a larger file that can be
retrieved by name.

DBCS
See double-byte character set.

DCCF
See disabled console communication facility.

DCF
See Document Composition Facility.

DELAY Report
An RMF report that shows the activity of each job in the system and the hardware and software
resources that are delaying each job.

device
A piece of equipment. Devices can be workstations, printers, disk drives, tape units, remote systems
or communications controllers. You can see information about all devices attached to a particular
switch, and control paths and jobs to devices.

DEVR Report
An RMF report that presents information about the activity of I/O devices that are delaying jobs.

dialog
Interactive 3270 panels.

direct access storage device (DASD)
A device that allows storage to be directly accessed, such as a disk drive.

disabled console communication facility (DCCF)
A z/OS component that provides limited-function console communication during system recovery
situations.

disk operating system (DOS)
An operating system for computer systems that use disks and diskettes for auxiliary storage of
programs and data.
Software for a personal computer that controls the processing of programs. For the IBM Personal
Computer, the full name is Personal Computer Disk Operating System (PCDOS).

display
To present information for viewing, usually on the screen of a workstation or on a hardcopy device.
Deprecated term for panel.
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distribution manager
The component of the NetView program that enables the host system to use, send, and delete files
and programs in a network of computers.

Document Composition Facility (DCF)
An IBM licensed program used to format input to a printer.

domain
An access method and its application programs, communication controllers, connecting lines,
modems, and attached workstations.
In SNA, a system services control point (SSCP) and the physical units (PUs), logical units (LUs),
links, link stations, and associated resources that the SSCP can control with activation requests and
deactivation requests.

double-byte character set (DBCS)
A character set, such as Kanji, in which each character is represented by a 2-byte code.

DP enterprise
Data processing enterprise.

DSIPARM
This file is a collection of members for NetView customization.

DST
Data Services Task.

E
EBCDIC

See Extended Binary Coded Decimal Interchange Code.
ECB

See event control block.
EMCS

Extended multiple console support. See also multiple console support.
ensemble

A collection of one or more zEnterprise nodes (including any attached zBX) that are managed as a
single logical virtualized system by the Unified Resource Manager, through the Hardware Management
Console.

ensemble member
A zEnterprise node that has been added to an ensemble.

enterprise
The composite of all operational entities, functions, and resources that form the total business
concern and that require an information system.

Enterprise Systems Architecture (ESA)
A hardware architecture that reduces the effort required for managing data sets and extends
addressability for system, subsystem, and application functions.

entries
Resources, such as processors, entered on panels.

entry type
Resources, such as processors or applications, used for automation and monitoring.

environment
Data processing enterprise.

error threshold
An automation policy setting that specifies when SA z/OS should stop trying to restart or recover an
application, subsystem or component, or offload a data set.

ESA
See Enterprise Systems Architecture.

event
In NetView, a record indicating irregularities of operation in physical elements of a network.
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An occurrence of significance to a task; for example, the completion of an asynchronous operation,
such as an input/output operation.
Events are part of a trigger condition, such that if all events of a trigger condition have occurred, a
startup or shutdown of an application is performed.

event control block (ECB)
A control block used to represent the status of an event.

exception condition
An occurrence on a system that is a deviation from normal operation. SA z/OS monitoring highlights
exception conditions and allows an SA z/OS enterprise to be managed by exception.

Extended Binary Coded Decimal Interchange Code (EBCDIC)
A coded character set of 256 8-bit characters developed for the representation of textual data. See
also American Standard Code for Information Interchange.

extended recovery facility (XRF)
A facility that minimizes the effect of failures in z/OS, VTAM, the host processor, or high availability
applications during sessions between high availability applications and designated terminals. This
facility provides an alternate subsystem to take over sessions from the failing subsystem.

F
fallback system

See secondary system.
field

A collection of bytes within a record that are logically related and are processed as a unit.
file manager commands

A set of SA z/OS commands that read data from or write data to the automation control file or the
operational information base. These commands are useful in the development of automation that
uses SA z/OS facilities.

focal point
In NetView, the focal-point domain is the central host domain. It is the central control point for any
management services element containing control of the network management data.

focal point system
A system that can administer, manage, or control one or more target systems. There are a number of
different focal point system associated with IBM automation products.
SA z/OS Processor Operations focal point system. This is a NetView system that has SA z/OS
host code installed. The SA z/OS Processor Operations focal point system receives messages from
the systems and operator consoles of the machines that it controls. It provides full systems and
operations console function for its target systems. It can be used to IPL these systems. Note that
some restrictions apply to the Hardware Management Console for an S/390® microprocessor cluster.
SA z/OS SDF focal point system. The SA z/OS SDF focal point system is an SA z/OS NetView system
that collects status information from other SA z/OS NetViews within your enterprise.
Status focal point system. In NetView, the system to which STATMON, VTAM and NLDM send status
information on network resources.
Hardware Management Console. Although not listed as a focal point, the Hardware Management
Console acts as a focal point for the console functions of an S/390 microprocessor cluster. Unlike all
the other focal points in this definition, the Hardware Management Console runs on a LAN-connected
workstation,

frame
For a System/390 microprocessor cluster, a frame contains one or two central processor complexes
(CPCs), support elements, and AC power distribution.

full-screen mode
In NetView, a form of panel presentation that makes it possible to display the contents of an entire
workstation screen at once. Full-screen mode can be used for fill-in-the-blanks prompting. Contrast
with line mode.

G
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gateway session
An NetView-NetView Task session with another system in which the SA z/OS outbound gateway
operator logs onto the other NetView session without human operator intervention. Each end of a
gateway session has both an inbound and outbound gateway operator.

generic alert
Encoded alert information that uses code points (defined by IBM and possibly customized by users or
application programs) stored at an alert receiver, such as NetView.

group
A collection of target systems defined through configuration dialogs. An installation might set up a
group to refer to a physical site or an organizational or application entity.

group entry
A construct, created with the customization dialogs, used to represent and contain policy for a group.

group entry type
A collection of target systems defined through the customization dialog. An installation might set up
a group to refer to a physical site or an organizational entity. Groups can, for example, be of type
STANDARD or SYSPLEX.

H
Hardware Management Console (HMC)

A user interface through which data center personnel configure, control, monitor, and manage System
z hardware and software resources. The HMC communicates with each central processor complex
(CPC) through the Support Element. On an IBM zEnterprise 196 (z196), using the Unified Resource
Manager on the HMCs or Support Elements, personnel can also create and manage an ensemble.

Hardware Management Console Application (HWMCA)
A direct-manipulation object-oriented graphical user interface that provides a single point of control
and single system image for hardware elements. The HWMCA provides grouping support, aggregated
and real-time system status using colors, consolidated hardware messages support, consolidated
operating system messages support, consolidated service support, and hardware commands targeted
at a single system, multiple systems, or a group of systems.

help panel
An online panel that tells you how to use a command or another aspect of a product.

hierarchy
In the NetView program, the resource types, display types, and data types that make up the
organization, or levels, in a network.

high-level language (HLL)
A programming language that provides some level of abstraction from assembler language and
independence from a particular type of machine. For the NetView program, the high-level languages
are PL/I and C.

HLL
See high-level language.

host (primary processor)
The processor that you enter a command at (also known as the issuing processor).

host system
In a coupled system or distributed system environment, the system on which the facilities for
centralized automation run. SA z/OS publications refer to target systems or focal-point systems
instead of hosts.

HWMCA
See Hardware Management Console Application.

Hypervisor
A program that allows multiple instances of operating systems or virtual servers to run simultaneously
on the same hardware device. A hypervisor can run directly on the hardware, can run within an
operating system, or can be imbedded in platform firmware. Examples of hypervisors include PR/SM,
z/VM, and PowerVM® Enterprise Edition.
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I
IBM blade

A customer-acquired, customer-installed select blade to be managed by IBM zEnterprise Unified
Resource Manager. One example of an IBM blade is a POWER7® blade.

IBM Secure Service Container (SSC)
IBM Z partitions, activated to run in SSC operating mode, provide the basic infrastructure runtime and
deployment support for firmware or software based appliances, such as zAware or z/VSE® VNA.

IBM Smart Analyzer for DB2 for z/OS
An optimizer that processes certain types of data warehouse queries for DB2 for z/OS.

IBM System z Application Assist Processor (zAAP)
A specialized processor that provides a Java execution environment, which enables Java-based web
applications to be integrated with core z/OS business applications and backend database systems.

IBM System z Integrated Information Processor (zIIP)
See Integrated Information Processor (IIP).

IBM Websphere DataPower Integration Appliance X150 for zEnterprise (DataPower X150z)
A purpose-built appliance that simplifies, helps secure, and optimizes XML and Web services
processing.

IBM Workload Scheduler (IWS)
A family of IBM licensed products (formerly known as Tivoli Workload Scheduler or OPC/A) that plan,
execute, and track jobs on several platforms and environments.

IBM zEnterprise 196 (z196)
The newest generation of System z family of servers built on a new processor chip, with enhanced
memory function and capacity, security, and on demand enhancements to support existing mainframe
workloads and large scale consolidation.

IBM zEnterprise BladeCenter Extension (zBX)
A heterogeneous hardware infrastructure that consists of a BladeCenter chassis attached to an IBM
zEnterprise 196 (z196). A BladeCenter chassis can contain IBM blades or optimizers.

IBM zEnterprise BladeCenter Extension (zBX) blade
Generic name for all blade types supported in an IBM zEnterprise BladeCenter Extension (zBX). This
term includes IBM blades and optimizers.

IBM zEnterprise System (zEnterprise)
A heterogeneous hardware infrastructure that can consist of an IBM zEnterprise 196 (z196) and
an attached IBM zEnterprise BladeCenter Extension (zBX) Model 002, managed as a single logical
virtualized system by the Unified Resource Manager.

IBM zEnterprise Unified Resource Manager
Licensed Internal Code (LIC), also known as firmware, that is part of the Hardware Management
Console. The Unified Resource Manager provides energy monitoring and management, goal-oriented
policy management, increased security, virtual networking, and data management for the physical and
logical resources of a given ensemble.

I/O resource number
Combination of channel path identifier (CHPID), device number, etc. See internal token.

images
A grouping of processors and I/O devices that you define. You can define a single-image mode that
allows a multiprocessor system to function as one central processor image.

IMS
See Information Management System.

IMS/VS
See Information Management System/Virtual Storage.

inbound
In SA z/OS, messages sent to the focal-point system from the PC or target system.
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inbound gateway operator
The automation operator that receives incoming messages, commands, and responses from
the outbound gateway operator at the sending system. The inbound gateway operator handles
communications with other systems using a gateway session.

Information Management System (IMS)
Any of several system environments available with a database manager and transaction processing
that are capable of managing complex databases and terminal networks.

Information Management System/Virtual Storage (IMS/VS)
A database/data communication (DB/DC) system that can manage complex databases and networks.
Synonymous with Information Management System.

initial microprogram load
The action of loading microprograms into computer storage.

initial program load (IPL)
The initialization procedure that causes an operating system to commence operation.
The process by which a configuration image is loaded into storage at the beginning of a workday or
after a system malfunction.
The process of loading system programs and preparing a system to run jobs.

initialize automation
SA z/OS-provided automation that issues the correct z/OS start command for each subsystem when
SA z/OS is initialized. The automation ensures that subsystems are started in the order specified in
the automation control files and that prerequisite applications are functional.

input/output configuration data set (IOCDS)
A configuration definition built by the I/O configuration program (IOCP) and stored on disk files
associated with the processor controller.

input/output support processor (IOSP)
The hardware unit that provides I/O support functions for the primary support processor and
maintenance support functions for the processor controller.

Integrated Information Processor (IIP)
A specialized processor that provides computing capacity for selected data and transaction
processing workloads and for selected network encryption workloads.

Interactive System Productivity Facility (ISPF)
An IBM licensed program that serves as a full-screen editor and dialog manager. Used for writing
application programs, it provides a means of generating standard screen panels and interactive
dialogs between the application programmer and the terminal user. See also Time Sharing Option.

interested operator list
The list of operators who are to receive messages from a specific target system.

internal token
A logical token (LTOK); name by which the I/O resource or object is known; stored in IODF.

IOCDS
See input/output configuration data set.

IOSP
See input/output support processor..

IPL
See initial program load.

ISPF
See Interactive System Productivity Facility.

ISPF console
You log on to ISPF from this 3270-type console to use the runtime panels for SA z/OS customization
panels.

issuing host
The base program that you enter a command for processing with. See primary host.
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J
JCL

See job control language.
JES

See job entry subsystem.
JES2

An MVS subsystem that receives jobs into the system, converts them to internal format, selects them
for execution, processes their output, and purges them from the system. In an installation with more
than one processor, each JES2 processor independently controls its job input, scheduling, and output
processing. See also job entry subsystem and JES3

JES3
An MVS subsystem that receives jobs into the system, converts them to internal format, selects them
for execution, processes their output, and purges them from the system. In complexes that have
several loosely coupled processing units, the JES3 program manages processors so that the global
processor exercises centralized control over the local processors and distributes jobs to them using a
common job queue. See also job entry subsystem and JES2.

job
A set of data that completely defines a unit of work for a computer. A job usually includes all
necessary computer programs, linkages, files, and instructions to the operating system.
An address space.

job control language (JCL)
A problem-oriented language designed to express statements in a job that are used to identify the job
or describe its requirements to an operating system.

job entry subsystem (JES)
An IBM licensed program that receives jobs into the system and processes all output data that is
produced by jobs. In SA z/OS publications, JES refers to JES2 or JES3, unless otherwise stated. See
also JES2 and JES3.

K
Kanji

An ideographic character set used in Japanese. See also double-byte character set.
L
LAN

See local area network.
line mode

A form of screen presentation in which the information is presented a line at a time in the message
area of the terminal screen. Contrast with full-screen mode.

link
In SNA, the combination of the link connection and the link stations joining network nodes; for
example, a System/370 channel and its associated protocols, a serial-by-bit connection under the
control of synchronous data link control (SDLC). See synchronous data link control.
In SA z/OS, link connection is the physical medium of transmission.

link-attached
Describes devices that are physically connected by a telecommunication line. Contrast with channel-
attached.

Linux on z Systems
UNIX-like open source operating system conceived by Linus Torvalds and developed across the
internet.

local
Pertaining to a device accessed directly without use of a telecommunication line. Synonymous with
channel-attached.
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local area network (LAN)
A network in which a set of devices is connected for communication. They can be connected to a
larger network. See also token ring.
A network that connects several devices in a limited area (such as a single building or campus) and
that can be connected to a larger network.

logical partition (LP)
A subset of the processor hardware that is defined to support an operating system. See also logically
partitioned mode.

logical token (LTOK)
Resource number of an object in the IODF.

logical unit (LU)
In SNA, a port through which an end user accesses the SNA network and the functions provided by
system services control points (SSCPs). An LU can support at least two sessions, one with an SSCP
and one with another LU, and may be capable of supporting many sessions with other LUs. See also
physical unit and system services control point.

logical unit 6.2 (LU 6.2)
A type of logical unit that supports general communications between programs in a distributed
processing environment. LU 6.2 is characterized by:

• A peer relationship between session partners
• Efficient use of a session for multiple transactions
• A comprehensive end-to-end error processing
• A generic application program interface (API) consisting of structured verbs that are mapped to a

product implementation

Synonym for advanced program-to-program communication.
logically partitioned (LPAR) mode

A central processor mode that enables an operator to allocate system processor hardware resources
among several logical partitions. Contrast with basic mode.

LOGR
The sysplex logger.

LP
See logical partition.

LPAR
See logically partitioned mode.

LU
See logical unit.

LU 6.2
See logical unit 6.2.

LU 6.2 session
A session initiated by VTAM on behalf of an LU 6.2 application program, or a session initiated by a
remote LU in which the application program specifies that VTAM is to control the session by using the
APPCCMD macro. See logical unit 6.2.

LU-LU session
In SNA, a session between two logical units (LUs) in an SNA network. It provides communication
between two end users, or between an end user and an LU services component.

M
MAT

Deprecated term for NetView automation table.
MCA

See Micro Channel architecture.
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MCS
See multiple console support.

member
A specific function (one or more modules or routines) of a multisystem application that is defined to
XCF and assigned to a group by the multisystem application. A member resides on one system in the
sysplex and can use XCF services to communicate (send and receive data) with other members of the
same group.

message automation table (MAT)
Deprecated term for NetView automation table.

message class
A number that SA z/OS associates with a message to control routing of the message. During
automated operations, the classes associated with each message issued by SA z/OS are compared
to the classes assigned to each notification operator. Any operator with a class matching one of the
message’s classes receives the message.

message forwarding
The SA z/OS process of sending messages generated at an SA z/OS target system to the SA z/OS
focal-point system.

message group
Several messages that are displayed together as a unit.

message monitor task
A task that starts and is associated with a number of communications tasks. Message monitor tasks
receive inbound messages from a communications task, determine the originating target system, and
route the messages to the appropriate target control tasks.

message processing facility (MPF)
A z/OS table that screens all messages sent to the z/OS console. The MPF compares these messages
with a customer-defined list of messages (based on this message list, messages are automated
and/or suppressed from z/OS console display), and marks messages to automate or suppress.
Messages are then broadcast on the subsystem interface (SSI).

message suppression
The ability to restrict the amount of message traffic displayed on the z/OS console.

Micro Channel architecture
The rules that define how subsystems and adapters use the Micro Channel bus in a computer. The
architecture defines the services that each subsystem can or must provide.

microprocessor
A processor implemented on one or a small number of chips.

migration
Installation of a new version or release of a program to replace an earlier version or release.

MP
Multiprocessor.

MPF
See message processing facility.

MPFLSTxx
The MPFLST member that is built by SA z/OS.

multi-MVS environment
physical processing system that is capable of operating more than one MVS image. See also MVS
image.

multiple console support (MCS)
A feature of MVS that permits selective message routing to multiple consoles.

Multiple Virtual Storage (MVS)
An IBM operating system that accesses multiple address spaces in virtual storage. The predecessor of
z/OS.
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multiprocessor (MP)
A CPC that can be physically partitioned to form two operating processor complexes.

multisystem application
An application program that has various functions distributed across z/OS images in a multisystem
environment.

multisystem environment
An environment in which two or more systems reside on one or more processors. Or one or more
processors can communicate with programs on the other systems.

MVS
See Multiple Virtual Storage.

MVS image
A single occurrence of the MVS operating system that has the ability to process work. See also
multi-MVS environment and single-MVS environment.

MVS/ESA
Multiple Virtual Storage/Enterprise Systems Architecture. See z/OS.

MVS/JES2
Multiple Virtual Storage/Job Entry System 2. A z/OS subsystem that receives jobs into the system,
converts them to an internal format, selects them for execution, processes their output, and purges
them from the system. In an installation with more than one processor, each JES2 processor
independently controls its job input, scheduling, and output processing.

N
NAU

See network addressable unit.
See network accessible unit.

NCCF
See Network Communications Control Facility..

NCP
See network control program (general term).
See Network Control Program (an IBM licensed program). Its full name is Advanced Communications
Function for the Network Control Program. Synonymous with ACF/NCP.

NCP/token ring interconnection
A function used by ACF/NCP to support token ring-attached SNA devices. NTRI also provides
translation from token ring-attached SNA devices (PUs) to switched (dial-up) devices.

NetView
An IBM licensed program used to monitor a network, manage it, and diagnose network problems.
NetView consists of a command facility that includes a presentation service, command processors,
automation based on command lists, and a transaction processing structure on which the session
monitor, hardware monitor, and terminal access facility (TAF) network management applications are
built.

NetView (NCCF) console
A 3270-type console for NetView commands and runtime panels for system operations and processor
operations.

NetView automation procedures
A sequence of commands, packaged as a NetView command list or a command processor written in
a high-level language. An automation procedure performs automation functions and runs under the
NetView program.

NetView automation table (AT)
A table against which the NetView program compares incoming messages. A match with an entry
triggers the specified response. SA z/OS entries in the NetView automation table trigger an SA z/OS
response to target system conditions. Formerly known as the message automation table (MAT).

NetView command list language
An interpretive language unique to NetView that is used to write command lists.
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NetView hardware monitor
The component of NetView that helps identify network problems, such as hardware, software, and
microcode, from a central control point using interactive display techniques. Formerly called network
problem determination application.

NetView log
The log that NetView records events relating to NetView and SA z/OS activities in.

NetView message table
See NetView automation table.

NetView paths via logical unit (LU 6.2)
A type of network-accessible port (VTAM connection) that enables end users to gain access to
SNA network resources and communicate with each other. LU 6.2 permits communication between
processor operations and the workstation. See logical unit 6.2.

NetView-NetView task (NNT)
The task that a cross-domain NetView operator session runs under. Each NetView program must have
a NetView-NetView task to establish one NNT session. See also operator station task.

NetView-NetView task session
A session between two NetView programs that runs under a NetView-NetView task. In SA z/OS,
NetView-NetView task sessions are used for communication between focal point and remote systems.

network
An interconnected group of nodes.
In data processing, a user application network. See SNA network.

network accessible unit (NAU)
In SNA networking, any device on the network that has a network address, including a logical unit
(LU), physical unit (PU), control point (CP), or system services control point (SSCP). It is the origin
or the destination of information transmitted by the path control network. Synonymous with network
addressable unit.

network addressable unit (NAU)
Synonym for network accessible unit.

Network Communications Control Facility (NCCF)
The operations control facility for the network. NCCF consists of a presentation service, command
processors, automation based on command lists, and a transaction processing structure on which
the network management applications NLDM are built. NCCF is a precursor to the NetView command
facility.

Network Control Program (NCP)
An IBM licensed program that provides communication controller support for single-domain,
multiple-domain, and interconnected network capability. Its full name is Advanced Communications
Function for the Network Control Program.

network control program (NCP)
A program that controls the operation of a communication controller.
A program used for requests and responses exchanged between physical units in a network for data
flow control.

Networking NetView
In SA z/OS the NetView that performs network management functions, such as managing the
configuration of a network. In SA z/OS it is common to also route alerts to the Networking NetView.

NIP
See nucleus initialization program.

NNT
See NetView-NetView task.

notification message
An SA z/OS message sent to a human notification operator to provide information about significant
automation actions. Notification messages are defined using the customization dialogs.
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notification operator
A NetView console operator who is authorized to receive SA z/OS notification messages. Authorization
is made through the customization dialogs.

NTRI
See NCP/token ring interconnection.

nucleus initialization program (NIP)
The program that initializes the resident control program; it allows the operator to request last-minute
changes to certain options specified during system generation.

O
objective value

An average Workflow or Using value that SA z/OS can calculate for applications from past service
data. SA z/OS uses the objective value to calculate warning and alert thresholds when none are
explicitly defined.

OCA
In SA z/OS, operator console A, the active operator console for a target system. Contrast with OCB.

OCB
In SA z/OS, operator console B, the backup operator console for a target system. Contrast with OCA.

OPC/A
See Operations Planning and Control/Advanced.

OPC/ESA
See Operations Planning and Control/Enterprise Systems Architecture.

operating system (OS)
Software that controls the execution of programs and that may provide services such as resource
allocation, scheduling, input/output control, and data management. Although operating systems are
predominantly software, partial hardware implementations are possible. (T)

operations
The real-time control of a hardware device or software function.

Operations Planning and Control/Advanced (OPC/A)
A set of IBM licensed programs that automate, plan, and control batch workload. OPC/A analyzes
system and workload status and submits jobs accordingly.

Operations Planning and Control/Enterprise Systems Architecture (OPC/ESA)
A set of IBM licensed programs that automate, plan, and control batch workload. OPC/ESA analyzes
system and workload status and submits jobs accordingly. The successor to OPC/A.

operator
A person who keeps a system running.
A person or program responsible for managing activities controlled by a given piece of software such
as z/OS, the NetView program, or IMS.
A person who operates a device.
In a language statement, the lexical entity that indicates the action to be performed on operands.

operator console
A functional unit containing devices that are used for communications between a computer operator
and a computer. (T)
A display console used for communication between the operator and the system, used primarily to
specify information concerning application programs and to monitor system operation.
In SA z/OS, a console that displays output from and sends input to the operating system (z/OS, LINUX,
VM, VSE). Also called operating system console. In the SA z/OS operator commands and configuration
dialogs, OC is used to designate a target system operator console.

operator station task (OST)
The NetView task that establishes and maintains the online session with the network operator. There
is one operator station task for each network operator who logs on to the NetView program.
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operator view
A set of group, system, and resource definitions that are associated together for monitoring purposes.
An operator view appears as a graphic display in the graphical interface showing the status of the
defined groups, systems, and resources.

OperatorView entry
A construct, created with the customization dialogs, used to represent and contain policy for an
operator view.

optimizer
A special-purpose hardware component or appliance that can perform a limited set of specific
functions with optimized performance when compared to a general-purpose processor. Because of
its limited set of functions, an optimizer is an integrated part of a processing environment, rather than
a stand-alone unit. One example of an optimizer is the IBM Smart Analytics Optimizer for DB2 for
z/OS.

OS
See operating system.

OST
See operator station task.

outbound
In SA z/OS, messages or commands from the focal-point system to the target system.

outbound gateway operator
The automation operator that establishes connections to other systems. The outbound gateway
operator handles communications with other systems through a gateway session. The automation
operator sends messages, commands, and responses to the inbound gateway operator at the
receiving system.

P
page

The portion of a panel that is shown on a display surface at one time.
To transfer instructions, data, or both between real storage and external page or auxiliary storage.

panel
A formatted display of information that appears on a terminal screen. Panels are full-screen 3270-
type displays with a monospaced font, limited color and graphics.
By using SA z/OS panels you can see status, type commands on a command line using a keyboard,
configure your system, and passthru to other consoles. See also help panel.
In computer graphics, a display image that defines the locations and characteristics of display fields
on a display surface. Contrast with screen.

parameter
A variable that is given a constant value for a specified application and that may represent an
application, for example.
An item in a menu for which the user specifies a value or for which the system provides a value when
the menu is interpreted.
Data passed to a program or procedure by a user or another program, specifically as an operand in a
language statement, as an item in a menu, or as a shared data structure.

partition
A fixed-size division of storage.
In VSE, a division of the virtual address area that is available for program processing.
On an IBM Personal Computer fixed disk, one of four possible storage areas of variable size; one can
be accessed by DOS, and each of the others may be assigned to another operating system.

partitionable CPC
A CPC that can be divided into 2 independent CPCs. See also physical partition, single-image mode,
MP, and side.
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partitioned data set (PDS)
A data set in direct access storage that is divided into partitions, called members, each of which can
contain a program, part of a program, or data.

passive monitoring
In SA z/OS, the receiving of unsolicited messages from z/OS systems and their resources. These
messages can prompt updates to resource status displays. See also active monitoring

PCE
A processor controller. Also known as the support processor or service processor in some processor
families.

PDB
See policy database.

PDS
See partitioned data set.

physical partition
Part of a CPC that operates as a CPC in its own right, with its own copy of the operating system.

physical unit (PU)
In SNA, the component that manages and monitors the resources (such as attached links and
adjacent link stations) of a node, as requested by a system services control point (SSCP) through
an SSCP-PU session. An SSCP activates a session with the physical unit to indirectly manage, through
the PU, resources of the node such as attached links.

physically partitioned (PP) configuration
A mode of operation that allows a multiprocessor (MP) system to function as two or more independent
CPCs having separate power, utilities, and maintenance boundaries. Contrast with single-image mode.

PLEXID group
PLEXID group or "extended XCF communication group" is a term used in conjunction with a sysplex.
The PLEXID group includes System Automation Agents for a subset of a sysplex or for the entire
sysplex. It is used to provide XCF communication beyond the SAplex boundaries. For a detailed
description, refer to "Defining the Extended XCF Communication Group" in IBM System Automation for
z/OS Planning and Installation.

POI
See program operator interface.

policy
The automation and monitoring specifications for an SA z/OS enterprise. See IBM System Automation
for z/OS Defining Automation Policy.

policy database
The automation definitions (automation policy) that the automation administrator specifies using the
customization dialog is stored in the policy database. Also known as the PDB. See also automation
policy.

POR
See power-on reset.

port
System hardware that the I/O devices are attached to.
An access point (for example, a logical unit) for data entry or exit.
A functional unit of a node that data can enter or leave a data network through.
In data communication, that part of a data processor that is dedicated to a single data channel for the
purpose of receiving data from or transmitting data to one or more external, remote devices.

power-on reset (POR)
A function that re-initializes all the hardware in a CPC and loads the internal code that enables the
CPC to load and run an operating system. See initial microprogram load.

PP
See physical partition.
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PPI
See program to program interface.

PPT
See primary POI task.

PR/SM
See Processor Resource/Systems Manager.

primary host
The base program that you enter a command for processing at.

primary POI task (PPT)
The NetView subtask that processes all unsolicited messages received from the VTAM program
operator interface (POI) and delivers them to the controlling operator or to the command processor.
The PPT also processes the initial command specified to execute when NetView is initialized and
timer request commands scheduled to execute under the PPT.

primary system
A system is a primary system for an application if the application is normally meant to be running
there. SA z/OS starts the application on all the primary systems defined for it.

problem determination
The process of determining the source of a problem; for example, a program component,
machine failure, telecommunication facilities, user or contractor-installed programs or equipment,
environment failure such as a power loss, or user error.

processor
A device for processing data from programmed instructions. It may be part of another unit.
In a computer, the part that interprets and executes instructions. Two typical components of a
processor are a control unit and an arithmetic logic unit.

processor controller
Hardware that provides support and diagnostic functions for the central processors.

processor operations
The part of SA z/OS that monitors and controls processor (hardware) operations. Processor operations
provides a connection from a focal-point system to a target system. Through NetView on the focal-
point system, processor operations automates operator and system consoles for monitoring and
recovering target systems. Also known as ProcOps.

Processor Resource/Systems Manager (PR/SM)
The feature that allows the processor to use several operating system images simultaneously and
provides logical partitioning capability. See also logically partitioned mode.

ProcOps
See processor operations.

ProcOps Service Machine (PSM)
The PSM is a CMS user on a VM host system. It runs a CMS multitasking application that serves as
"virtual hardware" for ProcOps. ProOps communicates via the PSM with the VM guest systems that are
defined as target systems within ProcOps.

product automation
Automation integrated into the base of SA z/OS for the products CICS, DB2, IMS, IBM Workload
Scheduler (formerly called features).

program operator interface (POI)
A NetView facility for receiving VTAM messages.

program to program interface (PPI)
A NetView function that allows user programs to send or receive data buffers from other user
programs and to send alerts to the NetView hardware monitor from system and application programs.

protocol
In SNA, the meanings of, and the sequencing rules for, requests and responses used for managing the
network, transferring data, and synchronizing the states of network components.
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proxy resource
A resource defined like an entry type APL representing a processor operations target system.

PSM
See ProcOps Service Machine.

PU
See physical unit.

R
RACF

See Resource Access Control Facility.
remote system

A system that receives resource status information from an SA z/OS focal-point system. An SA z/OS
remote system is defined as part of the same SA z/OS enterprise as the SA z/OS focal-point system to
which it is related.

requester
A workstation from that user can log on to a domain from, that is, to the servers belonging to the
domain, and use network resources. Users can access the shared resources and use the processing
capability of the servers, thus reducing hardware investment.

resource
Any facility of the computing system or operating system required by a job or task, and including main
storage, input/output devices, the processing unit, data sets, and control or processing programs.
In NetView, any hardware or software that provides function to the network.
In SA z/OS, any z/OS application, z/OS component, job, device, or target system capable of being
monitored or automated through SA z/OS.

Resource Access Control Facility (RACF)
A program that can provide data security for all your resources. RACF protects data from accidental or
deliberate unauthorized disclosure, modification, or destruction.

resource group
A physically partitionable portion of a processor. Also known as a side.

Resource Measurement Facility (RMF)
A feature of z/OS that measures selected areas of system activity and presents the data collected in
the format of printed reports, System Management Facility (SMF) records, or display reports.

restart automation
Automation provided by SA z/OS that monitors subsystems to ensure that they are running. If a
subsystem fails, SA z/OS attempts to restart it according to the policy in the automation configuration
file.

Restructured Extended Executor (REXX)
A general-purpose, high-level, programming language, particularly suitable for EXEC procedures or
programs for personal computing, used to write command lists.

return code
A code returned from a program used to influence the issuing of subsequent instructions.

REXX
See Restructured Extended Executor.

REXX procedure
A command list written with the Restructured Extended Executor (REXX), which is an interpretive
language.

RMF
See Resource Measurement Facility.

S
SAF

See Security Authorization Facility.
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SA IOM
See System Automation for Integrated Operations Management.

SAplex
SAplex or "SA z/OS Subplex" is a term used in conjuction with a sysplex. In fact, a SAplex is a subset
of a sysplex. However, it can also be a sysplex. For a detailed description, refer to "Using SA z/OS
Subplexes" in IBM System Automation for z/OS Planning and Installation.

SA z/OS
See System Automation for z/OS.

SA z/OS customization dialogs
An ISPF application through which the SA z/OS policy administrator defines policy for individual z/OS
systems and builds automation control data.

SA z/OS customization focal point system
See focal point system.

SA z/OS data model
The set of objects, classes and entity relationships necessary to support the function of SA z/OS and
the NetView automation platform.

SA z/OS enterprise
The group of systems and resources defined in the customization dialogs under one enterprise name.
An SA z/OS enterprise consists of connected z/OS systems running SA z/OS.

SA z/OS focal point system
See focal point system.

SA z/OS policy
The description of the systems and resources that make up an SA z/OS enterprise, together with their
monitoring and automation definitions.

SA z/OS policy administrator
The member of the operations staff who is responsible for defining SA z/OS policy.

SA z/OS SDF focal point system
See focal point system.

SCA
In SA z/OS, system console A, the active system console for a target hardware. Contrast with SCB.

SCB
In SA z/OS, system console B, the backup system console for a target hardware. Contrast with SCA.

screen
Deprecated term for panel.

screen handler
In SA z/OS, software that interprets all data to and from a full-screen image of a target system.
The interpretation depends on the format of the data on the full-screen image. Every processor and
operating system has its own format for the full-screen image. A screen handler controls one PS/2
connection to a target system.

SDF
See status display facility.

SDLC
See synchronous data link control.

SDSF
See System Display and Search Facility.

secondary system
A system is a secondary system for an application if it is defined to automation on that system, but
the application is not normally meant to be running there. Secondary systems are systems to which
an application can be moved in the event that one or more of its primary systems are unavailable.
SA z/OS does not start the application on its secondary systems.
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Security Authorization Facility (SAF)
An MVS interface with which programs can communicate with an external security manager, such as
RACF.

server
A server is a workstation that shares resources, which include directories, printers, serial devices, and
computing powers.

service language command (SLC)
The line-oriented command language of processor controllers or service processors.

service period
Service periods allow the users to schedule the availability of applications. A service period is a set of
time intervals (service windows), during which an application should be active.

service processor (SVP)
The name given to a processor controller on smaller System/370 processors.

service threshold
An SA z/OS policy setting that determines when to notify the operator of deteriorating service for a
resource. See also alert threshold and warning threshold.

session
In SNA, a logical connection between two network addressable units (NAUs) that can be activated,
tailored to provide various protocols, and deactivated, as requested. Each session is uniquely
identified in a transmission header by a pair of network addresses identifying the origin and
destination NAUs of any transmissions exchanged during the session.

session monitor
The component of the NetView program that collects and correlates session-related data and
provides online access to this information. The successor to NLDM.

shutdown automation
SA z/OS-provided automation that manages the shutdown process for subsystems by issuing
shutdown commands and responding to prompts for additional information.

side
A part of a partitionable CPC that can run as a physical partition and is typically referred to as the
A-side or the B-side.

Simple Network Management Protocol (SNMP)
A set of protocols for monitoring systems and devices in complex networks. Information about
managed devices is defined and stored in a Management Information Base (MIB).

single image
A processor system capable of being physically partitioned that has not been physically partitioned.
Single-image systems can be target hardware processors.

single-MVS environment
An environment that supports one MVS image. See also MVS image.

single-image (SI) mode
A mode of operation for a multiprocessor (MP) system that allows it to function as one CPC. By
definition, a uniprocessor (UP) operates in single-image mode. Contrast with physically partitioned
(PP) configuration.

SLC
See service language command.

SMP/E
See System Modification Program/Extended.

SNA
See Systems Network Architecture.

SNA network
In SNA, the part of a user-application network that conforms to the formats and protocols of systems
network architecture. It enables reliable transfer of data among end users and provides protocols
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for controlling the resources of various network configurations. The SNA network consists of network
addressable units (NAUs), boundary function components, and the path control network.

SNMP
See Simple Network Management Protocol.

solicited message
An SA z/OS message that directly responds to a command. Contrast with unsolicited message.

SSCP
See system services control point.

SSI
See subsystem interface.

start automation
Automation provided by SA z/OS that manages and completes the startup process for subsystems.
During this process, SA z/OS replies to prompts for additional information, ensures that the startup
process completes within specified time limits, notifies the operator of problems, if necessary, and
brings subsystems to an UP (or ready) state.

startup
The point in time that a subsystem or application is started.

status
The measure of the condition or availability of the resource.

status display facility (SDF)
The system operations part of SA z/OS that displays status of resources such as applications,
gateways, and write-to-operator messages (WTORs) on dynamic color-coded panels. SDF shows
spool usage problems and resource data from multiple systems.

steady state automation
The routine monitoring, both for presence and performance, of subsystems, applications, volumes
and systems. Steady state automation may respond to messages, performance exceptions and
discrepancies between its model of the system and reality.

structure
A construct used by z/OS to map and manage storage on a coupling facility.

subgroup
A named set of systems. A subgroup is part of an SA z/OS enterprise definition and is used for
monitoring purposes.

SubGroup entry
A construct, created with the customization dialogs, used to represent and contain policy for a
subgroup.

subplex
See SAplex.

subsystem
A secondary or subordinate system, usually capable of operating independent of, or asynchronously
with, a controlling system.
In SA z/OS, an z/OS application or subsystem defined to SA z/OS.

subsystem interface (SSI)
The z/OS interface over which all messages sent to the z/OS console are broadcast.

support element
A hardware unit that provides communications, monitoring, and diagnostic functions to a central
processor complex (CPC).

support processor
Another name given to a processor controller on smaller System/370 processors. See service
processor.

SVP
See service processor.
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symbolic destination name (SDN)
Used locally at the workstation to relate to the VTAM application name.

synchronous data link control (SDLC)
A discipline for managing synchronous, code-transparent, serial-by-bit information transfer over a link
connection. Transmission exchanges may be duplex or half-duplex over switched or nonswitched
links. The configuration of the link connection may be point-to-point, multipoint, or loop. SDLC
conforms to subsets of the Advanced Data Communication Control Procedures (ADCCP) of the
American National Standards Institute and High-Level Data Link Control (HDLC) of the International
Standards Organization.

SYSINFO Report
An RMF report that presents an overview of the system, its workload, and the total number of jobs
using resources or delayed for resources.

SysOps
See system operations.

sysplex
A set of z/OS systems communicating and cooperating with each other through certain multisystem
hardware components (coupling devices and timers) and software services (couple data sets).

In a sysplex, z/OS provides the coupling services that handle the messages, data, and status for the
parts of a multisystem application that has its workload spread across two or more of the connected
processors, sysplex timers, coupling facilities, and couple data sets (which contains policy and states
for automation).

A Parallel Sysplex is a sysplex that includes a coupling facility.

sysplex application group
A sysplex application group is a grouping of applications that can run on any system in a sysplex.

sysplex couple data set
A couple data set that contains sysplex-wide data about systems, groups, and members that use XCF
services. All z/OS systems in a sysplex must have connectivity to the sysplex couple data set. See also
couple data set.

Sysplex Timer
An IBM unit that synchronizes the time-of-day (TOD) clocks in multiple processors or processor sides.
External Time Reference (ETR) is the z/OS generic name for the IBM Sysplex Timer (9037).

system
In SA z/OS, system means a focal point system (z/OS) or a target system (MVS, VM, VSE, LINUX, or
CF).

System Automation for Integrated Operations Management
An outboard automation solution for secure remote access to mainframe/distributed systems. Tivoli
System Automation for Integrated Operations Management, previously Tivoli AF/REMOTE, allows
users to manage mainframe and distributed systems from any location.
The full name for SA IOM.

System Automation for z/OS
The full name for SA z/OS.

system console
A console, usually having a keyboard and a display screen, that is used by an operator to control and
communicate with a system.
A logical device used for the operation and control of hardware functions (for example, IPL, alter/
display, and reconfiguration). The system console can be assigned to any of the physical displays
attached to a processor controller or support processor.
In SA z/OS, the hardware system console for processor controllers or service processors of
processors connected using SA z/OS. In the SA z/OS operator commands and configuration dialogs,
SC is used to designate the system console for a target hardware processor.
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System Display and Search Facility (SDSF)
An IBM licensed program that provides information about jobs, queues, and printers running under
JES2 on a series of panels. Under SA z/OS you can select SDSF from a pull-down menu to see the
resources’ status, view the z/OS system log, see WTOR messages, and see active jobs on the system.

System entry
A construct, created with the customization dialogs, used to represent and contain policy for a
system.

System Modification Program/Extended (SMP/E)
An IBM licensed program that facilitates the process of installing and servicing an z/OS system.

system operations
The part of SA z/OS that monitors and controls system operations applications and subsystems such
as NetView, SDSF, JES, RMF, TSO, ACF/VTAM, CICS, IMS, and OPC. Also known as SysOps.

system services control point (SSCP)
In SNA, the focal point within an SNA network for managing the configuration, coordinating network
operator and problem determination requests, and providing directory support and other session
services for end users of the network. Multiple SSCPs, cooperating as peers, can divide the network
into domains of control, with each SSCP having a hierarchical control relationship to the physical units
and logical units within its domain.

System/390 microprocessor cluster
A configuration that consists of central processor complexes (CPCs) and may have one or more
integrated coupling facilities.

Systems Network Architecture (SNA)
The description of the logical structure, formats, protocols, and operational sequences for
transmitting information units through, and controlling the configuration and operation of, networks.

T
TAF

See terminal access facility.
target

A processor or system monitored and controlled by a focal-point system.
target control task

In SA z/OS, target control tasks process commands and send data to target systems and workstations
through communications tasks. A target control task (a NetView autotask) is assigned to a target
system when the target system is initialized.

target hardware
In SA z/OS, the physical hardware on which a target system runs. It can be a single-image or
physically partitioned processor. Contrast with target system.

target system
In a distributed system environment, a system that is monitored and controlled by the focal-point
system. Multiple target systems can be controlled by a single focal-point system.
In SA z/OS, a computer system attached to the focal-point system for monitoring and control. The
definition of a target system includes how remote sessions are established, what hardware is used,
and what operating system is used.

task
A basic unit of work to be accomplished by a computer.
In the NetView environment, an operator station task (logged-on operator), automation operator
(autotask), application task, or user task. A NetView task performs work in the NetView environment.
All SA z/OS tasks are NetView tasks. See also message monitor task, and target control task.

telecommunication line
Any physical medium, such as a wire or microwave beam, that is used to transmit data.
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terminal access facility (TAF)
A NetView function that allows you to log onto multiple applications either on your system or other
systems. You can define TAF sessions in the SA z/OS customization panels so you don't have to set
them up each time you want to use them.
In NetView, a facility that allows a network operator to control a number of subsystems. In
a full-screen or operator control session, operators can control any combination of subsystems
simultaneously.

terminal emulation
The capability of a microcomputer or personal computer to operate as if it were a particular type of
terminal linked to a processing unit to access data.

threshold
A value that determines the point at which SA z/OS automation performs a predefined action. See
alert threshold, warning threshold, and error threshold.

time of day (TOD)
Typically refers to the time-of-day clock.

Time Sharing Option (TSO)
An optional configuration of the operating system that provides conversational time sharing from
remote stations. It is an interactive service on z/OS, MVS/ESA, and MVS/XA.

Time-Sharing Option/Extended (TSO/E)
An option of z/OS that provides conversational timesharing from remote terminals. TSO/E allows
a wide variety of users to perform many different kinds of tasks. It can handle short-running
applications that use fewer sources as well as long-running applications that require large amounts of
resources.

timers
A NetView instruction that issues a command or command processor (list of commands) at a specified
time or time interval.

TOD
Time of day.

token ring
A network with a ring topology that passes tokens from one attaching device to another; for example,
the IBM Token-Ring Network product.

TP
See transaction program.

transaction program
In the VTAM program, a program that performs services related to the processing of a transaction.
One or more transaction programs may operate within a VTAM application program that is using the
VTAM application program interface (API). In that situation, the transaction program would request
services from the applications program using protocols defined by that application program. The
application program, in turn, could request services from the VTAM program by issuing the APPCCMD
macro instruction.

transitional automation
The actions involved in starting and stopping subsystems and applications that have been defined to
SA z/OS. This can include issuing commands and responding to messages.

translating host
Role played by a host that turns a resource number into a token during a unification process.

trigger
Triggers, in combination with events and service periods, are used to control the starting and stopping
of applications in a single system or a parallel sysplex.

TSO
See Time Sharing Option.
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TSO console
From this 3270-type console you are logged onto TSO or ISPF to use the runtime panels for SA z/OS
customization panels.

TSO/E
See Time-Sharing Option/Extended.

TWS
See IBM Workload Scheduler (IWS).

U
unsolicited message

An SA z/OS message that is not a direct response to a command.
uniform resource identifier (URI)

A uniform resource identifier is a string of characters used to identify a name of a web resource. Such
identification enables interaction with representations of the web resource over the internet, using
specific protocols.

user task
An application of the NetView program defined in a NetView TASK definition statement.

Using
An RMF Monitor III definition. Jobs getting service from hardware resources (processors or devices)
are using these resources. The use of a resource by an address space can vary from 0% to 100%
where 0% indicates no use during a Range period, and 100% indicates that the address space was
found using the resource in every sample during that period.

V
view

In the NetView Graphic Monitor Facility, a graphical picture of a network or part of a network. A view
consists of nodes connected by links and may also include text and background lines. A view can be
displayed, edited, and monitored for status information about network resources.

Virtual Server
A logical construct that appears to comprise processor, memory, and I/O resources conforming to a
particular architecture. A virtual server can support an operating system, associated middleware, and
applications. A hypervisor creates and manages virtual servers.

Virtual Server Collection
A set of virtual servers that supports a workload. This set is not necessarily static. The constituents of
the collection at any given point are determined by virtual servers involved in supporting the workload
at that time.

virtual Server Image
A package containing metadata that describes the system requirements, virtual storage drives, and
any goals and constraints for the virtual machine {for example, isolation and availability). The Open
Virtual Machine Format (OVF) is a Distributed Management Task Force (DMTF) standard that describes
a packaging format for virtual server images.

Virtual Server Image Capture
The ability to store metadata and disk images of an existing virtual server. The metadata describes the
virtual server storage, network needs, goals and constraints. The captured information is stored as a
virtual server image that can be referenced and used to create and deploy other similar images.

Virtual Server Image Clone
The ability to create an identical copy (clone) of a virtual server image that can be used to create a
new similar virtual server.

Virtual Storage Extended (VSE)
A system that consists of a basic operating system (VSE/Advanced Functions), and any IBM supplied
and user-written programs required to meet the data processing needs of a user. VSE and the
hardware that it controls form a complete computing system. Its current version is called VSE/ESA.
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Virtual Telecommunications Access Method (VTAM)
An IBM licensed program that controls communication and the flow of data in an SNA network.
It provides single-domain, multiple-domain, and interconnected network capability. Its full name is
Advanced Communications Function for the Virtual Telecommunications Access Method. Synonymous
with ACF/VTAM.

VM Second Level Systems Support
With this function, Processor Operations is able to control VM second level systems (VM guest
systems) in the same way that it controls systems running on real hardware.

VM/ESA
Virtual Machine/Enterprise Systems Architecture. Its current version is called z/VM.

volume
A direct access storage device (DASD) volume or a tape volume that serves a system in an SA z/OS
enterprise.

VSE
See Virtual Storage Extended.

VTAM
See Virtual Telecommunications Access Method.

W
warning threshold

An application or volume service value that determines the level at which SA z/OS changes the
associated icon in the graphical interface to the warning color. See alert threshold.

workstation
In SA z/OS workstation means the graphic workstation that an operator uses for day-to-day
operations.

write-to-operator (WTO)
A request to send a message to an operator at the z/OS operator console. This request is made by an
application and is handled by the WTO processor, which is part of the z/OS supervisor program.

write-to-operator-with-reply (WTOR)
A request to send a message to an operator at the z/OS operator console that requires a response
from the operator. This request is made by an application and is handled by the WTO processor, which
is part of the z/OS supervisor program.

WTO
See write-to-operator.

WTOR
See write-to-operator-with-reply.

WWV
The US National Institute of Standards and Technology (NIST) radio station that provides standard
time information. A second station, known as WWVB, provides standard time information at a
different frequency.

X
XCF

See cross-system coupling facility.
XCF couple data set

The name for the sysplex couple data set prior to MVS/ESA System Product Version 5 Release 1. See
also sysplex couple data set.

XCF group
A set of related members that a multisystem application defines to XCF. A member is a specific
function, or instance, of the application. A member resides on one system and can communicate with
other members of the same group across the sysplex.

XRF
See extended recovery facility.

Glossary  327



Z
z/OS

An IBM mainframe operating system that uses 64-bit real storage. See also Base Control Program.
z/OS component

A part of z/OS that performs a specific z/OS function. In SA z/OS, component refers to entities that are
managed by SA z/OS automation.

z/OS subsystem
Software products that augment the z/OS operating system. JES and TSO/E are examples of z/OS
subsystems. SA z/OS includes automation for some z/OS subsystems.

z/OS system
A z/OS image together with its associated hardware, which collectively are often referred to simply as
a system, or z/OS system.

z196
See IBM zEnterprise 196 (z196).

zAAP
See IBM System z Application Assist Processor (zAAP).

zBX
See IBM zEnterprise BladeCenter Extension (zBX).

zBX blade
See IBM zEnterprise BladeCenter Extension (zBX) blade.

zCPC
The physical collection of main storage, central processors, timers, and channels within a zEnterprise
mainframe. Although this collection of hardware resources is part of the larger zEnterprise central
processor complex, you can apply energy management policies to zCPC that are different from those
that you apply to any attached IBM zEnterprise BladeCenter Extension (zBX) or blades. See also
central processor complex.

zEnterprise
See IBM zEnterprise System (zEnterprise).
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